TU Darmstadt / ULB / TUprints

Surface science and chemical studies of NiO/single crystal TiO2 heterostructure photocatalysts

Kashiwaya, Shun (2020)
Surface science and chemical studies of NiO/single crystal TiO2 heterostructure photocatalysts.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011449
Ph.D. Thesis, Primary publication

[img]
Preview
Text
Dissertation_final_version_1stFeb2019.pdf
Copyright Information: CC BY-SA 4.0 International - Creative Commons, Attribution ShareAlike.

Download (20MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Surface science and chemical studies of NiO/single crystal TiO2 heterostructure photocatalysts
Language: English
Referees: Jaegermann, Prof. Dr. Wolfram ; Klein, Prof. Dr. Andreas ; Toupance, Prof. Dr. Thierry ; Trautmann, Prof. Dr. Christina ; Muhler, Prof. Dr. Martin ; Keller, Dr. Valerie
Date: 2020
Place of Publication: Darmstadt
Date of oral examination: 27 November 2018
DOI: 10.25534/tuprints-00011449
Abstract:

Photocatalysis on semiconductor metal oxide surfaces has attracted considerable attention as a sustainable environmentally friendly method for water/air purification and hydrogen production by water splitting. Among semiconducting metal oxides TiO2 has been intensively investigated as a promising photocatalyst candidate. However, despite many efforts, its photocatalytic activity is far from a practical level mainly due to inefficient charge carrier separation and resulting charge carrier recombination. An advantageous strategy to address this issue is the development of heterostructures by coupling to a metal to form a Schottky junction or to metal oxides to create a p-n junction at their interface in order to prevent the recombination by vectorial charge carrier separation at these energy junctions. On the other hand it was revealed over the past decade that crystal facets play a decisive role in trapping of charge carriers and thus photocatalytic redox reactions. Thus, selective deposition of metal or metal oxides onto specific facets would enhance the photocatalytic activity by improving charge separation. To achieve higher activities, two methods, the supercritical fluid chemical deposition route and the photodeposition method, were investigated to deposit selectively p-type NiO onto specific facets of ntype TiO2 single crystalline nanoparticles to establish a p-n junction. The resulting NiO/TiO2 nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), N2 sorption measurements, UV-visible diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). The heterojunction photocatalysts showed higher photocatalytic efficiency than pure TiO2 for the decomposition of organic dyes. Particularly, 0.1-0.25 wt % of NiO was the optimal loading amount, showing the highest activity. To elucidate the role of crystal facets of TiO2 and the effect of selective deposition of NiO, rutile (001), rutile (110), anatase (001), and anatase (101) surfaces with different surface states were prepared and their electronic properties were systematically compared by XPS and UPS measurements. Furthermore, water adsorption onto the different surfaces were also investigated. Regardless of surface stoichiometry, the Fermi level position of the anatase (001) surface is situated higher than that of the anatase (101) surface in energy while that of the rutile (001) surface is located lower than that of the rutile (110) surface. This can explain why photo-generated electrons and holes preferentially migrate to the (101) and (001) facets on TiO2 anatase crystals, respectively. Work function values of these oriented surfaces vary depending upon the surface states related to distribution and amount of oxygen vacancies as well as adsorbed oxygen peroxo species on the surface. In order to experimentally determine energy band alignments, interface experiments were performed by stepwisely depositing NiO onto above well-defined oriented TiO2 surfaces. The enhanced photocatalytic activity of NiO/TiO2 heterostructure nanoparticles were rationalized on the basis of the obtained band alignments. The information of electronic properties of different oriented TiO2 under various surface states would provide a new insight to construct the optimal energy band alignment of the heterostructure system with TiO2. In addition, the concept of heterojuction nanocrystals where co-catalysts are selectively deposited should find practical application to purify the environment and to sustainably produce renewable hydrogen.

Alternative Abstract:
Alternative AbstractLanguage

Zusammenfassung für die Öffentlichkeit: TiO2 Photokatalysatoren sind interessant für den Einsatz zur nachhaltigen Reinigung von Wasser oder Luft sowie der Herstellung von Wasserstoff durch die Spaltung von Wasser. Eine erfolgversprechende Strategie ist die Entwicklung von Metalloxid Heterostrukturen die p-n-Übergänge bilden. Die Rekombination der Ladungsträger wird hier durch vektorielle Ladungstrennung verhindert. Des Weiteren hat die kristalline Orientierung der Oberflächen einen entscheidenden Einfluss auf Fallenzustände für Ladungsträger und damit auf photokatalytische Redoxreaktionen. Deshalb wird erwartet, dass die selektive Abscheidung von Metallen oder Metalloxiden auf entsprechend orientierten Facetten die photokatalytische Aktivität durch verbesserte Ladungstrennung steigert. In dieser Arbeit wurde die Verwendung von p-Typ NiO Kokatalysatoren zur Herstellung von p-n-Übergängen mit der selektiven Abscheidung auf ausgewählten Facetten von nanokristallinen TiO2 Photokatalysatoren kombiniert. Physikalische Modellexperimente wurde durchgeführt um die elektronischen Eigenschaften dieser Heterostrukturen zu untersuchen.

German
URN: urn:nbn:de:tuda-tuprints-114496
Classification DDC: 500 Science and mathematics > 500 Science
500 Science and mathematics > 530 Physics
500 Science and mathematics > 540 Chemistry
500 Science and mathematics > 550 Earth sciences and geology
Divisions: 11 Department of Materials and Earth Sciences > Material Science > Electronic Structure of Materials (ESM)
11 Department of Materials and Earth Sciences > Material Science > Surface Science
Date Deposited: 25 Mar 2020 09:47
Last Modified: 09 Jul 2020 06:26
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/11449
PPN: 462189457
Export:
Actions (login required)
View Item View Item