2023
Zweitveröffentlichung
Artikel
Verlagsversion
Learning with privileged and sensitive information: a gradient-boosting approach
Learning with privileged and sensitive information: a gradient-boosting approach
File(s)
Kurzbeschreibung (Abstract)
We consider the problem of learning with sensitive features under the privileged information setting where the goal is to learn a classifier that uses features not available (or too sensitive to collect) at test/deployment time to learn a better model at training time. We focus on tree-based learners, specifically gradient-boosted decision trees for learning with privileged information. Our methods use privileged features as knowledge to guide the algorithm when learning from fully observed (usable) features. We derive the theory, empirically validate the effectiveness of our algorithms, and verify them on standard fairness metrics.
Sprache
Englisch
Institution
Universitäts- und Landesbibliothek Darmstadt
Ort
Darmstadt
Titel der Zeitschrift / Schriftenreihe
Frontiers in Artificial Intelligence
Jahrgang der Zeitschrift
6
ISSN
2624-8212
Verlag
Frontiers Media S.A.
Ort der Erstveröffentlichung
Lausanne
Publikationsjahr der Erstveröffentlichung
2023
Verlags-DOI
PPN
Zusätzliche Infomationen
This article is part of the Research Topic: Knowledge-guided Learning and Decision-Making
Artikel-ID
1260583

