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A B S T R A C T

Software Product Line (SPL) engineering is a popular approach for the sys-
tematic reuse of software artifacts across a very large number of similar products.
SPLs are gaining widespread acceptance and various domains already apply SPL
engineering successfully to address the well-known needs of the Software Engi-
neering community, such as increasing quality, saving costs for development and
maintenance, and decreasing time-to-market. The central aspect of systematic reuse
is the concept of variability often leading to an enormous number of possible
products

In the automotive sector, we are increasingly encountering a situation where a
single electronic control unit (ECU) may be instantiated in at least 10,000 different
ways, and the software running on a network of more than 50 ECUs in a single
car may exist in millions of different configurations. As a result, we are confronted
with a world where any instance of a certain brand of car possesses a unique
configuration of the embedded software of all its ECUs. At a first glance, SPL
engineering seems to result in a major benefit for the automotive sector as well as
for other industrial domains, allowing the combination of mass production and
product customization. The reverse side of the coin is the challenge to assure the
quality of each derivable product of the SPL e.g. via testing activities.

Testing all products of an SPL individually is generally not feasible. This thesis
contributes an approach to significantly reduce the test effort for SPL testing. Faults
are likely to be revealed at execution points where features exchange informa-
tion with other features or influence one another. Therefore, a criterion for test
adequacy is to cover as many interactions among different features as possible,
thus, increasing the probability of finding bugs based on feature interaction. We
present a novel approach to generate a representative set of products of the SPL
required for comprehensive coverage of feature interactions. The features of the
feature model are combined in products using a combinatorial strategy assuring
a certain degree of feature interaction coverage. For this purpose we introduce a
graph transformation-based algorithm to translate the feature model into a binary
constraint satisfaction problem and also an algorithm combining constraint solving
techniques with a feature combination strategy to generate the representative set
of products. A mapping between the feature model and a reusable test model
allows for generating test cases for each product automatically. We implemented
our approach as a tool chain and applied it to three different industrial SPLs for
evaluation purposes. The results suggest that with our approach higher coverage
of feature interactions is achieved at a fraction of cost and time when compared
with the state-of-the-art approach of testing all derivable products.
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Z U S A M M E N FA S S U N G

Software-Produktlinien (SPL)-Engineering ist ein populärer Ansatz für die sys-
tematische Wiederverwendung von Software-Artefakten über eine große Menge
von sich ähnelnden Produkten. Die industrielle Verwendung von SPLs steigt
zunehmend. Eine Vielzahl von verschiedenen Domänen setzen bereits erfolgreich
auf SPL Engineering mit der Zielsetzung, die bekannten Software-Engineering-
Anforderungen, wie steigende Qualitätsansprüche, Kostenreduzierung für Entwick-
lung und Wartung und der Verkürzung der Time-to-Market, zu erfüllen. Zentraler
Bestandteil der systematischen Wiederverwendung ist das Konzept der Variabilität,
welches häufig zu einer enorm hohen Anzahl von möglichen Produkten führt.

Im Automobilbereich werden die Entwickler zunehmend mit der Situation kon-
frontiert, in der ein elektronisches Steuergerät (ECU) bis zu 10.000 verschiedene
Konfigurationsmöglichkeiten besitzt. Bei durchschnittlich mehr als 50 ECUs in
einem Auto ergeben sich Millionen von möglichen Konfigurationen. Folglich hat
bereits jedes Auto bei bestimmten Modellen einiger Automobilhersteller einen indi-
viduellen Softwarestand. Auf den ersten Blick scheint das SPL-Engineering einen
immensen Vorteil für den Automobilbereich und viele andere Industriezweige zu
bringen, da dieser Ansatz die Kombination von Massenproduktion und Produkt-
Customizing bietet. Die Kehrseite der Medaille ist die Herausforderung, die Qual-
ität jedes einzelnen Produktes sicherzustellen, z.B. durch Tests.

Das individuelle Testen aller Produkte ist in der Regel nicht möglich. Diese
Arbeit stellt einen Ansatz zur signifikanten Reduktion des Testaufwands für SPLs
vor. Fehler treten erwartungsgemäß dort auf, wo Features Informationen/Daten
austauschen oder sich beeinflussen. Die Abdeckung solcher Interaktionen erscheint
als geeignetes Kriterium für adäquates Testen, um möglichst viele interaktions-
basierte Fehler zu finden. In dieser Arbeit wird eine Methodik zu Generierung einer
repräsentativen Menge von Produkten vorgestellt. Die Features des Featuremodells
werden gemäß einer kombinatorischen Test Strategie zu Produkten kombiniert, um
einen gewissen Grad an Feature-Interaktionen abzudecken. Dazu wird das Feature-
modell durch Graphtransformation in ein binäres Constraint Satisfaction Problem
übersetzt, welches dann durch eine Kombination von Constraint Solver und kom-
binatorischem Testen gelöst wird, um die repräsentative Menge von Produkten
zu generieren. Ein Mapping zwischen den Features und einem wiederverwend-
baren Testmodell erlaubt die automatische Generierung von produktspezifischen
Testfällen für jedes Produkt der SPL. Der gesamte Ansatz wird als Werkzeugkette
implementiert und anhand von drei verschiedenen industriellen SPLs evaluiert. Die
Ergebnisse zeigen, dass mit diesem Ansatz eine höhere Abdeckung von Fehlern
durch das Abdecken von Feature Interaktionen erreicht werden kann. Gleichzeitig
werden Kosten und Zeit im Vergleich zum standardmäßigen SPL-Testverfahren,
dem Testen einzelner Produkte, reduziert.
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1
I N T R O D U C T I O N

Software Product Line (SPL) engineering is a popular approach for the sys-
tematic reuse of software artifacts across a very large number of similar products.
SPLs are gaining widespread acceptance and various domains already apply SPL
engineering successfully to address the well-known needs of the Software Engi-
neering community, including increasing quality, saving costs for development
and maintenance, and decreasing time-to-market [CN01]. SPLs offer a systematic
reuse of software artifacts within a range of products sharing a common set of
features (i.e., units of functionality) [Gri00]. According to IEEE a feature is a distin-
guishing characteristic of a software item (e.g. concerning its performance, portability, or
functionality) [ANS83].

The central aspect of systematic reuse is the concept of variability. This concept
provides the possibility to define particular artifacts (features) for the entire SPL as
not necessarily being part of each product. Variability specifies the point at which
features are selected in combination with other features [CE00, pages 93-95]. The
stakeholders of the SPL generally define where variability occurs and decide which
features are variable e.g. optional or alternate. Variability leads to a combinatorial
explosion of possible products from one SPL. For instance, an SPL with around 200

optional features may lead to over 1060 different products.
The concept of Product Lines is not new and engineers in various domains, such

as the automotive sector, have adopted this concept of development for the last
few decades, to benefit from the advantages that SPL engineering offers. However,
with regard to software, systematic reuse, including variability concepts, is still
challenging and a relatively new problem for the automotive sector. One main
reason for the increasing need of systematic variability management in software is
the fact that the majority of modern features in a car are based on software. Thus,
variability moves from mechanics and hardware to software [Bos05].

Due to variability, we are increasingly encountering a situation in the automotive
sector where a single electronic control unit (ECU) may be instantiated in at least
10,000 different ways, and the software running on a network of more than 50 ECUs
in a single car may exist in millions of different configurations. As a result, we are
confronted with a world where any instance of a certain brand of car possesses a
unique configuration of the embedded software of all its ECUs. At a first glance,
this situation seems to result in a major benefit for the automotive sector and other
industrial domains, allowing the combination of mass customization and the ability
to produce individual, customer-specific configurations.

3
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The reverse side of the coin is the challenge to assure the quality of each derivable
product of the SPL. Here, two major problems occur:

• The number of configurable products is almost unlimited and

• test engineers generally have a limited period of time to execute tests for a
specific product; thus the question arises about what should/can be tested
during that limited period to ensure sufficient coverage and to find faults
within the system.

Thus, testing each individual product thoroughly is not feasible under the
above mentioned circumstances. Engineers from the Software Engineering Com-
munity and from various industrial domains are seeking methods to reduce the
effort of testing SPLs.

1.1 motivation

In single system development, testing consumes between 25% and 50% of the de-
velopment costs [LL05]. In SPL engineering, testing consumes even more resources,
due to variability [McG01]. Furthermore, testing is even more critical because a
fault within a certain functionality can spread over thousands or even millions of
products which reuse this functionality.

Faults are likely to be revealed at execution points, where features exchange
information with one another or influence each other [Bin99, page 557]. Thus,
interacting features is a foundation of a fault model for SPLs. A feature interaction
occurs when one or more features modify or influence the behavior of other features
[JZ98]. Covering all possible feature interactions is one possible criteria for test
coverage for an SPL, which is an important metric of software quality [ZHM97],
since it indicates thoroughness of testing. Achieving higher coverage is correlated
with the probability of detecting more defects [POC93, NA09, Kim03, CL05] and
increasing software reliability [MLBK02, CLW96]. Even though it is agreed that
coverage alone may not always be a strong indicator of software quality [KBP01,
page 181], it is a general consensus that achieving higher coverage is desirable for
gaining confidence in software [POC93, CLW96].

One industrially used procedure is to generate a product of the SPL under test
including all features—a so-called 150% product. Testing this product would then
result in testing the entire SPL. Or more specifically, this would be equal to testing
all features in interaction with each other. However, testing a 150% product has two
major drawbacks:

• A 150% configuration can rarely be generated because features may exclude
each other and are not combinable or executable within one configuration.

• This procedure is not effective since it does not cover situations when features
have to function without each other. Fault hiding is then a significant issue.
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Thus, to ensure the functionality of the entire SPL, every possible feature combi-
nation would need to be tested. We will refer to this technique as N-wise testing,
where N is the number of features within the SPL. Unfortunately, N-wise testing
would result in testing every possible product; this is often not feasible.

Another option is to test a subset of possible products. Instead of testing all
possible products of an SPL, and thus all potential interactions, only a subset is
selected for testing purposes. According to Scheidemann [Sch07], decreasing the
number of configurations for testing purposes allows for the configurations to be
tested individually. Scheidemann names the following success stories for testing
SPLs with a limited number of configurations:

• driver assistance SPL of Robert Bosch GmbH [PBvdL05]

• home entertainment SPL of Philips [Tre04]

• Avaya Labs SPL [GLRW04]

Thus, it seems to be promising to reduce the number of configurations for testing
purposes and this is the central topic of this thesis. The following research questions
(RQs) motivate this thesis:

1. Can we test an entire SPL without testing each possible product?

2. How can we apply lessons learned from the software testing community to
decrease the test effort for SPLs?

3. How should we systematically select a subset of possible products for testing
purposes with regard to feature interaction?

4. What is the effect of testing for feature interactions in the SPL context?

5. How can we reuse test artifacts to test the product of an SPL?

6. What is necessary to support industry with a suitable tool chain in relation to
these RQs?

One possible solution is to calculate a subset of products which is representative
for the entire SPL under test by means of a certain coverage criterion e.g. feature
interaction coverage. We will refer to this technique as T -wise testing where T
is smaller than N or, more simply, as subset-heuristics. Achieving higher test
coverage when testing for feature interactions means that testers produce various
products of the SPL with which they can execute tests for features and their
interactions. The faster these testers achieve higher coverage of feature interactions,
the lower the cost of testing [Kan96], because testers can concentrate sooner on
other aspects of testing, for example, performance and usability testing. Higher
coverage is always better but 100% coverage is generally not achieved, especially
when testing large-scale applications [POC93, Mar99].
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The following assumption led us to the idea of applying/exploring combinatorial
test techniques to select an appropriate T [OMR10]:

The commonalities and variability within an SPL are frequently represented by features.
Those features can be interpreted as parameters in the SPL engineering process. Therefore, it
seems to be promising to have a look at lessons learned in the field of test case reduction based
on parameterization. Combinatorial testing and especially pairwise testing are well-known
approaches in that category.

Various approaches exist for applying combinatorial testing to SPLs, which we
will discuss within this thesis. However, those approaches either do not describe
in detail how to apply it to SPLs or the described method is very complex to
handle with regard to calculation time and scalability. According to the best of
our knowledge we published the first systematic approach to apply combinatorial
testing to SPLs in [OSW08].

1.2 contribution

This thesis introduces the Model-based Software Product Line Testing (MoSo-
PoLiTe) concept for SPL testing and provides an implementation of this concept
by means of a tool chain. This concept generates a subset of product configu-
rations for testing purposes that meet the previously mentioned T -wise feature
interaction coverage criteria. Features from the feature model of the SPL under
test are combined in product configurations using a T -wise combinatorial strat-
egy [GOA05, CGMC03, KLK08]. Feature models are frequently used to represent
the common and variable features within an SPL, including dependencies and
constraints that determine which feature selections are appropriate for a product
configuration.

Thus, MoSo-PoLiTe provides a systematic approach for generating a set of
configurations covering T -wise feature interaction on the basis of the feature model.
Testing this set of configurations is equivalent to T -wise testing of the entire SPL.

Furthermore, the MoSo-PoLiTe concept includes a model-based test approach
through a reusable test model of the SPL, which allows for the generation of
configuration-specific test cases. The intuition behind our approach is that we
use statecharts as a test model for our SPL, whose states and transitions are then
mapped to features in feature models. Thus, we are able to interrelate feature model
coverage and test model coverage. This is, according to the best of our knowledge,
the first contribution to do so.

Figure 1 depicts a schematic overview of the contribution of this thesis—MoSo-
PoLiTe. A feature model serves as a basis for configuring the instances of the SPL
under test. We will introduce a combinatorial test algorithm which will calculate
a set of configurations covering all T -wise feature interactions (left-hand side).
Furthermore, the feature model can be used to configure a reusable test model
via a mapping between features and test model artifacts (right-hand side). As a
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Figure 1: Overview of our contribution

result, MoSo-PoLiTe generates a set of configurations covering all T -wise feature
interactions, including test cases for each configuration of the test set. This diagram
and also more detailed versions of it will be used throughout this thesis to describe
the outline and content of various chapters or to provide a schematic overview of
the MoSo-PoLiTe functionalities.

Summarizing this thesis contributes:

• An approach for applying combinatorial testing to SPLs, including the auto-
matic generation of product configurations satisfying T -wise feature interac-
tion coverage.

• A graph transformation-based algorithm to translate a feature model into a
binary constraint satisfaction problem (CSP).

• A feature model generator to automatically generate feature models that we
use to examine the scalability and efficiency of our algorithm.

• An approach to automatically generate test cases for arbitrary products of an
SPL on the basis of model-based coverage criteria.

• A tool chain providing the implementation of our approach that combines
T -wise combination and model-based testing.

• Finally, we discuss the results of our industrial case studies and discuss the
potentials and limitations of the T -wise testing approach focusing on pairwise
feature interaction.
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1.2.1 Benefit for Industry

The concepts, algorithms, and tools developed within this thesis were applied in
several cooperations with various research groups and industrial partners. All
those cooperations have shown that industry can reduce the effort for testing SPLs.
This gain can be traced back to the step-by-step description of our concepts and
the integration into the SPL development process.

There are multiple benefits of our approach: it is lightweight, since it does not
require any intervention by programmers; it is tractable, since it uses combinatorial
design to shrink the input feature space while maintaining a diversity of feature
interactions; and it is scalable, since it can be used on feature models with hundreds
of optional features [OMR10]. Furthermore, our approach does not depend on
the implementation of the SPL and it does not require any source code or model
analyzers.

1.2.2 Classification

We classify this contribution to address the following areas of research:

• Software Product Line Engineering

• Software (Product Line) Testing

• Combinatorial Testing

• Feature Modeling

• Model-Based Testing

• Requirement-Based Testing

• Feature Interaction

1.3 outline

This thesis is structured into five parts plus appendix. This structure intends to
support and guide the reader. Figure 2 depicts a schematic overview of the thesis
structure.

Part I: The Introduction contains the introduction, motivation and a brief summary
of the contribution of this thesis. Research questions are used to emphasize the
contribution of this thesis. This section answers the question about which domain
of research is addressed (and where) within this thesis, what the thesis is about,
why the topic addressed in this thesis is relevant in research and industry, and
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who can benefit from its results. Furthermore, this section introduces the running
example that is used throughout this thesis to explain fundamentals, theory, and
concepts, as well as parts of our implementation.

Part II: The part Background and Related Work covers the fundamentals rele-
vant for this thesis, beginning with an introduction to SPLs that explains the basic
ideas and concepts. Then, software testing in general is described as the method
for software quality assurance that we aim to apply to SPLs. First, a general intro-
duction to testing is provided, followed by a detailed description of methods which
are used extensively within this contibution, such as combinatorial testing and
model-based testing. Subsequently, approaches for SPL testing are summarized
and discussed in a chapter on related work.

Part III: The part Concept and Theory introduces the basic concepts of our ap-
proach. Thus, this part is dedicated to describing how combinatorial testing can be
applied to SPLs and how this approach can be extended by model-based testing
for test case generation.

Part IV: The part Implementation & Evaluation describes the implementation
of our approach and introduces our tool chain that can be used to apply our
approach in an industrial context. Thus, we are then able to collect data and experi-
ences from our industrial partners, which we summarize in our evaluation.

Part V: This part concludes this thesis and provides an overview of current and
future work. The research questions of Part I are discussed and new research
questions are summarized to support and motivate further research.

Part V: 

Conclusion

Part IV: Implementation 

& Evaluation

Part III: Concept and Theory

Part II: Fundamentals

Part I: Introduction

Research Questions

Figure 2: Overview of Parts

A more detailed outline of this thesis is depicted in Figure 3, providing an
overview of chapters. The storyline of this thesis is depicted as a bold line on the
right-hand side of Figure 3. This storyline starts off with the research questions and
is supported by each part‘s summary. It ends in the conclusion of the thesis, where
we discuss the research questions by reflecting on each part. In the following, we
briefly describe the structure and content of each chapter:



10 introduction

Chapter 1 describes the general introduction of this thesis, its contribution, and
outline. Followed by this detailed overview of chapters, we introduce the thesis’s
running example. This running example is an SPL from the automotive domain
provided by one of our industrial partners.

Chapter 2 introduces the domain of application of our approach: Software Product
Lines (SPLs). We provide details about the variability and reuse concepts within
SPLs and focus on feature modeling, which is currently the most prominent ap-
proach for modeling variability and commonalities. Finally, we briefly summarize
some challenges of the SPL development process to provide a critical view of our
domain of research.

Chapter 3 is dedicated to software testing. Here, we provide a brief review of
terms and techniques and introduce details about model-based testing and combi-
natorial testing. Furthermore, we describe approaches, including mutations and
coverage criteria, which are used to rate the quality of tests.

Chapter 4 summarizes research activities, concepts, and approaches related to
our contribution according to the best of our knowledge. This study focuses on SPL
testing approaches and pays particular attention to model-based and combinatorial
testing approaches for SPLs. The goals of this chapter are to (1) provide an overview
of the state-of-the-art in SPL testing, (2) summarize lessons learned from other
approaches, and (3) reveal unresolved issues in current approaches that we will
address in our approach.

Chapter 5 summarizes the background and related work part of this thesis. There,
we reflect on the state-of-the art in SPL development and testing as well as feature
modeling. Furthermore, we examine the impact of our study of related work on
our research questions.

Chapter 6 is the first chapter within the concept and theory part. Here, we provide
the reasoning about why we use the feature model for SPL testing purposes. We
also prepare the ground for the following chapters by providing a formal definition
of feature models and feature interactions.

Chapter 7 introduces the concept of our combinatorial test algorithm. Here, we
introduce how combinatorial design can be applied to feature models and introduce
the concept of graph transformation to translate a feature model, as defined in
Chapter 6, into a binary constraint satisfaction problem. Furthermore, we discuss
correctness and completeness of this transformation. Pseudocode and activity dia-
grams are used to describe the internal functionality of our combinatorial algorithm
generating a subset of products.
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Chapter 8 describes the concept of a reusable test model to generate test cases
for an application derived from an SPL. For this purpose, a mapping between the
features of the feature model and the elements of the test model is introduced,
allowing the configuration of the test model, using the feature model. As a conse-
quence, configurations automatically result in corresponding configuration specific
test models which can then be used for test case generation purposes.

Chapter 9 summarizes the concept and theory part of this thesis. It reflects the
MoSo-PoLiTe concept and prepares the ground for the implementation.

Chapter 10 describes the implementation of the MoSo-PoLiTe concept. First, the
application of pure::variants within the MoSo-PoLiTe framework is described.
Subsequently, we describe the implementation for combinatorial testing and model-
based testing. Finally, we test our implementation to check whether it aligns with
the previously described concept in the Chapters 6, 7, and 8.

Chapter 11 presents the evaluation of the MoSo-PoLiTe concept. Three indus-
trial use cases are used to examine the results of MoSo-PoLiTe. Furthermore, we
provide a theoretical discussion of the potentials and limitations of our approach,
which can be seen as an extension of our evaluation.

Chapter 12 summarizes the Implementation and Evaluation part of this thesis.
There, we recapitulate the implementation of MoSo-PoLiTe and examine to what
extent the results of the evaluation affect our research questions.

Chapter 13 finally concludes this thesis and summarizes its contribution. The
research questions are recapitulated and answers are provided. New research
questions are formulated to motivate future research and discussions.

1.4 running example: body comfort system

To clearly illustrate the contribution of this thesis, we make use of a sample
SPL from the automotive domain, a simplified extract of a Body Comfort System
(BCS) [MLD+

09] which we adapted to become an SPL.
A BCS is a combination of several functionalities increasing the driver’s comfort.

A BCS consists of several ECUs that interact via CAN-Bus to realize functionalities
such as:

• central locking control

• power window lift

• rearview mirror adjustment
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Figure 4: The four ECUs of the BCS [MLD+
09]

• alarm system

• sideview mirror control

• monitor systems to display the BCS settings

The driver can interact and control these functionalities via a human machine
interface (HMI) by means of switches, levers or touch screens. Our sample of the
BCS serving as a running example contains an alarm system with an optional
interior monitoring, a human machine interface (HMI) offering a passenger control
interface, an electrical configurable exterior mirror that may also include a heating
function, and a remote control key for the central locking system and the control
the alarm system. Furthermore, every BSC includes a power window functionality,
providing either a manual or an automatic window closing functionality. The
automatic window closing function can be activated using the remote control key.

Figure 4 shows the four Electronic Control Units (ECUs) implementing the BCS
functionality [MLD+

09]. From left to right: Door Control ECU, HMI ECU, Key
and Door ECU, Alarm ECU.
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O V E RV I E W PA RT I I

This part summarizes the fundamentals relevant for this thesis. Its structure is
depicted in Fig. 5. The two basic topics underlying this thesis, namely Software
Product Lines and software testing, are described in Chapters 2 and 3 respectively.
The Software Product Lines chapter focuses on variability and reuse and how these
concepts are managed. A clear understanding of how variability and reuse effects
the different configurations of an SPL is vital for our test approach because we
aim at identifying a small set of configurations for testing purposes. Afterwards,
a chapter dedicated to software testing provides relevant fundamentals about
single system testing. Furthermore, this chapter briefly summarizes the concepts
of model-based testing and combinatorial testing since those approaches are used
extensively within this thesis. A related work section then provides a summary and
a discussion of the state-of-the-art approaches and concepts in Software Product
Line testing.

2. Software Product Lines

2.1 Software Product Line 
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2.2 Variability Representation

2.3 Challenges of SPL Engineering
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3.1 Terms and Definitions
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Figure 5: Overview - Part II
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2
S O F T WA R E P R O D U C T L I N E S

Software Product Line (SPL) Engineering is one of the most prominent ap-
proaches to improve reusability of software within a range of products sharing a
common set of features [Bos00, CN01, PBvdL05]. Clements even elevates SPLs to
the dominant software development paradigm of the 21st century [Cle99]. Due to
the systematic reuse, the time-to-market, as well as costs for development and main-
tenance are expected to decrease, while the quality of the individual products is
expected to increase. Thus, SPLs are able to support developers to rapidly develop
customized products instead of developing new products from scratch repeatedly.
The concepts behind the product line paradigm are not new. Domains such as
the automotive industry have successfully applied product line development for
several years. However, this was generally hardware-based reuse.

The software development industry has recently adopted the idea of product
line engineering. Among these, the automotive industry itself focuses on variability
and reuse of software due to the fact that software within vehicles now controls the
majority of functionalities. Furthermore, various configurations are based on cus-
tomer choices. Especially when analyzing the development of embedded systems
it is evident that the product line paradigm has gained increasing importance in
the course of developing products for particular domains, such as control units in
the automotive domain [TH02, GKPR08].

The SPL concept is based on the idea of combining the advantages of custom
software and off-the-shelf software. Off-the-shelf software is implemented for a
wide area of applications or domains used by various types of end users. Typical
examples for off-the-shelf software are: Microsoft Windows, MAC OS, Open Office,
and Microsoft Office. Those software products are typically used by many end
users.

In contrast to the aforementioned concept, custom software is developed for the
solution of a certain problem. Thus, developing such a software is more expensive
since the market for a specific solution is rather small. Examples for custom
products would be a program that can only be installed on a certain platform that
is only of interest to a very small community. SPLs intend to develop software
products for a certain domain addressing various customers and to provide problem
specific products by using variability concepts.

Clements and Northrop [CN01] from the Software Engineering Institute at the
Carnegie Mellon University define SPLs as follows:

19



20 software product lines

Definition 1 (Software Product Lines). A Software Product Line is a set of software-
intensive systems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed from a common set
of core assets in a prescribed way.

Bosch describes SPLs [Bos01] as:

Definition 2 (Software Product Lines cont’d). A Software Product Line consists of a
product line architecture, a set of reusable components, and a set of products derived from
the shared assets.

These definitions contain much valuable information:

• Members of an SPL share a common set of features and are based on an SPL
architecture.

• These commonalities have to be managed explicitly.

• These commonalities define the domain or their market segment in which
the SPL is intended to be used.

• An SPL is always limited to a certain domain. Otherwise it is not possible to
identify, manage or reuse commonalities.

The term reuse is a very important keyword for SPLs. The importance of reuse
within Software Engineering was already recognized in 1968 at the NATO con-
ference in Garmisch-Partenkirchen. There, McIlroy stated that software should be
reused across different software projects [McI68]. He proposed dividing the market
into component developers, component users, and a market place, where the users
can purchase the desired components.

This statement is very impressive for two reasons:

• This idea came up for the first time at the same conference where the term
Software Engineering was initially mentioned as an engineering process to
develop software intensive systems. Thus, the idea of software reuse is as old
as the idea of its area of application.

• The idea of reuse seems to be very intuitive. However, it took several years to
come up with concepts such as classes, modules, and inheritance focusing on
small scale reuse within a certain product development, and then more years
to come up with concepts and ideas to implement explicit large scale reuse
in Software Engineering covering amongst others software requirements,
architectures, implementation, documentation, and tests.
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2.1 software product line fundamentals

The development of an SPL affects all activities in the development process. With
regard to an SPL development process, we follow the definitions of Pohl et al.
[PBvdL05], since their process model is a quasi-standard in the SPL community.
In contrast to single system development, the development process is separated
into domain engineering and application engineering. The former allows for the
development of the common and variable parts of the product line (development
for reuse), while the latter allows for the development of an application (also called
product) considering the use of individual parts (development with reuse). Thus,
an SPL has to align with common and variable requirements [WL99]. Common
requirements have to be fulfilled by every product of the SPL and variable require-
ments describe product individual functionalities. The two levels, domain and
application engineering, are again separated into five activities (see Figure 6):

• Product Management

• Requirements Engineering

• Design

• Realization

• Testing

Feedback

Figure 6: Software Product Line development process by [PBvdL05]

The activity product management is a domain engineering-specific activity, sup-
porting the evolution of the entire SPL. The product management controls the other
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four activities in domain engineering, starting with the development of the common
and variable requirements, their design, realization, and finally testing. Domain
testing provides testing of common and variable parts without deriving a product
from the SPL. The output of every activity are artifacts including variability.

Definition 3 (Variability). Variability describes the possibility to define particular arti-
facts of domain engineering as not necessarily being part of each application of the product
line.

Variability appears within artifacts and is defined by variation points.

Definition 4 (Variation Point). A Variation Point specifies the type and the location of
a variability. Every Variation Point has at least one variant.

Each activity in application engineering is supported by the corresponding
activity in domain engineering. The development artifacts of the domain level are
the basis for the development on the application engineering level by deriving
the required common and variable parts from the particular domain engineering
activity for the corresponding application engineering activity. Deriving refers
to the process of binding the variability within the particular artifact to become
application specific artifacts, also called variants.

Definition 5 (Variant). Variants describe the possible assignments for a variation point.
A variant can again be a variation point.

This derivation is performed for every activity in application engineering. The
next step, in each application engineering activity, is the development of application
individual parts. The common and variable parts are illustrated in Figure 6 by
the blank symbols, while the product individual parts are depicted by the filled
symbols. The derivation of the common and variable parts for each activity is
illustrated by a long unshaded arrow. Further information and variants of the
SPL development process can be found in [PBvdL05], [CN01], and [Gom04]. In
contrast to the original picture of the SPL development process provided by Pohl,
we have added an additional feedback link from application engineering to domain
engineering. We think that this link is vital for the SPL development process because
experiences and requirements that emerged within application engineering might
be of interest in the domain engineering phase. Several approaches for variability
modeling that model variation points and their corresponding variants exist that
will be discussed in Section 2.2.



2.1 software product line fundamentals 23

2.1.1 Variability and Reuse

According to Gilles van Gurp and Jan Bosch in the preface of [vGB03] variability is:

...the ability of a software system or artifact to be changed, customized or configured for
use in a particular context. A high degree of variability allows for the use of software in a
broader range of contexts, i.e. the software is more reusable.

Variability is one of the key challenges in SPL engineering allowing the derivation
of different products. It is, therefore, the main difference compared to single sys-
tem development. The variability is based on the stakeholder and environmental
requirements. With regard to the automotive sector, the choice between a diesel
and otto engine is a stakeholder driven variability, whereas the variability of having
the steering wheel on the left or the right side of the car is an environmental
requirement depending on the country where the car will be driven.

Another typical example for variability is provided by online-car-configurators
that are provided by every automotive brand. In our running example, variability
is, for example, the choice between manual power window and automatic power
window. A product can either contain a manual or an automatic power window.

According to Pohl et al. we can differentiate between the following different
kinds of variability [PBvdL05]:

• Variability in Space describes the existence of an object in different shapes
at the same time. This is the typical SPL variability because it describes the
fact that a certain variation point can bind different variants within different
products.

• Variability in Time is the existence of an object in different shapes at different
times. This variability actually describes the evolution within SPL engineering.

These types of variability can again be categorized as:

• Internal Variability is variability within the SPL that is hidden from the
customer.

• External Variability is visible to the customer and is actually selected by the
customer.

However, variability can only have a positive effect if appropriate techniques for
reuse are available. Reuse in Software Engineering is generally daily business—but
unfortunately this is often interpreted as library (re)use and copy & paste of code
fragments, parts of the specification or documentation. Development for reuse
is part of the domain engineering phase within the SPL engineering process. To
systematically apply variability and reuse, variability mechanisms are required as
well as an appropriate method to model and manage variability within the SPL
engineering process.
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2.1.2 Variability Mechanism and Binding

The selection and integration of the variable artifacts for product derivation is
called binding. The binding time specifies the time in the development process at
which the variability is resolved.

Generally, the following binding times are used during the life-cycle of a product:

• Product planning: Variability can already be resolved during product plan-
ning by choosing certain properties for the planned product.

• Design: Variability within the architecture of the SPL can already be resolved
during the design phase.

• Compile time: During compilation variabilities can be resolved using e.g.
preprocessors.

• Installation: During the installation or flashing, for example via variability in
the parametrization.

• Startup: Variability can be resolved at system startup, for example different
program modes can be selected at system startup.

• Run time: Variability can be resolved at run time, for example changing from
multi to single player mode within a smartphone game [OWES11].

In the automotive sector, variability within a vehicle is generally resolved as
follows [Sch07]:

1. During the product planning and design phases, as mentioned above.

2. Subcontractors develop components that they sell to different OEMs. Thus,
those components include variability which is at least partly resolved when
delivered to an OEM.

3. On the assembly line variability is resolved by selecting the ECUs to be
integrated within a certain car. These ECUs control e.g. certain sensors or
actors required for functionalities such as power window.

4. These ECUs are then flashed or parameterized to assure a certain functionality.

5. After a vehicle is assembled, it still includes variability that can be resolved
during runtime e.g. turning off the Electronic Stability Control (ESC).

Especially in the automotive sector, bound variants do not necessarily remain
static but, in some cases, variability might be rebound. For example, the software
on an ECU might get re-flashed or hardware might be exchanged.

The latest time for binding is limited by a so-called variability mechanism
describing the method of how the variability is bound. Prominent variability
mechanisms are:
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• Code generation from Models: Models are frequently used to model the
behavior of an SPL or parts of it. Thus, these models contain variability
concepts that are generally resolved when code or test cases are generated
out of those models. Modeling approaches in Matlab Simulink e.g. [Wei08],
statecharts e.g. [SV08], and activity diagrams e.g. [RKPR05] are frequently
used.

• Aspects: Aspects realize the separation of concerns and map variant code to a
certain aspect. During the so-called weaving process, the code of the selected
aspects is merged with the common code [Gri00].

• Preprocessors: Preprocessors are used to realize conditional compilation
depending on which code fragments are required for a certain product. Tools
such as pure::variants [pG11] and Gears [Kru08] use this technique.

• Inheritance: A superclass represents all possible variants of an SPL and each
variant is then modeled as a class that extends the interface by adding or
overriding operations of the superclass. This is, for example, described in the
PLUS method [Gom04].

• Information Hiding: Variability is distributed across different versions of
components. Interfaces then hide the concrete realization [DGP+

04].

• Parametrization/Substitution: Variability is represented by parameters that
are resolved to derive a configuration. For example, Bertolino and Gnesi
use parameters within use cases [BG03]. Placeholders need to be replaced
by concrete parameters. In [RKPR05] the authors use substitution to derive
configurations.

• Frames: Common and variable code can be separated by using frames as
described in [Bas97].

• Generative Programming: Czarnecki et al. introduced the generative pro-
gramming Software Engineering paradigm to model SPLs. Variabilities can
be encapsulated into customizable/abstract features [CE00]. Those abstract
features can then be used to generate concrete and specialized components
based on customer requirements.

2.2 variability representation

Since variability management is one key challenge in SPL engineering and testing,
we need to discuss different approaches for modeling variability. Variability rep-
resentations must be capable of representing variability and commonalities and
should be able to describe the effects/consequences of variability.



26 software product lines

2.2.1 Feature Models

The Webster’s Dictionary of American English defines a Feature as 1) an important
part or characteristic and 2) something offered as a special attraction. The Software
Engineering community and especially the SPL-community refine and adapt these
definitions constantly and the definition of a feature differs in some publications.
For our definition, we use the standard in the software test documentation in
[ANS83].

Definition 6 (Feature). A feature is a distinguishing characteristic of a software item
(e.g. concerning its performance, portability or functionality).

Feature models are frequently used to describe the variable and common parts
within an SPL. A feature model consists of features, each representing a “logical
group of requirements” [Bos00] or, as defined in [CHE05b]: “a system property that
is relevant to some stakeholder”. The purposes of feature models are summarized
in [HST+

08] as follows:

1. to describe feature commonalities and variabilities,

2. to graphically represent dependencies and constraints between features, and

3. to specify permitted and forbidden combinations of features.

For this purpose, notations have been defined so that researchers, managers,
and clients are usually able to read and interpret feature models easily. Of course,
feature models are not able to capture all the types of important properties of an SPL;
therefore, they are complemented by other development artifacts such as natural
languagement descriptions, function network diagrams, executable models or even
code fragments. These artifacts are then mapped to the corresponding features by
means of traceability relationships.

Feature models were introduced in [KCH+
90] as part of FODA (Feature Ori-

ented Domain Analysis), combining a hierarchical decomposition of features into
subfeatures with the definition of mandatory, optional, and alternative features using
different kinds of relations. A mandatory feature is always part of the product if
its parent feature is selected. An optional feature can be part of a product if its
parent is selected. If the parent feature of an alternative group is selected, exactly
one feature has to be chosen for product derivation. Binary require and exclude con-
straints describe further cross-tree constraints between features. The hierarchical
structure of feature models, the relations, and constraints determine which feature
combinations are allowed to be assembled to products. Furthermore, in FODA, the
feature model serves the following purposes: A feature model

• contains all system requirements of the customer and end user,
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Figure 7: Feature model of the BCS
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• supports the communication between users and developers, and

• is used as a starting point for the development of the architecture.

Figure 7 depicts the feature model of the BCS-SPL that serves as a running
example throughout this thesis. The four different relations are explained at the
bottom right corner. A node marked with a black filled circle represents a mandatory
feature. A mandatory feature such as door system is always included within a
product of the SPL if its parent node is included. Nodes marked with a white filled
circle are optional features that can be selected for product derivation; e.g. central
locking system. Groups of features are marked via a connecting line. A group of
features with black-filled circles represents an alternative group; e.g. manual power
window, automatic power window. A group of features with white-filled circles
represents an or group. For product derivation at least one feature of an or group has
to be included if the parent feature is included; e.g. status LED. Furthermore, require
and exclude constraints restrict the product space of the BCS-SPL. For example, an
exclude constraint hinders the combination of manual power window and control
automatic power window and a require constraint demands that central locking
system is selected if remote control is selected. The BCS feature model allows for
deriving 11,616 different product configurations.

Since the initial introduction of feature models within the FODA feasibility study,
further extensions have been introduced, improving precision and expressiveness
and including, amongst others, cardinalities, probabilities, and weighting of features.
Cardinalities can be employed to formulate how many instances of a feature
may be integrated within a product [CHE05a]. Probabilities state that a certain
feature is more likely to be used than another one [CSW08]. Weights can be used
to represent cost factors of features, thus supporting the engineers in building
products appropriate for a certain budget [WDS09]. For a detailed summary of
extensions of FODA feature models, see [CHE05b]. The approach in this thesis
supports FODA feature models extended by an or group. For product derivation,
at least one element of an or group has to be selected if its parent node is chosen to
be part of the product. The following notions should be clarified:

Definition 7 (Configuration). A configuration is a selection of features for product
instantiation. Thus, a configuration only allows feature combinations that could lead to a
product and do no violate relations and constraints between features.

Definition 8 (Product). A product is a selection of features including their implementa-
tion resulting in a product ready to be used.
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2.2.2 Alternative Representations

Feature models are the most prominent approach for describing variability within
an SPL. In the following, we provide a brief overview of alternative modeling
approaches.

2.2.2.1 OVM

Our definition of variation points and variants is based on the orthogonal variability
model (OVM) proposed by Pohl et al. [PBvdL05]. Variation Points identify locations
in development artifacts that contain variability. Furthermore, they support the
specification of variability because they are able to provide variable characteristics.

Pohl et al. call their modeling approach orthogonal because variation points
capture variability from different abstraction levels such as requirements, design
or implementation. As in feature models, constraints between variation points can
be modeled using require and exclude constraints. The OVM supports mandatory,
optional, and alternative relations but, according to our knowledge, no or group.

Please note that the approach addressed in this thesis can also be based on
OVMs, because feature models and OVMs are semantically equivalent [MPH+

07].
The argument that feature models are only capable of describing variability on the
feature level is not valid because various approaches exist which map features to
all kinds of development or test artifacts of an SPL [FOS11].

2.2.2.2 Decision Models

Decision Models can be used to incrementally derive a specific configuration, where
each decision within the decision model represents a variation point. Each deci-
sion is a question and each answer is linked to a certain artifact. A decision can
influence other decisions. Some of the most prominent representatives of this vari-
ability approach are: Synthesis [Bur93], Schmid and John [SJ04], KobrA [ABB+

02],
Dopler [DGR11], and VManage [SG02]. They share very few commonalities and
provide very different concepts and formalisms. A survey and discussion of these
approaches can be found in [SRG11]. From our point of view, Decision Models can
be used to document the development of a feature model. For example, they can
provide a textual description of decisions about why a certain feature is within an
alternative group or why it excludes another feature. However, Decision Models do
not seem to be capable of parameterizing an SPL and are thus not suitable for our
test approach.

2.2.2.3 Natural Language

Thomas von der Maßen discussed the use of natural language to describe variabil-
ity within his doctoral thesis. He reported that natural language could describe
functional and non-functional requirements and could be understood easily by
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developers and customers [vdM07]. However, the major disadvantages that Thomas
von der Maßen identified, thus disqualifying this approach for variability modeling,
are:

• Natural language cannot be validated automatically in terms of consistency,
completeness, and correctness.

• Natural language is not precise enough to describe variability.

• Automatic product derivation is not possible.

In [vdM07], natural language was only discussed with regard to variability within
requirements. Relating this variability representation to other artifacts, such as
code fragments and test data, does not seem to be infeasible [vdM07]. However,
we would expect natural languages to compensate these drawbacks if they are
restricted to allow some kind of formalization. From our point of view, natural
language then would tend to become similar to Decision Models. Still, natural
languages seem to be inappropriate for our test approach for the same reason as
Decision Models.

2.3 challenges of spl engineering

In addition to the listed benefits, SPL engineering has several inherent disadvan-
tages that need to be taken into account:

• The initial effort to introduce an SPL development process is very large.

• The internal structure and hierarchies within the company may need to be
changed to provide development and management of reusable artifacts and
for product derivation.

• The development for reuse does not result in a direct financial benefit. Devel-
oping for reuse and for future products takes time to produce income for the
company.

These disadvantages prevent many companies from introducing an SPL develop-
ment process. The reuse concept within SPLs affects requirements, business cases,
tools, concepts and processes, architecture, components, tests, documentations, and
many more. Changing or preparing these artifacts for reuse requires additional
effort. According to [WL99], the return of an investment (ROI) will be reached
within the development of the second or third product if all the employees involved
are willing to accept the additional start-up effort.
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S O F T WA R E T E S T

Software Testing is one of several quality assurance techniques in Software
Engineering. Software Quality is defined in the IEEE Standard Glossary of Software
Engineering Terminology IEEE Standard 729-1983 [ANS83] as:

• The totality of features and characteristics of a software product that bear on its
ability to satisfy given needs; for example, conform to specifications.

• The degree to which software possesses a desired combination of attributes.

• The degree to which a customer or a user perceives that software meets his or her
composite expectations.

• The composition of characteristics of software that determine the degree to which
software in use will meet the expectations of the customer.

• Attributes of software that affect its perceived value, for example, are correctness,
reliability, maintainability, and portability.

• Software quality includes fitness for purpose, reasonable cost, reliability, ease of use
in relation to those who use it, design of maintenance and upgrade characteristics,
and compares well against reliable products.

Testing is one of the most prominent aspects of software quality assurance that
can inform the stakeholders about the quality of the system. In this chapter, we first
list several definitions and terms related to software testing in general, followed by
a brief survey of test techniques. Afterwards, the two test methodologies, model-
based testing and combinatorial testing, which play a major role in the remainder
of this thesis, are explained. At the end of this chapter, those quality criteria for
tests that we intend to use to rate and evaluate our test approach are described.

31
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3.1 terms and definitions

Quality assuring methods can be categorized into verification, validation, and
testing:

Definition 9 (Verification). The process of evaluating a system or component to deter-
mine whether the products of a given development phase satisfy the conditions imposed at
the start of that phase. Contrast with: validation [IEE90].

Definition 10 (Validation). The process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies specified requirements.
Contrast with: verification [IEE90].

Definition 11 (Testing). A test is an activity in which a system or component is executed
under specific conditions, the results are observed or recorded, and an evaluation is made
of some aspect of the system or component [IEE90].

Generally, testing is the execution of a certain software system with the intention
of (1) finding faults and (2) comparing the implementation with the specified
functionality, in order to find possible failures.

Definition 12 (Fault). A flaw in a component or system that can cause the component or
system to fail to perform its required function, e.g. an incorrect statement or data definition.
A defect, if encountered during execution, may cause a failure of the component or system
[vV07].

Definition 13 (Failure). Deviation of the component or system from its expected delivery,
service or result [FP96].

A fault generally leads to a failure and a fault is often the result of an error.

Definition 14 (Error). A human action that produces an incorrect result [IEE90].

With other words, the relationship between these three terms is as follows: An
error of a developer or engineer may cause a fault within the implementation that
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then leads to a failure of the system. For a list of causes of faults and consequences
of failures, we refer to [Wei10]. Testing can be used for verification and validation
purposes, depending on its field of application.

• If testing is used to compare the implementation with customer requirements,
we can actually use it as a validation technique, because we can check whether
the expected system was built.

• If testing is used to compare the implementation with the specified behavior
of the system, we can use it as a verification technique, because we can check
whether the system behaves as expected.

Nevertheless, testing is only a heuristics and not a formal method that is able to
prove anything. One of the most frequently quoted statements in software testing
was made by Edsger Dijkstra in [Dij70]:

Program testing can be used to show the presence of bugs, but never to show their ab-
sence!

Although this statement is 40 years old it still applies today, because it is still
not possible to test the majority of software systems exhaustively. The combina-
torial complexity of possible input parameters makes it generally impossible to
test every possible combination. For SPLs, this problem is even greater, due to
variability resulting in the ability to derive a huge number of different products.

We would like to clarify the following notions, which are used repeatedly in
this thesis. These definitions are adopted from the International Software Testing
Qualifications Board [vV07].

Definition 15 (Test). A set of at least one test case.

Definition 16 (Test Case). A set of input values, execution preconditions, expected results
and execution postconditions, developed for a particular objective or test condition, such
as to exercise a particular program path or to verify compliance with a specific requirement
[IEE98].

Definition 17 (Test Suite). A set of test cases that generally can be executed in a certain
order.
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Definition 18 (Test Oracle). A source to determine expected results to compare with the
actual result of the software under test.

3.2 testing techniques

In software quality assurance different categories of techniques exist. Figure 8

presents a schematic overview according to [Lig09]. The first level is the differentia-
tion between static and dynamic methods.

Static

Dynamic

Analyzing

Formal 

Verification

Reviews, 

Inspections,...

Examples:

Model-Checking, 

Theorem Proving,...

White Box

Black Box

Control flow

Function oriented

Data flow

Diversifying

Statistical

Statement coverage, Branch coverage,

Modified Condition/Decision Coverage,...

Defs-/Uses - criteria

Functional Classification tree method, 

State-based testing,...

Mutation Testing, Regression Testing,...

Random Testing,...

Figure 8: Classification of test techniques

3.2.1 Static and Dynamic Techniques

Static analysis collects information about the system without executing it to find
faults within the implementation. Typical methods are: Audits, Reviews, Walk-
throughs, and Inspections, which are executed on the source code of the system
under test (SUT).

Various tools support static analysis on source code. Those tools examine [Wal01]
e.g.:

• Syntactical Information (Complexity, Dependency Graphs)

• Semantical Information (Anomalies)

• Lexical Information (Length of Procedures)

Thus, static analysis focuses on complexity and semantical faults.
In formal verification, properties are defined on the basis of the system require-

ments or specification that the system must satisfy. For each property, formal



3.2 testing techniques 35

verification checks whether it holds or not. If the property does not hold, a situation
is shown in which this property is violated. If all properties hold, it is proved that
the system meets the requirements formulated by the properties. Complete formal
verification of a system is rarely performed in Software Engineering, since the
extraction of the system properties might be very time consuming. Nevertheless,
the industrial importance and awareness of formal methods has increased during
the past decade and is growing [Tre99]. Well-known examples of formal verification
are Theorem Proving and Model Checking [Lig09].

Dynamic testing of software involves the selection of at least one software testing
technique to:

• generate test cases

• execute test cases

• compare the result of the test execution with the expected system behavior
defined in the system specification

A tester always starts with the construction of a formal or informal (depending
on the test strategy) model that captures certain properties e.g. behavior of the SUT.
This model is then used for test case generation, which can then be executed in the
SUT.

Within this thesis, we intend to test an SPL without testing each possible product
individually. Since our domain of research is more or less the embedded domain,
the major advantage of testing is that testing can take Hardware/Software interre-
lationships into account, including effects on the environment and safety [Lig09].
Since testing is a dynamic technique, we focus on dynamic approaches.

Dynamic Software Testing can be either white box, black box or a combination
of both. White box approaches take the internal structure of the SUT into account.
Thus, the test engineer requires information about the internal behavior, the logic,
and the structure. Structural testing is an often-used synonym for white box testing
in the testing community. This information is typically presented via control flow
and data flow graphs of the SUT. The control flow graph represents possible
execution paths within the SUT, whereas the data flow graph describes the flow of
data and relationships between variables in the SUT. The control flow and the data
flow graph can both be used for test case generation [Lig09].

Black box testing techniques test the execution of the SUT against its require-
ments or specification. Therefore, it is also called specification based testing. The test
engineer uses only the requirements or the specification for testing, without know-
ing the internal structure of the SUT. In abstract terms, valid and invalid inputs
are used to check whether the expected output has been calculated. Strategies such
as classification trees [GG93] and combinatorial testing [Bei90] provide heuristics
to reduce the space of input parameters. On the one hand, this technique has
the advantage of being close to realistic conditions but, on the other hand, one
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important disadvantage is the lack of internal information, which is useful for
generating tests and for fault tracing. For example, testing against the specification
of a system does not guarantee that every line of code or part of the system is
tested adequately.

Cai et al. recommend combining black box and white box techniques, since the
correlation between fault detection and code coverage depends on the black box
coverage criteria [CL05].

3.2.2 Test Levels

Testing can take place in every phase of the development process. These phases
extend from requirement analysis to the implementation. A very prominent model
representing the different phases of the development process is the V-Model [dIB97]
shown in Figure 9. On the left, the development process is presented, whereas on
the right, the location of the corresponding test levels is shown. The development
process is described top-down, starting at the very left with the requirements
analysis. On the basis of the requirements, the system specification is defined
followed by a design phase. Afterwards, the system is split into units that are then
implemented. The test levels are described bottom-up, starting with Unit Testing,
which tests the different units of the system e.g. classes. The components of the
design of the system are then tested via Integration Testing. The entire product
is then tested against the system specification during system testing. Finally, the
stakeholder requirements are tested via Acceptance Testing.

Figure 9: V-Model

3.3 model-based testing

Model-based testing is derived from the concept of developing software based on
models. This means explicitly modeling the structure and behavior of the system to
a certain extent by using models on the basis of (semi-)formal modeling approaches.
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The difference to non-model-based approaches is achieved by replacing the informal
model with an explicit representation [PP04].

Definition 19 (Development Model). A model represents the behavior and the structure
of a system with regard to a certain degree of abstraction and a specific scope.

Generally, development models are used for code generation and are then called
implementation or execution models. For testing purposes, a so-called test model
is used.

Definition 20 (Test model). A test model represents the behavior and the structure of a
system under test and is used for test case generation.

For model-based testing, the test model usually represents system requirements
and is used to derive test cases. In Figure 10, the basic idea of model-based
development and testing is depicted. At the top-left corner, the informal customer
requirements are illustrated as a cloud. From these requirements, three engineering
artifacts are derived: first, the development model (top-right), the test model (center)
and the test case specification. Both, the development model and the test model
describe the behavior of the system under test. The development model is used
for manual or automatic code generation for the implementation of the system
under test, whereas the test model is used for test case generation, to test the
implementation. The test model and the test case specification are used to generate
test cases, where the test case specification defines the test procedure or test design
to test against the requirements.

Figure 10: Model-based testing overview [PP04]

Various starting points for the model-based generation of test cases exist. In our
example (Figure 10), there are two independent models used to either generate
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test cases (test model) or to develop the code (development model). These models
are both derived from the informal user requirements. Another version of the
model-based testing approach uses only one model to derive both the code and
the test cases. This version has a drawback concerning the significance of the test
results: Faults in the implementation model are not found, because it is also the
basis for the test generation if there is no separate test oracle identifying a wrong
result as a fault. In the industrial context, model-based testing is usually executed
on the development model, since the development of an additional test model is
generally seen as too time-consuming. Further information on model-based testing
can be found in [PP04] and [Rob00].

Test case generation within model-based testing is realized via the selection
of certain paths through the model [Wei10]. All models serving as test models
are kinds of graphs e.g. statecharts, activity diagrams or dataflow programs. The
behavior of the system is thus the sum of all possible paths through the graph. A
summary of algorithms for path selection is described in [Wei10]. Among those ap-
proaches are methods using random selection of paths, model checking, constraint
solving, and graph search algorithms.

Model-based testing is a dynamic testing approach, since the generated test
cases are then executed on the SUT. Whether model-based testing is white-box or
black-box depends on the granularity of the test model. If the test model is simply
based on the system requirements/specification, it can generally be interpreted as
black-box testing. If the test model is closely related to the implementation or if an
implementation model (which is used to generate the code of the implementation)
is used to derive test cases, it can be interpreted as white-box testing.

The most crucial question concerning model-based testing is whether the ef-
fort for creating additional test models for test case generation can be justified.
Furthermore, the challenging part of creating a test model is to keep it as simple
as possible, to ease further development/maintenance, and to include sufficient
information to support automatic test case generation simultaneous.

3.4 combinatorial testing

Combinatorial testing is a popular black-box testing method that decreases the
effort for single system testing by reducing the number of test cases. To prove the
correctness of a program, it needs to be tested with all combinations of possible
input parameter values [Bei90]. Due to the complexity and size of the majority of
products, testing all possible combinations of input parameter values is not feasible.
A software with five different input parameters, where each parameter can be
initialized in 10 different ways, would require 105 = 100, 000 different test cases to
be validated. Using combinatorial testing, only certain combinations of parameter
values serve as input. One of the best-known applications of combinatorial testing
is the pairwise testing approach. This method is based on the assumption that the
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majority of faults originate from a single parameter value or are caused by the
interaction of two values [SM98]. Success stories related to combinatorial testing
can be found in e.g. [DES+

97], where the authors report that despite an enormous
reduction of the number of test cases, block coverage could still be achieved.

The following example demonstrates pairwise testing for a method within the
BCS case study, which has three boolean input parameters. Let us assume that these
three parameters are p1, p2, and p3, to keep the example as simple as possible.
Then, the eight input parameter combinations depicted in the first three columns
of Table 1 would need to be tested.

p1 p2 p3 p1&p2 p2&p3 p1&p3

1 true true true true true true true true true

2 true true false

3 true false true

4 true false false true false false false true false

5 false true true

6 false true false false true true false false false

7 false false true false false false true false true

8 false false false

Table 1: All possible combinations of the input parameters p1, p2, and p3

Applying pairwise testing, only pairwise combinations of the parameter values
need to be covered. Thus, each value combination of p1&p2, p2&p3, and p1&p3
needs to be tested with the value combinations (true, true), (true, false), (false,
false), and (false, true). The value combinations 1, 4, 6, and 7 fulfill this requirement
and thus these four combinations could be chosen for pairwise testing purposes.
This set of value combinations is generally called covering array [CDS06]. We refer
to each row within this covering array as a test set.

The difficulty for pairwise testing algorithms and, in general, for all combinatorial
algorithms, is to cover a pair of input parameters exactly once to achieve a small
test set of input values [LT98].

Grindal et al. provide a summary and categorization of combinatorial testing
strategies in [GOA05]. Figure 11 depicts the categorization introduced in [GOA05],
including additional categories that we have introduced as a consequence of recent
publications.

Non-deterministic approaches include a certain factor which leads to the situ-
ation that, if the algorithm is executed twice, different results may be obtained.
Deterministic approaches always result in the same covering array.

Examples of non-deterministic approaches are algorithms that use some kind
of heuristics such as greedy or artificial life-based combination strategies, such as
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Figure 11: Categories of combinatorial testing strategies

genetic algorithms, or meta-heuristics such as simulated annealing [CDS07]. Algo-
rithms that use some kind of randomizing component are also non-deterministic.
At this point we like to add a so-called SAT-based category, which represents the
approach introduced in [PSK+

10]. Perrouin et al. apply T -wise combination based
on an Alloy representation and apply SAT solvers to calculate the covering array.
We will discuss this approach in more detail in the related work section.

Deterministic algorithms can be categorized into iterative approaches, where the
covering array is calculated iteratively or via instant approaches, where the covering
array is calculated at once. The iterative approaches can again be categorized into:
Test-case-based, Parameter-based, and CSP-based (CSP = Constraint Satisfaction
Problem) strategies. The CSP-based category is a new one that we introduce, since
the algorithm that we introduce within this thesis is a deterministic, and CSP-based
approach. The most prominent deterministic algorithm is the parameter-based
algorithm IPO (In Parametric Order) which calculates the covering array in parallel
[LT98]. When the situation occurs that a certain pair of values cannot be added to
the current set within the covering array, a new test set is generated. Instead of
discussing each category in detail, we focus on approaches within those categories
that are capable of handling constraints between parameter values.

The most popular combinatorial tool that is capable of handling constraints
is AETG (Automatic Efficient Test Generator System) [CDKP94]. The AETG is a
commercial tool realizing T -wise coverage. T signifies that this algorithm supports,
pairwise testing (T = 2), threewise testing (T = 3), up to n-wise testing, where T is
equal to the number of parameters within the program under test.

AETG is a heuristic-based non-deterministic algorithm for combinatorial testing.
It is based on the greedy algorithm and incrementally sets up the covering array
until it fulfills the selected T -wise coverage. For each iteration, various solutions
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for combining parameter values are generated. A weighting function is then used
to select the best solution to continue with. The details of the algorithm are not
available, since AETG is a commercial tool used in industry. We refer to [CDKP94]
for further details.

Other than the AETG approach, very few existing standard combinatorial algo-
rithms are capable of processing dependencies or constraints of any kind between
parameters or their values. A summary of these approaches can be found in
[CDS07]. Table 2 presents an overview of those algorithms that support some kind
of constraint solving.

Tool Citation Constraint Handling Category

AETG [CDKP94] Remodel non-deterministic,

heuristic

DDA [CCT04] Soft Only non-deterministic,

heuristic

Whitch [Har05] Simple/Expand non-deterministic,

heuristic

TestCover [She11] Remodel deterministic,

iterative, Test case-based

Simulated Annealing [CCL03] Soft Only non-deterministic

Meta-heuristic

PICT [Cze06] Full non-deterministic,

heuristic

mAETG SAT [CDS07] Full non-deterministic,

heuristic

SA SAT [CDS07] Full non-deterministic,

Meta-heuristic

Alloy [PSK+
10] Full non-deterministic,

Alloy-based

Table 2: Comparison of combinatorial algorithms able to handle constraints

Those algorithms realize different methodologies for constraint handling. Cohen
et al. categorized these methodologies as follows:

• Remodel: AETG and TestCover are both commercial products, thus, the
internal constraint handling cannot be examined. Both, require that the user
re-models the input data into separate unconstrained inputs which are then
combined at the end of processing.

• Expand: Whitch demands that the user expands the input by providing a list
of all forbidden combinations.

• Soft Only: The deterministic density algorithm (DDA) and Simulated Anneal-
ing support only soft constraints. This means that the algorithm should avoid
combinations violating those constraints but there is not a guarantee.
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• Full: This category is the only category providing support for any arity of
constraints.

Only a few approaches exist that provide full constraint support within their
combinatorial testing algorithm. The PICT approach is commercial and it is not pos-
sible to obtain further details. mAETG SAT, SA SAT, and the Alloy-based approach
all use SAT techniques to calculate the covering array considering constraints. How-
ever, we plan to apply combinatorial testing to feature models. Because feature
models mainly make use of binary constraints, using a CSP seems to be the natural
choice [WW09, Ben04] for a constraint-solving component within the combinato-
rial testing. Thus, we will introduce a CSP-based combinatorial algorithm that is
capable of processing binary and, to some extent, n-ary constraints within this
thesis. Furthermore, we will compare our CSP-approach with the Alloy-based SAT
approach in the evaluation chapter of this thesis.

3.5 quality of tests

In this thesis, testing is used as a quality assuring technique for SPLs. These tests
are meant to check the SPL for faults and failures. However, the quality of these
tests also has to be checked. In the following, we introduce two methods that
are frequently used to evaluate the quality of tests in the Software Engineering
community.

3.5.1 Coverage Criteria

Coverage criteria are heuristics, just like tests themselves. They estimate the quality
of test suites according to certain criteria, which state what the tests have covered
with regard to e.g. the implementation, the requirements or models describing the
behavior of the system. Test engineers use coverage criteria to assess whether the
test activities are sufficient or not. In other words, coverage criteria can be used as
test end criteria.

Achieving greater test coverage is correlated with the probability of detecting
more defects [POC93] and increasing confidence in software [CLW96, MLBK02].
Test coverage alone may not be a strong indicator of software quality [KBP01,
page 181]. However, it is generally agreed in the Software Engineering community
that achieving greater test coverage is desirable for achieving software reliability
[POC93, CLW96].

With regard to combinatorial testing (cf. Section 3.4), the selection of a certain
degree of input parameter combinations (e.g. pairwise, threewise,...) is a suit-
able coverage criterion. For example, pairwise coverage of input parameters is
a frequently used coverage criterion. The following coverage criteria are used in
[GOA05]. Some of those criteria can be taken into account if illegal values are ac-
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cepted. Such false values are used to check whether the system behaves as expected
e.g. an error or an exception is thrown [GG93].

• Each-used: 100% each-used coverage is defined as including each value of
every parameter in the test suite at least once.

• Pairwise: 100 % pairwise coverage is defined as including every pair of values
of any two parameters in the test suite.

• T-wise: 100 % T-wise coverage is defined as including all value combinations
of any T parameters in the test suite.

• Variable strength: is an extension of the T -wise coverage criteria introduced
by [CGMC03]. Here, the T may vary for different subsets of parameters.

• Valid: is an extension of the variable strength criteria demanding that only
valid value combinations are built and that only valid values are included
within a test suite.

• N-wise: 100 % N-wise coverage is achieved if all possible combinations of all
parameters and their values are included in the test suite.

• Base choice: 100 % Base choice coverage is achieved by combining the most
frequently used values of each parameter within a test suite, where the rest
of the values are base values as well.

• Single error: 100% Single Error coverage is achieved if there is exactly one
test case for each error value. All other values within each test case need to
be valid.

With regard to model-based testing (cf. Section 3.3), structural coverage criteria
involving the behavior of the system under test are suitable coverage criteria
[Wei10]. According to Weißleder, the following structural coverage criteria exist.

• Transition-Based coverage criteria focus on transitions within the system. The
most prominent ones are All-States, All-Transitions, and All-Paths. All-States
and All-Transitions demand the covering of all states or transitions, respec-
tively. The coverage criteria All-Paths is a very stringent criterion demanding
to cover every possible route through code or model.

• Control-Flow-Based coverage criteria are generally applied to a control flow
graph extracted from code or model. These criteria focus on the control-flow
within the system. One of the most prominent ones is the so-called MC/DC
(Modified Condition/Decision Coverage) criterion that is proposed by the
RTCA in DO-178B for Software Considerations in Airborne Systems and
Equipment Certification [fAR82]. MC/DC demands that:
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– every point of entry and exit in the program has been invoked at least
once,

– every condition in a decision has taken all possible outcomes at least
once,

– every decision in the program has taken all possible outcomes at least
once,

– and each condition in a decision has been shown to independently affect
that decision’s outcome.

• Data-Flow-Based coverage criteria is a variation of the All-Paths coverage
criteria and considers routes within the system between the assignment of
variables and references of the variable.

3.5.2 Mutation Testing

Coverage criteria, such as the ones we have listed for black and white box testing,
measure the quality of the test suite. Due to the fact that testing generally does
not cover the complete SUT, these coverage criteria can be used to decide when
to stop testing. Besides the well-known black- and white-box coverage criteria,
mutation testing is another frequently used criterion to measure the quality of
testing activities. In general, mutation testing injects faults into the SUT, which
should then be found by the test suites. The quality of the test suite depends on
the number of mutations found. The faults are injected using so-called mutation
operators and the injected faults are called mutants.

When a test case fails, the mutant is killed, because the fault was detected and
the mutant can be considered dead. The mutation testing process can be divided
into three parts:

1. Creating mutants of a test program

2. Executing the faulty programs

3. Analyzing the output and marking the equivalent mutants

After creating mutants and executing all tests, the results have to be compared
with the original output. This leads to a killed mutant in the case of fault detection
or to a remaining mutant. A remaining mutant is placed in one of the two categories:
The mutant is killable: means that the set of present test cases is not good enough
to detect the fault, but it is possible to do so by extending the test cases. Or, the
mutant is equivalent: means that the mutant is functionally equivalent to the
original program and will not be detected at all.



4
R E L AT E D W O R K : S O F T WA R E P R O D U C T L I N E T E S T I N G

This chapter introduces the state-of-the-art in SPL testing approaches. Our scope
is related work addressing the selection of configurations for testing purposes and
test case generation for SPLs. We refer to Engström et al. [ER11] for a summary of
the state-of-the-art approaches categorized in:

• Test organization and process,

• Test management,

• Testability,

• System and acceptance testing,

• Integration testing,

• Unit testing, and

• Test automation

Every concept of development is as sufficient and reliable as the support it
receives from concepts for testing. In single system engineering, testing often
consumes 25% to 50% of the development costs [LL05]. Due to the variability
within an SPL, the testing of SPLs is more challenging than single system testing.
If these challenges are met by adequate approaches, the benefits outweigh the
higher complexity and effort of testing activities. The challenges of testing an SPL
are caused by the product line variability and the systematic reuse. For example,
the testing of a component that is to be reused in different products illustrates
one challenge in this context. The component must be tested accurately, as a fault
would be conveyed to every product that include it. It is not sufficient to test
this component only once in an arbitrary configuration, because the behavior of
the component varies, depending on the corresponding product. Identifying and
solving the SPL specific test challenges is important to achieve the benefits the
product line paradigm provides. A suitable example for the importance of testing
reused artifacts can be found in the Ariane V accident [Lig09]. On the first test
flight of the expendable launch system Ariane V, a malfunction in the control
software forced the ground crew to activate the self-destruction 37 seconds after
launch. A data conversion from a 64-bit floating point value to a 16-bit signed
integer representing the horizontal bias caused the malfunction. This software
component was developed for the Ariane IV and was reused in Ariane V. In the

45
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Ariane IV, this component worked properly but its integration in the Ariane V
was not tested sufficiently. The reuse of this component caused a serious and very
expensive malfunction.

This chapter summarizes the current approaches and research results in SPL test-
ing. It is focused on transferring the concept of reuseability within SPL development
to testing. Two concepts of reuse can be differentiated:

• Test artifacts such as test cases, test descriptions, test scripts, and test models
are reused to decrease the testing effort. Instead of generating tests over and
over again, these artifacts are reused.

• The second kind of reuse is the reuse of test results. Here, the test artifacts
are not only reused, but a certain test is not re-executed, since the test result
is expected to be the same as that of a previous test.

Both concepts include some risk. When reusing test artifacts, the test engineer
needs to ensure that the test artifact is still appropriate for the test. When reusing
a test result, the test engineer needs to ensure that the part of the SUT has not
changed to an extent that would make the result non-representative.

Concerning test generation for SPLs, McGregor [McG01] and Tevanlinna [TTK04]
propose a well-structured overview of the main challenges for testing product lines.
Studying related work focusing on SPL-Testing, we have identified three practices
which are state-of-the-art:

• Contra-SPL-philosophies do not take into account commonalities and vari-
abilities within the SPL. These approaches contradict the SPL-reuse-philo-
sophies. Each product is tested individually and independently. In [TTK04]
the authors refer to this approach as product-by-product testing. However,
considering the number of derivable products of today’s SPLs, this approach
is no longer feasible. Thus, this approach is beyond the scope of this thesis.

• Reuse-Techniques are test approaches focusing on reusing test artifacts or test
results to decrease the testing effort. Here, requirement-based test approaches
and especially model-based test approaches are frequently used. Another test
approach within this category is regression testing techniques, which test all
products incrementally [ESR08].

• Subset-Heuristics is the category which aims to generate and test a subset of
all possible products, trying to ensure a certain coverage for the entire SPL.
Thus, this approach is also based on reusing test results. Instead of testing
every possible product, only the subset of products is tested. The results are
expected to be the same for the remaining products.

In the following, the approaches related to the contribution of this thesis are
summarized and discussed. These are Reuse-Techniques and Subset-Heuristics.
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Anticipating the subsequent part of this thesis, both concepts will be integrated,
forming a new approach for testing SPLs.

4.1 reuse-techniques

Methods of this concept utilize reuse-techniques to reduce the test effort. These
approaches either make use of regression testing techniques to incrementally test
products or reuse domain tests during application testing.

Regression testing is a technique to check whether a certain product behaves as
expected after it was changed e.g. revision. IEEE 1990 defines regression testing as:

Definition 21 (Regression Testing). Selective retesting of a system or component to
verify that modifications have not caused unintended effects and that the system or com-
ponents still complies with its specified requirements [IEE90].

and as
- testing that is performed after making a functional improvement or repair to the pro-

gram. Its purpose is to determine if the change has regressed other aspects of the program
[Mye79].

Instead of verifying that a modified product still behaves as expected, regres-
sion testing is used to incrementally test product after product, interpreting the
difference between two products as manipulation/revision. Thus, every product
is incrementally tested [ESR08, ER10, ERS10, ERW10]. The challenging part of this
approach is to find an appropriate product to start with and to define to which
extent every product is retested. Although Engström et al. are currently evaluating
their approach with real world SPLs, it is not possible to rate the potentials of this
approach yet.

Reusing domain tests created during domain engineering for product tests is
a very popular approach, especially in the requirement-based testing commu-
nity. Bertolino et al. consider parametrization and use equivalence classes for
requirement-based SPL testing [BG03, BFGL06]. They introduced the Product Line
Use case Test Optimization (PLUTO); within PLUTO, tests are generated on the
basis of use cases of an SPL (Product Line Use Cases - PLUC) [BG03, BFGL06]. For
this purpose, the authors adapt the normal category partitioning method [OB88] to
select a certain combination of use case scenarios as test case specifications for a
selected product. Scenarios are represented as textual use cases and variability is
described by using special tags within those use cases. Then, test cases are derived
for each product of the SPL instead of intertwining SPL and test case definition
activities.

Nebut et al. developed a test approach starting with the definition of customizable
use cases for an entire SPL and deriving product specific use case for testing
purposes [NFLTJ04].
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Apart from use case oriented processes, model-based testing is a popular ap-
proach to reuse test cases across different products. In SPL model-based testing,
statecharts, activity diagrams, and sequence diagrams are frequently used to specify
the behavior of software systems.

CADeT [Oli08], ScenTED [RKPR05] and Hartmann et al. [HVR04] utilize activity
diagrams as reusable test models that are created during domain engineering. Test
cases are generated on the basis of the paths within the activity diagrams. The test
cases are then adapted for each individual product during application engineering
for system testing.

Weißleder et al. [WSS08] use a single state machine as the test model that
describes the functionality of an entire SPL, and the tool ParTeG for automatic
test case generation. Together with the approach for model-based product design
verification in [KN04], those two approaches are the only ones using statecharts as
test models for SPLs, according to the best of our knowledge. Existing approaches
for applying general criteria of data and control coverage to statecharts are mainly
based on reachability trees [MMB94, SMFM00], flow graphs [HKC+

00, BH08], and
automata variants [BHS99].

A summary and comparison of model based testing approaches for SPLs can be
found in [OWES11]. There, we located two major challenges when using model-
based testing for SPLs: the representation of variability within test models and how
to map model artifacts to a variability representation such as feature models. Due
to the fact that model-based testing is an important component of this thesis, we
will discuss the related work and research in model-based testing for SPLs in detail.

4.1.1 Model-based Testing of SPLs

In [OWES11], we summarized and compared the various approaches for model-
based SPL testing, namely CADeT, ScenTED, the Hartmann et al. approach (in
the following referred to as Hartmann), the Kishi et al. approach (in the following
referred to as Kishi), and the Weißleder approach (in the following referred to as
Weißleder). We used the following criteria for comparison purposes:

• Input: What kind of input is required or can be processed.

• Output: We usually expect test cases or a description of them to be generated.
Regarding the generation process, we additionally examine the degree of
automation, for example, whether the test case generation is executed auto-
matically or semi-automatically. Another important approach for evaluating
model-based testing approaches is to measure the coverage of their tests.
Therefore, we include the existence and type of coverage criteria belonging to
a certain approach as a criterion, to compare the different approaches.

• Test Levels: We examine whether a test approach covers a specific test level,
for example, unit, integration or system testing.
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• Traceability: An important property of SPL testing approaches is the mapping
between test cases and requirements, architecture, and features of the feature
model. It offers the possibility to trace the faults found back to the responsible
component and even back to the requirements specification. In addition, if
a requirement is changed, we know exactly which test must be adapted.
Another point with regard to traceability is the derivation of concrete product
specific test cases. By choosing requirements for a concrete product, the
corresponding test cases should be determined by tracing from the selected
variants of the requirements to the test cases covering this requirement.
Therefore, we check if traceability is supported and to what extent.

• Development Process: the question arises whether the testing approach can
be integrated within the development process of SPLs. A key attribute is the
differentiation between domain and application engineering. If an approach
differentiates between domain and application engineering we must examine
how variability within the different activities is modeled and handled. Then,
we determine how reuse and variability interact for testing purposes.

• Application: This criterion addresses the question of whether a particular
approach can be integrated into a company’s development process. In order
to do this, a step-by-step description is important.

We introduce a conceptional process model comprising all model-based test
procedures for SPLs, to visualize the commonalities and varieties of the different
approaches. This model is depicted in Figure 12 and forms a superset of all test
approaches that will be discussed. The individual characteristics and properties of
each model-based approach are captured by specializing this process model.

Figure 12 is based on the following two principles.

1. According to the development process for SPLs depicted in Figure 6, the
testing process is subdivided into application and domain engineering as
well.

2. Each phase can be subdivided according to the levels of the V-model intro-
duced in [DW00]. For each step in the development process (left-hand side),
a corresponding test level exists (right-hand side). Therefore, we can visualize
the different levels of testing: Unit tests, Integration tests, and System tests.
Each test phase contains a test model and a test case specification to generate
test cases.

Additional vertical edges connecting domain and application engineering indi-
cate that artifacts developed in domain engineering are reused in application
engineering. Using this process model, we can discuss:

• whether the approaches differentiate between domain testing and application
testing
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Figure 12: Conceptional process model for Software Product Line testing [OWES11]

• whether they consider unit, integration, and system testing, and

• how domain or product specific test cases are generated.
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CADeT
CADeT (Customizable Activity Diagrams, Decision Tables, and Test specifica-

tions) is a model-based test approach introduced by Olimpiew in [Oli08]. CADeT
provides a detailed description of how to apply it to an SPL project. It aims at
the system test level and defines use cases for requirements modeling based on
Gomaa’s PLUS (Product Line UML based Software engineering) method [Gom04].
Figure 13 shows the CADeT approach according to the conceptional process model.
In Domain Analysis, textual use cases are manually created according to the PLUS
approach, on the basis of the SPL requirements. Furthermore, a feature model
representing the different use cases and providing an overview of the commonality
and variability in the SPL under test is also created during Domain Analysis. In
Domain System Testing, activity diagrams that include variability are manually
derived from the use cases. The test cases are then derived automatically, based on
activity diagrams. To map test cases to the different use cases, a decision table is
used, linking the features of the feature model representing the different use cases
to corresponding test cases. By choosing a particular feature configuration, product
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Figure 13: CADeT process model [OWES11]

specific test cases can be derived from the domain test cases. CADeT offers different
feature coverage criteria to test example product configurations. Test coverage, from
the classical point of view, is not supported by the approach. In addition, test data
definition in domain engineering is not supported by CADeT.
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ScenTED
ScenTED (Scenario-based TEst case Derivation) is a model-based test procedure

introduced by Reuys et al. [RKPR05]. Figure 14 depicts those parts of our concep-
tional process model that are covered by the ScenTED approach. ScenTED preserves
variability within the entire process of deriving domain and application test cases
for system testing. In Domain Analysis, ScenTED provides domain use cases in-
cluding variability. For Domain System Testing, so-called domain activity diagrams
are manually created and serve as test models including variability. Variability is
described using alternative paths within the activity diagrams. Domain test cases
are generated on the basis of the activity diagrams and branch coverage criteria are
used, ensuring that every branch is covered by at least one test case. Test cases for
different products can be derived easily from the domain test cases. At the time
an application is derived, variability is resolved and product specific test cases are
derived on the basis of the domain test cases. Thus, the domain test scenarios for
system testing can be reused for various applications.
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Figure 14: ScenTED process model [OWES11]

As in CADeT, Integration tests and Unit tests are also not considered in ScenTED.
A major drawback of the ScenTED approach is the fact that it is not possible to
interrelate different variation points representing variability in the test artifacts to
describe further dependencies.
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Hartmann
Hartmann et al. provide a UML-based approach to generate test cases for system

testing. Activity diagrams represent the system specification in Domain Analysis
and serve as a test model in Domain System testing. As only one representation is
used for both the system specification and the test model, this approach suffers from
the drawback that the common bias prevents independent detection of faults. The
test model is used to derive product specific test cases. The approach of Hartmann
et al. does not explicitly model variability within activity diagrams. They use a tree
structure of activity diagrams to build up the appropriate activity diagram for the
selected product. As the selection criteria for the subactivity diagrams depend on
concrete product variants, the approach does not apply to new product variants,
i.e. those that do not already exist in the model. This means that all possible
or desired product variants must be known or anticipated from the beginning.
Furthermore, the approach does not describe in detail how to generate test cases.
From our point of view, the test case generation is not a product line specific
problem, because the generation works on activity diagrams without variability.
Finally, the approach does not provide detailed information about coverage and
test data and the additional stereotypes complicate the automation of this approach.
Figure 15 shows the approach according to the conceptional process model.
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Kishi
In contrast to the approaches described above, Kishi et al. focus on the fact that the

majority of expensive faults in Software Engineering originates during requirements
analysis and design phases [KN04]. The work of Kishi et al. introduces an approach
to test the design of a product by using model checking and reusable state machines.
The authors expect to test the design more exhaustively than when other, more
traditional, approaches are applied, such as reviewing. The complete verification
of a product is, however, not achieved. Rather than applying model checking on
individual state machines of products of an SPL, a reusable environment model
emulating event sequences is introduced, using a single target model representing
the behavior of the SPL. Their approach is located in application engineering only.
However, a well-known problem for model checking is state explosion [CGDA99].
This problem also arises in Kishi’s approach. Figure 16 depicts those parts of our
conceptional process model that are covered by the Model-Checking approach.
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Weißleder
Weißleder et al. propose reusing test models for model-based testing of SPLs by

reusing state machines for context classes [Wei09]. A state machine that represents
the entire SPL has to be implemented. One single state machine is used as test
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model describing the behavior of the entire SPL in Domain System testing. Test
models for the individual applications are represented by subclasses in Application
System testing. The test case specifications are described using OCL constraints.
Application test cases are derived using ParTeG [Wei09].
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In contrast to the other approaches, this method preserves variability within
a single test model. It is not necessary to generate individual models including
variability for each feature, feature combination or use case. However, there are
still unanswered questions that must be discussed. For instance, one important
question is how to derive class hierarchies from product lines automatically. The
authors assume that aspect-oriented approaches within the development process
may offer a solution. Each feature could be represented by a certain aspect. Then
a hierarchical structure of aspects can be set up. Figure 17 depicts those parts of
our conceptional process model that are covered by the Reusing State Machine
approach.

Table 3 shows how the various approaches fulfill the criteria for comparison. The
approaches define the important elements of a product line testing approach, such
as variability definition, test case generation, and product derivation. All of these
elements encourage the SPL developers to achieve the SPL-specific advantages such
as reduction of costs or a higher product quality. In addition, a detailed examination
of the comparison reveals some interesting facts about the compared approaches.
Every approach concentrates on particular elements. For example, the CADeT
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approach provides traceability from features to test case specifications by using
decision models. The ScenTED approach integrates test and variability coverage
for activity diagrams. All but one of the approaches concentrate on the system test
level and none of the approaches considers test data in domain engineering.

It becomes clear that some elements of SPL testing remain uncovered, for example
Unit Testing. Based on the comparison, the following research objectives can be
formulated:

• Integrate all Test Levels.

• Automate more steps of the test suite generation process.

• Improve the output including concrete test data.

• Improve traceability between variability representation, requirements, and
test artifacts.

• Provide detailed instructions about how to apply the test approach in the
industrial context.

4.1.2 Variability and Mapping

Typically, model-based testing for SPLs requires two additional properties com-
pared to single system model-based testing:

• variability in the test model

• mapping to a variability description

In the following, we will discuss related work regarding these two properties.
In [SV08], the authors introduce an approach that presents the behavior of a

configuration as a combination of the statecharts that implement all the correspond-
ing features. The behavior of a configuration is built by a stepwise refinement,
starting with the statechart of the root feature of the feature model. This stepwise
generation of a configuration does not permit inconsistency within the statecharts
during the refinement. However, the labeling is kept very simple and Szasz et al.
do not provide additional dependencies within the feature model representing
the interaction of features [SV08]. Since this approach is not meant to be used for
model-based testing, there is no support to generate test cases.

In [GL08], the authors use one single statechart to model the behavior of the SPL.
The statechart consists of a common part and optional fragments. The common
part is a classical statechart describing the commonalities of the SPL, whereas the
optional fragments describe the variability within the model. The features of the
feature model are mapped to optional states and transitions that are, unfortunately,
the only variable artifacts within this approach.
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One of the biggest challenges in model-based approaches for SPL development,
regardless of whether the model serves for test case generation or not, is to make the
model configurable. To interrelate the artifacts of the test model and the elements
of the feature model, a mapping is required.

There are various approaches for mapping features of a feature model to ele-
ments of the SPL architecture. The approach in [SLKH07] identifies traceability
between feature models and architecture models, using Formal Concept Analysis.
Wasowski [Was04] describes an approach to automatically generate variants of
behavioral models by means of statecharts, using a form of partial evaluation
and slicing based on specified restrictions. Sochos et al. [SRP06] propose Feature
Architecture Mapping (FArM) for mappings between features and architectural
components, utilizing progressive transformations. Czarnecki [CHE05b] annotates
a template design model with logical, feature-based presence conditions. In [Oli08],
Olimpiew uses decision tables to map features to use cases in order to generate
test cases for products derived from an SPL.

4.1.3 Lessons Learned - Reuse-Techniques

Although all of the aforementioned reuse-techniques benefit from reducing the
effort for testing, each product has to be tested individually. Furthermore, the
reuse-techniques lack traceability between a variation model, use cases, and test
specifications. The next category focuses on identifying a subset of products to
approximate a complete SPL-test according to various coverage criteria.

4.2 subset-heuristics

This approach aims at reducing the effort for testing by extracting a subset of
feature combinations or products. Instead of testing every product of the SPL, a
subset for testing is created. We identified two different methodologies:

• methods generating a subset of products that are representative for testing
purposes of the entire SPL, e.g. risk-driven or requirement-based,

• approaches using combinatorial design to generate a subset of configurations
covering certain combinations of features, and

• an approach generating a set of test cases covering the entire SPL. To execute
the tests, a suitable set of configurations/products needs to be generated as
well.
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4.2.1 Representative Sets

Kolb introduced a method proposing a set of product configurations for testing
purposes based on a risk analysis [Kol03]. Unfortunately, this approach could not
be compared with other approaches, due to the lack of implementation.

In [Sch07], the author introduces an approach generating an optimal representa-
tive set of products, so that all requirements of the SPL are covered. Scheidemann
uses a greedy algorithm for the product selection, based on the assumption that
the verification result for each requirement is independent of the architecture of
those elements which are not included in the product. The major disadvantages of
this approach are (1) that it does not scale with real-world SPLs and (2) that the
effort to set up the representative set is enormous.

4.2.2 Combinatorial Interaction Testing

Another possibility is to generate a subset of configurations, using combinatorial
design [McG01]. The commonalities and variability within an SPL are frequently
represented by features that can be interpreted as parameters in the SPL engineering
process. One of the best-known applications of combinatorial testing is the pairwise
testing approach. This method is based on the assumption that the majority of
faults originate from a single parameter value or are caused by the interaction of
two values [SM98]. This idea can be transferred to features. Combinatorial testing
can be used to cover a certain T -wise feature interaction.

McGregor initially introduced combinatorial testing to SPLs in [McG01]. However,
he neither describes how combinatorial testing may be applied to SPLs nor how
variability models, such as feature models or OVMs, can be mapped onto an
appropriate representation to apply existing combinatorial testing algorithms.

Gustafsson introduced an algorithm generating a subset of products so that
every single feature is covered at least once [Gus07]. The disadvantages of such
an approach realizing 1-wise combination are obvious. There is no guarantee that
a feature functions as expected on its own nor does this approach take feature
interactions into account.

Cohen et al. use the OVM approach to model the variable and common parts of
the SPL, which are mapped onto a relational model. This relational model serves
as a semantical basis for defining coverage criteria for the SPL under test [CDS06].
Furthermore, Cohen et al. describe the development of combinatorial interaction
testing (CIT) that achieves a desired level of coverage. In [CDS07], the authors use
the CIT approach to systematically select products that should be tested.

The approach described in [PSK+
10] is similar to the one of Cohen et al.. The

significant difference is that Perrouin et al. utilize SAT-solvers and do not use
a relational model. Nevertheless, the output of the presented algorithm is not
deterministic, due to random components that we will explain in the evaluation
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chapter of this thesis. The number of found products may vary strongly, due to this
random component.

These aforementioned methods provide feature oriented approaches for gen-
erating a representative set of configurations for an SPL. However, none of the
approaches actually provides a test case generation process for the generated set
of configurations. Furthermore, the application of these methods is rather com-
plicated and not supported by a tool chain combining variability modeling and
combinatorial configuration selection. In this thesis, this will be considered as well.

4.2.3 Subset of Test Cases

Instead of generating a set of products for testing purposes, a set of test cases that
covers the entire SPL seems to be a natural alternative. One approach moving in this
direction is the FMT (Feature Model for Testing) language [OMS09, SOM09]. There,
a new methodology, together with an integrated modeling language, called FMT,
that combines the capabilities of “classical” feature modeling and classification-
tree-based test case description languages. The integration of feature models and
classification trees [GG93] is based on the following ideas:

• Classification tree-based testing approaches deal with single product instances
only and thus are not capable of processing variability.

• The integration with feature models is vital to handle the complexity caused
by variability and to survey the entire SPL.

The FMT language is still under development, as well as the accompanying new
SPL modeling and testing process. A first version of an FMT tool prototype has
been implemented using the metamodeling tool MOFLON [AKRS06]. The FMT
approach has the following advantages, compared to the state-of-the-art, where the
selection of a set of product instances as SUTs and the selection of test cases for
each SUT are separate activities:

• Heuristics creating test parameter values can easily be adapted to the new
task of generating a set of SPL instances as SUTs [SOM09].

• Integrated algorithms can be developed to generate SPL specific black-box
test cases.

• Manual activities that are currently performed for each selected SUT in a
product-by-product SPL testing approach can be reduced to a minimum
[SOM09].

Another approach addressing the generation of a representative set of products
on the basis of a representative set of test cases can be found in [KBK11]. Kim et
al. introduced a framework realizing a test-based coverage criterion to generate a
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Result Selection Criteria Comment

Kolb et al. [Kol03] products risk analysis no implementation available

Scheidemann [Sch07] products all requirements covered time consuming and does

not scale for real-world SPLs

McGregor [McG01] products Combinatorial Design no description of how

to apply combinatorial testing to an SPL

Gustafsson [Gus07] products single feature There is no guarantee that a feature

functions as expected on its own

nor does this approach takes

feature interactions into account.

Cohen et al. [CDS06] products Combinatorial Design no test cases for the configurations

Perrouin et al. [PSK+
10] products Combinatorial Design no test cases for the configurations

Oster et al. [OMS09] test cases Black box heuristics Not yet implemented and

only one small industrial case study [Pet11].

Table 4: Comparison of the different subset-heuristics

set of configurations for SPL testing purposes. For a given set of test cases Kim
et al. can determine which features need to be bound for it to be executed. Thus,
they are able to determine a set of products to execute all test cases for the entire
SPL. A major drawback is that the test cases have to be known in advance and
that the authors do not present a methodology to generate such a set of test cases.
Furthermore, the set of configurations heavily depends on the quality/coverage of
the tests.

4.2.4 Lessons Learned - Subset-Heuristics

In summary, all subset-heuristics intend to generate a representative subset of
configurations/products of the SPL with regard to a certain selection/coverage
criterion. Table 4 provides an overview of the previously discussed subset-heuristics.
Combinatorial interaction testing is a frequently used approach to generate a repre-
sentative subset. But only Perrouin et al. [PSK+

10] provide an approach to directly
apply combinatorial testing to SPLs. However, this approach does not provide an
appropriate test case generation concept to test the resulting subset. Additionally,
as we will discuss in the evaluation chapter, this approach does not generate signif-
icant small subsets (sometimes even twice as large as our corresponding subset)
and does not scale for feature models including more than 80 features.





5
S U M M A RY PA RT I I

This part has summarized preliminaries vital for this contribution. The basic
concepts and ideas of SPL engineering, along with the associated challenges and
benefits, are introduced. A brief summary of the field of software testing paves the
way for discussing SPL testing approaches. Three different categories for SPL testing
exist: contra-SPL-philosophies, reuse-techniques, and subset-heuristics. We focus
on reuse-techniques and subset-heuristics, since these two categories address the
reduction of the testing effort for SPLs. After summarizing the different approaches
within these two categories we explained that:

• approaches of the subset-heuristic category do not provide a systematic
approach to apply their algorithms to an SPL and do not provide mechanisms
for generating test cases for each product of the subset.

• approaches relying on reuse-techniques still have to test each individual
product.

The next part, Concept and Theory, addresses these shortcomings by combining
the advantages of the two categories:

• Subset-Heuristics: Generating a subset of configurations for testing purposes
to achieve 100% T -wise feature interaction coverage in the entire SPL, on the
basis of the corresponding feature model.

• Reuse-Techniques: A reusable test model serves as a basis to generate tests
for each configuration of the subset.

With regard to the model-based test approach, we intend to apply lessons learned
from the review of the state-of-the-art. Thus we:

• will use statecharts as reusable test models, to benefit from the various tools
for test case generation based on statecharts.

• will provide a detailed mapping between features of the feature model and
elements of the test model, to allow automatic test case generation.

• will provide a detailed description of our procedure, to apply our test ap-
proach in the industrial context.
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Part III

C O N C E P T A N D T H E O RY





O V E RV I E W PA RT I I I

This part provides a stepwise introduction to our Model-driven Software Product
Line Testing (MoSo-PoLiTe) approach that addresses the shortcomings in current
SPL testing approaches. This approach realizes a combination of the two SPL testing
categories: reuse-techniques and subset-heuristics. MoSo-PoLiTe is driven by the
following three concepts:

• Feature model-based Testing

• Combinatorial Testing

• Model-based Testing

MoSo-PoLiTe combines these concepts for SPL testing—subset-heuristics by
means of combinatorial testing, reuse-techniques by means of model-based testing
and integrates both by using a feature model as a central component. The feature
model is used to link the combinatorial test approach and the model-based test ap-
proach and, thus, enables the combination of both. Furthermore, the feature model
eases the integration of MoSo-PoLiTe into existing SPL development processes,
since the feature model is an SPL-typical development artifact of the requirements
analysis phase.

Figure 18 provides a compact graphical representation of the MoSo-PoLiTe
development process. The central component in MoSo-PoLiTe is the feature model
depicted in the center of Fig. 18. It is created on the basis of the SPL requirements
during domain engineering. The feature model provides a hierarchical structure
of the SPL requirements and represents the common and variable parts of an
SPL. Selecting features according to the dependencies and constraints results in
configurations that can be interpreted as subtrees of the original feature model
(cf. Section 2.2.1 in Part II). Typically, features of a feature model are additionally
linked to development artifacts such as code fragments or behavioral models. Then,
the selection of a configuration leads to a product. Chapter 6 describes the usage of
feature models within MoSo-PoLiTe.

In MoSo-PoLiTe, the configuration selection is performed by a specific selection
algorithm based on combinatorial testing (cf. Figure 18 left-hand side). Our algo-
rithm generates a minimal set of configurations containing all T -wise (e.g. pairwise)
feature interactions. Therefore, testing this subset of products is equivalent to
T -wise testing the entire SPL. This algorithm is introduced in Chapter 7.

For a model-based test case derivation the feature model is additionally mapped
to a reusable test model representing the behavior of the entire SPL. We will
provide a mapping approach ensuring that if a valid configuration is derived from
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the feature model, a corresponding test model representing the behavior of this
configuration is generated, too. Thus, for every configuration of our combinatorial
subset, a corresponding test model can be generated. This test model can then
be used for generating test cases for this configuration. Please note that for test
case generation, this thesis refers to existing approaches. Reinventing or improving
model-based test case generation is beyond the scope of this thesis. The model-
based testing component of MoSo-PoLiTe is discussed in Chapter 8.

In the following, we provide an argumentation for why MoSo-PoLiTe is a combi-
nation of the aforementioned concepts and also provide a detailed description of
each of these concepts.
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F E AT U R E M O D E L - B A S E D T E S T I N G

The feature model is the central component within the MoSo-PoLiTe develop-
ment process. In this chapter, we provide arguments for why we have chosen the
feature modeling concept for our testing approach. Furthermore, we will introduce
a formal definition of feature models, to prepare the ground for a precise definition
of the combinatorial subset selection procedure and for an explicit mapping to our
test model. Three lines of reasoning have led us to the idea to base our approach
upon feature modeling:

• The first reason is very intuitive. Feature models provide a hierarchical and
structured representation of the SPL requirements. Commercial tools such
as pure::variants [pG11], Gears [Kru08] , and preevision [aG11c] interrelate
feature models to requirement specifications. Especially pure::variants and
Gears pay particular attention to mapping the features to requirement engi-
neering tools such as Doors ®, CaliberRM ™or MKS Integrity Requirements.
Thus, it seems to be promising to benefit from such a representation of SPL
requirements for testing purposes. Algorithms ensuring a certain degree of
requirements coverage within product derivation can take advantage of the
feature model.

• The feature oriented software development community (FOSD) [FOS11] uses
the features of a feature model as fundamental artifacts within the devel-
opment process of variant-rich systems, such as SPLs. There, the features
are linked to various artifacts such as code fragments, behavioral models,
requirements, specifications, documentation, and tests. Thus, it seems to be a
natural choice to use the feature model as a basis to generate a representative
set of configurations, including test cases.

• Commercial tools such as pure::variants, Gears, and preevision use feature
models to parameterize the derivable products and provide tool integrations
between their feature model editor and development tools such as MATLAB
®/ Simulink®, Rational Rhapsody, OpenArchitectureWare, and Enterprise
Architect. Thus, using the feature model to parameterize corresponding test
cases to the derivable products seems to be reasonable [MSM04].

A test approach based on feature models can be interpreted as validation or
verification, depending on the kind of data that is linked to the feature model. In
single system engineering validation can be understood as answering the question:
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are we building the right product based on the stakeholder requirements. Verifica-
tion, on the other hand, seeks to answer the question: are we building the product
correct on the basis of the system specification. Mapping these definitions to SPL
engineering, we can state:

• Validation: we can say that an SPL is validated if we can answer the question:
do the right products result from the SPL? This question can be answered
according to the stakeholder requirements.

• Verification: we can say that an SPL is verified if we can answer the question:
are all derivable products of the SPL verified? This question can be answered
according to the system specification.

As already mentioned, a feature model only provides a hierarchical structural
representation of the requirements and/or specifications of the SPL. To derive
products or tests using a feature model, the features have to be linked to develop-
ment artifacts or test artifacts. The scope of this thesis is testing, thus, a mapping
approach to test artifacts is required. For this purpose, we will introduce a formal
definition of feature models to provide an accurate mapping between features
and test artifacts (in Chapter 8). Furthermore, we also discuss feature interactions,
because interacting features is a foundation of a fault model for SPL, where faults
are likely to be revealed at execution points at which features exchange information
with other features or influence one another [Bin99, page 557].

We will answer the following questions:

• What is feature interaction?

• What kind of feature interactions exist?

• How do we efficiently address feature interaction in testing activities?

6.1 formal definition of feature models

In the following, we provide a formal definition of the feature model introduced in
the previous part.

Definition 22 (Feature Model). A feature model FM = 〈F,R,C〉 is defined over a finite
set of features F = {f1, ..., fn} equipped with a collection of relations R and constraints C.

We write FMF to refer to the set of all feature models FM ∈ FMF over features F. To
specify the variability relationships among features, four different relations are used:

• Rman ⊆ F× F – if (f, f ′) ∈ Rman, then feature f ′ is a mandatory variability of
feature f,
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• Ropt ⊆ F× F – if (f, f ′) ∈ Ropt, then feature f ′ is an optional variability of feature
f,

• Ralt ⊆ F×P(F) – if (f, F ′) ∈ Ralt, features F ′ ⊆ F constitute an alternative group
for feature f, i.e., exactly one feature f ′ ∈ F ′ is a mandatory variability of feature f,
and

• Ror ⊆ F×P(F) – if (f, F ′) ∈ Ror, features F ′ ⊆ F constitute an or group for feature
f, i.e., arbitrary feature sets F ′′ \ {∅} ⊆ F ′ are variabilities of feature f.

These relations are pairwise disjoint and the union: R = Rman ∪ Ropt ∪ Ralt ∪ Ror
results in the tree structure of the feature model in which:

• each feature F represents one node

• the relations R represent the edges

• two features f, f ′ ∈ F are related by the child relation ≺c⊆ F× F if f ′ is a direct
child of f, i.e., f ≺c f

′ iff (f, f ′) ∈ R or (f, F ′) ∈ R with f ′ ∈ F ′.

We then call f the parent or variation point and f ′ the child or variant.

• the root node of the feature model is a special feature fr representing the concept of
the SPL. The node fr is the only node within a feature model without a parent node:
∀ f ∈ F : ¬f ≺c fr.

• (F,≺c) is a rooted tree i.e. f ′ ≺c f∧ f
′′ ≺c f→ f ′ = f ′′

The constraints C introduce further restrictions on feature combinations and can be
interpreted as cross-tree constraints in the feature model:

• Creq ⊆ F× F – if (f, f ′) ∈ F, then feature f requires feature f ′ in every product, and

• Cexc ⊆ F× F – if (f, f ′) ∈ F, then feature f excludes feature f ′ in every product.

Note that the exclude constraint is symmetric, i.e., from (f, f ′) ∈ Cexc it follows that
(f ′, f) ∈ Cexc.

A feature model is used to configure the products of an SPL. Such a so-called
configuration is a subtree of the feature model and includes all features which are
included in the product.

Definition 23 (Product Configuration). A product configuration Fp = {f1...fn} is a
valid subtree of F. The consistency rules for valid product configurations are defined as
follows:
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• the root feature fr ∈ F is a special feature denoting the concept/name of the entire
SPL and is, therefore, part of every product: fr ∈ Fp

• for every feature f ∈ Fp the following conditions hold:

– if (f, f ′) ∈ Rman, then f ′ ∈ Fp,

– if (f, F ′) ∈ Ralt, then ∃!f ′ ∈ F ′ ∩ Fp,

– if (f, F ′) ∈ Ror, then ∃ f ′ ∈ F ′ ∩ Fp,

– if (f, f ′) ∈ Creq, then f ′ ∈ Fp,

– if (f, f ′) ∈ Cexc, then f ′ 6∈ Fp, and

– if f ′ ≺c f, then f ′ ∈ Fp.

An FM ∈ FMF defines the set of valid product configurations by means of feature
combinations Fp ⊆ F permitted in the SPL. We write products : FM → P(P(F)) to refer
to that product space shaped by FM.

At this point we like to remind the reader that the hierarchy, the relations, and the
constraints within the feature model provide valid information for testing purposes,
since they represent relations between the various functionalities of the SPL. Apart
from these relationships, features can interact with each other [JZ98, Met04].

6.2 feature interaction coverage

According to Binder, faults within any software system are likely to occur at execu-
tion points, where features exchange information with other features or influence
one another [Bin99, page 557]. We define this situation as feature interaction and
align with the definition by Ferber et al. of [FHS02]:

Definition 24 (Feature Interaction). A feature fi interacts with a feature fj if the be-
havior of fi depends on whether fj is present or absent.

A very detailed but outdated summary about feature interaction is provided by
Calder et al. [CKMRM03]. There, the authors categorize feature interaction into
three different domains of research: Software Engineering, formal methods, and
on-line techniques. Ferber et al. [FHS02] identify five different kinds of feature
interactions and dependencies on the Basis of an Electronic Control Unit (ECU) case
study. Those are: Intentional Interaction, Resource-Usage Interaction, Environment
Induced Interaction, Usage Dependency, and Excluded Dependency. The depen-
dencies and interactions are not directly added to the feature model but modeled
within an additional view. However, this approach focuses on the management
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Figure 19: Feature model of our running example
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of feature interactions, omitting techniques to actual identify them. Metzger et al.
describes an algorithm for feature interaction detection in embedded systems in
[Met04]; in [MBLP05] the authors describe the adaptation of this algorithm to apply
it to the SPL context. The detection of feature interactions is based on a metamodel
of the development products describing the development artifacts and the relations
between them. The information about feature interactions are extracted from the
requirements. In [JDDJ08] the authors define feature interaction on the basis of the
set of actuators used by the features. This results in a set of properties in temporal
logic detecting feature interactions by using model checking. Due to the application
of model checking, this approach faces the problem of state space explosions when
working on rather big models. Lochau et al. introduces feature interaction detection
on the basis of reachability trees that can be generated on the basis of statecharts
describing the behavior of a system or SPL [LG10].

Potential feature interactions occur when features interrelate. In SPL engineering
we distinguish two different ways of feature interrelation:

1. via relations and constraints defined in the feature model and

2. via interactions which originate from the implementation of the SPL and are
not captured in the feature model.

First, we will consider case 1) of feature interrelations originating from the feature
model itself: We distinguish three types of binary dependencies for every feature
pair {fi, fj} ⊆ F organized in a feature model FM(F). For each type we present an
example using the feature model of our running example (cf. Figure 19).

Definition 25 (Implication). fi implies fj, written fi ⇒ fj: In a feature model the
presence of feature fi in a configuration implies the presence of feature fj in that configu-
ration:
fi ⇒ fj :⇔ ∀ F : fi ∈ F → fj ∈ F. This relation is in general per definition reflexive,

non-symmetrical, and transitive.

For example, the transitivity of this relation can be proved easily:

fi ⇒ fj ∧ fj ⇒ fk

then

∀ F : (fi ∈ F→ fj ∈ F)∧ (fj ∈ F→ fk ∈ F)

holds. Thus, it follows:

∀ F : fi ∈ F→ fk ∈ F
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and thus

fi ⇒ fk

In a feature model this relation occurs as follows:

• Features always imply their parent feature: if (fj, fi) ∈ C then fi ⇒ fj (e.g.
status LED implies human machine interface),

• Features always imply their mandatory child features: if (fi, fj) ∈ Rman then
fi ⇒ fj (e.g. door system implies power window), and

• Features always imply features they require: if (fi, fj) ∈ Creq then fi ⇒ fj
(e.g. remote control key implies central locking system).

If two features require each other, for example, if fi implies fj and fj implies fi,
we write fi ⇔ fj for short.

Definition 26 (Exclusion). fi excludes fj, written fi fj: The presence of a feature fi in
a configuration implies the absence of feature fj in that configuration.

fi fj :⇔ ∀ F : ¬fi ∈ F∨¬fj ∈ F

Thus,  ⊆ F× F is in general per definition irreflexive, symmetrical, and non-transitive.

In a feature model the exclude relation occurs as follows:

• alternative features exclude each other: if (f, Fi) ∈ Ralt, then fj fk for each
pair {fj, fk} ⊆ Fi (e.g. manual power window excludes automatic power window),
and

• excluded features: if (fi, fj) ∈ Cexc, then fi fj, and fj fi e.g. manual power
window excludes control automatic power window).

Definition 27 (Independence). fi and fj are independent, written fi ⊥ fj. In all other
cases—if two features do not exclude or imply each other, those features are defined as
independent, written fi ⊥ fj, where:

⊥= F× F \ {⇒ ∪ }

Independence means that their presence/absence within the same product configuration is
mutually independent. The relation ⊥ is irreflexive, symmetrical, and non-transitive.
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positive negative

intended feature cooperation feature vetoing

unintended undesired interference required but missing

Table 5: Categories of feature interactions

Please note that we only address binary feature interactions caused by our
definition of feature models. A feature model containing n-ary constraints, e.g. a
feature requires the combination of several others, would result in n-ary interactions
which are defined analogous to the definitions above. The reason for this restriction
is that we focus to examine and evaluate MoSo-PoLiTe on the basis of pairwise
feature interaction coverage.

With regard to case 2, those feature interactions are not easy to identify or to
localize. Various related publications address those kind of feature interactions.
Feature interactions can only be revealed by analyzing varying feature combinations
by means of different configurations. There, we run into the same problem as
defined in the beginning. Intuitively, to guarantee a 100% coverage of feature
interactions, all possible configurations would need to be tested.

To further discuss feature interaction coverage we introduce the categories de-
picted in Table 5. Feature interactions can be either intended, i.e., being an integral
part of the product line requirements or they are unintended, therefore potentially
leading to failures. We assume that all intended feature interactions are included in
the feature model of the SPL.

Interactions might arise at different levels of abstraction, e.g., by shared resource
accesses and even environmental influences [FHS02]. We focus on the functional/-
logical level detectable on the basis of test model specifications.

We further distinguish positive and negative interactions. A positive interaction
is defined by the cooperation of features, e.g. if two features complete one another
to realize some functionality. The counterpart is defined by negative interactions,
where features hinder one another.

According to these definitions we obtain the following four cases for feature
interaction:

• Feature cooperation is the positive and intended feature interaction, where
features cooperate with each other to implement a certain functionality. Gen-
erally, we assume that these interactions can be characterized in the feature
model. This would require a dependency analysis of the implementation or
architecture.

• Undesired interference is the positive and unintended feature interaction,
where features cooperate leading to undesired influences and even failures.

• Feature vetoing is the negative and intended feature interaction, where fea-
tures hinder each other of being executed. This interaction is vital for e.g.
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safety critical reasons. With regard to our running example central locking
system vetoes automatic power window to (re-)open the window while being
locked. This information is not depicted within the feature model.

• Required but missing is the negative and unintended feature interaction,
where features should cooperate but cannot caused by missing features.

Generally, dependencies and interaction interrelations among features are incom-
parable, i.e., dependencies do not imply interactions, and interactions do not imply
dependencies. Therefore, we further distinguish mandatory and optional feature
interactions of non-excluding interacting features fi and fj:

• if fi ⇒ fj then fi mandatorily interacts with fj, else fi optionally interacts with
fj.

• if fi ⇔ fj, then fi and fj mandatorily interact, and if fi ⊥ fj, then fi and fj
optionally interact.

According to this definition, every feature mandatorily interacts with all its
parent features in the feature model by varying them.

Our combinatorial SPL testing approach for SPLs selects feature combinations
under some criterion to test their intended interactions to be correct, and to rule out
unintended interactions. Potential interactions then imply test coverage obligations,
e.g., by introducing interaction fragments like coordination patterns, behavioral
influences etc. to be covered in the test model. The feature interactions, which are
not characterized in the feature model, may include more than two features thus
leading to an n-ary feature interaction. Within our case study and evaluation we
will examine the occurrence of n-wise feature interactions and the capability of
MoSo-PoLiTe to cover those when only using pairwise feature combination.

6.3 feature model as propositional formula

According to Czarnecki et al. [CW07] feature models can be expressed as logical
formulas. We will use propositional formulas in the remainder of this part to check
the semantical equivalence between different feature models.

The relations: mandatory, optional, alternative, and or are defined as:

• Mandatory: The mandatory feature Human Machine Interface is always selected
if its parent feature (Body Comfort System) is selected. Furthermore, the selec-
tion of Human Machine Interface implies that the parent is selected as well.

• Optional: The selection of the optional feature Safety Function indicated that
its parent is also selected.

• Alternative: Within an alternative group exactly one element has to be selected
if its parent feature is selected. Thus, Electric implies either Automatic Power
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Figure 20: Relations in logic

Window or Manual Power Window. Additionally, the selection of one element
of the alternative group always implies its parent feature (Electric).

• Or: Within an or group at least one element has to be selected. Thus, status
LED implies LED central locking system or LED power window. Since the parent
needs to be selected if an element of the or group is selected, both, LED central
locking system and LED power window imply status LED.

The cross-tree constraints require and exclude are defined as depicted in Figure
21.

A feature model can be interpreted as a combination of those propositional
formulas. If Φi is the set of propositional formulas for i features/feature groups,
then a feature model can be interpreted as a propositional formula consisting of:∧

n=1,..,iΦn. A valid configuration of an SPL is an assignment of the feature model
where the logical expression turns to true — in other words: all valid assignments
of the different relationships and constraints have to hold. With regard to feature
interactions mandatory interaction can be identified by translating the feature
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Figure 21: Cross-tree constraints in logic

model into propositional formulas. The implies (→) function directly indicates
when two features mandatorily interact.





7
C O M B I N AT O R I A L S P L T E S T I N G

Due to the enormous number of possible products of industrial SPLs, it is not
feasible to check each individual product against its requirements. The number
of possible products depends on the number of varying features parameterizing
the SPL. Also for ordinary single systems, an exhaustive test including all possible
combinations of parameters and their values is not feasible [Ber91]. Testing an SPL,
therefore, has to cope with similar trade-offs like testing a single system with its
input parameters.

A logical consequence is to take lessons learned into account from the field of
software testing reducing the test effort with regard to parametrization. Combina-
torial and especially pairwise testing are widely spread approaches to reduce the
testing effort [GOA05, CGMC03, KLK08]. This is why we consult a method such
as combinatorial testing for SPL validation and verification.

We will treat features of the feature model as parameters. Instead of generating
combinatorial sets of input parameter values, we generate combinatorial sets of
configurations. This set is then significantly smaller than the total number of
possible products. A second reason for applying combinatorial testing is to cover
feature interactions. Generating configurations with T -wise combination of features
results in a T -wise feature interaction coverage.

As we have already stated in our related work section, this idea is not new and for-
mer contributions have already proposed this idea [McG01, Oli08]. However, those
approaches do not provide a systematic method of how to apply combinatorial
testing to feature models or similar variability representations. Furthermore, those
approaches neglect feature interactions and are not able to consider constraints
between features.

Applying combinatorial testing to feature models is challenging because the hier-
archical structure, the different relations, and constraints of the feature model are
not processable by standard combinatorial test algorithms. Configuring a product
in SPL engineering can be considered as a Constraint Satisfaction Problem (CSP)
and each possible configuration is a possible solution to that CSP [SDD+

09]. Due to
the fact that the feature model, as defined in Section 6 Definition 22, includes almost
entirely binary constraints it can be translated into a binary CSP [OMR10]. Thus, the
combinatorial algorithm needs to include standard constraint solving techniques
such as Forward Checking [HE79, BG95], which is well-suited for handling binary
constraints between variables [Ben04, WW09, SDD+

09]. Current methods provid-
ing combinatorial testing considering constraints are either commercial so that the
internal structure cannot be analyzed or are based on SAT-solving. However, since
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feature models contain more or less only binary constraints, Forward Checking
seems to be the natural choice [Ben04, WW09].

To apply combinatorial testing to feature models we:

1. transform the feature model to get rid of the hierarchical structure resulting
in a binary CSP, followed

2. by the implementation and application of a combinatorial algorithm capable
of solving constraints.

In the following, we will refer to the transformation of the feature model as
feature model to CSP transformation. This transformation translates the feature
model into a feature model-based representation of parameters and their cor-
responding values. The restrictions based on the relations and the hierarchical
structure are then replaced by additional constraints. The feature model CSP will
only contain parameters (features) and their corresponding values (the possible
feature allocations within configurations).

To the combinatorial algorithm we will refer to as subset extractor because
the algorithm generates a set of configurations that is a subset of all possible
configurations. A formal definition and details about the feature model to CSP
transformation and the subset extractor will follow within this chapter.

7.1 constraint satisfaction problem

A constraint satisfaction problem (CSP) is a high-level description of a problem
based on constraints. The framework of a CSP is given by a set of variables and a
set of values. The actual problem is given by a set of constraints specifying relations
between the variables. The search for possible values so that all variables fulfill the
set of constraints is called constraint satisfaction or solving.

Popular applications of CSPs in real world situations are for example:

• wiring harness to find the optimal cabling within a car.

• stand allocations for airports

• circuit layout computation in electrical engineering

A CSP is called a binary CSP if the constraints only address pairs of variables
and the corresponding values. A binary CSP is defined as:

Definition 28. A binary CSP is a triple 〈V ,D,C〉 with

• V = {v1, ..., vn} is a finite set of variables.

• D = {D1 ∪ ...∪Dn} the set of values for each variable, where Di = {di1 ...diq} is a
set of possible values for vi.
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• C = {c1, ..., ck} is a set of constraints. Each constraint is a triple 〈x,R,y〉 with

x,y ∈ V are pairs of variables

R is a set of binary relations R ⊆ D×D restricting the possible values for the
combination of the variables x and y.

An ordinary CSP can be defined analogously. A solution of the binary CSP is an
assignment that satisfies every constraint. A solution is a function that assigns to
every variable vi a value f(vi) ∈ Di, such that

∀(x,R,y) ∈ C : (f(x), f(y)) ∈ R

A CSP is satisfied if it has at least one solution.
With regard to our feature model, this definition has to be slightly adapted:

• Variables V within the feature model are the features themselves

• The domain of possible values D needs to be extracted from the hierarchical
structure and the relations. For example, the optional feature security within
the BCS feature model can be part of a configuration or not. Thus, security
has the possible values: security and ¬security, where ¬security represents
the situation, where security is not selected within the configuration.

• The cross-tree constraints require and exclude that additionally restrict feature
combinations are the constraints within the binary CSP.

The extraction of the binary CSP consists of the following steps:

1. Resolve the hierarchical structure of the feature model. This step results in a
flat feature model, where each feature represents a parameter (variable) of
the CSP.

2. Then, the values are extracted on the basis of the relations. This step defines
the domain of values for the binary CSP.

3. Finally, the binary CSP is extracted from the feature model representation.

On the basis of the binary CSP the problem that needs to be solved can be
formulated. The problem is to find a minimal set consisting of configurations
covering all valid pairs (or all T -wise combinations) of features that are permitted
combinations within a configuration. To generate configurations, our algorithm
covers corresponding assignments of feature values to variables that fulfills all
constraints. Such a representative set of products that covers all pairs of features
is called a hitting set [Sch07]. Actually, the optimization problem of finding the
minimal subset of products is the minimum cardinality hitting set problem that is, in
the general case, NP-hard [Sch07]. Our pairwise configuration selection algorithm
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is a heuristics that always finds a hitting set, but it does not guarantee to find the
minimal set of configurations.

In the next section we introduce the rules to translate the feature model into
a binary CSP [OMR10]. Afterwards, the algorithm that generates a set of valid
configurations containing all valid pairs of features is introduced. Testing this set of
products is equivalent to pairwise testing the entire SPL. The developed pairwise
algorithm can handle constraints between features and guarantees the generation
of valid configurations containing all valid pairs of features.

7.2 feature model to csp transformation

CSP algorithms as well as ordinary pairwise algorithms require variables/param-
eters and corresponding values to operate on. Please note that the term variable
is settled in the CSP community and the term parameter is a general term in the
combinatorial testing community. Due to the fact that we combine both approaches,
we use both terms as synonyms. To ease the understanding and improve the
readability of this thesis we want to prevent to switch between those two terms
repeatedly. Thus, we stick with the term parameter in the remainder of this thesis.

In our case, parameters and their values need to be extracted of a feature model
to transform a feature model into a CSP. As stated in the beginning of this part of
the thesis, features are the parameters of an SPL. Extracting parameters and values
is a two step procedure:

1. Flattening: Every feature with its associated relations and constraints is
iteratively pulled up until it is placed directly beneath the root feature. Every
feature then serves as a parameter. We refer to this feature model as flat
feature model (FFM).

2. Value Extraction: The algorithm assigns every parameter its correspondent
parameter values. The values of a feature are defined by its relationship to its
former parent feature. E.g. an optional feature has the values true and false.
We refer to this feature model as feature model CSP (FMCSP).

Figure 22 depicts the feature model to CSP transformation process. We will first
explain the different flattening rules followed by a description of how we extract
parameter values. Then, we will demonstrate both steps of our algorithm by using
our running example.
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Figure 22: Feature model to CSP transformation

7.2.1 Flattening

Several model transformation rules control the flattening process.
Each rule is iteratively applied to a subtree of a feature model. This subtree

always consists of three levels: the grandparent feature, the parent feature, and the
child feature. Figure 23 depicts an example of such a subtree.

GP

P

C

Grandparent node

Parent node

Child node

Figure 23: Subtree for flattening

Different rules are required for the flattening process depending on the relations
between the involved features. Our feature model supports four different relations
(optional, mandatory, alternative, and or) and for every possible combination of par-
ent and child relationship a separate transformation rule is required. Therefore, we
need 4× 4 = 16 rules. Those 16 rules are sufficient to ensure that all feature models
according to the definition in Chapter 6 (a feature model with optional, manda-
tory, alternative, and or relations and binary require and exclude constraints) can be
transformed. This allows us to claim that our transformation algorithm assures
completeness. Each rule can be shown to preserve the semantical equivalence by
translating the original and the resulting subtree into propositional formulas and to
check whether these rules form a tautology. In the following, all 16 transformation
rules are introduced and for the first four, the semantical equivalence will be proved.
Proving the semantical equivalence preservation property for all rules confirms
the consistency of the flattening algorithm. A summary of all transformation rules
including the proof of semantical equivalence can be found in the appendix of this
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thesis. The transformation rules can be checked automatically using a SAT-solver
and check whether:

(prop. formula of the leftside↔ prop. formula of the rightside)

turns to true or false. If both implications result in true, both sides are semantically
equivalent.

In the following, we present all 16 transformation rules using a domain specific
notation (feature subtrees) to support the readability. As we will discuss in the
Implementation and Evaluation part of this thesis, those rules can be translated
easily into precisely defined graph transformation rules as well as into Java code.
Please note that the flattening algorithm is not reversible. It is not possible to
generate the original feature model using the flat feature model in the general case.

Child Optional:

Figure 24 depicts the transformation rule pulling up an optional child C located
beneath a mandatory parent P.

GP

C P

GP

C

P Transformation

Figure 24: Transformation rule pulling up an optional child beneath a mandatory parent

The former child feature is pulled aside its parent feature directly beneath the
grandparent feature. To prove that this transformation preserves the semantical
equivalence we translate both sides into propositional formulas and show that it is
a tautology.

GP∧ (P → GP)∧ (C→ P)∧ GP∧ (P → GP)∧ (C→ GP)∧

(GP → P) (GP → P)

=GP∧ P =GP∧ P

Figure 25 depicts the transformation to flatten an optional child/optional parent
subtree. Again, the C feature is simply pulled up. To ensure that C cannot be
selected without its former parent (P) being selected, an additional require constraint
is required. Again, the translation into propositional logic helps to prove the
semantical equivalence.

GP∧ (P → GP)∧ (C→ P) GP∧ (P → GP)∧ (C→ GP)∧ (C→ P)

=GP∧ (C→ P) =GP∧ (C→ P)
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Figure 25: Transformation rule pulling up an optional child beneath an optional parent

Figure 26 depicts the transformation of an optional child/alternative parent subtree.

GP

P1

C

Pn

GP

C P1 Pn

require

Transformation

Figure 26: Transformation rule pulling up an optional child beneath an alternative parent

In accordance with the previous transformation rule, C is pulled up and requires
its former parent. Please note that the dots and additional lines between P1 and Pn
symbolize that the alternative group may consist of arbitrary elements.

GP∧ (P1 → GP)∧ (Pn → GP)∧ (C→ P1) GP∧ (C→ GP)(P1 → GP)∧ (Pn → GP)

∧ (GP → alt(P1,Pn)) ∧ (GP → alt(P1,Pn))∧ (C→ P1)

=GP∧ (C→ P1)∧ alt(P1,Pn) =GP∧ (C→ P1)∧ alt(P1,Pn)

Figure 27 depicts the transformation triggered by a subtree including an optional
child beneath a parent within an or group. Again, the child feature C is pulled up
and an additional require constraint is added to its former parent. Again, please
note that the dots and additional lines between P1 and Pn symbolize that the or
group may consist of arbitrary elements.

GP

P1

C

Pn

GP

C P1 Pn

require

Transformation

Figure 27: Transformation rule pulling up an optional child beneath an or parent

GP∧ (P1 → GP)∧ (Pn → GP) GP∧ (P1 → GP)∧ (Pn → GP)

∧ (GP → P1 ∨ Pn)∧ (C→ P1) ∧ (GP → P1 ∨ Pn)∧ (P1 → GP)∧ (C→ P1)

=GP∧ (P1 ∨ Pn)∧ (¬C∨ P1) =GP∧ (P1 ∨ Pn)∧ (¬C∨ P1)
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Figure 28: Transformation rule pulling up a mandatory child beneath arbitrary parents

Child Mandatory

Pulling up a mandatory child beneath a mandatory parent results in a combined
feature including the child and the former parent feature. Both features P and C
can be combined since it is not possible to include one of them without the other
one within any configuration. Combining features means to merge them into one
single feature. The name of the new feature is a concatenation of the feature names
merged within this feature. Beside this characteristics, the rules are similar to the
ones considering optional children.



7.2 feature model to csp transformation 89

Mandatory parent

Optional parent

Alternative parent

Or parent

GP

C1

P1

Cn

Pn

GP

require

require

exclude

Transformation C1P1 CnPn ¬(C1,…,Cn)

Transformation

GP

C1

P

GP

P

Cn

C1 Cn

GP

C1

P

Cn

GP

require

exclude

require
Transformation C1P Cn ¬(C1,…,Cn)

GP

C1

P1

Cn

Pn

GP

C1P1 CnPn

require
require

exclude

Transformation ¬(C1,…,Cn)

Figure 29: Transformation rule pulling up an alternative child beneath arbitrary parents

Child Alternative:

An alternative child group is pulled up aside the former parent feature directly
beneath the grandparent feature. Figure 29 depicts the four rules pulling up an
alternative child group.

The first rule considers a mandatory parent. The alternative group is simply pulled
up directly beneath the grandparent feature. Considering the other constellations,
additional require and exclude constraints have to be added. For all three cases, an
additional negation-feature (¬) is added to the alternative group representing the
case when no element of the alternative group is chosen. It simply represents the
negation of the elements of the alternative group. This is very important due to
the fact, that the alternative group must not be selected at all if the former parent
feature is not selected.
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• if the parent P is optional and not selected, the underlying alternative group
is not selected as well. To keep this semantics when pulling up the alter-
native group the ¬(C1,Cn)-feature is added. Both former elements of the
alternative group, namely C1 and Cn require the former parent feature P. P
and ¬(C1,Cn) exclude each other since ¬(C1,Cn) may only be active if P is
deselected.

• if the parent is within an alternative group, the ¬(C1,Cn) feature excludes the
former parent feature P1 of the alternative group and C1 and Cn require its
former parent P1.

• if the parent is within an or group, the ¬(C1,Cn) feature excludes the former
parent feature P1 of the alternative group and C1 and C2 require its former
parent P1.

Please note that at the first glance, the rules considering the parent of being
within an alternative or or group can be changed so that the ¬(C1,Cn) feature
requires feature Pn. This is true if the alternative and the or group only consists of
two features. With increasing elements of these groups too many require constraints
would result. Thus, we recommend that ¬(C1,Cn) excludes P1.

Child Or:

Flattening a subtree with child features within an or group is similar to the rules
considering an alternative child group. Figure 30 depicts the four corresponding
transformation rules.

Applying the flattening rules to a feature model removes its hierarchical structure.
The 16 transformation rules transform the feature model into a flat feature model
(FFM).

The transformation rules considering alternative and or child groups might raise
the impression that they are only capable of processing two child features. The dots
and the additional lines between P1 and Pn and between C1 and Cn indicate that
an arbitrary number of additional features may be placed within the alternative and
or groups.

To foster the understanding of the flattening algorithm, we apply the flattening
algorithm to our running example. We use a subset of the BCS feature model,
depicted in Figure 31. In the following, we refer to this feature model as BCS-small.
BCS-small allows for the derivation of 40 different configurations.

We will only present some steps of the flattening algorithm. Figure 32 depicts the
flattening, starting at the left side of the feature model. First, LED central locking
system and LED power window are pulled aside status LED. Each of the elements
of the or group need a require constraint towards their former parent feature (status
LED). Then, LED central locking system, LED power window, and status LED



7.2 feature model to csp transformation 91

Mandatory parent

Optional parent

Alternative parent

Or parent

GP

C1

P1

Cn

Pn

GP

require

require

exclude

Transformation C1P1 CnPn ¬(C1,…,Cn)

Transformation

GP

C1

P

GP

P

Cn

C1 Cn

GP

C1

P

Cn

GP

require

exclude

require
Transformation C1P Cn ¬(C1,…,Cn)

GP

C1

P1

Cn

Pn

GP

C1P1 CnPn

require
require

exclude

Transformation ¬(C1,…,Cn)

Figure 30: Transformation rule pulling up an or child beneath arbitrary parents

are pulled up aside human machine interface. Since human machine interface
is a mandatory feature, no additional constraint is required. The require constraint
starting at LED central locking system towards central locking system persists.

Figure 33 depicts the result of the flattening of the subtree beneath door system.
First, the alternative group consisting of manual power window and automatic
power window is pulled up aside power window. Since power window is a
mandatory feature, no additional constraint is required. Then, power window,
manual power window, and automatic power window are pulled up aside door
system. Again, no additional constraint is required because door system is a
mandatory feature.

Finally, 34 depict the FFM of our subset of the BCS feature model. In the last step,
all features beneath security are pulled up. Since all features are optional, several
additional require constraints are necessary.
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Figure 31: Subset of the BCS feature model
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Figure 32: Step 1 of the flattening
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Figure 33: Step 2 of the flattening

Again, we like to emphasize that all cross-tree constraints within BCS-small are
preserved during the flattening process. All cross-tree constraints remain with the



7.2 feature model to csp transformation 93

body comfort 
system

human machine 
interface

automatic 
power window

manual power 
window

central locking 
system

remote 
control key

adjust exterior 
mirrorstatus LED

door system, power 
window security

control automatic 
power window

exclude

LED central 
locking system

LED power 
window

require

require

require
require

require

require

central locking 
system

remote 
control key

adjust exterior 
mirrorsecurity

control automatic 
power window

require

require

require
require

require

requirerequire

Figure 34: Step 3 of the flattening

corresponding features. Since no feature is deleted no constraint will get lost. A
merged feature inherits the constraints of the included features.

7.2.1.1 Completeness and Consistency

All 16 transformation rules ensure completeness and consistency of the subtree.
As already mentioned, the 16 rules cover all possible combinations of the different
relationships (mandatory, optional, or, and alternative) for the three level subtree.
Thus, we can state that the 16 transformation rules guarantee completeness. Using
the translation into propositional formulas, we prove the consistency of each
transformation rule (each transformation preserves the semantical equivalence).

With regard to applying the transformation rules to an entire feature model,
completeness and consistency need to be assured as well. Due to the fact that we
restrict ourselves to a feature model using the syntax and semantics introduced in
Chapter 6 Definition 22, we can guarantee that the feature model is either already
flat or contains at least one three-level subtree as previously described. Thus, we
can state that the transformation rules with regard to operating on an entire feature
model are complete as well, since our algorithm can process every feature model
that aligns with the definition in Chapter 6.

To prove that the transformation rules assure that the flat feature model is
semantical equivalent to the original feature model (consistency), we exploit the
fact that all 16 rules preserve the semantics. Figure 35 depicts our proof sketch,
where FM1 represents the feature model that will be flattened to become FM2.

In our algorithm, FM1 is analyzed bottom up and each three-level-subtree is
matched to the left-hand side L iteratively. The matching algorithm is injective to
ensure that each feature within the subtree is processed individually. Each child
within an alternative or or group is processed as previously described (cf. Figure
30 and 29). It is also possible to process subtrees with mixed notations. Then, the
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Figure 35: Procedure to proof the semantical equivalence

different notations are pulled up sequentially. The matched three-level subtree can
be translated into a propositional formula F1. This translation is depicted as a bold
arrow.

At the top of Figure 35 the model transformation (r) from left (L) to right (R)
represents the 16 transformation rules. As we have already mentioned, both sides
can be translated into propositional formulas. This step is depicted by two arrows
from L to FL and R to FR respectively. The logical expression is represented by FL
for the left-hand side and by FR for the right-hand side.

In the next step, the feature names within FL and FR are replaced by the concrete
names used in the feature model (FL → F ′L and FR → F ′R). This step is again an injec-
tive mapping. New feature names in R that did not exist in L (e.g. merged features)
are mapped on new names in FM2(F2, F ′R) which are not used in FM1(F1, F ′L)

Then, F1 ⊇ F ′L holds, since otherwise the subtree within the feature model
wouldn’t have matched the one in the transformation. In other words, F1 implies
F ′L but not vise versa.

On the right-hand side the same relations hold. The resulting feature model FM2

consists of subtrees e.g. F2, where F2 ⊇ F ′R with F ′R being the resulting flat subtree
of the transformation rule with the correct feature names.

We already proved that for all 16 transformation rules FL ⇔ FR holds. Thus,
we can also state that F ′L ⇔ F ′R. Furthermore, we know that F1\F ′L = F ′L\F

′
R then

F2 = F1\F
′
L ∪ F ′R i.e. F2 can be described by removing F ′L from F1 and then adding

F ′R. Thus, we need to prove that F1 is sufficient to generate F2 to prove that the
transformation rules preserve the semantical equivalence.
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Notation: F ⇔ F ′ complies with: F ` F ′ and F ′ ` F. Every formula in F ′ can be
generated using F and vise versa. Thus, we need to show: F1 ` F2 and F2 ` F1

F2 = F1\F
′
L

⋃
F ′R

F1 ` F1\F ′L holds per definition

F1 ` F ′R holds, since F1 ⊇ F ′L ` F ′R
due to the fact that we have shown that FL ⇔ FR

Thus, F1 ` F2

F1 = F2\F
′
R

⋃
F ′L

F2 ` F2\F ′R holds per definition

F2 ` F ′L holds, since F2 ⊇ F ′R ` F ′L
due to the fact that we have shown that FL ⇔ FR

Thus, F2 ` F1

Thus, we have shown:

• each transformation complies with a transformation of a set of propositional
formulas.

• the transformations of the propositional formulas align with the well-known
laws for propositional formulas e.g. commutative and associative law.

• the flat feature model is semantically equivalent to the original feature model.

7.2.2 Value Extraction

After the first step of the feature model to CSP transformation, all features are placed
directly beneath the grandparent feature serving as parameters (cf. Figure 34). In
the next step, the algorithm extracts the corresponding values. Again, different
rules are applied to extract the values of the features—one for each relation. Figure
36 depicts the four value extraction rules.

• mandatory: Mandatory features (cf. Figure 36 1) stay mandatory and obtain an
additional child feature representing the value of this feature. The value has
the same notation and name (e.g. HMI). All cross-tree constraints in which
the mandatory feature was involved are propagated to the value.
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Figure 36: Rules for value extraction for mandatory(1), optional(2), alternative(3), and or(4)
features

• optional: An optional feature (cf. Figure 36 2) is changed to a mandatory feature
with two child features. The optional feature CLS turns into a mandatory
feature with an alternative child group containing a feature CLS and ¬CLS.
For product instantiation the feature CLS is selected and one element of the
alternative group has to be chosen as well. Therefore, either the feature CLS or
the feature ¬CLS is selected. All cross-tree constraints in which the optional
feature was involved are propagated to the positive value.

• alternative: An alternative group (cf. Figure 36 3) stays unchanged but we add
an additional mandatory feature representing the parameter of the alternative
group. Again, all features of the alternative group are summarized within
this parameter feature. The alternative group itself represents the possible
values. With regard to the BCS case study, the two features ManPW and
AutPW form an alternative group within the FFM. To extract a parameter
and corresponding values, an additional feature representing the parameter
of the alternative group is added. The name of this parameter is built from
the concatenation of the individual members of the alternative group and
thus: ManPW, AutPW. The alternative group then is added beneath this
parameters representing the situation that for the parameter ManPW, AutPW
either ManPW or AutPW can be selected. All cross-tree constraints in which
a feature within the alternative group was involved are propagated to the
corresponding value.

• or: Flattening an or group (cf. Figure 36 4), transforms every element of
the or group into an optional feature. To prevent that no feature of the or
group is selected, we add an n-ary exclude constraint between all negative
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Figure 37: The FMCSP of the BCS subset

values. Again, the incoming and outgoing constraints are propagated to the
corresponding value.

Figure 37 shows the flat feature model of BCS-small including the parameter
values. This step ensures that every possible feature configuration is considered for
pairwise combination.

The flattening process results in additional require and exclude constraints between
features. Furthermore, we also have to consider existing cross-tree constraints within
the feature model to ensure the semantical equivalence between the original and
the flat feature model. All require and exclude constraints are transferred to the
values of the features. There are no longer any constraints on the parameter-level.

7.2.3 CSP Extraction

After extracting parameters and corresponding values of the feature model, the
binary CSP for our problem can be specified as shown in Definition 29. At a first
glance features are the appropriate candidates to represent the parameters V within
our FMCSP. However, we have to consider the fact that during flattening and
value extraction new features are generated e.g. merged features and additional
parameter features that are generated during the value extraction of alternative
groups. Therefore, the parameters of the CSP are the features of our flat feature
model.

Definition 29 (FMCSP). The mathematical representation of our feature model-based
binary CSP is a triple 〈V ,D,C〉

• V = F ∈ FFM The parameters of the CSP are the features of the flat feature model.

• D =D1 ∪D2...∪Dn set of values for each parameter, whereDi = di1 ,di2 , ...diq is
a set of possible values for vi.D is generated on the basis of f as previously described.
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Figure 38: Comparison of the flattening approaches of an alternative parent with alternative
child elements

• C is a set of constraints restricting the combination of certain values for pairs of
features. Each c ∈ C is a triple 〈x,R,y〉 with x,y ∈ F and R : {Dreq ]Dexc} ⊆
D×D is a set of the require and exclude constraints.

A solution to this CSP is a function c : V → D that assigns every feature fij
in vi = (fi1 , fi2 , . . . , fik) ∈ V a value di = (di1 ,di2 , ...dik) ∈ D, where c(vi) = di.
For constraints C, i.e. triples 〈vi,R, vj〉, where vi = (fi1 , fi2 , . . . , fik) and vj =

(fj1 , fj2 , . . . , fjl) we differentiate two different types of constraints R:

• a require constraint between two values dim and djn demands that if vi = dim
then vj = djn (but not vice versa)

• an exclude constraint between two values dim and djn demands that vi 6=
dim ∨ vj 6= djn

7.2.4 Cartesian Flattening

At this point, we like to discuss related work considering our flattening algorithm.
In [WDS09] the authors realize a cartesian flattening of feature models which
is a similar to our flattening algorithm. There, the motivation is to translate the
feature model into a knappsack problem, which is then used to generate highly
optimal architectural variants/products of the SPL. There are some significant
differences to our flattening approaches; amongst others cardinality groups (or
groups in our approach) are translated into an XOR (alternative group in our
approach) with a maximum number boundary in [WDS09]. With this boundary an
exponential explosion of all possible feature combinations is prohibited. For testing
purposes all valid feature combinations need to be identified and we would lose
the semantical equivalence between the original feature model and the flat feature
model if we would use a boundary, limiting the maximum number of combinations.
In [WDS09] a different rule for flattening an alternative group beneath an alternative
parent feature is presented. Fig. 38 shows an abstract example used in [WDS09].
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In the Cartesian flattening approach the features N and O are merged with its
parent feature. Let us now assume that the parent feature L is required by some
other feature X. The feature X would then require L,N xor L,O. These constraints
cannot be captured using binary constraints such as the ones we support in our
subset extraction algorithm.

Due to the different field of application White et al. apply different transformation
rules to prepare the feature model for their algorithms. However, this approach
offers an additional evidence that it is possible to change the structure of the feature
model to apply well-known algorithms such as knappsack or binary constraint
solving. At this point we like to emphasize that our transformation approach was
published earlier in [OSW08].

7.3 subset extraction

The subset extraction realizes the heuristics to find a set of solutions for the binary
CSP. A solution of our CSP describes a product configuration c.

The problem statement can be defined as follows:

1. The subset of all possible products/configurations can be described as C =

{c1, ...ck}

2. A pairwise subset is a subset PWC = {c1, ..., cl}, where each valid combination
of present/absent values for feature pairs {fi, fj} ⊆ F is covered by at least
one configuration ci ∈ C.

3. A minimal pairwise subset PWCmin is a pairwise subset and for every other
PWC ′, |PWCmin| 6 |PWC ′| holds.

The Subset Extraction algorithm generates all valid pairwise combinations of
features regarding cross-tree constraints. A valid pair is a combination of features
not violating cross-tree constraints, the hierarchical structure, and the different
feature notations in the feature model. Then, the algorithm incrementally combines
those pairs of features to create valid configurations.

Definition 30 (Feature Pairs). For a feature pair {fi, fj} the following combinations need
to be addressed on the assumption that the listed pairs are permitted combinations within
a configuration:

• if fi ⇒ fj, then (fi, fj), (¬fi,¬fj), and (¬fi, fj) are valid pairs, i.e., fj is to be
tested in the presence as well as in the absence of fi,

• if fi ⇔ fj, then (fi, fj) and (¬fi,¬fj) are valid pairs, i.e., fi is only testable in the
presence of fj,
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positive negative

intended feature cooperation feature vetoing

unintended undesired interference required but missing

Table 6: Categories of feature interactions

• if fi ⊥ fj then (fi, fj), (¬fi,¬fj), (¬fi, fj), and (fi,¬fj) are valid pairs, i.e., fi is
to be tested in the presence and in the absence of fj and vice versa, and

• if fi fj, then (¬fi, fj), (¬fi,¬fj), and (fi,¬fj) are valid pairs, i.e., no interaction
is to be tested.

Please note that this assumption is rather naive and might not hold for certain
configurations. For example, if fi ⇔ fj and fi is a mandatory feature and always
selected for product configuration then we are not able to test the combination
(¬fi,¬fj).

However, pairwise combinations of features suffices to cover all interactions
according to Table 6, which we have introduced in Chapter 6.

If two features {fi, fj} interact pairwise combination covers:

• intended positive/negative interactions are tested to correctly cooperate/veto,

• unintended negative interactions arise, if the interaction is missing/faulty or

• unintended positive interactions by means of behavioral influences is tested.

Furthermore, for optional interactions,

1. the correctness of intended interactions in the presence of both features is
tested, and

2. the conceptional independence of both features is tested by isolating them
from each other.

Beside the fact that combinatorial testing of SPLs does not result in test cases di-
rectly but in test configurations, the following difference to ordinary combinatorial
testing should be emphasized:

• Combining pairs of features we ensure to include each possible pairwise
feature interaction. Thus, we are able to test (1) if the two features together
within a configuration result in an unexpected behavior and (2) we are also
able to check whether these two features really interact.

• The goal of generating a set of valid configurations containing all possible
feature interactions adds an additional characteristics: instead of including
pairs, we automatically obtain some threewise, fourwise, etc., and finally
N-wise combination of features.
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• Furthermore, testing complete products instead of feature combinations has
the following two advantages: (1) the commonalities of the SPL are repeatedly
tested leading to a solid basis of the SPL and (2) testing individual features
or feature combinations is often not possible since some features are simply
not executable/testable on their own [McG01].

Our Subset Extraction algorithm combines combinatorial design and constraint
solving. With regard to constraint solving, Subset Extraction uses Backtracking
and Forward Checking to allow its combinatorial component to handle constraints
between values of the different parameters.

Backtracking search is the basic algorithm for CSPs realizing a depth-first search
for CSPs with single parameter assignments. Forward Checking then keeps track
of remaining legal values for unassigned parameters. It terminates its search when
any parameter has no legal values left.

7.3.1 Subset Selection Pseudocode

In the following we describe the subset extraction algorithm using pseudocode
and activity diagrams. Our algorithm is able to generate a subset of configurations
satisfying T -wise feature interaction coverage. However, we describe the internal
functionality by means of pairwise feature interaction coverage.

Our algorithm requires the following data to calculate the combinatorial set of
configurations:

• P is the data domain for parameters and V is the data domain for values.
Those parameters and values correspond to the parameters and values within
our FM−CSP (cf. Definition 29)

• ParVal = DataPair<P,V> is the data domain to assign a value v to a parame-
ter p.

• Config = Array<ParVal> represents a configuration as a list of parameter
assignments. In each configuration the parameters occur in compliance with
the FMCSP.

• Subset = Set<Config> is the data domain of the combinatorial set of config-
urations.

• parameters = SortedHashMap<P,Set<V> > is the data domain to describe a
sorted list of parameters and associated values. parameters is sorted in the
same order than Config.

• pairsToCover = SortedHashMap<ParVal,List<ParVal> > contains all pairs
of values with their corresponding parameters to be covered. Each element
of the list List<ParVal> together with its key of the HashMap ParVal forms
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Key Value

(human machine interface, hmi) ((sLED, sLED), (sLED, ¬ sLED)

. . . (aem, aem), (aem, ¬ aem))

Table 7: Example for the pairsToCover HashMap

such a pair that needs to be covered by the Subset. For example considering
the BCS-small running example pairsToCover would look as depicted in
Table7:

• DataPair<ParVal, ParVal> singlePair is the data domain of a single pair
of parameter assignments to be covered.

Using these data domains our algorithm will proceed as follows: Our algorithm
starts with the subsetGeneration() function (cf. Listing 1) that requires parameters
and pairsToCover to generate Subset, the combinatorial subset of configurations
(the covering array). pairsToCover is generated beforehand based on require and
exclude constraints between the parameter values of our CSP without regarding
transitive influence. The advantage of using pairsToCover is that each pair of
values knows its corresponding parameters.

The subsetGeneration() function starts with the initialization of an empty Subset

that will be filled with Configs (line 3). As long as there are uncovered pairs within
pairsToCover, the algorithm will continue to build configurations and to add those
to the subset (lines 5-12). For this purpose, an arbitrary pair (singlePair) out of
pairsToCover is selected (line 6) and removed from pairsToCover (line 7). Directly
removing singlePair from pairsToCover has two reasons:

• The algorithm will start building a configuration (Config) with singlePair

as its parameter values. Thus, this pair is covered and does not need to be
covered again.

• If the algorithm fails in finding a valid configuration including singlePair,
then singlePair is an invalid pair based on transitive influence that the
algorithm identifies using Backtracking with Forward Checking. Thus, this
pair needs to be removed to avoid that the algorithm will try to add this pair
within another configuration repeatedly.

Figure 39 depicts the corresponding activity diagram.
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pairsToCover 
empty

pairsToCover 
not empty buildConfig

parameters

pairsToCover

singlePair

Config

addConfig2Subset
selectPair

updatePairsToCover

Figure 39: Activity diagram subsetExtraction()

Listing 1: Subset extraction pseudocode - I

1 /*Input: parameters, pairsToCover

Output: subset*/

3 function subsetGeneration(parameters, pairsToCover)

Subset ← ∅
5 while(pairsToCover 6= ∅)

singlePair ∈ pairsToCover

7 pairsToCover ← pairsToCover \ {singlePair}

Config ← buildConfiguration(parameters, singlePair)

9 if Config 6= null then Subset ← Subset ∪ Config

pairsToCover ← { pairsToCover / covered by Config}

11 end if

end while

13 return subset �
Then, the buildConfiguration() function (cf. Listing 2) is called to actually add

singlePair to a configuration. The buildConfiguration() builds the initial configu-
ration that is then filled incrementally with other ParVal to result in a complete
configuration not violating any constraints. If the buildConfiguration() function
returns a configuration Config, this configuration is then added to Subset (lines
9). Afterwards, pairsToCover is updated by removing all pairs that are covered by
Config (line 10).

Listing 2 depicts the pseudocode of the buildConfiguration() function. The
buildConfiguration() function operates as follows. First, an empty configuration is
initialized (line 4). Then, the values within singlePair are used to assign the param-
eter/value pairs in this Config (line 5). After adding the values within singlePair

to the corresponding parameters of the configuration, the fillConfiguration() func-
tion is called to add further values to the Config. If the function fillConfiguration()
succeeds, buildConfiguration() will return this configuration (line 7) which is then
added to the subset in subsetGeneration().
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fail

parameters

pairsToCover

initConfig

addPair fillConfig Config

success

buildConfig

Figure 40: Activity diagram of buildConfiguration()

Listing 2: Subset extraction pseudocode - II

1 /*Input: parameters, singlePair

Output: Config*/

3 function buildConfiguration(parameters, singlePair)

Config ← ∅
5 Config[pi] = vi and Config[pj] = vj , where {(pi, vi), (pj, vj)} ==

singlePair

if(fillConfiguration(Config, parameters, 0)) then

7 return Config

else

9 return null

end if �
Figure 40 depicts the corresponding activity diagram. The selected pair is added

to the Config and fillConfiguration() is used to fill the Config.
fillConfiguration() (cf. Listing 3) requires the frequently initialized configuration,

the list of parameters, and an index for the parameter selection p (line 3). The
fillConfiguration() function starts with checking whether the Config is already
complete (line 4). The function fillConfiguration() is called with p = 0 to start with
the first parameter. If this parameter is already allocated with a value, the fillCon-
figuration() function is called recursively to continue with the next parameter (line
7-8). If the parameter p is not yet allocated, the values in pairsToCover belonging to
this parameter are sorted by using the priority function (line 10). The priority func-
tion calculates the priority of each value within the ParVal key of the pairsToCover

HashMap (lines 29-33). The priority is calculated by comparing the size of the list of
ParVal representing the required pairs for a certain parameter/value combination.
The parameter/value combination for a certain parameter, which has the most re-
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quired combinations, obtains the highest priority. This functionality can be adapted
to take other criteria into account, for example safety critical feature combinations.
Those configurations would then occur more often within the resulting subset and,
thus, are tested more often.

Then, Forward Checking is used to check whether the selected value violates
constraints within the configuration. For that purpose, the algorithm checks (for-
ward check) whether adding a certain value v for the parameter p results in a valid
configuration with regard to the existing Config (lines 11-12). Please note that For-
ward Checking takes only parameter/values into account that share constraining
relations with the recently added value. Then, the current list of parameters is saved
as parametersTemp (line 13). For each unassigned parameter within Config (line
15) the algorithm removes values that violate the current configuration (lines 15-16).
Afterwards, the algorithm checks whether there is a parameter in parametersTemp

without any possible values (lines 18-20). If this is the case, the function fillConfig-
uration() returns false and Backtracking is used to undo the previous parameter
allocation and to chose a different value. Backtracking is implemented by using the
recursive call of the fillConfiguration() function as described in [Knu98].

If certain pairs in pairsToCover are invalid due to transitive influence, Forward
Checking ensures that this pair is not combined within a certain configuration. Then,
those pairs will remain in the list until the buildConfiguration() function selects
those to be the singlePair and the pair will be removed from pairsToCover. Our
algorithm will then try to generate a configuration on the basis of this pair and will
fail. Thus, the resulting subset solely contains valid configurations. Furthermore,
we can guarantee that the subset extraction algorithm terminates because the list of
pairs to cover is decreased by at least one pair within every iteration.

Listing 3: Subset extraction pseudocode - III

/*Input: Config, parameters, index for parameter

2 Output: valid Config*/

function fillConfiguration(Config, parameters, p)

4 if sizeOf(Config) 6 p then

return true

6 end if

if Config[p] 6= null then

8 return fillConfiguration(Config, parameters, p+1)

end if

10 for each value v in parameters(p) ordered by priority(parameters(p))

if v is consistent with Config

12 Config[p] ← v

parametersTemp ← parameters //Save current state

14 for each parameter x in Config where x has no value

remove ParVal from parametersTemp which lead to inconsistent

configuration due to constraints

16 end for
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ForwardChecking
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Config 
complete
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parameters
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Figure 41: Activity diagram of fillConfiguration()

if

18 for all parm in parametersTemp

parm 6= ∅
20 end for

then

22 result = fillConfiguration(Config, parametersTemp, p+1)

if result == true

24 return true

else //Continue with next v

26 end if

end if

28 end for

return false

30

function priority(parameter)

32 sorts the values of the parameter in descending order

according to their occurrence in pairsToCover �
Figure 41 depicts the corresponding activity diagram. The recursion realizing

the Backtracking-idea is clearly visible.
In comparison to algorithms where the configurations are build in parallel, our

algorithm configures the subsets incrementally. This is a consequence of using



7.3 subset extraction 107

Backtracking. Due to the fact that we use Backtracking, a configuration can be
changed. Algorithms such as IPO [LT98] would create a new configuration if a
certain value cannot be added. But, using Backtracking, it may happen that the
configuration is changed and the value that was recently rejected within a certain
configuration could suddenly be added. The new configuration is then obsolete.

7.3.2 Subset Extraction for BCS

After introducing the pseudocode of the subset extraction, we use the FMCSP of
BCS-small to depict the result of applying this algorithm.

On the basis of the BCS-small feature model 40 different configurations can be
derived, which are depicted in Table 8. Underscores symbolize features that are
merged due to the transformation rules and empty columns represent the selection
of a ¬ feature. The subset extraction algorithm generates nine configurations for
pairwise feature interaction coverage. Those nine configurations are: C1, C2, C6,
C10, C21, C32, C34, C35, and C40.
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C1-C40 are the configurations; HMI = human machine interface; LED = status LED; LED CLS = LED
central locking system; LED PW = LED power window; DS PW = door system, power window;

ManPW = manual power window; AutPW = automatic power window; sec = security; CLS = central
locking system; RCK = remote control key; AEM = adjust exterior mirror; CAP = control automatic

power window.

C1: HMI DS PW AutPW sec CLS RCK AEM CAP

C2: HMI LED LED CLS LED PW DS PW AutPW sec CLS RCK AEM CAP

C3: HMI LED LED PW DS PW AutPW sec CLS RCK AEM CAP

C4: HMI LED LED CLS DS PW AutPW sec CLS RCK AEM CAP

C5: HMI DS PW AutPW sec CLS RCK CAP

C6: HMI LED LED CLS LED PW DS PW AutPW sec CLS RCK CAP

C7: HMI LED LED PW DS PW AutPW sec CLS RCK CAP

C8: HMI LED LED CLS DS PW AutPW sec CLS RCK CAP

C9: HMI DS PW ManPW sec CLS RCK AEM

C10: HMI LED LED CLS LED PW DS PW ManPW sec CLS RCK AEM

C11: HMI LED LED PW DS PW ManPW sec CLS RCK AEM

C12: HMI LED LED CLS DS PW ManPW sec CLS RCK AEM

C13: HMI DS PW AutPW sec CLS RCK AEM

C14: HMI LED LED CLS LED PW DS PW AutPW sec CLS RCK AEM

C15: HMI LED LED PW DS PW AutPW sec CLS RCK AEM

C16: HMI LED LED CLS DS PW AutPW sec CLS RCK AEM

C17: HMI DS PW ManPW sec CLS RCK

C18: HMI LED LED CLS LED PW DS PW ManPW sec CLS RCK

C19: HMI LED LED PW DS PW ManPW sec CLS RCK

C20: HMI LED LED CLS DS PW ManPW sec CLS RCK

C21: HMI DS PW AutPW sec CLS RCK

C22: HMI LED LED CLS LED PW DS PW AutPW sec CLS RCK

C23: HMI LED LED PW DS PW AutPW sec CLS RCK

C24: HMI LED LED CLS DS PW AutPW sec CLS RCK

C25: HMI DS PW ManPW sec CLS

C26: HMI LED LED CLS LED PW DS PW ManPW sec CLS

C27: HMI LED LED PW DS PW ManPW sec CLS

C28: HMI LED LED CLS DS PW ManPW sec CLS

C29: HMI DS PW AutPW sec CLS

C30: HMI LED LED CLS LED PW DS PW AutPW sec CLS

C31: HMI LED LED PW DS PW AutPW sec CLS

C32: HMI LED LED CLS DS PW AutPW sec CLS

C33: HMI DS PW ManPW sec

C34: HMI DS PW ManPW

C35: HMI LED LED PW DS PW ManPW sec

C36: HMI LED LED PW DS PW ManPW

C37: HMI DS PW AutPW sec

C38: HMI DS PW AutPW

C39: HMI LED LED PW DS PW AutPW sec

C40: HMI LED LED PW DS PW AutPW

Table 8: Possible configurations of the BCS-small feature model
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Until now, this part covered the feature modeling and the combinatorial test-
ing concepts of the MoSo-PoLiTe approach. These two components realize the
generation of a subset of all possible configurations for testing purposes. This
set of configurations needs to be tested. We assume that these configurations are
representative for the entire SPL with regard to fault detection, where the faults
originate from T -wise feature interaction. To reuse test artifacts when testing the
combinatorial set of configurations, we take model-based testing into account as
discussed in Chapter 4.

Generally, the MoSo-PoLiTe configurations can be tested like ordinary software
systems to achieve 100% T -wise feature interaction coverage because the variability
is resolved in each configuration. However, with T increasing, the number of
configurations for a certain SPL increases as well. Hence, a test approach reusing
test artifacts seems to be vital. The two main reasons for using model-based testing
are:

• According to our former studies in [OWES11], model-based testing is suit-
able for SPLs since models can be easily reused and there are various tools
supporting a (semi-) automatic test case generation from test models.

• The approaches of the category reuse-techniques that we have introduced
in the related work chapter apply model-based testing to allow a systematic
reuse of test artifacts.

Model-based techniques are frequently used to implement SPLs in various
domains. We refer to [Pen06] for further details of model-based SPL development.
There, the author summarizes and evaluates different model-based frameworks for
SPL development.

Model-based testing [UL07] aims at the automation of design and application
steps of testing activities for detecting faults in software system implementations.
Our scope is to generate test cases with oracles from a behavioral and reusable test
model providing a behavioral specification that relates system inputs to expected
outputs. Due to the fact that we aim to test embedded systems e.g. in the automotive
sector, we focus on the generation of test cases with oracles from a behavioral model,
which is capable of describing the behavior of systems with potentially infinitely
many executions. Model-based testing techniques are then able to generate a finite
set of behavioral test cases by selecting representative executions of the model as
test cases until certain coverage criteria are fulfilled.

109
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For testing embedded systems, which constantly interact with the environ-
ment, statecharts are an appropriate candidate to serve as a test model [Lig09].
Statecharts are nowadays widely used and adopted, e.g., as UML state machines.
For the development and implementation of reactive/embedded control systems,
statecharts constitute an industrial de-facto standard, e.g., underlying the MAT-
LAB/Simulink/Stateflow tool set. Concerning testing, this idea is supported by
the fact that various tools exist providing an automatic test case generation on the
basis of a statechart. For embedded systems in particular, the emulation of envi-
ronmental sensor or user stimuli sequences serves as test inputs, and the oracles
define corresponding output signals expected for the actuator components.

The MoSo-PoLiTe approach aims at using existing approaches for model-based
testing. We assume that the existing test case generation approaches for statecharts
are appropriate for SPLs as well [OWES11]. However, with regard to [OWES11]
comparing different approaches for model-based testing in the SPL context, we
have the following requirements:

• using standard algorithms for automatic test case generation including tool
support

• supporting standard coverage criteria

• mapping between features and elements of the statechart

None of the state-of-the-art approaches for model-based testing for SPLs support all
of our requirements. Only ParTeG provides a similar approach. However, ParTeG
does not support feature modeling at all. Thus, we will introduce a very simple
approach to:

• set up a reusable test model (a so-called 150% test model) by means of
statecharts

• mapping elements of the test model to features

As a result, we obtain a model-based testing framework that allows us to au-
tomatically generate test cases for each derivable configuration of the SPL using
standard coverage criteria and standard test case generation algorithms and tools.

In the following, the construction of a reusable test model is described followed
by a description of the mapping between the feature model and the test model. We
refer to the reusable test model describing the behavior of the entire SPL as 150%
model. Then, the derivation of configuration specific test models is described that
are then used to generate configuration specific test cases. A configuration specific
test model describing the behavior of a specific configuration is referred to as 100%
model. Last but not least, we will discuss potentials and limitations of this 150%
test model philosophy.
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8.1 150% test model

Features in a feature model are abstract entities that describe certain characteristics
of the SPL and determine whether these entities are common within all products
or may vary. To equip features with a certain behavior or functionality, a map-
ping to appropriate artifacts such as code fragments and models is required. For
testing purposes features need to be mapped to test artifacts. In MoSo-PoLiTe,
we use statecharts as reusable test models. The mapping specifies common and
variable artifacts within the statechart-based test model. A statechart [Har87] is an
Extended Finite State Machine (EFSM) enriched with several additional concepts
for specifying complex system behavior: Based on well-defined operational seman-
tics [HK01], statechart specifications can be used for simulation and (automated)
implementation derivation as well as for static analysis of properties such as dead-
locks, reachability, and validity of execution sequences [MMB94]. Fig. 42 shows a
sample statechart, the Manual Power Window submachine from the BCS SPL. The
basic states encode vertical window positions up, down, and pending, and transi-
tions are labeled with trigger[guard]/actions. The user triggers vertical window
movements via buttons that release according input events, and, depending on
the internal state, fire corresponding output events for controlling the movement
actuators. Additional transition guards possibly hinder window movements, for
example, via status flags for the finger protection (fp) feature.

We follow the idea of [GKPR08, DW09] to use a 150% test model including
variability. The 150% model contains the behavior of all features, no matter if those
exclude each other within a configuration of the SPL. A model including features
that exclude each other is inconsistent. Thus, a 150% model is generally inconsistent
or overspecified and is only of virtual nature.

We simply regard a test model to consist of a finite collection of modeling
artifacts. These artifacts are of arbitrary internal structure and their interrelations
and compositions depend on the corresponding modeling formalism. A coverage
criterion applied to the test model then selects certain artifacts to be covered, i.e.,
traversed by test case executions.

For the creation of a 150% test model we recommend that the root feature
should be mapped to the initial state within the test model. Mandatory features
are supposed to map to an entire statemachine or a submachine realizing major
functionalities common to all products. Varying features extend this core model
with:

• additional states and transitions,

• additional hierarchical states to concretize/refine functionality, and

• additional submachines for further functionalities.
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BCS (ManPW)

pw_up pw_pend pw_dn

Input Events = 
{ e1:pw_but_up,
  e2:pw_but_dn }

Output Events= 
{ e3:pw_mv_up,
  e4:pw_mv_dn }

Variables = { 
v1:pw_pos = <up,dn,pend>,
v2:pw_enabled = <bool>,
v3:fp_on = <bool> }

e1[v1==up] e1[not v3]/e3

e2[v2]/e4 e2[v1==dn]

e2[v1==pend & v2]/e4

e1[v1==pend & not v3]/e3

Figure 42: Statechart test model of ManPW

8.2 100% models and test case generation

We map the feature of the feature model to our reusable test model enabling us to
interrelate feature selection for product instantiation and test case generation. As a
result, we are then able to automatically derive test cases for arbitrary products of
the SPL. Furthermore, the mapping allows us to investigate

1. what is covered within the test model when a set of features is selected, and

2. which test cases are necessary to cover a certain feature combination.

Features F = {f1, f2, . . . , fn} of an SPL organized in a feature model FM(F) ⊆ P(F)

are abstract entities that describe characteristics of product variants from the user’s
point of view. To interrelate features and the test model a mapping between the
features and the 150% test model allowing to configure the test model according
to feature selection is required. We restrict our discussions to a simple mapping
function:

• States and transitions within the test model can be mapped to propositional
formulas over features. Those artifacts then become variable or more precisely
configurable by means of feature selection.

• Variable test model artifacts are selected to become part of a 100% test model,
if the propositional formula over features turns to true.

• Test model artifacts that are not mapped to a feature belong to the so-called
core assets of the test model and, thus, belong to every possible test model
instance.

Figure 43 depicts an example of our mapping approach with regard to the
alarm system functionality within the BCS running example. At the top level, the
150% test model is depicted including mapping annotations. Three transitions are
mapped to the control alarm system feature and one transition is mapped to the
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alarm system

AS_off

Input Events =
 {e1:as_activated,
  e2:as_deactivated,
  e3:as_alarm_detected,
  e4:im_alarm_detected,
  e5:rck_lock,
  e6:rck_unlock}

Variables = { 
  v1:as_active = <bool>,
  v2:as_alarm = <bool>,
  v3:as_im_alarm = <bool>,
  v4:as_alarm_was_detected =  <bool>}

e6/v1=false

tm(20000)/v4=true; v2=false; v3=false

e1/v1=true

e3/v2=true
e4/v3=true

e5/v1=true
e2/v1=false

e6/v1=false;v2=false;v3=false

e2/v1=false;v2=false;v3=false

AS_on

AS_alarm interior 

monitoring

control alarm 

system

control alarm 

system

control alarm 

system

alarm system

AS_off

Input Events =
 {e1:as_activated,
  e2:as_deactivated,
  e3:as_alarm_detected,

Variables = { 
  v1:as_active = <bool>,
  v2:as_alarm = <bool>,
  v3:as_im_alarm = <bool>,
  v4:as_alarm_was_detected =  <bool>}tm(20000)/v4=true; v2=false; v3=false

e1/v1=true

e3/v2=true

e2/v1=false

e2/v1=false;v2=false;v3=false

AS_on

AS_alarm

100 % Configuration not including control alarm 

system and interior monitoring

150 % Test model of the BCS alarm system

Figure 43: Mapping example by means of the BCS alarm system functionality

interior monitoring feature. If a configuration does not include those two features,
the corresponding transitions will not be included within that 100% test model. To
result in a suitable mapping, we consider the following three restrictions:

1. We have to assure that the logical expressions mapped to transitions and
states conform to the semantics of the corresponding feature model. That
means for example that a certain artifact within the test model cannot be
mapped to the feature combination (a∧ b) if those two features (a and b) are
not allowed to be part of the same product e.g. exclude each other.

2. Each transition needs a state to start and a state to end.
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3. Every state within the test model should be reachable from the initial state or
is the initial state itself.

As a result, each 100% test model which is configured via a selection of features
in the feature model is syntactical correct with regard to the aforementioned
conditions: Those restrictions have to be assured manually within the test model.

• The mapping does not violate the semantics of the feature model.

• Each transition has a starting state and an ending state.

• Each state within a 100% test model can be reached.

We refer to a test model specification of a full variant, i.e., a valid product
configuration PC ∈ FM(F) assembled from all fragments of the variant’s features
as its 100% test model in the following. The 100% test model TMPC100% ⊆ TM150%

for a product configuration PC ∈ FM(F)

The 100% test models can be used for test case generation. There are three
categories of test specifications for model-based test case generation according to
Pretschner [Pre03]:

• functional — which are based on use cases derived from the system require-
ments or specification

• structural — which are based on the structure of the test model

• stochastic — where test cases are derived randomly

Within this thesis, we align with the structural category and use the structure of
the test model for test case generation. State-, Transition-, and MCDC-Coverage are
taken into account. Statecharts are also established to serve as test models, where
test case generation is supported by various tools such as Rhapsody/ATG and
ParTeG [WSS08]. Considering statecharts as test models TMSC, modeling artifacts
E ∈ TMSC refer to (composite and basic) states, transitions, labels, and so forth.
Corresponding, statechart coverage criteria are mainly structural control/data flow
oriented, e.g., all-states, all-transitions, all-transition-pairs [UL07].

8.3 discussion of the 150% test model philosophy

As we have already discussed in the beginning of this thesis, model-based testing
gains in popularity within the SPL community. Apart from the “usual” advantages
of model-based testing, the concept of a 150% test model allows for describing
the behavior of the entire SPL and to derive apropriate test cases according to
well-known coverage criteria. However, there are several shortcomings that one
need to be aware of:
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• The creation and maintenance of a “large” 150% test model is difficult and
time consuming. Questions like: Who is in charge of the 150% test model?
Who ensures that there is a systematic reuse philosophy behind the compo-
nents of the reusable test model? arise.

• The test model is generally not feature-oriented. That means that the behavior
of a certain feature may be a crosscut through the 150% test model. Thus, we
assume that when a feature should be changed, identifying its representatives
within the test model is a complex task but feasible due to the mapping.

• As a logical consequence, checking consistency within a 150% test model is a
complicate task as well.
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Within this part we have introduced the MoSo-PoLiTe approach. MoSo-PoLiTe
is based on the integration of three approaches: feature model-based testing, com-
binatorial testing, and model-based testing. Figure 44 depicts a detailed overview
of the MoSo-PoLiTe concept.
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Figure 44: Detailed overview of the MoSo-PoLiTe approach

In the middle column, the feature model, which we have introduced in the
beginning of this part in Chapter 6, serves as a central component. The BCS running
example was used to introduce the basics to feature modeling. Furthermore, feature
interaction was defined and we have discussed how those interactions influence
testing purposes.

From there on, the feature model is transformed into a binary CSP (cf. left-hand
column) followed by the subset extractor that generates the combinatorial set of
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configurations (cf. left-hand column third row). Chapter 7 introduced the feature
model-to-CSP transformation algorithm and the combinatorial subset extractor.

Chapter 8 then introduced our reusable test model depicted on the right-hand
side of Figure 44. The features of the feature model are mapped to states and
transitions of the reusable test model. Due to that mapping, we are then able to use
the feature model to configure the 150% test model. For each configuration of the
combinatorial set of configurations, a corresponding 100% test model is created.
Additional conditions ensure that a valid configuration results in a syntactical
correct 100% test model. The test models for each configuration can then be used
for test case generation.

The combination of the combinatorial subset selection and the reusable test
model via a feature model results in the ability to generate a subset of configu-
rations achieving 100% pairwise feature interaction coverage. For each of these
configurations test cases can be generated on the basis of the reusable 150% test
model.

After introducing the concept and theory of our approach, we describe the
implementation of MoSo-PoLiTe. To support its application in the industrial context,
our scope in the next part is to provide a tool chain allowing the industry to apply
our approach. Thus, a summary of existing tools for feature modeling is necessary.
Furthermore, the next part present the results of applying MoSo-PoLiTe tool chain
to the BCS-SPL and some results of applying the combinatorial subset selection to
two industrial SPLs.



Part IV

I M P L E M E N TAT I O N A N D E VA L U AT I O N





O V E RV I E W PA RT I V

This part provides a detailed description of the implementation and evaluation
of MoSo-PoLiTe. First, Chapter 10 describes the implementation of a tool chain
realizing the MoSo-PoLiTe approach. Different tools are integrated to a tool chain
that is capable of being applied in the industrial context. This tool chain consists of
commercial and self-implemented tools. For all commercial components we provide
a recommendation for open source alternatives. Please note that with regard to the
combinatorial testing part of MoSo-PoLiTe, we focus on pairwise feature interaction
coverage and to some extent on threewise feature interaction coverage.

Afterwards, an evaluation chapter summarizes the results of a systematic analysis
and evaluation of MoSo-PoLiTe. The evaluation phase addresses three different
topics:

1. to apply the MoSo-PoLiTe tool chain to our industrial case study to show the
applicability of our approach.

2. to examine the impact of the developed approach on real world SPLs by
means of two additional industrial experiments.

3. to examine and discuss the abilities and limitations of pairwise testing within
the SPL development.

Figure 45 depicts the structural overview of Part IV according to our MoSo-
PoLiTe development process. Chapter 10 describes the implementation of the
MoSo-PoLiTe approach. The structure of this chapter is described according to the
MoSo-PoLiTe-big-picture.

• Section 10.1 focuses on feature modeling, including configuration and product
generation.

• Section 10.2 describes the implementation of the combinatorial testing ap-
proach.

• Section 10.3 then realizes our model-based testing approach on the basis of
an existing modeling tool set.

• Section 10.4 is dedicated to an extensive testing of our tool chain to ensure
that the concept is implemented as specified.

Chapter 11 is dedicated to the evaluation using two industrial SPLs and our
automotive running example.
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• Section 11.1 describes the application of the MoSo-PoLiTe tool chain to our
BCS running example and a discussion of the potentials and limitations of
the MoSo-PoLiTe approach.

• Section 11.2 describes and discusses the application of the MoSo-PoLiTe tool
chain to an automotive SPL provided by Opel [AG11a].

• Section 11.3 describes and discusses the application of the MoSo-PoLiTe tool
chain to an automation SPL provided by Danfoss [Dan11].

• Section 11.4 provides a a discussion of threats to validity of our evaluation
and a detailed comparison to related approaches.
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M O S O - P O L I T E T O O L C H A I N

In this chapter we thoroughly describe the implementation of the MoSo-PoLiTe
concept and introduce a tool chain allowing its application in the industrial context.
Please note that for the combinatorial subset selection, we have chosen pairwise
feature interaction coverage to be the most appropriate for demonstration pur-
poses since the number of generated configurations is rather small. However,
our implementation allows T -wise feature interaction coverage. We will consider
pairwise feature interaction for describing the implementation and for evaluation
purposes. Furthermore, we provide a systematic procedure to test whether our
implementation aligns with the described MoSo-PoLiTe concept.

Our tool chain includes the following three components:

• Feature modeling

• Combinatorial subset selection

• Model-based test case generation

The feature modeling and the model-based test case generation are realized using
existing tools. Also the mapping between features and test model artifacts (states
and transitions in the test model) is implemented by pure::variants, a commercial
variability management tool. However, MoSo-PoLiTe is the first project using the
pure::variants/Rational Rhapsody integration for model-based testing purposes.
The combinatorial subset selection is implemented as an eclipse plugin open for
extensions and can generally be used in combination with any existing variant
management tool and model-based testing tool.

In the following, we will describe the implementation of the tool chain by means
of our running example. The tool chain consists of two commercial tools and our
combinatorial subset selection plugin. Figure 46 provides an abstract overview of
the MoSo-PoLiTe tool chain. The feature modeling is done using pure::variants.
For model-based testing we utilize Rational Rhapsody [IBM11] and the Rhapsody
addon ATG [AG11b] for model-based test case generation. Please note that the
different tools within this tool chain are exchangeable and could be replaced by
other tools.

The central component of our approach is the eclipse based combinatorial subset
selection component. It imports the pure::variants feature model and exports
the combinatorial subset of configurations. Those configurations are re-imported
in pure::variants and then used to configure the 150% test model in Rational
Rhapsody. Subsequently, ATG can be used to generate test cases and test suites
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Figure 46: Overview of the MoSo-PoLiTe tool chain

satisfying different coverage criteria. This setup enables us to automatically generate
configurations with corresponding test suites. In the dedicated sections, we will
also discuss possible alternative tools to replace the initially selected tool chain.

10.1 feature modeling

The basis of the MoSo-PoLiTe concept is the feature model; the feature model
interrelates the combinatorial subset selection and the reusable test model. Due to
the positive response from industry, our goal was to implement the MoSo-PoLiTe
concept within an applicable tool chain. Thus, we decided to select an existing
variant management tool including feature modeling.

10.1.1 Feature Modeling Tool Comparison

The most prominent tools for feature modeling are:

• GEARS from Biglever [Kru08],
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• PREEVision from Aquintos [aG11c],

• pure::variants from pure-systems [pG11],

• FeatureIDE [LAMS05] , and

• Feature Modeling Plug-in [AC04].

The first three are commercial tools. GEARS is a widespread variant management
tool including a feature modeling user interface. Its area of application is mainly
based in North America and it has some success stories in Asia and Europe.

The second commercial tool is PREEVision, a variant management tool focusing
on automotive specific toolsets. In comparison to its competitors, this tool mainly
focus on product lifecycle management (PLM) mapping features to software and
hardware artifacts within the development process.

pure::variants is the most prominent feature modeling tool in Germany and
very popular in the SPL research domain. As being developed within eclipse,
pure::variants can be extended by additional functionalities easily.

The two other tools, namely FeatureIDE and Feature Modeling Plug-in are open
source and lack of integrations towards other tools such as modeling tools. They
focus on configuring source code via feature selection.

To chose a specific tool for our tool chain, we considered the following require-
ments:

• Which tool is currently in use in industry? This requirement is important for
us to consider since we want MoSo-PoLiTe to be applied in the industrial
context.

• The tool needs to support the feature modeling relationships used by our
algorithm. Thus, we check whether the tools cover the same relations (optional,
mandatory, alternative, and or) and constraints (require and exclude).

• The tool needs to support the derivation of configurations. Otherwise, we
would not be able to generate our combinatorial subset consisting of configu-
rations.

• The tool needs to support a mapping between the feature model and code
e.g. Java or C/C++ to support the derivation of products.

• The tool should allow mapping to a behavioral model e.g. statecharts to apply
model-based testing techniques.

Table 9 summarizes how the aforementioned tools align with our requirements.
Gears and pure::variants obtain the best results within our simple comparison that
does not claim of being complete. Ignoring the technical details of both tools, the
main difference is extendability. Actually, we expect GEARS to be as extendable
as pure::variants, however, we are not aware of any research-driven extensions for
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GEARS, whereas there are plenty of those for pure::variants [pG11]. Furthermore,
GEARS does not support or groups.

Criteria GEARS p::v preevision FeatureIDE Feature Plug-in

Popularity + + o o o

Relations +/o + + + +

Constraints + + + + +

Configuration + + + + +

Code + + + + -

Model + + + - +

Extendability o + - + +

Table 9: Feature model tool comparison

For our prototype implementation, we selected pure::variants for the following
reasons:

• one of the most prominent variant management tools in the industrial domain
as well as in the SPL and Feature Oriented Software Development (FOSD)
community [FOS11].

• pure::variants was already set at some of our industrial partners that sup-
ported us in the evaluation process.

• pure::variants can be extended since it is based on eclipse.

However, we also plan to integrate MoSo-PoLiTe with GEARS and since MoSo-
PoLiTe is implemented as an eclipse plugin, it can also be integrated with Fea-
tureIDE. But, since FeatureIDE does not yet support the configuration of models, it
can not support the entire MoSo-PoLiTe framework including model-based testing.

10.1.2 pure::variants Overview

Figure 47 depicts the conceptual overview of pure::variants [pG11]. On the left-hand
side the problem space consists of the feature model and the variant model. The
variant model is a configuration in which the selection for a certain product was
made. The solution space is modeled using a family model and a variant realization.
The feature model represents requirements, properties and relations, whereas the
family model represents the implementation artifacts of the SPL such as code
fragments, components, and documentations. To generate the variant realization
representing a product the configuration in the variant model is used to configure
the family model. Thus, the code fragments or other artifacts are selected to be part
of the product.
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Figure 47: pure::variants overview [pG11]

Hence, a variant management project in pure::variants includes three different
types of models. The feature model itself (*.xfm), a family model (*.ccfm) represent-
ing e.g. the data structure of the code implementing the SPL, and the variant model
(*.vdm), where the features are selected for configuration/product derivation.

Beside the ability of generating products based on programing languages such
as C/C++ or Java pure::variants can configure artifacts in different tools. To name
some, the current pure::variants integrations address Doors, Rhapsody, Enterprise
Architect, and Matlab/Simulink. For our contribution we use pure::variants for
Rhapsody allowing to map states and transitions within a statechart in Rational
Rhapsody to features in pure::variants.

Figure 48 depicts the feature model of our running example in the pure::variants’
typical explorer view. Exclamation marks represent mandatory features, question
marks indicate optional features, crosses represent or groups, and the double arrow
represents alternative groups. Require and exclude constraints are represented via
green and red arrows. Please note that we cannot describe the pure::variants data
structure due to non disclosure agreements.

10.2 combinatorial subset selection

The implementation of the combinatorial subset selection is a two step proce-
dure: First, our flattening algorithm transforms the feature model into a binary
CSP. Then, our subset extraction algorithm generated the combinatorial subset of
configurations.

We have implemented both steps as an eclipse plugin ready for extension and
implemented an import and export towards pure::variants to use this tool for:

• feature modeling

• map features to statechart artifacts within Rational Rhapsody to which
pure::variants provides a tool integration.

Figure 49 depicts an abstract schema of our tool chain. To import the feature model
from pure::variants, we have written an xml parser to parse the variant model into
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Figure 48: BCS in pure::variants

our data structure of our eclipse plugin. It would also be possible to parse the
feature model itself, however, the following arguments let us to the idea to parse
the variant model instead:

• all information included in the feature model are also available within the
variant model

• one additional requirement towards our algorithm is to handle pre-selected
configurations/features as well. For this purpose variant models are required.

The pure::variants feature model is stored within our own data structure and our
combinatorial subset selection algorithms calculate the subset of configurations.
Figure 50 depicts the data structure of our eclipse plugin.

A feature has a type (optional, mandatory, alternative, and or), a name, an ID,
and a priority. An additional class FeatureGroup allows for describing groups of
features as necessary for or and alternative features. Furthermore, this data structure
provides require (requires) and exclude (excludes) constraints.

The child dependency is used to describe the hierarchical structure of the feature
model. The additional IConstraints provide one possible extension point—an
additional interface to support other types of constraints. Until know, this interface
is not used.

Besides the Java-based implementation, we additionally implement the flattening
with Fujaba/MOFLON to demonstrate that this part of our algorithm can be
realized using well-known model transformation techniques.
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Figure 50: Data structure of the eclipse plugin

10.2.1 CSP Extraction

The following pseudocode in listing 4 describes the implementation of the flattening
as described in the Concept and Theory part on page 85. The algorithm starts
bottom-up by searching for a three-level subtree within the feature model and
incrementally manipulates the entire feature model until there is no more three-
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level subtree left (line 1–2). This is exactly the case when all features are pulled
up directly beneath the root node. In the following, we use the child, parent, and
grandparent notion as described in the Concept and Theory part on page 85 to
ease the understanding—the algorithm, however, only uses the child/member
relation.

The first block (line 5–9) handles subtrees with mandatory child features. In this
case, all child features are merged with the parent feature and all constraints
starting or ending at those child features are moved to the new merged feature.

The second block (10–15) handles optional child features. If the parent node is not
mandatory, a require constraint is added between the child and the parent. Then, the
child is pulled aside of its former parent node by setting the former grandparent as
its new parent.

The third block (16–27) covers child features within an alternative or an or group.
For each child a require constraint is added pointing to the parent node if the parent
node is not mandatory. Then, each child is pulled aside its parent node by setting
the former grandparent as its new parent. Finally, if the parent is not mandatory, an
additional negation feature is added to the group of child features. This features
represents the negation of all child features.

Listing 4: Flattening pseudocode

begin

2 for every three-level subtree do begin

for every child of subtree do begin

4 switch(TypeOfChild)

case(mandatory)

6 combine child with its parent forming the new parent feature

propagate all dependencies to new parent node

8 delete child nodes

break

10 case(optional)

if parent is not mandatory

12 add require dependency between child and its former parent to

ensure that the former child node requires its former parent

end if

14 child node is pulled aside its former parent node

break

16 case(alternative/or)

for every child of group do begin

18 if parent is not mandatory

insert require edge between child and its parent

20 end if

child node is pulled aside its former parent node

22 end

if parent is not mandatory
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24 add one negation feature representing the negation of all

former child features to group

insert exclude edge between negation feature and the former

parent

26 end if

break

28 end for

end for

30 end �
The flattening results in the flat feature model (FFM). To transform the FFM

into a feature model CSP (FMCSP), parameters and corresponding values need to
be extracted. For this purpose the aforementioned (cf. Part III Chapter 7 ) value
extraction is applied. Here, we only provide a brief description and refer to page
95 for further details.

• optional: An optional feature is changed to a mandatory feature with two child
features. One presenting the presence of this feature and one representing its
absence.

• mandatory: Mandatory features stay mandatory and obtain an additional child
feature representing the value of this feature.

• or: Extracting the parameter values of an or group is the most complex
rule. Each element of the or group turns into an optional feature with two
corresponding values. An additional n-ary exclude constraint is added to
exclude the deselection of all features at a time.

• alternative: An alternative group stays unchanged but a single placeholder
feature is added in between the alternative group and the root node repre-
senting the parameter. The alternative group itself represents the possible
values.

This computation is done for each feature/group of features and a list of features
with its corresponding values is created. Figure 51 depicts the data structure of
the FMCSP. Each parameter knows its possible values and each value knows its

Figure 51: Data structure of the FMCSP

corresponding parameter. Furthermore, each value has a container including the
constraints: require and exclude.
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10.2.2 MOFLON - SDM

It is a natural choice to implement the graph transformation rules to translate
a feature model into a binary CSP with a graph transformation language. One
possible framework to implement these rules is provided by MOFLON/Fujaba
[AKRS03]. The graph transformation language provided by Fujaba is a combination
of graph transformation rules and UML activity diagrams and is called story-driven
modeling (SDM). SDM realizes in-place model transformation specified by graph
transformation rules. Activity diagrams are applied to specify the application and
control flow of the graph transformation rules.

A graph transformation rule describe the modification of a certain graphical
structure. Thus, this structure is the precondition of a certain transformation rule.
The postcondition is the resulting modified structure of the graph. The structure of
a graph that matches a certain precondition is referred to as left-hand side (LHS).
The resulting graph is called right-hand side (RHS).

The modifications realized by a graph transformation rule includes:

• creation of new parts which are not part of the LHS

• deletion of parts which are then not part of the RHS

In SDM, LHS and RHS and the modifications are described within one single
visual representation. Colors are used to depict the parts of the LHS (black and
red) and the RHS (black and green). Additionally, stereotypes indicate if a part of
the LHS is removed (stereotype «destroy») or a part is added (stereotype «create»).

For our SDM implementation, we use the recently released eMoflon plugin for
Enterprise Architect [ALPS11]. Using this plugin Enterprise Architect can be used
to create SDMs and to generate EMF based Java code. Figure 52 depicts the SDM
rule for arbitrary parents and optional children (cf. page 86). The similarity between
the four rules for optional child nodes allows for handling them with one single
rule. The SDM rule includes the following four steps:

1. Check whether the precondition is satisfied: child optional.

2. Pulling up the child aside the parent feature.

3. If the parent feature is mandatory the transformation is complete.

4. Otherwise, if the parent in optional or within an alternative or or group an
additional require constraint is added pointing from the child to the parent.

Figure 53 depicts the underlying SDM transformations realizing the four steps to
process subtrees with optional child features. In the first step a question mark at the
parent feature indicates that this relation is not of interest in this step. The relation
of the parent comes into play in step 3 and 4.
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All in all, three SDM diagrams are required to describe the behavior of all 16

transformation rules, which we list in the appendix of this thesis. One for mandatory
child features, one for optional child features and one for child features within an
or/alternative group. Furthermore, we present the SDM-based implementation for
iterating through the feature model.
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Figure 52: Steps of the SDM-based flattening handling a optional child node

The SDM-based graph transformations are then used for code generation. The
resulting code contained much more lines of code then our Java implementation.
Reasons for that are:

• The generated code always contains some additional information and checks
as we will show with regard to the generated code of one of the transformation
rules.
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Figure 53: Detailed view of the SDM transformation processing an optional child

• we do not claim that we implemented the SDM flattening rules the possibly
best way.

To compare the manually written code with the generated code, we select the
generated code fragment implementing step 4 of the transformation and compare
it to our manual implementation. Listing 5 depicts the generated code.

Listing 5: Generated Source Code for child optional step 4

try {

2 fujaba__Success = false;

4 // check object child is really bound

JavaSDM.ensure(child != null);

6 // check object fm is really bound

JavaSDM.ensure(fm != null);

8 // check object parent is really bound
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JavaSDM.ensure(parent != null);

10 // check isomorphic binding between objects parent and

child

JavaSDM.ensure(!parent.equals(child));

12

// create object childReqParent

14 childReqParent = FeatureModelLanguageFactory.eINSTANCE

.createRequire();

// create link

16 childReqParent.setSource(child);

18 // create link

org.moflon.util.eMoflonEMFUtil.addOppositeReference(

childReqParent, parent, " target ");
20 // create link

fm.getConstraints().add(childReqParent);

22

fujaba__Success = true;

24 } �
The manual implementation processing optional child features is much shorter

and depicted in Listing 6. Line 6 and the lines 16–18 implements step 4 of the
transformation. With regard to lines of code (LoC), the generated code for optional
child features has 142 LoC and the manual implementation around 19 LoC. With
regard to step 4 the generated code requires 24 LoC and the manual implemen-
tation 4 LoC (including the method requireFeatures()). We recognized that the
generated code includes more LoC because of additional checks ensuring that the
child, the parent and the entire subtree is initialized and not null. The generated
code executes these checks for every step during each transformation.

Listing 6: Manually written source code for child optional

List<Feature> featuresToAddToGrandParent = new ArrayList<Feature>();

2 ...

case OPTIONAL: {

4 featuresToAddToGrandParent.add(child);

if(newparent.getType()!=Type.MANDATORY){

6 Featuremodel.requireFeatures(child, newparent);

}

8 break;

}

10 ...

grandParent.getChildren().addAll(featuresToAddToGrandParent);

12

/** define require dependency

14 * @param requires

* @param required

16 */
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public static void requireFeatures(Feature requires, Feature required)

{

18 requires.getRequires().add(required);

required.getRequiredFrom().add(requires);

20 } �
To further compare the manually written Java implementation with the generated

code, we implemented a runtime analysis. For this purpose we implemented a
feature model generator that we will explain in detail in Section 10.4 of this chapter.
We used the feature model generator to generate 1650 feature models with a varying
number of features (100-200,000) and the following distribution of relationships:
alternative (21,7%), or (24,1%), optional (23,0%), and mandatory (28,1 %) according
to the lessons learned summarized in [SR11]. For all of these feature models, we
compared the execution time of both flattening implementations. The results of
this comparison are depicted in Figure 54.
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Figure 54: Runtime Flattening for manual Java implementation and SDM-based

Initially, the manually written Java code is 10 times faster then the generated
code. However, the performance of the manually written code seems to decrease
with growing feature models. This can be visualized by plotting the difference
of the manual Java runtime and the SDM-based runtime depicted in Figure 55.
The decreasing difference between manually written code and generated code
seems to be logarithmic indicating that the difference will decrease even further.
We are currently busy to precisely compare the generated code and our Java
implementation with regard to further optimizations and to find out details about
the varying differences in the runtime performance. However, this is beyond the
scope of this thesis. Within our tool chain, we stick with the Java implementation of
the flattening algorithm since we are not aware of feature models containing more
then 6000 features. Currently, the feature model of the linux kernel (6000 features)
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and the ECOS feature model (1000 features) are the biggest feature models known
in the SPL community [Lab]. Unfortunately, we are currently not able to use these
feature models for evaluation purposes since we are not able to process the data
structures of these feature models.
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Figure 55: Visualization of the runtime delta

10.2.3 Subset Extraction

The pseudocode of the subset extraction that we have introduced within our
Concept and Theory part is implemented as an eclipse plugin that is capable
of processing feature models created with pure::variants. Figure 56 depicts the
generated set of configurations exported as variant models in pure::variants.

The different configurations include varying numbers of features. Figure 57

shows 3 of the 17 configurations: 1, 7, and 16. Configuration 7 has very few features,
whereas configuration 16 has many features. Configuration 1 is of medium size.

Pre-Selection Functionality
In the general case, companies that switch to SPL engineering already have a

certain set of products that are already sold on the market. We assume that these
products have been tested extensively before they are passed on to the customers.
Thus, we implemented a so-called pre-selection functionality that is capable of
taking an arbitrary set of products into account when calculating the combinatorial
subset of configurations. Those products need to be added as configurations into
pure::variants. Our algorithm then calculates the pairs (or T -tuples) of features that
are already covered by those products and calculates additional configurations
covering the remaining pairs (or T -tuples). The resulting set of products then
contains the pre-selected products along with further configurations to cover all
valid pairs (or T -tuples) of features. The benefit of this approach is the fact that
only the additional products have to be tested.
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Figure 56: Subset of configurations in pure::variants

Configuration 1 Configuration 7 Configuration 16

Figure 57: Three of 17 configurations of the combinatorial subset in pure::variants

Please note that a feature model is still required for the pre-selection functionality.
Steven She introduced a so-called feature model mining algorithm to compute
a feature model out of a set of configurations/products [She08]. His algorithm
can be used to generate an initial feature model that can then be extended under
consideration of stack holder requirements.
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10.3 model-based test case generation

Each configuration/product of the combinatorial subset requires test cases. Model-
based testing is one possibility to generate test cases for product configurations.

In this thesis, we describe the application of Rhapsody ATG [AG11b] to set up a
150% test model and to map it to features of the feature model in pure::variants.
Rhapsody is the quasi standard UML-oriented CASE tool for model-driven engi-
neering in the automotive domain [IBM11]. Rhapsody provides different quality
assuring techniques such as automated test case generation with ATG on the basis
of code, statecharts, and sequence diagrams.

pure::variants already provides a mapping between features and artifacts of
models in Rhapsody. This mapping is able to be used exactly the way we have
specified it in the Concept and Theory part: A feature can be either mapped to states
or transitions of a statechart. Then, configuration specific 100% test models can be
generated and ATG can be used to derive test cases satisfying certain structural
coverage criteria.

The integration of pure::variants and Rational Rhapsody has already been imple-
mented by pure-systems. However, the idea of building a reusable test model and
to use ATG to automatically generate test cases for each derivable application is
our contribution. According to the best of our knowledge we have provided the
first contribution towards model-based testing using a variant management tool
such as pure::variants in combination with a commercial modeling or testing tool
such as Rhapsody and ATG. In conclusion we can state that we do not reinvent
or improve model-based testing concepts in general; but we brought together a
well-known variant management tool and a model-based testing tool chain.

10.3.1 Rational Rhapsody

Rational Rhapsody [IBM11] is a UML-compliant model-driven Software Engineer-
ing tool specialized on modeling real-time systems and embedded systems. It was
initially developed by I-Logix in 1998 and bought by IBM in 2008 and integrated in
the Rational product line.

Figure 58 depicts a simple Rhapsody statechart diagram including all different
notations that will be used within this thesis.

The statechart consists of two parallel substatecharts separated by a dotted line.
Both substatecharts are executed in parallel if LED PW is activated. The transitions
are annotated with Trigger[Guard]/Actions. Trigger and Guard control whether a
transition is fired or not. The Guard defines the precondition of a transition to be
fired and the Trigger defines an event that needs to occur before the transition can
fire. Both, Trigger and Guard are optional within a statechart.
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Figure 58: BCS statechart example in Rhapsody

The result of a transition is defined as Action. An Action can be a value assign-
ment of a certain variable or to throw an event. Those events are either outputs like
messages or the activation of a Trigger starting another Transition.

LED AutPW is a so-called hierarchical state including a statechart. This is de-
picted as a little yellow colored icon at the bottom right side in LED AutPW. If
LED AutPW is activated the underlying statechart is executed.

Within MoSo-PoLiTe, we use Rhapsody to model the 150% test model represent-
ing the entire SPL under test. To configure the 150% test model using pure::variants,
the pure::variants-Rhapsody integration is used. Technically, this is solved by
adding additional constraints within the Rhapsody models including a stereotype
pv restriction. Those constraints mark a certain artifact as variable and allow the
model to be configured.

Within the constraints, terms can be defined consisting of feature names and
compositions NOT, AND, and OR. Those constraints allow to configure the 150%
model by selecting features. A model artifact is selected if:

• it has no constraint - then it generally belongs to the commonalities of the
SPL

• if the logical expression within the constraint turns to true with regard to the
feature selection in the variant model.

Thus, the constraints realize the mapping between pure::variants and the test
model in Rhapsody. With regard to statecharts, states and transitions can be mapped
to features within pure::variants.

The different types of mapping possibilities are depicted in Figure 59. Please
note that we use an abstract example to depict the different types of annotation
because our BCS implementation does not use all of those mapping strategies.

The examples 1 and 2 in Figure 59 show the mapping of feature0 to a state or a
transition respectively. It is not possible to configure the captions of a transition
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1.

2.

3.

Figure 59: Examples for mapping features to statechart artifacts in Rhapsody

such as Triggers, Guards or Actions. However, this drawback can be compensated
by adding a copy of the transition, adapt the Trigger, Guard or Action and add a
constraint including a different feature dependency. This is shown in example 3

of Figure 59. The transition with action0() is mapped to feature0 and is selected if
feature0 is part of the configuration in pure::variants. The transition with action1()
is mapped to NOT feature0. Thus, this transition is selected if feature0 is not within
the corresponding configuration in pure::variants.

When a Rhapsody project is selected to be configured within a pure::variants
project then the entire 150% model is generated when a configuration is derived.
Afterwards, the pv restrictions within the Rhapsody project are resolved using the
feature selection. States and transitions that are mapped to features that are not
selected within the variant model are deleted within the 150% model resulting in a
100% model.

Figure 60 depicts a 150% test model and a 100% test model representing the
behavior of the Finger Protection feature. The left-hand side shows the 150%
implementation. The statechart includes the transition specific for Automatic Power
Window (AutPW) and Manual Power Window (ManPW). The right-hand side
shows the statechart of the Finger Protection of configuration number 7 that
includes the Finger Protection features for as well as the AutPW feature. The
transition mapped to ManPW was simply deleted.
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AutPW 
selected

150% Model of Finger Protection
100% Model of Configuration 7 including 

Automatic Power Window 

Figure 60: Example for deriving a 100% test model out of a 150% test model

10.3.2 ATG

ATG (Automatic Test Generation) is an Add-on for Rational Rhapsody for model-
based test case generation [AG11b]. We refer to [AG11b] with regard to the technical
details of how to use ATG in combination with Rhapsody. ATG generates test cases
with regard to certain coverage criteria. Two different coverage criteria can be
selected.

• Model Element Coverage which includes state and transition coverage.

• Model Code Coverage which complies with MC/DC coverage as introduced
in the Background and Related Work part of this thesis.

Additionally, a time out specifying a certain period of time for test case generation
can be defined. Thus, ATG either generates test cases until the coverage criteria
are satisfied or the test case generation exceeds the time-out. In ATG a test case
consists of a set of input signals that need to be fired to reach the different test
goals to fulfill a certain coverage criteria. For a detailed description of how the test
cases are generated and how those can be transformed into JUnit Tests, we refer to
[Zin11].

10.3.3 Alternative Tooling

An alternative to Rhapsody/ATG is ParTeG [WSS08]. A prototypical tool chain is
currently under development. According to the ParTeG strategy, a context class
is used to map the features of the feature model to elements of the test model.
ParTeG uses two diagrams for describing test models: state machines and class
diagrams. For the behavioral description, the state machine references elements
from its context class such as attributes, constants or operations. The behavior of
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the state machine depends on the definition of the corresponding context class and
the behavior of a product variant can be adapted by adapting or exchanging the
context class.

Again, a 150%-state machine is used to describe the behavior of all possible
products of the SPL. Until now, the first mapping approach between features
and the context class are restricted to a mapping from one feature to constant
attribute values. For a first prototype implementation this is sufficient since many
product variant descriptions are configured via simple boolean compilers. Thus,
the interface of feature models and system models consists of the defined context
class elements in the system model. By setting the constant attribute values, the
behavior of the 150%-state machine can be adapted. Together with FeatureIDE,
ParTeG seems to be an appropriate candidate to provide an open source tool chain
for MoSo-PoLiTe.

10.4 testing the implementation

To systematically test the implementation we need to check the following character-
istics:

• Semantical equivalence: All transformation rules of the flattening preserve
the semantics of the feature model.

• Consistency: we only generate valid products.

• Completeness: the generated products cover all valid pairs of features.

We have used some of the feature models listed on [SR11] to test our implemen-
tation. Furthermore, we have implemented a feature model generator similar to
SPLOT [SR11] generating feature models in our data structure. This feature model
generator creates feature models with varying relations, constraints, and varying
size, depth, and width. The feature model generator compensates the lack of a
wide variety of different feature models of industrial SPLs. We apply our approach
to various generic feature models and determine the outcomes. To examine the
coverage of our approach according to pairwise interaction coverage we utilize a
SAT-Solver scenario to prove that all valid pairs of features of the SPL under test
are covered using our approach.

10.4.1 Systematic Validation

For validation purposes, we have implemented a feature model generator (FMG)
that creates random feature models considering certain input parameters control-
ling the size of the feature models. A root node is created, which obtains a random
number of features restricted by an adjustable maximum. The FMG sets the rela-
tionships of the features beneath this root node. When generating a feature model
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two possible configurations are possible: Every node receives a random relation or
the distribution of mandatory, optional, or, and alternative features can be configured.
The percentage of every relation, mandatory, optional, or, and alternative can be ad-
justed by parameters. For our test runs the FMG uses the following distribution
of relations: alternative (21,7%), or (24,1%), optional (23,0%), and mandatory (28,1 %)
according to [SR11]. Every child is handled as a root node and obtains its own
children in an analogous manner. Thus, the algorithm creates a complete feature
model iteratively, aborted by a defined maximum depth. To generate asymmetric
feature models, the random number of added children can be zero, too. In order
to approximate real SPL feature models, the generator also creates constraints. To
satisfy this functionality, a valid random pair of features is selected and a constraint
(either require or exclude) is set. The number of inserted constraints depends on the
total number of nodes and a parameter configures the percentage of pairs of nodes
involved within constraints.

10.4.2 Semantical Equivalence

Two feature models are semantically equivalent if they describe the same set of
products with respect to a given set of features. We validate the flattening algorithm
by comparing the propositional formulas of the original and the flat feature model
as proposed by [TBK09]. With regard to our running example, the following logical
expression (in conjunctive normal form) is calculated for both FMs:

BCS∧ (¬AS∨ security)∧HMI∧ (¬RCK∨ security)

∧ (¬RCK∨CLS)∧ (¬CLS∨ security)∧PW

∧ (¬IM∨AS)∧ (¬AL∨CLS)∧ (¬CAS∨AS)

∧ (¬AEM∨RCK)∧ (¬SF∨RCK)∧ fp

∧ electric∧ (¬ManPW ∨¬CAPW)∧ (¬LEDcls∨CLS)

∧ (¬LEDheatable∨heatable)∧ (¬LEDas∨AS)

∧DS∧EM∧ (¬CAPW ∨RCK)∧

(¬LEDcls∨StatusLED)∧ (¬LEDpw∨StatusLED)

∧ (¬LEDem∨StatusLED)∧ (¬LEDheatable∨StatusLED)

∧ (¬LEDas∨StatusLED)∧ (¬LEDfp∨StatusLED)

∧ (¬StatusLED∨LEDcls∨LEDpw∨LEDem∨

LEDheatable∨LEDas∨LEDfp)∧ (AutPW ∨AutPW)

∧ (¬AutPW ∨¬ManPW)

We used the FMG to create additional feature models and apply the flattening
algorithm. For all feature models, our implementation preserves the semantic
equivalence.
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10.4.3 Consistency

The consistency can be checked automatically within pure::variants. Pure::variants
has an integrated solver to check for inconsistency and whether a feature configu-
ration is a valid product or not. We rely on the fact that the internal solver works
correctly.

10.4.4 Completeness

To further evaluate the implementation of our subset derivation algorithm we need
to examine whether we cover all valid pairs of features with our set of products.
To achieve 100% pairwise feature interaction coverage, we need to assure that all
valid pairs of features are covered. The implementation of the subset derivation
algorithm is complete if all products that contain an uncovered feature pair are
inconsistent. Fig. 61 depicts this assumption.

invalid 

Pairs
P 1

P 2

P 3

P 4
P 5

All valid pairs 

covered by products
All Pairs

Figure 61: Valid and invalid pairs of features

We apply a SAT-Solver to prove that all uncovered pairs cannot be part of a valid
product in order to validate the implementation of our algorithm.

1. we generate all pairs of features ignoring require and exclude constraints within
the FM and write them into a list

2. we remove all pairs that are covered from the list

3. we check if all remaining pairs are invalid

For our experiments we use MiniSAT [ES04] as SAT solver and solve the following
equation:

formula(feature model) ∧ (

i=n∨
i=1

invalid pairi) (10.1)

where, n is the number of invalid pairs

If equation (10.1) is unsatisfiable, all pairs must have been invalid with respect
to the feature model. Therefore, the products that are generated by our algorithm,
must cover all possible pairs of features. We applied MiniSAT to the BCS feature
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model combined with all pairs that are not part of any generated product instance
and, therefore, must be invalid. We found 417 potentially invalid pairs and reviewed
them with one run of MiniSAT. This proves that all pairs not covered by any of the
generated product instances are invalid pairs like shown in Fig. 61. MiniSAT took
less than 1 second and 2 MB of memory to find that the expression is unsatisfiable.
We used an ordinary desktop computer without assuring that any other program,
thread or service influences MiniSAT. With regard to T -wise testing, the test for
completeness can be done in the same manner replacing pairs with T -tuples.

10.4.5 Evaluation of Efficiency

To test the efficiency of our algorithm, we applied it to some human-made feature
models listed on [SR11]. The results are listed in Table 10. The last two columns
contain the number of products realizing pairwise coverage and the runtime of the
algorithm in milliseconds on a 2 Ghz Single Core machine with 2 GB RAM.

Feature Model Features # of 2wise Runtime 3wise Runtime

Config. Config. [ms] Config. [ms]

AndroidSPL 27 36240 24 26 105 116

Smart Home 35 1,048,576 23 33 61 208

Inventory 37 2,028,096 19 33 93 317

Sienna 35 2,520 25 38 87 122

Web Portal 38 2,120,800 26 41 160 869

Doc Generation 44 5.57 ·107 23 39 132 812

Arcade Game 61 3.3·109 38 76 254 5939

Model Transf. 88 1.65·1013 65 108 643 29386

Coche ecologico 94 2.32·107 108 93 898 5916

Table 10: Feature models from SPLOT research [SR11]

To further test our approach, we additionally generate a set of 1023 random fea-
ture models automatically. The probability of the feature relations is selected with:
alternative (21,7%), or (24,1%), optional (23,0%), and mandatory (28,1 %) according
to [SR11]. We set the maximum depth to 5 and the maximal number of children
per node to 4. Therefore, the maximum possible number of features is 256. The
generated 1023 feature models have a mean number of 35 features with a standard
deviation of 28 features. Please note that those generated feature models do not
include require and exclude constraints. Thus, our algorithm just has to run on the
constraints that are generated during the feature model to CSP transformation. We
abandon this option within this test to have a significant different input compared
to the SPLOT feature models.

Fig. 62 A) shows the relation between the number of features in the feature model
and the number of generated configurations. We apply linear regression to the set



10.4 testing the implementation 147

y = 0,772x - 0,6401

R² = 0,7396

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140

G
en

er
at

ed
 C

o
n

fi
gu

ra
ti

on
s

Features

y = 0,0297x2 - 0,8322x + 3,8868
R² = 0,607

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

Ti
m

e 
[m

s]

Features

A) B)

Figure 62: Statistics - Pairwise
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Figure 63: Statistics - Threewise

of values and found a slope of 0.772 and a y-intercept of -0.6401. The square of
the correlation coefficient is 0.7396, which shows a strong linear dependence of the
two values. Therefore, the average of the number of generated configurations will
increase by 77.2% when the number of features in the feature model is doubled.

The relation between the number of features in the feature model and the
corresponding calculation time is depicted in Fig. 62 B). The calculation time
increases quadratic with an increasing number of features.

Figure 63 depicts the same diagrams considering threewise feature interaction
coverage. In Fig. 63 A) threewise indicates that the number of generated configu-
rations will increase by 382 % when the number of features in the feature model
is doubled. As indicated in 63 B) the calculation time drastically increases for the
threewise case. For around 100 features, up to 20000 ms are required to calculate
the result.

Fig. 64 shows the results for seven automatically generated feature models. Each
feature model has its individual color. The left-hand side depicts the increasing
percentage of pairwise coverage with every additional configuration in the subset.
On the right-hand side, the same feature models are used for threewise feature
interaction coverage. Except of the dark blue curve that requires an outstanding
number of additional configurations to cover the last 10% of feature interaction
coverage, there seems to be no obvious similarities between pairwise and threewise.
We did not often experience cases similar to the dark blue curve indicating that a
lot of different configurations are required to cover the last few pairs or triples of
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Figure 64: Comparison of pairwise and threewise feature interaction coverage for seven
randomly generated feature models

features. In that particular case, the alternative groups contained several element
that had to be combined in various configurations to assure pairwise feature
interaction coverage.

All experiments with regard to efficiency were executed on an ordinary desktop
computer running Windows XP equipped with a dual core CPU with 2.66 GhZ
and 4 GB RAM: The experiments were done without taking into account that
other programs, services or tasks might have a negative impact on our results. The
execution time results are calculated by repeating our experiments 10 times and by
taking the average value. The deviations between the different runtime results were
around +/- 10%. We measured the time of execution by adding counters within
our algorithm. The results were then written in a logfile.
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E VA L U AT I O N

This chapter summarizes the results of applying MoSo-PoLiTe to our BCS case
study. On that basis, we provide a theoretical discussion about the potentials and
limitations of pairwise feature interaction testing. Furthermore, we present the
results of applying MoSo-PoLiTe to two different industrial SPLs. Last but not least,
we discuss threats to validity and compare MoSo-PoLiTe with related approaches
and compare their performance and results.

Hence, the evaluation can be divided into three applications:

• First, we apply the entire MoSo-PoLiTe tool chain to the BCS case study
generating a combinatorial set of configurations with corresponding test
cases generated on the basis of the reusable test model. Afterwards, we
apply mutation analysis to the source code of the BCS to analyze the degree
of fault coverage (Section 11.1) achieved by testing the combinatorial set
of configurations. We also use the BCS case study as a basis to provide a
theoretical discussion of the potentials and limitations of pairwise testing
within SPLs in general.

• Then, we apply the combinatorial SPL testing component of the MoSo-PoLiTe
tool chain to two industrial SPLs provided by Danfoss [Dan11] and the Adam
Opel AG [AG11a]. Please note that we solely focus on the combinatorial
configuration selection algorithm within this part of the evaluation. There,
the test cases that are used to test the combinatorial set of configurations are
either created manually or already existed (Section 11.2 and 11.3).

• We conclude this Section by discussing threats to validity and by comparing
MoSo-PoLiTe with related approaches (Section 11.4).

Figure 65 depicts the schematic representation of this chapter’s outline.

11.1 bcs case study

Applying MoSo-PoLiTe to the BCS-small feature model, we obtain 9 configurations
out of 40 possible configurations. The entire BCS SPL consists of 27 features and
the constraints limit the product space to 11,616 valid product configurations.
Applying MoSo-PoLiTe to the BCS SPL we obtain 17 configurations listed in Table
11 achieving 100% pairwise interaction coverage.
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11.1 BCS Case Study

11.1.1 Pairwise Feature Interaction Coverage

11.1.2 Limitations of Pairwise

11.2 Adam Opel AG - 
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11.2.1 Feature Model Extraction
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Figure 65: Outline of the evaluation chapter

Figure 66 depicts the generation progress of the combinatorial subset for pair-
wise and threewise interaction coverage. For pairwise interaction coverage, the
number of generated configurations increases fast until five configurations and
slowly saturates to 100%, afterwards. For threewise interaction coverage, much
more configurations are required (more than four times as much) to satisfy the
requested degree of coverage. Here, the interaction coverage increases fast until 16

configurations are generated (80% threewise interaction coverage achieved) and
slowly saturates to 100% afterwards. To achieve threewise interaction coverage 77

configurations are required. Thus the testing effort for a guaranteed 100% threewise
interaction coverage is much higher then for pairwise interaction coverage.

The BCS reusable statechart test model TMSC150% consists of 93 states (20 com-
posite states, 22 concurrent submachines, and 51 basic states) and 107 transitions
[Zin11]. The mapping function interrelates artifacts of the test model with the
features of the BCS feature model as follows:

• 12 features have a single mapping to statechart artifacts,

• 15 pairs of features are mapped in combination to statechart artifacts,

• 3 triples of features are mapped in combination to statechart artifacts, and

• 9 features have no mapping.

For the 9 features without a mapping, we assume a mandatory 0-wise mapping
onto a core statechart model, which belongs to the commonalities of the SPL and is
included within every model describing the behavior of a configuration.
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BCS Case Study: 21 features 17 configurations for 100% pairwise coverage

560 valid product configurations 77 configurations for 100% threewise coverage

Figure 66: BCS case study

Within the BCS SPL implementation [Zin11], threewise interaction fragments
arise for the following feature combinations:

1. {CLS, AutPW, RCK},

2. {CLS, ManPW, RCK}, and

3. {CLS, AutPW, LED}.

For these 3 triples the following dependencies hold with regard to the feature
model:

1. CLS ⊥ AutPW, RCK⇒ CLS, and RCK ⊥ AutPW,

2. CLS ⊥ManPW, RCK⇒ CLS, and RCK ⊥ManPW, and

3. all features are mutually independent.

In the following, we provide tables representing all triples regarding those feature
interactions. Each triple that we want to cover is highlighted within the following
tables. Considering case 1 the triples marked in Table 12 need to be tested. The first
three triples are irrelevant feature triples since the require constraint is violated and
we are not able to examine an interaction if none of the features is present within
the configuration. Thus, 5 triples should be tested to cover potential threewise
interaction.

Considering case 2 the triples marked in Table 13 need to be tested in combination.
The first three triples are irrelevant feature triples since the require constraint is
violated and we are not able to examine an interaction if none of the features is
present within the configuration. Thus, 5 triples should be tested to cover potential
threewise interaction.

Considering case 3 7 valid feature triples are to be tested to interact in the
intended way (cf. Table 14). Again, the first triple is irrelevant since there is no
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# CLS AutPW RCK

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

Table 12: Triples of feature interaction for (1) {CLS, AutPW, RCK}

# CLS ManPW RCK

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

Table 13: Triples of feature interaction for (1) {CLS, ManPW, RCK}

interaction if none of the features is present. Thus, 17 different triples should
be tested to cover all possible threewise interactions. MoSo-PoLiTe generates 17

representative configurations-under-test PCUT = S(FM(F)) for our pairwise subset
selection heuristics S.

Table 15 summarizes the coverage of TMSC150% achieved under pairwise. For
the 15 pairwise interactions, all 37 valid pairs are covered in PCUT . Considering
threewise interactions, just 14 of the 17 valid triples are covered in PCUT . Together
(pairwise and threewise), MoSo-PoLiTe covers 95.5 % of feature interactions.

For the test case generation and conduction on PCUT , Rhapsody/ATG generates
62 test cases on average per product using Model Element Coverage and Model Code
Coverage (MC/DC [UL07]) criteria. For evaluating the feasibility of the testing
approach and the quality of the tests generated, we applied several mutation
operators to the products-under-test implementation code. In the majority of cases in
which mutation detection fails, the test cases generated by ATG were not sufficient
to cover them, whereas only a small number of mutations were missed because
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# CLS AutPW RCK

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

Table 14: Triples of feature interaction for {CLS, AutPW, LED}

k=1 k=2 k=3 k>3 sum

# FI in SC 12 37 17 - 66

# covered 12 37 14 - 63

% covered 100 100 82,4 - 95,5

Table 15: Feature interaction coverage under pairwise in the statechart

they arise in particular, uncovered feature combinations. For instance, a faulty LED
activation remained undetected because the unintended interaction only appears in
the triple (LED,AutPW,¬CLS), which is not covered by the subset under pairwise.
We refer to [Zin11] for further details about the BCS evaluation including a detailed
description of the mutation analysis.

Since we generate complete configurations for testing purposes, the test activities
intend to realize system testing. We assume that it would be possible to realize inte-
gration testing if feature combinations are selected to generate test cases. However,
this is beyond the scope of our contribution.

Furthermore, we like to emphasize the fact that it depends on the granularity
and degree of abstraction if the test model tends to support black-box or white-
box testing. In the following, we discuss the potentials and limitations of the
MoSo-PoLiTe approach with regard to the pairwise subset selection.

11.1.1 Pairwise Feature Interaction Coverage

The reliability of detecting, testing and covering feature interactions heavily de-
pends on the appropriateness of the test model. We assume the test model TM150%

to specify intended feature interactions at a given level of abstraction. The mapping
function interrelates features to fragments of the test model that define/implement
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the intended cooperation and/or vetoing behavior between features in a product
configuration. For our pairwise test approach, we make the following assumptions.

According to [McG01] features f ∈ F and feature combinations Fi ⊆ F are not
testable in isolation. Thus, features and feature combinations need to be assembled
into some valid product configuration PC ∈ FM(F) under test. Our subset-heuristics
S selects product configurations under test S(FM(F)) ⊆ FM(F) that fulfill a given
(combinatorial) coverage criterion e.g. pairwise feature interaction coverage. As a
consequence, interactions among features Fi ⊆ F are only testable, if the criterion
matches this Fi to be selected.

As already discussed in the Concept and Theory part of this thesis, the one-wise
criterion ensures every feature f ∈ F to be assembled to at least one product under
test, and the N-wise criterion enforces every valid combination of features to be
covered. Accordingly, T-wise criteria, 1 < T < N realize a reasonable trade off,
especially T = 2, i.e., pairwise feature combination coverage. Concerning potential
interactions between feature pairs as characterized above, our pairwise subset-
heuristics is designed such that:

1. all valid combinations of feature pairs {fi, fj} ⊆ F, are covered. Thus, we do
not only cover intended interactions but also (potentially) unintended pairwise
feature interactions, and

2. all valid pairwise presence/absence combinations are covered, thus covering
all ways of optional pairwise interactions.

Therefore, pairwise SPL testing suffices to support test cases for all (pairwise)
interactions as defined in Section 6.2.

If there is an intended interaction, then

1. either intended positive/negative interactions are tested to correctly cooper-
ate/veto,

2. unintended negative interactions arise, if the interaction is missing/faulty or

3. unintended positive interactions by means of behavioral influences is tested

Furthermore, for optional interactions

1. the correctness of intended interactions in the presence of both features is
tested and

2. the conceptional independence of both features is tested by isolating them
from each other.

Those interaction errors are only reliably discoverable if the underlying test models,
the test case generation tools, and coverage criteria applied are adequate.
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TM 150% 
Artifacts

k-wise FI
1 2 3 N

T=1

T=2

T=3

T=N

Coverage

Figure 67: T-wise coverage of k-wise interactions

11.1.2 Limitations of Pairwise

Pairwise combinatorial subset selection ensures every valid combination of feature
pairs {fi, fj} ⊆ F to be covered by at least one configuration. In contrast, e.g., for an
interaction involving {fi, fj, fk}, no general coverage statement can be given.

We can visualize this by generalizing the problem to a k-wise interaction specified
in a test model TM150%. Using a T-wise combinatorial coverage criterion with T < k
the coverage degree depends on

1. the (in-)dependencies between features in Fi. Independent features bare the
risk to include optional interactions. For each optional interaction, poten-
tially unintended/erroneous feature interactions might occur that need to be
covered.

2. the subset selection heuristics algorithm used. Thus, for fully dependent fea-
tures, i.e., k-wise mandatory interactions, T = 1 suffices to cover them. For fully
independent features, i.e., k-wise optional interactions, T = k is required and
in any other case of partial dependencies, some 1 < T < k is satisfactory.

This relationship between k and T is illustrated in Fig. 67: T-wise suffices to
cover all k-wise interactions, k 6 T , and some further interactions k > T , that are
“accidentally” covered by some product-under-test. For example pairwise feature
interaction is covered by using T-wise testing with T = 2 and additional threewise
and fourwise interactions are automatically covered due to the fact that valid
configurations are generated. In our BCS case study we covered 82, 4% of threewise
feature interactions with pairwise testing.
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11.2 adam opel ag - instrument panel cluster

In the following, we summarize the results of the MoSo-PoLiTe industrial evaluation
at the Adam Opel AG. For a detailed description and a complete overview of the
results, we refer to [Kar11]. The Industrial Panel Cluster (IPC) served as a case
study. IPC is a control panel placed in front of the driver controlling the operation
of the vehicle and visualizing vehicle information.

11.2.1 Feature Model Extraction

At Opel and its parent company General Motors (GM), so-called code-rules are
used for variant management. For this purpose, the Vehicle Description Summary
(VDS), an Engineering document, identifies models, option families, and option
availability for General Motors’ products. Furthermore, it identifies the models and
option codes available within each year and product line. Models and option codes
represent the functionalities and properties of a car. A model typically includes
information about marketing division, vehicle line, series, and body style, whereas
options focus on equipment, parts or information used for customer orders and
assembly build. Each option code is assigned an option type of Regular Production
Option (RPO), which is a three-position code describing equipment, part and
additional assembly information. Thus, these codes control the "‘feature selection"’
for a certain configuration.

Furthermore, XML configurations are used to configure ECUs for different vehicle
variants and the corresponding configuration parameters are included in XML files.
Actually, an XML configuration file contains all parameters that shall be configured
for an ECU in a specific carline and model year.

IPC functionality is implemented only by the IPC ECU, which means that, in
order to be tested in bench, only the XML file of IPC ECU needs to be flashed. The
XML file of IPC for a specific Carline and Model Year is used, in order to extract
the list of RPOs. The feature model of IPC was built directly on the basis of the
corresponding RPOs, which provide different configurations for it. Furthermore, the
VDS was used to extract further require and exclude constraints. The fact that only
the IPC ECU needs to be configured for various configurations of this subsystem
allows us to collect the corresponding RPOs straight from its XML file and build
the feature model.

The configurations computed by MoSo-PoLiTe can then be directly tested in
bench or in Rest Bus Simulation. The IPC feature model consists of 43 features
allowing to configure 19.680 different configurations. MoSo-PoLiTe computed 22

configurations to be tested achieving pairwise interaction coverage. In order to
execute testing in a reasonable period of time, we selected only a restricted number
of RPOs to build a smaller feature model for the IPC. Figure 68 depicts this IPC
feature model.
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Figure 68: Feature model of the Opel SPL case study

Test Cases RPO P1 P2 P3 P4 P5 P6

TC1 & RHD& UMN + + + - - -

TC2 & RHD& UMN - - - + + +

TC3 LKR + + + + + +

TC3 MM3 + + + + + +

TC3 TQ5 + + - - + +

TC3 UVT - + - - + -

TC4 UDC + + - + + -

TC5 RHD + + + + + +

TC6 & LKR& MM3 + + + + + +

TC7 K38 - + - + - -

TC8 (By default) + + + + + +

TC9 (By default) + + + + + +

TC10 (By default) + + + + + +

Table 16: BCS statechart coverage under pairwise

11.2.2 Results of the IPC Case Study

Using the IPC feature model depicted in Figure 68, 16 valid configurations could
be derived and MoSo-PoLiTe computed six configurations for testing purposes.
We then used the so-called Rest Bus Simulation in order to test the MoSo-PoLiTe
configurations. Exhaustive testing of an ECU during its development is often not
possible because other ECUs that interact with the ECU under test are not available.
In Rest Bus Simulation those missing ECUs are simulated allowing to program and
test the interaction between different ECUs.

The six configurations were tested in the Rest Bus Simulation by using a repos-
itory of test cases that are generally used to test all possible IPCs. Test results
obtained by test execution are given in Table 16. The symbols + and - imply the
presence and absence of specific RPOs correspondingly, except for “By default” test
cases, which should be +, independent from the specific configuration.
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We have noticed that all test cases available at Opel for the RPOs included in
our feature model can be executed using the MoSo-PoLiTe configurations. This
results in 100% coverage of the current test requirements and further allows the
expectation that at least faults already found by current testing at Adam Opel AG
would have also been found by our MoSo-PoLiTe configurations. In addition, each
test case is executed in at least two MoSo-PoLiTe configurations, meaning that an
RPO can be tested in at least two different product configurations. Consequently,
not only its absence or presence can be tested, but also its interaction with several
different groups of RPOs, which is actually the most usual cause of faults in overall
system operation. Applying MoSo-PoLiTe implies time-saving, since it does not
require testing of each possible configuration, in order to execute all test cases.

11.3 danfoss - automation drive

The second industrial evaluation was done in cooperation with Danfoss Power
Electronics. Danfoss Power Electronics is one of the leading producers of frequency
converters in the world and has already introduced SPL principles successfully
to handle the increasing number of variants [JDB07]. Frequency converters are
electronic power conversion devices able to control shaft speed or torque of a three-
phase induction engine to satisfy the needs of a given application scenario. Danfoss
gave us the opportunity to use some of their subsystems to evaluate MoSo-PoLiTe
in the industrial context. In the following, we provide a short introduction of one
of these industrial case studies and then summarize the results of the evaluation.
For a detailed description we refer to [Ste11]. Our case study covers parts of the
so-called Automation Drive consisting of the following components:

• Application features represent optional customer requirements such as op-
tional features and hardware options.

• Auxiliary Functions represent the mandatory features of a drive

• Control Core functions control the device. For this purpose, various control
principles exist.

• Quality functionalities aim to ensure the quality of the drive, e.g. by steering
tests.

Figure 69 depicts the feature model of the Automation Drive including cross-
tree constraints. To obtain valuable results, a subset of this case study was chosen
to compare the test results of pairwise testing with n-wise (product-by-product)
testing. For this purpose the options that are part of the Application features were
chosen. Those can be used to evaluate MoSo-PoLiTe with regard to hardware as
well as software configurations.



160 evaluation

A
u

to
m

a
ti
o

n
 

D
ri
v
e

A
p

p
lic

a
ti
o

n

C
o

n
tr

o
l 

C
o

re
A

u
x
ili

a
ry

 

F
u

n
c
ti
o

n
s
 

Q
u

a
lit

y

O
p

ti
o

n
s

H
o

is
t 

F
e

a
tu

re
W

o
b

b
le

r

IO

R
e

la
y

M
C

O

B
a

s
ic

 

R
e

la
y

E
x
te

n
d

e
d

 

R
e

la
y

M
C

O
3

0
2

M
C

O
3

0
5

F
lu

x
 

V
e

c
to

r 

C
o

n
tr

o
l

IO
 T

e
s
t

E
le

c
tr

ic
a

l 

B
ra

k
e

M
e

c
h

a
n

ic
a

l 

B
ra

k
e

B
a

s
ic

 T
e

s
t

A
d

v
a

n
c
e

d
 

T
e

s
t

R
e

s
is

to
r 

B
ra

k
e

A
C

 B
ra

k
e

H
o

is
t 

M
e

c
h

a
n

ic
a

l 

B
ra

k
e

M
e

c
h

a
n

ic
a

l 

B
ra

k
e

 

(l
e

g
a

c
y
)

C
o

n
tr

o
l 

C
a

rd

B
a

s
ic

A
d

v
a

n
c
e

d

exclude

re
q
u
ir
e

re
q

u
ir
e

re
q

u
ir
e

G
e

n
e

ra
l 

P
u

rp
o

s
e

Figure 69: Feature model of the Danfoss use case
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11.3.1 Options and their Configuration

Options belong to the heterogeneous hardware/software part of the Danfoss drive
SPL. Options are customer specific features that can be changed by the customer by
changing plugin modules. The Automation Drive consists of up to 4 option slots
(named A, B, C0, C1), where Communication Options and I/O Options can be
inserted in different combinations. We focused on the slots A, B and C1. In C1 an
additional adapter is installed (B-in-C-adapter) so that C1 splits up into two slots:
E0 and E1. Figure 70 depicts the feature model of the Options including exclude
constraints representing invalid combinations of options. It is not permitted to
install two identical Options in a single drive at the same time. Communication
options are only allowed to be installed in slot A and I/O options may be installed
in B, E0 or E1.

Based on this example, we apply two different evaluation strategies for MoSo-
PoLiTe:

• A user of the Automation Drive could accidentally install invalid combina-
tions of options. Thus, we have to ensure that the user obtains the expected
error messages or warnings when doing so. We call this test hardware fo-
cused and delete all exclude constraints within the Options feature model
allowing us to configure invalid combinations of Options. We then apply
MoSo-PoLiTe to this feature model and compare whether the resulting con-
figurations cover all invalid combinations of Options.

• The second category is software focused, where we check whether the valid
combinations of Options behave as specified. Thus, we again compare the
faults found by testing every possible combination of Options with the
configurations obtained by applying MoSo-PoLiTe.

11.3.2 Results of the Automation Drive Case Study

With regard to hardware focused testing, 432 different combinations of options
were tested and two different types of faults occurred.

• Black screen: Instead of a warning for identical options, a black screen is
shown.

• No warning for unsupported modules: Instead of a warning for modules that
should not be supported in a slot, the modules are detected as expected.

13.89% of configurations contain the fault black screen and 19.44% the fault no
warning for unsupported modules. 41.67% of the faults are black screen faults and
58.33% are no warning for unsupported modules faults. MoSo-PoLiTe calculates 57

configurations and both fault types were detected. This means, that according to
this test scenario, sufficient coverage is ensured.
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Figure 70: Feature model describing the Options-FM
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Test Scenario Coverage in % Testing effort referred to

all combinations in %

Hardware Testing 100 13.19

Mutated Resolver module 97.48 20.10

Mutated GPIO module 98.53 20.10

Mutated Resolver and covered

GPIO module 100 25

(small scenario)

Updated adapter 100 20.10

software

Table 17: Correlation between test coverage and testing effort by using MoSo- PoLiTe

The software focused test provides more significant results by comparing pro-
duct-by-product testing with pairwise testing. Here, we applied mutation tech-
niques to seed faults within the software that determines the functionality of the
options. We then compared how many faults were found by testing the MoSo-
PoLiTe configurations with how many faults would be found by testing each
possible configuration individually. MoSo-PoLiTe computed 40 configurations to
be tested out of the 199 possible configurations. Again, we refer to [Ste11] for a
detailed overview and discussion of this evaluation, whereas we only summarize
the final results of this experiments. Table 17 shows a summary of the different
experiments including the aforementioned hardware focused testing. The term
coverage does not refer to the ordinary coverage criteria term. Here, coverage
describes the percentage of faults seeded in the software that is found by testing
the MoSo-PoLiTe configurations. The faults that MoSo-PoLiTe was not able to cover
within the Mutated Resolver Test and the Mutated GPIO test are based on threewise
interaction. We discussed that issue already with regard to the BCS case study.

11.4 threats to validity and comparison with related approaches

We already discussed the potentials and limitations of the pairwise test approach
for SPLs in the beginning of this chapter with regard to the BCS case study.
Furthermore, we have to consider the following threats to validity with regard to
our evaluation at Opel and Danfoss.

• Regarding the industrial case studies, the feature models are rather small.
Actually, our experiments would need to be executed on feature models
including more features. An ideal candidate would be the feature models for
the linux kernel (6000 features) and ECOS (1000 features). However, for our
evaluation we require a feature model and a test model or a test repository
containing tests for the entire SPL. These artifacts were not available, neither
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for the linux kernel nor for ECOS. Actually, an SPL with a complete test suite
can hardly be found in the real world. The reason for this situation are:

1. very few “real” SPLs including some kind of variability representations
such as feature models exist and if they exist it is nearly impossible to
obtain details due to nondisclosure issues.

2. to find an SPL with a consistent and complete SPL test suite is even
harder since the product-by-product test methodology dominates and in
many cases there are no systematic test approaches.

• Another threat to validity is the fact that the tests used within our industrial
case studies at Danfoss and Opel are not based on certain coverage criteria.
Thus, we are not able to interrelate a certain coverage criteria for the SPL with
our feature (interaction)-based coverage criteria.

After discussing the threats to validity, we continue with comparing our approach
with related work.

In [Oli08] the author uses the pairwise algorithm Jenny to generate a set of prod-
ucts realizing pairwise feature interaction. A Banking SPL is used to demonstrate
her approach. Using the same example with the MoSo-PoLiTe algorithm, the result
of our product set was smaller. Figure 71 shows the 13 products generated by Jenny
and the 12 products generated by our Subset Generator. Unfortunately, Jenny does
not provide a methodology to compute feature models directly and Olimpiew does
not describe how this issue is solved within her thesis. Furthermore, we could not
find any indication that Jenny is capable of processing constraints between features.

ATM Kernel Language Expired card action Call police action Phone branch action Alarm action Pin format [3..10] Pin attempts [1..5] Greeting
T1 TRUE English Confiscate action TRUE FALSE FALSE 3 1 Enhanced

T2 TRUE French Eject action FALSE TRUE TRUE 4 3 Standard

T3 TRUE Spanish Eject action FALSE FALSE TRUE 10 5 Enhanced

T4 TRUE French Confiscate action TRUE TRUE FALSE 10 5 Standard

T5 TRUE English Eject action FALSE TRUE TRUE 3 1 Standard

T6 TRUE Spanish Confiscate action TRUE FALSE FALSE 4 3 Enhanced

T7 TRUE English Confiscate action FALSE FALSE FALSE 4 5 Standard

T8 TRUE French Confiscate action TRUE TRUE TRUE 3 5 Enhanced

T9 TRUE Spanish Eject action TRUE TRUE FALSE 3 1 Standard

T10 TRUE English Confiscate action TRUE FALSE FALSE 10 3 Standard

T11 TRUE French Confiscate action FALSE FALSE FALSE 10 1 Standard

T12 TRUE French Eject action FALSE TRUE TRUE 4 1 Enhanced

T13 TRUE English Confiscate action FALSE TRUE TRUE 3 3 Enhanced

P1  TRUE  French  Confiscate action  FALSE  FALSE  TRUE 3 3  Standard

P2  TRUE  French  Eject action  FALSE  FALSE  FALSE 10 1  Enhanced

P3  TRUE  French  Confiscate action  TRUE  TRUE  FALSE 4 5  Standard

P4  TRUE  Spanish  Eject action  FALSE  FALSE  FALSE 10 3  Enhanced

P5  TRUE  English  Eject action  TRUE  TRUE  TRUE 10 1  Enhanced

P6  TRUE  English  Confiscate action  FALSE  FALSE  FALSE 10 5  Standard

P7  TRUE  Spanish  Eject action  FALSE  FALSE  FALSE 3 1  Standard

P8  TRUE  Spanish  Confiscate action  TRUE  TRUE  TRUE 4 1  Enhanced

P9  TRUE  English  Eject action  FALSE  FALSE  FALSE 4 3  Enhanced

P10  TRUE  English  Eject action  TRUE  TRUE  TRUE 3 3  Enhanced

P11  TRUE  Spanish  Eject action  FALSE  TRUE  TRUE 3 5  Enhanced

P12  TRUE  English  Confiscate action  TRUE  FALSE  TRUE 3 3  Standard

Figure 71: Comparison to Jenny

Perrouin et al. provided the most similar approach to our MoSo-PoLiTe concept.
However, they only focus on the generation of configurations for testing purposes
based on combinatorial testing. Test case generation is out of scope within their
contribution. [POS+

11] is dedicated to an extensive comparison of MoSo-PoLiTe
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and the Alloy-based approach introduced by Perrouin et al. In the following, we
limit ourselves to present the facts and numbers that result from our comparison.
The Alloy-based approach by Perrouin et al. consists of two different approaches
realizing a divide and compose technique, namely, Binary Split and Incremental
Growth.

CP SH AG MT ES

Features 19 35 61 88 287

Possible Products 61 1048576 3.3 ∗ 109 1.65 ∗ 1013 2.26 ∗ 1049

MoSo-PoLiTe (ms) 26 33 76 108 2586

BinarySplit (ms) 11812 11457 33954 > 32400000 > 32400000

IncGrowth (ms) 56494 1372094 13847835 > 32400000 > 32400000

MoSo-PoLiTe (number) 8 40 46 92 215

BinarySplit (number) 12-20 92 514 time out time out

IncGrowth (number) 15-18 28 74 time out time out

Table 18: Execution Times for pairwise generation on feature models. Key: CP = Cell Phone,
SH = Smart Home, MT= Model Transformation, ES= Electronic Shopping

Table 18 summarizes the execution times for some of the feature models of the
SPLOT homepage. With regard to the MoSo-PoLiTe results, the execution times are
calculated by taking the average of 10 execution runs. The deviation between the
different results was always less then 10%.

Numbers such as > 32, 400, 000 mean that the experiments were stopped after
running more than 9 hours. MoSo-PoLiTe seems to be at least 1000 times faster than
any of the Alloy-based strategies. Furthermore, the MoSo-PoLiTe execution times
are growing gently with the feature model complexity, whereas the Alloy-based
strategies execution times follows a steeper increasing curve. However, this seems
to be the natural result of decomposing the problems in hundreds or thousands of
solving steps in Alloy.

Unfortunately, it was not possible to compare the algorithms by executing them
on the same test hardware. MoSo-PoLiTe ran on an ordinary desktop computer
running Windows XP equipped with a dual core CPU with 2.66GhZ and 4GB RAM.
For each of the SPLOT feature models, the tests were executed 10 times and the
average result is depicted in Table 18. BinarySplit and IncGrow ran on a Mac Book
Pro 2.8GHZ Core duo 4GB RAM. For each of the SPLOT feature models, the tests
were executed 10 times and the best result is depicted in Table 18.

Please note that at the time this comparison was made, the AndroidSPL was
significant smaller then the current version, which was used in the analysis of effi-
ciency in the previous chapter. Finally, in Table 19 we summarize the functionalities
and characteristics of both approaches. With regard to efficiency and generation
time, MoSo-PoLiTe outranges the Alloy-based approach. However, the Alloy-based
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approach supports cardinalities and n-ary constraints. We are currently busy to
extend our eclipse plugin to be capable of handling n-ary constraints, too.

MoSo-PoLiTe Alloy-based

#Number of Products + -

Generation Time + -

T -wise support + +

Cardinalities - +

Binary constraints + +

N-ary constraints - +

Table 19: Test generation characteristics

Last but not least, we like to compare MoSo-PoLiTe with the model-based
testing approaches for SPLs that we have summarized in Chapter 4. In general,
all model-based test approaches for SPLs can be applied in combination with
our combinatorial subset selection. Table 20 summarizes the differences between
MoSo-PoLiTe including our model-based test approach and the related approaches.
Two significant differences between MoSo-PoLiTe and the related approaches exist.
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Figure 72: MoSo-PoLiTe process model

First, MoSo-PoLiTe does not only provide a mechanism to generate test cases but
also provides a representative subset of configurations according to T -wise feature
interaction coverage. Furthermore, due to the fact that MoSo-PoLiTe is completely
supported by a tool chain, a full automation for configuration selection and test
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case generation is assured. Figure 72 depicts the MoSo-PoLiTe process model in
accordance to the conceptional process model introduced in Chapter 4. During
domain engineering, MoSo-PoLiTe requires a feature model and a 150% test model.
The relation between features and the reusable test model is realized via a mapping
strategy based on the pure::variants/Rhapsody integration. During application
engineering, configurations are derived using the combinatorial subset selection.
For each configuration a corresponding 100% test model can be derived, which can
be used to derive configuration specific test cases.
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12
S U M M A RY PA RT I V

In this part of this thesis we have described the implementation and the evaluation
of MoSo-PoLiTe. MoSo-PoLiTe is implemented by means of an eclipse plugin and
integrated with pure::variants for the feature modeling and Rhapsody for model-
based testing purposes. Beside the tool chain implementation, we have implemented
the flattening algorithm to convert the feature model into a binary CSP using graph
transformations by means of SDM. To test whether our implementation aligns with
MoSo-PoLiTe concepts, we have implemented a test framework to:

• test whether the flattening implementation preserves the semantical equiva-
lence of the feature model.

• check whether all pairs or T -wise combinations of features are included
within our set of configurations.

• check whether each configuration in our set is a valid configuration.

For this purpose, we have used some feature models listed on the SPLOT website
[SR11] and feature models generated by our own feature model generator. To
evaluate the entire MoSo-PoLiTe concept, we use the BCS case study. For evaluating
the feasibility of the testing approach and the quality of the tests generated, we
applied several mutation operators to the products-under-test implementation code.
In the majority of cases, in which mutation detection fails, the test cases generated by
ATG were not sufficient to cover them, whereas only a small number of mutations
were missed because they arise in particular, uncovered feature combinations.

Furthermore, we applied the combinatorial testing component of MoSo-PoLiTe
to two additional industrial SPLs. In the automotive case study, the MoSo-PoLiTe
subset of configurations was capable of executing all test cases available for the
SPL with the exact same results. Thus, we assume that testing only the MoSo-
PoLiTe configurations would have been sufficient instead of testing all possible
configurations. In the automation case study, MoSo-PoLiTe covered around 95%
of the mutations. The other mutations could not be found since they depend on
threewise feature interaction.

According to the evaluation, the MoSo-PoLiTe tool chain ensures every valid
combination of feature pairs to be covered by at least one configuration but for an
interaction between more than two features, no general coverage statement can be
given.
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13
C O N C L U S I O N S

The development of effective and efficient new SPL testing approaches is of vital
importance in many engineering domains due to the rapidly increasing complexity
of SPLs and, especially, embedded system SPLs. Given the enormous number of
product instances that can be created from even a modest SPL, it is important to
reduce the testing space while preserving the bug-finding power of testing. In this
thesis, we introduce MoSo-PoLiTe, which combines feature model-based testing,
combinatorial testing, and model-based testing, to reduce the effort for testing SPLs.
Figure 73 depicts the MoSo-PoLiTe concept.
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Figure 73: Comparison - MoSo-PoLiTe and related model-based SPL testing approaches

The central component in MoSo-PoLiTe is the feature model. It is created on the
basis of the SPL requirements during domain engineering. The feature model pro-
vides a hierarchical structure of the SPL requirements and represents the common
and variable parts of an SPL. The selection of features according to the dependen-
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cies and constraints results in configurations that can be interpreted as subtrees of
the original feature model. Typically, features of a feature model are additionally
linked to development artifacts such as code fragments or behavioral models. Thus,
the selection of a configuration can lead to a product.

In MoSo-PoLiTe, the configuration selection is performed by a specific selection
algorithm based on combinatorial testing (cf. Figure 73 left-hand side). First, a
so-called flattening algorithm removes the hierarchy within a feature model. Then,
a so-called value extraction transforms the feature model into a binary Constraint
Satisfaction Problem (CSP) consisting of parameters, values, and constraints. Our
subset extraction algorithm then generates a minimal set of configurations contain-
ing all T -wise feature interactions e.g. pairwise feature interaction on the basis of
this CSP. Therefore, testing this subset of products is equivalent to testing the entire
SPL on the basis of T -wise feature interaction.

For a model-based test case derivation, the feature model is additionally mapped
to a test model representing the behavior of the entire SPL. A mapping approach
ensures that if a valid configuration is derived from the feature model, a corre-
sponding test model representing the behavior of this configuration is generated.
Thus, for every configuration of our combinatorial subset, a corresponding test
model can be generated. This test model is then capable of generating test cases for
each configuration of the representative subset.

The MoSo-PoLiTe tool chain is based on the variant management tool pure::var-
iants [pG11] and the CASE tool Rhapsody [IBM11]. Our pairwise subset selection
heuristics is implemented on top of the feature model editor of pure::variants by
means of an eclipse plugin, and the mapping capabilities are applied for tracing
to corresponding statechart fragments built in Rhapsody. The Rhapsody ATG
component provides automated model-based test case generation.

Hence, MoSo-PoLiTe combines feature model-based testing, combinatorial test-
ing, and model-based testing.

We applied our MoSo-PoLiTe tool chain to the BCS-SPL which served as a
running example within this thesis. Additionally, we applied the pairwise SPL
testing component to two industrial SPLs. There, the test case generation was
out-of-scope. The results suggest that, with our approach, higher coverage of
feature interactions is achieved at a fraction of cost, when compared with a baseline
approach of testing all feature interactions.

MoSo-PoLiTe has the following advantages compared to the state-of-the-art SPL
testing approaches as introduced in Chapter 4:

• reuse of test artifacts: The model-based test component within our approach
realizes the reuse of test artifacts. The 150% test model includes all artifacts
describing the behavior of the entire SPL. Subsets of this test model are reused
for each product.
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• reuse of test results: On the basis of combinatorial testing, we generate a
representative set of configurations for testing purposes. We intend to reuse
the test results of this set of configurations for all other products of the SPL.

13.1 discussion

In the motivation section (cf. Section 1.1), we introduced several research questions
which were discussed throughout this thesis in each part’s summary. Here, we
again summarize and discuss all research questions, to recapitulate the contribution
of this thesis.

1. Can we test an entire SPL without testing each possible product? Yes, to a
certain extent. Testing is always a heuristics and thus there is no guarantee of
covering or finding all possible faults within a system or SPL. Pairwise subset
selection testing is, by its nature, limited to covering pairwise interactions
among independent features. For instance, if three independent features f1,
f2, and f3 are responsible for a faulty interaction, and this fault, for some
reason does not appear when testing any pair of this triple, then it is possible
that this triple is not necessarily within our subset of products. However,
these situations may also arise in methods beyond pairwise, i.e., T -wise, since
there might always be an T + 1-ary set of (independent) features, resulting in
a fault in that exact combination. To overcome such situations, T needs to be
increased properly to cover all interactions. In the worst case, this ends up at
N-wise, thus testing every possible product of an SPL, as already stated in
the introduction, is not feasible.

2. How can we apply lessons learned from the software testing community to
decrease the test effort for SPLs? We have chosen combinatorial testing for
adoption in SPL testing, due to its positive impact in single system testing
[SM98]. To apply combinatorial testing to feature models, we transformed
the feature model into a binary CSP. This is then solved using a combination
of combinatorial testing and constraint solving algorithm, including Forward
Checking and Backtracking.

3. How should we systematically select a subset of possible products for testing
purposes with regard to feature interaction? For this purpose, we selected
T -wise testing to cover T -ary feature interaction. Our algorithm generates a
set of configurations fulfilling this T -ary feature interaction coverage.

4. What is the effect of testing T-wise feature interaction in the SPL context? As
already discussed with regard to RQ1, T -wise and especially pairwise testing
is capable of dramatically decreasing the testing effort for SPLs. However, with
regard to feature interaction between more than two features, this approach
cannot guarantee any degree of fault coverage. Thus, the test engineer has to
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decide which T is appropriate for testing the SPL. Furthermore, we strongly
depend on how complex it is to identify a certain interaction in the test
model. The probability of covering a certain interaction is proportional to
how obvious this interaction is in the test model. In addition, the adequacy of
the approach for revealing unintended interactions further depends on the
actual product test strategy and corresponding coverage criteria applied.

5. How can we reuse test artifacts to test the product of an SPL? Using combina-
torial testing, we reused test results by selecting a subset of configurations
and implicitly relied on the probability that other configurations would end
up with the same test results. To reuse test artifacts, we found model-based
testing to be the most suitable methodology [OWES11]. We followed the
concept of implementing a 150% test model and have developed an approach
to automatically generate test cases for each derivable configuration.

6. What is necessary to support industry with a suitable tool chain with regard
to the RQs presented above? To support the industry sector, we have imple-
mented our tool chain by using commercial tools. Both pure::variants and
Rhapsody are frequently used in the automation and automotive sector. Since
our algorithm is implemented in Java and realized as an eclipse plugin, its
range of application can be quite extensive. Furthermore, our algorithm could
be ported to many other programming languages or be integrated with many
other tools. With regard to our model-based component in MoSo-PoLiTe, this
technique can be replaced by any other test case generation process.

Furthermore, there are multiple benefits of our approach:

• it is lightweight, since it does not require any intervention by program-
mers,

• the combinatorial testing simply works on the basis of the feature model,
which is a quasi standard within SPL engineering,

• it is tractable since it uses combinatorial testing to shrink the number of
configurations for testing purposes thus ensuring a certain T -wise e.g.
pairwise feature interaction coverage, and

• it is scalable, since it can be used on feature models with hundreds of
optional features.

Summarizing, our combination of feature model-based testing, combinatorial
testing, and model-based testing paves the way for exhaustively testing the entire
SPL. But the model-based testing component within MoSo-PoLiTe can be simply
replaced by other testing techniques, as shown in the evaluation. Thus, MoSo-
PoLiTe is not only limited for use in a model-based testing environment.

In the next section, we will summarize and discuss new research questions and
plans for future work.
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13.2 future work

T -wise testing techniques for SPLs can provide a 100% coverage if T is equal to
the number of all features within the feature model. However, this would result
in testing every possible product of the SPL under test, which is not feasible.
Decreasing the T results in a corresponding reduction of the size of our test set of
configurations. With regard to SPLs with more than 300 features our algorithm will
probably compute more than 50 products to test every pairwise feature interaction.
Increasing the T has the consequence that the number of products exceeds the
number of products that are testable within a reasonable time. Thus, in our future
work, we will adapt our algorithm to combine specified sets of features in an
arbitrary K-wise manner, where K is the number of features involved in interactions.
In [RSM+

10], the authors have shown that better coverage can be achieved by
selecting input data objects that contain diverse values for configuration variables.
This procedure requires a feature interaction analysis of the SPL under test, which
is the scope of our future work and initially discussed in [LG10].

The idea for realizing a so-called K-wise feature interaction approach seems to be
promising. However, even if we are able to deduce K-wise interactions from the test
model and conduct an appropriate subset selection, several uncertainties remain:

• is every feature interaction captured in the test model?

• is every feature interaction reliably detectable in the test model?

• how can one keep the testing effort for increasing K manageable?

In addition, we are currently working on concepts to support versioning of
the feature model and the test models within our approach. Urgent questions in
this field are: How does the evolution of the feature model affect the results of
MoSo-PoLiTe. How can these changes be managed and maintained?

With regard to our tool chain, we plan to use other tools for the model-based
testing component, for example ParTeG, to provide an open source solution, and
Matlab Simulink, which is one of the most prominent tools in the automation and
automotive sector.

Furthermore, we are currently examining a new model-based coverage-criteria-
driven approach for SPL testing. A set of configurations is representative for all
configurations of an SPL with regard to a chosen coverage criterion if, in a set
of test cases, that is necessary to satisfy the chosen coverage criterion on every
single product, each test case is at least executable on one of these products in
this representative set. A feature model is used to configure a 150% test model
representing the behavior of the entire SPL. In contrast to MoSo-PoLiTe, this 150%
test model is then used to derive a set of valid test cases that guarantees a complete
test model coverage for all possible configurations of the SPL. These test cases are
then used to find a minimal representative set of configurations required to execute
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each individual test case. In our future work, we will implement a tool chain for
this approach and combine it with MoSo-PoLiTe.

Additionally, we are currently examining whether our approaches for generating
a representative set of configurations could be used in combination with regression
testing techniques [ERS10]. Specifically, we intend to find out if (1) regression
testing could be used to incrementally test the various configurations within our
representative subset and (2) if our representative set can be used as an initial
starting point for regression testing, to test other products of the SPL.

Finally, we will continue optimizing the SDM-based flattening algorithm as
well as the manual implementation. We think that our flattening transformations
provide a good and representative case study to compare generated code with a
manual implementation with regard to performance, complexity, and clarity.
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F L AT T E N I N G R U L E S

Please note that the flattening rules have been published in parallel in a technical
report [Ost11].

child mandatory

Mandatory Parent

GP

C

P

GP

PCTransformation

Transformation rule pulling up a mandatory child beneath a mandatory parent

GP∧ (P → GP)∧ (GP → P)∧ GP∧ (P → GP)∧ (C→ GP)∧

(C→ P)∧ (P → C) (GP → P)∧ (GP → C)

=GP∧ P∧C =GP∧ P∧C

Optional Parent

GP

C

P

GP

PCTransformation

Transformation rule pulling up a mandatory child beneath an optional parent

GP∧ (P → GP)∧ (C→ P)∧ GP∧ ((P∧C)→ GP)∧ (C→ P)∧

(P → C) (P → C)

=GP∧ (¬C∨ P)∧ (¬P∨C) =GP∧ (¬C∨ P)∧ (¬P∨C)
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Alternative Parent

GP

C

P1

GP

Pn Transformation P1C Pn

Transformation rule pulling up a mandatory child beneath an alternative parent

GP∧ (GP → alt(P1,Pn)∧ (P1 → GP)∧ GP∧ (GP → alt((P1 ∧C),Pn))∧

(Pn → GP)∧ (C→ P1)∧ (P1 → C) ((P1 ∧C)→ GP)∧ (Pn → GP)

= GP∧ alt(P1,Pn)∧ (C→ P1)∧ =GP∧ alt((P1 ∧C),Pn)∧ (C→ P1)∧

(P1 → C) (P1 → C)

=(GP∧ P1 ∧C∧¬Pn)∨ =(GP∧ P1 ∧C∧¬Pn)∨

(GP∧¬P1 ∧¬C∧ Pn) (GP∧¬P1 ∧¬C∧ Pn)

Or Parent

GP

C

P1

GP

Pn Transformation P1C Pn

Transformation rule pulling up a mandatory child beneath an or parent

GP∧ (GP → (P1 ∨ Pn))∧ (P1 → GP)∧ GP∧ (GP → ((P1 ∧C)∨ Pn))∧ ((P1 ∧C)→
(Pn → GP)∧ (P1 → C)∧ GP)∧ (Pn → GP)∧ (P1 → C))∧ (C→ P1)

(C→ P1) (C→ P1)

=GP∧ (P1 ∨ Pn)∧ (P1 → C)∧ (C→ P1) =GP∧ ((P1 ∧C)∨ Pn)∧ (P1 → C)∧ (C→ P1)

=(GP∧¬P1 ∧¬C∧ Pn)∨ (GP∧ P1 ∧C) =(GP∧¬P1 ∧¬C∧ Pn)∨ (GP∧ P1 ∧C)
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GP

C P

GP

C

P Transformation

Transformation rule pulling up an optional child beneath a mandatory parent

child optional:

Mandatory Parent

GP∧ (P → GP)∧ (C→ P)∧ GP∧ (P → GP)∧ (C→ GP)∧

(GP → P) (GP → P)

=GP∧ P =GP∧ P

Optional Parent

GP

C

P

GP

C P

require

Transformation

Transformation rule pulling up an optional child beneath an optional parent

GP∧ (P → GP)∧ (C→ P) GP∧ (P → GP)∧ (C→ GP)∧ (C→ P)

=GP∧ (C→ P) =GP∧ (C→ P)

Alternative Parent

GP∧ (P1 → GP)∧ (Pn → GP)∧ (C→ P1) GP∧ (C→ GP)(P1 → GP)∧ (Pn →
∧ (GP → alt(P1,Pn)) GP)∧ (GP → alt(P1,Pn)∧ (C→ P1)

=GP∧ (C→ P1)∧ alt(P1,Pn) =GP∧ (C→ P1)∧ alt(P1,Pn)
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GP

P1

C

Pn

GP

C P1 Pn

require

Transformation

Transformation rule pulling up an optional child beneath an alternative parent

Or Parent

GP

P1

C

Pn

GP

C P1 Pn

require

Transformation

Transformation rule pulling up an optional child beneath an or parent

GP∧ (P1 → GP)∧ (Pn → GP) GP∧ (P1 → GP)∧ (Pn → GP)

∧ (GP → P1 ∨ Pn)∧ (C→ P1) ∧ (GP → P1 ∨ Pn)∧ (C→ GP)∧ (C→ P1)

=GP∧ (P1 ∨ Pn)∧ (C→ P1) =GP∧ (P1 ∨ Pn)∧ (C→ P1)

child alternative:

Mandatory Parent

Transformation

GP

C1

P1

GP

P1

Cn

C1 Cn

Transformation rule pulling up an alternative child beneath a mandatory parent
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GP∧ (GP → P)∧ (P → GP) GP∧ (GP → P)∧ (P → GP)∧

∧ (C1 → P)∧ (Cn → P)∧ (C1 → GP)∧ (Cn → GP)∧

(P → alt(C1,Cn)) (GP → alt(C1,Cn))

=GP∧ P∧ alt(C1,Cn) =GP∧ P∧ alt(C1,Cn)

Optional Parent

GP

C1

P

Cn

GP

require

exclude

require
Transformation C1P Cn ¬(C1,…,Cn)

Transformation rule pulling up an alternative child beneath an optional parent

GP∧ (P → GP)∧ (C1 → P) GP∧ (P → GP)∧ (C1 → GP)∧ (Cn → GP)∧

∧ (Cn → P)∧ (P → alt(C1,Cn)) (GP → alt(C1,Cn,¬C1 ∧¬Cn))∧ ((¬C1 ∧¬Cn)

→ GP)∧ (C1 → P)∧ (Cn → P)∧

(¬P∨¬(¬C1 ∧¬Cn))

=GP∧ (C1 → P)∧ (Cn → P) =GP∧ (C1 → P)∧ (Cn → P)

∧ (P → alt(C1,Cn)) alt(C1,Cn,¬C1 ∧¬Cn)∧ (¬P∨¬(¬C1 ∧¬Cn))

=(GP∧¬C1 ∧¬Cn ∧¬P)∨ =(GP∧¬C1 ∧¬Cn ∧¬P)∨

(GP∧ P∧C1 ∧¬Cn)∨ (GP∧ P∧C1 ∧¬Cn)∨

(GP∧ P∧¬C1 ∧Cn) (GP∧ P∧¬C1 ∧Cn)

Alternative Parent

GP

C1

P1

Cn

Pn

GP

require

require

exclude

Transformation C1P1 CnPn ¬(C1,…,Cn)

Transformation rule pulling up an alternative child beneath an alternative parent
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GP∧ (P1 → GP)∧ (Pn → GP)∧ GP∧ (P1 → GP)∧ (Pn → GP)∧

(GP → alt(P1,Pn))∧ (C1 → P1)∧ (GP → alt(P1,Pn))∧ (C1 → GP)∧

(Cn → P1)∧ (P1 → alt(C1,Cn)) (Cn → GP)∧ ((¬C1 ∧¬Cn)→ GP)∧

(GP → alt(C1,Cn, (¬C1 ∧¬Cn)))∧

(C1 → P1)∧ (Cn → P1)∧

((¬C1 ∧¬Cn)∨¬P1)

=GP∧ alt(P1,Pn)∧ (C1 → P1)∧ =GP∧ alt(P1,Pn)∧ alt(C1,Cn, (¬C1 ∧¬Cn))∧

(Cn → P1)∧ (P1 → alt(C1,Cn)) (C1 → P1)∧ (Cn → P1)∧ ((C1 ∨Cn)∨¬P1)

=(GP∧ Pn ∧¬P1 ∧¬C1 ∧Cn)∨ =(GP∧ Pn ∧¬P1 ∧¬C1 ∧Cn)∨

(GP∧ P1 ∧¬Pn ∧C1 ∧¬Cn)∨ (GP∧ P1 ∧¬Pn ∧C1 ∧¬Cn)∨

(GP∧ P1 ∧¬Pn ∧¬C1 ∧Cn) (GP∧ P1 ∧¬Pn ∧¬C1 ∧Cn)

Or Parent

GP

C1

P1

Cn

Pn

GP

C1P1 CnPn
require

require

exclude

Transformation ¬(C1,…,Cn)

Transformation rule pulling up an alternative child beneath an or parent

GP∧ (P1 → GP)∧ (Pn → GP)∧ GP∧ (P1 → GP)∧ (Pn → GP)

(GP → (P1 ∨ Pn))∧ (C1 → P1)∧ (C1 → GP)∧ (Cn → GP)∧

(Cn → P1)∧ (P1 → alt(C1,Cn)) ((¬C1 ∧¬Cn)→ GP)∧ (GP → (P1 ∨ Pn))∧

(r→ alt(C1,Cn, (¬C1 ∧¬Cn)))∧ (C1 → P1)∧

(Cn → P1)∧ (¬(¬C1 ∧¬Cn)∨¬P1)

=GP∧ P1 ∨ Pn)∧ (C1 → P1)∧ =GP∧ (P1 ∨ Pn)∧ (C1 → P1)∧ (Cn → P1)∧

(Cn → P1)∧ (P1 → alt(C1,Cn)) alt(C1,Cn, (¬C1 ∧¬Cn))∧ ((C1 ∨Cn)∨¬P1)

=(GP∧ Pn ∧¬P1 ∧¬C1 ∧¬Cn)∨ =(GP∧ Pn ∧¬P1 ∧¬C1 ∧Cn)∨

(GP∧ P1 ∧C1 ∧¬Cn)∨ (GP∧ P1 ∧C1 ∧¬Cn)∨

(GP∧ P1 ∧¬C1 ∧¬Cn) (GP∧ P1 ∧¬C1 ∧¬Cn)
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child or:

Mandatory Parent

Transformation

GP

C1

P1

GP

P1

Cn

C1 Cn

Transformation rule pulling up an or child beneath a mandatory parent

GP∧ (GP → P)∧ (P → GP)∧ GP∧ (GP → P)∧ (P → GP)∧ (C1 → GP)∧

(C1 → P)∧ (Cn → P)∧ (P → (C1 ∨Cn)) (Cn → GP)∧ (GP∧ P∧ (C1 ∨Cn))

= GP∧ P∧ (C1 ∨Cn) =GP∧ P∧ (C1 ∨Cn)

Optional Parent

GP

C1

P1

Cn

GP

require

exclude

require
Transformation C1P1 Cn ¬(C1,…,Cn)

Transformation rule pulling up an or child beneath an optional parent

GP∧ (P → GP)∧ (C1 → P)∧ GP∧ (P → GP)∧ (C1 → GP)∧

(Cn → P)∧ (P → (C1 ∨Cn)) (Cn → GP)∧ ((¬C1 ∧¬Cn)→ GP)∧

(GP → (C1 ∨Cn ∨ (¬C1 ∧¬Cn)))∧ (C1 →
P)∧ (Cn → P)∧ (¬(¬C1 ∧¬Cn)∨¬P)

= GP∧ (C1 → P)∧ (Cn → P)∧ =GP∧ (C1 → P)∧ (Cn → P)∧ (C1 ∨Cn∨

(P → (C1 ∨Cn)) (¬C1 ∧¬Cn))∧ ((C1 ∨Cn)∨¬P)

= GP∧ (C1 → P)∧ (Cn → P)∧ =GP∧ (C1 → P)∧ (Cn → P)∧

((C1 ∨Cn)∨¬P) ((C1 ∨Cn)∨¬P)



208 Appendix

Alternative Parent

GP

C1

P1

Cn

Pn

GP

require

require

exclude

Transformation C1P1 CnPn ¬(C1,…,Cn)

Transformation rule pulling up an or child beneath an alternative parent

GP∧ (P1 → GP)∧ (Pn → GP)∧ GP∧ (P1 → GP)∧ (Pn → GP)∧ (GP → alt(P1,Pn))

(GP → alt(P1,Pn))∧ (C1 → P1)∧ ∧ (C1 → GP)∧ (Cn → GP)∧ ((¬C1 ∧¬Cn)→ GP)

(Cn → P1)∧ (P1 → (C1 ∨Cn)) ∧ (GP → (C1 ∨Cn ∨ (¬C1 ∧¬Cn)))∧ (C1 → P1)∧

(Cn → P1)∧ (¬(¬C1 ∧¬Cn)∨¬P1)

= GP∧ alt(P1,Pn)∧ (C1 → P1)∧ =GP∧ alt(P1,Pn)∧ (C1 → P1)∧

(Cn → P1)∧ (P1 → (C1 ∨Cn)) (Cn → P1)∧ (¬(¬C1 ∧¬Cn)∨¬P1)

= GP∧ alt(P1,Pn)∧ (C1 → P1)∧ =GP∧ alt(P1,Pn)∧ (C1 → P1)∧

(Cn → P1)∧ (¬P1 ∨ (C1 ∨Cn)) (Cn → P1)∧ (¬P1 ∨ (C1 ∨Cn))

Or Parent

GP

C1

P1

Cn

Pn

GP

C1P1 CnPn
require

require

exclude

Transformation ¬(C1,…,Cn)

Transformation rule pulling up an or child beneath an or parent

GP∧ (P1 → GP)∧ (Pn → GP)∧ GP∧ (P1 → GP)∧ (Pn → GP)∧ (C1 → GP)∧

(GP → (P1 ∨ Pn))∧ (C1 → P1)∧ (Cn → GP)∧ ((¬C1 ∧¬Cn)→ GP)∧

(Cn → P1)∧ (P1 → (C1 ∨Cn)) (GP → (P1 ∨ Pn))∧ (GP(C1 ∨Cn ∨ (¬C1 ∧¬Cn)))∧

(C1 → P1)∧ (Cn → P1)∧ (¬P1 ∨ (¬(¬C1 ∧¬Cn)))

= GP∧ (P1 ∨ Pn)∧ (C1 → P1)∧ =GP∧ (P1 ∨ Pn)∧ (C1 → P1)∧ (Cn → P1)∧

(Cn → P1)∧ (¬P1 ∨ (C1 ∨Cn)) (¬P1 ∨ (C1 ∨Cn))



S D M T R A N S F O R M AT I O N R U L E S

In the following we present the SDM diagrams implementing the flattening al-
gorithm. Figure 74 shows the metamodel used for the SDM implementation. It
consists of a feature model, features, dependencies (mandatory, optional, or, and
alternative), and constraints (require and exclude).

Figure 75 depicts the SDM diagram providing the implementation to iterate
through the feature model and to search for a three level subtree. The SDM diagram
implements a bottom up approach searching for leaves within the feature model.
Those leaves are incrementally pulled up using the flattening rules and stops until
all leaves are directly situated beneath the root feature of the feature model.

After finding a three-level subtree, the corresponding flattening rules are called
depending on the relationship between the parent feature and its child feature(s).
Figure 76 shows the implementation of the three different flattening rules. The
first block processes mandatory child features and was explained in detail in the
Implementation and Evaluation part. The second block processes optional child
features and the third block flattens subtrees with child features within an or or
alternative group.

mandatory child

Figure 77 depicts the SDM-based flattening for mandatory child features. The SDM
diagram implements the following 4 steps as denoted in Figure 77:

1. Check whether the precondition is fulfilled: child mandatory.

2. Concatenation of the parent name and the child name to a new name of the
former parent feature.

3. Update of constraints. The constraints in which the former child feature was
involved are transferred to the parent feature.

4. Destroy mandatory child and the corresponding relationship.

optional child

The graph transformation depicted in Figure 78 processes optional child features.
The SDM diagram implements the following 4 steps as denoted in Figure 78:

1. Check precondition: child feature is optional.
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Figure 74: Appendix: Metamodel for the SDM implementation

2. If precondition holds, the child feature is pulled up beneath the grandparent
feature.

3. If the parent feature is mandatory then the transformation is complete.
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 ESDM Diagram flattenFM Story Diagram

Flattener::flattenFM (fm: FeatureModel, currentFeature: Feature): void

check if leaf can be flattened
 
 
 

descend in tree
 
 
 

performFlattening
 
 
 

this.flatten(fm,grandParent,parent,currentFeature)

currentFeature

dependency:
Dependency

determin type of dependency
 
 
 

for all features
 
 
 

get feature
 
 
 

flatten child
 
 
 

this.flattenFM(fm,child)

flatten child
 
 
 

this.flattenFM(fm,child)

singleDependency :=
<ObjectVariableExpression>

[failure]

[end] [each time]

[success]

[failure]

[each time]

+parentFeature

+childrenDependency

[end]

[success]

Figure 75: Appendix: Iteration through the feature model including pattern matching

4. If the parent is optional or within an or or an alternative group an additional
require constraint is added pointing from the former child feature towards the
former parent feature.

alternative and or child

The graph transformation depicted in Figure 79 processes child features within or
or alternative groups.

The SDM diagram implements the following 5 steps as denoted in Figure 79:

1. Check precondition: child feature is within a group.

2. Pull up the child feature.

3. Check if parent feature is mandatory: if the parent feature is mandatory the
transformation is complete
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Figure 76: Appendix: SDM of the flattening process

4. If the parent feature is not mandatory, additional require constraints are added
between the former child group pointing to the former parent feature.
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 ESDM Diagram flatten Story Diagram

check precondition for rule

child-mandatory

 

 

 

rule child-mandatory

 

 

 

true

adjust exclude constraints

 

 

 

redirect exclude

 

 

 

adjust src require constraints 

 

 

 

adjust target require constraints

 

 

 

redirect source

requirements

 

 

 

redirect target

requirements

 

 

 

[success]

[each time]

[end]

[end]

[each time]

[each time]

[end]

1.

2.

 ESDM Diagram flatten_1

parent

name:=parent.getName()+child.getName()

childDependencyM

child

+parentDependency

+childFeature

+parentFeature

+childrenDependency

3.

4.

<<destroy>>

<<destroy>>

Figure 77: Appendix: Transformation rule for mandatory children
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 ESDM Diagram flatten Story Diagram

check precondition for rule

child-optional

 

 

 

true

rule child-optional

 

 

 

check is parent mandatory for

rule child-optional

 

 

 

require for non mandatory

parent

 

 

 

true

[success]

[success]

[failure]

3.

4.

1.

2.

 ESDM Diagram check precondition for rule child-optional

parent

child

childDependencyOpt:

Optional

+childrenDependency

+parentFeature

+parentDependency

 ESDM Diagram rule child-optional

grandParent

parent

child childDependencyOpt

newOptDependency:

Optional

+childrenDependency

+parentFeature

+childFeature

+parentDependency

+childrenDependency

+parentFeature

+childFeature

+parentDependency

 ESDM Diagram check is parent mandatory for rule child-opti...

parentDependencyM:

Mandatory

parent

grandParent

+parentDependency

+parentFeature

+childrenDependency

 ESDM Diagram require for non mandatory parent

parent

fm

childReqParent:

Require

child

+constraints+source

+target

3.
4.

1.

2.

<<create>>

<<destroy>>

<<create>>

<<create>>

<<create>>

<<destroy>>

<<destroy>>

<<destroy>>

<<create>>
<<create>>

<<create>>
<<create>>

Figure 78: Appendix: Transformation rule for optional child features

5. The negation feature is added and an exclude constraint between the former
child feature and the negation features is added.
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 ESDM Diagram flatten Story Diagram

false

check precondition for rule

group

 

 

 

true

rule child-group

 

 

 

Feature requires parent

 

 

 

rule child-group flatten and empty

node

 

 

 

check is parent is mandatory

 

 

 

move group for one level

 

 

 

true

[failure]

[failure]

[success]

[each time]

[end]

[success]
 ESDM Diagram mov e group for one lev el

parent

grandParentchildDependencyGroup

+parentFeature

+childrenDependency

+childrenDependency

+parentFeature

 ESDM Diagram check precondition for rule group

parent

child

childDependencyGroup:

GroupDependency

+parentDependency

+parentFeature

+childrenDependency

 ESDM Diagram check is parent is mandatory

parentDependencyM:

Mandatory

parent

grandParent

+childrenDependency

+parentFeature

+parentDependency

 ESDM Diagram Feature requires parent

parent

groupMember fm

childReqParent:

Require

+target

+source

+constraints

 ESDM Diagram rule child-group flatten and empty node

parent

negationFeature: Feature

name:=parent.getName()+'N'+'O'+'T'

exclude: Exclude

childDependencyGroup

+features

+features

+parentDependency

+childFeature

1.

2.

1.

2.

3.

3.

4.

4.

5.

5.

<<destroy>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>><<create>>

<<create>>

Figure 79: Appendix: Transformation rule for child features within or or alternative groups





G E N E R AT E D S O U R C E C O D E F O R C H I L D OPTIONAL

Listing 7: Appendix: Generated Source Code for child optional

// story pattern check precondition for rule child-optional

2try {

fujaba__Success = false;

4

// check object child is really bound

6 JavaSDM.ensure(child != null);

// check object parent is really bound

8 JavaSDM.ensure(parent != null);

// check isomorphic binding between objects parent and child

10 JavaSDM.ensure(!parent.equals(child));

12 // bind object
_TmpObject = child.getParentDependency();

14

// ensure correct type and really bound of object childDependencyOpt

16 JavaSDM.ensure(_TmpObject instanceof Optional);

childDependencyOpt = (Optional) _TmpObject;

18

// check link childrenDependency from childDependencyOpt to parent

20 JavaSDM.ensure(parent.equals(childDependencyOpt.getParentFeature()));

22 fujaba__Success = true;

} catch (JavaSDMException fujaba__InternalException) {

24 fujaba__Success = false;

}

26

if (fujaba__Success) {

28 // story pattern rule child-optional

try {

30 fujaba__Success = false;

32 // check object child is really bound

JavaSDM.ensure(child != null);

34 // check object childDependencyOpt is really bound

JavaSDM.ensure(childDependencyOpt != null);

36 // check object grandParent is really bound

JavaSDM.ensure(grandParent != null);

38 // check object parent is really bound

JavaSDM.ensure(parent != null);
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40 // check isomorphic binding between objects grandParent and

child

JavaSDM.ensure(!grandParent.equals(child));

42

// check isomorphic binding between objects parent and child

44 JavaSDM.ensure(!parent.equals(child));

46 // check isomorphic binding between objects parent and

grandParent

JavaSDM.ensure(!parent.equals(grandParent));

48

// check link childFeature from childDependencyOpt to child

50 JavaSDM.ensure(child.equals(childDependencyOpt.getChildFeature

()));

52 // check link childrenDependency from childDependencyOpt to

parent

JavaSDM.ensure(parent.equals(childDependencyOpt.

getParentFeature()));

54

// check link parentDependency from child to

childDependencyOpt

56 JavaSDM.ensure(childDependencyOpt.equals(child.

getParentDependency()));

58 // destroy link

org.moflon.util.eMoflonEMFUtil.removeOppositeReference(child,

childDependencyOpt, "parentDependency");
60 // destroy link

childDependencyOpt.setChildFeature(null);

62 // destroy link

parent.getChildrenDependency().remove(childDependencyOpt);

64 // delete object childDependencyOpt

org.moflon.util.eMoflonEMFUtil.remove(childDependencyOpt);

66

// create object newOptDependency

68 newOptDependency = FeatureModelLanguageFactory.eINSTANCE.

createOptional();

// create link

70 org.moflon.util.eMoflonEMFUtil.addOppositeReference(child,

newOptDependency, "parentDependency");
// create link

72 newOptDependency.setChildFeature(child);

74 // create link

newOptDependency.setParentFeature(grandParent);

76

fujaba__Success = true;
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78 } catch (JavaSDMException fujaba__InternalException) {

fujaba__Success = false;

80 }

82 // story pattern check is parent mandatory for rule child-optional

try {

84 fujaba__Success = false;

86 // check object grandParent is really bound

JavaSDM.ensure(grandParent != null);

88 // check object parent is really bound

JavaSDM.ensure(parent != null);

90 // check isomorphic binding between objects parent and

grandParent

JavaSDM.ensure(!parent.equals(grandParent));

92

// bind object

94
_TmpObject = parent.getParentDependency();

96 // ensure correct type and really bound of object

parentDependencyM

JavaSDM.ensure(_TmpObject instanceof Mandatory);

98 parentDependencyM = (Mandatory) _TmpObject;

100 // check link childrenDependency from parentDependencyM to

grandParent

JavaSDM.ensure(grandParent.equals(parentDependencyM.

getParentFeature()));

102

fujaba__Success = true;

104 } catch (JavaSDMException fujaba__InternalException) {

fujaba__Success = false;

106 }

108 if (fujaba__Success) {

return true;

110

} else {

112 // story pattern require for non mandatory parent

try {

114 fujaba__Success = false;

116 // check object child is really bound

JavaSDM.ensure(child != null);

118 // check object fm is really bound

JavaSDM.ensure(fm != null);

120 // check object parent is really bound

JavaSDM.ensure(parent != null);
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122 // check isomorphic binding between objects parent and

child

JavaSDM.ensure(!parent.equals(child));

124

// create object childReqParent

126 childReqParent = FeatureModelLanguageFactory.eINSTANCE

.createRequire();

// create link

128 childReqParent.setSource(child);

130 // create link

org.moflon.util.eMoflonEMFUtil.addOppositeReference(

childReqParent, parent, " target ");
132 // create link

fm.getConstraints().add(childReqParent);

134

fujaba__Success = true;

136 } catch (JavaSDMException fujaba__InternalException) {

fujaba__Success = false;

138 }

140 return true;

142 } �
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