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CHAPTER 7   |  Earthworm extraction methods 

7.1 ABSTRACT 
 

Reliable non-destructive extraction methods are required for the assessment of the size 

and composition of earthworm communities where physical disturbances are not acceptable. 

The aim of the present study was to investigate the efficiency of the electrical octet method 

and the mustard extraction method for sampling of different ecological groups of earthworms 

(anecics, endogeics and epigeics) under dry soil conditions. We hypothesized that (1) the 

extraction efficiency of the mustard method and the octet method will vary with ecological 

earthworm group and (2) beforehand water addition to dry soil will increase the extraction 

efficiency of the octet method but not that of the mustard method.  

Endogeic earthworm species were extracted in low numbers irrespective of the 

extraction method indicating their inactivity during dry periods. The mustard method was 

more efficient for the extraction of anecic earthworms even under dry soil conditions, whereas 

the octet method was inappropriate in reflecting the actual earthworm community structure. 

Surprisingly, the efficiency of both methods was not improved by beforehand water addition. 

These findings are essential to be considered when working under dry soil conditions e.g. in 

the context of environmental monitoring. 
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7.2 INTRODUCTION 
 

Earthworms may be sampled in a variety of ways, depending on behavioral traits and 

habitat preferences (Coleman et al. 2004). Reliable extraction methods are required for the 

assessment of the size and composition of earthworm communities. Sieving and hand-sorting 

soil have been considered the most accurate earthworm sampling techniques (Lee 1985). 

Further, there is a consensus that hand-sorting soil of the upper 20 cm with proximate 

formalin extraction is the preferred and standardized earthworm extraction method (Römbke 

et al. 2006). However, these methods cause strong physical disturbance of the soil, are labor 

intensive, and in the case of hand-sorting of little efficiency for anecic earthworm species 

(Callaham and Hendrix 1997, Schmidt 2001a, Lawrence and Bowers 2002). Furthermore, 

chemical repellants such as potassium permanganate (Evans and Guild 1947), formalin (Raw 

1959, Callaham and Hendrix 1997, Schmidt 2001b) and household detergents (East and 

Knight 1998) have been used but they are toxic to earthworms and other soil organisms (Lee 

1985, Gunn 1992). For a detailed survey of the common earthworm extraction methods listing 

advantages and disadvantages see Coleman et al. (2004). However, physical disturbances 

accompanying most extraction methods may be unacceptable at some sites like the study site 

of The Jena Experiment (Roscher et al. 2004) where experimental sites have to be retained. 

Non-destructive or “environmental friendly” alternative extraction methods are the mustard 

method (Gunn 1992, Chan and Munro 2001) and the electrical octet method (Thielemann 

1986, Schmidt 2001a). The application of mustard solution or allyl isothiocyanate which is a 

component imparting the sharp taste to mustard (Zaborski 2003), causes earthworms to move 

to the soil surface due to chemical irritation (Gunn 1992). Advantages of the mustard method 

include high efficiency for deep-burrowing anecic species and the simple application. 

However, it may be less effective for other earthworm ecological groups and depend on soil 

type and soil moisture (Chan and Munro 2001, Bartlett et al. 2006). The octet method has 

been proposed for comparative surveys but its efficiency also varies with soil conditions in 

particular with soil moisture (Zaller and Arnone III 1999b, Schmidt 2001b). 

In general, choosing the appropriate method for earthworm extraction depends on the 

purpose of the study (e.g. quantitative sampling versus qualitative biodiversity surveys) and 

on soil conditions (Coleman et al. 2004). However, the knowledge on earthworm extraction 

methods under varying soil conditions is scarce. The aim of the present study was to 

investigate the efficiency of two non-destructive earthworm extraction methods for different 

ecological earthworm groups (anecics, endogeics and epigeics) and that of beforehand water 
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addition under dry soil conditions. Thereby, extraction efficiency might vary with different 

ecological earthworm groups; while epigeic species reside mainly in the upper organic layers 

and endogeic species typically live in the upper mineral soil in horizontal burrows, anecic 

earthworms live in permanent vertical burrows up to 2 m deep populating the entire soil 

profile (Bouché 1977). We hypothesized that (1) the extraction efficiency of the mustard 

method and the octet method will vary with differing ecological earthworm groups and (2) 

beforehand water addition to dry soil will increase the extraction efficiency of the octet 

method but not that of the mustard method.  

 

7.3 MATERIALS AND METHODS 
 

The study site 

The study was carried out at the field site of The Jena Experiment (Roscher et al. 

2004) which is located near the Saale River in the vicinity of Jena (altitude 130 m NN, 

Thüringen, Germany). The site was formerly used as typical Central European mesophilic 

grassland. The soil is a Eutric Fluvisol (FAO-UNESCO 1997) developed from up to 2 m-

thick loamy fluvial sediments. Mean annual air temperature is 9.3°C and annual precipitation 

is 587 mm. The plant community of the experiment is semi-natural grassland at varying 

diversity levels (Arrhenatherion community; Ellenberg 1996, Roscher et al. 2004). The 

sampling for the present study was carried out at the edge of the field site which is dominated 

by grasses of the species pool of The Jena Experiment (Roscher et al. 2004) and has been 

mown twice a year since the establishment in 2002.  

 

Sampling 

The sampling took place during a period with low precipitation in April 2007 

(4.1 mm; measured at The Jena Experiment field site by the Max Planck Institute for 

Biogeochemistry, Jena). Normally, precipitation in April is about 27.5 mm at the field site 

(mean of 2003-2006). Thus, the mean soil water content of the upper 15 cm was only 12% 

(mean field capacity of Ap-horizon 18% [Baade 2001]; Table 7.1). Four adjoined blocks were 

established parallel to the river to account for changes in soil abiotic conditions (Table 7.1) as 

a function of distance from the river (Roscher et al. 2004). At each block (ca. 60 by 280 m) 

we established 20 plots of 0.25 m², spaced at 1 m intervals, by removing carefully the upper 

2-3 cm of the soil with a rake (80 plots in total). The removed topsoil was hand-sorted for 

earthworms and detected individuals (primarily epigeics, see below) from each plot were 
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preserved alive in separate plastic bags filled with Jena soil. To test the influence of 

beforehand water addition on the efficiency of the octet and the mustard method we added 5 l 

water to half of the pits 45 and 30 min before extraction started (10 l of water in total) which 

increased soil water content of the upper 15 cm to 18% (+50%; Table 7.1). Five replicates per 

extraction method and water treatment were taken at each block. Moreover, we took soil 

samples from the upper 15 cm to determine soil water contents. 

 

Table 7.1 | Variations in soil parameters (lime, clay, silt and sand content) of the upper 40 cm 
(Baade 2001, Kreutziger 2006), field capacity of the upper 75 cm (Baade 2001), gravimetric 
soil water content of the upper 15 cm (with [+] and without [-] water addition) and number 
[ind./0.25 m²] and biomass [g/0.25 m²] of anecic and endogeic earthworms at the four blocks 
of The Jena Experiment field site. Data on earthworms were derived from an extraction using 
the octet method in October 2006 over a period of appropriate weather conditions (high 
precipitation and mild temperatures). 
 
             Block 1     Block 2      Block 3      Block 4 

Lime content           6 %        10 %         13 %         28 % 

Clay content     14 %        21 %         24 %         22 % 

Silt content     41 %        54 %         61 %         69 % 

Sand content     45 %        25 %         15 %           9 % 

Field capacity     18 %        17 %         17 %         20 % 

Water content (-)     13 %        12 %         13 %         10 % 

Water content (+)     20 %        16 %         17 %         17 % 

Number of anecics       8           4             2            5 

Biomass of anecics      14           7            4            9 

Number of endogeics      20          12            6              13 

Biomass of endogeics       5             4             3            6 

 

To test the efficiency of the octet method earthworms were sampled in subplots of 

0.25 m² by electroshocking (DEKA 4000, Deka Gerätebau, Marsberg, Germany; Thielemann 

1986). On each plot we extracted earthworms for 35 minutes, increasing the voltage from 250 

V (10 min) to 300 V (5 min), 400 V (5 min), 500 V (5 min) and 600 V (10 min).  

Mustard solutions were prepared by shaking 100 g of dry mustard powder (Intermarkt 

GmbH, Koblenz, Germany) with 5 l of water 24 h before extraction (Chan and Munro 2001). 

Additional 5 l of water were added to each bucket and the solution was mixed intensively just 

before application. We applied 5 l of mustard solution to each pit and another 5 l after 15 min 

and collected earthworms for 35 min in total. We recovered only few earthworms moving out 
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of the soil after this period. Extracted earthworms from each plot were preserved alive in 

separate plastic bags filled with Jena soil at 5°C (see above). Afterwards, we determined all 

earthworms alive in the laboratory to species level (including juveniles) and counted and 

weighed them (fresh weight with gut content). 

 

 
 

Figure 7.1 | (A) Scheme of the field site of The Jena Experiment. Blocks are indicated by 
different colors. Experimental plots are indicated by different numbers. (B) Edge of the field 
site of The Jena Experiment where the samplings took place indicated by the red bar. (C) 
Scheme of extracted plots per block. 
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Statistical analysis 

ANOVA as part of the general linear models (GLMs) was used to analyze the effects 

of varying soil type of the four blocks (Soil), earthworm extraction method (Method), water 

treatment (Water) and the resultant interactions on the number and biomass of extracted 

anecic earthworms, using SAS 8 statistical package (SAS Inst., Cary, Florida, USA). Normal 

distribution and homogeneity of variance were improved by log-transformation (log[x+1]). 

Moreover, Friedman ANOVA was used as a nonparametric alternative to one-way repeated 

measures analysis of variance to analyze the effects of varying soil type of the four blocks 

(Soil), earthworm extraction method (Method), and water treatment (Water) on the number 

and biomass of extracted endogeic and epigeic earthworms using STATISTICA 6.0 (StatSoft, 

Tulsa, USA). Means presented in text and figures were calculated using non-transformed data 

(± SD). Comparisons of means (Tukey’s HSD test α=0.05) were performed using SAS 8 

statistical package.  

 

7.4 RESULTS 
 

We extracted six earthworm species belonging to three functional groups (Bouché 

1977), anecic (Lumbricus terrestris L.), endogeic (Aporrectodea caliginosa Savigny, A. rosea 

Savigny, Allolobophora chlorotica Savigny and Octolasion tyrtaeum Savigny), and epigeic 

(L. castaneus Savigny). On average 4 ± 4 individuals (16 ind. m-2) and ca. 2 ± 3 g fresh 

weight (10 g m-2) of earthworms were extracted using the octet method. In contrast, 

13 ± 10 individuals (51 ind. m-2) and 17 ± 12 g (65 g m-2) of earthworms were extracted using 

the mustard method.  

The number and biomass of extracted anecic earthworms were significantly higher 

using the mustard method (12 ± 9 ind. 0.25 m-², 16 ± 12 g 0.25 m-²) than using the octet 

method (3 ± 4 ind. 0.25 m-², 2 ± 3 g 0.25 m-²; Table 7.2; Fig. 7.1A). The number and biomass 

of extracted epi- and endogeic earthworms were very low irrespective of extraction method 

(Fig. 7.1A). While there was no difference in the efficiency of extraction methods on the 

number and biomass of extracted epigeic earthworms (Table 7.3; Fig. 7.1A), the biomass of 

extracted endogeic earthworms was significantly higher using the octet method (0.28 ± 0.52 g 

0.25 m-²) than using the mustard method (0.08 ± 0.18 g 0.25 m-²) and the number of endogeic 

individuals showed a similar trend (0.55 ± 0.93 and 0.23 ± 0.42 g 0.25 m-², respectively; 

Table 7.3; Fig. 7.1A). Significantly more endogeic earthworms were extracted in block 3 than 

in blocks 1 and 2 (Table 7.3).  

 163



CHAPTER 7   |  Earthworm extraction methods 

Generally, anecic earthworms were extracted most successfully, adding up to 96% of 

all extracted individuals and 99% of the earthworm biomass using the mustard method, but 

only 81% and 87% using the octet method, respectively. Further, 2% (number) and 0.5% 

(biomass) of the extracted earthworms were endogeics using the mustard method, however, 

endogeic earthworms added up to 15% (number) and 12% (biomass) of all extracted 

individuals using the octet method. Epigeic earthworms contributed only a marginal 

proportion to the total number and biomass of extracted earthworms irrespective of the 

extraction method ranging between 0.5% and 5%. 

In general, there was no effect of beforehand water application on the efficiency of 

both earthworm extraction methods (Tables 7.2 and 7.3). Interestingly, the biomass of 

extracted anecic earthworms did not vary at different blocks using the octet method, 

significantly more earthworm biomass was extracted at block 1 than at block 3 and 4 using 

the mustard method (Table 7.2; Figure 7.1B). 

 

 

 

 

Table 7.2 | ANOVA table of F-values for the effect of soil type of the four blocks (Soil), 
earthworm extraction method (Method) and water treatment (Water) on the number and 
biomass of extracted anecic earthworms. Significant effects and distinct tendencies are 
given in bold. 
 
                             Anecic earthworms 

                         number                 biomass 

                   F-value   P-value       F-value   P-value 

Soil                   11.39    <.0001         4.52    0.0062 

Method                    58.18    <.0001       92.70    <.0001 

Water                      2.46    0.1216         0.37    0.5475 

Soil x Method               1.75    0.1667         2.50    0.0677 

Soil x Water                0.17    0.9189         0.62    0.6047 

Method x Water              1.34    0.2509         0.66    0.4198 

Soil x Method x Water          0.38    0.7685         0.04    0.9910 
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Table 7.3 | Friedman ANOVA table of Chi Square-values for the effect of soil type (Soil), 
earthworm extraction method (Method) and water treatment (Water) on the number and 
biomass of extracted epigeic and endogeic earthworms. Significant effects and distinct 
tendencies are given in bold.  
     

            Endogeic earthworms          Epigeic earthworms     

          number         biomass       number       biomass 

      Chi Squ.  P-value Chi Squ.  P-value Chi Squ.  P-value Chi Squ.  P-value 

Soil       9.63   0.0220   6.35   0.0959   4.62   0.2020   4.67   0.1976 

Method     3.56   0.0594   4.26   0.0389   0.69   0.4054   0.29   0.5930 

Water        0.09   0.8919   0.23   0.6481   1.74   0.1790   0.72   0.3945 

 

 

 

Figure 7.2 | Effects of the 
earthworm extraction method 
(mustard, octet) (A) on the 
number and biomass of 
extracted earthworms 
belonging to different 
ecological groups (anecic, 
endogeic, epigeic) and (B) on 
the biomass of extracted 
anecic earthworms at the 
four blocks of The Jena 
Experiment.  
*** P<0.0001; * P<0.05; 
(*) P<0.1; ns: not significant. 
Bars with different letters 
vary significantly (Tukey’s 
HSD test, α<0.05).  
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7.5 DISCUSSION 
 

Reliable non-destructive extraction methods are required for the assessment of the size 

and composition of earthworm communities where physical disturbances are not acceptable. 

The present study expands the knowledge about the mode of functioning and the efficiency of 

the octet and the mustard method under dry soil conditions. Although, the results support 

hypothesis (1), hypothesis (2) has to be rejected in part. Results on the mustard method 

showed an extremely biased pattern towards anecic species which presumably was due to the 

inactivity of endogeic species during dry periods and the inefficiency of extracting endogeic 

earthworms using this method (Bartlett et al. 2006, Chan and Munro 2001). Our findings on 

anecic earthworm densities resembled results of earlier extractions at the study site showing 

higher earthworm density and biomass in block 1 than in blocks 2-4 (Table 7.1). However, 

although the mustard method turned out to be very efficient in extracting anecic earthworms 

even under dry soil conditions, potential nutrient effects have to be taken into consideration in 

long term field experiments. The missing differences between the two extraction methods in 

epigeic earthworms were expected since L. castaneus is just invading the field site and occurs 

in low numbers (N. Eisenhauer, unpubl.). 

Surprisingly, the octet method was not only ineffective in extracting anecic species, 

also it did not reflect the distribution pattern of anecic earthworms under varying soil 

conditions. These results disagree with previous studies indicating that the octet method is a 

reliable and useful method for estimating earthworm populations (Schmidt 2001b, Zaller and 

Arnone III 1999b). Moreover, the actual earthworm community composition was not reflected 

by the octet method (Table 7.1, Fig. 7.1). Nevertheless, more endogeic earthworms were 

extracted using the octet method than using the mustard method. This might have been due to 

the fact that the mustard solution primary percolates through the vertical burrows of anecic 

earthworms while affecting endogeic earthworms only marginally.  

Unexpectedly, there was no effect of beforehand water addition on the efficiency of 

the octet and the mustard method, although, the soil water content was increased by +50%. 

While the missing effect on endogeic earthworms can be explained by the fact that they were 

inactive due to the dry soil conditions and the short period of time between water application 

and sampling, the missing effect on anecic earthworms remains rather unclear.  
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7.6 CONCLUSIONS 
 

The mustard method appeared to be an efficient method for the extraction of anecic 

earthworms even under dry soil conditions. The octet method was inappropriate in reflecting 

the actual community structure under dry conditions and the efficiency was not improved by 

beforehand water addition. The present study highlights the differing ecology of earthworm 

groups by showing that anecic earthworms, in contrast to endogeics, remain active during dry 

periods. These findings are essential to be considered when working under dry soil 

conditions, e.g. for environmental monitoring. 

 



  
 
 
 
 
 
 
 
 
 
 
 

General Discussion 
 



CHAPTER 8   |  General discussion  

8.1 BACKGROUND AND OBJECTIVES OF THIS THESIS 
 

Anthropogenic activities are responsible for contemporary global change phenomena. 

The rapid loss of biodiversity is one of the most dramatic aspects which has generated 

concern over the consequences for ecosystem functioning. During the last two decades 

understanding biodiversity-ecosystem process relationships have become a major focus in 

ecological research (Schulze and Mooney 1994, Kinzig et al. 2002, Loreau et al. 2002, Naeem 

2002, Fargione and Tilman 2005). The majority of biodiversity experiments in temperate 

grasslands focussed on a limited number of ecosystem processes, e.g. aboveground plant 

productivity. However, terrestrial ecosystems consist of above- and belowground 

components that interact in their influence on ecosystem-processes and properties (Fig. 8.1; 

Wardle et al. 2004). Surprisingly, above- and belowground components of ecosystems have 

traditionally been considered in isolation from one another ignoring the fundamental role of 

aboveground-belowground feedbacks in controlling ecosystem processes (van Dam et al. 

2003, Wardle et al. 2004, Bardgett et al. 2005). The increasing recognition of this lack of 

more holistic studies points at the demand for surveys considering linkages between above- 

and belowground biota which are crucial for understanding the consequences of biodiversity 

loss (Bardgett et al. 2005, Spehn et al. 2005). This understanding will be gained by evaluating 

how plants function as integrators of these subsystems connecting above- and 

belowground food webs (Wardle et al. 2004). Moreover, there is the need for a deeper 

understanding of the role of aboveground–belowground feedback mechanisms in plant 

community dynamics and to consider this knowledge in the modelling of global change 

effects (Schröter et al. 2004). 

Although the decomposer subsystem drives essential ecosystem processes, it has 

received only limited consideration in previous biodiversity-experiments (but see Bradford et 

al. 2002, Hedlund et al. 2003, Spehn et al. 2005, Milcu et al. 2008). The soil fauna is known 

to govern nutrient cycling, organic matter turnover, and maintenance of soil physical 

structure, processes that are key determinants of primary production and ecosystem carbon 

storage (Lavelle et al. 1998, Scheu et al. 1999, Bradford et al. 2002, Wardle et al. 2004, 

Bardgett et al. 2005). In many terrestrial ecosystems earthworms dominate the invertebrate 

biomass and are the most important decomposer group by structuring the soil system (Lee 

1985, Edwards and Bohlen 1996). Besides several indirect mechanisms by which earthworms 

affect the aboveground system (Scheu 2003, Brown et al. 2004), they are supposed to have 

also direct impacts (Milcu et al. 2006a, Zaller and Saxler 2007).  
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Figure 8.1 | Scheme of direct 
(left) and indirect (right) 
consequences for aboveground 
communities by the soil food 
web (Wardle et al. 2004) 
illustrating that feeding 
activities in the detritus food 
web stimulate indirectly 
nutrient turnover, plant nutrient 
acquisition, plant performance, 
and thereby influence 
aboveground herbivores. Soil 
biota affect plants directly by 
feeding on roots and forming 
antagonistic and mutualistic 
interactions with plants. 
Further, the soil food web 
controls the development of 
plant communities which in 
turn influence soil biota.  

 

The present thesis aimed to evaluate the main direct and indirect mechanisms by 

which earthworms affect grassland plant communities varying in plant species richness, 

number of plant functional groups and plant functional group identity. In order to improve 

the understanding of aboveground-belowground interactions I present the outcomes of 

two field surveys (CHAPTER 5, CHAPTER 7) and four greenhouse experiments (CHAPTER 2, 

CHAPTER 3, CHAPTER 4, CHAPTER 6) conducted in the framework of The Jena Experiment. 

Greenhouse experiments were performed since they have the advantage to ensure constant 

environmental conditions and allow for exact manipulation of the soil fauna and plant 

community composition. Thereby, it is possible to extract single mechanisms from complex 

interrelationships. First, I discuss how the present thesis enlarged the knowledge on the 

effects of plant communities on earthworm performance. Second, the main mechanisms 

are illustrated by which earthworms affect plant communities investigated in this thesis. 

Third, I discuss the outcomes of this thesis particularly with regard to anthropogenic activity 

causing fundamental factors of current global change. Finally, I close the thsis by listing the 

implications in a comprehensive way. 
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8.2 EFFECTS OF PLANTS ON EARTHWORMS 
 

Generally, soil decomposer communities strongly depend on plant-derived carbon 

sources entering the soil system via dead plant materials and root exudates. Since plant 

species differ in the quality and quantity of resources that they return to soil, individual 

plant species were proposed to have important effects on specific components of the soil 

decomposer community and the processes that they regulate (Wardle et al. 2004). While 

effects of the plant community were shown to be inconsistent for microorganisms (Zak et al. 

2003, Spehn et al. 2005, Milcu et al. 2006b, Milcu et al. 2008, N. Eisenhauer et al., unpubl.), 

nematodes (Hedlund et al. 2003, Bezemer et al. 2004, Brinkmann et al. 2005, N. Eisenhauer 

et al., unpubl.), and soil mesofauna (Salamon et al. 2004, Partsch et al. 2006, A. Sabais et al., 

unpubl.), earthworms appeared to depend rather on the quantity and quality of litter than on 

plant community composition per se (Zaller and Arnone 1999b, Spehn et al. 2000, Milcu et 

al. 2008, N. Eisenhauer et al., unpubl.). However, other studies argued that earthworms 

presumably are unresponsive to floristic changes (Wardle et al. 1999, Hedlund et al. 2003). In 

the BIODEPTH experiment, the performance of anecic earthworms was primarily affected by 

the presence of legumes (Spehn et al. 2000). Similarly, earthworm extractions performed in 

the framework of The Jena Experiment showed a positive effect of plant species richness 

which was also due to the presence of legumes (Milcu et al. 2008, CHAPTER 5). On the 

contrary, earthworm performance decreased in presence of grasses presumably mainly due to 

the low quality (C-to-N ratio) of grass litter. Anecic earthworms were affected most by the 

presence of legumes likely due to their predominant foraging on fresh organic matter 

(Edwards and Bohlen 1996). Indeed, previous studies on the feeding ecology of L. terrestris 

showed its preference for litter materials with high C-to-N ratio and for litter inoculated with 

microorganisms (reviewed by Curry and Schmidt 2007). Therefore, a decrease in biomass 

production and quality, respectively, should affect anecic earthworms faster and more 

strongly than endogeic earthworms, which feed on humified organic matter (Spehn et al. 

2000). Legumes function as key plant functional group by fixing N and increasing N 

availability in the soil (Temperton et al. 2006, Roscher et al. 2008). Besides the positive effect 

of legume leaf litter entering the soil, however, Milcu et al. (2006b) found earthworms also 

to benefit from legumes without legume leaves entering the soil. They suggested that 

earthworms exploit belowground resources of legumes, potentially dead roots with 

associated rhizobia rich in N. In contrast to the suggestions of Milcu et al. (2006b), the 

outcomes of a greenhouse experiment indicate that root exudates of the plant community had 
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no impact on earthworm performance (CHAPTER 2). Performance of L. terrestris was rather 

influenced by the availability and germination success of plant seeds (CHAPTER 4). Moreover, 

results presented in CHAPTER 6 show that anecic and endogeic earthworm species ingest and 

digest considerable amounts of plant seeds. Both ingestion and digestion strongly depends on 

seed size and surface attributes (CHAPTER 6). These findings are in strong contrast to the view 

that digestion of plant seeds by earthworms is of minor importance (Curry and Schmidt 

2007). Although it is well documented that L. terrestris buries, ingests and digests plant seeds 

(McRill and Sagar 1973, Grant 1983, Milcu et al. 2006a, CHAPTER 3, CHAPTER 4, 

CHAPTER 6), the role of plant seeds and germinating seedlings for earthworm nutrition 

remains unclear. However, results of the present thesis indicate that plant seeds are an 

important component of earthworm nutrition and that plant communities might affect 

earthworm performance via characteristics in seed output.  

Taking the significant impact of the presence of specific plant functional groups 

(grasses and legumes), plant seeds and seedlings into account, earthworms likely primarily 

depend on the quality of resources. Therefore, the present thesis supports the assumption that 

positive effects of plant diversity on earthworm performance are rather due to sampling 

effects than due to complementarity effects. 

 

8.3 EFFECTS OF EARTHWORMS ON PLANT COMMUNITIES 
 

Since the first scientific recognition of earthworm effects being essential factors for 

plant performance (Darwin 1881) a large number of studies focused on this topic. Earthworms 

were assumed to be beneficial soil animals promoting plant growth (Lee 1985, Edwards and 

Bohlen 1996). However, the majority of studies performed in this context concentrated on the 

performance of single arable plant species, i.e. on the yield of crop plants (Scheu 2003). Thus, 

the role of earthworms for plant performance in natural habitats and for more complex plant 

communities was neglected. Recent studies primarily conducted in our working group 

indicate that, indeed, earthworms may affect the competition between plant species and 

thereby plant community assembly (Kreuzer et al. 2004, Wurst et al. 2005, Milcu et al. 

2006a). Building on these findings, the present thesis aimed to uncover the main mechanisms 

by which earthworms affect plant community assembly, both indirectly (CHAPTER 2) and 

directly (CHAPTER 3, CHAPTER 4, CHAPTER 5, CHAPTER 6).  

The results of the study presented in CHAPTER 2 supported the assumption that 

competition for soil nutrients is one of the main processes structuring plant communities and 
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closely links plants to the decomposer community. Earthworms function as regulatory 

forces of nutrient mineralization and driving agents of plant competition. Increased 

availability of mineral N in soil due to earthworm presence enhanced plant growth, 

particularly that of grasses, thereby fostering the competitive strength of grasses against 

legumes. Moreover, earthworms fundamentally affect grass-legume associations by 

increasing grass yield, the amount of N in grass hay (quality of forage), the infestation rate of 

grasses with aphids, and potentially by reducing the attractiveness of grass-legume 

associations to pollinators. These essential indirect impacts of earthworms on plant 

communities could not have been confirmed in the field so far (Zaller and Arnone 1999b, 

N. Eisenhauer et al., unpubl.). However, findings by Zaller and Arnone (1999a) in calcareous 

grassland indicate that primarily grass species show a close association with earthworm 

surface casts. Moreover, the number of established grass seedlings was increased significantly 

in presence of earthworms (CHAPTER 5). Consequently, both greenhouse (Kreuzer et al. 

2004, Wurst et al. 2005, CHAPTER 2) and field studies (Zaller and Arnone 1999a, 

CHAPTER 5) indicate that particularly grasses benefit from earthworm presence with 

essential consequences for plant community assembly and thereby presumably for the 

aboveground food web. 

Surface-foraging species such as L. terrestris are to known to effectively bury seeds, 

while surface casts produced by many species often contain seeds (McRill and Sagar 1973, 

Grant 1983, Thompson et al. 1994, Milcu et al. 2006a). Thereby, earthworms may affect 

seedling establishment by a variety of mechanisms, through selective ingestion and digestion 

of seeds (McRill and Sagar 1973, Shumway and Koide 1994, CHAPTER 6), downward or 

upward seed transport (Grant 1983, CHAPTER 3, CHAPTER 4, CHAPTER 5) and acceleration 

(Ayanlaja et al. 2001, CHAPTER 6) or delaying of seed germination (Grant 1983, Decaens et 

al. 2001, CHAPTER 6). A grassland field study by Thompson et al. (1994) indicated that the 

compositions of seeds in bulk soil and earthworm casts differ. Seeds in earthworm casts were 

substantially smaller (<0.3 mg) than the majority of plant seeds of the soil seed bank (0.3 – 

1 mg). Therefore, seed selection by earthworms was proposed to help explaining the 

frequently reported differences between the species composition of the seed bank and the 

standing vegetation (Grant 1983, Thompson et al. 1994, Zaller and Saxler 2007). Further, in 

grasslands about 70% of all seedlings emerged out of earthworm casts (Grant 1983). Results 

of this thesis fundamentally expand the knowledge on interactions between earthworms 

and plant seeds by showing that effects vary with earthworm species identity, seed size and 

plant functional group affiliation (CHAPTER 4, CHAPTER 5, CHAPTER 6). 
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The first greenhouse experiment showed that anecic earthworms occurring at the field 

site of The Jena Experiment (A. longa and L. terrestris) differ substantially in their direct 

(seed burial) and indirect effects (litter incorporation) on plant establishment and performance 

(CHAPTER 3). Since L. terrestris is the dominating anecic earthworm species at the field site 

of The Jena Experiment, I assume that its soil surface activity has fundamental consequences 

for plant community assembly. A further greenhouse experiment indicated that earthworm 

middens function as small scale disturbances, regeneration niches and patches of increased 

probability for plant invasion of particularly large seeded plants in grassland communities 

(CHAPTER 4). Earthworm effects on small and intermediate sized seeds were rather 

detrimental. Consequently, L. terrestris was suggested to govern plant community 

composition by decreasing the invasibility of grassland systems for weed plant species. Since 

more diverse plant communities support higher numbers of earthworms (Milcu et al. 2008, 

CHAPTER 5), earthworm activity, granivory and herbivory on small invader seedlings in its 

burrows was suggested to contribute to the increased resistance of diverse plant communities 

against invasions (Elton 1958, Tilman 1999, Fargione and Tilman 2005, CHAPTER 4). 

However, results from the field survey indicate that beneficial effects of earthworm soil 

surface activity on seedling establishment might overbalance detrimental mechanisms 

(CHAPTER 5). Earthworms modulated the diversity-invasibility relationship by increasing 

plant invader numbers, particularly that of grasses, and diversity, and by decreasing the 

stability of grassland communities. This is primarily due to the soil surface activity of 

L. terrestris which significantly reduced the number of seed dummies on the soil surface 

(CHAPTER 5). Seeds might benefit from burial by escaping aboveground seed predation 

(Cohen 1966, Thompson et al. 2001, Azcárate and Peco 2003). Moreover, seeds likely find 

favourable environmental conditions for germination and growth in L. terrestris middens due 

to increased water-holding capacity and nutrient availability (James 1991, Blanchard et al. 

1999). These might be essential mechanisms increasing the survival of seeds from certain 

plant species since L. terrestris was shown to stay active even during dry periods, e.g. in late 

summer during seed set (CHAPTER 7). However, the present thesis highlights that earthworm 

effects on the invasibility and stability of grassland communities depend on plant diversity, 

plant functional group identity and structural complexity of the established plant community 

(CHAPTER 5). 

A further greenhouse experiment revealed that besides interactions between anecic 

earthworms and plant seeds, impacts of endogeic earthworms on the soil seed bank likely are 

also significant for plant community assembly (CHAPTER 6). In contrast to the widespread 
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assumption that entering the soil seed bank is a basic way to escape unfavourable 

environmental conditions and seed predation (Cohen 1966, Thompson et al. 2001, Azcárate 

and Peco 2003), the present thesis indicate that endogeic earthworms, which consume large 

amounts of the upper mineral soil layers, ingest and digest plant seeds. However, both, 

ingestion and digestion likely are earthworm and plant species specific (CHAPTER 6). On 

the contrary, seeds that survived the passage through the earthworm gut primarily benefited 

from gut passage by showing increased germination rates. In addition, seed germination of 

some plant species is also modified by earthworm excreta (mucus and casts; CHAPTER 6). 

Taking the significant impact of earthworms on plant seeds and seedlings and the potential 

contribution of seeds and seedlings in earthworm nutrition into account, I hypothesize that 

certain plant species and earthworms might have co-evolved in temperate regions of 

Central Europe. 

 

8.4 CONSEQUENCES OF HUMAN-CAUSED GLOBAL CHANGE 
 

Biodiversity loss 

Anthropogenic activities have caused a dramatic decline in global biodiversity via 

numerous mechanisms raising the question about consequences for ecosystem functioning 

(CHAPTER 1). The decline in plant diversity in general is assumed to affect soil heterotrophic 

organisms in two ways: (1) by decreasing plant biomass production (decreasing resource 

availability), and (2) less diverse mixtures probably provided a less balanced diet in terms of 

food quality and a less constant supply in time (Spehn et al. 2000). 

Since earthworms are known to be important components of terrestrial decomposer 

communities and drive several fundamental ecosystem processes like litter incorporation and 

decomposition (CHAPTER 2, CHAPTER 3), nutrient cycling (CHAPTER 2), seed survival 

(CHAPTER 6), and seedling establishment (CHAPTER 3, CHAPTER 4, CHAPTER 5) 

consequences of biodiversity loss for earthworm performance are essential to be considered. 

Results of the present thesis indicate, however, that earthworms are rather unresponsive to 

changes in plant diversity, both, at the level of plant species and plant functional groups. 

Earthworm performance likely depends on the presence of legumes (CHAPTER 5) being a 

key plant functional group by providing litter and root exudates rich in N. Moreover, legumes 

were shown to increase the productivity of the whole plant community (Aarssen 1997, Loreau 

et al 2002, Roscher et al. 2005), suggesting a sampling effect type of response. So far, there 

is very little evidence of effects of species richness of grassland plant communities on 
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earthworm performance and ecosystem processes driven by earthworms from biodiversity 

experiments in the field. Rather, earthworm performance likely is mainly driven by abiotic 

factors of the soil, e.g. pH and sand content (Milcu et al. 2008). 

Moreover, impacts of earthworms on seedling establishment and plant community 

assembly likely are intimately interrelated with plant community diversity with the most 

pronounced effects in grassland communities with four plant species and two or three plant 

functional groups, respectively. There, earthworms were shown to increase the diversity of 

plant communities by creating small scale disturbances (Connell 1978, CHAPTER 5). Since 

grassland species mixtures containing four plant species are extremely low in diversity, 

earthworm-plant seed interactions might also not be threatened by the decline in biodiversity. 

However, earthworms perform rather poor in agricultural monocultures where their impact on 

ecosystem processes likely is decreased strongly (Edwards and Bohlen 1996, CHAPTER 5). 

 

Dispersal of peregrine earthworm species 

Invasions of natural communities by non-indigenous species are currently rated as one 

of the most important global-scale environmental problems (Vitousek et al. 1996). Invasions 

by belowground organisms have received less attention than invasions by aboveground 

organisms, in part due to the cryptic nature of the soil environment and the less apparent 

consequences of such invasions (Bohlen 2006). One of the most apparent and dramatic 

examples of belowground invaders is the invasion of regions previously devoid of 

earthworms by non-native earthworm species. As described above, much of earthworm 

effects occurs because of their role as ecosystem engineers capable of substantially changing 

the physical and chemical characteristics of the soil environment, with consequences for the 

entire soil food web, nutrient distribution, invertebrate and plant communities, and thereby 

ecosystem structure and functioning (Fig. 8.2; Bohlen et al. 2004, Hale et al. 2006, Eisenhauer 

et al. 2007). The present thesis indicate that beside indirect facilitation processes by changing 

soil conditions, earthworms possibly favour invasive plants that are adapted to earthworm 

ingestion and gut passage (CHAPTER 4, CHAPTER 6). As described above, taking the 

significant impact of earthworms on plant seeds and seedlings and the potential contribution 

of seeds and seedlings in earthworm nutrition into account, it is likely that plants and 

earthworms have co-evolved in temperate regions of Central Europe (CHAPTER 4, 

CHAPTER 6). Moreover, invasive earthworms probably change soil seed bank 

composition and plant community assembly. Indeed, preliminary results of a study 

investigating the effects of invasive earthworm species on the soil seed bank of a deciduous 
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aspen forest (Alberta, Canada) indicate that earthworms modify plant germination 

(D. Straube, unpubl.). The presence of O. tyrtaeum increased the germination of native 

herbaceous plant species considerably. However, this topic deserves further attention with 

regard to the proceeding anthropogenic dispersal of European earthworms worldwide and 

the homogenization of habitats. 

 

 

Figure 8.2 | Scheme 
illustrating mechanisms by 
which above- and 
belowground invaders 
influence ecosystem 
structure and functioning 
(Bohlen 2006). 
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8.5 CLOSING THE LOOP: CONCLUSIONS AND IMPLICATIONS 
 

There is great demand for new insights from studies on aboveground-belowground 

interactions that should be used to improve our predictions of the effects of human-induced 

environmental changes in biodiversity and ecosystem properties and to enhance the 

efficiency of human interventions in restoration and conservation efforts (Wardle et al. 2004). 

In this context, the present thesis expands the knowledge on the role of earthworms as 

important belowground ecosystem engineers in respect of human-caused global change 

processes like biodiversity loss and dispersal of exotic species.  

Earthworm effects on the aboveground system appeared to be manifold playing a 

decisive role via four different fundamental ecosystem processes (Fig. 8.3):  

A | First, (anecic) earthworms act as DECOMPOSERs by incorporating litter into the soil 

and increasing nutrient availability for plants. Thereby, earthworms drive the competition 

between plants and plant community assembly (CHAPTER 2).  

B | Second, (anecic) earthworms are important ECOSYSTEM ENGINEERs by removing 

the litter layer and creating structures of increased nutrient availability (middens). These 

structures function as small scale disturbances and regeneration niches for plant seedlings 

increasing the heterogeneity of the habitat and affecting plant community assembly and 

diversity (CHAPTER 3, CHAPTER 4, CHAPTER 5).  

C | Third, (anecic) earthworms function as important SEED DISPERSERs by seed burial 

and ingestion and egestion of plant seeds (CHAPTER 5, CHAPTER 6). Further, earthworm gut 

passage and earthworm excreta affect seed germination and thereby plant community 

assembly (CHAPTER 6). Seed burial might be an essential mechanism increasing the 

survival of seeds from certain plant species since L. terrestris was shown to stay active even 

during dry periods, e.g. in late summer during seed set (CHAPTER 7). 

D | Fourth, earthworms function as SEED PREDATORs whereas seed predation is 

earthworm and plant species specific directly affecting plant community assembly 

(CHAPTER 4, CHAPTER 6).  

The present combined approach of above- and belowground systems emphasizes 

their intimate interrelationships demanding for the consideration of both systems when 

interpreting, estimating and modelling human-induced global change phenomena. 
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Figure 8.3 | Scheme of the direct, indirect and supposed effects of earthworms on the plant 
community and the aboveground food web as indicated by the present thesis. Index numbers 
refer to the respective chapter and capital letters refer to the roles of earthworms in temperate 
grasslands (A, Decomposer; B, Ecosystem engineer; C, Seed disperser; D, Seed predator).  
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© Tom Wagner 

 
„Gibt es intelligentes Leben? 

Vielleicht sollten wir den Begriff nicht allzu hoch hängen. Ist es nicht schon eine Form von 
Intelligenz, wenn ein Regenwurm sich nach dem Regen ausgräbt, weil er sonst ersäuft.  

Sicher wäre es intelligenter, sich gar nicht erst einzugraben.  
Menschen haben da einen guten Kompromiss gefunden.  

Sie graben sich erst ein, wenn sie tot sind –  
 also zu einem Zeitpunkt, an dem Ersaufen keine ernsthafte Gefahr mehr darstellt.“ 

 
Dieter Nuhr in Gibt es intelligentes Leben? (2006) 

              ALMOST THE END.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

„Selbst Schimmel trocknet bei 80°C!“ 

 

 
© Katrin Pusch 

     THE END.
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