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Summary
The terminal deoxynucleotidyl transferase (TdT) is the key enzyme proposed for enzy-
matic DNA synthesis, based on its ability to extend single stranded DNA rapidly using
all four different deoxynucleoside triphosphates (dNTPs). Proposals to employ TdT
for the de novo synthesis of defined DNA sequences date back to at least 1962, and
typically involve using the polymerase together with 3’-modified reversible terminator
dNTPS (RTdNTPs), analogous to Sequencing by Synthesis (SBS) schemes. However,
polymerases usually show a low tolerance for 3’-modified RTdNTPs, and the catalytic
site of TdT seems particularly difficult to engineer in order to enable fast incorporation
kinetics for such modified dNTPs. Until today, no practical enzymatic DNA synthesis
method based on this strategy has been published.

Here, we developed a novel approach to achieve single nucleotide extension of a
DNA molecule by a polymerase. By tethering a single dNTP to the polymerase in
a way that it can be incorporated by the polymerase moiety, we generate so called
polymerase-nucleotide conjugates. Once a polymerase-nucleotide conjugate extends a
DNA molecule by its tethered dNTP, the polymerase moiety stays covalently attached
to the extended DNA via the linkage to the incorporated nucleotide, and blocks other
polymerase-nucleotide conjugates from accessing the 3’-end of the DNA molecule. At
the same time, all dNTPs available in the system are tethered to a polymerase-moiety,
which prevents them from accessing the enzyme that has extended the DNA molecule.
The system therefore only allows single nucleotide extension to occur, until the termi-
nation is reversed by cleaving the linker between the extended DNA molecule and the
polymerase to enable subsequent cycles.

We tested the hypothesis that polymerase-nucleotide conjugates can be used for single
nucleotide extension of a DNA molecule, by generating TdT-nucleotide conjugates using
a linker based on a short polyethylene glycol structure. We coupled the linker to an
aminoallyl-modified dNTP, and then used a cysteine residue of TdT to attach the linker
to the protein. We found that nucleotides tethered to TdT could be incorporated quickly,
and that TdT-dNTP conjugates with a single tethered dNTP had the ability to extend
a DNA molecule almost exclusively by one nucleotide. TdT-dNTP conjugates with
the linker attached to four different cysteine positions were tested, and all attachment
positions enabled the generation of functional TdT-dNTP conjugates that could quickly
perform the single extension of a DNA molecule.

We then generated polymerase-nucleotide conjugates using a linker that could be
cleaved close to the dNTP, to reduce the size of the modification (“scar”) that remains
on the nucleobase after cleavage of the linker. These conjugates employed fast-cleaving
photocleavable moieties for release of the extended DNA molecule. We demonstrated
that conjugates based on this attachment strategy can extend a primer by all four dif-
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SUMMARY

ferent dNTPs quickly, and that multiple cycles of nucleotide extension and deprotection
can be performed, fulfilling the main requirement of an enzymatic DNA synthesis sys-
tem. Finally, based on the TdT-dNTP conjugates generated, we synthesized a defined
10-mer DNA sequence, achieving an average stepwise yield of 97.7 %.

Using polymerase-nucleotide conjugates, single nucleotide extensions of a DNA molecule
by a polymerase can be achieved in a reversible manner. This novel reversible termina-
tion scheme solves certain problems of previous technologies based on RTdNTPs, and
might also be implemented with template-dependent polymerases for sequencing appli-
cations. However, in this demonstration, it was used together with TdT to synthesize a
defined DNA sequence. We believe that the presented scheme offers a promising starting
point for the development of a practical enzymatic DNA synthesis technology.
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Zusammenfassung
Die Template-unabhängige Polymerase Terminale Deoxynucleotidyl Transferase (TdT)
wurde bereits 1962 im Kontext enzymatischer de novo Synthese von DNA genannt. TdT
katalysiert den Einbau der vier Nucleosidtriphosphate (dNTPs) in einzelsträngige DNA
mit sehr hoher Geschwindigkeit und erfüllt damit die grundlegenden Voraussetzungen
für den enzymatischen Syntheseprozess. Bisher wurde für die gezielte Synthese von Se-
quenzen mit TdT vor allem die Nutzung von 3’-modifizierten reversiblen Terminatoren
(RTdNTPs) vorgeschlagen, wie sie auch in Sequencing By Synthesis (SBS) Technologien
verwendet werden. Allerdings stellen 3’-modifizierte dNTPs oft schlechte Substrate für
Polymerasen dar, und im speziellen TdT hat nur eine geringe Toleranz für diese Art
von RTdNTPs. Die Kristallstruktur der Polymerase lässt zudem erahnen, dass Protein-
engineering für eine höhere Toleranz gegenüber den modifizierten dNTPs eine schwierige
Aufgabe darstellt. Bis zum heutigen Tag gibt es keine Publikation eines praktikablen
DNA-Syntheseverfahrens basierend auf dieser Strategie.

In dieser Arbeit wird ein neuer Ansatz für die Synthese von DNA mit TdT - und
im Allgemeinen für den wiederholten Einbau von einzelnen Nukleotiden mit einer Poly-
merase (reversible Termination) - vorgestellt. Hierbei wird ein einzelnes dNTP Molekül
über einen Linker mit einer Polymerase verbunden, um sogenannte Polymerase-dNTP
Konjugate herzustellen. Wenn die Polymerase eines Konjugats das verlinkte dNTP in
ein DNA Molekül einbaut, bleibt sie durch den Linker an die DNA gekoppelt, so dass
anderen Konjugaten der Zugang zum 3’-Ende des DNA Moleküls verwehrt wird. Durch
Spaltung des Linkers kann das DNA Molekül anschließend für weitere Verlängerungs-
schritte freigegeben werden.

Um zu testen, ob Polymerase-dNTP Konjugate für den Einbau einzelner Nukleotide
genutzt werden können, wurden zunächst Konjugate mit einem kurzen Polyethylenglycol-
Linker hergestellt. Der Linker wurde an ein Nukleosidtriphosphat mit einer Aminoallyl
Basenmodifikation gekoppelt und anschließend über ein Cystein an TdT angehängt. In
den Versuchen stellte sich heraus, dass TdT verlinkte dNTPs schnell einbauen kann, und
dass TdT-dNTP Konjugate mit nur einem verknüpften dNTP einzelnen Nukleotideinbau
ermöglichten. Vier verschiedene Ansatzpunkte des Linkers an der Polymerase wurden
getestet; alle ermöglichten einzelnen Nukleotideinbau mit hoher Geschwindigkeit.

Im Folgenden wurden Polymerase-dNTP Konjugate erstellt, deren Linker nahe der Nu-
kleobase gespalten werden kann, so dass nur eine kleine Modifikation am eingebauten
Nukleotid bestehen bleibt. Dafür wurden Linker mit photolabilen Gruppen verwendet,
die sehr schnell durch Lichteinwirkung gespalten werden können. Konjugate aller vier
Nukleosidtriphosphate wurden hergestellt, und hatten alle die Fähigkeit, einen Primer
schnell um ein einzelnes Nukleotid zu verlängern. Zudem ermöglichten die Konjugate die
Durchführung mehrerer Zyklen von Nukelotideinbau und Entschützung, und erfüllten

5



ZUSAMMENFASSUNG

damit die grundlegende Voraussetzung für ein System zur DNA Synthese. Die Konju-
gate wurden schliesslich genutzt, um eine DNA Sequenz von 10 Nukleotiden mit einer
durchschnittliche Ausbeute von 97.7 % pro Zyklus zu schreiben.

Polymerase-dNTP Konjugate ermöglichen den wiederholten und gezielten Einbau ein-
zelner Nukleotide in ein DNA Molekül. Dieses Prinzip für reversible Termination könnte
daher möglicherweise auch für das Sequenzieren von DNA Molekülen verwendet werden,
wenn es mit Template-abhängigen Polymerasen implementiert wird. In dieser Demons-
tration wurde die Technik genutzt, um enzymatisch eine definierte DNA Sequenz zu
schreiben. Die Methode stellt einen vielversprechenden Ansatzpunkt für die Entwick-
lung einer neuen, praktikablen Technik für die Synthese von DNA Sequenzen dar.
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1 Introduction

1.1 De novo synthesis of DNA sequences
Today, synthetic DNA is an essential part of biological research and bioengineering.
DNA oligonucleotides are routinely manufactured by companies such as Integrated DNA
Technologies (IDT) and used on a daily basis in laboratories, be it in PCR reactions
to amplify specific sequences [71], to introduce mutations [34, 75, 97], or to read DNA
using Sanger sequencing [83]. Synthetic DNA is used to introduce indices and perform
target capturing for Next Generation Sequencing methods [2,7,67,68,88], or to provide
fixing templates for a cell, once synthetic RNA has guided CRISPR-CAS9 to the right
location [5,82]. Longer synthetic sequences can code for synthetic genes used in metabolic
engineering [39, 44, 45] or even to synthesize and redesign entire chromosomes [26, 80].
Also non-biological applications of manufactured DNA sequences exist, such as DNA
nanotechnology [76, 85] or DNA-based data archiving [17, 29, 91, 102]. In addition, a
variety of modifications for DNA oligos such as certain functional groups, varying sugar
substitutions, fluorophores, and cleavable moieties are available, enabling the use of
oligos as a scaffold to build functional units, place molecules in a defined distance, and
design a large variety of experiments.

The list of use cases for synthetic DNA presented above may seem extensive, but in
fact only covers some of the applications that exist. Synthetic DNA is omnipresent in
biology, and the last decades of biological research as well as our current understanding
of the field are highly influenced by our ability to manufacture custom DNA sequences.
Interestingly, only few people had foreseen the role that custom DNA manufacturing
should play, and the researchers who established oligonucleotide synthesis were initially
met with a large amount of skepticism, as described by Marvin Caruthers, one of the
most important figures in the development of chemical DNA synthesis [11, 12].

When Har Gobind Khorana demonstrated the “total synthesis of the structural gene
for an alanine transfer ribonucleic acid from yeast” [49], Nature New Biology commented
on the editorial page as follows: “... like NASA with its Apollo Programme, Khorana’s
group has shown it can be done, and both feats may well never be repeated” [11]. Today,
about 45 years later, Twist Biosciences alone has the capacity to produce 45,000 gene-
length constructs per month1. Even that Khorana was awarded the Nobel Prize for the
“interpretation of the genetic code and its function in protein synthesis” in 1968 did not
change the perception of the field. Marvin Caruthers reports that a colleague approached
him afterwards at a conference and said: “Marv, why do you want to learn how to

1Twist Bioscience, S-1 Registration Statement for IPO, https://www.sec.gov/Archives/edgar/
data/1581280/000119312518291186/d460243ds1.htm - accessed Oct 28 2018
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1 Introduction

synthesize DNA? Khorana used it to solve the genetic code and now he has made a gene.
But what else can you do with synthetic DNA? Certainly you can find something more
useful to do.” [11] Caruthers further reports that “There were no biologists, biochemists
or molecular biologists anxiously waiting for us to develop our chemistry. They couldn’t
care less.” [11]

Fortunately, Caruthers persisted and developed the chemical DNA synthesis method
based on phosphoramidites that is in place until today. The story of the beginning of
the field seems particularly interesting, because research on novel, enzymatic methods
for DNA synthesis has experienced somewhat comparable skepticisms for a long time.
It seems to be a common perception that phosphoramidite synthesis already reaches
the limit of what is possible with any man-made synthesis process, and I was further
frequently told that “DNA synthesis today is good enough”. Because chemical DNA
synthesis works excellent for many applications and is well established by now, it sets a
very high bar for new technologies, which makes research on them somewhat difficult to
justify. Another aspect for the technology development is the relatively small market for
custom DNA synthesis. The global market for synthetic DNA and RNA was estimated to
be 1.3 billion in 20162, and the market for gene-length constructs, the presumably main
beneficiary of improved oligosynthesis techniques, makes up only for a small fraction of
that market.

However, over the last years, the situation around novel DNA synthesis technologies
has changed. Various companies are now developing new, enzyme based DNA synthe-
sis strategies, such as DNA Script (Paris, FR), Nuclera Nucleics and Evonetix (both
Cambridge, UK), Molecular Assemblies (San Diego, USA), and Ansa Biotechnologies
(Berkeley, USA), which I am involved in. Large players such as Merck (Darmstadt,
GER) have programs working on enyzmatic solutions for DNA synthesis, and many es-
tablished DNA synthesis providers and leading people in the field have expressed interest
in enzymatic approaches (e.g., [19]). Only recently, at the SynBioBeta Global Synthetic
Biology Summit (October 2018), DNA Script announced the successful synthesis of a
150-mer with a stepwise yield of 99.2 %, being the first enzymatic DNA synthesis com-
pany that reports synthesis characteristics comparable to phosphoramidite chemistry. I
believe that more efforts across academia and industry will be revealed over the next
years, and am looking forward to the developments in the field. Interestingly, besides the
approach presented in this thesis based on polymerase-tethered nucleoside triphosphates,
all other efforts I am aware of follow the same classic approach based on RTdNTPs that
has been discussed for decades, as described in Section 1.3.3.

This chapter gives a short introduction of chemical oligonucleotide synthesis and then
describes conventional approaches towards enzymatic DNA synthesis. Finally, the novel
enzymatic DNA synthesis concept developed in the framework of this PhD thesis is
discussed.

2Oligonucleotide Synthesis Market - Forecast to 2021, Markets and Markets Research, 2017
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1.2 Chemical DNA synthesis

1.2 Chemical DNA synthesis

1.2.1 History and general approach
The first coupling of two thymidine residues to generate a dinucleotide was reported in
1955 by Michelson and Todd [69], which started the field of chemical de novo DNA syn-
thesis, usually referred to as oligonucleotide synthesis. The basic concept of the synthesis
procedure has not changed since then. The synthesis contains two essential steps: 1) A
mononucleotide with an activated phosphate reacts with the hydroxy group of another
nucleotide, typically the end of a growing DNA molecule attached to a solid support.
The activated phosphate can either be at the 3’ or 5’-position of the mononucleotide, and
then reacts with the respective opposite position. The mononucleotide further contains
a protection group that blocks the hydroxy group at which the next incorporation will
occur. 2) The protection group of the added nucleotide is removed in a “deprotection
step”, to generate a free hydroxy group for the next incorporation cycle.

In addition to the protection group cleaved in every cycle, other protection groups that
remain attached throughout the whole synthesis prevent side reactions that could occur
during the procedure. For example, exocyclic amines of the nucleobases can function as
electron donor for the phosphoramidite, which could lead to branching of the growing
DNA molecule. Only thymidine and uracil lack an exocyclic amine and don’t need
respective protection groups on the base. Also, depending on the synthesis scheme, the
phosphodiester bond can be protected to increase stability during the procedure. The
synthesis process for RNA is very similar, but also requires modification of the hydroxy
group in the 2’-position. The general approach to chemical DNA synthesis and its
challenges are well summarized by H. Khorana [48].

From the first dinucleotide synthesis in 1955, it took about 17 years until the first re-
port of a chemically synthesized gene, coding for an alanine transfer ribonucleic acid [49].
Khorana et. al synthesized the gene in short sequences of 20 nucleotides that were
then enyzmatically joined using T4 ligase. The demonstration was presented in 13
manuscripts, all published in one issue of the Journal of Molecular Biology. It took
another 9 years until Beaucage and Caruthers presented “deoxynucleoside phospho-
ramidites as a new class of key intermediates for deoxypolynucleotide synthesis” in
1981 [6], introducing the remarkable technology that has been in place until today,
almost 40 years later. The detailed development of chemical DNA synthesis including
different activation groups, protection strategies, and solid-support systems is described
elsewhere [11,35,79].

1.2.2 Phosphoramidite synthesis
Oligos are nowadays almost exclusively produced using the phosphoramidite method.
For the synthesis, the growing oligonucleotide is attached to a solid support, often con-
trolled pore glass (CPG) which provides a large surface area [51,78]. Reagents are then
added and removed in a cyclic manner to grow the oligonucleotide by a single monomer
per cycle that consists of: 1) Deprotection of the 5’ position of the previously added
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Figure 1.1: Structure of a nucleoside phoshphoramidite monomer (2’-
deoxyadenoside phosphoramidite). The DMT group (4,4’-dimethoxytrityl, blue)
protects the 5’ position, the exocyclic amine is protected by a benzoyl protection
group (red). The phosphite group is further protected with a 2-cyanoethyl group
(pink). The DMT group is removed in every cycle, the other two protection groups
only at the end of the synthesis.

nucleotide. A typical protection group used is DMT (dimethoxytrityl) which can be
removed by an acid such as trichloroacetic acid (TCA). During this deprotection step,
depurination can occur, which can reduce the overall yield of the synthesized DNA. 2)
Coupling of the next phosphoramidite (see Figure 1.1). For the coupling to proceed, the
diisopropylamino group of the phosphoramidite gets activated by an acidic catalyst such
as ETT. The phosphoramidite monomer is added at a very high concentration, often
> 0.1 M, to drive the reaction close to completion. 3) The new phosphorous connection
(phosphite triester) is stabilized by oxidation. Another optional step can be performed
and involves the capping of 5’-OH moieties that have not been extended in step 2, e.g.
using acetic anhydride. Capping prevents further elongation and therefore prevents oli-
gos that have missed an extension from further growth. Much shorter oligos can be
easier separated from the full-length product than those with only a single deletion.

Characteristics of the synthesis procedure

While the exact details of phosphoramidite synthesis are not subject of this thesis, it is
very important to understand the performance and characteristics of the process, since
they are the benchmark for novel techniques. The yield for a single base addition, which
is the combined yield of the steps described above, today consistently exceeds 98 %.
Typical yields are above 99 %, and for the synthesis of oligos exceeding 150 nucleotides,
yields of 99.5 % are highly desired and often achieved [60]. The cycle time plays an
important role for the yield: A cycle can be performed in as little as 2 min, however,

16



1.2 Chemical DNA synthesis

such short steps decrease the synthesis yield strongly. For high-quality oligos, cycle times
of 5 min and more are common.

Disadvantages of the phosphoramidite method include the use of toxic reagents and
the generation of a significant amount of organic solvent waste. In addition, the synthesis
can be finicky and especially the generation of long oligonucleotides requires a certain
expertise. Therefore, while phosphoramidite synthesizers were formerly more abundant
in laboratories, almost all DNA is nowadays made in facilities with the specific knowhow
and equipment.

Generation of longer constructs

Phosphoramidite synthesis enables manufacturing of oligonucleotides up to 200-300 nt
in practice [12]. (A yield of 99.5 % over 300 steps leads to 22 % oligos that have the
correct sequence, assuming no side-reactions further hamper the yield.) Longer DNA
sequences cannot be synthesized directly, but must instead be assembled from multiple
oligonucleotides. Various methods for oligonucleotide assembly exist (see, [94,100,101]),
the most commonly used one is polymerase chain assembly (PCA) [89]. In PCA, oligos
coding for the desired construct that partially overlap with each other are repeatedly
annealed and extended so that longer constructs and eventually the whole sequence is
assembled. One aspect of the generation of constructs that should also be mentioned are
error-correction methods that can eliminate erroneous constructs and therefore select for
the desired DNA molecules (e.g., [52, 62]).

Assembly of longer constructs has improved over the last years, but is still difficult
in many cases and not amenable to all sequences [20], which makes the synthesis of
certain constructs impossible. The generation of constructs gets more difficult for 1)
oligonucleotides that form secondary structures, preventing them from forming the right
interactions with other DNA molecules, 2) sequences with high AT and GC content
which impacts the annealing process during PCA, and 3) sequences that contain repeats.
Repeats lead to multiple possible options for the assembly, which introduces deletions
of certain parts of the DNA. Some of those problems can be mitigated by designing the
DNA construct to be assembled in a specific way, in particular if the DNA is supposed to
code for a protein, so that multiple codons are available for most positions. If an exact
DNA sequence is needed, assembly is more difficult. Further, because some assemblies
contain in vivo steps, toxicity of genes can lead to restrictions.

Today, gene-length sequences can be ordered for 9 cents/bp from one of the leading
gene synthesis providers Twist Bioscience. The delivery time for a construct up to 3.2 kbp
is 15-20 business days, and a sequence of this length would cost $2703. Importantly,
assembly of constructs, independent of the method used, gets much simpler with oligos
of higher quality and increased lengths. The most convenient solution to the problem,
however, would be the direct synthesis of the desired construct without any need for
assembly.

3https://twistbioscience.com/products/genes - accessed Oct 25 2018
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1 Introduction

1.3 Enzymatic DNA synthesis

1.3.1 Motivation
Enzymes have always played an important role in de novo DNA synthesis. In the early
days, the first chemically synthesized dinucleotides were cleaved enzymatically for ana-
lysis [69], T4 ligase was used to join the fragments synthesized by Khorana to assemble
the tRNA gene [49], and oligo assembly into longer constructs as well as error correction
methods in place today are based on enzymes [100]. Proteins also play an essential role
in all practiced sequencing methods, be it in Sanger or in NGS techniques. Interestingly,
a chemical system was the method of choice for sequencing early on (Maxam-Gilbert
sequencing [66]), before it was eclipsed by enzymatic approaches.

The main promise of using enzymes for DNA synthesis is the high specificity of their
reactions in combination with the very mild conditions. The core challenge for DNA
synthesis is pushing cycle yield closer to 100 %, and the elimination of side-products and
damaged molecules is essential for this purpose. Another huge advantage is that enzymes
can be engineered in very versatile ways. Many high-throughput screening methods are
available, and an almost unlimited space of possible solutions exists. Chemical synthesis,
in comparison, is very limited: There is only a number of substituents available, and
the most efficient synthesis based on phosphoramidites is likely already in place. One
advantage of synthesis in aqueous conditions is further to reduce the amount of hazardous
waste, which will enable DNA synthesizers that are easier to handle. In addition, use of
other enzymes during synthesis will be possible, opening up the whole toolbox nature
has created for handling DNA. Examples include single stranded binding proteins or
enzymes that fill in the counter-strand of the synthesized molecule to prevent secondary
structures.

1.3.2 Terminal deoxynucleotidyl transferase
Most DNA-dependent DNA polymerases amplify a template sequence to propagate the
genetic information and pass it on for cell division. A high evolutionary pressure to-
wards conservation of genetic information exists, and many polymerases have evolved
for high fidelity, achieving error rates below 10−6/bp [18] with the help of proof-reading
domains that can detect and excise mismatches. Other polymerases are specialized for
situations in which perfect amplification is not possible, for example when damaged
DNA needs to be copied. They perform replication with lower fidelity, and can be used
when “making a mistake is the only way to get ahead” [77]. TdT belongs to neither
of those categories, but fulfills an entirely different and very unusual task. TdT writes
new, random sequences, thereby actively generating variability in our immune system,
that enables adaption to new threats [24]. The polymerase is therefore involved in an
active process of evolution that occurs in animals whose adaption to hostile organisms
based on random mutations would not be sufficient. In more detail, TdT is involved
in genetic recombination during antibody generation, also termed V(D)J recombination
(combination of Variable, Diversity, and Joining gene segments) [28, 47].
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1.3 Enzymatic DNA synthesis

Figure 1.2: A model of the catalytic site of TdT based on PDB structure 4I27
containing dTTP (3’-OH modeled using Maestro) is shown. The 3’-O (purple)
directly points towards the backbone of the polymerase (grey). The surface of the
polymerase is shown as mesh representation (yellow). The rendering was generated
in VMD [37]. This figure was already published in [74].

TdT belongs to the X-family of polymerases and has a pol-beta like folding type [30,57].
It has the same domains as polymerase β, namely the 8 kDa, fingers, palm and thumb
domain [24], and contains three asparagine residues that are involved in the two-metal
ion binding mechanism of the incoming dNTP across all families of polymerases [42].
TdT has the uncommon ability to work with Co2+, Mg2+, Mn2+, and Zn2+, and shows
different dNTP preferences depending on the divalent ions [70]. The incorporation of
pyrimidines (dCTP / dTTP) is about 10 x slower than that of purines with Mg2+, but
increases about 100 x when Co2+ is used as the divalent ion. The incorporation rate of
purines only shows a minimal speedup (<1.5 x) when Co2+ is used instead of Mg2+ [41].
These findings were reported for bovine TdT and only partially match with our obser-
vations made with Mus musculus TdT. An analysis of the “structures of intermediates
along the catalytic cycle of TdT” was published and sheds light on the role of the metal
ions, hypothesizing that there might be an additional cation binding position that is
of relevance [30]. TdT does not undergo the typical conformational changes most poly-
merases perform during catalysis [22], does not exhibit processivity, and has a random
binding order for the primer and the dNTP [21].

TdT is commonly used in molecular biology laboratories to tail DNA molecules, for
example to add a primer-binding site, or to incorporate dNTPs with modified bases (e.g.,
labeling with fluorescence, radioactive moieties, or attachment of a biotinylated dNTP
for purification purposes). TdT can also be employed to detect double strand breaks
based on the addition of fluorescent nucleotides, which is used in the so called TUNEL
assay to monitor apoptosis [56]. Two detailed reviews on TdT, its role in the immune
system, biochemical properties, and usage in different fields of molecular biology are
available [24,70].
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Figure 1.3: The scheme shows how TdT could be used with 3’-modified RTdNTPs
for the synthesis of defined DNA sequences. The 3’-end of the growing DNA
molecule is first extended by a 3’-blocked RTdNTP. The R at the 3’-position could
correspond to the various reversible terminator moieties that exist, e.g., to an
azidomethyl group. Next, the blocking group is removed, so that a 3’-OH for
the next addition cycle is generated. A similar version of this figure was already
presented in [73].

1.3.3 Conventional proposals for enzymatic DNA synthesis

TdT fulfills many requirements for an enzymatic DNA synthesis procedure, since it
can incorporate all four different dNTPs in a quick manner, without the need for a
template. TdT has for a long time been the only known polymerase with template-
independent activity [70] and has been part of enzymatic DNA synthesis proposals dating
back to 1962 [8,40]. By now, also other polymerases with template-independent activity
have been found, in particular Pol Θ [32, 46] that might play a role in the field. Some
polymerases with low amounts of template-independent activity are known, such as Pol
µ [43], but are likely irrelevant for enzymatic DNA synthesis. Ligases (single-stranded,
as well as double-stranded) could in theory play a role, but have limited suitability due
to their lower reaction speed.

Almost all proposals for enzymatic DNA synthesis describe usage of TdT together with
3’-modified RTdNTPs, analogous to the procedure performed for sequencing by synthesis
(Figure 1.3) [15,95]. Many 3’-modified RTdNTPs with small and fast-cleaving protection
groups have been developed and may seem suited for the procedure (e.g., [7,38,50,81,99]).
At the same time, TdT was reported to “indiscriminately incorporate ribonucleotides and
deoxyribonucleotides” [10], and shows a much smaller preference for dNTPs over NTPs
(2-9 x) than typical DNA polymerases (e.g., 2000-6000 x for Pol β) [72]). While one could
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conclude from this data that TdT has a high tolerance for sugar modifications in general,
this is not the case. The acceptance for 3’-O modifications is in fact small [13,50], which
can also be understood in light of the crystal structure (Figure 1.2). The 3’-OH of a
dNTP that is bound to the catalytic site directly points towards the backbone of the
polymerase, leaving almost no room for any substituents. The earliest reported attempt
to use 3’-modified RTdNTPs with TdT dates back to at least 1986 (3’-O acetyl), but
the substrate was found not to be incorporated [13]. Over the last years, the group of
Montemagno reported the addition of a single nitrobenzole-protected 3’-RTdNTP [64],
and later the addition of four nucleotides to a primer with the same strategy. However,
a coupling time of 60 min was used and stepwise yields were not reported [65]. Besides
3’-modified RTdNTPs, a different proposal for usage of 3’-O-unblocked RTdNTPs with
inhibitory groups attached to the base exists [23]. Using this strategy, it might be
very challenging to achieve both, fast incorporation and sufficient termination, since the
inhibitory group is present also before the dNTP addition. To the best of my knowledge,
except for the 4-mer mentioned above, no scientific report of the de novo synthesis of
a defined DNA sequence using a template-independent polymerase has been published,
besides the work described in this thesis.

1.3.4 Enyzmatic synthesis based on polymerase-nucleotide
conjugates

The reversible termination scheme presented here follows a different approach than previ-
ous methods for repeated single nucleotide incorporation that are all based on RTdNTPs.
Following our strategy, each polymerase molecule is “loaded” with exactly one dNTP
that is tethered to the polymerase moiety in a way that enables its incorporation. At the
same time, all free dNTPs are removed from the system. When the polymerase moiety
extends a primer with its tethered dNTP, it stays attached to the 3’-end of a primer
via the tether. In the newly formed complex, the polymerase blocks other polymerase-
nucleotide conjugates from accessing the 3’-end of the extended DNA molecule (Fig-
ure 1.4). The tethered polymerase itself does not have access to further dNTPs, since
these are tethered to other polymerases and are therefore inaccessible. Once the exten-
sion step is complete, the excess polymerase-nucleotide conjugates can be removed or
inactivated, and the linker can be cleaved to deprotect the extended primer for further
extensions. This simple two-step reaction cycle can be iterated to synthesize a defined
DNA sequence one nucleotide at a time.

When we perceived the idea for this approach, we were very excited because it
promised to circumvent the problem that 3’-blocked RTdNTPs are slowly incorporated,
and often require complex enzyme engineering to be accepted by a polymerase at all [16].
At the same time, we thought that the system had a certain advantage for the de-
protection step: The linker could in theory accommodate bulky groups, since there is
enough space in the cavity of the polymerase. In contrast, to enable incorporation of
3’-RTdNTPs, the modification needs to be small, which limits the scope of potential
cleavage groups. 3’-modified RTdNTPs further require the regeneration of an unmodi-
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Figure 1.4: The scheme shows how polymerase-nucleotide conjugates can be used
for the synthesis of defined DNA sequences. In the first step, the DNA molecule
is extended by a polymerase-nucleotide conjugate. Upon the incorporation of its
tethered dNTP, the polymerase moiety stays attached and hinders access of other
conjugates. In step 2, the linker is cleaved to release the polymerase and generate
a free 3’-end of the primer for the next addition step. This figure was already
published in [74].

fied 3’-OH upon deprotection, while cleavage of the linker must not necessarily result in
a natural base: Part of the linker may stay attached to the incorporated nucleotide as a
scar, which promises additional flexibility for the deprotection step. Small scars might
be tolerated for follow-up procedures, or could also be eliminated through a “reading”
step that produces unmodified DNA.

The scheme presented seemed particularly interesting for template-independent DNA
synthesis, since TdT has a high tolerance for base-modifications [53,54]. However, it may
be possible to transfer the idea to template-dependent polymerases to perform sequenc-
ing based on polymerase-nucleotide conjugates. One promise of employing conjugates
for sequencing is the option to label the whole polymerase with reporter molecules,
which might enable reliable detection of a single incorporation event and could therefore
eliminate the need for cluster-generation.
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2 Results
The Result part is separated in five sections. The first section describes the initial
investigation to evaluate the concept of polymerase-nucleotides based on the polyethylen
glycol (PEG) derived linker PEG4-SPDP with a cleavable disulfide bond. The second
and third section document the development of two polymerase-nucleotide conjugates
based on photocleavable linkers, suited for the performance of multiple cycles. In the
fourth and fifth section, the use of photocleavable polymerase-nucleotide conjugates
for the synthesis of a 10-mer and the 3-mer 5’-CCC-3’, as well as the analysis of the
reaction products based on next generation sequencing (NGS) are described. Work
was performed in collaboration with Daniel H. Arlow, in particular for the experiments
described in sections 3-5.

2.1 Conjugates based on PEG4-SPDP
2.1.1 Linker assembly using PEG4-SPDP
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Figure 2.1: Chemical structure of the attachment of aa-dUTP to TdT based on
the heterobifunctional crosslinker PEG4-SPDP. The conjugates based on this linker
are also referred to as “TdT-PEG4-dTTP”. The cleavable bond between TdT and
the nucleotide is indicated with a black dotted line, the atoms that remain attached
to the nucleobase upon cleavage as a “scar” are indicates in red. A similar figure
was already published in [74].

To test the functionality of polymerase-nucleotide conjugates for single extension of
a DNA molecule, first, a linker system for the attachment of the nucleotide to the
polymerase was designed (Figure 2.1). We chose the heterobifunctional crosslinker PEG4-
SPDP that has an orthopyridyl disulfide (OPSS) group reactive towards sulfhydryls
and an N-hydroxysuccinimide (NHS) functionality that enables attachment to primary
amines (Figure 2.2). Cysteine residues in TdT comprise a sulfhydryl moiety and can

23



2 Results

Figure 2.2: The chemical details of the assembly of “TdT-PEG4-dTTP” are shown.
First, 5-aminoallyl dUTP is coupled to PEG4-SPDP using the NHS-functionality of
the linker, generating the linker-dNTP “OPSS-PEG4-dTTP”. In the second step,
OPSS-PEG4-dTTP is attached to TdT by reaction of the OPSS-moiety with a
cysteine of the protein, to form “TdT-PEG4-dTTP”. A similar figure was already
published in [74].

therefore be used for the attachment to the protein. For dNTPs, modifications of the
C5 position of pyrimidines and the C7 position of 7-deazapurines are used to attach
fluorophores for next generation sequencing techniques. Modifications in this position
do not interfere with base-pairing, and have been well characterized (e.g., [36]). For
our system, we chose the dNTP-analog 5-aminoallyl dUTP (aa-dUTP) that contains a
primary amine for the attachment to the NHS functionality of the linker.

The coupling of aa-dUTP to TdT was performed in two steps (Figure 2.2). First,
cysteine-reactive linker-dTTP molecules were generated by incubating PEG4-SPDP with
a 4-fold excess of aa-dUTP, followed by quenching of unreacted NHS-groups by glycine.
In the second step, the crude products were added to TdT to perform the labeling re-
action. After proceeding of the labeling-reaction, the conjugates were purified using
His-Tag purification to remove untethered nucleotides that could otherwise be incorpo-
rated during the following reactions. The success of the coupling reaction was then tested
based on the ability of the conjugates to incorporate tethered nucleotides, as described
in the next section.
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2.1 Conjugates based on PEG4-SPDP

Figure 2.3: Scheme for testing conjugate activity based on SDS-PAGE. A fluores-
cent primer is incubated with TdT-(PEG4-)dNTP conjugates to form a covalent
TdT-DNA complex that can be resolved on SDS-PAGE. Upon cleavage of the
linker, e.g., using βME, the complex is resolved. The released oligo is extended by
one or more nucleotides. Depending on the scar, single nucleotide resolution can
be achieved during gel electrophoresis.

2.1.2 Tethered incorporation of wildtype TdT

TdT expression for experiments involving the PEG4-OPSS crosslinker was performed
in E.coli Rosetta-gami B(DE3)pLysS cells [55] (Novagen). While TdT is usually ex-
pressed at lower temperatures to increase solubility [9], we found that incubation at
30 ◦C produced the most protein using this strain. The short isoform of TdT (TdTs,
NCBI Accession number: NP_001036693.1) was expressed from a codon-optimized gene,
consisting of residues 132-510 of the wildtype protein, excluding the N-terminal BRCT
domain. The same TdT version had already been used in my previous work at TU
Darmstadt [73].

During the conjugate reaction, a high molecular-weight complex between the enzyme
and the DNA molecule is formed and can then be resolved by cleavage of the linker
(Figure 2.3). While SDS-PAGE is usually used to separate denatured proteins, we found
that oligos, in particular between 30 and 60 nucleotides, also show an excellent running
behavior. Using a fluorescent primer, the migration behavior can be easily traced, and
the strong difference in running behavior between the free primer and the TdT-DNA
complex enables sufficient separation for analysis in few minutes. When PAGE is run for
longer, depending on the size of the scar on the nucleotide added, even single-nucleotide
resolution can be achieved.

To investigate tethered incorporation ability, conjugates of wildtype TdT were pre-
pared (TdTwt-PEG4-dTTP) and incubated with the fluorescent primer P1 (5 FAM-dT35)
under typical conditions for a TdT extension reaction. Analyzing the reaction products
on SDS page, the formation of a high molecular-weight complex was found, indicating
that TdT has the ability to incorporate nucleotides tethered to it (Figure 2.4). Upon
addition of βME (β-mercaptoethanol), the oligo showed a much faster running behav-
ior, in accordance with cleavage of the tether. The released oligonucleotide migrated
in the form of multiple bands, indicating multiple extensions. Using a letter of oligo
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Figure 2.4: Investigation of the
ability of wildtype TdT to incor-
porate tethered dNTPs based on
SDS-PAGE. The gel shows the flu-
orescence of primer P1 (5 FAM-
dT35). Lanes correspond to a lad-
der generated by oligo extensions
with free linker-dTTP (L), the
oligo before the reaction (Oligo),
after the reaction (+TdT), and
after cleavage of the linker with
βME (+BME). A schematic draw-
ing of the products corresponding
to the differend bands is shown on
the right hand side.

extension products generated with TdT and free OPSS-PEG4-dTTP linker-nucleotides
as reference, we found that the oligo had been extended by up to 4 nucleotides.

2.1.3 Removal of cysteines
The multiple DNA extensions observed for TdTwt-PEG4-dTTP could potentially be
explained by 1) the incorporation of multiple dNTPs tethered to one TdT molecule,
or 2) insufficient termination, enabling multiple conjugates to extend the same primer
molecule. Wildtype TdT has several cysteines, so it seemed likely that multiple of those
could be labeled with a nucleotide-linker molecule. Based on the PDB structure 4I27 [30],
we identified cysteines in the positions 188, 216, 302, 378, and 438 as potentially sur-
face accessible and close enough to the catalytic site to enable incorporation of tethered
dNTPs (Figure 2.5a). Through multiple rounds of site-directed mutagenesis PCR [34],
the cysteines were removed to generate TdT mutant TdT∆5cys with the following mu-
tations: Cys188Ala, Cys216Ser, Cys302Ala, Cys378Ala, and Cys438Ser (Figure 2.5b).
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(a) Wildtype TdT. (b) TdT∆5cys.

Figure 2.5: Removal of cysteines to generate TdT∆5cys. Through site-directed
mutagenesis, five residues of TdT were mutated into alanine or serine, respectively,
to generate a TdT variant “silent” for tethered incorporation. The protein is shown
in cartoon representation, nucleic acids as sticks, and cysteines as spheres. The
rendering was generated in PyMOL [84].
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Figure 2.6: Investigation of the
ability of TdT∆5cys to incor-
porate tethered dNTPs based
on SDS-PAGE. The gel shows
the fluorescence of primer P1 (5
FAM-dT35). Lanes correspond
to a ladder generated by oligo
extensions with free linker-dTTP
(L), the oligo before the reac-
tion (Oligo), after the reaction
(+TdT), and after cleavage of the
linker with βME (+BME).

2.1.4 Tethered incorporation of TdT∆5cys
After performing a labeling reaction of TdT∆5cys with linker-nucleotides based on PEG4-
SPDP, activity of the conjugates was tested using the SDS-PAGE incorporation assay. In
contrast to wildtype TdT, TdT∆5cys did not show the formation of a covalent complex
with the primer, indicating that no nucleotides were tethered to the enzyme in a way
that enabled their incorporation. An activity assay of TdT∆5cys using free dNTPs
was performed and confirmed that the mutant still had catalytic activity, suggesting
that the removed attachment positions for the linker indeed caused the lack of tethered
incorporation. A detailed activity comparison of important TdT mutants used in this
thesis was performed by the Master student Sebastian Barthel under my supervision
and can be found in [74].

2.1.5 Introduction of cysteines
The next step was to develop polymerase-nucleotide conjugates that could only perform
a single incorporation. For this purpose, single cysteine residues were inserted into
TdT∆5cys using site-directed mutagenesis. Positions for site-directed mutagenesis that
were 1) surface accessible and 2) close to the nucleobase of a bound dNTP were identified.
Four of these possible attachment points were then selected in order to surround the
catalytic site, thereby covering a wide range of the solution space (Figure 2.7). The
respective mutants TdTc180 (Glu180Cys) and TdTc253 (Thr253Cys) with new cysteine
positions and TdTc188 (Ala188Cys) and TdTc302 (Ala302Cys) with re-inserted original
cysteines were generated. The distances of the attachment positions for the linker ranged
from 12.9 Å to 15.7 Å, measured from the methyl in base position 5 (C5M) to the Cα of
the respective amino acid (based on PDB 4I27). The PEG4-SPDP linker has a length
of up to 25.7 Å.
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Figure 2.7: The amino acids that were mutated to cysteine in order to generate
linker attachment positions are shown in green. The protein is shown in cartoon
representation (white), the dTTP bound to the catalytic site is also depicted in
green. The distances shown are measured from the Cα position of the respective
amino acid to the methyl carbon in the C5 position of dTTP. Distances are stated
in Å. This figure was already published in [74]

2.1.6 Tethered incorporation of TdT mutants with one cysteine

Next, we tested if a tethered enzyme moiety would actually block other TdT-dNTP
conjugates from approaching an extended DNA molecule, thereby enabling single nu-
cleotide extensions. The four mutants with a single surface-exposed cysteine, TdTwt,
and TdT∆5cys were subjected to linker-nucleotide labeling reactions with OPSS-PEG4-
dTTP, purified, and then incubated with a fluorescent oligo for 40 s before the reaction
was quenched with EDTA. The reaction products were then run on SDS-PAGE before
and after cleavage of the linker with βME (Figure 2.8).

All four conjugates with a single surface exposed cysteine showed the formation of a
high-molecular weight complex with the oligo during the reaction. The migration behav-
ior of the complex varied depending on the tethering position of the primer, presumably
because the incorporation generates a branched DNA-TdT molecule. Nevertheless, upon
cleavage of the linker with β-mercaptoethanol, the released primers were predominantly
extended by a single linker-nucleotide for all of the four different conjugates with a sin-
gle attachment position. TdTc188 conjugates did not show complete turnover of the
primer, which might be caused by slower incorporation or by an insufficient amount of
active conjugates to achieve turnover of the DNA. However, the full conversion of the
oligo performed by the other conjugates in 40 s indicated that fast turnover based on
polymerase-nucleotide conjugates is possible.
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Figure 2.8: TdT-PEG4-dTTP conjugates with a single attachment position were
tested for their ability to extend a primer by a single dNTP. The SDS-PAGE gel
shows the fluorescent primer P1 (5 FAM-dT35). The names correspond to a ladder
generated by extensions of the oligo by free linker-dTTP (L), conjugates produced
from TdTwt (wt), TdT∆5cys (∆), TdTc188 (188), TdTc302 (302), and TdTc180
(180), and TdTc253 (253). The primer extension products are shown on the left
side (-BME), the reaction products after cleavage of the linker on the right side
(+BME). This figure was already published in [74].

2.1.7 Insertion of MBP fusion protein
In some experiments based on TdT-PEG4-dTTP conjugates with a single attachment
position, the formation of a product with two incorporated nucleotides in addition to
the singly extended primer was observed. Therefore, the system showed a certain level
of imperfect termination, also referred to as “non-termination”. Multiple possible ex-
planations for non-termination exist and are discussed in detail (Section 3.1.2) and
investigated (Section 2.3.5) later on. However, one straight-forward explanation for non-
termination can be insufficient removal of untethered linker-dNTPs after the conjugate
labeling reaction.

For the experiments based on PEG4-SPDP, purification of the conjugates was per-
formed based on nickel-NTA (nickel-nitrilotriacetic acid) agarose. This might not be the
ideal choice given that nucleoside triphosphates can complex divalent ions like nickel [87]
and might therefore bind to the resin. To eliminate potential nucleotide(-linker) carry-
over, we switched the purification strategy: By fusing maltose-binding protein (MBP)
N-terminally to TdT, affinity chromatography based on amylose resin was enabled. In
addition to the improved purification strategy, the fusion also showed increased expres-
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sion, a feature commonly observed for MBP-fusion proteins [58]. Therefore, regular
E.coli BL21(DE3) cells with superior growth compared to Rosetta-gami B(DE3)pLysS
could be used for the expression of MBP-TDT (MTdT) variants. Generation of the
MTdT expression construct was performed by the undergraduate student Hratch M.
Baghdassarian under my supervision.

31



2 Results

Figure 2.9: Complete set of propargylamino dNTPs (pa-dNTPs) that were used
to prepare photocleavable polymerase-nucleotide conjugates. The propargylamino-
modification is attached to the C5 position of pyrimidines or the C7 position of
7-deazapurines, respectivly.

2.2 Conjugates based on PC-azido-NHS
2.2.1 Propargylamino-dNTPs for linker attachment
We next aimed to develop polymerase-nucleotide conjugates of all four different bases
that would leave a smaller scar upon cleavage of the linker, in order to produce DNA
useful for biological applications. Propargylamino-modified dNTPs (pa-dNTPs) of all
four bases are commercially available (Figure 2.9), which was not the case for the amino-
allyl modification. We therefore used pa-dNTPs in combination with a photolabile
linker that can be attached to primary amines, but completely eliminates upon cleavage
(Figure 2.10). The nitrobenzole group of the linker can be quickly cleaved using light
between wavelengths of 365 nm and 405 nm. The photocleavable linker was more difficult
to assemble and bulkier than the PEG4-OPSS linker, but usage seemed feasible given
the promising data on tethered incorporation collected before.

Amplification of propargylamino-DNA

The propargylamino modification is the smallest possible scar for conjugates based on
commercially available building blocks. The modification is much smaller than the scar
left by TdT-PEG4-dTTP conjugates and given the compatibility of propargylamino-
modifications for sequencing applications, we were optimistic that DNA consisting of
pa-dNTPs could be read by a polymerase. However, we still sought to determine the
fidelity at which DNA consisting of propargylamino-scared bases can be amplified. An
experiment performed by the undergraduate student Rathan Bector under Daniel H
Arlow’s and my supervision showed that Taq copied the DNA with an error rate of less
than 6∗10−4/nt (95% CI: 0.2−1.4∗10−3/nt). The experiment was performed by preparing
a scarred DNA molecule using Klenow(exo-) polymerase. The scarred DNA was then
isolated and subsequently used as a template for a qPCR with Taq polymerase. The Taq-
based PCR product was finally cloned into a plasmid, transformed, and single colonies
were sequenced using Sanger and analyzed for errors. The experiment is described in
more detail in Palluk et al. 2018 [74].
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Figure 2.10: Chemical structure of the attachment of pa-dUTP to TdT based on
propargyl-maleimide and PC-azido-NHS. The conjugates based on this linker are
also referred to as “TdT-triazole-dTTP”. The cleavable bond between TdT and the
nucleotide is indicated with a black dotted line. The atoms that remain attached
to the nucleobase upon cleavage (scar) are indicated in red.

2.2.2 Linker assembly using PC-azido-NHS
The photocleavable linker was assembled from PC-azido-NHS (azido-PEG3-photocleava-
ble-NHS-carbamate) and propargyl-maleimide (Figure 2.11). The NHS functionality
of PC-azido-NHS is reactive towards the primary amine of the pa-dNTP, the azide
can be linked to propargyl-maleimide using copper-catalyzed alkyne-azide cycloaddition
(Huisgen cycloaddition [33]) to form a triazole, and the maleimide is reactive towards
cysteines. The protein used for the assembly was MBP-fused TdT (MTdT) with a
cysteine for attachment in position 302 (MTdTc302). Nucleotide attachment in this
position had resulted in complete primer turnover with PEG4-SPDP and seemed well-
suited also for more bulky linkers based on a computational analysis of the crystal
structure of TdT (see linker rendering in Section 2.3.1).

Linker assembly strategy I

In the first iterations of the linker assembly, PC-azido-NHS was coupled to a pa-dNTP,
and the propargyl-maleimide was reacted with the protein. Next, the protein was purified
to remove excess propargyl-maleimide, and the click reaction between PC-azido-dNTP
and MTdTc302-propargyl was performed. Using this assembly, conjugates were gener-
ated, and tested for activity based on the SDS-PAGE assay. While some activity of the
conjugates was found, the majority of the fluorescent oligo (> 95 %) was not turned over
within 1 min of reaction time.

One possible explanation for the lack of conjugate activity was incompatibility of TdT
with the bulky photocleavable linker. Another hypothesis was activity loss of TdT during
the click reaction. A control experiment was performed, in which MTdT was subjected to
the same reaction conditions used in the copper-catalyzed click reaction (in the presence
of ascorbate), but without the propargyl-maleimide. The TdT exposed to the click
conditions was then tested for its ability to incorporate free dNTPs, and compared to
the same protein without the click exposure. We indeed found a strongly reduced activity
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TdT-triazole-dTTP

PC-azido-dTTP

Figure 2.11: Chemical structure of the attachment of pa-dUTP to TdT based
on propargyl-maleimide and PC-azido-NHS. The conjugates based on this linker
are also referred to as “TdT-triazole-dNTPs”. Linker assembly strategy II is
shown. First, PC-azido-NHS is coupled to pa-dTTP, in the second step, the click
reaction with propargyl-maleimide is performed to generate the linker-nucleotide
PC-azido-dTTP. In the third step, the linker-nucleotide is coupled to a cysteine of
TdT.
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P dA dT dG dC

Figure 2.12: Investigation of the ability of TdT-triazole-dNTP conjugates based
on MTdTc302 to extend a primer. The fluorescence of primer P3 labeled with
LD650 is shown on SDS-PAGE. Lanes correspond to the primer used as starting
material (P) and incorporation reactions using TdT-triazole-dATP (dA), -dTTP
(dT), -dGTP (dG), and -dCTP (dC). In addition to the fluorescently labeled primer,
also the loading dye fluoresces in the wavelengths used for imaging, and is therefore
visible in all lanes.

after TdT had undergone the click conditions, indicating that the enzyme was damaged
using the assembly procedure described above.

Linker assembly strategy II

To prevent activity loss, the linker assembly was modified and the click reaction was
now performed in the absence of the protein (Figure 2.11). First, PC-azido-NHS was
coupled to a pa-dNTP based on an NHS reaction. Next, the click reaction between
the propargyl-maleimide and the PC-azido-pa-dNTP was performed. To remove the
unreacted propargyl-maleimide that could compete with the linker-pa-dNTP during the
cysteine attachment, we performed a liquid-liquid extraction based on ethylacetate. The
negative charge of the triphosphate keeps dNTPs and linker-dNTPs in the aqueous phase,
the propargyl-maleimide instead transitions into the ethylacetate phase and is removed.
After aliquoting and drying, linker-dNTP pellets can be stored at −80 ◦C. Finally, the
maleimide reaction between the linker-pa-dNTP and MTdTc302 can be performed, and
the resulting conjugates can be purified using amylose-resin.

2.2.3 Incorporation of all four nucleotides
Based on the second linker assembly strategy, conjugates of all four pa-dNTPs were
generated. Conjugate activity was tested based on the SDS-PAGE assay using primer
P3 labeled with the fluorescent dye LD650 (Lumidyne). We found that TdT-triazole-
dNTP conjugates of all four pa-dNTPs formed a high-molecular weight complex with
the primer and achieved an excellent yield within 1 min (Figure 2.12).
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The quick incorporation of all four different nucleotides with minimal scar was an
important step towards the synthesis of defined sequences. However, TdT activity loss
observed during the copper-catalyzed click reaction made us suspicious about potential
off-target effects of the click reaction. We further found a publication stating that DNA
bases can be damaged during similar click reactions [1], and therefore sought to develop
a novel linker strategy that did not require the internal click-based assembly.
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Figure 2.13: Chemical structure of the attachment of pa-dUTP to TdT based on
the heterobifunctional crosslinker BP-23354. The conjugates based on this linker
are also referred to as “TdT-dNTP”. The cleavable bond between TdT and the
nucleotide is indicated with a black dotted line, the atoms that remain attached
to the nucleobase upon cleavage as a “scar” are indicated in red. A similar figure
has been published in [74].

2.3 Conjugates based on BP-23354
Crosslinker BP-23354 [3] has the same attachment moieties as the previously described
photocleavable linker for coupling to the amine and the sulfhydryl group, but does not
require an internal assembly (Figure 2.13). The linker was ordered as a custom synthesis
from BroadPharm (San Diego) and is now also available from their catalog items. A
model of BP-23354 attached to MTdTc302 was generated to investigate possible steric
constraints of the attachment strategy, since the linker is more rigid than PEG4-SPDP
and shorter than PC-azido-NHS. Molecular modeling was performed using Avogadro [31]
and Maestro (Figure 2.14). For the modeling, the amino acids 299 (Leu) to 305 (Arg)
were set to be flexible, all other atoms of the protein and all atoms of the dNTP and
the primer were set as “fixed”. The model shows how the linker fits into the protein
structure, reaching through a groove between the attachment position on the nucleobase
and cysteine residue 302. In the conformation modeled, there are no clashes between
the nitrobenzole moiety of the linker with residues of the protein.
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Figure 2.14: Rendering of a model of BP-23354 attached to the 5 position of
dTTP and to cysteine 302. The model is based on PDB structure 4I27 and shows
mutant (M)TdTc302. The 3’-OH of dTTP was inserted using Maestro, the amino
acid changes of the mutant and the rendering of the figure were performed in
PyMOL [84]. This figure was also published in [74].

2.3.1 Conjugate assembly using BP-23354
In the first step of the conjugate assembly, BP-23354 was coupled to a pa-dNTP to form a
sulfhydryl-reactive linker-nucleotide (Figure 2.15). Next, trituration of the (linker-)dNTP
pellet using ethylacetate was performed to remove excess linker. The linker-nucleotides
pellet was resuspended, aliquoted and stored at −80 ◦C either after drying in a speed-vac
or based on lyophilization. MTdTc302 was then incubated with the linker-nucleotides to
perform the labeling reaction, and the protein was subsequently purified using amylose
resin. While conjugates were previously stored in 50 % glycerol at −20 ◦C, we found that
they could also be frozen in liquid nitrogen and stored at −80 ◦C without activity loss.
In addition to the conjugate assembly procedure, Figure 2.15 shows the chemical details
of the extension of a DNA molecule by TdT-dCTP.
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2.3 Conjugates based on BP-23354

Figure 2.15: Chemical details of the preparation and usage of TdT-dNTP con-
jugates, shown for TdT-dCTP. First, pa-dCTP is coupled to the photocleavable
crosslinker BP-23354 to form a cysteine reactive linker-dCTP. In the second step,
the maleimide moiety is used to attach the linker-nucleotide to TdT to form TdT-
dCTP. Upon incubation with a DNA primer, the conjugate incorporates its teth-
ered dCTP, forming TdT-dC-DNA. The complex can be resolved by cleavage with
365 nm light. This figure was also published in [74].
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Figure 2.16: Analysis of two reaction cycles performed with TdT-dCTP conju-
gates. Both figures were also published in [74]. (a) Complex formation and disso-
lution between the protein (green channel) and the primer (i, red channel) during
both cycles. Upon incubation with TdT-dCTP, tethering occurs and the primer
migrates together with TdT, resulting in a yellow composite band. The complex
is then cleaved with light of 365 nm (ii) before it is subjected to another round
of conjugate-based extension and again dissociated (iii). In a control experiment
where the conjugates are exposed to photocleavage conditions before incubation
with the primer, no tethering occurs (iv). (b) Capillary electrophoresis data of
all samples from panel (a) after photocleavage (indicated with brackets in panel
(a)). The primer before extension (i), after the first (ii), and the second reaction
cycle (iii) migrate together with the first three peaks of the ladder, indicating
single nucleotide extensions. Incubation with conjugates previously subjected to
photocleavage resulted in multiple extension products (control, iv). The ladder
was generated by incorporation of free pa-dCTP using TdT.

2.3.2 Two cycles on SDS-PAGE and fragment analysis
Using the TdT-dNTP conjugates, single nucleotide incorporation and multiple steps
of extension of a DNA molecule were tested. SDS-PAGE was used to detect tether-
ing of a fluorescent primer to TdT, the protein was imaged based on the fluorescent
stain Lumitein. In contrast to the scar left on PEG4-SPDP upon cleavage, the small
propargylamino-scar did not enable simple single-nucleotide resolution on PAGE. There-
fore, capillary electrophoresis (CE) was used to analyze the reaction products in more
detail.

We found that TdT-dCTP formed a high-molecular weight complex with the primer,
indicated by a yellow band of composite color on the two-color fluorescent gel. No
leftover primer was detected after 1 min of reaction time, indicating an excellent yield
(Figure 2.16a). After irradiation of the complex with light of 365 nm, the distinct migra-
tion behavior of protein and primer could be regenerated. Using capillary electrophoresis,
the reaction products after cleavage were analyzed and the vast majority of the product
showed a running behavior corresponding to the +1 peak of the ladder (Figure 2.16b).
The extended primer was then subjected to another round of extension, again using
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Retention time

dA dC dG dT

0 s

8 s

15 s

120 s

Ladder

Figure 2.17: Timecourse showing fast turnover of 25 nM primer P2 by a high con-
centration of TdT-dNTP conjugates of all four different bases (16 µM). The ladder
of product standards was generated by the incorporation of free propargylamino-
dNTPs using TdT. The time stated corresponds to the incorporation time and
does not include subsequent photocleavage of the linker. This figure was already
published in [74].

TdT-dCTP. Again, primer and conjugate formed a high molecule weight complex visible
on SDS-PAGE with a yellow composite color, and also this newly formed complex could
be resolved by irradiation. On CE, as anticipated, the peak shifted towards the +2
position of the ladder, indicating successful addition of two pa-dCTP residues. In the
control reaction, the conjugates were exposed to cleavage conditions prior to incubation
with the oligo, and no tethering occurred during the incubation time. Instead, CE re-
vealed a distribution of primer lengths ranging from the unextended primer up to the
+3 extension product, which is in accordance with the incorporation of dNTPs that are
no longer tethered to the polymerase.

2.3.3 Measuring incorporation speed
During experiments using the first two linkers, incubation times between 30 and 90 s typ-
ically resulted in quantitative turnover of a primer, which was a promising performance
for establishing a practical DNA synthesis procedure. However, now that a system with
minimal scars and the ability to incorporate all four bases had been developed, we sought
to characterize the incorporation speed in more detail.

Fast turnover experiments were performed in a 37 ◦C room using a conjugate con-
centration of 16 µM and a primer concentration of 25 nM. For lack of a quench-flow
instrument, we established a procedure where reagent addition, mixing and quenching
were performed with the same pipette tip, enabling measurement of very short reaction
times. After the incubation time of 8 / 15 s, the sample was quenched in Hi-Di For-
mamide. After cleavage of the linker (365 nm light), capillary electrophoresis analysis of
the reaction products showed the full conversion of the primer into a product with the
same running behavior as the +1 peak of the ladder in about 8 s for TdT-dCTP, -dGTP,
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Figure 2.18: Analysis of the linker and the tethering effect on incorporation speed.
In all experiments, the same concentration of TdT and an equimolar concentration
of the respective (tethered) dNTP were used. Besides dTTP, the βME quenched
BP23354 linker (free from solution), and the same linker attached to TdT were
investigated. Both figures were also published in [74]. (a) The chemical structures
of the three substrates tested are shown. (b) Capillary electrophoresis analysis of
the primer and the three different reaction products. The ladder was generated
using free pa-dUTP with TdT and therefore only works as reference for dTTP-
linker and the TdT-dTTP conjugate.

-dTTP (Figure 2.17). For TdT-dATP, the reaction proceeds slower, with approximately
20 % of the starting material still present after 8 s. Almost all of the primer is converted
by TdT-dATP after 15 s. In addition to the main reaction peak showing predominant
single extension of the primer by all conjugates, a peak corresponding to the +2 peak of
the ladder can be observed, indicating imperfect termination, i.e., some oligos that have
been extended by two nucleotides, which is further discussed in Section 2.3.5.

The Master student Sebastian Barthel, who worked on the project under my and
Daniel H Arlow’s supervision, performed an experiment to analyze whether the difference
in incorporation speed between the four bases is an intrinsic property of TdT with the
four bases, or is induced by tethering. Sebastian found that also for the incorporation
of free ddNTPs using MTdTc302, the adenosine nucleoside triphosphate is the slowest
substrate, indicating that the different speed is an intrinsic property of the TdT variant
used. The experiment is described in [74].

2.3.4 Effect of tethering on incorporation speed
Before we employed pa-dNTPs for the linker assembly, we performed a preliminary ex-
periment to compare the incorporation speed of TdT with natural dTTP and pa-dUTP.
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We found a very similar distribution of primer extension products for both nucleoside
triphosphates and concluded that the propargylamino-modificiation itself is well toler-
ated by TdT, rendering it well suited for the attachment of the linker (data not shown).
However, the complete linker structure attached to the base is much bigger and the
photocleavable linker is relatively bulky. We therefore performed a similar experiment
to test the influence of the complete linker structure (pa-dTTP plus attached BP-23354,
with the maleimide moiety quenched with βME). In addition, we tested the effect of
tethering the nucleotide-linker to TdT on the incorporation speed.

For the experiment, primer extension reactions were performed using the same con-
centration of MTdTc302 with 1) an equimolar amount of dTTP, 2) an equimolar amount
of the linker-nucleotide BP23354-dTTP quenched with βME, and 3) the tethered linker-
nucleotide BP23354-dTTP, i.e., the conjugate TdT-dTTP (Figure 2.18a). After incu-
bation and photocleavage, the products were analyzed based on CE. While dTTP was
incorporated very quickly, extending the primer by an average of 4 or 5 bases, attach-
ment of the βME-quenched linker significantly slowed down the reaction (Figure 2.18).
For the linker-nucleotide, some +1 and +2 product was observed, but the majority of
primer was not turned over. In contrast, when the linker-nucleotide was attached to TdT,
it was incorporated a lot faster than from solution. Complete turnover of the primer
was found in this case, suggesting that tethering of the linker-nucleotide can speed up
incorporation and compensate for some of the slow down caused by a bulky linker. This
remarkable finding is further discussed in Section 3.1.1.

2.3.5 Conjugates with improved termination
We had previously observed imperfect termination with conjugates based on PEG4-
SPDP and as a result changed the purification method during conjugate preparation
(see Section 2.1.7). However, in spite of the new purification strategy, non-termination
was still observed. For example, Figure 2.17 shows the formation of a +2 product for
all four bases after 120 s. While the amount of non-termination is small, even losses of
0.1 % are relevant for a DNA synthesis procedure, so that understanding and eliminating
double extensions is of high importance.

Polymerase-tethered dNTPs may cause non-termination that can be classified in two
different categories: The first category, intra-molecular non-termination, is based on
multiple dNTPs that are tethered to the same TdT molecule, as observed with conjugates
based on wildtype TdT in Section 2.1.1. Additional nucleotides can be tethered to
the protein if a) multiple cysteines are accessible, or b) if the tethering chemistry is
not specific, so that also other residues can be labeled. The second category, inter-
molecular non-termination, is based on dNTPs that are tethered to one polymerase-
molecule, but can still reach into another polymerase and be incorporated by it. Such
non-termination can occur, e.g., if a long linker enables the dNTP to reach into another
polymerase, but also includes special cases where an unfolded polymerase may have a
structure that does not “shield” the nucleotide from other polymerase-molecules. For
example, incomplete translation products, if not removed during protein-purification,
could be labeled but not provide sufficient protection of the tethered dNTP.
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Figure 2.19: Generation of conjugates with improved termination. CE data is
shown, the intensity axes were normalized to the peak area of the depicted region
and the ladder was generated by incorporation of the free pa-dNTP using TdT.
The peak corresponding to the +2 product is indicated with a black arrow in
both panels. Both figures were also published in [74]. (a) Experiment to test if
non-termination derives from a conjugate-concentration dependent or -independent
process. TdT-dCTP prepared with 1 mM nucleotide in the labeling reaction was
used to extend primer P2 (grey, 0 min) to the +1 product (black) in 1 min. Then,
the primer was incubated for another 14 min with the same conjugate concentration
(cyan) or at a ten-fold dilution (red). (b) Primer P2 turnover in 5 min using
TdT-dTTP conjugates prepared with 0.2 mM to 2.5 mM nucleotide in the labeling
reaction.

To differentiate between the two categories, we tested if the +2 formation arises from a
conjugate-concentration-dependent or -independent process. After performing an initial
primer-extension reaction with TdT-dCTP to form the +1 product (1 min reaction time),
the extension reaction was split up into two different aliquots. One of the aliquots was
diluted 10-fold with reaction buffer, while the other aliquot was kept as is, and both were
incubated for another 14 min (Figure 2.19a). If the +2 formation was entirely based on a
concentration-dependent process, the amount of non-termination observed in the diluted
sample should be reduced significantly. However, instead of a 10-fold reduction, about
3/4 of the amount of non-termination from the undiluted reaction were found. These
results indicated that the majority of +2 formation is concentration-independent, and
therefore occurs based on two dNTPs tethered to the same TdT molecule.
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2.3 Conjugates based on BP-23354

To validate this observation and to reduce the amount of non-termination, we further
tested various concentrations of (linker-)nucleotide in the labeling reaction and analyzed
the effect on +2 formation (Figure 2.19b). We found that between a concentration
of 2.5 mM to 0.2 mM (linker-)nucleotide, the amount of +2 formation of TdT-dTTP
conjugates was reduced with lower labeling concentrations, which was in agreement
with our understanding of the process. At the same time, the activity of the conjugates
was maintained (data not shown). We later performed similar experiments titrating
down the nucleotide labeling concentration of all four dNTPs, and found that 0.1 mM
for TdT-dCTP and -dGTP and 0.2 mM for TdT-dATP and -dTTP lead to the lowest
amount of non-termination while the maximal reaction speed was maintained.
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Figure 2.20: Scheme for the 10-mer synthesis and DNA amplification. First, the
reaction cycles are performed, resulting in a DNA molecule extended by 10 scarred
bases (1). In the next step, tailing of the reaction products using TdT and free
nucleotides, in this case dATP, is performed, to create a reverse primer binding side
(2). Finally, the reverse primer binding site is used to amplify the DNA molecule,
generating a double stranded construct that contains the synthesized region as
natural (unscarred) nucleotides (3). This figure was also published in [74].

2.4 10-mer synthesis using TdT-dNTP conjugates

2.4.1 Development of initial synthesis method
With the knowledge that DNA-containing propargylamino-scars can be amplified with
reasonable fidelity and that TdT-dNTP conjugates can be used to perform at least two
cycles, we next attempted to synthesize a defined oligonucleotide sequence. While there
is ongoing effort to automate our system in a microfluidic device with the DNA attached
to a solid support, the work I present here was based on experiments with the DNA in
solution. In the long term, a DNA synthesis system requires a solid support for sufficient
DNA recovery and to enable quick washing and addition of new reagents. However, in
solution work appeared sufficient to validate that our system can achieve high yields
over multiple synthesis cycles.

Synthesis scheme

The scheme for the 10-mer synthesis consisted of 1) extending an existing DNA molecule
using the respective TdT-dNTP conjugate, 2) quenching the reaction and cleaving the
linker, and 3) purification of the extended DNA to remove the reaction components and
enable the next addition step. Once the desired sequence had been synthesized, a reverse
primer binding site was added using TdT and free dNTPs (Figure 2.20). After the addi-
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Figure 2.21: Scheme for generating the starter for the 10-mer synthesis. The
PCR product derived from pET19 was first digested to generate a 3’-overhang
on the bottom strand. This 3’-overhang enabled efficient ddTTP tailing of the
bottom strand, that was performed in the next step. Last, another digestion was
performed to generate a 3’-overhang and a free 3’-OH on the top strand that is
later used for TdT-dNTP based extension. The complete starter was separated
from other products on an agarose gel and purified. A similar figure was published
in [74].

tion of a poly-A or poly-T tail, a complementary primer was used for the amplification
of the DNA molecule.

DNA recovery

We first attempted synthesis of a defined sequence using a 90-mer oligonucleotide as
the starter for TdT-based extension. Between the cycles, the DNA was purified using
the Zymo OCC (Oligo Cleanup and Concentrator) kit, and a small aliquot was taken
for tailing, amplification, and later analysis. To our surprise, when we analyzed those
aliquots based on qPCR, we found much later amplification for reactions corresponding
to ascending synthesis cycles, and the amplification of the cycle 10-product was compa-
rable to the signal found for the no-template control. We investigated potential DNA
loss during the OCC procedure based on qPCR, and indeed found that only 10 to 20 %
of the DNA was recovered during the purification. Starting with an initial DNA amount
of 1.6 pmol (16 µL with 100 nM oligo), such yields result in the recovery of only a few
thousand molecules after cycle 10 (1.6 pmol ∗ 0.1510 = 9.2x10−21 mol). Small numbers
of molecules can be amplified based on PCR, however, chances of amplification- and
contamination bias increase, and larger DNA amounts would be highly favorable.

Based on the assumption that bigger DNA constructs can be easier purified than the
single stranded oligonucleotide, we started using a double stranded PCR product as the
starter. The PCR product was amplified from pET19 as a 359 bp long construct. To
enable TdT-based extension on one end of the molecule, the PCR-product was cut in
order to generate a 3’-overhang. Prior to that, the other end of the DNA was tailed
with dideoxynucleotides to prevent further extensions (Figure 2.21). Using the double
stranded starter together with Zymo Research DCC (DNA Clean and Concentrator)
columns, purification yields of 50 % were achieved, enabling recovery of femtomoles of
DNA after 10 synthesis steps, sufficient for the following PCR amplification.
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Figure 2.22: Analysis of the 10-mer synthesis performed using DCC purifica-
tion columns. 32 clones containing the PCR-amplified synthesis product were
sequenced, and the number of correct nucleotides (solid bars), double-extensions
(hatched bars) and deletions (white bars) was analyzed for all positions. 13 clones
(41 %) contained the complete 10-mer sequence.

2.4.2 10-mer synthesis using DCC purification columns

To synthesize the sequence 5’-CTACTGACTG-3’, the double-stranded starter was sub-
jected to ten extension cycles using the corresponding TdT-dNTP conjugates. All exten-
sion reactions were performed for 90 s at 37 ◦C, photocleavage of the linker was done for
20 min using a 365 nm LED. The conjugates used were generated with 0.4 mM of the re-
spective (linker-)nucleotide in the labeling reaction, which corresponds to the conditions
used before the linker-nucleotide concentration was changed to mitigate non-termination
(see Section 2.3.5). After synthesis and tailing of the reaction products with dTTP, the
product was PCR amplified and cloned into pUC 19 based on EcoRI and HindIII sites
introduced by the PCR primers. The plasmids were transformed into E.coli DH10B cells
and single colonies were grown overnight in LB medium, mini-prepped, and sequenced.

We sequenced the plasmids of 32 colonies that contained the PCR-amplified reaction
product and found that 13 plasmids (41 %) contained the perfect 10-mer we intended
to synthesize. To characterize the errors and estimate yields of the individual steps,
all reads were aligned with the target sequence, and the base readout was assigned to
the corresponding step (Figure 2.22). We found that some of the cycles had lead to
the correct nucleotide addition in all of the 32 clones (steps 1,5 and 10). Others had
a significantly lower yield, such as step 8, in which only 21 (65.6 %) of the sequences
contained the right nucleotide. Out of the 320 attempted nucleotide additions (32 clones∗
10 steps), 91 % were successful, 2 % resulted in non-termination (double extension) of the
DNA with the respective nucleotide, and 7 % had failed.
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Figure 2.23: The inhibitory effect of Zymo Research DCC eluates on subsequent
TdT reactions was tested. Conjugate-based primer extension reactions with the
same amount of ddH2O, 0.1 x Elution Buffer (EB), or DCC eluate (two replicates,
rep) were performed. Reaction aliquots were quenched after 60 s and analyzed
using CE. The chromatograms are scaled to the size of the highest peaks. The Y
axis shows the fluorescence intensity, the X axis shows normalized sizing references
for unmodified DNA oligonucleotides.

2.4.3 Development of improved synthesis method
While it was encouraging that many clones contained the complete sequence, the low
yield observed for some of the steps was concerning. The variability between different
synthesis cycles was not only found in the 10-mer presented, but also during other synthe-
sis attempts, without an obvious explanation or detectable pattern. We therefore aimed
to increase yields and reproducibility by investigating a number of possible modifications
to the synthesis procedure, such as 1) optimization of TdT incorporation and linker cleav-
age conditions, 2) use of different conjugate labeling conditions (see Section 2.3.5), or
3) the effect of acetylation of the propargylamino scar between cycles. Some of those
modifications are described below and were implemented in the next synthesis attempts
to facilitate the procedure and to improve yields. However, they did not explain the
large variability between stepwise yields of different synthesis cycles.

The first possible explanation for the variability of different steps we identified was
loss of conjugate activity when the conjugates were stored in the presence of the cofactor
cobalt. Activity loss of more than 50 % in 30 min was observed during storage at 4 ◦C,
probably due to hydrolysis of the tethered dNTP in presence of the co-factor. We had
often kept conjugates on ice in the presence of cobalt during the synthesis procedure,
making it likely that corresponding activity loss had played a certain role. Without
divalent ions, conjugates do not lose activity during 4 ◦C storage.

The second potential problem identified was related to the DNA purification between
the cycles: We tested the DCC procedure for potential inhibitory effects on the next
extension reaction. To do so, TdT-dTTP based primer elongation, either with ddH2O or
0.1x EB as positive controls, or with the same amount of DCC eluate (column initially
only loaded with ddH2O, elution performed with ddH2O) was performed. We found that
conjugate reactions containing the eluate often performed worse, indicating inhibition
of the reaction by some ingredient of the DCC elution (Figure 2.23). The eluates of dif-
ferent columns showed different extents of inhibition, potentially explaining why some
of the 10-mer steps performed better than others. Modification of the DCC purification
protocol with additional washing steps, spins, and incubation times to remove ethanol
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were attempted, but we did not find conditions in which inhibition was consistently re-
moved.

Modifications of the synthesis procedure

AMPure XP base purification: To eliminate possible inhibition arising from the
DCC-based DNA cleanup as discussed above, AMPure XP beads were used for the
DNA purification. Prior to the synthesis, we performed an experiment analogous to
the one that revealed inhibitory effects of the DCC with the eluate of AMPure beads.
If ethanol was sufficiently removed prior to the drying step, no slow-down of the TdT-
dNTP reactions with the eluate was observed. The AMPure XP beads enabled DNA
recovery above 50 % using the double stranded starter, sufficient for the synthesis.

Labeling reaction and storage: The conjugate labeling reaction was modified
to reduce the amount of non-termination based on the findings documented in Sec-
tion 2.3.5. For the initial 10-mer synthesis, all conjugates were produced with 0.4 mM
(linker-)nucleotide in the labeling reaction. For the novel synthesis, TdT-dCTP and
-dGTP were produced with 0.1 mM (linker-)nucleotide, and TdT-dATP and -dTTP
were produced with 0.2 mM. To prevent activity loss during storage, we started buffer-
exchanging the conjugates in TP8 (50 mM potassium acetate, 20 mM Tris-acetate, pH
7.9) instead of RBC (TP8 + 10 mM magnesium acetate, 0.25 mM cobalt chloride), after
the labeling reaction.

Linker cleavage:. Photocleavage with the 365 nm LED used in the first synthesis
(measured irradiance of 5 mW/cm2) took about 20 min. To simplify the work-flow of the
synthesis and also to demonstrate that the cleavage can be performed fast employing
more powerful light sources, we replaced the LED with a 405 nm laser. The estimated
irradiance of the novel cleavage system was 400 mW/cm2, and enabled us to reduce the
cleavage time to 1 min. As a precaution, sodium azide, a commonly used oxygen radical
scavenger, which is used in buffers for photocleavage of reversible terminator dNTPs,
such as in [61], was added to the quenching buffer.

Reaction conditions: While we initially performed all reactions for 90 s, the time
for TdT-dATP was raised to 180 s for the new synthesis. TdT-dATP performs slower
than conjugates of the other three nucleotides, so adjustment of the incubation times
seemed reasonable.

Acetylation after photolysis: Upon cleavage of the linker, the resulting propar-
gylamino scar of the dNTP contains an amine that is positively charged in our buffer
conditions [63]. The charge can be removed, e.g., through a reaction of the amine with
NHS-acetate (producing an N-acetyl-propargylamino scar) as also performed prior to
CE analysis to improve running behavior. Assuming that multiple positively charged
nucleobases might impede extension of an oligo by TdT, we performed a synthesis with
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scar-neutralization using NHS-acetate after every step. The acetylation was not tested
independently of other changes so we cannot conclusively say whether it is beneficial,
however, the synthesis showed improved yields, so we continued using the procedure. To
perform the acetylation, the quenching buffer was modified to contain 100 mM NaHCO3,
our buffer of choice for NHS reactions, and 40 mM NHS-acetate. The NHS-acetate was
added immediately before the quenching was performed.

Phosphatase-based dNTP removal: In the first synthesis attempts using AMPure
XP beads for DNA purification, we detected nucleotide insertions that did not follow
the double-insertions scheme. The novel insertions instead followed a different pattern
(“ABA-pattern”) where the additional nucleotide was always of the same type as the
pa-dNTP added one cycle ago. For example, we found the sequence CTAGTCAGCGT
in 2.9 % of the reads of one synthesis, which was the desired sequence except for the
G insertion highlighted in bold and underlined. We hypothesized that the insertions
happened as the incorporation of a free pa-dNTP carried over from the previous cycle,
after a DNA molecule had already been extended and was covalently bound to a TdT-
conjugate from the next step. We tested whether the AMPure XP beads bind free
pa-dNTPs and indeed found a substantial amount of nucleotide carryover during the
purification procedure.

In order to reduce pa-dNTP carryover, additional washing and also variation of the ra-
tio between water and ethanol during the washing procedure were investigated. However,
the pa-dNTPs were binding to the beads even with modified washing conditions, so we
decided to instead enzymatically digest the triphosphate after photocleavage. Alkaline
phosphatase was used for the digestion, and the quenching buffer and the alkaline phos-
phatase buffer were modified accordingly to enable phosphatase activity. The EDTA
concentration in the quenching buffer was reduced, to enable “over-buffering” of the
EDTA with magnesium ions required for the phosphatase reaction. The phosphatase
was added in Tris-HCl buffer so that the Tris would quench the NHS-acetate and prevent
it from modifying the enzyme. The phosphatase treatment enabled a 10-fold reduction
of ABA-pattern insertions (see Section 2.4.4).

2.4.4 10-mer synthesis using AMPure XP beads

Using magnetic bead DNA purification, we aimed to synthesize the 10-mer 5’-CTAGTC-
AGCT-3’. The original sequence attempted contained a tandem repeat of 5’-ACTG-3,
which seemed disadvantageous. Taq can produce stutter products in which 4 bp repeats
are deleted due to slippage [86,96], and we found several synthesis products missing the
last four bases during previous experiments. The new synthesis was performed with the
modifications described in the previous Section, using extension reaction times of 90 s or
180 s for TdT-dATP and photoclavage time of 1 min with 405 nm light. After synthesis
and tailing of the reaction products with dTTP, the product was PCR amplified, and
the PCR products were sequenced.
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Figure 2.24: NGS-based analysis of the 10-mer synthesis using magnetic beads.
The estimated yields of the steps are based on the analysis of 4,861 NGS reads
(excluding singleton reads) that were aligned against the target sequence. The
correct extensions are indicated with solid bars, white bars present deletions, and
hatched bars indicate double-extensions. Substitutions were observed at a rate
below 0.1 %. This figure was also published in [74].

NGS analysis of synthesis products

To enable a larger coverage than previously achieved with sanger-sequencing, the synthe-
sis products were analyzed using NGS. The samples were submitted to the JBEI DiVA
sequencing service, where they were barcoded and processed using the Nextera library
preparation (Illumina) with some modifications [93]. Sequencing was performed on a
MiSeq (Illumina), multiplexed together with other samples. The Illumina reads were fil-
tered for sequences containing the 3’-end of the starter, up to 20 nucleotides, and a poly
A tail of at least 6 bases, (5’-TCCAGATTT(N0−20)AAAAAA-3’). The selected reads
were binned, and singleton reads were removed to avoid artifactual errors, e.g., based on
index switching between different samples. About 1.5 % of the selected sequences were
singleton reads.

The DiVA analysis resulted in 4,861 reads that contained the target region, out of
which 3,913 (80.5 %) contained the perfect 10-mer that we intended to synthesize. We
aligned the reads against the target sequence and identified ABA-pattern insertions in
0.7 % of the reads, that were then excluded from the analysis of stepwise yields. We
then analyzed the number of correct extensions, deletions and double-extensions for
every step. The average stepwise yield achieved was 97.7 %, with deletions occurring in
1.3 % of the steps, and insertions in 1.0 %. The individual steps of the synthesis had a
yield between 99.5 % in step 6 and 93.4 % in step 10 (Figure 2.24, Table 2.1). Deletions
ranged from 0.1 % in step 1 up to 5.2 % in step 10. Insertions were found in as little as
0.2 % (step 6) and up to 4.0 % (step 9) of the sequences. Interestingly, the step with the
most as well as the one with the least insertions was the incorporation of TdT-dCTP.
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Table 2.1: Stepwise deletions, insertions, and yield of correct incorporations based
on the NGS analysis of the 10-mer synthesis using magnetic beads. The estimated
yields are based on the analysis of 4,861 NGS reads (excluding singleton reads)
that were aligned against the target sequence.

Step 1 2 3 4 5 6 7 8 9 10

Base C T A G T C A G C T

Del 0.1 % 1.4 % 1.0 % 0.8 % 0.4 % 0.3 % 0.7 % 0.8 % 1.9 % 5.2 %

Ins 0.5 % 0.6 % 0.6 % 0.9 % 0.4 % 0.2 % 0.4 % 1.3 % 4.0 % 1.4 %

Yield 99.4 % 98.0 % 98.4 % 98.3 % 99.2 % 99.5 % 98.8 % 98.0 % 94.1 % 93.4 %

Multiple sequence alignment

A multiple sequence alignment of all sequences with a frequency of more than 0.25 %
is shown in Figure 2.25. The correct 10-mer was the most abundant sequence with
a frequency of 80.5 %. The second most abundant sequence was a single deletion of
position 10, which was found in 4.1 % of the reads, followed by a double insertion in
position 9 (3.4 %). Single deletions and single insertions are alternating throughout the
alignment, which is in accordance with the finding that both types of errors occur at
similar rates (1 % deletions, 1.3 % insertions).

The most common errors are found towards the end of 10-mer. We suspected that this
part of the sequence can be impacted by PCR bias, e.g., if the poly-T primer anneals
into the sequence, forming a mismatch with the last base, and performed an experiment
to test this hypothesis: The same 10-mer product was tailed with varying A-tail lengths,
PCR amplified, and analyzed using NGS. Indeed, PCR products derived from shorter
tails contained more “deletion” errors in the last position, however, we were not able to
measure this effect consistently. A direct analysis of the synthesis products, e.g., based
on HPLC or CE, would mitigate PCR bias, but would require a higher quantity of DNA
and therefore a solid support.

The first sequence with two errors contains the combination of the two most common
single-errors, which is in agreement with the expectancy assuming independent synthesis
steps (frequency of 0.3 %). An ABA-pattern insertion (additional insertion of pa-dGTP
from cycle 8 after step 9) was found with a frequency of 0.3 %. As previously discussed,
reads with ABA-pattern insertions occurred at a frequency of up to 2.9 % before the
phosphatase treatment was implemented in the synthesis procedure. This finding there-
fore indicates a reduction of the ABA-insertion rate by 10-fold through the additional
step.
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5’- C T A G T C A G C T -3’
_ _ _ _ _ _ _ _ _ _ 
1 2 3 4 5 6 7 8 9 0

Count Freq. Total: 4861 reads 

3913 80. % C T A G T C A G C T 
201 4.1% C T A G T C A G C -
169 3.5% C T A G T C A G CC T 
56 1.2% C T A G T C A G C TT
51 1.0% C T A G T C A G - T 
46 0.9% C T A G T C A GG C T 
45 0.9% C - A G T C A G C T 
28 0.6% C T A GG T C A G C T 
27 0.6% C T - G T C A G C T 
21 0.4% C TT A G T C A G C T 
19 0.4% C T A - T C A G C T 
19 0.4% CC T A G T C A G C T 
16 0.3% C T AA G T C A G C T 
15 0.3% C T A G T C A G CC -
13 0.3% C T A G T C A G CG T 

5

Figure 2.25: The multiple sequence alignment shows all NGS reads of the 10-mer
synthesis using magnetic beads that occurred with a frequency of at least 0.25 %.
An ABA-pattern insertion caused by dNTP carryover of the magnetic beads was
found in 13 reads and is indicated by the grey “G”. This figure was also published
in [74].
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5’- C C C -3’

Count Freq. Total: 474 reads

418 88.2% C C C
41 8.6% C C
15 3.2% C C C C

Figure 2.26: All sequences of the 3-mer synthesis (5’-CCC-3’) except for singleton
reads are shown. This figure was also published in [74].

2.5 Synthesis of 5’-CCC-3’ using TdT-dCTP conjugates
For the 10-mer sequence, repeats of the same base were separated by at least two other
nucleotides to enable clear assignment of the sequencing readout to each step. However,
direct repeats are an essential part of DNA sequences, so we performed an experiment
to test if the conjugates were also able to repeatedly add the same base. The sequence
5’-CCC-3’ was synthesized using polymerase-nucleotide conjugates following the same
procedure and conditions employed for the magnetic bead synthesis of the 10-mer. The
samples were then NGS-sequenced using the JBEI DiVA sequencing service.

All sequences observed during NGS of the synthesis products except for singleton reads
are shown in Figure 2.26. Of 474 reads, 88.2 % contained the correct sequence, followed
by 8.6 % readouts of two cytosine residues, presumably due to a single deletion. 3.2 %
of the reads contained four cytosines, presumably due to a single double-insertion. As-
suming three independent steps, the stepwise yield was calculated based on the amount
of correct 3-mers to be 0.8821/3 = 95.9 %. As in the 10-mer synthesis, deletion errors
were found more often than insertions.
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3 Discussion

3.1 Polymerase-nucleotide conjugates and reversible
termination

Conventional reversible terminators are incorporated by a polymerase freely from solu-
tion. Upon extension of a DNA molecule, the RTdNTP modification prevents further
nucleotide additions, while the primer has the ability to interact with other polymerases
and dNTPs. The concept of polymerase-nucleotide conjugates follows a different strat-
egy: By joining a polymerase and a nucleoside triphosphate, polymerase-nucleotide con-
jugates are generated that achieve termination because a polymerase shields the 3’-end
of a primer towards other conjugates upon incorporation. The system only terminates to-
wards other polymerase-nucleotide conjugates but not towards free dNTPs, which is one
of the factors differentiating it from conventional reversible termination strategies. This
thesis describes the development of polymerase-nucleotide conjugates from the initial
validation of the idea up to the synthesis of a 10-mer sequence.

Validation of the basic concept

The idea that polymerase-nucleotide conjugates could be used to achieve single nu-
cleotide extensions of a DNA molecule was initially tested using a PEG4-SPDP linker to
tether dNTPs to TdT. TdT is known for its high tolerance towards base-modifications
[70], so it seemed likely that it could also incorporate tethered dNTPs with the linker
attached to the base. Indeed, we found that multiple tethered nucleotides could be
incorporated by wildtype TdT which has several attachment positions. Interestingly,
while one would expected crowding of the catalytic site to occur during the first teth-
ered incorporation, TdT was able to incorporate up to four tethered dNTPs, indicating
a certain robustness of the tethered incorporation procedure. The encouraging results
were further supported when, based on the same linker, four mutants with a single dNTP
attachment positions were tested, and all showed the ability to incorporate their teth-
ered dNTP. Importantly, all of the conjugates with a single attached dNTP converted a
primer predominantly into the singly-extended product, validating the basic concept be-
hind polymerase-nucleotide conjugates: A conjugate, upon incorporation of its tethered
dNTP, shields the end of the primer and prevents further conjugate-based dNTP addi-
tions. Importantly, reaction times required for complete turnover were typically under
1 min, indicating that polymerase-nucleotide conjugates could fulfill the requirements for
a DNA synthesis procedure in which a cycle should take ≪ 5 min.
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Photocleavable polymerase-nucleotide conjugates

The conjugates employing PEG4-SPDP had limited usefulness due to a large scar left
upon linker cleavage, so we developed a novel attachment strategy. A photolabile linker
enabled cleavage back down to the propargylamino-group, leaving the minimal scar pos-
sible whilst using commercially available building blocks for conjugate assembly. DNA
with propargylamino-modifications can be amplified by Taq polymerases with reasonable
fidelity [74].

The photocleavable linker (based on PC-azido-NHS) that required an internal click
reaction for assembly enabled quantitative incorporation of propargylamino-analogues
of all four DNA bases in less than 1 min. These results suggested that we were close
to a functional enzymatic DNA synthesis system, now having the ability to add all
four bases with only small modifications. However, activity loss of the enzyme during
the click reaction made us suspicious about potential side reactions during the copper-
catalyzed click assembly. We therefore switched the linker chemistry once again, now
using a linker with the same reactive moieties towards the dNTP and TdT, but without
an internal assembly step (BP-23354).

Based on TdT-dNTP conjugates employing BP-23354, two synthesis cycles were demon-
strated using PAGE and CE to monitor the individual steps (Figure 2.16). We found
that repeating the synthesis cycle was possible, enabling the addition of multiple dNTPs.
Tethering of the primer to conjugates looked very clean on SDS-PAGE with no detectable
left-over starting material, and CE confirmed that the vast majority of primer was con-
verted to the +1 and later into the +2 product. These findings therefore validated the
suitability of the conjugates for multiple steps of DNA synthesis, indicating that the
scars of previous iterations do not significantly hamper the next addition. Cleavage of
the linker, analyzed by disassembly of the complex between the conjugate and primer on
SDS-PAGE, also appeared to achieve a close to quantitative yield. For the cleavage step,
a 365 nm light source with an irradiation of approximately 5 mW/cm2 was employed,
resulting in a cleavage time of 20 min, far away from a practical performance for DNA
synthesis. However, this light-source can be replaced by more powerful instruments to
speed up the cleavage procedure, as later shown based on the 405 nm laser that was used
with an irradiation time of 1 min during the 10-mer synthesis.

3.1.1 Incorporation speed
Given sufficient process optimization, (enabling high accessibility of the DNA molecules,
sufficient prevention of side reactions, etc.) the crucial factor determining synthesis
length and quality is the speed at which the incorporation and deprotection reactions
proceed. Characterizing primer extension speed was therefore attempted once we had
conjugates suited for the synthesis of a defined sequence (Figure 2.17). Using 16 µM
conjugates, a poly dT60-mer was converted into the +1 product with quantitative yield
in under 15 s for TdT-dCTP, -dGTP, and -dTTP, and in under 30 s for TdT-dATP. The
reaction speed is below the maximal speed TdT can achieve using natural nucleotides, as
discussed further below (kcat of 180/min for dATP [10]). However, the turnover was in
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the range required for a DNA synthesis system, and presented a good starting point for
further improvements. For comparison, the incorporation cycle of an Illumina NovaSeq
6000, in which a highly engineered polymerase incorporates 3’-modified RTdNTPs, takes
about 80 s according to the instrument log files.

Comparing conjugates of the four different bases, we consistently found a slower in-
corporation of TdT-dATP (> 2 x). Because free adenine-based nucleoside triphosphates
were also incorporated slower from solution, we believe that the speed difference depends
on the nucleobase and does not derive from a tethering- and therefore conjugate-specific
effect. A speed comparison of different ddNTPs is described in [74]. Another factor of
the incorporation speed could be the current terminal bases of the primer that closely
interact with the incoming dNTP during the catalysis. Unfortunately, testing different
primer sequences turns into a complex problem: Testing all four TdT-dNTP conjugates
with all four different nucleotides in the last position results in 42 = 16 reactions; if the
effect of the last two bases shall be tested, 43 = 64 combinations exist. With duplicates
and multiple time points, those experiments quickly grow beyond the possible scope.
Instead of doing a large screening experiment, we performed preliminary experiments
that indicated comparable speed with different primers, and then decided to increase
incorporation times during the 10-mer synthesis to compensate for possible slow downs
during some steps (90 s and up to 180 s for TdT-dATP). In the future, incorporation
times may be adapted based on the particular sequence that is synthesized if certain
combinations require longer incubation.

Effect of nucleotide tethering

In the early phase of the project, we tested single primer extension using TdT with
ddNTPs as an easy way to achieve single nucleotide incorporation with kinetics similar
to natural nucleotides. The experiments showed that complete turnover of a primer
within seconds is possible at the maximum speed of the enzyme. This turnover was not
achieved using polymerase-nucleotide conjugates at 16 µM. However, we developed an
experiment to test how the linker, and tethering the dNTP as opposed to incorporation
from solution, impact the reaction speed.

In theory, tethering should lead to a high local concentration of the dNTP in the
active site of the respective polymerase, resulting in fast incorporation by the conjugate.
The tethering effect might therefore enable use of substrates that could barely be incor-
porated free from solution, and enable effective concentrations above the solubility limit
of the tethered reagent. We indeed found that tethered linker-dNTP was incorporated
much quicker than the free version at the same concentration in solution (Figure 2.18b).
In comparison with the natural dNTP, free linker-dNTP was incorporated much slower.
Despite of the high tolerance for base-modifications, the linker influences TdT incorpo-
ration speed, perhaps unsurprisingly given its bulk and size. Testing the incorporation
of linkers with different flexibility and bulkyness, and how the reaction characteristics
translate into the respective conjugate, could enable the generation of faster conjugates.
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3.1.2 Non-termination
In the most simplified explanation, polymerase-nucleotide conjugates achieve termina-
tion when, upon dNTP incorporation, “the 3’-end of the primer remains covalently
bound to TdT and is inaccessible to other TdTdNTP molecules”. [74]. However, taking
a closer look, termination turns out to be more complex. At least four requirements
need to be fulfilled by the system in order to enable perfect termination:

1. Upon incorporation of its tethered dNTP, the polymerase moiety of a conjugate
hinders other polymerase-nucleotide conjugates from extending the 3’-
OH of the respective primer.
This point is analogous to the short explanation given in the beginning of the
section.

2. The dNTP tethered to one polymerase-nucleotide conjugate may not be incor-
porated by a different polymerase molecule.
If dNTPs tethered to other polymerases can function as substrate for a poly-
merase that has already extended a primer and is now attached to the 3’-OH,
non-termination occurs.

3. The conjugate itself may only be labeled with a single dNTP that it can
incorporate into a primer.
Our results show that multiply labeled conjugates can perform multiple dNTP
incorporations, and we even found that unspecific labeling was one of the main
sources for non-termination observed during our experiments.

4. All free dNTPs must be removed from the system.

To limit non-termination, a polymerase-nucleotide based DNA synthesis system there-
fore needs careful setup. To fulfill points 1 and 2, the length, flexibility, and attachment
position of the linker, as well as the structure of the polymerase are expected to play a
big role. Further, to fulfill point 2, the tertiary polymerase molecules should be intact,
because an unfolded or partial polymerase moiety would likely offer less protection of a
tethered dNTP than the intact protein. To fulfill point 3, measures need to be taken
that prevent tethering of multiple dNTP molecules to the same polymerase. When we
identified double-labeling to be the main cause for non-termination, labeling conditions
were adjusted in order to reduce the effect (Figure 2.19). The non-termination could
have occurred based on the additional two cysteines that are present in (M)TdTc302, or
have derived from off-target reactions of the maleimide, e.g., with primary amines. In the
long term, attachment strategies with higher specificity are desirable, such as the OPSS
moiety employed in the PEG4-SPDP linker. Additional cysteines could be removed, or
unnatural amino acids could be used as attachment positions, e.g., in combination with
copper-free click chemistry. To fulfill point 4, we generated the MBP-fusion of TdT that
enabled improved purification of the conjugates after the labeling reaction, removing
excess dNTPs reliably.
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Figure 3.1: An ester-based linker attachment that can be cleaved by an esterase
is shown. The nucleobase of a cytosine is depicted that would be attached to the
sugar and triphosphate moiety at the R position. Further, R’ includes the variable
part of the linker that is then attached to the polymerase (Pol). Upon cleavage
of the ester bond, only a small hydroxymethyl group is left on the nucleobase as a
scar.

3.1.3 Linker strategies

The linker attachment position, length, and flexibility may impact dNTP incorporation
speed and termination ability of the conjugates. However, there are two other aspects
of the linker system that are not directly linked to the incorporation step, but are still
essential. First, the scar that is left after cleavage can be of importance for follow up
procedures. Second, cleavage of the linker to deprotect the extended DNA molecule needs
to be extremely fast. The nucleotide addition is often considered the important step of a
DNA synthesis system, however, the deprotection step has the same requirements with
regard to yield and speed, and is therefore just as important.

Nucleobase attachment

Throughout this thesis, linker attachment was performed based on the C5 position of
pyrimidines or the C7 position of 7-deazapurines, respectively. Modifications of these
positions are known to be reasonably tolerated by polymerases (e.g., [36]) and the propar-
gylamino attachment turned out to have little effect on Taq-based PCR amplification,
which enabled the generation of natural DNA. However, it might be advantageous to
further reduce the scar size in future implementations. One option for small nucleobase
modifications that are found in nature are pyrimidine derivatives with a hydroxymethyl
group in the C5 position [98]. The same group could be attached to the C7 position of
7-deazapurines, offering a simple solution for an attachment strategy that results in a
small, uncharged modification upon cleavage. A scheme in which a linker is cleaved to
leave a hydroxymethyl modification is depicted in Figure 3.1. Attachment of a linker to
the exocyclic amines of adenine, cytosine and guanine [23], and attachment to an amine
in the aromatic ring for thymine might enable scar-free cleavage.
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Cleavage moieties

Two different cleavage moieties of the linker were used in this demonstration. The
OPSS-based linker generated a disulfide bond that can be cleaved, e.g., using TCEP.
Unfortunately, disulfide cleavage results in a sulfhydryl scar that can interfere with
disulfide bonds in the next step by disulfide exchange. The photocleavable linker then
enabled cleavage down to a propargylamino group and could be performed quickly with
a sufficient light source. While we did not attempt optimization of the cleavage, similar
nitrobenzole groups were cleaved quantitatively in 10 s with 365 nm light [90], which
renders photochemistry very promising in the context of DNA synthesis. DNA damage
induced by irradiation at this wavelength and high irradiation intensity has been studied
in the context of RTdNTPs, and was not found to occur at significant levels [61]. Another
option could be enzymatically cleavable linkers that promise fast reactions with high
specificity. A strategy for a linker system employing an esterase for cleavage is shown
in Figure 3.1. The esterase would in this case leave a hydroxymethyl modification on
the nucleobase. To enable access of the esterase to the linker, the tethered polymerase
could be digested using a protease, or denaturing reagents might be used to unfold TdT,
rendering the linker accessible.

3.2 10-mer sequence
Synthesis of a defined sequence with a stepwise yield close to a practical DNA synthesis
system was the proof of concept aimed for in this thesis. In the first 10-mer synthesis
attempt, an average stepwise yield of 91 % was achieved. At this error rate, less than
half of the DNA molecules are correct within 8 synthesis cycles. After the optimiza-
tion of various parameters, the stepwise yield was increased to 97.7 % as measured by
NGS. Phosphoramidite synthesis nowadays consistently achieves stepwise yields above
99 %, and synthesis of long oligos up to 150 requires yields exceeding 99.5 % [60]. Our
demonstration does not achieve these numbers on average, and we further observed a
considerable variability between different steps, with the worst yield being 93.4 %. How-
ever, the huge improvement achieved between the two synthesis demonstrations and
various steps that exceeded a yield of 99 % are indicators that the system could be im-
proved accordingly. Extrapolating from our current yield, synthesis of short primers for
oligonucleotides should be possible (.9840 = 45%), however, this would require a solid
support in order to generate a sufficient amount of the primer.

While coupling times of 1.5 min (C, G, and T) and 3 min (A) were used in the final
10-mer demonstration, a realistic goal of an enzymatic DNA synthesis system is a cycle
time below 1 minute. The capillary electrophoresis data in Figure 2.17 indicate that
the conjugates can perform the incorporation reaction in 10–30 s, and reactions times
under 10 s should be achievable given the kcat of the enzyme. Deprotection, e.g., using
photolabile groups is possible in a similar amount of time, as discussed in Section 3.1.3.
Further, stepwise yields need to exceed those of phosphoramidite chemistry to enable
the synthesis of longer and higher quality oligos. Approaches to reduce non-termination
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have been discussed above. Ways to increase turnover further include automation to
eliminate handling mistakes, adaption of buffer conditions or divalent ions used, or en-
zyme engineering to speed up the reaction. Variability between steps could also arise
from secondary structure formation of the DNA that could render the 3’-end less ac-
cessible to TdT, slowing down the reaction. To prevent secondary structure formation,
an increase of the reaction temperature or base-modifications that prevent secondary
structure formation and are removed after synthesis [59] could be implemented.

Another very important step will be the implementation of a solid support for the
growing DNA molecules, to enable automation and sufficient DNA recovery for analyt-
ical chemistry. NGS sequencing offers an easy way to estimating stepwise yields, and
high coverage can be achieved. However, there are many additional steps between the
synthesis and the NGS readout, in which bias can be introduced. One potential source of
bias is the PCR, where annealing of the homopolymer primer into the synthesized region
(producing a mismatch) could lead to an amplicon in which the last step of the synthesis
allegedly appears to have many deletions. Methods such as HPLC will facilitate the
analysis of reaction products, providing a more direct measure.

3.3 Costs of polymerase-nucleotide conjugates

It is important that the reagent costs of an enzymatic DNA synthesis procedure are
not prohibitive for commercialization. One aspect to consider is that phosphoramidites
are typically used at concentrations above 0.1 M to enable fast turnover, while much
more efficient enzymatic reactions could work at 20 µM conjugates. Therefore, even
if the production of the conjugates turns out to be much more expensive, they could
potentially be used at a 5,000 fold lower concentration. In addition, during synthesis at
a microscale level, e.g., for gene synthesis, reagent costs can be brought to an almost
negligible level. A small number of DNA molecules can be PCR-amplified after the
synthesis to generate the quantity required for follow up procedures. It seems likely
that higher yields, increased reliability, and simplification or removal of DNA assembly
procedures will be the cost-determining factors in this area.

Compared to an enzymatic DNA synthesis system using RTdNTPs, one could expect
polymerase-nucleotide conjugates to have increased reagent costs, because they consume
an amount of polymerase stoichiometric to the DNA. However, I think it is well possible,
at least for microscale synthesis, that the enzyme concentration will be chosen in order
to enable high reaction speed, and that the polymerase will be in an excess over the
DNA molecules in both systems. It will be interesting to see how large-scale production
can drive down costs for reagents for enzymatic DNA synthesis in the future, and to
witness how larger scale DNA synthesis will be enabled based on the cost reduction.
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3.4 Outlook
Before an enzymatic system will be competitive with conventional DNA synthesis, a large
amount of process optimization is required. Phosphoramidite synthesis has achieved its
high yields and reliability over decades, solving various scientific challenges such as
the development of a suited solid support. However, I believe that various potential
advantages of enzymatic systems will render it superior in the long term, as summarized
in our publication: “1) the exquisite specificity of enzymes and mild conditions in which
they function may reduce the formation of side products and DNA damage such as
depurination, thereby enabling the direct synthesis of longer oligos; 2) reactions take
place in aqueous conditions and need not generate hazardous waste; 3) synthesis could
be initiated from natural DNA (i.e., DNA without protecting groups on the nucleophilic
positions of the bases); and 4) enzyme engineering techniques such as high-throughput
screens and selections can be employed to optimize the system in ways that are not
possible using organic chemistry alone.” [74] Synthesis in aqueous conditions further
enables use of other proteins during the procedure, opening up the whole toolbox nature
has created for handling DNA.

Besides our approach based on polymerase-nucleotide conjugates, several groups at-
tempt to employ 3’-modified RTdNTPs with engineered polymerases for de novo DNA
synthesis. The most prominent players in the field include DNA Script, Molecular Assem-
blies and Nuclera Nucleics. While certain benefits can result from the use of 3’-modified
RTdNTPs, for example very reliable termination, I believe that the ability of polymerase-
nucleotide conjugates to employ 3’-unblocked dNTPs is a key advantage for the synthesis
of longer sequences. Despite large polymerase engineering efforts for 3’-O-modified RTd-
NTPs for sequencing applications [14], incorporation of 3-O-modified RTdNTPs still lags
behind the incorporation kinetics of natural dNTPs for those systems [25]. The ability
of polymerase-nucleotide conjugates to use dNTPs with an unmodified sugar moiety re-
moves the need for enzyme engineering efforts, and enables fast incorporation rates that
will translate into high yields and longer DNA sequences.

I hope that the presented work will be the starting point for the development of
a practical enzymatic DNA synthesis technology. Such a system could have a huge
impact on biotechnology, as summarized in a comment from Adam Clore [19]: “The
work of Palluk et al. raises interesting questions about the future of DNA synthesis and
synthetic biology. Facile production of long, high-fidelity DNA would likely galvanize
the synthetic biology industry and could hasten the replacement of traditional chemical
manufacturing by biological manufacturing.” In my opinion, it is only a matter of time
until enzymes will enable practical desktop oligonucleotide synthesizers and direct DNA
production exceeding the synthesis length possible today.
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4 Material and Methods
Large parts of this method section were already published in [74] and [4].

4.1 DNA construction
The TdT sequence used consists of the residues 132-510 from the short isoform (TdTs)
of Mus musculus TdT (NCBI Accession number: NP_001036693.1) and lacks the N-
terminal BRCT domain [30]. For the initial demonstration of tethered dNTP incorpora-
tion employing the PEG4-SPDP crosslinker, TdT was expressed fused to an N-terminal
His-Tag (TdTwt). The gene encoding TdT was ordered from Integrated DNA Technolo-
gies with codon-optimization for E. coli and inserted into pET19b using isothermal as-
sembly [27]. To generate the TdT∆5cys mutant, surface-exposed cysteine residues were
identified in the crystal structure of TdT (PDB ID: 4I27) and the mutations Cys188Ala
(PDB ID 4I27 numbering), Cys216Ser, Cys302Ala, Cys378Ala, and Cys438Ser were in-
troduced using site-directed mutagenesis [34]. Based on this surface-cysteine free TdT
variant, mutants with a single surface-exposed cysteine for linker attachment were then
constructed by the re-insertion of cysteines into four positions near the catalytic site us-
ing site-directed mutagenesis, generating the mutants TdTc180 (Glu180Cys), TdTc188
(Ala188Cys), TdTc253 (THR253Cys), and TdTc302 (Ala302Cys). To generate the TdT
variant that was used with the photocleavable linkers, maltose binding protein (MBP)
was inserted between the His-Tag and the TdT domain of TdTc302 to yield MTdTc302.
The sequence encoding MBP from E. coli was amplified from pMAL-c5X (NEB) and
inserted into the pET19b plasmid harboring the TdT gene using isothermal assembly.

Sequences of the plasmids coding for all TdT variants can be downloaded from the
JBEI Public registry (https://public-registry.jbei.org/folders/355). Respective cloning
and expression strains harboring the plasmids were added to the JBEI strain archive
and are available upon request (see Table 4.1).

Table 4.1: Plasmid and strain accession numbers. Sequences of the plasmids
coding for all TdT variants can be downloaded from the JBEI Public Registry
(https://public-registry.jbei.org/folders/355).

Construct Plasmid Cloning strain Expression strain

pET19-TdTwt JPUB_010259 JPUB_010258 JPUB_010276

pET19-TdT∆5cys JPUB_010261 JPUB_010260 JPUB_010275
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pET19-TdTc180 JPUB_010267 JPUB_010266 JPUB_010274

pET19-TdTc188 JPUB_010265 JPUB_010264 JPUB_010273

pET19-TdTc253 JPUB_010263 JPUB_010262 JPUB_010272

pET19-TdTc302 JPUB_010257 JPUB_010256 JPUB_010271

pET19-MTdTc302 JPUB_008786 JPUB_010268 JPUB_008785
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4.2 Section A: Conjugates based on PEG4-SPDP

4.2.1 Protein expression and purification of His-tagged TdT
The expression of all TdT variants without MBP domain was performed in E. coli
Rosetta-gami B(DE3)pLysS cells (Novagen) [55] that were grown in LB media containing
carbenicillin (50 g/L), chloramphenicol (34 g/L), tetracycline (12.5 g/L) and kanamycin
(15 g/L).

Starting cultures were grown for 24 h at 37 ◦C with shaking at 200 RPM and then used
to inoculate expression cultures in shake flasks without baffles using a 1/20 dilution. Ex-
pression cultures were grown at 37 ◦C and 200 RPM until an OD600 of 0.6 was reached.
IPTG was added to a final concentration of 0.5 mM and the expression was performed
for 12 h at 30 ◦C with shaking at 200 RPM. Cells were harvested by centrifugation and
resuspended in buffer A (20 mM Tris-HCl, 0.5 M NaCI, pH 8.3) + 5 mM imidazole. Pro-
tein purification steps were performed at 4 ◦C. Cell lysis was performed using sonication
followed by centrifugation at 15,000 x g for 20 min. The supernatant was applied to a
gravity column containing 1 mL of Ni-NTA agarose (Qiagen) equilibrated with 10 mL of
buffer A + 5 mM imidazole [9]. The column was washed with 10 volumes of buffer A +
40 mM imidazole and elution was performed using 4 mL buffer A + 500 mM imidazole.
The eluted protein was concentrated using Vivaspin 20 columns (MWCO 10 kDa, Sar-
torius) and then dialyzed against TdT pH 7.4 Storage Buffer (100 mM NaCl, 200 mM
K2HPO4, pH 7.4) overnight at 4 ◦C using Pur-A-Lyzer Dialysis Kit Mini 12000 tubes
(Sigma-Aldrich). The protein was stored at −20 ◦C after the addition of 50 % glycerol.

4.2.2 Preparation of TdT-PEG4-dTTP conjugates
The scheme for the preparation of the polymerase-nucleotide conjugates is shown in Fig-
ure 2.2. The heterobifunctional amine-to-thiol crosslinker PEG4-SPDP (no. 26128) and
5-aminoallyl-dUTP (aa-dUTP) were purchased from Thermo Fisher Scientific. First, aa-
dUTP was reacted with PEG4-SPDP to form the thiol-reactive linker-nucleotide OPSS-
PEG4-dTTP. The reaction contained 12.5 mM aa-dUTP, 3 mM PEG4-SPDP and 125 mM
sodium bicarbonate (pH 8.3) in a combined final volume of 8 µL. After an incubation
of 1 h at RT, any potential unreacted PEG4-SPDP was quenched by the addition of
1 µL of 100 mM glycine in PBS (Teknova; 137 mM sodium chloride, 2.7 mM potassium
chloride, 4.3 mM disodium phosphate, 1.4 mM monopotassium phosphate, pH 7.4) and
the reaction was incubated for an additional 10 min. To lower the pH for the subse-
quent OPSS-labeling reaction with the protein, 1 µL of 10 x TdT pH 7.4 Storage Buffer
was added. The 10 µL reaction was then added to 70-100 µg TdT in 40 µL of 1x TdT
pH 7.4 Storage Buffer to site-specifically label TdT at surface cysteine residues. After
a 13 h incubation at RT, the TdT-PEG4-dTTP conjugates were purified using the Cap-
turem His-Tagged Purification Miniprep Kit (Clonetech) to remove free (i.e., unattached)
linker-nucleotides. Elution of the protein from the Capturem columns was performed in
200 µL Capturem Elution Buffer, and the eluate was dialyzed against 100 mL TdT Reac-
tion Buffer (50 mM potassium acetate, 20 mM tris-acetate, 10 mM magnesium acetate,
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pH 7.9) for 4 h using Pur-A-Lyzer Dialysis Kit Mini 12000 tubes (Sigma-Aldrich). The
conjugates were then directly used in oligo-extension reactions.

4.2.3 Generation of oligo P1 ladder with OPSS-PEG4-dTTP
The ladder of oligo P1 (5-FAM-dT35) OPSS-PEG4-dTTP extension products for use
as size standards in PAGE assays was generated by incorporating free OPSS-PEG4-
dTTP nucleotides using TdT. First, OPSS-PEG4-dTTP was formed in a 20 µL reaction
containing 15 mM aa-dUTP, 45 mM PEG4-SPDP, and 250 mM sodium bicarbonate. The
reaction was incubated at RT for 1 h and another 5 µL of 180 mM PEG4-SPDP was
added. After 1 h, the reaction was quenched by the addition of 5 µL 100 mM glycine
in PBS and incubated for 10 min. The crude products containing the OPSS-PEG4-
dTTP nucleotides were then used directly in 6 TdT incorporation reactions with varying
polymerase concentrations to achieve varying numbers of incorporations. The 15 µL
incorporation reactions contained Reaction Buffer with Cobalt (RBC: 50 mM potassium
acetate, 20 mM tris-acetate, 10 mM magnesium acetate, 0.25 mM cobalt chloride, pH
7.9), 1 µM oligo P1, 1 µL of the OPSS-PEG4-dTTP crude products and 100, 50, 25, 12.5,
6.3, or 3.13 U of NEB TdT. Reactions were performed for 5 min at 37 ◦C and quenched
with EDTA to a final concentration of 33 mM. Reactions were selectively combined to
yield a ladder showing 0-4 OPSS-PEG4-dTTP extensions. The quenched reactions were
combined with an equal volume of 2x Novex Tris-Glycine SDS Sample buffer + 1 %
β-mercaptoethanol (βME) and heated to 95 ◦C for 5 min before they were loaded into a
polyacrylamide gel.

4.2.4 Investigation of TdT-PEG4-dTTP activity by SDS-PAGE
To demonstrate the ability of TdT to incorporate tethered nucleotides, TdT-PEG4-dTTP
conjugates of TdTwt, TdT∆5cys, TdTc180, TdTc188, TdTc253, and TdTc302 were
used. Incorporation reactions shown in Figure 2.4 and Figure 2.6 contained 250 nM
oligo P1 (See Table 4.5), RBC, and ~0.4 mg/mL of the respective TdT-PEG4-dTTP
conjugate. The reactions were performed for 20 s at 37 ◦C and were quenched by the
addition of EDTA to a final concentration of 33 mM. The incorporation reactions shown
in Figure 2.8 contained 500 nM of oligo P1, RBC, and ~0.1 mg/mL of the respective TdT-
PEG4-dTTP conjugate. Reactions were performed at 37 ◦C for 40 s and were quenched
by the addition of EDTA to a concentration of 33 mM. To prepare the reactions for the
PAA analysis, samples were mixed with an equivalent volume of 2x Novex Tris-Glycine
SDS Sample Buffer (Thermo Fisher Scientific), or with 2x Novex Tris-Glycine buffer +
1 % βME to cleave the linkage between the protein and the nucleotides. All samples
were heated to 95 ◦C for 5 min and run on a 4-20 % Mini-PROTEAN TGX SDS gel
(Bio-Rad).
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4.3 Section B: Conjugates based on PC-azido-NHS

4.3.1 Protein expression and purification of MBP-fused TdT
E. coli BL21(DE3) harboring pET19-MTdTc302, pET19-MTdTwt or pET19-M(BRCT)-
TdTwt were grown in LB medium (Miller) with 100 µg/mL carbenicillin with shaking at
200 RPM throughout the expression procedure. Starting cultures were grown overnight
at 37 ◦C and then used to inoculate expression cultures in shake flasks without baffles us-
ing a 1/60 dilution. Expression cultures were grown at 37 ◦C until an OD600 of 0.40−0.45
was reached. The flasks were then cooled to room temperature (RT) for 45 min without
shaking and then shaken at 15 ◦C for 45 min. Protein expression was induced with 1 mM
IPTG and cells were grown overnight at 15 ◦C and harvested by centrifugation. All
protein purification steps were performed at 4 ◦C. Cells were lysed in Buffer A + 5 mM
imidazole using an Emulsiflex C3 homogenizer followed by centrifugation at 15,000 x g
for 20 min. The supernatant was subjected to nickel affinity chromatography (HisTrap
FF 5 mL, GE Healthcare) with an imidazole gradient (Buffer A + 5 mM imidazole to
Buffer A + 500 mM imidazole). Fractions with sufficient purity were pooled, diluted 1:40
into 20 mM Tris-HCl pH 8.3, and subjected to anion-exchange chromatography (HiTrap
Q HP 5 mL, GE Healthcare) in 20 mM Tris-HCl pH 8.3 using a gradient of 0 to 1 M
NaCl. The protein eluted at 200 mM NaCl. The purest fractions were buffer exchanged
into TdT pH 6.5 Storage Buffer (200 mM K2PO4, 100 mM NaCl) and concentrated to
~30 mg/mL using Vivaspin 20 columns (MWCO 10 kDa, Sartorius). Protein concentra-
tions were estimated by absorbance spectrophotometry on a NanoDrop 2000 assuming
an extinction coefficient of 108,750 M−1cm−1 at 280 nm. The protein was stored at
−20 ◦C after the addition of 50 % glycerol. Subsequently, we found that MTdTc302
could be snap-frozen in liquid nitrogen and stored at −80 ◦C in TdT pH 6.5 Storage
Buffer without loss of activity. The protein used in the experiments before Section 2.3.4
was stored at −20 ◦C in 50 % glycerol, whereas the protein used in all experiments in
later sections was snap-frozen in aliquots using liquid nitrogen and stored at −80 ◦C.

4.3.2 Preparation of TdT-triazole-dNTP conjugates using
MTdTc302

Synthesis of linker-dNTPs

The scheme for the preparation of TdT-triazole-dNTP conjugates is shown in Figure 2.11.
The photocleavable PC-azido-NHS linker was purchased from Broadpharm (catalog num-
ber BP-22951), propargyl-maleimide was purchased from Jena Bioscience. The complete
set of propargylamino-dNTPs (pa-dNTPs) was purchased from TriLink Biotechnologies.
First, the pa-dNTP was coupled to PC-azido-NHS in a 6 µL coupling reaction containing
5 mM of the respective pa-dNTP, 4 mM PC-azido-NHS and 400 mM sodium bicarbonate
buffer (pH 8.3) in ddH2O. The reaction was incubated at RT for 1.5 h and then stored
at 4 ◦C over night. Next, the click reaction with propargyl-maleimide was performed
to build the complete linker-nucleotide. The following components were incubated for
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1 h at RT: 6 µL of the initial coupling reaction, 3.75 µL of 20 mM propargyl-maleimide,
3.75 µL of a freshly prepared 1:5 solution of CuSO4 (1 mM) and THPTA (5 mM; Tris((1-
hydroxy-propyl-1H-1,2,3-triazol-4-yl)methyl)amine, Jena Bioscience), 7.5 µL of 25 mM
freshly prepared sodium ascorbate in ddH2O, 3.75 µL TP7 buffer (50 mM potassium ac-
etate, 20 mM tris-acetate, pH 7) and 13.75 µL ddH2O. Then 0.375 µL of 30 mM EDTA
was added to quench the reaction.

To remove unreacted propargyl-maleimide, a liquid-liquid extraction with ethyl ac-
etate was performed. 200 µL of ethyl acetate was added to the 40 µL reaction, followed
by vortexing and spinning of the sample in a microcentrifuge at ~1000 RCF). The super-
natant was removed and the extraction procedure was repeated three additional times.
15 µL of the aqueous phase were then taken and incubated in an open tube at 50 ◦C for
5 min to remove potential ethyl acetate contamination.

MTdTc302 labeling with linker-dNTPs and purification

The maleimide-labeling reaction of the protein was then performed by the addition
of 6 µL 10 x TP7 buffer and 12 µL MTdTc302 at a concentration of 18 mg/µL to the
15 µL (linker-)nucleotide reaction. The reaction was incubated for 1.5 h at RT before the
conjugates were purified using microcentrifuge-based amylose affinity chromatography.
In detail, the labeling reaction was diluted into 100 µL MBP Column-Binding Buffer
(NEB, 200 mM NaCl, 20 mM Tris-HCl, 1 mM and 1 mM DTT, pH 7.4) and loaded onto
a 0.8 mL spin column (Pierce) containing 200 µL amylose resin (NEB) in MBP Column-
Binding Buffer. All centrifugation steps were performed at 50 RCF, all reagents and
buffers used throughout the procedure were precooled on ice. The column was incubated
in a shaker block at 800 RPM for 10 min for binding. Next, the column was washed
three times with TdT Reaction Buffer. Each washing step involved 1) addition of 500 µL
buffer to the column, 2) incubation of the column for 1 min while shaking at 800 RPM, 3)
centrifugation at 50 RCF for 1 min, and 4) removal of the flow-through. Elution of TdT-
azido-dNTP conjugates was performed by 1) the addition of 150 µL TP8 Buffer + 10 mM
maltose, 2) an incubation for 5 min while shaking at 800 RPM, and 3) centrifugation. The
elution procedure was repeated twice. The eluates were then combined and concentrated
using a 30 kDa MWCO column (Corning), diluted 1:10 with TdT Reaction Buffer to
reduce the maltose concentration, and concentrated to ~4 µg/µL.

4.3.3 Investigation of TdT-triazole-dNTP activity by SDS-PAGE
Primer P3 (see Table 4.5) contains a 5’-amine that was labeled with the fluorescent dye
LD650 (Lumidyne Technologies) in a reaction containing 50 µM of oligo P3 and 4.5 mM
of the LD650 NHS-ester in sodium bicarbonate buffer, followed by OCC purification
(Zymo Research). TdT-triazole-dNTP conjugates of all four pa-dNTPs were prepared.
Reactions of all four conjugates as well as a negative control without the protein were
performed and contained 75 nM labeled oligo P3, 1 x RBC, and ~1 mg/mL of the respec-
tive TdT-triazole-dNTP conjugate (except for the negative control). The reactions were
performed for 1 min at 37 ◦C and quenched by the addition of EDTA to a final concen-
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tration of 60 mM. To prepare the reactions for the gel, samples were mixed with an
equivalent volume of 2x Novex Tris-Glycine SDS Sample Buffer + 1 % βME and heated
to 95 ◦C for 5 min. The samples were then run on a 4-20 % Mini-PROTEAN TGX SDS
gel (Bio-Rad) for 15 min.
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4.4 Section C: Conjugates based on BP-23354
4.4.1 Preparation of TdT-dNTP conjugates using MTdTc302

The protein was expressed and purified as described in Section 4.3.1.

Synthesis of linker-dNTPs

The scheme for the preparation of TdT-dNTP conjugates is shown in Figure 2.15. The
photocleavable NHS carbonate-maleimide crosslinker was purchased from Broadpharm
(catalog number BP-23354). First, the pa-dNTP was coupled to BP-23354 to form
a thiol-reactive linker-dNTP (maleimide) in a 30 µL reaction containing 1 µL of the
respective 100 mM pa-dNTP (100 nmol), 1 µL of 10 x TdT pH 7.4 Storage Buffer, 26 µL
of ddH2O, and 2 µL of 100 mM BP-23354 dissolved in anhydrous DMSO (200 nmol)
added last. The reaction was incubated at RT for 1 h with shaking. Initially, the linker
concentration was above the solubility limit, but once the reaction progressed, enough
(soluble) linker-dNTP product was formed that the remaining (unreacted) linker fully
dissolved. The crude products were triturated with ethyl acetate (~2 mL) and centrifuged
at 15,000 x g to pellet the linker-dNTPs. The supernatant was removed and the linker-
dNTP-containing pellets were dried by speed-vac or lyophilization and stored at −80 ◦C.

MTdTc302 labeling with linker-dNTPs and purification

To site-specifically label TdT at surface cysteine residues with a linker-dNTP, a dried
linker-dNTP pellet was resuspended in 1 x TdT pH 6.5 Storage Buffer and added to
MTdTc302 (conc. 10-15 µg/µL by absorbance) in 1 x TdT pH 6.5 Storage Buffer. The
(nominal) nucleotide concentration in the labeling reactions ranged from 0.1 mM to
2.5 mM, depending on the experiment. (The nominal nucleotide concentration was calcu-
lated based on the assumption that all (linker-)dNTPs precipitate quantitatively during
trituration.) Unless indicated otherwise, all conjugates employing linker BP-23354 were
prepared with nominal nucleotide concentrations of 0.1 mM (dGTP, dCTP) and 0.2 mM
(dATP, dTTP). The labeling reaction was incubated for 1 h at RT, and TdT-dNTP
conjugates were purified using amylose affinity chromatography to remove free (i.e., un-
tethered) dNTPs: A spin column purification was performed using 0.8 mL spin columns
(Pierce) that were filled with 250 µL amylose resin (NEB), and all centrifugation steps
were performed at 50 RCF. All reagents and buffers used throughout the procedure were
precooled on ice. Prior to binding, the amylose resin was washed twice with 500 µL of
TdT pH 6.5 Storage Buffer. A typical 15 µL linker-dNTP labeling reaction containing
~200 µg of MTdTc302 was diluted into 200 µL TdT pH 6.5 Storage Buffer and loaded
onto the spin column containing the amylose resin, which was then incubated in a shaker
block at 800 RPM for 10 min for binding. Next, the column was washed twice with TdT
pH 6.5 Storage Buffer. Each washing step involved 1) addition of 500 µL buffer to the
column, 2) incubation of the column for 1 min while shaking at 800 RPM, 3) centrifuga-
tion at 50 RCF for 1 min, and 4) removal of the flow-through. Next, washing with TdT
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Reaction Buffer or with TP8 Buffer (50 mM potassium acetate, 20 mM tris-acetate, pH
7.9), respectively, was performed twice. For the conjugates used in the initial 10-mer
synthesis described in Section 2.4.1, TdT Reaction Buffer was used for the washing and
the rest of the purification procedure, and the conjugates were then stored in 1 x RBC
after the addition of 0.25 mM cobalt. For the 10-mer synthesis with improved method-
ology described in Section 2.4.3, TP8 buffer that does not contain divalent ions was
used for the rest of the procedure and for the storage. Elution of TdT-dNTP conjugates
was performed by 1) the addition of 150 µL TdT Reaction Buffer + 10 mM maltose or
TP8 Buffer + 10 mM maltose, 2) an incubation for 5 min while shaking at 800 RPM,
and 3) centrifugation. The elution procedure was repeated twice, and the eluates were
combined and concentrated using a 30 kDa MWCO column (Corning). The reaction
was then diluted 1:10 with TdT Reaction Buffer / TP8 Buffer to reduce the maltose
concentration, and concentrated to ~2.5 µg/µL. The conjugates can be frozen in liquid
nitrogen and stored at −80 ◦C. Notably, we observed a significant loss of activity when
storing the conjugates on ice in the presence of cobalt ions.

4.4.2 Capillary electrophoresis (CE)
20 µL samples containing 0.5-1.5 nM 5’-FAM labeled oligonucleotides and ~0.3 µL Gene-
Scan 600 LIZ dye size standard in 75 % Hi-Di formamide were submitted to the UC Berke-
ley Sequencing Facility for capillary electrophoresis (CE, also called Fragment Analysis).
CE samples were run on an Applied Biosystems 3730xl DNA Analyzer with a 50 cm
capillary array containing POP-7 Polymer, with 15 s of injection at 1.5 kV and a 41 min
run at 15 kV, oven: 68 ◦C, buffer: 35 ◦C. Electropherogram data files were processed
using custom software written in R (r-project.org) with comparable functionality to the
Peak Scanner software from Applied Biosystems.

High ionic strength in a CE sample causes poor injection and distorted peaks, so
DNA samples from extension reactions were either diluted 50-fold with 75 % formamide
or desalted prior to CE as described in the respective method section.

It was observed that DNA containing multiple propargylamino groups had reduced
injection yield and inconsistent migration in CE, likely due to the added positive charges.
Therefore, all DNA samples containing propargylamino groups were derivatized using
NHS-acetate prior to CE. Unless specified otherwise, acetylation reactions contained
20 mM NHS-acetate and 200 mM sodium bicarbonate.

4.4.3 Generation of oligo P2 ladder with pa-dNTPs for CE
Oligo P2 (5’-FAM-dT60, see Table S1) extension products that were used as size stan-
dards (ladders) were generated by the incorporation of free pa-dNTPs using TdT. Reac-
tions contained 100 nM oligo P2, 100 µM of one type of pa-dNTP, 1 x RBC, and either
0.05 U/µL or 0.03 U/µL NEB TdT. Reactions were performed at 37 ◦C and aliquots were
quenched with EDTA to a final concentration of 33 mM after 2, 5 and 10 min. Quenched
samples were then acetylated, desalted using OCC, and analyzed by CE. Samples with
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detectable peaks for oligo P2 as well as the +1 and +2 pa-dNTP extension products
were selected for use as ladders.

4.4.4 Two cycle demonstration using TdT-dCTP conjugates
The conjugates used in this experiment were generated using 1 mM nucleotide in the
MTdTc302-labeling reaction. All extension reactions contained 50 nM of oligonucleotide
P2, 0.25 mg/mL TdT-dCTP (or photolyzed TdT-dCTP, see below), and RBC. Reactions
were performed at 37 ◦C and quenched after 2 min by the addition of an equal volume
of 200 mM EDTA. Photolysis of the linker was performed using a Benchtop 2UV Tran-
silluminator (UVP, LLC) on the 365 nm setting for 1 h on ice. The measured irradiance
was ~5 mW/cm2. Aliquots of all photolyzed samples were acetylated and desalted for
CE using the Oligo Clean and Concentrator Kit (OCC; Zymo Research). Samples for
PAGE were combined with 2x SDS loading buffer (Novex) + 1 % βME, and run on an
8-16 % PAA-gradient Mini-PROTEAN TGX gel (Bio-Rad). The gel was imaged on a
MultiImager III (Alpha Innotech) for green fluorescence (5’FAM-labeled primer) and,
after staining with Lumitein UV (Biotium), imaged for red fluorescence (total protein).
Gel images were aligned and composited using Adobe Photoshop.

Two cycle experiment: A reaction containing TdT-dCTP conjugate and oligo P2
was performed and the reaction products were photolyzed. The DNA products were then
purified by OCC and subjected to another extension reaction with TdT-dCTP, again
followed by photolysis. Aliquots were taken after both extension reactions for PAGE
and after both photocleavage reactions for PAGE and CE. Control (pre-photolyzed
conjugate) experiment: TdT-dCTP conjugate was irradiated with 365 nm light for
1 h on ice to generate a stoichiometric mixture of unlinked MTdTc302(linker) + pa-
dCTP. The photolysis products were then used in an extension reaction with oligo P2,
and aliquots were taken for PAGE and CE.

4.4.5 Fast primer extension using all four TdT-dNTP conjugates
The conjugates used in this experiment were generated using 1 mM nucleotide in the
MTdTc302-labeling reaction. Oligo P2 extension yield by 1.5 mg/mL (~16 µM) TdT-
dNTP conjugates was measured at 8, 15, and 120 s. Reactions were performed in a
37 ◦C room by adding 4.5 µL of 2 mg/mL TdT-dNTP conjugate to 1.5 µL of 100 nM oligo
P2 (final concentration: 25 nM), both in RBC. After rapid mixing, 4.5 µL of the reaction
were quenched in 18 µL Quenching Solution (94 % Hi-Di Formamide with 10 mM EDTA)
after 8 or 15 s. The remaining reaction volume was quenched with 6 µL Quenching
Solution after 2 min. The samples were irradiated with 365 nm light on a Benchtop 2UV
Transilluminator for 30 min. Photolysis products were acetylated using 100 mM NHS-
acetate in 400 mM bicarbonate buffer. To desalt the samples for CE analysis, the oligos
were captured onto DynaBeads M-280 StreptAvidin that were saturated with 5’-biotin-
dA60 oligo. Beads were washed with 1 x B&W buffer (5 mM Tris HCl pH 7.5, 0.5 mM
EDTA, 1 M NaCl), 0.1 x B&W buffer, 0.01 x B&W buffer, and then eluted with 75 %
formamide.
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4.4.6 TdT-dNTP concentration-dependence of non-termination
The conjugates used in this experiment were generated using 1 mM nucleotide in the la-
beling reaction. An extension reaction was initiated using 50 nM oligo P2 with 0.25 mg/mL
TdT-dCTP in RBC, and the reaction was split into three aliquots. After 1 min of incu-
bation at 37 ◦C, sufficient time to form the +1 product complex with high yield, the first
aliquot was quenched by the addition of EDTA to a final concentration of 100 mM, and
the second aliquot was diluted 10-fold with RBC. The third aliquot was left as is. The
latter two aliquots were quenched with EDTA after an additional 14 min of incubation.
All three quenched reactions were photolyzed by 365 nm irradiation for 30 min using a
Benchtop 2UV Transilluminator and then acetylated, purified by OCC, and analyzed by
CE.

4.4.7 Effect of maleimide-labeling concentration on
non-termination.

TdT-dTTP conjugates were generated using 0.2 mM, 0.4 mM, 1 mM and 2.5 mM nu-
cleotide in the labeling reaction. Extension time courses of all conjugates at 0.53 mg/mL
(~2.8 µM) were obtained from reactions in RBC using oligo P2 (100 nM) at 37 ◦C. 2 µL
of the reactions were quenched in 8 µL Quenching Solution after 5 min. All samples were
irradiated with 365 nm light on a Benchtop 2UV Transilluminator for 30 min. Photo-
cleavage products were acetylated, purified by OCC, and analyzed by CE.

75



4 Material and Methods

4.5 Section D: Synthesis of defined sequences using
TdT-dNTP conjugates

4.5.1 Generation of the double stranded synthesis starter.
The double stranded DNA with a 3’-overhang used as initial substrate for the synthesis
(starter) was prepared from a 359 bp PCR product derived from the pET19b plasmid.
The PCR was performed using Phusion (Thermo Fisher Scientific) following the manu-
facturer’s instructions and using primers C1 and C2 (see Table 4.5) (PCR program: 98 ◦C
for 1 min, then 35 cycles of two step protocol: 98 ◦C for 10 s, 72 ◦C for 1 min). The PCR
product was purified using the DNA Clean & Concentrator kit (DCC, Zymo Research)
and digested with PstI, cutting the restriction site inserted by C1, to generate a 3’-
overhang. The digested product was purified (DCC) and tailed with ddTTP to block the
strand with the 3’-overhang from further incorporations (0.5 mM ddTTP, 1 U/µL TdT in
RBC at 37 ◦C for 30 min). After tailing, the DNA was purified (DCC) and digested with
BstXI to generate a 3’-overhang (5’-ATTT-3’) for extensions by TdT-dNTP conjugates.
The digestion product was separated from undigested DNA by 2 % TAE-agarose gel
electrophoresis and gel-extracted using the Gel Recovery Kit (Zymo Research). A scheme
for the preparation of the synthesis starter can be found in Figure 2.21.

4.5.2 Synthesis of 5’-CTACTGACTG-3’
Ten iterations of extension and deprotection of the starter were performed using TdT-
dNTP conjugates prepared with 0.4 mM nucleotide in the labeling reaction. Extension
reactions contained 1 mg/mL conjugate and were performed at 37 ◦C for 90 s in 1 x RBC.
The reactions were then quenched by the addition of an equal volume of quenching buffer
(250 mM EDTA, 500 mM NaCl). Photocleavage was performed for 20 min using a 365 nm
LED (Thorlabs M365LP1-C1, operated by Thorlabs LEDD1B) filtered by a 365 nm
bandpass filter with 10 nm FWHM (Chroma Technology ET365/10x, T387lp, E420lpv2).
The measured irradiance was approximately 5 mW/cm2. The first extension reaction
contained ~40 nM of the initial substrate. After each cleavage step, the DNA products
were purified using Zymo DCC columns according to the manufacturers protocol, and
the recovered DNA was subjected to the next extension step. The following conjugates
were used in the extension steps: 1) TdT-dCTP, 2) TdT-dTTP, 3) TdT-dATP, 4) TdT-
dCTP, 5) TdT-dTTP, 6) TdT-dGTP, 7) TdT-dATP, 8) TdT-dCTP, 9) TdT-dTTP, 10)
TdT-dGTP. The ten-cycle product was T-tailed using TdT and free dTTP + ddTTP at a
ratio of 100:1 and acetylated using 20 mM NHS-acetat in bicarbonate buffer. The tailed
product was then PCR-amplified using HotStart Taq (NEB) with primers C3 and C4
(see Table 4.5). PCR program: 98 ◦C for 2 min, 49 ◦C for 20 s, 68 ◦C for 12 min, then 35
cycles of: 98 ◦C for 30 s, 49 ◦C for 20 s, 68 ◦C for 30 s. The PCR product was ligated into
pUC19 using EcoRI and HindIII sites that were introduced by the PCR primers. The
plasmids were transformed into DH10B cells and single colonies were grown overnight
in LB medium, miniprepped, and sequenced.
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4.5.3 Testing of DCC-purification inhibition
The conjugates used in this experiment were generated using 1 mM nucleotide in the
MTdTc302-labeling reaction. The DCC-eluate was generated by performing a DCC-
purification following the manufacturers instructions and using 50 µL of ddH2O as the
input for the purification. Elution was performed in 8 µL ddH2O. To test TdT inhi-
bition, four reactions with a volume of 10 µL were set up, all containing 100 nM oligo
P2, 1 x TP7 buffer (50 mM potassium acetate, 20 mM tris-acetate, pH 7), 5 mM CoCl2
and 0.025 mg/mL TdT-dTTP. In addition, the 10 µL reactions contained either 4 µL of
ddH2O or 0.1x EB (positive controls), and two reactions contained 4 µL of the DCC-
eluate. Reactions were performed at 37 ◦C and 2 µL were quenched in 8 µL Quenching
Solution after 60 seconds. Next quenched samples were diluted 10-fold with 75 % for-
mamide and analyzed by CE. The reaction buffer used in this experiment is different
from RBC, but we believe that the findings are valid for both buffers, because we gen-
erally observed very similar behavior of conjugates in RBC and TP7+5 mM CoCl2.

4.5.4 Synthesis of 5’-CTAGTCAGCT-3’ and 5’-CCC-3’
Synthesis overview.

Nucleotide additions were performed using TdT-dNTP conjugates produced with a la-
beling concentration of 0.2 mM (dATP / dTTP) and 0.1 mM (dCTP, dGTP). The conju-
gates were used at 1 mg/mL in reactions in 1 x RBC at 37 ◦C. Extension reactions with
TdT-dCTP, -dGTP and -dTTP were performed for 90 s, extensions with TdT-dATP for
180 s. Quenching of the reactions was performed by the addition of an equal volume of
Quenching Buffer (100 mM NaHCO3, 300 mM NaCl, 0.1 % TWEEN 20 (Sigma-Aldrich),
50 mM EDTA, 20 mM Sodium Azide, 20 mM NHS-acetate; NHS-acetate was added im-
mediately before use). Photolysis was performed for 1 min using a 405 nm diode laser
(500 mW, ToAuto M-33A405-500-G) filtered by a 405 nm bandpass filter with 10 nm
FWHM (Thorlabs FBH405-10). After each cleavage step, the DNA products were puri-
fied using AMPure XP beads, and the recovered DNA was subjected to the next exten-
sion step. For the 10-mer synthesis, the following conjugates were used in the extension
steps: 1) TdT-dCTP, 2) TdT-dTTP, 3) TdT-dATP, 4) TdT-dGTP, 5) TdT-dTTP, 6)
TdT-dCTP, 7) TdT-dATP, 8) TdT-dGTP, 9) TdT-dCTP, 10) TdT-dTTP. To synthesize
5’-CCC-3’, three cycles with TdT-dCTP were performed.

Detailed protocol of the extension cycles.

For the first step, 10 µL starter at ~30 nM was mixed with 2 µL Cofactor Mix (300 mM
potassium acetate, 120 mM tris-acetate, 80 mM magnesium acetate and 2 mM cobalt
chloride, pH 7.9). The 12 µL mixture was then added to 4 µL of TdT-dCTP at 4 mg/mL
in TP8. The resulting 16 µL reaction in RBC was incubated for 90 s, before it was
quenched by the addition of 16 µL Quenching Buffer. Afterwards, the reaction was
photolyzed for 1 min using the 405 nm laser. A 3 min incubation at RT was performed to
allow the acetylation reaction to proceed (NHS-acetate is a component of the Quenching

77



4 Material and Methods

Buffer). Subsequently, 32 µL of FastAP Thermosensitive Alkaline Phosphatase (Thermo
Fisher Scientific) at 0.32 U/µL in 40 mM Tris-HCl and 60 mM MgCl was added to the
photolysis products to digest released dNTPs, and the reaction was incubated for 1 min
at RT. The phosphatase treatment was performed because we found that there was a
significant amount of dNTP carry-over during the AMPure XP cleanup, and that the
dNTPs could be incorporated in the next reaction cycle, leading to insertions (see below,
Amplification and next-generation sequencing analysis of synthesis products). Next, the
DNA was purified using AMPure XP beads (Beckman Coulter): 115.2 µL AMPure XP
beads were added to the 64 µL phosphatase reaction, and a binding step of 5 min was
performed. The solution was then transferred into a well of a 96-well plate on a magnetic
rack and incubated for 2 min for sedimentation of the beads. The liquid was removed
and the beads were washed first with 400 µL of 70 % ethanol and then with 200 µL of
70 % ethanol. Subsequently, the beads were dried for 90 s, and the DNA was eluted
with 10 µL of buffer EBT (1 mM Tris-HCl, 10 µM EDTA, 0.04 % TWEEN-20, pH 8.5).
For the following cycles, the 10 µL purified synthesis product of the previous cycle were
mixed with 2 µL cofactor mix, and the 12 µL mixture was added to 4 µL of the respective
TdT-dNTP at 4 mg/mL in TP8. The resulting 16 µL reaction was then incubated for
either 90 or 180 s, depending on the type of TdT-dNTP. The reaction was quenched,
photolyzed, acetylated, phosphatase-treated and purified using AMPure beads in the
same way as for the first synthesis step. The procedure was repeated until the complete
sequence was synthesized.

Amplification and next-generation sequencing analysis of synthesis products.

10-cycle and 3-cycle synthesis products were A-tailed using 0.4 U/µL TdT (NEB) with
1 mM dATP in TdT Reaction Buffer for 30 min at 37 ◦C. The tailing products were
purified by DCC and PCR-amplified using HotStart Taq (NEB) with primers C3 and
C5 (See Table 4.5) according to the manufacturers instructions. PCR program: 98 ◦C
for 2 min, 49 ◦C for 20 s, 68 ◦C for 12 min, then 35 cycles of: 98 ◦C for 30 s, 49 ◦C for
20 s, 68 ◦C for 30 s. Amplicons were purified by DCC and submitted to the JBEI
DiVA DNA Sequencing Service for Nextera (Illumina) library preparation as described
previously [93], multiplexed with other samples submitted by other users of the ser-
vice. NGS was performed on a MiSeq (Illumina). Reads containing the sequence 5’-
TCCAGATTT(N020)AAAAAA-3’ were identified using a BioPython script, and non-
singleton reads with a Q-score of at least 34 (error rate: ~1/2500 nt) for all bases in
the target region were retained for analysis. Singleton reads accounted for 1.5 % of the
data set and were excluded from analysis to avoid artefactual errors, e.g., due to index
switching.

As mentioned in Section 2.4.3, early 10-mer synthesis attemts using AMPureXP beads
showed that dNTPs can be retained in a manner that is resistent to washing. Therefore,
some of the dNTPs that are released during photolysis of a quenched extension reaction
are carried over into the next extension step, causing a characteristic type of (non-
double) insertion error, (e.g., the G insertion in CTAGTCAGCGT observed in 0.27 % of
reads, Figure 2.25). The effect was mitigated by a brief alkaline phosphatase treatment
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following photolysis, but not completely eliminated. dNTP carryover-type insertions
were definitively identified in 0.7 % of all reads total and were manually removed before
estimation of stepwise yields.
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Table 4.2: Overview of chemicals, laboratory materials and kits that were used
during this thesis.

Chemicals and laboratory materials Supplier

2-Mercaptoethanol Sigma-Aldrich, St. Louis, MO, USA

2x Novex Tris-Glycine SDS Sample Buffer Thermo Fisher Scientific, Waltham, MA,
USA

5-aminoallyl-dUTP Thermo Fisher Scientific, Waltham, MA,
USA

Agarose Merck Millipore, Billerica, MA, USA

AMPure XP Beckman Coulter, Brea, CA, USA

Amicon, 30.000 kDa, 15 mL Merck Millipore, Billerica, MA, USA

Amylose Resin NEB, Ipswich, MA, USA

BP-22951 Broadpharm, San Diego, CA, USA

BP-23354 Broadpharm, San Diego, CA, USA

Carbenicillin disodium salt Sigma-Aldrich, St. Louis, MO, USA

Cobalt(II) chloride (CoCl2) Sigma-Aldrich, St. Louis, MO, USA

Corning Spin-X UF, 30.000 kDa, 500 µL Sigma-Aldrich, St. Louis, MO, USA

Dimethyl sulfoxide (DMSO) Thermo Fisher Scientific, Waltham, MA,
USA

DNA agarose gel recovery kit Zymo Research, Irvine, CA, USA

DNA clean and concentrator kit (DCC) Zymo Research, Irvine, CA, USA

DNA ladder, GeneRuler 1 kb Thermo Fisher Scientific, Waltham, MA,
USA

DNA loading dye, 6x Thermo Fisher Scientific, Waltham, MA,
USA

DNA size standard, GeneScan 600 LIZ Thermo Fisher Scientific, Waltham, MA,
USA

dNTPs Thermo Fisher Scientific, Waltham, MA,
USA

DynaBeads M-280 StreptAvidin Thermo Fisher Scientific, Waltham, MA,
USA

Ethanol, 99.5 % VWR, Radnor, PA, USA
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EDTA (Ethylenediamine-tetraacetic acid) Sigma-Aldrich, St. Louis, MO, USA

GelRed Biotium, Fremont, CA, USA

Glycerol VWR, Radnor, PA, USA

Hi-Di Formamide Thermo Fisher Scientific, Waltham, MA,
USA

His Purification Miniprep Kit Clonetech Laboratories, Mountain View,
CA, USA

HisTrap FF GE Healthcare, Chicago, Illinois, USA

HiTrap Q HP 5mL GE Healthcare, Chicago, Illinois, USA

Hydrogen chloride (HCl), 37 % Fisher Scientific, Hampton, NH, USA

Imidazole Fisher Scientific, Hampton, NH, USA

Isopropyl-D-1-thioglactopyranoside (IPTG)Sigma-Aldrich, St. Louis, MO, USA

LB agar plates with carbenicillin Teknova, Hollister, CA, USA

LB broth, Miller VWR, Radnor, PA, USA

LD650 Lumidyine Technologies, San Diego, CA,
USA

Lumitine Biotium, Fremont, CA, USA

Magnesium chloride (MgCl2) Thermo Fisher Scientific, Waltham, MA,
USA

NHS-acetate Broadpharm, San Diego, CA, USA

Ni-NTA agarose Qiagen, Hilden, Germany

Nickel(II) chloride (NiCl2) Sigma-Aldrich, St. Louis, MO, USA

Oligo clean and concentrator kit (OCC) Zymo Research, Irvine, CA, USA

PBS Teknova, Hollister, CA, USA

PCR Clean-up Kit, DNA Clean Concentrator-5 & Zymo Research, Irvine,
CA, USA

PEG4 -SPDP (26128) Thermo Fisher Scientific, Waltham, MA,
USA

Pierce 0.8 mL centrifugation columns Thermo Fisher Scientific, Waltham, MA,
USA

Plasmid Miniprep kit, QiaPrep Qiagen, Hilden, Germany

pMAL-c5X NEB, Ipswich, MA, USA

Potassium acetate Sigma-Aldrich, St. Louis, MO, USA
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Potassium chloride (KCl) Sigma-Aldrich, St. Louis, MO, USA

Potassium phosphate (KH2PO4) VWR, Radnor, PA, USA

Protein ladder, PageRuler Thermo Fisher Scientific, Waltham, MA,
USA

Protein stain, GelCode Blue Thermo Fisher Scientific, Waltham, MA,
USA

Pur-A-Lyzer Dialysis Kit Mini 12000 Sigma-Aldrich, St. Louis, MO, USA

SDS loading dye, 2x Tris-Glycine SDS Thermo Fisher Scientific, Waltham, MA,
USA

SDS-PAGE, Mini-PROTEAN, 8-16 % BioRad, Hercules, CA, USA

Set of ddNTPs Thermo Fisher Scientific, Waltham, MA,
USA

Set of pa-dNTPs TriLink BioTechnologies, San Diego, CA,
USA

Sodium chloride (NaCl) VWR, Radnor, PA, USA

Sodium phosphate monobasic VWR, Radnor, PA, USA

THPTA Jena Bioscience, Jena, Germany

Tris acetate Sigma-Aldrich, St. Louis, MO, USA

Tris acetate EDTA (TAE) buffer, 50x BioRad, Hercules, CA, USA

Tris glycine SDS buffer, 10x BioRad, Hercules, CA, USA

Tris(hydroxymethyl) aminomethane (Tris) Sigma-Aldrich, St. Louis, MO, USA

Vivaspin 20, 10 kDa Sartorius AG, Göttingen, Germany

Water, HPLC-grade Honeywell, Morris Plains, NJ, USA
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Table 4.3: Overview of enzymes and competent cells that were used during this
thesis.

Enzymes and Cells Supplier

E.coli DH10B, chemically competent JBEI, homemade

DpnI Thermo Fisher Scientific, Waltham, MA,
USA

EcoRI NEB, Ipswich, MA, USA

E.coli BL21 (DE3),
chemically competent

NEB, Ipswich, MA, USA

FastAP Thermosensitive Alkaline
Phosphatase

Thermo Fisher Scientific, Waltham, MA,
USA

Gibson Assembly master mix NEB, Ipswich, MA, USA

HindIII NEB, Ipswich, MA, USA

Hot Start Taq DNA polymerase NEB, Ipswich, MA, USA

Phusion Hot Start II DNA polymerase Thermo Fisher Scientific, Waltham, MA,
USA

E.coli Rosetta-gami B(DE3)pLysS
chemically competent

MilliporeSigma (Novagen), Burlington, MA,
USA

TdT (bovine) NEB, Ipswich, MA, USA
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Table 4.4: Overview of instruments that were used during this thesis.

Equipment Instruments

Centrifuges Eppendorf 5424
Beckman Coulter Allegra 25R
Eppendorf 5810R

Electrophoresis systems Thermo Scientific Owl EasyCast
Bio-Rad Mini-PROTEAN Tetra

Gel imaging systems UVP BioSpectrum Imaging System
Alpha Innotech FluorChem Q MultiImage
III
UVP 2UV Transilluminator (LM-26)

Homogenizer Emulsiflex C3 Avestin

Incubation shaker Kuhner Shaker

pH meter Thermo Scientific Orion 3-Star BenchTop
pH Meter

Sonicator QSonica Q700 Sonicator

Thermal cyclers Applied Biosystems Veriti 96-well Thermal
Cycler
Bio-Rad CFX96 Touch Real-Time PCR De-
tection System

UV-Vis measurement systems NanoDrop ND-1000 & 2000
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Table 4.5: Oligonucleotide primers that were used during this thesis. All oligos
were purchased from Integrated DNA Technologies (IDT). Primers P1, P2 and
C1 were ordered with HPLC purification, and the remaining primers were ordered
with standard desalting.

Name Sequence (5’ to 3’) Note

P1 /56-FAM/TTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTT

5’ fluorescein
dT35

P2 /56-FAM/TTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTT

5’ fluorescein
dT60

P3 /5AmMC6/CAACACACCACCCACCCAAC 5’-amine for
NHS-labeling

C1 /5Phos/GCAGCCAACTCAGCTTCTGCAGGGGC
TTTGTTAGCAGCCGGATCCTC

PstI site, 5’-
phosphorylated

C2 AAACAAGCGCTCATGAGCCAGAAATCTGGAG
CCCGATCTTCCCCATCGG

BstX1 site

C3 GTGCCGTGAGACCTGGCTCCTGACGAGGAtaa
gcttCTATAGTGAGTCGTATTAATTTCG

HindIII site

C4 AAAAgaattcAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

EcoRI site

C5 TTTTgaattcTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTT

EcoRI site
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Sequences
TdTwt (His-TdT, wildtype)

1 MGHHHHHHHH HHSSGHIDDD DKHMSPSPVP GSQNVPAPAV KKISQYACQR RTTLNNYNQL
61 FTDALDILAE NDELRENEGS CLAFMRASSV LKSLPFPITS MKDTEGIPCL GDKVKSIIEG

121 IIEDGESSEA KAVLNDERYK SFKLFTSVFG VGLKTAEKWF RMGFRTLSKI QSDKSLRFTQ
181 MQKAGFLYYE DLVSCVNRPE AEAVSMLVKE AVVTFLPDAL VTMTGGFRRG KMTGHDVDFL
241 ITSPEATEDE EQQLLHKVTD FWKQQGLLLY CDILESTFEK FKQPSRKVDA LDHFQKCFLI
301 LKLDHGRVHS EKSGQQEGKG WKAIRVDLVM CPYDRRAFAL LGWTGSRQFE RDLRRYATHE
361 RKMMLDNHAL YDRTKRVFLE AESEEEIFAH LGLDYIEPWE RNA

TdT∆5cys (His-TdT, surface cysteines removed)
1 MGHHHHHHHH HHSSGHIDDD DKHMSPSPVP GSQNVPAPAV KKISQYACQR RTTLNNYNQL

61 FTDALDILAE NDELRENEGS ALAFMRASSV LKSLPFPITS MKDTEGIPSL GDKVKSIIEG
121 IIEDGESSEA KAVLNDERYK SFKLFTSVFG VGLKTAEKWF RMGFRTLSKI QSDKSLRFTQ
181 MQKAGFLYYE DLVSAVNRPE AEAVSMLVKE AVVTFLPDAL VTMTGGFRRG KMTGHDVDFL
241 ITSPEATEDE EQQLLHKVTD FWKQQGLLLY ADILESTFEK FKQPSRKVDA LDHFQKCFLI
301 LKLDHGRVHS EKSGQQEGKG WKAIRVDLVM SPYDRRAFAL LGWTGSRQFE RDLRRYATHE
361 RKMMLDNHAL YDRTKRVFLE AESEEEIFAH LGLDYIEPWE RNA

TdTc180 (His-TdT, single attachment Cys 180)
1 MGHHHHHHHH HHSSGHIDDD DKHMSPSPVP GSQNVPAPAV KKISQYACQR RTTLNNYNQL

61 FTDALDILAE NDCLRENEGS ALAFMRASSV LKSLPFPITS MKDTEGIPSL GDKVKSIIEG
121 IIEDGESSEA KAVLNDERYK SFKLFTSVFG VGLKTAEKWF RMGFRTLSKI QSDKSLRFTQ
181 MQKAGFLYYE DLVSAVNRPE AEAVSMLVKE AVVTFLPDAL VTMTGGFRRG KMTGHDVDFL
241 ITSPEATEDE EQQLLHKVTD FWKQQGLLLY ADILESTFEK FKQPSRKVDA LDHFQKCFLI
301 LKLDHGRVHS EKSGQQEGKG WKAIRVDLVM SPYDRRAFAL LGWTGSRQFE RDLRRYATHE
361 RKMMLDNHAL YDRTKRVFLE AESEEEIFAH LGLDYIEPWE RNA
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TdTc188 (His-TdT, single attachment Cys 188)
1 MGHHHHHHHH HHSSGHIDDD DKHMSPSPVP GSQNVPAPAV KKISQYACQR RTTLNNYNQL

61 FTDALDILAE NDELRENEGS CLAFMRASSV LKSLPFPITS MKDTEGIPSL GDKVKSIIEG
121 IIEDGESSEA KAVLNDERYK SFKLFTSVFG VGLKTAEKWF RMGFRTLSKI QSDKSLRFTQ
181 MQKAGFLYYE DLVSAVNRPE AEAVSMLVKE AVVTFLPDAL VTMTGGFRRG KMTGHDVDFL
241 ITSPEATEDE EQQLLHKVTD FWKQQGLLLY ADILESTFEK FKQPSRKVDA LDHFQKCFLI
301 LKLDHGRVHS EKSGQQEGKG WKAIRVDLVM SPYDRRAFAL LGWTGSRQFE RDLRRYATHE
361 RKMMLDNHAL YDRTKRVFLE AESEEEIFAH LGLDYIEPWE RNA

TdTc253 (His-TdT, single attachment Cys 253)
1 MGHHHHHHHH HHSSGHIDDD DKHMSPSPVP GSQNVPAPAV KKISQYACQR RTTLNNYNQL

61 FTDALDILAE NDELRENEGS ALAFMRASSV LKSLPFPITS MKDTEGIPSL GDKVKSIIEG
121 IIEDGESSEA KAVLNDERYK SFKLFCSVFG VGLKTAEKWF RMGFRTLSKI QSDKSLRFTQ
181 MQKAGFLYYE DLVSAVNRPE AEAVSMLVKE AVVTFLPDAL VTMTGGFRRG KMTGHDVDFL
241 ITSPEATEDE EQQLLHKVTD FWKQQGLLLY ADILESTFEK FKQPSRKVDA LDHFQKCFLI
301 LKLDHGRVHS EKSGQQEGKG WKAIRVDLVM SPYDRRAFAL LGWTGSRQFE RDLRRYATHE
361 RKMMLDNHAL YDRTKRVFLE AESEEEIFAH LGLDYIEPWE RNA

TdTc302 (His-TdT, single attachment Cys 302)
1 MGHHHHHHHH HHSSGHIDDD DKHMSPSPVP GSQNVPAPAV KKISQYACQR RTTLNNYNQL

61 FTDALDILAE NDELRENEGS ALAFMRASSV LKSLPFPITS MKDTEGIPSL GDKVKSIIEG
121 IIEDGESSEA KAVLNDERYK SFKLFTSVFG VGLKTAEKWF RMGFRTLSKI QSDKSLRFTQ
181 MQKAGFLYYE DLVSCVNRPE AEAVSMLVKE AVVTFLPDAL VTMTGGFRRG KMTGHDVDFL
241 ITSPEATEDE EQQLLHKVTD FWKQQGLLLY ADILESTFEK FKQPSRKVDA LDHFQKCFLI
301 LKLDHGRVHS EKSGQQEGKG WKAIRVDLVM SPYDRRAFAL LGWTGSRQFE RDLRRYATHE
361 RKMMLDNHAL YDRTKRVFLE AESEEEIFAH LGLDYIEPWE RNA
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MTdTc302 (His-MPB-TdT, single attachment Cys 302)
1 MGHHHHHHHH HHSSGHIDDD DKHMMKIEEG KLVIWINGDK GYNGLAEVGK KFEKDTGIKV

61 TVEHPDKLEE KFPQVAATGD GPDIIFWAHD RFGGYAQSGL LAEITPDKAF QDKLYPFTWD
121 AVRYNGKLIA YPIAVEALSL IYNKDLLPNP PKTWEEIPAL DKELKAKGKS ALMFNLQEPY
181 FTWPLIAADG GYAFKYENGK YDIKDVGVDN AGAKAGLTFL VDLIKNKHMN ADTDYSIAEA
241 AFNKGETAMT INGPWAWSNI DTSKVNYGVT VLPTFKGQPS KPFVGVLSAG INAASPNKEL
301 AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELVKDP RIAATMENAQ KGEIMPNIPQ
361 MSAFWYAVRT AVINAASGRQ TVDEALKDAQ TNSSSNNNNN NNNNNLGIEG RISHMSMGGR
421 DIVDGSEFSP SPVPGSQNVP APAVKKISQY ACQRRTTLNN YNQLFTDALD ILAENDELRE
481 NEGSALAFMR ASSVLKSLPF PITSMKDTEG IPSLGDKVKS IIEGIIEDGE SSEAKAVLND
541 ERYKSFKLFT SVFGVGLKTA EKWFRMGFRT LSKIQSDKSL RFTQMQKAGF LYYEDLVSCV
601 NRPEAEAVSM LVKEAVVTFL PDALVTMTGG FRRGKMTGHD VDFLITSPEA TEDEEQQLLH
661 KVTDFWKQQG LLLYADILES TFEKFKQPSR KVDALDHFQK CFLILKLDHG RVHSEKSGQQ
721 EGKGWKAIRV DLVMSPYDRR AFALLGWTGS RQFERDLRRY ATHERKMMLD NHALYDRTKR
781 VFLEAESEEE IFAHLGLDYI EPWERNA
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