
solis vasquez , leonardo

A C C E L E R AT I N G M O L E C U L A R D O C K I N G B Y
PA R A L L E L I Z E D H E T E R O G E N E O U S C O M P U T I N G – A

C A S E S T U D Y O F P E R F O R M A N C E , Q UA L I T Y O F
R E S U LT S , A N D E N E R G Y- E F F I C I E N C Y U S I N G C P U S ,

G P U S , A N D F P G A S

Printed and/or published with the support of the German Academic
Exchange Service (DAAD).

A C C E L E R AT I N G M O L E C U L A R D O C K I N G B Y PA R A L L E L I Z E D
H E T E R O G E N E O U S C O M P U T I N G – A C A S E S T U D Y O F

P E R F O R M A N C E , Q UA L I T Y O F R E S U LT S , A N D
E N E R G Y- E F F I C I E N C Y U S I N G C P U S , G P U S , A N D F P G A S

at the Computer Science Department
of the Technische Universität Darmstadt

submitted in fulfilment of the requirements for the
degree of Doctor of Engineering

(Dr.-Ing.)

Doctoral thesis
by Solis Vasquez, Leonardo

from Lima, Peru

Reviewers
Prof. Dr.-Ing. Andreas Koch

Prof. Dr. Christian Plessl

Date of the oral exam
October 14, 2019

Darmstadt, 2019

D 17

Solis Vasquez, Leonardo: Accelerating Molecular Docking by Parallelized
Heterogeneous Computing – A Case Study of Performance, Quality of Re-
sults, and Energy-Efficiency using CPUs, GPUs, and FPGAs
Darmstadt, Technische Universität Darmstadt
Date of the oral exam: October 14, 2019

Please cite this work as:
URN: urn:nbn:de:tuda-tuprints-92886
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/9288

This document is provided by TUprints,
The Publication Service of the Technische Universität Darmstadt
https://tuprints.ulb.tu-darmstadt.de

This work is licensed under a Creative
Commons “Attribution-ShareAlike 4.0 In-
ternational” license.

https://tuprints.ulb.tu-darmstadt.de/id/eprint/9288
https://tuprints.ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

E R K L Ä R U N G E N L AU T P R O M O T I O N S O R D N U N G

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Disserta-
tion mit der schriftlichen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch
keine Promotion versucht wurde. In diesem Fall sind nähere Angaben
über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses
Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig
und nur unter Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, August, 2019

Solis Vasquez, Leonardo

Dedicated to my lovely parents and sister.

A B S T R A C T

Molecular Docking (MD) is a key tool in computer-aided drug design
that aims to predict the binding pose between a small molecule and
a macromolecular target. At its core, MD calculates the strength of
possible binding poses, and searches for the energetically-stronger
ones among those generated during simulation. Automatic Docking
(AutoDock) is a widely-used MD code that employs a physics-based
scoring function to quantify the binding strength. AutoDock also uses
a Lamarckian Genetic Algorithm (LGA), and in turn, the Solis-Wets
method, as a local-search algorithm, in order to find strong interactions
of such molecular systems. Due to the highly-parallel nature of the
LGA tasks involved, AutoDock can benefit from runtime acceleration
based on parallelization.

This thesis presents an OpenCL-based parallelization of AutoDock,
and a corresponding evaluation in terms of execution performance,
quality-of-results, and compute-energy efficiency, achieved on differ-
ent platforms based on: multi-core Central Processing Unit (CPU)s,
Graphics Processing Unit (GPU)s, and Field Programmable Gate Ar-
ray (FPGA)s. While a data-parallel approach has proven its effective-
ness in accelerating AutoDock on CPUs and GPUs, it was observed that
for FPGAs, such approach resulted in slower executions in the range
of three-orders of magnitude when compared against the original
single-threaded AutoDock. To overcome this drawback, a task-parallel
implementation for FPGAs is discussed as well.

Besides presenting an AutoDock implementation being parallelized
using OpenCL, this thesis also extends the LGA search with new
alternative local-search methods based on gradients (of the scoring
function) such as: Steepest-Descent, FIRE, and ADADELTA. Among
these, it was found that ADADELTA provides significant algorithmic
benefits over Solis-Wets, yielding a reduction in calculation effort
down to 1/1300 of the legacy Solis-Wets method, while achieving
equivalent quality-of-results. Compared to the original single-threaded
AutoDock, the proposed data-parallel design achieves a speedup of
up to ∼399x and improves the compute-energy efficiency by up to
∼297x when running on modern V100 GPUs. Furthermore, this thesis
describes the adaptations performed on the proposed OpenCL-based
implementation for supporting challenging real-world MD scenarios.

ix

Z U S A M M E N FA S S U N G

Molecular Docking (MD) ist ein Schlüsselinstrument für das computer-
gestützte Wirkstoffdesign, mit dem die Bindungspose zwischen einem
kleinen Molekül und einem makromolekularen Ziel vorhergesagt wer-
den soll. Im Kern berechnet MD die Stärke möglicher Bindungsposen
und sucht nach den energetisch stärkeren unter denen, die während
der Simulation erzeugt wurden. Automatic Docking (AutoDock) ist ein
weit verbreiteter MD Code, bei dem die Bindungsstärke mithilfe ei-
ner physikbasierten Bewertungsfunktion quantifiziert wird. AutoDock

verwendet auch einen Lamarckschen Genetischen Algorithmus (LGA)
und als lokalen Suchalgorithmus die Solis-Wets-Methode, um starke
Wechselwirkungen solcher molekularer Systeme zu finden. Aufgrund
der hohen Parallelität der beteiligten LGA Aufgaben kann AutoDock von
einer Laufzeitbeschleunigung auf der Grundlage der Parallelisierung
profitieren.

Diese Dissertation präsentiert eine OpenCL-basierte Parallelisie-
rung von AutoDock und eine entsprechende Bewertung in Bezug auf
Ausführungsleistung, Ergebnisqualität und Rechen-Energieeffizienz,
die auf verschiedenen Plattformen durchgeführt wird, basierend auf:
Multi-Core Central Processing Unit (CPU)s, Graphics Processing Unit
(GPU)s und Field Programmable Gate Array (FPGA)s. Während ein
datenparalleler Ansatz seine Wirksamkeit bei der Beschleunigung von
AutoDock auf CPUs und GPUs bewiesen hat, wurde beobachtet, dass ein
solcher Ansatz bei FPGAs im Vergleich zum ursprünglichen AutoDock

mit einem Thread zu langsameren Ausführungen im Bereich von drei
Größenordnungen führte. Um diesen Nachteil zu überwinden, wird
auch eine aufgabenparallele Implementierung für FPGAs diskutiert.

Neben der Darstellung einer AutoDock Implementierung, die mit
OpenCL parallelisiert wird, erweitert diese Arbeit die LGA-Suche um
neue alternative lokale Suchmethoden auf der Basis von Gradienten
(der Bewertungsfunktion) wie Steepest-Descent, FIRE und ADADEL-
TA. Unter diesen wurde festgestellt, dass ADADELTA signifikante
algorithmische Vorteile gegenüber Solis-Wets bietet, was zu einer Re-
duzierung des Rechenaufwands auf 1/1300 der herkömmlichen Solis-
Wets-Methode bei gleichwertiger Ergebnisqualität führt. Im Vergleich
zum ursprünglichen single-threaded AutoDock erzielt das vorgeschlage-
ne datenparallele Design eine Geschwindigkeitssteigerung von bis zu
∼399x und verbessert die Rechen-Energieeffizienz um bis zu ∼297x,
wenn es auf modernen V100 GPUs ausgeführt wird. Darüber hinaus
beschreibt diese Arbeit die Anpassungen, die an der vorgeschlage-
nen OpenCL-basierten Implementierung vorgenommen wurden, um
herausfordernde reale MD Szenarien zu unterstützen.

x

P U B L I C AT I O N S

Teamwork is the
ability to work
together toward a
common vision. The
ability to direct
individual
accomplishments
toward
organizational
objectives. It is the
fuel that allows
common people to
attain uncommon
results. — Andrew
Carnegie

Main ideas and figures have appeared previously in the following
publications:

[1] Léa El Khoury, Diogo Santos-Martins, Sukanya Sasmal, Jérôme
Eberhardt, Giulia Bianco, Francesca A. Ambrosio, Solis-Vasquez,
Leonardo, Andreas Koch, Stefano Forli, and David Mobley.
“Comparison of affinity ranking using AutoDock-GPU and
MM-GBSA scores for BACE-1 inhibitors in the D3R Grand
Challenge 4.” In: Journal of Computer-Aided Molecular Design
(2019). doi: 10.1007/s10822-019-00240-w.

[2] Diogo Santos-Martins, Solis-Vasquez, Leonardo, Andreas Koch,
and Stefano Forli. “Accelerating AutoDock4 with GPUs and
Gradient-Based Local Search.” In: ChemRxiv (preprint) (2019).
doi: 10.26434/chemrxiv.9702389.v1.

[3] Diogo Santos-Martins, Jérôme Eberhardt, Giulia Bianco, Solis-
Vasquez, Leonardo, Francesca Alessandra Ambrosio, Andreas
Koch, and Stefano Forli. “D3R Grand Challenge 4: prospective
pose prediction of BACE1 ligands with AutoDock-GPU.” In:
Journal of Computer-Aided Molecular Design (2019). doi: 10.1007/
s10822-019-00241-9.

[4] Solis-Vasquez, Leonardo and Andreas Koch. “A Performance
and Energy Evaluation of OpenCL-accelerated Molecular Dock-
ing.” In: Proceedings of the 5th International Workshop on OpenCL
(IWOCL). Toronto, ON, Canada: ACM, 2017. doi: 10.1145/
3078155.3078167.

[5] Solis-Vasquez, Leonardo and Andreas Koch. “A Case Study
in Using OpenCL on FPGAs: Creating an Open-Source Ac-
celerator of the AutoDock Molecular Docking Software.” In:
Proceedings of the 5th International Workshop on FPGAs for Soft-
ware Programmers (FSP). Dublin, Ireland: VDE VERLAG, 2018.
url: https://ieeexplore.ieee.org/document/8470463.

[6] Solis-Vasquez, Leonardo, Diogo Santos-Martins, Andreas Koch,
and Stefano Forli. “Performance Analysis of Molecular Dock-
ing in OpenCL: A Case Study of AutoDock enhanced with
Gradients.” In: Submitted to the 34th International Parallel and
Distributed Processing Symposium (IPDPS). Submitted, 2019.

[7] Solis-Vasquez, Leonardo, Diogo Santos-Martins, Andreas Koch,
and Stefano Forli. “Evaluating the Energy Efficiency of OpenCL-
accelerated AutoDock Molecular Docking.” In: Submitted to the

xi

http://dx.doi.org/10.1007/s10822-019-00240-w
http://dx.doi.org/10.26434/chemrxiv.9702389.v1
http://dx.doi.org/10.1007/s10822-019-00241-9
http://dx.doi.org/10.1007/s10822-019-00241-9
http://dx.doi.org/10.1145/3078155.3078167
http://dx.doi.org/10.1145/3078155.3078167
https://ieeexplore.ieee.org/document/8470463

28th Euromicro International Conference on Parallel, Distributed,
and Network-based Processing (PDP). Submitted, 2020.

xii

Gratitude changes everything.

— Anonymous

A C K N O W L E D G M E N T S

I am deeply grateful to Prof. Dr.-Ing. Andreas Koch for his mentorship
throughout my entire doctorate period, especially for the opportu-
nity to be part of the Embedded Systems and Applications Group (ESA)
at TU Darmstadt, Germany, as well as for his patience, continuous
encouragement, and enriching support. I am also very thankful to
my collegues at TU Darmstadt for their precious help and interesting
discussions.

I would like to also thank Prof. Dr. Christian Plessl for the short-term
preparation of the second review.

Special thanks to Prof. Stefano Forli and other collegues at The Scripps
Research Institute in California, USA, the original authors of AutoDock,
for their continuous support on computational chemistry matters, as
well as for the interesting discussions during our collaborative research
work.

Many thanks to the German Academic Exchange Service (DAAD) and
the Peruvian National Program for Scholarships and Educational Loans
(PRONABEC) for the financial aid. I also would like to thank AMD
Inc., Xelera Technologies, and the AWS Cloud Credits for Research Pro-
gram, for providing access and support of the hardware-acceleration
technologies used in this work.

Many thanks to my friends for all the moments we spent together,
and to those who dared getting along with me during this time, wher-
ever they are now. Many of them made me redefine my idea of hap-
piness . . . so now it also includes riding a bicycle and sharing some
drinks, even in tough times!

Last but not least, I want to thank my lovely parents, sister, and close
relatives. I am certainly not capable of finding the words to express
my love and gratitude to you. However, writing these lines means that
I have no more excuses that have been keeping me physically apart
from you during this time.

xiii

C O N T E N T S

1 introduction 1

1.1 Current trends in high-performance and scientific com-
puting . 1

1.2 Target application and research problems 3

1.3 Thesis contribution . 5

1.4 Thesis outline . 7

2 fundamentals of autodock molecular docking 9

2.1 Background on molecular docking 9

2.2 AutoDock: a software for automated docking 11

2.2.1 Encoding . 11

2.2.2 Lamarckian Genetic Algorithm 12

2.2.3 Solis-Wets local search 13

2.2.4 Scoring function 14

2.2.5 AutoDock algorithm 17

2.2.6 Validation . 18

3 related work 21

3.1 OpenCL programming and energy-efficiency aspects of
heterogeneous systems 21

3.1.1 Performance portability of OpenCL 21

3.1.2 OpenCL for FPGA programming 22

3.1.3 Compute-energy efficiency 24

3.2 Parallel implementations of molecular docking tools . 25

3.2.1 FFT-based tools 26

3.2.2 Evolutionary-based tools 29

3.2.3 AutoDock . 31

3.2.4 Pairwise potentials 32

3.2.5 Intrinsically-parallel tools 33

3.2.6 Other parallelization approaches 34

3.3 Algorithmic improvements in molecular docking . . . 35

3.4 Wrap-up discussion . 36

4 ocladock : opencl-accelerated autodock on cpus

and gpus 39

4.1 OpenCL implementation of AutoDock 39

4.1.1 Data-based parallelization 39

4.1.2 Code architecture 40

4.2 Experimental evaluation 42

4.2.1 Setup . 42

4.2.2 Validation . 44

4.2.3 Execution performance 45

4.2.4 Compute-energy efficiency 47

xv

xvi contents

5 ocladock-fpga : porting autodock to fpgas using

opencl 53

5.1 Data-parallel approach on FPGAs 53

5.2 Task-parallel approach: reformulated strategy for FPGAs 54

5.2.1 Reference pipeline design for FPGAs 54

5.2.2 The development phases 54

5.2.3 Further optimization techniques 64

5.3 Experimental evaluation 65

5.3.1 Setup . 65

5.3.2 Validation . 66

5.3.3 Design configurations and resource utilization . 67

5.3.4 Execution performance 68

5.3.5 Compute-energy efficiency 70

5.3.6 Further analysis 70

6 enhancing ocladock with gradients of the scor-
ing function 73

6.1 Gradient-based optimization 73

6.1.1 Gradient calculation 73

6.1.2 Gradient conversion from atomic into genetic
space . 74

6.1.3 Gradient-based local-search methods 76

6.1.4 Incorporation into OCLADock 78

6.2 Experimental evaluation 80

6.2.1 Setup . 80

6.2.2 Validation . 80

6.2.3 Profiling analysis for optimum local-search rate 83

6.2.4 Efficiency of gradient-based methods 86

6.2.5 Portability to other accelerators 88

6.2.6 Compute-energy efficiency 93

7 using ocladock for competitive drug discovery 97

7.1 The challenge of docking macrocyclic molecular structures 97

7.1.1 Why is this actually a challenge? 97

7.2 Handling macrocycles with OCLADock 99

7.2.1 Macrocycle-oriented scoring-function terms . . 99

7.2.2 Macrocycle-oriented development 100

7.2.3 Experimental evaluation 100

8 concluding remarks 103

8.1 Summary . 103

8.2 Lessons learned . 104

8.2.1 OpenCL for FPGAs 104

8.2.2 OpenCL for GPUs and CPUs 105

8.2.3 OpenCL beyond datacenters 106

8.3 Remaining research and engineering challenges 107

8.3.1 Extending functionality of OCLADock 107

8.3.2 Enhancing performance of OCLADock on FPGAs108

contents xvii

a key implementation differences compared to orig-
inal autodock code 109

b comparing performance against other paral-
lelized docking software 111

c memory requirements 115

d future trends of opencl 119

bibliography 123

L I S T O F F I G U R E S

Figure 2.1 Degrees of freedom of a theoretical ligand com-
posed of atoms A, B, C, . . . , O. Bonds between
atoms are depicted as connecting lines. Each
rotatable bond (E–H and I–J) corresponds to a
torsion, i. e., rotation of affected ligand atoms
around the rotatable-bond axis. 12

Figure 2.2 A grid-based approach is used for speeding up
the calculation of intermolecular interactions.
AutoGrid pre-calculates grid maps of interac-
tion for various ligand atom types. Afterwards,
AutoDock interpolates certain grid values to
calculate the total intermolecular interaction. . 17

Figure 2.3 AutoDock block diagram [233] with default
values of LGA parameters. 18

Figure 4.1 Mapping AutoDock – GA and LS – functions
onto OpenCL kernels. Kernel blocks enclose
nested loops controlling LGA runs, as well
as GA and LS inner processing. Kernels op-
erate over several individuals simultaneously,
with each individual being mapped to a single
OpenCL work-group. 40

Figure 4.2 A population processed by an LGA run (RunID)
can be decomposed into its individuals, and
each individual (IndID) can be mapped onto
a work-group (WGID). The entire set of work-
groups is distributed by the GPU runtime sched-
uler over the available Q compute units (CUs).
A CU is a multi-threaded hardware unit capa-
ble of processing one work-group (composed
of L work-items) at a time. The runs, individu-
als, and fine-grain tasks are colored according
to their associated level of parallelism: high
(blue), medium (red), and low (green). 41

Figure 4.3 The overall OCLADock workflow consists of a
sequence of host (Hx) and device (Dx) functions.
Program execution always starts and finishes
in host functions (depicted at the left side).
OpenCL kernels are executed iteratively on the
device (depicted at the right side), while their
termination is controlled by the host. 43

xviii

list of figures xix

Figure 4.4 Speedups of OCLADock vs. single-threaded
AutoDock achieved on GPU/CPU devices for
different work-group sizes. Vertical scales are
different. 46

Figure 4.5 Speedups of OCLADock vs. single-threaded
AutoDock achieved on CPU (16 work-items)
and GPU (64 work-items). Vertical scales are
different. 48

Figure 4.6 Power measurements on the RX-290X GPU for
10 LGA runs using 3c1x. 49

Figure 4.7 Energy-efficiency gains of OCLADock vs. single-
threaded AutoDock achieved on CPU (16 work-
items) and GPU (64 work-items). Vertical scales
are different. 51

Figure 5.1 Pipeline processing of the LGA of AutoDock
proposed in [146]. 54

Figure 5.2 First development phase: initial OpenCL design. 55

Figure 5.3 Second development phase: local-search logic
is implemented as a separate kernel. From now
on, feedback channels are shown as dashed
connections, while global-memory accesses are
omitted for simplicity. 59

Figure 5.4 Third development phase: local-search ker-
nels are replicated three times, while an arbiter
kernel is added to handle simultaneous score-
calculation requests. Score calculation kernels
are omitted for simplicity. 60

Figure 5.5 Fourth development phase: local-search ker-
nels are further replicated, while the arbitration
mechanism is improved. 64

Figure 5.6 Speedups of OCLADock-FPGA fastest design
DC4b vs. single-threaded AutoDock. 69

Figure 5.7 Energy-efficiency gains of OCLADock-FPGA
fastest design DC4b vs. single-threaded AutoDock. 71

Figure 6.1 Speedups of OCLADock vs. single-threaded
AutoDock achieved on a Vega 56 GPU (R = 100

LGA runs, lsrate = 100 %). 87

Figure 6.2 Speedups of OCLADock vs. single-threaded
AutoDock achieved on selected GPU/CPU de-
vices for different work-group sizes (R = 100

LGA runs, lsrate = 100 %). Vertical scales are
different. 89

Figure 6.3 Speedups of OCLADock vs. single-threaded
AutoDock achieved on selected GPU/CPU de-
vices using work-group sizes of 64/32 work-
items, respectively (R = 100 LGA runs, lsrate = 100 %).
90

Figure 6.4 Statistics of speedup factors: OCLADock vs.
single-threaded AutoDock achieved on all se-
lected devices (R = 100 LGA runs, lsrate = 100 %). 92

Figure 6.5 Power measurements of OCLADock for Solis-
Wets and ADADELTA executions on the Vega 56

GPU (R = 100 LGA runs, lsrate = 100 %). . . 94

Figure 6.6 Statistics of energy-efficiency gains: OCLADock
over single-threaded AutoDock achieved on
devices where measuring power was feasible
(R = 100 LGA runs, lsrate = 100 %). 95

Figure 7.1 Three-dimensional representation of a macro-
cycle example: 1nm6 (C27H33ClN6O2). Atoms are
carbon (gray), hydrogen (not shown), chlorine
(green), nitrogen (blue), and oxygen (red). The
number of atoms in the ring is Nring

atom = 19, and
that of active rotatable bonds is Nactive

rot = 12.
Figure was obtained from [19]. 98

Figure 7.2 Left: identification of the ring bond to be bro-
ken: A – B. Right: introduction of the so-called
invisible atoms Ainv and Binv, used for the ring-
closure procedure during docking. Both sides
show the assignment of non-standard atomic
types (CG, G0) to atoms in the broken bond. . 101

L I S T O F TA B L E S

Table 3.1 Parallelized MD tools. Fields specified with a
"–" mean the program/feature was not existen-
t/not implemented. 27

Table 4.1 OCLADock configuration for experiments. . . 44

Table 4.2 Functional validation of OCLADock vs. single-
threaded AutoDock, both running the Solis-
Wets local-search method. All results were ob-
tained using 100 LGA runs, and RMSD toler-
ance = 2 Å. Best values within each criterion
are colored. 45

xx

list of tables xxi

Table 4.3 Execution time (s) and speedups for 100 LGA
runs on CPU (16 work-items) and GPU (64

work-items). 47

Table 4.4 Measured power values (approximated) on the
CPU. 49

Table 4.5 Energy consumption (kJ) results and energy-
efficiency gains for 100 LGA runs on CPU (16

work-items) and GPU (64 work-items). 50

Table 5.1 Functional validation of OCLADock-FPGA vs.
single-threaded AutoDock, both using the Solis-
Wets local-search method. RMSD values are
omitted for simplicity. All results were ob-
tained using 100 LGA runs. Best values within
each criterion are colored. 67

Table 5.2 Development phases and design configurations. 68

Table 5.3 FPGA resource utilization and maximum fre-
quency. 68

Table 5.4 Execution time (s) for 100 LGA runs. 69

Table 5.5 Compute-energy consumption (kJ) for 100 LGA
runs. 70

Table 6.1 Hardware and software setup in terms of in-
stance type, peak memory bandwidth (GB/s),
peak single-precision FP performance (GFLOP/s),
number of OpenCL compute units (# CU), pre-
ferred OpenCL work-group size (WGsize), and
tool versions. 81

Table 6.2 Functional validation of OCLADock vs. single-
threaded AutoDock for Solis-Wets (SW) and
gradient methods: Steepest Descent (SD), FIRE,
and ADADELTA (AD). Serial SW results were
obtained on a E5-2666 CPU core, while the
OpenCL ones targeted a Vega 56 GPU, using
100 LGA runs for all cases. The best values
within each case are colored. Non-colored cells
indicate ligand-receptor cases where equally-
good results were found, or that it was not
possible to determine the best method. 82

Table 6.3 Comparison of OCLADock local-search (LS)
kernels using profiling metrics on the Vega 56

GPU (100 LGA runs). 84

Table 6.4 Resource utilization and its equivalent number
of wavefronts in Krnl_LS for the experiment
in Table 6.3. VGPR values, which limit the
overall GPU occupancy, are highlighted. . . . 86

Table 7.1 Experiments on a set of 20 ligands performed
for the GC4 blind prediction competition. The
best values within each case are colored. 101

Table A.1 Bit-field description of a 32-bit rotation-list item. 110

Table B.1 Configuration of benchmarked MD codes. . . 112

Table B.2 Average results of MD codes benchmarking.
Accelerator devices were previously utilized in
Chapter 6. 113

Table C.1 Upper limits of MD parameters in OCLADock
(defined in repository [187] /common/defines.h).116

Table C.2 Constant data structures and their members in
OCLADock. 117

Table C.3 Additional constant data structures and their
members for gradient calculation in OCLADock.118

L I S T O F A L G O R I T H M S

1 Lamarckian Genetic Algorithm (LGA) 13

2 Solis-Wets local search . 14

3 Scoring Function (SF) . 16

4 Attempt to synchronize accesses to a given location in
external memory using fences. Correct data transactions
between kernels (e. g., Rx_Val receiving the value ini-
tially stored in Tx_Val) occur only in emulation. For that
reason, this alternative design was discarded. 56

5 Code structure used in the InterScore kernel imple-
mentation. Similar structures are used in PoseCalc and
IntraScore. The outermost while-loop is controlled by
the active signal. The main-computation loop lists only
simplified operations. 58

6 In the second development phase, the random number
generator RNG function invoked within LGA was replaced
with a LFSR-GA kernel. 60

7 In the third development phase, Arbiter kernel reads
ready signals and genotypes from producer kernels: GA
and three LS. Accumulation and dispatch to PoseCalc of
received genotype data is omitted for simplicity. 62

8 In the fourth development phase, genotypes generated
in either GA or any of the nine LS kernel are sent directly
to PoseCalc, instead of being accumulated in Arbiter,
as in the third development phase. 63

9 Gradient Calculation (GC) 74

xxii

10 Incorporating ADADELTA local search into OCLADock.
The other gradient-based methods, Steepest Descent and
FIRE, are incorporated similarly, and thus are not shown
here. 79

A C R O N Y M S

AutoDock Automatic Docking

CPU Central Processing Unit

D3R Drug Design Data Resource

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High-Performance Computing

LGA Lamarckian Genetic Algorithm

MD Molecular Docking

OpenCL Open Computing Language

OCLADock OpenCL-Accelerated Molecular Docking

RTL Register-Transfer Level

TSRI The Scripps Research Institute

xxiii

1
I N T R O D U C T I O N

In this chapter, current trends in High-Performance Computing (HPC)
applied to scientific computing are summarized. This paves the way for
introducing aspects of Molecular Docking (MD), and one of the most
cited software tools in this domain: AutoDock. Analyzing this scenario
allows identifying relevant research problems that are addressed in
this thesis. Finally, the contributions and structure of this work are
presented.

1.1 current trends in high-performance and scientific

computing

As stated by Golub and Ortega [59], scientific computing is the science Examples on
classification of
scientific disciplines
can be found in [52,
54, 119].

– i. e., the collection of tools, techniques, and theories – that employs
computer systems for solving mathematical models of science and
engineering problems. Such problems arise from several disciplines
like mathematics (e. g., algebra, analysis, topology, statistics, etc), engi-
neering (e. g., electrical, mechanical, civil, chemical, etc), and natural
sciences (e. g., biology, chemistry, physics, astronomy, earth sciences,
etc). Scientific computing involves interdisciplinary activities, which
according to Eijkhout [43], mainly focus on three aspects:

• the mathematical modeling of real-world phenomena,

• the numerical analysis of modeling algorithms, and

• the efficient computation of numerical algorithms.

Due to the increasing computational demands in the aforementioned
aspects, efficient computer systems are becoming extremely required
in current research. As reported in the 52nd edition of the Top500
list [231] (corresponding to November 2018), Summit [184] – the fastest
computer system nowadays – achieves a theoretical peak performance
of 200 PFLOPs, and peak of 143.5 PFLOPs according to the High
Performance LINPACK benchmark [232]. The fact that the top five
systems in the Top500 list – located in the United States (Summit,
Sierra), China (Sunway TaihuLight, Tianhe-2A), and Switzerland (Piz
Daint) – are utilized for scientific studies, as well as for collaborations

1

2 introduction

towards Exascale Computing such as CORAL [45, 101], clearly shows
the need of HPC systems in scientific computing.

The historical developments in terms of the computer architectures
utilized in Top500 systems indicate that the upcoming trend are accel-
erators, i. e., systems comprising co-processors attached to the main
CPU [43]. Particularly, a total of 138 systems in the Top500 list use
accelerators, mainly dominated by Tesla P100 [133] and V100 [134]
GPU technologies, which are present in 60 and 41 out of such top
138 systems, respectively [230]. While GPU and the-now-discontinued
Xeon Phi [80] are the only accelerator technologies used in latest
Top500 systems, the installation of large-scale FPGA systems (in e. g.,
Florida [56], Texas [189], Paderborn [142]) indicates that these reconfig-
urable accelerators are becoming increasingly attractive for scientists
as well.

Traditionally, achieving higher performance has been the main goal
in HPC. However, energy efficiency is becoming increasingly important.
For current large-scale systems, the importance of energy efficiency isAs of November

2018, the most
efficient energy

system according to
Green500 is Shoubu

system B [170],
achieving a power

efficiency of
17.6 GFLOPs / Watts.

reflected on the Green500 list [229]. Similarly as in the Top500 list, the
usage of GPUs in Green500 is becoming significant, since eight out of
the first ten systems use Tesla GPUs. Moreover, as stated by Plessl [149],
the energy-efficiency issue opens another dimension for competition
in the HPC world. Such competitive scenario has motivated several
porting efforts of scientific computing applications to HPC [69, 122,
128, 208], as well as large investments in accelerator technologies by
cloud and data center companies like Amazon, Microsoft, Baidu, IBM,
and Huawei.

In the HPC scenario, computer architects and programmers are mov-
ing towards the paradigm known as heterogeneous computing, where
the best capabilities from different co-processors can be combined for
further performance gains. However, the broadly different architecturesThe benefits of

leveraging HPC are
promising. However,
it is timely to recall

the popular adage:
there is no such a

thing as a free
lunch.

and programming models required for co-processors bring signifi-
cant challenges to achieving efficient computations [114]. From the
standpoint of a scientific computing researcher, it is likely that archi-
tectural matters in computer systems would not be as much explored
as programming models. This is due to the fact that – for achieving
efficient executions of scientific software – designing and configuring
computer architectures requires highly-specialized knowledge, rather
than steering an application more directly with programming models.

Among the existing programming models used in parallel com-
puting (e. g., OpenMP, Pthreads, CUDA), the Open Computing Lan-Overviews on the

OpenCL, SYCL,
CUDA, and

OpenMP ecosystems
can be found in [21,

64, 66, 135],
respectively.

guage (OpenCL) [63] (initially released in 2009), thought of as a lan-
guage based on C/C++ with extensions for parallel programming, is
likely the only one providing actual code portability to various types
of devices (e. g., CPUs, Digital Signal Processors, GPUs) from several
vendors, including those with completely different architectures (i. e.,
FPGAs). In recent years, SYCL [65] (initially released in 2014), a C++

1.2 target application and research problems 3

single-source abstraction layer for OpenCL, is gaining an increasing
traction from both academia [4, 151, 172] and industry [29, 85, 95].
While this trend seems to be growing – making SYCL a (royalty-free)
future competitor of (proprietary lock-in) CUDA – SYCL is not yet
as mature and outspread as OpenCL. Due to the fact that OpenCL
lays the foundations of SYCL, and despite the larger popularity of
CUDA compared to both OpenCL and SYCL, the usage of OpenCL for
current research and development is relevant, especially in scientific
communities where open standards are preferred.

1.2 target application and research problems

A science domain that comprises computationally-expensive applica-
tions is computational chemistry. The availability of software packages
from such domain in several HPC academic centers [25, 36, 47, 118, 125,
143], as well as the interest of cloud providers to push research in this
direction [6, 15, 169], are examples of the significant attention the re-
search in this domain is receiving. Within this domain, computational
drug discovery, which combines pharmaceutical chemistry and com-
putational biology [106], has become a critical field fighting against
diseases like acquired immunodeficiency syndrome (AIDS) [67] and
cancer [161].

Molecular Docking (MD) is a widely-used method in computational
drug discovery. Basically, it aims to predict the interaction between
small molecules and macromolecular targets, with both molecule
types referred to as ligand and receptor, respectively. This technique
seeks ligands that effectively inhibit the harmful activity of certain
receptor proteins [70]. The interaction in such molecular systems is
estimated with scoring functions, which quantify with great detail the
ligand-receptor binding, and take into account (among other factors)
hundreds of atoms. For exploring the poses of molecules resulting
from such interactions, an MD program can easily invoke a scoring
function more than 106 times. On a large scale, MD is employed in
virtual screening to rapidly identify drug candidates from a database
typically composed of hundred thousands to million ligands. This, in
turn, results in 1010 to 1016 score evaluations [96].

As listed by the Swiss Institute of Bioinformatics [185], and reported
by Pagadala, Syed, and Tuszynski [140], there are more than 60 MD

tools – available either as open-source or commercially – that have been
developed during the last two decades. One of the most popular MD

tools throughout these years [49, 179, 216, 220] has been AutoDock, orig-
inally developed by Goodsell and Olson [61] at The Scripps Research
Institute (TSRI). The inherent parallelism from its genetic algorithm
engine has made it suitable for different acceleration approaches that
range from grid (e. g., World Community Grid [207]), distributed (e. g.,

4 introduction

combining MPI and OpenMP [124]) to heterogeneous (e. g., using
CUDA [88, 144], Verilog [146]) computing.

Besides the aforementioned relevance of AutoDock in computational
drug discovery, its intrinsic paralellism and algoritmic complexity
make AutoDock a suitable real-world case study for OpenCL-based par-
allelization targeting (co-)processors typically employed in scientific
environments (e. g., CPUs, GPUs, FPGAs). Therefore, the research prob-
lems addressed by this thesis are:

1. To the best of our knowledge, there is no open-source OpenCL
implementation of AutoDock. Implementations with other pro-
gramming models [88, 144, 146] are not publicly available. While
there are some studies claiming successful OpenCL implementa-
tions, it was found that in such cases, authors focused only on
certain parts of AutoDock (i. e., the genetic algorithm, considered
the global search engine), usually excluding the so-called local
search. From the computational-chemistry standpoint, the local
search is a method that can considerably enhance MD results at
the price of increasing the algorithmic complexity (by introduc-
ing execution paths controlled at runtime), and execution time
(with larger time-intensive loops).

2. In recent years, the adoption of High-Level Synthesis (HLS) for
FPGA design has increased significantly, as it enables program-
mers without a deep knowledge of the underlying architecture
and Hardware Description Language (HDL)s to harness the effi-
ciency of FPGAs. Although the higher level of abstraction at the
specification phase, achieving high performance is still challeng-
ing due to the lack of direct control of low-level characteristics
such as resource usage, placement and timing constraints [201,
204]. Studies in different aspects – such as programming prac-
tices [164], tool usage [163], and acceleration of scientific code [93,
162, 204, 218] – suggest that OpenCL is promising for FPGAs. De-
spite that, the OpenCL efficiency on FPGAs for MD was not yet
explored.

3. Concurrently to efforts to speed-up MD processing times, several
studies have been aiming to improve the MD quality with more
efficient local-search methods [216]. Despite the fact that certain
local-search methods (e. g., based on gradients of the scoring
function) have shown significant enhancements over traditional
ones [3, 53, 188], their efficient parallelization and incorporation
into well-established codes like AutoDock is still lacking. Such
incorporation is particularly challenging, as AutoDock involves a
heuristic process, which in order to be verified, requires several
executions (with different inputs) of considerably long durations.

1.3 thesis contribution 5

4. Most of the research and development involving OpenCL focuses
on parallel programming towards faster executions [87, 167]. As
already mentioned, energy efficiency is becoming as important
as performance in HPC, and thus, scientific applications are not
exempted from these two concerns. Narrowing it down to MD,
it was found that only one software (BUDE [109]) has been
analyzed before in terms of power consumption and energy
efficiency.

1.3 thesis contribution

Based on the aforementioned research problems, the contributions of
this thesis are the following:

• An OpenCL implementation of AutoDock, including the default
Solis-Wets local-search method, using a data-parallel approach
for CPUs and GPUs, which are the most popular accelerators
available in scientific computing environments.

• An OpenCL implementation of AutoDock using a task-parallel ap-
proach for FPGAs. This involves a detailed exploration of design
choices not extensively discussed in previous OpenCL studies
on FPGAs, such as complex multiple-producers to single-consumer
datapaths, as well as time-intensive loops with variable runtime.
An analysis of the OpenCL portability between CPUs, GPUs, and
FPGAs is provided as well.

• Incorporation of gradient-based methods for local search (i. e.,
Steepest-Descent, FIRE, and ADADELTA) into the OpenCL im-
plementation of AutoDock. These newly-incorporated methods are
evaluated in terms of runtime performance and energy efficiency
on recent on-premise and cloud accelerators. Moreover, such
methods are compared against the default Solis-Wets method in
terms of MD quality.

• Extending the implementation in order to tackle a more chal-
lenging MD scenario, i. e., for docking macrocyclic molecules (a
problem difficult to model), by leveraging OpenCL faster exe-
cutions, and thus exploring more complex MD simulations that
would be excessively time-consuming or even not successful to
handle otherwise, i. e., with the original sequential AutoDock and
default Solis-Wets method.

• To the best of our knowledge, this thesis provides the first open-
source OpenCL implementation of AutoDock following two paral-
lelization approaches: a data-parallel one for CPUs/GPUs, and a
task-parallel one for FPGAs. The code developed in this thesis is
called OpenCL-Accelerated Molecular Docking (OCLADock), and

6 introduction

has been released as open-source under the following GitLab
repositories:

– OCLADock - OpenCL Accelerated Molecular Docking.
https://git.esa.informatik.tu-darmstadt.de/docking/

ocladock

– OCLADock-FPGA: OpenCL Accelerated Molecular Docking on
FPGAs.
https://git.esa.informatik.tu-darmstadt.de/docking/

ocladock-fpga

Additionally, our CPU/GPU code will be officially incorporated
into the mainline AutoDock suite, and maintained by TSRI – the
original AutoDock developers – under the following GitHub repos-
itory:

– AutoDock for GPUs using OpenCL.
https://github.com/ccsb-scripps/AutoDock-GPU

The listed contributions have already been peer-reviewed, and their
corresponding publications were accepted at international confer-
ences/journals in the HPC and computational chemistry domains:

• A Performance and Energy Evaluation of OpenCL-accelerated Molec-
ular Docking.
Solis-Vasquez, L. et al. [233]

• A Case Study in Using OpenCL on FPGAs: Creating an Open-Source
Accelerator of the AutoDock Molecular Docking Software.
Solis-Vasquez, L. et al. [234]

• Comparison of affinity ranking using AutoDock-GPU and MM-GBSA
scores for BACE-1 inhibitors in the D3R Grand Challenge 4.
El Khoury, L. et al. [44]

• D3R Grand Challenge 4: prospective pose prediction of BACE1 lig-
ands with AutoDock-GPU.
Santos-Martins, D. et al. [166]

The following publications, currently under review, have been sub-
mitted to conferences/journals in the HPC and computational chem-
istry domains:

• Evaluating the Performance and Portability of Molecular Docking in
OpenCL: A Case Study of AutoDock enhanced with Gradients.
Solis-Vasquez, L. et al. [235]

• Evaluating the Energy Efficiency of OpenCL-accelerated AutoDock
Molecular Docking.
Solis-Vasquez, L. et al. [236]

• Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.
Santos-Martins, D. et al. [165]

https://git.esa.informatik.tu-darmstadt.de/docking/ocladock
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock-fpga
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock-fpga
https://github.com/ccsb-scripps/AutoDock-GPU

1.4 thesis outline 7

1.4 thesis outline

This thesis is structured as follows:

Chapter 2 introduces the fundamentals of MD, the functionality
of AutoDock, and its main components such as a Lamarckian Ge-
netic Algorithm (LGA) using the Solis-Wets local-search method,
and a scoring function.

Chapter 3 reviews the literature comprising studies using OpenCL,
compute-energy analysis for heterogeneous systems, as well as
porting efforts of AutoDock and other MD tools to different com-
puting systems.

Chapter 4 describes OCLADock, a data-based parallelization of
AutoDock using OpenCL for targeting multi-core CPUs and many-
core GPUs, reporting performance and energy efficiency gains.

Chapter 5 describes a task-based parallelization of AutoDock using
OpenCL for targeting FPGAs, reporting – besides performance
and energy efficiency gains – key programming challenges and
differences with respect to the data-parallel approach.

Chapter 6 describes the incorporation into the data-parallel
OCLADock of local-search methods based on gradients of the scor-
ing function, as an alternative to the legacy Solis-Wets method.
It provides an analysis of performance, quality-of-results, and
energy efficiency gains.

Chapter 7 extends the applicability of OCLADock by providing a
description of the program adaptations made in order to scale
to the complex requirement of docking macrocyclic molecules.

Chapter 8 reports lessons learned from using OpenCL for porting
OCLADock between CPUs, GPUs, and FPGAs, as well as an outlook
of results, remaining engineering challenges, and future work.

2
F U N D A M E N TA L S O F AU T O D O C K M O L E C U L A R
D O C K I N G

This chapter provides the fundamentals of MD and specifics of AutoDock.
The most critical components of MD programs such as the search al-
gorithm and scoring function are described, as well as the AutoDock

functionality and its validation procedure.

2.1 background on molecular docking

MD simulations aim to predict the predominant binding poses of a
(small) ligand molecule and a (macromolecular) receptor target, both
of known three-dimensional structure. An MD software is used to
identify ligands that effectively inhibit the harmful activity of certain
receptor proteins [70].

This prediction aims for the best pose, i. e., it involves solving an MD performs a
search procedure for
minimum value of
the scoring function.

optimization problem that suffers from a combinatorial explosion
due to the many degrees of freedom of such molecular systems –
i. e., all possible translations, orientations and torsions – experienced
by molecules during interaction. The interaction is estimated with
scoring functions, which quantify the ligand-receptor binding in great
detail. For exploring the scoring landscape, an MD program can easily
invoke a scoring function more than 106 times. As already described
in Chapter 1, MD is employed in virtual screening to rapidly identify
drug candidates from a database typically composed of hundred
thousands to million ligands, which in turn results in 1010 to 1016

score evaluations [96].
The most critical components of an MD program are the search

algorithm and scoring function [49, 202, 216]. There are many different
design approaches for these two MD components, and hence, many
different MD software exist (more than 60 [140, 185]). For a deeper
understanding of the MD functionality, a classification along with a
brief description of the different approaches of search algorithms and
scoring functions is provided as follows.

Search algorithms can be classified into three categories [202, 216]:

1. Shape matching: performs several alignments between the lig-
and and receptor, while seeking to maximize their geometrical
overlap. E. g., DOCK [192], EUDOC [141].

9

10 fundamentals of autodock molecular docking

2. Systematic: faces the combinatorial explosion by progressively
changing all ligand’s degrees of freedom. Algorithms can be
further divided into exhaustive search, fragmentation, and con-
formational ensemble. E. g., eHiTS [228], GLIDE [58].

3. Stochastic: performs random changes in the ligand, generates en-
sembles of conformations, and thus populates a wide range of the
scoring landscape. Favorable changes are accepted. Algorithms
can be based on Monte Carlo, tabu search, genetic algorithms,
swarm optimization. E. g., GOLD [55], AutoDock.

Scoring functions can be classified into four categories. An extensive
study on this classification by Liu and Wang [105] is summarized as
follows:

1. Force field: are based on physics, and consist of a sum of non-
covalent energy terms including van der Waals, hydrogen bond-
ing, electrostatics, and desolvation. Such functions often need
empirical scaling parameters to fit their results to experimental
data obtained using x-ray crystallography.X-ray

crystallography is a
technique used for

structure
determination of

biological
macromolecules.

Structure-based drug
design is one of the

many areas in which
x-ray

crystallography has
provided

clarification [174].

2. Empirical: consist of a sum of rewarding scores and penalties. Addi-
tional penalties might be considered in case of covalent docking.
Since multiple terms with different implications are combined,
such functions rely on multivariate linear regression to derive
the weight factors for each contributing term.

3. Knowledge-based: consist of a sum of pairwise (i. e., between a
pair of atoms) statistical potentials between a ligand and receptor.
The potentials employed are extracted through statistical analysis
of structures, rather than from attempts to reproduce known
binding energies.

4. Descriptor-based: if the properties of the ligand and receptor,
as well as their interaction patterns, can be coded with certain
descriptors, then machine-learning techniques employed in mod-
ern quantitative structure-activity relationship (QSAR) analysis
can be applied to derive statistical models to compute scores.

Regarding how such scoring-function categories compare with each
other, there are relevant details that can be briefly mentioned:

• The boundary between force-field and empirical is not strict, be-
cause both decompose the ligand-receptor binding energy into
individual terms. Their major difference is, that force-field func-
tions possess a complete theoretical framework, while empirical
functions often adopt a flexible and intuitive form composed
from scratch. Moreover, empirical function terms are simpler
than those of force fields, and hence, are much faster to compute.

2.2 autodock : a software for automated docking 11

• Knowledge-based potentials are derived through statistical anal-
ysis without the need of experimental binding data, and hence,
their main benefit is the computational and conceptual simplicity
compared to force-field and empirical functions, respectively.

• Force-field and empirical functions, as well as knowledge-based
potentials have linear forms, while a descriptor-based function
– depending on the machine-learning technique used – does
not necessarily have such form. For selecting a descriptor-based
model (i. e., a combination of descriptors), such scoring functions
rely on machine learning, whose selection rationale is often
vague and has no interpretable physical meaning.

2.2 autodock : a software for automated docking

AutoDock is a widely-used and open-source MD software [49, 179, 216,
220]. It was developed and is currently maintained by TSRI [35]. Over
the years, it has been continuously enhanced with more efficient search
methods and scoring functions [77]. Different search methods are cur-
rently available in AutoDock: simulated annealing, distributed simulated
annealing [61], and Lamarckian Genetic Algorithm (LGA) [116]. In this
thesis, the focus is on the latest available AutoDock: version 4.2.6. More
specifically, on its LGA search engine, since it has proven to achieve
better MD results among all prior algorithms [116].

2.2.1 Encoding

MD is an optimization problem where different poses of the ligand,
i. e., spatial geometrical arrangements, are explored in order to find
the one that binds strongly to a certain binding region on the receptor.
The most direct way of exploring the landscape of molecular poses
would be to generate different three-dimensional positions for all
Natom (e. g., hundred) atoms present in the ligand. However, due to
the combinatorial explosion that this approach suffers from, a more
efficient representation or encoding for the ligand poses is required.

Such encoding can be devised by considering the ligand as a flexible Similar to other
software reported
in [140], AutoDock
treats the ligand as
flexible, whereas the
receptor is
considered rigid.

body, whose poses can be represented using a combination of variables
that describe: first, overall motion as a rigid body; and second, internal
body flexibility (Figure 2.1).

1. As a rigid body, the ligand can experience two types of mo-
tions: translation and rotation. Translation can be encoded with
variables describing displacement in x, y, and z directions. Rigid-
body rotation (orientation) can be described in axis-angle coordi-
nates, i. e., with φ, θ, and α variables.

12 fundamentals of autodock molecular docking

A B

C D

E

H

I

J

K

L

M
O

N

FG

Translation (x, y, z)

Orientation (φ, θ, α)

Torsion (ψ1)

Torsion (ψ2)

Figure 2.1: Degrees of freedom of a theoretical ligand composed of atoms A,
B, C, . . . , O. Bonds between atoms are depicted as connecting lines.
Each rotatable bond (E–H and I–J) corresponds to a torsion, i. e.,
rotation of affected ligand atoms around the rotatable-bond axis.

2. The internal body flexibility models the rotation allowed for
specific atomic (rotatable) bonds, which results in rotating ligand
fragments around such bond axes. If a ligand possesses Nrot

rotatable bonds, each of these can be represented with a torsional
variable ψ.

The full set of Nrot + 6 variables describes the degrees of freedom
of the ligand, and collectively, they constitute the encoded solution Ω
to be optimized during the MD process:

Ω = x, y, z, φ, θ, α, ψ1, . . . , ψNrot (2.1)

Each solution corresponds to a different ligand pose, whose quality –
from the biophysical standpoint – is evaluated by a scoring function:The lower values of

the scoring function,
the stronger

ligand-receptor
interactions.

SF (x, y, z, φ, θ, α, ψ1, . . . , ψNrot) (2.2)

Moreover, a term typically used in MD is the so-called conformation.
A conformation refers to a change in the molecular structure that
happens only when some angles between bonds are altered. Putting
this in terms of degrees of freedom (translation, orientation, rotatable
bonds): a conformation is defined by the rotatable bonds, while a pose
is defined by the entire set of degrees of freedom.

2.2.2 Lamarckian Genetic Algorithm

The Lamarckian Genetic Algorithm (LGA) is the optimization method
used to generate ligand poses for exploring the landscape described by
the scoring function SF. An LGA (Algorithm 1) hybridizes the princi-
ples of biological evolution by coupling a genetic algorithm (GA) used
as a global search method, with a local search (LS) method for refining

2.2 autodock : a software for automated docking 13

the poses initially identified by the GA. The Lamarckian denomination
implies that poses whose scores were improved by LS iterations are
re-introduced into the genetic population. Each member of a popula-
tion is an individual, which is represented by its genotype, i. e., set of
genes. New individuals are generated by genetic evolution (i. e., via
crossover, mutation, and selection rules) from ancentors (i. e., individ-
uals from a previous generation). A population subset is subjected
to an additional LS optimization, which in AutoDock is based on the
Solis-Wets method [175]. The LGA execution stops when a pre-defined
maximum number of score evaluations (default: NMAX

score-evals = 2 500 000)
or generations (default: NMAX

gens = 27 000) is reached, whichever comes
first.

Algorithm 1: Lamarckian Genetic Algorithm (LGA)
Program AutoDock

/* High-Level Parallelism */

for each LGA-run do
while (Nscore-evals < NMAX

score-evals) and (Ngens < NMAX
gens) do

/* Medium-Level Parallelism */

GA (population)

/* Medium-Level Parallelism */

for individual in random-subset (population) do
LS (get-genotype (individual))

The usefulness of biological evolution in MD optimizations relies on
the mapping between these concepts, summarized as follows:

1. Each gene corresponds to a specific ligand motion variable (x, y,
z, φ, θ, α, ψ1, . . . , ψNrot).

2. A genotype – i. e., full set of Ngenes variables – represents a pose Relation between
number of genes and
rotatable bonds:
Ngenes = Nrot + 6.

(the encoded solution Ω).

2.2.3 Solis-Wets local search

The LGA comprises the Solis-Wets local search (LS) method (Algo-
rithm 2) that subjects a population subset of randomly-chosen individ-
uals (lsrate, default: 6 %) to an adaptive-iterative process that aims to
improve (i. e., minimize) their scores. In this method, new genotypes
(new-genotype1 or new-genotype2) are generated either by adding or
subtracting small random changes (delta) to each gene of an initial
genotype. New genotypes are stored if their scores (calculated by SF)
are lower than those of a previous genotype.

At each iteration, the change in delta (step) is either increased or de-
creased, depending on whether the number of consecutive successful
or unsuccessful search attempts is greater than four, respectively. Simi-

14 fundamentals of autodock molecular docking

lar to LGA, the Solis-Wets LS termination is runtime-defined. Specif-
ically, it finishes when either the number of LS iterations or change
in delta reach their maximum (default: NMAX

LS-iters = 300) or minimum
(default: stepMIN = 0.01) limits, respectively.

Algorithm 2: Solis-Wets local search
/* Low-Level Parallelism */

Function Solis-Wets (genotype)
while (NLS-iters < NMAX

LS-iters) and (step > stepMIN) do
// delta

delta = bias + CONSTANT * random() * step

// new-genotype1

for each gene in Ngenes do
newgene1 = gene + delta

if SF (new-genotype1) < SF (genotype) then
genotype = new-genotype1

success++
fail = 0

else
// new-genotype2

for each gene in Ngenes do
newgene2 = gene - delta

if SF (new-genotype2) < SF (genotype) then
genotype = new-genotype1

success++
fail = 0

else
success = 0

fail++

// step

if success >= 4 then
step *= EXPANSION-FACTOR
success = 0

else if fail >= 4 then
step *= CONTRACTION-FACTOR
fail = 0

2.2.4 Scoring function

The chemical interactions between a ligand and receptor are quantified
with a semi-empirical free-energy force field (kcal/mol):

SF = ∑
i,j

[
Wvdw

(Aij

r12
ij
−

Bij

r6
ij

)
+ Whb E(t)

(Cij

r12
ij
−

Dij

r10
ij

)
+

Wel

(qiqj

ε(rij)rij

)
+ Wds

(
SiVj + SjVi

)
e
−r2

ij
2σ2

]
+ Wrot Nrot

(2.3)

2.2 autodock : a software for automated docking 15

The scoring function, denoted as SF in Equation 2.3, is composed
of five terms. The first four terms comprise the summation per- Note that in this

work, the term
energy refers to
either the binding
energy (kcal/mol),
i. e., the scoring
function value
associated with a
ligand pose; or the
compute energy
(Joules) consumed
during the MD
program execution.
Here, we mean
binding energy.

formed over all pairs of ligand and receptor atoms. These terms are:
van der Waals (dispersion/repulsion), hydrogen bonding, electrostat-
ics, and desolvation. The fifth term predicts the (unfavorable) loss of
ligand entropy binding due to the Nrot rotatable bonds. All terms are
characterized by dimensionless coefficients, constant look-up tables,
and other parameters. More importantly, the score is mainly deter-
mined by the interatomic distance rij between atoms i and j, which is
calculated at runtime. Additional details of the aforementioned terms
are provided as follows:

• The dimensionless weighting constants Wvdw, Whb, Wel, Wds, and
Wrot are empirically determined using linear regression on a set
of ligand-receptor inputs with known binding constants.

• The following coefficients depend on the atom types:

– Aij (kcal/mol Å12) and Bij (kcal/mol Å6) correspond to the
Lennard-Jones (12-6) potential [103] between neutral atoms i
and j.

– Cij (kcal/mol Å12) and Dij (kcal/mol Å10) correspond to the
hydrogen bonding (12-10) potential [78] between hydrogen-
bond acceptor and donor atoms i and j.

– S and V are respectively the solvation parameter [176], and
the atom volume [191] that shelters it from a solvent.

• The dimensionless directional weight E() of the angle t provides
directionality from ideal hydrogen bonding geometry.

• Atomic charges qi and qj of atoms i and j, respectively.

• The dielectric function ε() of the interatomic distance rij (be-
tween atoms i and j).

• An independent constant: σ = 3.5 Å.

Both Equation 2.2 and Equation 2.3 represent the same scoring func-
tion. Particularly, Equation 2.2 is a function of the genetic degrees of
freedom of the ligand (x, y, z, φ, θ, α, ψ1, . . . , ψNrot), whereas Equa-
tion 2.3 depends mainly on the interatomic distances (rij), determined
in turn by the three-dimensional coordinates of atoms i and j. In other
words, Equation 2.2 and Equation 2.3 are expressed in two different
spaces, genetic and atomic, respectively. This observation highlights
the relevance of using biological evolution in AutoDock since it maps
the MD-problem from the atomic space (three-dimensional coordi-
nates of all Natom ligand atoms) into the genetic space (genotype Ω),
hence considerably reducing the number of variables to be optimized

16 fundamentals of autodock molecular docking

from Natom × 3 (tens or hundreds) down to Ngenes (= Nrot + 6, with
NMAX

rot = 32).
Furthermore, the overall molecular interaction can be expressed

as the sum of two independent interactions based on the ligand and
receptor group of atoms. This expression for the SF (Algorithm 3)
performs a pose calculation first, which inputs a genotype and outputs
a set of three-dimensional coordinates for all ligand atoms, iterating
over all Npose-rot rotation items. Thereafter, the interatomic distances
are processed by the (aforementioned) two independent interactions,
which are described as follows:

1. Intermolecular interactions could be computed analytically us-
ing Equation 2.3. However, since the number of ligand-receptor
atom pairs is typically large (i. e., thousands), the analytical
calculation is thus replaced by a trilinear interpolation of pre-
calculated grids (Figure 2.2) that model the contribution of the
receptor for each ligand atom-type [116]. This is achieved by us-
ing the AutoGrid program (part of AutoDockTools [117]), which
calculates interaction energy maps with a default resolution
(i. e., grid spacing) of 0.375 Å, and hence speeds up intermolec-
ular interaction estimates compared to pairwise methods. This
component iterates over all Natom ligand atoms.

2. Intramolecular interactions within the ligand can be calculated us-
ing Equation 2.3 as well, but similarly to the intermolecular com-
ponent, these interactions (i. e., ligand-ligand) are pre-calculated
for all Nintra-contrib intramolecular contributor pairs and stored in
one-dimensional look-up tables.

Algorithm 3: Scoring Function (SF)
/* Low-Level Parallelism */

Function SF (genotype)
for each rot-item in Npose-rot do

PoseCalculation

for each lig-atom in Natom do
InterInteraction

for each intra-pair in Nintra-contrib do
IntraInteraction

Within the receptor, there exist as well intramolecular interactions
(i. e., receptor-receptor), which are constant since the receptor is treated
as a rigid molecule. Because a molecule can contribute to the force
field by itself only if the difference between energies of its bound and
unbound states is non-zero, this component is not calculated.

2.2 autodock : a software for automated docking 17

x y

z

Grid point

Probe ligand atom

Receptor

Grid box

Grid spacing

Figure 2.2: A grid-based approach is used for speeding up the calculation of
intermolecular interactions. AutoGrid pre-calculates grid maps of
interaction for various ligand atom types. Afterwards, AutoDock
interpolates certain grid values to calculate the total intermolecu-
lar interaction.

2.2.5 AutoDock algorithm

The operation of AutoDock is depicted in Figure 2.3. Its overall MD

process starts reading and parsing input files, which include:

• The three-dimensional structures of both ligand and receptor
molecules, described in the standard .pdbqt file format.

• The runtime parameters – e. g., number of LGA runs, population
size, maximum number of: score evaluations (NMAX

score-evals) and
generations (NMAX

gens), grid maps, etc – listed in the AutoDock .dpf
docking parameters file.

The actual AutoDock computations take place within every LGA run,
for which a sequence of four main steps (Step 1, . . . , Step 4) is exe-
cuted during global (genetic algorithm) and local search (Solis-Wets).

• Step 1 generates new individuals, represented by their geno-
types, under different rules depending on the LGA phase – either
global or local – being executed. During global search, genotypes
are subjected to genetic operations (e. g., crossover, mutation, and
selection). During local search, new genotypes are generated ac-
cording to the Solis-Wets method, i. e., by adding or subtracting
small delta variations to their current values.

18 fundamentals of autodock molecular docking

DOCKING JOB[
LGA runs: 50

]

Step 1

GA generation

GENETIC ALGORITHM (GA)[
crossover: 0.80 | mutation: 0.02 | selection: 0.50

]
Step 2-3-4

Individual

scoring

Step 1

Solis-Wets

generation

Step 2-3-4

Individual

scoring

Iterating over selected individuals

LOCAL SEARCH (LS)[
lsrate: 0.06 | stepMIN: 0.01 | NMAX

LS-iters: 300
]Iterating over GA generations

LAMARCKIAN GENETIC ALGORITHM (LGA)[
individuals: 50 | NMAX

score-evals: 2500000 | NMAX
gens : 27000

]
Iterating over independent LGA runs

Input processing

Output

processing
Step 2

Pose

calculation

Step 3

Intermolecular

interaction

Step 4

Intramolecular

interaction

<1%Typical runtime distribution <10% >90%

Figure 2.3: AutoDock block diagram [233] with default values of LGA pa-
rameters.

• Step 2, Step 3, and Step 4 calculate the ligand pose (from a
genotype), the intermolecular, and intramolecular interaction,
respectively. This sequence of steps is repeated for every geno-
type, and is limited by either the maximum number of score
evaluations (NMAX

score-evals) or generations (NMAX
gens) within every LGA

run. All invokations to these steps account together more than
90 % of AutoDock execution time.

Finally, once all LGA runs have been executed, their best resulting
ligand poses and corresponding scores are written to an output .dlg
docking log file.

2.2.6 Validation

Since an LGA involves heuristics, the AutoDock outputs should be fur-The validation
criteria presented

here is also used to
analyze the

quality-of-results in
later chapters.

ther analyzed in order to assess the functional correctness of the MD

simulation. From the many different protocols [76] possible for val-
idating such correctness, the experiments performed in this work
are the so-called re-docking studies. In that approach, already studied
ligand-receptor inputs are docked again. This allows a comparison
between well-known reference solutions, and the ones obtained by
implementations under test. The typical validation procedure [117] is
based on the following criteria:

• Lowest binding score (LBS): refers to the best score – or lowest
binding energy (in kcal/mol) – found among all executed LGA

runs.

2.2 autodock : a software for automated docking 19

• Root mean square deviation (RMSD): estimates the geometrical
deviation (in Å) of the resulting ligand (of an LGA run) with
respect to a known-good reference pose. An RMSD equal to zero
would be a perfect match between the resulting solution and its
corresponding ground-truth x-ray crystallographic structure. For
validation, LGA runs whose resulting ligand poses have RMSD
within just 2 Å from each other are grouped into clusters.

• Size of best cluster (SBC): the best cluster is the one containing
the LBS pose. Larger clusters are better because they indicate
the ability of an MD program to find more geometrically-similar
poses.

3
R E L AT E D W O R K

This chapter covers revelant observations and achievements from stud-
ies using OpenCL (especially for FPGAs), and compute-energy analysis
for heterogeneous systems. Moreover, it reviews recent studies on
execution- and algorithmic-performance enhancements of accelerated
MD.

3.1 opencl programming and energy-efficiency aspects

of heterogeneous systems

3.1.1 Performance portability of OpenCL

In general, while portability can have different meanings [217]; from
an application-efficiency perspective, performance portability is under-
stood as the program capability of achieving good performance accross
multiple architectures [171]. Recent studies on this topic quantify per-
formance portability through the Pennycook metric [75, 217], analyze
the performance achieved with different configuration knobs [147,
148, 168, 222], and evaluate such portability of parallel programming
models based on empirical measurements [108, 177]. Due to the fact
that computer architectures diversify in order to provide systems with
higher performances, performance portability is a becoming a more
desirable feature [223].

Among several parallel programming models, the Open Computing
Language – OpenCL [64] – is one of the most functionally portable [108].
OpenCL provides a standard for writing parallel programs that exe-
cute across heterogeneous platforms consisting of a general-purpose
processor (host) coupled with specialized accelerators (devices) such as
many-core GPUs, dense multi-core CPUs, digital signal processors, and
recently, hardware-reconfigurable FPGAs.

In order to understand how performance portable OpenCL is, ap-
plications from different domains have been used as case studies
in heterogeneous computing. Pennycook et al. reported the devel-
opment of wavefront [148] and molecular dynamics [147] kernels,
showing the impact of work distribution, memory-access patterns,
and single instruction, multiple data (SIMD) utilization. Zhang, Sin-
clair, and Chien [222] identified tuning metrics (e.g., memory layout,

21

22 related work

prefetching/caching) critical to performance of three benchmarks:
matrix multiply, sparse vector multiply, and fast Fourier transform.
Martineau, McIntosh-Smith, and Gaudin [108] assessed the perfor-
mance portability of emerging parallel programming models against
the mature CUDA and OpenCL, porting a mini-application that solvesMore details on the

parallelization of
BUDE [57] are

provided in
Section 3.1.3 and

Section 3.2.2.

a heat conduction equation. Besides the aforementioned relatively small
applications, McIntosh-Smith et al. [110] analyzed the performance
portability of an OpenCL implementation of the BUDE docking en-
gine [57].

From previous studies, there is a clear sign: while OpenCL is in-
deed functionally portable, its performance portability is not guaran-
teed [108, 147, 148]. In fact, in order to maximize the performance
when porting an abstract OpenCL code to different accelerators, it
is critical to consider the underlying hardware of the target. Examples
of the required awareness include, e. g., using target-specific memory
accesses for exploiting: local memories on GPUs, cache hierarchies on
CPUs, fully-customized pipelines on FPGAs. These design considera-
tions can be expressed with coding techniques, e. g., array-of-structs
(AoS) vs. struct-of-arrays (SoA) memory layout [148], or data vs. task
parallelization [93, 218, 227]. Besides that, target-dependent optimiza-
tions result in typically longer development cycles, which could be
further extended when working with domain-specific applications
tackling real-world problems, like those in MD.

3.1.2 OpenCL for FPGA programming

Traditionally, FPGA programming has been an exclusive domain of
hardware developers, which implement high-performance designs
reasoning at the Register-Transfer Level (RTL). Working at this level
requires developers to specify a number of hardware blocks perform-
ing concurrent low-level operations synchronized with a clock signal.
These blocks communicate with each other through wires. Depending
on the logical values transferred, these wires can control the inter-
nal state of such hardware blocks. Since the invention of FPGAs in
1985 [215], developers have been following this RTL-based approach
for describing hardware. However, due to the concurrent nature and
complexity of hardware blocks used in modern designs, it is in prac-
tice very difficult to reason in terms of transfers between hardware
registers.

The development flow for FPGAs comprises several steps [72]. Among
these, synthesis and place & route are automated by computer-aided de-
sign (CAD) tools. However, other steps like design specification (based
on RTL descriptions), system integration and verification must be care-
fully handled by developers themselves. From the standpoint of a
hardware developer, while the burden of the overall development

3.1 opencl programming and energy-efficiency aspects of heterogeneous systems 23

can be alleviated somehow by using Intellectual Property (IP) cores
(e. g. [82, 137, 212]), it is still a time-consuming process.

In fact, as indicated in the industrial survey in [79], the productivity
of a hardware developer (∼dozens lines of code per day) is lower com-
pared to that of a software programmer (between 10 – 100 lines of code
per day). Moreover, as pointed out by Kapre and Bayliss [89], since
the number of software programmers is larger than that of hardware
developers (in a ratio of 10x), it is then more expensive to develop an
application on FPGAs than its equivalent software counterpart.

In order to increase productivity, the design-specification approach
for FPGAs known as High-Level Synthesis (HLS) has gained increasing
interest in recent years. Compared to traditional RTL-based languages
or HDLs (e. g., VHDL, Verilog, System Verilog), HLS languages (e. g.,
Handel-C [112], LegUp [194], Vivado HLS [213], OpenCL [64, 83, 210])
require significantly smaller and easier-to-understand codes to describe
a given functionality. In this way, HLS aims to increase productivity,
and in turn, enables programmers without a deep knowledge of the
underlying FPGA architecture and HDLs to harness the performance
and power efficiency of such devices.

Studies using OpenCL for accelerating applications on FPGAs are As discussed in
Chapter 5, a useful
design approach is
task-based
parallelism, which is
supported so far only
in OpenCL and
SYCL [66] (among
high-level
descriptions).

described as follows. Since there are several studies meeting this
criteria, our selection was made on the basis of key design patterns or
programming techniques that are relevant for the work of this thesis.

Zohouri et al. [227] evaluated the performance and power require-
ments of six Rodinia benchmarks targeting a Stratix-V FPGA, against
a Tesla K20c GPU and a Xeon CPU. The effectiveness of specific op-
timizations (e. g., sliding windows) on FPGAs is reflected in a 3.4x
power-efficiency superiority over the above GPU, and better runtime
and power efficiency over the above CPU. The authors highlight that
the OpenCL implementation of FPGA-specific strategies is completely
different from common OpenCL strategies on GPUs.

Later in [226], Zohouri, Podobas, and Matsuoka combined spatial
and temporal blocking for accelerating two- and three-dimensional sten-
cil computations using OpenCL. Respective designs achieved compute
performances of 760 and 375 GFLOP/s on an Arria 10 FPGA running
at frequencies of 256 MHz. These results rival those achieved on a
GTX 980Ti GPU (performance- and energy-wise), and on a Tesla P100

GPU (energy-wise).
Kenter and Plessl [94] developed a Finite-Difference Time-Domain

(FDTD) solver for photonic microcavity simulations. Their OpenCL
implementation consists of multiple read, compute and write kernels
communicated through pipes. The read/write kernels transfer in-
put/output from/to the external DDR3 memory, whereas the com- DDR3 stands for

Double Data Rate
Type 3. It is a type
of synchronous
dynamic RAM [41].

pute kernel performs the actual FDTD calculation. The latter kernel
was pipelined into 36 stages, which passed data only through on-chip
memory regions. On a Virtex 7 FPGA, this design runs at 140 MHz

24 related work

and reaches processing rates higher than ∼1600 Mcells/s. This clearly
outperforms an OpenMP implementation running eight threads on
a Xeon E5620 CPU, which reaches a maximum of ∼500 Mcells/s for
more than 220 grid points.

In a further work [93], Kenter, Förstner, and Plessl parametrized
their FDTD implementation, making their OpenCL design achieve
portability and flexibility across FPGA platforms from different vendors
by using pre-processor macros. Authors state that while some pre-
processor macros are tedious to maintain, these drawbacks may be
mitigated by future OpenCL-to-FPGA tool releases.

Yang et al. [218] examined design patterns consisting of a set-of-
producer to a set-of-consumer datapaths in a molecular electrostatic
application. Several Verilog and OpenCL versions with different arbi-
tration and hand-shaking mechanisms are evaluated on an Arria 10

FPGA. Their results show that, while Verilog versions achieve up to
80x of speedup factor over a single CPU core, OpenCL designs are
13x slower while using twice the resources when compared to Verilog
ones.

The research by Sanaullah and Herbordt [163] presents a non-
conventional usage of intermediate HDL files generated with the Intel
FPGA OpenCL tool. Basically, the HDL code generated out of an
initial compilation step – of a user’s OpenCL code – is extracted
and utilized in a custom development flow capable of more accurate
resource/latency estimates. Using this strategy on benchmarks from
the Rodinia suite and molecular-dynamic codes results in designs
achieving speedups around {37x, 4.8x, 3.5x} over {OpenCL designs on
FPGAs, GPUs, and Verilog designs on FPGAs}, respectively.

3.1.3 Compute-energy efficiency

While the surveys by Mittal and Vetter [114, 115] and Bridges, Imam,
and Mintz [24] comprehensively discuss several methodologies for
power measurement and energy analysis for GPUs and CPUs, our inten-
tion here is to list relevant studies where the performance and energy
efficiencies of hardware-accelerated scientific applications were evalu-
ated. Examples include sparse and dense linear algebra operations [14],
partial differential equations solvers [204], biomolecular and cellular
simulations [180]. Some authors analyzed the energy consumption
of benchmarks (e. g., LINPACK [232]) comparing different program-
ming models [60], while others compared the energy consumed on
Intel and ARM systems running high-energy physics calculations [2].
Additionally, the previously-mentioned study by McIntosh-Smith et
al. [109] reported the power costs and carbon emissions of an OpenCL
implementation of the BUDE docking engine [57].

The power and energy efficiency of OpenCL designs running on
FPGAs has been recently studied too. In [204], Weller et al. imple-

3.2 parallel implementations of molecular docking tools 25

mented partial differential equations, and explored a set of generic
and specific optimizations techniques using OpenCL. Comparison of
energy efficiencies (in MB/J) showed that a GeForce GTX 980 GPU

is ∼2x more efficient than a Stratix V FPGA when running the above
differential solvers. Moreover, the previously discussed studies from
Zohouri et al. [226, 227] performed energy-efficiency analysis using
power draws estimated via FPGA-compilation tools. Finally, Davis
et al. [38] presented a tool that allows OpenCL programmers to query
live kernel-level power consumption using calls invoked from within
the OpenCL host code. The support provided by such tool was limited
to embedded platforms equipped with Cyclone V FPGAs.

3.2 parallel implementations of molecular docking

tools

This section aims to provide a significant description of research efforts
that parallelize different MD tools using heterogeneous systems. To
ellaborate this section, we have reviewed the most relevant surveys.

The survey by Pechan and Fehér [145] – published in 2012 – pro-
vides an overview of MD-acceleration that focuses on strategies target-
ing heterogeneous systems based on either GPUs and FPGAs. However,
since during the course of last years other MD tools have been devel-
oped, we observed that [145] is becoming limited. This limitation is
not merely with regards to the number of newer MD tools that should
be included in such a survey, but more importantly, because recent
programming approaches and parallelization strategies are innovative
too.

Besides heterogeneous systems, a more recent survey by Dong et
al. [42] – published in 2018 – covers other acceleration approaches
targeting clusters, supercomputers, and even cloud computing sys-
tems. We find that [42] is somehow limited too, especially in its section
dedicated to heterogeneous systems, which covers few GPU-based
approaches.

In general, due to the variety in parallelization possibilites of dif-
ferent MD algorithms, we believe it would be very difficult to come
up with an exhaustive survey on MD-acceleration. In fact, the attempt
of this section is not to provide an ample review, but one that is suf-
ficiently detailed to understand the state of the art. This section is
based on the survey in [145], and complemented with key information
from [42], as well as our own literature review. The work presented in
this thesis, i. e., OCLADock, is contextualized within this section, and its
details are extensively discussed in the following chapters.

Table 3.1 organizes the studies discussed in our review of MD-
acceleration into five categories:

1. FFT-based tools

26 related work

2. Evolutionary-based tools

3. AutoDock

4. Pairwise potentials

5. Intrinsically-parallel tools

Furthermore, since the scope of this thesis is heterogeneous systems
within a single compute node, alternative/complementary approaches
are not deeply discussed here, but included in an overall discussion
in Section 3.2.6.

3.2.1 FFT-based tools

ZDOCK is a tool for docking rigid molecules that uses a Fast FourierIn ZDOCK [26], the
attractive and

repulsive
interactions are

grouped into a single
term representing

the so-called shape
complementarity.

Transform (FFT) algorithm [27] to optimize a force-field scoring func-
tion [26] composed of desolvation, electrostatics, and (grid-based and
pairwise) shape complementarity terms. While the original ZDOCK im-
plementation [26] was written in C and parallelized using Message
Passing Interface (MPI [107, 190]), the efforts discussed as follows
target heterogeneous platforms.

In [197], instead of executing the original FFT-based search on float-
ing point numbers, a three-dimensional correlation in spatial domain
is implemented. This enables a long pipeline and low-precision arith-
metic, which are suitable for FPGAs. This was an initial work that fo-
cused only on the search method that looks for the best shape-matches
through correlation of voxel data, which at this point carried onlyVoxel, i. e., a

volumetric pixel,
represents a value on

a regular grid in
three-dimensional

space.

two bits that: distinguish molecule interiors from exteriors, and mark
the surface of molecules. The improved version in [198] uses tuple
data-types for voxels in order to carry additional information, e. g.,
force-field interactions. In both versions, the core of the correlation
architecture is a three-dimensional systolic array of cells. In such array,
a voxel of the ligand is stored within each cell, while the receptor is
stored in external memory. Speedups achieved on a Virtex-II FPGA

were in a range between [100x, 1 000x] compared to a 3.0 GHz Xeon
CPU.

PIPER [100] is a tool for rigid-molecule docking that, similar to
ZDOCK, adds a pairwise desolvation term into the scoring function for
improving its FFT-based search. However, a fundamental innovation

1 FFT: Fast Fourier Transform.
2 GA: Genetic Algorithm.
3 SW: Solis Wets.
4 DE: Differential Evolution.
5 ACO: Ant Colony Optimization.
6 NMS: Nelder and Mead algorithm.
7 ILS: Iterated Local Search, the global search method in Vina [195].
8 BFGS: Broyden-Fletcher-Goldfarb-Shanno.
9 HPL: Heterogeneous Programming Library.

3.2 parallel implementations of molecular docking tools 27

Ta
bl

e
3
.1

:P
ar

al
le

liz
ed

M
D

to
ol

s.
Fi

el
ds

sp
ec

ifi
ed

w
it

h
a

"–
"

m
ea

n
th

e
pr

og
ra

m
/f

ea
tu

re
w

as
no

t
ex

is
te

nt
/n

ot
im

pl
em

en
te

d.

O
ri

gi
na

l
Pa

ra
lle

liz
ed

R
el

ea
se

Sc
or

in
g

G
lo

ba
l&

Lo
ca

l
Ta

rg
et

D
es

cr
ip

ti
on

M
D

to
ol

ve
rs

io
n

Ye
ar

fu
nc

ti
on

se
ar

ch
m

et
ho

d
ac

ce
le

ra
to

r
la

ng
ua

ge

Z
D

O
C

K
[2

6
]

V
an

C
ou

rt
et

al
.[

1
9

7
,1

9
8
]

2
0

0
4

,2
0

0
6

–
3
D

co
rr

el
at

io
n

&
–

FP
G

A
V

H
D

L

PI
PE

R
[1

0
0
]

Su
kh

w
an

ie
t

al
.[

1
8

2
]

2
0

0
9

Fo
rc

e-
fie

ld
FF

T1
&

–
G

PU
C

U
D

A

PI
PE

R
[1

0
0
]

Su
kh

w
an

ie
t

al
.[

1
8

1
,1

8
3

]
2

0
0

8
,2

0
1

0
Fo

rc
e-

fie
ld

3
D

co
rr

el
at

io
n/

-
FP

G
A

V
H

D
L

K
at

ch
al

sk
i-

K
at

zi
r

et
al

.[
9

1
]

Fe
ng

et
al

.[
4

8
]

2
0

1
0

Fo
rc

e-
fie

ld
FF

T
&

–
G

PU
C

U
D

A

H
ex

[1
5

6
]

R
it

ch
ie

et
al

.[
1

5
7
]

2
0

1
0

Fo
rc

e-
fie

ld
FF

T
&

–
G

PU
C

U
D

A

M
ol

D
oc

k
[1

9
3
]

Si
m

on
se

n
et

al
.[

1
7

3
]

2
0

1
3

Fo
rc

e-
fie

ld
D

E2
&

–
G

PU
/C

PU
C

U
D

A
/O

pe
nM

P

PL
A

N
TS

[9
7

]
K

or
b

et
al

.[
9

8
]

2
0

1
1

Em
pi

ri
ca

l
A

C
O

3
&

N
M

S4
G

PU
O

pe
nG

L
&

N
vi

di
a

C
g

BU
D

E
[5

7
]

M
cI

nt
os

h-
Sm

it
h

et
al

.[
1

1
0
]

2
0

1
4

Fo
rc

e-
fie

ld
G

A
&

–
G

PU
/C

PU
O

pe
nC

L

–
A

lt
un

ta
ş

et
al

.[
9

]
2

0
1

6
Fo

rc
e-

fie
ld

?
G

A
&

–
G

PU
H

PL
5

A
ut

oD
oc

k
[1

1
6

]

K
an

na
n

et
al

.[
8

8
]

2
0

1
0

Fo
rc

e-
fie

ld
G

A
&

–
G

PU
C

U
D

A

Pe
ch

an
et

al
.[

1
4

6
]

2
0

1
0

Fo
rc

e-
fie

ld
G

A
6
&

SW
7

FP
G

A
Ve

ri
lo

g

Pe
ch

an
et

al
.[

1
4

4
]

2
0

1
1

Fo
rc

e-
fie

ld
G

A
&

SW
G

PU
C

U
D

A

M
en

do
nç

a
et

al
.[

1
1

1
]

2
0

1
7

Fo
rc

e-
fie

ld
G

A
&

–
G

PU
+

C
PU

C
U

D
A

&
O

pe
nM

P

O
C

LA
D

oc
k

[1
6

5
,2

3
3

,2
3

4
]

2
0

1
7

,2
0

1
8

,2
0

1
9

Fo
rc

e-
fie

ld
G

A
&

SW
/A

D
A

D
EL

TA
G

PU
/C

PU
/F

PG
A

O
pe

nC
L

–
R

oh
et

al
.[

1
5

8
]

2
0

0
9

Fo
rc

e-
fie

ld
–

G
PU

C
U

D
A

–
G

ue
rr

er
o

et
al

.[
6

8
]

2
0

1
1

Fo
rc

e-
fie

ld
–

G
PU

C
U

D
A

–
Sa

ad
ie

t
al

.[
1

5
9
,1

6
0

]
2

0
1

7
,2

0
1

9
Fo

rc
e-

fie
ld

–
G

PU
/C

PU
C

U
D

A
/O

pe
nM

P

A
ut

oD
oc

k
V

in
a

Tr
ot

t
et

al
.[

1
9

5
]

2
0

0
9

Em
pi

ri
ca

l
IL

S8
&

BF
G

S9
C

PU
C

++

A
ut

oD
oc

kF
R

R
av

in
dr

an
at

h
et

al
.[

1
5

4
]

2
0

1
5

Fo
rc

e-
fie

ld
G

A
&

SW
C

PU
Py

th
on

&
C

++

28 related work

in PIPER is the approximation of the pairwise-interaction matrix by
an eigenvector decomposition. Low eigenvalues are often discarded,
and thus, the computational complexity is reduced.

The PIPER implementation for FPGAs by Sukhwani and Herbordt [181]
extends their systolic-array architecture previously used for ZDOCK [197,
198] (described above) in order to support the docking of two large
molecules (i. e., protein-protein). Contrary to their previous design
where the ligand is stored within the array cells, now both molecules
are stored in external memories. Moreover, since PIPER must calculate
multiple correlations, the basic cell structure has been augmented with:
a new weighted scorer module that sums the partial correlation results,FIFO stands for the

first-in, first-out
method used for

manupulating a data
buffer.

and new FIFOs to propagate the scorer-module output to the input of
the next one. Experiments were perfomed on a Virtex-II FPGA [181],
and then on a Stratix-II EP2S180 FPGA [183].

Using the Nvidia CUFTT library [126], Sukhwani and Herbordt
developed a PIPER version for GPUs [182], in which FFT computations
were performed directly instead of using correlation as for the FPGA

counterparts. On a Tesla C1060 GPU, a similar execution performance
was achieved with two alternative parallelization strategies, which con-
sisted in assigning either a complete or a portion of a two-dimensional
FFT-plane to a thread block. Overall, for small sizes of the ligand
grid (i. e., 4, 8), speedups on FPGA (∼36x) are higher than those on
GPU (< 33x). However, for larger ligand-grid sizes (i. e., 16, 32), while
speedups decrease for any device, speedups achieved on the GPU are
higher (∼16x) than those on FPGAs (∼3x).

The work of Feng, Tian, and Chang [48] uses GPUs to accelerateThe survey
by Pechan and

Fehér [145] indicates,
however, that the

GPU-based
implementations of

Feng, Tian, and
Chang [48] and

PIPER [182] are
similar.

rigid-molecule dockings. The scoring function is composed of two
terms describing the molecular shape and electric fields, while the
search is based on an FFT algorithm. Similar to the PIPER acceleration
previously described, FFT-based operations are implemented using the
CUFFT library. However, to the best of our efforts, it was not possible
to clearly identify from their manuscript [48], what computations are
carried out by CUDA threads. Experiments on a GeForce 9800GT GPU

reach up to 4x of speedup compared to sequential executions on an
AthlonX2 3600+ CPU.

Hex [156] is a tool for protein-protein interactions based on FFT.
In [157], Ritchie and Venkatraman describe their CUDA version of
Hex. The difference with respect to most FFT-based MD tools is that,
Hex uses grids expressed in spherical polar rather than cartesian coordi-
nates. According to [157], FFT-based approaches that use a cartesian
representation can compute only translational correlations, and must
be repeated over multiple rotations to cover a six-dimensional search
space. The CUFFT library is used for implementing the one- and
three-dimensional FFT on a GeForce GTX 285 GPU, whose executions
were ∼45x faster than the original Hex on a single CPU core.

3.2 parallel implementations of molecular docking tools 29

3.2.2 Evolutionary-based tools

The MolDock software [193] is very similar to AutoDock. Its scoring
function consists of the summation of pairwise force-field energy terms
expressed as intermolecular (van der Waals, hydrogen bonds, electro-
statics potentials) and intramolecular (van der Waals, hydrogen bonds,
torsional, clash penalties) components. Its search method is based on a
variant of an evolutionary algorithm (EA), called differential evolution
(DE). Similar to genetic algorithms (GAs), DE is an optimization tech-
nique also inspired by the Darwinian evolution theory. However, DE
uses a different approach to select and modify candidate individuals,
i. e., DE creates new individuals from a weighted difference of parent
individuals. The DE variant used in MolDock [193] performs no local
search.

The GPU-based parallelization of MolDock developed by Simonsen
et al. [173] is similar to that of AutoDock by Pechan and Fehér [144]. The
difference is that, in [173] threads within the same block perform a task
(e. g., interpolation) for the same ligand atom of different individuals,
while in [144] threads within the same block perform such task for the
different atoms of the same individual. The CPU-based parallelization
also provided in [173] is much simpler as MolDock is parallelized on
the genetic population level, distributing multiple (DE) runs over CPU

cores. Experiments consisting in docking 133 ligands of different sizes
on an Intel Core 2 quad core (Q9450) CPU @ 2.6 GHz and a Nvidia
GeForce 8800GT GPU resulted on average speedups of 3.9x and 27.4x
over a single CPU core, respectively.

PLANTS [97] uses an Ant Colony Optimization (ACO) as a search
method. ACO is a swarm intelligence technique that mimics the be- Pheromones are

substances secreted
to the outside by an
individual and
received by a second
individual of the
same species, in
which they release a
specific behavior or
developmental
process [90].

havior of real ants, e. g., when they (as a colony) find the shortest
path between the nest and food source. Real ants lay down pheromones
directing each other to resources while exploring the surrounding
environment. Analogously, simulated ants in PLANTS [97] generate
solutions by selecting one value for each degree of freedom taking into
account artificial pheromone values. Pheromone levels are decreased
for solutions of weak (unfavorable) molecular interactions. In order to
improve the quality-of-solutions in PLANTS [97], authors introduce
a local search based on the Nelder and Mead (NMS) algorithm [120],
which is applied to all ants.

In the parallelization proposed in [98], multiple ant colonies are pro-
cessed in parallel. The conformation generation and scoring function
evaluation are executed on the GPU, while the overall optimization
algorithm (ACO + NMS) runs on the CPU. According to authors, the
adopted programming methodology based on OpenGL and Nvidia Cg
was less flexible compared to the general-purpose CUDA or OpenCL,
due to the restricted programming model offered by languages for
graphic computations. Experiments on a Nvidia GeForce 8800 GTX

30 related work

GPU and a single CPU core Pentium 4 @ 3.0 GHz reached speedup
factors of up to 50x compared to an optimized CPU-based implemen-
tation.

BUDE is a MD engine developed by Gibbs, Clarke, and Sessions [57]
at University of Bristol. Its scoring function is of force-field type
composed of steric, electrostatic, and desolvation terms. Its search
method is based on a GA, which similarly to that in AutoDock, creates
successive generations of candidate solutions from best candidates of
previous generations.

The preliminary work in [109] provides an initial OpenCL imple-
mentation of BUDE, where a single pose (each represented by an
individual of the genetic population) is processed by a single OpenCL
work-item. Later enhancements described in [110] comprise an in-
crease of four poses processed per work-item, as well as optimization
techniques like memory-access coalescing (i. e., using a structs-of-array
memory layout), and code refactoring for reducing the negative per-
formance impact of thread divergence (i. e., converting conditional
branches into equivalent combinations of predicated selection and
multiplication). Faster executions (∼60x) and larger energy savings
(∼3x) were achieved on a system based on two Nvidia C2050 GPUs
compared to an Intel Core2Duo SU9400 @ 1.4 GHz CPU, both systems
running the same OpenCL-accelerated BUDE code. This code is used
as a baseline for benchmarking the performance impact of optimiza-
tions introduced in [110], whose executions on an AMD FirePro S10000

GPU resulted in speedups of 5x compared to those of above OpenCL
baseline.

Altuntaş, Bozkus, and Fraguela [9] presented their own parallelThe implementation
by Altuntaş, Bozkus,

and Fraguela [9] is
assumed to employ a

scoring function of
force-field type.

However, details of
its scoring-function

terms were not
provided.

MD algorithm based on a GA. It is implemented with the Heteroge-
neous Programming Library (HPL) [23], which is an open-source
C++ framework [74] that provides an easy and portable way to
exploit heterogeneous computing systems on top of OpenCL. The
most computationally-expensive part of this algorithm is made of
a consumer-producer chain of subroutines that perform population
generation, score evaluation, and genetic operations (tournament se-
lection, mating, and mutation). The total number of threads is equal to
the population size. Within each subroutine, each individual (carrying
a pose information) is processed by a single thread. The search method
is only global and it is provided by the GA itself (i. e., no local search
is present here). The experiments consisted of a different number of
docking runs (25, 50, 100) using only three chemical compounds which
differ slightly from each other in the number of torsions (7, 5, 8), and
the number of atoms (25, 19, 28). It achieves a speedup of around 14x
using a Tesla C2050/C2070 GPU with respect to a single 2.1 GHz Xeon
CPU core.

3.2 parallel implementations of molecular docking tools 31

3.2.3 AutoDock

Here, we discuss the most relevat details of studies addressing the
acceleration of AutoDock.

Kannan and Ganji developed a parallel implementation [88] of In [88], slightly
different results
compared to
AutoDock were
obtained due to the
single-precision
arithmetic used on
GPUs.

AutoDock that excludes the Solis-Wets local search (LS) method from the
LGA (Table 3.1 indicates that this implementation provides only GA as
global search method). The reason for not parallelizing the LS was to
avoid the low GPU utilization that results when optimizing a only a
subset instead of the full population of individuals, as in the GA. Their
parallelization strategy consisted in assigning an individual to a CUDA
thread block, whose threads execute their inner tasks cooperatively.
Speedups of 47x were achieved when running the overall program on
a Tesla C1060 GPU, compared to the original AutoDock executed on a
2.4 GHz single Athlon CPU.

To this thesis work, the most influential previous studies have been
those carried out by Pechan, Fehér, and Bérces in [144, 146], which
include the LS for achieving a fully-operational program equivalent to
AutoDock.

For GPUs, the work in [144] proposes an strategy where the inde-
pendent LGA runs are executed in parallel, while each individual is
processed by a CUDA thread block (similarly as in [88]). Also, GA and
LS are assigned each to a different CUDA kernel. Particularly, instead
of launching a CUDA thread block for each new individual (of every
independent LGA run) as in the GA kernel, a CUDA thread block
is launched for each randomly-selected individual in LS. Performance
tests on a GeForce GTX 260 GPU compared to a 3.2 GHz Xeon CPU

core (running the original AutoDock) resulted in a maximum speedup
of 65x.

For FPGAs, a totally different strategy compared to that for GPUs is Similar to the
PIPER versions for
GPU [182] and
FPGA [183], these
two platforms are
advantageous at
different parameter
ranges (e. g., number
of LGA runs) for the
parallel AutoDock
codes in [144, 146].

used to leverage the underlying fully-programmable architecture [146].
Basically, LGA runs are executed one at a time. Each of these runs is
implemented as a three-stage pipeline that can process up to three
individuals simultaneously. Although the apparent lower processing
rate, this design was efficient due to its fine-grained pipelines. Execu-
tions on a Virtex-4 FPGA were 23x faster than a 3.2 GHz Xeon CPU core
(running the original AutoDock). In terms of execution performance,
the GPU outperforms the FPGA, if the number of LGA runs is larger
than 20.

Recently, Mendonça et al. proposed a hybrid parallelization of
AutoDock. In [111], time-consuming computations are offloaded onto
both a multi-core CPU and a GPU. Authors claimed that their hybrid
design achieves higher speedups (80x), and thus, outperforming im-
plementations using these accelerators separately, i. e., either a 2.2 GHz
quad-core Xeon CPU (8x) or a Tesla C2050 GPU (35x). However, the
code snippets in their manuscript indicate the usage of an erroneous

32 related work

local-search algorithm. As discussed in Section 2.2.3, the local search
in AutoDock implements the Solis-Wets algorithm, whereas the im-
plementation in [111] performs genetic operations such as crossover,
mutation, and selection. The latter might not affect enormously the
quality-of-results, but definitely affects performance. This is because
the Solis-Wets method is sequential and contains data-dependent op-
erations, which hinder parallelization. On the contrary, the genetic
operations mentioned above are intrinsically parallel. Despite the in-
teresting approach, the latter observations make the results reported
in [111] questionable.

3.2.4 Pairwise potentials

The following studies focus specifically on accelerating certain pairwise
potentials, i. e., score terms that could be integrated into a more com-
plete scoring function. However, these studies do not parallelize any
production or fully-functional MD code.

The work by Roh et al. [158] accelerates only the calculation of
the pairwise potentials in a scoring function composed of two terms:
van der Waals and electrostatic interactions. What is particular in this
work is the usage of a separate GPU for each of the aforementioned
scoring terms. As discussed in [145], this strategy would be impractical
for a real application due to large number of data transfers required
between both GPUs and a host CPU.

Guerrero et al. described in [68] their strategy for parallelizing pair-In [68], the tiled
design results in
faster executions

than the basic one.
The speedup ratios
between these two

designs is not clearly
explained, neither

depicted in the plots
provided.

wise electrostatic interactions between a receptor and a ligand. Similar
to the work in [158], this calculation was accelerated in isolation and
not integrated into any MD code. The CUDA kernel implementation
is straightforward: each thread computes the electrostatic interaction
between its corresponding receptor atom and all ligand atoms. Addi-
tionally, authors implemented a tiled design in which ligand atoms
are grouped into thread blocks. Experiments were performed on a
Tesla C1060 GPU and a single core of a Xeon E5530 CPU. Their results
indicate that speedups – achieving factors within the range of [10x,
260x] – increase with larger number of receptor and ligand atoms.

Recently, the studies by Saadi et al. [159, 160] have aimed to par-
allelize scoring-function computations used for blind docking. The
blind-docking procedure consists in scanning the whole surface of
a target protein, instead of just specific binding sites. It enables the
discovery of new binding pockets, and thus, helps enhancing the MD

quality at the expense of increasing exponentially the computational
complexity.

In [159], authors parallelized their own sequential code based on the
desolvation term in AutoDock (Section 2.2.4). This code is composed of
three nested loops that iterate the desolvation calculation over a given
number of spots on the protein surface (outermost), ligands atoms,

3.2 parallel implementations of molecular docking tools 33

and receptors atoms (innermost). Authors provide a simple along with
an optimized CUDA implementation. In the simple one, a thread block
executes the computations associated to a single spot on the protein
surface. Each thread (within a block) corresponds to a ligand atom,
and computes its energy contribution with the entire set of protein
atoms. In the optimized design, a small number of protein atoms are
grouped into tiles. In this way, a thread (representing a ligand atom)
calculates the energy contribution with a tile, instead of with just a
single protein atom. Experiments on a Kepler K40m GPU resulted in
speedups of 62x over a 4-core E3-1220 CPU, and 223x over a single CPU

core. All experiments were performed using a compound with 100

spots on the protein surface.
The previous study was extended in [160], where simultaneous

kernels are launched on a GTX 1080Ti GPU. Compared to a sequential
version running on a single core of a 24-core 2.2 GHz Xeon E5-2650

CPU, their newer CUDA version reaches speedups of up to ∼213x.
Moreover, an OpenMP version is also provided, reaching speedups of
∼15x on the aforementioned 24-core CPU.

3.2.5 Intrinsically-parallel tools

For these tools, the inherent parallelism of their algorithms was con-
sidered during code development. The target platforms are multi-core
CPUs due to their ubiquity in HPC environments.

AutoDock Vina, or simply Vina [195], is a MD tool alternative to
AutoDock, and developed as well at TSRI. From an algorithmic perspec-
tive, Vina is significantly different from AutoDock. The Vina scoring
function is composed of steric, hydrophobic, hydrogen bonding, and
rotatable-bond related terms. This function is empirical in constrast
to the possibly too-strict score models based on force-fields used in
AutoDock. Its global search consists of several Iterated Local Search
(ILS) steps. Each ILS step comprises a local optimization consisting in
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, i. e., a quasi-
Newton method based on second-order derivatives of the scoring
function. The number of ILS steps in a run is determined adaptively,
and several runs can be executed in parallel, each on a CPU core.
Multi-threading in Vina is implemented using the Boost::Thread li-
brary [22], and thus, provides a portable C++ code for multi-core CPU

architectures. Experiments in [195] reported that, besides its higher
MD quality-of-results, Vina was on average ∼65x faster when running
on an 8-core CPU machine compared to the original single-threaded
AutoDock.

AutoDockFR [154] was developed in recent years at TSRI. Partic-
ularly, it models the receptor flexibility (as a set of side chains) and
accounts it for ligand binding prediction. AutoDockFR addresses the
growth of the search space with a customized scoring function and a

34 related work

new GA. AutoDockFR and AutoDock can be compared in two aspects:
scoring function and search method. Besides the AutoDock scoring
terms discussed in Section 2.2.4, the scoring function in AutoDockFR
includes additional terms that describe the interactions between flexi-
ble receptor atoms against {ligand, flexible receptor, and rigid receptor}
atoms. Similar to AutoDock, AutoDockFR uses grid maps to speedup
the calculation of score contributions of rigid receptor atoms. Re-
garding the search method, AutoDockFR uses a slightly different GA
compared to that of AutoDock. The GA in AutoDockFR applies a local
minimization step (i. e., a local search) to every individual in the popula-
tion right after the mutation operation. Moreover, instead of clustering
best individuals resulting from independent LGA runs after the entire
MD has finished (as in AutoDock), AutoDockFR clusters individuals at
every cycle within each GA run.

AutoDockFR is implemented in Python and by default, runs all GA
runs in parallel, each executed on a single CPU core. While in terms
of MD quality-of-results, AutoDockFR outperforms Vina on receptors
with up to 12 flexible side-chains, it was reported as being ∼230x
slower than Vina. More recent code updates [203], consisting in a C++
port of the scoring function and minimization step, have reported
runtime improvements of ∼280x speedup compared to the originally
published Python implementation [154].

3.2.6 Other parallelization approaches

Here, we comment briefly on approaches targeting a variety of systemsStudies in this
Section 3.2.6 do not
target heterogeneous

systems, and thus,
are not included in

Table 3.1.

that range between clusters, grid, and cloud computing. Since, it is
not possible to introduce all existing approaches, readers are referred
to the survey in [42] for additional details.

Norgan et al. [124] proposed the distribution of AutoDock jobs and
their LGA runs, over a cluster with ∼eight thousand CPU cores. This is
an hybrid solution that uses MPI and OpenMP at two different levels
to accelerate virtual screening processes. MPI is used to parallelize
the main function by distributing docking jobs accross cluster nodes,
while OpenMP enables multi-threading within each job, i. e., at the
level of LGA runs. The results show that their design scales almost
linearly up to 8 192 cores, reaching speedup values of 8 192x over a
single CPU code.

A similar hybrid approach is used by Lang Yu et al. that imple-
mented VinaSC [102], which is a port of Vina onto a large-scale het-
erogeneous cluster. Compared to Vina that supports only single-node
CPU platforms, VinaSC has ported Vina onto a multi-node system,
each node comprising a host CPU and a MIC co-processor. MPI was
used to implement the internode scheduler, whereas Pthread was used
for managing the intranode computations. The experimental system
had six nodes, and the baseline execution distributed Vina instances

3.3 algorithmic improvements in molecular docking 35

only on host CPUs (for all nodes). Compared to such baseline, VinaSC
achieved 2.3x speedup when the number of docking jobs is 3 600.

Another important usage of AutoDock and Vina is in the project According to [50],
FightAIDS@Home
is the first biomedical
distributed-
computing project
ever launched.

known as FightAIDS@Home [50]. Launched in 2000, FightAIDS@Home
is an distributed-computing approach that allows volunteer users to
contribute with idle resources within their computing systems to
accelerate research into new drug therapies for the human immun-
odeficiency virus (HIV), which causes the acquired immune deficiency
syndrome (AIDS). In 2005, FightAIDS@Home joined the World Com-
munity Grid [207], a public internet-based distributed-computing
infrastructure devoted to active projects that benefit humanity, includ-
ing efforts combating Zika, cancer, tuberculosis, etc [206].

More recently, De Paris et al. have utilized AutoDock as the MD en-
gine in cloud-based systems in Amazon [39]. In such study, their
purpose is to reduce the dimensionality of fully-flexible receptor mod-
els, and the overall docking execution time using HPC resources in the
cloud. The access to such system was made through a cloud-based
web environment called wFReDow, while at the background a new
automated workflow dispatches docking jobs to cluster nodes. The job
distribution was implemented using MPI and OpenMP, similarly to
previously-discussed studies in [102, 124]. For the experiments in [39],
authors used from one up to eight Amazon EC2 instances, increasing
the core count from one up to 64. The maximum speedup achieved
was ∼60x when using 64 CPU cores for running 3 100 MD tasks.

3.3 algorithmic improvements in molecular docking

Besides increasing the accuracy of description models (e. g., scoring Here, we provide a
qualitative
discussion of
algorithmic
improvements. A
quantitative
evaluation of our
own additions to
AutoDock is
performed in
Chapter 6.

terms), employing more effective MD algorithms might result in signif-
icantly higher quality-of-results. In this section, we describe relevant
studies evaluating the resulting quality of alternative local-search (LS)
methods introduced into MD codes.

Tavares, Mesmoudi, and Talbi [188] incorporated a limited-memory
version of BFGS (L-BFGS) [123] into the LGA of the original (and single-
threaded) AutoDock code. Basically, their work performs an empirical
analysis of the upgraded evolutionary algorithm, i. e., an LGA running
an LS based on the L-BFGS method, instead of the legacy Solis-Wets.
The quality of resulting molecular poses was assessed in terms of
the lowest binding score (LBS), and spatial deviation (RMSD) (Sec-
tion 2.2.6). Authors concluded that the legacy Solis-Wets method might
not be most suitable LS component in evolutionary algorithms, since
their experiments using the alternative L-BFGS resulted in poses with
superior quality than those of Solis-Wets, and of a non-hybridized GA
(i. e., without LS).

Fuhrmann et al. [53] presented a new LS method suitable for MD.
Similar to [188], the work in [53] proposed a gradient-based score

36 related work

minimization. Their proposal considers the singularities arising duringSingularity is a
point at which a

given mathematical
object is not defined.

Non-differentiable
functions are those

whose derivative
cannot be computed

at certain values,
i. e., singularity

points [18].

the gradient-based optimization on poses represented as a set of
translation, orientation, and torsions. Authors proposed the usage
of exponential mapping for defining the molecular orientation, which
in turn, eases the calculation of the orientational gradient. To avoid
singularities, the LS is modified, so the orientational variables are
changed while preserving the molecular orientation. This work uses
the L-BFGS method and compares it against Solis-Wets. Contrary to
the aforementioned work in [188] and our own additions (Chapter 6)
that fully integrate LS methods into an MD tool (AutoDock, in this case),
experiments in [53] evaluate LS methods in isolation. Despite that, the
usage of gradients allowed reaching significantly lower (better) scores
in fewer steps than Solis-Wets.

Afanasiev et al. [3] compared four algorithms by using them as LS
methods integrated into an MD code running a Monte Carlo search.
The selected algorithms were: L-BFGS, conjugate gradient, truncated
Newton’s method, and Powell’s method. Contrary to the first three
methods, the Powell’s objective function does not need to be differ-
entiable, and thus, no derivatives are taken. The Powell’s method
minimizes the objective function by using a bi-directional search. Be-
sides the improvements in the search itself, authors used a more
complex MD calculation. Examples of such additional complexity in-
clude a more rigorous description of the desolvation effects, and the
full-flexibility allowed for ligands. Experiments showed that Powell’s
method remarkably outperforms the others in terms of LBS.

3.4 wrap-up discussion

This section provides an overall review and contextualizes our own
work, OCLADock.

Previous studies on performance portability indicate that when
using OpenCL, device-specific optimizations are required for achiev-
ing performance-portable implementations accross GPUs and CPUs.
Besides these devices, it is also possible to target FPGAs using OpenCL
as its high-level description can be synthesized into hardware blocks.

Although OpenCL promises higher code-productivity compared to
HDLs, achieving high performance is still challenging due to the lack
of direct control of low-level FPGA characteristics. In fact, there is still a
gap in understanding which OpenCL constructs map well on FPGAs.
This gap is reflected in cases where the performance obtained with
OpenCL is lower in comparison to that achieved with HDLs.

Besides achieving performance gains out of a parallelized applica-
tion, understanding its compute-energy savings is critical for efficiently
deploying such application on HPC systems. This becomes even more
important, when the application is used at scale, such as the massive
drug discovery use-case MD is used for.

3.4 wrap-up discussion 37

There are several studies about hardware-acceleration of MD tools. Appendix B provides
a benchmark between
OCLADock and
other MD tools,
including that of
Pechan and
Fehér [144].

These differ by the type of search and scoring functions they im-
plement. Among the studies on AutoDock discussed in this chapter,
only those by Pechan and Fehér [144, 146] are truly comparable to
OCLADock, as both implementations include the Solis-Wets local-search
method. Excluding the local optimization from the overall evolution-
ary algorithm removes many data-dependencies, and thus, eases the
parallelization. However, doing so can impact negatively the quality-
of-results. Previous studies show that gradient-based methods outper-
form Solis-Wets in terms of MD quality. OCLADock includes the original
Solis-Wets method, and goes beyond the work of Pechan and Fehér,
as it includes alternative local-search methods based on gradients
(Chapter 6).

4
O C L A D O C K : O P E N C L - A C C E L E R AT E D AU T O D O C K
O N C P U S A N D G P U S

This chapter details OCLADock, an OpenCL-based data-parallel imple-
mentation of AutoDock, and provides an evaluation of its performance
and compute-energy efficiency. Contents of this chapter have been
previously published in [233].

4.1 opencl implementation of autodock

4.1.1 Data-based parallelization

As previously shown in Figure 2.3, a docking job is composed of The data-parallel
source code is
available in the
OCLADock
repository at [187].

several LGA runs (default: 50), where each LGA run processes a large
population of individuals (default: 50) through a genetic algorithm
(GA), followed by a local-search (LS) refinement. By using their par-
ticular rules, the GA and LS functions generate new individuals and
score them. Similarly to prior work [144], the proposed OpenCL par-
allelization consists of mapping main AutoDock functions to OpenCL
processing elements (i. e., kernels, work groups, work items) according
to a suitable level of parallelism. Since the GA and LS functions in-
volve computations over large genetic populations, these are mapped
to the Krnl_GA and Krnl_LS OpenCL kernels, respectively (Figure 4.1).

Data parallelism of AutoDock can be exploited at three different
processing levels: high, medium, and low. First, based on the fact that
a docking job consists of several independent LGA runs, the high-
level parallelization consists of trivially performing these independent
runs in parallel. Second, individuals from a single genetic generation
(within an LGA run) are independent from each other, and thus, corre-
spond to medium-level parallelism. Finally, the low-level parallelism
correspond to fine-grained tasks that pertain to a single individual,
such as calculating the ligand pose and evaluating the scoring function.

Figure 4.2 depicts the proposed data-based parallelization, which
starts combining the high-level and medium-level strategies first. A
docking job is composed of R LGA runs (RunID: 0, 1, 2, . . . , R - 1),
with each LGA run processing a population of P individuals (IndID:
0, 1, 2, . . . , P - 1). The execution of such runs, and the processing
of their individuals, are controlled by nested loops in the serial im-

39

40 ocladock : opencl-accelerated autodock on cpus and gpus

LOCAL SEARCH

LAMARCKIAN GENETIC ALGORITHM

DOCKING JOB

Krnl_GA Krnl_LS

GA
generation

Individual
scoring

Solis-Wets
generation

Individual
scoring

Figure 4.1: Mapping AutoDock – GA and LS – functions onto OpenCL ker-
nels. Kernel blocks enclose nested loops controlling LGA runs, as
well as GA and LS inner processing. Kernels operate over several
individuals simultaneously, with each individual being mapped
to a single OpenCL work-group.

plementation, which can be merged into a single loop for optimal
parallelism. By doing so, individuals from different LGA runs can be
processed simultaneously, each as an OpenCL work-group identified
with a WGID obtained as follows:

WGID = RunID · P + IndID (4.1)

The entire set of P · R work-groups is distributed by the GPU runtime
scheduler over the available Q compute units (CUs). Each CU executes
a work-group associated with a single individual, achieving high-level
and medium-level parallelization simultaneously.

Finally, processing an individual involves fine-grain tasks (genotypeThe intramolecular
component of the
scoring function

(Section 2.2.4) could
also be referred to as

the pairwise
interaction.

generation, calculation of ligand pose, intermolecular and intramolec-
ular interactions) that can be assigned to OpenCL work-items, hence
achieving low-level parallelization.

4.1.2 Code architecture

Figure 4.3 depicts the overall workflow of OCLADock. This consists of a
sequence of functions executed either on the host (Hx) or on the device
(Dx). After the application inputs are parsed in H1, the populations
of all LGA runs are initialized with random values in H2. Then, the
OpenCL setup takes place in H3, which comprises the identification
and selection of platform and device, as well as the definition of other
OpenCL objects such as context and command queues. This process in-
cludes the creation of a program object containing all machine-specific
instructions to be executed on the device. Since the host is responsible
for launching and keeping track of kernel executions, it needs to know
how to interact with the kernels. Therefore, in H4, the OpenCL kernels

4.1 opencl implementation of autodock 41

R
u
n

0
L
G
A

R
u
n

1
L
G
A

R
u
n

<
I
D
>

.
.
.
L
G
A
.
.
.

R
u
n

R
-
1

L
G
A

0I
n
d

1I
n
d

2I
n
d

..
.

P
-
1

I
n
d

0I
n
d

1I
n
d

2I
n
d

..
.

P
-
1

I
n
d

..
.

..
.

<
I
D
>

I
n
d

..
.

..
.

0I
n
d

1I
n
d

2I
n
d

..
.

P
-
1

I
n
d

0W
G

1W
G

2W
G

..
.

P
-
1

W
G

PW
G

P
+
1

W
G

P
+
2

W
G

..
.

2
P
-
1

W
G

..
.

<
I
D
>

W
G

..
.

P
(
R
-
1
)

W
G

P
(
R
-
1
)
+
1

W
G

P
(
R
-
1
)
+
2

W
G

..
.

P
R
-
1

W
G

S
c
h
e
d
u
l
e
r

0C
U

1C
U

..
.

Q
-
1

C
U

G
A

o
r

L
S

i
n
d
i
v
i
d
u
a
l
s

g
e
n
e
r
a
t
i
o
n

P
o
s
e

c
a
l
c
u
l
a
t
i
o
n

I
n
t
e
r
m
o
l
e
c
u
l
a
r

i
n
t
e
r
a
c
t
i
o
n

I
n
t
r
a
m
o
l
e
c
u
l
a
r

i
n
t
e
r
a
c
t
i
o
n

w
i

0
w
i

1
w
i

L−
1

..
.

P
a
r
a
l
l
e
l
i
z
a
t
i
o
n

l
e
v
e
l

H
IG

H

M
ED

IU
M

LO
W

Fi
gu

re
4
.2

:A
po

pu
la

tio
n

pr
oc

es
se

d
by

an
LG

A
ru

n
(R

un
ID

)
ca

n
be

de
co

m
po

se
d

in
to

its
in

di
vi

du
al

s,
an

d
ea

ch
in

di
vi

du
al

(I
nd

ID
)

ca
n

be
m

ap
pe

d
on

to
a

w
or

k-
gr

ou
p

(W
G

ID
).

Th
e

en
tir

e
se

to
fw

or
k-

gr
ou

ps
is

di
st

ri
bu

te
d

by
th

e
G

PU
ru

nt
im

e
sc

he
du

le
r

ov
er

th
e

av
ai

la
bl

e
Q

co
m

pu
te

un
its

(C
U

s)
.A

C
U

is
a

m
ul

ti
-t

hr
ea

de
d

ha
rd

w
ar

e
un

it
ca

pa
bl

e
of

pr
oc

es
si

ng
on

e
w

or
k-

gr
ou

p
(c

om
po

se
d

of
L

w
or

k-
it

em
s)

at
a

ti
m

e.
T

he
ru

ns
,i

nd
iv

id
ua

ls
,

an
d

fin
e-

gr
ai

n
ta

sk
s

ar
e

co
lo

re
d

ac
co

rd
in

g
to

th
ei

r
as

so
ci

at
ed

le
ve

lo
f

pa
ra

lle
lis

m
:h

ig
h

(b
lu

e)
,m

ed
iu

m
(r

ed
),

an
d

lo
w

(g
re

en
).

42 ocladock : opencl-accelerated autodock on cpus and gpus

(Krnl_INIT, Krnl_EVAL, Krnl_GA, Krnl_LS) are specified in terms of ar-
guments (variables holding e. g., initial population values, number of
genes (Ngenes) and ligand atoms (Natom), etc), global size (total number
of work-items to be processed by the device), as well as local size
(number of work-items to be processed within each work-group).

The first kernel executed is Krnl_INIT, which calculates the initialKrnl_INIT and
Krnl_EVAL are

auxiliary kernels that
together consumed
less than ∼5 % of

execution time.

score of individuals from all LGA runs. The second kernel, Krnl_EVAL,
counts the number of scoring function calls (stored in device mem-
ory) performed by previously-executed kernels. After Krnl_EVAL is
executed, control is handed back to the host, which checks whether
the LGA termination criteria are met, i. e., if the number of either score
evaluations (NMAX

score-evals) or generations (NMAX
gens) reached their maxi-

mum values (Section 2.2.2). The core of the application is the iterativeThe Krnl_LS kernel
executes either the

Solis-Wets method as
in the original

AutoDock, or any of
the gradient-based

methods newly
added in Chapter 6.

execution of kernels, with each cycle starting with Krnl_GA, then going
through Krnl_LS, and finishing with Krnl_EVAL. While the inter-kernel
synchronization is controlled entirely on the host via in-order com-
mand queues, the transfer of solution data and their scores between
kernels occurs by device-side global-memory accesses. Finally, when
the LGA termination criteria are met, the final solutions found by the
device (and residing in its global memory) are copied back to the
host, where results are written to output .dlg files compatible with
AutoDockTools [117].

4.2 experimental evaluation

4.2.1 Setup

A set of 20 ligand-receptor inputs used during tests were obtained
from the Protein Data Bank (PDB) [17]. These were preprocessed before
docking following the standard protocol using AutoDockTools [76].
AutoDockTools assists in preparing ligand and receptor files, annotat-
ing them with features required for AutoDock. For the ligand, the pro-
tocol consists of adding hydrogen atoms, removing water molecules,
merging non-polar atoms, and choosing torsions. For the receptor,
hydrogen atoms are added, and the grid box is defined manually.

Regarding the overall MD configuration, relevant parameters were
set according to the GA and Solis-Wets LS values specified in Table 4.1.
From a performance point of view, the most relevant parameters
are the maximum number of score evaluations (NMAX

score-evals) and the
maximum number of generations (NMAX

gens), because these control how
long the MD program runs. The choice of NMAX

score-evals = 2 500 000 has
followed the guidelines provided in [73]. These guidelines suggest –
for ligands with up to ten rotatable bonds (i. e., Nrot ≤ 10), as in this
experiment – to run the program until either NMAX

score-evals reaches a value
between [250 000, 25 000 000] or NMAX

gens = 27 000, whichever comes first.

4.2 experimental evaluation 43

Start

H1: parse inputs

H2: generate initial

populations

H3: perform OpenCL setup

H4: define OpenCL kernels

D5: execute Krnl_INIT kernel

D6: execute Krnl_EVAL kernel

Terminate

LGA?

D7: execute Krnl_GA kernel

D8: execute Krnl_LS kernel

H9: write outputs

End

yes

no

Figure 4.3: The overall OCLADock workflow consists of a sequence of host
(Hx) and device (Dx) functions. Program execution always starts
and finishes in host functions (depicted at the left side). OpenCL
kernels are executed iteratively on the device (depicted at the
right side), while their termination is controlled by the host.

44 ocladock : opencl-accelerated autodock on cpus and gpus

Table 4.1: OCLADock configuration for experiments.

Parameter description Notation Value

GA
Population size P 150

Maximum # score evaluations NMAX
score-evals 2 500 000

Maximum # generations NMAX
gens 27 000

LS
Local-search rate lsrate 6 %

Maximum # local-search iterations NMAX
LS-iters 300

Lower bound of initial variance stepMIN 0.01

The Solis-Wets variance, referred to as step in Section 2.2.3, spec-
ifies the size of the solution space to sample, i. e., the amount by
which orientation and torsion angles change on every Solis-Wets cy-
cle. The variance value can be initially specified by a user, typically
stepINITIAL = 1. However, it changes during local optimization depend-
ing on the search success.

The target system used in this evaluation provides two processing
elements:

• An Intel i5-6600K CPU clocked at 3.5 GHz.

• An AMD R9-290X GPU with 2 816 multiprocessors and 44 active
compute units.

The CPU was used to collect the baseline characteristics of the orig-
inal single-threaded implementation, as well as a target to execute
OCLADock on multiple CPU cores.

4.2.2 Validation

These experiments aim to verify the correct operation of OCLADock

accounting for the three key metrics already introduced in Section 2.2.6:
lowest binding score (LBS), root mean square deviation (RMSD), and
size of best cluster (SBC). Table 4.2 shows these metrics obtained for
100 LGA runs considering six compounds of different sizes in terms
of number of atoms (Natom) and rotatable bonds (Nrot): 3ptb is the
smallest (Natom = 13, Nrot = 2), while 3c1x is the largest one (Natom = 46,
Nrot = 8).

The most noticeable differences between the serial and OpenCL im-Details on key
implementation

differences compared
to AutoDock are

provided
in Appendix A.

plementations are found in their corresponding RMSDs (4hmg, 3c1x)
and SBCs (3ptb, 3c1x, 3ce3). As reported in our previous publica-
tion [233], such discrepancies were initially (May 2017) attributed
to the different selection schemes employed during GA: proportional
selection (AutoDock) and binary tournament (OCLADock). The choice of
using binary tournament instead of proportional selection is strongly mo-

4.2 experimental evaluation 45

Table 4.2: Functional validation of OCLADock vs. single-threaded AutoDock,
both running the Solis-Wets local-search method. All results were
obtained using 100 LGA runs, and RMSD tolerance = 2 Å. Best
values within each criterion are colored.

Ligand-receptor Lowest binding RMSD (Å) Size of

input score (LBS) of best cluster

(kcal/mol) LBS (SBC)

ID Nrot Natom
Serial OpenCL Serial OpenCL Serial OpenCL

baseline GPU baseline GPU baseline GPU

3ptb 2 13 −5.55 −5.55 0.42 0.41 100 72

1stp 5 18 −8.37 −8.32 0.42 0.38 100 100

3bgs 5 24 −6.68 −6.59 0.75 0.78 95 90

4hmg 10 27 −3.68 −3.95 0.97 0.81 34 51

3ce3 5 37 −11.59 −11.08 0.93 0.77 94 71

3c1x 8 46 −13.61 −13.29 0.80 1.18 90 63

tivated by the shorter execution times for tournament-based selection
schemes.

Further code analysis performed in collaboration with TSRI (March
2018) helped us discovering that, the OCLADock version used up to
this point in time has been implementing the scoring function (Sec-
tion 2.2.4) without smoothing the van der Waals and hydrogen bonding
potentials according to certain threshold interatomic distances [35].
This smoothing feature is enabled by default in AutoDock, and using
it can favorably affect RMSDs and SBCs, i. e., producing poses with
smaller RMSDs and larger clusters. LBS of best resulting poses are
virtually not affected since poses with weak (unfavorable) scores are
discarded during the genetic evolution.

The inclusion of the smoothing feature on OCLADock was completed
later (September 2018), and the quality of the corresponding correct re-
sults is extensively discussed in Chapter 6. Nevertheless, we observed
that execution runtimes of OCLADock were not affected by adding
the smoothing. Therefore, its execution speedups and energy gains
reported as follows in this chapter – as well as in [233] – are still
meaningful.

4.2.3 Execution performance

The performance results are grouped into CPU and GPU categories. For All execution times
reported in this
thesis correspond to
full program
executions for both
serial and parallel
versions.

each of them, work-group sizes of {16, 32, 64} work-items were tested.
The first experiment aimed to determine the impact of the work-group
size on the execution time for each computing platform. The tendency
in most of cases, as depicted in Figure 4.4, is that better results are
achieved with 16 and 64 work-items for CPU and GPU, respectively.

46 ocladock : opencl-accelerated autodock on cpus and gpus

10 20 40 60 80 100

10x

20x

30x

3
p
t
b

GPU

10 20 40 60 80 100

2x

3x

4x

CPU

10 20 40 60 80 100

20x

40x

60x

Number of LGA runs

3
c
1
x

10 20 40 60 80 100

1.4x

1.6x

1.8x

2.0x

2.2x

Number of LGA runs

S
p
e
e
d
u
p

f
a
c
t
o
r
o
v
e
r
b
a
s
e
l
i
n
e

16wi 32wi 64wi
WGsize

Figure 4.4: Speedups of OCLADock vs. single-threaded AutoDock achieved
on GPU/CPU devices for different work-group sizes. Vertical
scales are different.

The case of 3ptb on the GPU is an exception, where a configuration of
{16, 32} work-items compared to that of 64 work-items led to higher
speedups. This can be explained by the limited degree of parallelism
provided by this very small molecule.

The speedup behavior for different compounds was further ana-
lyzed by using work-group sizes of 16 and 64 work-items for CPU

and GPU, respectively. Figure 4.5 shows that the achieved speedup
varies between compounds. According to Algorithm 3, the algorithmic
complexity is also dependent on the molecule size because:

1. Additional operations are performed for calculating the ligand
pose for compounds with more rotatable bonds.

2. Larger grid maps are read for compounds having more receptor
atoms.

3. More intramolecular interactions are computed for compounds
having more ligand atoms.

To illustrate this, consider that small compounds (3ptb, 1stp) achieved
higher speedups than bigger ones (3ce3, 3c1x) on the CPU. On the
other hand, bigger compounds are executed faster on the GPU, since
they provide more data parallelism than can be leveraged by the larger
number of compute units: 44 on the R9-290X GPU vs. 4 cores on the

4.2 experimental evaluation 47

Table 4.3: Execution time (s) and speedups for 100 LGA runs on CPU (16

work-items) and GPU (64 work-items).

Execution time (s) Speedup

Input Serial OpenCL OpenCL

ID baseline CPU GPU CPU GPU

3ptb 586.3 131.8 20.0 4.5x 29.3x

1stp 836.5 241.1 27.1 3.2x 30.9x

3bgs 1102.9 312.2 28.3 3.5x 39.0x

4hmg 1416.2 403.1 32.9 3.6x 43.1x

3ce3 1867.7 617.0 36.2 3.0x 51.7x

3c1x 2841.8 1265.7 51.0 2.3x 55.8x

CPU. On the complete set of 20 compounds, the geometric mean of the
speedup is ∼3.3x and ∼40.4x for the CPU and GPU, respectively.

In order to evaluate the optimality of the achieved speedups, the
utilization of computing resources was investigated by profiling the
execution of 100 LGA runs on the 3c1x compound:

• For the CPU case (16 work-items), the average CPU utilization was
∼97 %, and the average DRAM throughput was just ∼0.42 %.

• For the GPU case (64 work-items), cache hit-rates of ∼84 % for
both Krnl_GA and Krnl_LS kernels were observed, as well as
∼57 % and ∼20 % of GPU time that the memory unit was active
per each Krnl_GA and Krnl_LS execution, respectively.

The higher memory-access rate that characterizes the Krnl_GA is
due to the required creation of new individuals for the next gener-
ation. Specifically, this kernel must access data of the entire current
population stored in the external memory at the beginning and end of
the GA, as well as of grid maps and intramolecular weights during
the score calculation of all individual members of the population.

On the other hand, Krnl_LS itself consists in an iterative process
consuming ∼95 % of total GPU execution time. However, its memory-
access rate is much lower than that of Krnl_GA since it does not need
to retrieve all individuals, but only a fixed subset consisting of 6 %
of the population. These findings show that the performance of this
application is limited by the speed of the compute units. The best
performance results are summarized in Table 4.3, and consistently
show higher speedups achieved by the GPU.

4.2.4 Compute-energy efficiency

The compute energy required by the different OCLADock variants
(CPU and GPU ones) was obtained by sampling the drawn power

48 ocladock : opencl-accelerated autodock on cpus and gpus

10 20 40 60 80 100

2x

3x

4x
C
P
U
s
p
e
e
d
u
p
(
1
6
w
i
)

Speedup factor over baseline

10 20 40 60 80 100

20x

40x

60x

Number of LGA runs

G
P
U
s
p
e
e
d
u
p
(
6
4
w
i
)

3ptb 1stp 3bgs 4hmg 3ce3 3c1x

Figure 4.5: Speedups of OCLADock vs. single-threaded AutoDock achieved
on CPU (16 work-items) and GPU (64 work-items). Vertical scales
are different.

4.2 experimental evaluation 49

Table 4.4: Measured power values (approximated) on the CPU.

Execution type Power (W)

Idle 4

Baseline (single CPU core) 19

OpenCL (four CPU cores) 48

Idle power = ~17 W

0 1 2 3 4 5 6 7 8 9 10.5 12.5 14.5 16.5 18.5 20.5 22.5

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Time (s)

P
ow

er
 (

W
)

Figure 4.6: Power measurements on the RX-290X GPU for 10 LGA runs using
3c1x.

in Tsampling = 50 ms intervals, using power performance counters on
both CPU and GPU to avoid the inaccuracies typically associated with
external measurements (e. g., shunt-based). The power samples are
then integrated over time to derive the energy.

Using this methodology, it was discovered that the power drawn by
the CPU for the different scenarios (idle, baseline sequential, OpenCL-
parallelized) stays mostly constant over the entire execution time of a
docking job (Table 4.4). On the GPU, however, the power draws varied
between [∼75 W, ∼155 W] over the execution time (Figure 4.6). This
different behavior is attributed to the algorithm switching between
the Krnl_GA and Krnl_LS kernels, with the latter having a much lower
degree of parallelism that the first one. On the GPU, this leads to some
compute elements becoming idle (drawing less power). On the CPU,
however, even this reduced degree of parallelism suffices to keep all
cores and their internal ALUs/FPUs/LSUs busy, thus explaining the
almost constant power draw.

50 ocladock : opencl-accelerated autodock on cpus and gpus

Table 4.5: Energy consumption (kJ) results and energy-efficiency gains for
100 LGA runs on CPU (16 work-items) and GPU (64 work-items).

Energy consumption (kJ) Efficiency gain

Input Serial OpenCL OpenCL

ID baseline CPU GPU CPU GPU

3ptb 11.8 5.9 2.4 1.9x 4.9x

1stp 16.7 11.7 3.7 1.4x 4.5x

3bgs 21.6 15.2 4.2 1.4x 5.2x

4hmg 28.1 19.4 4.8 1.4x 5.8x

3ce3 36.3 30.4 5.8 1.2x 6.2x

3c1x 54.9 61.2 8.7 0.9x 6.3x

The energy consumption results are grouped into CPU and GPU

categories. Table 4.5 shows energy consumption for serial and parallel
execution in the case of selected compounds. Despite that the GPU

required a higher amount of power than the CPU during certain time
periods, the GPU achieved greater energy savings than the most parallel
version on the CPU.

Figure 4.7 shows the gains in energy efficiency for different LGA runs.
In both CPU and GPU cases, the efficiency gain (Figure 4.7) behaves
similarly as the speedup presented previously (Figure 4.5), depending
as well on the molecular input complexity and the work-group size.
In particular, in the CPU accelerator, small compounds led to larger
energy savings (∼2x) compared to bigger ones (4hmg, 3ce3), while
the parallel execution using 3c1x saved no energy with respect to the
baseline case.

This seeming anomaly for 3c1x can be explained by considering
the execution time (baseline: 2841.8 s, OpenCL CPU: 1265.7 s) and
their power measurements (baseline: ∼19 W, OpenCL CPU: ∼48 W)
for 100 LGA runs (Table 4.3, Table 4.4). OpenCL on the CPU reduced
the execution time by a factor of ∼2.2x, but this was accompanied by a
power draw ∼2.5x higher than for the serial baseline, thus leading to
a deterioration of energy efficiency for this experiment. Considering
the complete set of 20 compounds, the geometric mean of the energy
savings compare to the sequential baseline is ∼1.4x for the CPU, and
∼5.4x for the GPU.

4.2 experimental evaluation 51

10 20 40 60 80 100

1.0x

1.5x

2.0x

C
P
U

e
n
e
r
g
y

g
a
i
n

(
1
6

w
i
)

Energy gain factor over baseline

10 20 40 60 80 100

2x

4x

6x

Number of LGA runs

G
P
U

e
n
e
r
g
y

g
a
i
n

(
6
4

w
i
)

3ptb 1stp 3bgs 4hmg 3ce3 3c1x

Figure 4.7: Energy-efficiency gains of OCLADock vs. single-threaded
AutoDock achieved on CPU (16 work-items) and GPU (64 work-
items). Vertical scales are different.

5
O C L A D O C K - F P G A : P O RT I N G AU T O D O C K T O F P G A S
U S I N G O P E N C L

This chapter details OCLADock-FPGA, an OpenCL-based task paral-
lelization of AutoDock, and provides an evaluation of its performance
and compute-energy efficiency. Contents of this chapter have been
previously published in [234].

5.1 data-parallel approach on fpgas

In Chapter 4, a data-parallel design of AutoDock was evaluated on
CPUs and GPUs. The initial intention was to complete the evaluation
by also including FPGAs as a compute platform for OpenCL-based
acceleration. However, SDAccel v2015.4 [210] – the OpenCL-to-FPGA
compiler employed – had significant robustness problems. Code that
ran perfectly on the CPU or the GPU often resulted in:

• The SDAccel tool crashing during compilation.

• Truly excessive tool runtimes (longer than a week), and memory
requirements (more than 128 GB) during hardware generation.

• Crashes and execution errors on two different FPGA platforms:
Alpha Data 7v3 card [37] (Virtex-7), and Micron AC-505 mod-
ule [113] (Kintex-7).

After much rewriting of the OpenCL code to overcome tool bugs,
along with an update to SDAccel v2016.1, a data-parallel version
that actually executed correctly on the Alpha Data 7v3 card was
finally achieved. However, it suffered from a severe slowdown over
the sequential baseline (i. e., the original AutoDock running on a single
i5-6600K CPU core) in the range of three orders of magnitude. These
difficulties were attributed to the unsuitability of such data-parallel
design for FPGAs, as well as the somewhat unstable nature of that
compiler version.

As a more promising alternative,we investigated the use of a task-
parallel implementation scheme. The task-parallel approach is com-
monly believed to be more suitable to the underlying FPGA hardware.
Also, we switched from Xilinx to Intel (Altera) FPGAs for further work,
as the Intel OpenCL-to-FPGA compiler is more mature than its Xilinx

53

54 ocladock-fpga : porting autodock to fpgas using opencl

counterpart. Furthermore, a number of FPGA-specific optimization
techniques were exploited. The patterns required to optimize the FPGA

design made us consider several device-specific architectural and
micro-architectural choices, expressed using the high-level abstrac-
tions of OpenCL. This evolved towards a parallel AutoDock implemen-
tation with improved runtime and energy-efficiency, achieving actual
speedups with respect to the serial baseline. The techniques presented
here may also be beneficial when accelerating other applications.

5.2 task-parallel approach : reformulated strategy for

fpgas

5.2.1 Reference pipeline design for FPGAs

As already discussed in Chapter 3, in 2010, Pechan, Fehér, and Bérces [146]
used Verilog to implement an architecture that consists of a three-stage
pipeline composed of four modules, each – in turn – consisting of
parallel and fine-grained pipelines (Figure 5.1). Specifically, Step 1

controls the generation of individuals by the rules of either the genetic
algorithm (GA) or local search (LS). Step 2 calculates the ligand pose.
The third stage is composed of Step 3 and Step 4 that calculate the
intramolecular and intermolecular interactions, respectively. Perfor-
mance gains of ∼23x using a Virtex-4 FPGA compared to a 3.2 GHz
Xeon CPU core were reported.

Step 1

Lamarckian

Genetic

Algorithm

(LGA)

Step 2

Pose

calculation

Step 3

Intramolecular

interaction

Step 4

Intermolecular

interaction

Figure 5.1: Pipeline processing of the LGA of AutoDock proposed in [146].

5.2.2 The development phases

Since pipeline processing is well exploitable on FPGAs, the design pro-
posed by Pechan, Fehér, and Bérces [146] was adopted as the starting
architecture (Figure 5.1) for our OpenCL implementation. This archi-The task-parallel

source code is
available in the

OCLADock-FPGA
repository at [186].

tecture executes the entire docking job sequentially, i. e., by starting a
new LGA run only after the previous run has finished, while pipelining
the GA calculations within each run. From a programming perspective,
such an architecture is realizable following a task-parallel approach,
in which each task is coded as a single work-item kernel. The actual

5.2 task-parallel approach : reformulated strategy for fpgas 55

GA_genotype

LS_genotype

P2Inter_position

P2Intra_position

initial & final

populations

grids

LGA

Step 1

GA

LS

PoseCalc

Step 2

InterScore

Step 3

IntraScore

Step 4

Global Memory (DDR3)

Intra2GA_score | Intra2LS_score

Inter2GA_score | Inter2LS_score

Pipe

Figure 5.2: First development phase: initial OpenCL design.

OpenCL implementation took place in the following four develop-
ment phases. For each, we describe the design and optimization steps
applied incrementally over the previous ones.

5.2.2.1 First development phase

Figure 5.2 represents the initial OpenCL design. Step 1 of the genetic- The code in
OCLADock-FPGA
repository [186] uses
the term energy to
quantify the binding
interaction. Here, we
use score instead to
avoid confusions
with the compute
energy.

algorithm (GA) and local-search (LS) functions (Figure 2.3) have been
merged into a single LGA kernel. This is because these two kernels
execute in sequence (i. e., GA followed by LS), and exchange data of
individuals and their scores on every genetic cycle. Merging them into
a single LGA kernel avoids exchanging data through off-chip memory,
and allows it through on-chip memory instead.

The LGA kernel controls the overall functionality of the system, which
is composed also of the PoseCalc, InterScore, and IntraScore ker-
nels that in turn correspond to Step 2, Step 3, Step 4 (Figure 5.2), re-
spectively. The communication between all kernels is achieved through OpenCL pipes are

often referred to as
channels, according
to the Intel-specific
terminology.

OpenCL pipes that serve as FIFO-based mechanisms passing data such
as:

• Genotypes:

– From LGA to PoseCalc, through GA_genotype

and LS_genotype.

• Ligand poses:

– From PoseCalc to InterScore, through P2Inter_position.

– From PoseCalc to IntraScore, through P2Intra_position.

• Computed scores (or MD binding energies):

– From InterScore to LGA, through Inter2GA_score

and Inter2LS_score.

56 ocladock-fpga : porting autodock to fpgas using opencl

– From IntraScore to LGA, through Intra2GA_score

and Intra2LS_score.

This design forms a closed loop consisting of kernels and channels
that prevents the compiler from optimizing any channel depth [83].
As an attempt to avoid this closed-loop scenario, and in turn, to help
the compiler perform more aggressive optimizations, the following
experiment was attempted.

Instead of sending the feedback scores to the LGA kernel through
channels, these scores were initially passed through global mem-
ory. The idea was to instantiate an (additional but not shown in Fig-In the OpenCL

memory model, the
global region is the

abstraction of the
physically off-chip

memory (Figure 5.2).
Here, we also refer to

it as external.

ure 5.2) Store kernel that receives such scores from InterScore and
IntraScore, and then writes them onto off-chip memory. Thereafter,
these scores could be read by LGA.

For this idea to work, OpenCL fences (mem_fence) on global memory
accesses were used in Store and LGA (Algorithm 4). Although this
worked correctly in emulation, it did not work on the FPGA. This was
due to races in off-chip memory accesses, which happen when a certain
off-chip location is accessed simultaneously by different kernels, with
at least one kernel performing a write. According to the Intel OpenCL-
to-FPGA tool documentation [83], the consistency of global memory
accesses is ensured only within a single kernel, and such races cannot
be prevented by using fences within separate kernels. Therefore, in
order to achieve a correct functionality on the actual FPGA, the idea
of using global memory for avoiding the closed-loop of kernels was
discarded. In other words, the Store kernel was removed, while the
feedback channels were included back in the initially-proposed design.

Algorithm 4: Attempt to synchronize accesses to a given location in
external memory using fences. Correct data transactions between
kernels (e. g., Rx_Val receiving the value initially stored in Tx_Val)
occur only in emulation. For that reason, this alternative design
was discarded.
/* Producer kernel */

void kernel Store (global const <type> *ext, . . .)
. . .
ext [Addr] = Tx_Val;
mem_fence (CLK_GLOBAL_MEM_FENCE);
. . .

/* Consumer kernel */

void kernel LGA (global const <type> *ext, . . .)
. . .
mem_fence (CLK_GLOBAL_MEM_FENCE);
Rx_Val = ext [Addr];
. . .

Another consideration regarding global memory was to minimize
the number of accesses. Particularly, the GA logic updates population

5.2 task-parallel approach : reformulated strategy for fpgas 57

data throughout an entire LGA run, so storing populations only in
off-chip memory would result in significant lower performance. This
was addressed by reading from and writing to global memory only
at the start and end of each LGA run, while keeping intermediate From Chapter 2:

Ngenes = Nrot + 6.
For AutoDock:
NMAX

rot = 32.

populations on-chip, using __local OpenCL two-dimensional arrays.
These arrays adopt a 2D-data [PMAX][NMAX

genes] form, which holds a
maximum population size (P) of 150, and genotype size (Ngenes) of 38.

Conversely, for read-only data such as grid maps, the number of See Table C.2 for
grid sizes.global accesses could not be minimized due to the following two issues:

first, the size of the grid data depends entirely on the docking space
under analysis. As such, on-chip storage might not be sufficient for
cases such as blind docking, where a large map representing an entire
receptor molecule would be required. Second, due to the irregular A further discussion

on caching other
data is provided
in Section 5.2.3.

reads performed by InterScore, any caching strategy consisting in
switching the scope of partial grid data from OpenCL __global into
OpenCL __constant memory space, resulted in significant misses.

5.2.2.2 Second development phase

Since PoseCalc, InterScore, and IntraScore turned out to be the
major bottleneck, their microarchitecture was optimized separately.
Each of these kernels was coded as a sequence of the following op-
erations: read from input-channels, main-computation loop, and write to
output-channels (Algorithm 5).

These kernels always execute together as a chain of blocks, being
invoked a number of times controlled by LGA, i. e., restricted by the
maximum number of either score evaluations or generations. In order
to support such termination criteria known only at runtime, all operations
within these kernels were enclosed by a while loop controlled by an
active signal. Based on that, the goal was to minimize the initiation-
interval (II, ideally II = 1) of each loop.

Different code-refactoring techniques such as shift registers, local- These
code-refactoring
techniques are
detailed in the Intel
OpenCL-to-FPGA
tool
documentation [83].

memory banking, unrolling of inner loops resulted in significant reduction
of data dependencies. In the case of PoseCalc, it was not possible to
remove the data dependency created for keeping track of the atoms to
be rotated. Although this caused a high initiation interval (II = 36) of
the main computation-loop, the outer while-loop was fully pipelined
(II = 1). The InterScore and IntraScore kernels involve long latencies
such as random accesses to off-chip grids, and single-precision floating-
point calculations required for Equation 2.3, respectively. Despite these,
all their loops (i. e., outer while-loops and inner computation-loops)
were fully pipelined.

The next optimizations performed on the LGA kernel aimed to po-
tentially increase the execution concurrency in subsequent design
phases (i. e., from Section 5.2.2.3 on), leading to the architecture de-
picted in Figure 5.3. First, the local-search logic was moved out of LGA
and implemented as a separate LS kernel, where each LS-execution is

58 ocladock-fpga : porting autodock to fpgas using opencl

Algorithm 5: Code structure used in the InterScore kernel imple-
mentation. Similar structures are used in PoseCalc and IntraScore.
The outermost while-loop is controlled by the active signal. The
main-computation loop lists only simplified operations.
/* Kernel calculating intermolecular interactions */

void kernel InterScore (global const <type> *grids, . . .)
// Active signal

char active = 0x01;

// Other declarations go here

// But are not listed for simplicity

// Setting active = 0x00 terminates kernel

while active do
/* Reading from input channels */

active = read_channel_intel (P2Inter_active);
mem_fence (CLK_CHANNEL_MEM_FENCE);

// Not merged with following loop

// Doing so allows trying wider data-types

// for data transferred through channels

for each lig-atom in Natom do
coordinates [lig-atom] = read_channel_intel (P2Inter_position);

/* Main-computation loop */

for each lig-atom in Natom do
xyz = coordinates (lig-atom);

// Reading and processing grid maps:

// van der Waals, hydrogen bonding,

// electrostatics, and desolvation

read_vdw_hb = grids [xyz + offset_vdw_hb];
read_el = grids [xyz + offset_el];
read_ds = grids [xyz + offset_ds];

partial_vdw_hb = interpolation (read_vdw_hb);
partial_el = interpolation (read_el);
partial_ds = interpolation (read_ds);

// Accumulating intermolecular interaction

interS += partial_vdw_hb + partial_el + partial_ds;

/* Writing to output channels */

if Running GA then
write_channel_intel (Inter2GA_score, interS);

else
// Running LS

write_channel_intel (Inter2LS_score, interS);

5.2 task-parallel approach : reformulated strategy for fpgas 59

rand

rand

GA_genotype

LS_genotype

P2Inter_position

P2Intra_position

current and next genotypes

and their energies

Inter2GA_score

Inter2LS_score

Intra2GA_score

Intra2LS_score

Inter2LS_score

Intra2LS_score

Inter2GA_score

Intra2GA_score LGA

GA

LS-ctrl

PoseCalc

InterScore

IntraScore

LS

LFSR-GA

LFSR-LS

Feedback

pipe

Figure 5.3: Second development phase: local-search logic is implemented as
a separate kernel. From now on, feedback channels are shown as
dashed connections, while global-memory accesses are omitted
for simplicity.

triggered from within the LS-ctrl control loop. The LS kernel reads
genotypes from LGA, performs the score minimization, and returns to
LGA new genotypes and their respective scores. Similarly to LGA, LS
sends genotypes via the LS_genotype channel to be evaluated by the
{PoseCalc, InterScore, IntraScore} chain.

Furthermore, the pseudo-random number generators – initially im-
plemented as linear congruential generators (LCG [46]) – invoked
within the genetic-algorithm and local-search logic, were converted
into and replaced with separate LFSR-GA and LFSR-LS kernels, each
featuring a 32-bit linear feedback shift register (LFSR [5]). Correspond-
ing implementations in Algorithm 6 show that, while both alternative
implementations return a float-type number to the LGA kernel, the
LFSR-GA implementation does it through a channel.

5.2.2.3 Third development phase

Due to the iterative nature of the local search, the initial focus was on
its microarchitectural optimization. Although code refactoring guided
by compiler suggestions [83] helped to pipeline the majority of its
inner LS-loops, pipelining its outermost loop was not possible due to
dependencies created by genotype-data carried through inner loops,
and channel invocations for score calculation. In order to compensate
for this, the LS kernel was replicated, together with its LFSR-LS and
channel interconnects, three times (Figure 5.4).

60 ocladock-fpga : porting autodock to fpgas using opencl

Algorithm 6: In the second development phase, the random num-
ber generator RNG function invoked within LGA was replaced with
a LFSR-GA kernel.
/* LCG implemented as a function */

float Function RNG (uint* rng)
*rng = CONST_1 * (*rng) + CONST_2;
return convert_float (*rng / MAX_UINT) * 0.999999f;

/* LFSR implemented as a separate kernel */

void kernel LFSR-GA (uint* seed, uchar Ngenes)
uint lfsr = seed;
bool stop = false;

while !stop do
bool active = true;
active = read_channel_nb_intel (LGA2RNG_prng, &stop);

for each gene in Ngenes do
float rand;
uchar lsb;
lsb = lfsr & 0x01u;
lfsr�= 1;
lfsr ∧= (-lsb) & 0xA3000000u;
rand = (0.999999f / MAX_UINT) * lfsr;

bool success = false;
if !stop then

success = write_channel_nb_intel (RNG2LGA_prng, rand);

rand

GA_ready

LS_ready (x3)

GA2Arb_genotype

LS2Arb genotypes

Arb2P_genotype

current and next genotypes

and their scores (x3)

Inter2LS_score (x3)

Intra2LS_score (x3)

Inter2GA_score

f
r
o
m

I
n
t
e
r
S
c
o
r
e

a
n
d

I
n
t
r
a
S
c
o
r
e

Intra2GA_score

f
r
o
m

I
n
t
e
r
S
c
o
r
e

a
n
d

I
n
t
r
a
S
c
o
r
e

rand (x3)

LGA

GA

LS-ctrl

Arbiter PoseCalc

LS1

LS2

LS3

LFSR-GA

LFSR-LS1

LFSR-LS2

LFSR-LS3

Figure 5.4: Third development phase: local-search kernels are replicated three
times, while an arbiter kernel is added to handle simultaneous
score-calculation requests. Score calculation kernels are omitted
for simplicity.

5.2 task-parallel approach : reformulated strategy for fpgas 61

This architectural change has a particular consequence described
as follows. As already described in Section 5.2.2.2, the initially sin-
gle LS kernel invokes the execution of the {PoseCalc, InterScore,
IntraScore} block chain very much like LGA during the genetic algo-
rithm. In this scenario, LGA and LS act as producers, whereas PoseCalc
acts as a consumer of genotypes. Since the genetic-algorithm and
local-search functions are mutually exclusive during LGA execution,
the arbitration in PoseCalc was implemented in the previous phases
simply as a pair of non-blocking channels, constantly guarding the
status of both input channels, until any of them receives a complete
genotype.

On the other hand, when multiple LS kernels are instantiated (Fig-
ure 5.4), multiple score evaluations can be requested simultaneously
resulting in a multiple-producers to single-consumer datapath where the
aforementioned arbitration mechanism does not suffice. This was
solved by inserting an Arbiter kernel that reads a ready signal along
with its corresponding genotypes from each producer (Algorithm 7).
The ready signals identify the actual producers whereas the genotypes
corresponding to valid ready signals are accumulated using OpenCL
__local arrays and dispatched in order towards PoseCalc.

Furthermore, each replicated LS kernel in Figure 5.4 has its own
channels replicated as well. By using the corresponding channel (e. g.,
channel <k> for LS <k>, with k = {1, 2, 3}), calculated scores (in
InterScore and IntraScore) are ensured to return back to the correct
LS kernel.

5.2.2.4 Fourth development phase

The LS kernel was replicated more often, as long as the resulting circuit
fit on the target FPGA (Figure 5.5). The replication factor was based
on the upper bound of the LS-control loop, whose default value is
determined by the number of individuals that undergo local-search
during a single LGA evolution, i. e., nine individuals that represent a
random subset (lsrate = 6 %) of the population size (P = 150, as set
in Section 5.2.2.1). As more LS instances imply fewer loop-rounds, the
LS replication factor was increased from three (Section 5.2.2.3), up to
five and nine in this phase.

Subsequently, Arbiter was optimized similarly as in [218], where
only ready signals are passed through this kernel. Since many LS

kernels can be simultaneously active, Arbiter queues at a given mo-
ment all producer IDs corresponding to valid ready signals into an
array. These array values are sent sequentially to control the input
multiplexer in PoseCalc that selects incoming genotypes directly from
a specific producer (Algorithm 8), instead of being accumulated and
reordered through Arbiter as performed in Section 5.2.2.3.

62 ocladock-fpga : porting autodock to fpgas using opencl

Algorithm 7: In the third development phase, Arbiter kernel reads
ready signals and genotypes from producer kernels: GA and three
LS. Accumulation and dispatch to PoseCalc of received genotype
data is omitted for simplicity.

void kernel Arbiter (uint Ngenes)
bool active = true;
__local float GA_genotype [LENGTH];
__local float LS<j>_genotype [LENGTH]; // Definitions for j = 1, 2, 3

while active do
bool Off_valid, GA_valid = false;
bool LS<j>_valid = false; // Definitions for j = 1, 2, 3

bool Off_active, GA_active;
bool LS<j>_active; // Definitions for j = 1, 2, 3

// Keep polling ready signals if no genotype was received

while
(Off_valid == false) &&
(GA_valid == false) &&
(LS1_valid == false) &&
(LS2_valid == false) &&
(LS3_valid == false) do

Off_active = read_channel_nb_intel (Off, &Off_valid);
GA_active = read_channel_nb_intel (GA_ready, &GA_valid);
// Statements for j = 1, 2, 3

LS<j>_active = read_channel_nb_intel (LS<j>_ready, &LS<j>_valid);

// Initializing counter of received genes

uchar bound_tmp = 0;

// Checking if Arbiter kernel should be turned off

active = Off_valid ? Off_active : true;

if active == true then
for each gene "i" in Ngenes do

if GA_valid == true then
GA_genotype [i] =

read_channel_intel (GA2Arb_genotype);

// Statements for j = 1, 2, 3

if LS<j>_valid == true then
LS<j>_genotype [i] =

read_channel_intel (LS<j>2Arb_genotype);

if GA_valid == true then
bound_tmp++;

// Statements for j = 1, 2, 3

if LS<j>_valid == true then
bound_tmp++;

// Accumulating genotypes ready to be dispatched

. . .

// Dispatching genotypes to PoseCalc

. . .

5.2 task-parallel approach : reformulated strategy for fpgas 63

Algorithm 8: In the fourth development phase, genotypes gener-
ated in either GA or any of the nine LS kernel are sent directly to
PoseCalc, instead of being accumulated in Arbiter, as in the third
development phase.

void kernel PoseCalc (. . .)
char active = 0x01;

while active do
/* Reading from input channels */

char actmode = read_channel_intel (Arbiter2P_actmode);
mem_fence (CLK_CHANNEL_MEM_FENCE);

// Updating active and mode signals

active = actmode;
char mode = actmode;

// Multiplexing from input channels with incoming genotypes

for each gene in Ngenes do
// Variable carrying incoming genotype

// from the kernel indicated by mode

float tmp;

switch mode do
case ’G’: tmp = read_channel_intel (GA_genotype); break;
case 1: tmp = read_channel_intel (LS1_genotype); break;
case 2: tmp = read_channel_intel (LS2_genotype); break;
case 3: tmp = read_channel_intel (LS3_genotype); break;
case 4: tmp = read_channel_intel (LS4_genotype); break;
case 5: tmp = read_channel_intel (LS5_genotype); break;
case 6: tmp = read_channel_intel (LS6_genotype); break;
case 7: tmp = read_channel_intel (LS7_genotype); break;
case 8: tmp = read_channel_intel (LS8_genotype); break;
case 9: tmp = read_channel_intel (LS9_genotype); break;

/* Main-computation loop */

for each rot-item in Npose-rot do
// Rotating based on orientation and torsional genes.

// Calculating atomic coordinates upon rotation

. . .

/* Writing to output channels */

// Sending atomic coordinates to InterScore and IntraScore

. . .

64 ocladock-fpga : porting autodock to fpgas using opencl

rand

from LSFR-GA GA_ready

LS_ready (xN)

mode

GA_genotype

LS genotypes

current and next genotypes

and their scores (xN)

Inter2LS_score (xN)

Intra2LS_score (xN)

Inter2GA_score

f
r
o
m
I
n
t
e
r
S
c
o
r
e
a
n
d
I
n
t
r
a
S
c
o
r
e

Intra2GA_score

f
r
o
m
I
n
t
e
r
S
c
o
r
e
a
n
d
I
n
t
r
a
S
c
o
r
e

rand (xN)

f
r
o
m
L
F
S
R
-
L
S
(
x
N
)

LGA

GA

LS-ctrl

Arbiter

P
o
s
e
C
a
l
c

mux

LS1

...

LSN

Figure 5.5: Fourth development phase: local-search kernels are further repli-
cated, while the arbitration mechanism is improved.

5.2.3 Further optimization techniques

In addition to the FPGA-specific optimizations techniques [83] so far
employed, the following three were considered in greater detail:

1. All kernel constants were pre-calculated in the host and passed
into kernels afterwards, e. g., scaled crossover, mutation and se-
lection rates (LGA), reference orientations (PoseCalc), offsets for
indexing grid maps depending on constant grid sizes (InterScore),
as well as scoring function weights (IntraScore). This was imple-
mented in the second phase and maintained during subsequent
development phases.

2. Constant data was carefully allocated either into the __constantCaching attempts of
grid data were

already discussed
in Section 5.2.2.1.

(on-chip cache, default size: 16 kB) or __global const (off-chip,
maximum available: 16 GB) address space. If a kernel cannot
fit __constant arguments in the cache, related accesses suffer
from larger performance penalties than those of __global const

due to misses. This is because off-chip accesses are implemented
with extra circuitry for tolerating longer latencies. The look-
up tables used in PoseCalc, InterScore, and IntraScore oc-
cupy a total of 12 kB in on-chip constant memory. On the
other hand, larger data such as rotation list, grid maps, and the
list of intramolecular contributors (corresponding to PoseCalc,
InterScore, and IntraScore, respectively) were declared with
the __global const qualifier, as these altogether require∼270 kB.

5.3 experimental evaluation 65

This was implemented in the third phase and maintained during
the fourth one.

3. For most FPGA designs, fixed-point arithmetic leads to faster
designs compared to their floating-point counterparts. How-
ever, for InterScore and IntraScore, floating-point resulted in
an overall faster design, which can be attributed to the hard-
ened floating-point Digital Signal Processing (DSP) units in the
Arria 10 FPGA [81]. Surprisingly for PoseCalc, which initially
suffered from a latency of II = 36 (Section 5.2.2.2), a fixed-point
representation reduced it down to II = 10. This can be explained
by the fact that the 30 addition and subtraction operations of
the problematic datapath expressed in fixed-point were imple-
mented using Adaptive Logic Modules (ALMs) instead of DSPs,
thus avoiding the DSP latency of four clock cycles each [81]. Sim-
ilar to the previous technique, this one was also implemented in
the third phase and maintained during the fourth one.

It is important to mention that in Section 5.3.3, we measure the
combined impact of the last two optimizations just described – i. e.,
caching (using selectively __constant and __global const memory)
and arithmetic precision (choosing conveniently fixed and floating
point), and not the separate effect of each one of them.

From a productivity standpoint, this was motivated by the higher
priority of achieving faster executions of the overall design in short
development cycles, than in deeply understanding the separate effect
of each technique. In fact, in initial development phases, different tech-
niques (e. g., caching using __local memory, shift registers, etc) did
not produce visible performance gains when evaluated independently.
In some cases, slowdowns were observed when applying optimizations
suggested by the FPGA vendor. Although independently evaluating each
optimization would be ideal for any design, it became non-practical in
later development phases due to the long building times required for
each FPGA bitstream (∼eight hours).

5.3 experimental evaluation

5.3.1 Setup

Similarly to the data-parallel version (Chapter 4), re-docking experi- At the time of
development, the
Intel FPGA SDK for
OpenCL v16.0 was
latest version
suported by the
corresponding board
support package.

ments are performed here. Regarding the dataset, five ligand-receptor
inputs obtained from the Protein Data Bank (PDB) [17] were tested
(PDB IDs: 3ptb, 1stp, 4hmg, 3ce3, 3c1x). All MD parameters were set
to the default values as suggested in AutoDockTools [76].

The hardware platforms used in our experiments were:

• An Intel i5-6600K CPU clocked at 3.5 GHz.

66 ocladock-fpga : porting autodock to fpgas using opencl

• A Gidel Proc10A card equipped with an Arria 10 GX 1150 FPGA

and 16 GB RAM.

The CPU was used for collecting baseline characteristics of the orig-
inal single-threaded implementation. On the other hand, FPGA bina-
ries were built using the Intel FPGA SDK for OpenCL v16.0 compiler.

5.3.2 Validation

Even though this study focuses on the methodological aspects, it
is important to show that the OpenCL version operates correctly,
especially with the changed arithmetic, i. e., the mix of fixed and
floating point.

Since previous acceleration studies of AutoDock [144, 146, 233]
demonstrate that a reduced precision does not diminish the MD

quality with respect to the original AutoDock (in double-precision
floating-point), a 16.16 fixed-point format was utilized for the LS,
PoseCalc, InterScore, and IntraScore kernels. This format allows
simply re-purposing the OpenCL int and long primitive types, and
was sufficient to represent genotypes and rotations generated in LS

and PoseCalc. For the InterScore and IntraScore kernels, this format
might not be sufficiently precise in cases where scores might reach out-
of-bound values, i. e., when the van der Waals (A

r12
ij
− B

r6
ij

) and hydrogen

bonding (C
r12

ij
− D

r10
ij

) terms grow rapidly as the interatomic distances (rij)

become very short. However, the erroneous molecular poses derivedFixed-point format
was beneficial only

when used for
PoseCalc. This

format reduced II in
PoseCalc

(Section 5.2.3), and
the overall execution
time (Section 5.3.4).

On the contrary,
floating point was

preferred for
InterScore and

IntraScore kernels.

from these incorrect out-of-bound values are so bad that they will
be discarded by the genetic algorithm anyway. While such precision
issues were not observed in practice, and because the floating-point
implementations for the InterScore and IntraScore kernels were
actually faster than fixed-point counterparts (Section 5.2.3), further
experiments were performed using floating-point representation in
such kernels (Table 5.2).

Therefore, the resulting designs from each development phase were
compared against the serial baseline according to three key metrics
already introduced in Section 2.2.6: lowest binding score (LBS), root
mean square deviation (RMSD), and size of best cluster (SBC). As
similar results were obtained with small designs, only the MD valida-
tion of the largest one (nine LS kernels, Section 5.2.2.4) is presented
in Table 5.1.

The explanation for the SBC discrepancies in Table 5.1 – between
OCLADock-FPGA and AutoDock – are the same as those already pro-
vided in Section 4.2.2 for the initial OCLADock design for GPUs. In our
previous FPGA-related publication [234], we stated that the above
discrepancies were due to the different selection scheme used (bi-
nary tournament) with respect to that used in AutoDock (proportional
selection). As later discovered (March 2018), it was in fact the score

5.3 experimental evaluation 67

Table 5.1: Functional validation of OCLADock-FPGA vs. single-threaded
AutoDock, both using the Solis-Wets local-search method. RMSD
values are omitted for simplicity. All results were obtained using
100 LGA runs. Best values within each criterion are colored.

Ligand-receptor Lowest binding Size of

input score (LBS) best cluster

(kcal/mol) (SBC)

ID Nrot Natom
Serial OpenCL Serial OpenCL

baseline FPGA baseline FPGA

3ptb 2 13 −5.55 −5.53 100 66

1stp 5 18 −8.37 −7.76 100 69

4hmg 10 27 −3.68 −4.11 34 25

3ce3 5 37 −11.59 −10.88 94 48

3c1x 8 46 −13.61 −12.61 90 22

implementation lacking of smoothing the real cause of SBC (and RMSD)
discrepancies. The smoothing feature was added into the scoring func-
tion implementation and pushed onto the project repository [186] later
(August 2018). Corresponding code changes fixed the above issues,
and have virtually no impact on execution time on FPGA tests.

5.3.3 Design configurations and resource utilization

Table 5.2 lists the four development phases and their respective design
configurations (DC1, DC2, DC3, and DC4 {a, b, c, d}) that summarize
the most significant optimizations. Such designs differ in the number
of LS kernels being replicated, i. e., DC1 (one), DC2 (one), DC3 (three),
DC4a (five), and DC4 {b, c, d} (nine); as well as in the arithmetic
representation for the listed kernels. Designs DC4 {b, c, d}, all with
nine replicated LS kernels, are employed to evaluate the impact of
floating-point used in all replicas of LS (DC4c), as well as in PoseCalc

(DC4d), both compared to fixed-point (DC4b).
The largest designs, i. e., DC4 {b, c, d}, are composed of 27 ker-

nels each: one GA, nine LS, nine LFSR-LS, four LFSR-GA (used in se-
lection, crossover, mutation, selection for local-search), one Arbiter,
one PoseCalc, one InterScore, and one IntraScore. Table 5.3 reports
resource utilization in terms of ALM, RAM, and DSP blocks. The re-
source reduction obtained when moving from DC1 to DC2 can be
attributed to the fact that implementing LS separately from LGA re-
moves the hardware required to carry genotype data in GA and LS,
both initially managed within LGA. On the other hand, there is an
expected overall increase in resource usage when going from design
DC3 through DC4a towards DC4b, which directly corresponds to the
increase (from three up to five instances) of the LS replication. More-

68 ocladock-fpga : porting autodock to fpgas using opencl

Table 5.2: Development phases and design configurations.

Arithmetic representation

Development Design # LS
LS PoseCalc

InterScore

phase configuration replicas IntraScore

First DC1 1 float float
floatSecond DC2 1 float float

Third DC3 3 fixed fixed

Fourth

DC4a 5 fixed fixed

float
DC4b 9 fixed fixed

DC4c 9 float fixed

DC4d 9 float float

Table 5.3: FPGA resource utilization and maximum frequency.

Design ALMs RAMs DSPs Frequency

configuration 427 200 % 2713 % 1518 % (MHz)

DC1 129 301 30 1075 40 388 26 215.2

DC2 128 018 30 999 37 262 17 174.4

DC3 158 586 37 1799 66 548 36 187.5

DC4a 177 509 42 1826 67 586 39 172.6

DC4b 222 372 52 1880 69 662 44 187.5

DC4c 220 427 52 1898 70 659 43 185.7

DC4d 219 359 51 1944 72 383 25 185.7

over, it is shown that a fixed-point representation of LS (DC4b), utilizes
more DSP blocks (44 %) than its floating-point counterparts such as
designs DC4c (43 %) and DC4d (25 %).

Regarding the maximum frequency, designs DC3 and DC4 {b, c,
d} reach comparable values (∼186 MHz). Smaller designs (DC2 and
DC4a, both at ∼173 MHz) do not always result in higher frequencies
compared to larger ones (DC4 {b, c, d} at ∼186 MHz). Furthermore,
higher frequencies do not necessarily imply faster circuits, e. g., DC1,
capable of running at ∼215 MHz, is at least ∼4.4x slower than the
serial baseline (Table 5.4).

5.3.4 Execution performance

Table 5.4 reports the full-program execution runtime for all proposed
designs. On one hand, the first two designs are slower than the serial
baseline. Analyzing the DC2 performance with respect to that of DC1,
there is an overall decrease in execution performance (except for the
small 3ptb input), which can be attributed to the lower frequency

5.3 experimental evaluation 69

Table 5.4: Execution time (s) for 100 LGA runs.

Design Ligand-receptor input

configuration 3ptb 1stp 4hmg 3ce3 3c1x

Serial CPU 586 836 1416 1867 2841

DC1 2903 5784 6636 8519 12 573

DC2 2550 6678 8121 9247 14 502

DC3 376 739 1013 1364 1790

DC4a 315 563 788 1096 1496

DC4b 211 385 623 1077 1487

DC4c 215 388 634 1079 1491

DC4d 332 706 933 1250 1759

3ptb 1stp 4hmg 3ce3 3c1x
0

1x

2x

3x2.8

2.2 2.3

1.7
1.9

Figure 5.6: Speedups of OCLADock-FPGA fastest design DC4b vs. single-
threaded AutoDock.

achieved (Table 5.3), and the increased computation required by larger
ligand inputs, i. e., those with at least five torsions (Nrot ≥ 5) such as
1stp, 4hmg, 3ce3, and 3c1x.

Although DC2 seemed to be going in the wrong optimization direction,
it introduced the architectural modifications (Section 5.2.2.2) that led
to the performance improvements in later designs DC3 and DC4. This
is reflected in the significant runtime reductions when going from
DC2 to DC3, e. g., a maximum difference of ∼12 000 s for 3c1x. These
improvements are the result of the LS replication, the careful allocation
of constant look-up tables, and selective usage of fixed-point arithmetic
precision (Section 5.2.3).

Moreover, in Table 5.4, when going from DC3 through DC4a towards
DC4b, there is progressive speedup of the execution runtime due to
the increase in the number of replicated LS kernels. Comparing DC4b
and DC4c, which differ only in the representation of LS as fixed- and
floating-point respectively, it can be seen that both designs provide
comparable runtimes, with DC4b being slightly superior than DC4c
(e. g., a maximum difference of 11 s for 4hmg). On the other hand, a
significant decrease in performance with respect to DC4b occurs when
PoseCalc calculations are expressed in floating-point as in DC4d (e. g.,

70 ocladock-fpga : porting autodock to fpgas using opencl

Table 5.5: Compute-energy consumption (kJ) for 100 LGA runs.

Design Ligand-receptor input

configuration 3ptb 1stp 4hmg 3ce3 3c1x

Serial CPU 11.8 16.7 28.1 36.3 54.9

DC4b 6.3 11.5 18.7 32.3 44.6

a maximum difference of 321 s for 1stp). These results are due to
the II improvement of the outermost-loop in PoseCalc achieved with
fixed-point (DC4b, II = 10) vs. floating-point (DC4d, II = 36). The case
of InterScore and IntraScore is the opposite, because expressing
their calculations in fixed-point resulted in ∼20 % of performance
decrease (Section 5.2.3), due to larger hardware area that led to lower
frequencies (< 170 MHz) for a design comparable to DC3 in Table 5.3.

For the two score-calculating kernels, relaxing the order of floating-
point operations and removing intermediate rounding operations
enabled through compiler flags (-fpc-relaxed and -fpc, respectively)
provided no performance benefits. The maximum and minimum
speedups obtained with the fastest design (DC4b) over the sequential
baseline were 2.8x (for 3ptb) and 1.7x (for 3ce3). This correspondance
can be explained by the computation effort imposed by molecular in-
puts, whose complexity directly increases in cases where more atoms
and rotatable bonds are present in the ligand.

5.3.5 Compute-energy efficiency

Table 5.5 reports the compute-energy consumption of the two target
devices used: the single CPU core, and the FPGA. For the CPU case, the
drawn power was sampled in Tsampling = 50 ms intervals using power
performance counters. The power samples were then integrated over
time to derive the energy. For the FPGA case, estimated power values
from fully placed-and-routed OpenCL projects were obtained using
quartus_pow, similarly as in [227]. The power estimate of ∼30 W was
multiplied by the respective runtime (Table 5.4) to obtain the energy.
Clearly, bigger/smaller energy-efficiency gains (1.8x for 3ptb, 1.1x for
3ce3) correspond to bigger/smaller speedup factors (2.8x for 3ptb,
1.7x for 3ce3) as already shown in Table 5.4.

5.3.6 Further analysis

5.3.6.1 Comparison against state-of-the-art accelerated AutoDock

Compared against the RTL-based implementation by Pechan, Fehér,
and Bérces [146] (achieving ∼23.3x of average speedup on a Xilinx

5.3 experimental evaluation 71

3ptb 1stp 4hmg 3ce3 3c1x
0

1x

2x

3x

1.8
1.5 1.5

1.1 1.2

Figure 5.7: Energy-efficiency gains of OCLADock-FPGA fastest design DC4b
vs. single-threaded AutoDock.

Virtex 4), much lower arithmetically-averaged speedups (∼2.2x on an
Intel Arria 10) were achieved in this chapter.

Despite all efforts of optimizing the FPGA design discussed in this
chapter, GPUs do an even better job in MD acceleration. In Chapter 4,
improvements over the serial baseline reached gain factors (for 3c1x)
of up to ∼55.7x (speedup) and ∼6.3x (energy efficiency). The fact that,
in this Chapter 5, the optimal pipelining (II = 1) was achieved for
the InterScore and IntraScore kernels belonging to the bottleneck
chain, suggests that the control mechanisms used in channel-based
communications, as well as within the Arbiter kernel, are most likely
not yet optimal in the currently proposed FPGA design.

5.3.6.2 Tool support and productivity

In general, for each development phase, the design specification and its
corresponding emulation-based verification were as easy on the FPGA

as with GPUs. Before generating FPGA binaries, optimization reports
provided by the tool were extensively utilized in order to assess the
performance impact of code modifications in terms of achieved II, and
the estimated resource utilization. As a result, a fully-emulated design
for the first development phase (Section 5.2.2.1) was completed in
∼four weeks.

However, during each development phase, the corresponding vali-
dation on actual hardware and subsequent optimization cycles were
much more involved. At this stage, the hardware profiler was used
to pinpoint bottlenecks caused by channels with unbalanced com-
munication traffic between producer and consumer kernels, as well
as inefficient memory accesses. Although all designs were verified
through emulation, this was not a guarantee that the mapped designs
would execute as expected on the actual FPGA. Among the known em-
ulator limitations [83], the most critical issue was the data-consistency
errors created by concurrent global-memory accesses from different
kernels (Algorithm 4).

Moreover, it was essential to consider the possible reorderings of
operations potentially performed by the OpenCL compiler. This is the

72 ocladock-fpga : porting autodock to fpgas using opencl

case for the LGA kernel, where several read and write channel calls
happen at different variable scopes throughout the entire MD execution.
At first glance, the order of channel calls can be enforced by using
channel fences [83]. But in practice, this mechanism worked only as
long as these calls occurred at the same variable scope. When such
calls occurred between disjoint but still interdependent code blocks,
the execution order across these channel-enclosing blocks could no
longer be enforced by just using fences. Instead, guard variables had
to be explicitly introduced, and manually set/reset to enforce a valid
execution order.

In summary, a total of ∼five months were spent on this development,
which was considerably delayed by the issues on concurrent memory
accesses, and (of course) by the non-negligible FPGA synthesis and
mapping times of ∼eight hours for each of the largest designs.

5.3.6.3 Programming recipes and challenges for achieving higher perfor-
mance

During the entire development, the aim was to achieve the highest
possible performance estimation (II = 1) for each single work-item
kernel. Although this was not possible in all parts of the proposed
design, the difficulty was mitigated by spliting large sections (LGA
in the first development cycle) into smaller instances (as multiple
LS and LFSR-LS kernels) in order to harness the parallelism such
OpenCL kernels. Moreover, appropriate data allocation on either on-
chip or off-chip memory, as well as arithmetic representation, were
considered as key tools for achieving higher performance. The benefits
of these general recipes are reflected in the most drastic performance
improvements, i. e., moving from DC2, through DC3 towards DC4b
(Section 5.3.3).

From the software-programming perspective, a big challenge faced
during development was the required awareness of the underlying
hardware. Even when developing at the OpenCL level of abstraction,
this translated into the need for:

• Explicit synchronization between multiple read and write chan-
nels within single work-item kernels for ensuring correctness.

• Re-arranging the local memory layout for increasing II.

• Code refactoring using hardware constructs such as shift-registers,
for better pipelining and unrolling loops.

Compiler features are already available to support such manual
transformations. Combined with the fact that a development using
a mix of OpenCL and RTL specifications is possible, it reinforces the
impression that one still needs to be aware of the underlying FPGA

characteristics, even when using OpenCL.

6
E N H A N C I N G O C L A D O C K W I T H G R A D I E N T S O F
T H E S C O R I N G F U N C T I O N

While the previous chapters focused on increasing the performance
of AutoDock by its parallelization on multi-core CPUs, GPUs, and FPGAs,
this chapter focuses on algorithmic improvements to also achieve a
higher quality-of-results. Thus, this chapter details the incorporation
of local-search methods based on gradients of the scoring function into
OCLADock, which are an alternative to the legacy Solis-Wets method.
Moreover, it provides an evaluation of its performance and compute-
energy efficiency. Contents of this chapter have been submitted to [165,
235, 236].

6.1 gradient-based optimization

As already described in Section 3.3, previous studies [53, 188] suggest
that gradient-based methods can significantly outperform Solis-Wets,
when used as local search in AutoDock. The key idea of this optimiza-
tion is to obtain the derivatives of the scoring function terms, and use
them to efficiently direct the LGA towards stronger molecular poses.

6.1.1 Gradient calculation

The gradient calculation, denoted as GC, is the process by which the
gradient g is derived from the scoring function SF with respect to each
variable, i. e., gene, of the genotype Ω:

g = ∇SF (Ω) =
∂SF
∂x

,
∂SF
∂y

,
∂SF
∂z

,
∂SF
∂φ

,
∂SF
∂θ

,
∂SF
∂α

,
∂SF
∂ψ1

, . . . ,
∂SF

∂ψNrot

(6.1)

Since SF is expressed as the sum of intermolecular and intramolecu-
lar interactions (Section 2.2.4), the gradients are hence composed of
analogous parts calculated using numerical and analytical derivatives,
respectively. Besides the fact that the pose calculation is identical in
both SF and GC, Algorithm 9 shows that the calculation of both in-
termolecular and intramolecular gradient parts follow the same loop
structure as their corresponding SF counterparts (Algorithm 3). For
incorporating the gradients into the LGA, the subsequent calls in Al-
gorithm 9 perform their required conversion from the atomic space

73

74 enhancing ocladock with gradients of the scoring function

(originally using the interatomic distance rij as in Equation 2.3) into
the genetic space (adopting the form in Equation 6.1).

Algorithm 9: Gradient Calculation (GC)
/* Low-Level Parallelism */

Function GC (genotype)
/* Gradients in atomic space */

for each rot-item in Npose-rot do
PoseCalculation

for each lig-atom in Natom do
InterGradient

for each intra-pair in Nintra-contrib do
IntraGradient

/* Conversion from atomic into genetic space */

Gtrans // Translational gradients

Grigidrot // Rigid-body rotation gradients

Grotbond // Rotatable-bond gradients

6.1.2 Gradient conversion from atomic into genetic space

Since the analytical form of the scoring function SF (Equation 2.3)
is expressed in the atomic space, the gradient calculation GC is a
two-step process. In the first step, the atomic partial derivatives ai of
the scoring function SF were calculated with respect to the motion of
single ligand atom i in x, y and z directions:

ai = ∇SF (xi, yi, zi) =
∂SF
∂xi

,
∂SF
∂yi

,
∂SF
∂zi

(6.2)

In the second step, the gradient expressed in the atomic space (i. e.,
in terms of ai) is converted into the genetic space. This conversion
is specific for each of the three motion types: translation, rigid-body
rotation, and rotatable bonds.

The partial derivatives of SF with respect to translation genes x, y,
and z (Gtrans in Algorithm 9) are calculated as the sum of the atomic
partial derivatives of all Natom ligand atoms:

∂SF
∂x

,
∂SF
∂y

,
∂SF
∂z

=
Natom

∑
i

ai =
Natom

∑
i

∂SF
∂xi

,
∂SF
∂yi

,
∂SF
∂zi

(6.3)

The partial derivatives of SF with respect to rigid-body rotation
genes φ, θ, and α (Grigidrot in Algorithm 9) are calculated from the
torque vector τ:

τ =
Natom

∑
i

ri × ai (6.4)

where:

6.1 gradient-based optimization 75

ri vector from the rotation center of the ligand to atom i

× cross product

ai atomic partial derivatives of atom i

According to this definition, τ represents the derivative of SF with
respect to rotation over the axis containing τ. The magnitude of the
derivative is the length of τ, in units of score per radian.

The next step is to convert τ into the partial derivatives of SF with
respect to φ, θ and α. These genes define rotation of the ligand in the
axis-angle representation, where φ and θ define the axis of rotation
in spherical coordinates, and α defines the amount of rotation. Con-
sidering an initial genotype with {φ0, θ0, α0} and a resulting genotype
with {φ1, θ1, α1} upon rotation of the ligand about the τ axis by 0.001

radians from the initial pose, the partial derivatives are then:

∂SF
∂φ

=
||τ||
0.001

(φ1 − φ0) h1(θ0) h2(α0) (6.5)

∂SF
∂θ

=
||τ||
0.001

(θ1 − θ0) h2(α0) (6.6)

∂SF
∂α

=
||τ||
0.001

(α1 − α0) (6.7)

where:

||τ|| module of a vector τ

h() empirically-discovered approximation functions

To define the h() functions, the numerical partial derivatives of SF
were calculated with respect to φ, θ and α, by changing the value of
each of these genes by a small amount in the range of [10

−8, 10
−3],

and dividing the difference in the resulting score by the change in the
gene.

Finally, the partial derivatives of SF with respect to rotatable bond
genes ψj (Grotbond in Algorithm 9) are the projection of torque vectors
τj on a unit vector uj defining the axis of rotation of the rotatable bond
of interest:

∂SF
∂ψj

= τj · uj (6.8)

where:

j index of the rotatable bond

· dot product

Torque vectors are calculated as in Equation 6.4, but exclusively for
atoms affected by the rotatable bond of interest. This is because each
rotatable bond ψj rotates a different set of ligand atoms, and hence, is
associated with a different torque τj.

76 enhancing ocladock with gradients of the scoring function

6.1.3 Gradient-based local-search methods

Multiple optimization methods based on gradients exist in the litera-
ture [16, 123]. In this work, we have experimented with three of them:
Steepest Descent [40], FIRE [20], and ADADELTA [221]. While the first
is a generic one, the last two were chosen due to their suitability for
minimizing objective functions describing molecular interactions.

6.1.3.1 Steepest Descent

The basic idea is to generate a new solution by taking steps from a pre-The Steepest
Descent method was

first published
by Debye [40] in

1909.

vious one. For Steepest Descent, these steps are directly proportional
– with a factor λ – to the negative of the gradient g of the previous
iteration t. Hence, the update of a solution holding a genotype Ω is
described as:

Ωt+1 = Ωt − λ gt (6.9)

Choosing an appropriate value of λ is non-trivial, especially because
the gradient magnitude can be very large due to the repulsive term
(Aij/r12

ij) in SF (Equation 2.3). A very small λ would be preferred in
case of unfavorable poses, whereas a larger λ would be beneficial in
more acceptable poses. To mitigate the negative effects of unsuitable λ

values, and thus, to help finding better solutions, limits for the change
in genes were defined according to their types:

• Maximum translation change: 2.0 Å.

• Maximum orientation or torsional change: 0.5 radians.

In the first iteration (t = 0), λ is set to the maximum possible value
such that these limits are not violated. If the score decreases (i. e.,
improves), λ is increased by 20 %. Otherwise, λ is decreased by 50 %
and Ωt is reverted to Ωt−1. At every iteration, λ is tested to guarantee
that the maximum change in any gene does not exceed the above
limits.

6.1.3.2 FIRE

The main idea of FIRE is analogous to that of a blind skier searchingAccording to [99],
FIRE stands for Fast
Inertial Relaxation

Engine.

for the fastest way to the bottom of a mountain [20], whose landscape
is described by SF. At each iteration t, the skier should introduce
acceleration in a direction that is steeper than the current motion
direction, if the skier is moving downhill.

Such a downhill movement corresponds to a positive value of a
term known as kinetic power, so that the skier stops as soon as this
value becomes negative. Specifically, the kinetic power Pt is defined by
two terms: kinetic force and velocity. The kinetic force Ft is opposite to

6.1 gradient-based optimization 77

the gradient gt, i. e., Ft = −gt. The velocity vt describes the direction
and speed at which the skier moves.

Pt = Ft · vt (6.10)

vt = (1− αF) vt + (αF)
Ft

||Ft||
||vt|| (6.11)

where: Remember that α

represents a
rotational gene,
while αF is a FIRE
hyperparameter.

· dot product

αF FIRE hyperparameter

The genotype Ω is updated using the velocity vt, and a factor dt
whose value is either decreased or increased depending whether the
skier moves uphill or downhill, respectively:

Ωt+1 = Ωt + (dt) vt (6.12)

The idea of using an adaptable factor dt is similar to that of using
variable λ values in Steepest Descent. However, the FIRE optimization
does not use gradients directly, but a more sophisticated search vector
(i. e., velocity vt) derived from gradients.

6.1.3.3 ADADELTA

The basic idea of ADADELTA [221] is to alleviate the task of choos-
ing a learning rate of the variables to be optimized. Applied to MD,
ADADELTA consists in introducing a new dynamic learning-rate (i. e.,
an update vector for genotypes) that is computed per-dimension (i. e.,
per-gene) using first-order derivative information. In other words, the
genotype Ω is updated using an update vector ∆Ω at each iteration t:

Ωt+1 = Ωt + ∆Ωt (6.13)

The value of the update vector ∆Ωt depends not only on the gradient
gt, but also on the history of past gradients and past update vectors:

∆Ωt = −
√

E[∆Ω2]t−1 + ε√
E[g2]t + ε

gt (6.14)

where: The vectors E[∆Ω2]
and E[g2] have the
same number of
elements (Ngenes) as
the genotype Ω.

E[∆Ω2] running average of squared updates

E[g2] running average of squared gradients

The mathematical relationship between last two terms is as follows:

E[∆Ω2]t = ρ E[∆Ω2]t−1 + (1− ρ) ∆Ω2
t (6.15)

E[g2]t = ρ E[g2]t−1 + (1− ρ) g2
t (6.16)

where:

78 enhancing ocladock with gradients of the scoring function

ε ADADELTA hyperparameter 1

ρ ADADELTA hyperparameter 2

In particular, the constant ε prevents the denominator in Equa-
tion 6.14 from becoming zero, if E[g2] is zero. Furthermore, ε is
required to produce non-zero updates in the first iteration (t = 0),
because the running average of squared updates of the preceeding
iteration E[∆Ω2]−1 is assumed to be zero. Based on our own tuning
experiments [165], ε and ρ were set to 0.01 and 0.8, respectively.

Although the higher complexity with respect to previous methods,
ADADELTA can help finding good solutions by using a dynamic
learning-rate for each gene. As this learning rate depends on averaged
terms from previous iterations, ADADELTA might provide a more
consistent method for updating genotypes.

6.1.3.4 Comparison

The aforementioned gradient-based methods leverage first-order deriva-
tives, in contrast to higher-order methods e. g., BFGS [123]. The choice
of first-order methods was motivated by their reduced complexity,
and because some of them (e. g., FIRE) can be competitive with BFGS
for optimizing functions describing molecular interactions [20].

Moreover, each of the chosen first-order methods has a number of
hyperparameters that influence the calculation of the update vector:

• Steepest Descent has four: λ, and the three maximum limits
introduced here for the changes in motion types (translation,
orientation, torsion).

• FIRE has five: αF, two for the increasing and decreasing dt rates,
and other two indicated in [20].

• ADADELTA has only two: ε and ρ.

From the programming perspective, the more hyperparameters a
method has, the harder it is to find suitable values for the concrete
use-case. In fact, this is one of the motivations why in ADADELTA the
number of hyperparameters is only two. Moreover, according to [221],
the ADADELTA optimization is insensitive to hyperparameters.

6.1.4 Incorporation into OCLADock

Incorporating the above gradient-based local-search methods into
OCLADock implies running an LGA with extended functionality. Such
extended version still needs to run both Krnl_GA and Krnl_LS kernels
following the program workflow already described in Section 4.1.2.
The main difference is that now, it is possible to select the optimizer to
be run in Krnl_LS. All local-search methods implemented in this work

6.1 gradient-based optimization 79

are mutually exclusive, i. e., Krnl_LS performs only one among the
overall four choices available at this point: the legacy Solis-Wets, and
the three gradient-based methods newly incorporated here: Steepest
Descent, FIRE, ADADELTA.

Algorithm 10 shows how OCLADock configures Krnl_LS to specifi-
cally run the ADADELTA implementation (Section 6.1.3.3). Due to
the similar code structure and same parallelization level between SF
and GC, as well as between Solis-Wets (Section 2.2.3) and any chosen
gradient-based method, the OpenCL parallelization still follows the
same strategy used in Figure 4.2.

Algorithm 10: Incorporating ADADELTA local search into
OCLADock. The other gradient-based methods, Steepest Descent
and FIRE, are incorporated similarly, and thus are not shown here.

Program OCLADock

for each LGA-run do
/* Configuring overall program */

LS-config = ADADELTA

. . .

/* Writing initial populations to OpenCL device */

. . .

/* Launching kernels on OpenCL device */

while (Nscore-evals < NMAX
score-evals) and (Ngens < NMAX

gens) do
Krnl_GA

Krnl_LS (LS-config)
. . .

/* Reading resulting populations from OpenCL device */

. . .

/* Low-Level Parallelism */

Function ADADELTA (genotype)
gradient = GC (genotype)

while (NLS-iters < NMAX
LS-iters) do

new-genotype = update-rule (genotype, gradient)

if SF (new-genotype) < SF (genotype) then
genotype = new-genotype

gradient = GC (genotype)

Moreover, as described in Section 6.1.1, SF and GC calculate poses
identically, and share the same loop-structure for their intermolecu-
lar and intramolecular components. In order to leverage data local-
ity in the gradient-based implementations, SF and GC calculations
are grouped together as much as possible. Basically, a single pose
calculation is used for both scores and gradients, whereas structure-

80 enhancing ocladock with gradients of the scoring function

equivalent SF and GC calculations are fused into single intermolecular
and intramolecular loops. Gradient conversion (Section 6.1.2) was
left unmodified. This code refactoring results in faster gradient-based
executions (∼18 %) compared to an initial design where SF and GC
calculations were invoked separately.

6.2 experimental evaluation

6.2.1 Setup

Twenty ligand-receptor inputs from well-established sets for assessing
MD methodologies were selected, including:This prepared set

covers a large range
of rotatable bonds

supported by
AutoDock:

NMAX
rot = 32.

• Eleven from Astex [71]: 1u4d, 1xoz, 1yv3, 1owe, 1oyt, 1ywr, 1t46,
2bm2, 1mzc, 1r55, 1kzk.

• Four from CASF-2013 [104]: 3s8o, 1hfs, 1jyq, 2d1o.

• Five from PDB [17]: 5wlo, 5kao, 3drf, 4er4, 3er5.

The following describes the hardware configuration. For the base-
line test, i. e., the measurement of execution time and power draws
of the original single-threaded AutoDock version 4.2.6 (implementing
only the Solis-Wets local search), a Xeon E5-2666 clocked at 2.6 GHz
CPU core was used. For parallel executions, on-premise and cloudIn addition, as

suggested for
high-performance

workloads [13],
hyperthreading was

disabled for all CPU
instances used.

accelerators based on commercial GPUs, CPUs, and FPGAs were eval-
uated (Table 6.1). At the time of writing, the best choice in terms of
performance offered by Amazon Web Services (AWS) CPU instances
would be the c5.18xlarge rather than the c4.8xlarge [11]. However,
the c4.8xlarge was also taken into account because it was the only
platform among the higher-end CPU instances that actually supported
real-time power sampling (Section 6.2.6).

6.2.2 Validation

For consistency, all experiments follow again a re-docking approach.
The configuration of the most important LGA parameters include: a
population size of P = 150 individuals, NMAX

score-evals = 2 048 000 score
evaluations, as well as NMAX

gens = 99 999 generations. The latter parameter
was set to a considerably larger value (99 999) than the default one
(27 000) in order to ensure that the program is terminated only when
it reaches the specified NMAX

score-evals.
Table 6.2 compares the original single-threaded AutoDock (running

only Solis-Wets) against the proposed OpenCL implementations with
four different local-search methods (Solis-Wets, Steepest Descent, FIRE,
ADADELTA) in terms of the three evaluation criteria (Section 2.2.6)
for the entire dataset. Contrary to previous chapters, at this point in
development, the smoothing feature of the scoring function is already

6.2 experimental evaluation 81

Table 6.1: Hardware and software setup in terms of instance type, peak
memory bandwidth (GB/s), peak single-precision FP performance
(GFLOP/s), number of OpenCL compute units (# CU), preferred
OpenCL work-group size (WGsize), and tool versions.

Device Instance GB/s # Preferred

Name Type GFLOP/s CU WGsize

AMD Radeon RX
On-premise

410

Vega 56 GPU 10 566 56 64

Nvidia Tesla AWS 900

V100 GPU p3.2xlarge 15 700 80 32

Intel Xeon E5-2666 v3 AWS 136

@ 2.6 GHz 18-core CPU c4.8xlarge 1500 18 128

Intel Xeon Platinum 8124M AWS 260

@ 3.0 GHz 36-core CPU c5.18xlarge 3456 36 128

Gidel Proc10A
On-premise

20

Arria 10 GX 1150 FPGA 1366 – –

Host
Compiler: g++ 5.4.0

Flags: -O3

Device

AMDAPPSDK 3.0, CodeXL [28]

CUDA 9.0

Intel SDK-2017

Intel FPGA RTE v16.0

OpenCL flags: none

implemented in OCLADock. Therefore, the numbers reported in Ta-
ble 6.2 resulted from having an equivalent scoring function in both
AutoDock and OCLADock.

Regarding lowest binding score (LBS), both AutoDock and OCLADock

running Solis-Wets provide very similar values. OCLADock running
Steepest Descent found solutions having lower (better) energies than
when running Solis-Wets instead. All following examples report corre-
sponding energy values in kcal/mol:

• 5kao: -9.54 (Solis-Wets) vs. -11.08 (Steepest Descent)

• 1jyq: -7.09 (Solis-Wets) vs. -12.77 (Steepest Descent)

• 3er5: -6.49 (Solis-Wets) vs. -11.37 (Steepest Descent)

OCLADock FIRE produced solutions with significantly higher (worse)
energies than OCLADock Steepest Descent for large inputs (e. g., 1jyq,
3drf, and 3er5), while the binding energies calculated by OCLADock

ADADELTA are the best in all cases.
Root mean square deviations (RMSD) reported are those of the

resulting molecular pose that achieved the LBS threshold. For all small

82 enhancing ocladock with gradients of the scoring function

Table
6.

2:Functionalvalid
ation

of
O

C
L

A
D

ock
vs.single-thread

ed
A

utoD
ock

for
Solis-W

ets
(SW

)
and

grad
ient

m
ethod

s:Steepest
D

escent
(SD

),FIR
E

,
and

A
D

A
D

ELTA
(A

D
).SerialSW

results
w

ere
obtained

on
a

E
5-

2
6

6
6

C
PU

core,w
hile

the
O

penC
L

ones
targeted

a
Vega

5
6

G
PU

,using
1

0
0

L
G

A
runs

for
allcases.T

he
best

values
w

ithin
each

case
are

colored
.N

on-colored
cells

ind
icate

ligand
-receptor

cases
w

here
equally-good

results
w

ere
found,or

that
it

w
as

not
possible

to
determ

ine
the

best
m

ethod.

Ligand-receptor
input

Low
est

binding
score

(LBS,in
kcal/m

ol)
R

M
SD

(Å
)

of
LBS

Size
of

best
cluster

(SBC
)

ID
Source

N
rot

N
atom

Serial
O

penC
L

Serial
O

penC
L

Serial
O

penC
L

SW
SW

SD
FIR

E
A

D
SW

SW
SD

FIR
E

A
D

SW
SW

SD
FIR

E
A

D

1
u
4
d

A
stex

0
23

−
7.26

−
7.26

−
7.27

−
7.27

−
7.27

1.38
1.36

1.35
1.36

1.36
86

98
23

23
99

1
x
o
z

A
stex

1
30

−
10.49

−
10.49

−
10.49

−
10.49

−
10.49

0.29
0.26

0.27
0.26

0.27
99

97
97

51
100

1
y
v
3

A
stex

2
23

−
11.67

−
11.67

−
11.68

−
11.67

−
11.68

0.50
0.50

0.50
0.50

0.50
96

98
50

14
91

1
o
w
e

A
stex

3
27

−
9.87

−
9.89

−
9.95

−
9.74

−
9.95

1.50
1.68

1.55
1.49

1.55
96

98
50

14
91

1
o
y
t

A
stex

4
34

−
11.74

−
11.76

−
11.77

−
11.74

−
11.81

0.32
0.39

0.31
0.35

0.38
72

45
65

10
100

1
y
w
r

A
stex

5
38

−
11.38

−
11.32

−
11.45

−
11.17

−
11.47

0.64
0.70

0.67
0.67

0.67
30

31
18

7
83

1
t
4
6

A
stex

6
40

−
14.59

−
14.98

−
15.13

−
14.18

−
15.13

0.39
0.23

0.58
0.52

0.56
34

53
48

2
71

2
b
m
2

A
stex

7
33

−
9.35

−
9.73

−
9.59

−
8.87

−
10.58

1.30
1.52

0.94
1.03

5.31
5

7
10

4
36

1
m
z
c

A
stex

8
38

−
9.60

−
10.13

−
10.19

−
8.46

−
10.37

1.04
1.23

1.23
2.79

1.21
4

6
6

8
44

1
r
5
5

A
stex

9
27

−
6.58

−
6.97

−
7.19

−
6.96

−
7.25

1.42
1.23

1.20
1.30

1.27
17

33
59

21
61

5
w
l
o

PD
B

10
46

−
13.70

−
14.13

−
14.29

−
13.20

−
14.34

0.71
0.91

0.85
0.68

0.84
28

35
43

19
54

1
k
z
k

A
stex

11
45

−
8.26

−
10.61

−
12.43

−
9.00

−
12.89

5.00
1.31

0.81
4.30

0.71
1

4
4

1
26

3
s
8
o

C
A

SF-
2

0
1

3
12

44
−

6.41
−

7.61
−

7.75
−

9.08
−

11.52
5.07

2.83
1.44

2.06
2.51

1
1

1
1

6

5
k
a
o

PD
B

15
44

−
7.99

−
9.54

−
11.08

−
8.98

−
11.22

3.23
2.39

2.49
3.38

1.75
1

3
4

2
12

1
h
f
s

C
A

SF-
2

0
1

3
18

54
−

10.87
−

13.35
−

14.72
−

11.85
−

16.06
6.08

2.69
4.71

10.95
3.80

1
2

1
1

5

1
j
y
q

C
A

SF-
2

0
1

3
20

60
−

5.44
−

7.09
−

12.77
−

6.77
−

15.61
4.78

4.76
2.35

4.63
2.53

1
1

1
1

4

2
d
1
o

C
A

SF-
2

0
1

3
23

44
−

7.44
−

8.50
−

8.52
−

7.66
−

11.99
3.78

7.19
3.32

7.49
3.20

2
1

1
1

5

3
d
r
f

PD
B

26
63

−
2.11

−
3.28

−
5.30

−
2.01

−
5.77

7.14
6.78

5.25
6.78

7.45
1

1
1

1
3

4
e
r
4

PD
B

30
93

−
2.13

−
5.38

−
9.75

−
5.99

−
14.09

5.40
5.37

5.09
5.45

3.50
1

1
1

1
1

3
e
r
5

PD
B

31
108

0.93
−

6.49
−

11.37
−

3.31
−

14.99
3.46

3.39
4.47

6.49
3.88

1
1

1
1

1

6.2 experimental evaluation 83

inputs, all methods provide similar RMSDs, while for larger molecules
(e. g., 1kzk, 3s8o, . . . , 3er5) ADADELTA clearly outperforms the rest.
Additionally, an LGA run is successful if the RSMD of its returned
ligand pose is within 2.0 Å from the reference x-ray pose. In Table 6.2,
this success criterion is met by all LS methods for the first eleven
inputs (1u4d, 1xoz, . . . , 5wlo). Although this is not true for the other
larger inputs (i. e., RMSD > 2.0 Å), it can be noted that in five cases
(1kzk, 5kao, 1jyq, 2d1o, and 4er4) out of nine largest (1kzk, 3s8o, . . . ,
3er5), ADADELTA found the smallest RMSD among all methods.

Regarding the size of the best cluster (SBC), results from both
AutoDock and OCLADock running Solis-Wets are very similar. However,
in this SBC regard, OCLADock using ADADELTA pulls ahead having a
clear superiority over all other methods for the first 18 inputs. FIRE
results in considerably smaller clusters (worse) even for small- and
medium-size inputs.

From a quality-of-results perspective1, these results indicate that in
most cases ADADELTA is a better choice for most inputs, followed
by good and moderate results from Steepest Descent and Solis-Wets
respectively, and FIRE being the least efficient among all.

6.2.3 Profiling analysis for optimum local-search rate

An important aspect of AutoDock is the selected local-search rate
(lsrate). As already described in Section 2.2.2, during an LGA run,
only a subset of the genetic population is subjected to LS optimization.
By default, this subset is 6 % (lsrate = 6 %), e. g., only nine out of a
population of P = 150 individuals will undergo LS. While for AutoDock Here, the profiling

capabilities of
CodeXL [28] – e. g.,
application
timeline trace and
performance
counters – were
employed on the
Vega 56 GPU.

this lsrate value was defined as the minimum possible to obtain
sufficiently good solutions without incurring excessive performance
penalties, the initial hypothesis was that increasing lsrate – to im-
prove MD quality – will not result in performance degradation in our
parallelization, since OCLADock processes many individuals simultane-
ously. Therefore, our analysis started by comparing lsrate = 6 % (the
default) against lsrate = 100 % (the most computationally demanding)
in order to select the most suitable lsrate in terms of performance.

Table 6.3 reports profiling metrics of Krnl_LS (WGsize = 64wi, fur-
ther discussed in Section 6.2.5.1) – % Total time, # Calls, Avg. time, and
% Occupancy – when using three ligand-receptor inputs, which are
representative of low (1u4d), medium (3s8o), and high (3er5) complex-
ity.

1 The quality should be primarily evaluated based on the score. The RMSD is a valid
metric for search performance only for inputs for which the scoring function is correct.
Colleagues at TSRI estimate that the global minimum of the AutoDock version 4.2.6
scoring function corresponds to a correct pose (RMSD ≤ 2 Å) for about 75 % of
inputs. Furthermore, the accuracy in the predicted binding energy is a computational
chemistry score-modeling problem, which is not the focus of this work.

84 enhancing ocladock with gradients of the scoring function

Table
6.

3:C
om

parison
of

O
C

LA
D

ock
local-search

(LS)
kernels

using
profiling

m
etrics

on
the

Vega
5

6
G

PU
(
1

0
0

LG
A

runs).

Solis-W
ets

Steepest
D

escent
FIR

E
A

D
A

D
ELTA

K
r
n
l
_
L
S

Input
l
s
r
a
t
e

l
s
r
a
t
e

l
s
r
a
t
e

l
s
r
a
t
e

m
etrics

ID
6

%
1

0
0

%
6

%
1

0
0

%
6

%
1

0
0

%
6

%
1

0
0

%

Fraction
of

1
u
4
d

88
98

93
97

98
99

98
99

Totalexec.
3
s
8
o

92
99

98
99

99
99

99
99

tim
e

(%
)

3
e
r
5

90
98

98
99

99
99

99
99

#
C

alls
1
u
4
d

1738
128

6889
1501

725
46

719
46

to
3
s
8
o

1560
120

2030
198

722
46

719
46

LS
3
e
r
5

2033
152

10
201

2573
722

46
719

46

A
vg.tim

e
(m

s)
1
u
4
d

4
41

8
23

47
695

35
486

per
LS

kernel
3
s
8
o

25
225

185
1610

588
9244

352
5526

enqueue
3
e
r
5

77
767

627
1343

3664
57

782
2924

5526

D
evice

1
u
4
d

20
20

10
10

10
10

10
10

utilization
3
s
8
o

20
20

10
10

10
10

10
10

O
ccupancy

(%
)

3
e
r
5

20
20

10
10

10
10

10
10

6.2 experimental evaluation 85

According to the % Total time metric, Krnl_LS comprises at least
88 % and up to 99 % of the overall OCLADock execution time.

The # Calls metric refers to the number of times Krnl_LS is enqueued
for execution. In all cases, for each LS method, there is a seemingly
paradoxical reduction in # Calls when increasing lsrate from 6 % to
100 %. This is because when running with lsrate = 100 %, more
individuals are processed by Krnl_LS. This, in turn, results in more
score calculations being performed in each Krnl_LS execution, thus
requiring fewer enqueues to reach NMAX

score-evals = 2 048 000 for each LGA

run.
The Avg. time metric indicates the mean elapsed time (ms) of a single

Krnl_LS execution. Running with lsrate = 100 % increases Avg. time
in all cases because the number of individuals to evaluate increases.
For instance, when considering Krnl_LS running FIRE on 3er5, it can
be noted that Avg. time increases by a factor of ∼21x (= 57782

3664). This is
because 100 % · 150 · 100 OpenCL work groups (calculated as P · R
in Section 4.1.1) have to be distributed among 56 compute units (CUs
of the Vega 56 GPU), instead of 6 % · 150 · 100 work-groups created
when running lsrate = 6 %.

Additionally, the kernel % Occupancy measures how efficiently GPU

resources are utilized during Krnl_LS execution. This is measured as
the number of in-flight GPU wavefronts (Nwave), and is determined at
runtime by four factors [28]:

• Size of work-group (WGsize) LDS: local-data
share.

• Local-memory usage (kB) per work-group (LDS)

• Scalar GPR usage per work-item (SGPR) GPR:
general-purpose
register.• Vector GPR usage per work-item (VGPR)

As already described, WGsize was set equal to 64wi, which narrows
down the occupancy analysis to the other three factors. Table 6.4
shows that all factors affecting Nwave are independent from either the
input (1u4d, 3s8o, 3er5) or the lsrate (6 % or 100 %) chosen. Factors
like LDS and SGPR increase and decrease respectively when selecting
ADADELTA (LDS: 10 496 kB, SGPR: 84) instead of Solis-Wets (4 096

kB, SGPR: 88). Based on the Nwave columns, the overall limiting factor
is the VGPR, whose usage was 121 (Solis-Wets), 153 (Steepest Descent),
and 152 (FIRE, ADADELTA) out of a device limit of 256. Considering
that each Vega 56 CU has four vector units, then Nwave is estimated as

256
VGPR · 4, and hence, only eight (Solis-Wets) and four (Steepest Descent,
FIRE, ADADELTA) – out of a device limit of 40 wavefronts – were
active on the Vega 56 GPU. Based on [28], this results in % Occupancy
values (Table 6.3) of 20 % for Solis-Wets, and 10 % for {Steepest Descent,
FIRE, ADADELTA}.

Besides increasing the chances to improve the MD quality by op-
timizing more solutions through LS (executed in parallel) [165], the

86 enhancing ocladock with gradients of the scoring function

Table 6.4: Resource utilization and its equivalent number of wavefronts in
Krnl_LS for the experiment in Table 6.3. VGPR values, which limit
the overall GPU occupancy, are highlighted.

Resource Resource utilization Equivalent Nwave

type SW SD FIRE AD Limit SW SD FIRE AD Limit

LDS (kB) 4096 10 240 11 008 10 496 65 536 16 6 5 6 40

SGPR 88 89 92 84 104 32 32 32 32 40

VGPR 121 153 152 152 256 8 4 4 4 40

main advantage of using lsrate = 100 % instead of lower rates is the
overall shorter executions (whose duration can be derived by multi-
plying # Calls and Avg. time from Table 6.3). For that reason, all of the
next experiments are performed using lsrate = 100 %.

6.2.4 Efficiency of gradient-based methods

The algorithmic and execution efficiencies of the selected gradient-
based methods are evaluated using that of Solis-Wets as reference.
The purpose is to determine which gradient-based method is the best
alternative to the legacy Solis-Wets method.

6.2.4.1 Algorithmic efficiency

Experiments in Section 6.2.2 showed that the ADADELTA local search
was the best choice from a quality-of-results perspective. Here, we
briefly expand the comparison between ADADELTA and the legacy
Solis-Wets method used in OCLADock.

The total execution time increases with the number of scoring func-The methodology
used to estimate the
required number of

scoring-function
calls is beyond the
scope of this thesis,

but it is discussed in
detail in our

previous work [165].

tion (SF) calls. The use of gradients reduces the number of SF calls
required to find good solutions. An estimation of the number of calls
required by Solis-Wets and ADADELTA to yield correct docking so-
lutions revealed that for ligands with about eight rotatable bonds
(Nrot = 8), ADADELTA requires ∼50x fewer calls than Solis-Wets. For
ligands with about Nrot = 20, ADADELTA requires ∼1300x fewer calls.
Overall, the use of gradients reduces the number of SF calls, especially
for ligands with many rotatable bonds (Nrot > 8), resulting in faster
and more efficient dockings.

6.2.4.2 Execution efficiency

Although calculating speedups (and compute energies in Section 6.2.6)
using different local-search methods in the baseline (implementing
only Solis-Wets) and OpenCL versions (in the case of gradients) is not
completely fair, it is still essential to report them, as they indicate the
performance penalties incurred by using the more complex gradient
methods.

6.2 experimental evaluation 87

10x

100x

S
p
e
e
d
u
p
f
a
c
t
o
r
o
v
e
r
s
e
q
u
e
n
t
i
a
l
b
a
s
e
l
i
n
e

Solis-Wets Steepest Descent FIRE ADADELTA

1u
4d

0

23

1x
oz

1

30

1y
v3

2

23

1o
we

3

27

1o
yt

4

34

1y
wr

5

38

1t
46

6

40

2b
m2

7

33

1m
zc

8

38

1r
55

9

27

5w
lo

10

46

1k
zk

11

45

3s
8o

12

44

5k
ao

15

44

1h
fs

18

54

1j
yq

20

60

2d
1o

23

44

3d
rf

26

63
4e
r4

30

93

3e
r5

31

108

Input ID

Nrot

Natom

Figure 6.1: Speedups of OCLADock vs. single-threaded AutoDock achieved
on a Vega 56 GPU (R = 100 LGA runs, lsrate = 100 %).

Figure 6.1 shows speedups achieved on a Vega 56 GPU. The highest
speedup factors are obtained for all inputs using Solis-Wets, reaching
a minimum of 76x (1u4d and 1yv3) and up to 115x (3drf). Also for
Solis-Wets, the speedup increases with larger Nrot and Natom values,
and as such, higher speedups are obtained with larger inputs such as
3drf, 4er4, and 3er5.

Conversely, speedup factors for any gradient method decrease with
larger Nrot and Natom values. Speedups of Steepest Descent, FIRE and
ADADELTA are significantly lower than those of Solis-Wets in all
cases. The reason for this is the more complex gradient calculation
itself (Section 6.1.1), and the gradient conversion from atomic into
genetic space (Section 6.1.2), which together are more computationally
demanding than the simple random delta generation of Solis-Wets
(Section 2.2.3). The fastest gradient-based method was ADADELTA,
achieving a minimum speedup of ∼7x against the baseline, but with
much higher quality-of-results than other methods evaluated, as shown
in Table 6.2.

88 enhancing ocladock with gradients of the scoring function

6.2.5 Portability to other accelerators

From now on, further experiments focus on the legacy Solis-Wets,
and ADADELTA, the best gradient-based method according to the
algorithmic and execution efficiency criteria. Since the number of
work-items in an OpenCL work-group (WGsize) can have a significant
impact on the performance of the proposed data-parallel design, it is
important to first determine its most suitable value.

6.2.5.1 Finding the optimum size of OpenCL work-groups

Since the number of work-items (wi) in a work-group (WGsize) can
have a significant impact on performance, its most suitable value
should be determined before deployment. For that purpose, we ana-
lyzed the speedups achieved on all selected accelerators when using
different WGsize configurations, e. g., 16wi, 32wi, 64wi, 128wi, 256wi.
Figure 6.2 shows only the cases of 1u4d, 3s8o, and 3er5, however it
represents the general trend observed with most of the inputs in our
dataset. For CPUs, as found in our previous work [233], a configura-
tion of WGsize = 16wi clearly leads to higher speedups on both Xeon
Platinum 8124M and Xeon E5-2666 instances, despite the preferred
WGsize = 128wi (Table 6.1).

For GPUs, in contrast to [233], where WGsize = 64wi was the fastest
configuration for the only tested lsrate = 6 % on an AMD R9 290X
GPU, Figure 6.2 shows that higher speedups can be obtained – be-
sides 64wi (most cases) – with either smaller (32wi) or larger (128wi)
sizes, regardless of the chosen device. According to vendors guide-
lines [1, 132], a suitable WGsize is an integer multiple of either an
AMD wavefront size (64wi), or a Nvidia warp size (32wi). By setting
WGsize = 64wi – i. e., the minimum multiple integer for any GPU from
these two vendors – we aim to minimize the inter work-group commu-
nication overhead, which seem to be slowing down the program for
larger WGsizes (e. g., 256wi). More importantly, using WGsize = 64wi

increases the chances of achieving higher speedups in cases outside
our dataset.

6.2.5.2 Performance analysis

Figure 6.3 provides an overall comparison of the speedups achieved onFor the Vega 56
GPU, such speedup
metrics correspond
to values reported

in Figure 6.1.

all selected GPU and CPU devices for each input in our dataset. For both
Solis-Wets and ADADELTA executions, the reported speedups were
obtained with respect to the original AutoDock running the Solis-Wets
method as local search. Although calculating ADADELTA speedups
with respect to a Solis-Wets baseline is somewhat arguable, they still
offer meaningful performance gains out of the parallelization of a more
complex LS method. Similarly as in Figure 6.1, it can be observed that

6.2 experimental evaluation 89

16wi 32wi 64wi 128wi 256wi

0

50x

100x

150x

1
u
4
d

GPU

16wi 32wi 64wi 128wi 256wi

0

20x

40x

CPU

16wi 32wi 64wi 128wi 256wi

0

100x

200x

300x

3
s
8
o

16wi 32wi 64wi 128wi 256wi

5x

10x

15x

20x

25x

16wi 32wi 64wi 128wi 256wi

0

100x

200x

300x

400x

WGsize

3
e
r
5

16wi 32wi 64wi 128wi 256wi

5x

10x

15x

20x

WGsize

S
p
e
e
d
u
p

f
a
c
t
o
r

o
v
e
r

b
a
s
e
l
i
n
e

Vega 56 V100 E5-2666 Platinum 8124M

Solis-Wets

ADADELTA
Preferred WGsize 64wi 32wi 128wi 128wi

Figure 6.2: Speedups of OCLADock vs. single-threaded AutoDock achieved
on selected GPU/CPU devices for different work-group sizes
(R = 100 LGA runs, lsrate = 100 %). Vertical scales are different.

90 enhancing ocladock with gradients of the scoring function

1x

10x

100x

1000x

S
p
e
e
d
u
p

f
a
c
t
o
r

o
v
e
r

s
e
q
u
e
n
t
i
a
l

b
a
s
e
l
i
n
e

1u
4d

0

23

1x
oz

1

30

1y
v3

2

23

1o
we

3

27

1o
yt

4

34

1y
wr

5

38

1t
46

6

40

2b
m2

7

33

1m
zc

8

38

1r
55

9

27

5w
lo

10

46

1k
zk

11

45

3s
8o

12

44

5k
ao

15

44

1h
fs

18

54

1j
yq

20

60
2d
1o

23

44

3d
rf

26

63

4e
r4

30

93

3e
r5

31

108

Input ID

Nrot

Natom

Vega 56 V100 E5-2666 Platinum 8124M
Solis-Wets
ADADELTA

Figure 6.3: Speedups of OCLADock vs. single-threaded AutoDock achieved
on selected GPU/CPU devices using work-group sizes of 64/32

work-items, respectively (R = 100 LGA runs, lsrate = 100 %).

on any selected device, ADADELTA speedups are significantly lower
than their corresponding Solis-Wets ones.

For a given LS method, speedup factors show a behavior affectedThe original
AutoDock code is
capable neither of

multi-threading, nor
the ADADELTA

gradient-based
search. Thus, we had

to use the original
single-threaded
Solis-Wets-based

AutoDock code as
baseline.

by the input complexity, i.e., Nrot and Natom values. Running Solis-
Wets, the respective speedups using {1u4d, 3s8o, 3er5} as inputs when
running on:

• GPUs, tend to increase with larger inputs: e.g., {76x, 99x, 110x}
on Vega 56, and {135x, 300x, 365x} on V100.

• CPUs, tend to decrease with larger inputs: e.g., {41x, 10x, 8x} on
Xeon Platinum 8124M, and {19x, 4.3x, 3.6x} on Xeon E5-2666.

Running ADADELTA on any device results in decreasing speedups
processing more complex inputs, which is attributed to the following
two reasons:

1. The upper-bounds of loops in the GC (Section 6.1.1) – i.e.,
Npose-rot (dependent on Nrot), Natom, and Nintra-contrib (dependent

6.2 experimental evaluation 91

on Natom) – are larger for more complex inputs, and in turn,
result in longer procesing times.

2. The limited parallelism of the gradient conversion (Section 6.1.2).
This procedure is performed in a gene-type basis, and hence,
presents three completely independent fine-grained tasks (Gtrans,
Grigidrot, Grotbond) that can be distributed between work-
items (of a work-group) in different ways. A simple way would
be to execute these tasks simultaneously, each by a different
work-item. Another way would be to parallelize these tasks
with as many work-items as possible, executing only one task
at a time. We opted to use a combination of both ways de-
tailed as follows. While Gtrans and Grigidrot present each a
loop with an upper bound of Natom, they must also perform
sequences of data-dependent operations, which are not suitable
for parallelism. Thus, each of these two tasks was executed by
a single work-item. The operations within Grotbond are also
data-dependent, but are repeated for each rotatable bond. Hence,
Grotbond is processed by Nrot work-items.

6.2.5.3 Porting onto other GPUs and CPUs

Figure 6.4 provides compact statistics for the speedups achieved using
the entire dataset – geometric mean, maximum, minimum, and standard
deviation – and together with Figure 6.3, is used for our analysis on Porting the

data-parallel
OCLADock design
from a Vega 56 GPU
to other GPUs and
CPUs simply
requires a
re-compilation step.

portability across devices.
For GPUs, it is corroborated that the more powerful V100 achieves

shorter executions than the Vega 56. For instance, the ratio between
V100 and Vega 56 geometric-mean speedups is 2.8x (= 274

95 , for Solis-
Wets), and 3.9x (= 55

14 , for ADADELTA). Performance improvements
can be further analyzed using the speedup profiles in Figure 6.3,
where at first glance, V100 profiles appear to be a scaled version of
those of the Vega 56. For Solis-Wets, profiles are almost uniformly
scaled, with speedup ratios within the range of [2x, 4x] for all inputs.
For ADADELTA, profiles show that the portability scaling factors are
kept uniform (also within [2x, 4x]) for all inputs smaller than 1hfs,
from which the performance advantage of the V100 over the Vega 56

becomes higher (e.g., 4.3x) than that of Solis-Wets, and reaches ∼7x
with 4er4 and 3er5. The performance advantage of the V100 over the
Vega 56 comes at a relatively higher economic cost, currently by a factor
of 20x at street prices (mid 2019). Similar speedups could be achieved
much cheaper by running four Vega 56 cards in parallel. This is easily
possible in the drug discovery use-case, due to the embarassingly
parallel outer loop of the problem.

For CPUs, the design exposes performance improvements for both
local-search methods and all inputs. The ratios between geometric-mean
speedups between the Xeon Platinum 8124M and Xeon E5-2666 are

92 enhancing ocladock with gradients of the scoring function

Geometric-mean Maximum Minimum Standard-deviation
0

100x

200x

300x

400x

95.2
115.5

76.3

12.0

274.0

399.2

135.3

73.1

4.9
18.5

3.5 3.211.8

41.5

8.6 7.12.1 3.0 1.7 0.4S
p
e
e
d
u
p
f
a
c
t
o
r

o
v
e
r
b
a
s
e
l
i
n
e Solis-Wets

Vega 56

V100

E5-2666

Platinum 8124M

Arria 10

Geometric-mean Maximum Minimum Standard-deviation
0

100x

200x

300x

400x

14.3
25.6

7.5 4.5

54.9

112

45.8

14.1
2.1 11.1

1.5 2.15.4
25.7

3.7 4.7S
p
e
e
d
u
p
f
a
c
t
o
r

o
v
e
r
b
a
s
e
l
i
n
e ADADELTA

Figure 6.4: Statistics of speedup factors: OCLADock vs. single-threaded
AutoDock achieved on all selected devices (R = 100 LGA runs,
lsrate = 100 %).

2.4x (= 11.8
4.9 , for Solis-Wets) and 2.6x (= 5.4

2.1 , for ADADELTA), being
both values superior than the 2.0x expected improvement resulting
from the increase of physical CPU cores (= 36

18 , Table 6.1). Moreover,
from Figure 6.3, it can be clearly noted that profiles are almost per-
fectly scaled among devices. This was confirmed by finding that the
speedup ratios between both CPUs (calculated for all inputs) are within
the [2.2x, 2.6x] range, for both Solis-Wets and ADADELTA. The afore-Indicated AWS

charges comprise
only compute

capacity for the
Frankfurt region.

mentioned CPU performance improvement of at least 2.2x corresponds
to a price-increase factor of ∼1.9x, obtained considering the hourly
charges of $3.49/h (c5.18xlarge) and $1.82/h (c4.8xlarge) [10].

Finally, in most cases, GPUs achieve higher efficiencies than CPUs
when utilizing the same local-search method. For instance, using
ADADELTA, minimum speedups of {7.5x, 3.7x} on the {Vega 56, Xeon
Platinum 8124M} were achieved. A notable (and the only!) excep-
tion to this behavior happens when using ADADELTA with 1u4d

(left side in Figure 6.3, and maximum bars in Figure 6.4), where the
achieved speedup is 25.6x on the Vega 56, and 25.7x on the Xeon
Platinum 8124M, respectively. The faster executions of GPUs are at-
tributed to the more suitable mapping of OpenCL elements onto their
hardware. On CPUs, however, each work-group is executed by a single
CPU core, and thus, its work-items are executed serially [87, 148]. The
purpose of such serialization is to avoid the excessive synchronization

6.2 experimental evaluation 93

penalties incurred if work-items within a work-group were executed
in parallel, since work-items on CPUs are mapped to operating system
(OS) threads instead of the lighter-weight hardware threads used on
GPUs.

6.2.5.4 Porting onto FPGAs

For a more comprehensive evaluation, the OpenCL task-parallel im-
plementation for FPGAs discussed in Chapter 5 was included also
in the overall comparison in Figure 6.4. In that regard, the fastest
task-parallel configuration – also the largest in terms of required FPGA

resources – contains 27 kernels (each processing a single OpenCL
work-item) connected with OpenCL pipes. In terms of functionality,
this is comparable to other implementations running only Solis-Wets.
This FPGA implementation does not include any gradient method, as
its incorporation would require significant architectural changes, i. e.,
instantiating a kernel for each gradient method, and connecting those
additional kernels into the main design via OpenCL pipes.

It was found that the fastest configuration, which includes nine repli-
cas of the local-search (LS) kernel running Solis-Wets, barely fits on the
Intel Arria 10 FPGA. Adding the gradient methods would require extra
hardware area that could only be freed-up by reducing the number
of local-search kernel instances. This would slow down MD on the
FPGA even further. For that reason, gradients were not implemented
on the design for FPGAs. The only change was the addition of smooth-
ing [117] to the score calculations to improve the quality-of-results. As
depicted in Figure 6.4, the FPGA running Solis-Wets achieves speedups
with geometric mean, maximum, minimum, and standard deviation
of ∼{2.1, 3.0, 1.7, 0.4}x, respectively.

6.2.6 Compute-energy efficiency

The energy consumed during an MD simulation is calculated by numer-
ically integrating the power over time. This is because power values
might fluctuate greatly between samples. Here, power profiles are an-
alyzed first since through them it is possible to understand the energy
consumption behavior of OCLADock on the selected accelerators.

Power was measured by using software utilities rather than external
meters, as this approach allows to consistently sample power con-
sumption on most devices, including the remote ones on AWS. Details
of the experimental setup for power sampling are provided as follows:

• For the Vega 56, a proprietary tool from AMD was used. For
the V100 and Xeon E5-2666, the publicly-available Nvidia Sys-
tem Management Interface [131] and Turbostat [196] were used,
respectively.

94 enhancing ocladock with gradients of the scoring function

• On above devices, power was sampled over the entire MD simu-
lation at Tsampling = 50 ms. While this sampling rate might be too
coarse for shorter Krnl_LS executions, it was the highest possible
sampling frequency on the Vega 56, and therefore, this rate was
employed for other devices to obtain comparable measurements.

• On the Xeon Platinum 8124M, it was not possible to sample
power due to the lack of control of P-states, i. e., desired per-
formance in CPU frequency. This issue of AWS c5 instances is
documented in [12].

• For the Arria 10, fully placed-and-routed designs were power
analyzed using quartus_pow as in Section 5.3.5. The reported
power draws of ∼30 W were very stable across entire executions
and are typical for this kind of PCI Express-attached FPGA board.

Figure 6.5 depicts the power consumption over time on the Vega 56

using the 3s8o input. For understanding the impact of Krnl_LS exe-
cutions on power profiles, we use the insights provided in Table 6.3.
For all inputs, profiles of both Solis-Wets and ADADELTA executions
are characterized by transitions between low and high power draws,
ranging between 100 W and 220 W. These frequent power swings
correspond to the switching between host-side and kernel (a sequence
of Krnl_GA and Krnl_LS) executions.

0 50 100 150 200 250
Runtime (s)

0

50

100

150

200

250

P
o
w

e
r

(W
)

fo
r
R

 =
 1

0
0

Idle: 7.4 W

TDP: 210 W

ESW: 4.00 kJ

EAD: 29.28 kJ

High-to-low are transitions to hostHigh-to-low are transitions to hostHigh-to-low are transitions to host

Vega 56 power profiles using Input ID: 3s8o (Tsampling = 50ms)

Solis-Wets
ADADELTA

Figure 6.5: Power measurements of OCLADock for Solis-Wets and
ADADELTA executions on the Vega 56 GPU (R = 100 LGA runs,
lsrate = 100 %).

Since Solis-Wets has many more Krnl_LS # Calls, the frequency of
power transitions is also higher in Solis-Wets compared to ADADELTA.
Table 6.3 corroborates this, e. g., using 3s8o as input results in 120

(Solis-Wets) and 46 (ADADELTA) Krnl_LS enqueues. In Figure 6.5, it
is even possible to count the 46 high-to-low power transitions for the

6.2 experimental evaluation 95

Geometric-mean Maximum Minimum Standard-deviation
0

100x

200x

300x

88.6

109.4

73.7

9.1

203.7

296.9

136.9

42.1

3.1
13.7

2.0 2.51.4 1.9 1.1 0.3

E
n
e
r
g
y

g
a
i
n
f
a
c
t
o
r
o
v
e
r

b
a
s
e
l
i
n
e

Solis-Wets Vega 56

V100

E5-2666

Arria 10

Geometric-mean Maximum Minimum Standard-deviation
0

100x

200x

300x

13.8
27.5

8.3 4.3

45.6

136.8

36.9
21.9

1.2 6.9 0.8 1.3

E
n
e
r
g
y
g
a
i
n
f
a
c
t
o
r
o
v
e
r
b
a
s
e
l
i
n
e

ADADELTA

Figure 6.6: Statistics of energy-efficiency gains: OCLADock over single-
threaded AutoDock achieved on devices where measuring power
was feasible (R = 100 LGA runs, lsrate = 100 %).

ADADELTA execution. This is complemented by the fact that power
draws are mostly located around ∼170 W for Solis-Wets, and ∼140 W
for ADADELTA, typically during Krnl_LS executions.

Even with ADADELTA performing more complex computations for
gradients, and thus taking longer to complete, its kernel occupancy
drops to 10 % (from 20 % by Solis-Wets in Table 6.3) due to the
required serialization and OpenCL atomic operations for achieving
correct partial derivatives for translational and rigid-body rotational
genes (Section 6.1.2). From internal discussions with the vendor, the
lower occupancy of Krnl_LS implies that some Vega 56 block units are
not utilized, and hence, are automatically turned off by the GPU. This
would explain the lower power draw of ADADELTA vs. Solis-Wets.

Figure 6.6 shows compact statistics of the energy-efficiency gains
computed with respect to the baseline (only Solis-Wets) for the entire
dataset. As already mentioned, at the time of writing, power sampling
was not supported on the Xeon Platinum 8124M, and thus, not shown.

Despite the fact that power draws of up to ∼300 W were observed
on the V100 (i. e., higher than for any of the other devices), due to
its much shorter runtimes, it yields higher energy gain factors over
the baseline: ∼270x (Solis-Wets) and ∼137x (ADADELTA). Also, since
the MD quality of both Steepest Descent and FIRE was inferior to that
of ADADELTA (Section 6.2.2), their corresponding efficiencies are
not reported. Nevertheless, in this aspect, all gradient methods are

96 enhancing ocladock with gradients of the scoring function

comparable, achieving e. g., for 3er5 on the Vega 56: ∼11.9x (Steep-
est Descent), ∼11.7x (FIRE), and ∼11x (ADADELTA). Furthermore,
while the estimated power draw on the FPGA is the lowest (∼30 W),
it yields the lowest energy efficiencies (maximum ∼1.9x) due to its
much longer execution times. As already described in Section 6.2.5,
the FPGA version only implements Solis-Wets.

Although gain factors in terms of speedup (Figure 6.4) and en-
ergy (Figure 6.6) show a significant advantage of Solis-Wets over
ADADELTA, the longer execution-times and higher energy-consumptions
of ADADELTA result in better-quality dockings in many cases, as listed
in Table 6.2. This is a Solis-Wets vs. ADADELTA trade-off, where for
inputs with few rotatable bonds (Nrot < 8), Solis-Wets could lead
to sufficiently good results, and thus, spending more computing re-
sources running ADADELTA is not worth it. However, for larger
inputs (Nrot > 8), ADADELTA is likely to find better solutions, even in
cases where Solis-Wets is simply not able to at all, e. g., for inputs in
Table 6.2 where Nrot > 11.

7
U S I N G O C L A D O C K F O R C O M P E T I T I V E D R U G
D I S C O V E RY

This chapter details own modifications applied to OCLADock for deal-
ing with macrocyclic molecules. These additional capabilities were used
to participate in the Grand Challenge [34] molecular prediction com-
petition. Details on how OCLADock was used for docking macrocyclic
molecules have been previously published in [44, 166].

7.1 the challenge of docking macrocyclic molecular

structures

The Grand Challenge (GC) is a competition organized by the Drug Blinded prediction
refers to the
exploration over an
unknown, typically
large, surface of
protein-ligand
interaction.

Design Data Resource (D3R) project, which aims to advance the tech-
nology of computer-aided drug discovery through the interchange of
protein-ligand datasets and workflows [34]. Since 2015, D3R has been
organizing yearly editions of GC, which are community-wide blinded
prediction competitions.

In its 4th edition (GC4), the challenge is to predict the binding
pose, affinity ranking, and free energy of ligands against two different Amyloid plaques are

clumps of protein
fragments called
β-amyloid, which are
toxic to neurons as
once they bind to
each other, plaques
destruct neuron
connections, i. e.,
sinapses [205].

protein targets: Beta secretase 1 (BACE), and Cathepsin S (CatS). As
part of our collaboration with The Scripps Research Institute (TSRI), an
extended version of OCLADock was employed to predict the interactions
of different ligands against BACE. This enzyme is essential for the
generation of β-amyloid peptide in neural tissue [199], a component
of amyloid plaques believed to be critical in the development of the
Alzheimer’s disease [152].

For this competition, D3R provided a dataset comprising small
molecule inhibitors along with previously undisclosed crystallographic
structures. Specifically, for each prediction criterion, there were pro-
vided a number of BACE inhibitors: affinity (154), pose (20), and free
energy (34).

7.1.1 Why is this actually a challenge?

An especially large number of macrocyclic ligands are part (∼85 %)
of the entire dataset provided at GC4. According to Yudin [219],
macrocyclic molecules – from now on simply referred to as macrocycles

97

98 using ocladock for competitive drug discovery

Flexible

ring

Figure 7.1: Three-dimensional representation of a macrocycle example: 1nm6
(C27H33ClN6O2). Atoms are carbon (gray), hydrogen (not shown),
chlorine (green), nitrogen (blue), and oxygen (red). The number
of atoms in the ring is Nring

atom = 19, and that of active rotatable
bonds is Nactive

rot = 12. Figure was obtained from [19].

– are large and contain within their structure flexible rings, i. e., a
sequence of rotatable bonds forming a closed cycle (Figure 7.1).

Based on internal communications with TSRI, these molecules canAs mentioned in
Section 2.2.1, a

conformation refers
to a change in the

molecular structure
that happens only
when some angles
between bonds are

altered.

adopt very different conformations, but the torsion tree-like repre-
sentation typically used in MD software is unable to describe such
conformations because the angles of rotatable bonds depend on each
other in order to maintain a cyclic structure. Despite the promising
advances in macrocycle docking, performing adequate conformational
search for macrocycles is still a challenge [8].

As reported by Allen, Dokholyan, and Bowers [7], several techniques
(based on e. g., Monte Carlo, molecular dynamics, no energy-function,
genetic algorithm, etc) have been employed for conformational search.
These techniques differ primarily in the scoring function used to
treat the macrocyclic ligand, as well as the flexibility allowed in the
ligand-protein pocket. Moreover, most MD software require the pre-
generation of macrocycle conformations prior to the simulation due to
their limited capacity to sample such conformations.

Originally, AutoDock was not able to manage the bond flexibility due
to the cyclic ligands. Basically, the rotation of an intra-cyclic bond
would result in a distorsion of the ligand structure, and hence, cyclic
portions were treated as rigid. In order to overcome this limitation,
Forli and Botta [51] developed a protocol that converts the cyclic ligand
into its corresponding acyclic form by breaking a ring bond, and then
docking it as fully flexible. During the MD simulation, AutoDock is able

7.2 handling macrocycles with ocladock 99

restore the original cyclic structure by introducing a new potential
term into the scoring function.

The additional potential term in the AutoDock scoring function mod-
els the broken bond, and allows AutoDock to bring the associated atoms
back together during docking. Closing the distance between the atoms
associated with the broken bond consists of assigning them a suitable
score contribution, i. e., a very large positive energy (unfavorable) to
conformations where the atoms in question are far apart. With this
technique, only chemically relevant structures have low energies (fa-
vorable), and thus, their genotypes are likely to result as predominant
solutions out of the LGA. We extended OCLADock to also perform these
computations.

7.2 handling macrocycles with ocladock

7.2.1 Macrocycle-oriented scoring-function terms

The basic idea for defining such additional potential terms is that of
re-using already existing terms, and parametrizing them with specific
coefficients corresponding to the so-called glue or G atom types, i. e.,
those associated with the modeled broken bond. For that purpose, the
scoring function (SF) defined in Equation 2.3 is adapted as proposed
in [51].

In Equation 2.3, the contributing van der Waals and hydrogen bond-
ing terms are partly determined by the coefficient pairs (Aij, Bij) and Subindexes i and j

refer to atoms.(Cij, Dij), respectively. In this context, if a given pair of ligand atoms
has a van der Waals interaction, then their hydrogen bonding term is
zero, and hence, both of their corresponding C and D coefficients are
zero as well. For handling macrocycles, an additional G coefficient
is introduced for setting the score contribution equal to zero for all
ligand atoms, except for those associated with the broken bond, i. e.,
the atomic pair that is intended to be brought very close together
(ideally to an interatomic distance r equal to zero). This additional
term SFG – characterized by its G coefficient – has a linear dependency
with respect to the interatomic distance r, and hence its gradient gG is
constant:

SFG = G · r (7.1)

gG = G (7.2)

such that

G =

50 for the two atoms associated with the broken bond

0 otherwise

100 using ocladock for competitive drug discovery

7.2.2 Macrocycle-oriented development

Besides the scoring function, other aspects have to be considered for
supporting macrocycles’ docking in OCLADock. These aspects are the
ligand characteristics depending on atomic types (e. g., van der Waals
radii, solvation volume, etc), as well as the incorporation of this tech-
nique into the multi-level parallelization described in Chapter 4.

The efforts towards a successful macrocycles’ support were spent
in introducing the SFG term into the OpenCL structure of the scoring
function SF, as well as in adapting the treatment of macrocyclic atoms
into the overall OpenCL design, both in host and device sides. Such
development was carried in the following three steps:

1. Addition of G atom types into the ligand .pdbqt input specifica-
tion. These are two new non-standard atom types denoted as
CG and G0, which are assigned to the atoms associated with the
broken bond (Figure 7.2):

• CG is a copy of the standard carbon atom type C. Atoms of
type CG adopt the same values for equivalent parameters
of C atoms: e. g., van der Waals radii, solvation volume, etc.

• G0 is an invisible type, i. e., all its atomic parameters have a
value equal to zero.

2. Modification of intramolecular scoring-function parameters for
specific atom pairs. The macrocyclic ligand contains two CG
atoms forming an intramolecular pair for which scoring-function
terms must be calculated. Due to the fact that atoms of both CG
and C types possess atomic parameters with the same value, then
the van der Waals interaction of the CG – CG pair would be the
same as for any other C – C pair (in the macrocycle). However,
in order to bring the CG – CG atomic pair back together, their
van der Waals coefficients (A, B) must be zero. This modification
strictly affects the CG – CG pair, but not e. g., a CG – C pair.

3. Finally, a new functional form for the CG – G0 must be added.
Specifically for this pair of atoms, their score term fG should be
linearly dependent on their corresponding interatomic distance,
as specified in Equation 7.1.

7.2.3 Experimental evaluation

For the GC4 challenge, OCLADock was executed for a large number
of LGA runs using the best local-search (LS) methods from Chapter 6:
Solis-Wets and ADADELTA. The configuration of our experiments, or-
ganized in four batches, is listed in Table 7.1. In these, the ADADELTA
method performed significantly better than Solis-Wets for the same

7.2 handling macrocycles with ocladock 101

A B

B

Ainv

A

Binv

Atom types

C CG G0

Figure 7.2: Left: identification of the ring bond to be broken: A – B. Right:
introduction of the so-called invisible atoms Ainv and Binv, used
for the ring-closure procedure during docking. Both sides show
the assignment of non-standard atomic types (CG, G0) to atoms
in the broken bond.

Table 7.1: Experiments on a set of 20 ligands performed for the GC4 blind
prediction competition. The best values within each case are col-
ored.

Experiment Local Search # LGA runs NMAX
score-evals Median

ID method (R) (millions) RMSD (Å)

SW1 Solis-Wets 100 10 10.1

AD1 ADADELTA 100 10 1.2

SW2 Solis-Wets 200 32 9.1

AD2 ADADELTA 200 32 1.0

number of both LGA runs (R) and score evaluations (NMAX
score-evals). The

median RMSD calculated for 20 ligands shows the clear superiority
of ADADELTA. Similarly as in previous chapters, an RMSD cutoff of
2.0 Å was used to classify a prediction as correct.

Compared to other GC4 competitors, the MD predictions obtained GC4 results using
OCLADock
correspond to the
submission made by
TSRI labelled as
Stefano Forli.

with OCLADock submitted by TSRI were among the top 25 % in terms
of pose prediction [32, 33], and affinity ranking [30, 31]. All competi-
tors disclosed their numeric predictions along with the corresponding
protocol. These protocols include useful information on how simula-
tions were undertaken, e. g., methods and parameters used for ligand
preparation and pose prediction, the employed MD engine, etc. As this
competition seeks for the best results and methodologies from the MD

perspective, execution runtimes were neither requested nor disclosed,
and thus, a performance-wise comparison between OCLADock and
other software used in the competition is not possible. As a reference,
it took ∼4 hours to complete the AD1 experiment (20 ligands) running
OCLADock on a GTX1080 GPU. According to TSRI, OCLADock running
ADADELTA achieves average speedups of ∼36x on a GTX1080 GPU.

102 using ocladock for competitive drug discovery

On the other hand, using instead AutoDock to reach the same level of
MD quality for the AD1 experiment would have required ∼144 hours.

Considering all evaluation criteria, the competition results show
that there is no single winner in this competition, but instead an overall
advancement in the shared knowledge for the scientific community in
this field.

8
C O N C L U D I N G R E M A R K S

8.1 summary

This thesis describes and evaluates OCLADock: an OpenCL-based par-
allelization of the AutoDock MD software. An efficient parallelization of
AutoDock on GPUs and CPUs was achieved following a data-based par-
allelization at two levels: first, each individual of a genetic population
was processed by an OpenCL work-group; second, fine-grained tasks
for each individual were processed by OpenCL work-items. However,
a key result of this study is the lack of performance portability of
OpenCL when porting onto FPGAs. The data-parallel approach that
allows initial speedups of more than 50x on GPUs leads to a slowdown
of three orders of magnitude when used on FPGAs.

In order to improve the performance on FPGAs, a set of design and
optimization steps based on a task-parallel pipeline architecture was
followed. The architecture is composed of single work-item kernels
communicated through OpenCL pipes. This study explored different
architectural choices, such as kernel replication and channel arbitra-
tion, to improve the efficiency of the encountered multiple-producers to
single-consumer datapaths in AutoDock.

Introducing gradient-based local search into the aforementioned
data-based OpenCL implementation of AutoDock has resulted in stronger
molecular poses than when using the legacy Solis-Wets method. The
experiments show that ADADELTA outperforms Solis-Wets in terms
of MD quality, as well as Steepest-Descent and FIRE in both quality
and speed, still yielding comparable compute-energy savings as the
latter two gradient-based methods.

Further experiments on the best local-search methods found, i. e.,
Solis-Wets and ADADELTA, show that obtaining stronger poses re-
quires significantly more computational effort, which in turn, is trans-
lated into slower executions for ADADELTA compared to Solis-Wets.
Despite that, the data-based parallelization has yielded up to ∼399x
(Solis-Wets) and ∼112x (ADADELTA) speedups with respect to the
original single-threaded AutoDock (running Solis-Wets) on modern
V100 GPUs.

Regarding the achieved compute-energy savings, the V100 GPU

was the most efficient device among the platforms chosen for eval-

103

104 concluding remarks

uation, achieving maximum gains of ∼297x (Solis-Wets) and ∼137x
(ADADELTA). With the energy consumption of all gradient methods
being comparable, the higher quality of ADADELTA dockings makes
it the best choice, even compared to the fastest Solis-Wets method,
especially from ligand inputs that contain more than eight rotatable
bonds. On an Arria 10 FPGA, it was found that even for the simpler
Solis-Wets method, both maximum speedups (∼3.0x) and energy effi-
ciency gains (∼1.9x) are the lowest among the selected devices.

Finally, the functionality of OCLADock was extended to support
macrocycles, i. e., molecules that contain ring structures that are dif-
ficult to dock effectively due to the complex rotation dependency
of their ring members. By incorporating the methodology proposed
in [51] into OCLADock, successful dockings were achieved (i. e., the
resulting spatial deviation or RMSD was below than 2.0 Å). Our re-
sults were ranked among the top 25 % in the drug discovery GC4

competition [34].

8.2 lessons learned

The research problems proposed in Section 1.2, were addressed through-
out this thesis. The following set of questions-and-answers clarify the
lessons learned during this work.

8.2.1 OpenCL for FPGAs

Q1: Based on the AutoDock parallelization developed in this work, how
promising is OpenCL for FPGAs?

The overall OpenCL-based parallelization of AutoDock started focus-
ing on FPGAs as accelerator targets. Back then, the first OpenCL-to-
FPGA development tool employed was SDAccel 2015.4 [210]. Due to
the relatively inmature state of that tool, several problems were en-
countered during system setup (e. g., FPGA board and respective driver
bring-up) that were resolved after several weeks. After some upgrades
introduced in SDAccel 2016.1, a data-parallel OCLADock running cor-
rectly on the FPGA was achieved. As already reported in Chapter 4, this
version was however three orders of magnitude slower than AutoDock

running on a single CPU code.
With regards to code productivity, most of the application devel-

opment and functional verification were performed on tools used
for Intel CPUs [84] and AMD GPUs [28]. Although SDAccel provides
users with CPU/GPU-like functionality verification in the form of
SW-/ HW-emulation modes, both of these required excessive run times
(more than 1 day) that were impractical for verifying a typical docking
job consisting of 100 LGA runs, each run comprising 2.5 million score
evaluations.

8.2 lessons learned 105

In many cases, as no significant progress in SW-emulation was ob-
served (e. g., after ∼10 hours), SDAccel was utilized for emulating
dockings with reduced settings (e. g.: 10 LGA runs, 40 000 score evalua-
tions), or even for just invoking the underlying Vivado suite [200] to
build actual FPGA hardware bitstreams. From a practical standpoint,
skipping HW-emulation and building FPGA binaries directly resulted
in a more productive development, since the overall build process
took ∼8 hours, and showed the true design-behavior on hardware.

Over the years 2017 - 2019, it was found that SDAccel has been
enhanced significantly in several aspects, and thus, it has overcome
issues encountered before (e. g., bug fixes, lack of documentation, etc).
Although many enhancements given by vendor-specific directives
(e. g., loop pipelining, RAM partitioning, etc) look beneficial for ker-
nel acceleration based on OpenCL/C/C++, these could not be fully
exploited, even in our more efficient task-parallel OpenCL design
(Chapter 5). The reason for this was the lack of support of non-blocking
OpenCL pipes in SDAccel 2018.2, as reported in [209].

Regarding OpenCL-to-FPGA tools, in general, that of Intel provided
an smoother development experience compared to that of Xilinx.
With Intel tools, we could mostly focus on design exploration and
optimization instead of dealing with bugs or lack of support of some
OpenCL constructs, as experienced with Xilinx SDAccel. However, one
of the major issues observed when executing OCLADock on more recent
FPGA platforms and tools (Stratix, v18.1) is the decreasing performance
with respect to older ones (Gidel Proc10A, v16.0). Although the latest
introduction of compiler directives promising higher speedups (e. g.,
multiple calling sites for pipes in a single kernel, efficient kernel
replication, etc), the compiler technology seems yet to be unable to
efficiently map onto FPGA logic, those constructs whose behavior is
determined at runtime, e. g., loops with variable loop bounds and
pipes.

8.2.2 OpenCL for GPUs and CPUs

Q2: How was the experience of using OpenCL on GPUs and CPUs?

Porting OCLADock to GPUs and CPUs was usually smooth, allowing
functional verification in a reasonable amount of time (e. g., four hours).
While in most development phases, OpenCL allowed functional and
performance portability, there were cases where features developed
and succesfully tested on GPUs did not work right away on CPUs after
re-compilation.

Particularly, as described in Chapter 6, gradients-based local-search
methods were incorporated into the LGA flow. For reducing the du-
ration of testing cycles for time-consuming LGA runs, all the corre-
sponding tuning was performed on GPUs. After successfully testing

106 concluding remarks

OCLADock on four different mid-end and high-end GPU cards from
Nvidia and AMD, it was surprising to find that, when the program
was configured to execute any gradient method, it suffered from seg-
mentation faults on all CPU platforms tested, even when using different
OpenCL drivers such as POCL [86] and Intel [84]. This issue was
caused by program variables carrying information of:

• Interatomic distances required to calculate grid-map indexes
for the intermolecular interaction. These must be declared as
unsigned int instead of int (which worked flawlessly on GPUs),
otherwise out-of-bound accesses on grid maps are attempted.

• Gradient variables must be explicitly initialized for CPUs instead
of leaving this task to the OpenCL runtime (as originally on
GPUs), otherwise wrong values of variables might be derived
from gradients, and utilized as a termination condition (e. g.,
negative values) of while loops, leading to hangs.

Despite the fact that solving the aforementioned issues is not com-
plicated, it took ∼3 days to locate the problematic code regions. Sur-
prisingly, OpenCL-oriented utilities usually employed on GPUs such
as CodeXL [28], or even the architecture-agnostic Oclgrind [136], were
not able to even detect such problem. Conversely, Valgrind [121] –
configured to run Memcheck – helped to effectively detect the memory-
related errors that lead to crashes and unpredictable behavior.

Beyond these issues, most of the OpenCL development on GPUs and
CPUs had no complications due to tool unstability. For high-end GPU

cards, we found that the support of OpenCL 1.2 is fairly mature, and
therefore no major complications were encountered.

8.2.3 OpenCL beyond datacenters

Q3: How efficient is OpenCL in other domains besides datacenters?

Although the focus of this thesis is the acceleration of AutoDock on
high-end devices using OpenCL, part of a further case study (not
reported in this thesis) – on heterogeneous systems for autonomous
driving [177, 178] – involved a code deployment on embedded devices,
as well as an analysis of the programming productivity of OpenCL
compared to other models such as OpenMP and CUDA. This ad-
ditional experience gave complementary and still relevant OpenCL
insights that are contextualized as follows.

For GPUs and CPUs, the OpenCL support in datacenters is currently
more extensive than in the embedded domain. Particularly, all high-
end platforms used in this thesis had fully-featured proprietary drivers
(OpenCL 2.0 for AMD and Intel, and OpenCL 1.2 for Nvidia), whereas
for Nvidia embedded platforms used in [177] (Jetson TX2 [130] and

8.3 remaining research and engineering challenges 107

AGX Xavier [129]), the usage of OpenCL 1.2 code was only possible
with POCL [86], specifically through its experimental – and limited in
terms of functionality – LLVM Nvidia PTX backend [150] for code gen-
eration. From the study, it was found that, while in general terms the
performance that can be achieved with OpenCL, OpenMP, and CUDA
was comparable, the programming productivity by using OpenCL
was behind of that by using OpenMP or CUDA.

For embedded FPGAs, the OpenCL support is still inmature, and
many steps behind of that for datacenters. For instance, a Xilinx
ZCU102 platform [214] had proprietary support limited to OpenCL 1.2,
while enabling some OpenCL 2.0 features such as pipes, though.
Analogously to SDAccel 2018.2 used for high-end devices, SDSoC
2018.2 [211] used for the ZCU102 had severe limitations in emulation.
To avoid tool crashes from these limitations, experiments had to be
run with a minimalistic configuration, i. e., considerably reducing both
the number of time-consuming iterations, as well as the size of input
data.

8.3 remaining research and engineering challenges

8.3.1 Extending functionality of OCLADock

As described in this thesis, the fast executions and high algorith-
mic quality of OCLADock are respectively due to the OpenCL-based
parallelization, and the incorporated ADADELTA gradient-based local-
search method. While at this point of development, it could be claimed
that the execution performance of OCLADock is satisfying, this might
not hold true for more complex scenarios, e. g., those requiring:

• Higher-order gradient-based methods, e. g., BFGS [123], which
might achieve even higher MD quality than ADADELTA (Chap-
ter 6).

• LGA variants, e. g., that in AutoDockFR [154] implementing
an adaptive termination criterion, rather than the fixed one in
AutoDock and OCLADock, being both based on maximum number
of score evaluations or generations.

In such cases, while the LGA parallelization described in this the-
sis would remain mostly valid, performance penalties due to more-
complex methods have to be taken into account. Examples of such
penalties include larger data-transfer between OpenCL host and de-
vice, more-frequent accesses to device memory from OpenCL kernels,
etc.

108 concluding remarks

8.3.2 Enhancing performance of OCLADock on FPGAs

While the execution performance of OCLADock on GPUs and CPUs
seems to be good for typical requirements in drug discovery, the poten-
tially larger savings in compute-energy consumptions (kJ) of FPGAs,
still make them an interesting alternative among general-purpose
accelerators.

As mentioned in Section 8.2.1, OpenCL support for FPGAs is under
continuous development. With respect to the task-based paralleliza-
tion for FPGAs described in Chapter 5, there are two main remaining
challenges:

• Further research on non-blocking OpenCL pipes and their map-
ping onto FPGA fabric needs to be carried out. Most studies focus
on blocking pipes, typically invoked from within code regions
executed a constant number of times known at compilation time.
The latter scenarios are favorable for OpenCL-to-FPGA compil-
ers as they allow further static optimizations. However, these are
often not applicable for use in AutoDock, which contains many
irregular execution patterns derived from local-search executions.

• Support for alternative gradient-based methods needs to be pro-
vided. As previously mentioned, obtaining gradients involves a
complex procedure, and hence, it would require a significant ex-
tra amount of FPGA hardware resources. In this work, it was not
possible to fit such design on the chosen FPGA. However, doing
so might be feasible targeting larger next-generation devices.

Addressing the above points will reduce the gap between FPGAs
and {GPUs, CPUs} when using OCLADock, and thus, could make FPGAs
suitable for realistic MD usages, such as the blind docking competition
described in Chapter 7.

A
K E Y I M P L E M E N TAT I O N D I F F E R E N C E S C O M PA R E D
T O O R I G I N A L AU T O D O C K C O D E

The OCLADock implementation involves many modifications to the
original AutoDock functionality in order to better exploit parallel pro-
cessing, and the execution performance, without negatively affecting
the MD quality. These modifications are:

1. Arithmetic precision. Scoring and search calculations in AutoDock

are performed using double-precision floating point (64 bits).
As previous studies [144, 146, 233] suggest that performing MD

computations with reasonably lower precision does not lead to
deterioration in terms of best score, spatial deviation, and cluster-
ing size, then those calculations in OCLADock were implemented
in single-precision floating point (32 bits).

2. Arrangement of data structures. Structures were re-arranged
for better parallel processing of rotation and pairwise interac-
tion. Ligand flexibility can be described by two rotation types.
First, a general one that considers the ligand as a rigid body,
and a second type due to rotatable bonds for which a tree-like
structure is constructed. AutoDock serially traverses the nodes
of such flexibility tree in a recursive manner. Although doing
so is feasible on OpenCL devices capable of enqueuing kernels
independently from the host (a feature known as device-side en-
queuing), this would not be portable to devices with more limited
language support, i. e., prior to OpenCL 2.0 [62].

To tackle this in OCLADock, the recursion-based approach was
translated into an iterative-based one, which was achieved by
transforming the flexibility tree into an array-like rotation list.
This list is composed of integer-type items (32 bits) with fields
detailed in Table A.1. Similarly, for the pairwise interaction,
instead of having a GPU (likely inefficiently) traversing the tree,
the host defines another array-like list, containing intramolecular-
contributing atomic pairs.

3. Selection scheme. Regarding the criterion to choose which indi-
viduals will reproduce in the genetic algorithm, the original pro-
portional selection was replaced with binary tournament (default

109

110 key implementation differences compared to original autodock code

Table A.1: Bit-field description of a 32-bit rotation-list item.

Bits Description

7 - 0 ID of atom to be rotated (ATOMID)

15 - 8

ID of rotatable bond (ROTBONDID) around which

an atom with ATOMID is to be rotated

16

1: if first rotation of atom with ATOMID,

0: otherwise

17

1: if general rotation, then ROTBONDID is ignored,

0: otherwise

18

1: if dummy rotation, then no rotation,

0: otherwise

31 - 19 Unused

rate: 60 %). In proportional selection, individuals with better-
than-average scores receive proportionally more offspring [116].
One of its major defficiencies is that if the initial population con-
tains one or two energetically-stronger individuals, then these
would dominate the rest, and consequently, would prevent the
population from exploring other potentially better solutions by
escaping from a local optimum [155, 224].

On the other hand, in tournament selection, sets of individuals
are randomly selected from the entire population. The highest-
scoring individual in the set is the tournament winner, and
therefore selected for crossover. This scheme also suffers from
diversity loss, which happens with large set sizes. But the imple-
mentation in OCLADock minimizes this possibility as the minimal
tournament set size is chosen (i. e., two, hence the binary denom-
ination). Moreover, the major advantage of tournament selection
is the low computational effort, especially if implemented in
parallel [155], which according the previous studies [144, 146]
results in faster executions than those of proportional selection.

4. Specification of program arguments. AutoDock arguments are
specified using a docking parameters file (.dpf) containing pa-
rameters to control various aspects of a docking job. In OCLADock,
the .dpf file was replaced with command-line program argu-
ments, making the program more suitable for scripting, which
is useful for highly iterative tasks such as virtual screening.

B
C O M PA R I N G P E R F O R M A N C E A G A I N S T O T H E R
PA R A L L E L I Z E D D O C K I N G S O F T WA R E

The goal of finding the most efficient MD tool on given molecular tar-
gets has motivated several studies [70, 216], and has been exemplified
as well in Chapter 7, where the spatial deviation or RMSD was used
as the most relevant metric for comparison (lower is better). However,
from the HPC perspective, it would be also interesting to know which
parallelized MD tool is the most efficient in terms of processing time.
While processing times have been used as a comparison metric for
benchmarking some single-threaded [92] and parallelized [225] MD

codes, there are some caveats when using processing times for MD

benchmarking, even when chemical inputs requiring similar computa-
tional effort are taken into account.

As discussed in Chapter 2, while most MD programs execute a
scoring function and a search method, they are mostly differentiated by
their particular score and search implementations. Such executions are
typically controlled by user-defined parameters that, in turn, influence
the processing times. The fact that there is no direct compute-wise or
complexity-wise equivalence between – score and search – algorithms
running at the core of different MD programs, makes it very difficult
to compare such programs when using just processing times as a
benchmark metric. For instance, when comparing the following two:

• Vina: empirical scoring, with an Iterated Local Search (ILS) Typically for Vina,
its ILS runs are also
referred to as
Monte Carlo runs.

search [195].

• AutoDock: physics-based scoring, with an LGA search [116].

Vina involves much simpler score calculations than AutoDock, while
its search utilizes second-order gradients. Although default parameter
values are suggested (by the respective developers) for the score and
search of both programs, these control very different algorithms, and
thus, cannot be used for setting a comparable benchmark in terms of
processing times.

Despite these difficulties, here we provide a comparison of some
parallelized MD tools in terms of processing times and compute energy
associated. For this modest benchmark, two programs were selected to
be compared against OCLADock:

111

112 comparing performance against other parallelized docking software

Table B.1: Configuration of benchmarked MD codes.

MD Scoring Search Termination criteria Target

code function method # runs (R)/NMAX
score-evals accelerator

OCLADock
Force LGA/ 100 (LGA)/ GPU/CPU

field Solis-Wets 2 500 000 (OpenCL)

Pechan and Force LGA/ 100 (LGA)/ GPU

Fehér [144] field Solis-Wets 2 500 000 (CUDA 9.0)

Vina [195]
Empirical ILS/ 100 (Monte Carlo)/ CPU

BFGS - (C++)

• Pechan and Fehér [144]: a CUDA implementation of AutoDock.
As stated in Chapter 3, it is the only related work that is truly
comparable to ours.

• Vina [195]: a very popular multi-threaded program for CPUs.
Similarly as AutoDock, it was developed by TSRI.

While the values chosen for the user-defined configuration param-Due to the
implementation

differences in the
benchmarked MD
codes, the results

provided here should
be taken only as

singular samples
rather than
conclusive.

eters in Table B.1 might be arguable, especially when comparing
the termination criteria of Vina vs. other codes, they are still realistic.
Furthermore, although both LGA and Monte Carlo runs represent the
outermost loops in all programs, setting the maximum number of runs
R = 100 in all selected MD tools does not truly ensure a completely
fair experimental setup due to the aforementioned implementations
differences.

Table B.2 presents the geometrically averaged results of a re-docking
experiment using five inputs (1u4d, 1owe, 5wlo, 4er4, 3er5) with low,
medium, and high complexity in terms of number of atoms and
torsions (Table 6.2). Results are organized according to the accelerator
devices utilized.

While Pechan and Fehér [144] and Vina [195] target exclusively
and respectively GPUs and CPUs, OCLADock can be used for both plat-
forms. The executions of both OCLADock and Pechan and Fehér [144]
use the Solis-Wets local search. Moreover, for the work of Pechan
and Fehér [144] developed in 2012, the now-deprecated APIs (e. g.,
cudaThreadSynchronize()) were replaced by their updated versions
(e. g., cudaDeviceSynchronize()). For Vina, the program was com-
piled for release mode (i. e., using the -O3 flag).

For the GPU case, in average, OCLADock results in faster dockings
and lower compute-energy consumptions than that of Pechan and
Fehér [144]. The extremely large (unfavorable) RMSDs (e. g., 38.8 Å)
obtained using [144] are due to the fact that this program utilizes
the same ligand input as reference for the RMSD calculation. How-
ever, for re-docking experiments this is not correct because the ligand
input is typically a structure with randomized conformations, and

comparing performance against other parallelized docking software 113

Table B.2: Average results of MD codes benchmarking. Accelerator devices
were previously utilized in Chapter 6.

Device MD RMSD Processing Compute

name code (Å) time (s) Energy (kJ)

V100

GPU

OCLADock
2.3 12.0 2.1

Pechan and

Fehér [144] 38.8 24.4 2.5

E5-2666

18-core CPU

OCLADock
2.1 612.9 131.3

Vina [195]
2.2 127.0 27.3

thus, it must not be used as a reference structure. On the other hand,
OCLADock correctly calculates the RMSD using as a reference pose the
one obtained via x-ray crystallography (i. e., the experimental pose)
instead.

For the CPU case, while OCLADock slightly outperforms Vina in terms
of averaged RMSD (lower is better), Vina is ∼4.8x faster, and consumes
∼4.8x less compute-energy than OCLADock. The above superiority of
Vina can be attributed to the following. As described in Section 3.2.5,
Vina implements an empirical scoring function that is computationally
less-intensive than the physics-based one in OCLADock. Moreover, Vina As indicated

in Chapter 3, BFGS
stands for
Broyden-Fletcher-
Goldfarb-Shanno, the
creators of such
minimization
method.

adapts the number of iterative steps depending on the search success,
and uses second-order gradients such as BFGS. Thus, Vina might
require fewer global iterations during search than OCLADock (here
running Solis-Wets) to achieve a given quality-of-results.

Nevertheless, the comparison between OCLADock and Vina presented
here is simply a single highlight because the termination criteria
selected (R = 100 LGA runs and NMAX

score-evals = 2 500 000 for OCLADock,
and R = 100 Monte Carlo runs for Vina) are not equivalent, and thus,
could change drastically if termination values for any MD code were
chosen otherwise, e. g., R = 500 Monte Carlo runs for Vina. Moreover,
both OCLADock and Vina exploit fully (i. e., reach 100 % of utilization)
all 18 cores of the Xeon E5-2666 CPU during actual MD computation.

C
M E M O RY R E Q U I R E M E N T S

In order to guarantee that the relatively limited memory capacity of
a GPU card – compared to most multi-core CPU servers – does not
negatively impact the practical usage of OCLADock, an analysis of the
memory size required to hold the processing data was performed.
Table C.1 defines the upper limits of MD parameters in OCLADock,
i. e., the maximum number of elements for the following data: ligand
atomic types, ligand atoms, rotatable bonds, pairwise contributors,
rotations, population size, LGA runs, and grid points. Although by im-
posing these limits the capabilities of OCLADock might be constrained,
they prevent data allocation beyond the typical memory capacity of
most consumer GPU cards (some few GBs).

The first concern is the memory occupied by constant data, which
is composed of relatively large look-up tables used in different MD

calculations. Table C.2 lists all constant arrays utilized when OCLADock

is configured to run Solis-Wets local-search method. These are con-
veniently grouped into the {A, B, C, D, E} structs, and passed into
GPU memory as OpenCL buffer objects. Depending on the assigned
OpenCL memory-space qualifier, a struct can be placed either in
the GPU on-board memory (__global const), or in the GPU on-chip
memory (__constant). Ideally, one would place everything on-chip
for faster access. However, due to the on-chip capacity limits (in the
range of few MBs), this is not always possible, and consequently, on-
board memory must be used as well. The ADADELTA gradient-based Same requirements

apply to
Steepest-Descent and
FIRE gradient-based
methods.

local-search method requires additional space in memory, which is
attributed to the {F, G} structs listed in Table C.3.

Moreover, grid maps can occupy a large memory region, as their
size depends cubically on the number of grid points. A maximum
limit of 256 grid points would allow users to analyze reasonably
large binding regions while keeping the memory space below 1.1 GB.
Larger values would require excessive space that cannot be allocated
on typical GPU-card memories: e. g., 512 grid points would require
more than 8 GB. Then, with the current configuration, the maximum E. g., for the Vega 56:

32 kB (local memory)
× 44 (# CUs) = ∼
1.4 MB.

memory space required to store constant arrays is: 252 kB (A, . . . , E) +
45 kB (F, . . . , G) + 1 073 MB (GRIDS) = 1 074 MB, which is possible to
be stored on-chip.

115

116 memory requirements

Table C.1: Upper limits of MD parameters in OCLADock (defined in reposi-
tory [187] /common/defines.h).

Identifier
Description

Value
(as maximum number of . . .)

ATYPE_NUM
Ligand atomic types 22

for smoothing

MAX_NUM_OF_ATOMS Ligand atoms 256

MAX_NUM_OF_ATYPES
Ligand atomic types 14

for scoring function

MAX_NUM_OF_ROTBONDS Rotatable bonds 32

MAX_INTRAE_CONTRIBUTORS
Intramolecular (pairwise) MAX_NUM_OF_ATOMS×

energy contributors MAX_NUM_OF_ATOMS

MAX_NUM_OF_ROTATIONS
Rotations MAX_NUM_OF_ATOMS×

to be performed MAX_NUM_OF_ROTBONDS

MAX_POPSIZE Individuals in a population 2048

MAX_NUM_OF_RUNS LGA runs 1000

MAX_NUM_GRIDPOINTS Grid points per dimension 256

Another concern is the storage for variable data, i. e., the information
being updated during the entire MD procedure. This data consists
of both current and next populations, as well as the scores of their
component individuals. As all LGA runs are processed in parallel on
GPUs, the maximum memory size required to store current populations
(Pmaxsize), and individual scores (Emaxsize), both expressed in Bytes, can
be calculated as follows:

Pmaxsize = R · P · Lgenotype · Sfloat (C.1)

Emaxsize = R · P · Sfloat (C.2)

where R and P are respectively the number of LGA runs and the
population size (both specified by the user), Lgenotype is the constant
genotype length (= 64) in global memory, and Sfloat is the size of a
float or single precision floating-point datatype (4 Bytes).

For R and P in above equations, upper limits have been defined as
well. This means that OCLADock accepts for R and P any integer value
so that R ≤ 1 000 and P ≤ 2 048. If the user inputs either an invalid
or an out-of-range value, then OCLADock outputs a warning message,
and then proceeds with execution using default values of R = 1 and
P = 150. Then, as corner cases:

Pmaxsize = 1 000 · 2 048 · 64 · 4 = 524.28 MB (C.3)

Emaxsize = 1 000 · 2 048 · 4 = 8.19 MB (C.4)

which together account for 532.48 MB. Considering both – current
and next – populations and their scores, their total memory footprint
together is 1064.96 MB.

memory requirements 117

Ta
bl

e
C

.2
:C

on
st

an
t

da
ta

st
ru

ct
ur

es
an

d
th

ei
r

m
em

be
rs

in
O

C
LA

D
oc

k.

St
ru

ct
C

on
st

an
t

ar
ra

y
El

em
en

t
Si

ze
Si

ze
Si

ze

la
be

l
st

ru
ct

m
em

be
r

da
ta

ty
pe

de
fin

it
io

n
ca

lc
ul

at
io

n
(B

yt
es

)

A
a
t
o
m
_
c
h
a
r
g
e
s

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
O
M
S

4
×

25
6

10
24

a
t
o
m
_
t
y
p
e
s

c
h
a
r

M
A
X
_
N
U
M
_
O
F
_
A
T
O
M
S

1
×

25
6

25
6

B
i
n
t
r
a
E
_
c
o
n
t
r
i
b
u
t
o
r
s

c
h
a
r

3
×
M
A
X
_
I
N
T
R
A
E
_
C
O
N
T
R
I
B
U
T
O
R
S

1
×

3
×

25
6
×

25
6

19
6

60
8

C

r
e
q
m

f
l
o
a
t

A
T
Y
P
E
_
N
U
M

4
×

22
88

r
e
q
m
_
h
b
o
n
d

f
l
o
a
t

A
T
Y
P
E
_
N
U
M

4
×

22
88

a
t
o
m
1
_
t
y
p
e
s
_
r
e
q
m

u
n
s
i
g
n
e
d

i
n
t

A
T
Y
P
E
_
N
U
M

4
×

22
88

a
t
o
m
2
_
t
y
p
e
s
_
r
e
q
m

u
n
s
i
g
n
e
d

i
n
t

A
T
Y
P
E
_
N
U
M

4
×

22
88

(
M
A
X
_
N
U
M
_
O
F
_
A
T
Y
P
E
S
×

V
W
p
a
r
s
_
A
C

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
Y
P
E
S
)

4
×

14
×

14
78

4

(
M
A
X
_
N
U
M
_
O
F
_
A
T
Y
P
E
S
×

V
W
p
a
r
s
_
B
D

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
Y
P
E
S
)

4
×

14
×

14
78

4

d
s
p
a
r
s
_
S

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
Y
P
E
S

4
×

14
56

d
s
p
a
r
s
_
V

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
Y
P
E
S

4
×

14
56

D
r
o
t
l
i
s
t

i
n
t

M
A
X
_
N
U
M
_
O
F
_
R
O
T
A
T
I
O
N
S

4
×

25
6
×

32
32

76
8

E

r
e
f
_
c
o
o
r
d
s
_
x

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
O
M
S

4
×

25
6

10
24

r
e
f
_
c
o
o
r
d
s
_
y

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
O
M
S

4
×

25
6

10
24

r
e
f
_
c
o
o
r
d
s
_
z

f
l
o
a
t

M
A
X
_
N
U
M
_
O
F
_
A
T
O
M
S

4
×

25
6

10
24

r
o
t
b
o
n
d
s
_
m
o
v
i
n
g
_
v
e
c
t
o
r
s

f
l
o
a
t

3
×
M
A
X
_
N
U
M
_
O
F
_
R
O
T
B
O
N
D
S

4
×

3
×

32
38

4

r
o
t
b
o
n
d
s
_
u
n
i
t
_
v
e
c
t
o
r
s

f
l
o
a
t

3
×
M
A
X
_
N
U
M
_
O
F
_
R
O
T
B
O
N
D
S

4
×

3
×

32
38

4

r
e
f
_
o
r
i
e
n
t
a
t
i
o
n
_
q
u
a
t
s

f
l
o
a
t

4
×
M
A
X
_
N
U
M
_
O
F
_
R
U
N
S

4
×

4
×

10
00

16
00

0

Su
bt

ot
al

si
ze

(B
yt

es
)

25
2

52
8

G
R

ID
S

M
A
X
_
N
U
M
_
O
F
_
A
T
Y
P
E
S
×

f
g
r
i
d
s

f
l
o
a
t

M
A
X
_
N
U
M
_
G
R
I
D
P
O
I
N
T
S
3

4
×

16
×

25
63

1
07

3
74

1
82

4

To
ta

l
si

ze
(B

yt
es

)
1

07
3

99
4

35
2

118 memory requirements

Table C.3: Additional constant data structures and their members for gradi-
ent calculation in OCLADock.

Struct Constant array Element Size Size

label struct member datatype definition (Bytes)

F
MAX_NUM_OF_ATOMS×

rotbonds_atoms int MAX_NUM_OF_ROTBONDS 32 768

G

rotbonds int 2× MAX_NUM_OF_ROTBONDS 256

num_rotating_atoms_per_rotbond int MAX_NUM_OF_ROTBONDS 128

angle float 1000 4000

dependence_on_theta float 1000 4000

dependence_on_rotangle float 1000 4000

Total size (Bytes) 45 152

Summing up both maximum possible sizes of constant and variable
data, the rounded-up memory space required by OCLADock is less than
2.2 GB, which is lower than the amount typically available even on
mid-range consumer GPU cards, as exemplified in Table 6.1. Thus, there
is no need for compute-specialized GPUs with larger memories, which
are significantly more expensive, such as the DGX-2 hardware [127].

D
F U T U R E T R E N D S O F O P E N C L

Since its first release in 2008, OpenCL has been improving continu-
ously. Despite its well-known benefits – i. e., royalty-freedom, porta-
bility, performance, etc – some say that its adoption does not seem
promising mainly due to Nvidia’s CUDA dominance, particularly, in
HPC computing [138]. In other words, besides

• the barely-competitive GPUs from competitors,

• the incomplete open-source OpenCL drivers, and

• the fact that closed drivers depend heavily on specific Linux
kernel versions,

one of the main reasons discouraging developers increasingly adopting
OpenCL is the very rich CUDA development ecosystem [126, 135]
comprising:

• Optimized libraries (e. g., cuBLAS: dense linear algebra, cuS-
PARSE: sparse linear algebra, Thrust: scan, sort, reduce, trans-
form, etc).

• Powerful directives (from OpenACC [139] that specifies code
regions to be offloaded to accelerators).

• Widespread programming language and API support (Microsoft
Direct X11, Python for CUDA, CUDA-x86, CUDA Fortran, OpenCL).

• Informative tools (Nvidia Visual Profiler, TAU Performance Sys-
tem).

Despite these advantages, the proprietary nature of CUDA implies Vendor lock-in is the
situation in which
customers are
dependent on a
single manufaturer
for some product,
and cannot move to
another vendor
without substantial
costs [153].

risks due to vendor lock-in. From the developer/customer perspective,
the vendor lock-in risks of proprietary software described in [153] can
be contextualized for CUDA as follows:

• Porting CUDA codes to other parallel frameworks, and onto
non-Nvidia GPUs, requires a significant effort. This is translated
into substantial expenses and inconveniences.

• The dominance of CUDA might cause a lack of bargaining ability
for price reduction and service enhancement.

119

120 future trends of opencl

However, the recent announcement of Intel’s intentions to con-
tribute support for SYCL into Clang/LLVM [85] opens a more concrete
royalty-free alternative to the vendor lock-in issue of Nvidia. While
SYCL could be a promising contender for CUDA, it is still a very early
step towards an open ecosystem, with similar maturity to the one
currently provided by Nvidia.

F U L L L I S T O F O W N P U B L I C AT I O N S

[1] Léa El Khoury, Diogo Santos-Martins, Sukanya Sasmal, Jérôme
Eberhardt, Giulia Bianco, Francesca A. Ambrosio, Solis-Vasquez,
Leonardo, Andreas Koch, Stefano Forli, and David Mobley.
“Comparison of affinity ranking using AutoDock-GPU and
MM-GBSA scores for BACE-1 inhibitors in the D3R Grand
Challenge 4.” In: Journal of Computer-Aided Molecular Design
(2019). doi: 10.1007/s10822-019-00240-w.

[2] Diogo Santos-Martins, Solis-Vasquez, Leonardo, Andreas Koch,
and Stefano Forli. “Accelerating AutoDock4 with GPUs and
Gradient-Based Local Search.” In: ChemRxiv (preprint) (2019).
doi: 10.26434/chemrxiv.9702389.v1.

[3] Diogo Santos-Martins, Jérôme Eberhardt, Giulia Bianco, Solis-
Vasquez, Leonardo, Francesca Alessandra Ambrosio, Andreas
Koch, and Stefano Forli. “D3R Grand Challenge 4: prospec-
tive pose prediction of BACE1 ligands with AutoDock-GPU.”
In: Journal of Computer-Aided Molecular Design (2019). doi: 10.
1007/s10822-019-00241-9.

[4] Lukas Sommer, Florian Stock, Solis-Vasquez, Leonardo, and
Andreas Koch. EPHoS: Evaluation of Programming Models for
Heterogeneous Systems. Berlin, Germany: German Association
of the Automotive Industry (VDA: Verband der Automobilin-
dustrie), 2019. url: https : / / www . vda . de / de / services /

Publikationen/fat-schriftenreihe-317.html.

[5] Lukas Sommer, Florian Stock, Solis-Vasquez, Leonardo, and
Andreas Koch. “Work-in-Progress: DAPHNE - An Automo-
tive Benchmark Suite for Parallel Programming Models on
Embedded Heterogeneous Platforms.” In: Proceedings of the
International Conference on Embedded Software (EMSOFT). New
York, NY, USA: ACM, 2019. doi: 10.1145/3349568.3351547.

[6] Solis-Vasquez, Leonardo and Andreas Koch. “A Performance
and Energy Evaluation of OpenCL-accelerated Molecular Dock-
ing.” In: Proceedings of the 5th International Workshop on OpenCL
(IWOCL). Toronto, ON, Canada: ACM, 2017. doi: 10.1145/
3078155.3078167.

[7] Solis-Vasquez, Leonardo and Andreas Koch. “A Case Study
in Using OpenCL on FPGAs: Creating an Open-Source Ac-
celerator of the AutoDock Molecular Docking Software.” In:
Proceedings of the 5th International Workshop on FPGAs for Soft-

121

http://dx.doi.org/10.1007/s10822-019-00240-w
http://dx.doi.org/10.26434/chemrxiv.9702389.v1
http://dx.doi.org/10.1007/s10822-019-00241-9
http://dx.doi.org/10.1007/s10822-019-00241-9
https://www.vda.de/de/services/Publikationen/fat-schriftenreihe-317.html
https://www.vda.de/de/services/Publikationen/fat-schriftenreihe-317.html
http://dx.doi.org/10.1145/3349568.3351547
http://dx.doi.org/10.1145/3078155.3078167
http://dx.doi.org/10.1145/3078155.3078167

ware Programmers (FSP). Dublin, Ireland: VDE VERLAG, 2018.
url: https://ieeexplore.ieee.org/document/8470463.

[8] Solis-Vasquez, Leonardo, Diogo Santos-Martins, Andreas Koch,
and Stefano Forli. “Performance Analysis of Molecular Dock-
ing in OpenCL: A Case Study of AutoDock enhanced with
Gradients.” In: Submitted to the 34th International Parallel and
Distributed Processing Symposium (IPDPS). Submitted, 2019.

[9] Solis-Vasquez, Leonardo, Diogo Santos-Martins, Andreas Koch,
and Stefano Forli. “Evaluating the Energy Efficiency of OpenCL-
accelerated AutoDock Molecular Docking.” In: Submitted to the
28th Euromicro International Conference on Parallel, Distributed,
and Network-based Processing (PDP). Submitted, 2020.

122

https://ieeexplore.ieee.org/document/8470463

B I B L I O G R A P H Y

[1] AMD. OpenCL Programming Optimization Guide. Last accessed:
June 30, 2019. url: http://developer.amd.com/wordpress/
media/2013/12/AMD_OpenCL_Programming_Optimization_

Guide2.pdf.

[2] David Abdurachmanov, Peter Elmer, Giulio Eulisse, Robert
Knight, Tapio Niemi, Jukka K. Nurminen, Filip Nyback, Gonçalo
Pestana, Zhonghong Ou, and Kashif Khan. “Techniques and
tools for measuring energy efficiency of scientific software ap-
plications.” In: J. Physics: Conf. Series 608 (2015). doi: 10.1088/
1742-6596/608/1/012032.

[3] Alexander Afanasiev, Igor Oferkin, Mikhail Posypkin, Anton
Rubtsov, Alexey Sulimov, and Vladimir Sulimov. “A Compara-
tive Study of Different Optimization Algorithms for Molecular
Docking.” In: Proceedings of the 3rd International Workshop on
Science Gateways for Life Sciences (IWSG). London, United King-
dom: CEUR Workshop Proceedings, 2011. url: http://ceur-
ws.org/Vol-819/.

[4] Ayesha Afzal, Christian Schmitt, Samer Alhaddad, Yevgen
Grynko, Jurgen Teich, Jens Forstner, and Frank Hannig. “Solv-
ing Maxwell’s Equations with Modern C++ and SYCL: A Case
Study.” In: Proceedings of the 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP).
Milan, Italy: IEEE, 2018. doi: 10.1109/ASAP.2018.8445127.

[5] University of Alberta. Linear Feedback Shift Register (High-Level
Digital ASIC Design Using CAD (course notes)). Last accessed:
July 30, 2019. url: http://www.ece.ualberta.ca/~elliott/
ee552/studentAppNotes/1999f/Drivers_Ed/lfsr.html.

[6] Alibaba Hires Chief Quantum Scientist In Continued Cloud Push.
Last accessed: April 30, 2019. url: https://www.alizila.com/
alibaba-hires-chief-quantum-scientist-in-contineud-

cloud-push.

[7] Scott E. Allen, Nikolay V. Dokholyan, and Albert A. Bowers.
“Dynamic Docking of Conformationally Constrained Macrocy-
cles: Methods and Applications.” In: ACS Chemical Biology 11.1
(2016), pp. 10–24. doi: 10.1021/acschembio.5b00663.

[8] Hiba Alogheli, Gustav Olanders, Wesley Schaal, Peter Brandt,
and Anders Karlén. “Docking of Macrocycles: Comparing Rigid
and Flexible Docking in Glide.” In: Journal of Chemical Informa-

123

http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://dx.doi.org/10.1088/1742-6596/608/1/012032
http://dx.doi.org/10.1088/1742-6596/608/1/012032
http://ceur-ws.org/Vol-819/
http://ceur-ws.org/Vol-819/
http://dx.doi.org/10.1109/ASAP.2018.8445127
http://www.ece.ualberta.ca/~elliott/ee552/studentAppNotes/1999f/Drivers_Ed/lfsr.html
http://www.ece.ualberta.ca/~elliott/ee552/studentAppNotes/1999f/Drivers_Ed/lfsr.html
https://www.alizila.com/alibaba-hires-chief-quantum-scientist-in-contineud-cloud-push
https://www.alizila.com/alibaba-hires-chief-quantum-scientist-in-contineud-cloud-push
https://www.alizila.com/alibaba-hires-chief-quantum-scientist-in-contineud-cloud-push
http://dx.doi.org/10.1021/acschembio.5b00663

124 bibliography

tion and Modeling 57.2 (2017), pp. 190–202. doi: 10.1021/acs.
jcim.6b00443.

[9] Serkan Altuntaş, Zeki Bozkus, and Basilio B. Fraguela. “GPU
Accelerated Molecular Docking Simulation with Genetic Algo-
rithms.” In: Applications of Evolutionary Computation: 19th Eu-
ropean Conference, EvoApplications. Springer, 2016, pp. 134–146.
doi: 10.1007/978-3-319-31153-1_10.

[10] Amazon EC2 Pricing. Last accessed: July 30, 2019. url: https:
//aws.amazon.com/ec2/pricing/on-demand.

[11] Amazon Elastic Compute Cloud, Compute Optimized Instances. Last
accessed: March 30, 2019. url: https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/compute- optimized- instances.

html.

[12] Amazon Elastic Compute Cloud, Processor State Control for Your
EC2 Instance. Last accessed: March 30, 2019. url: https://docs.
aws . amazon . com / AWSEC2 / latest / UserGuide / processor _

state_control.html.

[13] Amazon Elastic Compute Cloud, User Guide for Linux Instances.
Last accessed: January 30, 2019. url: https : / / docs . aws .

amazon.com/AWSEC2/latest/UserGuide/instance-optimize-

cpu.html.

[14] Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. “On the
performance and energy efficiency of sparse linear algebra on
GPUs.” In: The International Journal of High Performance Com-
puting Applications 31.15 (2017), pp. 375 –390. doi: 10.1177/
1094342016672081.

[15] Microsoft Azure. Predicting ocean chemistry using Microsoft Azure.
Last accessed: April 30, 2019. url: https://customers.microsoft.
com/pt-br/story/taylorshellfishfarms.

[16] Ashok D. Belegundu and Tirupathi R. Chandrupatla. Opti-
mization Concepts and Applications in Engineering: Second Edi-
tion. 3rd ed. Cambridge University Press, 2019. url: https:
//www.cambridge.org/de/academic/subjects/engineering/

control-systems-and-optimization/optimization-concepts-

and-applications-engineering-3rd-edition?format=HB&

isbn=9781108424882.

[17] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland,
Talapady N. Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip
E. Bourne. “The Protein Data Bank.” In: Journal of Nucleic Acids
Research 28.1 (2000), pp. 235–242. doi: 10.1093/nar/28.1.235.

[18] Geoffrey C. Berresford and Andrew M. Rocket. Applied Calculus.
7th ed. CENGAGE Learning, 2016. url: https://www.cengage.
com/c/applied-calculus-7e-berresford/.

http://dx.doi.org/10.1021/acs.jcim.6b00443
http://dx.doi.org/10.1021/acs.jcim.6b00443
http://dx.doi.org/10.1007/978-3-319-31153-1_10
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
http://dx.doi.org/10.1177/1094342016672081
http://dx.doi.org/10.1177/1094342016672081
https://customers.microsoft.com/pt-br/story/taylorshellfishfarms
https://customers.microsoft.com/pt-br/story/taylorshellfishfarms
https://www.cambridge.org/de/academic/subjects/engineering/control-systems-and-optimization/optimization-concepts-and-applications-engineering-3rd-edition?format=HB&isbn=9781108424882
https://www.cambridge.org/de/academic/subjects/engineering/control-systems-and-optimization/optimization-concepts-and-applications-engineering-3rd-edition?format=HB&isbn=9781108424882
https://www.cambridge.org/de/academic/subjects/engineering/control-systems-and-optimization/optimization-concepts-and-applications-engineering-3rd-edition?format=HB&isbn=9781108424882
https://www.cambridge.org/de/academic/subjects/engineering/control-systems-and-optimization/optimization-concepts-and-applications-engineering-3rd-edition?format=HB&isbn=9781108424882
https://www.cambridge.org/de/academic/subjects/engineering/control-systems-and-optimization/optimization-concepts-and-applications-engineering-3rd-edition?format=HB&isbn=9781108424882
http://dx.doi.org/10.1093/nar/28.1.235
https://www.cengage.com/c/applied-calculus-7e-berresford/
https://www.cengage.com/c/applied-calculus-7e-berresford/

bibliography 125

[19] National Center for Biotechnology Information. PubChem Database.
CID=4369278. Last accessed: September 30, 2019. url: https:
//pubchem.ncbi.nlm.nih.gov/compound/4369278.

[20] Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler,
and Peter Gumbsch. “Structural relaxation made simple.” In:
Journal of Physical Review Letters 97.17 (2006), p. 170201. doi:
10.1103/PhysRevLett.97.170201.

[21] OpenMP ARB (Architecture Review Boards). OpenMP Resources.
Last accessed: April 30, 2019. url: https://www.openmp.org/
resources.

[22] Boost.Thread – Overview. Last accessed: July 30, 2019. url: https:
//www.boost.org/doc/libs/1_71_0/doc/html/thread.html.

[23] Zeki Bozkus and Basilio B. Fraguela. “A Portable High-Productivity
Approach to Program Heterogeneous Systems.” In: Proceedings
of the. Shanghai, China: IEEE, 2012. doi: 10.1109/IPDPSW.2012.
15.

[24] Robert A. Bridges, Neena Imam, and Tiffany M. Mintz. “Un-
derstanding GPU Power: A Survey of Profiling, Modeling, and
Simulation Methods.” In: Journal of ACM Computing Surveys
49.3 (2016), 41:1–41:27. doi: 10.1145/2962131.

[25] Leibniz Supercomputing Centre. Scientific Application Packages.
Last accessed: April 30, 2019. url: https://doku.lrz.de/
display/PUBLIC/Scientific+Application+Packages.

[26] Rong Chen, Li Li, and Zhiping Weng. “ZDOCK: an initial-stage
protein-docking algorithm.” In: Journal of Proteins: Structure,
Function, and Bioinformatics 52.1 (2003), pp. 80 –87. doi: 10.
1002/prot.10389.

[27] Rong Chen and Zhiping Weng. “Docking unbound proteins
using shape complementarity, desolvation, and electrostatics.”
In: Journal of Proteins: Structure, Function, and Bioinformatics 47.3
(2002), pp. 281 –294. doi: 10.1002/prot.10092.

[28] CodeXL - A comprehensive tool suite that enables developers to har-
ness the benefits of CPUs, GPUs and APUs. Last accessed: January
30, 2019. url: https://github.com/GPUOpen-Tools/CodeXL.

[29] Codeplay. Codeplay Announces World’s First Fully-Conformant
SYCL 1.2.1 Solution. Last accessed: April 30, 2019. 2018. url:
https://www.codeplay.com/portal/08-23-18-codeplay-

announces-world-s-first-fully-conformant-sycl-1-2-1-

solution.

[30] Drug Design Data Resource (D3R) Community. Grand Chal-
lenge 4: Affinity Predictions - BACE (Stage 1A). Last accessed:
April 20, 2019. url: https://drugdesigndata.org/php/d3r/
gc4/combined/scoring/index.php?component=1146&method=

structure.

https://pubchem.ncbi.nlm.nih.gov/compound/4369278
https://pubchem.ncbi.nlm.nih.gov/compound/4369278
http://dx.doi.org/10.1103/PhysRevLett.97.170201
https://www.openmp.org/resources
https://www.openmp.org/resources
https://www.boost.org/doc/libs/1_71_0/doc/html/thread.html
https://www.boost.org/doc/libs/1_71_0/doc/html/thread.html
http://dx.doi.org/10.1109/IPDPSW.2012.15
http://dx.doi.org/10.1109/IPDPSW.2012.15
http://dx.doi.org/10.1145/2962131
https://doku.lrz.de/display/PUBLIC/Scientific+Application+Packages
https://doku.lrz.de/display/PUBLIC/Scientific+Application+Packages
http://dx.doi.org/10.1002/prot.10389
http://dx.doi.org/10.1002/prot.10389
http://dx.doi.org/10.1002/prot.10092
https://github.com/GPUOpen-Tools/CodeXL
https://www.codeplay.com/portal/08-23-18-codeplay-announces-world-s-first-fully-conformant-sycl-1-2-1-solution
https://www.codeplay.com/portal/08-23-18-codeplay-announces-world-s-first-fully-conformant-sycl-1-2-1-solution
https://www.codeplay.com/portal/08-23-18-codeplay-announces-world-s-first-fully-conformant-sycl-1-2-1-solution
https://drugdesigndata.org/php/d3r/gc4/combined/scoring/index.php?component=1146&method=structure
https://drugdesigndata.org/php/d3r/gc4/combined/scoring/index.php?component=1146&method=structure
https://drugdesigndata.org/php/d3r/gc4/combined/scoring/index.php?component=1146&method=structure

126 bibliography

[31] Drug Design Data Resource (D3R) Community. Grand Chal-
lenge 4: Affinity Predictions - BACE (Stage 2). Last accessed: April
20, 2019. url: https://drugdesigndata.org/php/d3r/gc4/
combined / scoring / index . php ? component = 1479 & method =

structure.

[32] Drug Design Data Resource (D3R) Community. Grand Chal-
lenge 4: Pose Prediction Method - BACE (Stage 1A). Last accessed:
April 20, 2019. url: https://drugdesigndata.org/php/d3r/
gc4/combined/pose/index.php?component=1146&results=

rmsd&chart=pose&partial=0&ligand=Mean.

[33] Drug Design Data Resource (D3R) Community. Grand Chal-
lenge 4: Pose Prediction Method - BACE (Stage 1B). Last accessed:
April 20, 2019. url: https://drugdesigndata.org/php/d3r/
gc4/combined/pose/index.php?component=1470&results=

rmsd&chart=pose&partial=0&ligand=Mean.

[34] Drug Design Data Resource (D3R) Community. Grand Challenge
4. Last accessed: April 20, 2019. url: https://drugdesigndata.
org/about/grand-challenge-4.

[35] Center for Computational Structural Biology. AutoDock4: Com-
putational Docking of Ligands to Biomolecular Targets. Last ac-
cessed: April 30, 2019. url: https : / / ccsb . scripps . edu /

autodock.

[36] Louisiana State University: High Performance Computing. Al-
phabetical List of Software. Last accessed: April 30, 2019. url:
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry.

[37] Alpha Data. ADM-PCIE-7V3 – High Performance Computing.
Last accessed: May 30, 2019. url: https://www.alpha-data.
com/dcp/products.php?product=adm-pcie-7v3.

[38] James J. Davis, Joshua M. Levine, Edward A. Stott, Eddie Hung,
Peter Y. K. Cheung, and George A. Constantinides. “KOCL:
Power Self- Awareness for Arbitrary FPGA-SoC-Accelerated
OpenCL Applications.” In: Journal of IEEE Design Test. IEEE,
2017. doi: 10.1109/MDAT.2017.2750909.

[39] Renata De Paris, Fábio A. Frantz, Osmar Norberto de Souza,
and Duncan D. A. Ruiz. “wFReDoW: A Cloud-Based Web
Environment to Handle Molecular Docking Simulations of a
Fully Flexible Receptor Model.” In: Journal of BioMed Research
International 2013 (2013). doi: 10.1155/2013/469363.

[40] P. Debye. “Näherungsformeln für die Zylinderfunktionen für
große Werte des Arguments und unbeschränkt veränderliche
Werte des Index.” In: Journal of Mathematische Annalen 67.4
(1909), pp. 535 –558. doi: 10.1007/BF01450097.

https://drugdesigndata.org/php/d3r/gc4/combined/scoring/index.php?component=1479&method=structure
https://drugdesigndata.org/php/d3r/gc4/combined/scoring/index.php?component=1479&method=structure
https://drugdesigndata.org/php/d3r/gc4/combined/scoring/index.php?component=1479&method=structure
https://drugdesigndata.org/php/d3r/gc4/combined/pose/index.php?component=1146&results=rmsd&chart=pose&partial=0&ligand=Mean
https://drugdesigndata.org/php/d3r/gc4/combined/pose/index.php?component=1146&results=rmsd&chart=pose&partial=0&ligand=Mean
https://drugdesigndata.org/php/d3r/gc4/combined/pose/index.php?component=1146&results=rmsd&chart=pose&partial=0&ligand=Mean
https://drugdesigndata.org/php/d3r/gc4/combined/pose/index.php?component=1470&results=rmsd&chart=pose&partial=0&ligand=Mean
https://drugdesigndata.org/php/d3r/gc4/combined/pose/index.php?component=1470&results=rmsd&chart=pose&partial=0&ligand=Mean
https://drugdesigndata.org/php/d3r/gc4/combined/pose/index.php?component=1470&results=rmsd&chart=pose&partial=0&ligand=Mean
https://drugdesigndata.org/about/grand-challenge-4
https://drugdesigndata.org/about/grand-challenge-4
https://ccsb.scripps.edu/autodock
https://ccsb.scripps.edu/autodock
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-7v3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-7v3
http://dx.doi.org/10.1109/MDAT.2017.2750909
http://dx.doi.org/10.1155/2013/469363
http://dx.doi.org/10.1007/BF01450097

bibliography 127

[41] The Tech Terms Computer Dictionary. DDR3. Last accessed:
November 30, 2019. url: https://techterms.com/definition/
ddr3.

[42] Dong Dong, Zhijian Xu, Wu Zhong, and Shaoliang Peng. “Par-
allelization of Molecular Docking: A Review.” In: Journal of
Current Topics in Medicinal Chemistry 28.12 (2018), pp. 1015 –
1028. doi: 10.2174/1568026618666180821145215.

[43] Victor Eijkhout. Introduction to High-Performance Scientific Com-
puting. 2nd ed. 2016. url: http://pages.tacc.utexas.edu/
~eijkhout/istc/istc.html.

[44] Léa El Khoury, Diogo Santos-Martins, Sukanya Sasmal, Jérôme
Eberhardt, Giulia Bianco, Francesca A. Ambrosio, Solis-Vasquez,
Leonardo, Andreas Koch, Stefano Forli, and David Mobley.
“Comparison of affinity ranking using AutoDock-GPU and
MM-GBSA scores for BACE-1 inhibitors in the D3R Grand
Challenge 4.” In: Journal of Computer-Aided Molecular Design
(2019). doi: 10.1007/s10822-019-00240-w.

[45] U.S. Department of Energy. Fact Sheet: Collaboration of Oak
Ridge, Argonne, and Livermore (CORAL). Last accessed: April 30,
2019. url: https://www.energy.gov/downloads/fact-sheet-
collaboration-oak-ridge-argonne-and-livermore-coral.

[46] Karl Entacher. A Collection of Selected Pseudorandom Number
Generators with Linear Structures. Last accessed: July 30, 2019.
1997. url: https://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.53.3686.

[47] Max Planck Computing & Data Facility. HPC Application Pack-
ages. Last accessed: April 30, 2019. url: https://www.mpcdf.
mpg.de/services/computing/software/hpc_application_

packages.html.

[48] Zhi-wei Feng, Xu-hong Tian, and Shan Chang. “A Parallel
Molecular Docking Approach Based on Graphic Processing
Unit.” In: Proceedings of the 4th International Conference on Bioin-
formatics and Biomedical Engineering. Chengdu, China: IEEE,
2010. doi: 10.1109/ICBBE.2010.5514919.

[49] Leonardo G. Ferreira, Ricardo N. Dos Santos, Glaucius Oliva,
and Adriano D. Andricopulo. “Molecular Docking and Structure-
Based Drug Design Strategies.” In: Journal of Molecules 20.7
(2015), pp. 13384–13421. doi: 10.3390/molecules200713384.

[50] FightAIDS@Home. Last accessed: July 30, 2019. url: http://
fightaidsathome.scripps.edu.

https://techterms.com/definition/ddr3
https://techterms.com/definition/ddr3
http://dx.doi.org/10.2174/1568026618666180821145215
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
http://dx.doi.org/10.1007/s10822-019-00240-w
https://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
https://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3686
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3686
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
http://dx.doi.org/10.1109/ICBBE.2010.5514919
http://dx.doi.org/10.3390/molecules200713384
http://fightaidsathome.scripps.edu
http://fightaidsathome.scripps.edu

128 bibliography

[51] Stefano Forli and Maurizio Botta. “Lennard-Jones Potential
and Dummy Atom Settings to Overcome the AUTODOCK
Limitation in Treating Flexible Ring Systems.” In: Journal of
Chemical Information and Modeling 47.4 (2007), pp. 1481–1492.
doi: 10.1021/ci700036j.

[52] German Research Foundation (DFG: Deutsche Forschungs-
gemeinschaft). DFG Classification of Scientific Disciplines, Re-
search Areas, Review Boards and Subject Areas (2016-2019). Last
accessed: April 30, 2019. url: https://www.dfg.de/download/
pdf/dfg_im_profil/gremien/fachkollegien/amtsperiode_

2016_2019/fachsystematik_2016-2019_en_grafik.pdf.

[53] Jan Fuhrmann, Alexander Rurainski, Hans-Peter Lenhof, and
Dirk Neumann. “A new method for the gradient-based opti-
mization of molecular complexes.” In: Journal of Computational
Chemistry 30.9 (2009), pp. 1371–1378. doi: 10.1002/jcc.21159.

[54] Qatar National Research Fund. The fields of science and tech-
nology classification. Last accessed: April 30, 2019. url: https:
//www.qnrf.org/en-us/FOS.

[55] GOLD. Last accessed: May 30, 2019. url: https://www.ccdc.
cam.ac.uk/solutions/csd-discovery/components/gold.

[56] Alan D. George, Martin C. Herbordt, Herman Lam, Abhijeet
G. Lawande, Jiayi Sheng, and Chen Yang. “Novo-G#: Large-
scale reconfigurable computing with direct and programmable
interconnects.” In: Proceedings of the High Performance Extreme
Computing Conference (HPEC). Waltham, MA, USA: IEEE, 2016.
doi: 10.1109/HPEC.2016.7761639.

[57] Nick Gibbs, Anthony R. Clarke, and Richard B. Sessions. “Ab
initio protein structure prediction using physicochemical po-
tentials and a simplified off-lattice model.” In: Proteins: Struc-
ture, Function, and Bioinformatics 43.2 (2001), pp. 186–202. doi:
10.1002/1097-0134(20010501)43:2<186::AID-PROT1030>3.0.

CO;2-L.

[58] Glide – A complete solution for ligand-receptor docking. Last ac-
cessed: May 30, 2019. url: https://www.schrodinger.com/
glide.

[59] Gene H. Golub and James M. Ortega. Scientific Computing and
Differential Equations: An Introduction to Numerical Methods. Aca-
demic Press, Inc., 1992. url: https://dl.acm.org/citation.
cfm?id=574155.

[60] Robson Gonçalves, Alessandro Girardi, and Claudio Schepke.
“Performance and Energy Consumption Analysis of Copro-
cessors Using Different Programming Models.” In: Euromicro
Int. Conf. on Parallel, Distributed and Network-based Processing

http://dx.doi.org/10.1021/ci700036j
https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/amtsperiode_2016_2019/fachsystematik_2016-2019_en_grafik.pdf
https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/amtsperiode_2016_2019/fachsystematik_2016-2019_en_grafik.pdf
https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/amtsperiode_2016_2019/fachsystematik_2016-2019_en_grafik.pdf
http://dx.doi.org/10.1002/jcc.21159
https://www.qnrf.org/en-us/FOS
https://www.qnrf.org/en-us/FOS
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold
http://dx.doi.org/10.1109/HPEC.2016.7761639
http://dx.doi.org/10.1002/1097-0134(20010501)43:2<186::AID-PROT1030>3.0.CO;2-L
http://dx.doi.org/10.1002/1097-0134(20010501)43:2<186::AID-PROT1030>3.0.CO;2-L
https://www.schrodinger.com/glide
https://www.schrodinger.com/glide
https://dl.acm.org/citation.cfm?id=574155
https://dl.acm.org/citation.cfm?id=574155

bibliography 129

(PDP). Cambridge, UK: IEEE, 2018. doi: 10.1109/PDP2018.
2018.00086.

[61] David S. Goodsell and Arthur J. Olson. “Automated docking
of substrates to proteins by simulated annealing.” In: Proteins:
Structure, Function, and Bioinformatics 8.3 (1990), pp. 195–202.
doi: 10.1002/prot.340080302.

[62] Khronos Group. OpenCL 2.0 Reference Pages. Last accessed: May
30, 2019. url: https://www.khronos.org/registry/OpenCL/
sdk/2.0/docs/man/xhtml.

[63] Khronos Group. OpenCL Overview: The open standard for parallel
programming of heterogeneous systems. Last accessed: April 30,
2019. url: https://www.khronos.org/opencl.

[64] Khronos Group. OpenCL Resources. Last accessed: April 30,
2019. url: https://www.khronos.org/opencl/resources.

[65] Khronos Group. SYCL Overview: C++ Single-source Heteroge-
neous Programming for OpenCL. Last accessed: April 30, 2019.
url: https://www.khronos.org/sycl.

[66] Khronos Group. SYCL Resources. Last accessed: April 30, 2019.
url: https://www.khronos.org/sycl/resources.

[67] Wan-Gang Gu, Xuan Zhang, and Jun-Fa Yuan. “Anti-HIV
Drug Development Through Computational Methods.” In: The
Journal of American Association of Pharmaceutical Scientists 16.4
(2014), pp. 674–680. doi: 10.1208/s12248-014-9604-9.

[68] Ginés D. Guerrero, Horacio Pérez-Sánchez, Wolfgang Wen-
zel, José M. Cecilia, and José M. García. “Effective Paralleliza-
tion of Non-bonded Interactions Kernel for Virtual Screening
on GPUs.” In: Proceedings of the 5th International Conference on
Practical Applications of Computational Biology & Bioinformatics
(PACBB). Salamanca, Spain: Springer, 2011. doi: 10.1007/978-
3-642-19914-1_9.

[69] Christoph Hagleitner. Application Porting & Optimization on
GPU-accelerated POWER Architectures - Best practices for port-
ing scientific applications. Last accessed: April 30, 2019. url:
http://juser.fz- juelich.de/record/840162/files/6-

CHagleitner-Best_Practices.pdf.

[70] Inbal Halperin, Buyong Ma, Haim Wolfson, and Ruth Nussinov.
“Principles of docking: An overview of search algorithms and
a guide to scoring functions.” In: Journal of Proteins: Structure,
Function, and Bioinformatics 47.4 (2002), pp. 409–443. doi: 10.
1002/prot.10115.

http://dx.doi.org/10.1109/PDP2018.2018.00086
http://dx.doi.org/10.1109/PDP2018.2018.00086
http://dx.doi.org/10.1002/prot.340080302
https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml
https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml
https://www.khronos.org/opencl
https://www.khronos.org/opencl/resources
https://www.khronos.org/sycl
https://www.khronos.org/sycl/resources
http://dx.doi.org/10.1208/s12248-014-9604-9
http://dx.doi.org/10.1007/978-3-642-19914-1_9
http://dx.doi.org/10.1007/978-3-642-19914-1_9
http://juser.fz-juelich.de/record/840162/files/6-CHagleitner-Best_Practices.pdf
http://juser.fz-juelich.de/record/840162/files/6-CHagleitner-Best_Practices.pdf
http://dx.doi.org/10.1002/prot.10115
http://dx.doi.org/10.1002/prot.10115

130 bibliography

[71] Michael J. Hartshorn, Marcel L. Verdonk, Gianni Chessari,
Suzanne C. Brewerton, Wijnand T.M. Mooij, Paul N. Mortenson,
and Christopher W. Murray. “Diverse, high-quality test set
for the validation of protein-ligand docking performance.”
In: Journal of Medicinal Chemistry 50.4 (2007), pp. 726–741. doi:
10.1021/jm061277y.

[72] Scott Hauck and André DeHon, eds. Reconfigurable Comput-
ing – The Theory and Practice of FPGA-based Computing. Morgan
Kaufmann, 2008. url: https://dl.acm.org/citation.cfm?
id=1564780.

[73] Csaba Hetényi and David van der Spoel. “Efficient docking of
peptides to proteins without prior knowledge of the binding
site.” In: Journal of Protein Science 11.7 (2002), pp. 1729–1737.
doi: 10.1110/ps.0202302.

[74] Heterogeneous Programming Library. Facilitates the use of accelera-
tors on top of OpenCL. Last accessed: July 30, 2019. url: https:
//github.com/fraguela/hpl.

[75] Abigail Hsu, David N. Asanza, Joseph A. Schoonover, Zach
Jibben, Neil N. Carlson, and Robert Robey. “Performance Porta-
bility Challenges for Fortran Applications.” In: Proceedings of
the International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC). Dallas, TX, USA: IEEE, 2018. doi:
10.1109/P3HPC.2018.00008.

[76] Ruth Huey, Garret M. Morris, and Stefano Forli. Using AutoDock
4 and AutoDock Vina with AutoDockTools: A Tutorial. Last ac-
cessed: March 30, 2019. url: https://autodock.scripps.edu/
faqs-help/tutorial/using-autodock-4-with-autodocktools/

2012_ADTtut.pdf.

[77] Ruth Huey, Garrett M. Morris, Arthur J. Olson, and David S.
Goodsell. “A semiempirical free energy force field with charge-
based desolvation.” In: Journal of Computational Chemistry 28.6
(2007), pp. 1145–1152. doi: 10.1002/jcc.20634.

[78] Hydrogen Bonding. Last accessed: July 30, 2019. url: https://
chem.libretexts.org/Bookshelves/Physical_and_Theoretical_

Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_

and _ Theoretical _ Chemistry) /Physical _ Properties _ of _

Matter/Atomic_and_Molecular_Properties/Intermolecular_

Forces/Specific_Interactions/Hydrogen_Bonding.

[79] Open SystemC Initiative. The Next IC Design Methodology Tran-
sition Is Long Overdue. Last accessed: July 30, 2019. 2010. url:
https://www.accellera.org/images/resources/articles/

icdesigntrans/ic_design_transition_feb2010.pdf.

http://dx.doi.org/10.1021/jm061277y
https://dl.acm.org/citation.cfm?id=1564780
https://dl.acm.org/citation.cfm?id=1564780
http://dx.doi.org/10.1110/ps.0202302
https://github.com/fraguela/hpl
https://github.com/fraguela/hpl
http://dx.doi.org/10.1109/P3HPC.2018.00008
https://autodock.scripps.edu/faqs-help/tutorial/using-autodock-4-with-autodocktools/2012_ADTtut.pdf
https://autodock.scripps.edu/faqs-help/tutorial/using-autodock-4-with-autodocktools/2012_ADTtut.pdf
https://autodock.scripps.edu/faqs-help/tutorial/using-autodock-4-with-autodocktools/2012_ADTtut.pdf
http://dx.doi.org/10.1002/jcc.20634
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Hydrogen_Bonding
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Hydrogen_Bonding
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Hydrogen_Bonding
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Hydrogen_Bonding
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Hydrogen_Bonding
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Hydrogen_Bonding
https://www.accellera.org/images/resources/articles/icdesigntrans/ic_design_transition_feb2010.pdf
https://www.accellera.org/images/resources/articles/icdesigntrans/ic_design_transition_feb2010.pdf

bibliography 131

[80] Intel Dumps Knights Hill, Future of Xeon Phi Product Line Uncer-
tain. Last accessed: April 30, 2019. url: https://www.top500.
org/news/intel-dumps-knights-hill-future-of-xeon-phi-

product-line-uncertain.

[81] Intel. Intel Arria 10 Device Overview. Last accessed: January 30,
2019. url: https://www.altera.com/en_US/pdfs/literature/
hb/arria-10/a10_overview.pdf.

[82] Intel. Intel FPGA IP Portfolio. Last accessed: July 30, 2019. url:
https://www.intel.com/content/www/us/en/products/

programmable/intellectual-property.html.

[83] Intel. Intel FPGA SDK for OpenCL. Last accessed: January 30,
2019. url: https : / / www . altera . com / products / design -

software/embedded-software-developers/opencl/overview.

html.

[84] Intel. Intel SDK for OpenCL Applications. Last accessed: April
30, 2019. url: https://software.intel.com/en-us/intel-
opencl.

[85] Intel. SYCL compiler: zero-cost abstraction and type safety for het-
erogeneous computing. Last accessed: April 30, 2019. url: https:
//llvm.org/devmtg/2019-04/talks.html#Talk_14.

[86] Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnet-
ter, Kalle Raiskila, Jarmo Takala, and Heikki Berg. “pocl: A
Performance-Portable OpenCL Implementation.” In: Interna-
tional Journal of Parallel Programming 43.5 (2015), pp. 752–785.
doi: 10.1007/s10766-014-0320-y.

[87] David Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping
Zhang. Heterogeneous Computing with OpenCL 2.0. 3rd ed. Mor-
gan Kaufmann, 2015. url: https://dl.acm.org/citation.
cfm?id=2815521.

[88] Sarnath Kannan and Raghavendra Ganji. “Porting Autodock
to CUDA.” In: Proceedings of the IEEE Congress on Evolutionary
Computation. Barcelona, Spain: IEEE, 2010. doi: 10.1109/CEC.
2010.5586277.

[89] Nachiket Kapre and Samuel Bayliss. “Survey of domain-specific
languages for FPGA computing.” In: Proceedings of 26th Inter-
national Conference on Field Programmable Logic and Applications
(FPL). Lausanne, Switzerland: IEEE, 2016. doi: 10.1109/FPL.
2016.7577380.

[90] P. Karlson and M. Lüscher. “’Pheromones’: a New Term for
a Class of Biologically Active Substances.” In: International
Journal of Science 183.4653 (1959), pp. 55 –56. doi: 10.1038/
183055a0.

https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain
https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain
https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain
https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/www/us/en/products/programmable/intellectual-property.html
https://www.intel.com/content/www/us/en/products/programmable/intellectual-property.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
https://llvm.org/devmtg/2019-04/talks.html#Talk_14
https://llvm.org/devmtg/2019-04/talks.html#Talk_14
http://dx.doi.org/10.1007/s10766-014-0320-y
https://dl.acm.org/citation.cfm?id=2815521
https://dl.acm.org/citation.cfm?id=2815521
http://dx.doi.org/10.1109/CEC.2010.5586277
http://dx.doi.org/10.1109/CEC.2010.5586277
http://dx.doi.org/10.1109/FPL.2016.7577380
http://dx.doi.org/10.1109/FPL.2016.7577380
http://dx.doi.org/10.1038/183055a0
http://dx.doi.org/10.1038/183055a0

132 bibliography

[91] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C.
Aflalo, and I. A. Vakser. “Molecular surface recognition: deter-
mination of geometric fit between proteins and their ligands by
correlation techniques.” In: Proceedings of the National Academy
of Sciences 89.6 (1992), pp. 2195 –2199. doi: 10.1073/pnas.89.
6.2195.

[92] Esther Kellenberger, Jordi Rodrigo, Pascal Muller, and Didier
Rognan. “Comparative evaluation of eight docking tools for
docking and virtual screening accuracy.” In: Proteins: Structure,
Function, and Bioinformatics 57.2 (2004), pp. 225–242. doi: 10.
1002/prot.20149.

[93] Tobias Kenter, Jens Förstner, and Christian Plessl. “Flexible
FPGA design for FDTD using OpenCL.” In: Proceedings of the
27th International Conference on Field Programmable Logic and Ap-
plications (FPL). Ghent, Belgium: IEEE, 2017. doi: 10.23919/
FPL.2017.8056844.

[94] Tobias Kenter and Christian Plessl. “Microdisk Cavity FDTD
Simulation on FPGA using OpenCL.” In: Proceedings of the
Workshop on Heterogeneous High-performance Reconfigurable Com-
puting (H2RC). Salt Lake City, UT, USA, 2016. url: https :

//h2rc.cse.sc.edu/2016/papers/paper_26.pdf.

[95] Ronan Keryell and Lin-Ya Yu. “Early Experiments Using SYCL
Single-source Modern C++ on Xilinx FPGA: Extended Abstract
of Technical Presentation.” In: Proceedings of the 6th International
Workshop on OpenCL (IWOCL). Oxford, United Kingdom: ACM,
2018. doi: 10.1145/3204919.3204937.

[96] Virginia A. Kincaid et al. “Virtual Screening for UDP-Galactopyranose
Mutase Ligands Identifies a New Class of Antimycobacte-
rial Agents.” In: Journal of ACS Chemical Biology 10.10 (2015),
pp. 2209–2218. doi: 10.1021/acschembio.5b00370.

[97] Oliver Korb, Thomas Stützle, and Thomas E. Exner. “An ant
colony optimization approach to flexible protein–ligand dock-
ing.” In: Journal of Swarm Intelligence 1.2 (2007), pp. 115 –134.
doi: 10.1007/s11721-007-0006-9.

[98] Oliver Korb, Thomas Stützle, and Thomas E. Exner. “Acceler-
ating Molecular Docking Calculations Using Graphics Process-
ing Units.” In: Journal of Chemical Information and Modeling 51.4
(2011), pp. 865 –876. doi: 10.1021/ci100459b.

[99] Pekka Koskinen, Erik Bitzek, Franz Gähler, Michael Moseler,
and Peter Gumbsch. FIRE: Fast Inertial Relaxation Engine for
Optimization on All Scales. Last accessed: July 30, 2019. 2006.
url: http://users.jyu.fi/~pekkosk/resources/pdf/FIRE.
pdf.

http://dx.doi.org/10.1073/pnas.89.6.2195
http://dx.doi.org/10.1073/pnas.89.6.2195
http://dx.doi.org/10.1002/prot.20149
http://dx.doi.org/10.1002/prot.20149
http://dx.doi.org/10.23919/FPL.2017.8056844
http://dx.doi.org/10.23919/FPL.2017.8056844
https://h2rc.cse.sc.edu/2016/papers/paper_26.pdf
https://h2rc.cse.sc.edu/2016/papers/paper_26.pdf
http://dx.doi.org/10.1145/3204919.3204937
http://dx.doi.org/10.1021/acschembio.5b00370
http://dx.doi.org/10.1007/s11721-007-0006-9
http://dx.doi.org/10.1021/ci100459b
http://users.jyu.fi/~pekkosk/resources/pdf/FIRE.pdf
http://users.jyu.fi/~pekkosk/resources/pdf/FIRE.pdf

bibliography 133

[100] Dima Kozakov, Ryan Brenke, Stephen R. Comeau, and Sandor
Vajda. “PIPER: An FFT-based protein docking program with
pairwise potentials.” In: Journal of Proteins: Structure, Function,
and Bioinformatics 65.2 (2006), pp. 392 –406. doi: 10.1002/prot.
21117.

[101] Lawrence Livermore National Laboratory. What is CORAL?
Last accessed: April 30, 2019. url: https://asc.llnl.gov/
coral-info.

[102] Lang Yu, Zhongzhi Luan, Xiangzheng Sun, Zhe Wang, and
Hailong Yang. “VinaSC: Scalable Autodock Vina with fine-
grained scheduling on heterogeneous platform.” In: Proceedings
of the International Conference on Bioinformatics and Biomedicine
(BIBM). Shenzhen, China: IEEE, 2016. doi: 10.1109/BIBM.2016.
7822624.

[103] Lennard-Jones Potential. Last accessed: July 30, 2019. url: https:
//chem.libretexts.org/Bookshelves/Physical_and_Theoretical_

Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_

and _ Theoretical _ Chemistry) /Physical _ Properties _ of _

Matter/Atomic_and_Molecular_Properties/Intermolecular_

Forces/Specific_Interactions/Lennard-Jones_Potential.

[104] Yan Li, Li Han, Zhihai Liu, and Renxiao Wang. “Comparative
assessment of scoring functions on an updated benchmark: 2.
Evaluation methods and general results.” In: Journal of Chemical
Information and Modeling 54.6 (2014), pp. 1717–1736. doi: 10.
1021/ci500081m.

[105] Jie Liu and Renxiao Wang. “Classification of Current Scoring
Functions.” In: Journal of Chemical Information and Modeling 55.3
(2015), pp. 475–482. doi: 10.1021/ci500731a.

[106] Tingting Liu, Dong Lu, Hao Zhang, Mingyue Zheng, Huaiyu
Yang, Yechun Xu, Cheng Luo, Weiliang Zhu, Kunqian Yu, and
Hualiang Jiang. “Applying high-performance computing in
drug discovery and molecular simulation.” In: Journal of Na-
tional Science Review 3.1 (2016), pp. 49–63. doi: 10.1093/nsr/
nww003.

[107] MPI Forum. Last accessed: July 30, 2019. url: https://www.mpi-
forum.org.

[108] Matthew Martineau, Simon McIntosh-Smith, and Wayne Gaudin.
“Assessing the performance portability of modern parallel
programming models using TeaLeaf.” In: Journal of Concur-
rency and Computation: Practice and Experience 29.15 (2017). doi:
10.1002/cpe.4117.

http://dx.doi.org/10.1002/prot.21117
http://dx.doi.org/10.1002/prot.21117
https://asc.llnl.gov/coral-info
https://asc.llnl.gov/coral-info
http://dx.doi.org/10.1109/BIBM.2016.7822624
http://dx.doi.org/10.1109/BIBM.2016.7822624
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Lennard-Jones_Potential
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Lennard-Jones_Potential
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Lennard-Jones_Potential
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Lennard-Jones_Potential
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Lennard-Jones_Potential
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Specific_Interactions/Lennard-Jones_Potential
http://dx.doi.org/10.1021/ci500081m
http://dx.doi.org/10.1021/ci500081m
http://dx.doi.org/10.1021/ci500731a
http://dx.doi.org/10.1093/nsr/nww003
http://dx.doi.org/10.1093/nsr/nww003
https://www.mpi-forum.org
https://www.mpi-forum.org
http://dx.doi.org/10.1002/cpe.4117

134 bibliography

[109] Simon McIntosh-Smith, Terry Wilson, Amaurys Ávila Ibarra,
Jonathan Crisp, and Richard B. Sessions. “Benchmarking en-
ergy efficiency, power costs and carbon emissions on heteroge-
neous systems.” In: Computer Journal 55.2 (2012), pp. 192 –205.
doi: 10.1093/comjnl/bxr091.

[110] Simon McIntosh-Smith, James Price, Richard B. Sessions, and
Amaurys A. Ibarra. “High performance in silico virtual drug
screening on many-core processors.” In: The International Jour-
nal of High Performance Computing Applications 29.2 (2014), pp. 119

–134. doi: 10.1177/1094342014528252.

[111] Everton Mendonça, Marcos Barreto, Vinícius Guimarães, Nelci
Santos, Samuel Pita, and Murilo Boratto. “Accelerating Docking
Simulation Using Multicore and GPU Systems.” In: Proceedings
of the 17th International Computational Science and Its Applica-
tions (ICCSA). Trieste, Italy: Springer, 2017. doi: 10.1007/978-
3-319-62392-4_32.

[112] Mentor. Handel-C Synthesis Methodology – Handel-C to FPGA
for Algorithm Design. Last accessed: July 30, 2019. url: https:
//www.mentor.com/products/fpga/handel-c.

[113] Micron. AC-505 Overview. Last accessed: May 30, 2019. url:
https://www.micron.com/products/advanced-solutions/

advanced-computing-solutions/ac-series-hpc-modules/

ac-505.

[114] Sparsh Mittal and Jeffrey S. Vetter. “A Survey of CPU-GPU Het-
erogeneous Computing Techniques.” In: Journal of ACM Com-
puting Surveys 47.4 (2015), 69:1–69:35. doi: 10.1145/2788396.

[115] Sparsh Mittal and Jeffrey S. Vetter. “A Survey of Methods
for Analyzing and Improving GPU Energy Efficiency.” In:
Journal of ACM Computing Surveys 47.2 (2015), 19:1–19:23. doi:
10.1145/2636342.

[116] Garrett M. Morris, David S. Goodsell, Robert S. Halliday, Ruth
Huey, William E. Hart, Richard K. Belew, and Arthur J. Olson.
“Automated docking using a Lamarckian genetic algorithm
and an empirical binding free energy function.” In: Journal of
Computational Chemistry 19.14 (1998), pp. 1639–1662. doi: 10.
1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.

0.CO;2-B.

[117] Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F.
Sanner, Richard K. Belew, David S. Goodsell, and Arthur J.
Olson. “AutoDock4 and AutoDockTools4: Automated docking
with selective receptor flexibility.” In: Journal of Computational
Chemistry 30.16 (2009), pp. 2785–2791. doi: 10.1002/jcc.21256.

http://dx.doi.org/10.1093/comjnl/bxr091
http://dx.doi.org/10.1177/1094342014528252
http://dx.doi.org/10.1007/978-3-319-62392-4_32
http://dx.doi.org/10.1007/978-3-319-62392-4_32
https://www.mentor.com/products/fpga/handel-c
https://www.mentor.com/products/fpga/handel-c
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/ac-series-hpc-modules/ac-505
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/ac-series-hpc-modules/ac-505
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/ac-series-hpc-modules/ac-505
http://dx.doi.org/10.1145/2788396
http://dx.doi.org/10.1145/2636342
http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
http://dx.doi.org/10.1002/jcc.21256

bibliography 135

[118] BioWulf: High Performance Computing at the NIH. Scientific
Applications on NIH HPC Systems. Last accessed: April 30, 2019.
url: https://hpc.nih.gov/apps.

[119] National Science Foundation (NSF). Science and Engineering
Degrees: 1966–2012. Last accessed: April 30, 2019. url: https:
//www.nsf.gov/statistics/2015/nsf15326/pdf/nsf15326.

pdf.

[120] J. A. Nelder and R. Mead. “A Simplex Method for Function
Minimization.” In: The Computer Journal 7.4 (1965), pp. 308 –313.
doi: 10.1093/comjnl/7.4.308.

[121] Nicholas Nethercote and Julian Seward. “Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation.” In:
Proceedings of the 28th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. San Diego, CA, USA:
ACM, 2007. doi: 10.1145/1273442.1250746.

[122] Marco A. S. Netto, Rodrigo N. Calheiros, Eduardo R. Rodrigues,
Renato L. F. Cunha, and Rajkumar Buyya. “HPC Cloud for
Scientific and Business Applications: Taxonomy, Vision, and
Research Challenges.” In: Journal of ACM Computing Surveys
51.1 (2018), 8:1–8:29. doi: 10.1145/3150224.

[123] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
2nd ed. Springer, 2006. url: https://link.springer.com/
book/10.1007/978-0-387-40065-5.

[124] Andrew P. Norgan, Paul K. Coffman, Jean-Pierre A. Kocher,
David J. Katzmann, and Carlos P. Sosa. “Multilevel Paralleliza-
tion of AutoDock 4.2.” In: Journal of Cheminformatics 3.1 (2011),
p. 12. doi: 10.1186/1758-2946-3-12.

[125] University of North Texas: High Performance Computing. Sci-
entific Software Guide. Last accessed: April 30, 2019. url: https:
//hpc.unt.edu/software?field_research_area_value=chem.

[126] Nvidia. CUDA Libraries and Ecosystem Overview. Last accessed:
april 30, 2019. url: http://developer.download.nvidia.com/
GTC/PDF/1061_Woolley.pdf.

[127] Nvidia. DGX-2. The world’s most powerful AI system for the most
complex AI challenges. Last accessed: July 30, 2019. url: https:
//www.nvidia.com/en-us/data-center/dgx-2.

[128] Nvidia. GPU-Accelerated Applications. Last accessed: April 30,
2019. url: https://www.nvidia.com/content/dam/en-zz/
Solutions/Data- Center/tesla- product- literature/gpu-

applications-catalog.pdf.

[129] Nvidia. Jetson AGX Xavier Developer Kit. Last accessed: April
30, 2019. url: https://developer.nvidia.com/embedded/buy/
jetson-agx-xavier-devkit.

https://hpc.nih.gov/apps
https://www.nsf.gov/statistics/2015/nsf15326/pdf/nsf15326.pdf
https://www.nsf.gov/statistics/2015/nsf15326/pdf/nsf15326.pdf
https://www.nsf.gov/statistics/2015/nsf15326/pdf/nsf15326.pdf
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1145/3150224
https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5
http://dx.doi.org/10.1186/1758-2946-3-12
https://hpc.unt.edu/software?field_research_area_value=chem
https://hpc.unt.edu/software?field_research_area_value=chem
http://developer.download.nvidia.com/GTC/PDF/1061_Woolley.pdf
http://developer.download.nvidia.com/GTC/PDF/1061_Woolley.pdf
https://www.nvidia.com/en-us/data-center/dgx-2
https://www.nvidia.com/en-us/data-center/dgx-2
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf
https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit
https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit

136 bibliography

[130] Nvidia. Jetson TX2 Module. Last accessed: April 30, 2019. url:
https://developer.nvidia.com/embedded/buy/jetson-tx2.

[131] Nvidia. Nvidia System Management Interface. Last accessed: March
30, 2019. url: https : / / developer . nvidia . com / nvidia -

system-management-interface.

[132] Nvidia. OpenCL Best Practices Guide 1.0. Last accessed: June
30, 2019. url: https://www.nvidia.com/content/cudazone/
CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.

pdf.

[133] Nvidia. Tesla P100. Last accessed: April 30, 2019. url: https:
//www.nvidia.com/en-us/data-center/tesla-p100.

[134] Nvidia. Tesla V100. Last accessed: April 30, 2019. url: https:
//www.nvidia.com/en-us/data-center/tesla-v100.

[135] Nvidia. Tools & Ecosystem. Last accessed: april 30, 2019. url:
https://developer.nvidia.com/tools-ecosystem.

[136] Oclgrind - An OpenCL device simulator and debugger. Last ac-
cessed: April 30, 2019. url: https://github.com/jrprice/
Oclgrind.

[137] Open Cores – The reference community for Free and Open Source
gateware IP cores. Last accessed: July 30, 2019. url: https://
opencores.org.

[138] Open-Source OpenCL Adoption Is Sadly An Issue In 2017. Last
accessed: April 30, 2019. url: https://www.phoronix.com/
scan.php?page=news_item&px=XDC2017-OpenCL-GPGPU.

[139] OpenACC-standard.org. OpenACC: More Science Less Program-
ming. Last accessed: July 30, 2019. url: https://www.openacc.
org.

[140] Nataraj S. Pagadala, Khajamohiddin Syed, and Jack Tuszynski.
“Software for molecular docking: a review.” In: Journal of Bio-
physical Reviews 9.2 (2017), pp. 91–102. doi: 10.1007/s12551-
016-0247-1.

[141] Yuan-Ping Pang, Emanuele Perola, Kun Xu, and Franklyn G.
Prendergast. “EUDOC: a computer program for identification
of drug interaction sites in macromolecules and drug leads
from chemical databases.” In: Journal of Computational Chem-
istry 22.15 (2001), pp. 1750–1771. doi: 10.1002/jcc.1129.

[142] Universität Paderborn: Paderborn Center for Parallel Comput-
ing (PC2). HPC Services: FPGA Research Clusters. Last accessed:
April 30, 2019. url: https://pc2.uni-paderborn.de/hpc-
services/available-systems/fpga-research-clusters.

https://developer.nvidia.com/embedded/buy/jetson-tx2
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/en-us/data-center/tesla-p100
https://www.nvidia.com/en-us/data-center/tesla-p100
https://www.nvidia.com/en-us/data-center/tesla-v100
https://www.nvidia.com/en-us/data-center/tesla-v100
https://developer.nvidia.com/tools-ecosystem
https://github.com/jrprice/Oclgrind
https://github.com/jrprice/Oclgrind
https://opencores.org
https://opencores.org
https://www.phoronix.com/scan.php?page=news_item&px=XDC2017-OpenCL-GPGPU
https://www.phoronix.com/scan.php?page=news_item&px=XDC2017-OpenCL-GPGPU
https://www.openacc.org
https://www.openacc.org
http://dx.doi.org/10.1007/s12551-016-0247-1
http://dx.doi.org/10.1007/s12551-016-0247-1
http://dx.doi.org/10.1002/jcc.1129
https://pc2.uni-paderborn.de/hpc-services/available-systems/fpga-research-clusters
https://pc2.uni-paderborn.de/hpc-services/available-systems/fpga-research-clusters

bibliography 137

[143] Universität Paderborn: Paderborn Center for Parallel Comput-
ing (PC2). Software. Last accessed: April 30, 2019. url: https:
//wikis.uni- paderborn.de/pc2doc/Software#Software_

Availability.

[144] Imre Pechan and Bela Fehér. “Molecular Docking on FPGA
and GPU Platforms.” In: Proceedings of the 21st International
Conference on Field Programmable Logic and Applications (FPL).
Chania, Greece: IEEE, 2011. doi: 10.1109/FPL.2011.93.

[145] Imre Pechan and Béla Fehér. “Hardware Accelerated Molec-
ular Docking: A Survey.” In: Bioinformatics. London, United
Kingdom: InTech, 2012. doi: 10.5772/48125.

[146] Imre Pechan, Béla Fehér, and Attila Bérces. “FPGA-based ac-
celeration of the AutoDock molecular docking software.” In:
Proceedings of the 6th Conference on Ph.D. Research in Microelec-
tronics Electronics. Berlin, Germany: IEEE, 2010. url: https:
//ieeexplore.ieee.org/document/5587139.

[147] S. J. Pennycook and S. A. Jarvis. “Developing Performance-
Portable Molecular Dynamics Kernels in OpenCL.” In: Proceed-
ings of the SC Companion: High Performance Computing, Network-
ing Storage and Analysis. Salt Lake City, UT, USA: IEEE, 2012.
doi: 10.1109/SC.Companion.2012.58.

[148] S.J. Pennycook, S.D. Hammond, S.A. Wright, J.A. Herdman,
I. Miller, and S.A. Jarvis. “An investigation of the performance
portability of OpenCL.” In: Journal of Parallel and Distributed
Computing 73.11 (2013), pp. 1439 –1450. doi: 10.1016/j.jpdc.
2012.07.005.

[149] Christian Plessl. “Keynote 2: FPGA-accelerated high-performance
computing - Close to breakthrough or pipedream?” In: Pro-
ceedings of the International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig). Cancun, Mexico: IEEE, 2017. doi:
10.1109/RECONFIG.2017.8279813.

[150] Portable Computing Language | NVIDIA GPU support via CUDA
backend. Last accessed: April 30, 2019. url: http://portablecl.
org/cuda-backend.html.

[151] Ralph Potter, Paul Keir, Russell J. Bradford, and Alastair Mur-
ray. “Kernel Composition in SYCL.” In: Proceedings of the 3rd In-
ternational Workshop on OpenCL (IWOCL). Palo Alto, CA, USA:
ACM, 2015. doi: 10.1145/2791321.2791332.

[152] Federica Prati, Giovanni Bottegoni, Maria Laura Bolognesi,
and Andrea Cavalli. “BACE-1 Inhibitors: From Recent Single-
Target Molecules to Multitarget Compounds for Alzheimer’s
Disease.” In: Journal of Medicinal Chemistry 61.3 (2018), pp. 619–
637. doi: 10.1021/acs.jmedchem.7b00393.

https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
http://dx.doi.org/10.1109/FPL.2011.93
http://dx.doi.org/10.5772/48125
https://ieeexplore.ieee.org/document/5587139
https://ieeexplore.ieee.org/document/5587139
http://dx.doi.org/10.1109/SC.Companion.2012.58
http://dx.doi.org/10.1016/j.jpdc.2012.07.005
http://dx.doi.org/10.1016/j.jpdc.2012.07.005
http://dx.doi.org/10.1109/RECONFIG.2017.8279813
http://portablecl.org/cuda-backend.html
http://portablecl.org/cuda-backend.html
http://dx.doi.org/10.1145/2791321.2791332
http://dx.doi.org/10.1021/acs.jmedchem.7b00393

138 bibliography

[153] The Linux Information Project. Vendor Lock-in Definition. Last
accessed: July 30, 2019. url: http://www.linfo.org/vendor_
lockin.html.

[154] Pradeep A. Ravindranath, Stefano Forli, David S. Goodsell,
Arthur J. Olson, and Michel F. Sanner. “AutoDockFR: Advances
in Protein-Ligand Docking with Explicitly Specified Binding
Site Flexibility.” In: Journal of PLOS Computational Biology 11.12

(2015), pp. 1 –28. doi: 10.1371/journal.pcbi.1004586.

[155] Noraini M. Razali and John Geraghty. “Genetic Algorithm Per-
formance with Different Selection Strategies in Solving TSP.”
In: World Congress on Engineering. London, United Kingdom:
IAENG, 2011. url: http://www.iaeng.org/publication/
WCE2011/WCE2011_pp1134-1139.pdf.

[156] David W. Ritchie, Dima Kozakov, and Sandor Vajda. “Accel-
erating and focusing protein–protein docking correlations us-
ing multi-dimensional rotational FFT generating functions.”
In: Journal of Bioinformatics 24.17 (2008), pp. 1865 –1873. doi:
10.1093/bioinformatics/btn334.

[157] David W. Ritchie and Vishwesh Venkatraman. “Ultra-fast FFT
protein docking on graphics processors.” In: Journal of Bioinfor-
matics 26.19 (2010), pp. 2398 –2405. doi: 10.1093/bioinformatics/
btq444.

[158] Youngtae Roh, Jun Lee, Sungjun Park, and Jee-In Kim. “A
molecular docking system using CUDA.” In: Proceedings of the
International Conference on Hybrid Information Technology. Dae-
jeon, Korea: ACM, 2009. doi: 10.1145/1644993.1644999.

[159] Hocine Saadi, Nadia Nouali Taboudjemat, Abdellatif Rahmoun,
Baldomero Imbernón, Horacio Pérez-Sánchez, and José M. Ce-
cilia. “Parallel Desolvation Energy Term Calculation for Blind
Docking on GPU Architectures.” In: Proceedings of the 46th In-
ternational Conference on Parallel Processing Workshops (ICPPW).
Bristol, United Kingdom: IEEE, 2017. doi: 10.1109/ICPPW.
2017.16.

[160] Hocine Saadi, Nadia Nouali Taboudjemat, Abdellatif Rahmoun,
Baldomero Imbernón, Horacio Pérez-Sánchez, and José M. Ce-
cilia. “Efficient GPU-based parallelization of solvation calcula-
tion for the blind docking problem.” In: The Journal of Super-
computing (2019). doi: 10.1007/s11227-019-02834-5.

[161] F. Anthony San Lucas, Jerry Fowler, Kyle Chang, Scott Kopetz,
Eduardo Vilar, and Paul Scheet. “Cancer In Silico Drug Discov-
ery: A Systems Biology Tool for Identifying Candidate Drugs
to Target Specific Molecular Tumor Subtypes.” In: Journal of
Molecular Cancer Therapeutics 13.12 (2014), pp. 3230–3240. doi:
10.1158/1535-7163.MCT-14-0260.

http://www.linfo.org/vendor_lockin.html
http://www.linfo.org/vendor_lockin.html
http://dx.doi.org/10.1371/journal.pcbi.1004586
http://www.iaeng.org/publication/WCE2011/WCE2011_pp1134-1139.pdf
http://www.iaeng.org/publication/WCE2011/WCE2011_pp1134-1139.pdf
http://dx.doi.org/10.1093/bioinformatics/btn334
http://dx.doi.org/10.1093/bioinformatics/btq444
http://dx.doi.org/10.1093/bioinformatics/btq444
http://dx.doi.org/10.1145/1644993.1644999
http://dx.doi.org/10.1109/ICPPW.2017.16
http://dx.doi.org/10.1109/ICPPW.2017.16
http://dx.doi.org/10.1007/s11227-019-02834-5
http://dx.doi.org/10.1158/1535-7163.MCT-14-0260

bibliography 139

[162] Ahmed Sanaullah and Martin C. Herbordt. “FPGA HPC Us-
ing OpenCL: Case Study in 3D FFT.” In: Proceedings of the 9th
International Symposium on Highly-Efficient Accelerators and Re-
configurable Technologies (HEART). Toronto, ON, Canada: ACM,
2018. doi: 10.1145/3241793.3241800.

[163] Ahmed Sanaullah and Martin C. Herbordt. “Unlocking Performance-
Programmability by Penetrating the Intel FPGA OpenCL Toolflow.”
In: Proceedings of the 2018 High Performance Extreme Comput-
ing Conference (HPEC). Waltham, MA, USA: IEEE, 2018. doi:
10.1109/HPEC.2018.8547646.

[164] Ahmed Sanaullah, Rushi Patel, and Martin C. Herbordt. “An
Empirically Guided Optimization Framework for FPGA OpenCL.”
In: Proceedings of the 2018 International Conference on Field Pro-
grammable Technology (ICFPT). Naha, Okinawa, Japan: IEEE,
2018. doi: 10.1109/FPT.2018.00018.

[165] Diogo Santos-Martins, Solis-Vasquez, Leonardo, Andreas Koch,
and Stefano Forli. “Accelerating AutoDock4 with GPUs and
Gradient-Based Local Search.” In: ChemRxiv (preprint) (2019).
doi: 10.26434/chemrxiv.9702389.v1.

[166] Diogo Santos-Martins, Jérôme Eberhardt, Giulia Bianco, Solis-
Vasquez, Leonardo, Francesca Alessandra Ambrosio, Andreas
Koch, and Stefano Forli. “D3R Grand Challenge 4: prospec-
tive pose prediction of BACE1 ligands with AutoDock-GPU.”
In: Journal of Computer-Aided Molecular Design (2019). doi: 10.
1007/s10822-019-00241-9.

[167] Matthew Scarpino. OpenCL in Action. Manning Publications,
2012. url: https://www.manning.com/books/opencl- in-
action.

[168] Ada Sedova, John D. Eblen, Reuben Budiardja, Arnold Thar-
rington, and Jeremy C. Smith. “High-Performance Molecular
Dynamics Simulation for Biological and Materials Sciences:
Challenges of Performance Portability.” In: Proceedings of the
International Workshop on Performance, Portability and Productiv-
ity in HPC (P3HPC). Dallas, TX, USA: IEEE, 2018. doi: 10.1109/
P3HPC.2018.00004.

[169] Amazon Web Services. Pharma & Biotech in the Cloud. Last ac-
cessed: April 30, 2019. url: https://aws.amazon.com/health/
biotech-pharma.

[170] Shoubu system B. Last accessed: April 30, 2019. url: https:
//www.top500.org/system/179165.

[171] Balint Siklosi, Istvan Z. Reguly, and Gihan R. Mudalige. “Het-
erogeneous CPU-GPU Execution of Stencil Applications.” In:
Proceedings of the International Workshop on Performance, Porta-

http://dx.doi.org/10.1145/3241793.3241800
http://dx.doi.org/10.1109/HPEC.2018.8547646
http://dx.doi.org/10.1109/FPT.2018.00018
http://dx.doi.org/10.26434/chemrxiv.9702389.v1
http://dx.doi.org/10.1007/s10822-019-00241-9
http://dx.doi.org/10.1007/s10822-019-00241-9
https://www.manning.com/books/opencl-in-action
https://www.manning.com/books/opencl-in-action
http://dx.doi.org/10.1109/P3HPC.2018.00004
http://dx.doi.org/10.1109/P3HPC.2018.00004
https://aws.amazon.com/health/biotech-pharma
https://aws.amazon.com/health/biotech-pharma
https://www.top500.org/system/179165
https://www.top500.org/system/179165

140 bibliography

bility and Productivity in HPC (P3HPC). Dallas, TX, USA: IEEE,
2018. doi: 10.1109/P3HPC.2018.00010.

[172] Hércules Cardoso Da Silva, Flávia Pisani, and Edson Borin.
“A Comparative Study of SYCL, OpenCL, and OpenMP.” In:
Proceedings of the 2016 International Symposium on Computer Ar-
chitecture and High Performance Computing Workshops (SBAC-
PADW). Los Angeles, CA, USA: IEEE, 2016. doi: 10.1109/SBAC-
PADW.2016.19.

[173] Martin Simonsen, Mikael H. Christensen, René Thomsen, and
Christian N. S. Pedersen. “GPU-Accelerated High-Accuracy
Molecular Docking Using Guided Differential Evolution.” In:
Massively Parallel Evolutionary Computation on GPGPUs. Springer,
2013, pp. 349 –367. doi: 10.1007/978-3-642-37959-8_16.

[174] M. S. Smyth and J. H. J. Martin. “x Ray crystallography.”
In: Journal of Molecular Pathology 53.1 (2000), pp. 8 –14. doi:
10.1136/mp.53.1.8.

[175] Francisco J. Solis and Roger J. B. Wets. “Minimization by Ran-
dom Search Techniques.” In: Journal of Mathematics of Opera-
tions Research 6.1 (1981), pp. 19–30. doi: 10.1287/moor.6.1.19.

[176] Solutions, Solvation, and Dissociation. Last accessed: July 30, 2019.
url: https://chem.libretexts.org/Bookshelves/General_
Chemistry/Book%3A_General_Chemistry_Supplement_(Eames)

/Chemical _ Reactions _ and _ Interactions / Solutions % 2C _

Solvation%2C_and_Dissociation.

[177] Lukas Sommer, Florian Stock, Solis-Vasquez, Leonardo, and
Andreas Koch. EPHoS: Evaluation of Programming Models for
Heterogeneous Systems. Berlin, Germany: German Association
of the Automotive Industry (VDA: Verband der Automobilin-
dustrie), 2019. url: https : / / www . vda . de / de / services /

Publikationen/fat-schriftenreihe-317.html.

[178] Lukas Sommer, Florian Stock, Solis-Vasquez, Leonardo, and
Andreas Koch. “Work-in-Progress: DAPHNE - An Automo-
tive Benchmark Suite for Parallel Programming Models on
Embedded Heterogeneous Platforms.” In: Proceedings of the
International Conference on Embedded Software (EMSOFT). New
York, NY, USA: ACM, 2019. doi: 10.1145/3349568.3351547.

[179] Sérgio F. Sousa, Pedro A. Fernandes, and Maria J. Ramos.
“Protein-ligand docking: Current status and future challenges.”
In: Journal of Proteins: Structure, Function, and Bioinformatics 65.1
(2006), pp. 15–26. doi: 10.1002/prot.21082.

[180] John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R.
Peterson, Zaida Luthey-Schulten, and Klaus Schulten. “Evalua-
tion of Emerging Energy-Efficient Heterogeneous Computing

http://dx.doi.org/10.1109/P3HPC.2018.00010
http://dx.doi.org/10.1109/SBAC-PADW.2016.19
http://dx.doi.org/10.1109/SBAC-PADW.2016.19
http://dx.doi.org/10.1007/978-3-642-37959-8_16
http://dx.doi.org/10.1136/mp.53.1.8
http://dx.doi.org/10.1287/moor.6.1.19
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_General_Chemistry_Supplement_(Eames)/Chemical_Reactions_and_Interactions/Solutions%2C_Solvation%2C_and_Dissociation
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_General_Chemistry_Supplement_(Eames)/Chemical_Reactions_and_Interactions/Solutions%2C_Solvation%2C_and_Dissociation
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_General_Chemistry_Supplement_(Eames)/Chemical_Reactions_and_Interactions/Solutions%2C_Solvation%2C_and_Dissociation
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_General_Chemistry_Supplement_(Eames)/Chemical_Reactions_and_Interactions/Solutions%2C_Solvation%2C_and_Dissociation
https://www.vda.de/de/services/Publikationen/fat-schriftenreihe-317.html
https://www.vda.de/de/services/Publikationen/fat-schriftenreihe-317.html
http://dx.doi.org/10.1145/3349568.3351547
http://dx.doi.org/10.1002/prot.21082

bibliography 141

Platforms for Biomolecular and Cellular Simulation Work-
loads.” In: Int. Parallel and Distributed Processing Symposium
Workshops (IPDPSW). Chicago, IL, USA: IEEE, 2016. doi: 10.
1109/IPDPSW.2016.130.

[181] Bharat Sukhwani and Martin C. Herbordt. “Acceleration of
a production rigid molecule docking code.” In: Proceedings
of the International Conference on Field Programmable Logic and
Applications. Heidelberg, Germany: IEEE, 2008. doi: 10.1109/
FPL.2008.4629955.

[182] Bharat Sukhwani and Martin C. Herbordt. “GPU Accelera-
tion of a Production Molecular Docking Code.” In: Proceed-
ings of the 2nd Workshop on General Purpose Processing on Graph-
ics Processing Units. Washington, D.C., USA: ACM, 2009. doi:
10.1145/1513895.1513898.

[183] Bharat Sukhwani and Martin C. Herbordt. “FPGA acceleration
of rigid-molecule docking codes.” In: Journal of IET Computers
Digital Techniques 4.3 (2010), pp. 184 –195. doi: 10.1049/iet-
cdt.2009.0013.

[184] Summit - Oak Ridge National Laboratory’s 200 petaflop supercom-
puter. Last accessed: April 30, 2019. url: https://www.olcf.
ornl.gov/olcf-resources/compute-systems/summit.

[185] Swiss Institute of Bioinformatics. Directory of computer-aided
Drug Design tools. Last accessed: March 30, 2019. url: https:
//www.click2drug.org.

[186] Embedded Systems TU Darmstadt and Applications (ESA)
Group. OCLADock-FPGA: OpenCL Accelerated Molecular Dock-
ing on FPGAs. Last accessed: May 30, 2019. url: https://git.
esa.informatik.tu-darmstadt.de/docking/ocladock-fpga.

[187] Embedded Systems TU Darmstadt and Applications (ESA)
Group. OCLADock: OpenCL Accelerated Molecular Docking. Last
accessed: May 30, 2019. url: https://git.esa.informatik.tu-
darmstadt.de/docking/ocladock.

[188] Jorge Tavares, Salma Mesmoudi, and El-Ghazali Talbi. “On the
Efficiency of Local Search Methods for the Molecular Docking
Problem.” In: Proceedings of the European Conference on Evolu-
tionary Computation, Machine Learning and Data Mining in Bioin-
formatics (EvoBIO). Tübingen, Germany: Springer, 2009. doi:
10.1007/978-3-642-01184-9_10.

[189] The University of Texas Austin: Texas Advanced Comput-
ing Center. Project Catapult: A Reconfigurable Architecture For
Large Scale Machine Learning. Last accessed: April 30, 2019. url:
https://www.tacc.utexas.edu/systems/catapult.

http://dx.doi.org/10.1109/IPDPSW.2016.130
http://dx.doi.org/10.1109/IPDPSW.2016.130
http://dx.doi.org/10.1109/FPL.2008.4629955
http://dx.doi.org/10.1109/FPL.2008.4629955
http://dx.doi.org/10.1145/1513895.1513898
http://dx.doi.org/10.1049/iet-cdt.2009.0013
http://dx.doi.org/10.1049/iet-cdt.2009.0013
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
https://www.click2drug.org
https://www.click2drug.org
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock-fpga
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock-fpga
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock
http://dx.doi.org/10.1007/978-3-642-01184-9_10
https://www.tacc.utexas.edu/systems/catapult

142 bibliography

[190] CORPORATE The MPI Forum. “MPI: A Message Passing In-
terface.” In: Proceedings of the 1993 ACM/IEEE Conference on
Supercomputing. Portland, Oregon, USA: ACM, 1993. doi: 10.
1145/169627.169855.

[191] The Modern View of Atomic Structure. Last accessed: July 30,
2019. url: https : / / chem . libretexts . org / Bookshelves /

General _ Chemistry / Map % 3A _ Chemistry_ - _The _ Central _

Science_(Brown_et_al.)/02._Atoms%2C_Molecules%2C_

and_Ions/2.3%3A_The_Modern_View_of_Atomic_Structure.

[192] The Official UCSF DOCK Web-site. Last accessed: May 30, 2019.
url: http://dock.compbio.ucsf.edu.

[193] René Thomsen and Mikael H. Christensen. “MolDock: A New
Technique for High-Accuracy Molecular Docking.” In: Journal
of Medicinal Chemistry 49.11 (2006), pp. 3315 –3321. doi: 10.
1021/jm051197e.

[194] University of Toronto. LegUp High-Level Synthesis. Last accessed:
July 30, 2019. url: http://legup.eecg.utoronto.ca.

[195] Oleg Trott and Arthur J. Olson. “AutoDock Vina: Improv-
ing the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading.” In: Jour-
nal of Computational Chemistry 31.2 (2010), pp. 455–461. doi:
10.1002/jcc.21334.

[196] Turbostat - System Manager’s Manual. Last accessed: March 30,
2019. url: https://www.linux.org/docs/man8/turbostat.
html.

[197] Tom Van Court, Yongfeng Gu, and Martin C. Herbordt. “FPGA
acceleration of rigid molecule interactions.” In: Proceedings of
the 12th Annual Symposium on Field-Programmable Custom Com-
puting Machines. Napa, CA, USA: IEEE, 2004. doi: 10.1109/
FCCM.2004.33.

[198] Tom Van Court, Yongfeng Gu, Vikas Mundada, and Martin
Herbordt. “Rigid Molecule Docking: FPGA Reconfiguration
for Alternative Force Laws.” In: Journal on Advances in Signal
Processing (EURASIP) 2006.1 (2006), p. 097950. doi: 10.1155/
ASP/2006/97950.

[199] Robert Vassar, Dora M. Kovacs, Riqiang Yan, and Philip C.
Wong. “The β-Secretase Enzyme BACE in Health and Alzheimer’s
Disease: Regulation, Cell Biology, Function, and Therapeutic
Potential.” In: Journal of Neuroscience 29.41 (2009), pp. 12787–
12794. doi: 10.1523/JNEUROSCI.3657-09.2009.

[200] Vivado Design Suite - HLx Editions. Last accessed: March 30,
2019. url: https://www.xilinx.com/products/design-tools/
vivado.html.

http://dx.doi.org/10.1145/169627.169855
http://dx.doi.org/10.1145/169627.169855
https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/02._Atoms%2C_Molecules%2C_and_Ions/2.3%3A_The_Modern_View_of_Atomic_Structure
https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/02._Atoms%2C_Molecules%2C_and_Ions/2.3%3A_The_Modern_View_of_Atomic_Structure
https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/02._Atoms%2C_Molecules%2C_and_Ions/2.3%3A_The_Modern_View_of_Atomic_Structure
https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/02._Atoms%2C_Molecules%2C_and_Ions/2.3%3A_The_Modern_View_of_Atomic_Structure
http://dock.compbio.ucsf.edu
http://dx.doi.org/10.1021/jm051197e
http://dx.doi.org/10.1021/jm051197e
http://legup.eecg.utoronto.ca
http://dx.doi.org/10.1002/jcc.21334
https://www.linux.org/docs/man8/turbostat.html
https://www.linux.org/docs/man8/turbostat.html
http://dx.doi.org/10.1109/FCCM.2004.33
http://dx.doi.org/10.1109/FCCM.2004.33
http://dx.doi.org/10.1155/ASP/2006/97950
http://dx.doi.org/10.1155/ASP/2006/97950
http://dx.doi.org/10.1523/JNEUROSCI.3657-09.2009
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

bibliography 143

[201] Gongyu Wang, Herman Lam, Alan George, and Glen Edwards.
“Performance and productivity evaluation of hybrid-threading
HLS versus HDLs.” In: Proceedings of the High Performance Ex-
treme Computing Conference (HPEC). Waltham, MA, USA: IEEE,
2015. doi: 10.1109/HPEC.2015.7322439.

[202] Zhe Wang, Huiyong Sun, Xiaojun Yao, Dan Li, Lei Xu, Youyong
Li, Sheng Tian, and Tingjun Hou. “Comprehensive evaluation
of ten docking programs on a diverse set of protein–ligand com-
plexes: the prediction accuracy of sampling power and scoring
power.” In: Journal of Physical Chemistry Chemical Physics 18.18

(2016), pp. 12964–12975. doi: 10.1039/C6CP01555G.

[203] Welcome to the AutoDockFR Home Page. Last accessed: July 30,
2019. url: http://adfr.scripps.edu/AutoDockFR/adfr.html.

[204] Dennis Weller, Fabian Oboril, Dimitar Lukarski, Juergen Becker,
and Mehdi Tahoori. “Energy Efficient Scientific Computing on
FPGAs Using OpenCL.” In: Proceedings of the 25th International
Symposium on Field-Programmable Gate Arrays. Monterey, Cali-
fornia, USA: ACM, 2017. doi: 10.1145/3020078.3021730.

[205] What are Amyloid Plaques? - Definition & Significance. url: https:
//study.com/academy/lesson/what-are-amyloid-plaques-

definition-lesson.html.

[206] World Community Grid: Active Research. Last accessed: March 30,
2019. url: https://www.worldcommunitygrid.org/research/
viewAllProjects.do.

[207] World Community Grid. Last accessed: March 30, 2019. url:
https://www.worldcommunitygrid.org.

[208] Qiang Wu, Yajun Ha, Akash Kumar, Shaobo Luo, Ang Li, and
Shihab Mohamed. “A heterogeneous platform with GPU and
FPGA for power efficient high performance computing.” In:
Proceedings of the International Symposium on Integrated Circuits
(ISIC). Singapore, Singapore: IEEE, 2014. doi: 10.1109/ISICIR.
2014.7029447.

[209] Xilinx SDAccel Forum. Last accessed: May 30, 2019. url: https:
//forums.xilinx.com/t5/SDAccel/SDAccel-OpenCL-examples-

with-non-blocking-pipe-functions/td-p/912707.

[210] Xilinx. SDAccel: Enabling Hardware-Accelerated Software. Last
accessed: March 30, 2019. url: https://www.xilinx.com/
products/design-tools/software-zone/sdaccel.html.

[211] Xilinx. SDSoC Programmers Guide. Last accessed: April 30, 2019.
url: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2018_2/ug1278-sdsoc-programmers-guide.

pdf.

http://dx.doi.org/10.1109/HPEC.2015.7322439
http://dx.doi.org/10.1039/C6CP01555G
http://adfr.scripps.edu/AutoDockFR/adfr.html
http://dx.doi.org/10.1145/3020078.3021730
https://study.com/academy/lesson/what-are-amyloid-plaques-definition-lesson.html
https://study.com/academy/lesson/what-are-amyloid-plaques-definition-lesson.html
https://study.com/academy/lesson/what-are-amyloid-plaques-definition-lesson.html
https://www.worldcommunitygrid.org/research/viewAllProjects.do
https://www.worldcommunitygrid.org/research/viewAllProjects.do
https://www.worldcommunitygrid.org
http://dx.doi.org/10.1109/ISICIR.2014.7029447
http://dx.doi.org/10.1109/ISICIR.2014.7029447
https://forums.xilinx.com/t5/SDAccel/SDAccel-OpenCL-examples-with-non-blocking-pipe-functions/td-p/912707
https://forums.xilinx.com/t5/SDAccel/SDAccel-OpenCL-examples-with-non-blocking-pipe-functions/td-p/912707
https://forums.xilinx.com/t5/SDAccel/SDAccel-OpenCL-examples-with-non-blocking-pipe-functions/td-p/912707
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1278-sdsoc-programmers-guide.pdf

144 bibliography

[212] Xilinx. Vivado Design Hub - Designing with IP. Last accessed:
July 30, 2019. url: https://www.xilinx.com/support/documentation-
navigation/design-hubs/dh0003-vivado-designing-with-

ip-hub.html.

[213] Xilinx. Vivado High-Level Synthesis – Accelerates IP Creation by
Enabling C, C++ and System C Specifications. Last accessed: July
30, 2019. url: https://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html.

[214] Xilinx. ZCU102 Evaluation Board: User Guide. Last accessed:
April 30, 2019. url: https : / / www . xilinx . com / support /

documentation/boards_and_kits/zcu102/ug1182- zcu102-

eval-bd.pdf.

[215] Xilinx. Xcell: The Quarterly Journal for Programmable Logic Users.
Last accessed: July 30, 2019. 1999. url: https://www.xilinx.
com/publications/archives/xcell/Xcell32.pdf.

[216] Umesh Yadava. “Search algorithms and scoring methods in
protein-ligand docking.” In: International Journal of Endocrinol-
ogy & Metabolism 6.6 (2018). url: https://medcraveonline.
com/article?id=16934&fbclid=IwAR3fsVeMH21u2Y0a_LV8g1KZAEfDskn3A_

p0QMbspeoPEzapIrqlZO5yjNU.

[217] Charlene Yang et al. “An Empirical Roofline Methodology for
Quantitatively Assessing Performance Portability.” In: Proceed-
ings of the International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). Dallas, TX, USA: IEEE, 2018. doi:
10.1109/P3HPC.2018.00005.

[218] Chen Yang, Jiayi Sheng, Rushi Patel, Ahmed Sanaullah, Vipin
Sachdeva, and Martin C. Herbordt. “OpenCL for HPC with
FPGAs: Case study in molecular electrostatics.” In: Proceed-
ings of the 2017 High Performance Extreme Computing Conference
(HPEC). Waltham, MA, USA: IEEE, 2017. doi: 10.1109/HPEC.
2017.8091078.

[219] Andrei K. Yudin. “Macrocycles: lessons from the distant past,
recent developments, and future directions.” In: Journal of
Chemical Science 6.1 (2015), pp. 30–49. doi: 10.1039/C4SC03089C.

[220] Elizabeth Yuriev and Paul A. Ramsland. “Latest developments
in molecular docking: 2010-2011 in review.” In: Journal of Molec-
ular Recognition 26.5 (2013), pp. 215–239. doi: 10.1002/jmr.
2266.

[221] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate
Method.” In: arXiv abs/1212.5701 (2012). url: https://arxiv.
org/abs/1212.5701.

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0003-vivado-designing-with-ip-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0003-vivado-designing-with-ip-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0003-vivado-designing-with-ip-hub.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/publications/archives/xcell/Xcell32.pdf
https://www.xilinx.com/publications/archives/xcell/Xcell32.pdf
https://medcraveonline.com/article?id=16934&fbclid=IwAR3fsVeMH21u2Y0a_LV8g1KZAEfDskn3A_p0QMbspeoPEzapIrqlZO5yjNU
https://medcraveonline.com/article?id=16934&fbclid=IwAR3fsVeMH21u2Y0a_LV8g1KZAEfDskn3A_p0QMbspeoPEzapIrqlZO5yjNU
https://medcraveonline.com/article?id=16934&fbclid=IwAR3fsVeMH21u2Y0a_LV8g1KZAEfDskn3A_p0QMbspeoPEzapIrqlZO5yjNU
http://dx.doi.org/10.1109/P3HPC.2018.00005
http://dx.doi.org/10.1109/HPEC.2017.8091078
http://dx.doi.org/10.1109/HPEC.2017.8091078
http://dx.doi.org/10.1039/C4SC03089C
http://dx.doi.org/10.1002/jmr.2266
http://dx.doi.org/10.1002/jmr.2266
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701

bibliography 145

[222] Yao Zhang, Mark Sinclair, and Andrew A. Chien. “Improving
Performance Portability in OpenCL Programs.” In: Proceed-
ings of the International Supercomputing Conference (ISC). Leipzig,
Germany: Springer, 2013. doi: 10.1007/978-3-642-38750-
0_11.

[223] Tuowen Zhao, Samuel Williams, Mary Hall, and Hans Johansen.
“Delivering Performance-Portable Stencil Computations on
CPUs and GPUs Using Bricks.” In: Proceedings of the Inter-
national Workshop on Performance, Portability and Productivity in
HPC (P3HPC). Dallas, TX, USA: IEEE, 2018. doi: 10.1109/
P3HPC.2018.00009.

[224] Jinghui Zhong, Xiaomin Hu, Jun Zhang, and Min Gu. “Com-
parison of Performance between Different Selection Strategies
on Simple Genetic Algorithms.” In: Proceedings of the Inter-
national Conference on Computational Intelligence for Modelling,
Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce. Vienna, Austria:
IEEE, 2005. doi: 10.1109/CIMCA.2005.1631619.

[225] Zhiyong Zhou, Anthony K. Felts, Richard A. Friesner, and
Ronald M. Levy. “Comparative performance of several flexible
docking programs and scoring functions: enrichment studies
for a diverse set of pharmaceutically relevant targets.” In: Jour-
nal of Chemical Information and Modeling 47.4 (2007), pp. 1599–
608. doi: 10.1021/ci7000346.

[226] Hamid R. Zohouri, Artur Podobas, and Satoshi Matsuoka.
“Combined Spatial and Temporal Blocking for High-Performance
Stencil Computation on FPGAs Using OpenCL.” In: Proceedings
of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. Monterey, CA, USA: ACM, 2018. doi: 10.1145/
3174243.3174248.

[227] Hamid. R. Zohouri, Naoya Maruyama, Aaron Smith, Motohiko
Matsuda, and Satoshi Matsuoka. “Evaluating and Optimiz-
ing OpenCL Kernels for High Performance Computing with
FPGAs.” In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).
Salt Lake City, UT, USA: IEEE, 2016. doi: 10.1109/SC.2016.34.

[228] Zsolt Zsoldos, Darryl Reid, Aniko Simon, Sayyed B. Sadjad, and
A. Peter Johnson. “eHiTS: A new fast, exhaustive flexible ligand
docking system.” In: Journal of Molecular Graphics and Modelling
26.1 (2007), pp. 198–212. doi: 10.1016/j.jmgm.2006.06.002.

[229] Top500 project. The Green500 list - November 2018. Last accessed:
April 30, 2019. url: https://www.top500.org/green500/
lists/2018/11.

http://dx.doi.org/10.1007/978-3-642-38750-0_11
http://dx.doi.org/10.1007/978-3-642-38750-0_11
http://dx.doi.org/10.1109/P3HPC.2018.00009
http://dx.doi.org/10.1109/P3HPC.2018.00009
http://dx.doi.org/10.1109/CIMCA.2005.1631619
http://dx.doi.org/10.1021/ci7000346
http://dx.doi.org/10.1145/3174243.3174248
http://dx.doi.org/10.1145/3174243.3174248
http://dx.doi.org/10.1109/SC.2016.34
http://dx.doi.org/10.1016/j.jmgm.2006.06.002
https://www.top500.org/green500/lists/2018/11
https://www.top500.org/green500/lists/2018/11

146 bibliography

[230] Top500 project. The Top500 list - Highlights. Last accessed: April
30, 2019. url: https://www.top500.org/lists/2018/11/
highs.

[231] Top500 project. The Top500 list - November 2018. Last accessed:
April 30, 2019. url: https://www.top500.org/lists/2018/11.

[232] Top500 project. The Top500 list - The LINPACK Benchmark. Last
accessed: April 30, 2019. url: https : / / www . top500 . org /

project/linpack.

[233] Solis-Vasquez, Leonardo and Andreas Koch. “A Performance
and Energy Evaluation of OpenCL-accelerated Molecular Dock-
ing.” In: Proceedings of the 5th International Workshop on OpenCL
(IWOCL). Toronto, ON, Canada: ACM, 2017. doi: 10.1145/
3078155.3078167.

[234] Solis-Vasquez, Leonardo and Andreas Koch. “A Case Study
in Using OpenCL on FPGAs: Creating an Open-Source Ac-
celerator of the AutoDock Molecular Docking Software.” In:
Proceedings of the 5th International Workshop on FPGAs for Soft-
ware Programmers (FSP). Dublin, Ireland: VDE VERLAG, 2018.
url: https://ieeexplore.ieee.org/document/8470463.

[235] Solis-Vasquez, Leonardo, Diogo Santos-Martins, Andreas Koch,
and Stefano Forli. “Performance Analysis of Molecular Dock-
ing in OpenCL: A Case Study of AutoDock enhanced with
Gradients.” In: Submitted to the 34th International Parallel and
Distributed Processing Symposium (IPDPS). Submitted, 2019.

[236] Solis-Vasquez, Leonardo, Diogo Santos-Martins, Andreas Koch,
and Stefano Forli. “Evaluating the Energy Efficiency of OpenCL-
accelerated AutoDock Molecular Docking.” In: Submitted to the
28th Euromicro International Conference on Parallel, Distributed,
and Network-based Processing (PDP). Submitted, 2020.

https://www.top500.org/lists/2018/11/highs
https://www.top500.org/lists/2018/11/highs
https://www.top500.org/lists/2018/11
https://www.top500.org/project/linpack
https://www.top500.org/project/linpack
http://dx.doi.org/10.1145/3078155.3078167
http://dx.doi.org/10.1145/3078155.3078167
https://ieeexplore.ieee.org/document/8470463

	Declaration
	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Current trends in high-performance and scientific computing
	1.2 Target application and research problems
	1.3 Thesis contribution
	1.4 Thesis outline

	2 Fundamentals of AutoDock molecular docking
	2.1 Background on molecular docking
	2.2 AutoDock: a software for automated docking
	2.2.1 Encoding
	2.2.2 Lamarckian Genetic Algorithm
	2.2.3 Solis-Wets local search
	2.2.4 Scoring function
	2.2.5 AutoDock algorithm
	2.2.6 Validation

	3 Related work
	3.1 OpenCL programming and energy-efficiency aspects of heterogeneous systems
	3.1.1 Performance portability of OpenCL
	3.1.2 OpenCL for FPGA programming
	3.1.3 Compute-energy efficiency

	3.2 Parallel implementations of molecular docking tools
	3.2.1 FFT-based tools
	3.2.2 Evolutionary-based tools
	3.2.3 AutoDock
	3.2.4 Pairwise potentials
	3.2.5 Intrinsically-parallel tools
	3.2.6 Other parallelization approaches

	3.3 Algorithmic improvements in molecular docking
	3.4 Wrap-up discussion

	4 OCLADock: OpenCL-accelerated AutoDock on CPUs and GPUs
	4.1 OpenCL implementation of AutoDock
	4.1.1 Data-based parallelization
	4.1.2 Code architecture

	4.2 Experimental evaluation
	4.2.1 Setup
	4.2.2 Validation
	4.2.3 Execution performance
	4.2.4 Compute-energy efficiency

	5 OCLADock-FPGA: porting AutoDock to FPGAs using OpenCL
	5.1 Data-parallel approach on FPGAs
	5.2 Task-parallel approach: reformulated strategy for FPGAs
	5.2.1 Reference pipeline design for FPGAs
	5.2.2 The development phases
	5.2.3 Further optimization techniques

	5.3 Experimental evaluation
	5.3.1 Setup
	5.3.2 Validation
	5.3.3 Design configurations and resource utilization
	5.3.4 Execution performance
	5.3.5 Compute-energy efficiency
	5.3.6 Further analysis

	6 Enhancing OCLADock with gradients of the scoring function
	6.1 Gradient-based optimization
	6.1.1 Gradient calculation
	6.1.2 Gradient conversion from atomic into genetic space
	6.1.3 Gradient-based local-search methods
	6.1.4 Incorporation into OCLADock

	6.2 Experimental evaluation
	6.2.1 Setup
	6.2.2 Validation
	6.2.3 Profiling analysis for optimum local-search rate
	6.2.4 Efficiency of gradient-based methods
	6.2.5 Portability to other accelerators
	6.2.6 Compute-energy efficiency

	7 Using OCLADock for competitive drug discovery
	7.1 The challenge of docking macrocyclic molecular structures
	7.1.1 Why is this actually a challenge?

	7.2 Handling macrocycles with OCLADock
	7.2.1 Macrocycle-oriented scoring-function terms
	7.2.2 Macrocycle-oriented development
	7.2.3 Experimental evaluation

	8 Concluding remarks
	8.1 Summary
	8.2 Lessons learned
	8.2.1 OpenCL for FPGAs
	8.2.2 OpenCL for GPUs and CPUs
	8.2.3 OpenCL beyond datacenters

	8.3 Remaining research and engineering challenges
	8.3.1 Extending functionality of OCLADock
	8.3.2 Enhancing performance of OCLADock on FPGAs

	A Key implementation differences compared to original AutoDock code
	B Comparing performance against other parallelized docking software
	C Memory requirements
	D Future trends of OpenCL
	Full List of Publications

	 Bibliography

