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Real-Time Pose Graph SLAM based on Radar

Martin Holder, Sven Hellwig, and Hermann Winner

Abstract— This work presents a real-time pose graph based
Simultaneous Localization and Mapping (SLAM) system for
automotive Radar. The algorithm constructs a map from Radar
detections using the Iterative Closest Point (ICP) method to
match consecutive scans obtained from a single, front-facing
Radar sensor. The algorithm is evaluated on a range of real-
world datasets and shows mean translational errors as low
as 0.62m and demonstrates robustness on long tracks. Using
a single Radar, our proposed system achieves state-of-the-art
performance when compared to other Radar-based SLAM
algorithms that use multiple, higher-resolution Radars.

I. INTRODUCTION

One key aspect of autonomous driving technology is the
ability to accurately determine the vehicle’s location. This
requires precise maps of the surrounding environment, which
can be created with Simultaneous Localization and Mapping
(SLAM) algorithms. SLAM aims to construct a consistent
map of an unknown environment while simultaneously
estimating the vehicle’s pose within the map, see Fig. 1.
Most modern SLAM systems use either laser scanner (Lidar)
or camera-based approaches. There have been comparatively
few attempts at SLAM using Radar sensors.

In contrast to cameras, Lidar, and ultrasonic sensors,
Radar is suited for distinguishing between static and moving
targets in one measurement cycle, due to measurement of
the Doppler shift indicating relative radial velocity. This
additional information appears to be attractive for discarding
moving objects during the map building process. While
Radar lacks the high range and angular resolutions offered
by Lidar, it is more robust to adverse weather conditions
and more affordable. Furthermore, Radar detections are more
sparse than Lidar measurements. Radar detections are prone
to distortions, as mirror targets and clutter returns occur
frequently.

In this paper, we describe a SLAM system based on point-
cloud-like measurements obtained from a single automotive-
grade Radar of the sort used in driver assistance applications.
We seek to determine the level of performance a SLAM
application may achieve using a single, front-facing Radar.
The remainder of the paper is organized as follows: After a
brief review of existing Radar SLAM approaches, we intro-
duce our pose graph SLAM concept for Radar. We evaluate
our algorithm on three different scenarios recorded under
real-world driving conditions. We conclude by summarizing
the important characteristics of our algorithm and give an
outlook to further work.
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Fig. 1: Mapping process in an urban environment. The image
shows the estimated trajectory and resulting point cloud map.

II. RELATED WORK

In one of the earliest applications of Radar for vehicle
localization, highly visible Radar reflectors with known
positions were processed by an extended Kalman filter
(EKF) [1]. Reflectors were later used as landmarks in an
EKF-based SLAM system [2]. A more recent scan-matching-
based SLAM approach uses the Fourier-Mellin transformation
to match consecutive Radar scans, where the power spectra
are interpreted as 360° images [3]. The authors do not,
however, present a solution for loop closing. Most other
Radar-based SLAM systems use multiple Radar sensors for
360° coverage with range resolutions of up to 0.15 m accuracy.
Many employ particle filters, such as FastSLAM [4], which
renders an occupancy grid that can represent both occupied
and free space, or memory efficient Cluster-SLAM [5] that
merges Radar detections into larger micro clusters. A graph-
based Radar SLAM is proposed in [6], where image features
are extracted from a Radar scan and used as landmarks.
360° Radar sensors have also been used for ego-motion
estimation [7]. Here, a point cloud of detected targets is
extracted from the Radar’s power-range spectra and the
vehicle odometry is calculated by matching consecutive point
clouds. Here too, loop closing is not considered. To the
authors’ best knowledge, this is the first work to conduct
loop closing Radar SLAM using only a single, front-facing
Radar sensor with a range resolution of approx. 0.5m and
an angular measurement range of approx. 60°.

1. METHOD

A major disadvantage of landmark based SLAM systems
is the reliance on the extraction of suitable landmarks, which
is difficult for Radar scans with medium range and angular
resolution and high amounts of noise. Many Lidar-based
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Fig. 2: Components of the SLAM system

SLAM systems forgo the problem of landmark extraction by
matching point clouds directly [8]-[10]. However, despite
successful application in Radar ego-motion estimation [7] and
localization [11], point cloud matching approaches have not
yet been applied to Radar-based SLAM. We therefore propose
a graph-based SLAM system using the Iterative Closest Point
(ICP) method for scan matching. Graph-based systems are
the de facto standard in SLAM due to their reported superior
performance and ease of use compared to filtering-based
approaches [12]. Fig. 2 illustrates the structure of our SLAM
system. The Radar preprocessing component separates static
targets from moving targets and clutter while also estimat-
ing the Radar sensor’s velocity. The odometry component
estimates relative transformations between consecutive poses
by fusing wheel speed, steering wheel angle, and yaw rate
measurements with the velocity information obtained by the
Radar. The scan matching component identifies relative pose
estimates by aligning sequential Radar scans. Lastly, the
loop closing component calculates relative transformations
with respect to previously visited places. These relative pose
estimates are combined to construct a pose graph. The SLAM
algorithm obtains an estimate of the vehicle trajectory by
means of graph optimization. This process also produces a
point cloud map composed of Radar detections. The relative
pose measurements can optionally be augmented with position
measurements from a GNSS receiver to improve localization.
The following sections describe each of these components in
detail.

A. Radar Preprocessing

The Radar sensor measurements are available as a list
of detections, where Doppler ambiguities are resolved and
to some extent, sensor artifacts such as clutter and invalid
detections are removed. The sensor also compensates for
alignment errors which justifies an all-flat road assumption.
A Radar scan R is a set of detections each consisting of
the range r;, the azimuth angle ;, and the relative radial
velocity V.

The goal of the Radar preprocessing step is to find the
velocity vector of the sensor in Cartesian sensor coordinates
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Fig. 3: Application of MSAC for filtering static targets by
fitting a sinusoid.

Vs = [Vs:x; Vs;y]>: Since we are only interested in static
targets, the mapping process should discard moving targets
such as other vehicles and pedestrians. To achieve this, we
apply the Radar ego-motion estimation method proposed by
Kellner et al. [13]. The true velocity of static targets as seen
from the sensor has the same magnitude but opposite direction
of Vs. Only the radial components of the target velocities can
be measured, leading to the following relationship between
the sensor and target velocities:

Vr:i = €0S( i) Vs:x +sin( i) Vs.y (1)

Since Eq. (1) holds only for static targets, using all detections
would produce poor results when solving with ordinary
linear least squares. Therefore, we employ a variant of
the Random Sample Consensus (RANSAC) algorithm, M-
Estimator Sample Consensus (MSAC) [14], that treats moving
targets and clutter as outliers. The inlier set R? contains static
targets and is used in further processing. Fig. 3 shows the
result of the MSAC regression.

B. Odometry

In order to estimate the vehicle’s velocity and relative poses
between consecutive sensor measurements, the odometry
component fuses rear wheel speeds, yaw rate, steering wheel
angle, and the Radar velocity using an unscented Kalman filter
(UKF). UKFs produce more accurate estimates in non-linear
systems with measurement noise and do not require online
calculations of Jacobians. The state vector Xodom contains
the vehicle 2D position, X and Yy, and heading in a global,
Cartesian coordinate system, the longitudinal velocity Vyx in
a coordinate system fixed to the rear axle, the yaw rate -,
and additional unknown system parameters such as a wheel
speed correction factor Kys, the steering ratio is, and steering
wheel bias b :

>

Xodom = X Y Vx - kws is b ()

The correction factor Kys accounts for wheel slip and the
deviation of actual from nominal wheel radius. We assume
that ks is similar for both wheels since the same type of tire
with similar air pressure and wear is used. The estimation of

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

—_— ~ s 2. 1

o .1 0 7 L2 1



