Logo des Repositoriums
  • English
  • Deutsch
Anmelden
Keine TU-ID? Klicken Sie hier für mehr Informationen.
  1. Startseite
  2. Publikationen
  3. Publikationen der Technischen Universität Darmstadt
  4. Zweitveröffentlichungen
  5. Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction
 
  • Details
2020
Zweitveröffentlichung
Artikel
Verlagsversion

Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction

File(s)
Download
Hauptpublikation
Int J of Quantum Chemistry - 2020 - Gallenkamp - Calibration of computational M ssbauer spectroscopy to unravel active.pdf
CC BY 4.0 International
Format: Adobe PDF
Size: 4.8 MB
TUDa URI
tuda/13602
URN
urn:nbn:de:tuda-tuprints-298155
DOI
10.26083/tuprints-00029815
Autor:innen
Gallenkamp, Charlotte ORCID 0000-0002-8848-5772
Kramm, Ulrike I. ORCID 0000-0002-0884-1459
Proppe, Jonny ORCID 0000-0002-5232-036X
Krewald, Vera ORCID 0000-0002-4749-4357
Kurzbeschreibung (Abstract)

Single‐atom catalysts with iron ions in the active site, known as FeNC catalysts, show high activity for the oxygen reduction reaction and hence hold promise for access to low‐cost fuel cells. Because of the amorphous, multiphase structure of the FeNC catalysts, the iron environment and its electronic structure are poorly understood. While it is widely accepted that the catalytically active site contains an iron ion ligated by several nitrogen donors embedded in a graphene‐like plane, the exact structural details, such as the presence or nature of axial ligands, are unknown. Computational chemistry in combination with Mössbauer spectroscopy can help unravel the geometric and electronic structures of the active sites. As a first step toward this goal, we present a calibration of computational Mössbauer spectroscopy for FeN₄‐like environments. The uncertainty of both the isomer shift and the quadrupole splitting prediction is determined, from which trust regions for the Mössbauer parameter predictions of computational FeNC models are derived. We find that TPSSh, B3LYP, and PBE0 perform equally well; the trust regions with B3LYP are 0.13 mm s⁻¹ for the isomer shift and 0.36 mm s⁻¹ for the quadrupole splitting. The calibration data is made publicly available in an interactive notebook that provides predicted Mössbauer parameters with individual uncertainty estimates from computed contact densities and quadrupole splitting values. We show that a differentiation of common FeNC Mössbauer signals by a separate analysis of isomer shift and quadrupole splitting will most likely be insufficient, whereas their simultaneous evaluation will allow the assignment to adequate computational FeNC models.

Freie Schlagworte

bootstrapping

density functional th...

iron catalysis

Mössbauer spectroscop...

oxygen reduction reac...

Sprache
Englisch
Fachbereich/-gebiet
07 Fachbereich Chemie > Quantenchemie
DDC
500 Naturwissenschaften und Mathematik > 540 Chemie
Institution
Universitäts- und Landesbibliothek Darmstadt
Ort
Darmstadt
Titel der Zeitschrift / Schriftenreihe
International Journal of Quantum Chemistry
Jahrgang der Zeitschrift
121
Heftnummer der Zeitschrift
3
ISSN
1097-461X
Verlag
Wiley
Ort der Erstveröffentlichung
New York, NY
Publikationsjahr der Erstveröffentlichung
2020
Verlags-DOI
10.1002/qua.26394
PPN
534129420
Zusätzliche Infomationen
Germany's Future in Theoretical and Computational Chemistry: a Special Issue Celebrating Deal
ID Nummer
e26394

  • TUprints Leitlinien
  • Cookie-Einstellungen
  • Impressum
  • Datenschutzbestimmungen
  • Webseitenanalyse
Diese Webseite wird von der Universitäts- und Landesbibliothek Darmstadt (ULB) betrieben.