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Zusammenfassung

Die vorliegende Arbeit entstand im Rahmen des DFG-Sonderforschungsbereiches
588 “Humanoide Roboter - Lernende und kooperierende multimodale Roboter”.
Eines der herausragenden Ziele der internationalen Robotik-Community ist die Kon-
struktion von Robotern, die in den Alltag des Menschen integriert werden können.
Dabei wird der Standpunkt vertreten, dass diese Maschinen humanoid sein sollen,
um die Interaktion zwischen Mensch und Maschine zu erleichtern. Humanoid be-
deutet, dass Größe und Anatomie sowie die Anzahl der Bewegungsfreiheitsgrade
und die Bewegungsamplituden in den einzelnen Gelenken dem menschlichen Vorbild
nachempfunden sein sollen. Gleich dem biologischen Original verfügt eine solche Ma-
schine über redundante Bewegungsfreiheitsgrade. Das redundante Design ermöglicht
dem Roboter Hindernissen auszuweichen und während der Bewegungsausführung
Gelenkanschläge zu umgehen. Allerdings wird diese Flexibilität mit einem Kon-
trollproblem erkauft. Welche Bewegungslösung soll der Roboter aus den vielen
möglichen Lösungen in der jeweiligen Situation auswählen? Auf der Grundlage
der bisherigen Ausführungen sollte die Maschine möglichst menschenähnliche Bewe-
gungen ausführen. Demnach lautet die zu beantwortende Frage: Auf der Grundlage
welcher Prinzipien wird im menschlichen ZNS für eine bestimmte Bewegungsaufgabe
eine Bewegungslösung aus den vielen möglichen Bewegungslösungen ausgewählt?
Wären diese Prinzipien bekannt, müssten sie in die formale Sprache der Mathematik
übersetzt werden und wären somit zumindest prinzipiell einer computergesteuerten
Maschine zugänglich. Bis heute haben Bewegungswissenschaftler keine zufrieden-
stellenden Antworten auf die Frage, auf der Grundlage welcher Prinzipien im ZNS
die Selektion einer Bewegungslösung erfolgt. Dieses Forschungsdefizit ist der Aus-
gangspunkt der vorliegenden Arbeit.

Da eine Problemlösung eine detaillierte Problemkenntnis voraussetzt, beginnt der
Theorieteil dieser Arbeit mit einer ausführlichen Aufarbeitung des Problems der re-
dundanten Bewegungsfreiheitsgrade. Darauf aufbauend werden in den folgenden
Abschnitten die aktuell einflussreichsten Lösungsansätze, jeweils eingebettet in den
entsprechenden paradigmatischen Rahmen, dargestellt und diskutiert. Es sind dies
Modelle, die dem Informationsverarbeitungsansatz, dem dynamischen Systemansatz
sowie der komputationalen Neurowissenschaft zugeordnet werden können. Dieses
Review bildet die Grundlage für den komputationalen Ansatz dieser Arbeit, der
biomechanische Experimente mit mathematischen Modellierungen, Computersimu-
lationen und Zeitreihenanalysen verbindet und eine Integration von neurophysio-
logischen, biomechanischen und verhaltenswissenschaftlichen Befunden ermöglicht.

ix



Zusammenfassung

Bei der Entwicklung von Modellen ist zu beachten, dass Modelle ihr jeweiliges Origi-
nal nur in Teilen repräsentieren, d.h. sie erfassen nicht alle Attribute des Originalsys-
tems. Dementsprechend können Modelle der motorischen Kontrolle auch nicht alle
Arten menschlicher Bewegungen erklären. Im Kontext des Problems der redundanten
Bewegungsfreiheitsgrade stellt die Analyse mehrgelenkiger Bewegungen im 3D-Raum
ein aktuelles Forschungsfeld der internationalen Bewegungswissenschaften dar. Aus
diesem Grund wird in der vorliegenden Arbeit ein Modell entwickelt, das die Unter-
suchung von Kontrollvorgängen im menschlichen ZNS bei der Ausführung mehrge-
lenkiger Bewegungen im 3D-Raum ermöglicht. Das Modell wird in der vorliegenden
Arbeit zur Untersuchung mehrgelenkiger Zeigebewegungen im 3D-Raum in einem
natürlichen Kontext eingesetzt. Diese Bewegungen sind weniger komplex als die mei-
sten sportlichen Bewegungen. Im Gegensatz zu stark vereinfachten Bewegungsauf-
gaben unter Laborbedingungen sind diese Bewegungen aber trotzdem “ökologisch
valide”, da Menschen auf diese Bewegungen in ihrem Alltag häufig zurückgreifen.

Schnelle, hochgeübte Zeigebewegungen auf Ziele, die sich im unmittelbaren Sicht-
feld der Person befinden, sind höchstwahrscheinlich feedforward kontrolliert. Dabei
wird in der vorliegenden Arbeit davon ausgegangen, dass im ZNS eine Planungs-
instanz einen Bewegungsentwurf bzw. einen Bewegungsplan erstellt und diesen an
eine Kontrollinstanz weiterleitet, die die entsprechenden Muskelkommandos berech-
net. Diese Kommandos werden schließlich an das Muskelskelettsystem gesendet,
das die Kommandos in eine Bewegung umsetzt. Da das motorische System über
eine sehr große Anzahl an Bewegungsfreiheitsgraden verfügt, existieren eine Vielzahl
von möglichen zielführenden Bewegungsplänen. Um besser zu verstehen, auf Grund
welcher Prinzipien im ZNS ein Bewegungsplan ausgewählt wird und auf welcher
Ebene diese Prinzipien arbeiten, wurden zwei Studien durchgeführt. Beiden Studien
liegt ein Experiment zugrunde, bei dem 20 Probanden in der Demonstratorküche des
SFB 588 vier verschiedene Zeigebewegungen jeweils fünfmal ausführen mussten. Die
Ziele, die Startposition sowie die Reihenfolge der Nummernansage waren standar-
disiert. Eine Berührung der Ziele war nicht vorgesehen. Darüber hinaus wurden die
Probanden instruiert, die Bewegungen wie im täglichen Leben auszuführen. Es war
den Probanden überlassen, mit welcher Hand sie auf welches Ziel zeigen. Alle Proban-
den wurden während der Bewegungsausführung mit einem markerbasierten Infrarot
Tracking System (Abtastrate 120Hz) kinematisch vermessen. Für die Berechnung der
inversen Kinematik und Dynamik sowie für die in Studie II durchgeführten Simu-
lationen wurde auf ein im SFB 588 entwickeltes biomechanisches Mehrkörpermodell
zurückgegriffen. Das in dieser Arbeit verwendete Standardmodell verfügt im Ober-
körper über 32 Bewegungsfreiheitsgrade.

Studie I: Bewegungsanalyse. Eine zentrale Annahme bewegungswissenschaftlicher
Forschung ist, dass Informationen über interne Planungs- und Kontrollprozesse
aus Bewegungsmerkmalen abgeleitet werden können, die über verschiedene
Aufgaben hinweg sowie über verschiedene Personen hinweg stabil auftreten.
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Im Detail geht man davon aus, dass sich repräsentierte Bewegungsmerkmale
von nicht-repräsentierten Merkmalen entweder nach dem Kriterium der Ein-
fachheit und/oder dem Kriterium der Invarianz unterscheiden. Eine Analyse
aller 400 Zeigegesten deutet daraufhin, dass man die 20 Probanden vier Grup-
pen zuordnen kann. Zehn Probanden haben die Startposition nicht verlassen
und mit der linken Hand auf die Ziele 1 und 2 gezeigt und mit der rechten
Hand auf die Ziele 3 und 4. Vier Probanden haben die Ausgangsposition eben-
falls beibehalten und mit der rechten Hand auf alle vier Ziele gezeigt. Zwei
Probanden verließen die Startposition während der Zeigebewegung und zeigten
mit der linken Hand auf die Ziele 1 und 2 sowie mit der rechten Hand auf
die Ziele 3 und 4. Der vierten Gruppe können vier Probanden zugeordnet
werden, die die Startposition nicht verlassen haben und unterschiedliche koor-
dinative Muster zeigten. Ein Proband zeigte z.B. zweimal mit der linken Hand
auf das Ziel 1 und dreimal mit der rechten Hand. Zusammenfassend kann
konstatiert werden, dass sich 16 Probanden ähnlicher bzw. wiederkehrender
Bewegungsmuster bedienten, während vier Probanden wechselnde Strategien
wählten und damit die verfügbaren Freiheitsgrade in einem größeren Ausmaß
nutzten. Da die beiden Probanden der dritten Gruppe vereinzelt den Auf-
nahmebereich des Infrarot Tracking Systems verlassen haben und die Proban-
den der vierten Gruppe die gleichen grundlegenden Bewegungsmuster wie die
Probanden der ersten beiden Gruppen zeigten, konzentriert sich die Bewegungs-
analyse auf die Probanden der ersten beiden Gruppen. Typische Resultate wer-
den für die Ziele 1 und 3 präsentiert. Für die Analyse wurden die Zeitreihen der
Handtrajektorien sowie die Zeitreihen der Gelenkwinkeltrajektorien mit Hilfe
einer kubischen Spline-Interpolation zeitnormalisiert und Mittelwerte und Stan-
dardabweichungen berechnet. Die Analyse der verschiedenen Zeigegesten in
extrinsischen und intrinsischen kinematischen Koordinaten zeigt, dass die Tra-
jektorien der Hand in extrinsischen Koordinaten ein sehr viel einfacheres Ver-
laufsmuster aufweisen als in intrinsischen kinematischen Koordinaten. Darüber
hinaus zeigt sich, dass die Trajektorien der Hand über die verschiedenen Be-
wegungsaufgaben und Probanden hinweg hochgradig invariant sind, ganz im
Gegensatz zu den Gelenkwinkeltrajektorien. Sofern Informationen über den
Prozess der Bewegungsplanung aus den beiden eingangs genannten Kriterien
deduziert werden können, deuten die Resultate der ersten Studie darauf hin,
dass im menschlichen ZNS Bewegungen eher in einem extrinsischen Koordi-
natensystem der Hand als in intrinsischen Gelenkkoordinaten geplant werden.
Darüber hinaus legen die Resultate die Vermutung nahe, dass der Mensch
auf Gelenkwinkelebene eine kompensatorische Strategie verfolgt, um die ge-
plante Trajektorie der Hand umsetzen zu können. Eine Gegenüberstellung der
einzelnen Winkelverläufe zeigt, dass die Probanden zum Teil Lösungen pro-
duzieren, bei denen sich annähernd lineare Beziehungen zwischen den einzelnen
Bewegungsfreiheitsgraden der Schulter, des Ellbogens sowie der Thoraxrotation
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Zusammenfassung

zeigen. Diese Befunde deuten daraufhin, dass die Probanden in einigen Fällen
die Tendenz erkennen lassen, einfache Kopplungen zwischen verschiedenen Be-
wegungsfreiheitsgraden zu generieren. Zusammenfassend kann konstatiert wer-
den, dass trotz der immensen Anzahl an kortikalen Neuronen, Muskeln sowie
Gelenkfreiheitsgraden konsistente und reproduzierbare Bewegungsmuster über
die verschiedenen Bewegungsaufgaben und Probanden hinweg identifiziert wer-
den können. Diese Beobachtung legt die Vermutung nahe, dass im ZNS das
Redundanzproblem auf der Grundlage bestimmter Prinzipien aufgelöst wird.
Die Identifikation dieser Prinzipien bzw. die Ebene, auf der diese Prinzi-
pien wirksam werden, ist allerdings auf der Basis von Bewegungsanalysen nur
sehr schwer zu bestimmen, da im ZNS unter Umständen Planungsprozesse auf
der Grundlage anderer Variablen oder Prinzipien ablaufen und die gefundenen
Regelmäßigkeiten in extrinsischen Koordinaten der Hand lediglich Beiprodukte
dieser Prozesse sein könnten. Aus diesem Grund wurde in der zweiten Studie
dieser Arbeit ein Modell entwickelt, das die Synthese menschlicher Bewegungen
auf der Basis verschiedener Planungsprinzipien ermöglicht. Für die Konstruk-
tion humanoider Roboter kann aus der ersten Studie abgeleitet werden, dass
Roboter Zeigebewegungen mit leicht gekrümmten Bewegungsbahnen der Hand
und seit langem bekannten eingipfeligen, glockenförmigen Geschwindigkeits-
profilen mit einer Höchstgeschwindigkeit von 1.5 − 2.0 m/s produzieren
sollten. Die Analyse der Gelenkwinkeltrajektorien zeigt, dass die Proban-
den verschiedene Strategien wählen, um die soeben genannten Eigenschaften
der Handtrajektorien sicherzustellen. Diese Variabilität bietet die Möglichkeit
die Gelenkkinematik zu selektieren, die sich am einfachsten auf den jeweiligen
Roboter übertragen lässt. In Abhängigkeit von der gewählten Kinematik soll-
ten die Motoren des Roboters Winkelgeschwindigkeiten von bis zu 150 Grad/s
im Schulter- und Ellbogengelenk erzeugen können.

Studie II: Bewegungssynthese. In der zweiten Studie dieser Arbeit wird ein kom-
putationales Modell vorgestellt, das Planungsprozesse im ZNS nachbildet. Viele
Studien haben gezeigt, dass Optimierungsmodelle invariante Merkmale men-
schlicher Bewegungen auf verschiedenen Ebenen reproduzieren können. Im
Rahmen von Optimierungsmodellen wird die Anzahl der möglichen Bewegungs-
freiheitsgrade durch die Definition zusätzlicher Randbedingungen eingeschränkt
und auf diesem Weg eine einzelne Trajektorie selektiert. Diese zusätzlichen
Randbedingungen werden durch ein Performanz-Kriterium abgebildet, das als
Zielfunktion fungiert (z.B. minimaler Ruck). Obgleich diese Modelle seit eini-
gen Jahren in der Fachliteratur diskutiert werden, fehlt ein quantitativer Ver-
gleich der Modelle für mehrgelenkige Bewegungen im 3D-Raum fast völlig. Des-
halb ist die Zielstellung der zweiten Studie zu untersuchen, ob Optimierungsmo-
delle in der Lage sind, mehrgelenkige Zeigebewegungen des Menschen im 3D-
Raum zu rekonstruieren. Dabei werden insgesamt vier verschiedene Opti-
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mierungsprinzipien getestet, die unterschiedlichen Planungsräumen zugeordnet
werden können. Konkret wird eine Ruckminimierung auf Handebene (extrin-
sisch-kinematischer Planungsraum) und Gelenkwinkelebene (intrinsisch-kine-
matischer Planungsraum) sowie eine Minimierung der Drehmomentänderung
(intrinsisch-dynamischer Planungsraum) untersucht. Des Weiteren wird eine
modifizierte Ruckminimierung der Hand implementiert, die auf einer extrinsi-
schen und intrinsischen kinematischen Ebene operiert. Die Optimierungsprinzi-
pien bilden in Kombination mit einem biomechanischen Mehrkörpermodell je-
weils ein Optimierungsmodell, das eine Bewegungssynthese mittels Computer-
simulation ermöglicht. Die im Computer synthetisierten Bewegungen können
dann mit experimentell bestimmten menschlichen Zeigebewegungen verglichen
und so die Güte der einzelnen Optimierungsmodelle bestimmt werden. Hierzu
werden die Bewegungen von acht Probanden der ersten Gruppe (siehe Studie
I) herangezogen, so dass insgesamt 40 Datensätze für das erste Ziel und 40
Datensätze für das dritte Ziel zur Verfügung stehen. Eine Analyse der in-
ternationalen Fachliteratur zeigt, dass bei Anwendung von Optimierungsmo-
dellen vereinzelt bis zu vier Bewegungsfreiheitsgraden optimiert wurden. In
der vorliegenden Studie werden für das Ziel 1 die drei Bewegungsfreiheits-
grade der Schulter sowie der Bewegungsfreiheitsgrad im Ellbogengelenk op-
timiert. Die restlichen Bewegungsfreiheitsgrade des Mehrkörpermodells wer-
den mit Motion-Capture-Daten bewegt. Für das Ziel 3 werden die drei Be-
wegungsfreiheitsgrade der Schulter, der Bewegungsfreiheitsgrad im Ellbogen-
gelenk sowie der Bewegungsfreiheitsgrad der Thoraxrotation optimiert. Die
restlichen Bewegungsfreiheitsgrade des Mehrkörpermodells werden wiederum
mit Motion-Capture-Daten bewegt. Diese Forschungsmethodologie ermöglicht
es Rückschlüsse zu ziehen, auf Grund welcher Prinzipien im menschlichen ZNS
ein Bewegungsplan aus der großen Anzahl an möglichen Plänen ausgewählt
wird und auf welcher Ebene der Selektionsprozess von statten geht. Die Re-
sultate der zweiten Studie zeigen, dass keines der Optimierungsmodelle die
gemessenen Zeigebewegungen vollständig reproduzieren kann. Dabei ist zu
bedenken, dass aufgrund von Rauschen im sensomotorischen System und der
komplexen intersegmentalen Dynamik geplante und tatsächliche Bewegungen
höchstwahrscheinlich immer Differenzen aufweisen werden. Die gemessenen
und berechneten Bewegungen wurden zunächst auf der Basis einer prozen-
tualen mittleren quadratischen Abweichung (%RMSD) auf Unterschiede hin
geprüft. Dabei zeigte sich, dass das Prinzip der Ruckminimierung auf Ge-
lenkwinkelebene in der Mehrzahl der Fälle signifikant kleinere Abweichungen
von den gemessenen Bewegungen in extrinsischen und intrinsischen kinema-
tischen Koordinaten produzierte, als die anderen Optimierungsmodelle. In
einem zweiten Schritt wurde ein Ähnlichkeitskoeffizient zum Vergleich topo-
logischer Verlaufscharakteristika zwischen gemessenen und berechneten Bewe-
gungen bestimmt. Dabei zeigte sich, dass wiederum das Prinzip der Ruck-
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Zusammenfassung

minimierung auf Gelenkwinkelebene insgesamt die besten Resultate erbrachte,
d.h. die höchsten Ähnlichkeitskoeffizienten aufwies. Demzufolge erscheint eine
Planung in intrinsischen kinematischen Koordinaten auf der Grundlage einer
Ruckminimierung am plausibelsten. Jedoch ist darauf hinzuweisen, dass das
Prinzip der Ruckminimierung auf Gelenkebene die menschlichen Bewegungen
nicht vollständig reproduzieren konnte. Daher ist der Schluss, dass Bewe-
gungsplanungsprozesse im menschlichen ZNS vollständig im Gelenkwinkelraum
auf der Basis einer Ruckminimierung ablaufen, als zumindest unvollständig
einzustufen. Es erscheint daher denkbar, dass im ZNS unter Umständen ver-
schiedene Prinzipien an dem Prozess der Bewegungsplanung beteiligt sind, die
unterschiedlichen Planungsräumen zugeordnet werden können und problem-
spezifisch kombiniert und gewichtet werden. Das Prinzip der modifizierten
Ruckminimierung der Hand war ein erster Versuch, eine Verknüpfung zwischen
extrinsischem und intrinsischem kinematischen Planungsraum herzustellen. Un-
geachtet dieser Einschränkungen deuten die Befunde darauf hin, dass man mit
dem Prinzip der Ruckminimierung auf Gelenkwinkelebene menschliche Bewe-
gungen nachbilden kann, so dass dieses Prinzip in der Robotik für eine Syn-
these menschenähnlicher Bewegungen auf Roboterplattformen eingesetzt wer-
den kann. Eine Anwendung dieses Kriteriums hätte den Vorteil, dass man
das invers-kinematische Problem umgehen könnte, da der Planungsvorgang in
intrinsischen kinematischen Koordinaten ablaufen würde.

Zusammenfassend ist zu konstatieren, dass die Verknüpfung von Bewegungsana-
lyse und Bewegungssynthese zur Erforschung der menschlichen Bewegungskontrolle
plausibel erscheint und in zukünftigen Untersuchungen weiterverfolgt werden sollte.
In einem ersten Schritt ist ein Bewegungskatalog zu entwickeln, der verschiedene
Alltagsbewegungen unter normalen und veränderten Umweltbedingungen (z.B. Zeit-
oder Präzisionsdruck) abbildet. Dabei ist darauf zu achten, dass die Anzahl der
Probanden reduziert und die Anzahl der individuellen Versuche erhöht wird. Auf
der Ebene der Bewegungsanalyse sind die Kopplungen zwischen einzelnen Gelenkfrei-
heitsgraden sowie die Stabilität dieser Kopplungen bei modifizierten Aufgaben- oder
Umweltbedingungen genauer zu untersuchen. Auf der Ebene der Bewegungssynthese
erscheint die Beachtung physiologisch plausiblerer Prinzipien, die auf muskulärer oder
neuronaler Ebene operieren, angebracht. Darüber hinaus sollten Feedback-Prozesse
Berücksichtigung finden.
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Summary

This thesis is a result of the authors work in the Colobarative Research Center 588
”Humanoid Robots - Learning and Cooperating Multimodal Robots” over the past
five years. One of the major goals of robotics research is the construction of robots
that share their activity space with human partners. To promote man-machine in-
teraction in a human environment, the size, geometry, arrangement of limbs, number
of degrees of freedom (DOFs) and the range of motion of a humanoid robot should
be comparable to those of humans. In addition to anthropometric resemblance, the
robot should use human-like movements. The humanization of the robot has essen-
tially two benefits. First, a robot with a human-like anthropometry would be able
to easily access the human environment. Second, human-like movements by robots
would allow the human user to better predict the robots movements, enhance user
safety and acceptance and encourage the cooperation between man and machine.
Humanoid robots of this kind dispose of a large number of DOFs. This redundancy
is advantageous because it enables robots to avoid obstacles and joint limits similar
to human action. However, this flexibility or movement abundance leads to a control
problem. For instance, which particular movement among the large number of pos-
sible movements should be chosen in a given situation? Based on the above outlined
considerations, a human like movement should be chosen. Consequently, the question
that has to be answered is the following: Which principles does the human CNS use
to choose one movement of the plethora of possible movements to solve the task at
hand? Unfortunately, neuroscientists, psychologists, sports scientists, engineers, and
computer scientists have not been able to provide adequate answers to this question.
This lack of understanding about the CNS is the starting point of this thesis.

In a first step a thorough introduction to the problem of motor redundancy in
the context of human motor control is given. Additionally, existing models from
three different scientific paradigms that deal with the problem of motor redundancy
are presented and discussed. These theoretical considerations form the basis of the
computational approach developed and realized in this thesis. The approach links
biomechanical experiments with theoretical modeling, computer simulations and time
series analysis and thereby enables an integration of results from neurophysiological
studies, studies on the physics of the musculoskeletal system and finally psychophys-
ical studies.

However, since models reproduce their original only in parts, which means that
they do not cover all available aspects of the original, motor control models can
only account for specific classes or aspects of human movements. Since multi-joint
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movements in 3D space are a current field of research in human motor control, the
movements analyzed in this thesis will be multi-joint pointing movements in 3D
space. These movements are less complex than most movements in sports, but are
still “ecologically valid” compared to artificial labor tasks because humans use these
movements in their daily life.

Highly practiced goal directed pointing movements towards targets in the field of
vision are most likely feedforward controlled. Thereby, it is assumed that a planner
computes a movement plan that is transmitted to a controller, which transforms the
plan into adequate motor commands. Finally, the motor commands are sent to the
musculoskeletal system which transforms the motor commands into limb movements
according to the movement plan. Due to the numerous DOFs in the human motor
system, there actually exist an infinite number of possible movement plans for any
given task. To examine which principles the CNS uses to choose a movement plan
and on which level these principles work (e.g. kinematic vs. dynamic coordinates
or extrinsic vs. intrinsic coordinates) two studies were conducted. Both of them are
based on an experiment in which several subjects had to point repeatedly to four
different targets. The experiment was conducted in the test-kitchen of the CRC 588.
All movements were tracked with an IR-tracking system. The calculation of inverse
kinematics and inverse dynamics was done using a biomechanical model that was
developed in CRC 588.

Study I: Movement analysis One of the main assumptions in human motor control
is that information about the process of movement planning in the CNS can
be deduced from behavioral regularities or invariant movement features. More
precisely, represented movement features differ from non-represented features
in the criterion of simplicity and/or the criterion of invariance. The coordina-
tion strategies used by the subjects can be assigned to one of four groups, as
follows. Ten subjects, comprising group 1, did not leave the starting position
and pointed with their left hand to targets 1 and 2 and with their right hand
to targets 3 and 4. In group 2, four subjects again did not leave the starting
position but pointed with their right hand to all four targets. Two subjects
left the starting position and turned toward the targets, subsequently pointing
with their left hand to targets 1 and 2 and with their right hand to targets
3 and 4. The fourth group, consisting of four subjects did not use consistent
coordination strategies for each target. For example, in five separate tasks, one
subject pointed to target 1 twice with the left hand and three times with the
right hand. In other words, the subjects of the fourth group used the same
strategies as the subjects of groups 1 and 2, but changed coordination strate-
gies from trial to trial for each target. The results indicated that 16 subjects
preferred recurring coordination strategies for each target, while four subjects
preferred alternating coordination strategies for each target. The four subjects
implementing alternating coordination strategies used the available DOFs to
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a far greater extent. The two subjects from group 3 could not be analyzed
because they left the capture volume during several of the trials. Therefore,
typical results of groups 1 and 2 are presented. Moreover, the analysis focused
on targets 1 and 3. To be able to compare the time series of the trajectories
of the hand and joints of the different trials, the time series were normalized
in time using a cubic spline interpolation. After the time normalization means
and standard deviations were calculated. A comparison of the pointing move-
ments in extrinsic and intrinsic coordinates revealed that the trajectories of the
hand in extrinsic coordinates were much simpler than the joint angle trajec-
tories in joint space. Furthermore, in contrast to the joint angle trajectories,
the trajectories of the hand were highly invariant across different movement
tasks. When information about the process of movement planning can be de-
duced from the criterion of simplicity and/or the criterion of invariance, the
results of this study indicate that the CNS uses extrinsic instead of intrinsic
coordinates in the process of movement planning. Furthermore, the CNS may
use a compensatory control strategy on the joint level to assure the planned
trajectory is achieved. Moreover, the inter-joint coordination analysis revealed
highly linear relationships between different DOFs in some cases. This indi-
cates that the CNS sometimes shows, even in joint space, a tendency to use
rather simple couplings between different DOFs. Considering the large number
of neurons, muscles and joints it is quite remarkable that in multi-joint pointing
movements in 3D space consistent and reproducible patterns of motor behavior
across different subjects and tasks were found. These observations suggest that
the CNS solves the redundancy problem based on specific principles. However,
it has to be admitted that it is difficult to determine on which level they arise
since the brain may use other planning variables or principles and the simplic-
ity and invariance of hand trajectories may be by-products of these. Therefore,
in the second study of this thesis the planning principles themselves as well
as the level on which these principles might work were focused. However, be-
sides these biological aspects the results of this study indicate that humanoid
robots should generate pointing gestures with slightly curved hand paths and
single peaked, almost bell shaped velocity profiles with a peak velocity of 1.5 -
2.0 m/s. The analysis of the joint angle trajectories showed that humans use
different coordination strategies. Different coordination strategies of different
subjects provide the chance to select the kinematics that may best be mapped
to a specific humanoid robot. Depending on the chosen kinematics, the motors
of the robot should be able to produce angular velocities of up to 150 deg/s in
the shoulder and elbow joint.

Study II: Movement synthesis In the second study a computational model of hu-
man movement planning was developed to unravel the principles the CNS might
use to solve the redundancy problem. Many studies reveal that optimal con-
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trol models can reproduce movement regularities on multiple levels. In optimal
control models a unique trajectory is selected by adding additional constraints
on the task and thereby reducing the effective DOFs. This is usually done
by selecting a cost function, that has to be optimized (e.g. minimum jerk).
Although, these models are established in technical literature for some years
a quantitative comparison between the performance of those models for multi-
joint movements in 3D space is rather new. Therefore, the purpose of the
second study is to quantitatively examine the performance of different optimal
control models in reproducing human multi-joint pointing movements in 3D
space. Thereby different optimization principles are coupled with a multi-body
model of the human musculoskeletal system to form different optimal control
models that can be assigned to different planning spaces. We tested a mini-
mum hand jerk model (extrinsic-kinematic planning space), a minimum angle
jerk model (intrinsic-kinematic planning space), and a the minimum torque
change model (intrinsic-dynamic planning space). Furthermore we developed
a planning algorithm than works on an extrinsic and intrinsic kinematic level
called a modified hand jerk model. With the help of this computational ap-
proach human pointing gestures are generated via computer simulations and
are compared to experimentally determined pointing gestures. Thereby con-
clusions might be drawn, which principles the CNS uses to choose a movement
plan and on which level or planning space these principles work. The results
show that none of the optimal control models could completely reproduce the
human trajectories. However, due to noise in the sensorimotor system and the
complex intersegmental dynamics during movement production planned and
executed movements will always differ to some extend. The variations between
measured and predicted trajectories are quantified using percental root mean
square differences (%RMSDs). The minimum angle jerk model exhibited in
most of the cases significantly smaller deviations from the measured trajectories
in extrinsic and intrinsic kinematic coordinates than all other optimal control
models. However, our analysis indicated that an exclusive comparison of dif-
ferent optimal control models on the basis of a %RMSD is insufficient for the
determination of the best model. Because of that, we calculated a similarity
coefficient between measured and predicted trajectories. Once again, the min-
imum angle jerk model yielded the closest fit to the human data. Therefore, a
planning in intrinsic kinematic coordinates based on a jerk minimization seems
the most plausible based on our results. However, due to the fact that the
minimum angle jerk model did not fully reproduce the measured trajectories
an exclusive planning in intrinsic kinematic coordinates based on a minimum
angle jerk principle seems at least debatable. It is therefore conceivable, that
the CNS might combine different optimization strategies in motor planning de-
pending on the movement task. The modified minimum hand jerk model is a
first attempt to implement this idea. Despite these limitations, the findings of
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this study exhibit that human movements can be emulated by a jerk minimiza-
tion on joint level. The application of a minimum angle jerk model in robotics
would have the advantage that the inverse kinematics problem would be solved,
since the motor planning takes place in intrinsic kinematic coordinates.

In summary, it can be stated that the combination of movement analysis and move-
ment synthesis for the study of human motor control seems plausible and should be
continuously used in future studies. In these studies movement tasks of different
complexity should be analyzed such as, for instance, movements that involve the use
of different numbers and combinations of DOFs. In addition, subjects should carry
out these movements under pressure of time or pressure of accuracy. In the context
of movement analysis, couplings between different degrees of freedom should be ana-
lyzed. Furthermore, the stability of these couplings across different movement tasks
and different environmental conditions have to be examined. Moreover, in the con-
text of movement synthesis future studies should include the analysis of models that
are physiologically more feasible than the models tested in this thesis. In addition,
feedback processes should be taken into account.

xix





1 Introduction

1.1 Motivation

“A remarkable machine, unlike any other I had seen before, was rushing to-
wards me. It moved so quickly that it was difficult to see all its parts. It
apparently did not have any wheels but nevertheless moved forward at an
amazing speed. As I was able to see, its most important part was a pair of
powerful, elastic rods, each one consisting of several segments. They changed
their shape so quickly, stretched and retracted, extended and folded, flashing
by each other and moving along peculiar arcs of such precision and beauty
that it was impossible to penetrate into their essence and origin. How far is
our technology from constructing such mechanisms!!!

I was given a tube called a “time magnifier”. Looking in it, I could see the
movements of these objects slowed down and extended in time. Looking after
the machine that rushed away, I could see it in more detail. Each rod moved
along a complex curved arc suddenly made a soft contact with the ground.
Then, it looked as if lightning ran along the rod from the top to the bottom,
the rod straightened and lifted off the ground with a powerful, resilient push,
and rushed upwards again. In the upper part of the machine, there were two
more similar rods, but smaller in size. As I was able to understand, the upper
rods were connected with the lower ones by some kind of transmission and
moved at the same rhythm. However, their direct purpose remained unknown
to me.

As I was told, the machine consisted of more than two hundred engines of dif-
ferent size and power, each one playing its own particular role. The controlling
center was on the top of the machine, where electrical devices were located that
automatically adjusted and harmonized the work of hundreds of motors. Due
to these controlling structures, the rods and levels were able to move along the
complex curves that allowed the machine to move without wheels faster than
wind” (Bernstein, 1996, p. 121).

The term robot goes back to Karel Capeck’s play Rossum’s Universal Robots
(RUR). This play, which debuted in 1921, is largely credited as being the begin-
ning of the robotics era. Capeck’s vision in regard to robots was twofold. First, he
suggested that robots would be human-like and second, that they would interact with
humans in a natural environment. Today, almost a century later, Capeck’s vision
has yet to be realized. While many robots have been developed to date, the majority

1



1 Introduction

of these are used primarily for highly repetitive and high-precision tasks in industrial
applications (Craig, 2005). However, due to the technological progress within the
last 20 years robotics research began to focus on the topic humanoid robots (Becher
et al., 2004; Schaal, 2007b). It is generally accepted that humanoid robots will be
an integral part of human life in the future, just as computers, the internet or email
are today (Oztop et al., 2004). Possible future applications for humanoid robots are
residential service, personal robots for the elderly, playmate robots in child education
or robots for danger zones (e.g. space, nuclear power stations). Humanoid robots
will undertake tasks where there are simply too few humans to cope with the social
needs or where the environment is too dangerous for humans (Tanie, 2003; Fong
et al., 2003; Brock et al., 2005; Schaal, 2007b). To promote man-machine interac-
tion in a human environment, the size, geometry, arrangement of limbs, number of
degrees of freedom (DOFs) and the range of motion of a humanoid robot should
be comparable to those of humans. In addition to anthropometric resemblance, the
robot should use human-like movements (Wank et al., 2004; Asfour et al., 2008).
The humanization of the robot has essentially two benefits. First, a robot with a
human-like anthropometry would be able to easily access the human environment.
Second, human-like movements by robots would allow the human user to better pre-
dict the robot’s movements, enhance user safety and acceptance and encourage the
cooperation between man and machine (Khatib et al., 2004; Schaal, 2007b). One of
the goals of robotics research is to create a team of humanoid robots that is able to
defeat the current FIFA Football World Champion by 2050 (Ferrein, 2005). Hence,
the question arises how far robotics research has come. Many advancements have
been made in the development of humanoid robots. There already exist robots that
can walk (Sakagami et al., 2002), that can manipulate objects (Asfour et al., 2008)
or show emotions (Brooks, 2007). But humanoid robots who are able to walk, ma-
nipulate objects and show emotions in a changing human centered environment are
still part of fundamental research (Asfour, 2003). Nevertheless, the field of robotic
research has the ability to construct humanoid robots that dispose of a large num-
ber of DOFs (Fig. 1.1). This redundancy is advantageous because it enables robots
to avoid obstacles and joint limits similar to human action (Atkeson et al., 2000).
However, this flexibility or movement abundance leads to a control problem. For
instance, which particular movement among the large number of possible movements
should be chosen in a given situation? Robotics research is traditionally situated
in mechanics and computer science, and based on control theory and optimization
theory. To further the development of humanoid robots that work in human-centered
environments, robotics research should begin to collaborate with additional fields of
study including psychology, biology, and neuroscience (Schaal, 2007b). If a robot is
developed for operating in a human environment, uses the same objects and tools that
humans use in their daily life, and generates human-like movements, it is beneficial
to understand how humans accomplish everyday motor tasks.
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1.1 Motivation

Figure 1.1: Partially anthropomorphic robot system ARMAR IIIa of the Colobara-
tive Research Center (CRC) 588 “Humanoid Robots” consists of seven sub systems:
sensor head with flexible neck, left and right arms, left and right five-finger hands,
torso and mobile platform (43 DOFs) (Albers et al., 2006; Asfour et al., 2008).

Today, the fields of biological motor control and robotics have already started to
interact (Schaal and Schweighofer, 2005; Ijspeert, 2006) and exchanged ideas (Holler-
bach, 1982; Beer et al., 1998; Sternad and Schaal, 1999; Piazzi and Visioli, 2000;
Atkeson et al., 2000; Sun and Scassellati, 2005; Konczak, 2005; Stein et al., 2006).
The field of robotics has proved to be a useful environment for developing and test-
ing hypotheses about biological motor control. In other words, models of biological
motor control can be corroborated or discarded by testing them on robots. In addi-
tion, the capabilities of biological systems by far surpass those of artificial systems
(Flash et al., 2004). Therefore, the body of knowledge gained in the field of biological
motor control may help engineers to develop hardware and software components for
humanoid robots that are able to generate human-like movements and operate in
future human environments.

Although this thesis is inspired by robotics research, it is founded in biology. Study-
ing the way humans coordinate their movements in daily life or more demanding ac-
tivities such as sports is an important scientific topic in many fields of study including
medicine, psychology, kinesiology, and certainly, cybernetics and robotics. With the
technical enhancements for capturing motion sequences and the pioneering work of
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Muybridge (1957) and Bernstein (1967) in this area 1, the attempt to understand
human movements by means of analysis and modeling has become an expanding
field of study. The fact that human movements are part of everyday life hides their
intrinsic complexity. The initial assumption that an understanding of human move-
ments could be gained by simply improving measurement techniques and carrying
out carefully designed experiments did not produce adequate results. Typically, the
initial experiments brought about more questions than answers, and the attempt to
understand the functionality of human movements is ever growing even after nearly
100 years of extensive multidisciplinary research (Morasso and Sanguineti, 2004).

Imagine sitting in front of a glass of water. To take a drink from the glass would re-
quire first grasping the glass and then directing it toward the mouth. However, when
you feel thirsty, you simply grasp the glass and take a drink without much thought.
In doing so, we are controlling perhaps the most complex system nature has ever pro-
duced. The human movement system consists of billions of interconnected neurons,
approximately 800 muscles, and over 200 mechanical DOFs. This highly redundant
system enables us to achieve movement tasks like the one just described in countless
ways. In this context Bernstein (1996, p. 41) defines coordination as “overcoming
the excessive degrees of freedom of our movement organs, that is, turning the move-
ment organs into a controllable system.” Consequently, one of the central research
questions in biological motor control is the following:

How does the central nervous system (CNS) turn the movement organs into a control-
lable system and thereby choose one movement from the infinite number of possible
movements?

Unfortunately, neuroscientists, psychologists, sports scientists, engineers, and com-
puter scientists have not been able to provide adequate answers to this question.
This lack of understanding about the CNS is the starting point of this thesis. Al-
though the topic of “coordination” is of great relevance for robotics, it should be
mentioned that it may not be possible or even advantageous for a humanoid robot to
use the same principles for movement generation as humans. Nonetheless, biological
motor control is an important field for robotics research as it provides inspiration for
hardware and software components for humanoid robots. Therefore, it is necessary
to enhance our understanding of how humans move and which principles humans use
for movement generation. If those principles are discovered, mathematical models
need to be developed to describe the principles of human movement generation. In
the future, those models may be used in robotics or for the control of prostheses
(Flash et al., 2004).

1A comprehensive historical treatment of pioneering work in the field of the movement science can
be found in the books of Latash and Zatsiorsky (2001) as well as Nigg and Herzog (2007).
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1.2 Structure of the thesis

In July 2001, the CRC 588 “Humanoid Robots - Learning and Cooperating Multi-
modal Robots” was established by the German Research Foundation. This project is
designed for 12 years. More than 50 scientists from the Universität Karlsruhe (TH),
Forschungszentrum Karlsruhe, Forschungszentrum Informatik, and Fraunhofer In-
stitute for Information and Data Processing are involved in this interdisciplinary
research project. The goals of CRC 588 are to generate concepts, methods, and con-
crete mechatronical components for a humanoid robot that will be able to share its
activity space with a human partner (Becher et al., 2004). This thesis is the result
of the author’s work on this project over the past five years. During this period, the
author worked with colleagues from the computer science department and the engi-
neering science department on different research questions involving motion planning
of humanoid robots or motion recognition with Hidden Markov Models. Working on
these topics let finally to the research objective of this thesis and still has great im-
pact on it. However, these studies are not covered in this thesis but already published
or in print (Fischer et al., 2005; Stein et al., 2005, 2006; Moldenhauer et al., 2006;
Boesnach et al., 2006a,b; Gehrig et al., 2008; Fischer et al., 2009a,b, 2010).

In addition to the topics of motion planning of humanoid robots and motion recog-
nition that are classical topics of computer science or robotics, the author began to
explore questions of biological motor control. This ultimately led to the establish-
ment of the research objectives of this thesis (Chap. 1.1). The structure of this thesis
is presented in the following paragraphs (Fig. 1.2).

Chapter 2 begins with a preliminary discussion on the topic of human movements
and narrows the focus of research for this thesis to the problem of motor redun-
dancy. The next section presents a thorough introduction to the problem of motor
redundancy. Additionally, existing models from three different scientific paradigms
that deal with the problem of motor redundancy are presented and discussed. These
theoretical considerations form the basis of the computational approach developed
and realized in this thesis. This approach is presented at the end of Chapter 2.

Chapter 3 describes the methods used in the two studies (Chap. 4 and 5) based on
the theoretical considerations of chapter 2. A description of the biomechanical data
acquisition and data processing is given. For the calculation of joint angles and joint
torques, the Mkd-Tools framework is used. This framework was developed in the
CRC 588 to establish a standardized biomechanical model of the human skeletal sys-
tem. The model itself was developed by Stelzner (2008) and enhanced by Simonidis
(2010). The author was involved in the development of the Mkd-Tools framework to
aid in the establishment of an interface between biomechanical data acquisition and
Mkd-Tools framework, and in an advisory function concerning aspects standardiza-
tion and biological plausibility of the model. Portions of the methods described in
chapter 3 have been published previously (Stein et al., 2008a; Simonidis et al., 2010).
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In chapter 4, the first of two studies is presented. One of the key assumptions in
biological motor control is that information about the process of movement planning
and control can be deduced from behavioral regularities (Bernstein, 1967). A large
number of such regularities have been reported in literature (Goodman and Gottlieb,
1995), however, the analysis of multi-joint daily life movements in 3D space is uncom-
mon. Thus, the purpose of the first study is to analyze different multi-joint pointing
movements in 3D space with respect to the selection of regularities. A definition
of some regularities or principles of the system’s behavior may be obtained through
the observation of the behavior of the human movement system under different con-
ditions. These regularities may provide an initial idea of how humans reduce the
available DOFs and are also relevant for robotics research. If a humanoid robot is
supposed to move in the same manner as a human, its movements should exhibit the
same regularities as human movements. Some of the results presented in chapter 4
have been published previously (Stein et al., 2008b, 2009a).

The study presented in chapter 5 is based on the work presented in chapters 2, 3
and 4. Different approaches to the problem of motor redundancy are discussed in the
literature (Chap. 2). Many studies show that optimal control models can reproduce
movement regularities on multiple levels (Todorov, 2004). In optimal control models,
a unique trajectory is selected by adding additional constraints on the task and
thus reducing the effective DOFs. This is usually accomplished by selecting a cost
function to be optimized (Engelbrecht, 2001). Although these models have been
established in technical literature for some years, a quantitative comparison between
the performance of the models for multi-joint movements in 3D space is a fairly new
concept (Flash et al., 2003; Admiraal et al., 2004; Hermens and Gielen, 2004; Kaphle
and Eriksson, 2008; Gielen, 2009b). Therefore, the purpose of the second study is
to quantitatively examine the performance of different optimal control models in
reproducing human multi-joint pointing movements in 3D space. In addition, the
study will examine the tested models to determine if they are able to reproduce
the regularities found in the first study (Chap. 2). The developed optimization
method for the movement generation based on different criteria has been published
previously (Simonidis et al., 2009a,b). Some preliminary results of this study have
also been published beforehand (Stein et al., 2009b,c; Simonidis et al., 2009a; Stein
et al., 2010). Based on the previously published work, the author was awarded with
the “Reinhard Daugs Förderpreis” of the section “Sportmotorik” of the “Deutsche
Vereinigung für Sportwissenschaft”.

The results of this thesis are summarized in chapter 6. This chapter includes a
discussion of the theoretical considerations (Chap. 2), the methods (Chap. 3) and
finally the results of the two conducted studies (Chap. 4 and 5). Based on this
summary an outlook on future research is given.
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Figure 1.2: Structure of this thesis
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2 Human motor control

2.1 Introduction

Moving our body and body segments in three dimensional space are a defining char-
acteristic of human life. Without the ability to move, humans would not be able
to speak, type, reach for a cup of coffee or ride a bicycle. Human movements can
take on a variety of different forms that can be assigned to one of three categories:
reflexive, rhythmic, and voluntary (Ghez and Krakauer, 2000; Konczak, 2008). Re-
flexive movements are rather involuntary, coordinated patterns of muscle contraction
and relaxation elicited by peripheral stimuli. Among other things, rhythmic motor
patterns include repetitive, alternating contractions of flexor and extensor muscles on
both sides of the body during locomotion. Voluntary movements are often referred
to as skills or motor skills (Ghez and Krakauer, 2000; Magill, 2001). A motor skill
or action can be seen as a motor task that implies the achievement of a specific goal.
Example motor skills may include grasping a glass of water or serving a tennis ball,
with respective goals being the reduction of thirst and the avoidance of a double
fault. In both cases however, different subjects will produce different movements
to achieve the end goal. Furthermore, humans can accomplish the same goal using
different effectors, or different goals using the same effectors. This phenomenon has
been termed motor equivalence and indicates a remarkable flexibility of the human
motor system. An example of motor equivalence is writing one’s name with a pencil
held between the fingers of the right or left hand, the toes of the right or left foot, or
even between the teeth (Kelso et al., 1998). This dissertation addresses motor skills
rather than reflexive or rhythmic motor patterns.

As in every scientific discipline, the object of research is classified according to a
specific scheme. The field of human motor control is no exception. This is important
for researchers to be able to communicate their research findings, which is a pre-
requisite for the development of a scientific field. Another important aspect is that
the plethora of different movements humans can perform is an enormous challenge
in the process of model building. Models typically do not include all features of the
system to be simulated (Stachowiak, 1973). In the field of human motor control, this
implies that motor control models can only account for specific classes or aspects of
human movements. The issue is then to determine the distinguishing characteristics
of specific motor skills or tasks. Two important schemes of classification are discrete,
serial and continuous skills as well as open versus closed skills (Magill, 2001; Schmidt
and Wrisberg, 2004; Schmidt and Lee, 2005). In the first scheme, discrete skills are
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Figure 2.1: Human movements (M) emerge from the interaction of the individual,
the task and the environment (adapted from Shumway-Cook and Woollacott, 2007)

organized in such a way that an action has a recognizable beginning and end (e.g.,
performing a serve in tennis). A serial skill is comprised of several discrete skills that
are linked together in a sequence (e.g., the starting of a car). In such a case, the
order of the actions is crucial for success. Finally, continuous skills, in contrast to
discrete skills, have no recognizable beginning and end. Such actions are performed
in an ongoing and repetitive way. Examples of continuous skills include steering a
car, running and swimming. A second criterion for the classification of motor skills
is the extent to which the environment is stable, or at least predictable, throughout
the performance. In this context, open skills are performed in an environment that
is constantly (and perhaps unpredictably) changing. Examples may include martial
arts or games such as football or basketball. In these instances it is difficult for the
performer to effectively predict the future moves of teammates and/or opponents.
On the other hand, closed skills are performed in an environment that is stable and
predictable. Examples include bowling, darts and a gymnastic routine. However,
it should be noted that each of the two schemes represent end points of a contin-
uum, and that there are many actions between those endpoints. Nevertheless, these
designations are prevalent in the human motor control literature, and may even be
combined to produce a more complex approach (e.g. Gentile, 2000). Together, the
two schemes indicate that human movements emerge from the interaction of the
individual, the task and the environment (Fig. 2.1). The individual produces a
movement to achieve a task. This could be a task that requires a discrete, a serial or
a continuous action. For instance, grasping a glass is a discrete task. Furthermore,
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the skill may require rapid adaptations to a constantly changing environment (open
skill) or the environment is stable and predictable (closed skill). Grasping a glass
in a kitchen would be considered a closed skill. Finally, the movement organiza-
tion is constrained by the functional capacity of the individual to achieve a specific
goal. The actions analyzed in this thesis will be of a discrete nature, performed in a
perfectly stable and predictable environment (closed skills).

The uniqueness of individuals, with the exception of identical twins, is a basic
fact of life. Individual characteristics are obvious upon birth and continue to change
with age. These differences are also reflected in human movement behavior. Why
is one person a better gymnast or surgeon than another given the same amount
of practice? Which aptitudes or abilities contribute to a skilled performance in
gymnastics? The term ability, often used interchangeably with the terms aptitude
or capability, usually refers to a hypothetical construct that supports performance
in a number of tasks. The ability to react may underlie a number of specific skills
such as those required in sprint starts in athletics or quick reactions in sports games.
Abilities are relatively stable traits that have been genetically determined and/or
developed during growth and maturation (Schmidt and Lee, 2005). The number of
motor abilities humans possess is unknown and currently no common classification
system exists (e.g. Roth, 1999; Bös, 2002; Schmidt and Lee, 2005). In this thesis,
the author does not attempt to describe, explain, or predict performance differences
among people based on abilities as is done in differential approaches. Instead, this
thesis focuses on the fundamental movement principles of human motor control. The
intent is to study mechanisms common to all healthy people.

To understand the functionality of human movements, analysis is carried out in the
field of human motor control. This interdisciplinary field “is directed at studying the
nature of movement and how humans control their movements” (Shumway-Cook and
Woollacott, 2007, p. 4). In other words, motor control is “the study of postures and
movements and the mechanisms that underlie them” (Rose, 1997, p. 4). Rosenbaum
(1991, 2002) identifies four major problems or challenges in the field of motor control:

Degrees of freedom problem. When reaching for an object, individuals may adopt
many postures at the beginning, end and on the way to the final posture. Much
work has been conducted on the problem of the overabundance of degrees of
freedom (DOFs) in the body relative to the description of the task at hand.
The problem is how a particular solution emerges when an infinite number of
solutions exist.

Serial order problem. Almost every skill, like speaking, typing, or running, consists
of different elements that need to be ordered correctly. The challenge is to
understand how humans control the serial order of their behavior.

Perceptual-motor integration problem. Movement without perception is impossi-
ble and sensory information is needed to plan and correct movements. How are
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movements linked to perception? How are movements affected by perceptual
processing and how is perceptual processing affected by movement?

Skill-acquisition problem. The field of motor learning concerns the study of the
acquisition and modification of skills. The first challenge is in understanding
how the relationship between movements and their effects evolve. The second
challenge is distinguishing how the process of practice needs to be structured
to support the development of those relationships.

It seems that these four problems cannot be solved independently. For example, if
one tries to understand how the central nervous system (CNS) chooses one particular
movement out of the plethora of possible movements (the degrees of freedom prob-
lem), it must also considered how afferent signals are transformed into efferent signals
in the CNS and vice versa (the perceptual-motor integration problem), and how the
strategies to overcome the redundancy of the human motor system are learned (skill
acquisition problem). As described in the introduction (Chap. 1.1), the research
objective of this thesis is to address the question of how the human CNS generates
or produces coordinated movements, and in doing so, manages to overcome the ex-
cessive degrees of freedom of the human body. This problem will be outlined in more
detail in the next chapter (Chap. 2.2) following the identification of the degrees of
freedom problem as the object of research.

2.2 The degrees of freedom problem

“You probably do not know that God has a cousin who has never been very
famous. So, the cousin asked God to help him achieve fame and glory in
science. To please the cousin, God gave him an ability to get any information
about physical systems in no time and to travel anywhere within a microsecond.
First, the cousin decided to check whether there was life on other planets. No
problems; he traveled to all the planets simultaneously and got an answer.
Then he decided to find out what the foundation of matter was. Again, this
was easy: He became extremely small, crawled inside the elementary particles,
looked around, and got an answer. Then, he decided to learn how the human
brain controls movements. He acquired information about all the neurons and
their connections, sat at his desk and looked at the blueprint. If the story has
its right, he is still sitting there and staring at the map of neural connections”
(Nikolai Alexandrovich Bernstein) (Latash, 2008b, p. 33).

Movement generation in biological systems is ill-posed in the sense that the task
requirements can generally be met by an infinite number of different movements.
The notion of well-posed and ill-posed problems was developed in mathematics in the
context of partial differential equations. A problem is well-posed when three criteria
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are met: a solution exists, is unique, and continuously depends on the parameters that
define the problem. In contrast, ill-posed problems do not fulfill at least one of the
stated criteria (Kawato et al., 1990). Kawato (1996) distinguishes three kinds of ill-
posed problems in human motor control, described as follows. In artistic gymnastics,
experts can perform outstanding movements such as somersaults, back somersaults
or handsprings. Novices however, may not be able to perform a simple handstand
because of limitations of their motor skills and motor abilities. The nonexistence of
a solution is the first kind of ill-posed problem. The second kind of ill-posed problem
is when the solution to the problem is not uniquely determined. Bernstein (1967)
was the first to draw attention to this kind of problem. In motor control literature,
this problem is referred to as the Bernstein problem, the degrees of freedom problem
or the problem of motor redundancy (Saltzman, 1979; Turvey, 1990; Latash, 1996).
Most of the problems in motor control are ill-posed in the sense that the solution
is not unique (Kawato et al., 1990). In connection with the third problem, consider
a waiter delivering a glass and a bottle of water to a thirsty customer. Initially,
the glass is inverted and the waiter grasps the glass in a thumb down position. By
doing so, the waiter is able to easily rotate the glass hold it in a thumb up position
while he pours water into the glass. The waiter tolerates an initial discomfort while
picking up the glass for the sake of a later comfort while pouring water into the glass.
This phenomenon is called end-state comfort. Rosenbaum et al. (2006) studied this
phenomenon in a series of experiments in which they analyzed the choice of overhand
grip versus underhand grip. Subjects were asked to grasp a handle and rotate it
to a target orientation. In some cases, the choice of grip was consistent within a
certain range of the initial and target handle orientation but abruptly changed at the
boundary of these regions. If small changes in the parameters defining the motor task
lead to discontinuous changes of solutions, then the third kind of ill-posed problem
is encountered (Kawato, 1996). This thesis focuses on the second kind of ill-posed
problem. Despite efforts made in human motor control, the problem remains unsolved
(Latash et al., 2007). In this chapter, ill-posed problems with no unique solution in
the context of movement generation are presented. These are problems that the CNS
must solve when generating goal-directed movements. This thesis does not address
how the CNS initially decides to perform a movement, as this seems to be an issue
of philosophy or psychology. For this study, it is simply assumed that a goal has
already been established. For example, the goal may be to reduce thirst, and thus
the subject is required to reach for a glass of water. In generating or controlling a
visually guided movement, the CNS needs to convert spatial information about the
target location, initially defined in retinal coordinates, into patterns of arm muscle
activity to be able to move the arm toward the target. It is generally assumed that
there are intermediary coordinate frames used by the CNS for movement planning.
Sensorimotor transformations between those frames are needed to translate retinal
coordinates of the target into motor commands that lead to a goal-directed arm
movement (Soechting and Flanders, 1992) (Fig. 2.2). A detailed description of
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Figure 2.2: The problem of reaching toward a glass of water can be defined as
a series of sensorimotor transformations between different coordinate frames. In-
formation about spatial targets is converted into a number of intermediate frames
from the trajectory of the hand to the required motor commands for the task. This
is an inverse process that requires a one to many mapping, whereas the opposite
direction is a direct process that requires a many to one mapping (adapted from
Wolpert, 1997; Scott, 2000b, 2005; Latash, 2008a).

different frames of reference and sensorimotor transformations between them can be
found in Lacquaniti (1997).

Reaching toward a glass of water requires that eye-centered visual information is
transformed into a limb-centered goal of the intended movement. Andersen et al.
(2004) distinguish between three options to perform this computation. The first
option is a sequential transformation whereby the eye-centered location of the visual
target is linked with the eye-orientation within the head. Thus, the coordinates of
the target, or the glass of water, are transformed from an eye- or retina-centered
frame of reference into a head-centered frame of reference. The position of the head
with respect to the body is then taken into account to form a representation of the
target in body-centered coordinates. In the last step, the body-centered position of
the subject’s hand is subtracted from the body-centered position of the target to
generate a hand-centered representation of the target (Flanders et al., 1992). In the
second option, all of the computations mentioned above are carried out in a single step
and the location of the target is read out from this high-dimensional representation
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(Battaglia-Mayer et al., 2000). The third option implies that the location of the target
and the initial location of the hand are represented in eye-centered coordinates. Via
a simple subtraction, a direct transformation of the target in hand coordinates is
computed (Buneo et al., 2002). Regardless of which computational option is adopted
by the CNS, both position and orientation can be characterized in each case by six
Cartesian coordinates in external hand space (Zatsiorsky, 1998). The CNS now has
to compute a trajectory of the hand toward the target in external hand space. The
problem is that an infinite number of trajectories connect the position of the hand
to the position of the target (Fig. 2.3). Thereby, the term trajectory refers to the
spatial and temporal aspect of a movement. In other words, there are an infinite
number of spatiotemporally routes connecting the starting position of the hand and
the glass of water in 3D space. Consequently, there is no unique solution and the
problem is ill-posed. This problem is usually referred to as the trajectory formation
problem (Kawato et al., 1990; Kawato, 1996).

It should be noted that there is still a debate regarding on which level or in which
space (e.g. extrinsic or intrinsic space) trajectories are planned (Soechting and Flan-
ders, 1998). This problem is discussed in more detail in chapters 2.3.3.1, 4 and 5.
Regardless of in which space trajectories are planned, so-called coordinate transfor-
mations from one space to another are an essential part of motor control. First of all,
it is assumed that trajectories are planned in an extrinsic task space (Morasso, 1981;
Georgopoulos et al., 1982, 1986). Because of the anatomical design of the human
arm, joint rotations are needed to be able to translate the hand to the target loca-
tion. Hence, the next step implies a coordinate transformation from external space
into joint space. As a result, a joint angle configuration that can be used to attain
the given position and orientation of the hand in 3D space is required. The human
hand is part of a system consisting of segments (e.g. upper arm) connected by joints.
The human arm and hand without fingers have at least seven DOFs: three at the
shoulder (abduction/adduction, anteversion/retroversion and internal/external rota-
tion), one at the elbow (flexion/extension), two at the wrist (flexion/extension and
ulnar/radial deviation) and one between the wrist and elbow (pronation/supination).
These seven DOFs are typically included in kinematic models of the human arm (Zat-
siorsky, 1998). In reality, humans have 13 DOFs. Accordingly, the joint space in this
case is seven-dimensional. To uniquely define seven angles about the seven axes of
the described multi-link chain to place the hand at the staring point, a system of
equations with seven unknowns has to be solved. Therefore, seven equations are
needed but only three are available. This problem has no unique solution and is
therefore ill-posed (Latash, 2008b). As the hand moves toward the glass, this prob-
lem has to be solved for each position of the hand along the desired trajectory. In
other words, the CNS has to compute joint angle trajectories from the starting joint
configuration to the final joint configuration in such a way that the hand reaches
the glass of water (Fig. 2.3). This problem is called the inverse kinematics problem
(Mussa Ivaldi et al., 1988; Zatsiorsky, 1998). Computations in the opposite direction,
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Figure 2.3: An infinite number of trajectories connect the initial and target po-
sition, five of which are shown. On the other hand, the kinematic redundancy of
the human arm allows multiple task-equivalent effector configurations that lead to
the same target position. Three possible configurations are depicted (adapted from
Martin, 2005).

from intrinsic joint space to extrinsic space, are called forward kinematics (Wise and
Shadmehr, 2002).

According to Newton’s second law, one has to apply a force to accelerate a body.
Therefore, to move the arm segments in the desired mode, one has to apply a force
in the form of adequately timed joint torques. However, the equations of motion
(Hollerbach, 1990b) reveal that the CNS not only has to generate appropriately timed
joint torques, but also must take into account Reaction forces, Coriolis forces and
Centripetal forces. Reaction forces are forces produced by the interactions between
the joints, Coriolis forces are proportional to the cross products of the different
joint angular velocities, and Centripetal forces are proportional to the square of
a joint velocity. Thus, motor patterns at each joint must be carefully coordinated to
smoothly move the segments through space, requiring the CNS to perform complex
computation. This problem is known as the problem of inverse dynamics (Hollerbach,
1990a; Zatsiorsky, 2002). In contrast, computations that estimate the motion of the
hand that will occur as a result of time profiles of joint torques are called forward
dynamics (Wise and Shadmehr, 2002). Finally, the CNS not only has to take into
account the physical characteristics of the musculoskeletal system, but also the weight
of the external object that is to be manipulated. The required joint torques to lift a
full versus an empty glass of water will differ significantly, although the trajectories
of the hand may match perfectly.

Unlike robots, joint torques in biological systems are not produced via motors lo-
cated in the joints, but by muscles that cross each joint. Because muscles can only
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Figure 2.4: The elbow is crossed by three flexor and three extensor muscles. There
exists an infinite number of possible muscle forces that can be combined to produce
the required joint torque: M =

∑
FiRi, where i = [1, . . . , 6] corresponds to muscles,

F to the muscle force and R to the lever arm (left). Each of the six muscles is
composed of motor units and each motor unit is composed of an alpha-motoneuron
and a group of muscle fibers that receive action potentials from the terminal branches
of the axon of this alpha-motoneuron (middle). A muscle is innervated by numerous
alpha-motoneurons (right). The resultant muscle force FM is caused by an activation
of various motor units. The contribution of each unit to the overall muscle force
may be modeled as a function f of its size, which could be represented by the peak
force of its single contraction Fi and the frequency at which the motor unit under
consideration is activated φi (adapted from Latash, 2008b)

pull and not push, at least two antagonistic muscles are required to cross each joint.
However, all joints of the human arm are crossed by more than two muscles. For
example, the elbow joint is crossed by three flexors (biceps, brachialis and brachio-
radialis) and three extensors (three heads of the triceps). As a result, the same joint
torque can be obtained by various muscle activation patterns. So the question arises
as to what forces should be produced by each muscle to ensure the required time
course of joint torques is met. In this case, we have one equation and six unknowns
(Fig. 2.4). Again, the problem is ill-posed because no unique solution exists (Latash,
2008b).

Each of the six muscles around the elbow (e.g. biceps) consists of many fibers
and is innervated by many alpha-motoneurons which are located in the spinal cord.
However, there are fewer alpha-motoneurons than muscle fibers so that when a mo-
toneuron sends an action potential to the muscle, the signal is received by a group of
muscle fibers. Such a group is called a motor unit because all fibers within the group
respond together when their alpha-motoneuron generates an action potential. Action
potentials are the units of information transmission in the human body. Each muscle
consists of motor units of different sizes; some of them are smaller and involve only
a few muscle fibers, whereas others are considerably larger and include many muscle
fibers. The CNS modifies the muscle force by changing the number of recruited alpha-
motoneurons and/or by changing the frequency of the action potentials generated by
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the individual motoneurons. If the frequency of the firing of an alpha-motoneuron is
increased, its contribution to the total muscle force is increased. So the question is:
How many motoneurons, and at what frequencies, should the CNS recruit to achieve
a certain level of muscle activation to produce the required joint torques? At this
point, there is one equation and many unknowns. However, according to the size
principle (Henneman, 1965), motor units are recruited in an orderly fashion. During
a slow increase in muscle force, smaller motor units are recruited first followed by
larger motor units. But still the CNS has a vast amount of recruitment patterns to
choose from, and therefore, no unique solution exists. Moreover, it should be noted
that the force produced by a muscle fiber also depends on its length and rate of
change. Therefore, the CNS has to take into account the expected changes of the
muscle length when generating signals via its alpha-motoneurons (Latash, 2008b).

Alpha-motoneurons produce sequences of action potentials depending on their in-
put. In general, there are two types of input: signals from the brain and signals from
peripheral sensory endings. To ensure a proper input into the pool of motoneurons,
the brain needs to estimate the peripheral contribution and generate a signal or sig-
nals such that the pool of motoneurons can produce the required activation patterns
for the muscles (Latash, 2008b). Finally, we cannot assume that the firing patterns
of the neurons in the different regions of the brain involved in motor control are
uniquely defined because of the complexity of the human brain. These problems are
known as the problem of motor command generation (Kawato, 1996; Nakano et al.,
1999).

The computation of the different tasks on the different levels is an inverse process
because it follows an order opposite to the natural order of events in human movement
generation. After the inverse computational process is completed, the brain sends
motor commands to the spinal neurons that activate the muscles so that the muscles
produce the required joint torques, which in turn rotate the segments and translate
the hand from starting position to the target. This transformation from the computed
motor commands to the trajectory of the hand is a direct process and perfectly well-
posed (Fig. 2.2). It seems that human motor control involves both ill-posed and
well-posed problems, and therefore, motor control models should be able to address
both types of problems. However, it has to be noted that the decomposition of
motor control into a cascade of computational processes as described above, is an
assumption that has been borrowed from robotics research conducted during the
early 1980s (Soechting and Flanders, 1998) and should not be considered a perfect
analogy. It is unknown whether the CNS solves the characterized problems step by
step (Hollerbach, 1982), simultaneously (Uno et al., 1989), or if the strategy changes
with learning (Kawato et al., 1990). The concept of coordinate transformation has
at least heuristic value. It helps to get an idea about which problems biological
movement systems face and how biological systems may solve these problems.

In summary, there are a vast number of DOFs associated with different levels in
the human motor system (Turvey, 1990). Hence, the problem of motor redundancy
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is a problem of choice: How does the CNS select one movement from the infinite
number of possible movements to solve the task at hand or to achieve the intended
goal (Latash, 1996)? In the context of a redundant motor system with specific physi-
cal and neurophysiological characteristics, motor control models need to explain how
goals in extrinsic coordinates are transformed in trajectories of the hand and ulti-
mately implemented in muscle commands. Sensorimotor transformations have to be
carried out between different coordinate systems (extrinsic → intrinsic) and between
discrete and serial processes (targets → trajectories of the hand → time profiles of
muscle forces). Considering the large number of neurons, muscles and joints, it is
quite remarkable that in goal-directed movements like reaching, consistent and re-
producible patterns of motor behavior across different subjects have been observed
(e.g. Morasso, 1981; Abend et al., 1982; Flash and Hogan, 1985). These observations
suggest that the CNS solves these ill-posed problems based on specific principles.
In the next section (Chap. 2.3), answers to the problem of motor redundancy from
three different scientific frameworks are presented and discussed.

2.3 Scientific approaches in the study of human
motor control

The question of which principles humans use in movement generation and how they
overcome the problem of redundancy remains unsolved in human motor control re-
search (Latash et al., 2007). This question has been addressed through different
scientific approaches. The attempt to organize research in and between these fields
has proven to be a difficult task because of the amount of research and the interdis-
ciplinary nature of most of the research, making a selective assignment to a specific
research field often impossible. For example, psychophysical or behavioral studies of
human motor control now appear in journals that were strictly orientated toward neu-
roscience in the past (e.g. Experimental Brain Research, Journal of Neuroscience,...),
and neuroscience-orientated studies are now published in journals that were formerly
primarily behavioral publications (e.g. Journal of Motor Behavior, Human Move-
ment Science,...). Studies of specific brain mechanisms involved during movement
execution appear in special journals of the neuroscience community (e.g. NeuroIm-
age) and continue to be published in journals devoted to specific professional topics
(e.g. Physical Therapy and Human Factors). Based on these observations, Schmidt
and Lee (2005) point out that more research is conducted and published in the field of
human motor control than ever before. The research of human motor control involves
people from diverse disciplines such as biology, psychology, kinesiology, computer sci-
ence, physics and engineering science. In this chapter, the most important scientific
approaches in the study of human motor control are briefly outlined. Within these
scientific frameworks, the most influential models for solving the problem of mo-
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tor redundancy (Chap. 2.2) are presented and discussed. It should be noted that
the transitions between the different frameworks are not always well-defined and
the following classifications are certainly idealized in some cases. Furthermore, it is
impossible to take into account all models or studies conducted in the field of hu-
man motor control in this short summary. Therefore, this review remains inevitably
incomplete.

2.3.1 Motor approach

Psychology is one of the classical fields that address the problems of motor control
(Schmidt and Lee, 2005). In the middle of the 20th century, behaviorism, which
was the dominant paradigm in psychology between the 1920s and the 1950s, was
replaced by a new paradigm called cognitive psychology. A detailed description of
the development from behaviorism to cognitive psychology can be found in Neumann
(1993) or Moran (1996). Within cognitive psychology, the concept of motor approach
evolved (Daugs, 1994). This chapter introduces the motor approach based on the
topics of human information processing (Chap. 2.3.1.1), open-loop and closed-loop
control (Chap. 2.3.1.2) and schema theory (Chap. 2.3.1.3). Finally, the schema
theory is discussed in the context of the degrees of freedom problem (Chap. 2.3.1.4).

2.3.1.1 Human information processing

Within motor approach, humans are seen as processors of information. Human infor-
mation processing is based on a computer metaphor and according to this metaphor
humans take in information from outside sources via their sensory systems. The in-
formation then undergoes transformations and is stored in different storage systems
within the brain. The comparison of the brain to a computer led to the belief that
movements are stored in the brain in the form of motor programs. In other words,
the brain stores observable behavior in the form of a procedural code, like a com-
puter program stored on a hard disc, which can be retrieved any time. Therefore,
depending on the information received, the human information processing system
selects a motor program and the required motor response is carried out. An impor-
tant performance measure in studying human information processing is reaction time
(RT).

“RT is the interval of time that elapses from the presentation of an unantici-
pated stimulus to the beginning of a subjects response” (Schmidt and Wrisberg,
2004, p. 58).

According to Schmidt and Lee (2005), central processing is carried out in three stages
(Fig. 2.5, executive level). In the first stage, referred to as the stimulus identification
stage, humans are required to distinguish between important and unimportant stimuli
in the current context. The identification of a relevant stimulus requires time. It has
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been shown that reaction time increases with an increasing complexity of the stimulus
pattern or a decreasing stimulus intensity (Treisman, 1986). After the identification of
a relevant stimulus, an individual has to choose an appropriate response. This stage,
the second stage, is usually referred to as the response-selection stage. The selection of
a response also requires time and the amount of time needed to select an appropriate
response increases linearly with each doubling of the response alternatives. This
relationship is known as Hick’s Law (Hick, 1952) and is represented by the equation:

RT = a + b(log2(N)) (2.1)

where N corresponds to the number of the response alternatives and a and b are
empirical constants. In the third stage, the response-programming stage, the chosen
reaction is programmed and carried out. Again, processing the response requires time
and the RT increases with the complexity of movement to be programmed (Henry
and Rogers, 1960). These findings led to the computer-analogous interpretation
that a motor program is loaded from hard disk (human long-term memory), and
the required loading time increases with the complexity of the motor program. In
addition to movement complexity, speed and accuracy requirements should have an
effect on the response programming. The trade-off between movement speed and
accuracy is summarized by Fitt’s law (Fitts, 1954) which states that in goal-directed
movements, the movement time MT depends on the ratio of the movement amplitude
A and the target width W at constant movement accuracy. Fitt’s Law is given by
the following equation:

MT = a + b(log2(2A/W )) (2.2)

where a and b are empirical constants. There are three basic assumptions concerning
the described information processing model. The first assumption is that human
information processing requires time, although a decrease in the RT is possible via
practice and anticipation (Rosenbaum, 1980). The second assumption is that error-
free information processing requires attention, which is limited in source (Kahne-
mann, 1973; Wickens, 1984) and subject to the current level of arousal (Yerkes and
Dodson, 1908; Landers and Arent, 2001). The third assumption is that there have
to be mental representations of movements in the brain (Henry and Rogers, 1960).

2.3.1.2 Open-loop and closed-loop control

Motor control is modeled in two ways within motor approach: open-loop models and
closed-loop models. In the case of open-loop models, a movement is programmed,
the motor program is sent to the effector, and the movement is carried out with
no possibility of modification if something goes wrong (Henry and Rogers, 1960;
Keele, 1968). In contrast, closed-loop models contain the possibility of feedback
processing against a reference of correctness (Adams, 1971). In figure 2.5, open-loop
and closed-loop control are depicted. It should be noted that open-loop and closed-
loop control are mutually exclusive. It appears that initially movements are under
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Figure 2.5: A human information processing model. The open-loop control portion
is represented by solid lines and the closed-loop portion is represented by dashed
lines. The abbreviations MR and PR stand for monosynaptic reflexes and polysy-
naptic reflexes, respectively (adapted from Schmidt and Wrisberg, 2004).

open-loop control. Then after approximately 150-200 ms, incoming feedback can be
consciously processed, corresponding to closed-loop control (Slater-Hammel, 1960).
The Schema Theory is a model developed to cover both open-loop and closed-loop
control (Schmidt, 1975, 1982) and is intended to account for discrete actions. The
schema theory will be outlined in the next chapter.

2.3.1.3 Schema theory

“Certainly the most important idea in schema theory, and what caused it to
deviate from Adams (1971) theory from which schema theory takes much of its
heritage, is the idea of the motor program. To me, it has always (at least since
my days with Franklin Henry) been obvious that quick actions somehow have
to be organized in advance and represented in memory. Sensory information,
or response-produced feedback is too slow to account for events that occur in
rapid tasks” (Schmidt, 2003, p. 367).

To address the problem of controlling fast movements, Keele and Posner (1968)
suggested that the relevant commands for movement production are stored in a
motor program. Based on this suggestion, if a movement is to be executed, the
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corresponding motor program is retrieved. Keele (1968, p. 387) defines a motor
program as:

“a set of muscle commands that are structured before a movement sequence be-
gins, and that allows the sequence to be carried out uninfluenced by peripheral
feedback.”

There are at least four lines of evidence that support the idea of motor programs:
(1) RT increases with the complexity of the movement to be programmed (Henry
and Rogers, 1960), (2) deafferentation studies show that movements are possible
in the absence of proprioceptive feedback from the moved limbs (Lashley, 1917),
(3) electromyography (EMG) patterns of rapid elbow extensions toward a target
are similar under unblocked and blocked conditions (Wadman et al., 1979), and (4)
learned movements can be executed with different muscle groups (Raibert, 1977).
These lines of evidence indicate that movements are planned in advance via motor
programs. However, if the CNS detects an error, for example the wrong motor
program was selected, the CNS has to wait until the motor program has expired
(Keele and Posner, 1968). In an experiment by Dewhurst (1967), a subject was asked
to hold a light weight in the hand and maintain a right angle in the elbow joint. The
EMG of the biceps and the kinematics of the arm were recorded. The subject was
able to see the actual performance via a dot on a monitor that signaled the elbow
angle. The weight was unexpectedly increased and naturally, the hand began to drop.
According to the theory of Keele and Posner (1968), the subject has to process the
visual and/or kinesthetic feedback from the arm through the information processing
stages. Therefore, the first increase in the biceps EMG should appear after 150-
200 ms, when a new motor program is chosen and sent to the effectors. However, the
first small burst in the EMG appeared after only 30 ms and a larger, more irregular
burst appeared another 20 ms later. These results indicate that at least two levels in
the motor system have to be distinguished (Schmidt and Lee, 2005): (1) an executive
level including the three stages of information processing for movement planning,
and (2) an effector level for movement production (Fig. 2.5). Hence, two distinct
types of errors can occur in the motor system, although each uses feedback in a
distinctly different way. The first error is an error in motor program selection that
has happened on the executive level. In other words, the wrong program was chosen
for the task at hand, meaning the spatio-temporal goal cannot be achieved. In this
case, a new motor program has to be selected in the response selection stage and must
then be programmed in the response programming stage. Because this feedback-loop
takes approximately 200 ms, in situations where rapid movements are required, the
new program cannot be selected before the original movement has been completed
and the error has already occurred. If the movement time is longer than the time
required to select and implement a new program, there is a chance that the error
is corrected while the movement is still being carried out. The second type of error
occurs on the effector level. Such an error in motor program execution means that an
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adequate motor program was selected but an unexpected event occurs that disrupts
the movement. A correction of such an error in movement execution does not require
the selection of a new motor program since the spatio-temporal goal can be achieved
with the chosen program. The error may thus be compensated for with monosynaptic
or polysynaptic reflexes. Monosynaptic reflexes carry feedback regarding the length
of the muscle to the spinal cord which then passes modifications directly back to the
muscle. This loop represents the lowest level of feedback corrections in motor control
and is the most inflexible one. In contrast, polysynaptic reflexes return information
about muscle force, muscle tension, and joint and body positions to higher centers of
the brain that are concerned with movement programming. Based on this feedback
information, minor modifications of the motor program are produced and sent back
to the levels of the spinal cord and muscles. Compared to monosynaptic reflexes,
polysynaptic reflexes are slower but more flexible because they involve higher brain
centers. Nevertheless, the latencies of both loops are shorter than the required RT
when the executive level is involved and they do not require attention because they
are unconsciously performed. This means that depending on where the error has
occurred, either on the executive level or the effector level, the human information
processing system can utilize different feedback loops for corrections (Schmidt and
Wrisberg, 2004). On the basis of these findings, Schmidt and Lee (2005) concluded
that a centrally organized structure handles most of the movement details but is also
very sensitive to movement-produced sensory information from a variety of sources.
One way of viewing the combination of open-loop and closed-loop functioning is
to consider a hierarchical control structure in which a higher level open-loop control
structure contains a set of lower level closed-loop processes that ensure the movements
produce the intended goal even when facing perturbations. These thoughts led to a
modified and less restricted definition of a motor program (Schmidt and Lee, 2005,
p. 190):

“The motor program is an abstract representation of action that, when acti-
vated, produces movement without regard to sensory information indicating
errors in selection. Once the program has been initiated, the pattern of ac-
tion is carried out for at least one RT even if the environmental information
indicates that an error in selection has been made. Yet during the programs
execution, countless corrections for minor errors in execution can be produced
that serve to ensure that the movement is carried out faithfully.”

The advantage of this extended definition of a motor program is that previous studies
on reaction time (Chap. 2.3.1.1) and the different control levels of the CNS are
accounted for. Furthermore, the definition suggests that higher brain regions are freed
from time consuming control tasks because sensory feedback can be processed on the
spinal cord level. Schmidt and Lee (2005) compare this idea of a motor program to
the concept of coordinate structures as discussed by Greene (1972), Turvey (1977),
Fitch et al. (1982) and Berkinblit and Feldman (1988) (Chap. 2.3.2.2). According
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to Schmidt and Lee (2005), both concepts reduce the numerous DOFs of the motor
system via a structure that organizes the limbs into a single acting unit. Furthermore,
the motor program concept and the coordinative structures involve a tuning of spinal
centers, corrections for errors in execution and an independence of the executive level
from details of movement execution on the effector level or lower levels of the motor
system.

The traditional view of the motor program concept (Keele and Posner, 1968) im-
plied that for each movement, a motor program is stored in the human brain. If
one considers the countless number of movements humans are able to perform and
that humans most likely cannot exactly reproduce a movement (Bernstein, 1967),
then it seems that a vast majority of memory capacity would be needed to store all
of the motor programs in long term memory. In literature, this dilemma is termed
the storage problem (Schmidt and Lee, 2005). Related to the storage problem is the
novelty problem. How are movements performed that have never been performed
before? If no two movements are exactly the same and each movement is represented
by a single motor program in long term memory, then where do these programs come
from? It seems rather unlikely that, for example, different instances of a tennis stroke
are genetically defined since these skills have no biological significance. It appears
that a logical dilemma arises concerning the motor programming of novel movements
(Schmidt and Lee, 2005). For the solution to these two problems, Schmidt (1982)
suggests that the motor program is generalized, meaning that one program can run
in a variety of different ways. In other words, the program covers an entire class of
movements. Therefore, this generalized motor program (GMP) must dispose of com-
ponents that separate the GMP “grasp” from the GMP “walk” and remain invariant
when different grasps are performed. According to the impulse-timing hypothesis,
the GMP “tells” the muscles when to contract, how much force to produce and when
to turn off. In physics, impulse is the integral of force over time. The GMP con-
trols the impulses produced across the muscles. The invariant features mentioned
above include the order of muscular contractions (order of elements), the temporal
structure of the contractions (relative timing) and the relative force, which means
that the amount of force produced by the muscles remains in constant proportion
(Schmidt and Lee, 2005). To produce an instance of a movement class (e.g. a par-
ticular grasp), certain parameters have to be entered into the GMP to define the
particular instance. These parameters include overall duration, overall forces and
muscle selection. This structure allows the GMP to be executed in countless ways
simply by scaling the program linearly in time and amplitude by changing the pa-
rameters of overall time and overall force. There are numerous studies which provide
a reference to the relative independence between the invariant and variable features.
Detailed descriptions of the studies can be found in Schmidt (1985), Roth (1989) or
Wulf (1994). It has to be noted that Gentner (1987), for example, has shown that
the invariance of relative timing is not always completely constant. Nevertheless,
it appears that the wide range of movements with a tendency toward a temporal
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Figure 2.6: The hypothetical relationship between movement outcomes in the en-
vironment and the parameters used to produce them (left). The recall schema for
different initial conditions (right) (adapted from Schmidt and Lee, 2005).

invariance is more impressive than some minor deviations (Heuer, 1991; Wulf, 1994).
If one assumes, despite some contradictory results, that the bulk of the results sup-
port the GMP concept, then two questions remain unanswered: (1) How are the
appropriate parameters selected? (2) How are errors recognized in sensory feedback?
According to Schmidt (1975, 1982), within in the learning process the GMP is com-
plimented via two schemas (or rules). After a GMP is selected in a given context
and a movement is generated by adding the parameters, four types of information
are stored in short-term memory: (1) the initial conditions before the movement,
(2) the assigned parameters, (3) augmented feedback about the movement outcome,
and (4) the sensory consequences of the movement. This information is stored until
the performer can abstract two schemas about how the information is interrelated.
The first schema is called the recall schema and is responsible for movement gener-
ation. This rule is a generalization of the relationship of the initial conditions, the
assigned parameters and the movement outcome. The second schema is called the
recognition schema and is responsible for movement evaluation. This rule is a gener-
alization of the relationship of the initial conditions, the movement outcome and the
sensory consequences. Thus, the recall schema is needed for open-loop control and
the recognition schema is needed for closed-loop control. The development of both
schemes is based on the same principle and is outlined below for the recall schema
(Fig. 2.6). In figure 2.6, the movement outcomes, for example, the distance a ball
traveled after being thrown, are presented on the X-axis. The Y-axis shows one of
the parameters the individual has assigned to the GMP. The particular combination
of the parameter and the resulting movement outcome can be thought of as a data
point in a Cartesian coordinate frame. Correspondingly, each performance produces
a new data point. During the learning process a pattern or a relationship that can be
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represented by a regression line drawn through the data points emerges. Each time
a new movement is produced, a new data point is created and the relationship is
adjusted. After the adjustment, the various sources of information are deleted from
working memory and only the rule, or schema, remains. Different initial conditions
are represented by different regression lines (Schmidt and Lee, 2005). Because the
GMP requires three parameters, the Cartesian frame in figure 2.6 has to be multi-
dimensional. Theory predicts that practice under various circumstances should be
most beneficial for the development of the two rules (variability of practice hypoth-
esis). Much research on variability of practice has been conducted; however, the
findings in this context are inhomogeneous (Van Rossum, 1990).

In the context of schema theory, the implication is that humans do not learn skills
but learn rules about the functioning of their bodies. This concept is very important
because storage of the rules requires less space than storage of a specific motor pro-
gram for each movement. In addition, the schema concept suggests that an individual
is able to perform new movements because he or she has learned how parameters,
initial conditions, movement outcome and sensory consequences are interrelated.

2.3.1.4 Discussion

The terms “information processing psychology” or “cognitive psychology” describe a
research field in psychology which, in recent decades, was probably more successful
than any other in experimental psychology (Neumann, 1993). In the field of human
motor control and learning, the same might be said of the motor approach (in gen-
eral) and the schema theory (in particular). Because of the large number of studies
carried out in recent decades, it is not surprising that some findings contradict the
motor approach and/or the schema-theory. Critical reviews of the motor approach
as a scientific framework or paradigm in the field motor control and learning ap-
pear in Meijer and Roth (1988) or Roth and Hossner (1999). Also the strengths
and weaknesses of the schema theory in particular appear frequently in literature
(e.g. Wiemeyer, 1992a,b; Schmidt, 2003; Newell, 2003). In spite of this criticism, the
concepts described above (Chap. 2.3.1) continue to appear in the latest editions of
psychology textbooks (Hommel, 2008; Konczak, 2008), neuropsychology textbooks
(Elsner, 2006), and in recent journal papers (Summers and Anson, 2009). In this
thesis, the focus will be the potential for the numerous DOFs of the human motor
system (Chap. 2.2) to be coordinated via GMPs to generate a movement. According
to Schmidt and Wrisberg (2004, p. 143) a major role of a GMP is

”to organize the many degrees of freedom of the muscles and joints into a single
unit to produce an effective and efficient action.”

Similarly, Schmidt and Lee (2005, p. 176) contend that GMPs

“have the capability to influence the activity of the many independent degrees
of freedom so that they act as a single unit. If this temporary organization can
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be imposed on the system, then the problem for the executive will have been
simplified so that only a single degree of freedom will need to be controlled. In
other words, the executive level is thought to control the selection of a motor
program to ready it for action and to initiate it at proper time. Once under
way, the program controls the individual degrees of freedom, and in this sense
the executive is freed from the task.”

These are examples of typical cognitive views on motor control, in which all avail-
able DOFs are controlled by a motor program, corresponding to a fairly prescriptive
top-down control approach. In other words, by selecting the appropriate GMP (e.g.
grasp) and adding adequate parameters based on the recall schema, the CNS has
solved all the problems discussed in chapter 2.2. During program execution, only mi-
nor corrections on the lower levels are possible to ensure that the movement is carried
out faithfully. Schmidt and Lee (2005) do not explain how a GMP is formed or how
an individual is able to perform a movement before any schema exists. Furthermore,
there are two additional problems in the context of this thesis. The first problem
concerns the neurophysiological plausibility of the introduced information processing
model and the schema theory, and the second problem concerns the sensorimotor
transformations needed to generate a movement.

The motor approach and the concept of motor programs are derived from cog-
nitive psychology and have attracted attention in other disciplines such as robotics
and neuroscience in recent decades. Therefore, the term or the idea of the motor
program is used inconsistently and depends on the scientific discipline. It is often
difficult to recognize whether the term is used as a metaphor for motor memory or
according to the idea of a GMP as described above. As a metaphor, the concept of
a motor program is not confutable and has only a limited explanatory value for the
problem of how humans generate their movements and how they cope with excessive
DOFs (Konczak, 1996, 2008). When used in the sense of a GMP, the neurophysio-
logical correlation of the structures as presented in figure 2.5 need to be provided.
The information processing model shows that there are two levels in motor control:
an executive level including the three stages of information processing for movement
planning and an effector level for movement production. Accordingly, the processing
of information is carried out in form of a sequential process. In this context, Konczak
(1996) refers to a scheme by Allen and Tsukahara (1974) that ascribes planning and
programming activities to the association cortex, the basal ganglia and the lateral
parts of the cerebellum. These structures correspond to the processes of response
selection and response programming in the information processing model. In the
primary motor cortex (M1), the output of the remainder motor areas are bunched
and sent to the spinal motor neurons via the pyramidal tract. Certain areas of the
cerebellum compare the intended movements with afferent sensory information from
the periphery and if necessary, correct the intended movements. These structures
correspond to the effector level of the information processing model (GMP level).
Hence, neurons of the planning areas should encode other information (e.g. target
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or goal of a limb movement) rather than neurons of the effector level (e.g. direction
of limb movement). Alexander and Crutcher (1990) conducted a study in which
monkeys executed pointing movements to defined targets. During the subject’s per-
formance, the activity of neural cells in the supplementary motor area, the primary
motor cortex (M1) and the basal ganglia were recorded. The results indicate that
both structures contain neurons that represent the goal of the limb movement and
neurons that represent the direction of the limb movement itself. The observation
that goal- and limb-dependent information are represented indicate that there is no
clear distribution of tasks between areas of planning (e.g. basal ganglia) and areas
of execution (e.g. M1) on a neurophysiological level. Furthermore, Konczak (1996)
refers to a study by Dum and Strick (1991), in which it was shown that premotor
areas in the frontal lobe not only project directly to M1, but also project directly
to the spinal cord. It also seems that in most of the premotor areas, maps of the
body comparable to M1 exist (He et al., 1993). Consequently, these premotor ar-
eas have the potential to influence the control of movements. The assumption of a
one-to-one mapping of a cognitive function to a specific brain area does not appear
to exist (Requin, 1992). Similarly, the sequential information processing postulated
on a psychological level does not appear to exist on a neurophysiological level (Fig.
2.5). In summary, Konczak (2008) states that the control of human movements is not
a strictly sequential process in which certain brain areas are activated one by one.
The processing of sensorimotor information is instead parallel. However, parallel
processing does not imply that there is no temporal order. It seems more likely that
the sensorimotor system is hierarchically organized, but certain motor subsystem are
simultaneously active during the different stages of planning and execution of human
movements.

Furthermore, based on the assumptions of the schema theory, it appears that
mental representations of the different movement classes exist in the brain. The
Broadmann area 4 (M1) and Broadmann area 6 (premotor and supplementary mo-
tor cortex) seem to be plausible areas for the storage of motor programs because
electrical stimulation of the areas leads to uncoordinated muscle contractions and
to even more coordinated contractions, respectively. Furthermore, both structures
contain motor maps of the human body, which appear as a distorted human figure
drawn on the surface of the cortex, referred to as a homunculus (Latash, 2008a). Re-
search in the area of neural population coding (Amirikian and Georgopoulos, 2003)
suggests that there are no single neuron or group of neurons which could be assigned
a specific innervation pattern of arm muscles or a specific joint configurations over
time (e.g. a GMP “grasp”). More specifically, it seems that in cell populations in
the motor cortex, the movement directions and the directions of the forces to be
generated are coded. Moreover, it appears that a single cell participates in move-
ments of various directions. In other words, a movement in a particular direction will
engage an entire population of cells. Therefore, a unique signal for the direction of
movement could reside in the activity of a neuronal ensemble. Georgopoulos (1996a)
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proposed a vectorial code for the recovery of this signal from the neuronal ensemble
(Chap. 2.3.3.1). Konczak (2008) suggests that the homunculus is not an intelligent
agent that controls human movements. A certain topology does not imply a cer-
tain function for the control of human movements, but merely a certain way to save
information. Additionally, the results of many neurophysiological studies revealed
that somatotopic representations of the human body also exist in other parts of the
CNS like the basal ganglia and the cerebellum (Latash, 2008a). Therefore, it is in-
correct to assume that area 4 and area 6 are the exclusive neuroanatomical locations
of motor memory or the place where GMPs are stored. A modular representation of
human movements in the brain provides a number of evolutionary advantages. On
the one hand, damage to brain during ontogenesis could be compensated for, and
on the other hand, a relatively open and modular structure could enable a continu-
ous adaptation and development of the brain during phylogenesis without complex
reorganizations of large parts of the human brain (Roth, 2000).

In addition to the problem of the biological plausibility of the schema theory, it
has to be discussed whether movement generation via the schema theory is possible.
As an example, a relevant stimulus could be considered a glass of water in front
of a thirsty individual. When the individual identifies the stimulus, an appropriate
response needs to be selected. In the case of the glass of water, the response may
be “reach for the glass” and “lead it to the mouth to drink”. The first response
to be programmed is “reach for the glass”, which could be accomplished by the
GMP “grasp”. When the GMP and the adequate parameters have been selected,
the movement is specified and the GMP can be carried out. To be able to translate
the external coordinates of the hand (starting position) and the glass (final position)
to an adequate muscle activation leading to the desired hand trajectory, a series
of complex and nonlinear motor transformations are necessary (Chap. 2.2). These
transformations are not an issue in schema theory. Another problem is the postulated
linear relationships in the recall and recognition schema. Schmidt (2003, p. 370)
refers to this problem in the case of the recall schema as follows:

“But the more serious problem is that, with a GMP structured this way, it
cannot account for actions involving gravity. One example is walking with a
load, such as a backpack. Here, the extensor muscles, and those involved in the
stance phase must operate differently as a function of the load; however, the
flexor muscles and those involved with the swing phase can operate essentially
independently of the load. Simply scaling all the muscles proportionately will
not accomplish this. Another example is producing an action in different planes
(e.g. horizontally vs. vertically); the effect of gravity in the flexors versus
extensors will be different in horizontal versus vertical movements.”

There should only be a small number of movement classes in which the parameters of
relative force and relative timing show a linear behavior. It is also unlikely that there
are even two movements whose relative force and relative timing depend linearly on
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each other. This leads again to a storage problem because the movement classes
to be covered by a GMP are very small. Hence, a vast number of GMPs would be
needed.

Within motor approach, however, there are conceptions of motor programs that
are less prescriptive (e.g. Wulf, 1989; Rosenbaum et al., 1983). The problem with the
less prescriptive and more emergent models is that additional constraints need to be
added to cope with the released degrees of freedom. One possibility for dealing with
the released degrees of freedom is to implement optimality principles such as the ones
presented in chapter 2.3.3.1. Because these concepts did not become widely accepted
like the schema theory, it is necessary to determine what the current trends concern-
ing the field of human motor control are in cognitive psychology. Two developments
or trends can be unmistakably observed. The first one is the increasing importance of
neuroscience. Cognitive psychology seems to be developing toward a cognitive neu-
ropsychology (Neumann, 1993; Rosenbaum, 2002; Prinz and Müsseler, 2008). The
inclusion of neurophysiological methods and results in psychological research has led
to doubts about the adequacy of the concept of sequential information processing as
shown above. Although this process remains in use, it subsequently gave rise to new
models about human information processing and action control. The second trend to
be observed is that the ideomotor principle from James (1890) has been reestablished
in the new models (Hommel, 2008). The idea is that voluntary action is gradually
emerging from sensory motor experience. That is, novices are able to learn over
time to form systematic relationships between movement patterns and sensory con-
sequences. The representation of those consequences can thus be used in the future
to anticipate wanted effects and at the same time, prime the action producing these
effects (Hommel and Elsner, 2009). Models of this kind can be found in Hoffmann
(1993), Hommel et al. (2001) and Hossner (2004). Although it has to be acknowl-
edged that these models provide a powerful scientific framework for the integration
of perception and action planning, it is necessary to mention that these models do
not provide a strong explanation of how the human CNS, in detail, performs the
complex computations needed to solve the problem of motor redundancy.

2.3.2 Dynamical systems approach

In his seminal work on the philosophy of science, Kuhn (1962) demonstrated that
knowledge and theory development in science are non-cumulative processes punctu-
ated and disrupted by periods of paradigm crisis and competition. Over the years,
some problems in the field of motor control have occurred to which the motor ap-
proach could not offer satisfactory results. In the late 1970s and early 1980s, a second
paradigm evolved called the dynamical systems approach. The term dynamic does
not refer to forces but to time changes. Compared to the previously introduced motor
approach, the dynamical systems approach is a largely interdisciplinary approach. A
very important school of thought in the dynamical systems approach is synergetics.
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An overview on synergetics can be found in the textbook of Haken (2004), and the
textbooks of Smith and Thelen (1993, 1994), Kelso (1995) and Birklbauer (2006)
offer a general overview of the dynamical systems approach. Furthermore, several
excellent confrontations of the two paradigms against the background of the Kuh-
nian view of science can be found in the technical literature (Summers, 1992; Piek,
1998). The goal of this chapter is to introduce the fundamental idea of the dynami-
cal systems approach (Chap. 2.3.2.1). Based on these explanations, the concept of a
synergy is introduced (Chap. 2.3.2.2) as a specific concept to address the degrees of
freedom problem (Chap. 2.2) within the larger framework of the dynamical systems
approach. In addition, the uncontrolled manifold (UCM) hypothesis is established as
one possible mathematical basis for synergies (Chap. 2.3.2.3). Finally, the UCM is
discussed in the context of the degrees of freedom problem (Chap. 2.3.2.4).

2.3.2.1 Key concepts of the dynamical systems approach

The center of the dynamical systems approach focuses on the question of how patterns
are formed in complex systems. This chapter focuses on how movement patterns are
formed in humans. The basic assumption is that patterns emerge in a self-organized
fashion, without the need of entities telling the individual system parts what to do and
when to do it. In other words, no executive agents or motor programs are required.
Since movement patterns are continuously formed and changed, principles are needed
that explain the evolution of movement patterns. Because of the complexity of the
human motor system (Chap. 2.2), an explanation how a given pattern is constructed
and how one pattern is selected from the myriad of possible patterns is needed (Kelso,
1995).

A complex system consists of a large number of parts and many different possible
orderings of the parts. These different orderings are the degrees of freedom of the
system. As outlined in chapter 2.2, the human body has many more DOFs than
needed to perform a given task (Corbetta and Vereijken, 1999). However, the avail-
able DOFs are reduced because of constraints. Based on figure 2.1, constraints can
be divided according to whether they originate in the individual, the task, or the
environment (Newell, 1986).

In the dynamical systems approach it is assumed that movement patterns (e.g.
walking) arise spontaneously as a result of the large number of interacting parts
of the human body (e.g. neurons and muscles). The highly nonlinear interactions
between various parts and between parts and the environment bring to mind the
saying “the whole is greater than the sum of its parts.” Therefore, the complexity
of the system and the nonlinearities make a predictive interpretation of the system’s
behavior, based on the properties of the individual parts, impossible. The continuous
interaction of the system parts on a microscopic level leads to a discrete change on
a macroscopic level. Since biological systems, like humans, are open, nonequilibrium
systems constantly interacting with the environment and thus exchanging energy and
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information, a continuous process of information exchange and processing in the CNS
on a microscopic level can lead to a change from one movement pattern to another
on a macroscopic level. However, one has to keep in mind that the definition of a
system level as micro- or macroscopic always depends on the research question.

The change from one system state to another is termed a phase transition or state
transition, and the sum of all possible system states correspond to the state space of
the system. Therefore, the term stability is usually used to describe existing states or
identifiable forms of behavior. State transitions are preceded by instabilities called
critical fluctuations. Unstable movement patterns can be considered predictors of
change. These instabilities bring flexibility into the system and allow the evolution
of new modes of functioning. The movement patterns before and after state transi-
tions are comparatively stable and tend to be relatively resilient to change despite the
nonequilibrium nature of the system. For example, if a person is walking and grad-
ually increases the velocity, the walking pattern will become unstable with respect
to time and fluctuations will begin to occur. If the velocity is increased further,
the system will jump to a new stable state (i.e. running). The resulting running
pattern is what physicists call a collective or cooperative effect, which arises without
any external instructions. In this case, velocity is designated as a control parameter.
The control parameter does not prescribe or contain any information about the new
pattern, it simply leads the system through the state space. In other words, control
parameters do not define the next state. If the velocity is decreased, the running
pattern will become unstable. If the velocity is further reduced, another state tran-
sition will occur and the behavior of the system will revert to the walking pattern.
The state transition from walking to running can occur at a different velocity than
the state transition from running to walking. This phenomenon is called hysteresis.

Within a spectrum of possible system states, there are always a few dominant states
that are comprised of order parameters or collective variables. Order parameters
represent energetically favorable, attractive system states toward which a system
progresses. Since order parameters represent attractive system states, they are also
referred to as attractors. In human motor control, these attractors are the preferred
modes of coordination. Collective variables or order parameters are created by the
coordination of the parts of the system, but in turn influence the behavior of the
parts. This is called circular causality and is a typical feature of self-organizing
systems. Order parameters are usually found near phase transitions where the loss
of stability gives rise to new system states and/or switching between system states
(Kelso, 1995; Corbetta and Vereijken, 1999).

The dynamical systems framework has been used to analyze rhythmic movements
(Haken et al., 1985) and discrete movements (Schöner, 1990). In this thesis, it is of
special interest how the different components of the human motor system interact.
This interaction forms a stable movement pattern and thus, the system is in the
position to handle the excessive DOFs. To describe the interaction of the different
parts of the human movement system (e.g. neurons and muscles), the concept of a

33



2 Human motor control

synergy is commonly used by proponents of the dynamical systems approach.

2.3.2.2 Synergies

In human motor control, the term synergy is usually associated with the work of Bern-
stein (1967, 1996). The concept is that a central command is sent from supraspinal
structures that jointly and proportionally activate a group of muscles to form a syn-
ergy. Depending on the movement task, the central command sent to the synergy can
change, leading to a corresponding change in all the muscles acting together to form
the synergy (Latash et al., 2007). The notion of a muscle synergy can be extended
to groups of muscles spanning multiple joints. In this context, the term coordinative
structures is often used instead of synergy (Tuller et al., 1982; Fitch et al., 1982).
However, not all authors use the terms synergy or coordinative structures in the same
manner (e.g. Turvey, 1990; Turvey and Carello, 1996; Latash et al., 2007; Turvey,
2007; Latash, 2008b; Kelso, 2009). Some authors (Latash et al., 2004) argue that
the term synergy is the most frequently used but least precisely defined term in the
field of human motor control. Therefore, the notion of a synergy must initially be
defined.

The author of this thesis prefers a definition of synergy that differs slightly from
the classical definition presented above. In the classical view, the numerous DOFs are
interpreted as a source of a computational problem for the CNS. This understanding
of the DOFs problem is commonly accepted across the approaches discussed in this
thesis. However, the view of Latash et al. (2007) on the redundant design of the
human movement system differs. Latash et al. (2007) do not consider the numerous
DOFs to be a computational problem for the CNS, but rather a luxury that enables
the controller (CNS) to ensure the stability of important performance variables and
the flexibility of patterns to deal with other task components and possible perturba-
tions. Based on the idea that a reason exists for the design of the human body, the
fundamental question concerning the problem of motor redundancy is (Latash et al.,
2007, p. 279): “How does the solution to the DOFs problem leave the motor system
more powerful than a system that starts with fewer DOFs from the outset?” To get
an initial idea of how this question could be answered, Latash (2008b, p. 4) offers
the following example:

“Imagine that you are conducting a choir. You want the choir to sing at a
certain level of sound, but you have 50 singers to deal with. One strategy
would be to tell each singer how loudly to sing. Potentially, this could solve
the problem. If each singer performs exactly as instructed, this strategy will be
very successful and lead to a perfectly correct level of sound. However, if one of
the singers sings at a wrong volume, or gets sick and decides to quit altogether,
the overall level of sound would be wrong. What would the alternative be? To
make use of the fact that singers cannot only sing but also hear. Then, the
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instruction could be ’Listen to the level of sound. If it is lower than necessary,
sing louder; if it is louder than necessary, sing softer.’ Now, even if one or more
of the singers decide to quit, others will hear an ’error’ in the overall level of
sound and correct it without any additional instruction.”

In both cases, the members of the choir sang together. In the first case, there was no
synergy because everybody sang for themselves and did not pay attention to what
the other members of the choir were doing. In the second case, a synergy existed
because an individual’s singing depended on how loudly the other members of the
choir sang. If several members of a choir, or parts of a system, “work together” and
adjust their actions based on the actions of the others or on how well the overall goal
is being achieved, then they form a synergy. Latash et al. (2007) and Latash (2008b)
distinguish three components of a synergy: (1) sharing, (2) flexibility/stability and (3)
task-dependence. In technical literature, the second component is sometimes referred
to as error compensation (Latash et al., 2004).

Sharing If a person grasps a glass of water with the thumb opposing the four fingers,
the fingers need to produce a force that is equal to or slightly greater than the
weight of the glass to be able to lift it and prevent it from slipping. Usually,
all digits contribute to this task and thus share the task in some way.

Flexibility/stability (error compensation) If the person grasps a glass as described
above and then lifts their index finger while leading the glass to their mouth,
the finger has stopped contributing to the task of manipulating the glass. To
prevent the glass from slipping, the remaining three fingers opposite the thumb
have to redistribute their efforts so that the total force again equals the weight
of the glass.

Task dependence The third component concerns the ability of a synergy to change
its functioning in a task-specific way. In other words, the ability to form a
different synergy in a different task with the same elements. The hand cannot
only grasp a glass of water, but also write with a pen, open a bottle, or play a
guitar. More precisely, synergies always do something and thereby the elements
“work together”. There exists no abstract synergy

To address the sharing component of synergies, principal component analysis (Mah
et al., 1994) or more sophisticated matrix factorization methods (Tresch et al., 2006)
are used. To quantify the flexibility/stability (error compensation) of a synergy, the
concept of the UCM is used and is discussed in the next chapter. Overviews of the
computational tools used to study synergies can be found in Schöner and Scholz
(2007), Latash et al. (2007), Latash (2008b) and Müller and Sternad (2009).
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2.3.2.3 Uncontrolled manifold hypothesis

Unlike robots, human beings are incapable of performing the same movement twice;
there is always some variability (Bernstein, 1967). One of the features of a synergy is
flexibility/stability (error compensation), which implies that effects of deviations in
the contribution of one element of a synergy can be compensated for via adjustments
in the contributions of the other elements. Therefore, the analysis of the variability of
elements may help to understand whether a set of elements is united in a synergy and
what the synergy tries to accomplish (Latash, 2008b). In this context, a promising
computational approach for the quantification of synergies is based on the ideas of
Schöner (1995). These ideas have been enhanced by Scholz and Schöner (1999) and
are now known in technical literature as the uncontrolled manifold (UCM) hypothesis.
In this chapter, a simple example is used to show the main concept of this approach.
Latash et al. (2004) and Latash (2008b) provide a generalization of this approach
to more complex tasks and offer a review of studies conducted in the context of the
UCM hypothesis. A general scheme of analysis within the UCM approach can be
found in Latash et al. (2007).

Biological systems control their movements using hierarchically organized multi-
level structures and the CNS does not select a unique trajectory based on optimiza-
tion (Chap. 2.3.3.1) but facilitates families of solutions that are equally capable of
solving the movement task at hand. Furthermore, the proponents of this approach
distinguish between elemental variables and performance variables. In the previous
example of manipulating a glass of water, the forces and moments produced by the
digits of the hand can be viewed as elemental variables, whereas the total grip force,
the total resultant force, and the total moment of force produced on the object can
be viewed as a performance variable. The distinction between elemental and perfor-
mance variables always depends on the level of analysis as explained in the context
of microscopic and macroscopic levels in chapter 2.3.2.1. For example, in the case of
how individual muscles are coordinated to produce the force of a finger, the elemen-
tary variables and the performance variable refer to the level of muscle activation
and the overall finger force, respectively. An important conclusion in this context is
that in most cases, the individual elements of a synergy are themselves synergies on
a different level of analysis (Latash, 2008b).

As an example, a subject is asked in a laboratory task to produce a total peak force
of 40 N by quickly pressing on two force sensors with their two index fingers. An
infinite number of finger force combinations can satisfy the task: FTOTAL = F1 + F2.
After a certain amount of practice, the subject is able to perform the task adequately.
A series of trials is then collected and each of trial can be characterized by two
force values called elementary variables. In figure 2.7, possible results of such an
experiment are presented. In the left portion of the figure, the individual outcomes
of each trial are distributed evenly around a center point corresponding to an average
force-sharing pattern of approximately 50 : 50 between the two index fingers. This
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Figure 2.7: Three plots of data points representing possible outcomes of an ex-
periment. (A) The data points form a circle about an average value representing
sharing of the total force between two fingers. (B) The data points form an ellipse
elongated along the line F1 +F2 = 40 (dashed line). In the third plot (C), the ellipse
is elongated perpendicular to the dashed line. The variance along the dashed line
in (B) does not affect the total force (good variance, VGOOD) whereas the variance
along the solid line does affect the total force (bad variance, VBAD) (adapted from
Latash, 2008b).

circular distribution shows that if one of the two index fingers produces a higher
peak force than its average contribution in a particular trial, the second index finger
will reduce or amplify this error with an equal probability. Hence, there is no error
compensation between the two fingers and therefore no synergy that stabilizes the
total force output. The average forces of the two index fingers are the same in the
middle plot (Fig. 2.7, (B)) as in the plot on the left (20 N). However, the data points
from the individual trials form an ellipse elongated along a line with a negative slope
(F1 + F2 = 40) instead of a circle. In this case, there is a covariation between the
two index fingers. This covariation reduces the error in total force if one of the two
fingers produces more or less force than average. This behavior may be interpreted
as a force-stabilizing synergy. A narrow ellipse would correspond to a strong synergy
stabilizing the total force and a wider ellipse would correspond to a weaker synergy
with a higher variance. In the right plot (Fig. 2.7, (C)) the elliptical cloud of data
points is elongated along a line with a positive slope. In this third example, the
covariation leads to a destabilization of the total force and thus, there is no force-
stabilizing synergy (Latash, 2008b).

In the two-finger force production example, two one-dimensional subspaces can be
identified. One subspace corresponds to the movement task (constant force value
of 40 N), while the other subspace is orthogonal to the first. The distribution of
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data points in the middle plot (Fig. 2.7 (B)) has most of the variance in the first
subspace, while the distribution of data points in the right plot (Fig. 2.7 (C)) has
most of the variance in the second subspace. The first subspace is called the UCM
of the task and the second is referred to as its orthogonal complement (Latash et al.,
2004; Latash, 2008b).

In regards to the DOFs problem, the CNS does not need to interfere as long as
the movement system does not leave the UCM. This means that the controller allows
the elements to show a high variability as long as this variability does not affect the
performance variable in a negative way. If the movement system leaves the UCM, an
error in the performance variable occurs and the CNS has to introduce a correction
(Latash et al., 2004; Latash, 2008b).

Latash et al. (2007) also discusses possible neurophysiological foundations of syn-
ergies. For example, it has been shown in neural recording studies that task-specific
and relatively high-level features of motor tasks are likely represented in the human
brain (Chap. 2.3.3.1). These studies revealed that patterns of neural activity are re-
lated to performance variables such as the trajectory of the hand or the force vector
applied to the hand (Georgopoulos et al., 1982; Schwartz, 1993; Cisek and Kalaska,
2005). In addition, several studies analyzed spinal mechanisms in multi-joint con-
trol in frogs (Giszter et al., 1993, 2000; Hart and Giszter, 2004). These experiments
showed that the spinal cord cannot be viewed as a simple relay of central commands
to the periphery. In fact, these studies support the computationally attractive idea
that control is achieved by activating a few motor primitives. Motor primitives can
be interpreted as patterns of muscle activations. Therefore, the control of the muscu-
loskeletal system can be simplified because only a small number of motor primitives
need to be controlled in task-specific configuration instead of individual muscles. The
motor primitives could be interpreted as functional groupings or synergies. Berkin-
blit et al. (1986) showed that spinalized frogs (the spinal cord is cut at an upper
region and consequently separated from the brain) are able to produce successful
wiping responses on the first trial after a joint has been constrained. In summary,
the results from the neurophysiological studies could be interpreted to mean that
central commands from supraspinal structures activate motor primitives or synergies
on the level of the spinal cord. These structures seem to possess a certain flexibility
needed to stabilize task relevant performance without relying on supraspinal control
structures.

2.3.2.4 Discussion

In chapter 2.3.2.1, a short overview on the dynamical systems approach was provided.
As noted above, though, the dynamical systems approach is largely interdisciplinary
and a comprehensive review was beyond the scope of this thesis. Although the con-
cept of a synergy is commonly used to address the degrees of freedom problem in the
dynamical systems approach, there exist different views on synergies (Chap. 2.3.2.2)
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and different computational tools to analyze synergies (Chap. 2.3.2.2). However, the
definition provided in this thesis and the concept of the UCM are, at present, the
most promising approach to the DOFs problem as seen in the larger framework of the
dynamical systems approach. Therefore, as presented in chapter 2.3.1.4, it should
be asked whether it seems plausible that the many DOFs of the human body (Chap.
2.2) can be coordinated via the control structures introduced in this chapter to gen-
erate a movement. It bears mentioning that the first paper on the UCM hypothesis
was published relatively recently (Scholz and Schöner, 1999), and this concept is in
its infancy compared to those discussed in chapter 2.3.1.4. Nevertheless, additional
research has been conducted since then, and some problems are beyond what might
be considered “teething troubles”.

One of the major methodological challenges is that most studies used data that
focused on a specific time during a motor act over several trials to quantify the two
components of variance. In other words, data distributions with respect to certain
UCMs at specific points in time of a trajectory were analyzed. However, it seems
plausible that an UCM evolves during a movement. Even though the same perfor-
mance variable is stabilized during the movement, it is possible that the variable
is stabilized at different values corresponding to different subspaces inside the state
space of the system. Therefore, proponents of this approach classify the reconstruc-
tion and quantification of the time evolution of the variance components with respect
to an evolving UCM as a major challenge (Latash et al., 2004).

To be able to stabilize a performance variable, the elements of a synergy need to
monitor the changes in the performance variable and/or changes in the outputs of all
the elements comprising the synergy. However, monitoring the changes of the per-
formance variable appears to be most important. If the movement system leaves the
UCM, the controller has to interfere. Because of time delays in sensory information
processing, such sensory information sent to the controller may be obsolete during
fast movements. So the question arises as to what extent spinal feedback-loops have
the ability to induce corrective changes in elements to bring the movement system
back into the UCM (Latash et al., 2004).

Although the neurophysiological foundations of synergies seem to be much more
plausible than in case of the GMPs, it has to be noted that it is still heavily debated
in the neuroscience community what exactly is represented in supraspinal structures
(Chap. 2.3.3.1). Some studies in the context of the UCM hypothesis considered joint
rotations at individual joints as independent variables manipulated by the CNS.
In addition to the problem that it is not currently known whether the CNS has
direct access to variables such as joint angles, it is questionable if joint angles can be
manipulated independently in a multi-body system that consists of coupled limbs.
Thus, the design of the human body can lead to results that are an outcome of the
system design rather than of control. So the main question yet to be answered is
(Latash et al., 2004): What are the independently controlled variables that are used
by the CNS to generate a movement?
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2.3.3 Computational neuroscience approach

In the human brain, billions of neurons are interconnected forming one of the most
complex structures nature has ever produced. In terms of complex patterns of activ-
ity occurring over populations of neurons, this network of neurons is able to process
an enormous amount of information within a split second. Until now, no technical
system has existed that works as reliably and quickly as the human brain. Com-
putational neuroscience is an interdisciplinary field of research in which mathemati-
cians, physicists, engineers, biologists, physicians, and psychologists jointly combine
biomedical and biomechanical experiments with mathematical modeling to gain in-
sight into the functioning of the human brain. Schaal (2007a) divides the field of
computational neuroscience into two areas: the low level and the systems level. Low-
level computational neuroscience focuses on models of the neurons, channel dynam-
ics, computational abilities of individual neurons and smaller neural networks. The
systems-level focuses on how the CNS accomplishes behaviors like object recognition,
visual attention, decision making and reinforcement learning. Computational neu-
roscience on the systems-level can be divided into different research topics including
perception, memory, learning and sensorimotor control. The problems treated in this
thesis are on the systems-level and related to the topic of sensorimotor control.

From the perspective of computational neuroscience, the sensorimotor system al-
lows humans to perform actions to achieve goals in an uncertain and constantly
changing environment. The computational study of sensorimotor control is funda-
mentally about the transformation of sensory signals into motor commands and vice
versa. The coupling of these two transformations forms a sensorimotor loop. The
transformation from motor commands to sensory signals is governed by the physics of
the outside world, the musculoskeletal system and the sensory receptors. Within this
framework, it is assumed that this transformation is represented internally in CNS.
Models that cover this motor-to-sensory transformation are known as forward inter-
nal models or simply, forward models. These models predict the future behavior of
the human body and the outside world. Therefore, they are sometimes referred to as
predictors in literature (Wolpert and Ghahramani, 2000). Models that represent the
sensory-to-motor transformation are called inverse internal models or simply, inverse
models. Because of the complexity of the human sensorimotor system (Chap. 2.2),
a simple look-up table for the transformation of sensory signals to motor commands
and vice versa does not seem probable. A less complex representation for the control
of the human sensorimotor system can be defined as the state of the system. The
state is a set of time-varying parameters that together with the fixed parameters of
the system, the equations of motion of the body, the outside world and the motor
output, allow for a prediction of the consequences of an action. For example, if a pre-
diction is needed for how a pendulum will respond to an applied torque, knowledge
of the pendulum’s angle and angular velocity is required. Together, this information
forms the state of the pendulum. The fixed parameters in this example would be the
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Figure 2.8: The sensorimotor loop consists of motor command generation (top),
state transition (right) and sensory feedback generation (left). The internal repre-
sentations of the three stages within the CNS are shown in the middle (Wolpert and
Ghahramani, 2000) .

length and the mass of the pendulum. With regards to the movement of the hand,
the state can refer to muscle activations or the position and velocity of the hand
in a goal-directed movement and change rapidly during the movement. Other key
parameters such as the identity of the manipulated object or the mass of the limb
change more discretely or on a slower time-scale. These slowly changing parameters
are referred to as the context of the movement. The ability of individuals to show
an accurate and appropriate behavior relies on the adaptation of motor commands
to the current movement context (Wolpert and Ghahramani, 2004). Wolpert and
Ghahramani (2000) divide the above mentioned sensorimotor loop into three stages
(Fig. 2.8) that comprehend the overall behavior of the sensorimotor system. The
first stage specifies the motor commands generated by the CNS based on a particular
task and the current state. The motor commands will cause a movement, which in
turn causes a change of the current state. The new state is determined during the
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second stage. In the third stage, the sensory feedback is specified given the new state.
It is assumed that these three stages are represented in the CNS in terms of internal
models, being the inverse model, the forward dynamic model, and lastly, the forward
sensory model. The three stages of the sensorimotor loop depicted in figure 2.8 rep-
resent a general framework of computational motor control which is outlined in more
detail in the following chapters. As supported by Wolpert and Ghahramani (2004),
the following sections discuss how movements are planned (Chap. 2.3.3.1), motor
commands are generated (Chap. 2.3.3.2), and states (Chap. 2.3.3.3) and contexts
(Chap. 2.3.3.4) are estimated. The following review does not address how internal
models are learned. An introduction to sensorimotor learning in the context of in-
ternal models can be found in Wolpert et al. (2001); Wolpert and Flanagan (2003).
Finally, the concepts that deal with the degrees of freedom problem are discussed
(Chap. 2.3.3.5).

2.3.3.1 Task: Motor planning

The computational problem of motor planning arises from the redundancy of the
human motor system. To solve the problem of motor planning two questions need
to be answered:

1. What principles or rules does the CNS use to select one trajectory from the
plethora of possible trajectories?

2. On which level do these principles or rules work and in which coordinate frame
is the trajectory planned?

It is unsurprising that this approach, in the context of movement planning, led to the
development of different and sometimes incompatible models (Hermens and Gielen,
2004). For example, some models assume that the CNS plans an entire trajec-
tory in advance of the movement onset (Flash and Hogan, 1985; Uno et al., 1989).
Other models do not depend on a precomputed desired trajectory (Hoff and Arbib,
1993; Ijspeert et al., 2002). In this chapter, results of three different experimental
paradigms including psychophysical studies, neural recording studies, and optimiza-
tion studies are reviewed.

Psychophysical studies
One of the main difficulties in assessing human motor control is that control strate-
gies of the CNS cannot be directly accessed. In this context, a key assumption in
motor control research is that information about these strategies can be deduced
from behavioral regularities (Bernstein, 1967). Therefore, in order to understand
fundamental control principles, one must begin by observing the system’s behavior
under various conditions. These observations will likely lead to a definition of general
features or principles of the system’s behavior. Given the redundancy of the human
motor system, it is quite surprising that in unconstrained point-to-point reaching
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movements, the human CNS does not appear to use the full repertoire of possible
trajectories but produces movements with several invariant features. In a pioneering
study, Morasso (1981) showed that in multi-joint arm movements, the hand paths
between pairs of targets in the horizontal plane are roughly straight in external Carte-
sian space with single-peak, bell-shaped velocity profiles regardless of the initial and
final location of the hand (Fig. 2.9). In contrast, when the trajectories of the hand
were expressed in joint coordinates, the profiles were more complex and variable.
These results were subsequently reproduced in a number of studies (Abend et al.,
1982; Flash and Hogan, 1985; Gordon et al., 1994; Haggard et al., 1995). Because
of the anatomical design of the human arm, joint rotations are needed to translate
the hand from the starting position, along the planned trajectory, to the target lo-
cation. Hence, the coordination process would imply a coordinate transformation
from external hand space into joint space. This problem is called the inverse kine-
matics problem (Zatsiorsky, 1998) and it is known from robotics that this inverse
computation has no unique solution (Craig, 2005). To resolve the joint redundancy,
additional constraints need to be defined as it is done in the context of optimization
models (Kawato, 1996). The constraints or combination of constraints used by the
CNS is still under debate (Gielen et al., 1995). The results of the study conducted
by Morasso (1981) do not seem to be uniformly valid (Atkeson and Hollerbach, 1985;
Desmurget et al., 1996; Desmurget and Prablanc, 1997). For example, Atkeson and
Hollerbach (1985) observed that hand paths in a vertical reaching movement were
sometimes curved and that the amount of curvature varied as a function of the initial
and final location of the hand, while the velocity profiles of the hand were the same
for straight and curved movement paths. Despite such exceptions, the regularity of
the roughly straight hand paths in external space with the single-peak, bell-shaped
velocity profiles characterize a large class of movements and led, in combination with
the more complex joint angular positions and velocity profiles, to the hypothesis that
goal-directed movements like reaching toward an object are planned in external co-
ordinates of the hand and not in internal coordinates (e.g. joint space) (Morasso,
1981; Hollerbach, 1982; Flash and Hogan, 1985; Ghez and Krakauer, 2000).

Flanagan and Rao (1995) compared two-joint planar reaching movements. During
the movements, the subjects were not able see their hands but were provided visual
feedback of the movement trajectory in either hand space or joint space on a com-
puter monitor. In the hand space condition, the cursor on the monitor corresponded
to the Cartesian coordinates of the hand. In the joint space condition, the cursor
corresponded to the shoulder and elbow angles of the arm, where the shoulder angle
was the ordinate and the elbow angle was the abscissa in terms of Cartesian coordi-
nates. When the movement trajectory was displayed in hand space, the participants
produced straight hand trajectories at the expense of curved joint trajectories after
only several practice trials. In the joint space condition, considerably more trials
were required before straight cursor paths on the monitor were produced. Straight
movements of the cursor in the joint space condition corresponded to curved hand
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Figure 2.9: In the classical study by Morasso (1981), subjects performed point-to-
point reaching movements in the horizontal plane using a mechanical linkage to track
the movements (A). The trajectories of the hand between the targets (e.g. T1-T4,
T2-T5) are approximately straight (B). Joint angles (C) and joint angular velocities
(D) were more complex than hand paths (E) and hand velocities (F) (adapted from
Shadmehr and Wise, 2005).

trajectories. Therefore, subjects moved the cursor almost directly to the target in
visual coordinates regardless of the trajectories of the hand in Cartesian coordinates
and the changes in joint coordinates.

Wolpert et al. (1995a) used kinematic transformations to investigate whether arm
trajectories are planned in kinematic or dynamic coordinates. Subjects had to per-
form point-to-point arm movements, and during the movements, the visual feedback
of the hand position was altered so that the subject perceived roughly straight hand
paths instead of curved paths. The perturbation was at a maximum at the midpoint
and was zero at the starting and end points of the movement. If trajectories are
planned in kinematic hand coordinates, an adaptation to the perceived curvature
of the hand trajectory in the opposite direction is expected to reduce the visually
perceived curvature and produce a roughly straight hand path. If trajectories are
planned in dynamic coordinates, no adaptation in the underlying planner should be
found, provided that the desired movement end point can still be achieved. However,
Wolpert et al. (1995a) observed corrective adaptations, meaning that after a few tri-
als, subjects altered their hand trajectories such that the real trajectory moved in an
arc to the right, when in fact the displayed hand location moved in an almost straight
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Figure 2.10: Experimental apparatus for the analysis of human arm trajectories
under altered visual feedback (A). The movement of the hand was captured online
by a computer, and perturbed and projected onto a screen as a white filled square.
Looking down at a mirror, the subject could only see the perturbed cursor but
not their hands. Among other activities, the subjects performed movements in the
sagittal plane, toward and away from their body. (B) The dotted lines represent the
mean hand trajectories with the standard deviation in the unperturbed condition.
The solid lines represent the hand trajectories of the visually perturbed condition.
The X-axis is enlarged to show the details. The vertical scale of the mean paths
is shown on the right. The two arrows represent the movement direction (adapted
from Wolpert et al., 1995a).

line (Fig. 2.10). These results suggest that trajectories are planned in visually-based
kinematic coordinates and that spatial perception plays a fundamental role in tra-
jectory planning. A trajectory planning in dynamic coordinates is incompatible with
the results of the study.

In summary, the results of the studies by Wolpert et al. (1995a) and Flanagan and
Rao (1995) suggest that given the choice between a trajectory that looks straight in
visual coordinates and one that is straight in reality, the CNS appears to generate
a visually straight trajectory (Shadmehr and Wise, 2005). In other words, there is
strong evidence that the CNS plans visually guided reaching or pointing movements
in a perceptual (i.e. visual) frame of reference.

Studies by Miall and Haggard (1995) and Sergio and Scott (1998) however, suggest
that visual feedback itself is not sufficient to explain why subjects tend to produce
visually straight hand paths. Both studies analyzed congenitally blind individuals
who had never experienced visual feedback. Nevertheless, these subjects produced
roughly straight reaching movements. Their hand paths sometimes showed less curva-
ture than the hand paths of non-blind subjects. In almost all of the discussed studies,
subjects did not produce perfectly straight hand paths, but hand paths that were
nearly straight. It is possible that blind subjects are able to produce straighter move-
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Figure 2.11: Subjects held the handle of the robot and reached toward a target
(top left). Trajectories of the hand under null-field condition (A). Force fields are
produced by the robot and the forces are plotted as a function hand velocity (B).
Average hand trajectories of the first 200 trials under force field condition (C). Av-
erage hand trajectories of the trials 600-800 under force field condition (D). Average
hand trajectories after the force field was occasionally turned off again (E) (adapted
from Shadmehr and Wise, 2005).

ments because they do not experience any visual misperception of space. In other
words, the visual system of humans distorts Cartesian space making slightly curved
movements in Cartesian space appear straight in visual coordinates. The human
CNS therefore may try to make straight-line movements in visual coordinates, but
the actual movement produces a gentle curvature in Cartesian coordinates (Miall and
Haggard, 1995; Shadmehr and Wise, 2005). In the case of the blind subjects, propri-
oception provides the only source of feedback to correct deviations from straight-line
hand paths. Therefore, it could be argued that blind persons have a higher than
normal ability in proprioceptive estimates of straight lines and that they use this
ability to ensure that their movements are straight.

Shadmehr and Mussa-Ivaldi (1994) investigated how reaching movements are af-
fected in the presence of externally imposed force fields produced by a robot manipu-
landum. Subjects had to perform reaching movements while holding the end-effector
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of the manipulandum. The targets were provided via a monitor. Under the null-field
condition, subjects produced nearly straight hand trajectories (Fig. 2.11A). After
recording initial trajectories, the force field was turned on and the strength of the
force field was dependent on the velocity of the hand (Fig. 2.11B). Hand movements
under the force field condition deviated significantly from the roughly straight-line
hand paths (Fig. 2.11C). With practice, the trajectories of the hand in the force
fields converged toward a path very similar to that produced before the perturbation
(Fig. 2.11D). After the subjects were trained under force field condition, the force
field was occasionally turned off. The resulting hand trajectories almost resembled
mirror images of trials when the force field was turned on. It appears that when
something disturbs the human arm during movement, like an unexpected external
load, movements lose their smooth and regular characteristics. However, provided
these disturbances are highly predictable, practice leads to straight hand trajectories.
This convergence toward a straight and simple hand trajectory supports the idea that
the human motor system plans movements in terms of extrinsic coordinates of the
hand rather than in intrinsic coordinates (e.g. joint angles or muscle activations)
(Wise and Shadmehr, 2002).

In summary, all of these studies showed roughly straight hand paths for both
blind and sighted subjects, and even after adaptation when moving the arm against
unusual loads. The results emphasize that the human motor system has a strong
tendency to generate goal-directed reaching movements with relatively straight hand
paths. Taken together, the results largely support the idea that arm trajectories
follow a kinematic plan that is formulated in extrinsic kinematic space, independent
of movement dynamics or external force conditions.

In contrast, Soechting and Lacquaniti showed in a series of psychophysical exper-
iments (Soechting and Lacquaniti, 1981; Lacquaniti and Soechting, 1982; Soechting
and Lacquaniti, 1983) in which subjects had to perform a goal-directed two-joint
movement in the sagittal plane, that both joints reached their peak angular veloc-
ities at the same time and that the ratio of the peak velocity at the elbow to the
peak velocity at the shoulder is equal to the ratio of the angular excursions of the
two joints. The results were interpreted by the authors as evidence that movements
are planned in intrinsic coordinates. Hollerbach and Atkeson (1984) challenged the
conclusion by noting that at the same time the joint ratios were constant, the tra-
jectories of the hand were almost straight in the above cited studies. This mutually
contradictory result of straight lines in hand and joint space had been resolved by
Hollerbach and Atkeson (1984) in favor of straight lines in hand space because of an
experimental artifact in the case of two-joint kinematics near the workspace bound-
aries. In addition to these studies where the argument for a planning of movements
in terms of joint angles seems to be attributed to the movement task, a few other
researchers have suggested that reaching movements are planned on joint level be-
cause of internal control (Kaminski and Gentile, 1986; Hollerbach and Atkeson, 1987;
Flanagan and Ostry, 1990; Desmurget and Prablanc, 1997).
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In summary, it seems that both planning spaces are supported by a large number
of experimental results. After a review of the experimental settings of several of
the above mentioned studies, Desmurget et al. (1997) showed that there is an im-
portant methodological difference between the experiments describing straight and
curved trajectories of the hand, namely the presence (constrained) or absence (un-
constrained) of a tool that is used to track the movement (e.g. a pen or a manipulan-
dum). The results of the Desmurget et al. (1997) study indicate that in the absence
of a tool, the trajectories of the hand do not appear to be programmed to follow
a straight line in contrast to constrained movements. Therefore, Desmurget et al.
(1997, 1998) suggest that constrained and unconstrained movements involve different
planning strategies. However, it should be noted that kinematic regularities could
also result from planning movements in an internal dynamical space (Uno et al.,
1989; Nakano et al., 1999). Finally, some authors suggest that movement planning
takes place on both levels, kinematic and dynamic (Soechting and Flanders, 1998).

Behavioral research has discovered various regularities in human goal-directed
movements. These invariants have become central to understanding human sensori-
motor control as they appear to suggest some fundamental organizational principles
used by the CNS. The problem is that it is hard to determine on which level these
invariants arise (Schaal et al., 2003). On the basis of the above discussed results, it
is currently impossible to identify the level or space in which human movements are
planned.

Neural recording studies

In addition to the above presented studies, numerous neural recording studies have
addressed the question about in which coordinate system movement planning takes
place. In these studies, the neural activity of primates was recorded in an effort to
link patterns of neural activity to one or more behavioral variables. Electrical stim-
ulation was used to identify specific motor effects in the cerebral cortex in primates
and humans. The results of these studies were correlated with clinical observations
on the effects of local lesions. The area in which the lowest intensity stimulation
initiated a movement is known as the primary motor cortex (M1). M1 is organized
somatotopically, denoting the existence of a motor map of the body laid out in the
brain structure. The motor map is represented by the structure of a distorted human
figure called a homunculus. The representation is characterized by disproportionately
large areas for body parts such as fingers, hands and the face, which enables a fine
control or coordination of movements in these parts of the body (Krakauer and
Ghez, 2000). However, studies exist that challenge the homunculus representation
(Schieber, 2001). The stimulation of adjacent areas in M1 does not necessarily induce
motion of the same or adjacent body parts. Furthermore, the same body part can be
moved by stimulating nonadjacent cortical areas. As a result, the representation of
the human body in M1 seems to be rather mosaic and M1 does not appear to contain
a one-to-one mapping of cortex areas to body parts or muscles. In addition, substan-
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tial convergence and divergence of cortical projections exist. Substantial convergence
means that the stimulation of different cortical cells activates the same group of mo-
tor units and leads to similar movements. Substantial divergence means that the
stimulation of one cortical cell can activate different groups of motor units and move
different parts of the body (Latash, 2008a). In addition, it should be noted that other
regions of the brain, like the premotor areas or the cerebellum, also contain motor
maps and that the somatotopic organization of M1 is plastic, indicating the possi-
bility of an alteration following injury and/or motor learning (Krakauer and Ghez,
2000; Latash, 2008a). In neuroscience there is little disagreement that the M1 plays
a fundamental role in the control of voluntary arm movements such as reaching for
and grasping objects. M1 receives sensory input from the periphery and reciprocal
input from other brain regions involved in motor control such as the basal ganglia
and cerebellum. Furthermore, M1 provides the largest contribution to the descending
corticospinal tract, sometimes even directly contributing to the alpha-motoneurons
(Scott, 2003). Therefore, the following question arises: What information is encoded
in a single neuron or a population of neurons in M1? Based on the idea that planning
and executing arm movements requires a set of coordinate transformations (Chap.
2.2), it is of great interest where M1 is located in this set of transformations. After
decades of research on this area of the brain, it seems plausible to assume that the
role of M1 in the control of voluntary arm movements might have been uncovered.
However, considerable debate still exists as will be discussed below.

Early studies of M1 used movements about a single joint to analyze the relationship
between cell activity and parameters of limb activity (Evarts, 1968, 1969). Similar
studies were undertaken for the cerebellum (Thach, 1970a,b), basal ganglia (DeLong,
1973) and spinal cord (Courtney and Fetz, 1973). The idea of these early studies was
that the coding of motor output could be best understood by reducing movement
to its elemental unit, rotation about a single joint. However, almost all voluntary
movements require a precise activation of many muscles to rotate multiple joints in
such a way that the hand reaches the object of interest. The generation of such
a movement involves more than a simple linear combination of isolated single-joint
rotations (Kalaska, 2009). This led to the question of whether neurons in M1 directly
control the patterns of muscle activation or more global parameters like movement
direction or movement extent in multi-joint movements. An influential study was
conducted by Georgopoulos et al. (1982). In the study, monkeys were trained to move
their right arm in eight different directions within a workspace to targets arrayed in
a circle at 45◦ intervals around a central starting location. As shown in figure 2.12,
the movements started from the same point and had the same amplitude. During
the monkey’s movements, the activity of 606 cells in M1 was recorded and 323 of
the 606 cells were shown to be active during the task. The frequency of discharge
of 241 of the 323 cells varied with movement direction in an orderly fashion. The
cell discharge of each neuron was highest with movements in a particular direction,
called the preferred direction of the cell, and was shown to decrease progressively with
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movements made in directions away from the preferred direction, leading to a bell-
shaped directional tuning curve (Fig. 2.12). It was found that for the directionally
tuned cells, the frequency of discharge (D) was a sinusoidal function of the movement
direction (θ):

D = b0 + b1 sin θ + b2 cos θ (2.3)

or in terms of the preferred direction (θ0):

D = b0 + c1 cos(θ − θ0) (2.4)

where b0, b1, b2 and c1 are regression coefficients. Equations 2.3 and 2.4 can be
applied to reaching movements in a plane and to reaching movements performed in
3D space (Georgopoulos, 1996a).

The previously presented results of single cell recording indicate that during reach-
ing movements in a given direction, many neurons with a broad range of different
preferred directions were active to varying degrees. In other words, a signal about a
direction of movement seems to be embedded in a distributed activity pattern of a
whole population of neurons (Kalaska, 2009). Georgopoulos et al. (1986) proposed a
vectorial code for the reconstruction of the signal from a population of neurons. The
population of cells is regarded as a population of vectors in which each vector repre-
sents the contribution of an individual cell. For example, the ith cell is represented
by a vector that points in the cell’s preferred direction Ci and has a length wi(M),
which represents the change of the cell’s activity associated with a particular move-
ment direction M . The population vector P (M) is calculated as follows (Amirikian
and Georgopoulos, 2003):

P (M) =
N∑

i=1

wi(M)Ci (2.5)

where N corresponds to the number of cells in the population. In the above de-
scribed study (Fig. 2.12), N would be 241. The findings of the study conducted by
Georgopoulos et al. (1983) indicate that the population vector closely matches the
directions of movements in 2D and 3D space (Fig. 2.12). Furthermore, subsequent
studies revealed correlations between neural activity and extrinsic parameters such
as target location, movement distance, speed and tangential velocity during reaching
movements (Kalaska, 2009). Based on these results, it appears that the motor cortex
is involved in high-level processing in the form of a planner and that downstream
systems like the spinal motor system are responsible for converting these high-level
signals into patterns of muscle activity and ultimately, to a force (Georgopoulos,
1996b). Bizzi et al. (2000) showed that the spinal motor system is an active par-
ticipant in the process of movement generation, and therefore in theory, it should
be possible that this structure supports the mapping between high-level signals ex-
pressed in extrinsic spatial kinematics and low-level proximal-limb muscle activities.
This interpretation is consistent with the findings from Chapter 2.3.2.3.
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Figure 2.12: (A) The raster plots top left show the activity of a M1 neuron during
five repeated movements in eight different directions in a 2D plane indicated by
the center diagram. The signals are aligned to the onset of movement (M). Below
the raster plots the directional tuning curve of the same neuron is displayed. The
regression equation for the sinusoidal curve is D = 32.37+7.281 sin θ− 21.343 cos θ0

or equivalently D = 32.37 + 22.5 cos(θ − θ0), where θ0 = 161◦ (Georgopoulos et al.,
1982). (B) Vector contributions of each of the 241 directionally tuned cells for each
of the eight tested movements are shown. Notice the spatial congruence between
the direction of movement indicated by the center diagram and the vectorial sum
(dashed arrows). The vector sum or the population vector is calculated on the basis
of equation 2.5 (Georgopoulos et al., 1983).

One problem in the studies cited above is that although the results seem to re-
fer to a representation of extrinsic parameters in M1, they also produced equally
broadly-tuned changes in other parameter spaces such as joint space or muscle space
(Kalaska, 2009). Based on this observation, several studies were conducted that tried
to decouple extrinsic spatial parameters of hand motions from intrinsic joint or mus-
cle parameters. Studies by Caminiti et al. (1990, 1991) and Wu and Hatsopoulos
(2006) revealed that the directional tuning functions of neurons in M1 changed when
monkeys reached in the same spatial direction but in different areas of the arm’s
range of motion. Scott and Kalaska (1997) conducted studies in which monkeys
had to perform reaching movements along the same hand path but use different arm
postures. In other words, the hand paths of the reaching movements were the same
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under the different experimental conditions, but the joint motions and the muscle
activity changed. If the neurons in M1 only code extrinsic coordinates of the hand,
their activity should not change under these different experimental conditions. How-
ever, Scott and Kalaska (1997) showed that a change in arm posture led to significant
changes in the discharge of many single neurons in M1. Kakei et al. (1999) devel-
oped a protocol that dissociates between three different coordinate frames related to
wrist movements: extrinsic (related to the direction of movement in space), muscle
(related to the activity of individual or groups of muscles) and joint (related to the
angle of the wrist joint). In a first study, neuronal activity in M1 of monkeys was
analyzed. Based on the analysis, two types of M1 neurons were distinguished: one
that appeared to represent the direction of movement in space (extrinsic parameter)
and one that appeared to represent muscle activity (intrinsic parameter). In a second
study, Kakei et al. (2001) recorded the activity of neurons in the ventral premotor
area (PMv), which is a major source of input to M1 neurons, using the same protocol
as before. PMv has strong interconnections with other regions of the brain includ-
ing the posterior parietal cortex and area 46 of prefrontal cortex. Neurons in the
PMv receive visual and somatosensory inputs and are active during the preparation
for and execution of visually guided movements. Based on these observations, it is
suggested that the PMv is an important member of a cortical network for directing
limb movement in space. In contrast to results of their first study (Kakei et al.,
1999), it was found that most directionally tuned PMv neurons encoded movement
in an extrinsic coordinate frame and were not influenced by changes in forearm pos-
ture. These findings are consistent with a hierarchical relationship between PMv and
M1. Therefore, the authors suggest that intracortical processing between PMv and
M1 may contribute to a sensorimotor transformation between extrinsic and intrinsic
coordinate frames.

Based on the reviewed studies, it is impossible to answer the question of whether
extrinsic or intrinsic motor output parameters are represented in M1. As an interme-
diate result, it could be suggested that the representation of movements in M1 seem
to reflect (to some degree) both intrinsic joint- or muscle-centered parameters and
extrinsic parameters. Based on current knowledge, a definitive answer to the ques-
tion of whether extrinsic and/or intrinsic motor output parameters are represented
in M1 is not possible. However, the fact that M1 is the brain area where the lowest
intensity stimulation initiates a movement, together with the results of Kakei et al.
(1999), suggest that muscles are likely represented in the motor cortex. As force
is generated by muscle activity (Ashe, 1997), force would be the most obvious pa-
rameter to study. Consequently, many neural recording studies have been conducted
to resolve the degree to which M1 neurons encode kinematic or dynamic (kinetic)
movement parameters.

Evarts (1968, 1969) was the first to study whether M1 activity was related to
movement kinematics or dynamics in single-joint movements. The results from sin-
gle cell recording indicated that the firing of M1 neurons correlate with the direction
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and amplitude of muscle force. In most single-joint studies, the activity of a signif-
icant number of M1 neurons was highly correlated with the kinematics of the task,
but not with the kinetics. Kalaska (2009) indicated that in single-joint studies, the
response properties of M1 neurons were as heterogeneous in context of kinematics
versus kinetics as they were for extrinsic versus intrinsic parameters. Few studies
have addressed the question of whether M1 activity in multi-joint movement tasks is
related to movement kinematics or dynamics. Kalaska et al. (1989) replicated and
expanded on the study by Evarts (1968, 1969) to include whole-arm motor tasks. In
this study, monkeys had to move a handle in 8 different directions starting from a
central position. A force could be applied to the handle by the experimenter in any
of the 8 movement directions. The magnitude of the force was constant. The results
showed a broad range in the sensitivity of M1 neurons to the external loads ranging
from neurons that were strongly modulated by both movement and load direction, to
neurons that were strongly tuned for the direction of movement but were relatively
insensitive to external loads. An important observation was that no neurons showed
the opposite behavior (modulation with direction of the external load but not of
the movement). Furthermore, neurons were only sensitive to external loads if they
were also directionally tuned during movements without any external loads. This
indicates a common functional contribution to both movement and compensation for
external loads (Kalaska, 2009). In other words, the firing rate of the cells increased
when the applied load pulled the arm in the opposite of the cell’s preferred direction
and the firing rate decreased when the load pulled the arm in the cell’s preferred
direction. These results indicate that the activity of the M1 neurons varies not only
with movement direction but also with the direction of forces applied to the arm.
These results are similar to the results presented above for single-joint movements
(Krakauer and Ghez, 2000). Load-dependent responses were also found on the pop-
ulation level. The previously introduced population vector varied systematically in
direction and length during reaching movements against external loads of different
directions. When the loads pulled in the movement direction, the length of the pop-
ulation vector decreased, whereas the population vector length increased when the
load pulled in the direction opposite to the movement, which means representing an
increase in the activity of the M1 neurons (Fig. 2.13). It was also shown that loads
pulling the arm perpendicular to the movement direction led to a deviation of the
population vector in a direction that is opposite to the direction of the load (Kalaska,
2009). In this context, Kalaska et al. (1990) found an important difference between
neurons in M1 (area 4) and the parietal area 5. Under the same experimental con-
ditions, the neurons in the parietal area 5 did not show a significant change in the
population activity when different loads were applied. The population vector always
pointed in the direction of movement and no significant alteration of its length was
observed. These results indicate that area 5 encodes primarily kinematic movement
parameters whereas M1 (area 4) encodes both kinematic and dynamic movement
parameters.
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Figure 2.13: (A) Vector representation of the activity of a population of neurons
in M1 during arm movements to the left. The central plot shows the neural activity
of the neurons without load. All other plots around the central plot represent neural
M1 activity under load condition. The position of the outer plots corresponds to the
direction that the load pulled the arm. (B) Vector representation of the activity of
a population of neurons in the posterior parietal area 5 during the same task under
the same conditions (Kalaska, 2009).

Based on these results, it is difficult to make a coherent statement about the role
of M1 in arm movement control. It seems that one interpretation is that M1 is in-
volved in more global details of the motor task (e.g. specifying the direction of hand
movement) and that the generation and coordination of the required motor patterns
to produce the required forces is performed exclusively on the spinal level. Another
interpretation is that M1 is involved in the generation and coordination of forces and
that the descending motor commands from M1 include detailed information about the
motor patterns at each joint (Scott, 2000c). In this context, the question arises as to
whether there is one parameter of motor behavior that, if encoded in cell populations
of M1, can explain most of the available results. Todorov (2000a, 2002, 2004) argued
in a series of papers that muscle activation is probably the most plausible parame-
ter. Although Todorov’s approach seems to be controversial (Todorov, 2000a; Moran
and Schwartz, 2000; Georgopoulos and Ashe, 2000; Todorov, 2000b; Scott, 2000a),
its strength is that many of the above discussed observations can be accounted for
by the complexity of the musculoskeletal system (Scott, 2000b). Whether or not
M1 explicitly codes high-level task parameters such as the direction of the hand or
intrinsic parameters such as joint angles or muscle forces is still a subject of active
debate. Along with neural recording studies, many studies were conducted which
used the instructed delay period method (Weinrich and Wise, 1982). In this method,
a subject receives all relevant information about the goal of the movement but is not
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allowed to begin the movement immediately. The idea is that neural correlations of
a movement plan may be found during the instructed delay period. However, as re-
ported by Cisek (2005), instructed delay period activity has been found in almost all
movement-related brain regions. A methodological problem of many neural recording
studies is the movement tasks used in the studies. The reaching movements in most
experiments are heavily constrained so that these movements are often highly stereo-
typical and traverse a much lower-dimensional space than is theoretically possible.
Consequently, movement parameters in different coordinate frames are often highly
correlated. A neuron that appears to encode hand movement in one coordinate frame
will likely appear to also be sensitive to joint movements (Reimer and Hatsopoulos,
2009). Besides the movement tasks, the correlation method itself is heavily debated
in technical literature. Scott (2005) suggests that the population vector will point
in the movement direction of the hand if the following three conditions are met: (1)
The neural activity is symmetrically tuned to the movement direction of the hand,
(2) The preferred directions of the neurons are uniformly distributed, and (3) There
exists no coupling between a cell’s preferred direction and the magnitude of modula-
tion during movement. Despite these methodological problems, the presented results
indicate that no single region of the brain represents extrinsic or intrinsic parameters
exclusively. The reviewed literature indicates that the representation of these param-
eters is most likely distributed across multiple regions of the brain. In this context,
it seems that neurophysiologists have only begun to understand the mechanism of
the human motor system (Wise and Shadmehr, 2002).

Optimal control studies

Because of the redundancy of the human motor system, humans can achieve every-
day tasks like grasping a glass of water in an infinite number of ways (Chap. 2.2).
Despite this redundancy, humans do not seem to use the full repertoire of possi-
ble movements to perform unconstrained movements, but instead produce highly
stereotypical movement patterns. These patterns are observed under a variety of
experimental conditions, over multiple repetitions of a task and between individuals
performing the same task. This consistency indicates that some movement patterns
are systematically preferred over others, likely based on perceived efficiency or com-
fort. This perspective leads to the field of optimal control, which is a promising
way of dealing with such selection problems. In optimal control, a global measure
(such as efficiency, smoothness, or accuracy) is used to describe a movement. This
global measure is representative of the cost of the movement and can be seen as a
kind of reward or punishment. The cost function, then, is usually defined as the
integral of a cost over a certain time interval. In this context, the cost function is
a mathematical means for specifying a movement plan based on a global measure.
Movements are ranked according to cost, and the movement with the lowest cost is
considered the optimal choice. Although optimal control is motivated by the prob-
lem of motor redundancy, these models are theoretically well justified a priori. The
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human sensorimotor system is a product of evolution, development and learning.
These three processes work on different time scales to improve actions. From an
evolutionary point of view, the purpose of any action is to maximize the probability
of passing on genetic material. In this view, some actions are more likely to lead
to passing on genetic material, and the human brain may have learned to indirectly
represent this probability through a cost function-based ranking of actions. Even if
skilled performance is not always optimal, it has been made adequate by processes
whose limit is optimality. However, the ultimate challenge in optimal control is to re-
verse engineer the cost function that is used to govern human behavior (Jordan and
Wolpert, 1999; Todorov, 2004; Wolpert and Ghahramani, 2004). Current optimal
control models can be grouped into two categories (Todorov, 2004): open-loop and
closed-loop optimization models. Open-loop models typically assume a strict separa-
tion between trajectory planning and trajectory execution. These models are models
of average behavior and differ mainly in the cost function used (Kawato, 1996). The
second group of models attempt to construct the sensorimotor transformation that
results in the best possible performance, taking into account motor noise, sensory
uncertainty and delays (Todorov and Jordan, 2002; Todorov, 2004).

Most optimal control models are open-loop models. In open-loop models, a plan-
ner computes a desired trajectory that is transmitted to a controller, which in turn
transforms the desired trajectory into adequate motor commands. Finally, the motor
commands are sent to the plant. Depending on the open-loop model, the problem of
motor redundancy is largely resolved during the planning stage via optimization. The
only information needed by the planner to compute a desired trajectory is the current
state (current position of the hand) and the desired final state (current position of
the target in the workspace). Feed-forward control seems to be a plausible control
scheme when movements are rapidly executed. These movements cannot be solely
under feedback control because feedback loops in biological systems are slow. For
example, the delay for visual feedback is approximately 150-200 ms (Slater-Hammel,
1960) and the delay for spinal feedback requires 30-50 ms, which is considered rela-
tively fast (Kawato, 1999). It is likely the controller uses a servo mechanism to cancel
instantaneous deviations between the desired and actual state of the body. In addi-
tion, the controller is provided with predicted sensory feedback, and in the case of
long-lasting movements, sensory feedback. This information can be used by the con-
troller to adapt the motor commands so that the desired trajectory can be executed.
In addition, Bizzi et al. (1984) demonstrated that deafferented monkeys can reach
toward a target without visual information. These results show that the entire tra-
jectory, from the starting to the final position, is precomputed, meaning movements
can be executed in a purely feed-forward manner. In addition to exploring which
principles the CNS uses to solve the previously introduced ill-posed problems (Chap.
2.2), it is important to consider on which level in the sensorimotor system these prin-
ciples work. In other words, determining in which coordinate frame or space human
movements are planned. Besides psychophysical or neural recording studies optimal
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control models can be used to examine the space in which trajectories are planned.
Thereby, trajectories predicted by optimal control models defined in different plan-
ning spaces and experimentally determined trajectories are compared (Osu et al.,
1997). According to Nakano et al. (1999), four planning spaces can be distinguished:
an extrinsic-kinematic space (e.g. Cartesian coordinates of the hand), an intrinsic-
kinematic space (e.g. joint angles or muscle length), an intrinsic-dynamic-mechanical
space (e.g. joint torque or muscle tension), and lastly, an intrinsic-dynamical-neural
space (e.g. motor commands controlling muscle tension or the firing rates of motor
neurons). Figure 2.14 shows the different planning spaces and six of the most in in-
fluential optimization models assigned to the different stages in movement planning.
A comprehensive review of the existing open-loop optimization models is beyond the
scope of this thesis, however a review of available models can be found in the pa-
per by Kawato (1996). Below, a single optimization model for each planning space
is discussed. Provided an initial state, a target state and the movement duration,
the optimization models introduced below can be used to simulate the process of
trajectory formation.

Based on the observation that in unconstrained point-to-point movements the tra-
jectory of the hand shows a smooth, bell-shaped velocity profile, it was proposed that
the square of the third derivate of the trajectory of the hand or jerk is minimized
over the movement (Flash and Hogan, 1985). Letting X(t), Y (t) and Z(t) denote
the position of the hand in a global or laboratory-fixed Cartesian coordinate system
at time t, the minimum hand jerk model in 3D space is given by the following cost
function:

JHJ =
1

2

∫ tf

t0

{(
d3X

dt3

)2

+

(
d3Y

dt3

)2

+

(
d3Z

dt3

)2
}

dt (2.6)

where t0 and tf define the duration of the movement. A review of the literature
(Flash and Hogan, 1985; Hogan and Flash, 1987; Hogan et al., 1987) indicates that
the trajectories predicted by the minimum jerk model are straight line paths. In
addition, the model predicts smooth, single-peak, bell-shaped tangential velocity
profiles. Finally, the shape of the hand trajectories are invariant in translation,
rotation, amplitude and time scaling. It was also shown that the first derivative of a
trajectory becomes progressively narrower and taller when using the fourth (snap),
fifth (crackle), and even higher derivatives of the end effector location in the cost
function (Richardson and Flash, 2002). Furthermore, the ratio of peak speed to
average speed of the hand increases when the system minimizes jerk, snap, crackle
and other higher derivatives. The minimum hand jerk model is a purely kinematic
model; it cannot adapt planned trajectories to dynamic aspects of the motor task
or the environment. Once the desired trajectory is determined in Cartesian space,
a controller must be invoked to solve the problem of coordinate transformation and
motor command generation.

According to the minimum angle jerk model trajectories are planned in joint space
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Figure 2.14: Conceptual schema of different trajectory planning spaces (adapted
from Nakano et al., 1999) and corresponding optimal control models.

to minimize the change of the angular acceleration across the joints under consider-
ation. The corresponding cost function is expressed by minimizing the integration of
the jerk over the duration of the movement as follows:

JAJ =
1

2

∫ tf

t0

N∑
i=1

(
d3qi

dt3

)2

dt (2.7)

where qi is the joint angle q of the joint i. In the case of point-to-point movements,
cost function 2.7 produces straight paths in joint space. When the planned trajectory
is transformed into Cartesian coordinates via forward kinematics, the trajectory of
the hand gradually curves depending on the position of the arm (Kawato, 1996; Wada
et al., 2001). If movement planning takes places in joint space, the planner resolves
the problem of trajectory formation and to some extent, the problem of coordinate
transformation. The controller then has to transform the joint angles into torques
and finally, compute the appropriate motor commands.
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The solutions to movement tasks adopted by the human motor system should
be flexible and adaptable to diverse environmental conditions. Otherwise, humans
would not have the capacity for motor equivalence (Chap. 2.1). The minimum jerk
models are based solely on kinematics. Therefore, these types of models are unable
to adapt planned trajectories to changing dynamic aspects of the movement task or
the environment, such as inertial characteristics of the manipulated objects or force
fields (Kawato, 1996). Uno et al. (1989) proposed an optimal control model that
depends on the dynamics of the musculoskeletal system, the minimum torque change
model. According to the minimum torque change model, trajectories are planned
as the sum of the changes of the torques τ̇ across the joints i is minimized. The
corresponding cost function is given by the following equation:

JTC =
1

2

∫ tf

t0

N∑
i=1

(
dτ̇i

dt

)2

dt (2.8)

If the plant is a point mass, then according to Newton’s second law, the force is equal
to the product of mass and acceleration. In other words, the rate of change of accel-
eration (minimum hand jerk) is identical to minimum force change (minimum torque
change). If the plant is a multi-body system, these criteria are different (Kawato,
1996). If movement planning takes place in the intrinsic-dynamic-mechanical space
by a minimization of the change rate of the torques in the joints of the body, then
two ill-posed problems would be resolved: the problem of trajectory formation and
the problem of coordinate transformation (inverse kinematics and inverse dynamics
problem). Based on the computed torques for each instant of time, the controller
needs to calculate the appropriate motor commands.

Although minimum jerk and minimum torque change models are able to repro-
duce many aspects of human trajectories, they do not provide an explanation as to
why smoothness of movement is important. It is also debatable whether the CNS is
able to estimate complex quantities, such as jerk and torque change, and integrate
them over the entire duration of the movement (Jordan and Wolpert, 1999). Further-
more, all movements are subject to noise which causes deviations from the desired
trajectory. Minimum jerk and torque change models do not account for these devia-
tions. Harris and Wolpert (1998) proposed a minimum variance model that assumes
that there is noise in the motor command proportional to the magnitude of the mo-
tor command. This model has several important ramifications. First, non-smooth
movements require larger motor commands than smooth movements, and therefore
generate an increase in noise. In the case of goal-directed movements, smoothness
leads to accuracy but is not a specific goal. Secondly, consistent with Fitt’s law,
signal-dependent noise inherently imposes a trade-off between movement duration
and final accuracy in the endpoint of the movement (Chap. 2.3.1.1). Thirdly, the
minimum variance model provides a biologically plausible theoretical underpinning
for goal-directed movements because such costs are directly available to the CNS, and
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the optimal trajectory could be learned from the experience of repeated movements
(Jordan and Wolpert, 1999).

One of the main limitations of open-loop optimization is that in large part these
models fail to model trial-to-trial variability. The average behavior predicted by
these models is much more common in constrained laboratory tasks than in real
world movements (Todorov, 2004). Furthermore, one of the most remarkable prop-
erties of biological movement systems in comparison with technical systems is that
they can accomplish complex movement tasks in the presence of noise, delays and un-
predictable changes of the environment. Open-loop models are not ideal for models
instances under these conditions. Instead, an elaborate feedback control scheme that
is able to generate intelligent adjustments online is needed. Such a control scheme
enables biological systems to repeatedly solve a control problem instead of repeat-
ing a specific solution (Bernstein, 1967). Todorov and Jordan (2002) developed an
optimal feedback controller based on these needs. In the closed-loop optimization
model, the controller is fully programmable, which means that it constructs the best
possible transformation of information from states of the body and the environment
into control signals. The idea is that the controller does not rely on preconceived
notions of what control schemes the sensorimotor system may use, but does what
is needed to accomplish the task. In other words, optimal feedback control allows
the task and the plant to dictate the control scheme that best fits the task. In an
isometric task, this may be a force-control scheme and in a postural task where a
target limb position is specified, this may be a position control scheme. Because
of the fact that the state of the plant is only observable through delayed and noisy
sensors, the controller is only optimal when the state estimator is optimal. Such an
estimator is modeled by an internal forward model (Chap. 2.3.3.3) that estimates the
current state by integrating delayed noisy feedback with knowledge of plant dynam-
ics and an efference copy of the control signals. One of the key features of internal
forward models is their ability to anticipate state changes before the corresponding
sensory data has arrived (Todorov, 2004). The distinction between open-loop and
closed-loop control was traditionally seen as two complementary control schemes. A
recent study by Desmurget and Grafton (2000) indicates that one scheme is simply
a special case of the other. Based on optimal feedback control, Todorov and Jordan
(2002) proposed a theory of motor coordination that a general strategy for move-
ment generation may be formed in the presence of signal dependent noise. Since the
model of Todorov and Jordan (2002) does not precompute a desired trajectory, the
redundancy of the human movement system has to be resolved online by the feedback
controller. This is accomplished by obeying a minimum intervention principle. This
principle states that deviations away from the average behavior are not corrected
unless those deviations interfere with task performance. The idea is that acting or
making corrections is expensive because of control-dependent noise and energy. The
basic concept is explained in figure 2.15. Configurations of the human body can
be thought of as vectors in a multi-dimensional state space. In a redundant task,
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Figure 2.15: In this figure, the simplest redundant task is illustrated. There are
two independent state variables x1 and x2. Each variable is driven by a control signal
(u1 and u2) in the presence of control dependent noise. The goal of the task is to use
small controls to maintain x1+x2 = 2. Nominally, each value could be 1.0 (x1 = x2 =
1.0). Because of control dependent noise, when these commands are implemented,
the output may be modified such that both values are 1.1. Consequently, the best
strategy is to reduce both values toward 1. In another case, one value equals 1.1 and
the second value equals 0.9. Since the optimal controller depends only on a result
of 2.0 and not on the individual values x1 and x2, it pushes the states along in the
task-relevant direction and leaves the error in the redundant direction uncorrected
(black covariance ellipse). Traditional open-loop methods force x1 = x2 = target/2
and try to reduce the errors equally from all directions, resulting in the gray circle,
by pushing the state toward the center (Todorov, 2004; Scott, 2004).

the state vector can vary in certain directions without interfering with the move-
ment goal. The minimum intervention principle pushes the state vector orthogonally
in the redundant directions. This leads to a probability distribution of observed
states (Fig. 2.15, black covariance ellipse) that is elongated in the redundant direc-
tions (Todorov, 2004). Such effects can be quantified using an uncontrolled manifold
concept for comparing task-relevant and redundant variances (Scholz and Schöner,
1999). Todorov (2004) showed that optimal feedback control creates an uncontrolled
manifold because there are directions in which the control scheme does not act. In
summary, the work of Todorov (2004) presented above combines a number of key
ideas and concepts of motor control research. The optimal feedback control model is
related to the dynamical systems view (Chap. 2.3.2.1) in the sense that the coupling
of the optimal feedback controller, together with the controlled plant, generates a
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specific dynamical systems model in the context of a given task. Furthermore, the
minimum intervention principle is related to the uncontrolled manifold hypothesis
(Chap. 2.3.2.3).

2.3.3.2 Motor command: Control

In the previous chapter, three different approaches to the topic motor planning were
introduced and discussed. However, questions regarding whether or not motor plan-
ning involves the computation of a desired trajectory, whether motor planning takes
places in intrinsic or extrinsic coordinates and to which brain areas these processes
can be assigned, still appear to be debatable. Independent of the concrete structure
of the motor plan, the CNS has to compute a transformation of a motor plan into mo-
tor commands. In the literature, several models describing how motor commands are
generated have been proposed. In this chapter a review of the two most prominent
approaches, inverse internal models and equilibrium point models, will be provided.

Inverse internal models
Inverse internal models are neural mechanisms that represent a sensory-to-motor
transformation. These models can calculate the necessary feedforward motor com-
mands from a desired trajectory (Kawato, 1999). This implies that the control strate-
gies implemented by the CNS reflect geometrical and inertial properties of the limbs
and physiological properties of the muscles (Scott, 2005). Or in the words of Wolpert
and Flanagan (2003, p. 1020):

”any good controller can be thought of as implicitly implementing an inverse
model of the system being controlled. In other words, knowledge about the
physical behavior of the system being controlled is employed by the controller.”

It is important to mention that inverse models (such as forward models) are not
models of the CNS but models that approximate the properties of the musculoskeletal
system. These models are used by the CNS to controll the musculoskeletal system
that ultimately transforms the motor commands into limb movements. Depending
on the structure of the motor plan one has to distinguish between inverse kinematic
and inverse dynamic models.

Several studies supporting the existence of inverse models as part of motor con-
trol are reviewed. These are studies in which subjects have to adapt to dynamic
perturbations of limb movements. The perturbations are either caused by a robot
manipulandum (Shadmehr and Mussa-Ivaldi, 1994) or by a rotating room (Lackner
and Dizio, 1994, 1998). Both are typical experimental paradigms in the context of
inverse internal models. The classical study by Shadmehr and Mussa-Ivaldi (1994)
has been previously discussed in chapter 2.3.3.1. In the study, subjects had to move
a handle of robot manipulandum to different targets. Under the null-field condition
(robot’s motors off), subjects produced nearly straight hand trajectories. However,
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when the force field was turned on, the dynamic characteristics of the arm changed,
resulting in skewed trajectories. After a few hundred trials under the force field
condition, subjects adapted to the new situation and the trajectories again became
smooth and nearly straight. After the subjects were trained under force field con-
ditions, the force field was occasionally turned off. The resulting hand trajectories
resembled mirror images of trials when the force field was turned on. Lackner and
Dizio (1994) conducted a study in which subjects had to perform reaching move-
ments while they sat in the center of a room that slowly accelerated until it reached
an angular velocity of 60◦/sec. This rotation imposed a force on each body part not
located at the precise center of the room. Every body part that moves in a rotating
room will experience Coriolis forces. These forces are a function of the cross product
of the angular rotation of the room, the linear velocity of the body part relative
to the room and the effective mass of the body part. Because Coriolis forces are
velocity-dependent, they increase as the body part moves faster and are absent prior
to and after a movement. If the Coriolis forces are created by one’s own body during
a movement, the CNS accounts for these forces in the motor commands sent to the
musculoskeletal system (Pigeon et al., 2003). In contrast, the CNS will not account
for Coriolis forces if they are the result of an artificial external perturbation. This
has a great impact on movement kinematics (e.g. Shadmehr and Mussa-Ivaldi, 1994).
In the study mentioned above, when the room began to rotate, a Coriolis force acted
on the moving arm leading to a deflection from the initially straight hand paths.
After a few trials, the subjects were able to adapt to the Coriolis force and again
produce nearly straight trajectories. The room was then slowly returned to zero
angular velocity. The subject’s post-rotation movements were observed to be mirror
images of the initial reaching movements performed during rotation. Although there
are some important differences between these two experimental setups (Lackner and
DiZio, 2005), the results of both studies can be explained by the adaptation of the
inverse dynamics model of the arm to the applied dynamic perturbation. Under nor-
mal conditions, the inverse dynamics model of the arm calculates motor commands
that appropriately compensate for the dynamics of the arm. When the dynamic
conditions are altered, the generated motor commands are insufficient, meaning they
cannot compensate for the dynamic perturbation. In the case of goal-directed move-
ments, this leads to deflections in the trajectories and large endpoint errors. In other
words, the inverse internal model of arm dynamics is incorrect and cannot predict the
forces that produce the planned trajectory. However, by allowing a period for train-
ing, the inverse dynamics model is able to adapt to the inverse of the combined arm
dynamics and the dynamic perturbation. Consequently, almost straight hand trajec-
tories area again observed and end-point errors are reduced. It is assumed that this
adaptation involves plastic changes of the synaptic efficacy of neurons that constitute
the inverse dynamics model. If the dynamic perturbation is removed, the adapted
inverse dynamics model continues to generate motor commands that compensate for
the dynamics of the arm and the dynamic perturbation that was removed. The re-
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sults are distortions in the opposite direction (Kawato, 1999). Force field studies are
increasingly accompanied by electromyography (Thoroughman and Shadmehr, 1999)
and imaging techniques (Nezafat et al., 2001) for analysis of neuronal activity to
detect the formation of inverse internal models on a neural level. This leads to the
question of whether inverse internal models exist in the brain, and if so, where they
are located. Based on the neurophysiological results presented in chapter 2.3.3.1,
it seems reasonable to assume that inverse internal models are stored in brain re-
gions where the skeletal muscles are represented, like the motor cortex, basal ganglia
and cerebellum. Furthermore, it has to be assumed that inverse models cannot be
assigned to a single brain structure, but are most likely broadly distributed across
several brain structures. There are a few studies (Wolpert et al., 1998; Kawato, 1999;
Grush, 2004; Bursztyn et al., 2006) supporting the idea that at least some inverse
models, or parts of inverse models, are acquired and stored in the cerebellum.

If one assumes that the CNS uses inverse models to control the musculoskeletal
system, then the next problem concerns the structure of internal models. Healthy
children begin to reach toward objects of interest at the age of three months. At
this age, the controller is not well developed and consequently, the reaching move-
ments are jerky instead of smooth. Sometimes these movements even appear to be
undirected. In contrast, ”highly practiced” every day movements of older children,
teenagers and adults are smooth. A sophisticated controller seems to be able to
produce movements that are characterized by a minimal jerk (Chap. 2.3.3.1). With
the help of the undirected movements, the child explores the dynamics of the mus-
culoskeletal system and builds an inverse internal model of the plant. Over time, the
inverse internal model is able to compute the appropriate forces so that the limbs
move in the desired way. During motor development, bones grow and muscle mass
increases changing the dynamics of the musculoskeletal system dramatically. In ad-
dition to these gradual changes, the dynamics of the arm change on a shorter time
scale when external devices (e.g. a hammer) are used or objects (e.g. a cup of coffee)
are grasped. To maintain performance, the controller needs to be robust to such
changes in the dynamics of the arm (Shadmehr and Mussa-Ivaldi, 1994). Gandolfo
et al. (1996) distinguishes between three possibilities for the motor control system to
cope with these changing situations. First, the perturbing forces are internally repre-
sented as a look-up table that associates forces to states of the limbs (e.g. positions
and velocities). During ontogenesis, this table evolves and each mapping between
a specific state and force would correspond to an inverse internal model (hypothe-
sis 1). There would be no generalization under this hypothesis. One alternative is
that the adaptation is not limited to visited states of one’s movement history, but
to a small region around those explored states (hypothesis 2). In this case, there
would be a local generalization around the visited states. A third hypothesis would
be that the forces experienced locally generalize over the entire arm’s workspace.
To test these hypotheses, generalization experiments were conducted. Subjects are
trained on a specific movement task with an altered kinematic or dynamic pertur-
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bation as described above. After a learning phase, the subjects have to fulfill a
new movement task. If the generalization of an inverse internal model is correct,
new movement trajectories should be precisely controlled from the beginning of the
movement (hypothesis 3). If generalization does not exist, new movement trajec-
tories cannot be controlled from the beginning and the performance of the subject
in the new movement task is as poor as those with no prior learning (hypothesis 1)
(Kawato, 1999). The studies conducted in this context analyzed the generalization
across different configurations of the same arm (Shadmehr and Mussa-Ivaldi, 1994;
Malfait et al., 2002) and across different limbs (Criscimagna-Hemminger et al., 2003;
Wang and Sainburg, 2004). Furthermore, generalization has been examined across
different movement directions (Gandolfo et al., 1996; Thoroughman and Shadmehr,
2000), amplitudes and durations (Goodbody and Wolpert, 1998) and movement paths
(Conditt and Mussa-Ivaldi, 1999). The results of these studies suggest that neither
a perfect generalization (hypothesis 3) nor a local look-up table (hypothesis 1) ex-
ist. Instead, an intermediate generalization level was consistently observed. Kawato
(1999) assumes that it may be plausible that internal models in the CNS are similar
to artificial neural networks or connectionist models in their generalization ability.

The limitation of the generalization of inverse internal models to small regions
around explored states implies the possible existence of several parallel-working mod-
els. If the CNS stores and uses more than one internal model, it is important to know
whether the acquisition of an internal model is disrupted if a second internal model
is learned during a critical time window. Furthermore, it is important to under-
stand how several inverse models are associated. Do these models work in parallel,
integratively, compensatory, or competitively? Shadmehr and Brashers-Krug (1997)
investigated the ability of humans to learn two conflicting inverse models in differ-
ent time lags. The tasks the subjects had to learn were movements in two distinct
mechanical environments produced by a robot manipulandum. The results of this
study indicate that there is a critical time interval for the learning and retention of
two different inverse models. Results showed that the training sessions of the two
tasks need to be separated by at least 5 hours. If the time lag between the two
training sessions is shorter than 5 hours, the learning of the second inverse model
starts on the basis of an inverse model appropriate for the first task. Based on the
after-effects, the authors suggest that in the case of an insufficient time lag between
training sessions, learning of the second inverse model leads to an unlearning of the
inverse model acquired for the first task. Mah and Mussa-Ivaldi (2003) did not focus
on the temporal interference of learning two inverse models in a row, but on the in-
terference between variants of two tasks. To solve a movement task, the brain must
transform a motor plan into adequate motor commands. The motor plan plays the
role of an internal stimulus for the appropriate response (motor commands) (Chap.
2.3.1.4). Such a relationship between a stimulus (motor plan) and a response (mo-
tor commands) may involve a small number of appropriate responses, or even allow
the responses to be graded according to the stimulus. In the context of retention,
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Mah and Mussa-Ivaldi (2003) investigated two opposing hypotheses: the conflict
between mapping and the enhanced-response selection hypotheses. The conflict be-
tween mapping hypothesis asserts that retention will be diminished when subjects
learn two incompatible responses (inverse models) to the same stimulus because both
responses will be recalled simultaneously and interfere with each other. In contrast,
the enhanced-response selection hypothesis postulates that it will be easier to select
and retrieve the most appropriate response from a group of responses that are con-
trasting, rather than from a group of responses that are similar. In other words, the
correct response is selected from all recently learned responses, and the process of
selection is simplified if incompatible responses have contrasting features. The re-
sults of the study support the enhanced-response selection hypothesis. Retention was
not impaired when similar motions of objects required the retrieval of incompatible
torque responses. In contrast, when similar motions of objects required the retrieval
of similar torque patterns, retention was impaired (Mah and Mussa-Ivaldi, 2003). In
addition to the studies just described, several studies exist that analyze the connec-
tion between inverse models of kinematic and dynamic sensorimotor transformations
(Krakauer et al., 1999; Tong et al., 2002).

Equilibrium point models
“This is a very arrogant hypothesis! Everybody is talking about how complex
the system is, with all those DNAs, RNAs, numerous neurons and projec-
tions, and you suggest that the whole system is just a spring with regulated
parameters!” Michael Tsetlin (Latash, 2008b, p. 87)

The CNS has to solve some difficult mechanical problems to control the muscu-
loskeletal system. For instance, the CNS has to learn to control limbs that consist of
segments connected via joints with different DOFs, which interact with each other
and with external objects as they accelerate in the gravitational field of the earth
(Shadmehr and Wise, 2005). In this context, the laws of mechanics are universal,
relating kinetic (forces, torques) and kinematic variables (particularly acceleration).
The laws are equally applied to non-living objects like stones and to living organ-
isms like humans. Therefore, it seems plausible that a description and analysis of
human movements has to rely on the laws of mechanics. As outlined above, in the
context of internal models it is believed that the relationships inherent in these laws
are imitated by neural structures in the CNS. The CNS uses these structures to di-
rectly calculate kinematics and muscular torques. According to Ostry and Feldman
(2003), the internal model approach is flawed if one tries to incorporate physiolog-
ically realistic muscle and reflex mechanisms. This becomes particularly evident in
connection with the posture-movement problem. The internal model approach does
not account for the shift between postures without triggering resistance because of
postural stabilizing mechanisms. Feldman and Levin (2009, p. 703) believe that
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“although motor actions are described in terms of mechanics and EMG pat-
terns, the question of how these actions are controlled cannot be answered in
these terms.”

Consequently, an alternative approach for motor command generation has been cre-
ated (Feldman, 2006; Feldman and Levin, 2009). The foundation of this approach is
the distinction between state variables and parameters. State variables are variables
that express relationships defined by the laws of physics (e.g. forces and kinematic
variables). Any variable that can be deduced from state variables is also a state
variable. However, the relationships between state variables include parameters that
are not conditioned by the laws of physics, but define important characteristics of the
system’s behavior under the action of the laws. Consider a simple pendulum (a mass
on a rope), the equilibrium position and the period of oscillation in the gravitational
field depend on parameters including the length of the rope, the coordinates of the
suspension point and the local direction of gravity. A change in these parameters
will lead to a new equilibrium position of the pendulum. Although all forces are
balanced in an equilibrium state, the spatial coordinates of this state are not pre-
determined by forces, but by parameters (Latash, 2008b). Feldman (2006) is of the
opinion that state variables cannot be specified or computed directly by the CNS.
This view of biological motor control is diametrically opposed to the above presented
arguments. Instead, it is assumed that parameters define essential characteristics of
the behavior of the human motor system. In other words, biological motor control
does not involve computation of state variables but uses changes in the parameters
of the system. The CNS takes advantage of mechanical laws in producing the desired
motor output without actually knowing the mechanical laws or imitating them in the
form of internal models. If motor control implies changes in parameters, the question
that needs to be answered is: Which parameters are used by the CNS?

One prominent form of parametric control is equilibrium point (EP) models, or
simply EP controllers. Various EP controllers, defined differently throughout the
literature, have been developed (Feldman, 1986; Bizzi et al., 1992). However, none
of the controllers require an explicit computation of the torques required to move
the limbs along a desired trajectory by solving the inverse dynamics problem (Chap.
2.2). Instead, EP control involves a specification of an arm configuration in which
internal and external forces are at equilibrium. In the following, the main idea of one
of the most influential EP controllers – the λ-model (Feldman, 1986; Feldman and
Levin, 2009) – will be briefly outlined.

Various animal experiments (Matthews, 1959; Rack and Westbury, 1969) have
shown that given a fixed level of descending commands, a slow increase in muscle
length leads to a relatively small increase in muscle force. To ensure a fixed level of
descending commands in these experiments, the pathways leading from the brain to
the spinal cord were transected and a stimulator was placed at the spinal end of the
severed fibers. It was found that if the lengthening of the muscle is continued past
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Figure 2.16: In the left figure two invariant characteristics (ICs) are shown. Sub-
jects are asked to occupy a fixed joint position and act against an initially constant
load. This corresponds to muscle length L1 and load F1. A gradual unloading of the
muscle leads to a sequence of EPs (open circles). An interpolation of the EPs yields
the IC. If the subjects repeat the experiment starting from a different length-load
combination, a new IC emerges (IC2, filled circles). In the right figure a voluntary
shift of λ is shown and consequently a shift of the IC from IC1 to IC2. If the muscle
acts against a constant external load, a movement will occur from the original length
L1 to a new length L2. If the muscle is forced to work under isometric conditions, the
same shift of λ leads to a change in the muscle force from F1 to F2. In other words,
in the λ-model movement and force generation are different peripheral consequences
of the same central control process (adapted from Latash, 2008b).

a specific length, the muscle begins to actively resist further lengthening because
of an autogenic recruitment of the α-motoneurons and the force-length ratio, or
stiffness, increases substantially. In other words, the muscle will act like a stiff spring
and oppose the stretch more vigorously. If the experimentally controlled descending
signals are altered, the entire force-length curve is observed to perform a parallel
shift (Fig. 2.16). The notion of the tonic stretch reflex is used to describe the
results. Tonic reflexes are always polysynaptic and emerge in response to the level
of a stimulus (e.g. muscle length). They lead to ongoing muscle contraction and
therefore, to relatively smooth movements (Latash, 1993). A detailed description of
different human reflexes can be found in Latash (2008a). It is interesting to note
that despite nearly 100 years of research, a considerable debate on the term reflex
still exists, especially in contrast of voluntary movement (Prochazka et al., 2000). In
this thesis, the term reflex is used as introduced in chapter 2.1.

The force-length characteristic curves are termed invariant characteristics. The
muscle length where the autogenic recruitment of the α-motoneurons begins is termed
the threshold of the tonic stretch reflex. The Greek letter λ is used to refer to this
value. The examination of invariant characteristics in humans requires the analysis
of joint torque-angle characteristics instead of muscle force-length characteristics. To
guarantee fixed descending commands analogously to the animal experiments cited
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above, Feldman (1966) developed the so-called not to intervene voluntary paradigm.
Subjects are asked to occupy a joint position against a load and to not intervene
voluntary when the load is suddenly modified. A change in the descending signals is
accomplished by asking the subjects to adopt different starting positions against the
same load. In figure 2.16 (left), typical results of such an experiment are illustrated.
Given the external load F1, the subject’s elbow angle corresponds to the length L1

of the flexor muscles. This force-length combination defines the initial EP of the
system. When the external load was decreased to F2, the joint moved to a new angle
corresponding to muscle length L2. The combination of F2 and L2 defined a new
EP. The assumption is that all EPs (Fig. 2.16, left, open circles) corresponded to
the same unchanged voluntary command but different external loads. The EPs can
be connected with a smooth line, resulting in the invariant characteristic introduced
above. The experiment was conducted with different starting positions but with the
same external load conditions. To stay at a different position against the same load
requires a change in the central command. The procedure for the different starting
positions is the same as above (Fig. 2.16, left, filled circles). One of the major
experimental findings of these studies is that the invariant characteristics do not
intersect, but rather shift almost parallel to each other for different starting positions.
Because of the similarities of the results of the human experiments and the tonic
stretch reflex characteristics recorded in animal experiments, Feldman (1966) used
the same term (tonic stretch reflex) to describe his data. Based on the experimental
data, it was concluded that the central command may be associated with the selection
of a particular invariant characteristic, while muscle force, muscle length, and the
level of muscle activation depend on the central command and the external load.
When the external load is further decreased in these experiments, it was observed
that the muscle activity disappears at a certain muscle length. This value is the above
introduced threshold of the tonic stretch reflex, or λ. A value of λ defines a particular
invariant characteristic and can be seen as a measure of the central command. The
invariant characteristic consists of an infinite number of possible combinations of
muscle force and muscle length. The chosen combination in a given situation is a
result of the external force. One of the key points of the λ-model is that voluntary
muscle control may be described by only one parameter (Latash, 1993, 2008b).

If a muscle is at an EP and a transient external force stretches the muscle to a new
length, the muscle will return to the EP as soon as the force is removed. If the system
wants to stay at the new position after the removal of the external force, a posture-
stabilizing mechanism has to be considered. Movements within the λ-model can be a
consequence of two processes. One possibility is that the central command stays the
same but the external load is altered. The result of this change is a new combination
of muscle force and muscle length along the same invariant characteristic. The second
possibility is a voluntary shift in λ (Fig. 2.16, right). A shift from λ1 to λ2 leads to
a movement from L1 to L2 at F1 if the external load is not changed. This leads to a
shift of the EP of the system from EP0 to EP1. If the movement is stopped because
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of external resistance, the same change in λ will lead to a change in the muscle force
without a movement. In this case, the new EP of the system would be EP2 (Latash,
2008b).

Until now, the description of the λ-model has been limited to the control of a
single muscle. Because human muscles can only pull and not push, joint movement
is controlled by a pair of antagonistic muscles that act at the joint and produce
torques in opposite directions. In figure 2.17 (top row), two invariant characteristics
for a flexor and an extensor muscle are illustrated. Thereby λFL corresponds to the
control variable for the flexor muscle and λEX to the control variable for the extensor
muscle. These variables define the position of the invariant characteristics of each
muscle. The overall joint characteristic, as illustrated by the bold line in figure 2.17
(top row), is defined by the two invariant characteristics of the two muscles. If a
constant external torque acts on the joint, the combination of the torque (T0) with
an angle α0 defines the EP of the system. Shifts of the two λs lead to voluntary joint
motion. If both λs shift simultaneously and in the same direction along the angle
axis, the activation level of one muscle increases whereas the activation level of the
other muscle decreases. The mechanical characteristic of the entire joint, calculated
by the algebraic sum of the two muscle characteristics, also shifts along the angle axis
without changing shape (Fig. 2.17, bottom left). Simultaneous shifts of both λs in
opposite directions lead to a small change in the location of the joint characteristic
but a large change in the slope (Fig. 2.17, bottom right) (Latash, 1993, 2008b).
The availability of at least two muscles at a joint allows the behavior of the joint
to change in two ways. One way the behavior can be changed is by activating one
muscle and relaxing the opposing muscle. This corresponds to a unidirectional shift
of the two λs and will lead to a joint motion in the direction of the activated muscle.
The behavior of a joint can also be changed by the simultaneous activation of both
muscles, which will lead to a small movement and a large change in the stiffness of
the joint. To reflect these two modes of joint control, Feldman (1986) introduced two
variables equivalent to λFL and λEX . These variables are the reciprocal command r
and the coactivation command c: r = (λFL + λEX) /2 and c = (λFL − λEX) /2. The
r command defines the angular range in which muscle can be activated and the c
command defines the size of the angular range where both muscles are active (Latash,
2008b). Finally, the λ-model assumes that the tonic stretch reflex incorporates all
the reflex loops that can be influenced at the levels of γ-motoneurons, α-motoneurons
and interneurons (Latash, 1993).

The λ-model provides an explanation for results where equifinality of movements
was found despite transient external perturbations (Bizzi et al., 1978; Schmidt and
McGown, 1980; Bizzi et al., 1982; Jaric et al., 1999). The term equifinality refers to
the ability of the neuromuscular system to reach the same final position in the face
of transient external perturbations (Feldman and Latash, 2005). However, there are
several studies where equifinality of movements was not found, which are therefore in-
compatible with the λ-model. In these studies, the experimental conditions involved
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Figure 2.17: (Top row) Imagine a joint is spanned by a flexor and an extensor
muscle. The ICs of those two muscles (λFL and λEX) can be illustrated in a torque-
angle plane, where the torques of the extensor are assumed to be negative. Joint
behavior corresponds to the algebraic sum of the two ICs (thick, straight line). The
EP of the joint is defined by the position of this line and the external torque (T0).
Joint control can either be explained with the λ parameters of the two muscles or
with the two variables r and c. (A) A unidirectional shift of the two λs correspond
to a change in the reciprocal command r. This leads to a major shift in the joint
characteristic and to a small change in the slope. (B) A shift of the two λs in opposite
directions corresponds to a change in the coactivation command c. This leads in
contrast to the r-command to a major change in the slope of the joint characteristic
and to a small shift (adapted from Latash, 2008b).
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the action of Coriolis forces (Lackner and Dizio, 1994) or other destabilizing forces
(Hinder and Milner, 2003). Feldman and Levin (1995) point out that equifinality
could be observed in some cases of transient external perturbations but it has never
been suggested that this phenomenon must occur under all forms of perturbation.
The λ-model predicts equifinality when two conditions are met: (1) The perturba-
tion does not lead to a change in the central commands and (2) it does not modify
the force-generating properties of the peripheral muscle. Proponents of the λ-model
argue that violations of the equifinality, in the context of unexpected applications
of motion-dependent forces acting during movement but not at a steady state, are
because of changes in the central command signals even though the subjects were
asked to not intervene (Feldman and Latash, 2005; Latash, 2008b).

If voluntary movements arise as a consequence of shifts of EPs, it is important to
consider the shape of the EP trajectory. The EP trajectory is also called the vir-
tual trajectory. Latash and Gottlieb (1991) developed an algorithm that enables the
reconstruction of virtual trajectories that represent temporal changes in the control
parameter λ. However, there is currently no consensus in technical literature on the
shape of the virtual trajectory (Latash and Gottlieb, 1991; Feldman et al., 1995;
Gomi and Kawato, 1996; Konczak et al., 1999). This seems partly a result of inade-
quate models of force generation that lead to deviations between virtual and actual
trajectories (Gribble et al., 1998). The λ-model is founded on results showing that
forces produced by the neuromuscular system are position-dependent. Springs were
used as an example of a physical system with analogous properties. In other words,
the joint appears to behave like a mass-spring system. The spring-like behavior refers
to this special case and implies a similarity in behavior between two systems that
have, apart from that, little in common (Feldman and Latash, 2005; Latash, 2008b).
The spring analogy is probably one of the most crucial points in the discussion of the
proponents and opponents about the validity of the λ-model. Feldman and Latash
(2005) suggest that the spring analogy is taken too literally when muscles with or
without reflexes are modeled as springs with parameters like stiffness and damping
determined by the level of muscle activation. This leads to questionable estimates
of EP trajectories like in the studies of Latash and Gottlieb (1991) and Gomi and
Kawato (1996). The spring analogy also triggers discussions about violations of equi-
finality. A physical spring will be stretched if a load is applied and it will return to
its resting length when the load is removed. In addition, if a metal spring is stretched
beyond certain limits, it will not return to its previous resting length.

The previous explanations the λ-model may explain single-joint movements. How-
ever, almost all voluntary movements require a precise activation of many muscles
to rotate multiple joints. It was shown in chapter 2.2 that movement generation in
biological systems is ill-posed in the sense that the task requirements can generally
be met by an infinite number of different movements because of the redundant DOFs
on different levels. The λ-model implies that the redundancy problem is not solved
on supraspinal levels and that these levels only constrain the coordination between
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the different DOFs via central commands. The central commands specify the thresh-
olds of the agonist and antagonist muscles and thus the invariant characteristic. The
invariant characteristic of a joint contains a collection of potential EPs. Finally, a
single EP is selected by the interaction of the joint segments with external loads. In
the multi-joint case, it is suggested that all the muscles are controlled as a coher-
ent unit by a global factor. The difference between the actual body configuration
and its referent configuration is modulated by the CNS. This facilitates the control
of the musculoskeletal system since a muscle is only activated if its current muscle
length at the actual body configuration exceeds the threshold muscle length defined
by the referent body configuration. Human walking (Günther and Ruder, 2003)
and sit-to-stand movements (St-Onge and Feldman, 2004) are the first experimental
confirmations of multi-muscle control in the context of λ-model.

By introducing the variable λ as a purely central control variable, the adopted
λ-model can be greatly simplified. Based on a closer analysis of the neurophysiolog-
ical pathways that lead to changes in the activity of α-motoneurons, Feldman and
Latash (2005) and Feldman and Levin (2009) are currently of the opinion that this
assumption must be amended and that λ is a rather complex variable. As reviewed in
Feldman and Levin (1995) and Feldman and Latash (2005), reactions of the muscle to
changes of its length depend on a variety of factors including the velocity of change,
the activation history of the motoneuronal pool, the effects of reflexes of other mus-
cles and even muscles from other joints. The additive effects of these factors lead to
the following definition of the threshold control of muscle activations in the λ-model:

λ∗ = λ− µv + p + f(t) (2.9)

where λ is a central command, µ is a temporal parameter related to the dynamic
sensitivity of muscle spindle afferents, v is the velocity of change in the length of
the muscle (v = dx/dt), p is the shift in the threshold resulting from reflex inputs
like those responsible for inter-muscular interactions and f(t) represents history de-
pendent changes of the threshold (Feldman and Latash, 2005; Feldman and Levin,
2009).

2.3.3.3 State: Estimation and prediction

To generate appropriate motor commands (Chap. 2.3.3.2), the CNS needs to have
information about the current state of the body. Thus, the CNS has to cope with
two problems. First, the transduction and transport of sensory signals to the CNS
involves large delays in comparison to artificial systems like robots. For example,
the delays for reactions in arm movements, based solely on visual feedback, range
from 150-200 ms (Slater-Hammel, 1960). Even the fastest spinal feedback-loops still
require 30-50 ms. Compared to very fast (≈ 150 ms) or intermediate (≈ 500 ms)
human movements, these delays are still considered large (Kawato, 1999). The sec-
ond problem concerns the fact that sensory signals are corrupted by noise. Noise
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is defined as random fluctuations and disturbances that are not part of the actual
sensory signal. Faisal et al. (2008) provides a recent review on sources of noise in the
nervous system. Sensory signals that are contaminated with noise may only provide
inaccurate information about the current state of the body (Wolpert and Ghahra-
mani, 2000). Using these delayed and noise corrupted sensory signals to estimate the
state of the body can result in large errors, especially in fast movements. As an ex-
ample, if a tennis player performs a fast forehand stroke using only his visual system
to estimate the position of the tennis ball, his estimate is delayed by approximately
100 ms. A predictive model could help to make a more precise estimate of the current
position of the ball. The relationship between the generated motor commands and
their consequences is governed by the physics of the musculoskeletal system and the
outside environment. Consequently, a more precise prediction requires a model of
this transformation. Computational neuroscience models that capture the forward
or causal relationship between actions and their consequences are termed internal
forward models, or forward models. The primary role of these models is to predict
the future behavior of the body and the environment. Based on this primary role,
these models are occasionally referred to as predictors. Because the physics of the
musculoskeletal system change during motor development and humans are able to
manipulate different tools with unequal intrinsic dynamics, humans need to acquire
new forward models and constantly update existing models over the course of their
lives (Wolpert and Flanagan, 2001). While evidence for forward models has been con-
siderably strengthened be research conducted in psychophysical studies (see below),
neurophysiological evidence is less widespread. Some authors believe that forward
models are stored in the cerebellum (Wolpert et al., 1998; Kawato et al., 2003). Re-
ferring back to the tennis ball discussed above, components of the ball’s state, like
its spin, cannot easily be observed because of delays in the sensory system. However,
since the spin of the ball has an impact on its trajectory, it could be estimated if
sensory information is integrated over time. In other words, by observing the position
of the tennis ball over time, an estimate of its spin can be obtained. This estimate
is based on sensory feedback and can be improved by knowing how the ball was hit,
or more specifically, the generated motor commands in combination with a forward
model of the ball’s dynamics (Wolpert and Ghahramani, 2004).

The combination of sensory feedback and a forward model for state estimation is
called an observer model. In an observer model, the observer compensates for the
delays in the sensorimotor system and reduces uncertainty in the state estimate,
where uncertainty is a result of the inherent noise in sensory and motor signals
(Wolpert and Ghahramani, 2000). An example of such a model is a Kalman filter
(Fig. 2.18). A more detailed description of the Kalman filter model can be found
in Wolpert et al. (1995b) or Wolpert (1997). Observer models for state estimation
have been supported by empirical studies examining hand position (Wolpert et al.,
1995b), posture (Kuo, 1995) and head orientation (Merfeld et al., 1999).

In the context of observer models, the forward model makes two types of predic-
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Figure 2.18: The figure shows one step of a Kalman filter model that recursively es-
timates the position of the finger during a movement. The current state is computed
on the basis of the previous state estimate (top left). The previous state estimate
represents the distribution of potential finger positions, illustrated as a blue cloud of
uncertainty. In using an efference copy of the issued motor commands in combina-
tion with a model of the dynamics the current state can be predicted based on the
previous state. Thus the uncertainty is increased as illustrated by the yellow cloud.
The predicted current state estimate is refined by using it to predict the current
sensory feedback. The discrepancy between the predicted sensory feedback and the
actual sensory feedback is used to correct the current state estimate. The Kalman
gain changes the sensory error into a state error and besides that determines the
reliance placed on the efference copy and sensory feedback. The final or current
state estimate now has a reduced uncertainty (top right). Delays in sensory feed-
back that have to be compensated for are left out of the figure for clarity (Wolpert
and Ghahramani, 2000, 2004).
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tions. First, the forward model predicts the actual outcome of the motor commands
and compares these to the desired outcome. This comparison happens before the
movement takes place and is used to estimate the state of the motor system that is
not directly observable by the CNS. Based on this comparison, fine adjustments to
ongoing motor commands can be made before reafferent feedback is available (Blake-
more et al., 2002). For example, if a person holds a glass of water in a precision grip
with the fingers and thumb on either side, the grip force is precisely controlled so
that it is just slightly greater than the minimum grip force needed to prevent the
glass from slipping. Based on the fact that an object’s behavior is unpredictable,
an estimation of the load is based solely on sensory feedback. For example, if some-
one suddenly strikes the glass from above, the grip force is modified reactively in
response to the sensory feedback of the fingertips, and consequently, the grip force
adjustment tends to lag behind. If the load is increased by a self generated action
such as accelerating the hand, the fingers tighten their grip in anticipation to prevent
the glass from slipping. Thus, the grip forces increase in parallel with the load force
without delay. Sensory load detection is too slow to account for this increased grip
force, which therefore relies on a predictive process (Wolpert and Flanagan, 2001).
Anticipatory grip force adjustment with load during object manipulation has been
found in a couple studies (Flanagan and Wing, 1997; Kawato, 1999) and is an impor-
tant piece of evidence for predictive forward models (Davidson and Wolpert, 2005).
The second type of prediction is a comparison between the predicted sensory con-
sequences of the forward model and the actual sensory feedback. This comparison
happens after movement execution and can be used to cancel out sensory effects of
movement (reafference). The sensory changes induced by self-motion are predicted
from an efference copy of the issued motor commands resulting in little or no dis-
crepancy between the predicted and actual sensory feedback. Externally generated
sensations cannot be predicted from a copy of the issued motor commands and will
therefore lead to a higher discrepancy. In other words, if the discrepancy between the
predicted and actual sensory feedback increases, the likelihood that the sensation is
externally generated also increases. For example, Blakemore et al. (1999) examined
why self-produced tactile stimulation is perceived as less intense than an externally
produced stimulus. In the study, subjects tickled themselves using a robotic interface.
Subjects used their left hand to move a robotic manipulator which in turn produced
the same movement on a second robot manipulandum that introduced a tactile stim-
ulus on the subject’s right palm. In addition, an externally tactile stimulus condition
was tested in which the second robot manipulandum was programmed to produce
a stimulus. The results showed that the subjects rated the self-administered tactile
stimulus as significantly less tickly than the externally administered tactile stimulus.
In another experimental condition, the experiment was performed as before, however
a time delay between the motion of the left hand and the resulting effect on the right
palm was introduced. The delay between cause and effect led to temporal decoupling
of the predicted and the actual feedback, resulting in a large sensory discrepancy. As
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a result, this discrepancy is felt as a tickle. In summary, Blakemore et al. (1999)
showed that the intensity of the self-applied stimulus depends critically on a precise
temporal synchronization between the predicted and the actual sensory consequences
of movement.

2.3.3.4 Context: Estimation

In daily life, humans interact with a plethora of different objects. Each object has its
own physical characteristics such that the context of movement changes in a discrete
manner. In other words, the CNS has to estimate the state of the body, as outlined
above, and the changing movement context. The Bayesian approach can be used
to estimate probabilities for possible contexts. The probability of each potential
context is factored into two terms: likelihood and the prior. The prior corresponds
to the belief in a particular context before sensory information is available. In the
example in figure 2.19, a person wants to lift a milk carton. However, there are two
possible contexts: (1) the carton is empty and (2) the carton is full. Based on visual
information, the person believes the milk carton is full. When the motor commands
are generated, an efference copy is sent to two forward models or predictors. These
predictors simulate the sensory consequences of the two possible contexts. In the first
context, where the milk carton is empty, the prediction suggests a large amount of
movement compared to the second context. The predicted feedback is then compared
to the actual sensory feedback. Since the milk carton is empty, the sensory feedback
matches the predicted feedback of the first context, which leads to a high likelihood
of an empty milk carton and a low likelihood of a full carton. The likelihood of a
context corresponds to the probability of receiving the current sensory feedback given
the hypothesized context.

The discrepancy between the predicted and actual sensory feedback is inversely
related to the likelihood, which means that the smaller the prediction error, the
more likely the context (Wolpert and Ghahramani, 2004). As suggested by Wolpert
and Kawato (1998) and Haruno et al. (2001), a modular neural architecture in which
multiple predictive models work in parallel may be implemented by the CNS to carry
out the computations just described. Therefore, each predictive model is tuned to
one context and estimates the relative likelihood of this context. The priors and the
likelihoods can be combined using Bays theorem to calculate the posteriori contexts,
which become the new prior beliefs for future context estimation. According to Bays
theorem, the probabilities P (A) and P (B) and the conditional probabilities P (A|B)
and P (B|A) are associated with each other as follows:

posterior︷ ︸︸ ︷
P (A|B) =

likelihood︷ ︸︸ ︷
P (B|A)

prior︷ ︸︸ ︷
P (A)

P (B)
(2.10)

where P (B) is given by P (B) = P (B|A)P (A) + P (B|A)P (A). If A is relabeled as
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Figure 2.19: In this sketch a person wants to lift a milk carton. However, there
are two possible contexts: (1) the carton is empty and (2) the carton is full. Based
on visual information, the person believes that the milk carton is full. When the
motor commands are generated, an efference copy is sent to two forward models or
predictors. These predictors simulate the sensory consequences of the two possible
contexts. The prediction in the first context suggests a large amount of movement
compared to the second context because the milk carton is empty. The predicted
feedback is then compared to the actual sensory feedback. Because the milk carton
is empty, the sensory feedback matches the predicted feedback of the first context,
which leads to a high likelihood of an empty milk carton and a low likelihood of a
full carton. The priors and the likelihoods can be combined using Bays theorem to
calculate the posteriori states, which become the new prior beliefs for future context
estimation (Wolpert and Ghahramani, 2000, 2004).
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“context” and B as “sensory input”, Bays theorem becomes applicable to the brain
for the process of context estimation (Wolpert and Ghahramani, 2009):

posterior︷ ︸︸ ︷
P (context|sensory input) =

likelihood︷ ︸︸ ︷
P (sensory input|context)

prior︷ ︸︸ ︷
P (context)

P (sensory input)
(2.11)

In accordance with Wolpert and Ghahramani (2000) and Wolpert and Ghahramani
(2004), this review has introduced separate architectures for state and context esti-
mation (Fig. 2.18 and 2.19). However, both architectures can be considered online
ways of performing Bayesian inference in an uncertain environment. Studies involv-
ing Coriolis forces can be used as an example for context estimation. As outlined in
chapter 2.3.3.2, Coriolis forces are velocity-dependent; they increase during a move-
ment and are absent prior to and after a movement. In the study of Cohn et al.
(2000), subjects performed goal-directed movements while rotating their torso. Un-
der these circumstances, the CNS compensated for the Coriolis forces resulting from
the rotation. Additionally, subjects had to perform goal-directed movements while
experiencing compelling illusory self-rotation and displacement induced by rotation
of a complex, natural, visual scene. In these cases, the subjects performed move-
ments as if a Coriolis force was present. Based on visual priors, they expected the
context of a Coriolis force. This led to errors in the performance of the goal-directed
movement which were reduced over subsequent movements. The errors were reduced
because the sensory feedback of the expected Coriolis force was not experienced and
posteriori states were calculated, thus becoming new prior beliefs for future context
estimation.

Currently much attention is given to the Bayesian approach in technical literature,
particularly in combination with decision theory (Schaal and Schweighofer, 2005;
Körding and Wolpert, 2006; Wolpert, 2007; Körding, 2007).

2.3.3.5 Discussion

In chapter 2.3.3, a short overview on the field of research of computational neuro-
science in the context of sensorimotor control was provided. The most important
research topics and studies were briefly outlined. As before, in the context of this
thesis, the question to be discussed is whether it appears plausible that the many
DOFs of the human body (Chap. 2.2) can be coordinated via the control structures
introduced in this chapter to generate a movement. In principal, the field of com-
putational neuroscience offers two approaches to the solution of the DOFs problem.
The first approach is a combination of optimization models and internal models.
The second approach uses equilibrium point models. Both solution approaches have
been outlined above and a discussion on some of the weak points of both approaches
follows.
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Solution approach 1: Optimal control models and internal models
Optimal control models can be grouped into open-loop and closed-loop models (Chap.
2.3.3.1), with most optimal control models being open-loop models. In open-loop
models, a planner computes a desired trajectory that is transmitted to a controller,
which in turn transforms the desired trajectory into adequate motor commands.
Finally, the motor commands are sent to the plant. Depending on the open-loop
model, the problem of motor redundancy is largely resolved on the planning stage
via optimization. The only information needed by the planner to compute a desired
trajectory is the current state and the desired final state. In chapter 2.3.3.1, some
specific problems of individual models were discussed. Therefore, the following dis-
cussion concentrates on the general weaknesses of open-loop optimization. These
problems can be interpreted as potential topics for future research.

Open-loop models cannot account for all types of human movements. As outlined
in chapter 2.1, motor control models can only account for specific classes of move-
ments. In the case of open-loop or feed-forward control, it seems plausible that the
CNS uses such a control scheme for fast movements or highly practiced movements
(Heuer and Konczak, 2003). It should be acknowledged that although the CNS may
use many different control strategies to produce the same behavior, these strategies
cannot be differentiated experimentally. As an example, a recent study by Desmurget
and Grafton (2000) indicated that feed-forward control can be simulated by a fast
feedback-loop on the basis of a well developed forward model.

The study by Desmurget and Grafton (2000) led to the discovery of a more se-
rious problem in the context of open-loop optimization. The problem involves the
assumption that there is a distinction between a planner that computes a desired tra-
jectory and a controller that transforms the desired trajectory into motor commands.
Concerns regarding this assumption, borrowed from engineering sciences, have been
raised by various authors (Alexander and Crutcher, 1990; Kalaska et al., 1998; Cisek,
2005). Cisek (2005) suggests that actual neural data does not support the idea of
a pre-generated plan or trajectory. In his opinion, the only plan constructed be-
fore movement begins is a rather crude representation of the movement in form of
a “difference vector” (see also Shadmehr and Wise, 2005) between the current state
of the musculoskeletal system and its desired end-state. Even for highly practiced
movements, the only plan that is precomputed by the CNS would be a simple signal.

Despite his criticism of the separation of the two entities, Cisek (2005) admits that
in the absence of an alternative, this scheme still serves as a major theoretical frame-
work in motor control research. On the basis of the above discussed psychophysical
and neurophysical studies, it is currently impossible to identify the level or space
in which human movements are planned (extrinsic vs. intrinsic or kinematic vs.
dynamic). However, as outlined in chapter 2.3.3.1, this research deficit can be ap-
proached in the context of open-loop optimization models. In other words, optimal
control models can be used to examine the space in which trajectories are planned.
Trajectories predicted by optimal control models defined in different planning spaces
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and experimentally determined trajectories are compared (Osu et al., 1997) using op-
timal control models. According to Nakano et al. (1999), one can distinguish between
four planning spaces: an extrinsic kinematic space, an intrinsic-kinematic space, an
intrinsic-dynamic-mechanical space, and finally, an intrinsic-dynamical-neural space.
Different optimal control models can be assigned to the four identified planning spaces
(Fig. 2.14). It is unlikely that there is one general optimization model that can ac-
count for all the experimental data. As for motor control models in general, it is
conceivable in the context of open-loop optimization, that there simply may not be a
single optimal control model that can explain all aspects of human motor behavior.
Instead, it is possible optimization criteria are chosen or weighed differently based
on an individuals intentions or depending on the specific goal of the movement.

A lot of research has been conducted on simple 2D movements. The characteristics
of these movements have been explained and are reasonably well understood (Gielen,
2009b). Compared to the success of open-loop optimization models for the assessment
of 2D movements, the use of open-loop optimization models is still in an investigate
phase for multi-joint movements in 3D space (Flash et al., 2003). Consequently,
one of the major challenges in research is the application of optimization models
to multi-joint movements in 3D space (Hermens and Gielen, 2004; Admiraal et al.,
2004; Gielen, 2009b). A problem that arises when analyzing multi-joint movements
in 3D space is the choice of metric for quantitative comparison of the different models
(Gielen, 2009b).

In contrast to open-loop optimization, Todorov and Jordan (2002) developed an
optimal feedback controller (Chap. 2.3.3.1). In such a closed-loop optimization
model, the controller is fully programmable and does not rely on preconceived no-
tions of what control schemes the sensorimotor system may use, but does what is
needed to accomplish the task. In other words, optimal feedback control lets the
task and the plant dictate the control scheme. In a postural task where a target
limb position is specified, this may be a position control scheme. Because of the fact
that the state of the plant is only observable through delayed and noisy sensors, the
controller is only optimal when the state estimator is optimal. Todorov and Jordan
(2002) proposed a theory of motor coordination based on optimal feedback control
that may form a general strategy for movement generation in the presence of signal
dependent noise. Since the model does not precompute a desired trajectory, the re-
dundancy of the human movement system has to be resolved online by the feedback
controller. Although the framework of stochastic optimal feedback control appears
plausible, the mathematical modeling is very complex, even for simple linear control
problems and is computational expensive. The implementation of this approach be-
comes even more complex because it is believed that the CNS chooses the optimal
control law depending on the task. Consequently, the implementation requires not
only knowledge about motor planning and execution, but also about the intentions of
the subject (Scott, 2002; Gielen, 2009a). Additionally, it should be mentioned that
the computation of the control law requires knowledge about the initial and final
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state, and the movement time. This implies that some kind of planning takes place
prior to movement onset (Cisek, 2005). Since the optimal stochastic feedback control
framework from Todorov and Jordan (2002) is in its infancy, it is difficult to assess
how the approach will evolve in the coming years. Development of the framework
depends on how many scientists utilize and enhance the approach.

Both types of optimal control models depend on internal models. Open-loop op-
timization requires a precise inverse model and closed-loop optimization requires a
precise state estimate by a forward model. Although there is some criticism concern-
ing internal models (Ostry and Feldman, 2003; Feldman and Latash, 2005), it seems
relatively well established that the CNS makes use of internal models (Kawato, 1999;
Sabes, 2000; Flash and Sejnowski, 2001; Schaal and Schweighofer, 2005; Shadmehr
and Wise, 2005). However, one of the major scientific challenges in the context of
internal models is the question of where in the human CNS these models are stored.

Solution approach 2: Equilibrium point models

One alternative to optimal control and internal models are equilibrium point models.
In this thesis, the λ-model was introduced because the author is of the opinion that
this version of equilibrium control is the most plausible and most influential version
in the field of motor control. The foundation of the λ-model is that the CNS controls
posture and movement by relying on the spring-like properties of the muscles and
reflex loops. Posture is defined by equilibrium positions and the movement by shifts
of those positions. Therefore, motor control in biological systems does not rely on
precomputed trajectories. Instead, trajectories are the result of the musculoskeletal
system and the CNS interacting by the reflex pathways and external forces acting
on the body. Compared to optimization and internal models in the field of motor
control, the λ-model is dated but relevant. The hypothesis has survived the last
45 years because Anatol Feldman refined and extended the original λ-hypothesis
(Feldman, 1966) in a long series of experiments, to encompass an entire threshold
control theory (Feldman and Levin, 2009) even though some deficiencies in the λ-
model still exist.

One of the deficiencies of the λ-model is the “not to intervene voluntary” paradigm.
Feldman (1966) developed this experimental paradigm to be able to guarantee fixed
descending commands analogously to animal experiments. Subjects were asked to
occupy a joint position against a load and “not to intervene voluntary” when the
load is suddenly modified. It seems unlikely that subjects are not able to voluntarily
response to an external stimulus. Even if different subjects are able or almost able
to not intervene voluntarily, the performance of different subjects in that task will
most likely differ.

To examine invariant characteristics in humans based on the “not to intervene
voluntary” paradigm, joint torque-angle characteristics are analyzed instead of mus-
cle force-length characteristics as is done in animal experiments. Because of the
similarities of the joint-angle curves in human subjects and the tonic stretch reflex
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characteristics recorded in animal experiments, Feldman (1986) used the same term
(tonic stretch reflex) to describe his data from human subjects. However, Latash
(1993) refers to the problem that the internal mechanisms of the tonic stretch reflex
are unknown and may differ significantly. Therefore, the human tonic stretch reflex
is introduced as an abstraction without a clear neural counterpart.

In the context of the λ-model, voluntary movements arise as a consequence of shifts
in equilibrium points. Presently, there exists no consensus on the manner in which
the equilibrium shifts, that is, how the equilibrium trajectory or virtual trajectory
appears. It was shown (Gribble et al., 1998) that the form of the virtual trajectory
highly depends on the model used for force generation. Currently, no generally
accepted algorithm exists for the reconstruction of the virtual trajectory.

Furthermore, the λ-model focuses on the peripheral neuromotor system rather
than on supraspinal structures. How goals or intentions are transformed into central
commands and how central commands are produced and thereby a virtual trajectory
is constructed is not addressed. As Latash (1993, p. 3-4, 7) points out:

“So, we will hypothesize that there is a smart and experienced homunculus
sitting at the upper level (supraspinal structures, T.S.) who gets proprioceptive
information from the afferent sources, combines it with information from other
sources (visual, auditory, and others), and generates relevant descending signals
to the “intermediate” level (spinal cord, T.S.) based on the task (will) and
memory. ... We shall restrict ourselves to analysis of the intermediate level of
signal processing in the introduced scheme of voluntary motor control; we will
pretend that, on the one hand, we give up the attempt to understand how the
upper level generates correct descending commands, and, on the other hand,
we know how the output signals are processed by the lower level leading to
joint angle and torque changes.”

In this context, it is problematic to exclude the function of supraspinal structures in
a motor control model. However, it has to be acknowledged that Feldman and Levin
(2009) extended the approach during the last several years to include supraspinal
structures.

2.4 A computational approach for studying human
movements

Chapter 2.1 began with an introduction to the field of human motor control. At the
end of the chapter, the four major challenges in motor control research were outlined.
In the following chapter (Chap. 2.2), one of those four problems, the DOFs problem,
was described in greater detail as it is central to this work. Subsequently, existing
models from three different scientific paradigms that address the DOFs problem were
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presented and discussed (Chap. 2.3). The selection of the approach that seems to
be the most comprehensive (and should be used in this thesis) will be based on the
review above. This chapter starts with some fundamental considerations about the
study of human motor control (Chap. 2.4.1). In a second step, these considerations
are transferred to the DOFs problem and the computational approach of this thesis
is introduced and justified (Chap. 2.4.2).

2.4.1 Fundamental considerations about the study of human
motor control

One way to assess the progress in the field of human motor control is to examine
how well we can construct artificial limbs and machines that emulate human skills
(Wolpert, 2007). For example, in the game of chess, humans can build machines that
are able to beat the majority of players on the planet. There is likely only a very small
group of chess experts that are able to win a single game against chess computers,
like Deep Blue (Campbell et al., 2002). Although the computer most likely uses
different strategies than the human brain to plan its moves, it seems that computers
are able to solve the problem of which chess move should be implemented. If the
chess computer is further enhanced, for example by constructing a body using the
best humanoid robot, it is clear that every young child would be able to outperform
this humanoid robot in the manipulation of a chess piece. So Wolpert (2007, p. 512)
poses the question: “Why is choosing where to move a chess piece so much easier than
actually moving it?” In the first task, choosing where to move a chess piece, the chess
algorithm is obvious: look at all possible combinations of moves through to the end of
the game and choose a move that ensures that you are winning. While the algorithm
seems clear, the implementation is far from straight forward. A simple brute force
method that calculates all possible solutions and chooses the best solution seems
to be infeasible even for modern computers. However, given Moore’s law regarding
the trend in the development of computer hardware, specific data structures, and
algorithms that work on these structures (Knuth, 1999), it has been possible to
approximate such a chess algorithm. In contrast, when it comes to the problem of
skilled performance or motor control, the specific algorithm is simply not known.
Compared to the game of chess where the state of the board and the consequences
of each move are known, movement control requires an interaction with a variable
and ever changing environment (Wolpert, 2007). Given the complexity of the human
motor system, it is likely humans use different control algorithms. So, how should
one proceed to understand these algorithms?

2.4.1.1 Object of research: Control of goal-directed every day movements

In trying to understand the different motor control algorithms, one should not con-
found his or her analysis with the question of how the idea to perform a movement
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first evolves. This issue is a topic of philosophy, or perhaps one of motivation psy-
chology (Latash, 2008b) and is therefore beyond the scope of this thesis. The starting
point for the following considerations is goal-directed daily life movements such as
reaching for a glass of water. In this case it would be clear why the individual would
execute the movement: because of thirst.

Because of the complexity of the human motor system, it seems reasonable to
assess goal-directed daily life movements that are less complex than most movements
in sports, but that are still ecologically valid. In other words, movements that are
used by humans in their daily lives should be analyzed. This is an important point
since artificial labor tasks often require movements that humans do not typically use
in their daily routines. Understanding the functionality of daily life movements is
important in rehabilitation, the development of artificial limbs, robotics, and may
help form the basis for the understanding of more complex movements in sports.

2.4.1.2 Integration of different levels of research

One of the key assumptions in motor control is that information about the process of
movement planning and control can be deduced from regularities in motor behavior
(Bernstein, 1967). To understand basic coordination principles, one must begin by
observing the system’s behavior under various conditions. The results will likely lead
to a definition of some general features or principles of the system’s behavior. These
features can then be used as a basis for the development of a motor control model.
Observed motor behavior is the result of a complex interaction between the muscu-
loskeletal system and the CNS as a highly distributed control system. Therefore, it
needs to be confirmed that the chosen motor control model can be implemented in
the human brain or that the human brain functions as predicted by the model against
the background of current neurophysiological data. In addition, the developed model
must be tested to ensure that it is able to control the musculoskeletal system as the
CNS does. Based on these considerations, many different studies (Chap. 2.3) have
been conducted to understand the functionality of human movements. These stud-
ies can be assigned to three different levels (Fig. 2.20) including neurophysiological
studies, studies on the physics of the musculoskeletal system and behavioral studies.

Neural Control
In the context of neural control, there are two important features. First, the pro-
cessing of sensory inputs and motor commands to spinal neurons and muscles are
distributed in hierarchically interconnected areas of the cortex, the brain stem and
the spinal cord. Each of the three areas possesses circuits that are able to organize
or regulate complex motor responses. Second, movement related sensory information
provided by afferents is processed in different systems that operate in parallel (Chap.
2.3.1.4). The hierarchical organization of the motor system is depicted in figure 2.20.

The spinal cord can be seen as the lowest level in this hierarchical organization.
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Figure 2.20: The neural control structures are typically divided into the cortex,
brainstem and spinal cord. The structures innervate the motorneurons in the spinal
cord which in turn activate muscles that act on a multi-articulated skeleton (muscu-
loskeletal mechanics). Finally, the muscle activity leads to limb movement (motor
behavior). The motor behavior describes how the limbs move during the motor task,
reflecting the combined action of neural control and the musculoskeletal mechanics
(Scott, 2004). More detailed descriptions can be found in the text.
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It contains the neural circuits that mediate a variety of reflexes and rhythmic move-
ments (Chap. 2.1). Reflexes can be monosynaptic, including only the primary sen-
sory neuron and the motor neuron. Most of the reflexes are mediated by polysy-
naptic reflexes, where one or more interneurons are interposed between the primary
sensory neuron and the motor neuron. Interneurons and motor neurons (α- and
γ-motoneurons) receive input from axons descending from supraspinal structures.
These signals can modify reflex responses to peripheral stimuli by activating or
inhibiting highly interconnected populations of interneurons. Moreover, voluntary
movements are also coordinated by these interneurons. All motor commands eventu-
ally converge on spinal neurons or brain stem neurons to innervate skeletal muscles
(Ghez and Krakauer, 2000).

The next level in the hierarchy is the brain stem. There are systems in this struc-
ture that receive input from the cerebral cortex and subcortical nuclei and project
the information to the spinal level. The medial descending pathways are the phyloge-
netically oldest component of the descending motor systems and terminate predomi-
nantly on interneurons influencing motor neurons that innervate axial and proximal
muscles. These pathways provide the basic postural control system upon which the
cortical motor areas can organize more highly differentiated movements. The lateral
descending pathways control distal limb muscles and are therefore important for goal-
directed object manipulations such as grasping a glass of water. The main lateral
pathway from the brain stem is the rubrospinal tract, originating in the red nucleus
(RN) in the midbrain. This structure receives input from the primary motor cortex.
In cats and monkeys, the rubrospinal tract is important in the control of distal limb
muscles. However in humans, this function is largely adopted by the corticospinal
tract (Ghez and Krakauer, 2000).

The highest level in the control hierarchy is the cortex. Systematic stimulation
of the surface of the cortex in primates revealed somatotopic maps of the body,
especially in the primary motor cortex (Broadman’s area 4) and the premotor cortex
(Broadman’s area 6). The primary motor cortex (M1) and several premotor areas
project directly to the spinal cord through the corticospinal tract and also regulate
other motor tracts that originate in the brain stem. The premotor areas are important
for planning and executing complex movements. The major input for these premotor
areas is from prefrontal, parietal and temporal association areas, whereas these inputs
are mainly focused on the premotor cortex and supplementary motor cortex. The
primary motor cortex receives inputs from these two structures and from the primary
sensory cortex (Ghez and Krakauer, 2000).

In addition to the above described hierarchical levels, two other parts of the brain
are involved in the process of planning and executing movements. The cerebellum
and the basal ganglia provide feedback circuits that regulate cortical and brain stem
motor areas. They receive input from various areas of the cortex and project back
to the motor areas via the thalamus, although both circuits pass through separate
regions of the thalamus and terminate in different cortical areas. Likewise, the inputs
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from the cortex are also separate. Moreover, the cerebellum and the basal ganglia do
not send significant output to the spinal cord. Rather, they act directly on projection
neurons in the brain stem. Although the precise contribution of these two structures
to skilled movement behavior is still unknown, it is likely they are necessary for cre-
ating smooth movement and posture. Neurophysiological data shows that damage to
the basal ganglia (e.g. Parkinson or Huntington) leads to the production of involun-
tary movements and abnormalities in posture. Likewise, damage to the cerebellum
(cerebellar ataxia) leads to a loss of coordination and accuracy of movement (Ghez
and Krakauer, 2000).

In summary, it seems that the vast amount of reflex circuits in the spinal cord
and the brain stem simplify the instructions sent by the cortex. In facilitating some
circuits and inhibiting others, supraspinal control levels appear to be in the position
to let sensory inputs on lower levels govern temporal details of an evolving movement.
The timing of the activation of the antagonistic muscles is intrinsic to the circuits
of the spinal cord and therefore, descending signals themselves do not need to be
precisely timed (Ghez and Krakauer, 2000).

Musculoskeletal mechanics

In voluntary movements, commands from supraspinal structures are sent to interneu-
rons and α-motorneurons that activate the skeletal muscles. The skeletal muscle
system is the largest organ in the human body. The entire muscle system consists
of tightly packed substructures called muscle fibers, myofibrils, sarcomeres and actin
and myosin strands. Furthermore, muscles consist of extrafusal and intrafusal fibers.
Extrafusal fibers are connected to the bones by tendons and produce force and ul-
timately limb movements. This type of fiber is activated via α-motoneurons. In
contrast, intrafusal fibers contain muscle spindles that are arranged in parallel to
the extrafusal fibers and have a sensory function. Intrafusal fibers are activated via
γ-motoneurons. The term motor unit includes a motor neuron and the muscle fibers
controlled by this motor neuron. The number of muscle fibers in a motor unit varies
according to the function of the muscle. Motor units contributing to fine movements
(e.g. finger movements) are usually comprised of a small number of muscle fibers,
whereas other motor units, like those in the quadriceps, consist of up to a thousand
muscle fibers per motor unit. Altogether, there are three types of motor units that
can be categorized by the speed of muscle contraction because of an electrical stim-
ulation and fatigability because of a repeated stimulation. These categories are: (1)
fast, quickly fatiguing motor units, (2) fast, fatigue-resistant motor units and (3)
slow, non fatiguing motor units. Independent of the type of motor unit, force gener-
ation occurs within the sarcomeres and is the result of an interaction of the actin and
myosin filaments. This interaction process is energy demanding and is described by
the sliding filament theory. The generation of force is the result of a cascade process
of electrical and biochemical events, starting with the release of acetylcholine by the
synapses of the motor neurons. This release leads to a depolarization of the postsy-
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naptic membrane and finally to a release of calcium in the muscle. High intracellular
calcium levels remove another protein, called tropomyosin, from active sites on the
actin filaments. With removal of the tropomyosin, the myosin filaments are able to
attach to the actin filaments, beginning the cross-bridge cycle described by the slid-
ing filament theory. In this theory, the actin and myosin filaments slide against each
other, causing a reduction of sarcomere length and a production of force resulting
in limb movement. However, the length of the muscle, dependent on the length of
the individual sarcomeres, affects the force generated by the muscle. This property
is known as the force-length relationship. At a sarcomere length of approximately
2.0− 2.2 µm, an optimum overlapping of the actin and myosion filaments results in
a maximum force generation. Furthermore, the generation of force depends highly
on the velocity of muscle contraction (force-velocity relationship) (Wise and Shad-
mehr, 2002; Gollhofer, 2008). The amount of force produced by a muscle depends
on the number of recruited motor units. According to the size principle (Chap. 2.2),
small motor units are recruited first, whereas larger units are recruited later as force
development progresses (Henneman, 1965). Additionally, the firing frequencies of
motor neurons have an impact on the force production in muscles. All of these mus-
cle characteristics, together with the large number of muscles (Chap. 2.2), increase
the complexity of the mathematical modeling of muscle functions (Sandercock et al.,
2003; Shadmehr and Wise, 2005).

In isolated single-joint movements, muscle force and joint motion are tightly cou-
pled. The muscular torque (T ) is defined as T = I × Θ̈, where I corresponds
to the moment of inertia and Θ̈ to the angular acceleration of the joint. This is an
angular version of Newton’s second law F = m × a, where F is the force vector,
m is the mass of the body and a is the acceleration vector. This simple relationship
loses its validity when movement involves multiple joints. The equations of motion
to describe a simple planar task involving flexion and extension at the shoulder TS

and the elbow joint TE are as follows (Scott, 2004):

TS =
(
I1 + I2 + m1c

2
1 + m2

(
I2
1 + c2

2 + 2l1c2 cos θE

))
θ̈S

+
(
I2 + m2c

2
2 + m2I1c2 cos θE

)
θ̈E − (m2l1c2 sin θE) ˙θ2

E

− (2m2l1c2 sin θE) θ̇S
˙θE

(2.12)

TE =
(
I2 + m2c

2
2 + m2I1c2 cos θE

)
θ̈S

+
(
I2 + m2c

2
2

)
θ̈E + (m2l1c2 sin θE) θ̇2

S

(2.13)

where 1 and 2 correspond to the properties of the upper arm and forearm. The
muscular torque at each joint depends on the moment of inertia (I), the length (l),
the mass (m) and the center of mass (c) of each segment. These two equations
show that there is no longer a direct relationship between joint motion and driving
torque in each joint. Instead, torque at one joint can generate motion in the other
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joint and vice versa. The mechanical coupling of motion and torque between joints is
referred to as intersegmental dynamics or interaction torques (Zatsiorsky, 2002). The
equations described above for a two-joint planar movement are quite simple compared
to multi-joint movements in 3D space. Equations to describe the movement of the
entire human body, with it’s over 200 DOFs, would fill multiple pages. The human
CNS controls a system of approximately 800 motors, each of them with different
“engine power” to move a complex coupled mechanical system.

Motor behavior

Despite the complexity of neural control and musculoskeletal mechanics, it was shown
in chapter 2.3.3.1 that psychophysical studies have revealed various regularities, or
invariant features, in human motor behavior. These invariants have become central
in understanding human sensorimotor control because they appear to indicate some
fundamental organizational principles within the CNS.

2.4.1.3 “What I cannot create, I do not understand”

The title of this section was written by R. P. Feynman on his blackboard (Hawking,
2002, p. 91). This statement describes an approach that is fundamentally impor-
tant in the context of the study of biological motor control. As research continues
to grow in each of the three areas outlined in chapter 2.4.1.2, it becomes more and
more challenging to establish links between research studies on the different levels
of motor control. To be able to develop a cohesive framework incorporating all of
the results, models of motor control need to be developed. Specific details of such
a model can be tested through carefully designed experiments. However, whether
or not the overall model works usually relies on the intuition of the modeler, which
may be incorrect. Therefore, a promising way of integrating the three areas seems
to be the construction of a computational model of human motor control. Given a
movement task, the computational model can be used to generate movements via
computer simulation. The results of the computer simulations can then be compared
to the results of biomedical or biomechanical experiments and, thus, the functionality
of the computational model can be tested. The next step would be the implementa-
tion of the computational model on a robot platform because simulations are more
likely to oversimplify the problem. Furthermore, by testing computational models
on robots, problems not foreseen during a simulation may emerge (Hoffmann, 2008).
Although the fields of biological motor control and robotics have already started to
interact (Chap. 1.1) and the outlined approach has already been implemented by
some research groups (Kawato, 2008a,b), it remains arguable of how well a technical
system can model a biological system (Webb, 2001). The construction of a computa-
tional model that is able to simulate human movement generation on a computer or
a robot platform at least leads to an enhanced understanding of the difficulties that
the CNS has to overcome. As Hildreth and Hollerbach (1987, p. 606) pointed out:
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“It is often true that before we can understand how a biological systems solves
an information processing problem, we must understand in sufficient detail at
least one way that the problem can be solved, whether or not it is a solution
for the biological system.”

In this dissertation, these considerations from the context of human motor control
are applied to DOFs problem.

2.4.2 Implementation of the considerations in the context of the
degrees of freedom problem

The first question to be answered is: Which of the discussed scientific approaches can
incorporate the above outlined considerations when working on the DOFs problem?
Based on the review of computational neuroscience studies (Chap. 2.3.3), com-
putational neuroscience, in conjunction with the use of optimal control models and
internal models, utilizes two concepts that best address the above presented consider-
ations.. Furthermore, this approach has great potential of integration. For example,
open-loop optimization criteria can be interpreted as attractors. In the dynamical
system approach, these are favorable, attractive system states toward which a system
progresses (Chap. 2.3.2.1). It is conceivable that the motor system is attracted in
the perceptual-motor work space by system states represented by minimum jerk or
minimum torque change principles. In addition, the concept of internal models is
also used in current approaches of cognitive psychology (Hossner, 2004). Moreover,
optimal feedback control is related to the dynamical systems view (Chap. 2.3.2.1)
in the sense that the coupling of the optimal feedback controller, together with the
controlled plant, generates a specific dynamical systems model in the context of a
given task. Finally, the minimum intervention principle is related to the uncontrolled
manifold concept (Chap. 2.3.2.3).

This thesis focuses on open-loop or feed-forward control. It seems plausible that
the CNS uses such a control scheme in the context of fast and/or highly practiced
movements (Heuer and Konczak, 2003). In figure 2.21, a conceptual control architec-
ture that serves as a general theoretical framework for the thesis is presented. Based
on the desired task, the state of the body, and the environmental context, a planner
computes a movement plan (p(t)) that is transmitted to a controller. The controller
then transforms the movement plan into adequate motor commands (u(t)). Finally,
the motor commands are sent to the plant, thus transforming the motor commands
into limb movements according to the movement plan (x(t)). Depending on the type
of open-loop model, the problem of motor redundancy is more largely resolved during
the planning stage via optimization. Based on the reviewed psychophysical and neu-
rophysiological data (Chap. 2.3.3.1), it is currently impossible to identify the level or
space in which human movements are planned (extrinsic vs. intrinsic or kinematic
vs. dynamic). However, as outlined in chapter 2.3.3.1, this area of research can be
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Figure 2.21: Based on the task, the current and final state of the body and the
environmental context, a planner computes a movement plan p(t) that is transmitted
to a controller, which in turn transforms the movement plan into adequate motor
commands c(t). Finally, the motor commands are sent to the plant which transforms
the motor commands into a movement of the limbs according to the movement
plan x(t). The controller may use both sensory feedback and predicted feedback
provided by a forward model that anticipates the consequences of the current motor
command (adapted from Cisek, 2005). Based on the conducted review (Chap. 2.3),
the brain structures where these functions possibly occur are described in the text.
It is conceivable that the individual entities of this framework are highly distributed
across these brain structures. Finally, the structures are attributive to the two levels
“Neural control” and “Musculoskeletal mechanics” to establish a link to figure 2.20.

addressed in the context of open-loop optimization models. In other words, optimal
control models are not only a solution approach to the DOFs problem, but can also
be used to examine the space in which trajectories are planned. Thus, trajectories
predicted by optimal control models defined in different planning spaces and experi-
mentally determined trajectories can be compared (Osu et al., 1997). In this context,
much research has been conducted on simple 2D movements. Compared to the suc-
cess of open-loop optimization models for these movements, the use of open-loop
optimization models is still in an investigate phase for multi-joint movements in 3D
space (Flash et al., 2003). Consequently, one of the major challenges in motor control
research is the application of optimization models to multi-joint movements in 3D
space (Hermens and Gielen, 2004; Admiraal et al., 2004; Gielen, 2009b). Based on
figure 2.14, we will focus on an extrinsic kinematic space, intrinsic kinematic space
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and intrinsic dynamic mechanic space. The actions analyzed in this thesis will be
discrete and each action will be performed in a perfectly stable and predictable envi-
ronment (closed skills). Different multi-joint pointing movements in 3D space will be
analyzed. Therefore, the context in which the subjects have to perform the different
pointing movements should be as natural as possible.

The implementation of this research is carried out in two steps: Analysis and
synthesis of human movements.

Study I: Movement analysis In this context one of the main assumptions is that the
information about the process of movement coordination in the central nervous
system can be deduced from behavioral regularities (Bernstein, 1967). A large
number of such regularities have been reported in literature (Goodman and
Gottlieb, 1995). Nevertheless, the analysis of multijoint daily life movements
in 3D-space is uncommon. Thus, the purpose of the first study is to analyze
multi-joint pointing movements in 3D-space with respect to the selection of
regularities.

Study II: Movement synthesis In the second study, a computational model for hu-
man movement planning will be developed. In so doing, different optimal con-
trol models that can be assigned to different planning spaces are coupled with a
multi-body system of the human musculoskeletal system. With the help of this
computational model, human pointing gestures will be generated via computer
simulation and compared to the experimentally determined pointing gestures.
The computational data will be used to address which of the tested optimal
control models can best reproduce the behavioral regularities found in the first
study. Based on the results, conclusions regarding in which coordinate frame
movements are planned by the CNS may be drawn.
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The methods described here are the basis of the two studies conducted in this thesis.
This section comprises a detailed description of the subjects (Chap. 3.1), the proce-
dures (Chap. 3.2), the motion capturing (Chap. 3.3), the biomechanical modeling
and the data analysis (Chap. 3.4).

3.1 Subjects

Twenty healthy students of the University of Karlsruhe (TH) (16 male; 4 female)
between 20 and 25 years of age (mean age = 22.2 years; SD = 1.3 years) participated
voluntarily in the study. Their height ranged from 160 to 189 cm (mean height =
177 cm; SD = 9 cm), and their mass ranged from 49 to 100 kg (mean mass = 70.6 kg;
SD = 12.5 kg).

3.2 Procedures

Human pointing movements were captured in a kitchen at the Institute of Computer
Science and Engineering at the University of Karlsruhe (TH). This kitchen serves as a
test center for the development of hardware and software components for humanoid
robots (Fig. 3.1). All subjects stood in a neutral upright posture at the same
starting position (Fig. 3.1), looking at a robot’s image projected onto the opposite
wall representing the robot as a communication partner. Four plates with numbers
were attached at different heights to the kitchen furniture, the wall, and the floor
representing objects which the robot would have to bring to its human user (Fig.
3.1). Subjects were instructed to perform the gestures like they would in their daily
life. Instructions concerning speed, accuracy or choice of hand were not provided.
Besides the starting position, the order of number announcement was standardized.
However, subjects were not informed about the order of number announcement before
the trial. Each number was called five times resulting in 20 pointing movements. For
instance, when the researcher called “Number 1”, the subject pointed in the direction
of the corresponding number without touching the target. Prior to data collection,
one test trial was performed for each target.

95



3 Methods

Table 3.1: Subject data

Subjects Sex Age Height (cm) Mass (kg)

01 male 22 172 65

02 female 24 160 49

03 female 21 170 59

04 male 24 182 79

05 male 23 172 60

06 male 22 179 80

07 male 21 176 100

08 male 21 173 65

09 male 25 187 75

10 male 23 184 78

11 male 22 185 75

12 male 20 189 81

13 male 22 175 75

14 male 21 183 64

15 male 23 180 75

16 female 21 160 49

17 male 22 185 87

18 male 22 180 66

19 male 21 185 70

20 female 24 163 60

Mean 22.2 177 70.6
SD 1.3 9 12.5
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Figure 3.1: Starting position of all subjects in the kitchen. Numbers on the kitchen
furniture, the wall and the floor indicate the pointing targets.

3.3 Motion capturing

A Vicon motion capture system was used for analysis. Motion Capturing means the
recording of (human) movements by an array of cameras in order to reproduce the
movement in a digital environment. The process of motion capturing can be divided
in the steps data acquisition (Chap. 3.3.1) and data processing (Chap. 3.3.2).

3.3.1 Data acquisition

All pointing movements were tracked at 120 Hz. To be able to capture human
movements, reflective markers were attached to the subjects. For the reconstruction
of joint angles (e. g. the elbow joint), at least three non-collinear markers are required
on each body segment. Each body segment consists of a bone that is covered by soft
tissues. The segments of the body to be modeled are considered “non-deformable”,
representing rigid bodies according to classical mechanics (Wu, 1995). Markers are
not rigidly associated with the bone. Soft tissues located between the markers and
the underlying bone cause relative movements of the markers with respect to the
bone. These movements represent artifacts that affect the estimation of the marker
positions and joint kinematics and thus represent one of the most critical sources of
error in motion capturing (Leardini et al., 2005). In addition, anatomical landmarks
should be chosen, which can be identified relatively quickly and reliably (Croce et al.,
2005). We developed a basic whole body marker set for studies in CRC 588. This
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marker set consists of 78 markers and is based on the Vicon “PlugInGait” marker
set and on recommendations found in technical literature (Cappozzo et al., 1995).
The marker set is compatible to Vicon applications. 4 mm markers were used for
the hands, and 9 mm markers were used for the rest of the body. For data analysis
and synthesis performed in this thesis, 38 of the 78 markers were used (Fig. 3.3).
Ten cameras were installed around the subject, making up the capture volume. It
was ensured that each marker was recognized by at least two cameras, which was
necessary to enable the transformation of coordinates of frame markers into 3D space.
Each Vicon camera has a ring of LED strobe lights around the lens. As the subject
performs a pointing movement within the capture volume, light from the strobes of
each camera is reflected from the markers back into the camera lens and strikes a light
sensitive plate creating a video signal. The camera software performs an estimation
of the centroids of the marker images. This leads to an effective data reduction
because the coordinates of only one point for each marker is being transferred to the
computer for further processing rather than a complete video image. In technical
literature different algorithms for estimation of the center of a marker can be found
(Jobbagy and Furnee, 1994). The Vicon software uses a weighted center of mass
fitter.

3.3.2 Data processing

Within the Vicon Workstation software, the 2D data from each camera is linked with
the calibration data for the system to reconstruct an equivalent digital motion in three
dimensions using a built-in algorithm. Calibrations were performed prior to the first
trial of a subject. There are two types of calibration: static and dynamic. With
the help of the static calibration object (L-Frame) the global frame is constructed,
in which Vicon provides the position data of the markers. In contrast to the recom-
mendations of the International Society of Biomechanics for standardization in the
reporting of kinematic data (Wu and Cavanagh, 1995), the Vicon global reference
system is defined as a right-handed orthogonal triad fixed to the ground with the
Z axis pointing upward and parallel to the field of gravity. The X and Y axes are in
a plane perpendicular to the Z axis. The dynamic calibration involves the movement
of a calibration wand throughout the entire capture volume. This process allows
the system to calculate the relative positions and orientations of the cameras. In
the ideal case, the reconstruction will result in smooth and continuous trajectories
throughout the calibration trial. Unfortunately, broken trajectories, meaning that
not all markers could be reconstructed in all frames, were unavoidable. In addition,
phantom markers and ghost trajectories, because of reflections, were observed. The
reflections were deleted and the gaps in the trajectories were filled using a copy pat-
tern algorithm by Vicon, by which points from a similar continuous trajectory are
copied to a given discontinuous trajectory to fill the gap. In some cases, the mark-
ers were unavoidably hidden for longer periods of time. Consequently, large gaps in
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Figure 3.2: Vertical displacement and acceleration of a hand marker point (LH7).
The times series of the raw data are red and the time series of the smoothed data
are black.

some of the trajectories were produced which could not be fixed by copying patterns
of continuous to discontinuous trajectories. In such cases, the course of the hidden
markers over time was calculated using the Vicon Body Builder Software and the
results from the neighboring markers placed on the same rigid body. However, it was
not always possible to calculate the time courses of the occluded markers without
falsifying the data. For this reason, some trajectories were deleted or left incomplete.
When calculating the first and second derivation, it was observed that the two deriva-
tions were not continuous. The raw data obviously contains high-frequency signal
portions not produced by the biological system. These signal portions, or noise, may
be the result of skin movement, incorrect digitization or other factors. In the field of
biomechanics, different procedures are used to eliminate noise (Wood, 1982; Winter
and Patla, 1997), and each of these procedures has strengths and limitations. If the
data sets are not too noisy, cubic or quintic spline algorithms often yield adequate
results (Winter and Patla, 1997). Because the data sets in the case under consid-
eration were of adequate quality, a quintic spline algorithm by Woltring (1986) was
used. In figure 3.2, the time series of the Z-axis of a hand marker point (LH7) of
a typical pointing movement towards target 1 is shown before and after smoothing.
Lastly, the trajectories were transferred to the MKD-Tools framework described in
the next section.

3.4 Biomechanical modeling

A biomechanical model is needed for calculating inverse kinematics and inverse dy-
namics (Zatsiorsky, 1998, 2002). In this thesis, the MKD-Tools framework, developed
in CRC 588, was used. The framework was implemented in Matlab on the basis of
a recursive multi-body algorithm, enabling the user to create multi-body models of
musculoskeletal mechanics. Marker-based motion capture and anthropometric data
was used as input to these models facilitating inverse kinematics and dynamics anal-
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ysis. The calculated quantities were available in terms of model-based trajectories,
e.g., joint angles, velocities, accelerations, driving joint torques and muscle forces.
Large-scale analysis and synthesis required an automation of the different compu-
tations and efficient algorithms to accomplish the studies in an acceptable time.
Therefore, an automatic scaling algorithm was introduced to adopt the models to
the subject’s dimensions and to the multi-body algorithm. All algorithms were con-
sidered to be of low computational complexity. To provide comparability with other
groups, the whole-body models were developed taking modeling standards in robotics
and biomechanics into account. In this chapter, a brief introduction of the MKD-
Tools framework is provided. The MKD-Tools framework was developed by Stelzner
(2008) and enhanced by Simonidis (2010). The reader is referred to these theses for
a comprehensive introduction and further details regarding the framework.

3.4.1 Dynamic equations

The performance of recursive formulations establishing the dynamic equilibrium
equations have proven to be very efficient in terms of computational complexity
(Featherstone, 2008). The algorithm introduced below has a complexity of O(n)
computing the kinematic and the inverse dynamic equations. The implementation
of the algorithm does not rely on matrix inversion (Cloutier et al., 1995). However,
performance relevant details (e.g. the position of body-related coordinate systems)
have been taken into account during its development (Stelzle et al., 1995). The user
can specify an arbitrary multi-body model, e.g. number and inertial properties of
the rigid bodies, holonomic and nonholonomic joint constraints, driving constraints,
generalized coordinates and rotation parameters like Euler or Cardan angles, to over-
come singularities. The algorithm establishes a minimal set of the spatial dynamic
equilibrium equations of the form

M (q) q̈−Q(q, q̇, t) = T (3.1)

where q corresponds to the vector of generalized coordinates, M(q) to the mass
matrix of the system, Q(q, q̇, t) to the vector of bias forces and torques, including
coriolis, centrifugal terms, gravity and external forces. T is the vector of generalized
forces.

The recursive algorithm is described in detail in Stelzner (2008). An introduction
to the theoretical foundations of recursive algorithms can be found in Bae and Haug
(1987), Wood and Kennedy (2002) as well as Featherstone (2008).
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3.4 Biomechanical modeling

3.4.2 Motion mapping and inverse calculations

Quantitative analysis of human motion requires models of the musculoskeletal me-
chanics. The topology and parameterization of those models may conveniently rely
on surveys of populations and have scaling capabilities avoiding recurrent modeling
for any subject. Motion capture data from different trials were mapped on the models
using the recursive kinematics formulation together with an optimization-based ap-
proach to solve the inverse kinematics. Scaling was also based on inverse kinematics.
Using the data from the inverse kinematics, the inverse dynamics calculations were
performed. The model of human musculoskeletal mechanics used in this thesis relied
on the inertial parameters of De Leva (1996). Furthermore, the recommendations of
Wu and Cavanagh (1995), Cappozzo et al. (1995) as well as Cappozzo et al. (2005)
for the model topology and the bone-fixed reference frames were used. The kinematic
structure of the model, i.e. location and number of joints (Fig. 3.3), were in line with
the software packages SIMM and OpenSIM (Delp and Loan, 1995, 2000; Delp et al.,
2007). Joint constraints were introduced to improve the inverse kinematics mapping
and enable not only the analysis (Chap. 4) but also the synthesis of human move-
ments (Chap. 5). Moreover, the joint constraints ensured comparability between the
analyzed and synthesized motion and allowed for specific generalized coordinates to
be optimized, while others were driven by data from the analysis. Joint limits were
defined both kinematically and dynamically (Simonidis, 2010).
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Figure 3.3: The skeletal body model used in this thesis is outlined on the left side
of the figure. Blue circles correspond to marker points and red arrows to the axes
of rotation (DOFupper body = 32). On the right side corresponding inertia and mass
distributions are shown.
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3.4 Biomechanical modeling

Figure 3.4: Absolute and relative marker positions (Stelzner, 2008).

Despite the automatic scaling of the model to subject specific dimensions, a differ-
ence between motion capture markers and model markers was observed. To reduce
this error, the mapping was implemented as a nonlinear least-squares optimization
problem with bounds solving for the values of generalized coordinates by minimizing
the error between the position of motion capture markers and the model-defined coun-
terparts with a Levenberg-Marquardt algorithm. The absolute position of a marker
Mm was given by its experimental position R̄m and its model position Rm(q) de-
pending on the set of generalized coordinates (Fig. 3.4). The error of Mm was
defined as Fm = |R̄m−Rm(q)|. Minimizing the error over all markers of the system
m = 1, .., nm leads to the nonlinear least-squares problem

min
∑
m

Fm
TFm. (3.2)

An automatic and subject specific scaling of the model was achieved using markers
on specific anatomical landmarks (Cappozzo et al., 2005), the problem (3.2) was
solved for q̂ for a recorded initial pose of the subject. Then, the scales were fixed for
the mapping of the time series of the captured motion. The proposed method also
allowed for the use of dynamic markers which could be calibrated after the scaling
process improving the quality of the mapping process. The resulting kinematic tra-
jectories were Butterworth-filtered according to standards in biomechanics (Wood,
1982; Winter and Patla, 1997) because the procedure introduced sometimes none
smooth transitions between the captured frames. Finally, the inverse dynamics was
performed to obtain the net joint torque and the reaction force trajectories.
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Table 3.2: Description of the DOFs analyzed in this study. All subjects stood
in a neutral upright posture at the same starting position (Fig. 3.1). Movement
amplitudes are the same for the left and right side of the body. All movement
amplitudes are provided in degrees.

DOF Segments Amplitudes [deg]

Shoulder I Clavicle - Humerus: Abduction / Adduction [-120 90]

Shoulder II Clavicle - Humerus: Rotation [-90 90]

Shoulder III Clavicle - Humerus: Anteversion / Retroversion [90 -90]

Elbow Humerus - Ulna: Flexion / Extension [0 130]

Thorax Thorax - Pelvis: Rotation [-70 70]

3.5 Data analysis

Data analysis was carried out using Matlab (V. 7.7). For all recorded trials, the begin
of the movement was defined as the point the origin of the local coordinate frame of
the left or right hand segment (R), depending on which arm was used for the pointing
movement, surpassed 5% of its peak velocity. Time normalization was conducted us-
ing a cubic spline interpolation. In both studies, the hand path was determined based
on the local coordinate frame of the hand (R) and the tangential velocity profiles of
the hand were calculated on the basis of the velocity of the local coordinate frame
of the hand (Rp). Moreover, the shoulder abduction/adduction, shoulder rotation,
shoulder anteversion/retroversion, elbow flexion/extension and thorax rotation were
of particular interest (Tab. 3.2). In the MKD-Tools output file, angles are abbre-
viated with the letter q, angular velocities with the letter qp, and driving torques
with the letter T . In the first study (Chap. 4), the time courses of the joint angles,
joint angular velocities, and driving torques of these DOFs were analyzed and in the
second study (Chap. 5), the movement in these joints was synthesized using different
optimal control models.
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4 Study I: The analysis of multi-joint
pointing movements in 3D space

4.1 Introduction

The technological progress during the last 20 years is reflected in the development
of robotics research and its focus on humanoid robot development (Becher et al.,
2004). Possible future applications of humanoid robots are residential service, per-
sonal robots for elderly, playmate robots in child education or robots for danger zones
(e.g. aerospace, nuclear power stations). Humanoid robots are able to accomplish
tasks that are difficult to be carried out by humans because of the social need or the
dangerous nature of the environment (Tanie, 2003; Fong et al., 2003; Brock et al.,
2005; Schaal, 2007b). To promote man-machine interaction in a human environment,
the size, geometry, arrangement of limbs, number of DOFs and range of motion of a
humanoid robot should be comparable to those of humans (Asfour et al., 2008). Be-
sides anthropometric resemblance, a robot should use human-like movements (Wank
et al., 2004; Khatib et al., 2004; Schaal, 2007b). Robotics research is traditionally
situated in mechanics and computer science and based on control theory and opti-
mization theory. For the development of humanoid robots that operate in human
centered environments, robotic research needs to apply principles from other fields
including psychology, biology, and neuroscience (Schaal, 2007b). For the develop-
ment of a robot that is supposed to work in human environment and use objects
and tools of human daily life, it is crucial to understand how humans coordinate
their upper-body movements during daily motor tasks. These aspects are especially
important if the robot should move in the same fashion as humans. Scientists in the
fields of biological motor control and robotics have already started to interact (Schaal
and Schweighofer, 2005; Ijspeert, 2006) and exchanged ideas (Hollerbach, 1982; Beer
et al., 1998; Sternad and Schaal, 1999; Piazzi and Visioli, 2000; Atkeson et al., 2000;
Sun and Scassellati, 2005; Konczak, 2005; Stein et al., 2006). The field of robotics
has proved to be a useful environment for developing and testing hypotheses about
biological motor control. In other words, models of biological motor control can
be corroborated or discarded by testing them on robots. Moreover, the capabilities
of biological systems by far surpass those of artificial systems (Flash et al., 2004).
Hence, the body of knowledge gained in the field of biological motor control may
help engineers to develop hardware and software components for humanoid robots
that generate human-like movements and operate in future human environments. In
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4 Study I: The analysis of multi-joint pointing movements in 3D space

addition, the analysis of daily upper extremity movements is of great interest not
only to researchers in biological motor control (see below) and clinicians (Buckley
et al., 1996; Anglin and Wyss, 2000), but also for robotics research (Schaal, 2007b).

The use of the upper limbs during daily life is manifold: they allow us to reach
toward objects, grasp objects, perform complex manipulations with different objects,
throw objects, point toward objects, and gesticulate and so on, with either the right
or the left arm or using both arms and in a variety of different environments and
conditions. The diverse manipulations humans are able to perform are the result
of the kinematic redundancy of the upper body. This redundancy is advantageous
because it enables humans, for example, to avoid obstacles and joint limits. However,
this flexibility or movement abundance leads to a control problem. Which particular
movement of the large number of possible movements should be chosen? The pro-
cess of coordinating upper-extremity movements like reaching or pointing toward an
object is ill-posed in the sense that the task requirements can theoretically be met
by an infinite number of different movements. Bernstein (1967) defined the coordi-
nation of a movement as the process of mastering redundant DOFs of the moving
organ or its conversion to a controllable system. Given the complexity of the hu-
man motor system, the question arises as to which principles humans use for the
coordination of their movements. In this context, one of the key assumptions in mo-
tor control is that information about the process of movement planning and control
can be deduced from behavioral regularities (Bernstein, 1967). To understand basic
coordination principles, the systems behavior must be observed under various condi-
tions. This will presumably lead to a definition of some general features or principles
of the system’s behavior. The system’s complexity and the enormous number of
possible movement tasks make the analysis of all behaviors for all tasks impossible.
Therefore, a model of human control should be developed on the basis of limited in-
formation about the system’s behavior and probably also limited information about
the system’s structure (Latash, 1996).

The importance of computational models in biological motor control (Arbib, 2003;
Shadmehr and Wise, 2005) is expanding. In computational frameworks it is often
assumed that the coordination of goal-directed movements is carried out in a two-
stage process. The first stage of the process is the planning stage and the second stage
is the execution stage (Bizzi and Mussa-Ivaldi, 2004). During the planning stage a
desired trajectory is computed and the corresponding movement is performed during
the execution stage. Indeed, many experiments and models have been based on the
two-stage framework.

In studies involving biological motor control, the process of trajectory planning
has most often been analyzed separately from the execution and control of the move-
ment. Studies concerning movement planning seek mainly to determine the frame of
reference in which movements are planned. A pioneering study by Morasso (1981)
showed that in multi-joint arm movements, the hand trajectories between pairs of
targets in the horizontal plane are roughly straight-line paths in external Cartesian
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coordinates with single-peak, bell-shaped velocity profiles regardless of the initial
and final location of the hand. In contrast, when the trajectories of the hand were
expressed in joint coordinates, the profiles were more complex and variable. These
results were subsequently reproduced in a number of studies (e.g. Abend et al., 1982;
Flash and Hogan, 1985; Gordon et al., 1994; Haggard et al., 1995) and led to the
hypothesis that goal-directed movements, like pointing or reaching toward an ob-
ject, are planned in external coordinates of the hand and not joint coordinates. The
anatomical design of the human arm requires joint rotation to be able to translate the
hand from the starting position along the planned trajectory to the target location.
Hence, the coordination process would imply a reference frame transformation from
external coordinates into joint coordinates. This transformation is referred to as the
inverse kinematics problem (Zatsiorsky, 1998) and the study of robotics has shown
that there is no unique solution to the computation (Craig, 2005). As described in
the optimization models (Kawato, 1996), additional constraints need to be defined to
resolve the joint redundancy issues. The specific constraints or combination of con-
straints used by the CNS in motor control has yet to be determined (Gielen et al.,
1995). The results of the Morasso study (Morasso, 1981) do not appear to be uni-
formly true (e.g. Atkeson and Hollerbach, 1985; Desmurget et al., 1996; Desmurget
and Prablanc, 1997). Atkeson and Hollerbach (1985) observed that hand paths in a
vertical reaching movement were sometimes curved and that the amount of curva-
ture varied as a function of the initial and final location of the hand. In addition,
it was observed that the velocity profiles of the hand were the same for straight
and curved movement paths. In contrast, Soechting and Lacquaniti showed in a se-
ries of psychophysical experiments (Soechting and Lacquaniti, 1981; Lacquaniti and
Soechting, 1982; Soechting and Lacquaniti, 1983) in which subjects had to perform
a goal-directed two-joint movement in the sagittal plane, that both joints reached
their peak angular velocities at the same time and that the ratio of the peak ve-
locity at the elbow to the peak velocity at the shoulder is equal to the ratio of the
angular excursions of the two joints. The results were interpreted by the authors
as evidence that movements are planned in intrinsic coordinates. Hollerbach and
Atkeson (1985) challenged the conclusion by noting that at the same time, the joint
ratios were constant and the trajectories of the hand were almost straight in the
above cited studies. This mutually contradictory result of straight lines in hand and
joint space had been resolved by Hollerbach and Atkeson (1985) in favor of straight
lines in hand space because of an experimental artifact in the case of two joint kine-
matics near the workspace boundaries. Besides these studies, where the argument
for a planning of movements in terms of joint angles appears to be attributed to
the movement task, several other researchers have suggested that reaching move-
ments are planned on joint level due to internal control (Kaminski and Gentile, 1986;
Hollerbach and Atkeson, 1987; Flanagan and Ostry, 1990; Desmurget and Prablanc,
1997). The studies appear to suggest that both planning spaces are supported by a
large number of experimental results. After a review of the experimental settings of
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4 Study I: The analysis of multi-joint pointing movements in 3D space

several of the above mentioned studies, Desmurget et al. (1997) showed that there is
an important methodological difference between the experiments describing straight
and curved trajectories of the hand, namely the presence (constraint) or absence
(unconstrained) of a tool that is used to track the movement (e.g. a pen or a ma-
nipulandum). The results of the Desmurget et al. (1997) study indicate that in the
absence of a tool, the trajectories of the hand do not appear to be programmed to
follow a straight line in contrast to constraint movements. Therefore, Desmurget
et al. (1997) suggests that constraint and unconstrained movements involve different
planning strategies. However, it has to be mentioned that kinematic regularities may
also result from planning movements in an internal dynamical space (Uno et al.,
1989; Nakano et al., 1999). Currently, there is no consensus on this issue.

The primary question regarding the second stage of the process is how the planned
trajectory is executed. On the basis of force field studies (Shadmehr and Mussa-
Ivaldi, 1994; Lackner and Dizio, 1994, 1998), it has been suggested that a controller
(inverse internal model) computes the necessary feed-forward motor commands for
the execution of the desired trajectory and the plant (musculoskeletal system) trans-
forms the motor commands into limb movement. This process contains two map-
pings: an inverse mapping from the desired trajectory to motor commands by the
inverse model and a forward mapping from the current state and the motor com-
mands to the desired state by the musculoskeletal system. Thus, an ideal feed-
forward controller can be described as the inverse of the plant. Because feedback
loops in biological systems tend to be slow in contrast to robotics, it seems plausi-
ble that rapid arm movements are, at least in part, under feed-forward control and
not exclusively under feedback control. Since biological systems do not have the
ability to generate perfect controllers and unexpected external disturbances cannot
be excluded, error corrections are usually necessary. Depending on the duration of
the movement, visual and proprioceptive feedback may be available and adjustments
can be made if required. However, there has been growing recognition in compu-
tational motor control that biological systems may use predicted sensory feedback
provided by a forward model of the plant aside from sensory feedback (Kawato, 1999;
Desmurget and Grafton, 2000). Thereby a continuous stream of feedback would be
provided by the forward model driven by efferent copies of the motor commands sent
to the plant. Functionally, this fast internal loop is equivalent to an inverse dynamic
model (Miall, 2003). Based on this information, it is conceivable that the brain does
not plan an entire desired trajectory but rather monitors the current state of the
arm and the target, and continuously formulates small desired changes in the end
effector state. Hoff and Arbib (1993) developed a model in which a minimum jerk
principle (Flash and Hogan, 1985) is embedded into a controller that is able to use
feedback to resist target perturbations and look ahead modules (forward models) to
compensate for the delays in sensory feedback. The Hoff-Arbib model can generate
end effector trajectories with smooth, bell-shaped velocity profiles as reported in the
experimental studies cited above. It still has to be considered why the CNS should
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produce movements that minimize jerk. Harris and Wolpert (1998) provided a model
answering this question. In their minimum variance model, sequences of muscle ac-
tivations are planned such that the variance of the final hand position is minimized.
The minimum variance model is based on the fact that the magnitude of motor noise
is proportional to muscle activation. Accordingly, the choice of control signals affects
the variability of movements. Fast or none-smooth movements require large muscle
activations, which leads to increased endpoint errors due to increased signal depended
noise. The model will therefore predict smooth movements and is compatible with
the experimental results discussed above. In other words, smoothness leads to accu-
racy, but is not a goal in movement planning in its own right. Whereas the minimum
variance model by Harris (1998) is a feed-forward model, Todorov and Jordan (2002)
showed in a recent study that a feedback system optimized to reduce endpoint error
produces many of the above discussed movement features (Chap. 2.3.3.1) without
a precomputed desired trajectory. Optimal feedback control creates an uncontrolled
manifold (Scholz and Schöner, 1999), which means that motor errors along the most
relevant DOFs for the task are minimized and variations are allowed along the DOFs
which are not relevant for the task. Optimal feedback controllers can be viewed as
special forms of internal models that contain forward and inverse components.

Behavioral research has discovered various regularities in human goal-directed
movements. These invariants have become central in understanding the coordination
of human movements, as they appear to indicate some fundamental organizational
principles within the CNS (“what is regular is controlled”). However, the problem is
that it is hard to determine on which level regularities arise because of the complex-
ity of the human motor system, the limited information about the motor system’s
behavior, and methodological differences in the study of the motor system. There-
fore, it is unsurprising that, as previously outlined, different motor control models
have evolved. Although the previously mentioned studies address different research
questions and thereby highlight key principles underlying the coordination of goal-
directed movements, they overlook important features of natural movements due to
somewhat artificial experimental protocols and partial restriction to certain move-
ment planes. In comparison to planar movements, little research has been performed
on unconstrained multi-joint movements in 3D space, even though these types of
movements are more common in daily life. Accordingly, the purpose of the following
study is the analysis of multi-joint goal-directed movements in 3D space in a natural
environment. On the basis of different pointing movements, it will be investigated
how humans coordinate their redundant movement system in 3D space and if the
coordination strategies are robust across the different pointing tasks. Furthermore,
it will be examined if the behavioral regularities found in less complex movement
tasks are also present in more complex movement tasks. The results will be dis-
cussed against the background of the theoretical assumptions of biological motor
control outlined above and the background of the development of humanoid robots
that move in a human-like fashion. Finally, the applied methods are discussed.
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4.2 Methods

A detailed description of the study regarding subjects, procedures, data acquisition
and processing, and biomechanical modeling and data analysis is provided in chapter
3. In psychophysical studies it is common to analyze the trajectories of the hand
as outlined in the preceding chapter. Therefore, the first step in this study was to
analyze the hand paths. In addition, the tangential velocity profiles of the hand were
examined. The analysis of the hand was conducted on the basis of the local coordinate
frame of the left or right hand segment. Furthermore, the time profiles of the joint
angle trajectories, the joint angular velocities, and the driving joint torques were
examined. Shoulder abduction/adduction, shoulder anteversion/retroversion, elbow
flexion/extension and torso rotation were of particular interest (Tab. 3.2). Apart
from this, the inter-joint coordination was analyzed and identification of possible
couplings between different DOFs was examined.

4.3 Results

The coordination strategies used by the subjects in this study could be assigned to
one of four groups, as follows. Ten subjects (Tab. 3.1, subjects 1-10), comprising
group 1, did not leave the starting position and pointed with their left hand to targets
1 and 2 and with their right hand to targets 3 and 4. In group 2, four subjects (Tab.
3.1) again did not leave the starting position but pointed with their right hand to
all four targets. Two subjects (Tab. 3.1), group 3, left the starting position and
turned toward the targets, subsequently pointing with their left hand to targets 1
and 2 and with their right hand to targets 3 and 4. The fourth group, consisting
of four subjects (Tab. 3.1), did not use consistent coordination strategies for each
target. For example, in five separate tasks, one subject pointed to target 1 twice
with the left hand and three times with the right hand. In other words, the subjects
of the fourth group used the same strategies as the subjects of groups 1 and 2,
but changed coordination strategies from trial to trial for each target. The results
indicated that 16 subjects preferred recurring coordination strategies for each target,
while four subjects preferred alternating coordination strategies for each target. The
four subjects implementing alternating coordination strategies used available DOFs
to a far greater extent. In the following sections, typical results of groups 1 and 2 are
presented. The fourth group used the same coordination strategies as the subjects
of groups 1 and 2. The two subjects from group 3 could not be analyzed because
they left the capture volume during several of the trials. Moreover, the analysis
focused on targets 1 and 3 given that in the second study, the movement synthesis
was conducted for these two targets.
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Figure 4.1: Five typical hand paths (left column) and corresponding tangential
velocity profiles of the hand (mean=black, standard deviation=red; right column)
for subject 5 (target 1 = top row, target 3 = bottom row).

4.3.1 Hand kinematics

The subjects of group 1 produced curved hand paths as illustrated in Figure 4.1
(left column) showing five typical hand paths produced by subject 5 to targets 1
and 3. Subjects in group 2 also showed curved hand paths as depicted in Figure
4.2 (left column) illustrating five typical hand paths of subject 13 to targets 1 and
3. A visual inspection of the subject trials in groups 1 and 2 revealed that the
hand paths appear to always be curved, not straight. Although there were some
unsystematic differences concerning the trial to trial variability between and within
the subjects, these results indicate that movements of the hand in space show a
topological invariance concerning the shape of the hand path despite the different
pointing tasks and different coordination strategies (e.g. left hand or right hand).

Subjects of group 1 showed smooth and single-peak tangential velocity profiles.
The velocity profiles do not appear to be precisely bell-shaped. In most cases, the
peak velocity was reached slightly before 50 % of the movement time had passed
indicating a slightly longer deceleration than acceleration phase. There are several
cases where the tangential velocity profiles show some distortions at the end. In
Figure 4.1 (right column), the velocity profiles of subject 5 for targets 1 and 3 are
illustrated. The tangential velocity profiles for the subjects of group 2 revealed the
same features as the profiles produced by group 1. In Figure 4.2 (right column), the
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Figure 4.2: Five typical hand paths (left column) and corresponding tangential
velocity profiles of the hand (mean=black, standard deviation=red; right column)
of subject 13 (target 1 = top row, target 3 = bottom row).

corresponding velocity profiles of subject 13 for targets 1 and 3 are shown. Inter-
estingly, the velocity profiles of these subjects were sometimes more variable when
pointing with the right hand to the left side.

The analysis of the hand trajectories of the subjects across groups 1 and 2 showed
that the hand path is curved with smooth, single-peak and approximately bell-shaped
velocity profiles. In other words, different subjects exhibited highly stereotypical
hand trajectories with common invariant characteristics across different movement
tasks.

4.3.2 Joint kinematics

The examination of joint kinematics was accomplished in two steps. First, the joint
angle trajectories of the shoulder joint, elbow joint, and thorax rotation were analyzed
across the two pointing targets, and typical results are presented. In the second step,
couplings between the individual DOFs across the pointing targets were analyzed.
Again, typical results from the study are presented.

Joint kinematics: target 1 & group 1
Figure 4.3 illustrates typical joint angle trajectories of three different subjects from
group 1. The three subjects did not leave the starting position and pointed with their
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Figure 4.3: Mean (black) and standard deviation (red) of five joint angular courses
of four different DOFs for three representative subjects (target 1). The joint angle
trajectories of subject 2 are displayed in row 1, the joint angle trajectories of subject
5 are displayed in row 2 and the joint angle trajectories of subject 8 are displayed
in row 3.

left hand to target 1. Subject 2 (first row) performed the pointing movements rather
quickly. In contrast, subject 5 (second row) and subject 8 (third row) performed
the pointing movements reasonably slower than subject 2. Subject 2 showed the
largest amplitude and variability in the shoulder abduction followed by subject 5
and subject 8. The amplitudes of the shoulder anteversion and retroversion are much
smaller than the amplitudes of the shoulder abduction. Subject 2 showed the largest
movement variability. The joint angle trajectories of subjects 2 and 5 exhibited a
transition from retroversion to anteversion in the shoulder joint. In contrast, subject
8 showed little movement in this DOF. In the elbow joint, subject 2 again showed the
largest movement variability. Subjects 2 and 5 performed an extension in the elbow
joint during the pointing movement, and the smallest elbow angle tended to occur
at the end of the movement. Subject 8 performed a flexion-extension movement in
the elbow joint during the pointing gesture, and the elbow angle at the end of the
movement was nearly the same as the angle at the beginning of the movement. The
torso rotation toward the left side during the pointing movement was similar in the
three subjects. However, subject 2 showed slightly greater movement variability than
subjects 5 and 8. These results are representative for all the subjects from group 1.
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Figure 4.4: In the first row the joint angles of subject 8 are illustrated (target 1). In
the bottom row the corresponding angular velocities are illustrated. As above, black
time courses correspond to mean values and red time courses to standard deviations.

Figure 4.4 illustrates the joint angle trajectories of shoulder abduction, shoulder
anteversion/retroversion, elbow flexion/extension and thorax rotation for subject 8.
The corresponding angular velocities are also depicted in this figure. The largest an-
gular velocities occurred in shoulder abduction, followed by elbow flexion/extension,
then shoulder anteversion/retroversion, and finally thorax rotation. These results
were typical for the subjects from group 1 because the highest peak angular veloci-
ties across these four DOFs occurred in shoulder abduction. No obvious trend was
observed in the results for the three other DOFs. The largest movement amplitude
was found for shoulder abduction. As before, no clear trend across the subjects of
group 1 was observed for the other three DOFs. Compared to the velocity profiles of
the hand (Fig. 4.1), the angular velocities tended to be more complex and irregular
indicating an increase in the number of sub-movements in joint space. These are
typical movement characteristics of the subjects of group 1.

Joint kinematics: target 1 & group 2

Figure 4.5 (top row) illustrates typical joint angle trajectories and angular veloci-
ties of shoulder abduction/adduction, shoulder anteversion/retroversion, elbow flex-
ion/extension and thorax rotation for subject 13 from group 2. The joint angle
profiles for the two DOFs of the shoulder joints showed similar characteristics. In
both cases, the peak amplitudes were reached at the end of the movement. The peak
values of the shoulder anteversion were slightly larger than those of the shoulder
adduction. Moreover, the movement of the shoulder anteversion started earlier than
the shoulder adduction. This feature is also evident when comparing the correspond-
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Figure 4.5: In the first row, the joint angles of subject 13 are illustrated (target 1).
In the bottom row, the corresponding angular velocities are illustrated. Black time
courses correspond to mean values and red time courses to standard deviations.

ing velocity profiles (Fig. 4.5, bottom row). Compared to the joint angle profiles of
group 1, the subjects of group 2 showed a shoulder adduction instead of abduction
and generate much larger movement amplitudes and peak velocities for shoulder an-
teversion. Compared to the subjects of the first group, subject 13 performed a rather
large extension in the elbow joint during the pointing movement. Across the four
DOFs, relatively large variations in the movements in the elbow joint were observed.
In contrast, thorax rotation toward the left side during the pointing movement was
similar across the five trials. In addition, the movement amplitudes in this DOF
were comparable to those of group 1 (Fig. 4.3, right column). The angular velocity
profiles for the joint angles were more complex and irregular compared to the velocity
profiles of the hand (Fig. 4.1) indicating an increase in the number of sub-movements
in joint space. These results were representative for the four subjects from group 2.

Joint kinematics: target 3 & group 1 and 2

The subjects of groups 1 and 2 pointed with their right arm to target 3. Therefore,
the joint angle trajectories of both groups were analyzed in one step. In Figure 4.6,
joint angle trajectories of two subjects from the first group are displayed, as well as
joint angle trajectories of one subject from the second group. Shoulder abduction
was highly stereotypical for all subjects (Fig. 4.6, first column). Furthermore, the
subjects produced large joint angular amplitudes in this DOF. In contrast, only small
movement amplitudes were produced in the second DOF of the shoulder. Except for
two subjects (Fig. 4.6, subject 14), all angle courses were negative in this DOF,
which corresponded to retroversion. During the pointing toward target 3, no subject
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Figure 4.6: Mean (black) and standard deviation (red) of the joint angles of four
different DOF of three representative subjects (target 3). The joint angle trajectories
of subject 5 are shpwn in row 1, the joint angle trajectories of subject 7 are shown
in row 2 and the joint angle trajectories of subject 14 are shown in row 3.

showed a complete extension of the arm. Almost all subjects performed a flexion-
extension movement in the elbow joint during pointing toward target 3, and all
subjects tended to show nearly the same elbow angle at the end of the movement
as at the beginning of the movement. The movement amplitudes were considerably
different from each other. Larger movement amplitudes appeared to be associated
with larger movement variability across the trials (Fig. 4.6). Thorax rotation toward
the right side during the pointing movement was similar across all subjects of groups
1 and 2. Furthermore, the rotation amplitude was comparable to the amplitudes of
thorax rotation during pointing toward target 1. The joint angle values were negative
because the subjects turned to the right side instead of to the left side.

In figure 4.7, the joint angle trajectories of shoulder abduction, shoulder antev-
ersion/ retroversion, elbow flexion/extension and thorax rotation of subject 5 are
illustrated. The corresponding angular velocity profiles are also shown in the figure.
The largest movement amplitudes and angular velocities occurred in the shoulder
abduction. Some subjects also produced both large movement amplitudes (Fig. 4.6,
subject 14) and large angular velocities in the elbow joint. The results indicated
similar angular velocity profiles in the shoulder abduction and thorax rotation for all
subjects. In contrast, joint angular velocities in the shoulder retroversion and elbow
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Figure 4.7: The joint angles of subject 5 are illustrated in the first row (target 3).
In the bottom row, the corresponding angular velocities are illustrated. Black time
curses correspond to mean values and red time curses to standard deviations.

flexion/extension varied to a larger degree across subjects. Compared to the velocity
profiles of the hand (Fig. 4.1, 4.2), the angular velocities were more complex and
irregular indicating an increase in the number of sub-movements in joint space.

In summary, it can be stated that the trajectories of the hand were highly stereo-
typical across different subjects and different movement tasks. In other words, all
subjects produced movements across the two tasks sharing the same invariant move-
ment features independent of whether the right arm or the left arm was used for point-
ing. Larger differences were identified on the joint level, including intra-individual
comparison of the joint angular trajectories across different pointing tasks. In addi-
tion, the differences in the joint angular trajectories between groups 1 and 2 during
pointing toward target 1 were largely due to the fact that the subjects used different
arms. Additionally, analysis showed that within the groups, different coordination
strategies were used during pointing to a target. For example, some subjects tended
to extend their arm at the end of pointing toward target 1, whereas others showed
flexion at the end of the pointing movement. The inter-individual differences in the
joint angular trajectories of the individual DOFs in the shoulder and elbow joint
indicate that the subjects may use different coordination strategies in the interaction
of these DOFs. In contrast, the inter-individual differences in thorax rotation were
small and unsystematic. Next, the interaction of the individual DOFs was analyzed
more precisely.
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Figure 4.8: Inter-joint coordination for thorax rotation versus the movement in
shoulder and elbow joint during pointing toward target 1. In the first row, the
inter-joint coordination of three representative subjects from group 1 are illustrated
(blue=subject 2, red=subject 5, green=subject 8). In the bottom row, the inter-
joint coordination of one representative subject of group 2 is illustrated (subject 13).
The scaling of the axes of the plots between the two rows is not uniform since the
subjects of group 2 pointed with their right arm toward target 1. Accordingly, these
movements took place in another region of the joint space. All time courses are
mean values (N = 5).

Inter-joint coordination: target 1 & thorax movements vs. shoulder and elbow
movements

The top row of figure 4.8 depicts the inter-joint coordination of thorax rotation versus
shoulder and the elbow joint during pointing toward target 1 of three representative
subjects from group 1. In the first plot, thorax rotation is plotted against shoul-
der abduction/adduction. All three subjects showed small thorax rotation and large
shoulder abduction. Furthermore, during the pointing movement, an almost perma-
nently increasing value in both joints was exhibited, indicating that the relationship
is almost linear. In the middle plot, thorax rotation is plotted against shoulder antev-
ersion/retroversion. Subject 8 did not use shoulder anteversion/retroversion. During
thorax rotation the arm remained at approximately 20◦ retroversion. In contrast,
subjects 2 and 5 showed permanently increasing values in both DOFs during the
pointing movement. Moreover, the maximum amplitudes were reached at the end
of the movement forming an almost linear relationship between the two excursions.
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However, the gradient of the two time courses differed. In the third plot of the top
row, thorax rotation is plotted against elbow flexion/extension. Subject 8 showed
only small movement amplitudes in both joints. Thorax movement to the left and
extension of the arm during the pointing toward target 1 were observed for subjects
2 and 5. Both subjects reached the peak amplitudes in both joints at the end of the
movement.

In the bottom row of figure 4.8, the inter-joint coordination of one subject from
group 2 during pointing toward target 1 is illustrated. As before, in the top row,
thorax rotation is plotted against shoulder abduction/adduction, shoulder antever-
sion/retroversion and elbow flexion/extension. The left plot shows that angle/angle
course was slightly curved because thorax rotation started before shoulder adduc-
tion. In the middle plot, thorax rotation is plotted against shoulder anteversion.
The relationship between the movements in these two joints was highly linear. In
the right plot, thorax rotation is plotted against elbow flexion/extension. The path
was strongly curved because of the flexion and extension in the elbow joint. The
peak amplitude in the elbow joint was reached almost in the middle of the move-
ment, whereas the peak amplitude of thorax rotation was reached at the end of the
movement. The result revealed a nonlinear relationship between these two DOFs.

Inter-joint coordination: target 1 & shoulder movements vs. shoulder and
elbow movements

Figure 4.9 (top row) illustrates the inter-joint coordination of the shoulder and elbow
joint during pointing toward target 1. In the top row, angle-angle figures of three
representative subjects from group 1 are plotted. In the left figure, shoulder abduc-
tion is plotted against shoulder anteversion/retroversion. As shown in the graph,
Subject 8 did not use shoulder anteversion/retroversion. During abduction, the arm
remained at approximately 20◦ retroversion. In contrast, subjects 2 and 5 showed
consistently greater values in both DOFs during the pointing movement. Further-
more, the maximum amplitudes were reached at the end of the movement, forming
an almost linear relationship between the two excursions. In the middle plot, shoul-
der abduction is plotted against elbow flexion/extension. Subject 8 showed only a
small flexion and extension in the elbow joint during shoulder abduction. Subjects 2
and 5 exhibited almost permanently increasing values in the shoulder joint and de-
creasing values in the elbow joint, and reached maximum amplitudes in both DOFs
at the end of the movement. Again, the excursions over time in both joints showed
an almost linear relationship. In the right plot, shoulder anteversion/retroversion is
plotted against elbow flexion/extension. Because subject 8 only performed a small
flexion and extension in the elbow joint and almost no anteversion or retroversion
in the shoulder, the time course of the angle/angle plot forms a small bell-shaped
curve. Subjects 2 and 5 showed a transition from retroversion to anteversion and
simultaneously an extension of the arm in the elbow joint during the pointing toward
target 1. Because both subjects accelerated their arm extension at the end of the
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Figure 4.9: Inter-joint coordination for the shoulder and elbow joint during point-
ing toward target 1. In the top row, the inter-joint coordination of three repre-
sentative subjects from group 1 are illustrated (blue=subject 2, red=subject 5,
green=subject 8). In the bottom row, the inter-joint coordination of one repre-
sentative subject from group 2 is illustrated. The scaling of the axes of the plots
between the two rows is not uniform since the subjects of group 2 pointed with their
right arm toward target 1. Accordingly, these movements took place in another
region of the joint space. All time courses are mean values (N = 5).

movement, the angle/angle course appears bent.

In the bottom row of figure 4.9, the inter-joint coordination of one subject from
group 2 during pointing toward target 1 is illustrated. As before, in the top row,
the two DOFs in the shoulder joint are plotted against one another. Subject 13,
similar to all other subjects in group 2, showed almost constantly greater values in
both DOFs, forming a nearly linear relationship between the two DOFs. However,
because anteversion started before adduction, the angle/angle path is slightly curved.
In the middle plot, shoulder adduction is plotted against elbow flexion/extension.
The path is strongly curved because of the flexion and extension in the elbow joint.
This, together with the sigmoid profile of shoulder anteversion, leads to a nonlinear
relationship between these two DOFs. In the right plot, shoulder anteversion is
plotted against elbow flexion/extension. As before, the angle/angle path is strongly
curved because of the flexion and extension in the elbow joint. Because shoulder
anteversion started earlier in time than shoulder adduction (bottom row, middle
plot) and had a larger peak amplitude, the shape of the course was more elongated
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Figure 4.10: Inter-joint coordination for the thorax rotation, the shoulder and
elbow joint of three representative subjects during pointing toward target 3
(blue=subject 5, red=subject 7, green=subject 14). Subjects 5 and 7 belong to
group 1 and subject 14 belongs to group 2. All time courses are mean values (N = 5).

along the shoulder axis. The interaction of these two DOFs cannot be approximated
via a simple linear relationship, but requires a parabolic relationship.

Inter-joint coordination: target 3

Because the subjects of groups 1 and 2 pointed with their right arm toward tar-
get 3, angle/angle trajectories of both groups were analyzed in one step. In the
top row of Figure 4.10, the inter-joint coordination of thorax rotation, the shoulder
and the elbow joint of three representative subjects during pointing toward target
3 are depicted. In the top row, thorax rotation is plotted against shoulder ab-
duction/adduction. All three subjects showed only small thorax rotations and large
shoulder abduction. The angle/angle profiles of subjects 5 and 14 exhibited a slightly
curved profile at the beginning, followed by an almost straight line indicating a highly
linear relationship. In contrast, the corresponding profile of subject 7 was straight
at the beginning and slightly curved at the end. In the middle plot, thorax rotation
is plotted against shoulder anteversion/retroversion. Subject 5 did not show large
movement amplitude in this DOF of the shoulder. During thorax rotation to the
right, the arm remained approximately between −15 ◦ and −10 ◦ retroversion and
therefore the angle/angle profile is almost horizontally. Subject 7 showed a compa-
rable thorax rotation but larger shoulder retroversion. The coupling of these two
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4 Study I: The analysis of multi-joint pointing movements in 3D space

DOFs formed an almost straight profile with some distortions at the end, producing
a linear relationship. Subject 14 showed the largest thorax rotation and a shoulder
retroversion that was followed by an anteversion. The combination of movements
in these two DOFs lead to a rectangular angle/angle profile. In the right plot, tho-
rax rotation is plotted against elbow flexion/extension. Because all three subjects
showed a flexion/extension of the arm, the angle/angle profiles for the three cases
were almost bell-shaped. Because the excursions in the elbow and the thorax joint
differed across the three subjects, the shapes of these curves also differed.

In the bottom row of figure 4.10, typical examples of the inter-joint coordination
of the shoulder and elbow joint during pointing toward target 3 are illustrated. In
the left plot, shoulder abduction is plotted against shoulder anteversion/retroversion.
The plot shows that subject 5 does not use shoulder anteversion/retroversion. Dur-
ing abduction of the shoulder, the arm remained between approximately between
−15 ◦ and −10 ◦ retroversion. Therefore, the interaction of these two joints could be
approximated by a simple linear relationship. Subjects 7 and 14 also did not exhibit
a large excursion in shoulder anteversion/retroversion. Subject 7 performed retro-
version during abduction, resulting in a highly linear coupling of these two DOFs
until the last quarter of the movement. In the last portion of the movement, the
retroversion remained at approximately −25 ◦ and abduction was continuous. Sub-
ject 14 showed the opposite behavior in the interaction of these two DOFs. During
shoulder abduction and at the beginning of the angle/angle course, a small retro-
version in the shoulder followed by an anteversion was observed. Thus, a coupling
between these two DOFs was be observed leading to a highly linear relationship.
In the middle plot, shoulder adduction is plotted against elbow flexion/extension.
Subjects 7 and 14 exhibited flexion and extension of the arm during shoulder abduc-
tion, and the resulting angle/angle profiles were single-peak and nearly bell-shaped.
Since subject 5 exhibited a larger amplitude in shoulder abduction and a smaller
amplitude in flexion/extension movement in the elbow joint, the shape of the path
was more elongated along the shoulder axis. However, compared to the interaction
of the two DOFs of the shoulder, the coupling of shoulder abduction and elbow flex-
ion/extension was more complex. In the third plot, shoulder anteversion is plotted
against elbow flexion/extension. Given that subject 5 performed only a small flexion
and extension in the elbow joint and almost no movement in the shoulder, the time
course of the angle/angle plot formed a small distorted bell-shape. The angle/angle
profiles of subjects 7 and 14 also showed a bell-like shape, but much more elongated
along the elbow axis because of the fact that both subjects performed a large flexion
and extension of the arm. Both courses started at almost the same point on the
shoulder axis, but ran in different directions because subject 7 showed a retroversion
and subject 14 showed an anteversion in the shoulder joint.
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4.4 Discussion

4.3.3 Joint torques

Figure 4.11 illustrates typical examples of the driving joint torques of three subjects.
The highest variability in the torque profiles were found among the subjects from
the second group, who pointed with their right arm to target 1 on the left side
(Fig. 4.11). However, a comparison of the torque profiles between the subjects of
groups 1 and 2 during pointing toward target 1 showed that the subjects of the first
group produced, on average, higher torques in shoulder abduction/adduction and
lower torques in shoulder anteversion and retroversion and in elbow flexion/extension.
The same tendency was observed when comparing the movements of the subjects
pointing with their right hand to target 1 with the subjects pointing with their right
hand to target 3. When pointing toward target 3 with the right hand, the subjects
produced, on average, higher torques in shoulder abduction/adduction and lower
torques in shoulder anteversion and retroversion and in elbow flexion/extension than
the subjects pointing with the right hand to target 1. Furthermore, the subjects of
group 2 generated larger torque amplitudes during thorax rotation when pointing
toward target 1 than the subjects of group 1, and compared to the subjects of groups
1 and 2 during pointing toward target 3.

4.4 Discussion

The implications of the results presented above are discussed in the context of the
background of the introduced theoretical assumptions of biological motor control and
the development of humanoid robots moving in a human-like fashion. Finally, the
applied methods are discussed.

4.4.1 Biological motor control

The analysis of human movements can be assigned to two domains: gait analysis and
upper extremity analysis. Comparing gait analysis to upper-extremity analysis re-
veals some problems since in gait analysis, a 2D lateral view of the human gait yields a
good approximation of the most important movement components (Rau et al., 2000).
Typical upper extremity movements cannot be described in 2D. These movements
require a 3D analysis due to the kinematic redundancy of the upper body. Neverthe-
less, most upper extremity studies are restricted to planar movements or use rather
simple biomechanical models of the upper body (Chap. 2.3.3.1, 4.1). Therefore, these
studies probably neglected important features of natural multi-joint movements in
3D space. The purpose of this study was the examination of different multi-joint
upper-extremity movements in 3D space, and this was accomplished by utilizing
with different pointing gestures. Based on the pioneering work of Morasso (1981)
and Shadmehr and Mussa-Ivaldi (1994), an important assumption of motor psy-
chophysics is as follows: Represented movement features differ from non-represented
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Figure 4.11: Mean (black) and standard deviation (red) of the joint torques of
four different DOFs of three representative subjects (N = 5). In first row, the joint
torque profiles of subject 8 (group 1) during pointing toward target 1 are illustrated.
In the second row, the joint torque profiles of subject 13 (group 2) during pointing
toward target 1 are shown. In the third row the joint torque profiles of subject 5
(group 1) during pointing toward target 3 are shown.

features in the criterion of simplicity and the criterion of invariance (see also Heuer
and Konczak, 2003). The results of this study are discussed in the context of the
background of these assumptions.

The analysis of the trajectories of the hand of the subjects from groups 1 and 2
showed that the hand paths are curved with smooth, single-peak and almost bell-
shaped velocity profiles. In other words, the subjects produced movements across
the two tasks that shared the same invariant movement features no matter if the
right or the left arm was used during the task (criterion of invariance). Furthermore,
compared to joint angles and joint angular velocities, the hand paths and tangential
hand velocities are rather simple (criterion of simplicity). It is known that uncon-
strained hand movements in 2D space (Desmurget et al., 1997) and 3D space (Flash
et al., 2003) are more curved than constraint movements restricted to a plane, con-
sistent with the results of this study. Based on the findings of the analysis, a motor
planning in extrinsic coordinates of the hand appears to be plausible. Since these
movement features were found across different unconstrained movement tasks, they
are most likely not a result of the experimental protocol. Therefore, the question
arises as to why the subjects produced movements with these features. If the ob-
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served human behavior is seen in a larger evolutionary context, the human brain may
have learned during evolution that some movements will lead to a reward and others
to punishment. The idea that some movements will lead to reward (e.g. food) and
some to punishment (e.g. hunger) establishes a link to the field of optimal control
(Chap. 2.3.3.1). In other words, some movements are optimal since they assure a
reward while others are not. Optimal control models incorporate a cost (e.g. mini-
mum jerk), defined as some function of the movement, and the movement with the
lowest cost is chosen and executed. However, the human CNS did not evolve to
optimize movements to produce certain invariant features, but it evolved to promote
the transmission of genes to future generations. It is possible that some movements
with certain features are more likely to pass on genes and the human CNS may have
learned to indirectly represent this through cost functions. The great challenge has
been, and still is, to reverse engineer the cost functions that are used by the human
CNS, especially in the case of natural multi-joint movements in 3D space (Wolpert
and Ghahramani, 2004; Shadmehr and Wise, 2005). A possible explanation for the
above described features is provided by the minimum variance model (Harris and
Wolpert, 1998) described in chapter 4.1 and chapter 2.3.3.1.

Because of the anatomical design of the human arm, joint rotations are required
to be able to translate the hand from one position to another. If movements are
planned in extrinsic coordinates, a transformation from external space into joint
space is needed. This computation is called inverse kinematics and is ill-posed (Chap.
2.2). It appears the CNS is capable of solving this problem since humans are able to
translate their hand from one position to another. However, since the inverse kine-
matics problem is difficult to solve, the human CNS may have adopted a strategy
during evolution that avoids the problem. One possibility is that motor planning
takes place in joint space. Based on the above outlined assumptions of motor psy-
chophysics, invariant movement features and/or simple couplings should be found in
joint space. The analysis of the joint kinematics revealed that not all subjects used
the same joint coordination strategy. Several subjects used different arms to accom-
plish the pointing tasks. Some even used different arms in the same movement task
and therefore different combinations of joint angles. Even if subjects used the same
arm for a pointing task, different coordination of arm joint kinematics were observed.
For example, subject 14 used a much larger extension in the elbow joint than subject
5 during pointing toward target 3 (Fig. 4.6). Nevertheless, the qualitative analysis
of the joint movements indicated that the different coordination strategies can be
grouped. In the next step, a quantitative grouping or classification is required (e.g.
Park et al., 2005). Despite some differences in the coordination of the analyzed DOFs,
the inter-joint coordination analysis revealed highly linear relationships between dif-
ferent DOFs in some cases (Fig. 4.8, first plot in the upper row). This indicates
that the CNS sometimes shows, even in joint space, a tendency to use rather simple
couplings between different DOFs (criterion of simplicity). In future studies, a joint
space with higher dimensions than 2D should to be examined. These analyses can
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4 Study I: The analysis of multi-joint pointing movements in 3D space

be conducted in the context of the theoretical background of the presented definition
of synergies (Chap. 2.3.2.2).

Subjects were urged to execute the pointing movements as they would do in their
daily life. This led to large differences in movement speed and therefore in movement
duration. For example, subject 2 showed a rather fast execution when compared to
subject 8. The large variability between the different trials of subject 2 could be a
result of the movement speed (Fig. 4.3), which corresponds to the predictions of Fitt’s
law (Chap. 2.3.1.1). Compared to the velocity profiles of the hand (Fig. 4.1), the
angular velocity profiles are more complex and irregular indicating an increase in the
number of sub-movements in joint space. Given the highly stereotypical tangential
velocity profiles of the hands, the CNS might use a compensational strategy. In
other words, sub-movements or oscillations in one joint can lead to almost equal
and opposite oscillations in other joints. In the literature, couplings of this kind are
described as coordinative structures (Tuller et al., 1982).

According to Newton’s second law one has to apply a force to accelerate a body.
Therefore, to move the segments of the arm in the desired mode, adequately timed
joint torques need to be applied. In producing the torques, the CNS has to solve
some difficult mechanical problems (equation 2.12, 2.13). The results of this study
indicated that the different coordination strategies on a kinematic level led to different
torque profiles. For example, in contrast to the subjects of the first group, the
subjects of the second group had to pass their arm in front of their body when
pointing to target 1. This coordination strategy led to lower torques in shoulder
abduction/adduction, and higher torques in the shoulder anteversion and retroversion
and the elbow flexion/extension.

4.4.2 Robotics

It seems to be only a question of time until robots will be integrated into families and
serve as personal robots for elderly or playmate robots in child education. To promote
man-machine interaction in a human environment, the size, geometry, arrangement
of limbs, number of DOFs and range of movement of a humanoid robot should be
comparable to those of humans. Modern humanoid robots dispose of a large num-
ber of mechanical DOFs. This redundancy is advantageous because it enables these
robots to avoid obstacles and joint limits, just as a human being (Atkeson et al.,
2000). However, this flexibility or movement abundance leads to a control problem.
Which particular movement among the large number of possible ones should be cho-
sen in a given situation? Besides the anthropometric resemblance, the robot should
use human-like movements to promote man-machine interaction (Wank et al., 2004;
Khatib et al., 2004; Schaal, 2007a). Therefore, it seems plausible to study human
movements and transfer the kinematics of human movements to humanoid robots.
The stereotypical features of human pointing gestures identified above denote a first
step in this direction. A humanoid robot should generate pointing gestures with
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curved hand paths and single-peaked, almost bell-shaped velocity profiles with a
peak velocity of 1.5 − 2.0 m/s. The analysis of the joint angle trajectories showed
that humans use different coordination strategies. The analysis of the inter-joint
coordination revealed in some cases an almost linear relationship. The relationships,
both linear and nonlinear, could be approximated via polynomials to quantify cou-
plings between different joints. These functions may be used in movement generation.
Different coordination strategies of different subjects provide the chance to select the
kinematics that may best be mapped to a specific humanoid robot. Depending on
the chosen kinematics, the motors of the robot should be able to produce angular
velocities of up to 150 deg/s in the shoulder and elbow joint. Given the joint kine-
matics of a typical human subject, as well as the moment of inertia, the length, the
mass, and the center of mass of each of the robot’s segments, inverse dynamics can
be calculated to determine the engine power needed in each of the joints. Calcula-
tions of this kind can be carried out with the biomechanical model used in this thesis
(Chap. 3.4). Furthermore, such a model can be used to study the effects of a mass
reduction on the required engine power in different joints.

4.4.3 Applied methods

The analysis of complex multi-joint movements in 3D space requires the application
of specific measurement and modeling techniques. In this study, a marker-based IR-
tracking-system that can be classified as state of the art regarding sampling frequency
and spatial resolution was utilized. Ten cameras were installed around the subject
to ensure that each marker was recognized by at least two cameras. Most of the
markers were recognized by more than two cameras during the movement which
improves the quality of the 3D reconstruction of the markers. When calculating the
first and second derivation of the marker data, the derivations are not continuous.
The raw data obviously contain higher-frequency signal portions which are not caused
by the biological system. These signal portions, or noise, may be the result of skin
movement, incorrect digitization, or other factors. Cubic or quintic spline algorithms
are commonly used in biomechanics to smooth raw data in data sets with noise
(Winter and Patla, 1997). Since the data sets under consideration are of good quality,
we used a quintic spline algorithm by Woltring (1986). In summary, the applied
methods in the process of data acquisition and processing are state of the art, and
the achieved data quality indicates a correct application of the described methods.

The biomechanical model used in this study has a large impact on the results.
Modeling is required for the calculation of joint angles and driving joint torques,
however, the analysis of multi-joint movements in 3D space requires a complex kine-
matic and dynamic multibody model. The biomechanical multibody model used in
this thesis is based on the recommendations of the International Society of Biome-
chanics (Wu and Cavanagh, 1995; Wu et al., 2002, 2005; Cappozzo et al., 1995), as
well as the inertial parameters of De Leva (1996) and Zatsiorsky (2002). The kine-
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matic structure of the model, i.e. location and number of joints, are in line with
the software packages SIMM and OpenSIM (Delp and Loan, 1995, 2000; Delp et al.,
2007). Although the applied model reflects the state of the art in biomechanical
modeling, it should be noted that the calculation of joint angles and joint torques
are always a result of the applied method. If other methods were used to analyze
the same data set, for example Euler’s instead of Cardan’s angles or other inertial
parameters, the range of motion in the individual DOFs as well as the joint torques
would differ. Another methodological problem is the calculation of the inverse dy-
namics. The torque profiles appear spiked in several cases due to the fact that the
experimental data were not continuous. There are two options to address this prob-
lem: the experimental data should be smoothed to a larger extent, or approximated
via polynomials or splines to get an analytic function to describe the data. In the
first case, the original signal may become heavily distorted and in the second case,
it is conceivable that no suitable polynomial or spline exists.

Within the scope of outlined objectives, the methodology of this study has to be
considered adequate. The small number of trials per subject per movement task
is one key limitation, and a greater number of trials should be recorded in future
studies.
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pointing movements in 3D space

5.1 Introduction

The fact that pointing to distant visual targets is a part of everyday life hides the
intrinsic complexity of these movements. Therefore, it is not surprising that despite
decades of basic research attempting to understand human motor control, the funda-
mental neural and computational principles of simple goal-directed movements like
pointing remain poorly understood (Thoroughman et al., 2007). Breakthroughs in
understanding certain aspects of human motor control have often been produced by
computational studies (Flash and Hogan, 1985; Bullock and Grossberg, 1988; Uno
et al., 1989; Hoff and Arbib, 1993; Shadmehr and Mussa-Ivaldi, 1994; Harris and
Wolpert, 1998; Todorov and Jordan, 2002). These studies are based on classical
fields of engineering including cybernetics (Wiener, 1948), optimal control (Bellman,
1957) and, to a certain extent, control theory (Slotine and Li, 1991). In computa-
tional frameworks, the problem of motor control is modeled in terms of four entities:
(1) a planner computes a desired trajectory or, more generally, a movement plan
based on the task, (2) the current state of the body, (3) the final state of the body
and (4) the environmental context. Once the desired trajectory has been established,
it is transmitted to a controller. Inverse internal models are ideal controllers because
they transform the desired trajectory into adequate motor commands. The motor
commands are then sent to the plant, or the system, being controlled. In human mo-
tor control, the plant corresponds to the musculoskeletal system. The system then
performs a forward mapping, meaning that it transforms motor commands into limb
movement according to the intended trajectory and depending on factors such as limb
geometry, limb inertia, muscle mechanics and environmental loads. The controller
may use sensory feedback to correct the movement or predicted sensory feedback
provided by a forward model that anticipates the consequences from efferent copies
of the issued motor commands (Kawato, 1999; Scott and Norman, 2003). However,
rapidly executed movements cannot be solely under feedback control because feed-
back loops in biological systems are slow; for example, the delay for visual feedback
is approximately 200 ms (Slater-Hammel, 1960; Kawato, 1999). The context of the
internal model hypotheses suggests that the central nervous system (CNS) must
construct inverse dynamic models of the plant. These neural representations of the
properties of the plant enable a feed-forward movement control. Theoretically, it is
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also possible that a forward model of the musculoskeletal system embedded in a fast
internal feedback loop mimics a feed-forward control via an inverse model (Kawato,
1999). Most computational models are based on the assumption that movements are
planned before being executed. However, some models do not depend on a precom-
puted desired trajectory (Hoff and Arbib, 1993; Todorov and Jordan, 2002). Bizzi
et al. (1984) demonstrated that deafferented monkeys can reach a target with their
hands by feed-forward control alone. Seemingly, if the corresponding inverse model
is sufficiently developed, an almost natural movement appears possible and the re-
maining movement error is more or less negligible. Under normal circumstances,
this error may be corrected via feedback-control (Heuer and Konczak, 2003). These
results indicate that the trajectory, from the starting position to the final position,
can be precomputed. In other words, the trajectory can be planned and controlled
in a pure feed-forward manner.

In the context of feed-forward control, Kawato (1996) distinguishes three indeter-
minacy problems involved in the process of planning and executing unconstrained
visually guided movements like pointing. There are an infinite number of spatiotem-
poral routes, or trajectories, connecting the starting point with the target position.
However, it is necessary to select one trajectory from the infinite number of possible
trajectories (problem of trajectory formation). The spatial coordinates of the desired
trajectory need to be transformed into intrinsic coordinates like joint angles or mus-
cle lengths. This inverse transformation is not uniquely determined because of the
redundant DOFs on the level of joint angles or on the level of muscles (problem of
coordinate transformation). If a desired trajectory is determined in joint angle coor-
dinates, the generalized actor forces can be calculated via inverse dynamics equations.
Again, there are an infinite number of patterns of muscle activation generating the
same driving torques moving the hand along the desired trajectory. Furthermore,
it is impossible to uniquely determine the appropriate firing rates of the spinal cord
neurons and the cortex neurons to produce the muscle activations and therefore, the
required torques needed at each point in time (problem of motor command gener-
ation). A more detailed discussion of these problems can be found in chapter 2.2.
The main difficulty in solving these problems is that the planning and control strate-
gies of the CNS cannot be directly assessed. One of the key assumptions in motor
control research is that information about these strategies can be deduced from be-
havioral regularities (Bernstein, 1967). Therefore, to be able to understand basic
control strategies, the system’s behavior must be observed under various conditions.
The results will likely lead to a definition of general features or principles of the
system’s behavior, as was done in the first study of this thesis. Due to the system’s
complexity and the vast amount of movement tasks, it is impossible to analyze all
likely behaviors for all potential tasks. Therefore, it is necessary to develop a model
of human motor control based on limited information about the system’s behavior
and structure (Latash, 1996). It is unsurprising that this approach has led to many
different and sometimes incompatible models (Brown and Rosenbaum, 2002; Her-
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mens and Gielen, 2004). Latash (2008a) distinguishes two major approaches to the
indeterminacy problems presented above. In optimal control models, a unique trajec-
tory is selected by adding additional constraints to the task and thereby reducing the
effective DOFs. This is most often done by selecting a cost function that serves as a
goal function (Kawato, 1996; Engelbrecht, 2001; Todorov, 2004). A detailed discus-
sion of the most influential optimal control models can be found in chapter 2.3.3.1.
The second approach assumes that the CNS does not eliminate the DOFs and does
not select a unique trajectory but rather uses all available DOFs to facilitate families
of solutions that are equally successful in solving the movement task at hand. This
idea has recently been formalized in the uncontrolled manifold hypothesis (Scholz and
Schöner, 1999; Latash et al., 2004, 2007). A detailed discussion of the uncontrolled
manifold hypothesis can be found in chapter 2.3.2.3.

If human movements are viewed in a larger evolutionary context, the human brain
may have learned through evolution that some movements will lead to a reward
and others to punishment. The idea that some movements will lead to reward (e.g.
food) and some to punishment (e.g. hunger) establishes a link to the field of optimal
control (Chap. 2.3.3.1). In other words, some movements are optimal because they
assure a reward and others are not. Optimal control models can reproduce behavioral
regularities on multiple levels (Todorov, 2004). In the literature, different optimal
control models are discussed. Determining the optimal control model requires a
“reverse engineering” approach, with the objective of replicating observed human
movement features. In the case that there is no single model being superior to all
other models, testing different optimization models can be useful in the development
of a categorization of motor behavior. Furthermore, these models can help to enhance
the understanding of the neural processes underlying human motor behavior (Flash
et al., 2003), and have the benefit of being objectively and experimentally examinable
because of their quantitative predictions.

In addition to determining which principles the CNS uses to solve the above intro-
duced ill-posed problems, on which levels in the sensorimotor system these principles
work must be ascertained. In other words, which coordinate frame or space human
movements are planned must be considered. This question was addressed using two
types of studies. In the first type of study, the neural activities of primates during
movements were recorded to observe if patterns of neural activity could be linked to
one or several behavioral variables (Chap. 2.3.3.1). However, as shown by Nakano
et al. (1999), the data from these studies are consistent with different planning spaces.
It appears that the interpretation of the results of these studies continues to be de-
bated (Todorov, 2000a; Moran and Schwartz, 2000; Georgopoulos and Ashe, 2000;
Todorov, 2000b; Scott, 2000a). In the second type of study, adaptation processes
in artificially altered environments or performance changes are investigated to ob-
jectively examine the planning space (Chap. 2.3.3.1). If the trajectory of the hand
is planned in kinematic space, it will be altered under kinematic transformations
in visual space and it will be unaffected when the dynamics are altered (e.g. force
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Figure 5.1: Conceptual schema of different trajectory planning spaces and the
corresponding optimal control models examined in this thesis (Nakano et al., 1999)

fields). If the trajectory of the hand is planned in dynamic space, the opposite will
occur. Results supporting a kinematic planning space were reported by Wolpert
et al. (1995a) using kinematic transformations and by Shadmehr and Mussa-Ivaldi
(1994) using dynamic transformations. In contrast, the results of Uno et al. (1989),
Osu et al. (1997) and Nakano et al. (1999) support the notion of a dynamic planning
space. The question concerning what planning space is utilized is important in the
context of the computational framework presented above. If planning takes place
in an intrinsic-dynamic space, then this would place a heavy computational burden
on the planner. On the other hand, if the planner produces a kinematic plan that
defines the trajectory of the hand, than the controller would have to deal with coor-
dinate transformation and motor command generation. In conclusion, it can be said
that on the basis of the above discussed results, it is currently impossible to identify
the space in which human movements are planned. Another possibility to examine
the space in which trajectories are planned is to compare trajectories predicted by
optimal control models defined in each space with experimentally determined tra-
jectories (Nakano et al., 1999). According to Osu et al. (1997) and Nakano et al.
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(1999), one can distinguish four planning spaces: an extrinsic-kinematic space (e.g.
Cartesian coordinates of the hand), an intrinsic-kinematic space (e.g. joint angles or
muscle length), an intrinsic-dynamic-mechanical space (e.g. joint torque or muscle
tension) and an intrinsic-dynamical-neural space (e.g. motor commands controlling
muscle tension or the firing rate of motor neurons) (Fig. 2.14). The following work is
based on the assumption that actual trajectories are similar to planned trajectories
(Osu et al., 1997; Nakano et al., 1999). The first focus of the study is on extrinsic-
kinematic space, intrinsic-kinematic space and intrinsic-dynamic-mechanical space.
We tested a minimum hand jerk model (Flash and Hogan, 1985), a minimum angle
jerk model (Wada et al., 2001) and a minimum torque change model (Uno et al.,
1989). Furthermore, we developed a planning algorithm working on an extrinsic-
and intrinsic-kinematic level. In figure 5.1, the different planning spaces and the
corresponding optimization models analyzed in this study are illustrated. Although
these models have been established in technical literature, a quantitative comparison
between the performance of these models for multi-joint movements in 3D space is a
new concept (e.g. Admiraal et al., 2004; Kaphle and Eriksson, 2008; Gielen, 2009b).
The purpose of the following study is to quantitatively examine which of the four
optimal control models can best reproduce multi-joint pointing movements in 3D
space.
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5.2 Methods

5.2.1 Subjects

The motion capture data from subjects 1 through 8 was used in this study (Tab. 3.2).
The age of the eight subjects (6 men and 2 women) from the University of Karlsruhe
(TH) was between 21 and 25 years (mean age = 22.9 years; SD = 1.5 years). Heights
of the subjects ranged from 160 to 187 cm (mean height = 175.9 cm; SD = 8.8 cm)
and weights ranged from 49 to 80 kg (mean mass = 68.1 kg; SD = 11.5 kg).

5.2.2 Procedures

For the comparison of the trajectories predicted by the different optimal control
models, the experimentally determined pointing gestures to target 1 and 3 (Fig.
(Fig. 3.1) of the eight subjects were used. All subjects pointed with their left hand
to target 1 and with their right hand to target 3. Furthermore, none of the subjects
left the starting position during the pointing movement. In total, 40 experimentally
determined pointing gestures for each of the two targets were obtained and

5.2.3 Data acquisition and processing

All pointing movements were tracked using a Vicon IR-Motion Capturing System. A
detailed description of the data acquisition and processing is provided in chapter 3.

5.2.4 Biomechanical modeling

The kinematic and dynamic multibody approach used for the calculation of joint
angles and joint torques is described in chapter 3. A more comprehensive introduction
to the model can be found in the theses of Stelzner (2008) and Simonidis (2010).

5.2.5 Optimal control models

To apply the above described biomechanical model to the generation of trajectories,
an optimal control model has to be linked to the multibody system. The optimal
control model consists of two factors: first, an optimization criterion (cost or goal
function) must be defined (Fig. 5.1) and, second, an optimization method must be
implemented to calculate optimal trajectories based on the previously defined crite-
rion. As outlined in chapter 5.1, a minimum hand jerk model (MHJM), a minimum
angle jerk model (MAJM) and a minimum torque change model (MTCM) will be
examined. A detailed description of these models is given in chapter 2.3.3.1. We also
developed a modified minimum hand jerk model (mMHJM) by which the optimiza-
tion is conducted on hand level (extrinsic coordinates of the hand). An additional
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boundary condition used during the optimization included setting the limits of the
individual joints. During optimization, the joint movements are driven by experi-
mental data and some joints are released, meaning that the optimization method
can use this DOF within the joint limits to find a minimum hand jerk trajectory.
A detailed description of the mathematical basis for the method can be found in
Simonidis (2010).

5.2.6 Optimization method

The optimization method is needed for the computation of optimal trajectories with
respect to the above introduced criteria. Mathematically, the problem involves the
optimization of a general nonlinear cost function with nonlinear constraints, bounds
of the optimized variables and boundary conditions at start and target times (Gill
et al., 1981). The problem is stated as to find a set of trajectories q(t), q̇(t), q̈(t) and
T(t) for a time domain t = [t0, tf ] ∈ R, which minimizes a nonlinear cost function

J =

∫ tf

0

C(x(t))dt, (5.1)

where x(t) may depend on q(t), q̇(t), q̈(t) and T(t) or even on higher derivatives,
with respect to nonlinear constraints, the dynamic equilibrium equations

M(q(t))q̈(t)−Q(q, q̇, t)−T(t) ≡ 0, (5.2)

bounds in the form of xmin ≤ x(t) ≤ xmax and boundary conditions x0(t0), xf (tf ).
The problem can be efficiently solved with collocation methods, which are known

to provide a quick insight into the optimal solution (Gill et al., 1981). Direct collo-
cation is a numerical method for solving optimal control problems (Betts, 1998). It
is based on discretization of the state and control variables of the mechanical system
transforming the optimal control problem into a constrained nonlinear optimization
problem that can be solved with well-known and efficient standard solvers. Piecewise
polynomial approximations of state variables based on quintic Hermite splines uti-
lizing the structure of the dynamic equations of motion were used in this study. The
dynamic equations of motion can be explicitly solved for the control (Stryk, 1998) and
thus, the discretized control variables are obtained automatically by only discretizing
the state variables on a defined number of nodes. The nodes are equidistantly spaced
and the unknowns of the optimization problem are the parameters of the discretiza-
tion, which are the function values and the first and second derivatives at each node.
At equidistant time instances k, for example k =

[
0 0.25 0.5 0.75 1

]
on a time

interval t = [0 . . . 1] including the start and end values of t, the free parameters of a
single trajectory qi(t) were chosen to be qi(k), q̇i(k) and q̈i(k).

Values between the supporting points were then interpolated by piecewise quintic
splines qi(t) = S5

i (qi(k), q̇i(k), q̈i(k), t), where S5
i denotes a coefficient function assem-

bling the piecewise quintic splines together to the trajectory qi(t). Therefore, qi(t)
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is parameter dependent and C2-continuous. The parameterized trajectories can be
summarized in matrix form (5.3) and the derivatives are obtained by differentiating
S5, the coefficient functions of the quintic splines.

q(t) = S5(q(k), q̇(k), q̈(k), t) ≡ S5
k(t)

q̇(t) = Ṡ5(q(k), q̇(k), q̈(k), t) ≡ Ṡ5
k(t)

q̈(t) = S̈5(q(k), q̇(k), q̈(k), t) ≡ S̈5
k(t)...

q(t) =
...
S

5(q(k), q̇(k), q̈(k), t) ≡
...
S

5
k(t) (5.3)

Now the equations of motion can be formulated dependent on time and the set of
trajectories (5.3) to

T(t) = M(S5
k(t))S̈

5
k(t)−Q(S5

k(t), Ṡ
5
k(t), t). (5.4)

Equation 5.4 was solved on a collocation grid at 4 (nk − 1) + 1 Gaussian points
(de Boor and Swartz, 1973) and thus, four points per node were determined to solve
the resulting system of equations. Therefore, the structures of the appearing matrices
are large and sparse.

The four optimal control models used in this thesis are MHJM, mMHJM, MAJM
and MTCM (Chap. 5.2.5). The corresponding cost function of MHJM is defined as:

JHJ =
1

2

∫ tf

t0

...
R

T ...
Rdt (5.5)

where R = [x, y, z]T are the coordinates of the origin of the local coordinate frame of
the hand and

...
R is the corresponding translational jerk. Furthermore, the optimiza-

tion on hand level does not depend on equation 5.4. The cost function of mMHJM
is defined as follows:

JmHJ(q̄, t) =
1

2

∫ tf

t0

...
R

T
(q̄)

...
R(q̄)dt (5.6)

where q̄T = [qT , q̇T , q̈T ,
...
qT ]T are the variables of the individual joints. In the case

of MAJM the cost function is given by the following equation:

JAJ(q, t) =
1

2

∫ tf

t0

nq∑
k=1

...
q 2

k(t)dt (5.7)

where q represents the number of the nq DOFs to be optimized. Finally, the cost
function of the MTCM is

JTC =
1

2

∫ tf

t0

ṪT (t)Ṫ(t)dt. (5.8)

The optimization problems were solved using efficient solvers for nonlinear and
sparse optimization problems. A more comprehensive introduction to the optimiza-
tion method used in this thesis can be found in (Simonidis et al., 2010).
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5.2.7 Simulation protocol

The trajectories generated by computer simulations are compared to the experimental
data of eight subjects for targets 1 and 3. In total, there are 40 experimentally
determined human trajectories for each of the two targets that can be used for the
validation of the different optimal control models.

Because the minimum hand jerk model (MHJM) is defined in extrinsic coordinates
of the hand and not in joint or torque space, 40 simulations for each target must be
conducted. In the case of the optimal control models defined in intrinsic coordinates,
the DOFs to be optimized need to be specified. The three models utilizing intrinsic
coordinates include MAJM, MTCM and mMHJM. Analysis of the pointing gestures
(Chap. 4) showed that the most relevant DOFs are those of the shoulder, the elbow
and thorax rotation. To determine how the developed computational framework op-
erates under different conditions, simulations began by utilizing one DOF for each
target. In the experiments, 31 of the 32 available DOFs of the biomechanical model
were driven by experimentally determined movement data from motion capture stud-
ies (Tab. 5.1). In a second step, the number of DOFs driven by experimental data
was reduced to 28 for target 1 and 27 for target 3. In other words, four DOFs for
target 1 and five DOFs for target 3 will be optimized.
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Table 5.1: Simulation protocol for target 1 and target 3 for MAJM, MTCM and
mMHJM. A total of 11 different conditions were tested.

Target Number of optimized DOFs Description of DOFs

1 1 shoulder abduction/adduction

1 1 shoulder rotation

1 1 shoulder anteversion/retroversion

1 1 elbow flexion/extension

1 4 shoulder abduction/adduction +

shoulder rotation +

shoulder anteversion/retroversion +

elbow flexion/extension

3 1 shoulder abduction/adduction

3 1 shoulder rotation

3 1 shoulder anteversion/retroversion

3 1 elbow flexion/extension

3 1 thorax rotation

1 5 shoulder abduction/adduction +

shoulder rotation +

shoulder anteversion/retroversion +

elbow flexion/extension +

thorax rotation
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5.2.8 Data analysis

Measured trajectories were compared with those predicted by the four models for
spatio-temporal properties. Based on the experimental data, the starting pose, the
final pose, and the movement duration were determined (Chap. 3.5). The analysis
of the performance of the different optimal control models was accomplished in four
steps. Matlab (V. 7.7) and SPSS (V. 17) were used for data analysis.

Step 1: Validation of the optimization method
Before the above described optimization method can be used to test the performance
of the different optimal control models, a procedure validation must be carried out.
The validation of the optimization method for the minimum hand jerk model is
straightforward. MHJM trajectories are straight with single-peak bell-shaped veloc-
ity profiles. The test results indicate that the optimization method produces hand
trajectories with the previously described features (e.g. Fig. 5.5). The validation
of the optimization method for mMHJM, MAJM and MTCM requires the use of a
less complex task than the one for which it has been developed. The idea is to use
tasks where the solution is well known and therefore, the behavior of the optimization
method can be judged by comparing the results of the tasks with the known solution.
In the case under consideration, the optimization procedure is validated with a two
joint pendulum (Fig. 5.2). The pendulum has to swing from the starting position
(q1 = 0◦ and q2 = 0◦) to the final position (q1 = 90◦ and q2 = 0◦) in one second with
100 supporting points. Anthropometric parameters of the upper arm and lower arm
from De Leva (1996) were used for the two segments of the pendulum. The third
segment, the hand segment in figure 5.2, was not included in the calculations. This
validation procedure was conducted for mMHJM, MAJM and MTCM. In addition,
a minimum torque criterion (MTM) was tested. This additional criterion helped to
assess the results of MTCM. Besides a qualitative analysis of the movement of the
pendulum’s segments, the sums of the HJ vectors were calculated using equation
(5.9):

sRppp =

∑100
i=1

∣∣RpppX
i

∣∣ +
∑100

i=1

∣∣RpppY
i

∣∣
2× 100

(5.9)

where i are the number of the supporting points, RpppX
i are the X-coordinates of the

HJ vector and RpppY
i are the Y-coordinates of the HJ vector. The sums of the AJ

vectors of the two joints were quantified using equation (5.10) is used:

sqppp =

∑100
i=1 |qppp1

i |+
∑100

i=1 |qppp2
i |

2× 100
(5.10)

where i is the number of the supporting points, qppp1
i are the angles of the AJ

vector for the first joint and qppp2
i are the angles of the AJ vector for the second

joint. Equation 5.10 is also used to calculate the sums of the torque vectors (sT )
and TC vectors sTp. If the optimization method works correctly, mMHJM should
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Figure 5.2: Validation task: The pendulum has to swing from the position q1 = 0◦

and q2 = 0◦ to the position q1 = 90◦ and q2 = 0◦.

produce the smallest sRppp value, MAJM should produce the smallest sqpp value,
the MTM should produce the smallest sT and MTCM should produce the smallest
sTp value. Several simulations were conducted with each criterion to determine if
the optimization method produced repeatable results.

Step 2: Qualitative analysis of measured and predicted trajectories
After the validation of the optimization method, the results of all simulation runs were
examined to observe the behavior of the models. Variations and similarities between
human and predicted movement data were of special interest. In this context, some
representative trajectories are presented and qualitatively analyzed.

Step 3: Variations between measured and predicted trajectories
The third step involves quantification of the variations between the trajectories pre-
dicted by the different optimal control models and the experimentally determined
trajectories. Therefore, the percent root-mean-square differences (%RMSDs) (Cor-
radini et al., 1993) were obtained for the hand path, tangential velocity of the hand,
joint angles, joint angular velocities and joint torques between the measured and
predicted data. For the quantification of the differences between the human and
predicted hand paths in three dimensional space (3D space), the %RMSD for each
dimension of the hand (hX , hY , hZ) was calculated using equations (5.11):

%RMSDhX
=

√√√√ 1
N

∑N
i=1 (Xme

i −Xpr
i )2

1
N

∑N
i=1 (Xme

i )2
× 100 (5.11)

where i is the number of 8.3 ms sampling points, Xme
i are the measured X-coordinates

of the hand in the global reference frame, Xpr
i the predicted X-coordinates of the

hand in the global reference frame and N is the total number of sampling points.
For the Y- and Z-dimensions and for the hand velocities along these dimensions, the
calculations were carried out analogously. To quantify the deviation across all three
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dimensions, equation (5.12) was used:

%RMSDh3D
=

√
(%RMSDhX

)2 + (%RMSDhY
)2 + (%RMSDhZ

)2 (5.12)

Equation (5.12) was also used to calculate the deviation of the velocities for all three
dimensions.

In addition to the spatio-temporal features of the hand, an interest lies in the
deviations introduced by the optimal control models on joint level. It is necessary
to distinguish between the optimization of a single DOF and multiple DOFs. In
the former case, the differences between the measured and predicted joint angles are
quantified according to equation (5.13):

%RMSDangle =

√√√√ 1
N

∑N
i=1 (qme

i − qpr
i )2

1
N

∑N
i=1 (qme

i )2
× 100 (5.13)

where i, qme
i , qpr

i and N denote the number of 8.3 ms sampling points, the measured
joint angles, the predicted joint angles and the total number of sampling points,
respectively. Equation (5.13) was also used in the calculation of differences on the
level of angular velocities and joint torques. If optimization of multiple DOFs is
required, a single quantity is needed to account for all the deviations between the
measured and predicted time series of angles across the optimized DOFs. To achieve
this, equation 5.13 was used to calculate the %RMSDangle for each DOF. In a second
step, the deviations for all DOFs were calculated using the following equation:

%RMSDangles =

√√√√ M∑
j=1

(
%RMSDanglej

)2
(5.14)

where j corresponds to an optimized DOF and M to the total number of optimized
DOFs. Equation 5.14 was also used to calculate the differences on the level of angular
velocities and joint torques.

The calculated parameters were used to analyze the performance of the different
optimal control models. For each model, the mean values and 99 % confidence inter-
vals of the %RMSDs were calculated from the 40 test trials. Using these parameters,
each model was tested to determine which model exhibited the best results under each
of the different simulation conditions (Tab. 5.1). The optimal control models were
then examined separately to determine if there were performance differences across
the optimized DOFs. This was carried out for the different conditions “1 DOF opti-
mized” and “4 DOFs optimized” / “5 DOFs optimized” for MAJM and MTCM. In
both cases, repeated ANOVAs measurements were conducted. The P -value for sta-
tistical significance was set at .01 and the Greenhouse-Geisser adjustment was used
because the preconditions of homogeneity of variance and sphericity were not always
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fulfilled. Post-hoc pairwise comparisons were performed using Bonferroni tests to
further analyze significant results of ANOVAs. Finally, the different optimal control
models were tested to determine if an increase of the DOFs to be optimized had an
effect on the behavior of model. Therefore, we tested the differences between the two
conditions ”1-DOF optimized” and ”4-DOFs optimized” / ”5-DOF optimized” with
paired two-sample t-tests. The P -value for significance was set at .01.

Step 4: Similarities between measured and predicted trajectories
Finally, the similarities between the measured and predicted movements were calcu-
lated using an approach enabling the comparison of topological course characteristics
of movement patterns (Schöllhorn, 1998). A brief outline of the approach is provided
below. A more comprehensive introduction can be found in Birklbauer (2006).

The first step involves correlating the time courses of the measured and predicted
hand trajectories, tangential velocity profiles, joint angles, joint angular velocities
and joint torques of the optimized joints with reference functions. Thereby, nine
Taylor polynomials served as a reference system. The reference functions satisfied
the following condition of orthogonality:∫ t

0

f(x)g(x)dx =

{
1 ∀f(x) = g(x)

0 ∀f(x) 6= g(x)
(5.15)

By correlating a single course (e.g. time series of elbow angles) with the nine taylor
polynomials the course characteristic is represented as a topological quantity to a
1× 9 vector. Accordingly, n courses (e.g. times series of shoulder and elbow angles)
of a measured and predicted movement are represented as a topological quantity to
a n × 9 matrix. The similarity coefficient sim of two single courses of a measured
and a predicted movement (e.g. time series of elbow angles) is defined with the help
of the reference specific correlation coefficients rme and rpr:

sim =

∑9
j=1 rme

j rpr
j√∑9

j=1(r
me)2

√∑9
j=1(r

pr)2

(5.16)

Accordingly, the similarity coefficient SIM of n courses of a measured and a predicted
movement (e.g. times series of shoulder and elbow angles) is defined with the help
of the reference specific correlation coefficients Rme and Rpr:

SIM =
tr(Rme′

Rpr)√
tr(Rme′Rme)

√
tr(Rpr′Rpr)

(5.17)

Therefore, Rme′
and Rpr′

are the transpose of the matrices of the reference specific
correlation coefficients and tr corresponds to the trace of a matrix. The similarity
coefficients sim and SIM can be interpreted as correlation coefficients as shown by
Birklbauer (2006).
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To calculate a mean similarity coefficient across a number of trials, the similarity
coefficients need to be transformed to Z-values (Bortz, 1999). The transformation,
called Fisher’s Z-transformation, was computed using the following equation (5.18):

Z =
1

2
ln

(
1 + sim

1− sim

)
(5.18)

where ln is the logarithm to the base e. After the transformation, the mean values
were calculated and the means of the Z-values were transformed back to similarity
coefficients using equation (5.19):

sim =
e2Z − 1

e2Z + 1
(5.19)

Equations (5.18) and (5.19) were also used to calculate the mean SIM values.
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5.3 Results

5.3.1 Validation of the optimization method

The optimization algorithm was tested on the basis of mMHJM, MAJM, MTM and
MTCM. Figures 5.3 and 5.4 depict the results of a typical run in the pendulum task
for these optimization models.

As can be seen in the case of mMHJM, the trajectory of the hand is nearly straight.
For MAJM, the optimization process produced a solution where movement only
occurred in joint q1. Because the initial and final position of one of the joints was
prescribed to be 0◦ and MAJM optimization sought to minimize jerk across the two
joints, a result that involves motion in only one joint seems logical. The solution
found by the optimization method for MAJM requires a large torque in joint q1.
However, this is irrelevant because the minimum angle jerk is a kinematic criterion.
In the case of MTM, this result would not be plausible. The optimization method for
the minimum torque criterion produced a solution where joint q2 was flexed more than
90◦ to reduce the torque in joint q1 during the movement. Again, this result appears
appropriate and the sum of the torques should be less compared to the solution of
MAJM. Similarly in the case of MTCM, the results indicate that joint q2 is flexed.
This is logical because the model works on the torque level. However, the maximal
flexion is lower than for MTM and thus the changes in torques are smaller. Once
again, this seems plausible because the strategy leads to a minimization of changes
in joint torques. Moreover, the experiments showed that the optimization method
produced the same results in repeated trials under identical conditions.

The results displayed in table 5.2 indicate that the optimization procedure works
correctly. mMHJM produced the smallest sRppp value, MAJM produced the smallest
sqpp value, MTM produced the smallest sT value and MTCM produced the smallest
sTp value.

Table 5.2: Results of the validation procedure for the different optimal control
models based on the equations (5.9) and (5.10).

Optimal control model sRppp sqppp sT sTp

mMHJM 0.002 m/s3 134205.45 deg/s3 4.50 Nm 0.46 Nm/s

MAJM 83.62 m/s3 3564.09 deg/s3 4.96 Nm 0.12 Nm/s

MTM 323.40 m/s3 114031.42 deg/s3 3.06 Nm 0.18 Nm/s

MTCM 127.60 m/s3 46383.67 deg/s3 3.88 Nm 0.08 Nm/s
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Figure 5.3: Results of a typical run in the pendulum task for mMHJM (top) and
MAJM (bottom).
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Figure 5.4: Results of a typical run in the pendulum task for MTM (top) and
MTCM (bottom).
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5.3.2 Target 1: Comparison of the measured and predicted
trajectories

The results of the performance of the different optimal control models is presented
as outlined in chapter 5.2.8.

5.3.2.1 Qualitative analysis of measured and predicted trajectories

The results of the qualitative analysis of human and predicted trajectories are pre-
sented according to the simulation protocol shown in table 5.1.

1 DOF optimized: Shoulder abduction/adduction
Representative hand paths are illustrated in figure 5.5. None of the models were
able to precisely reproduce the measured hand movement in 3D space. In contrast
to the other optimization models, MHJM produced straight hand paths. The hand
paths generated by mMHJM, MAJM and MTCM were curved in all trials. The top
middle plot in Figure 5.5 shows typical tangential velocity profiles of the hand. Again,
none of the optimal control models were able to completely reproduce the measured
tangential velocity profiles. However, the models were able to approximate the single-
peak, nearly bell-shaped measured velocity profile. Across all trials, the peak velocity
of MHJM and mMHJM were lower than the peak velocities of the subjects. In
a few cases, the velocity profiles of mMHJM, MAJM and MTCM appeared slightly
oscillating and the profiles showed some distortion at the end. On joint level, all three
models reproduced the shoulder movement of the subjects with only small deviations
(Fig. 5.5). MAJM generated a nearly straight path in joint space. In figure 5.5,
representative angular velocities are plotted. Again, the three models were not able
to completely reproduce the measured joint angle trajectories. The velocity profiles
of MAJM were smooth, single-peak and bell-shaped in all trials. The shape of the
trajectories of the joint angular velocities produced by mMHJM and MTCM were
much more variable. Finally, MTCM was only rarely able to replicate the human
torque profiles. In many cases, MTCM produced a large torque at the beginning
of the movement that constantly decreased toward the end of the movement. The
peak torque produced by MTCM was only occasionally larger than the peak torque
produced by the subjects. Furthermore, all torque profiles were slightly oscillating
(Fig. 5.5).
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Figure 5.5: Representative trial for the optimization of shoulder abduc-
tion/adduction.

1 DOF optimized: Shoulder rotation
In figure 5.6 representative hand paths are illustrated. As before, none of the models
were able to exactly reproduce the measured movement. Again, the MHJM produced
straight hand paths. All other models generated curved paths. Moreover, all of
the four optimal control models were able to emulate the single peaked and almost
bell-shaped tangential velocity profiles of the subjects. None of the optimal control
models were able to completely reproduce the measured tangential velocity profiles.
Across all trials the peak velocity of the MHJM and the mMHJM were lower than
the one produced by the subjects. Moreover, in a few cases the velocity profiles
of the mMHJM, MAJM and the MTCM were slightly oscillating. On joint level
the MAJM showed a close fit to the shoulder rotations of the subjects (Fig. 5.6),
whereas the mMJHM and the MTCM exhibited larger deviations across the trials.
Furthermore, in figure 5.6 representative angular velocities are illustrated. Again,
none of the three models was able to completely reproduce the measured joint angle
trajectories. The velocity profiles of the MAJM were highly stereotypical compared
to the trajectories of the mMHJM and MTCM and showed in most cases a close fit.
The MTCM reproduced the measured movement in torque space only incompletely,
compared to the model fit in extrinsic and intrinsic kinematic spaces. Again the peak
torque produced by the MTCM was in most cases comparable to the ones produced
by the subjects. As before, all of the torque profiles were slightly oscillating (Fig.
5.6).
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Figure 5.6: Representative trial for the optimization of shoulder rotation.

1 DOF optimized: Shoulder anteversion/retroversion
In figure 5.7 representative hand paths are displayed. The MHJM produced straight
hand path across all trials. In contrast, the mMHJM, the MAJM and the MTCM
generated across all trials curved hand paths. All in all, none of the models were
able to reproduce the experimentally determined hand paths. The subjects tended
to produce single peaked tangential velocities. However, the profiles were not ex-
actly bell-shaped. In some cases the peak velocity was reached rather early during
the movement as shown in figure 5.7. This kind of velocity profiles could not be
reproduced by the MHJM (Fig. 5.7), but by the other three optimal control models.
Across all trials the peak velocity of the MHJM was lower than the one produced by
the subjects. On joint level the mMHJM and the MTCM showed larger deviations
across the trials than the MAJM. None of the three models were able to reproduce
the measured angular velocities. Again, the profiles of the MAJM were highly stereo-
typical compared to the trajectories of the mMHJM and MTCM. In comparison with
the mMHJM and the MTCM the MAJM showed - across all trials - peak angular
velocities that were close to those produced by the subjects. The MTCM was only
rarely able to replicate the human torque profiles. The torque profiles did not exhibit
large peak torques so that the profiles could be characterized by a minimal change
in the torque course during the movement. In other words, there are no large torque
spikes, although all of the torque profiles were slightly oscillating (Fig. 5.7).
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Figure 5.7: Representative trial for the optimization of shoulder antever-
sion/retroversion.

1 DOF optimized: Elbow flexion/extension
In figure 5.8 representative hand paths are displayed. The MHJM produced straight
hand path across all trials. In contrast, the mMHJM, the MAJM and the MTCM
generated curved hand paths across all trials. All in all, none of the models were able
to emulate the measured hand movement in 3D-space. The subjects tended to pro-
duce single peaked tangential velocity profiles. These profiles could be approximated
by all four optimal control models. Across all trials the peak velocity of the MHJM
was lower than the one produced by the subjects. On joint level the mMHJM and
the MTCM showed larger deviations across the trials than the MAJM. This corre-
sponds to a larger flexion or extension in the elbow joint than the ones produced by
the subjects. None of the three models were able to reproduce the measured angular
velocities. Again, the profiles of the MAJM were highly stereotypical compared to
the trajectories of the mMHJM and MTCM. In comparison with the mMHJM and
MTCM the MAJM showed - across all trials - peak angular velocities close to those
produced by the subjects. The MTCM reproduced the human torque profiles only
incompletely. In most cases the model produced a large torque at the beginning
of the movement, which was constantly reduced towards the end of the movement.
Although the peak torques produced by the MTCM were only in a few cases consid-
erably larger than the peak torques produced by the subjects. Furthermore, all of
the torque profiles were slightly oscillating (Fig. 5.7).
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Figure 5.8: Representative trial for the optimization of elbow flexion/extension.

4 DOFs optimized
In figure 5.9 representative hand paths are illustrated. The MHJM produced straight
hand path across all trials. In contrast the mMHJM, the MAJM and the MTCM
generated curved hand paths across all trials. All in all, none of the models were
able to reproduce the experimentally determined hand paths. Furthermore, across all
trials these three models seem to show larger deviations as before (1 DOF optimized).
Especially the MTCM exhibited in a few cases large deviations. It was shown in the
first study of this thesis (Fig. 4.1, 4.2) that the subjects produced single-peaked and
almost bell-shaped velocity profiles. The MHJM produced in all cases single-peaked
and bell-shaped velocity profiles with lower peak velocities than produced by the
subjects. The other three optimal control models mostly produced single-peaked
tangential velocity profiles with bell-like shapes. In some cases, however, the profiles
exhibited distortions. To sum up, the increase of the number of joints to be optimized
seem to increase the deviation from the measured movement in extrinsic coordinates
of the hand. Nevertheless, all four optimal control models seem to be able to emulate
the basic features of the measured hand trajectories in most test trials.
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Figure 5.9: Representative hand paths and tangential velocity profiles for the op-
timization of shoulder abduction/adduction, shoulder rotation, shoulder antever-
sion/retroversion as well as elbow flexion/extension.

In the first row of figure 5.10 typical joint angle trajectories of the optimized DOFs
are displayed. Across all trials the three optimal control models reproduced the angle
profiles of the measured shoulder abduction best. Furthermore, the MAJM produced
across the 4 DOFs the closest fit to the measured trajectories. In contrast, in the
cases of the shoulder rotation, the shoulder anteversion/retroversion as well as elbow
flexion/extension the trajectories of the mMHJM and the MTCM were more variable
with larger movement ranges than the ones produced by the subjects. Moreover the
angle profiles of the mMHJM were sometimes oscillating (Fig. 5.10, shoulder rot.). In
the middle row of figure 5.10 the corresponding joint angular velocities are illustrated.
The MAJM exhibited the closest fit across all 4 DOFs. The mMHJM and the MTCM
reproduced the angular velocity profiles of the human shoulder abduction at least
to some extent. In contrast, both models showed large deviations in the other three
DOFs with large differences in the peak angular velocities. In the bottom row of
figure 5.10 the corresponding joint torques are displayed. As before in the case of
single degree optimization the MTCM showed a tendency to reproduce the measured
torque profiles only incompletely across all the trials and all 4 DOFs. However, in a
few cases the MTCM produced trajectories emulating the measured torques profiles
to some extent (Fig. 5.10, shoulder rot.). The peak torques produced by the MTCM
were only in a few cases larger than the peak torques produced by the subjects.
Furthermore, all of the torque profiles were slightly oscillating.
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Figure 5.10: Representative angle, angular velocity and torque profiles for the
optimization of shoulder abduction/adduction, shoulder rotation, shoulder antever-
sion/retroversion as well as elbow flexion/extension. As before, the human trajec-
tories are black, the trajectories of the mMHJM are green, the trajectories of the
MAJM are red and the trajectories of the MTCM are blue.
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5.3.2.2 Variations between measured and predicted trajectories

The variations between the measured and predicted trajectories were analyzed based
on equations 5.11, 5.12, 5.13 and 5.14. First, the performance of the different op-
timal control models across the optimized DOFs were analyzed (Chap. 5.3.2.2.1).
Second, each optimal control model was examined separately to determine if there
were performance differences across the four optimized DOFs. This step was carried
out for the condition “1 DOF optimized” and for the condition “4 DOFs optimized”
(Chap. 5.3.2.2.2). Finally, each of the optimal control models was tested to conclude
if there were performance differences between the two conditions “1 DOF optimized”
vs. “4 DOF optimized” across the four optimized DOFs (Chap. 5.3.2.2.3).

5.3.2.2.1 Performance differences between different optimal control models
In this section, the performance of MHJM, mMHJM, MAJM and the MTCM are
analyzed for the optimization of 1 DOF and 4 DOFs. The analysis was carried out
according to the simulation protocol (Tab. 5.1).

1 DOF optimized: Shoulder abduction/adduction
The results of the %RMSDs for the measured and the predicted hand paths (Fig.
5.11, top left) indicate that none of the four optimal control models were able to
reproduce the measured hand movements in extrinsic coordinates. MAJM produced
the smallest %RMSD followed by mMHJM, MTCM and finally MHJM. The repeated
ANOVA yielded significant differences (F = 15.190, p ≤ .001, η2 = .280) between the
%RMSDs of the measured and predicted hand paths of the four optimal control mod-
els. Pairwise Bonferroni tests revealed significant differences between the %RMSDs
of the measured and predicted hand paths of MHJM and mMHJM (p ≤ .001),
MHJM and MAJM (p ≤ .001), mMHJM and MAJM (p ≤ .001), MAJM and MTCM
(p ≤ .01). The Bonferroni tests yielded no significant differences between MHJM
and MTCM (p = 1.000) as well as between mMHJM and MTCM (p = .054).

The results of the %RMSDs between the measured and predicted tangential ve-
locities of the hand (Fig. 5.11, top right) show that MAJM produced the smallest
%RMSD followed by mMHJM, MTCM and MHJM. The repeated ANOVA yielded
significant differences (F = 10.698, p ≤ .001, η2 = .215) between the %RMSDs of the
measured and predicted tangential hand velocities of the four optimal control mod-
els. Pairwise Bonferroni tests revealed significant differences between the %RMSDs
of the measured and predicted tangential hand velocities of MHJM and mMHJM
(p ≤ .001), MHJM and MAJM (p ≤ .001), mMHJM and MAJM (p ≤ .01), MAJM
and MTCM (p ≤ .01). The Bonferroni tests yielded no significant differences between
MHJM and MTCM (p = 1.000) as well as between mMHJM and MTCM (p = .094).

The results of the %RMSDs between the measured and predicted shoulder an-
gles (Fig. 5.11, bottom left) indicate that none of the three optimal control models
were able to reproduce the measured joint angle trajectories. MAJM produced the
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Figure 5.11: Mean of the %RMSDs between the measured and predicted hand
paths, tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the DOF shoulder abduction/adduction.
Error bars indicate the 99 % confidence intervals.

smallest %RMSD followed by mMHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 8.511, p ≤ .01, η2 = .179) between the %RMSDs of the
measured and predicted joint angles of the three optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSDs of the mea-
sured and predicted joint angles of MAJM and MTCM (p ≤ .01). The Bonferroni
tests yielded no significant differences between mMHJM and MAJM (p = .055) or
mMHJM and MTCM (p = .058).

The results of the %RMSDs between the measured and predicted angular velocities
(Fig. 5.11, bottom right) again show that the MAJM produced the smallest %RMSD
followed by mMHJM and MTCM. The repeated ANOVA yielded no significant dif-
ferences (F = 5.063, p = .021, η2 = .115) between the %RMSDs of the measured and
predicted joint angular velocities of the three optimal control models.

155



5 Study II: The synthesis of multi-joint pointing movements in 3D space

MHJM mMHJM MAJM MTCM
0

20

40

60

80

100
%

R
M

S
D

Hand Path

MHJM mMHJM MAJM MTCM
0

50

100

150

200

%
R

M
S

D

Tangential Hand Velocity

mMHJM MAJM MTCM
0

20

40

60

80

100

%
R

M
S

D

Angle

mMHJM MAJM MTCM
0

50

100

150

200

%
R

M
S

D

Angular Velocity

Figure 5.12: Mean of the %RMSDs between measured and predicted hand paths,
tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the DOF shoulder rotation. Error bars
indicate the 99 % confidence intervals.

1 DOF optimized: Shoulder rotation

The results of the %RMSDs for the measured and predicted hand paths (Fig. 5.12,
top left) indicate that none of the four optimal control models were able to repro-
duce the measured hand movements in extrinsic coordinates. MAJM produced the
smallest %RMSD followed by mMHJM, MTCM and finally MHJM. The repeated
ANOVA yielded significant differences (F = 14.511, p ≤ .001, η2 = .271) between the
%RMSDs of the measured and predicted hand paths of the four optimal control mod-
els. Pairwise Bonferroni tests revealed significant differences between the %RMSDs
of the measured and predicted hand paths of MHJM and mMHJM (p ≤ .001),
MHJM and MAJM (p ≤ .001), mMHJM and MAJM (p ≤ .001), MAJM and MTCM
(p ≤ .01). The Bonferroni tests yielded no significant differences between MHJM
and MTCM (p = 1.000) or mMHJM and MTCM (p = .100).

The results of the %RMSDs between the measured and predicted tangential ve-
locities of the hand (Fig. 5.12, top right) show that MAJM produced the smallest
%RMSDs followed by mMHJM, MHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 8.743, p ≤ .01, η2 = .183) between the %RMSDs of the
measured and predicted tangential hand velocities of the four optimal control models.
Pairwise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted tangential hand velocities of MHJM and MAJM (p ≤ .001),
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mMHJM and MAJM (p ≤ .001), MAJM and MTCM (p ≤ .01). The Bonferroni tests
yielded no significant differences between MHJM and mMHJM (p = .365), MHJM
and MTCM (p = 1.000) or mMHJM and MTCM (p = .439).

The results of the %RMSDs between the measured and predicted shoulder angles
(Fig. 5.12, bottom left) indicate that none of the three optimal control models were
able to reproduce the measured joint angle trajectories. MAJM produced the smallest
%RMSD followed by mMHJM and MTCM. The repeated ANOVA yielded significant
differences (F = 12.903, p ≤ .001, η2 = .249) between the %RMSDs of the measured
and predicted joint angles of the three optimal control models. Pairwise Bonferroni
tests revealed significant differences between the %RMSDs of the measured and pre-
dicted joint angles of mMHJM and MAJM (p ≤ .001) as well as MAJM and MTCM
(p ≤ .001). The Bonferroni tests yielded no significant differences between mMHJM
and MTCM (p = 1.000).

The results of the %RMSDs between the measured and predicted angular velocities
(Fig. 5.12, bottom right) show that MAJM produced the smallest %RMSD followed
by MTCM and mMHJM. The repeated ANOVA yielded significant differences (F =
23.543, p ≤ .001, η2 = .376) between the %RMSDs of the measured and predicted
joint angular velocities of the three optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
joint angles of mMHJM and MAJM (p ≤ .001) as well as between MAJM and MTCM
(p ≤ .001). The Bonferroni tests yielded no significant differences between mMHJM
and MTCM (p = 1.000).
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Figure 5.13: Mean of the %RMSDs between the measured and predicted
hand paths, tangential hand velocities, angles and angular velocities for MHJM,
mMHJM, MAJM and MTCM for the optimization of the DOF shoulder antever-
sion/retroversion. Error bars indicate the 99 % confidence intervals.

1 DOF optimized: Shoulder anteversion/retroversion
The results of the %RMSDs between the measured and predicted hand paths (Fig.
5.13, top left) indicate that none of the four optimal control models were able to
reproduce the measured hand movements in extrinsic coordinates. MAJM produced
the smallest %RMSD followed by MHJM, MTCM and finally mMHJM. The repeated
ANOVA yielded significant differences (F = 9.587, p ≤ .001, η2 = .197) between the
%RMSDs of the measured and predicted hand paths of the four optimal control mod-
els. Pairwise Bonferroni tests revealed significant differences between the %RMSDs
of the measured and predicted hand paths of MHJM and mMHJM (p ≤ .001) and
between mMHJM and MAJM (p ≤ .001). The Bonferroni tests yielded no significant
differences between MHJM and MAJM (p = .912), MHJM and MTCM (p = .319),
mMHJM and MTCM (p = .598) or MAJM and MTCM (p = .140).

The results of the %RMSDs between the measured and predicted tangential ve-
locities of the hand (Fig. 5.13, top right) show that MHJM produced the smallest
%RMSD followed by MAJM, MTCM and mMHJM. The repeated ANOVA yielded
significant differences (F = 5.725, p ≤ .01, η2 = .128) between the %RMSDs of the
measured and predicted tangential hand velocities of the four optimal control models.
Pairwise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted tangential hand velocities of MHJM and mMHJM (p ≤ .001)
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as well as mMHJM and MAJM (p ≤ .001). The Bonferroni tests yielded no significant
differences between MHJM and MAJM (p = 1.000), MHJM and MTCM (p = .164),
mMHJM and MTCM (p = 1.000) or MAJM and MTCM (p = .242).

The results of the %RMSDs between the measured and predicted shoulder angles
(Fig. 5.13, bottom left) indicate that none of the three optimal control models
were able to reproduce the measured joint angle trajectories. MAJM produced the
smallest %RMSD followed by MTCM and mMHJM. The repeated ANOVA yielded
significant differences (F = 7.005, p ≤ .01, η2 = .152) between the %RMSDs of the
measured and predicted joint angles of the three optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSD of the measured
and predicted joint angles of mMHJM and MAJM (p ≤ .001). The Bonferroni tests
yielded no significant differences between mMHJM and MTCM (p = 1.000) or MAJM
and MTCM (p = .059).

The results of the %RMSDs between the measured and predicted angular veloci-
ties (Fig. 5.13, bottom right) also show that MAJM produced the smallest %RMSD
followed by MTCM and mMHJM. The repeated ANOVA yielded no significant dif-
ferences (F = 4.970, p = .018, η2 = .113) between the %RMSDs of the measured
and predicted joint angular velocities of the three optimal control models. Since
the repeated ANOVA was significant in trend, we conducted the pairwise Bonferroni
tests. They revealed significant differences between the %RMSD of the measured
and predicted joint angular velocities of mMHJM and MAJM (p ≤ .001) and no sig-
nificant differences between mMHJM and MTCM (p = 1.000) or MAJM and MTCM
(p = .120).
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Figure 5.14: Mean of the %RMSDs between the measured and predicted hand
paths, tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the DOF elbow flexion/extension. Error
bars indicate the 99 % confidence intervals.

1 DOF optimized: Elbow flexion/extension

The results of the %RMSDs between the measured and predicted hand paths (Fig.
5.14, top left) indicate that none of the four optimal control models were able to
reproduce the measured hand movements in extrinsic coordinates. MAJM produced
the smallest %RMSD followed by MHJM, mMHJM and finally MTCM. The repeated
ANOVA yielded significant differences (F = 36.289, p ≤ .001, η2 = .482) between the
%RMSDs of the measured and predicted hand paths of the four optimal control mod-
els. Pairwise Bonferroni tests revealed significant differences between the %RMSDs
of the measured and predicted hand paths of MHJM and mMHJM (p ≤ .001),
MHJM and MAJM (p ≤ .01), MHJM and MTCM (p ≤ .001), mMHJM and MAJM
(p ≤ .001) as well as MAJM and MTCM (p ≤ .001). The Bonferroni tests yielded
no significant differences between mMHJM and MTCM (p = .018).

The results of the %RMSDs between the measured and predicted tangential ve-
locities of the hand (Fig. 5.14, top right) show that MAJM produced the smallest
%RMSD followed by MHJM, mMHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 36.015, p ≤ .001, η2 = .48) between the %RMSDs of the
measured and predicted tangential hand velocities of the four optimal control mod-
els. Pairwise Bonferroni tests revealed significant differences between the %RMSDs
of the measured and predicted tangential hand velocities of MHJM and mMHJM
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(p ≤ .01), MHJM and MTCM (p ≤ .001), mMHJM and MAJM (p ≤ .001) as well as
MAJM and MTCM (p ≤ .001). The Bonferroni tests yielded no significant differences
between MHJM and MAJM (p = .076) or mMHJM and MTCM (p = .028).

The results of the %RMSDs between the measured and predicted elbow angles
(Fig. 5.14, bottom left) indicate that none of the three optimal control models
were able to reproduce the measured joint angle trajectories. MAJM produced the
smallest %RMSD followed by mMHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 49.691, p ≤ .001, η2 = .560) between the %RMSDs of the
measured and predicted joint angles of the three optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSDs of the mea-
sured and predicted joint angles of mMHJM and MAJM (p ≤ .001), mMHJM and
MTCM (p ≤ .01) as well as MAJM and MTCM (p ≤ .001).

The results of the %RMSDs between the measured and predicted angular velocities
(Fig. 5.14, bottom right) indicate that none of the three optimal control models
were able to reproduce the measured joint angle trajectories. MAJM produced the
smallest %RMSD followed by mMHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 39.782, p ≤ .001, η2 = .505) between the %RMSDs of the
measured and predicted joint angular velocities of the three optimal control models.
Pairwise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted joint angular velocities of mMHJM and MAJM (p ≤ .001),
mMHJM and MTCM (p ≤ .001) as well as MAJM and MTCM (p ≤ .001).
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Figure 5.15: Mean of the %RMSDs between the measured and predicted hand
paths, tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the shoulder abduction/adduction, shoul-
der rotation, shoulder anteversion/retroversion and elbow flexion/extension. Error
bars indicate the 99 % confidence intervals.

4 DOFs optimized

The results of the %RMSDs between the measured and predicted hand paths (Fig.
5.15, top left) indicate that none of the four optimal control models were able to
reproduce the measured hand movements in extrinsic coordinates. MAJM produced
the smallest %RMSD followed by MHJM, mMHJM and finally MTCM. The repeated
ANOVA yielded no significant differences (F = 4.469, p = .031, η2 = .103) between
the %RMSDs of the measured and predicted hand paths of the four optimal control
models.

The results of the %RMSDs between the measured and predicted tangential ve-
locities of the hand (Fig. 5.15, top right) show that MHJM produced the smallest
%RMSD followed by MAJM, mMHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 8.406, p ≤ .01, η2 = .177) between the %RMSDs of the
measured and predicted tangential hand velocities of the four optimal control models.
Pairwise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted tangential hand velocities of MHJM and MTCM (p ≤ .01)
as well as between MAJM and MTCM (p ≤ .01). The Bonferroni tests yielded no
significant differences between MHJM and mMHJM (p = .269), MHJM and MAJM
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(p = 1.000), mMHJM and MAJM (p = .372) and between mMHJM and MTCM
(p = .177).

The results of the %RMSDs between the measured and predicted elbow angles
(Fig. 5.15, bottom left) indicate that none of the three optimal control models
were able to reproduce the measured joint angle trajectories. MAJM produced the
smallest %RMSD followed by mMHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 40.817, p ≤ .001, η2 = .511) between the %RMSDs of the
measured and predicted joint angles of the three optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSD of the measured
and predicted joint angles of mMHJM and MAJM (p ≤ .001) as well as MAJM and
MTCM (p ≤ .001). The Bonferroni tests yielded no significant differences between
mMHJM and MTCM (p = .127).

The results of the %RMSDs between the measured and predicted angular velocities
(Fig. 5.15, bottom right) indicate that none of the three optimal control models
were able to reproduce the measured joint angle trajectories. MAJM produced the
smallest %RMSD. MTCM and mMHJM produced comparable results. The repeated
ANOVA yielded significant differences (F = 75.019, p ≤ .001, η2 = .658) between the
%RMSDs of the measured and predicted joint angular velocities of the three optimal
control models. Pairwise Bonferroni tests revealed significant differences between
the %RMSDs of the measured and predicted joint angular velocities of mMHJM and
MAJM (p ≤ .001) as well as between MAJM and MTCM (p ≤ .001). The Bonferroni
tests yielded no significant differences between mMHJM and MTCM (p = 1.000).
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5.3.2.2.2 Performance differences across the optimized DOFs
The performance differences across the optimized DOFs were calculated for MAJM
and MTCM. In the case of mMHJM, the optimization was not conducted in intrinsic-
kinematic coordinates but in extrinsic-kinematic coordinates of the hand. The limits
of the individual joints were used as an additional boundary condition during the
optimization.

MAJM

The results of the %RMSDs between the measured and the predicted hand paths
across the four DOFs (Fig. 5.16) indicate that MAJM produced the smallest %RMSD
when the DOF of shoulder rotation was optimzed, followed by shoulder abduc-
tion/adduction, elbow flexion/extension and shoulder anteversion/retroversion. The
repeated ANOVA yielded significant differences (F = 14.992, p ≤ .001, η2 = .278) be-
tween the %RMSDs of the measured and predicted hand paths across the four DOFs.
Pairwise Bonferroni tests revealed significant differences between the DOFs shoul-
der abduction/adduction and shoulder anteversion/retroversion (p ≤ .001), shoul-
der abduction/adduction and elbow flexion/extension (p ≤ .01), shoulder rotation
and shoulder anteversion/retroversion (p ≤ .001) and shoulder rotation and elbow
flexion/extension (p ≤ .01), respectively. The Bonferroni tests yielded no signifi-
cant differences between the DOFs shoulder abduction/adduction and shoulder ro-
tation (p = 1.000) or shoulder anteversion/retroversion and elbow flexion/extension
(p = .950).

The results of the %RMSDs between the measured and predicted hand tangential
velocities across the four DOFs (Fig. 5.16) indicate that MAJM produced the small-
est %RMSD when the DOF of shoulder rotation was optimzed, followed by shoulder
abduction/adduction, elbow flexion/extension and shoulder anteversion/retroversion.
The repeated ANOVA yielded significant differences (F = 22.248, p ≤ .001, η2 =
.363) between the %RMSDs of the measured and predicted hand tangential ve-
locities across the four DOFs. Pairwise Bonferroni tests revealed significant dif-
ferences between the DOFs shoulder abduction/adduction and shoulder antever-
sion/retroversion (p ≤ .001), shoulder abduction/adduction and elbow flexion/exten-
sion (p ≤ .001), shoulder rotation and shoulder anteversion/retroversion (p ≤ .001)
and shoulder rotation and elbow flexion/extension (p ≤ .001). The Bonferroni tests
yielded no significant differences between the DOFs shoulder abduction/adduction
and shoulder rotation (p = 1.000) or shoulder anteversion/retroversion and elbow
flexion/extension (p = .019).

The results of the %RMSDs between the measured and predicted joint angles for
the four DOFs (Fig. 5.16) indicate that MAJM produced the smallest %RMSD
when the DOF of shoulder abduction/adduction was optimzed, followed by elbow
flexion/extension, shoulder anteversion/retroversion and finally, shoulder rotation.
The repeated ANOVA yielded significant differences (F = 10.444, p ≤ .001, η2 =
.211) between the %RMSDs of the measured and predicted joint angles for the
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Figure 5.16: Mean of the %RMSDs of MAJM across the four DOFs under the
optimization condition “1 DOF optimized” (light gray) and “4 DOFs optimized”
(dark gray). Furthermore, the title SI indicates shoulder abduction/adduction, SII
indicates shoulder rotation, SIII indicates shoulder anteversion/retroversion and E
represents elbow flexion/extension. Error bars indicate the 99 % confidence intervals.

four DOFs. Pairwise Bonferroni tests revealed significant differences between the
DOFs shoulder abduction/adduction and shoulder rotation (p ≤ .001) and shoul-
der abduction/adduction and shoulder anteversion/retroversion (p ≤ .001). The
Bonferroni tests yielded no significant differences between the DOFs shoulder ab-
duction/adduction and elbow flexion (p = .120), shoulder rotation and shoulder
anteversion/retroversion (p = 1.000), shoulder rotation and elbow flexion (p = .032)
and shoulder anteversion/retroversion and elbow flexion/extension (p = .012).

The results of the %RMSDs between the measured and predicted joint angular
velocities for the four DOFs (Fig. 5.16) indicate that MAJM produced the smallest
%RMSD when the DOF of shoulder abduction/adduction was optimzed, followed
by shoulder rotation, elbow flexion/extension and shoulder anteversion/retroversion.
The repeated ANOVA yielded significant differences (F = 25.200, p ≤ .001, η2 =
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.393) between the %RMSDs of the measured and predicted joint angular velocities
for the four DOFs. Pairwise Bonferroni tests revealed significant differences between
the DOFs shoulder abduction/adduction and shoulder rotation (p ≤ .001), shoulder
anteversion/retroversion (p ≤ .001) and elbow flexion/extension (p ≤ .001). The
Bonferroni tests yielded no significant differences between the DOFs shoulder rotation
and shoulder anteversion/retroversion (p = .239), shoulder rotation and elbow flexion
(p = .219) and shoulder anteversion/retroversion and elbow flexion/extension (p =
1.000).

When all four DOFs were optimized, the %RMSDs between the measured and
predicted joint angles for the four DOFs (Fig. 5.16) indicate that MAJM produced
the smallest %RMSD for the optimization of shoulder abduction/adduction, followed
by the elbow flexion/extension, shoulder anteversion/retroversion and finally shoul-
der rotation. The repeated ANOVA yielded significant differences (F = 10.446, p ≤
.001, η2 = .211) between the %RMSDs of the measured and predicted joint an-
gles for the four DOFs. Pairwise Bonferroni tests revealed significant differences
between the DOFs shoulder abduction/adduction and shoulder rotation (p ≤ .001)
and shoulder abduction/adduction and shoulder anteversion/retroversion (p ≤ .001).
The Bonferroni tests yielded no significant differences between the DOFs shoulder
abduction/adduction and elbow flexion (p = .120), shoulder rotation and shoulder
anteversion/retroversion (p = 1.000), shoulder rotation and elbow flexion (p = .032)
and shoulder anteversion/retroversion and elbow flexion/extension (p = .012).

When all four DOFs were optimized the %RMSDs between the measured and pre-
dicted joint angular velocities for the four DOFs (Fig. 5.16) indicate that MAJM pro-
duced the smallest %RMSD for the optimization of shoulder abduction/adduction,
followed by the shoulder rotation, elbow flexion/extension and finally shoulder an-
teversion/retroversion. The repeated ANOVA yielded significant differences (F =
25.200, p ≤ .001, η2 = .393) between the %RMSDs of the measured and predicted
joint angular velocities for the four DOFs. Pairwise Bonferroni tests revealed sig-
nificant differences between the DOFs shoulder abduction/adduction and shoulder
rotation (p ≤ .001), shoulder anteversion/retroversion (p ≤ .001) and elbow flex-
ion/extension (p ≤ .001). The Bonferroni tests yielded no significant differences be-
tween the DOFs shoulder rotation and shoulder anteversion/retroversion (p = .239),
shoulder rotation and elbow flexion (p ≤ .220) and shoulder anteversion/retroversion
and elbow flexion (p = 1.000).
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MTCM
The results of the %RMSDs between the measured and predicted hand paths for
the four DOFs (Fig. 5.17) indicate that MTCM produced the smallest %RMSD
when the DOF of shoulder abduction/adduction was optimized, followed by shoul-
der rotation, shoulder anteversion/retroversion and elbow flexion/extension. The
repeated ANOVA yielded significant differences (F = 18.840, p ≤ .001, η2 = .326)
between the %RMSDs of the measured and predicted hand paths for the four DOFs.
Pairwise Bonferroni tests revealed significant differences between the DOFs shoul-
der abduction/adduction and shoulder anteversion/retroversion (p ≤ .01), shoulder
abduction/adduction and elbow flexion/extension (p ≤ .001) and shoulder rotation
and elbow flexion/extension (p ≤ .001). The Bonferroni tests yielded no significant
differences between the DOFs shoulder abduction/adduction and shoulder rotation
(p = 1.000), shoulder rotation and shoulder anteversion/retroversion (p = .042) and
shoulder anteversion/retroversion and elbow flexion/extension (p = .254).

The results of the %RMSDs between the measured and predicted hand tangential
velocities across the four DOFs (Fig. 5.17) indicate that MTCM produced the small-
est %RMSD when the DOF of shoulder abduction/adduction was optimized, followed
by shoulder rotation, shoulder anteversion/retroversion and elbow flexion/extension.
The repeated ANOVA yielded significant differences (F = 10.681, p ≤ .001, η2 =
.215) between the %RMSDs of the measured and predicted hand tangential ve-
locities for the four DOFs. Pairwise Bonferroni tests revealed significant differ-
ences between the DOFs shoulder abduction/adduction and elbow flexion (p ≤
.001) and shoulder rotation and elbow flexion/extension (p ≤ .001). The Bon-
ferroni tests yielded no significant differences between the DOFs shoulder abduc-
tion/adduction and shoulder rotation (p = .994), shoulder abduction/adduction and
shoulder anteversion/retroversion (p = .035), shoulder rotation and shoulder an-
teversion/retroversion (p = .319) and shoulder anteversion/retroversion and elbow
flexion/extension (p = 1.000), respectively.

The %RMSDs between the measured and predicted joint angles for the four DOFs
(Fig. 5.17) indicate that MTCM produced the smallest %RMSD when the DOF of
shoulder abduction/adduction was optimized, followed by shoulder anteversion/retro-
version, shoulder rotation and elbow flexion/extension. The repeated ANOVA yielded
significant differences (F = 7.995, p ≤ .001, η2 = .170) between the %RMSD of the
measured and predicted joint angles for the four DOFs. Pairwise Bonferroni tests
revealed significant differences between the DOFs shoulder abduction/adduction and
shoulder rotation (p ≤ .001), shoulder abduction/adduction and shoulder antever-
sion/retroversion (p ≤ .01) and shoulder abduction/adduction and elbow flexion
(p ≤ .001). The Bonferroni tests yielded no significant differences between the
DOFs shoulder rotation and shoulder anteversion/retroversion (p = 1.000), shoul-
der rotation and elbow flexion/extension (p = 1.000) and finally shoulder antever-
sion/retroversion and elbow flexion (p = 1.000).

The results of the %RMSDs between the measured and predicted joint angular
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Figure 5.17: Mean of the %RMSDs of MTCM for the four DOFs under the opti-
mization condition “1 DOF optimized” (light gray) and “4 DOFs optimized” (dark
gray). Furthermore, the title SI indicates shoulder abduction/adduction, SII in-
dicates shoulder rotation, SIII indicates shoulder anteversion/retroversion and E
represents elbow flexion/extension. Error bars indicate the 99 % confidence inter-
vals.

velocities for the four DOFs (Fig. 5.17) indicate that MTCM produced the smallest
%RMSD when the DOF of shoulder abduction/adduction was optimized, followed
by shoulder rotation, shoulder anteversion/retroversion and elbow flexion/extension.
The repeated ANOVA yielded significant differences (F = 15.148, p ≤ .001, η2 =
.280) between the %RMSDs of the measured and predicted joint angular veloci-
ties for the four DOFs. Pairwise Bonferroni tests revealed significant differences
between shoulder abduction/adduction and shoulder rotation (p ≤ .001), elbow
flexion/extension (p ≤ .001) as well as the shoulder rotation and the elbow flex-
ion/extension (p ≤ .001). The Bonferroni tests yielded no significant differences
between shoulder abduction/adduction and shoulder anteversion/retroversion (p =
.025), shoulder rotation and shoulder anteversion/retroversion (p = 1.000) and shoul-
der anteversion/retroversion and elbow flexion (p = .203).

The results of the %RMSDs between the measured and predicted joint torques for
the four DOFs (Fig. 5.17) indicate that MTCM produced the smallest %RMSD when
the DOF of shoulder abduction/adduction was optimized, followed by shoulder ro-
tation, elbow flexion/extension and shoulder anteversion/retroversion. The repeated
ANOVA yielded significant differences (F = 12.847, p ≤ .001, η2 = .248) between
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the %RMSD of the measured and predicted joint torques across the four DOFs.
Pairwise Bonferroni tests revealed significant differences between the DOFs shoul-
der abduction/adduction and shoulder anteversion/retroversion (p ≤ .001), shoulder
abduction/adduction and elbow flexion/extension (p ≤ .001) and shoulder rotation
and shoulder anteversion/retroversion (p ≤ .001). The Bonferroni tests yielded no
significant differences between the DOFs shoulder abduction/adduction and shoulder
rotation (p = 1.000), shoulder rotation and elbow flexion/extension (p = .217) and
shoulder anteversion/retroversion and elbow flexion/extension (p = .290).

When all four DOFs were optimized the %RMSDs between the measured and
predicted joint angles for the four DOFs (Fig. 5.17) indicate that MTCM produced
the smallest %RMSD for the optimization of shoulder abduction/adduction, followed
by elbow flexion/extension, shoulder rotation and shoulder anteversion/retroversion.
The repeated ANOVA yielded significant differences (F = 14.324, p ≤ .001, η2 =
.269) between the %RMSDs of the measured and predicted joint angles across the
four DOFs. Pairwise Bonferroni tests revealed significant differences between the
DOFs shoulder abduction/adduction and shoulder rotation (p ≤ .001), shoulder ab-
duction/adduction and shoulder anteversion/retroversion (p ≤ .001) and shoulder
abduction/adduction and elbow flexion (p ≤ .001). The Bonferroni tests yielded
no significant differences between the DOFs shoulder rotation and shoulder antev-
ersion/retroversion (p = 1.000), shoulder rotation and elbow flexion (p = 1.000) as
well as shoulder anteversion/retroversion and elbow flexion (p = .261).

When all four DOFs were optimized the %RMSDs between the measured and
predicted joint angular velocities across the four DOFs (Fig. 5.17) indicate that
the MTCM produced the smallest %RMSD for the optimization of shoulder ab-
duction/adduction, followed by shoulder rotation, shoulder anteversion/retroversion
and elbow flexion/extension. The repeated ANOVA yielded significant differences
(F = 32.992, p ≤ .001, η2 = .458) between the %RMSDs of the measured and
predicted joint angular velocities across the four DOFs. Pairwise Bonferroni tests
revealed significant differences between the DOFs shoulder abduction/adduction
and shoulder rotation (p ≤ .001), shoulder abduction/adduction and shoulder an-
teversion/retroversion (p ≤ .001), shoulder abduction/adduction and elbow flex-
ion/extension and shoulder rotation and elbow flexion/extension (p ≤ .001). The
Bonferroni tests yielded no significant differences between the DOFs shoulder ro-
tation and shoulder anteversion/retroversion (p = 1.000) and shoulder antever-
sion/retroversion and elbow flexion (p ≤ .064).

When all four DOFs were optimized the %RMSDs between the measured and pre-
dicted joint torques for the four DOFs (Fig. 5.17) indicate that MTCM produced
the smallest %RMSD for the optimization of shoulder abduction/adduction, followed
by shoulder rotation, shoulder anteversion/retroversion and elbow flexion. The re-
peated ANOVA yielded no significant differences (F = 4.989, p = .023, η2 = .113)
between the %RMSDs of the measured and predicted joint torques across the four
DOFs. However, the 99 % confidence intervals in figure 5.17 indicate that there
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might be significant differences between some DOFs. Therefore, we calculated the
pairwise Bonferroni tests, which revelaed significant differences between the DOFs
shoulder abduction/adduction and shoulder anteversion/retroversion (p ≤ .01). The
Bonferroni tests yielded no significant differences between the DOFs shoulder abduc-
tion/adduction and shoulder rotation (p ≤ .451), shoulder abduction/adduction and
elbow flexion (p = .056), shoulder rotation and shoulder anteversion/retroversion
(p = 1.000), shoulder rotation and elbow flexion/extension (p = .329) and shoulder
anteversion/retroversion and elbow flexion (p = .256).

5.3.2.2.3 Performance differences between the two conditions “1 DOF opti-
mized” and “4 DOFs optimized”
In this section, the performance of MHJM, mMHJM, MAJM and MTCM between
the two conditions “1 DOF optimized” vs. “4 DOFs optimized” for the four DOFs
is analyzed separately. The analysis was carried out according to the simulation
protocol (Tab. 5.1).

1 DOF optimized versus 4 DOFs optimized: Shoulder abduction/adduction
The results of the %RMSDs between the two optimization conditions (Fig. 5.18,
top left) indicate that when the DOFs to be optimized were increased the %RMSDs
for the hand paths increased for all three models. In other words, the deviations
between the measured movements and the movements generated by different opti-
mal control models increased when fewer joints were driven by experimental data.
However, paired two-sample t-tests revealed significant differences for mMHJM (T =
−4.575, p ≤ .001), MAJM (T = −6.365, p ≤ .001) and MTCM (T = −3.559, p ≤
.001).

The results of the %RMSDs between the two optimization conditions (Fig. 5.18,
top right) indicate that when the DOFs to be optimized were increased the %RMSDs
for the tangential hand velocities increased for all three models. Paired two-sample
t-tests revealed significant differences for mMHJM (T = −4.172, p ≤ .001), MAJM
(T = −7.177, p ≤ .001) and MTCM (T = −4.865, p ≤ .001).

The results of the %RMSDs between the two optimization conditions indicate
that when the DOFs to be optimized were increased the %RMSDs for the joint
angles increased for mMHJM and MTCM and remained the same for MAJM (Fig.
5.18, bottom left). Paired two-sample t-tests revealed no significant differences for
mMHJM (T = −2.002, p = .052), MAJM (T = .523, p = .604) and MTCM (T =
−.624, p = .536).

The results of the %RMSDs between the two optimization conditions indicate that
when the DOFs to be optimized were increased the %RMSDs for the joint angular
velocities increased for mMHJM and MTCM and remained the same for the MAJM
(Fig. 5.18, bottom right). Paired two-sample t-tests revealed significant differences
for mMHJM (T = −6.785, p ≤ .001) and MTCM (T = −2.754, p ≤ .01). The paired
two-sample t-tests revealed no significant differences for MAJM (T = .919, p = .364).
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Figure 5.18: Mean of the %RMSDs for shoulder abduction/adduction under two
different optimization conditions (“1 DOF optimized” and “4 DOFs optimized”).
Error bars indicate the 99 % confidence intervals.

1 DOF optimized versus 4 DOFs optimized: Shoulder rotation
The results of the %RMSDs between the two optimization conditions (Fig. 5.19,
top left) indicate that when the DOFs to be optimized were increased the %RMSDs
for the hand paths increased for all three models. Paired two-sample t-tests revealed
significant differences for mMHJM (T = −4.549, p ≤ .001), MAJM (T = −5.622, p ≤
.001) and MTCM (T = −2.820, p ≤ .01).

The results of the %RMSDs between the two optimization conditions (Fig. 5.19,
top right) indicate that when the DOFs to be optimized were increased the %RMSDs
for the tangential hand velocities increased for all three models. Paired two-sample
t-tests revealed significant differences for mMHJM (T = −2.813, p ≤ .01), MAJM
(T = −6.527, p ≤ .001) and MTCM (T = −3.312, p ≤ .01).

The results of the %RMSDs between the two optimization conditions (Fig. 5.19,
bottom left) indicate when the DOFs to be optimized were increased the %RMSDs for
the joint angles decreased for mMHJM, remained the same for MAJM and increased
for MTCM. Paired two-sample t-tests revealed no significant differences for mMHJM
(T = .069, p = .946), MAJM (T = .131, p = .896) and MTCM (T = −1.047, p =
.302).

The results of the %RMSDs between the two optimization conditions (Fig. 5.19,
bottom right) exhibit that when the DOFs to be optimized were increased the
%RMSDs for the joint angular velocities increased for mMHJM and MTCM and
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Figure 5.19: Mean of the %RMSDs for shoulder rotation under two different opti-
miziation conditions. Error bars indicate the 99 % confidence intervals.

remained the same for MAJM. Paired two-sample t-tests revealed significant differ-
ences for mMHJM (T = −3.841, p ≤ .001) and MTCM (T = −5.845, p ≤ .001).
The paired two-sample t-tests revealed no significant differences for MAJM (T =
−.026, p = .980).

1 DOF optimized vs. 4 DOFs optimized: Shoulder anteversion/retroversion

The results of the %RMSDs between the two optimization conditions (Fig. 5.20,
top left) exhibit that when the DOFs to be optimized were increased the %RMSDs
for the hand paths for mMHJM and MAJM decreased. In contrast the %RMSDs of
the hand paths of MTCM increased. Paired two-sample t-tests revealed significant
differences for mMHJM (T = 3.635, p ≤ .001) and no the significant differences for
MAJM (T = 1.337, p = .189) and MTCM (T = −.437, p = .665).

The results of the %RMSDs between the two optimization conditions (Fig. 5.20,
top right) exhibit that when the DOFs to be optimized were increased the %RMSDs
for the tangential hand velocities of mMHJM and MAJM decreased. In contrast
the %RMSD of the tangential velocities of MTCM increased. Paired two-sample
t-tests revealed no significant differences for mMHJM (T = 2.531, p = .016), MAJM
(T = 1.205, p = .235) and MTCM (T = −.646, p = .522).

The results of the %RMSDs between the two optimization conditions (Fig. 5.20,
bottom left) exhibit that when the DOFs to be optimized were increased the %RMSDs
for the joint angles increased for mMHJM and MTCM and remained the same for
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Figure 5.20: Mean of the %RMSDs for shoulder anteversion/retroversion under two
different optimiziation conditions. Error bars indicate the 99 % confidence intervals.

MAJM. Paired two-sample t-tests revealed significant differences for mMHJM (T =
−4.727, p ≤ .001) and no significant differences for MTCM (T = −2.306, p ≤ .027)
and MAJM (T = .772, p = .445).

The results of the %RMSDs between the two optimization conditions (Fig. 5.20,
bottom right) exhibit that when the DOFs to be optimized were increased the
%RMSDs for the joint angular velocities increased for mMHJM and MTCM and
remained the same for MAJM. Paired two-sample t-tests revealed significant differ-
ences for mMHJM (T = −6.981, p ≤ .001) and MTCM (T = −3.572, p ≤ .001).
The paired two-sample t-tests revealed no significant differences for MAJM (T =
−.150, p = .881).
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Figure 5.21: Mean of the %RMSDs for elbow flexion/extension under two different
optimiziation conditions. Error bars indicate the 99 % confidence intervals.

1 DOF optimized vs. 4 DOFs optimized: Elbow flexion/extension
The results of the %RMSDs between the two optimization conditions (Fig. 5.21, top
left) exhibit that when the DOFs to be optimized were increased the %RMSDs for
the hand paths for mMHJM and MTCM decreased. In contrast the %RMSDs of the
hand paths for the MAJM increased. Paired two-sample t-tests revealed significant
differences for mMHJM (T = 2.756, p ≤ .01) and no significant differences for MAJM
(T = −.696, p = .491) and MTCM (T = 1.642, p = .109).

The results of the %RMSDs between the two optimization conditions (Fig. 5.21,
top right) exhibit that when the DOFs to be optimized were increased the %RMSDs
for the tangential hand velocities for mMHJM and MTCM decreased. In contrast the
%RMSDs of the tangential hand velocities for MAJM increased. Paired two-sample
t-tests revealed no significant differences for mMHJM (T = 1.999, p = .053), MAJM
(T = −2.555, p = .015) and MTCM (T = .781, p = .440).

The results of the %RMSDs between the two optimization conditions (Fig. 5.21,
bottom left) exhibit that when the DOFs to be optimized were increased the %RMSDs
for the joint angles increased for mMHJM, decreased for MTCM and remained
the same for MAJM. Paired two-sample t-tests revealed significant differences for
mMHJM (T = −5.428, p ≤ .001) and no significant differences for MAJM (T =
−1.036, p = .307) and MTCM (T = .668, p = .508).

The %RMSDs between the two conditions (Fig. 5.21, bottom right) exhibit that
when the DOFs to be optimized were increased the %RMSDs for the joint angular ve-
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Figure 5.22: Mean of the %RMSDs of torques for MTCM across the four DOFs
under different optimization conditions. Error bars indicate the 99 % confidence
intervals.

locities increased for mMHJM and MTCM and remained the same for MAJM. Paired
two-sample t-tests revealed significant differences for mMHJM (T = −5.871, p ≤
.001) and MTCM (T = −5.805, p ≤ .001). The paired two-sample t-tests revealed
no significant differences for MAJM (T = 1.044, p = .303).

1 DOF optimized vs. 4 DOFs optimized: Torques
The results of the %RMSDs between the two optimization conditions (Fig. 5.22)
exhibit that when the DOFs to be optimized were increased the %RMSDs of the
torques of MTCM were decreased for the shoulder abduction/adduction as well as
the shoulder anteversion/retroversion and increased for the shoulder rotation and the
elbow flexion/extension. Paired two-sample t-tests revealed no significant differences
for the shoulder abduction/adduction (T = −.651, p = .519), the shoulder rotation
(T = −1.356, p = .183), the shoulder anteversion/retroversion (T = .995, p = .326)
and the elbow flexion/extension (T = −2.322, p = .026)
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5.3.2.3 Similarities between the measured and predicted trajectories

In this section, the similarities between the measured and predicted trajectories are
analyzed based on the approach described in section 5.2.8. First, the similarity co-
efficient sim (Eq. 5.16) for each optimized DOF was analyzed separately (Chap.
5.3.2.3.1). The optimization condition “1 DOF optimized” and “4 DOFs optimized”
are shown in one table. The second step involved the analysis of the similarity coef-
ficients SIM (Eq. 5.17) for the optimization condition “4 DOFs optimized”(Chap.
5.3.2.3.2).

5.3.2.3.1 Similarities between the measured and predicted trajectories of single
DOFs

In this section, the similarities between the measured and predicted trajectories of
MHJM, mMHJM, MAJM and MTCM under the two conditions “1 DOF optimized”
vs. “4 DOFs optimized” are discussed for each of the four DOFs. The analysis was
carried out according to the simulation protocol (Tab. 5.1).

Shoulder abduction/adduction
The results (Tab. 5.3) for the hand paths (R) revealed only small differences in simi-
larity coefficients between the different optimal control models for both optimization
conditions. Moreover, the similarity coefficients of the four optimal control models
for the tangential hand velocities (Rp) were smaller than the similarity coefficients for
the hand paths. MTCM showed the smallest values for the tangential hand velocities
under both optimization conditions. MHJM and MAJM performed similarly. Col-
lectively, the simulations reveal that in extrinsic kinematic coordinates of the hand
(R and Rp) only small differences in the similarity coefficients between the two opti-
mization conditions “1 DOF optimized” and “4 DOFs optimized” exist. In the case
of joint angles (q), only small differences within and between the two optimization
conditions were observed in the performances of the three optimal control models.
Moreover, MAJM shows the highest similarity coefficients between the measured and
predicted joint angular velocity profiles (qp), followed by mMHJM and MTCM. The
similarity coefficients of mMHJM and MTCM were much smaller under the condition
“4 DOFs optimized” than under the condition “1 DOF optimized”. In addition, the
coefficients for the joint angular velocities are substantially smaller than the coeffi-
cients for the joint angles. Finally, the similarity coefficients for the joint torques (T )
are comparable between the two optimization conditions but much smaller than the
coefficients of the extrinsic and intrinsic kinematic coordinates.
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Table 5.3: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for shoulder ab-
duction/adduction under two optimization conditions. R corresponds to the hand
paths in 3D space, Rp to the tangential velocities of the hand, q to joint angles, qp
to joint angular velocities and T to joint torques.

“1 DOF optimized” “4 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9963 .9961 .9975 .9936 .9963 .9930 .9977 .9944

Rp .9632 .9424 .9697 .9201 .9632 .9332 .9685 .9165

q - .9920 .9959 .9886 - .9887 .9959 .9823

qp - .8642 .9170 .8380 - .7943 .9170 .6750

T - - - .5456 - - - .5635

Shoulder rotation
The results (Tab. 5.4) for the hand paths (R) exhibited only small differences in the
similarity coefficients between the different optimal control models within each opti-
mization condition. Furthermore, under the condition “4 DOFs optimized” the sim-
ilarity coefficients of the hand paths were smaller than under the condition “1 DOF
optimized”. The similarity coefficients of the four optimal control models for the
tangential hand velocities (Rp) were smaller than the similarity coefficients for the
hand paths. Moreover, the coefficients were smaller under the condition “4 DOFs op-
timized” than under the condition “1 DOF optimized”. All in all, MAJM produced
the highest coefficients in extrinsic kinematic coordinates. On joint level, again,
MAJM produced the closest fit to the measured data (q and qp). The mMHJM and
MTCM exhibited much smaller values than MAJM in the intrinsic kinematic coordi-
nates. Furthermore, the similarity coefficients of the intrinsic kinematic coordinates
were substantial smaller for shoulder rotation (Tab. 5.4) as for shoulder abduc-
tion/adduction (Tab. 5.3). Finally, the similarity coefficients of the joint torques
(T ) were under the condition “4 DOFs optimized” substantial smaller than under
the condition “1 DOF optimized”. Moreover, these coefficients were smaller than the
coefficients of the quantities defined in extrinsic and intrinsic kinematic coordinates.
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Table 5.4: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for shoulder rotation
under two optimization conditions. R corresponds to the hand paths in 3D space,
Rp to the tangential velocities of the hand, q to joint angles, qp to joint angular
velocities and T to joint torques.

“1 DOF optimized” “4 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9963 .9984 .9996 .9988 .9963 .9930 .9977 .9944

Rp .9632 .9760 .9943 .9808 .9632 .9332 .9685 .9165

q - .6643 .9548 .8044 - .7904 .9548 .6705

qp - -.0007 .7612 .3646 - .2218 .7612 .2994

T - - - .6071 - - - .3635

Shoulder anteversion/retroversion
The results (Tab. 5.5) for the hand paths (R) exhibited only small differences in the
similarity coefficients between the different optimal control models and between the
two optimization conditions. The similarity coefficients of the hand tangential veloc-
ities (Rp) were under the optimization condition “4 DOFs optimized” smaller than
under the optimization condition “1 DOF optimized”. Furthermore, the differences
between the similarity coefficients of the optimal control models for the tangential
hand velocities and the hand paths were under the condition “4 DOFs optimized”
larger than under the condition “1 DOF optimized”. On joint level (q), MTCM
produced the highest similarity coefficient under the condition “1 DOF optimized”
followed by MAJM and mMHJM. In contrast, if 4 DOFs were optimized MAJM
showed the closest fit to the measured joint angles. Under the optimization condi-
tion “1 DOF optimized” MTCM revealed the highest similarity to the measured joint
angular velocity profiles (qp) followed by mMHJM and MAJM. In contrast, MAJM
showed the closest fit to the measured joint angular velocity profiles under the op-
timization condition “4 DOFs optimized”. The similarity coefficients of the joint
torques (T ) were comparable between the two optimization conditions. Moreover,
these coefficients were in same range as the coefficients for the quantities defined in in-
trinsic kinematic coordinates but much smaller than the coefficients of the quantities
defined in extrinsic kinematic coordinates.
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Table 5.5: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for shoulder antev-
ersion/retroversion under two optimization conditions. R corresponds to the hand
paths in 3D space, Rp to the tangential velocities of the hand, q to joint angles, qp
to joint angular velocities and T to joint torques.

“1 DOF optimized” “4 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9963 .9999 1.0000 1.0000 .9963 .9930 .9977 .9944

Rp .9632 .9981 .9998 .9993 .9632 .9332 .9685 .9165

q - .8687 .9133 .9224 - .5326 .9133 .7151

qp - .7781 .6020 .8563 - .1369 .6020 .4692

T - - - .6225 - - - .6550

Elbow flexion/extension
The results (Tab. 5.6) for the hand paths (R) exhibited only small differences in
the similarity coefficients between the different optimal control models within each
optimization condition and between the two optimization conditions. The similarity
coefficients of the hand tangential velocities (Rp) were under the optimization con-
dition “4 DOFs optimized” smaller than under the optimization condition “1 DOF
optimized”. Furthermore, the differences between the similarity coefficients of the
optimal control models for the tangential hand velocities and the hand paths were
under the condition “4 DOFs optimized” larger than under the condition “1 DOF
optimized”. Collectively, MAJM produced the highest coefficients in extrinsic kine-
matic coordinates. On joint level (q and qp), MAJM produced the highest similarity
coefficients in intrinsic kinematic coordinates. The similarity coefficients for the joint
torques (T ) were comparable between the two optimization conditions. Moreover,
these coefficients were smaller than the coefficients of the quantities defined in kine-
matic coordinates as well as the coefficients of the joint torques of the shoulder joint
(Tab. 5.3, 5.4, 5.5).
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Table 5.6: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for elbow flex-
ion/extension under two optimization conditions. R corresponds to the hand paths
in 3D space, Rp to the tangential velocities of the hand, q to joint angles, qp to joint
angular velocities and T to joint torques.

“1 DOF optimized” “4 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9963 .9995 1.0000 .9977 .9963 .9930 .9977 .9944

Rp .9632 .9922 .9990 .9785 .9632 .9332 .9685 .9165

q - .6322 .9063 .6940 - .7620 .9063 .3408

qp - .3938 .7071 .5741 - .6737 .7071 .2650

T - - - .2242 - - - .1752

5.3.2.3.2 Similarities between the measured and predicted trajectories of mul-
tiple DOFs
The results (Tab. 5.7) of the similarity coefficients between measured and predicted
trajectories of multiple DOFs revealed that on joint level (q and qp) the MAJM
showed the closest fit to the human data. The similarity coefficients of the joint
torques (T ) were comparable to the one’s presented in chapter 5.3.2.3.1.

Table 5.7: Mean of similarities coefficients between multiple (4 DOFs) measured
and predicted joint angles, joint angular velocities and joint torques (N = 40) of
mMHJM, MAJM and MTCM. Thereby, q corresponds to joint angles, qp to joint
angular velocities and T to joint torques.

mMHJM MAJM MTCM

q .7109 .9112 .6411

qp .4393 .6935 .3769

T - - .3999
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5.3.3 Target 3: Comparison of the measured and predicted
trajectories

The performance results of the different optimal control models are presented as
outlined in chapter 5.2.8.

5.3.3.1 Qualitative analysis of the measured and predicted trajectories

The results of the qualitative analysis of measured and predicted trajectories are
presented according to the simulation protocol shown in table 5.1.

1 DOF optimized: Shoulder abduction/adduction
In figure 5.23 representative hand paths are illustrated. However, none of the four op-
timal control models were able to exactly reproduce the measured hand movements.
In contrast to the other optimization models, MHJM produced straight hand paths.
The hand paths generated by mMHJM, MAJM and MTCM were curved across all
trials. Furthermore, none of the four models were able to completely reproduce the
measured tangential velocity profiles of the subjects. Notwithstanding the models
were able to approximate the single-peaked, almost bell-shaped measured velocity
profiles. Some of the generated velocity profiles, however, were slightly distorted like
the MAJ-profile in figure 5.23. In contrast, the MHJM generated single peaked and
bell-shaped velocity profiles across all trials. The peak velocities of the MHJM and
the mMHJM were in all cases smaller than the ones produced by the subjects. On
joint level all of the three models could reproduce the shoulder movements of the
subjects with only small deviations (Fig. 5.23). Across all the trials MAJM showed
the closest fit. None of the three models were able to completely reproduce the mea-
sured joint angular velocities. The velocity profiles of MAJM were in all of the trials
smooth, single peaked and almost bell shaped. The shape of the joint angular veloc-
ities profiles produced by mMHJM and MTCM were much more variable. Moreover,
MTCM was only occasionally able to replicate the measured torque profiles. In most
cases the model produced a more or less large torque at the beginning of the move-
ment, which was constantly reduced towards the end of the movement. The peak
torque produced by MTCM, however, was only in a few cases larger than the peak
torques produced by the subjects. Moreover, all of the torque profiles were slightly
oscillating (Fig. 5.23).
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Figure 5.23: Representative trial for the optimization of shoulder abduc-
tion/adduction.

1 DOF optimized: Shoulder rotation
In figure 5.24 representative hand paths are illustrated. As before, none of the four
optimal control models were able to exactly reproduce the human movement. Again,
MHJM generated straight hand paths. All other models generated curved paths.
In most of the cases all models were able to emulate the single peaked and almost
bell-shaped human tangential velocity profiles. However, in a few cases the velocity
profiles revealed a small plateau as shown by MAJM. Moreover, in some cases the
models tended to show slightly oscillating velocity profiles as adumbrated by MTCM
(Fig. 5.24). On the joint level, MAJM showed a close fit to the shoulder rotations
of the subjects (Fig. 5.24), whereas the joint angular trajectories of mMHJM and
MTCM were much more variable with larger deviations across the trials. Further-
more, in figure 5.24 representative angular velocities are illustrated. Again, none of
the three models were able to completely reproduce the human angular velocity pro-
files. MAJM exhibited single peaked and bell-shaped velocity profiles. These profiles
were stereotypically reproduced across the trials by MAJM. MTCM reproduced the
measured movement in torque space only incompletely. The peak torques produced
by MTCM were mostly smaller than the peak torques produced by the subjects. As
before, all of the torque profiles were slightly oscillating (Fig. 5.24).
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Figure 5.24: Representative trial for the optimization of shoulder rotation.

1 DOF optimized: Shoulder anteversion/retroversion
Figure 5.25 shows representative hand paths. MHJM produced across all trials
straight hand paths. In contrast, mMHJM, MAJM and MTCM generated curved
hand paths across all trials. None of the models were able to exactly reproduce
the experimentally determined measured hand paths. The subjects tended to pro-
duce single peaked tangential velocities. However, the profiles were not exactly bell-
shaped. In most cases all models were able to reconstruct the basic shape of the
velocity profiles, although in some cases especially MTCM produced deviations from
the measured profiles. On joint level mMHJM and MTCM showed partly large
deviations across the trials. In contrast, MAJM generated rather straight angular
trajectories that showed a close fit to the measured data in most cases (Fig. 5.25).
Neither mMHJM nor MAJM or MTCM were able to reproduce the measured an-
gular velocities. Again, the profiles of MAJM were highly stereotypical compared
to the trajectories of mMHJM and MTCM. In comparison with the two last-named
models MAJM showed peak angular velocities that were close to those produced by
the subjects across all trials. The MTCM reproduced the measured torque profiles
only incompletely. The torque profiles were characterized by a minimal change in the
torque course during the movement. In other words, there occurred no large torque
spikes, although all of the torque profiles were slightly oscillating (Fig. 5.25).
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Figure 5.25: Representative trial for the optimization of shoulder antever-
sion/retroversion.

1 DOF optimized: Elbow flexion/extension

In figure 5.26 representative hand paths are displayed. MHJM produced straight
hand path across all trials. In contrast, MAJM and MTCM generated curved hand
paths across all trials. mMHJM generated in some cases nearly straight hand paths
and some cases curved ones. None of the models were able to completely reproduce
the experimentally determined hand paths. The subjects tended to produce single
peaked tangential velocity profiles. These profiles could be approximated by all four
optimal control models (Fig. 5.26). MHJM generated highly stereotypical single
peaked, bell-shaped tangential velocity profiles across all trials. The other three
models showed in some cases larger deviations. The peak velocities of MHJM were in
all cases smaller than the ones produced by the subjects. On joint level mMHJM and
MTCM showed larger deviations across the trials than the MAJM. Thereby, MTCM
produced in all cases a flexion/extension movement in the elbow joint with larger
movement amplitudes than the subjects. mMHJM tended to produce in most cases
an extension/flexion movement. MAJM generated flexion/extension movements with
small movement amplitudes (Fig. 5.26). Although different movement strategies
were used by the subjects (Chap. 4.3.1), MAJM showed across all trials the closest
fit to the measured elbow movements. Furthermore, none of the three models were
able to reproduce the angular velocity profiles of the subjects. Again, the profiles
of MAJM were highly stereotypical compared to the trajectories of mMHJM and
MTCM. In comparison with the two last-named models, MAJM showed across all
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Figure 5.26: Representative trial for the optimization of elbow flexion/extension.

trials peak angular velocities that were close to those produced by the subjects.
MTCM reproduced the measured torque profiles only incompletely. In most cases
the model produced a more or less large torque at the beginning of the movement,
which was constantly reduced during the movement with only small changes. The
peak torques produced by MTCM, however, were in most cases comparable to the
peak torques produced by the subjects. Furthermore, all of the torque profiles were
slightly oscillating (Fig. 5.26).
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Figure 5.27: Representative trial for the optimization of thorax rotation.

1 DOF optimized: Thorax rotation
In figure 5.27 representative hand paths are displayed. MHJM produced straight
hand path across all trials. In contrast, mMHJM, MAJM and MTCM generated
curved hand paths across all trials. None of the models were able to reproduce
the experimentally determined hand paths. The subjects tended to produce single
peaked tangential velocity profiles. These profiles could be approximated by all four
optimal control models (Fig. 5.27). MHJM generated highly stereotypical single
peaked, bell-shaped tangential velocity profiles across all trials. The peak velocities
of MHJM were in all cases smaller than the ones produced by the subjects. The other
three models showed in a few cases some distortions leading to larger deviations from
the measured velocity profiles. On joint level mMHJM showed the largest deviations.
Both, MTCM and MAJM showed a close fit to experimentally determined data and
tended to produce comparable results. mMHJM exhibited large deviations from
the measured angular velocity profiles of the subjects. Both, MAJM and MTCM
showed a good data fit. Furthermore, the two last named models showed peak
angular velocities that were close to those produced by the subjects across most
trials. MTCM reproduced the measured torque profiles only incompletely. The
peak torque produced by MTCM, however, were in most cases comparable to the
peak torques produced by the subjects. Furthermore, all of the torque profiles were
slightly oscillating (Fig. 5.27).
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Figure 5.28: Representative hand paths and tangential velocity profiles for the
optimization of shoulder abduction/adduction, shoulder rotation, shoulder antever-
sion/retroversion, elbow flexion/extension and thorax rotation.

5 DOF optimized

In figure 5.28 representative hand paths are illustrated. MHJM produced straight
hand path across all trials. In contrast mMHJM and MAJM generated curved hand
paths across all trials. MTCM showed the largest deviations from the measured data.
None of the models were able to completely reproduce the experimentally determined
hand paths. MAJM, however, showed a close fit to the measured data in most cases.
It was shown in the first study of this thesis (Fig. 4.2) that the subjects produced
single-peaked and almost bell-shaped velocity profiles. MHJM produced in all cases
single-peaked and bell-shaped velocity profiles with lower peak velocities than the
ones produced by the subjects. The other three optimal control models produced
in most cases single-peaked tangential velocity profiles with bell-like shapes. The
profiles of mMHJM and MTCM, however, exhibited in some cases distortions. To
sum up, the increase of the number of joints to be optimized seemed to increase the
deviations from the measured movements in extrinsic kinematic coordinates of the
hand. Nevertheless, all four optimal control models seemed to be able to emulate the
basic features of the measured hand trajectories in most of the test trials.

In the first column of figure 5.29 typical joint angle trajectories of the five op-
timized DOFs are displayed. MAJM produced across all five DOFs the closest fit
to the measured trajectories. In contrast, the trajectories of mMHJM and MTCM
showed a higher variability with larger movement ranges than the ones produced by
the subjects. Moreover the angle profiles of mMHJM and MTCM were sometimes
oscillating (Fig. 5.29). In the second column of figure 5.29 the corresponding joint
angular velocities are illustrated. Since joint angular velocities are not independent
from joint angular courses, the joint angular velocities of the MAJM should exhibit
a closer fit to the joint angular velocity profiles of the subjects than mMHJM and
MTCM. However, the data confirm this assumption. MAJM showed the closest fit
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Figure 5.29: Representative angle, angular velocity and torque profiles for the
optimization of thorax rotation, shoulder abduction/adduction, shoulder rotation,
shoulder anteversion/retroversion and elbow flexion/extension. As before measured
trajectories are black, trajectories of mMHJM are green, trajectories of MAJM are
red and trajectories of MTCM are blue.

across all five DOFs. mMHJM and MTCM produced trajectories with large veloc-
ity ranges and large differences in the peak angular velocities compared to the peak
angular velocities of the subjects. In the third column of figure 5.29 the correspond-
ing joint torques are displayed. As before in the case of single degree optimization,
MTCM showed a tendency to reproduce the measured torque profiles across all the
trials and all five DOFs only incompletely. However, in a few cases the MTCM pro-
duced trajectories that emulated the measured torques profiles to some extent (Fig.
5.29). In most cases the model produced the peak torque at the beginning of the
movement. This torque level was constantly reduced during the movement with only
small changes. All of the torque profiles were slightly oscillating.
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5.3.3.2 Variations between the measured and predicted trajectories

The variations between the measured and predicted trajectories were analyzed based
on equations 5.11, 5.12, 5.13 and 5.14. The analysis is carried out in three steps:
First, according to the simulation protocol the performance of the different optimal
control models across the optimized DOFs were analyzed (Chap. 5.3.3.2.1). Second,
each optimal control model was examined separately to determine, if there were
performance differences across the five optimized DOFs. This step was carried out
for the condition “1 DOF optimized” and for the condition “5 DOFs optimized”
(Chap. 5.3.3.2.2). Finally, each of the optimal control models was tested to conclude
if there were performance differences between the two conditions “1 DOF optimized”
vs. “5 DOFs optimized” across the five optimized DOFs (Chap. 5.3.3.2.3).

5.3.3.2.1 Performance differences between different optimal control models
In this section the performance of MHJM, mMHJM, MAJM and MTCM were ana-
lyzed for the optimization of 1 DOF and 5 DOFs. Thereby, the analysis was carried
out according to the simulation protocol (Tab. 5.1).

1 DOF optimized: Shoulder abduction/adduction
The results of the %RMSDs for the measured and predicted hand paths (Fig. 5.30,
top left) indicate that none of the four optimal control models were able to re-
produce the measured hand movements in extrinsic coordinates. MAJM produced
the smallest %RMSD followed by mMHJM, MHJM and finally MTCM, which pro-
duced the highest %RMSD. The repeated ANOVA yielded significant differences
(F = 11.391, p ≤ .001, η2 = .226) between the %RMSDs of the measured and pre-
dicted hand paths of the four optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
hand paths of MHJM and mMHJM (p ≤ .001), MHJM and MAJM (p ≤ .001) as
well as MAJM and MTCM (p ≤ .01). The Bonferroni tests yielded no significant
differences between MHJM and MTCM (p = 1.000), mMHJM and MAJM (p = .962)
as well as mMHJM and MTCM (p = .021).

The results of the %RMSDs for the measured and predicted tangential velocities of
the hand (Fig. 5.30, top right) exhibit that MAJM produced the smallest %RMSD
followed by mMHJM, MHJM and MTCM. The repeated ANOVA yielded significant
differences (F = 10.953, p ≤ .001, η2 = .219) between the %RMSDs of the measured
and predicted tangential hand velocities of the four optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSDs of the mea-
sured and predicted tangential hand velocities of MHJM and mMHJM (p ≤ .001),
MHJM and MAJM (p ≤ .001) as well as MAJM and MTCM (p ≤ .01). The Bonfer-
roni tests yielded no significant differences between MHJM and MTCM (p = .391),
mMHJM and MAJM (p = 1.000) and mMHJM and MTCM (p = .011).

The results of the %RMSDs for the measured and predicted shoulder angles (Fig.
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Figure 5.30: Mean of the %RMSDs between the measured and predicted hand
paths, tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the DOF shoulder abduction/adduction.
Error bars indicate the 99 % confidence intervals.

5.30, bottom left) indicate that none of the three optimal control models were able
to reproduce the measured joint angle trajectories. MAJM produced the smallest
%RMSDs followed by mMHJM and MTCM. The repeated ANOVA yielded signif-
icant differences (F = 12.539, p ≤ .001, η2 = .243) between the %RMSDs of the
measured and predicted joint angles of the three optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSDs of the mea-
sured and predicted joint angles of mMHJM and MTCM (p ≤ .01) and MAJM and
MTCM (p ≤ .001). The Bonferroni tests yielded no significant differences between
mMHJM and MAJM (p = .811).

The results of the %RMSDs for the measured and predicted angular velocities
(Fig. 5.30, bottom right) show that MAJM produced the smallest %RMSD followed
by mMHJM and MTCM. The repeated ANOVA yielded significant differences (F =
12.937, p ≤ .001, η2 = .249) between the %RMSDs of the measured and predicted
joint angular velocities of the three optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
joint angular velocities of mMHJM and MTCM (p ≤ .01) and MAJM and MTCM
(p ≤ .01). The Bonferroni tests yielded no significant differences between mMHJM
and MAJM (p = .463).
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1 DOF optimized: Shoulder rotation
The results of the %RMSDs for the measured and predicted hand paths (Fig. 5.31,
top left) indicate that none of the four optimal control models were able to repro-
duce the hand movement of the subjects in extrinsic coordinates. MAJM produced
the smallest %RMSD followed by mMHJM, MHJM and finally MTCM, which pro-
duced the highest %RMSD. The repeated ANOVA yielded significant differences
(F = 17.704, p ≤ .001, η2 = .312) between the %RMSDs of the measured and pre-
dicted hand paths of the four optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
hand paths of MHJM and mMHJM (p ≤ .001), MHJM and MAJM (p ≤ .001),
mMHJM and MAJM (p ≤ .001), MAJM and MTCM (p ≤ .001). The Bonferroni
tests yielded no significant differences between MHJM and MTCM (p = 1.000) and
between mMHJM and MTCM (p = .065).

The results of the %RMSDs for the measured and predicted tangential velocities
of the hand (Fig. 5.31, top right) denote that MAJM produced the smallest %RMSD
followed by mMHJM, MTCM and MHJM. The repeated ANOVA yielded significant
differences (F = 20.539, p ≤ .001, η2 = .345) between the %RMSDs of the mea-
sured and predicted tangential hand velocities of the four optimal control models.
Pairwise Bonferroni tests revealed significant differences between the %RMSDs of
the measured and predicted tangential hand velocities of the MHJM and mMHJM
(p ≤ .001), MHJM and MAJM (p ≤ .001), mMHJM and MAJM (p ≤ .001) as well
as between MAJM and MTCM (p ≤ .001). The Bonferroni tests yielded no signifi-
cant differences between MHJM and MTCM (p = 1.000) and between mMHJM and
MTCM (p = .072).

The results of the %RMSDs for the measured and predicted shoulder angles (Fig.
5.31, bottom left) indicate that none of the three optimal control models were able to
reproduce the human joint angle trajectories. MAJM produced the smallest %RMSD
followed by mMHJM and MTCM. The repeated ANOVA yielded significant differ-
ences (F = 11.598, p ≤ .001, η2 = .229) between the %RMSDs of the measured and
predicted joint angles of the three optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
joint angles of mMHJM and MAJM (p ≤ .001) as well as between MAJM and MTCM
(p ≤ .01). The Bonferroni tests yielded no significant differences between mMHJM
and MTCM (p = .127).

191



5 Study II: The synthesis of multi-joint pointing movements in 3D space

MHJM mMHJM MAJM MTCM
0

10

20

30

40

50
%

R
M

S
D

Hand Path

MHJM mMHJM MAJM MTCM
0

20

40

60

80

100

%
R

M
S

D

Tangential Hand Velocity

mMHJM MAJM MTCM
0

20

40

60

80

100

%
R

M
S

D

Angle

mMHJM MAJM MTCM
0

50

100

150

200

250

300

%
R

M
S

D

Angular Velocity

Figure 5.31: Mean of the %RMSDs between the measured and predicted hand
paths, tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the DOF shoulder rotation. Error bars
indicate the 99 % confidence intervals.

The results of the %RMSDs for the measured and predicted angular velocities
(Fig. 5.31, bottom right) show as before that MAJM produced the smallest %RMSD
followed by mMHJM and MTCM. The repeated ANOVA yielded significant differ-
ences (F = 15.885, p ≤ .001, η2 = .289) between the %RMSDs of the measured and
predicted joint angular velocities of the three optimal control models. Pairwise Bon-
ferroni tests revealed significant differences between the %RMSDs of the measured
and predicted joint angles of mMHJM and MAJM (p ≤ .001) and between MAJM
and MTCM (p ≤ .001). The Bonferroni tests yielded no significant differences be-
tween mMHJM and MTCM (p = .100).

1 DOF optimized: Shoulder anteversion/retroversion

The results of the %RMSDs for the measured and predicted hand paths (Fig. 5.32,
top left) indicate that none of the four optimal control models were able to re-
produce the measured hand movements in extrinsic coordinates. MAJM produced
the smallest %RMSD followed by MHJM, mMHJM and finally MTCM, which pro-
duced the highest %RMSD. The repeated ANOVA yielded significant differences
(F = 10.126, p ≤ .001, η2 = .206) between the %RMSDs of the measured and pre-
dicted hand paths of the four optimal control models. Pairwise Bonferroni tests
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Figure 5.32: Mean of the %RMSDs between the measured and predicted
hand paths, tangential hand velocities, angles and angular velocities for MHJM,
mMHJM, MAJM and MTCM for the optimization of the DOF shoulder antever-
sion/retroversion. Error bars indicate the 99 % confidence intervals.

revealed significant differences between the %RMSDs of the measured and predicted
hand paths of MHJM and MAJM (p ≤ .001), mMHJM and MAJM (p ≤ .001) as
well as between MAJM and MTCM (p ≤ .001). The Bonferroni tests yielded no
significant differences between MHJM and mMHJM (p = .066), MHJM and MTCM
(p = .052) and between mMHJM and MTCM (p = .891).

The results of the %RMSDs for the measured and predicted tangential velocities
of the hand (Fig. 5.32, top right) show that MAJM produced the smallest %RMSD
followed by MHJM, mMHJM and MTCM. The repeated ANOVA yielded significant
differences (F = 7.563, p ≤ .01, η2 = .162) between the %RMSDs of the measured
and predicted tangential hand velocities of the four optimal control models. Pair-
wise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted tangential hand velocities of MHJM and MAJM (p ≤ .001),
mMHJM and MAJM (p ≤ .001) as well as MAJM and MTCM (p ≤ .01). The Bonfer-
roni tests yielded no significant differences between MHJM and mMHJM (p = 1.000),
MHJM and MTCM (p = 1.000) and mMHJM and MTCM (p = 1.000).
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The results of the %RMSDs for the measured and predicted shoulder angles (Fig.
5.32, bottom left) indicate that none of the three optimal control models were able to
reproduce the human joint angle trajectories. MAJM produced the smallest %RMSD
followed by mMHJM and MTCM. The repeated ANOVA yielded significant differ-
ences (F = 7.574, p ≤ .01, η2 = .163) between the %RMSDs of the measured and
predicted joint angles of the three optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
joint angles of mMHJM and MAJM (p ≤ .001) and between MAJM and MTCM
(p ≤ .01). The Bonferroni tests yielded no significant differences between mMHJM
and MTCM (p = 1.000).

The results of the %RMSDs for the measured and predicted angular velocities (Fig.
5.32, bottom right) show that MAJM produced the smallest %RMSDs followed by
mMHJM and MTCM. The repeated ANOVA yielded significant differences (F =
9.885, p ≤ .001, η2 = .202) between the %RMSDs of the measured and predicted
joint angular velocities of the three optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
joint angular velocities of mMHJM and MAJM (p ≤ .001) and between MAJM and
MTCM (p ≤ .001). The Bonferroni tests yielded no significant differences between
mMHJM and MTCM (p = .929).

1 DOF optimized: Elbow flexion/extension

The results of the %RMSDs for the measured and predicted hand paths (Fig. 5.33,
top left) indicate that none of the four optimal control models were able to reproduce
the hand movement of the subjects in extrinsic coordinates of the hand. MAJM pro-
duced the smallest %RMSD followed by MHJM, mMHJM and finally MTCM, which
produced in highest %RMSD. The repeated ANOVA yielded significant differences
(F = 16.005, p ≤ .001, η2 = .291) between the %RMSDs of the measured and pre-
dicted hand paths of the four optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
hand paths of MHJM and MAJM (p ≤ .01), MHJM and MTCM (p ≤ .001) and
MAJM and MTCM (p ≤ .001). The Bonferroni tests yielded no significant differ-
ences between MHJM and mMHJM (p = 1.000), mMHJM and MAJM (p = .047) as
well as mMHJM and MTCM (p = .030).

The results of the %RMSDs for the measured and predicted tangential velocities
of the hand (Fig. 5.33, top right) show that MAJM produced the smallest %RMSD
followed by mMHJM, MHJM and MTCM. The repeated ANOVA yielded significant
differences (F = 20.183, p ≤ .001, η2 = .341) between the %RMSDs of the measured
and predicted tangential hand velocities of the four optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSDs of the mea-
sured and predicted tangential hand velocities of MHJM and mMHJM (p ≤ .01),
MHJM and MAJM (p ≤ .001), mMHJM and MTCM (p ≤ .01), as well as between
MAJM and MTCM (p ≤ .001). The Bonferroni tests yielded no significant differ-
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Figure 5.33: Mean of the %RMSDs between the measured and predicted hand
paths, tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the DOF elbow flexion/extension. Error
bars indicate the 99 % confidence intervals.

ences between MHJM and MTCM (p = .507) and between mMHJM and MAJM
(p = .112).

The results of the %RMSDs for the measured and predicted elbow angles (Fig.
5.33, bottom left) indicate that none of the three optimal control models were able to
reproduce the human joint angle trajectories. MAJM produced the smallest %RMSD
followed by mMHJM and MTCM. The repeated ANOVA yielded significant differ-
ences (F = 26.008, p ≤ .001, η2 = .400) between the %RMSDs of the measured and
predicted joint angles of the three optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
joint angles of mMHJM and MAJM (p ≤ .001) and between MAJM and MTCM
(p ≤ .001). The Bonferroni tests yielded no significant differences between mMHJM
and MTCM (p = .025).

The results of the %RMSDs for the measured and predicted angular velocities
(Fig. 5.33, bottom right) indicate that none of the three optimal control models
were able to reproduce the human joint angular velocities. MAJM produced the
smallest %RMSD followed by mMHJM and MTCM. The repeated ANOVA yielded
significant differences (F = 26.086, p ≤ .001, η2 = .401) between the %RMSDs of the
measured and predicted joint angular velocities of the three optimal control models.
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Pairwise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted joint angular velocities of mMHJM and MAJM (p ≤ .001),
mMHJM and MTCM (p ≤ .01) and the MAJM and the MTCM (p ≤ .001).

1 DOF optimized: Thorax rotation

The results of the %RMSDs for the measured and predicted hand paths (Fig. 5.34,
top left) indicate that none of the four optimal control models were able to re-
produce the human hand movements in extrinsic coordinates. MTCM produced
the smallest %RMSD followed by MAJM, MHJM and finally mMTHM, which pro-
duced the highest %RMSD. The repeated ANOVA yielded significant differences
(F = 23.632, p ≤ .001, η2 = .377) between the %RMSDs of the measured and pre-
dicted hand paths of the four optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
hand paths of MHJM and MAJM (p ≤ .001), MHJM and MTCM (p ≤ .001),
mMHJM and MAJM (p ≤ .001) and between mMHJM and MTCM (p ≤ .001).
The Bonferroni tests yielded no significant differences between MHJM and mMHJM
(p = .203) and between MAJM and MTCM (p = 1.000).

The results of the %RMSDs for the measured and predicted tangential velocities
of the hand (Fig. 5.34, top right) show that MTCM produced the smallest %RMSD
followed by MAJM, mMHJM and MHJM. The repeated ANOVA yielded significant
differences (F = 53.642, p ≤ .001, η2 = .579) between the %RMSDs of the measured
and predicted tangential hand velocities of the four optimal control models. Pair-
wise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted hand paths of MHJM and MAJM (p ≤ .001), MHJM and
MTCM (p ≤ .001), mMHJM and MAJM (p ≤ .001) and between mMHJM and
MTCM (p ≤ .001). The Bonferroni tests yielded no significant differences between
MHJM and mMHJM (p = 1.000) and between MAJM and MTCM (p = 1.000).

The results of the %RMSDs for the measured and predicted thorax angles (Fig.
5.34, bottom left) indicate that none of the three optimal control models were able to
reproduce the human joint angle trajectories. MTCM produced the smallest %RMSD
followed by MAJM and mMHJM. The repeated ANOVA yielded significant differ-
ences (F = 35.889, p ≤ .001, η2 = .479) between the %RMSDs of the measured and
predicted joint angles of the three optimal control models. Pairwise Bonferroni tests
revealed significant differences between the %RMSDs of the measured and predicted
joint angles of mMHJM and MAJM (p ≤ .001) and mMHJM and MTCM (p ≤ .001)
and no significant differences between MAJM and MTCM (p = .665).

The results of the %RMSDs for the measured and predicted angular velocities
(Fig. 5.34, bottom right) indicate that none of the three optimal control models
were able to reproduce the human joint angular velocities. MTCM produced the
smallest %RMSD followed by MAJM and mMHJM. The repeated ANOVA yielded
significant differences (F = 45.566, p ≤ .001, η2 = .539) between the %RMSDs of the
measured and predicted joint angular velocities of the three optimal control models.
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Figure 5.34: Mean of the %RMSDs between the measured and predicted hand
paths, tangential hand velocities, angles and angular velocities for MHJM, mMHJM,
MAJM and MTCM for the optimization of the DOF thorax rotation. Error bars
indicate the 99 % confidence intervals.

Pairwise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted joint angular velocities of mMHJM and MAJM (p ≤ .001)
as well as mMHJM and MTCM (p ≤ .001) and no significant differences between
MAJM and MTCM (p = .252).

5 DOFs optimized

The results of the %RMSDs for the measured and predicted hand paths (Fig. 5.35,
top left) indicate that none of the four optimal control models were able to re-
produce the human hand movement of the subjects in extrinsic coordinates of the
hand. MAJM produced the smallest %RMSD followed by MHJM, mMHJM and fi-
nally MTCM. The repeated ANOVA yielded significant differences (F = 18.894, p ≤
.001, η2 = .326) between the %RMSDs of the measured and predicted hand paths of
the four optimal control models. Pairwise Bonferroni tests revealed significant dif-
ferences between the %RMSDs of the measured and predicted hand paths of MHJM
and mMHJM (p ≤ .001), MHJM and MTCM (p ≤ .001), mMHJM and MAJM
(p ≤ .001) and between MAJM and MTCM (p ≤ .001). The Bonferroni tests yielded
no significant differences between MHJM and MAJM (p = .206) and mMHJM and
MTCM (p = .013).
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Figure 5.35: Mean of the %RMSDs between the measured and predicted
hand paths, tangential hand velocities, angles and angular velocities for MHJM,
mMHJM, MAJM and MTCM for the optimization of the DOF of shoulder ab-
duction/adduction, shoulder rotation, shoulder anteversion/retroversion, elbow flex-
ion/extension and thorax rotation. Error bars indicate the 99 % confidence intervals.

The results of the %RMSDs for the measured and predicted tangential velocities
of the hand (Fig. 5.35, top right) show that MAJM produced the smallest %RMSD
followed by MHJM, mMHJM and MTCM. The repeated ANOVA yielded significant
differences (F = 22.784, p ≤ .001, η2 = .369) between the %RMSDs of the measured
and predicted tangential hand velocities of the four optimal control models. Pairwise
Bonferroni tests revealed significant differences between the %RMSDs of the mea-
sured and predicted tangential hand velocities of MHJM and mMHJM (p ≤ .001),
MHJM and MAJM (p ≤ .01), MHJM and MTCM (p ≤ .001), mMHJM and MAJM
(p ≤ .001) as well as between MAJM and MTCM (p ≤ .001). The Bonferroni tests
yielded no significant differences between mMHJM and MTCM (p = .389).

The results of the %RMSDs for the measured and predicted joint angles (Fig.
5.35, bottom left) indicate that none of the three optimal control models were able
to reproduce the measured joint angle trajectories. MAJM produced the smallest
%RMSD followed by MTCM and mMHJM. The repeated ANOVA yielded signifi-
cant differences (F = 108.960, p ≤ .001, η2 = .736) between the %RMSDs of the
measured and predicted joint angles of the three optimal control models. Pairwise
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Bonferroni tests revealed significant differences between the %RMSDs of the mea-
sured and predicted joint angles of mMHJM and MAJM (p ≤ .001), mMHJM and
MTCM (p ≤ .001) and between MAJM and MTCM (p ≤ .001).

The results of the %RMSDs for the measured and predicted angular velocities
(Fig. 5.35, bottom right) indicate that none of the three optimal control models
were able to reproduce the measured joint angular velocities. MAJM produced the
smallest %RMSD followed by MTCM and mMHJM. The repeated ANOVA yielded
significant differences (F = 60.454, p ≤ .001, η2 = .608) between the %RMSDs of the
measured and predicted joint angular velocities of the three optimal control models.
Pairwise Bonferroni tests revealed significant differences between the %RMSDs of the
measured and predicted joint angular velocities of mMHJM and MAJM (p ≤ .001),
mMHJM and MTCM (p ≤ .001) and MAJM and MTCM (p ≤ .001).
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5.3.3.2.2 Performance differences across the optimized DOFs
The performance differences across the optimized DOFs were calculated for MAJM
and MTCM. In the case of mMHJM the optimization was not conducted in intrinsic
kinematic coordinates but in extrinsic kinematic coordinates of the hand. The limits
of the individual joints were used as an additional boundary condition during the
optimization.

MAJM
The results of the %RMSDs for the measured and predicted hand paths across the
five DOFs (Fig. 5.36) indicate that MAJM produced the smallest %RMSD when the
DOF of shoulder rotation was optimized, followed by shoulder abduction/adduction,
thorax rotation, shoulder anteversion/retroversion and elbow flexion/extension. The
repeated ANOVA yielded no significant differences (F = 1.652, p = .200, η2 = .041)
between the %RMSDs of the measured and predicted hand paths across the five
DOFs.

The results of the %RMSDs for the measured and predicted hand tangential ve-
locities across the five DOFs (Fig. 5.36) indicate that MAJM produced the small-
est %RMSD when the DOF of thorax rotation was optimized, followed by shoul-
der rotation, shoulder anteversion/retroversion, elbow flexion/extension and shoul-
der abduction/adduction. The repeated ANOVA yielded no significant differences
(F = 3.753, p = .020, η2 = .088) between the %RMSDs of the measured and pre-
dicted hand tangential velocities across the five DOFs. However, since the results
of the repeated ANOVA are significant in tendency, we checked the post-hoc Bon-
ferroni tests. These revealed significant differences between the DOFs shoulder ab-
duction/adduction and shoulder rotation (p ≤ .01). The Bonferroni tests yielded
no significant differences between the DOFs thorax rotation and shoulder abduc-
tion/adduction (p = .026), thorax rotation and shoulder rotation (p = 1.000), tho-
rax rotation and shoulder anteversion/retroversion (p = .660), thorax rotation and
elbow flexion/extension (p = 1.000), shoulder abduction/adduction and shoulder
anteversion/retroversion (p = .253), shoulder abduction/adduction and elbow flex-
ion/extension (p = 1.000), shoulder rotation and shoulder anteversion/retroversion
(p = .958), shoulder rotation and elbow flexion (p = 1.000) and shoulder antever-
sion/retroversion and elbow flexion/extension (p = 1.000), respectively.

The results of the %RMSDs for the measured and predicted joint angles across
the five DOFs (Fig. 5.36) indicate that MAJM produced the smallest %RMSD
when the DOF of shoulder abduction/adduction was optimized, followed by elbow
flexion/extension, shoulder rotation, shoulder anteversion/retroversion and thorax
rotation. The repeated ANOVA yielded no significant differences (F = 2.934, p =
.065, η2 = .070) between the %RMSDs of the measured and predicted joint angles
across the five DOFs.
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Figure 5.36: Mean of the %RMSDs of MAJM across the five DOFs under the opti-
mization condition “1 DOF optimized” (light gray) and “5 DOFs optimized” (dark
gray). Furthermore, the title T indicates thorax rotation, SI indicates shoulder
abduction/adduction, SII indicates shoulder rotation, SIII indicates shoulder antev-
ersion/retroversion and E represents elbow flexion/extension. Error bars indicate
the 99 % confidence intervals.

The results of the %RMSDs for the measured and predicted joint angular veloc-
ities across the five DOFs (Fig. 5.36) indicate that MAJM produced the small-
est %RMSD when the DOF of shoulder abduction/adduction was optimized, fol-
lowed by shoulder rotation, thorax rotation, elbow flexion/extension and shoul-
der anteversion/retroversion. The repeated ANOVA yielded significant differences
(F = 9.382, p ≤ .001, η2 = .194) between the %RMSDs of the measured and predicted
joint angular velocities across the five DOFs. Pairwise Bonferroni tests revealed sig-
nificant differences between the DOFs shoulder abduction/adduction and shoulder
rotation (p ≤ .001), shoulder anteversion/retroversion (p ≤ .001) as well as elbow
flexion/extension (p ≤ .001). The Bonferroni tests yielded no significant differences
between the DOFs thorax rotation and shoulder abduction/adduction (p = .046),
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thorax rotation and shoulder rotation (p = 1.000), thorax rotation and shoulder
anteversion/retroversion (p = .331), thorax rotation and elbow flexion (p = 1.000),
shoulder rotation and shoulder anteversion/retroversion (p = .084), shoulder rota-
tion and elbow flexion (p = .036) and shoulder anteversion/retroversion and elbow
flexion/extension (p = 1.000).

When all five DOFs were optimized the %RMSDs for the measured and pre-
dicted joint angles across the fives DOFs (Fig. 5.36) indicate that MAJM pro-
duced the smallest %RMSD when the DOF of shoulder abduction/adduction was
optimized, followed by elbow flexion/extension, shoulder rotation, shoulder antever-
sion/retroversion and thorax rotation. The repeated ANOVA yielded no significant
differences (F = 2.934, p = .065, η2 = .070) between the %RMSDs of the measured
and predicted joint angles across the five DOFs.

When all five DOFs were optimized the %RMSDs for the measured and predicted
joint angular velocities across the five DOFs (Fig. 5.36) indicate that MAJM pro-
duced the smallest %RMSD when the DOF of shoulder abduction/adduction was op-
timized, followed by the shoulder rotation, thorax rotation, elbow flexion/extension
and finally shoulder anteversion/retroversion. The repeated ANOVA yielded signifi-
cant differences (F = 9.382, p ≤ .001, η2 = .194) between the %RMSDs of the mea-
sured and predicted joint angular velocities across the five DOFs. Pairwise Bonferroni
tests revealed significant differences between the DOFs shoulder abduction/adduction
and shoulder rotation (p ≤ .001), shoulder anteversion/retroversion (p ≤ .001) and
elbow flexion/extension (p ≤ .001). The Bonferroni tests yielded no significant
differences between the DOFs thorax rotation and shoulder abduction/adduction
(p = .046), thorax rotation and shoulder rotation (p = 1.000), thorax rotation
and shoulder anteversion/retroversion (p = .331), thorax rotation and elbow flex-
ion/extension (p = 1.000), shoulder rotation and shoulder anteversion/retroversion
(p = .084), shoulder rotation and elbow flexion/extension (p = .036) and shoulder
anteversion/retroversion and elbow flexion/extension (p = 1.000).

MTCM

The results of the %RMSDs for the measured and predicted hand paths across the
five DOFs (Fig. 5.37) indicate that MTCM produced the smallest %RMSD when the
DOF of thorax rotation was optimized, followed by shoulder rotation, shoulder abduc-
tion/adduction, elbow flexion and shoulder anteversion/retroversion. The repeated
ANOVA yielded significant differences (F = 10.089, p ≤ .001, η2 = .206) between the
%RMSDs of the measured and predicted hand paths across the five DOFs. Pairwise
Bonferroni tests revealed significant differences between the DOFs thorax rotation
and shoulder abduction/adduction (p ≤ .01), shoulder rotation (p ≤ .01), shoulder
anteversion/retroversion (p ≤ .001), elbow flexion/extension (p ≤ .001) and shoulder
rotation and elbow flexion (p ≤ .01). The Bonferroni tests yielded no significant
differences between the DOFs shoulder abduction/adduction and shoulder rotation
(p = 1.000), shoulder abduction/adduction and shoulder anteversion/retroversion
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(p = .212), shoulder abduction/adduction and elbow flexion (p = .812), shoulder
rotation and shoulder anteversion/retroversion (p = .058) and shoulder antever-
sion/retroversion and elbow flexion/extension (p = 1.000).

The results of the %RMSDs for the measured and predicted hand tangential
velocities across the five DOFs (Fig. 5.37) indicate that MTCM produced the
smallest %RMSD when the DOF of thorax rotation was optimized, followed by
shoulder rotation, elbow flexion/extension, shoulder anteversion/retroversion and fi-
nally shoulder abduction/adduction. The repeated ANOVA yielded significant dif-
ferences (F = 9.116, p ≤ .001, η2 = .189) between the %RMSDs of the measured
and predicted hand tangential velocities across the five DOFs. Pairwise Bonferroni
tests revealed significant differences between the DOFs thorax rotation and shoulder
abduction/adduction (p ≤ .001), shoulder rotation (p ≤ .001), shoulder antever-
sion/retroversion (p ≤ .001) and elbow flexion (p ≤ .001). The Bonferroni tests
yielded no significant differences between the DOFs shoulder abduction/adduction
and shoulder rotation (p = .945), shoulder abduction/adduction and shoulder an-
teversion/retroversion (p = 1.000), shoulder abduction/adduction and elbow flex-
ion/extension (p = 1.000), shoulder rotation and shoulder anteversion/retroversion
(p = 1.000), shoulder rotation and elbow flexion/extension (p = 1.000) and shoulder
anteversion/retroversion and elbow flexion/extension (p = 1.000).

The results of the %RMSDs for the measured and predicted joint angles across the
five DOFs (Fig. 5.37) indicate that MTCM produced the smallest %RMSD when the
DOF of thorax rotation was optimized, followed by shoulder abduction/adduction, el-
bow flexion/extension, shoulder rotation and shoulder anteversion/retroversion. The
repeated ANOVA yielded significant differences (F = 5.757, p ≤ .01, η2 = .129)
between the %RMSDs of the measured and predicted joint angles across the five
DOFs. Pairwise Bonferroni tests revealed significant differences between the DOFs
thorax rotation and shoulder rotation (p ≤ .01), thorax rotation and shoulder antev-
ersion/retroversion (p ≤ .01) as well as thorax rotation and elbow flexion/extension
(p ≤ .001). The Bonferroni tests yielded no significant differences between the DOFs
thorax rotation and shoulder abduction/adduction (p = .020), shoulder abduction
and shoulder rotation (p = .978), shoulder abduction/adduction and shoulder an-
teversion/retroversion (p = .303), shoulder abduction/adduction and elbow flex-
ion/extension (p = .312), shoulder rotation and shoulder anteversion/retroversion
(p = 1.000), shoulder rotation and elbow flexion/extension (p = 1.000) as well as
shoulder anteversion/retroversion and elbow flexion/extension (p = 1.000).

The results of the %RMSDs for the measured and predicted joint angular veloc-
ities across the five DOFs (Fig. 5.37) indicate that MTCM produced the smallest
%RMSD when the DOF of thorax rotation was optimized, followed by shoulder
abduction/adduction, shoulder rotation, shoulder anteversion/retroversion and el-
bow flexion/extension. The repeated ANOVA yielded significant differences (F =
18.751, p ≤ .001, η2 = .325) between the %RMSDs of the measured and predicted
joint angular velocities across the five DOFs. Pairwise Bonferroni tests revealed
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Figure 5.37: Mean of the %RMSDs of MTCM for the five DOFs under the opti-
mization condition “1 DOF optimized” (light gray) and “5 DOFs optimized” (dark
gray). Furthermore, the title T indicates thorax rotation, SI indicates shoulder
abduction/adduction, SII indicates shoulder rotation, SIII indicates shoulder antev-
ersion/retroversion and E represents elbow flexion/extension. Error bars indicate
the 99 % confidence intervals.

significant differences between the DOFs of thorax rotation and shoulder abduc-
tion/adduction (p ≤ .01), thorax rotation and shoulder rotation (p ≤ .001), thorax
rotation and shoulder anteversion/retroversion (p ≤ .001), thorax rotation and elbow
flexion (p ≤ .001), shoulder abduction/adduction and shoulder anteversion/retrover-
sion (p ≤ .001) and shoulder abduction/adduction and elbow flexion/extension
(p ≤ .001). The Bonferroni tests yielded no significant differences between the DOFs
shoulder abduction/adduction and shoulder rotation (p = .050), shoulder rotation
and shoulder anteversion/retroversion (p = 1.000), shoulder rotation and elbow flex-
ion/extension (p = .025) as well as shoulder anteversion/retroversion and elbow
flexion (p = .301).

The results of the %RMSDs between the measured and predicted joint torques
across the five DOFs (Fig. 5.37) indicate that MTCM produced the smallest %RMSD
when the DOF of shoulder abduction/adduction was optimized, followed by elbow
flexion/extension, shoulder rotation, thorax rotation and shoulder anteversion/retro-
version. The repeated ANOVA yielded no significant differences (F = 3.630, p =
.022, η2 = .085) between the %RMSD of the measured and predicted joint torques
across the five DOFs.

When all five DOFs were optimized the %RMSDs for the measured and predicted
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joint angles across the five DOFs (Fig. 5.37) indicate that MTCM produced the
smallest %RMSD when the DOF of shoulder abduction/adduction was optimized,
followed by elbow flexion/extension, shoulder rotation, thorax rotation and shoul-
der anteversion/retroversion. The repeated ANOVA yielded significant differences
(F = 16.235, p ≤ .001, η2 = .294) between the %RMSDs of the measured and pre-
dicted joint angles across the five DOFs. Pairwise Bonferroni tests revealed significant
differences between the DOFs thorax rotation and shoulder abduction/adduction
(p ≤ .001), shoulder abduction/adduction and shoulder rotation (p ≤ .001), shoul-
der abduction/adduction and shoulder anteversion/retroversion (p ≤ .001), shoul-
der rotation and shoulder anteversion/retroversion (p ≤ .01) and shoulder antev-
ersion/retroversion and elbow flexion/extension (p ≤ .001). The Bonferroni tests
yielded no significant differences between the DOFs thorax rotation and shoulder ro-
tation (p = 1.000), thorax rotation and shoulder anteversion/retroversion (p = .013),
thorax rotation and elbow flexion (p = .700), shoulder abduction/adduction and
elbow flexion/extension (p = .046) as well as shoulder rotation and elbow flexion
(p = 1.000).

When all five DOFs were optimized the %RMSDs for the measured and pre-
dicted joint angular velocities across the five DOFs (Fig. 5.37) indicate that MTCM
produced the smallest %RMSD when the DOF of shoulder abduction/adduction
was optimized, followed by thorax rotation, shoulder rotation, shoulder antever-
sion/retroversion and elbow flexion/extension. The repeated ANOVA yielded sig-
nificant differences (F = 25.017, p ≤ .001, η2 = .391) between the %RMSDs of
the measured and predicted joint angular velocities across the five DOFs. Pair-
wise Bonferroni tests revealed significant differences between the DOFs thorax ro-
tation and shoulder anteversion/retroversion (p ≤ .001), thorax rotation and elbow
flexion/extension (p ≤ .001), shoulder abduction/adduction and shoulder rotation
(p ≤ .001), shoulder abduction/adduction and shoulder anteversion/retroversion
(p ≤ .001), shoulder abduction/adduction and elbow flexion/extension (p ≤ .001),
shoulder rotation and shoulder anteversion/retroversion (p ≤ .001) and shoulder rota-
tion elbow flexion/extension (p ≤ .001). The Bonferroni tests yielded no significant
differences between the DOFs thorax rotation and shoulder abduction/adduction
(p = .863), thorax rotation and shoulder rotation (p = .070) as well as shoulder
anteversion/retroversion and elbow flexion/extension (p = .548).

When all five DOFs were optimized the %RMSDs for the measured and pre-
dicted joint torques across the five DOFs (Fig. 5.37) indicate that MTCM produced
the smallest %RMSD when the DOF of shoulder abduction/adduction was opti-
mized, followed by thorax rotation, shoulder anteversion/retroversion, elbow flex-
ion and shoulder rotation. The repeated ANOVA yielded no significant differences
(F = 3.031, p = .083, η2 = .072) between the %RMSDs of the measured and predicted
joint torques across the five DOFs. However, figure 5.37 indicates that pairwise post-
hoc tests may reveal significant differences. Furthermore more, the large variance in
the simulation results of the shoulder rotation and elbow flexion/extension could be
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a reason for a strong adjustment of the Greenhouse-Geiser procedure. Therefore,
we checked the pairwise Bonferroni tests. As indicated by figure 5.37, the Bon-
ferroni tests revealed significant results for thorax rotation and shoulder abduction
(p ≤ .001), thorax rotation and shoulder anteversion/retroversion (p ≤ .01), shoul-
der abduction/adduction and shoulder anteversion/retroversion (p ≤ .001) as well as
shoulder abduction/adduction and elbow flexion/extension (p ≤ .01). The Bonfer-
roni tests yielded no significant differences between the DOFs thorax rotation and
shoulder rotation (p = .800), thorax rotation and elbow flexion/extension (p = .041),
shoulder abduction/adduction and shoulder rotation (p = .043), shoulder rotation
and shoulder anteversion/retroversion (p = 1.000), shoulder rotation and elbow flex-
ion/extension (p = 1.000) as well as shoulder anteversion/retroversion and elbow
flexion/extension (p = .402).

5.3.3.2.3 Performance differences between the two conditions “1 DOF opti-
mized” and “5 DOFs optimized”
In this section the performance of MHJM, mMHJM, MAJM and MTCM between
the two conditions “1 DOF optimized” vs. “5 DOFs optimized” for the five DOFs
was analyzed separately. The analysis was carried out according to the simulation
protocol (Tab. 5.1).

1 DOF optimized vs. 5 DOFs optimized: Shoulder abduction/adduction
The results of the %RMSDs between the two conditions (Fig. 5.38, top left) indicate
that when the DOFs to be optimized were increased the %RMSDs for the hand path
increased across all three models. In other words, when less joints were driven by
measured data the deviations between measured movements and movements gen-
erated by different optimal control models raised. However, paired two-sample t-
tests revealed significant differences for mMHJM (T = −9.322, p ≤ .001), MAJM
(T = −5.635, p ≤ .001) and MTCM (T = −3.428, p ≤ .001).

The results of the %RMSDs between the two conditions (Fig. 5.38, top right)
indicate that when the DOFs to be optimized were increased the %RMSDs for the
tangential hand velocities increased across all three models. Paired two-sample t-tests
revealed significant differences for mMHJM (T = −10.396, p ≤ .001) and MAJM
(T = −3.921, p ≤ .001). Paired two-sample t-tests revealed no significant differences
for MTCM (T = −1.563, p = .126).

The results of the %RMSDs between the two conditions (Fig. 5.38, bottom left)
indicate that when the DOFs to be optimized were increased the %RMSDs for the
joint angles increased for mMHJM and decreased for MTCM. The %RMSD for
MAJM remained the same. Paired two-sample t-tests revealed significant differ-
ences for mMHJM (T = −5.211, p ≤ .001) and no significant differences for MAJM
(T = −1.290, p = .205) and MTCM (T = .255, p = .800).

The results of the %RMSDs between the two conditions (Fig. 5.38, bottom right)
indicate that when the DOFs to be optimized were increased the %RMSDs for the
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Figure 5.38: Mean of the %RMSDs for shoulder abduction/adduction under two
different optimization conditions. Error bars indicate the 99 % confidence intervals.

joint angular velocities increased for mMHJM and MTCM. The %RMSD for MAJM
remained the same. Paired two-sample t-tests revealed significant differences for
mMHJM (T = −7.171, p ≤ .001) and MTCM (T = −3.582, p ≤ .001). The paired
two-sample t-tests revealed no significant differences for MAJM (T = −.795, p =
.431).

1 DOF optimized vs. 5 DOFs optimized: Shoulder rotation

The results of the %RMSDs between the two conditions (Fig. 5.39, top left) indicate
that when the DOFs to be optimized were increased the %RMSDs for the hand
path increased across all three models. Paired two-sample t-tests revealed significant
differences for mMHJM (T = −7.083, p ≤ .001), MAJM (T = −5.724, p ≤ .001) and
MTCM (T = −4.501, p ≤ .001).

The results of the %RMSDs between the two conditions (Fig. 5.39, top right)
indicate that when the DOFs to be optimized were increased the %RMSDs for the
tangential hand velocities increased across all three models. Paired two-sample t-
tests revealed significant differences for mMHJM (T = −11.346, p ≤ .001), MAJM
(T = −7.234, p ≤ .001) and MTCM (T = −4.716, p ≤ .001).

The results of the %RMSDs between the two conditions (Fig. 5.39, bottom left)
show that when the DOFs to be optimized were increased the %RMSDs for the
joint angles increased for mMHJM, remained the same for MAJM and decreased
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Figure 5.39: Mean of the %RMSDs for shoulder rotation under two different opti-
miziation conditions. Error bars indicate the 99 % confidence intervals.

for MTCM. Paired two-sample t-tests revealed significant differences for mMHJM
(T = −3.477, p ≤ .001) and no significant differences for MAJM (T = .458, p = .650)
and MTCM (T = .182, p = .857).

The results of the %RMSDs between the two conditions (Fig. 5.39, bottom right)
exhibit that when the DOFs to be optimized were increased the %RMSDs for the
joint angular velocities increased for mMHJM and MTCM and remained the same
for MAJM. Paired two-sample t-tests revealed significant differences for mMHJM
(T = −9.294, p ≤ .001) and MTCM (T = −4.392, p ≤ .001). The paired two-sample
t-tests revealed no significant differences for MAJM (T = .611, p = .545).
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Figure 5.40: Mean of the %RMSDs for shoulder anteversion/retroversion under two
different optimiziation conditions. Error bars indicate the 99 % confidence intervals.

1 DOF optimized vs. 5 DOFs optimized: Shoulder anteversion/retroversion
The results of the %RMSDs between the two conditions (Fig. 5.40, top left) exhibit
that when the DOFs to be optimized were increased the %RMSDs of the hand
paths of mMHJM and MTCM were decreased. In contrast the %RMSDs of the
hand paths of MAJM were increased. Paired two-sample t-tests revealed significant
differences for MAJM (T = −4.320, p ≤ .001) and no significant differences for
mMHJM (T = 1.270, p = .211) and MTCM (T = .240, p = .812).

The results of the %RMSDs between the two conditions (Fig. 5.40, top right)
exhibit that when the DOFs to be optimized were increased the %RMSDs of the
tangential hand velocities of all three optimal control models were increased. Paired
two-sample t-tests revealed significant differences for mMHJM (T = −3.629, p ≤
.001), MAJM (T = −6.089, p ≤ .001) and no significant differences for MTCM
(T = −2.038, p = .048).

The results of the %RMSDs between the two conditions (Fig. 5.40, bottom left)
exhibit that when the DOFs to be optimized were increased the %RMSDs of the
joint angles increased for mMHJM and for MTCM and remained the same for
MAJM. Paired two-sample t-tests revealed significant differences for mMHJM (T =
−6.107, p ≤ .001) and no significant differences for MTCM (T = −2.247, p = .030)
and MAJM (T = −1.136, p = .263).

The results of the %RMSDs between the two conditions (Fig. 5.40, bottom right)
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Figure 5.41: Mean of the %RMSDs for elbow flexion/extension under two different
optimiziation conditions. Error bars indicate the 99 % confidence intervals.

exhibit that when the DOFs to be optimized were increased the %RMSDs for the
joint angular velocities increased for mMHJM and MTCM and remained the same
for MAJM. Paired two-sample t-tests revealed significant differences for mMHJM
(T = −8.662, p ≤ .001) and MTCM (T = −5.462, p ≤ .001). The paired two-sample
t-tests revealed no significant differences for MAJM (T = −.994, p = .326).

1 DOF optimized vs. 5 DOFs optimized: Elbow flexion/extension
The results of the %RMSDs between the two conditions (Fig. 5.41, top left) exhibit
that when the DOFs to be optimized were increased the %RMSDs of the hand paths
of mMHJM, MAJM and MTCM were increased. Paired two-sample t-tests revealed
no significant differences for MAJM (T = 2.606, p = .012), mMHJM (T = −.943, p =
.351) and MTCM (T = −1.778, p = .083).

The results of the %RMSDs between the two conditions (Fig. 5.41, top right)
exhibit that when the DOFs to be optimized were increased the %RMSDs of the
tangential hand velocities of all three optimal control models were increased. Paired
two-sample t-tests revealed significant differences for mMHJM (T = −7.405, p ≤
.001), MAJM (T = −4.993, p ≤ .001) and MTCM (T = −3.523, p ≤ .001).
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Figure 5.42: Mean of the %RMSDs for thorax rotation under two different opti-
miziation conditions. Error bars indicate the 99 % confidence intervals.

The results of the %RMSDs between the two conditions (Fig. 5.41, bottom left)
exhibit that when the DOFs to be optimized were increased the %RMSDs of the
joint angles increased for mMHJM, decreased for MTCM and remained the same for
MAJM. Paired two-sample t-tests revealed significant differences for mMHJM (T =
−8.669, p ≤ .001) and no significant differences for MAJM (T = −1.297, p = .202)
and MTCM (T = .728, p = .471).

The %RMSDs between the two conditions (Fig. 5.41, bottom right) exhibit that
when the DOFs to be optimized were increased the %RMSDs for the joint angular ve-
locities increased for mMHJM and MTCM and remained the same for MAJM. Paired
two-sample t-tests revealed significant differences for mMHJM (T = −8.590, p ≤
.001) and MTCM (T = −4.834, p ≤ .001). The paired two-sample t-tests revealed
no significant differences for MAJM (T = 1.374, p = .177).

1 DOF optimized vs. 5 DOFs optimized: Thorax rotation

The results of the %RMSDs between the two conditions (Fig. 5.42, top left) exhibit
that when the DOFs to be optimized were increased the %RMSDs of the hand paths
of mMHJM were decreased and for MAJM as well as MTCM were increased. Paired
two-sample t-tests revealed significant differences for MAJM (T = −3.712, p ≤ .001)
and MTCM (T = −7.020, p ≤ .001) and no significant differences for mMHJM
(T = .269, p = .789).
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The results of the %RMSDs between the two conditions (Fig. 5.42, top right)
exhibit that when the DOFs to be optimized were increased the %RMSDs of the
tangential hand velocities of all three optimal control models were increased. Paired
two-sample t-tests revealed significant differences for mMHJM (T = −6.259, p ≤
.001), MAJM (T = −6.106, p ≤ .001) and MTCM (T = −9.997, p ≤ .001).

The results of the %RMSDs between the two conditions (Fig. 5.42, bottom left)
exhibit that when the DOFs to be optimized were increased the %RMSDs of the joint
angles increased for mMHJM and MTCM and remained the same for MAJM. Paired
two-sample t-tests revealed significant differences for mMHJM (T = −7.324, p ≤
.001) and MTCM (T = −5.474, p ≤ .001) and no significant differences for MAJM
(T = −1.290, p = .205).

The results of the %RMSDs between the two conditions (Fig. 5.42, bottom right)
exhibit that when the DOFs to be optimized were increased the %RMSDs for the joint
angular velocities were increased for mMHJM and MTCM and remained the same
for MAJM. Paired two-sample t-tests revealed significant differences for mMHJM
(T = −6.452, p ≤ .001) and MTCM (T = −4.357, p ≤ .001). The paired two-sample
t-tests revealed no significant differences for MAJM (T = 1.248, p = .219).

1 DOF optimized vs. 5 DOFs optimized: Torques
The results of the %RMSDs between the two conditions (Fig. 5.43) exhibit that
when the DOFs to be optimized were increased the %RMSDs of the torques of
MTCM were decreased for thorax rotation and shoulder abduction/adduction and
increased for shoulder rotation, shoulder anteversion/retroversion and elbow flex-
ion/extension. Paired two-sample t-tests revealed significant differences for elbow
flexion/extension (T = −3.052, p ≤ .01) and no significant differences for thorax
rotation (T = 1.799, p = .080), shoulder abduction/adduction (T = 2.099, p = .042),
shoulder rotation (T = −1.841, p = .073) and shoulder anteversion/retroversion
(T = −.441, p = .661).
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Figure 5.43: Mean of the %RMSDs of torques for MTCM across the five DOFs
under different optimiziation conditions. Error bars indicate the 99 % confidence
intervals.

5.3.3.3 Similarities between the measured and predicted trajectories

In this section the similarities between the measured and predicted trajectories are
analyzed based on the approach described in section 5.2.8. First, the similarity co-
efficients sim (Eq. 5.16) for each optimized DOF was analyzed separately (Chap.
5.3.3.3.1). The optimization condition “1 DOF optimized” and “5 DOFs optimized”
are respectively shown in one table. The second step involved the analysis of the
similarity coefficients SIM (Eq. 5.17) for the optimization condition “5 DOFs opti-
mized” (Chap. 5.3.3.3.2).

5.3.3.3.1 Similarities between the measured and predicted trajectories of single
DOFs
In this section the similarities between the measured and predicted trajectories of
MHJM, mMHJM, MAJM and MTCM under the two conditions “1 DOF optimized”
and “5 DOFs optimized” are discussed for each of the five DOFs. The analysis was
carried out according to the simulation protocol (Tab. 5.1).
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Table 5.8: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for shoulder ab-
duction/adduction under two optimization conditions. R corresponds to the hand
paths in 3D space, Rp to the tangential velocities of the hand, q to joint angles, qp
to joint angular velocities and T to joint torques.

“1 DOF optimized” “5 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9956 .9958 .9980 .9918 .9956 .9904 .9979 .9916

Rp .9588 .9469 .9787 .9132 .9588 .8531 .9729 .8834

q - .9850 .9934 .9739 - .9692 .9934 .9402

qp - .7788 .8846 .7286 - .6430 .8846 .5543

T - - - .5264 - - - .5372

Shoulder abduction/adduction
The results (Tab. 5.8) for the hand paths (R) exhibited only small differences in the
similarity coefficients between the different optimal control models for both optimiza-
tion conditions. When 1 DOF was optimized MAJM revealed the highest similarity
coefficient for the tangential hand velocities (Rp) followed by MHJM, mMHJM and
MTCM. If 5 DOFs were optimized MAJM exhibited the highest coefficient followed
by MHJM, MTCM and mMHJM. Furthermore, the coefficients were smaller under
the condition “5 DOFs optimized” than under the condition “1 DOF optimized”.
Finally, the coefficients of the tangential hand velocities were smaller than the coeffi-
cients of the hand paths. For the joint angles (q) the optimal control models exhibited
only small differences in the similarity coefficients under the condition “1 DOF opti-
mized”. These differences increased when 5 DOFs were optimized. Thereby, MAJM
showed the closest fit to the measured trajectories followed by mMHJM and MTCM.
In the case of joint angular velocities (qp) MAJM revealed the highest coefficients
under both optimization conditions. The similarity coefficients for the joint torques
(T ) were comparable between the two optimization conditions.
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Table 5.9: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for shoulder rotation
under two optimization conditions. R corresponds to the hand paths in 3D space,
Rp to the tangential velocities of the hand, q to joint angles, qp to joint angular
velocities and T to joint torques.

“1 DOF optimized” “5 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9956 .9976 .9996 .9976 .9956 .9904 .9979 .9916

Rp .9588 .9624 .9915 .9608 .9588 .8531 .9729 .8834

q - .7676 .9704 .8077 - .6641 .9704 .6887

qp - .0659 .8413 .4117 - .0996 .8413 .3346

T - - - .5356 - - - .1911

Shoulder rotation
The results (Tab. 5.9) for the hand paths (R) revealed only small differences in
the similarity coefficients between the different optimal control models for both op-
timization conditions. When 1 DOF was optimized MAJM showed the highest simi-
larity coefficient for the tangential hand velocities (Rp). The coefficients for MHJM,
mMHJM and MTCM were comparable. When 5 DOFs were optimized MAJM ex-
hibited the highest coefficient followed by MHJM, MTCM and mMHJM. Moreover,
the coefficients were smaller under the condition “5 DOFs optimized” than under
the condition “1 DOF optimized”. Finally, the coefficients of the tangential hand
velocities were smaller than the coefficients of the hand paths. In joint space (q
and qp) MAJM showed the closest fit to the measured data followed by MTCM and
mMHJM. Furthermore, these similarity coefficients were much smaller than the co-
efficients of shoulder abduction/adduction. The similarity coefficients for the joint
torques (T ) were substantially higher when 1 DOF was optimized than when 5 DOFs
were optimized.
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Table 5.10: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for shoulder antev-
ersion/retroversion under two optimization conditions. R corresponds to the hand
paths in 3D space, Rp to the tangential velocities of the hand, q to joint angles, qp
to joint angular velocities and T to joint torques.

“1 DOF optimized” “5 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9956 .9999 1.0000 .9999 .9956 .9904 .9979 .9916

Rp .9588 .9916 .9987 .9948 .9588 .8531 .9729 .8834

q - .6113 .9008 .7681 - .2669 .9008 .4921

qp - .3138 .5175 .6428 - .0664 .5175 .3514

T - - - .7190 - - - .6271

Shoulder anteversion/retroversion
The results (Tab. 5.10) for the hand paths (R) exhibited only small differences in
the similarity coefficients between the different optimal control models for both op-
timization conditions. If 1 DOF was optimized the coefficients for the tangential
hand velocities (Rp) of mMHJM, MAJM and MTCM were comparable, whereas the
coefficient of MHJM was smaller. If 5 DOFs were optimized MAJM exhibited the
highest coefficient followed by MHJM, MTCM and mMHJM. Moreover, the coeffi-
cients were smaller under the condition “5 DOFs optimized” than under the condition
“1 DOF optimized”. Finally, the coefficients of the tangential hand velocities were
smaller than the coefficients of the hand paths. In joint space (q) MAJM showed the
closest fit to the measured joint angles followed by MTCM and mMHJM. MTCM
revealed the closest fit to the measured joint angular velocity profiles (qp) under the
condition “1 DOF optimized” followed by MAJM and mMHJM. In contrast, when
5 DOFs were optimized MAJM exhibited the highest similarity coefficients followed
by MTCM and mMHJM. The similarity coefficients for the joint torques (T ) were
higher when 1 DOF was optimized than when 5 DOFs were optimized.
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Table 5.11: Mean of the similarity coefficients between the measured and pre-
dicted trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for elbow
flexion/extension under two optimization conditions. R corresponds to the hand
paths in 3D space, Rp to the tangential velocities of the hand, q to joint angles, qp
to joint angular velocities and T to joint torques.

“1 DOF optimized” “5 DOFs optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9956 .9995 .9999 .9999 .9956 .9904 .9979 .9916

Rp .9588 .9936 .9991 .9811 .9588 .8531 .9729 .8834

q - .5528 .8946 .7178 - .6999 .8946 .3455

qp - .3948 .7447 .6658 - .5750 .7447 .3179

T - - - .1054 - - - .0834

Elbow flexion/extension
The results (Tab. 5.11) for the hand paths (R) revealed only small differences in
the similarity coefficients between the different optimal control models for both opti-
mization conditions. When 1 DOF was optimized the coefficients for the tangential
hand velocities (Rp) of mMHJM, MAJM and MTCM were comparable, whereas
the coefficient of MHJM was smaller. When 5 DOFs were optimized MAJM ex-
hibited the highest coefficient followed by MHJM, MTCM and mMHJM. Moreover,
the coefficients were smaller under the condition “5 DOFs optimized” than under
the condition “1 DOF optimized”. Finally, the coefficients of the tangential hand
velocities were smaller than the coefficients of the hand paths. In joint space (q and
qp) MAJM showed the closest fit to the measured data. The similarity coefficients
for the joint torques (T ) were comparable between the two optimization conditions
and rather small in both cases.
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Table 5.12: Mean of the similarity coefficients between the measured and predicted
trajectories (N = 40) of MHJM, mMHJM, MAJM and MTCM for the thorax ro-
tation under two optimization conditions. R corresponds to the hand paths in 3D
space, Rp to the tangential velocities of the hand, q to joint angles, qp to joint
angular velocities and T to joint torques.

“1 DOF optimized” “5 DOF optimized”

MHJM mMHJM MAJM MTCM MHJM mMHJM MAJM MTCM

R .9956 .9998 1.0000 1.0000 .9956 .9904 .9979 .9916

Rp .9588 .9912 .9996 .9998 .9588 .8531 .9729 .8834

q - .6243 .9826 .9887 - .3889 .9826 .8689

qp - .3372 .8377 .8685 - .0970 .8377 .3975

T - - - .6845 - - - .6099

Thorax rotation
The results (Tab. 5.12) for the hand paths (R) revealed only small differences in
the similarity coefficients between the different optimal control models for both op-
timization conditions. When 1 DOF was optimized the similarity coefficients of the
tangential hand velocities (Rp) between mMHJM, MAJM and MTCM were compa-
rable, whereas the coefficient for MHJM was smaller. When 5 DOFs were optimized
MAJM exhibited the highest coefficient followed by MHJM, MTCM and mMHJM.
The coefficients were smaller under the condition “5 DOFs optimized” than under
the condition “1 DOF optimized”. Furthermore, the coefficients of the tangential
hand velocities were smaller than the coefficients of the hand paths. In joint space
(q and qp) MTCM revealed the highest coefficient followed by MAJM and mMHJM
under the condition “1 DOF optimized”. In contrast, when 5 DOFs were optimized
MAJM exhibited the closest fit to the measured movement followed by MTCM and
mMHJM. In joint space the values for mMHJM and MTCM were smaller when more
DOFs were optimized. The similarity coefficients for the joint torques (T ) were higher
when 1 DOF was optimized than when 5 DOFs were optimized.
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Table 5.13: Mean of similarities coefficients between multiple measured and pre-
dicted joint angles, joint angular velocities and joint torques (N = 40) of the
mMHJM, the MAJM and the MTCM for the shoulder abduction/adduction, shoul-
der rotation, shoulder anteversion/retroversion, elbow flexion/extension and thorax
rotation. Thereby, q corresponds to joint angles, qp to joint angular velocities and
T to joint torques.

mMHJM MAJM MTCM

q .5409 .9064 .5775

qp .2707 .6769 .3236

T - - .4714

5.3.3.3.2 Similarities between the measured and predicted trajectories of mul-
tiple DOFs
The results (Tab. 5.13) of the similarity coefficients between the measured and pre-
dicted trajectories of multiple DOFs revealed that in intrinsic kinematic coordinates
(q and qp) MAJM showed the closest fit to the measured data. The performance of
mMHJM and MTCM was comparable but considerably worse than the performance
of MAJM. The similarity coefficient for the joint torques (T ) was comparable to the
coefficient for target 1 (Tab. 5.7).
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5.4 Discussion

The results outlined above are discussed with respect to the introduced theoretical
assumptions of biological motor control and the development of humanoid robots
that move in a human-like way. Additionally, the applied methods are discussed.

5.4.1 Biological motor control

Movement generation in biological systems is ill-posed in the sense that the task
requirements can generally be met by an infinite number of different movements.
Despite the complexity of the human motor system (Chap. 2.2, 2.4.1.2), behav-
ioral research has discovered various regularities in human goal-directed movements
(Chap. 2.3.3.1, 4). These regularities are key issues in understanding the coordina-
tion of human movements as they seem to indicate some fundamental organizational
principles of the CNS. Optimal control models can reproduce behavioral regularities
on multiple levels (Todorov, 2004). Although these models have been established in
technical literature for some years, a quantitative comparison between the perfor-
mance of these models for multi-joint movements in 3D space is a fairly new concept
(Admiraal et al., 2004; Kaphle and Eriksson, 2008; Gielen, 2009b). Therefore, the
purpose of this study was to quantitatively examine if optimal control models can
reproduce multi-joint pointing movements in 3D space. Optimal control models can
be grouped into open-loop and closed-loop models (Chap. 2.3.3.1). In this study,
we concentrated on open-loop or feed-forward control. It should be recognized that
open-loop models cannot model all types of human movements. The CNS uses feed-
forward control presumably in the context of fast or highly practiced movements
(Heuer and Konczak, 2003). In this context, pointing to distal visual targets, which
are in the visual field of the subjects, is a potential candidate for feed-forward con-
trol. However, it is a difficult task to find the optimal control policy that the CNS
may use to overcome the excessive number of DOFs and choose one movement from
the infinite number of possible movements. Therefore, it is not surprising that in
technical literature different optimal control models are discussed (Kawato, 1996;
Todorov, 2004). Besides the question of which optimization principle the CNS may
use to solve the introduced ill-posed problems of movement generation, it should be
asked on which levels in the sensorimotor system these principles work. Expressly,
in which coordinate frame or space are human movements planned. As outlined in
chapters 2.3.3.1 and 5.1, it is currently impossible to identify the space in which
human movements are planned. We addressed the problem of motor redundancy
and the problem of planning spaces together by comparing trajectories predicted by
optimal control models defined in different planning spaces and using experimentally
determined trajectories. We focused on extrinsic-kinematic space, intrinsic-kinematic
space and intrinsic-dynamic-mechanic space (Fig. 5.1) and tested a minimum hand
jerk model (Flash and Hogan, 1985), a minimum angle jerk model (Wada et al.,
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2001) and a minimum torque change model (Uno et al., 1989). Furthermore, we
developed an optimal control model, referred to as the modified hand jerk model,
which works on both an extrinsic and intrinsic kinematic level. Many studies indicate
a planning in extrinsic coordinates of the hand (Chap. 2.3.3.1). However, planning
purely in extrinsic coordinates without any consideration of joint limits seems de-
batable. Although this model is still in an early stage of development, we examined
the performance of the model compared to the established models discussed in this
study. It should be noted that the experimental design presented here is based on
the assumption that actual trajectories are close to planned trajectories, although
this assumption is generally considered valid (Osu et al., 1997; Nakano et al., 1999).

Target 1

The results of the %RMSDs between the measured and predicted trajectories re-
vealed that none of the optimal control models were able to completely reproduce
human movements. Computer simulations indicate that MAJM has the closest fit
to the measured hand paths. MAJM generated the smallest %RMSDs for all four
DOFs, although in the case of the shoulder anteversion/retroversion, no significant
differences to MHJM and MTCM were observed. MHJM and MTCM produced the
second and third smallest %RMSDs, respectively. For the optimization of elbow
flexion/extension, no significant differences between the %RMSD of the measured
and predicted tangential hand velocities of MAJM and MHJM were noted. The
comparison of the measured and predicted hand trajectories indicate a planning in
intrinsic kinematic coordinates. However, if one understands motor control as a
cascade of sensorimotor transformations (Fig. 2.2), the transformation from extrin-
sic kinematic coordinates to intrinsic kinematic coordinates would be omitted. In
other words, it appears the CNS developed a strategy to avoid at least one of the
ill-posed transformations (Chap. 2.2). If this assumption is correct, MAJM should
also achieve the best results on joint level. The results show that MAJM produced
the smallest %RMSDs in intrinsic kinematic coordinates for all four DOFs (Chap.
5.3.2.2.1). For the optimization of shoulder rotation and elbow flexion, MAJM gen-
erated significantly smaller %RMSDs than the other models. For the optimization of
shoulder abduction/adduction, no significant differences between the measured and
predicted joint angles of MAJM and mMHJM were observed. mMHJM produced
the second smallest %RMSD. Furthermore, no significant differences for the joint an-
gular velocities were detected. In the case of the shoulder anteversion/retroversion,
the differences in the %RMSDs between MAJM and MTCM were not significant.
In addition to the %RMSDs, we calculated similarity coefficients between the mea-
sured and predicted trajectories. MAJM generated the highest coefficients for the
optimization of the DOFs of shoulder abduction/adduction, shoulder rotation and
elbow flexion/extension. In the case of the shoulder anteversion/retroversion, MAJM
produced the highest coefficients for the quantities defined in extrinsic kinematic co-
ordinates. In contrast, MTCM generated the highest coefficients for the quantities
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defined in intrinsic kinematic coordinates. In addition, it should be noted that the
differences between the coefficients in extrinsic kinematic coordinates are sometimes
small. In summary, during the optimization of one DOF, MAJM showed the best
performance across the four DOFs. Based on these findings, a planning in intrinsic
kinematic coordinates seems the most reasonable. Additionally, the 99 % confidence
intervals displayed in figures 5.11, 5.12, 5.13 and 5.14 exhibit large variations of the
means for MTCM. These variations can presumably be attributed to the applied
optimization method (Chap. 5.4.3). Because the optimization process is the most
complex in intrinsic dynamic coordinates, it is conceivable that the optimization
algorithm did not converge in all cases.

The results indicate that although MAJM produced the smallest %RMSDs in all
cases, it is not significantly superior to the remaining optimal control models in all
cases. The mean values of the different optimal control models in figures 5.11, 5.12,
5.13 and 5.14, reveal partly large differences in the %RMSDs for the different DOFs.
This suggests that the CNS may not use one optimization principle in the process of
motor planning, but several models or different combinations of models. Moreover, it
is conceivable that the CNS may use different control strategies for different DOFs.
For example, in shoulder abduction/adduction, the CNS may adopt a minimum jerk
strategy, whereas in the elbow joint, the preferred strategy may be a minimization of
torque change. In this case, it would have to be expected that the performances of
an optimal control model differs for the four DOFs. We therefore tested MAJM and
MTCM to determine if significant differences in the performance for the four DOFs
exist within each model.

In intrinsic kinematic coordinates, MAJM exhibited the smallest %RMSDs be-
tween the measured and predicted joint angles for shoulder abduction/adduction,
followed by elbow flexion/extension, shoulder anteversion/retroversion and shoul-
der rotation (Fig. 5.16). Statistical analysis revealed significant differences between
shoulder abduction/adduction and shoulder anteversion/retroversion and shoulder
rotation. MAJM revealed the smallest %RMSDs between the measured and pre-
dicted joint angular velocities for shoulder abduction/adduction, followed by shoulder
rotation, elbow flexion/extension and shoulder anteversion/retroversion. Statistical
analysis showed that MAJM produced significantly smaller %RMSDs between the
measured and predicted joint angular velocities for shoulder abduction/adduction
than for all other DOFs. Based on these results, a MAJ-strategy seems the most
plausible for shoulder abduction/adduction. A coordinate transformation in ex-
trinsic kinematic coordinates exhibited the smallest %RMSDs for shoulder rota-
tion, followed by shoulder abduction/adduction, elbow flexion/extension and shoul-
der anteversion/retroversion (Fig. 5.16). The statistical analysis yielded signifi-
cant differences between shoulder rotation and elbow flexion/extension as well as
shoulder anteversion/retroversion. Moreover, significant differences between shoul-
der abduction/adduction and elbow flexion/extension, and the shoulder antever-
sion/retroversion were observed. These results indicate that in extrinsic kinematic co-
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ordinates, a MAJ-strategy appears to be more feasible for shoulder abduction/adduc-
tion and shoulder rotation, than for the shoulder anteversion/retroversion and elbow
flexion/extension. Several explanations exists to explain the performance differences
of MAJM in extrinsic and intrinsic kinematic coordinates for the four DOFs. If the
results for hand paths and joint angles are compared, MAJM produced the lowest
%RMSD for shoulder rotation in the extrinsic kinematic coordinates and the high-
est %RMSD in intrinsic kinematic coordinates for the four DOFs. One explanation
could be that a rotation in the shoulder joint does not have a large effect on the hand
path in this movement task. In summary, there are differences in the performance of
MAJM between the individual DOFs and between extrinsic and intrinsic space. Al-
though MAJM reproduced the human shoulder abduction/adduction best, different
movement tasks should be tested in future studies to aid in the improvement of the
understanding of the relationship between movement tasks and planning strategies.

The %RMSDs between the measured and predicted torques of shoulder abduc-
tion/adduction were significantly smaller than the %RMSDs of the shoulder an-
teversion/retroversion and elbow flexion/extension. MTCM produced significantly
smaller %RMSDs between the measured and predicted torques during shoulder ro-
tation than during shoulder anteversion/retroversion. Therefore, a MTC-strategy
seems more likely for shoulder abduction/adduction than for the shoulder antev-
ersion/retroversion or elbow flexion/extension. In addition, a MTC-strategy seems
more probable for shoulder rotation than for the shoulder anteversion/retroversion.
However, due to the intersegmental dynamics, it is difficult to determine in which
DOF a MTC-strategy would be most suitable. A coordinate transformation from in-
trinsic dynamic to intrinsic kinematic space shows that MTCM yielded significantly
smaller %RMSDs for shoulder abduction/adduction than for all other DOFs. A
coordinate transformation from intrinsic-kinematic to extrinsic-kinematic space ex-
hibited the smallest %RMSDs for shoulder abduction/adduction, followed by shoul-
der rotation, shoulder anteversion/retroversion and elbow flexion/extension (Fig.
5.17). Statistical analysis yielded significant differences between the %RMSDs of
the measured and predicted hand paths of shoulder abduction/adduction and shoul-
der anteversion/retroversion as well as elbow flexion/extension. Shoulder rotation
generated significantly smaller %RMSDs than elbow flexion/extension. Further-
more, the %RMSDs of the measured and predicted tangential hand velocities of
shoulder abduction/adduction were significantly smaller than the %RMSDs of elbow
flexion/extension. MTCM generated significantly smaller %RMSDs during shoul-
der rotation than during elbow flexion/extension. As before, there are differences
in performance of the tested optimal control model between the individual DOFs
for the three coordinate frames. Possible explanations for these differences have
been discussed above in the context of MAJM. In summary, MTCM generated the
smallest %RMSDs for shoulder abduction/adduction in extrinsic kinematic coor-
dinates, intrinsic kinematic coordinates and intrinsic-dynamic coordinates. In 11 of
15 comparisons, MTCM produced significantly smaller %RMSDs for shoulder abduc-
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tion/adduction than for the other DOFs. Therefore, a MTC-strategy seems the most
likely for shoulder abduction/adduction. Furthermore, a MTC-strategy does not
seem possible for the shoulder anteversion/retroversion or elbow flexion/extension.
However, as previously stated, due to the complex intersegmental dynamics, it is
difficult to determine in which DOF a MTC-strategy would best be suited because
the torque generation is influenced by the torque generation in neighboring joints.

In addition to the simulations involving one DOF, we conducted simulations with
four DOFs. The results of the %RMSDs between the measured and predicted tra-
jectories revealed that none of the optimal control models were able to completely
reproduce the measured hand trajectories (Fig. 5.15). In extrinsic kinematic space,
MAJM produced the smallest %RMSDs between the measured and predicted hand
paths, followed by MHJM, mMHJM and MTCM. However, statistical analysis re-
vealed no significant differences in the model performance. MAJM also produced the
smallest %RMSDs between the measured and predicted tangential hand velocities,
followed by MHJM, mMHJM and MTCM. Statistical analysis revealed significant dif-
ferences in %RMSDs between MAJM and MTCM, and between MHJM and MTCM.
In intrinsic kinematic coordinates, MAJM produced significantly smaller %RMSDs
than the other optimal control models. In addition to these results, the 99 % con-
fidence intervals of the MTC-trajectories show large variations of the means. This
could be an indication of numerical problems of the optimization algorithm during
the simulations (Chap. 5.4.3). MAJM generated the smallest %RMSDs in extrinsic
and intrinsic coordinates, although statistical analysis yielded no significant differ-
ences between the measured and predicted hand paths of the four optimal control
models. These results can be explained by the fact that one single human hand
path can be the consequence of different joint angle sequences due to the mechanical
redundancy on joint level. In other words, the measured and predicted joint angle
sequences can differ significantly in intrinsic kinematic coordinates and at the same
time result in similar hand paths if transformed into extrinsic kinematic coordinates.
Besides the %RMSDs, we calculated similarity coefficients between the measured and
predicted trajectories. When multiple DOFs were optimized, MAJM generated the
highest coefficients in extrinsic kinematic coordinates (e.g. Tab. 5.3) and intrinsic
kinematic coordinates (Tab. 5.7). It should be noted that the differences between the
coefficients of the hand paths were sometimes small. In summary, MAJM produced
the closest fit to the measured data, indicating a planning in intrinsic kinematic
coordinates.
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In the case of multi-joint optimization, the %RMSD is the result of an optimization
of multiple joints. Tests conducted in this study were used to determine if there are
performance differences for the different DOFs. Large differences could be a sign
that the CNS uses different optimization principles for the DOFs of the human body.
As before, we examined MAJM and MTCM to determine if significant differences in
the approximation of human movements across the four DOFs exist.

In intrinsic kinematic coordinates, MAJM exhibited the smallest %RMSDs be-
tween the measured and predicted joint angles for shoulder abduction/adduction,
followed by elbow flexion/extension, shoulder anteversion/retroversion and shoulder
rotation. Statistical analysis revealed significant differences between shoulder abduc-
tion/adduction and shoulder anteversion/retroversion as well as shoulder rotation.
MAJM revealed the smallest %RMSDs between the measured and predicted joint
angular velocities for shoulder abduction/adduction, followed by shoulder rotation,
elbow flexion/extension and shoulder anteversion/retroversion. Statistical analysis
showed that MAJM produced significantly smaller %RMSDs between the measured
and predicted joint angular velocities for shoulder abduction/adduction than for all
other DOFs. These results correspond to the results of the condition “1 DOF op-
timized”. Because in intrinsic kinematic coordinates each DOF is optimized sepa-
rately, these results indicate a correct performance of the computational framework.
Furthermore, these results suggest that it is more likely that the CNS uses a MAJ-
strategy for movement planning in the DOF of shoulder abduction/adduction than
in the other tested DOFs.

MTCM produced the smallest %RMSDs for shoulder abduction/adduction, fol-
lowed by shoulder rotation, shoulder anteversion/retroversion and elbow flexion/ex-
tension in intrinsic dynamic coordinates. Statistical analysis revealed significant dif-
ferences between the %RMSDs of shoulder abduction/adduction and the shoulder
anteversion/retroversion. MTCM showed significantly smaller %RMSDs in intrinsic
kinematic coordinates for shoulder abduction/adduction than for the other DOFs.
These results indicate that a MTC-strategy appears most likely for shoulder abduc-
tion/adduction. In addition, the 99 % confidence intervals indicate large deviations
of the means that may be explained by numerical problems in the optimization al-
gorithm during the simulation (Chap. 5.4.3). In summary, a MTC-strategy appears
most plausible for shoulder abduction/adduction.

Two results were robust across the two conditions “1 DOF optimized” and “4
DOF optimized”. Firstly, MAJM showed the closest fit to the measured data in
both extrinsic kinematic coordinates and intrinsic kinematic coordinates, indicating
that motor planning may take place in intrinsic kinematic coordinates. Secondly,
significant differences across the optimized DOFs were found for MAJM and MTCM,
indicating that the CNS may use more than one optimization principle to reduce
the available DOFs. However, under both optimization conditions and for both
optimal control models, the optimization of shoulder abduction/adduction exhibited
the closest fit to the measured data. It should be noted that MAJM produced
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significantly smaller %RMSDs between the measured and predicted joint angles under
both conditions than MTCM. Moreover, MTCM showed high mean values for the
%RMSDs with large confidence intervals. The results do not necessarily indicate
that MTCM cannot reproduce measured movements nor do they suggest that this is
a strategy the CNS does not use. Because the optimization on torque level is very
complex and the results indicate that the optimization algorithm did not converge
in all cases, the poor results may in some cases be attributable to methodological
problems.

Target 3

The results of the %RMSDs between the measured and predicted trajectories re-
vealed that none of the optimal control models were able to completely reproduce
the measured movements. MAJM generated significantly smaller %RMSDs in extrin-
sic kinematic coordinates across all five DOFs than the other models (Fig. 5.30, 5.31,
5.32, 5.33, 5.34), with two exceptions. For shoulder abduction/adduction, mMHJM
exhibited a comparable performance for the tangential hand velocities and for thorax
rotation, MTCM produced comparable results. Moreover, MTCM showed relatively
high mean values for the %RMSDs with large confidence intervals, which can most
likely be explained by methodological problems. The comparison of the measured and
predicted hand trajectories indicate a planning in intrinsic kinematic coordinates. In
the case of thorax rotation, a planning in intrinsic dynamic coordinates appears to be
possible. As before, these results likely indicate that the CNS uses different optimiza-
tion principles or combinations of optimization principles. These interpretations are
corroborated by the findings on the joint level. MAJM produced significantly smaller
%RMSDs across all five DOFs in intrinsic kinematic coordinates than all other models
(Fig. 5.30, 5.31, 5.32, 5.33, 5.34). As before, the statistical analysis revealed two ex-
ceptions. Comparable results were produced for both shoulder abduction/adduction
by mMHJM and thorax rotation by MTCM. In addition to the %RMSDs, similarity
coefficients between the measured and predicted trajectories were calculated. MAJM
generated the highest coefficients for the optimization of the DOFs of shoulder ab-
duction/adduction, shoulder rotation and elbow flexion/extension. In the case of the
shoulder anteversion/retroversion, MAJM produced the highest coefficients for the
quantities defined in extrinsic kinematic coordinates and for the joint angular profiles,
whereas MTCM exhibited the highest coefficients for the joint angular velocity pro-
files. In the case of thorax rotation, MAJM generated the highest coefficients for the
hand paths, whereas MTCM exhibited the highest coefficients for the tangential hand
velocities, the joint angular profiles and the joint angular velocity profiles. It should
be noted that the differences between the coefficients are sometimes small. The 99 %
confidence intervals of the %RMSDs of joint angle trajectories displayed in figures
5.30, 5.31, 5.32, 5.33 exhibit large variations of the means for MTCM compared to
mMHJM and MAJM. However, these variations likely indicate that the optimization
algorithm did not converge in all cases. In summary, during the optimization of one
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DOF, MAJM showed the best performance across the five DOFs. Based on these
findings, a planning in intrinsic kinematic coordinates seems the most feasible.

The results indicate that although MAJM produced, in most cases, the smallest
%RMSDs, it is not in any case superior to the other optimal control models. Fur-
thermore, the mean values of the different optimal control models in figures 5.30,
5.31, 5.32, 5.33, 5.34 reveal moderately large differences in the %RMSDs across the
different DOFs. These findings indicate that the CNS may not use a single optimiza-
tion principle in the process of motor planning but different planning strategies for
different DOFs. We therefore tested MAJM and MTCM to determine if there are
significant differences in the performance across the five DOFs.

In extrinsic kinematic coordinates, the statistical analysis for MAJM across the
five DOFs yielded no significant differences between the %RMSDs of the measured
and predicted hand paths and the tangential hand velocities (Fig. 5.36). Moreover,
no significant differences for the five DOFs between %RMSDs of the measured and
predicted joint angles were found. In contrast, statistical analysis revealed signifi-
cant differences across the five DOFs between %RMSDs of the measured and pre-
dicted joint angular velocities. MAJM produced the smallest %RMSD for shoulder
abduction/adduction, which is significantly smaller than the %RMSDs of shoulder
rotation, shoulder anteversion/retroversion and elbow flexion. These findings suggest
that MAJM is able to approximate the measured angle paths across the five DOFs
in a similar quality, but not the joint angular velocity profiles. Based on the results,
it seems apparent that the CNS does not use only a MAJ-strategy to reduce the
available DOFs. However, in extrinsic kinematic coordinates no differences across
the individual DOFs were found.

MTCM showed no significant differences across the five DOFs (Fig. 5.37) in in-
trinsic dynamic coordinates. In intrinsic and extrinsic kinematic coordinates, sta-
tistical analysis yielded significantly smaller %RMSDs for thorax rotation than for
all other DOFs, with one exception. Although the %RMSD between the measured
and predicted joint angles of thorax rotation is smaller than that of shoulder abduc-
tion/adduction, the differences are only significant in trend. These findings indicate
that at least for the kinematics, a MTC-strategy appears to be the most likely model
for thorax rotation. However, this result cannot be confirmed on torque level because
there were no significant differences between the five DOFs. As previously noted, due
to the complex intersegmental dynamics, it is difficult to determine in which DOF a
MTC-strategy would be most feasible because torque generation is influenced by the
torque generation in neighboring joints.

In addition to the optimizations for one DOF, we conducted simulations for five
DOFs. MAJM produced the smallest %RMSDs in intrinsic kinematic coordinates
and extrinsic kinematic coordinates (Fig 5.35). In intrinsic kinematic coordinates,
MAJM was superior to all other optimal control models. Furthermore, MAJM gener-
ated significantly smaller %RMSDs between the measured and predicted hand paths
than mMHJM and MTCM. Statistical analysis yielded no significant differences be-
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tween the %RMSDs of the measured and predicted hand paths of MAJM and MHJM.
Moreover, MAJM produced smaller %RMSDs between the measured and predicted
hand tangential velocities than all other optimal control models. In addition to the
%RMSDs, similarity coefficients between the measured and predicted trajectories
were calculated. When multiple DOFs were optimized, MAJM generated the highest
coefficients in extrinsic kinematic coordinates (e.g. Tab. 5.8) and intrinsic kinematic
coordinates (Tab. 5.13). It should be noted that the differences between the co-
efficients of the hand paths were sometimes small. In summary, MAJM produced
the closest fit to the measured data, suggesting a planning in intrinsic kinematic
coordinates. However, mMHJM was developed because an exclusive planning in
extrinsic kinematic coordinates likely results in a trajectory that cannot be repro-
duced in intrinsic kinematic coordinates due to joint limits. MHJM was therefore
modified to also consider joint limits as a boundary condition during the planning
process. Thus, while the optimization takes places in extrinsic kinematic coordinates
and is subject to joint limits, mMHJM has no restrictions in the intrinsic kinematic
coordinates. Therefore, it had to be expected that under the condition “5 DOF op-
timized”, mMHJM would produce high %RMSDs in intrinsic kinematic coordinates.
In future studies, additional constraints in intrinsic kinematic coordinates should be
incorporated.

In the case of multi-joint optimization, the %RMSD is the result of an optimization
of multiple joints. We tested performance differences across different joints. Large
differences may indicate that the CNS does not use a single optimization principle in
the process of motor planning, but several principles, combinations of principles or
different principles for different joints. As before, we examined MAJM and MTCM to
determine if there were significant differences in the approximation of the measured
movements across the five DOFs.

We found no significant differences across the five DOFs between %RMSDs of the
measured and predicted joint angles by MAJM (Fig. 5.36). In contrast, statistical
analysis revealed significant differences across the five DOFs between %RMSDs of
the measured and predicted joint angular velocities. MAJM produced the smallest
%RMSD for the angular velocities of shoulder abduction/adduction, which is signifi-
cantly smaller than the %RMSDs of shoulder rotation, shoulder anteversion/retrover-
sion and elbow flexion/extension. These results correspond to the results of the con-
dition “1 DOF optimized”. In the case of MAJM, each DOF is optimized separately
and the results indicate that the optimization algorithm works correctly. The find-
ings suggest that MAJM is able to approximate the measured angle paths across the
five DOFs in a similar quality, but is not able to predict the measured joint angular
velocity profiles. Based on the results, it appears that the CNS does not exclusively
use a MAJ-strategy to reduce the available DOFs.

MTCM produced the smallest %RMSDs between the measured and predicted joint
torques for shoulder abduction/adduction followed by thorax rotation, shoulder an-
teversion/retroversion, elbow flexion and shoulder rotation (Fig. 5.37).
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The %RMSDs for shoulder abduction/adduction were significantly smaller than the
%RMSDs of thorax rotation, shoulder anteversion/retroversion and elbow flexion/ex-
tension. There were no significant differences between shoulder abduction/adduction
and shoulder rotation. The extremely large mean value and the large deviation of
the 99 % confidence interval of the %RMSDs of shoulder rotation suggest the oc-
currence of numerical problems during the optimization process. An inspection of
the simulation data confirms this assumption. In a few cases, the optimization al-
gorithm did not converge. A coordinate transformation to intrinsic kinematic co-
ordinates yielded the result that MTCM produced the smallest %RMSDs between
the measured and predicted joint angles for shoulder abduction/adduction followed
by elbow flexion/extension, shoulder rotation, thorax rotation and shoulder antev-
ersion/retroversion. Moreover, the %RMSD of shoulder abduction/adduction was
significantly smaller than the %RMSDs of shoulder rotation, thorax rotation and
the shoulder anteversion/ retroversion. Statistical analysis yielded significant differ-
ences by trend between shoulder abduction/adduction and elbow flexion. MTCM
produced the smallest %RMSDs between the measured and predicted joint angular
velocities for shoulder abduction/adduction followed by thorax rotation, shoulder ro-
tation, shoulder anteversion/retroversion and elbow flexion/extension. The %RMSDs
of shoulder abduction/adduction were significantly smaller than the %RMSDs of
shoulder rotation, shoulder anteversion/retroversion and elbow flexion/extension.
The statistical analysis yielded no significant differences between shoulder abduc-
tion/adduction and thorax rotation. When five DOFs are optimized, a MTC-strategy
appears to be most likely for shoulder abduction/adduction.

In summary, despite several inhomogeneous results, two findings were consistent
across the two conditions “1 DOF optimized” and “5 DOFs optimized”. First, MAJM
showed the closest fit to the measured data in extrinsic kinematic coordinates and
intrinsic kinematic coordinates, indicating that motor planning may take place in
intrinsic kinematic coordinates. Second, several differences for MAJM and MTCM
across the optimized DOFs were found, indicating that the CNS may use different
optimization principles in different DOFs to reduce the available DOFs. The results of
MTCM indicate differences between the measured trajectories and MTC-trajectories
that appear to be a result of the optimization method.
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Overall discussion of the results
The purpose of this study was to examine if optimal control models can reproduce
measured multi-joint movements in 3D space. In testing different optimal control
models assigned to different planning spaces, we also examined on which level these
principles may work in the CNS. The results showed that none of the optimal control
models could precisely reproduce the measured trajectories. However, due to noise in
the sensorimotor system (Faisal et al., 2008), the complex intersegmental dynamics
during movement production (Flash et al., 2003) and some methodological problems
(Chap. 5.4.3), planned and executed movements will always differ to a certain extent.
MAJM exhibited the closest fit to the measured data across both movement tasks.
Based on the results of this study, it is most likely a planning in intrinsic kinematic
coordinates occurs. However, due to the fact that MAJM did not fully reproduce the
measured trajectories, an exclusive planning in intrinsic kinematic coordinates based
on a MAJ-principle appears to be debatable.

MHJM produced straight hand paths with single-peaked, bell-shaped velocity pro-
files for all trials. Our analysis revealed that humans produce curved hand paths
with single-peaked, nearly bell-shaped velocity profiles (Chap. 4). However, it is
conceivable that the CNS plans straight trajectories that are distorted during exe-
cution due to the complex intersegmental dynamics (Dean et al., 1995; Flash et al.,
2003).

MTCM exhibited large mean values for the %RMSDs with large confidence in-
tervals. These results do not necessarily indicate that MTCM cannot reproduce
measured trajectories or that the CNS does not use this strategy. Because the op-
timization on torque level is very complex and the results partly indicated that the
optimization algorithm did not converge, the poor results of MTCM may to some
extent be explained by methodological problems (Chap. 5.4.3).

Although MAJM showed a relatively close fit to the measured trajectories, it gave
no explanation as to why the smoothness of movement is important. It is debatable
whether the CNS is able to estimate such complex quantities. Furthermore, some au-
thors (Feldman, 2006) even doubt that the CNS has direct access to these quantities.
An alternative to MAJM is the minimum variance model by Harris and Wolpert
(1998). This model assumes there is noise in the motor command and that the
amount of noise is proportional to the magnitude of the motor command. There are
several important ramifications associated with this model. First, non-smooth move-
ments require larger motor commands than smooth movements and consequently
generate an increase in noise. In the case of goal-directed movements, smoothness
leads to accuracy but is not a specific goal of its own right. Second, signal-dependent
noise inherently imposes a trade off between movement duration and final accuracy
in the endpoint of the movement, consistent with Fitts law (Chap. 2.3.1.1). Third,
the minimum variance model provides a biologically plausible theoretical underpin-
ning for goal-directed movements. This is possible because such costs are directly
available to the CNS and the optimal trajectory could be learned from the experi-
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ence of repeated movements (Jordan and Wolpert, 1999). Our results indicate that
the CNS may combine different optimization strategies in motor planning. In other
words, depending on the task or the DOF to be optimized, the CNS may choose
the appropriate principle or combination of principles. mMHJM is a first attempt
at implementing this idea. A task dependent selection of optimization principles has
been implemented in the optimal stochastic feedback control approach of Todorov
and Jordan (2002). The study tried to develop a model that captures the remarkable
property of biological movement systems to accomplish complex movement tasks in
the presence of noise, delays and unpredictable changes in the environment. In this
context, open-loop models are suboptimal. What is needed is an elaborate feedback
control scheme that generates intelligent adjustments online. Such a control scheme
would enable biological systems to solve a control problem repeatedly rather than
repeating a single solution (Bernstein, 1967). This idea was recently realized by
Todorov and Jordan (2002) in terms of an optimal feedback controller. In a closed-
loop optimization model, the controller is fully programmable. That is, it constructs
the best possible transformation from states of the body and environment into con-
trol signals. The idea is that the controller does not rely on preconceived notions of
what control principle the sensorimotor system may use, but does what is required
to accomplish the task. In other words, optimal feedback control allows the task
and the plant to dictate the control scheme which best fit. In an isometric task, this
may be a force control scheme and in a postural task where a target limb position
is specified, this may be a position control scheme. Due to the fact that the state of
the plant is only observable through delayed and noisy sensors, the controller is only
optimal if the state estimator is optimal. Although the minimum variance approach
and the optimal stochastic feedback control approach are more feasible in physiolog-
ical terms, until now, no studies have been conducted where these approaches are
tested for multi-joint movements in 3D space. Furthermore, the optimal feedback
control approach does not have an answer as to how the CNS chooses one or more
adequate optimization principles and how these principles are weighed.

5.4.2 Robotics

As outlined in chapter 4.1, the fields of biological motor control and robotics are
related (Schaal and Schweighofer, 2005; Ijspeert, 2006) and by now an exchange
of ideas has begun to take place (Hollerbach, 1982; Beer et al., 1998; Sternad and
Schaal, 1999; Piazzi and Visioli, 2000; Atkeson et al., 2000; Sun and Scassellati,
2005; Konczak, 2005; Stein et al., 2006). Thus, the field of robotics has proved to be
a useful field for developing and testing hypotheses about biological motor control.
In other words, models of biological motor control can be corroborated or discarded
by testing them on robots. Furthermore, breakthroughs in understanding certain
aspects of human motor control have often been brought about by computational
studies (Flash and Hogan, 1985; Bullock and Grossberg, 1988; Uno et al., 1989;
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Hoff and Arbib, 1993; Shadmehr and Mussa-Ivaldi, 1994; Harris and Wolpert, 1998;
Todorov and Jordan, 2002). These studies are more or less based on classical fields of
engineering such as cybernetics (Wiener, 1948), optimal control (Bellman, 1957) and
control theory (Slotine and Li, 1991). On the other hand, the capabilities of biological
systems by far surpass those of artificial systems (Flash et al., 2004). Therefore, it
is likely the body of knowledge gained in the field of biological motor control could
help engineers develop hardware and software components for humanoid robots used
to generate human-like movements and for operating in an environment built for
humans. The field of computational neuroscience still is and will continue to be an
important interface between the field of biological motor control and robotics.

The computational framework for movement generation presented in this thesis
is transferable to humanoid robots. However, it should be examined whether the
engines of the robot can generate the calculated torques and therefore the calculated
movements. If the required torques are unattainable, the maximum capacity of the
different robotic engines may be used as another boundary condition during the
optimization process, similar to the maximum movement amplitudes of the different
joints. A more serious problem to be considered is the required computing time of
the different optimal control models. In this context, one must distinguish between
the multibody algorithm of the biomechanical model and the optimization algorithm.
Furthermore, different optimal control models have different computing times. For
example, a trajectory generated by a MHJM requires only a few seconds, whereas a
trajectory generated by a MTCM may take minutes to several hours on a standard
workstation. In case of optimal control models defined in intrinsic kinematic (MAJM)
or dynamic coordinates (MTCM), the number of DOFs to be optimized has an
impact on the computing time. Solutions for the problem of computing time must
be considered on different levels. First, the computing power of workstations will
grow in the coming years and consequently, the required computing time of optimal
control models will decrease. In addition to computing power, it is necessary to
determine if optimization algorithms exist with a lower computational complexity
(see applied methods). In this study, the multibody algorithm and the optimization
algorithm have been implemented in Matlab. A translation of the Matlab code to
C/C++ code would likely improve computing time. Another solution to the online
movement generation problem may be the creation of look-up tables. Movements
for certain tasks may be calculated offline and stored in a data table. However, in
using this method, the problem of computing time is transferred to a data storage
problem. Furthermore, the constraints of the precomputed trajectories need to be
fulfilled to be able to use those precomputed trajectories in future situations. This
approach is comparable to early concepts of motor programs in biological motor
control (Keele, 1968). It was assumed that the human CNS stores motor programs in
the brain and plays them like tapes to control movements. However, in the context of
biological motor control, the precomputation of movements seems rather implausible
because muscular torques at each joint depend on the moment of inertia, length,
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mass and center of mass of each segment. In contrast to robots, these parameters
change constantly during the ontogenesis in biological systems. Therefore, all motor
programs would need to be reprogrammed permanently.

Based on the discussion of the results of this study, the model best suited to
approximate measured movement behavior appears to be MAJM. The application
of a MAJM in robotics would have the advantage of solving the inverse kinematics
problem (Chap. 2.2) because the motor planning takes place in intrinsic kinematic
coordinates. Furthermore, in contrast to human motor control, the science of robotics
does not have to address the question of why the CNS should use a minimum angle
jerk principle in movement generation. In robotics, this strategy can be used as a
black box model provided it generates human-like trajectories.

The use of optimal control models in robotics is a contemporary issue (Piazzi
and Visioli, 2000; Gasparetto and Zanotto, 2008). Some authors are of the opinion
that the “reverse engineering” problem for finding the correct optimal control model
that results in human-like behavior cannot be solved. Thus, in robotics research,
the problem of trajectory planning is addressed with alternative methods like the
dynamic movement primitives approach (Hoffmann et al., 2009; Pastor et al., 2009).

5.4.3 Applied methods

It has become more and more challenging to establish links between the different
research areas in human motor control focusing on neural control, the musculoskele-
tal mechanics or motor behavior (Fig. 2.20). For the development of a cohesive
framework incorporating the results from different levels of analysis, motor control
models must be constructed. Certain details of such models can be tested by care-
fully designed experiments. However, whether or not the overall model works usually
relies on the intuition of the modeler, which may be wrong. Therefore, a promising
way of integrating the three levels appears to be the construction of a computational
model of human motor control. Given a certain movement task, the computational
model can be used to generate movements via computer simulation. The results
of the computer simulations can then be compared to the results of biomedical or
biomechanical experiments and thus, the functionality of the computational model
can be tested. In this thesis, this approach was used to address the problem of motor
redundancy (Chap. 2.2). The computational framework consists of a biomechanical
multibody model and different optimal control models. The optimal control models
are a combination of an optimization criterion (e.g. minimum angle jerk) and an
optimization method. The biomechanical model was discussed in chapter 4.4 and
the suitability of different optimization criteria in the context of biological motor
control was discussed above. Hence, in connection with the developed computational
framework, the following discussion will focus on the optimization method. In addi-
tion, the methodological approach of optimizing some DOFs and driving others with
experimental data will be analyzed. Furthermore, the methods used to compare the
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experimentally determined trajectories with the trajectories predicted by the differ-
ent optimal control models shall be discussed. The movement tasks used to test the
different optimal control models are discussed below.

Test data

To understand the functionality of the human motor system, it is reasonable to work
on goal-directed daily-life movements like pointing gestures that are less complex
than most movements in sports, but are still ecologically valid. This is an impor-
tant issue because artificial labor tasks sometimes require movements not used by
humans in their daily routine. In future studies, the different optimal control models
should to be examined with respect to new movement tasks. For instance, movement
tasks of different complexity need to be analyzed, including movements with different
DOFs and a different number of DOFs. Furthermore, the movement tasks should
be accomplished with different movement strategies like movements with flexed and
extended arms. In addition, subjects should perform these movements under pres-
sure of time or pressure of accuracy. It is known from Fitt’s law (Fitts, 1954) that
humans cannot move as fast as possible and as accurately as possible at the same
time. Such test data may help to enhance the understanding in which situations the
CNS chooses which principle or combination of principles.

Optimization method

Mathematically, the optimization problem to be solved involves the optimization of a
general nonlinear cost function with nonlinear constraints, bounds for the optimized
variables and boundary conditions for the start and target time. The optimization
method used in this thesis was introduced in chapter 5.2.6. The reader is referred to
the thesis of Simonidis (2010) for a more detailed description of the method. A pilot
study was conducted to validate the algorithm prior to the application of the opti-
mization method. Therefore, we used a less complex task than the one the method
was originally developed for. The idea was to use tasks where the solution is well
known and therefore, the behavior of the optimization method could be judged. In
the case under consideration, the optimization method was validated with a two-joint
pendulum. The results revealed that the algorithm works correctly (Chap. 5.3.1). In
the main study, the optimization algorithm converged towards an optimum in most
cases. However, the results of the means and 99 % confidence intervals indicate that
in a few cases, the optimization algorithm was not able to find an optimal solution
(e.g. Fig. 5.22, elbow flexion/extension and Fig. 5.43). In the cases where the opti-
mization method did not achieve satisfactory results, a problem-specific adaptation
would be necessary. We transformed the optimization problem into an unconstrained
quadratic parameter optimization problem. The trajectories were discretized into
a parameter dependent set of trajectories using a temporal finite element method
(Eriksson, 2008). At equidistant time instances, nodes were chosen and values be-
tween these nodes were interpolated by piecewise Hermite splines. There are two
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possibilities to improve the performance of the splines. First, the number of nodes
can be changed and second, splines of a different order or different type can be used.
Preliminary tests showed that both elements have an impact on the performance of
the optimization algorithm. We chose a configuration of the algorithm that yielded
acceptable results in most cases. In future studies, more intensive pretests should to
be conducted to better adapt the algorithm to the problem at hand. Furthermore,
automation of this process should be considered.

Most practically relevant optimization problems are extremely complex. The cor-
responding solution spaces are characterized by complex topographical structures,
which tend to have multiple local optima (Fig. 5.44). In other words, if an optimum
identified by an optimization algorithm corresponds to the global optimum cannot be
determined with certainty. In the case under consideration, we are dealing precisely
with this problem. One way to resolve this issue is to run the optimization algorithm
with different numbers of nodes and different types of splines. A comparison of the
results may help to enhance the performance of the algorithm and assess the quality
of the solutions. Another possibility is to use a second optimization method and com-
pare the results of both methods. Numerous optimization algorithms are discussed
in technical literature (Lu and Antoniou, 2007). Given a complex optimization prob-
lem, the algorithm must incorporate two techniques to be able to find an optimum.
First, the algorithm has to be able to explore new and unknown areas of the so-
lution space. Second, the algorithm has to make use of knowledge found at points
previously visited to find better solutions in future iterations. The first technique is
called exploration and the second is referred to as exploitation. These two techniques
are contradictory and therefore, an optimum trade off that can change during the
search process has to be found. A class of optimization methods incorporating these
two techniques are evolutionary algorithms. The different types of evolutionary algo-
rithms are well described in the book of Baeck et al. (1997). Wiemeyer and Friederich
(2001) showed that optimization criteria and genetic algorithms can be combined in
optimal control models.

Simulation design

One of the major challenges in the examination of human motor control is the expan-
sion of the analysis to daily-life multi-joint movements in 3D space and to evaluate
if the theories developed for 2D movements remain valid. The computational frame-
works needed for this purpose are very complex. Development of the frameworks is
usually an iterative process in which the level of complexity gradually increases. On
each level of development, experiments need to be conducted to validate the current
status of the computational framework, and for each validation, additional exper-
iments need to be performed. Therefore, a data set that can be used during the
process of model building for validation purposes is required. In the process of model
building, the complexity of the calculations has to be increased gradually. Therefore,
in our experiments only some of the joints are optimized while others are driven by
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Figure 5.44: Hypothetical solution space of an optimization problem with several
local optima. In the case of a maximization problem, the optimization algorithm
has to find the dark red area of the highest peak and in the case of a minimization
problem, the optimization algorithm has to find the dark blue area of the deepest
valley.
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experimentally determined data. For this reason, we examined whether an increase
in the number of DOFs to be optimized has an effect on performance of mMHJM,
MAJM and MTCM (Chap. 5.3.2.2.3, 5.3.2.3.1, 5.3.3.2.3, 5.3.2.3.1).

In the case of mMHJM, the optimization was conducted on hand level (extrinsic
coordinates of the hand). As an additional boundary condition during the optimiza-
tion, the limits of the individual DOFs were fixed. Therefore, during the optimiza-
tion, some of the joint movements were driven by experimental data and while other
joints (DOFs) were released, meaning that the optimization method can use this
DOF within the joint limits to find a minimum hand jerk trajectory. The question to
be answered is whether an increase in the released DOFs has an effect on the perfor-
mance of mMHJM in extrinsic kinematic coordinates. The results of the %RMSDs
of the hand paths and the tangential velocities of the hand are for both targets inho-
mogeneous, indicating that the results are highly dependent on the individual DOF
that is released for the optimization. In contrast, the similarity coefficients clearly
show that with an increase in the DOFs to be released, the similarity between the
measured and predicted trajectories decreases.

The results of the %RMSDs and the similarity coefficients of MAJM indicate no
differences between the two optimization conditions in intrinsic kinematic coordinates
for either target. This result was expected because each joint is optimized in isolation.
A calculation of the forward kinematics showed that an increase in the DOFs to be
optimized has, in most cases, an effect on the differences and similarities between the
measured and predicted trajectories of the hand, and the tangential velocity profiles.
The effects are difficult to predict because of the kinematic redundancy of the human
body.

In case of MTCM, the optimization was conducted on torque level. In the first
movement task (target 1), we found no significant differences between the %RMSDs
of the two optimization conditions. In the second movement task (target 3), we
found no significant differences in the shoulder joint and thorax rotation. However,
our calculations for the elbow joint revealed significant differences between the two
optimization conditions. The differences in intrinsic kinematic coordinates after the
calculation of the forward dynamics and the differences in extrinsic kinematic co-
ordinates after the calculation of the forward kinematics can not be predicted. As
previously discussed, the optimization on torque level is very complex and the results
indicate that the optimization algorithm did not converge in all cases. Therefore, a
quality improvement of the optimization method may influence the described results.

In the case of mMHJM and MTCM, the results are difficult to interpret because
methodological problems remain. However, the results indicate that for the optimal
control models defined in intrinsic coordinates, the transformation from one coor-
dinate frame to another coordinate frame (e.g. forward kinematics or forward dy-
namics) is nonlinear. In other words, small differences between the two optimization
conditions in intrinsic kinematic coordinates can lead to large differences in extrinsic
kinematic coordinates and vice versa. Therefore, future studies should include a data
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Figure 5.45: The blue trajectory is a sinusoidal oscillation y = sin(x) with equidis-
tant time instances i = 0.01 on the interval x = [0, . . . , 2π]. The red and green
trajectories indicate two hypothetical approximations of this oscillation by two dif-
ferent models. Each of them has a %RMSD of 10 but different similarity coefficients
(sim).

set (see section “Test data”) that consists of different movement tasks of different
complexity, e.g. movements with different DOFs and a different number of DOFs.

Determination of model quality

It was shown in chapter 2.3.3.1 that in the context of optimal control models, a lot
of research has been conducted on simple 2D movements. In contrast, the use of
those models is still in an investigate phase for multi-joint movements in 3D space
(Flash et al., 2003; Hermens and Gielen, 2004; Admiraal et al., 2004; Gielen, 2009b).
Consequently, the purpose of this study was to quantitatively examine if optimal
control models can reproduce multi-joint movements in 3D space. However, a prob-
lem arising when analyzing multi-joint movements in 3D space is the choice of metric
for quantitative comparison the different models (Gielen, 2009b). We developed a
three step process to compare experimentally determined trajectories with trajecto-
ries predicted by different optimal control models. In the first step, the results of
all simulation runs were qualitatively examined for a first impression of the behavior
of the models. The variations and similarities between the measured and predicted
movement data were of specific interest. Because the development of a computational
model is an iterative process, beginning with a qualitative analysis of the results is
very important to be able to detect potential errors as early in the development
process as possible. If the computational model has achieved a certain quality and
can be used for hypothesis testing, quantitative analysis should then to be carried
out. Therefore, we quantitatively analyzed the differences between the measured and
predicted movement data as a second step. We specified the differences between two
time series by the %RMSD. Because the %RMSD is a discrete value, it can be used
as a quantity for the model fit. In addition, the differences in the %RMSDs between
the measured and predicted movement data of different optimal control models can
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be analyzed using methods from inferential statistics. However, figure 5.45 indicates
that an exclusive comparison of different optimal control models on the basis of the
%RMSD is insufficient for the determination of the best fit model. Both models
in figure 5.45 produced a %RMSD of 10. However, the second model shows strong
oscillations indicating a large number of submovements, which are uncommon in hu-
man trajectories. Because of that, we calculated a similarity coefficient between the
measured and predicted trajectories in a third step. The results from the calculations
show that the similarity coefficient is able to detect the differences in similarity of the
two hypothetical model outputs. Although this three step procedure appears to be
adequate, future studies should quantitatively analyze amplitudes and peak values
of trajectories for assessing the quality of the different optimal control models more
comprehensively.
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This thesis is a culmination of the author’s work in the CRC 588 “Humanoid Robots
- Learning and Cooperating Multimodal Robots” project over the past five years.
Within the field of robotics humanoid robots have been constructed that are able to
deal with a large number of degrees of freedom (DOFs) (Fig. 1.1). This redundancy
is advantageous because it enables robots to avoid obstacles and joint limits (Atkeson
et al., 2000). However, this flexibility leads to a control problem. Which particular
movement among the large number of possible movements should be chosen in a given
situation? Similar problems exist in biological motor control. Imagine sitting in front
of a glass of water. Take a drink from the glass would require grasping the glass and
directing it toward the mouth. However, when you feel thirsty, you simply grasp the
glass and take a drink without much thought. In doing so, we are controlling perhaps
one of the most complex systems ever created by nature. The human movement
system consists of billions of interconnected neurons, approximately 800 muscles and
over 200 mechanical DOFs. This highly redundant system enables us to achieve
movement tasks, such as the one just described, in countless ways. How exactly the
CNS overcomes this redundancy and chooses one movement from of the many possible
movements is still unknown. In chapter 1, it was shown that the fields of biological
motor control and robotics have already begun to interact (Schaal and Schweighofer,
2005; Ijspeert, 2006) and exchanged ideas (Hollerbach, 1982; Beer et al., 1998; Sternad
and Schaal, 1999; Piazzi and Visioli, 2000; Atkeson et al., 2000; Sun and Scassellati,
2005; Konczak, 2005; Stein et al., 2006). The field of robotics has proved to be a useful
environment for developing and testing hypotheses about biological motor control.
In other words, models of biological motor control can be corroborated or discarded
by testing them on robots. On the other hand, the capabilities of biological systems
by far surpass those of artificial systems (Flash et al., 2004). Therefore, the body of
knowledge gained in the field of biological motor control may help engineers develop
hardware and software components for humanoid robots that generate human-like
movements and operate in future human environments. In this context, the research
objective for this thesis was to address the motor redundancy problem. While this
thesis was inspired by robotics research, it is founded in biology. Consequently, the
results of both studies are discussed in the context of biological motor control and
the generation of human-like movements by humanoid robots.

Chapter 2 began with an introduction to the field of human motor control. In
the following section, a thorough introduction to the redundancy problem was given.
Then, existing models from three different scientific paradigms dealing with the prob-
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lem of motor redundancy were presented and discussed. Based on the review of ex-
isting models, a computational approach was developed. This approach was based
on the idea that results from neurophysiological studies, studies on the physics of
the musculoskeletal system and behavioral studies should be linked in computational
models of human motor control. Moreover, it was suggested that computational
models should be used to examine multi-joint daily life movements in 3D space. For
the implementation of this approach, the development of a biomechanical model and
the collection of human movement data were necessary.

Chapter 3 included a description of the methods used in the two studies (Chap.
4 and 5). A detailed description of the biomechanical data acquisition and data
processing was outlined. In addition, a brief introduction to the multibody algorithm
MKD-tools that was used for the calculation of joint angles and joint torques in the
two studies was given.

The first of the two studies was presented in chapter 4. This study was based on
the idea that information about the process of movement planning and control can
be deduced from behavioral regularities (Bernstein, 1967). A large number of such
regularities have been reported in literature (Goodman and Gottlieb, 1995), however
the analysis of multi-joint movements of daily life in 3D space is uncommon. Thus,
the purpose of the first study was to analyze different multi-joint pointing movements
in 3D space with respect to the selection of regularities, with the goal to provide an
initial idea of how humans reduce available DOFs in complex movements of daily
life.

The second study, presented in chapter 5, was based on the work presented in
chapters 2, 3 and 4. Different approaches to the problem of motor redundancy have
been discussed in the literature (Chap. 2). Previous studies have shown that optimal
control models can reproduce movement regularities on multiple levels (Todorov,
2004). In optimal control models, a unique trajectory is selected by adding additional
constraints on the task and thus reducing the effective DOFs. This is usually done by
selecting a cost function to be optimized (Engelbrecht, 2001). While optimal control
models have been established in the technical literature for some years, a quantitative
comparison between the performance of these models for multi-joint movements in
3D space is a fairly new concept (Flash et al., 2003; Admiraal et al., 2004; Hermens
and Gielen, 2004; Kaphle and Eriksson, 2008; Gielen, 2009b). The purpose of the
second study was to quantitatively examine the performance of different optimal
control models in reproducing human multi-joint pointing movements in 3D space.
The optimal control models were tested and the results were examined to determine
if these models reproduce the regularities found in the first study (Chap. 2).

In the concluding chapter (Chap. 6), the results of this thesis are summarized and
suggestions for future research are given. This chapter includes a discussion of the
theoretical considerations (Chap. 2), the methods (Chap. 3), and the results of the
two studies (Chap. 4 and 5).
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6.1 Results

� After nearly 100 years of extensive multidisciplinary research, the interest in
understanding human movements is still growing. The primary principles used
for movement generation in humans are still largely unknown, and solutions for
overcoming the problem of motor redundancy in human motor control research
are poorly understood.

� During the last 100 years, many studies have been conducted with the goal to
understand how the CNS solves the problem of motor redundancy. These stud-
ies can be categorized into three different areas of research (Fig. 2.20) including
neurophysiological studies, studies on the physics of the musculoskeletal sys-
tem and behavioral studies. As research continues to grow in each of the three
areas, it becomes increasingly challenging to establish links between research
conducted on the different levels of motor control. For the development of a
cohesive framework to incorporate the results, models of motor control must
be constructed. Specific details of such a model can be tested through care-
fully designed experiments; however, the overall working of the model usually
relies on the intuition of the modeler, which may be incorrect. Therefore, a
promising way of integrating the approaches used in the three areas seems to
be the construction of a computational model of human motor control. Given a
movement task, the computational model can be used to generate movements
via computer simulation. The results of the computer simulations can then be
compared to the results of biomedical or biomechanical experiments, and thus
the functionality of the computational model can be tested. The next step
would involve the implementation of the computational model on the robot
platform because simulations are likely to oversimplify the problem. Further-
more, by testing computational models on robots, problems not foreseen during
a simulation may emerge (Hoffmann, 2008).

� Three scientific frameworks currently exist within human motor control re-
search: the motor approach, the dynamical systems approach and the com-
putational neuroscience approach (Chap. 2.3). Each framework has specific
concepts to handle the problem of motor redundancy. Computational neuro-
science, in conjunction with the use of optimal control models and internal
models, utilizes two concepts that best address the above presented consider-
ations. Furthermore, these models have a great potential of integration. For
example, open-loop optimization criteria can be interpreted as attractors. In
the dynamical systems approach, these are favorable, attractive system states
that a system progresses to (Chap. 2.3.2.1). It is conceivable that the motor
system is attracted in the perceptual-motor workspace by system states repre-
sented by minimum jerk or minimum torque change principles. Furthermore,
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the concept of internal models is used in current approaches of cognitive psy-
chology (Hossner, 2004; Konczak, 2008). Moreover, optimal feedback control
is related to the dynamical systems view (Chap. 2.3.2.1) in the sense that
the coupling of the optimal feedback controller together with the controlled
plant generates a specific dynamical systems model in the context of a given
task. Finally, the minimum intervention principle is related to the uncontrolled
manifold concept (Chap. 2.3.2.3).

� The purpose of the first study was to analyze multi-joint pointing movements in
3D space with respect to the selection of regularities. Based on the pioneering
work of Morasso (1981) and Shadmehr and Mussa-Ivaldi (1994), an important
assumption of motor psychophysics is as follows: Represented movement fea-
tures differ from non-represented features in the criterion of simplicity and the
criterion of invariance. A comparison of the pointing movements in extrinsic
and intrinsic coordinates revealed that the trajectories of the hand in extrinsic
coordinates were much simpler than the joint angle trajectories in joint space.
Furthermore, in contrast to the joint angle trajectories, the trajectories of the
hand were highly invariant across different movement tasks. When information
about the process of movement planning and control can be deduced from these
two criteria, the results of this study indicate that the CNS uses rather extrinsic
than intrinsic coordinates in the process of movement planning. Furthermore,
the CNS may use a compensatory control strategy on the joint level to assure
the planned trajectory is achieved.

� It has been suggested in robotics research that humanoid robots should use
human-like movements to promote man-machine interaction (Wank et al., 2004;
Khatib et al., 2004; Schaal, 2007a). Hence, based on an analysis of human point-
ing gestures, humanoid robots should generate pointing gestures with curved
hand paths and single-peak, nearly bell-shaped velocity profiles with a peak
velocity of 1.5 − 2.0 m/s. The results of the first study showed that humans
use different coordination strategies and that the coordination strategies of dif-
ferent subjects provide the chance to select the kinematics that can best be
mapped to the humanoid robot of interest. Depending on the chosen kinemat-
ics, the motors of the robot should be able to produce angular velocities of up
to 150 deg/s in the shoulder and elbow joints.

� The purpose of the second study was to determine if optimal control models
can reproduce human multi-joint movements in 3D space. The results of this
study indicate that none of the optimal control models analyzed could precisely
reproduce the human trajectories. However, because of noise in the sensorimo-
tor system (Faisal et al., 2008), the complex intersegmental dynamics during
movement production (Flash et al., 2003), and methodological problems (Chap.
5.4.3), planned and executed movements will always differ to some extent. The
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MAJM exhibited the closest fit to the human data for both movement tasks.
Based on the results of the study, movement planning most likely occurs in in-
trinsic kinematic coordinates. However, these results contradict the results of
the first study, which indicated that motor planning may take place in extrinsic
kinematic coordinates of the hand. Because of the fact that the MAJM did not
fully reproduce the human trajectories and was not significantly superior in all
cases to the other optimal control models analyzed, an exclusive planning in
intrinsic kinematic coordinates based on a MAJ-principle seems unlikely. The
MHJM produced straight hand paths with single-peak, bell-shaped velocity
profiles in all trials. Our study revealed that humans produced curved hand
paths with single-peak, bell-shaped velocity profiles in all trials (Chap. 4).
However, it is conceivable that the CNS plans straight trajectories that are dis-
torted during execution because of the complex intersegmental dynamics (Dean
et al., 1995; Flash et al., 2003). The MTCM exhibited large mean values for
the %RMSDs with large confidence intervals. These results do not necessarily
indicate that the MTCM cannot reproduce measured trajectories or that the
CNS does not use this strategy to complete a task. Since the optimization on
torque level is very complex and the results indicated that the optimization
algorithm did not converge in all cases, the poor results of the MTCM may be
explained by methodological problems (Chap. 5.4.3).

� The results of the second study indicate that the MAJM provided the best fit
to the measured trajectories. The application of a MAJM in robotics has the
advantage of solving the inverse kinematics problem (Chap. 2.2) because motor
planning takes place in intrinsic kinematic coordinates. The question of why
the CNS should use a minimum angle jerk principle in movement generation
does not have to be addressed. In robotics, this principle can be used as a black
box model provided it generates human-like trajectories. However, the use of
optimal control models in robotics is a contemporary issue (Piazzi and Visioli,
2000; Gasparetto and Zanotto, 2008). Some authors in robotics believe that the
“reverse engineering” problem of finding the correct optimal control model to
reproduce human movements cannot be solved. Thus, in robotics research, the
problem of trajectory planning is addressed with alternative methods like the
dynamic movement primitives approach (Hoffmann et al., 2009; Pastor et al.,
2009).
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6.2 Further research

� To understand the functionality of the human motor system, it is reasonable
to work on goal-directed movements of daily life including pointing gestures
that are less complex than most movements in sports but are still ecologically
valid. In other words, movements that are used by humans in their daily life
should be analyzed. This is an important issue because artificial labor tasks
sometimes require movements that humans do not regularly use in their daily
routines. In future studies, different optimal control models should be examined
with regards to new movement tasks. Movement tasks of different complexity
should be analyzed such as, for instance, movements that involve the use of
different numbers and combinations of DOFs. In addition, subjects should
carry out these movements under pressure of time or pressure of accuracy. It
is known from Fitt’s law (Fitts, 1954) that humans cannot move as fast as
possible and as accurately as possible at the same time. Such movement tasks
may help to enhance the understanding of which principle or combination of
principles the CNS chooses in different situations.

� New test trials should be analyzed in the context of movement synergies as
introduced in chapter 2.3.2.2. The sharing component of synergies could be
addressed with principal component analysis (Mah et al., 1994) or more so-
phisticated matrix factorization methods (Tresch et al., 2006). Furthermore,
the flexibility/stability (error compensation) component could be addressed
with the concept of the UCM (Schöner and Scholz, 2007; Latash et al., 2007;
Latash, 2008b). These analyses would enhance the understanding of how the
CNS coordinates multi-joint movements in 3D space.

� Although the MAJM showed a relatively close fit to measured human trajecto-
ries, it does not provide an explanation of why the CNS should produce smooth
movements. It is also debatable whether the CNS is able to estimate such com-
plex quantities, and some authors (Feldman, 2006) doubt that the CNS has
direct access to these quantities. Hence, future studies should include the anal-
ysis of models that are physiologically more feasible than the models tested in
this thesis. Possible candidates are the minimum variance model by Harris and
Wolpert (1998) or the optimal feedback control model by Todorov and Jordan
(2002). The optimal feedback control model by Todorov and Jordan (2002) is
of special interest because it enables the incorporation of feedback processes in
the computational framework.

� Based on the results of this thesis, it is conceivable that the CNS uses different
optimization principles in context-specific combinations. Accordingly, context-
specific combinations of optimal control principles should be analyzed in future
studies. The mMHJM is an initial attempt to implement this concept.
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� Based on the enhancements on the neurophysiological level of the computa-
tional framework, future studies will require the incorporation of muscles in
the biomechanical model.

� The optimization algorithm should be enhanced in future studies. For example,
an automated adaptation of the algorithm to the problem at hand should be
implemented. In addition to the developed optimization method, a second
optimization method could be incorporated into the computational framework.
The class of optimization methods supplementing the method used in this thesis
is referred to as evolutionary algorithms. A comparison of the performance
of both methods may help in understanding the impact of the optimization
method on the results.
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