

Design and Implementation of a Collaborative
Virtual Problem-Based Learning Environment

Die Dissertationsschrift
Vorgelegt am Fachbereich Informatik

Der Technischen Universität Darmstadt von

Yongwu Miao
(Master of Engineering)

aus Wuhan, Volksrepublick China

zur Erlangung des Grades eines

Doktor-Ingenieur (Dr.-Ing.)

Erstreferent: Prof. Dr. Ralf Steinmetz
Korreferent: Prof. Dr. Heinz Ulrich Hoppe

Tag der Einreichung: 2. Oktober 2000
Tag der Disputation: 17. November 2000

Darmstadt 2000
Hochschulkennziffer D17

 i

TABLE OF CONTENT

PREFACE 1

ABSTRACT 3

ZUSAMMENFASSUNG 7

1 INTRODUCTION 11

1.1 MOTIVATION 11
1.1.1 PEDAGOGICAL CONSIDERATIONS 12
1.1.2 TECHNOLOGICAL DEVELOPMENT 14
1.2 GOAL OF THE THESIS 15
1.3 ORGANIZATION OF THE THESIS 17

2 PROBLEM ANALYSIS 19

2.1 A SCENARIO OF PBL 19
2.2 CHARACTERISTICS OF PBL 21
2.2.1 RICH FORMS OF SOCIAL INTERACTION 22
2.2.2 ILL-STRUCTURED PROBLEM 22
2.2.3 SITUATED ROLES 23
2.2.4 SELF-DIRECTED LEARNING PROCESSES 24
2.3 MAJOR IMPLEMENTATION REQUIREMENTS 24

3 RELATED WORK 27

3.1 CCL 27
3.2 CSILE 28
3.3 CALE 30
3.4 CNB 31
3.5 BELVEDERE 32
3.6 MCBAGEL 34
3.7 WEB-SMILE 35
3.8 ANALYSIS OF THE STATE OF THE ART 39
3.9 SUMMARY 41

4 APPROACH 43

4.1 OVERVIEW OF THE APPROACH 43
4.1.1 PERSPECTIVE OF ACTIVITY THEORY 43
4.1.2 AN ANALYSIS OF PROBLEM BASED LEARNING ACCORDING TO

 ii

ACTIVITY THEORY 45
4.1.3 A CONCEPTUAL FRAMEWORK FOR

THE DESIGN OF VIRTUAL PBL ENVIRONMENTS 46
4.1.4 THE CONCEPTUAL ARCHITECTURE OF A VIRTUAL PBL ENVIRONMENT 48
4.1.5 SUMMARY 50
4.2 NOTATION OF Z 50
4.2.1 BASIC KNOWLEDGE 51
4.2.2 THE Z NOTATIONS USED IN THIS THESIS 53
4.3 VIRTUAL INSTITUTE METAPHOR:

A CONTEXT-BASED VIRTUAL LEARNING ENVIRONMENT 58
4.3.1 THEORETICAL BACKGROUND 59
4.3.2 REQUIREMENTS 60
4.3.3 DESIGN OF A CONTEXT-BASED VIRTUAL LEARNING ENVIRONMENT 61
4.3.4 RELATED WORK AND DISCUSSION 93
4.3.5 SUMMARY 94
4.4 PBL-NET: AN ACTIVITY-ORIENTED, GRAPHICAL

KNOWLEDGE REPRESENTATION LANGUAGE FOR PBL 95
4.4.1 THEORETICAL BACKGROUND AND

A CONCEPTUAL MODEL OF COLLABORATIVE LEARNING 96
4.4.2 REQUIREMENTS 99
4.4.3 AN ACTIVITY-ORIENTED, GRAPHICAL

KNOWLEDGE REPRESENTATION METHOD 101
4.4.4 PBL-NET 105
4.4.5 RELATED WORK AND DISCUSSION 117
4.4.6 SUMMARY 119
4.5 PBL-PROTOCOLS:

GUIDING AND CONTROLLING SOCIAL INTERACTION IN PBL PROCESSES 120
4.5.1 THEORETICAL BACKGROUND 121
4.5.2 COLLABORATION PROTOCOL 122
4.5.3 PBL-PROTOCOLS 143
4.5.4 RELATED WORK AND DISCUSSION 152
4.5.5 SUMMARY 153
4.6 PBL-PLAN: COORDINATING ACTIONS IN PBL PROCESSES 153
4.6.1 THEORETICAL BACKGROUND 154
4.6.2 PBL-PLAN 156
4.6.3 FROM LEARNING ISSUES AND NECESSARY LEARNING RESOURCES TO

A PBL-PLAN 176
4.6.4 MODIFYING AND REFINING PBL-PLANS INTERACTIVELY 186
4.6.5 EXECUTION OF PBL-PLANS 190
4.6.6 RELATED WORK AND DISCUSSION 200
4.6.7 SUMMARY 202

5 IMPLEMENTATION 205

5.1 SYSTEM ARCHITECTURE 205
5.2 A MAPPING FROM AN ABSTRACT IMPLEMENTATION MODEL TO

THE SYSTEM ARCHITECTURE 206
5.2.1 ABSTRACT IMPLEMENTATION MODEL 206
5.2.2 A MAPPING FROM THE COMPONENTS TO THE SYSTEM ARCHITECTURE 211
5.3 IMPLEMENTATION OF THE SYSTEM ARCHITECTURE 211
5.4 A COOPERATIVE HYPERMEDIA APPROACH 214
5.4.1 IMPLEMENTATION OF THE VIRTUAL INSTITUTE METAPHOR 214
5.4.2 IMPLEMENTATION OF THE PBL-NET 217
5.4.3 IMPLEMENTATION OF THE PBL-PROTOCOL 219

 iii

5.4.4 IMPLEMENTATION OF THE PBL-PLAN 220

6 A USAGE SCENARIO AND EXPERIENCES 223

6.1 A USAGE SCENARIO 223
6.1.1 VIRTUAL INSTITUTE EDITOR AND BROWSER 223
6.1.2 PBL-NET SCHEMA EDITOR 226
6.1.3 PBL-PROTOCOL SCHEMA EDITOR 227
6.1.4 GROUP DEFINITION TOOL 228
6.1.5 PROTOCOL CONTROL PANEL 229
6.1.6 PBL-PLAN DEFINITION, MONITORING, AND EXECUTION TOOL 230
6.1.7 HYPERDOCUMENT EDITOR AND BROWSER 231
6.2 EXPERIENCE 234

7 CONCLUSIONS AND FUTURE WORK 237

7.1 MAIN CONTRIBUTIONS OF THIS THESIS 237
7.1.1 A CONCEPTUAL FRAMEWORK FOR THE DEVELOPMENT OF

VIRTUAL PBL ENVIRONMENTS 237
7.1.2 A CONTEXT-BASED APPROACH TO THE DESIGN OF COLLABORATIVE

VIRTUAL LEARNING ENVIRONMENTS: THE VIRTUAL INSTITUTE METAPHOR 238
7.1.3 AN ACTIVITY-ORIENTED APPROACH TOWARDS

A GRAPHICAL KNOWLEDGE REPRESENTATION: THE PBL-NET 238
7.1.4 AN APPROACH TO GUIDE AND CONTROL SOCIAL INTERACTION:

THE PBL-PROTOCOL 239
7.1.5 AN APPROACH TO SUPPORT SESSION-BASED COLLABORATIVE PROCESSES:

THE PBL-PLAN 239
7.1.6 EXTENSION AND APPLICATION OF A COOPERATIVE HYPERMEDIA MODEL 240
7.2 COMPARISON WITH OTHER PBL SUPPORT SYSTEMS 241
7.3 OPEN ISSUES 244
7.3.1 SHORT-TERM DIRECTIONS 244
7.3.2 LONG-TERM DIRECTIONS 245

8 REFERENCES 247

APPENDIX A: LIST OF DEFINITIONS 261

APPENDIX B: LIST OF FIGURES 263

APPENDIX C: LIST OF TABLES 265

 1

Preface

The work described in this thesis was performed at the Integrated Publication and
Information Systems Institute (IPSI) of the German National Research Center for
Information Technology (GMD) in Darmstadt. This work would not have reached the
present point without the support of many people. It is impossible to fully
acknowledge all of them who contributed either directly or indirectly to its
completion. For those contributors whom I do not explicitly acknowledge, please be
assured that your support did not go unnoticed.

First of all, I would like to express my gratitude to my advisors Professor Ralf
Steinmetz (GMD-IPSI / Darmstadt University of Technology) and Professor Ulrich
Hoppe (University of Duisburg) for their comments and advisce. I am also grateful to
other members of my committee for their insightful questions and the helpful
discussion during my final defense.

I would like to express particular thanks to Dr. Jörg M. Haake, the leader of the
CONCERT division at GMD-IPSI, for his excellent guidance and intensive
discussions during the course of completing this thesis work. I am deeply grateful to
him for his careful reviewing and constructive criticism on several versions of this
thesis. It would have been impossible to complete this work without his support and
help.

Furthermore, I wish to thank all members of CONCERT division. As a researcher in
collaborative work and collaborative learning, I view this work as a joint effort. In
particular, the discussions conducted in the CLear project were very helpful in
performing this thesis work. I feel fortunate for being part of a multi-disciplinary
group with psychologists, pedagogues, and computer scientists. An effective
collaboration resulted in a series of joint publications. Therefore, I thank both current
and former members of the CLear project: Martin Wessner, Dr. Hans-Rüdiger Pfister,
Jennifer Beck-Wilson, Torsten Holmer, Jutta Maria Fleschutz, Peter Zentel, and Dr.
Shirley Holst. In addition, when I implemented CROCODILE, I received a lot of help
from the people in the COAST development team including Christian Schuckmann,
Holger Kleinsorgen, Hans Scholz, and Till Schümmer.

Many other colleagues deserve special mention. These include Emil Wetzel, Ute
Sotnik, and Dr. Wolfgang Schuler for their friendship and for their willingness to help
me with many administrative matters and in learning German. Cordial thanks go to
the former and current Chinese colleagues at GMD-IPSI, who help me in many
respects and prevented me from being homesick. I extend my thanks to Professor
Zhipeng Tong, the former president of China Academy of Electronics and
Information Technology, for his concern and encouragement.

Finally, I wish to express special gratitude to my family members. My parents
instilled in me the desire to learn and the drive to pursue this work. In particular, I can
not thank my wife Yi Li enough for the encouragement, support, patience, and help
she has given no matter whether my work ran smoothly or was difficult. Her love and
faith in me is a constant source of intelligence and strength for me. For this reason, I
dedicate this thesis to her.

 2

 3

Abstract

Problem-based learning (PBL) is a student-centered learning method that provides
students with resources, guidance, and instruction. In PBL, guided by tutors in the
role of facilitators of learning, students learn domain knowledge together with
developing problem-solving, collaborative learning, and self-directed learning skills.

Many collaborative virtual PBL environments have been developed in the research
area of computer supported collaborative learning in the past decade. However,
existing systems are limited in the sense that they focus mainly on providing and
maintaining shared information resources and shared workspaces. The role of cultural
factors and social factors as mediators in PBL processes are insufficiently addressed
in these systems. The research described in this paper can be viewed as a first step
towards addressing this limitation. The objective of this thesis work is to develop
concepts and approaches to build a comprehensive collaborative virtual environment
for distributed PBL.

The approach used to develop a collaborative virtual PBL environment is based on
activity theory. According to activity theory, a human activity is defined as the
engagement of a subject towards a certain goal or objective in a community. In most
human contexts, activities are mediated through the use of culturally established
instruments (such as language and artifacts) and socially established relations (such as
regulations and work procedures). In addition, human activity can be described as a
three-level structure: activity, action, and operation. Based on activity theory, a
conceptual framework for the design of virtual PBL environments is proposed, which
consists of eight components: agent, place, tool, language, document, action, work
description, and behavior rule. According to this conceptual framework, a conceptual
architecture of a collaborative virtual PBL environment is designed, which is depicted
in the following figure. This conceptual architecture consists of four modules: the
virtual institute metaphor, the PBL-net, the PBL-protocol, and the PBL-plan. Each
module realizes a concept that contributes to meet the requirements for achieving the
goal.

Based on the theory of situated learning, which emphasizes the importance of context
and social interactions, the concept of learning context and an approach to develop
context-based virtual learning environments have been developed. This approach is
used to design a hierarchically structured learning context, called a virtual institute
metaphor. The virtual institute metaphor reflects parts of the culture used in
traditional learning environments. The virtual institute metaphor enables users to be
aware of learning contexts, to interact with learning contexts, and to create and
modify their learning environments. It therefore support customized learning contexts
in which learning processes and interaction between learners can be situated.

Based on the theory of constructivism and situated learning, an abstract model of
collaborative learning is developed. This model addresses potential conflicts at the
individual memory level and at the group memory level. Considering the state-of-the-
art in terms of graphical knowledge representation methods, it is found that existing
graphical knowledge representation approaches are not suitable to support the PBL
activity. An activity-oriented approach to a graphical knowledge representation is

 4

developed. This approach is appropriate for supporting the representation, exploration
and negotiation of shared knowledge in ill-structured knowledge domains. This
approach is applied to support PBL activities. As a consequence, the PBL-net schema,
a graphical knowledge representation language for PBL, is developed. It is designed
to support PBL-specific tasks. By means of such a knowledge representation
language, users can construct a PBL-net, representing their shared knowledge. The
PBL-net reflects the status of collaborative learning and shared knowledge. It
facilitates pursuing common understanding and constructing shared knowledge in the
PBL processes.

Based on schema theory, the concept of collaboration protocol and an approach to
model and execute collaboration protocols is developed. A collaboration protocol is a
computerized script of a collaboration strategy. As a description of a collaboration
strategy, a collaboration protocol may have one or more instances, called protocol
instances. The concept of collaboration protocol is applied to develop PBL-protocols
that support PBL groups within virtual learning environments. PBL-protocols can
guide and control construction of the shared PBL-nets by suggesting and restricting
behaviors of roles in each state of the PBL process. In addition, the idea of sub-
protocol is used to develop a negotiation protocol, which can facilitate negotiation
processes for the construction of shared knowledge. The PBL-protocol mediates PBL
processes at the operation level and coordinates the contributions of people based on
the distribution of the subject (different roles) in the community.

Based on self-directed learning, the concept of PBL-plan is developed. A PBL-plan is
a description of a PBL procedure in a computerized form. A PBL-plan consists of a
set of action nodes, a set of connection nodes, and a set of artifact nodes. A PBL-plan
may have sub-plans. Action nodes can be connected in sequence or in parallel by
using connection nodes. Therefore, users are supported to decompose their learning
goals, to arrange actions to achieve these goals, to allocate resources, to project time
line, in short, to make their own learning plan. They can carry out a PBL process by
automatically executing their learning plan to coordinate actions performed by
learners or sub-groups at same/different time and in same/different virtual places. In
addition, in order to ease the creation of such plans, an approach to automatically
create a preliminary PBL-plan and to support interactive modification and refinement
of a PBL-plan is developed. By means of the PBL-plan, PBL groups are supported to
conduct self-directed learning processes in a virtual learning environment. The PBL-
plan mediates PBL processes at the action level and coordinates the contributions of
people based on the distribution of the objects (different goals and tasks) in the
community.

The architecture described above has been implemented as a prototype, called
CROCODILE, that demonstrates the concepts. In CROCODILE the cooperative
hypermedia model is extended and applied to implement the virtual institute
metaphor, the PBL-net, the PBL-protocol, and the PBL-plan in a unified way. The
prototype system is implemented by using a client/server architecture. Each client
provides a user interface for users to interact with the application. Therefore,
geographically distributed and co-located people are supported to conduct
synchronously and asynchronously collaborative PBL activities in the virtual learning
environment. The prototype has been tested. Preliminary results demonstrate that the
experience and skills of social interaction in the real world can be intuitively reused in

 5

CROCODILE. The system facilitates conducting a PBL activity in a virtual learning
environment.

In comparison to existing virtual PBL environments, CROCODILE focuses on
supporting scheduled, synchronous performed by a small group of adult learners. It
emphasizes the role of mediation of cultural and social factors to support collaborative
PBL activities. Finally, directions for future research based on this thesis work are
discussed. The short-term directions include further evaluating the approach and the
prototype system and solving problems raised by this research. The long-term
direction aims at developing an integrated environment to support an integration of
collaborative work and collaborative learning.

 7

Zusammenfassung

Problem-basiertes Lernen (PBL) ist eine studentenzentrierte Lernmethode, die die
Studenten mit Ressourcen, Anleitung, und Instruktionen versorgt. In PBL fungiert der
Tutor als Moderator beim Lernen. Die Studenten erlernen dabei inhaltsbezogene
Kenntnisse zusammen mit Fähigkeiten der Problemlösung, des kooperativen Lernens,
und des selbstbestimmten Lernens.

Im vergangenen Jahrzehnt wurden im Forschungsgebiet des computer-unterstützten
kooperativen Lernens viele kooperative virtuelle Umgebungen für PBL entwickelt.
Existierende Systeme fokussieren hauptsächlich die Unterstützung der
Kommunikation und Zusammenarbeit zeitlich und räumlich verteilter Lerner. Die
Rolle kultureller und sozialer Faktoren als Mediatoren in PBL-Prozessen wurden
jedoch in diesen Systemen nur unzureichend berücksichtigt. Diese Arbeit kann als ein
erster Schritt angesehen werden, diese Einschränkungen aufzuheben. Das Ziel dieser
Arbeit ist die Entwicklung von Konzepten und Ansätzen für den Aufbau einer
umfassenden kooperativen virtuellen Umgebung für verteiltes PBL.

Der Lösungsansatz basiert auf der Aktivitätstheorie. Gemäss der Aktivitätstheorie
wird eine Aktivität als das Engagement eines Subjekts für ein spezielles Objekt
definiert. In den meisten menschlichen Kontexten leben und arbeiten Leute in einer
Gemeinschaft. Im Laufe der Entwicklung der menschlichen Zivilisation wurden zur
Unterstützung von Aktivitäten immer mehr kulturell etablierte Instrumente (wie zum
Beispiel Sprache und Werkzeuge) benutzt. Außerdem bildeten und etablierten sich
soziale Beziehungen (wie zum Beispiel Regeln und Arbeitsteilung). Zusätzlich kann
eine menschliche Aktivität innerhalb einer Drei-Ebenen-Struktur beschrieben werden.
Die drei Ebenen sind: Aktivität, Aktion und Operation. Basierend auf der
Aktivitätstheorie wird ein konzeptionelles Rahmenwerk für den Entwurf kooperativer
virtueller Umgebungen für PBL vorgeschlagen. Das konzeptionelle Rahmenwerk
besteht aus acht Komponenten: Agent, Ort, Werkzeug, Sprache, Dokument, Aktion,
Regeln und Arbeitsbeschreibung. Gemäß diesem konzeptionellen Framework wird
eine konzeptionelle Architektur für kooperative virtuelle Umgebungen für PBL
entworfen. Diese Architektur besteht aus vier Modulen: der Methapher des
„Virtuellen Instituts“, dem PBL-Protokoll, dem PBL-Netz und dem PBL-Plan. Jedes
dieser vier Module realisiert ein Lösungskonzept, das zur Erfüllung der
Anforderungen beiträgt.

Basiert auf der Theorie des situierten Lernens, die die Wichtigkeit von Kontext und
sozialen Interaktionen betont, wird das Konzept des Lernkontext und ein Ansatz für
kontext-basierte virtuelle Lernenumgebungen entwickelt. Dieser Ansatz wird zum
Design eines hierarchisch strukturierten Lernkontextes beziehungsweise der Metapher
des „Virtuellen Instituts“ benutzt. Die Metapher des „Virtuellen Instituts“ erbt einen
Teil der Kultur, wie sie in realen Lernumgebungen existiert. Sie unterstützt die soziale
Orientierung, Gruppenbewusstsein, reiche Formen sozialer Interaktion und die
Anpassung der Lernumgebung.

Basierend auf der Theorie des Konstruktivismus und des situierten Lernens wird ein
abstraktes Modell des kooperativen Lernens entwickelt. Dieses Modell berücksichtigt
potentielle Konflikte auf der Ebene der individuellen Erinnerung und der

 8

Gruppenerinnerung. In Anbetracht des aktuellen Entwicklungsstandes der Methoden
für die graphische Darstellung von Wissen kann festgestellt werden, dass existierende
graphische Methoden zur Wissensrepräsentation nicht für die Unterstützung von PBL
Aktivitäten geeignet sind. Deshalb wird ein Aktivitäts-orientierter Ansatz für die
graphische Wissensrepräsentation entwickelt. Dieser Ansatz ist geeignet für die
Darstellung, der Erkundung und Verhandlung gemeinsamen bzw. geteilten Wissens in
schlecht-strukturierten Wissensdomänen. Dieser Ansatz wird daher für die
Unterstützung von PBL-Aktivitäten in dieser Arbeit verwendet. Für diese Aufgabe
wird das PBL-Netz-Schema, eine graphische Wissensrepräsentations-Sprache für
PBL, entwickelt. Es dient zur Unterstützung PBL-spezifischer Aufgaben. Mittels eine
solche Sprache zur Wissensrepräsentation können Benutzer ein PBL-Netz aufbauen,
sowie ihr gemeinsames Wissen repräsentieren. Das PBL-Netz reflektiert den Status
des kooperativen Lernens und des gemeinsamen Wissens. Es unterstützt das
Erreichen von gegenseitigem Verständnis und das Aufbauen gemeinsamen Wissens in
PBL-Prozessen.

Basierend auf der Schema-Theorie werden das Konzept der Kooperationsprotokolle
und ein Ansatz zum Modellieren und Ausführen von Kooperationsprotokollen
entwickelt. Ein Kooperationsprotokoll ist ein computerunterstütztes Skript für eine
Kooperations-strategie. Als Beschreibung einer Kooperations-strategie kann ein
Kooperationsprotokoll in konkreten Prozessen mehrfach eingesetzt werden
(Protokoll-Instanzen). Das Konzept der Kooperationsprotokolle wird für die
Entwickeln des PBL-Protokolls benutzt, das die PBL-Gruppen innerhalb der
kooperativen virtuellen Lernenumgebung unterstützt. PBL-Protokolle können die
Konstruktion der gemeinsam genutzten PBL-Netze führen und kontrollieren, indem
sie das Verhalten der jeweiligen Rollen durch Vorschlagen und Einschränken von
Operationen in jedem Zustand des PBL-Prozesses beinflussen. Zusätzlich wird die
Idee des Unterprotokolls für die Entwicklung eines Verhandlungsprotokolls benutzt,
das den Verhandlungsprozess bei der Konstruktion gemeinsamen Wissens
unterstützen kann. Das PBL-Protokoll steuert den PBL-Prozess auf der
Operationsebene und koordiniert die Beiträge der Lerner aufgrund der Verteilung von
Subjekten (mit verschiedenen Rollen) in der Gemeinschaft.

Basierend auf selbstgeleitetem bzw. selbstbestimmtem Lernen wird das Konzept des
PBL-Plans entwickelt. Ein PBL-Plan ist eine Beschreibung einer PBL-Prozedur in
einer computerunterstützten Form. Ein PBL-Plan besteht aus einer Menge von
Aktionsknoten, einer Menge von Verbindungsknoten, und einer Menge von Artefakt-
knoten. Ein PBL-Plan kann Unterpläne haben. Aktionsknoten können in serieller
Reihenfolge oder parallel zueinander durch Verbindungsknoten verbunden werden.
Hierdurch werden Benutzer beim Erstellen ihren eigenen Lernplans untestützt, z.B.
beim Unterteilen ihrer Ziele, beim Arrangieren der Aktionen zum Erreichen dieser
Ziele, beim Zuteilen der Ressourcen, bei der Zeitplanung, kurz gesagt. Sie können
einen PBL-Prozess durch automatisches Ausführen ihres Lernplans realisieren. Dabei
werden die Aktionen mehrerer Lernern oder Untergruppen zur gleichen/zu
verschiedenen Zeiten und an gleichen/verschiedenen virtuellen Orten koordiniert. Um
das Erzeugen solcher Pläne zu vereinfachen wird zusätzlich ein Ansatz entwickelt, der
einen vorläufigen PBL-Plan automatisch generiert und die interaktive Änderung und
Verfeinerung eines PBL-Plans unterstützt. Mittels des PBL-Plans werden PBL-
Gruppen beim Durchführen der selbst-gesteuerten Lernprozesse in einer kooperativen
virtuellen Lernumgebung unterstützt. Der PBL-Plan koordiniert den PBL-Prozess auf

 9

der Aktionsebene und koordiniert die Beiträge der Lerner aufgrund der Verteilung
von Objekten (gemäss verschiedener Aufgaben oder Ziele) in der Gemeinschaft.

Diese Architektur ist als ein Prototyp realisiert worden, der die Lösungskonzepte
demonstriert. Der Prototyp heißt CROCODILE. In CROCODILE wird das
kooperative Hypermedia-Modell erweitert und zum Implementieren der Metapher des
„Virtuellen Instituts“, des PBL-Netzes, von PBL-Protokollen und des PBL-Plans
verwendet. Das Prototypsystem wird mit einer Client/Server- Architektur
implementiert. Jeder Client bietet eine Benutzungsoberfläche für die Interaktion
zwischen Benutzer und der Anwendung. Daher werden sowohl räumlich verteilte
Leute als auch Leute an einem Ort unterstützt, um synchron und asynchron
kooperative PBL-Aktivitäten in der virtuellen Lernumgebung durchzuführen. Das
Prototypsystem wird getestet. Die ersten Ergebnisse unterstützen die Annahme, dass
die Erfahrungen und Fähigkeiten der sozialen Interaktion in der realen Welt intuitiv in
CROCODILE wiederbenutzt werden können. Das System erleichtert das Durchführen
von PBL-Prozessen in einer virtuellen Lernenumgebung.

In Vergleich zu verwandten virtuellen Umgebungen für PBL fokusiert CROCODILE
auf die Unterstützung von geplanten, synchronen kooperativen PBL-Prozessen, die
von kleinen Gruppen von erwachsenen Lernern durchgeführt werden. CROCODILE
betont die Unterstützung vom kulturellen und sozialen Aspekt in kooperativen PBL-
Prozessen. Zum Abschluss werden Richtungen für kurzfristige und langfristige
zukünftige Forschungsarbeiten diskutiert. Die kurzfristigen Richtungen schliessen die
tiefergehende Evaluation des Ansatzes und des Prototypsystems sowie das Lösen
einiger Probleme ein, die sich bei der Anwendung des Ansatzes gezeigt haben. Die
langfristige, Forschungsthemen zielen auf die Entwicklung einer integrierten
Umgebung zur Integration von kooperativen Arbeiten und kooperativen Lernen.

 11

1 Introduction

Nowadays, problems faced in industry and academy have become increasingly
complex. The ability and skills needed to solve these problems are often not taught in
the usual teacher-centered approach. Problems typically taught in schools often are
well-structured that lead to predetermined or fully predictable results. The ability to
solve well-structured problems does little to increase the relevant and critical thinking
skills, which are very important for students to solve problems they will face in their
future work, community, and personal lives. In addition, problem solving today is
often the collaborative activity of a multi-disciplinary team. Students should have
skills to interact with others who may have different disciplines. Unfortunately,
learners taught in a teacher-centered learning approach are not adequately prepared
when they face to real-world problems [Pross99].

According to Norman et al., a revolution in education is taking place, in which we see
a shift from the teacher-centered approach to the learner-centered approach. The
underlying philosophy is that people learn best when they actively engage in
acquiring the knowledge and skills, which they need to solve the problem at hand.
The advance of technology has accelerated this change and enables many ideas of
modern education theories and instruction methods to be carried out. Learner-centered
is often accompanied by a problem-based approach [Norman96]. In the past decade,
many systems have been developed to support learner-centered approach in computer-
based learning environments. In the same vein, the concern of this thesis work is to
develop an approach and a computer-based learning environment for the support of
problem based learning, a typical learner-centered approach.

1.1 Motivation

This research is motivated by two major factors. The first major influence comes from
pedagogical considerations. In the pedagogical literature there is an increasing
recognition of the importance of collaboration and coordination in learning. An
understanding of how student’s knowledge structures, worldviews, motivations and
interpersonal interactions interact with learning environments is central. The specific
focus of this thesis is on the problem based learning (PBL) method, which is heavily
influenced by such pedagogical considerations. The implementation requirements for
a computer-supported problem based learning environment can be derived from the
PBL method and its practice. The second major factor motivating this research is
technological advances such as the development of hypertext/hypermedia, computer-
supported cooperative work (CSCW), and computer-supported cooperative learning
(CSCL) technologies. Swiftly advancing technologies propel the opportunities for
computational support beyond information keeping and sharing among distributed
people involved in PBL. It makes it possible to build a new version of the PBL
environment enhanced by new technologies.

 12

1.1.1 Pedagogical Considerations

PBL is a learner-centered instructional method. Barrows et al. defined PBL as "...the
learning which results from the process of working towards the understanding of, or
resolution of, a problem" [Barrows80]. Boud and Feletti claimed: "Problem based
learning is an approach to structuring the curriculum which involves confronting
students with problems from practice which provide a stimulus for learning"
[Boud91]. Mayo et al. stated that PBL posed significant, contextualized, authentic
situations, and provided students with resources, guidance, and instruction when
students developed and applied domain knowledge and problem-solving skills
[Mayo93].

Three reasons led to choosing PBL as the research domain of this thesis work: 1) PBL
is consistent with the philosophical view of modern learning theories; 2) PBL
embodies most of the principles that improve learning; 3) PBL is increasingly popular
in practice.

PBL is consistent with the philosophical view of contemporary learning theories

PBL is based on contemporary learning theories such as constructivism, situated
learning, and adult learning.

Constructivism: PBL is consistent with the view of constructivism. According to the
constructivist perspective, learners are active constructors of knowledge for
themselves. Constructivism recognizes the importance of an authentic learning task,
the importance of the context in which the student works, and the importance of
collaborative learning. For Dewey, knowledge is not something that is changeless, but
something that depends on an activity, a process of discovery [Dewey38a]. Piaget
believed: "to understand is to discover, or reconstruct by rediscovery, and such
conditions must be complied with if in the future individuals are to be formed who are
capable of production and creativity and not simply repetition" [Piaget73]. Von
Glaserfeld has written: “… learners construct understanding. They do not simply
mirror and reflect what they are told or what they read. Learners look for meaning and
will try to find regularity and order in the events of the world even in the absence of
full or complete information” [VonGlaserfeld84]. Woolfolk described the
constructivist view of the learning process as follows: “… students actively construct
their own knowledge: the mind of the student mediates input from the outside world
to determine what the student will learn. Learning is active mental work, not passive
reception of teaching” [Woolfolk93]. Duffy et al. wrote: “rather than ‘teaching’ the
skills, the skills are developed through working on the problem, i.e., through authentic
activity” [Duffy96]. Tam [Tam00] noted: “learning is determined by the complex
interplay among learners’ existing knowledge, the social context, and the problem to
be solved. Instruction, then refers to providing learners with a collaborative situation
in which they have both the means and the opportunity to construct ‘new and
situationally-specific understandings by assembling prior knowledge from diverse
sources’ [Ertmer93]”. Grabe et al. believed: "constructivist learning experiences and
appropriate classroom practices include reflective thinking and productivity; authentic
activities, including student collaboration and consideration of multiple perspectives,
and student access to content area experts who can model domain-specific skills"
[Grabe98].

 13

According to Savery and Duffy [Savery95], PBL environments are based on the
following constructivist assumptions:

1) Anchor all learning activities to a larger task or problem.
2) Support the learner in developing ownership for the overall problem or task.
3) Design an authentic task.
4) Design the task and the learning environment to reflect the complexity of the

environment they should be able to function in at the end of learning.
5) Give the learner ownership of the process used to develop a solution.
6) Design the learning environment to support and challenge the learner's thinking.
7) Encourage testing ideas against alternative views and alternative contexts.
8) Provide opportunity for and support reflection on both the content learned and the

learning process.

Situated learning: PBL is consistent with the theory of situated learning. In the view
of situated learning, knowledge and understanding is fundamentally a product of the
learning situation and the nature of the learning activity [Lave91a]. Brown et al.
believed that knowledge “ … is situated. A corollary of this is that learning methods
that are embedded in authentic situations are not merely useful; they are essential”
[Brown89]. They argued: "activity, concept, and culture are interdependent. No one
can be totally understood without the other two. Learning must involve all three”
[Brown89]. Jonassen argued: "the most effective learning contexts are those which
are problem or case based and activity oriented, that immerse the learner in the
situation requiring him or her to acquire skills or knowledge in order to solve the
problem or manipulate the solution" [Jonassen91]. Lave wrote: “‘situated’…does not
imply that something is concrete and particular, or that it is not generalizable, or not
imaginary. It implies that a given social practice is multiply interconnected with other
aspects of ongoing social processes in activity systems at many levels of particularity
and generality” [Lave91b]. Wenger uses Communities of Practice to describe the
impact of social learning [Wenger98]. It emphasizes sharing and doing, and the
construction of meaning in a social unit [Roschelle95]. McDermott believed:
“Communities of practice focus on learning within functions or disciplines, sharing
information and insight, collaborating on common problems, stimulating new ideas”
[McDermott99].

Adult learning: PBL is consistent with the theory of adult learning. Camp wrote:
“PBL, at least in the "pure" implementation form, fits with tenets of adult learning
theory. Student autonomy, building on previous knowledge and experiences, and the
opportunity for immediate application are all well-known to facilitate learning in
adults, and thus should foster the success of a PBL approach with students who are
adult learners” [Camp96]. As Knowles et. al. pointed out, adult students are more
motivated to learn when they know why they need to learn something, when their
previous knowledge and experience is used as a starting point of learning and a
resource for learning, when they approach learning as problem-solving, and when the
learning topic have immediate relevance to their job or personal life [Knowles84]. As
Brundage and MacKeracher claimed, adult students learn better when learning
activities express a tolerance for uncertainty, inconsistency, and diversity rather than
demand a unique and correct answer. Adult learning is facilitated when adult students
are given the opportunity to ask and answer questions and to find and solve problems,

 14

when they can evaluate their own skills and strategies to discover inadequacies and
deficiencies, and when they are responsible for planning and implementing their own
learning activities [Brundage80]. Camp stated that professional schools of all types
would have an interest in the potential of PBL to facilitate learning in their students
[Camp96].

PBL embodies most of the principles that improve learning

Woods [Woods96] pointed out that PBL embodied most of the general principles that
improve learning. These principles are listed below:
1) Students should actively engage in the learning activities. They should not

passively listening to lecture [Johnson82] [Johnson91].
2) Students should cooperate in learning processes to help one another [Johnson82]

[Johnson91].
3) It is not necessary that all students learn the same way. Learning activities should

be provided such that each student is able to have a preferred style [Keller68]
[Grayson74] [Felder88].

4) Students should have explicit goals and criteria that can be used to check whether
their goals have been achieved [Mager62] [Kibler74] [Popham70].

5) Give students feedback about their performance as quick as possible [Woods96].
6) Students should be empowered to have some role in the assessment such as peer-

and self-assessment [Novak89] [Brown92].
7) A work environment should be provided with the clear expectation that students

will succeed. It is expected that each student has a personal learning interest
[Woods85].

8) Rich tutor-student interaction should be promoted through many different types of
inside class and outside class events [Woods96].

9) It is not expected that "processing skills" can be developed by providing
"opportunities." [Woods93] [Norman93].

PBL is increasingly popular in practice

PBL is an increasingly popular instructional method. Although the intellectual history
of PBL is far older, its modern history began at McMaster University in Canada over
25 years ago. Until recently, the PBL approach are popular mainly in medical and
professional schools. Gradually, other fields have begun adopting this method
[Rhem98]. Although the history of PBL is not long and this instructional method is
still under development, PBL has been used in many settings such as health sciences,
nursing, dentistry, pharmacy, veterinary medicine, public health, architecture,
business, law, engineering, forestry, police science, social work, education and many
other professional fields [Camp96]. It can be used apparently in any subject and at
most levels [Woods96].

1.1.2 Technological Development

Recently, information technologies such as computer and communication
technologies have rapidly advanced. The digitization of our cultures is providing
schools with access to a breadth of intellectual and cultural resources far greater than
ever before; it is providing new, sophisticated and customizable tools for inquiry and

 15

investigation; it is enabling modes of interaction, communication, and collaboration
not formerly possible [Lave91].

The advantages of computer-based learning environments are summarized by Neal
[Neal98] as follows.

1) “Potential time savings
2) Potential cost savings
3) Increased accessibility to education for traditional and non-traditional students
4) Increased accessibility to experts
5) “Just-in-time” learning and training, especially important for reskilling and

upgrading technical skills
6) More options and flexibility for class structure”

Currently, CSCW and hypertext/hypermedia are the two most widely used
technologies to develop computer-based learning environments. These two
technologies have different but related foci. In the CSCL community, both
technologies are mainly used to support information sharing. CSCW technology is
often used to remove the geographical and temporal constraints of face-to-face
interactions in traditional classrooms by providing virtual classrooms.
Hypertext/hypermedia technology is often used to overcome the linear structure of
information by allowing non-linear integration of information chunks, which may be
represented by different forms of media such as text, audio, video, image, graphics,
etc.

It is important to note that both technologies are rapidly developing. These
technologies can potentially provide support for developing advanced collaborative
learning environments. For example, CSCW technology can be used to develop
computational mechanisms to guide and control behaviors of people with different
roles. Hypertext can be used to represent a set of hierarchically structured, connected
places. Fully exploiting technologies to implement computer supported learning
environments depend on how to apply the technologies under the guidelines of
learning theories.

1.2 Goal of the thesis

In spite of many advantages, some barriers have to be overcome in order to
implement PBL successfully even in conventional learning environments.

1) Resistance of changing roles: Teachers and learners who are unfamiliar with PBL

tend to be reluctant to change their traditional roles [Jones94] [Bridges92]
[Aspy93]. Teachers lack the skills of a facilitator in guiding learners to discover
information for themselves. They do not want to shift their role from lecturers to
tutors. Learners are also slow to adjust to the PBL method, and to the change in
their role from that of passively receiving information to actively engaging in a
problem-solving process.

2) Lack of self-directed learning skills: Students often express difficulties with self
directed learning [Schmidt92]. It is difficult for learners to set their own learning
goals or create and implement their own learning plans [Course Material]. It is

 16

difficult for learners to identify, seek, manage, and utilize resources (experts and
information).

3) More cost: Instead of one classroom (as regarded by traditional teaching), the PBL
curriculum requires a number of small rooms equipped with tools for teaching and
adequate copies of learning resources. The PBL curriculum requires more tutors
[Aspy93].

When supporting PBL in a computer-based learning environment, on the one hand,
computer-based learning environments can enhance the conventional learning
environments to some extent. For example, the rooms with tools and copies of
learning materials are easily created in the electronic form. On the other hand, in
computer-based learning environments most of problems described above will be
compounded and new problems will rise. The following are the major barriers to
successful PBL in computer-based learning environments:

1) Learners and tutors have no experience of interacting with socially unfamiliar

computer-based learning environments. It is not easy to construct and maintain the
shared learning context that enables effective collaboration.

2) Exchange of ideas mainly relies on the shared information space, because people
are distributed in space and time. This makes it difficult to pursue mutual
understanding and to construct shared knowledge.

3) Weak communication channels make social interactions using social protocols
(which we use in the conventional learning environment) difficult.

4) It is more difficult to coordinate learning activities, to make progress efficiently,
and to keep track of progress toward the learning goals.

This thesis work aims at developing concepts and approaches to build computer-based
learning environments, which help people to ease and overcome the difficulties
described above. The target users of such virtual PBL environments are
geographically distributed and co-located adult learners, who may conduct
professional training and collaborative learning at work. Generally speaking, the goal
is to design and implement a collaborative virtual PBL environment. The overall goal
of this thesis can be decomposed into four sub-goals:

1) Support for social orientation and social interaction: When conducting PBL in

conventional learning environments, social orientation and social interactions are
needed without question. People have rich experience to navigate in the real world
and to interact with learning environments and with other people by using
naturally inherited capability (e.g., walking, seeing, and gesture) and instruments
(tools, language, and books) available. Therefore, one of the aims of this thesis is
to build a virtual PBL environment in which PBL group members can use their
experience intuitively, when interacting with the learning environment. It should
enable people to customize their learning environment, and to communicate and
collaborate with other people in same/different time/place cooperation modes.

2) Support for the pursuit of mutual understanding and the construction of shared
knowledge: When conducting PBL in a conventional learning environment,
people have rich communication channels to exchange ideas to pursue mutual or
common understanding. When conducting PBL in a virtual learning environment,
because of weak communication channels and distribution of people in time and
in space, the exchange of ideas mainly relies on shared information spaces, where

 17

people can browse and manipulate their shared knowledge representation. One of
the aims of this thesis is to develop a knowledge representation method for PBL,
which can facilitate for PBL group members to represent their ideas and
intentions, to understand others’ ideas and intentions, to structure the shared
information space, and to construct and negotiate shared knowledge.

3) Support for change of roles: The roles of teachers and students played in PBL are
different from their traditional roles. When carrying out different tasks in a PBL
process, the expected behaviors of teachers and students are distinctive. One of the
aims of this thesis is to support PBL group members (including learners, tutors,
and experts) to become familiar with their new roles, to guide social interaction in
PBL processes, and to avoid unexpected behaviors and unpredictable conflicts.

4) Support for self-directed learning: In PBL, learners are responsible for setting
learning goals, making learning plans, and searching for learning resources, rather
than passively accepting knowledge as it is arranged by teachers in a lecture
format. One of the aims of this thesis is to help PBL group members to set their
learning goals, to make learning plans, to allocate tasks to various members of the
learning group, to allocate learning resources, to keep track of progress towards
learning goals, and to coordinate their actions.

1.3 Organization of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2 starts by describing a real PBL scenario. The characteristics of PBL
processes are analyzed based on the scenario and literature. Then, requirements for
the development of a collaborative virtual PBL environment are identified.

Chapter 3 provides a survey of related computer-based PBL support systems. Each
system is examined for its ability to meet the identified requirements. A summary of
deficits of existing systems is given.

Chapter 4 presents the design and implementation of a collaborative virtual PBL
environment. This chapter consists of six parts.

The first section of Chapter 4 presents the general approach adopted by this research
work. It begins from a brief introduction of activity theory. Based on activity theory, a
conceptual framework for the design of virtual PBL environments is developed.
According to this conceptual framework, a conceptual architecture of a virtual PBL
environment is designed.

The second section of Chapter 4 briefly introduces the Z language, which is used to
formally specify the design of the collaborative virtual PBL environment. The basic
knowledge about the Z language is described and the Z notations used in the thesis are
listed.

The third section of Chapter 4 begins with an introduction of situated learning.
Following the guidelines of this educational theory, requirements for the support of
social orientation and social interaction are identified. The main body of this chapter
describes the basic concepts of a context-based virtual learning environment and

 18

describes an approach to the development of a context-based virtual learning
environment. The context-based virtual learning environment is formally described in
order to demonstrate how to support the construction and maintenance of learning
contexts, how to support awareness of learning contexts, and how to support social
interaction. Finally, we summarize this chapter by comparing our approach with other
approaches

The fourth section of Chapter 4 discusses the main principles of constructivism and
situated learning. Following these principles, a model of collaborative learning is
developed. This model is used to derive requirements for the design of a graphical
knowledge representation method for collaborative learning. The main body of this
chapter describes an activity-oriented approach to knowledge representation for
learning. The approach is applied specifically to problem-based learning. It is
compared to the activity-oriented approach and the content-based approach and the
didactic-based approach.

The fifth section of Chapter 4 starts by briefly introducing schema theory. In the light
of schema theory, an approach to model and execute a special kind of collaborative
processes, called multiple-state collaborative processes, is specified. Then, how this
approach is applied to guide and control problem-based learning processes is
presented. Finally, a comparison with other approaches for the modelling cooperative
processes is presented.

The sixth section of Chapter 4 begins with discussing principles of self-directed
learning theory. These principles are used to derive requirements for the support of
self-directed learning in PBL. An approach to enable learners to set their learning
goals and make a learning plan is presented. It helps learners by creating a
preliminary learning plan automatically and by modifying and refining the learning
plan interactively. It supports coordination of actions by executing the defined
learning plan. Finally, a comparison with workflow management systems is
presented.

Chapter 5 discusses the implementation issues of the proposed collaborative virtual
PBL environment. This chapter presents the system architecture of the prototype
system and how to map abstract implementation model to the system architecture. It
describes how cooperation support is implemented. Finally, it describes the
cooperative hypermedia technology, which is used as an implementation approach.

Chapter 6 describes a usage scenario of the prototype system and preliminary
experiences.

Chapter 7 begins by summarizing the thesis and outlining the main contributions of
this thesis. Then, a comparison with existing PBL support systems is presented. The
chapter ends by discussing open issues and directions of future work.

 19

2 Problem Analysis

This chapter describes the problem-based learning process in detail through
describing a scenario. This scenario can be used to analyze the characteristics of PBL
and derive technical requirements for a virtual PBL environment.

2.1 A Scenario of PBL

The scenario presented here is developed from a real scenario [Summer Sleuths
Program], in which the learning process lasted for four days. A dozen learners were
involved in this course. In this section, we use only parts of the complete scenario
presented in [Summer Sleuths Program]. This scenario is described according to
different tasks performed in the PBL process.

Preparing students for PBL

Goal: Support learners as they encounter problem-based learning in an authentic,
learning experience. The goal is achieved by performing the following steps:

1) Students sign in and join their pre-assigned groups in the auditorium.
2) Students are welcomed into program.
3) Students go to rooms for small groups to identify and get to know members of

their group.
4) Students return to auditorium where speaker engages them with introductory

remarks about PBL.

Task 1: Identifying the problem

Goal: Support learners as they become engaged in the problem with personal
enthusiasm and interest as well as intellectual rigor.

Four guest speakers have asked to talk with students about the discovery of deformed
frogs in local area. Pictures of deformed frogs are shown and a video titled “The
Frogs – What Are They Really Telling Us?” is played in the auditorium room. They
challenge the students to investigate the status of the frog population and will
encourage them to take a proactive stand on this environmental concern.

Then the tutor coach students to identify and understand the problem. After
discussion, students identify the problem: “what is cause of deformity of frog and how
to prevent it from spreading?” Furthermore, they decomposed the problem into sub-
problems such as what are the possible implications for humans? Finally, students
post a preliminary problem statement and define relations among the problems.

Task 2: Identifying what learners know and need to know

Goal: Support learners in developing an awareness of what they know and need to
know from the circumstances they have encountered and from their experience.

 20

Students identify major issues connected to the problem. The identified issues are frog
habitat, the various types of deformities in frog, wetlands, watersheds, the effects of
pollution on a natural habitat, and so on. An issue can be decomposed into several
sub-issues; for example, frog habitat includes frog food, living environment, etc. The
tutor coach students in what they know and what they need to know (KNK) by asking
questions, commenting, and giving hints. An example question may be “what would
be some good resources?” An example comment is “the relationship between this
issue and the identified problem is too weak to be considered.” An example hint is
“you forget a kind of insect, living in grass, is also a kind of frogs’ food.” Finally,
they post the first version of KNK charts.

Task 3: Setting learning goals and making learning plan

Goal: Support learners to identify and decompose learning goals according to the
KNK charts and to create effective information-gathering, information-sharing, and
decision-making plan. The process includes the following steps.

1) Prioritize the needs to know (according to importance) and identify the

prerequisite relation among them.
2) Set and decompose learning goals and objectives.
3) Arrange a set of coordinated learning actions to achieve the goals.
4) Identify and allocate resources (tutors/experts, materials, and rooms) so that

learners know what is expected of them, by when and where.
5) If learners will work in a group, each member may wish to identify which tasks

each will be engaged and what roles each will take.

Students finish this task by making a learning plan.

Task 4: Learning knowledge

Goal: Support learners in gathering data, acquiring knowledge, and understanding
how new information contributes to an understanding of the problem and how
information is assessed in light of its contribution to that understanding.

According to the learning plan, Students individually or in teams collect information
from identified articles, books, videos, web sites, and other resources. They take notes
and recordings in notebooks. They return to their team room to share information, and
transfer those to other group rooms in which the group needs this information to
perform certain subsequent actions.

In addition, students in teams are coached to perform science actions including habitat
exploration, soil and water testing, population counts, etc, in order to help them
understand the environmental factors affecting the frog. Each team writes reports
collaboratively or by a delegate.

Students develop a set of questions for interviews. Then they in teams or individually
interview persons such as the frog experts and others concerned by phone and face-to-
face. They return to their home or team rooms to classify, count, and analyze the
results of the interviews. They may transfer the information to other student groups
concerned.

 21

Students often report to the tutor about the progress during carrying out these actions.
If some unexpected events occur, the tutor will help students to modify their learning
plan to fit changes. Finally, students collect all information and make connections
with and from collected information in a panel session action. They review the KNK
chart. They decide whether they need to learn more knowledge, because they have
deeper understanding about problem.

Task 5: Applying knowledge

Goal: Support learners in articulating the issues and the problem in the circumstances
they are given and in identifying conflicts. Support learners to present and argue the
hypotheses and solutions.

Students discuss problem situation, refine the problem statement, and propose
tentative hypotheses and solutions. Tutor requires students to communicate, orally
and/or in writing, their findings, hypotheses, and solutions. They find that they have
different opinions on hypotheses and solutions. They use what they learned including
evidences and principles to debate different perspectives. They evaluate the reliability
of the findings and consider the reliability of the hypotheses and solutions. When they
realize that they can not propose satisfied hypotheses and solutions or that necessary
knowledge to good hypotheses and solutions is still insufficient, they repeat their
work from task 2 to task 5. In this scenario, they repeat above tasks for two times.
Finally, learners adopt a set of confirmed hypotheses and acceptable solutions. They
submit their report with solutions to the City Council.

Task 6: Evaluating and assessing learning

Goal: Support learners in using the benchmarks of good thinking to evaluate the
benefits and consequences of each possible solution in order to create the most
acceptable set of outcomes for the conditions set by the learners. This goal is achieved
by performing following actions (not in this order):

1) Evaluate solutions generated against conditions of problem.
2) Select solution of best fit.
3) Discuss panel presentations and visual aids.
4) Consider the concerns of the City Council and how to communicate effectively

with them.

It is important to note that a lot of details of the scenario are not described. In the
whole learning process, students pose a number of problems, and the group members
negotiate on the nature of the problem, the problem statements, the hypothesis,
solutions, goals’ constraints, evidences, and so on. A number of decision-making
methods are used in an attempt to reach consensus.

2.2 Characteristics of PBL

Generally speaking, problem based learning is active, adult-oriented, student-
centered, collaborative, integrated, and interdisciplinary. It utilizes small groups and

 22

ill-structured problems, and operates in a domain context [Camp96]. In order to
identify requirements for implementing a virtual PBL environment, this section
discusses four important characteristics of PBL according to the scenario and
literature.

2.2.1 Rich Forms of Social Interaction

In traditional instructions, learners passively and individually receive knowledge that
is well organized as a series of units by teachers. Social interaction between learners
is not important, because social interaction mainly takes place in a form of one way
communication from teachers to students. Although all students sit in the same place,
they seldom really cooperate with each other. In addition, students do homework and
take examination individually in most situations. However, PBL incorporates
collaborative teams in the solving of relevant problems. This method promotes
student interaction and teamwork, thereby enhancing students' interpersonal skills.
Observed from the scenario described in the last section, a number of small rooms are
arranged for sub-groups. A group discussion room maintains a shared learning context
for learners’ collaboration. Social interactions occur not only in classrooms, but also
beyond the boundary of classrooms, such as at home, in laboratories, and even at the
pond and on the road. Because they share common learning goals, when they meet
somewhere, they may do something related to learning. In PBL, students organized as
sub-groups are the active agents who are responsible for the whole learning process.
Teachers act as facilitators in learning processes. As described in the scenario, other
people also involved in the learning process such as guest speakers, frog expert, and
even citizens near the pond. Rich forms of communication and collaboration can be
observed in the scenario described in the last section. In discussion rooms, the
communication between teachers and students and among students are interactive.
Students collaborate with each other by using tools to define problems, to generate
solutions, to debate different perspectives, to conduct experiments, to write reports,
and so on. Students use phones to interview experts as well. In the scenario, students
collect information from identified articles, books, web sites, and other resources.
Different forms of media are used such as text, picture, video, etc.

2.2.2 Ill-structured Problem

The problem learners faced are closely related to real-world problems. Real-world
problems are often ill-structured and “… often require integrated instruction, which
blends disciplines into thematic or problem-based pursuits, and instruction that
incorporates problem-based learning and curriculum by project” [Jones94]. Observed
from the scenario described in the last section, in order to understand and solve the
problem of deformed frogs, it is needed to mix knowledge together from biology,
chemical, environmental science, and so on. The more deeply the learners understand
the problem, the more questions they have. They have to identify what learning issues
they need to study and what information they should collect. As Jones et al. pointed
out: “Missing information will help them understand what is occurring and help them
decide what actions, if any, are required for resolution.” The information and
knowledge collected by the learners individually or in teams is organized and
integrated around the problem to be solved. This information and knowledge will be

 23

shared by the whole learning group or sub-groups. “They see themselves and ideas as
others see them, articulate their ideas to others, and are fair-minded in dealing with
contradictory or conflict views” [Jones94]. They will use the knowledge they learned
to construct knowledge such as hypotheses and solutions to the problem. “There is no
right way or fixed formula for conducting the investigation, because each problem is
unique. There may be no single ‘right’ answer” [Stepien93a]. Learners have to make
decisions and provide solutions to such kind of problems. Learners will apply
principles, and evidences derived from collected information resources for reasoning.
Through collaborative reasoning processes, they can identify inconsistent knowledge,
discover the missing knowledge, and construct shared knowledge.

2.2.3 Situated Roles

In traditional subject-based learning method, the membership and the responsibilities
of a nominated role (e.g., teacher and student) are stable, often don’t change even
when the situation changes. In PBL, as observed in the scenario, the responsibilities of
a teacher and a student are different in different situations.

Roles of Students in PBL: In PBL, according to literatures, students take different
roles in different situations.

1) Problem finders and solvers: Students anticipate, explore, analyze and solve

problems. They can investigate causes from multiple perspectives and propose
possible hypotheses and solutions.

2) Planners and producers: Students can plan and design methods and strategies for
solving issues and problems that result in original products or processes.

3) Initiators and organizers: Students initiate, coordinate, and facilitate the
accomplishment of collective tasks by predicting and defining intended results,
deciding how they might be accomplished, anticipating roadblocks, and enlisting
the support of others to achieve the results.

4) Implementers and performers: Students apply basic and complex skills,
information, ideas, tools, and technologies to carry out the responsibilities needed
to complete group or individual task that develop life skills.

5) Communicators and negotiators: Students can express ideas, information,
intention, feeling, and concern for others in ways that are clearly understood and
accepted. Students seek agreement on goals, procedures, responsibilities, and
perspectives in order to accomplish tasks and goals.

6) Explorer and partners: Students explore in the physical world, materials, and
technology to collect information they need. Students also interact with other
people and contribute their best efforts to collaborative work.

Roles of Teachers in PBL: The principle role of the teacher in PBL has shifted from
the primary role of information giver to that of facilitator and educational coach (often
referred to in jargon of PBL as a "tutor"). Jones et al. summarized the roles of teachers
in PBL as below [Jones94]:

1) “Facilitator. The teacher provides rich environments, experiences, and activities

for learning by incorporating opportunities for collaborative work, problem
solving, authentic tasks, and shared knowledge and responsibility.

 24

2) Guide. In a collaborative classroom, the teacher must act as a guide - a complex
and varied role that incorporates mediation, modeling, and coaching. When
mediating student learning, the teacher frequently adjusts the level of and support
based on students' needs and helps students to link new information to prior
knowledge, refine their problem-solving strategies, and learn how to learn.

3) Co-Learner and Co-Investigator. Teachers and students participate in
investigations with practicing professionals. Using this model, students explore
new frontiers and become producers of knowledge in knowledge-building
communities. Indeed, with the help of technology, students may become the
teachers as teachers become the learners.”

2.2.4 Self-directed Learning processes

Observed from the scenario, students take charge of their own learning. They define
learning goals and problems that are meaningful to them. They decompose their
overall learning goal into sub-goals and decide a course of actions to achieve those
sub-goals. The actions are often scheduled ahead of time by the learning group itself.
They allocate resources for each action. Students are required to allocate resources for
each action and coordinate people, actions, and outcomes in order to accomplish goals
on a predicted time schedule. Rather than all students learning the same content in the
same classrooms in subject-based learning, obviously in the scenario, learners
individually or in teams perform different learning actions and then share fully or
partially their collected information. They take the active role to construct shared
knowledge in meaningful ways according to the learning plan. On the way of
implementing their own learning plan, learners must adjust their needs depending on
their resources to resolve a problem, in turn, modify their plan. At the end of each
action, the instructor gives feedback to each group before it can proceed with the next
action. Generative instruction encourages learners to solve problems actively, conduct
meaningful inquiry, engage in reflection, and build a repertoire of effective strategies
for learning in diverse social contexts.

2.3 Major Implementation Requirements

As mentioned before, the goal of this research work is to establish a virtual
environment for supporting collaborative PBL. Through the analysis of characteristics
of PBL, implementation requirements can be identified. The remainder of this chapter
discusses the major requirements for implementing a virtual collaborative PBL
environment.

In order to support rich forms of social interaction, a virtual learning environment
should be built like a real learning environment. When people enter the virtual
learning environment, they feel the virtual learning environment still intimate.
Therefore, they can exploit their experience that come from real learning
environments in the virtual learning environment. In order to achieve this goal, the
system should provide necessary metaphors of entities existing in a real learning
environment. The relationship among these metaphors should be similar to the
relationship of corresponding entities in the real learning environment. Consequently,
users of the system can intuitively move in the virtual learning environment and use

 25

facilities to interact with each other in the virtual learning environment. Concretely
speaking, the virtual learning environment should enable each user to know where
s/he is, where s/he can go, where s/he can seek capable peers, where s/he can acquire
needed information, where s/he can get and use tools (R1.1: social orientation). The
virtual learning environment should enable each user to socially present her/him to
others in the virtual learning environment, and to be aware of who are other users and
what they are doing (R1.2: group awareness). The virtual learning environment
should enable users to interact with each other in same/different time/place
cooperation forms (R1.3: rich forms of social interaction). The virtual learning
environment should enable users to customize their learning environments for
performing different types of tasks (R1.4: customization of learning environments).

In order to support learners to solve ill structured problems and deal with a large
amount of complex intelligent work, a meta-knowledge for representing the problem-
oriented knowledge as a common schema is helpful for learners. A meta-knowledge
can highlight essential thematic features and relationships within and among the
information and knowledge around the problem to be solved. It can help to expose the
inconsistency and ambiguities of the collected and constructed knowledge. It allows
incremental, fine-grained representation and integration of problem-oriented
knowledge. It can be used as a shared frame of reference that highlights similarities
and differences between learners’ points of view. It can be used as a communication
tool for learners to pursue common understanding and shared knowledge. It can be
used as a tool for inquiring and reasoning. It can be used as a tool for tutors to guide
and coach learners. Concretely speaking, the virtual learning environment should
allow the users to represent various types of information and their intention (R2.1:
representation of various types of ideas). It should support users to represent the
relations between the typed information (R2.2: representation of relations between
ideas). It should enable users to connect and refer to related or detailed information
from a piece of information (R2.3: provision of referential information). It is desired
to allow users to represent different perspectives and to negotiate shared knowledge
(R2.4: negotiation of shared knowledge).

In order to support situated roles, a virtual learning environment should support to
explicitly specify responsibilities of collaborators and patterns of interaction to guide
social interaction and reduce the contingencies. In the virtual learning environment,
weak communication channels make informal coordination using social protocols
difficult. That is, using social protocols in the virtual learning environment may lead
to potentially unexpected interactions and unpredictable conflicts. Therefore, the
system should provide a computational mechanism, which replaces the social
protocol, to guide and control the behaviors of the teachers and learners. Concretely
speaking, the virtual learning environment should explicitly define roles for users who
have different responsibilities and obligations in a collaboration process (R3.1:
definition of roles). The virtual learning environment should guide teachers and
students to conduct PBL activities according a PBL strategy, in which distinct
situations and transitions between these situations are specified (R3.2: provision of
guidance according to PBL strategies). The virtual learning environment should
synchronize collaborative activities so that users always do their focal task in each
situation and unexpected behaviors are avoided (R3.3: synchronization of
collaborative activities). It is desired to enable users to define their own learning

 26

strategies and to shift PBL strategies to fit changes (R3.4: shifting between PBL
strategies).

In order to support self-directed learning processes, a virtual learning environment
should enable learners to define their learning plans and to coordinate their actions by
implementing their learning plans. However, making a good learning plan is not an
easy task, because a lot of factors need to be considered, such as how to decompose
the overall learning process and how to allocate resources. The system should provide
support for users to do such a difficult task. Concretely speaking, the virtual learning
environment should allow users to define actions and the relationships between these
actions (R4.1: definition of action plans). The virtual learning environment should
enable users to allocate resource (R4.2: allocation of resource). It is desired that the
virtual learning environment can aid users to define their action plans (R4.3: release
users’ burden of making a learning plan). The virtual learning environment should
enable users to coordinate their actions by executing the defined learning plans (R4.4:
execution of learning plans).

This chapter identified requirements for technology support for virtual PBL
environments. The next chapter will investigate whether existing virtual learning
environments can meet these requirements.

 27

3 Related Work

In the passed decade, a lot of systems for supporting education have been developed
and used. Most of them were developed to realize teacher-centered learning as on-line
services. That is, the knowledge to be transferred is prepared by teachers or experts
before delivery. Some systems allow learners to access the prepared online
information by browsing or following the predefined structure of the information.
Examples are Computer-Based Training (CBT), Web-Based Training (WBT), and
Education MUD/MOO. Some systems are designed with the goal to support co-
authoring course materials for delivery. Some systems use artificial intelligent
technology to develop intelligent agents that act as teachers or experts to teach
students, such as in Intelligent Tutoring Systems (ITS). Some systems are developed
based on computer-mediated communication (CMC) technology (e.g., e-mail and
electronic bulletin board) and intend to replace traditional classrooms by conducting
an asynchronous class, such as in the Virtual Classroom (VC) approach. Some
systems enable on-line synchronous lectures by providing real-time communication
channels (e.g., application sharing, chat room, shared whiteboard, and audio/video
channels), such as in the Electronic Meeting System (EMS) approach. All these types
of teaching and learning support systems didn’t attempt to support learner-centered
learning. Most requirements to support PBL can not be met by these types of systems.
Therefore, these types of systems are not discussed in detail in this thesis.

This chapter provides a survey of the systems that support collaborative learning by
using a learner-centered approach. In particular, the focus is on discussing computer-
based learning systems for problem based learning.

3.1 CCL

Collaborative Learning Laboratory (CCL) [Koschmann90] [Koschmann92] is a pilot
PBL support system developed at the Southern Illinois University School of
Medicine. This research group is also one of the pioneers of developing and practicing
the PBL method. The system was developed by exploiting CSCW technology in PBL
meetings. CCL is used to conduct co-located PBL classes. In a CCL class, each
participant works on a networked workstation. A designated workstation is connected
to a projection system so that the content of this screen is visible to all members of the
group. Each participant therefore has a private screen and, in addition, all participants
share a public screen, upon which to work. The projected screen serves the role of a
blackboard, flip chart, and overhead projector in a more traditional face-to-face
meeting. The private screen serves as an electronic desktop to be organized and used
by the individual participant. The system helps learners to record, manage, retrieve
information resources and maintain a shared context for PBL.

The functionality provided by CCL is essentially a shared text-based whiteboard.
Except for support of synchronous collaboration, one among many forms of social
interaction as required by R1.3, all other requirements identified in Chapter 2 can not
be met in CLL.

 28

3.2 CSILE

Computer Supported Intentional Learning Environments (CSILE) is a network-based
system to provide across-the-curriculum support for collaborative learning and
inquiry [Scardamalia89] [Scardamalia92] [Scardamalia96]. The project started in
1986 at the Ontario Institute for Studies in Education. CSILE is based on self-
regulated learning (in the CSILE papers, they use the term “intentional learning”) and
constructivist’s view of learning. Later on, new members of CSILE family have been
developed such as WebCSILE, a web-based CSILE, and Knowledge Forum, a
commercial version of CSILE. It emphasizes building a classroom culture supportive
of active knowledge construction that can extend individual intentional learning to the
group level. In CSILE, the class becomes a research team aimed at building
knowledge through sustained, collaborative investigation. Information about CSILE
described in this section is primarily taken from CSILE’s Webpages [CSILE’s
Webpages].

Figure 3.1: An Example WebCSILE Public Forum
(taken from [CSILE’s Webpages])

 29

Through the use of the CSILE software, a communal database is created by students
and their teachers. In a CSILE class, learners can select different communication
modes (text and graphics) to generate "nodes" in a public forum (see Figure 3.1).
These nodes contain ideas or information that are related to the topic under study.
Nodes are available for others to comment on, leading to dialogues, and an
accumulation of knowledge. A student can create links to specify a relation between
any two nodes, so that the linked node becomes a reference, or a citation, in the other
note [Burtis97]. All questions, theories, ideas, information, and discoveries are
preserved on the database for the analysis of the entire class. CSILE provides a
permanent record of the community's interactions. This eliminates the need for turn
taking, allowing all learners to work on different nodes simultaneously. Specially
designed scaffolds support social and cognitive operations that facilitate
understanding. Students select different scaffolds to support processes such as reading
difficult material, theory-building, and debate. For example, when a student creates a
node for theory-building (see Figure 3.2), s/he can assign that note to one of the five
predefined types called thinking types: my theory, I need to understand, new
information, what we have learned, comment [Oshima96].

Figure 3.2: Progressive Inquiring by Using Theory-building Scaffold

(taken from [CSILE’s Webpages])

CSILE uses the classroom metaphor only for dividing the whole information space
into sub-spaces. It can not support social orientation (R1.1 is not fulfilled). Users of
CSILE can not present themselves to others in workspaces, except to input their
names when creating a note. Group awareness can not be supported in CSILE (R1.2 is
not fulfilled). The users of CSILE indirectly interact with each other through
manipulating notes and links. Synchronous editing the same node can not be

 30

supported. Synchronous communication is allowed by providing an external
chatboard. That is, CSILE support limited forms of social interaction (meeting R1.3 in
a limited way). CSILE can not support end-users to customize their learning
environments (R1.4 is not fulfilled). CSILE provides a scaffold with five thinking
types (my theory, I need to understand, new information, what we have learned,
comment) that allows learners to represent and categorize their intentions (R2.1 is
met). Each learner can manipulate nodes and hyperlinks in the shared database (R2.3
is met), but the types of relation between nodes are not distinguished (R2.2 is not
fulfilled). CSILE supports users to negotiate knowledge by creating comment nodes
following discussion threads. However, it can not support users to represent different
perspectives on the same information item (meeting R2.4 in a weak way). In CSILE,
teacher roles and student roles are explicitly defined (R3.1 is met). The difference
between these two roles is that students can only create nodes in the database on any
topic that their teacher has created. However, all other requirements identied in
chapter 2 can not be met in CSILE.

3.3 CALE

Computer Assisted Learning and Exploration (CALE) [Mahling95] is a collaborative
environment to support problem based learning by discovery and exploration.
According to [Mahling95], CALE acts as a multi-media repository for case materials
and manages the structured group access to those documents and user generated
information. CALE supports collaborative learning, exploration of medical simulated
patient cases edited by facilitators, and access to reference materials. By using the
system, students can access shared and individual notes by opening tools from their
principal control panel. Text-boxes (text-based editor) are used by students to take
notes, as well as to answer questions. The central blackboard acts as the coordination
center for the students. This gives structure to discussion and allows individual
students to connect observations made in an asynchronous session to the overall
learning effort. CALE allows hyperlinks from the document where the observation
was made to the central blackboard. Thus local information and central coordination
are achieved. The blackboard follows the PBL example of dividing information into
three separate classes: observed facts, hypothesis, and need more information. An
item in the need more information category could be turned into an action item, which
in turn would be assigned to a team member with a due date. CALE keeps track of
these commitments and thus allows students to structure the learning task. With the
case presentation shell being the same for all cases, new cases can easily be added.
The case designer has control for the case material repository and specifies access
control for the case material.

In CALE there is no place metaphor where people can navigate and present
themselves to others (R1.1 and R1.2 are not fulfilled). People can use a blackboard
tool to conduct collaborative learning activities and can use a Text-box to
communicate with each other (meeting R1.3 in a limited way). Users can not
customize the learning environment for performing different types of activities (R1.4
is not fulfilled). CALE supports students to create notes, to connect individual notes
to the shared document, to explore case materials, and access reference materials
following the document structure. The notes are categorized (R2.1 is fulfilled), but
there exists only a referral relation between them (R2.2 is not fulfilled, but R2.3 is

 31

met). CALE supports negotiation of knowledge by providing discussion threads
(meeting R2.4 in a weak way). In CALE two roles are defined (R3.1 is fulfilled).
Teachers can edit case material and specify access control. Students can only read
case material. CALE can not provide computational support for learning strategies
(R3.2, R3.3, and R3.4 are not fulfilled). CALE helps students to create an action plan
in which the action items are isolated (meeting R4.1 in a weak way). Each action can
be assigned to a team member with a due date (meeting R4.2 in a weak way). CALE
provides limited support to aid users to create action plans by turning each need more
information item into an action item (meeting R4.3 in a limited way). However, the
action plan is not a computational process description that can not be executed
automatically (R4.4 is not fulfilled).

3.4 CNB

Collaboratory Notebook (CNB) [Edelson95] is a networked, multimedia tool. This
software tool is created in the Collaborative Visualization (CoVis) project initiated at
Northwestern University in Chicago. The objective of this project is to provide a
distributed multimedia learning environment that supports learning-in-doing [Pea93]
[Edelson96a]. The proposed system is intended to transform science learning to better
resemble the authentic practice of science. Information about CNB described in this
section is primarily taken from CoVis’s Webpages [CoVis Webpages].

Figure 3.3: The Table of Contents of a Notebook and

the Content of a Page (taken from [Edelson96b])

CNB has been designed to scaffold students as they learn to conduct open-ended
inquires in a collaborative context across the boundaries of time and space. A primary
function of CNB is to allow teachers to monitor and guide students' process of

 32

learning. It emphasizes the learning process instead of learning outcomes. The
software is based on the metaphor of the scientist's laboratory notebook, with a
bookshelf, notebooks and pages being the primary interface elements (see Figure 3.3).
It extends this metaphor with facilities for collaborators anywhere on the Internet to
share and co-author inquiry. In a notebook, each page has a type that provides a
description of its content and a description of the relationships to other pages. The
page types available are question, conjecture, evidence for, evidence against,
information, commentary, plan, and step in plan [Edelson94] [Edelson96b].

CNB organizes the shared information space by using the bookshelf, notebook and
page metaphors. Except to record users’ names when the users create a notebook or a
page, CNB does not provide support for social orientation, group awareness, and
customization of learning environment (R1.1, R1.2, and R1.4 are not fulfilled). Users
of CNB indirectly interact with each other through manipulating notebook and page.
There is no other means that can be used to interact with each other (meeting R1.3 in
a weak way). CNB provides eight page types (question, conjecture, evidence for,
evidence against, information, commentary, plan, and step in plan) (R2.1 is met). As
shown in the background window of the Figure 3.3, a page can be connected by
hyperlinks to other pages that may have different page types. These pages are
connected by hyperlinks forming a discussion structure (R2.2 is not met and R2.3 is
met). CNB supports users to negotiate knowledge by creating different types of pages
to represent their perspectives following discussion threads (meeting R2.4 in a weak
way). Users can manipulate notebooks and pages jointly if they get permission from
the owners of the pages. There are no explicitly defined roles (R3.1 is not met). There
is no computational support for learning strategies in CNB (R3.2, R3.3, and R3.4 are
not fulfilled). In addition, CNB allows users to define a plan or a step in a plan as a
page, but the plan and the step of a plan serve as a common understanding about what
actions should be done in an inquiring process (meeting R4.1 in a weak way). No
support is provided to help users to assign resources to actions (R4.2 is not met), to
define and modify learning plans (R4.3 is not met), and to coordinate actions by
executing the defined learning plan (R4.4 is not met).

3.5 Belvedere

The Belvedere software [Suthers95] [Suthers97] was developed at the Laboratory for
Interactive Learning Technologies at the University of Hawai'i at Manoa. It is
designed to support problem-based collaborative learning scenarios in which middle
school and high-school students learn critical inquiry skills that they can apply in
everyday life as well as in science. Information about Belvedere described in this
section is primarily taken from Belvedere’s Webpages [Belvedere Webpages].
According to [Belvedere Webpages], Belvedere's core functionality is a shared
workspace for constructing "inquiry diagrams," which relate data and hypotheses by
evidential relations (consistency and inconsistency). The software also includes
artificial intelligence coaches that provide advice, a "chat" facility for unstructured
discussions and facilities for integrated use with Web browsers.

Belvedere Inquiry Diagrams [Suthers97] are designed to help students express
graphically how ideas are connected. These ideas can come from scientific articles, or
they can come from students’ own knowledge, experiments, and research. Students

 33

can construct their own diagrams by using a number of shapes for representing
different types of statements and links for representing different kinds of relationships
between these statements. Figure 3.4 shows the user interface of the tool and
illustrates an example of inquiry diagrams. When students solve a problem or explain
something, Belvedere helps them keep track of the ideas by displaying them
graphically. If students investigate a scientific question, Belvedere can use their
diagram to give them ideas about what to do next. An intelligent agent, called a
Coach, provides students with suggestions on how to use the software through five
"phases of inquiry" (explore, hypothesize, investigate, evaluate, and report). It checks
the diagram to investigate what have been found out so far. Then it makes suggestions
for what to consider next. For example, if no empirical data has been offered in
support of a hypothesis, the Coach will highlight the hypothesis and asks whether the
students can find a way to support it or show that it predicts or explains the
phenomenon under discussion. If only one hypothesis has been stated in the
discussion, the Coach will point out that scientists compare alternative explanations,
and asks whether another hypothesis might explain the same data [Suthers99b].

Figure 3.4: Belvedere Inquiry Diagram
(taken from [Belvedere Webpages])

In Belvedere, social orientation and group awareness can not be supported (R1.1 and
R1.2 are not fulfilled). Students can not socially present themselves to others in the
learning environment. Belvedere support students to construct inquiry diagrams
synchronously or asynchronously. The chat tool can be used to communicate with
each other in the form of unstructured text-based discussion (meeting R1.3 in a
limited way). Users can not customize the learning environment for performing
different types of activities (R1.4 is not fulfilled). Students can create different shapes

 34

for representing different types of ideas such as data and hypothesis (R2.1 is
fulfilled). Students can also create different types of links to represent the relationship
between their ideas such as against and for. However, the types of relation between
ideas are not sufficient to support the whole process of PBL (meeting R2.2 in a weak
way). In addition, more detail information about an idea can not be provided by using
the tool (R2.3 is not fulfilled). Different perspectives can be represented as separate
ideas (meeting R2.4 in a weak way). Belvedere did not explicitly define different
roles (R3.1 is not fulfilled). Five phases of inquiry are distinguished and what
activities should be done in each phase is suggested according to the current state of
the diagram constructed (R3.2 is fulfilled). However, the tool does not support to
synchronize collaborative learning activities and to avoid unexpected operations in
any state (R3.3 is not fulfilled). Belvedere’s learning strategy is defined by the
software developers, and PBL strategies can not be defined and modified by end-users
to fit their situations. Therefore, it is impossible to shift learning strategies (R3.4 is
not fulfilled). Belvedere does not provide any mechanisms for students to define their
own action plans and to execute action plans (R4.1, R4.2, R4.3, and R4.4 are not
fulfilled).

3.6 McBAGEL

The McBAGEL system [Narayanan95] [Guzdial96] was developed at the EduTech
Institute at Georgia Institute of Technology, which is a multi-disciplinary research
organization committed to enhancing science, math and design education through
innovative uses of technology. Their research efforts are aimed at creating
environments for learning, both embodied and virtual, that reflect the knowledge of
cognition behind learning, complex problem solving and understanding.

Figure 3.5: The McBAGEL’s Whiteboard with Four Sub-spaces
(taken from [Guzdial96])

 35

Information about McBAGEL described in this section is primarily taken from
EduTech’s Webpages. According to [EduTech Webpages], McBAGEL arose out of
the synthesis of PBL and Case-based reasoning (CBR) [Kolodner93]. The PBL
whiteboard of McBAGEL helps scaffold the students' problem solving by
communicating the PBL process as well as serving as an external memory aid. This
software provides an electronic workspace that is split into four regions (see Figure
3.5). Students, working in small groups, enter the environment at their shared
electronic workspace. They are provided with relevant information on the design
problem they need to solve via the button "problem information." As students are
initially formulating and understanding the problem, they will be encouraged to
identify data relevant to the problem from the information they have been provided
with, and to articulate this by recording those in the "facts" space. Similarly, as they
consider alternative solutions, they will make use of the "ideas" space. The problem-
based learning methodology that this environment embodies explicitly prepares
students for self-directed learning by requiring them to identify their knowledge
deficiencies in the "learning issues" space and the actions they plan to take to remedy
those deficiencies in the "action plan" space. Several buttons are found on the bottom
of the screen, which provide access to different tools (e.g., case libraries) that they
will need to solve the problem. The column titles offer pull-down help to provide
examples of the kinds of information that would be entered into each column.

McBAGEL can not support social orientation (R1.1 is not fulfilled) and group
awareness (R1.2 is not fulfilled). It enables students to manipulate different items
synchronously (meeting R1.3 in a limited way). Users can not customize the learning
environment for performing different types of activities (R1.4 is not fulfilled).
McBAGEL supports students to manipulate information items in the shared
whiteboard. The information items are categorized (R2.1 is fulfilled), but there exists
neither any relation between them (R2.2 is not fulfilled) nor additional information
pages connected with these items (R2.3 is not fulfilled). McBAGEL does not support
negotiation of knowledge, but it enables users to represent different perspectives by
formulating different information items (meeting R2.4 in a weak way). McBAGEL
does not define any role (R3.1 is not fulfilled). McBAGEL identifies different phases
and enables users to view the current phase (meeting R3.2 in a weak way). Users
should behave appropriately to fit the current situation. However, the system does not
provide computational support to define, execute and change learning strategies (R3.3
and R3.4 are not fulfilled). McBAGEL allows students to propose actions, but the
proposed actions are represented as a list of isolated items and serve to establish
mutual understanding of their future work (meeting R4.1 in a weak way). It is
impossible to assign resources to an action in a computational form (R4.2 is not
fulfilled). McBAGEL does not provide any help for users to make action plans (R4.3
is not fulfilled). Furthermore, the action list is not a computational process description
and thus can not be executed automatically (R4.4 is not fulfilled).

3.7 Web-SMILE

Web-SMILE [Guzdial97] [Kolodner98] is a software tool for the learning-by-design
curriculum of middle school projects. This software tool was developed at the
EduTech Institute at Georgia Institute of Technology as well. Information about Web-
SMILE described in this section is primarily taken from EduTech’s Webpages

 36

[EduTech Webpages]. Web-SMILE’s support of problem based learning evolved
from McBAGEL and its support of asynchronous collaboration inherited from
CaMILE [Hmelo95] (stands for “Collaborative and Multimedia Interactive Learning
Environment”). In Web-SMILE, the McBAGEL 's action column has been removed.
Like CaMILE, Web-SMILE can also scaffold collaboration by providing a structure
(asynchronous threaded discussions, where notes directly commenting upon another
are displayed as related). Web-SMILE supports tight integration with multimedia.
Students can link a variety of forms of media into their notes on the Web. This
enables the creation of single-click access from a Web page anchor (e.g., a design
report to discuss or an exam review question) to a thread for discussion of that anchor.
In addition, Web-SMILE explicitly used the steps in the problem solving process to
guide the use of the integrated tools (see Figure 3.6).

Figure 3.6: The Problem-solving Flowchart in Web-SMILE
(taken from [EduTech Webpages])

 37

The students are able to access the "whiteboard" to record their facts, ideas and
learning issues, and the "discussion area" to share the results of research or discuss a
solution (see Figure 3.7).

Figure 3.7: Web-SMILE’s Whiteboard
(taken from [EduTech Webpages])

There is no need to copy data recorded in one area to be pasted in another; the student
can simply click the "move" option to place a whiteboard idea into the discussion
area. This integration of tools is part of the process-oriented view of student support
in Web-SMILE. Instead of prompting for a tool's use, the environment asks, "Where
are you in solving the problem?" Based on the selected step of the process, activities
are suggested, with the tools accessible by a single click. There is also procedural
facilitation of note types and their associated starter text for that type note (see Figure
3.8).

 38

Figure 3.8: Guidance Information for a Stage of the Process
(taken from [EduTech Webpages])

Web-SMILE does not support social orientation and group awareness (R1.1 and R1.2
are not fulfilled). It supports synchronous collaboration in a shared whiteboard with
multiple sub-spaces and asynchronous collaboration in consequent threads of
discussion (meeting R1.3 in a limited way). It does not support customization of
learning environment (R1.4 is not fulfilled). Web-SMILE supports students to create
three types of information items as notes (R2.1 is fulfilled). A note is directly
addressable as a hyperlink on the Web and more detailed information can be provided
on the Web page connected by the hyperlink (R2.3 is fulfilled). However, the relation
between these types of information items is not explicitly defined (R2.2 is not
fulfilled). Different perspectives can be represented as separate items in the shared
whiteboard or as separate notes in the threads of discussion (meeting R2.4 in a weak
way). Web-SMILE does not take care of users with different roles (R3.1 is not
fulfilled). In Web-SMILE, scaffolding enables users to select a step of the process and
then provides guideline (e.g., suggesting what activities should be performed in each
step) (R3.2 is fulfilled). However, scaffolding can not be used to control social
interaction and users can work in different steps at the same point of time (R3.3 is not
fulfilled). Web-SMILE provides a unique learning strategy to perform PBL and can
not support to define and shift learning strategies (R3.4 is not fulfilled). Users of
Web-SMILE can not define action plans (R4.1 is not fulfilled) and assign resources to
actions (R4.2 is not fulfilled). There is no support to aid users to make a plan (R4.3 is
not fulfilled) and to coordinate these actions by executing the defined plan (R4.4 is
not fulfilled).

 39

3.8 Analysis of the State of the Art

One can observe that all these systems were developed by adopting an information-
sharing approach. Thus, they didn’t consider the social orientation problem (R1.1).
The user of the systems can not present herself/himself to others in the virtual learning
environments. The user can not know with whom s/he collaborates directly from these
systems (R1.2). In fact, most of these systems (e.g., CALE, CSILE, CNB, and Web-
SMILE) purposely support large and loosely organized user groups such as a Web
user community. In this case, intentional and scheduled collaborative learning
activities can not be supported by the systems. Learners collaborate with each other
by chance when they manipulate the same note or page. Other systems (e.g., CCL,
McBAGEL, and Belvedere) are normally used in a co-located collaborative mode. In
this case, social orientation and group awareness are supported outside systems. Users
only need to concentrate on substantive work. When conducting problem based
learning like in the scenario described in the last chapter by geographically distributed
people, social orientation and group awareness is a serious problem when using these
systems. All systems can support communication and collaboration by providing
some tools. However, rich forms of communication and collaboration required in the
scenario can not be fully supported by these systems (R1.3). In these systems,
functionality and the user interfaces are fixed and the users of these systems have to
use them in the way that system developers designed. Thus, the learning environments
can not be customized by users to fit different learning activities (R1.4).

All systems except for CCL enable users to categorize their ideas when they
collaboratively construct their shared knowledge (R2.1). Only Belvedere allows users
to represent relationships between the ideas, but the types of ideas and the types of
relation between these ideas are not sufficient to support the whole process of PBL
(R2.2). Other systems support users to organize their ideas by using discussion
threads. Some systems (e.g., CALE, CSILE, CNB, and Web-SMILE) allow users to
provide detail information and connect it to ideas, while other systems do not support
this (R2.3). All systems support negotiation of knowledge to some extent.
Representing different perspectives is supported in these systems by creating separate
statements (R2.4).

Most of these systems have explicitly defined teacher role and student role. However,
the membership of a role and its responsibilities are defined rigidly. That is, when a
user with a given role registers in the system, s/he can not change his/her role and the
responsibilities of the role can not be changed in different situations (R3.1). Among
these systems, McBAGEL, Web-SMILE and Belvedere define distinct phases and
provide guidance to perform the focal task in each phase (R3.2). However, these
systems can not control social interaction according to the current working phase
(R3.3). Users can follow the guidance or not. In fact, these systems do not attempt to
support a synchronized group activity. In other words, different users can work in
different phases at the same point of time. Changing a phase of a user does not
influence other users’ working phase. In addition, each system has a unique
collaboration strategy and it is not allowed for end-users to define, modify, and
change learning strategies (R3.4).

Some systems (e.g., CNB, CALE and McBAGEL) support users to define actions as a
set of isolated items, but the purpose of defining actions in these systems is to support

 40

mutual understanding about future work (R4.1). In these systems action items are
simply defined as a statement or a commitment. A lot of information necessary for
triggering actions is not specified, such as conditions for starting and finishing actions
and allocated resources (R4.2). Therefore, the action plan defined in this way can not
be executed by the system (R4.4). CALE can help users to define actions by turning
“need more information” items into action items. However, such primitive support is
not sufficient for developing an executable learning plan (R4.4). The reason why
these systems provide insufficient support for planning is that these systems are
designed mainly for supporting science inquiry in middle- or high schools. The main
intention of this thesis work is to support adult learners mostly in professional
training.

We conclude the discussion by comparing these systems respectively with respect to
support for the requirements identified in the last chapter. The identified requirements
are summarized as below.

(R1.1): support social orientation
(R1.2): support group awareness
(R1.3): support rich forms of social interaction
(R1.4): support customization of learning environments

(R2.1): support representation of various types of ideas
(R2.2): support representation of relations between ideas
(R2.3): support provision of referential information
(R2.4): support negotiation of shared knowledge

(R3.1): support definition of roles
(R3.2): provision of guidance according to PBL strategies
(R3.3): support synchronization of collaborative activities
(R3.4): support shifting between PBL strategies

(R4.1): support definition of action plans
(R4.2): support allocation of resources.
(R4.3): release users’ burden to make action plans
(R4.4): support execution of action plans

 CCL CSILE CALE CNB Belvedere McBAGEL Web-SMILE
R1.1 ∅ ∅ ∅ ∅ ∅ ∅ ∅
R1.2 ∅ ∅ ∅ ∅ ∅ ∅ ∅
R1.3 - - - - - - -
R1.4 ∅ ∅ ∅ ∅ ∅ ∅ ∅
R2.1 ∅ + + + + + +
R2.2 ∅ ∅ ∅ ∅ - ∅ ∅
R2.3 ∅ + + + ∅ ∅ +
R2.4 ∅ - - - - - -
R3.1 ∅ + + ∅ ∅ ∅ ∅
R3.2 ∅ ∅ ∅ ∅ + - +
R3.3 ∅ ∅ ∅ ∅ ∅ ∅ ∅
R3.4 ∅ ∅ ∅ ∅ ∅ ∅ ∅

 41

R4.1 ∅ ∅ - - ∅ - ∅
R4.2 ∅ ∅ - ∅ ∅ ∅ ∅
R4.3 ∅ ∅ - ∅ ∅ ∅ ∅
R4.4 ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 3.1: Comparison of Existing PBL Support Systems

Table 3.1 summarizes to what degree these systems fulfill the requirements presented
in the last chapter. The notion “∅ ” in the table 3.1 indicates “no support”. The notion
“+” indicates “full support”. The notion “-” means “partial fulfill” or “weak support”.

3.9 Summary

This chapter described related work and analyzed the features of existing virtual PBL
environments according to the requirements identified in the last chapter. We
summarize deficits of existing virtual PBL environments regarding the objectives of
the thesis.

There are 6 requirements not addressed by existing systems. They are R1.1: support
social orientation; R1.2: support group awareness; R1.4: support customization of
learning environments; R3.3: support synchronization of collaborative activities;
R3.4: support shifting between PBL strategies; and R4.4: support execution of action
plans. The main reason why existing systems have not addressed these requirements
is that most of them aim at supporting asynchronous collaboration among distributed
users while other systems aim at supporting co-located synchronous collaborative
learning. This thesis aims at supporting geographically distributed and co-located
people to conduct collaborative PBL activities in a series of organized synchronous
and asynchronous sessions. In order to achieve this goal, this thesis work will
contribute solutions to provide computerized context of collaborative learning and
computational coordination mechanisms.

There are 6 requirements where existing systems offer only weak or limited support.
They are R1.3: support rich forms of social interaction; R2.2: support representation
of relations between ideas; R2.4: support negotiation of shared knowledge; R4.1:
support definition of action plans; R4.2: support allocation of resources; R4.3: release
users’ burden to make action plans. This thesis tries to suggest better and more
integrated solutions to meet these requirements.

The other requirements are sufficiently supported by one or many existing systems.
This thesis will adopt or improve the existing solutions to meet these requirements,
too.

 43

4 Approach

This Chapter presents the approach adopted in this thesis. Based on activity theory, a
conceptual framework for the design of virtual PBL environments is developed.
According to this conceptual framework, a conceptual architecture of a virtual PBL
environment is designed. The conceptual architecture has four modules. The detailed
design of these four modules is described informally and specified formally by means
of Z language in this Chapter.

4.1 Overview of the Approach

This section outlines the general approach adopted in this thesis to develop a
computer supported collaborative problem-based learning environment. In this
chapter, first of all, a brief introduction to activity theory is presented. Activity theory
emphasizes the mediational role of cultural factors (artifacts, tools, and language) and
social factors (conventions, division of labor and established procedures) in an
activity system. Viewed from the perspective of activity theory, a problem-based
learning activity is an activity system in which the cultural and social characteristics
are different from those of traditional subject based learning. Such distinction should
be reflected in a computer-based learning environment for PBL. Based on this view, a
conceptual framework for the design of virtual problem based learning environments
is proposed. When presenting this conceptual framework, important design issues and
possible design choices are discussed. Following the guideline of this conceptual
framework, a virtual PBL environment is designed, in which cultural and social
mediation in the PBL activity is supported by

1) the virtual institute metaphor (for inheriting the culture of real learning

environments),
2) the PBL-net (for mediating the construction of shared knowledge),
3) the PBL-protocol (for mediating the interaction between the community

members), and
4) the PBL-plan (for mediating the contributions made by different members).

4.1.1 Perspective of Activity Theory

The activity theory was formulated in the 1930’s by a group of Russian psychologists.
It is a philosophical framework that allows the study of different forms of human
activities. In its simplest forms, an activity is defined as the engagement of a subject
toward a certain goal or objective. As the founder of this theory, Vygotsky created the
idea of mediation and claimed that human activities are mediated by instruments such
as tools and language [Vygotsky78]. Instruments are created by people and effect
control over behavior. They have an associated culture and history and permanence
that exists across time and space. Leontiev further suggested that activities are also
mediated by other human beings and social relations [Leontiev47]. The activity of the
individual is not viewed in isolation, but is tied to the social context.

 44

Engestroem [Engestroem87] proposed the structure of human activity illustrated in
Figure 4.1. In this model, the subject refers to the individual or sub-group whose
agency is chosen as the point of view in the analysis. The object refers to the 'raw
material' or 'problem space' at which the activity is directed and which is molded and
transformed into outcomes. The instrument refers to all the means, which the subjects
have at their disposal for influencing the object and for achieving the goals.
Instruments include both tools (e.g., hammer and pen) and signs (e.g., language and
symbol). The community comprises multiple individuals and/or sub-groups who share
the same general object. The rules refer to the explicit and implicit society- and
community level laws, standards, norms, policies, and strategies that constrain actions
and interactions within the activity system. The division of labor refers to both the
horizontal division of tasks between the members of the community and to the
vertical division of power and status.

Figure 4.1: The Structure of Human Activity
(taken from [Engestroem87])

Human activity can be described as a hierarchy structure. The three-level structure of
activity proposed by Leontiev is depicted in Figure 4.2. Human activity is driven by
an object-related motive and carried out by a community. The activity consists of
actions or chains of actions. An action is driven by a conscious goal and performed by
individual (or group). Actions are realized through operations, which are driven by the
conditions of the concrete situation and is related to routinized behaviors performed
automatically.

Figure 4.2: The Hierarchical Structure of Activity
(taken from [The Activity System])

 45

Activity theory provides a number of useful concepts that can be used to analyze
problem based learning activities and to create a conceptual framework for the design
of virtual PBL environments.

4.1.2 An Analysis of Problem Based Learning

according to Activity Theory

In this section, the PBL activity is analyzed from the perspective of activity theory.

PBL is different from traditional instructional methods. In traditional subject based
learning methods, the focus is on the content. For each content area, experts and
teachers divide the topics into small, manageable bundles, and transfer those to
students according to a prescribed lesson plan. Students passively receive knowledge
piece by piece individually. In PBL, the focus is on the learner and authentic problems
[Norman96]. Guided by tutors, who just take a facilitative role, learners engage in
active and meaningful learning, normally in cooperative forms. The subject of a PBL
activity is a group of learners, rather than teachers. The object of a PBL activity is a
problem under study. The expected outcome of a PBL activity is (1) acquiring
knowledge and skills that can be transferred to solve similar problems on an
individual level, and (2) constructing a shared knowledge and promoting mutual
understanding on the group level. From the scenario described in the Chapter 2, we
can observe that the instruments used in a PBL activity are tools (such as blackboards
and domain-specific tools like experimental instruments), places (such as discussing
rooms, library, and laboratory), documents (such as learning materials and learning
records), and jargon that facilitates pursuing mutual understanding and constructing
shared knowledge. The community of a PBL activity is broad and consists of the
people who are involved in or have influence on the activity in some forms. These
people may have some expertise, may have similar learning interests, may be able to
provide assistance, and may learn or work in the same organization. In PBL, learners
may have different expertise and different learning interests and the problem to be
solved may be complex. Not all learners study the same topic together and to the same
degree. A division of labor within the learning group is necessary to achieve a shared
goal. Tasks are assigned to different learners who will have different responsibilities
for performing various tasks. Meanwhile, different members of the community
including tutors and experts also divide responsibility in defining and influencing the
object of the PBL activity. PBL-specific rules are used to regulate the behaviors in the
interaction among learners, tutors and experts, to use instruments, and to measure
outcomes.

The PBL activity comprises various forms of actions, such as defining problem,
identifying learning issue, searching and collecting learning resources, interviewing
experts, discussing and reasoning, generating and evaluating hypothesis and solution,
etc. These actions are implemented mainly by learners individually or collaboratively
within or outside of classrooms. Each action is goal-oriented and has expected
outcome. That is, the motive of the overall activity can be decomposed into a set of
goals. These goals are achieved through performing actions, which results in
intermediate outcome, such as that the problem is defined, that necessary information
is collected, that a preliminary solution is generated, etc. The intermediate outcome

 46

becomes parts of conditions for further actions. These conditions will trigger
operations of actors on the object by using instruments at hand.

4.1.3 A Conceptual Framework for the Design of

Virtual PBL Environments

Based on this conceptualization of human activity, some components of virtual PBL
environments can be identified from the analysis of problem based learning. In the
paragraphs below, a conceptual framework for the design of virtual PBL
environments is proposed [Miao00e]. It can be used to guide the design of virtual
PBL environments. This conceptual framework distinguishes eight related
components (see Figure 4.3) that do not coincide exactly with the components
described in the structure of an activity system.

Figure 4.3: The Conceptual Framework

Because more than one PBL activity may be carried out simultaneously in a virtual
PBL environment, a user of the system may be a subject of one activity and a member
of community of another activity simultaneously. Therefore, the concepts of subject
and community have to be combined into the component of agent that is used to
represent an individual or a group in a computerized form. An individual can, as an
actor, be described by some attributes such as name, age, sex, abilities, experience,
education, personality, and so on. A community can be defined as a group by
specifying a set of actors. A group is a general notion that can refer to all members of
a school, a department, a class, a course, a project, a role, etc. A group may consist of
other sub-groups and may have a hierarchical structure. Different actor models and
group models can be built for different purposes.

The concept of instrument can be decomposed into several components. In PBL, the
most frequently used instruments fall into one of four categories: place, tool,
document, and language. A place is a computational space in which actors can stay
and move and actions take place. A system can have a unique place or multiple
places. Multiple place systems can have a set of isolated or connected places and a
place can be decomposed into a hierarchical structure. A document is a logical unit of
information that will be handled (e.g., created, stored, moved, open, and destroyed) as
a whole in the system. Information carried in a document can be represented in a text-
based form or in a multimedia form. Documents may be kept separate from each other
or be connected as a hyper-document. A tool is a kind of system function, with which

 47

the actors can perform certain operations to deal with documents, to interact with
other actors, and so on. Some tools may have certain relations such as position
relation (e.g., book in bookshelf), connected relation (e.g., telephone), and so on. The
component of language used here does not refer to natural language or programming
language. It is a PBL-specific knowledge representation language that is used to
structure knowledge. This language can be defined in a simple form that just provides
a category of types of knowledge, or in a complex form that has semantics and
structure. It can be used in a text-based form or in a visualized hypertext form.

The concepts of object, outcome, and condition can be partially implemented into the
document component, because the PBL activity is somehow a knowledge processing
activity. The constructed knowledge is represented in and carried by documents. The
object, outcome, and condition of the activity can be measured by investigating the
status of the documents. Meanwhile, the concepts of object, outcome, condition,
division of labor, action, motive, and goal are combined into the components of action
and work-description. The action component can be divided into pre-hoc part and
post-hoc part. The pre-hoc part of the action component is used to represent a
scheduled action with information such as the goal, participants, start and terminated
condition, place, needed documents, expected outcome, and so on. The post-hoc part
of action component refers to a set of operations performed by participants of the
action. The work-description component is used to organize the work. A work-
description consists of a set of isolated or coordinated actions and is a pre-defined
representation of the overall activity. It may take the forms of ToDo lists, plans,
checklists, schedules, work programs etc. It can be used to simply provide a common
understanding about the ongoing work and to clarify the responsibility of the involved
agents. It can also be used as a control mechanism to support automatic execution of
learning processes. The concept of rule can be modeled as a rule component. The
conventions can come in the form of a set of behavior rules that must be followed in
social interaction. The rules can be implemented in systems as guidance or help
function. It can also be realized in systems as a computational mechanism to force
users to behave appropriately.

The relations between these eight components are depicted in Figure 4.3 as well. The
center component of the conceptual framework is the action component. An actor or a
group of actors perform an action. An action produces document as the outcome of
the action and some documents are used as input of the action. An action is carried
out in a place. Tools are exploited in an action and some languages are used during
the execution of an action. Rules guide and control the social interaction by
constraining the operations. The work-description is used to coordinate the
contributions made by the participants of actions.

This conceptual framework can be used as a basis to analyze existing virtual PBL
environments and as a guideline to design a virtual PBL environment. In order to
design a virtual PBL environment, the designers have to make design decision by
choosing some of the eight components and by generating solutions to construct each
selected component. The next subsection briefly presents a conceptual architecture of
a virtual PBL environment developed according to this conceptual framework.

 48

4.1.4 The Conceptual Architecture of a Virtual PBL Environment

According to the conceptual framework described above, the author of the thesis
designed a virtual PBL environment. The conceptual architecture of the virtual PBL
environment is depicted in Figure 4.4. This conceptual architecture consists of four
modules. This section briefly describes these four modules.

Figure 4.4: The Conceptual Architecture of a Virtual Learning Environment

The core module takes the metaphor of a virtual institute that consists of agent, place,
tool, and document components. An agent can be an actor or a group. A group can
consist of other agents that may be actors and other groups. An actor or a group can
be a member of more than one group. That is, the agent has a hierarchical structure
and the type of relation between agents is a many-to-many relationship. A place is a
computational space. An actor can be present only in one place at a point in time and
many actors can be present in the same place at the same time. Places have composite
relations and connected relations. The composite relation in the virtual institute is a
kind of one-to-many relationship. The root place of a virtual institute is a campus that
contains several functional buildings such as administrational building, dormitory,
library, and instructional buildings, which, in turn, consist of various types of rooms
such as homes and public rooms. Places can be connected in a way that actors can
navigate from one place to other places or come back to the place from other places

 49

through the doors of this place. Tools (e.g., whiteboard, computer, bookshelf, chat
board, telephone, speaker, document search engine, etc) with different functions are
available in different types of places. Tools may have a connected relationship. For
example, many virtual computers in different places can be connected to a certain
virtual computer. Documents are organized in the form of a hyper-document that
consists of a set of connected documents. Each document consists of information
units in the form of text, table, graphics, images and even hyperlinks to other
documents. Meanwhile, many documents can have hyperlinks to refer to a given
document. A document can be stored in a bookshelf, or can be opened on
whiteboards, in computers, or on private editors. An opened document displayed on a
whiteboard or a computer can be edited by means of the edit function provided in
editor. The virtual institute inherits part of the culture of real learning environments.

The second module is the PBL-net that coincides with the language component. The
PBL-net provides support to explicitly represent information types and the
relationships between these information types and to guide collaborative problem
based learning processes by providing PBL-specific operations to represent, explore,
and negotiate shared knowledge. The PBL-net takes the role of PBL-specific cultural
mediation in the PBL activity.

The PBL-protocol module coincides with the rule component. A PBL-protocol is a
computational description of a PBL policy or strategy and a protocol can contain sub-
protocols. It represents how learners, tutors, and experts are expected to behave
during the learning process. Concretely speaking, a protocol specifies under which
condition a learner or a tutor can operate on which information type defined in the
PBL-net. More than just a representation, a PBL-protocol can be initiated and the
initiated protocol actually forces the learners and tutors to behave appropriately by
restricting which behaviors are allowed. In terms of activity theory, a PBL-protocol
provides coordination support at the operation level based on the distribution of the
subject (roles) in the community.

The action and work-description components are realized in the PBL-plan module. A
PBL-plan is defined by specifying a set of coordinated actions. An action is defined
by specifying the goal, the executors, a location, the input and output document,
active condition and terminal condition. The active condition and terminal condition
are expressed by one or a combination of conditions at a point in time. Examples are
the state of a document, the state of an action, and so on. This module provides a
learning plan definition tool, so that the participants of a PBL activity can
collaboratively define their own learning plan by specifying the scheduled actions and
the relations between these actions. This module also has an enactment mechanism
with which a defined learning plan can be initiated, monitored, modified, and
executed. When participants carry out an action in the place arranged for the action,
they can exploit tools in the place or add new tools, and they can initiate or terminate
PBL-protocols. If the terminal condition of an action is met, the system will trigger
the next actions according to the definition of the PBL-plan. The documents produced
in this action will be transferred to other places as the input documents of the
subsequent actions, according to the definition of the executed PBL-plan. In term of
activity theory, the PBL-plan takes the role of social mediation in PBL activities at the
action level based on the distribution of the objects (goals and tasks) in the
community.

 50

4.1.5 Summary

In this section, based on an analysis of problem based learning from the perspective of
the activity theory, a conceptual framework for the design of virtual PBL
environments was developed. The conceptual framework consists of eight
components: agent, place, tool, language, document, action, work description, and
behavior rule. This conceptual framework can be used as a basis to analyze existing
virtual PBL environments and as a guideline to design a virtual PBL environment. In
order to design a virtual PBL environment, the designers should address the mediation
role of cultural factors and social factors. Concretely speaking, these eight
components should be modeled in virtual PBL environments appropriately. As an
example, a virtual PBL environment was described, in which the roles of the cultural
and social mediation in the PBL activity are reflected in the system by four modules:
the virtual institute metaphor, the PBL-net, the PBL-protocol, and the PBL-plan.

4.2 Notation of Z

The specification language used in this thesis is the Z language. The Z language is a
notation for formal specification based on set theory and first order predicate logic. It
has been developed at the Programming Research Group at the Oxford University
Computing Laboratory and elsewhere since the late 1970s. It is used by industry as
part of the software development process in Europe, USA and elsewhere. The
objective of using the Z language in this thesis is to present the main design ideas and
important behaviors of the system precisely. It is not intended to specify the whole
system design completely.

There are a number of reasons to choose the Z language. Firstly, Z has the advantage
that it is able to specify a system accurately and unambiguously (unlike semi-formal
specification languages). Secondly, the functional specification can be used to express
design ideas at an abstract level, rather than describing the design from a mass of
detailed program code or pseudo-code. Thirdly, a Z specification can act as a clear
statement of design. At times a specification is complex, and understanding the full
richness of its behavior may be hard. Its behavior under certain constraints can be
deduced as a property of the specification. These ‘partial behavior properties’ can be
used to understand and check a complex behavior. Fourthly, Z can be used to describe
a specification of a large system by breaking it down into a number of subsystems,
each of which can be specified in a separate document. Fifthly, Z’s schema can be
used to partition the system specification into local and global concerns. By splitting a
specification into schemas, the specification can be presented piece by piece
accompanied by informal explanation.

This section briefly introduces the basic knowledge about the Z language and the Z
notation used in this thesis. Rather than to be a tutorial, the intention of this section is
to help readers to recall the Z language and to refer to the Z notation conveniently.
The description in this section is primarily taken from two books [Spivey89]
[Barden94]. Detailed information about the Z language can be obtained from these
books.

 51

4.2.1 Basic Knowledge

Z specifications are mathematical: the variables that appear in them range over
mathematical objects, and they express mathematical models of information systems.
This subsection contains a description of the world of mathematical objects in which
Z specifications have their meaning: it describes what objects there are, and how
relationships between them may be made into specifications.

4.2.1.1 Objects and Types

Every mathematical expression that appears in a Z specification is given a type: this
determines a set known to contain the value of the expression. Each variable is given
a type by its declaration, and there are rules for deriving the type of each kind of
compound expression from the types of its sub-expression. Every Z specification
begins with certain objects that play a part in the specification, but have no internal
structure of interest. These atomic objects are the members of the basic types or given
sets of the specification. From these atomic objects, composite objects can be put
together in various ways. These composite types are the members of composite types
put together with the type constructors of Z. There are three kinds of composite types:
set types, Cartesian product types, and schema types (see the next subsection). The
type constructors can be applied repeatedly to obtain more and more complex types,
whose members have a more and more complex internal structure.

4.2.1.2 Schema

Let us discuss schema types in detail. If p1 , …, p n are distinct identifiers and x1 , …,
x n are objects of types t 1 , …, t n respectively, then there is a binding z with
components z.p i = x i for each i with 1 ≤ i ≤ n. This binding is an object with the
schema type
 <| p1 : t 1 ; …; p n : t n |>
The binding is equal to another binding w of the same type exactly if z.p i = w.p i for
each i with 1 ≤ i ≤ n. Two schema types are regarded as identical if they differ only in
the order in which the components are listed.

A signature is a collection of variable names, each with a type. Signatures are created
by declarations, and they provide a vocabulary for making mathematical statements,
which are expressed by predicates. Given a signature, we can think of various
situations, in which the variables take different values drawn from their types. A
property over the signature is characterized by the situations in which it is true. A
predicate expresses a property, and by extension we say a predicate is true in a
situation if the property it expresses is true in that situation. A schema is a signature
together with a property over the signature; the schema Aleph with the signature and
property might be written

 52

┌─ Aleph ──────────────────
│ x, y : ℤ
├──────────────────────
│ x < y
└─────────────────────────

or

 Aleph ≙ [x, y : ℤ | x < y]

We call x and y the components of Aleph.

A fundamental operation on schemas is systematic decoration. If S is a schema, then
S’ is the same as S, except that all the component names have been suffixed with the
decoration ’. The signature of S’ contains a component x’ for each component x of S,
and the type of x’ in S’ is the same as the type of x in S. The property of S’ is true in a
situation exactly if the property of S is true when each component x takes the value
taken by x’ in that situation.

4.2.1.3 States and Operations

An abstract data type consists of a set of states, called the state space, a non-empty set
of initial states, and a number of operations. Each operation has certain input and
output variables, and is specified by a relationship between the input and output
variables and a pair of states, one representing the state before the execution of the
operation, and the other representing the state after execution.

In Z, the set of states of an abstract data type is specified by a schema, which is
conventionally given the same names as the abstract data type itself. By convention,
none of the components of the state space schema has any decoration. The set of
initial states of an abstract data type is specified by another schema with the same
signatures as the state space schema. The abstract data type may start in any one of
the initial states; often there is only one of them. The operations of an abstract data
type are specified by schemas which have all the components of both State and State’,
where State is the schema describing the state space. The state of the abstract data
type before the operation is modeled by the undashed components of its schema, and
the state afterwards is modeled by the components decorated with a dash. Before and
after execution, operations often have inputs and outputs. The inputs are modeled by
components of the schema decorated with ?, and the outputs by components decorated
with !.

Operations on data types are specified by schemas which have two copies of the state
variables among their components: an undecorated set corresponding to the state of
the data type before the operation, and a dashed set corresponding to the state after the
operation. To make it more convenient to declare these variables, there is a
convention that whenever a schema State is introduced as the state space of an
abstract data type, the schema ∆State is implicitly defined as the combination of State
and State’. With this definition, each operation on the data type can be specified by

 53

extending ∆State with decorations of the inputs and outputs of the operation and
predicates giving the pre-condition and post-condition. Many data types have
operations that access information in the state without changing the state at all. In this
case, it is convenient to have a special schema ΞState on which these access
operations can be built.

4.2.2 The Z Notations Used in This Thesis

4.2.2.1 Syntactic Conventions

The syntactic description of Z constructs given in this subsection is intended as a
guide to the way the constructs looks on paper: it treats each construct in isolation,
and does not properly respect the relative binding powers of connectives and
quantifiers, for example. A full grammar for Z is given in [Spivey89]. A few
extensions to BNF are used to make the syntax descriptions more readable. The
notation S; …; S stands for one or more instances of syntactic class S, separated by
semicolons; similarly, the notation S, …, S stands for one or more S’s separated by
commas. Slanted square brackets [] enclose items which are optional. Lists of items
that may be empty are indicated by combining these two notations.

 A word (Word) is the simplest kind of name in a Z specification: it is either a non-
empty sequence of upper and lower case letters, digits, and underscores beginning
with a letter, or a special symbol. Words are used as the names of schemas. An
identifier (Ident) is a word followed by a decoration (Decoration), which is a
possibly empty sequence of ’, ?, or ! characters:

 Ident ::= Word Decoration

If a word is used in a specification as the name of a schema, it is called a schema
name and is no longer available for use as in an ordinary identifier. Schemas are
named with words rather than identifiers to allow systematic decoration: if A is a
schema and we write A’, this means a copy of A in which all the component names
have been decorated with ’. Some words are given the special status of prefix, infix,
or postfix symbols (e.g., ¬, +, and *).

4.2.2.2 Specifications

A Z specification document consists of interleaved passages of formal, mathematical
text, and informal prose explanation. The formal text consists of a sequence of
paragraphs that gradually introduce the schemas, global variables and basic types of
the specification, each paragraph building on the ones that come before it. Except in
the case of free type definitions, recursion is not allowed. Several kinds of paragraph
are introduced below.

1). Basic type definitions

Paragraph ::= [Ident, …, Ident]

 54

A basic type definition introduces one or more basic types.

2). Axiomatic descriptions

 │ Declaration

Paragraph ::= [├──────────────────────
 │Predicate; …; Predicate]

An axiomatic description introduces one or more global variables, and optionally
specifies a constraint on their values.

3). Constraints

Paragraph ::= Predicate

A predicate may appear on its own as a paragraph; it specifies a constraint on the
values of previously declared global variables.

4). Abbreviation definitions

Paragraph ::= Ident = = Expression

An abbreviation definition introduces a new global constant.

5). Free type

 Paragraph ::= Ident = = Branch | … | Branch
 Branch ::= Ident [≪Expression≫]

A free type definition is a way of introducing a given set, together with some
additional information. The branch names are injective functions, so we follow the
convention for variables when naming them. Care should taken with the intuitive
meaning associated with the name given to the accompanying injections.

6). Schema definitions

 ┌─ Schema-Name ──────────────────
 │ Declaration

Paragraph ::= [├──────────────────────
 │ Predicate ;…; Predicate]
 └─────────────────────────
or

Paragraph ::= Schema-Name ≙ Schema-Exp

 55

These forms introduce a new schema name. The word heading the box or appearing
on the left of the definition sign becomes associated with the schema that is the
contents of the box or appears to the right of the definition sign.

 Schema-Exp ::= ∀ Schema-Text • Schema-Exp
 | ∃ Schema-Text • Schema-Exp
 | ∃ ₁ Schema-Text • Schema-Exp
 | Schema-Exp-1

 Schema-Exp-1 ::= [Schema-Text]
 | Schema-Ref
 | ¬ Schema-Exp-1
 | pre Schema-Exp-1
 | Schema-Exp-1 ∧ Schema-Exp-1
 | Schema-Exp-1 ∨ Schema-Exp-1
 | Schema-Exp-1 ⇒ Schema-Exp-1
 | Schema-Exp-1 ⇔ Schema-Exp-1
 | Schema-Exp-1 ↾ Schema-Exp-1
 | Schema-Exp-1 \ (Decl-Name, …, Decl-Name)
 | Schema-Exp-1 Schema-Exp-1
 | (Schema-Exp)

4.2.2.3 Schema References

When a schema name has been defined as described above, it can be used in a schema
reference to refer to the schema. A schema reference can be used as a declaration, an
expression, or a predicate, and it forms a basic element of schema expressions.

 Schema-Ref ::= Schema-Name Decoration

A schema reference consists of a schema name followed by a decoration (which may
be empty).

4.2.2.4 Declarations

Variables are introduced and associated with types by declarations. As explained
above, a declaration may also require that the values of the variables satisfy a certain
property, which we call the constraint of the declaration. There are two kinds of
declaration in Z:

 Basic-Decl ::= Ident, …, Ident : Expression
 | Schema-Ref

The first kind introduces an explicitly-listed collection of variables. When a schema
reference is used as a declaration, it introduces the components of the schema as

 56

variables, with the same types as they have in the schema, and constrains their values
to satisfy its property.

In every context where a single declaration is allowed, a sequence of declarations may
also appear:

 Declaration ::= Basic-Decl; …; Basic-Decl

This declaration introduces all the variables introduced by each of its constituent basic
declarations, with the same types.

A set-comprehension expression has the form

 { Declaration | Predicate ;…; Predicate • Expression }

And its value is the set of values taken by the expression when the variables
introduced by the declaration take all values that satisfy both the constraints of the
declaration and predicates. The expression part may be omitted, and the default is
then the characteristic tuple of the declaration.

4.2.2.5 Schema Text

A schema text consists of a declaration and an optional list of predicates. Most Z
constructs that introduce variables allow a schema text rather than simply a
declaration, so that a relationship between the values of the variables can be
described. Schema texts appear in vertical form in axiomatic descriptions and schema
definitions, but they also have a horizontal form:

 Schema-Text ::= Declaration [| Predicate ;…; Predicate]

4.2.2.6 Mathematical Symbols

The syntex of predicate and expression and some components of the Z language are
omitted in this thesis, because of the limitation of the space. A complete syntext of the
Z language can be obtained in the Spivey’s book [Spivey89]. Note that it is a
convention to keep the use of parentheses to the minimum required if their absence
would not be confusing. For example, given a function is defined as

wordCount : Document → ℕ
aThesis : Document

the number of words in the thesis is represented as

wordCount (aThesis)

However, it can be represented as

wordCount aThesis

 57

Some symbols used to represent expression and predicate are listed below:

(…) Tuple
{…} Set display
< …> Sequences
<| … |> Binding
ℙ Power set
× Cartesian product
{ | • } Set comprehension. {S | P•V} means for all members of S, which

fulfill P then V must be valid
λ Lambda-expression: The expression λS•E denotes a function that takes

arguments of a shape determined by S, and returns the result E
µ Mu-expression: The expression µS•E is defined only if there is a

unique way of giving values to the variables introduced by S that
makes the property of S true; if this is so, then its value is the value of
E when the variables introduced by S take these values

θ Binding formation: In the expression θS’, in which the symbol ’ stands
for an optional decoration, let the components of S be x 1 , …, x n . The

variables x’ 1 , …, x’ n must be in scope: let their types be t 1 , …, t n .
The type of the expression is the schema type

 <| x 1 : t 1 ; …; x n : t n |>.
The value of the expression θS’ is a binding z with the schema type
shown above; for each i with 1 ≤ i ≤ n, the component z.x i is the value
of the variable x i in that situation.

. Selection: the notation for selecting a component from a binding
\ Schema hiding
↔ Binary relations
↦ Maplet

 Relational composition and sequential composition
⊳ Domain restriction
⊲ Range restriction

 Domain anti-restriction
 Range anti-restriction

_� Relational inversion
_⁺ Transitive closure
_* Reflexive-transitive closure
(||) Relational image

 Partial functions
 Total functions
 Partial injections
 Total injections
 Partial surjections
 Total surjections
 Bijections

⊕ Functional overriding

 58

Number of members of a set
↾ Filter
⁀ Concatenation
∙ Order properties of set operation,

Monotonic operations, or
Relational operations on functions and sequences

dom Domain of a relation
ran Range of a relation
first Projection function splitting ordered pairs into the first co-ordinates
second Projection function splitting ordered pairs into the second co-ordinates
id Identity relation
min Minimum of a set of numbers
max Maximum of a set of numbers
pre Pre-condition
seq Finite sequences
seq 1 Non-empty finite sequences
iseq Injective sequences
head The first element of a non-empty sequence
last The last element of a non-empty sequence
disjoint Disjointness
partition Partition

4.3 Virtual Institute Metaphor:

A Context-based Virtual Learning Environment

Collaborative learning is a process of social interactions and social construction of
knowledge. Theories from education promote an understanding of how learner’s
knowledge structures, motivations, and interpersonal interactions interact with
learning environments. The goal of building a virtual collaborative learning
environment is to provide an environment so that geographically distributed people
can interact with each other and construct knowledge collaboratively as they would do
in conventional co-located learning environments. Especially, for supporting problem-
based learning, it is critical for a successful system to provide rich context for social
interactions and social construction of knowledge.

Designing a virtual collaborative learning support system requires a process of
abstraction, which focuses only on the essential elements of conventional learning
environments. In virtual learning environments, more or less details of collaborative
learning may be ignored intentionally or because of the limitations of technology.
Ignoring some aspects of collaborative learning is dangerous, because rich forms of
social interactions may become impossible. Limited forms of social interactions, in
turn, may make collaborative PBL processes very difficult. According to our state of
the art analysis, all existing PBL support systems omit some crucial aspects.

The first section of this Chapter has presented a conceptual framework for the design
of virtual PBL environments and the conceptual architecture of a virtual PBL
environment. It suggested that a virtual learning environment should reflect the major

 59

culture existing in real learning environments. However, how to inherit the culture of
real learning environments is unclear. The approach taken in this thesis is to use the
metaphor of a virtual institute. This section is organized as follows. It begins by an
introduction of the theory of situated learning, which emphasize the importance of the
context in which the student works, and the importance of social interactions.
Following the guidelines of the theory of situated learning, the requirements for
design of virtual learning environments are identified. The main body of this section
describes the basic concepts of a context-based virtual learning environment and an
approach to develop a context-based virtual learning environment. The context-based
virtual learning environment is formally described to demonstrate how to support
construction and maintenance of learning contexts, how to support awareness of
learning contexts, and how to support social interaction. Finally, we summarize this
section by comparing our approach with other approaches.

4.3.1 Theoretical Background

The theory of situated learning formulated by Lave and Wenger considers that social
interaction is a critical component of situated learning. It is impossible to separate
cognitive tasks from social tasks, because all cognitive tasks have a social component
[Perret93]. Collins et al. developed the concept of cognitive apprenticeship
[Collins89]. Brown et al. believed: "cognitive apprenticeship supports learning in a
domain by enabling students to acquire, develop and use cognitive tools in authentic
domain activity. … In essence, cognitive apprenticeship attempts to promote learning
within the nexus of activity, tools, and culture that they have described. Learning,
both outside and inside school, advances through collaborative social interaction and
the social construction of knowledge. … So the term apprenticeship helps to
emphasize the centrality of activity in learning and knowledge and highlights the
inherently context-dependent, situated, and enculturating nature of learning"
[Brown89]. Lave et al. believed that collaboration can lead to articulation of learning
strategies that can then be discussed, which, in turn, can enhance generalization
grounded in students' situated understandings [Lave91a]. Greeno et al. suggested: “we
need to organize learning environments and activities that include opportunities for
acquiring basic skills, knowledge, and conceptual understanding, not as isolated
dimensions of intellectual activity, but as contributions to students’ development of
strong identities as individual learners and as more effective participants in the
meaningful social practices of their learning communities in school and elsewhere in
their lives” [Greeno98]. “Our community, and each of us, creates networks of
connections (and disconnections) among texts, situations and activities… These
networks of connections that we make, and that are made in the self-organizing
activity of the larger systems to which we belong, extend backwards in time as well as
outwards into the social-material world” [Lemke97]. Wenger [Wenger98] uses
Communities of Practice (CoP) to describe the impact of social learning. A
community of practice is defined by McDermott as “… a group that shares
knowledge, learns together, and creates common practices” [McDermott99]. He
wrote: “Community members frequently help each other solve problems, give each
other advice, and develop new approaches or tools for their field. Regularly helping
each other makes it easier for community members to show their weak spots and learn
together in the ‘public space’ of the community” [McDermott99].

 60

Trilling and Hood emphasized the role of context in learning: “the environmental
conditions for learning (objects, people, symbols, and their relationships) are much
more influential than we've previously thought, and that the transfer of knowledge
from one context to another is not often successful. The demand for more ‘authentic’
learning tasks that match real-world conditions comes directly from these findings, as
well as the desire to have rich learning environments that offer a wide variety of
contextualized opportunities for discovery, inquiry, design, practice, instruction, and
constructive exploration. This approach coincides with the need to become proficient
in solving real-world problems and to exercise critical thinking-and-doing in the
Knowledge Age” [Trilling99]. Suchman [Suchman87] argued: “action such as
learning, understanding and remembering is situated. Because of the situated nature of
action, communication must include both an awareness of the local context and a
mechanism to solve problems in understanding.” In addition, "situations might be said
to co-produce knowledge through activity" [Brown89]. Learning environments will
be changed by learning groups during learning processes.

According to Wolfson et al. [Wolfson], learning results from four components:
1) “situated contexts: communities of practice, artifacts as mediating devices,

multiple resources,
2) authentic contexts: authentic projects, problem solving scenarios, intrinsic

motivation and student responsibility,
3) collaborative contexts: small group interactions, skilled peer guidance, community

expert guidance, and
4) reflective contexts: goal setting, formative assessment, teacher modeling &

scaffolding, cognitive apprenticeship.”

4.3.2 Requirements

Based on the guideline of the theories described above, we can develop the concept of
learning context. A learning context can be regarded as a situation for learning
[Miao99d]. A learning context consists of a set of structured places in which tools and
learning materials are available and constructed knowledge is recorded for
communities of practice. A formal definition of learning context will be given in this
section. The nature of learning contexts is dynamical, and they evolve in time. It is
important to note that the members of communities of practice are active agents
involved in collaborative learning activities and they become a part of learning
contexts. In this subsection, we analyze the main requirements for building a
comprehensive collaborative learning environment to support construction of learning
contexts, awareness of learning context, and social interaction in learning contexts.
These requirements are consistent with those derived from the scenario in Chapter 2.
This subsection presents the requirements in a systematical way.

 61

4.3.2.1 Support for the Construction of Learning Contexts

A learning context is formed while a group of people shares a commitment to some
form of collective learning activities, e.g., conducting a problem based learning
course. They need to socially present themselves to other people. Increasing
possibilities of co-presence of people in the same place at the same time will increase
the likelihood of social interactions. In the discourse of social interaction, they use
tools and learning materials at hand. As a learning process progresses, they will
change the learning environment in the way that new places are arranged, new tools
are installed and exploited, documents are produced or introduced, new members are
introduced, and so on. A virtual learning environment should allow users to configure
and reconfigure learning contexts on demand. It should provide suitable tools and
relevant documents for establishing different learning contexts and to maintain
learning contexts so that social interactions can be carried out at low cost. That is,
users do not need to make a lot of efforts to seeking suitable partners and to search for
necessary documents and tools in the discourse of interactions.

4.3.2.2 Support for Awareness of Learning Contexts

Awareness of learning context is a precondition for situated learning. When a user has
a clear idea about the current situation, s/he can rapidly involve her/himself in the
situation, take proper roles, and initiate or join learning activities. A virtual learning
environment should support user’s awareness of existence and state of tangible
entities (e.g., people, documents, and tools, places, and their relations) and even
intangible entities (e.g., activity) in different degrees through different ways.

4.3.2.3 Support for Social Interaction in Learning Contexts

In learning processes such as the scenario described in the chapter 2, a variety of
forms of social interaction take place. A virtual learning environment should support
rich forms of social interaction. No matter whether users are geographically
distributed or co-located, they can enter the same computational place (virtual place)
or can be located in different virtual places. Therefore, a virtual learning environment
should be able to support synchronous and asynchronous communication conducted
in the same virtual place and in different virtual places by using tools. The system
should support social construction of knowledge at same time and at different time, at
the same virtual place and at different virtual places, jointly or in sub-groups. A
virtual learning environment should support users to make use of shared resources
effectively.

4.3.3 Design of a Context-based Virtual Learning Environment

This subsection describes the design of a virtual learning environment. Adopting this
approach, a virtual learning environment is developed by using a set of metaphors.
These metaphors can be flexibly combined to form different learning contexts for
support different collaborative learning activities. As an example system, a set of
metaphors is used and organized in a way to form a metaphor of institute, called as a

 62

Virtual Institute. As illustrated in Figure 4.5, a Virtual Institute consists of an institute
space, a community, a hyperdocument base, and a tool base. The institute consists of
virtual places that are connected by doors. Each door can be approached through two
door views that belong to the places connected by the door. The community consists
of actors with a group structure. Both actors and groups are agents. The
hyperdocument base contains a set of documents. A document may have references
that serve as hyperlinks to other documents. The tool base contains a set of tools that
may be document editor, bookshelf, message-box, and so on. Actors, documents, and
tools will be located in a virtual place. A document may be edited by actors using a
tool. A Virtual Institute provides the overall learning context in which all learning-
related activities occur. Each virtual place with the objects it contains forms a learning
context.

Figure 4.5: The Conceptual Architecture of a Virtual Institute

In this subsection, the design of a context-based virtual learning environment is
described formally.

4.3.3.1 Basic Concepts of the Context-Based

Virtual Learning Environment

First of all, we define the basic types:

[ℕ ℕ₁ ℤ ℝ BOOLEAN CHAR STRING TEXT IMAGE TABLE]

These notations represent the types of natural number, integer, real number, Boolean,
character, string, text, image, and table respectively. In order to ease discussion, we

 63

don’t consider the internal structure of some data types such as text in our model.
These data types are introduced as given sets. In this thesis, it is sufficient to model
aspects of time using integer such that time can be calculated.

TIME = = ℕ

Then we formally describe the four parts of a virtual institute: community, institute
space, hyperdocument base, and tool base respectively.

4.3.3.1.1 Community

Definition (Actor): An actor represents a user of the system in a computational form.
An actor has attributes to identify and characterize a user such as name, picture,
phone number, email address, expertise, and learning interests.

┌─ Actor ──
│name : STRING
│picture : IMAGE
│phoneNumber : ℕ₁
│emailAddr : STRING
│expertises : ℙ STRING
│learningInterests : ℙ STRING
└───

Definition (Group): A group refers to a general notation for a department, a class, a
project, a role, etc. We simply model it by using a name attribute.

┌─ Group ───
│name : STRING
└───

Definition (Agent): An agent represents a general notation for an actor or a group.

Agent ::= actor <<Actor >>
 | group <<Group>>

Definition (Community): A community consists of a set of agents with structural
relations among them. The set of actors and the set of groups are distinguished, and
these two sets partition the set of agent. Within a community, an actor may be a
member of a group and a group may be a sub-group of another group. An actor can be
a member of multiple groups at the same time and a group can have multiple
members. A group can be a sub-group of multiple groups at the same time and a
group can have multiple sub-groups as well. However, the sub-group relations within
a community can not form a loop. In other words, a group can not be a sub-group of
another group that is directly or indirectly a sub-group of the first group. It is
important to note that the term of community used here denotes all potential users of
the system and the possible formal relations (e.g., aMemberOf and aSubGroupOf). It

 64

does not represent a community of practice defined in situated learning. A community
of practice is a natural, informal, and domain specific group. The members of a
community of practice share their experiences and learn from each other on a regular
basis with respect to a background of shared practices [Wenger98]. A community of
practice is neither a community nor a group. However, a community of practice is
formed and developed within a community. The seed of a community of practice may
be a formally defined group. The members of a community of practice may usually
meet in a place to do something together. There may be multiple communities of
practice within a community.

┌─ Community ──────────────────────────────────────
│ actors : ℙ Actor
│ groups : ℙ Group
│ agents : ℙ Agent
│ aMemberOf : Actor ↔ Group
│ aSubGroupOf : Group ↔ Group
├─────────────────────────────
│ ran actor = actors ∧ ran group = groups
│ < ran actors, ran groups > partition agents
│ dom aMemberOf ⊆ actors
│ ran aMemberOf ⊆ groups
│(dom aSubGroupOf ∪ ran aSubGroupOf) ⊆ groups
│ disjoint < aSubGroupOf ⁺, id Group >
└───

4.3.3.1.2 Institute space

Definition (Place): A place represents a virtual space in which objects such as actors
can exist and move and actions can take place. There are several types of place:
campus, administrational building, library, dormitory, instructional building, home,
public room, specific room. Each place has a name, a type, and an owner that can be
an actor or a group. There are relationships between places. The data type GoTo is
defined to represent a navigational relation from the source place to the destination
place directly.

PlaceType ::=campus

| administrationalBuilding | library
| dormitory | instructionalBuilding
| home | publicRoom | specificRoom

┌─ Place ──
│name : STRING
│placeType : PlaceType
│owner : Agent
└───

 65

GoTo = = Place × Place

Definition (Door): A door represents a gateway between two places. A door may be
open or closed. In this model, there are two types of doors. The first type of door is a
concrete door. This kind of door is used to connect all places in a virtual institute into
a tree. The second type of door is a virtual door that doesn’t exist in the real world. It
provides a (one-way) shortcut gateway from one place to another.

DoorType ::= concrete | virtual

┌─ Door ──
│status : BOOLEAN
│doorType : DoorType
└───

Definition (Door View): A door view denotes a view of a door in a user interface (UI)
for interaction purposes. A door view has a name and an image.

┌─ DoorView ─────────────────────────────────────
│name : STRING
│view : IMAGE
└───

Definition (Institute Space): An institute space consists of a set of places with
certain relations. In order to describe operations easily, the campus place and the
dormitory place are distinguished from other places. A place may contain other
places, e.g., a campus contains several buildings and a building contains several
rooms. Furthermore, a room can contain several smaller rooms. Within an institute
space, there is a set of such relationships between places. Each place has a set of door
views. Each door view refers a door. Each door refers to a GoTo relation between two
places.

The campus and the dormitory are two special places and may not be identical. The
campus contains certain places of type administrational building, library, dormitory,
and instructional building. An administrational building contains places with the type
of specific room. An instructional building contains places with the type of public
room. A dormitory contains places with the type of home.

A place can contain other places and can be contained by another place. However, not
all places within an institute space can contain or can be contained in other places.
The campus can not be contained in any place in the institute space. It is not allowed
that a place contains itself directly or indirectly. Within an institute space, there is no
isolated place, i.e., every place is reachable via contain relationships from the campus
place.

Each concrete door has two door views that are visible from the two places connected
by the door respectively. The name of a door view in one side is exactly equal to the
name of the place on the other side. A virtual door has only one door view that can be

 66

seen in the source place and the name of this view is equal to the name of the
destination place.

┌─ InstituteSpace ──────────────────────────────────────
│places : ℙ Place
│campus, dormitory : Place
│contains : ℙ GoTo
│hasDoorView : Place → ℙ DoorView
│approach : DoorView → Door
│connect : Door → GoTo
├─────────────────────────────
│campus ∈ places ∧ dormitory ∈ places ∧ campus ≠ dormitory
│ ran ({campus} ⊳ contains) = { p : Place |
│ p.placeType = administrationalBuilding ∨
│ p.placeType = library ∨
│ p.placeType = domitory ∨
│ p.placeType = instructionalBuilding }
│
│ ran ({ p : Place | p.placeType = administrationBuilding ∨
│ p.placeType = library }⊳ contains) = { p : Place | p.placeType = specificRoom}
│
│ ran ({ p : Place |
│ p.placeType = instructionalBuilding ∨ p.placeType = publicRoom }⊳ contains)
│ = { p : Place | p.placeType = publicRoom}
│
│ ran ({ p : Place | p.placeType = dormitory } ⊳ contains) =
│ { p : Place | p.placeType = home }
│
│ dom contains ⊂ places
│ ran contains ⊂ places
│ campus ∉ ran contains
│ contains ∈ Place Place
│ disjoint < contains⁺, id Place >
│ (contains ∪ contains�)* = places × places
│ ran approach = dom connect
│ ∀ ref : DoorView; d: Door | (ref ↦ d) ∈ approach ∧ d.doorType = concrete •
│ # dom (approach ⊲ {d}) = 2 ∧
│ (ref ∈ ran ((first (connect d)) ⊳ hasDoorView) ∨
│ ref ∈ ran ((second (connect d)) ⊳ hasDoorView)) ∧
│ (ref ∈ ran ((first (connect d)) ⊳ hasDoorView)
│ ref.name = (second (connect d)).name) ∧
│ (ref ∈ ran ((second (connect d)) ⊳ hasDoorView)
│ ref.name = (first (connect d)).name)
│

 67

│ ∀ ref : DoorView; d: Door | (ref ↦ d) ∈ approach ∧ d.doorType = virtual •
│ # dom (approach ⊲ {d}) = 1 ∧
│ (ref ∈ ran ((first (connect d)) ⊳ hasDoorView) ∧
│ ref.name = (second (connect d)).name)
└───

It is important to note that this institute space model is a specific hypertext model. In
terms of hypertext systems, a place in this model is a node and a door in this model is
a hyperlink. According to the categories of Conklin [Conklin87b], a concrete door in
this model represents a bi-directional organizational link and a virtual door can be
regarded as an uni-directional referential link.

When a door is closed on one side, one can not move to the other side of the door. If
an actor don’t want to be disturbed by others when s/he is doing something, s/he can
simply close the concrete door inside of the place. The door concept provides a
flexible navigation control mechanism for users. By using virtual doors, a place can
be connected to any other place that is not contained by this place. For example, a
public room created for studying frogs can be connected to an instructional building
for learning biology and can also be connected to an instructional building for a
problem-based learning course about deformed frogs. A virtual door can be created
between a home in a dormitory and a classroom in an instructional building. It
provides a shortcut for actors to navigate from one place to another.

4.3.3.1.3 Hyperdocument Base

Definition (Document): A document represents a logical unit of information. A
document will be handled (e.g., created, stored, moved, and destroyed) as a whole.
Each document has a title and information about the topic of this document, the
current status, and the creator of the document. A document has a content that may
contain a collection of information items. An information item can be described by
using different media objects such as text, image, and table. In this thesis, the nature
of a media object is not further considered.

MediaObject ::= TEXT | TABLE | IMAGE

┌─ Document ──
│title : STRING
│owner : Actor
│topic : STRING
│status : STRING
│content : ℙ MediaObject
└───

Definition (Document Reference): A document reference serves as a link to another
document. Each document reference has a name.

 68

┌─ DocumentReference ──────────────────────────────────
│name : STRING
└───

Definition (Hyperdocument Base): A hyperdocument base contains a set of
documents usually called nodes. Within a hyperdocument base, a document may have
a set of document references. Each document reference within a document refers to
another document in the hyperdocument base. And the name of a document reference
is equal to the title of the document to be referred.

┌─ HyperDocumentBase ─────────────────────────────────
│ documents : ℙ Document
│ documentRefs : Document → ℙ DocumentReference
│ referTo : DocumentReference → Document
├─────────────────────────────
│ dom documentRefs ⊆ documents
│ ran referTo ⊆ documents
│
│∀ r : referTo | (first r).name = (second r).title
└───

4.3.3.1.4 Tool Base

Definition (Document Editor): A document editor is used to browse and edit
hyperdocuments. There are three types of document editors: whiteboard, computer,
and private editor. Each document editor has a type and a history of navigation in the
hyperdocuments.

EditorType ::= whiteboard | computer | privateEditor

┌─ DocumentEditor ────────────────────────────────────
│history : seq Document
│type : EditorType
└───

Definition (Bookshelf): A bookshelf is used to store documents.

[Bookshelf]

Definition (Message Box): A message box is used to transfer documents between
places. Actors can use it to send documents to other places by giving the name of
destination places. The actors in the destination places can take the received
documents from the message box installed in these places. The system uses it to
transfer documents automatically from one place to another according to learning
plans.

[MessageBox]

 69

Definition (Calendar): A calendar is used to manage scheduled actions. Each actor
has a private calendar that in installed in home of the actor. A calendar installed in a
public room is used to manage past, currently executed, and future actions that are
related to this public room.

[Calendar]

Definition (Specific Tool): A specific tool is a general notion for some special kinds
of tools: document search engine, group definition tool, knowledge structure
definition tool, collaboration protocol definition tool, and session-based collaborative
process definition tool. In order to concentrate on the major features of the model, the
document search engine and the group definition tool will not be described formally.
They will be mentioned briefly when describing some operations. The knowledge
structure definition tool, collaboration protocol definition tool, and session-based
collaborative process definition tool will be described in detail in the subsequent
chapters. In order to support specific learning tasks, more task-specific tools can be
developed and installed in different places to form different learning contexts. The
system is open for integrating new tools.

[DocumentSearchEngine GroupDefinitionTool]

[KnowledgeStructureDefinitionTool CollaborationProtocolDefinitionTool
SCPDefinitionTool]

SpecificTool ::= documentSearchEngine << DocumentSearchEngine >>
 | groupDefinitionTool << GroupDefinitionTool >>
 | knowlegeStructureDefinitionTool << KnowlegeStructureDefinitionTool >>
 | collaborationProtocolDefinitionTool <<CollaborationProtocolDefinitionTool >>
 | scpDefinitionTool << SCPDefinitionTool >>

Definition (Tool): A tool represents a general notion of ways that can be used to deal
with documents, to interact with other actors, and so on. A tool may be a document
editor, a bookshelf, a message box, a chatboard, a phone, a speaker, a conversation
tool, a suitcase, a calendar, and a specific tool. Note that some types of tools such as
chatboard, phone, speaker, conversation tool, and suitcase will not be formally
described in this thesis. Some specific types of tools will be discussed in the
subsequent sections in detail.

Tool ::= documentEditor << DocumentEditor >>

| bookshelf << Bookshelf >>
| messageBox << MessageBox >>
| chatboard << Chatboard >>
| calendar << Calendar >>
| phone << Phone >>
| speaker << Speaker >>
| conversationTool << ConversationTool >>
| suitcase << Suitcase >>
| specificTool << SpecificTool >>

 70

Definition (Tool Base): A tool base contains all tools and their relationships. Editor
with computer type can connect to and be connected by other computers.

┌─ ToolBase ──
│editors : ℙ DocumentEditor
│bookshelves : ℙ Bookshelf
│messageBoxes : ℙ MessageBox
│calendars : ℙ Calendar
│specificTools : ℙ SpecificTool
│connectedTo : DocumentEditor DocumentEditor
├─────────────────────────────
│ ∀ x, y : DocumentEditor | (x, y) ∈ connectedTo •
│ (x.type = computer ∧ y.type = computer)
└───

4.3.3.1.5 Virtual Institute and Learning Context

Definition (Virtual Institute): A virtual institute is defined as an abstract state that
consists of four parts and their relations. An actor is located only in one place or is not
present in the institute. Each editor is located in a place and has a document to be
currently viewed and edited. An editor can be used by multiple users and a user can
work on multiple editors. The number of users of a private editor is limited to one at a
point in time. Each bookshelf is located in a place and two bookshelves can not be
located in the same place. Some documents are stored in bookshelves. Each message
box is located in a place and two message boxes can not be located in the same place.
Some documents are stored in message boxes. A document must be in a place. Each
calendar is located in a place and two calendars are not allowed to be located in the
same place. Each specific tool is located in a place. If a document is somewhere in a
place, it may be in the bookshelf installed in this place, or may be currently edited in
an editor installed in this place, or may be in the message box installed in this place.
However, it must be in one and only one type of tool. A private editor can be used at
maximum one user at a point in time.

┌─ VirtualInstitute ─────────────────────────────────────
│InstituteSpace
│Community
│HyperdocumentBase
│ToolBase
│actorLocation : Actor Place
│editorLocation : DocumentEditor → Place
│currentDoc : DocumentEditor → Document
│usedBy : DocumentEditor ↔ Actor
│bookshelfLocation : Bookshelf Place
│storedIn : Document Bookshelf
│messageBoxLocation : MessageBox Place
│inMessageBox : Document MessageBox

 71

│somewhereIn : Document → Place
│calendarLocation : Calendar Place
│specificToolLocation : SpecificTool → Place
├─────────────────────────────
│dom actorLocation ⊆ actors ∧ ran actorLocation ⊆ places
│dom somewhereIn = documents ∧ ran somewhereIn ⊆ places
│dom usedBy ⊆ dom currentDoc = dom editorLocation = editors
│ran storedIn ⊆ dom bookshelfLocation = bookshelves
│ran inMessageBox ⊆ dom messageBoxLocation = messageBoxes
│
│∀ p : Place; d : Document | (d ↦ p) ∈ somewhereIn •
│ d ∈ dom (storedIn ⊲dom (bookshelfLocation ⊲ {p})) ∨
│ d ∈ ran (dom (editorLocation ⊲ {p}) ⊳ currentDoc) ∨
│ d ∈ dom (inMessageBox ⊲dom (messageBoxLocation ⊲ {p}))
│
│∀ p : Place | p ∈ places • < dom (storedIn ⊲dom (bookshelfLocation ⊲ {p})),
│ ran (dom (editorLocation ⊲ {p}) ⊳ currentDoc),
│ dom (inMessageBox ⊲dom (messageBoxLocation ⊲ {p}))>
│ partition (dom (somewhereIn ⊲ {p})
│
│ ∀ p : DocumentEditor | p.type = privateEditor • # (p ⊳ usedBy) ≤ 1
└───

Definition (Learning Context): A learning context is defined by a root place and
other places contained directly and indirectly by the root place including the entities
(e.g., actors, document, and tools) currently existing in these places. A learning
context specifies a situation where necessary resources are provided or prepared for
performing certain kinds of learning actions. The learning context is dynamic and
evolves over time.

A virtual institute is the overall learning context in which all learning-related activities
occur. A building with agents, documents, and tools is regarded as a learning context
too, in which some specific actions will be carried out. For example, the system’s
functionality to store, search, borrow, and return documents is distributed across
different rooms which are grouped as a building, called library. Instructional buildings
can be used to organize relevant rooms that may be created for a course, for the actors
who have the same learning interest, for solving a given problem, for a project, etc. A
room is also created for a certain purpose so that necessary tools and relevant
documents are arranged in the room and it is assigned to relevant agents. Such a room
is also regarded as a learning context, in which specific actions such as lecture,
discussing, chatting, designing, inquiring, and doing homework can be carried out.

┌─ LearningContext ────────────────────────────────────
│ VirtualInstitute
│ root : Place

 72

├─────────────────────────────
│ root ∈ places
│ { p : Place | (root ↦ p) ∈ contains⁺ • p }
│ actorLocation ⊲{ p : Place | (root ↦ p) ∈ contains⁺ • p }
│ somewhereIn ⊲{ p : Place | (root? ↦ p) ∈ contains⁺ • p }
│ editorLocation ⊲{ p : Place | (root? ↦ p) ∈ contains⁺ • p }
│ bookshelfLocation ⊲{ p : Place | (root? ↦ p) ∈ contains⁺ • p }
│ messageBoxLocation ⊲{ p : Place | (root? ↦ p) ∈ contains⁺ • p }
│ calendarLocation ⊲{ p : Place | (root? ↦ p) ∈ contains⁺ • p }
└───

There are two kinds of relationship between contexts: nested context and connected
context. If a learning context contains other learning contexts, these learning contexts
are called nested contexts. Connected contexts denote two or more learning contexts,
which are connected in certain ways so that people can navigate among them. For
example, the library and instructional buildings are connected contexts. People can go
to the library and borrow documents and then go to an instructional building to take a
course.

│ _isNested_ : LearningContext LearningContext
│ _isConnected_ : LearningContext LearningContext
├─────────────────────────────
│ _isNested_ = {∀ c 1 , c 2 : LearningContexts |
│ c 1 .root ⊆ c 2 .root •
│ c 1 ↦ c 2 }
│
│_isConnected_= {∀ c 1 , c 2 : LearningContexts |
│ (∃ commonParent : places |
│ (commonParent ↦ c 1 .root) ∉ contains ∧
│ (commonParent ↦ c 2 .root) ∉ contains) •
│ c 1 ↦ c 2 }

Up to now the major data types and abstract states are defined. We can now start
defining the various operations that make up a virtual institute.

4.3.3.2 Construction and Change of Learning Contexts

Starting from this subsection, the operations on the defined abstract states are
specified formally. This specification is not complete. We ignore error conditions, so
that each operation is described as a partial operation. The preconditions of the partial
operations are described as predicates that relate the input and output variables. In
addition, some operations are ignored as well, because they are not important or are
similar to another operation described. A learning context is a part of the virtual
institute abstract state and the whole virtual institute itself is a learning context.

 73

Therefore, we only describe the operations on a virtual institute. First of all, we
describe the initial state of a virtual institute.

4.3.3.2.1 Initial State of A Virtual Institute

The initial state of a virtual institute is specified by the following schema.

┌─ InitVirtualInstitute ─────────────────────────────────
│ VirtualInstitute’
├─────────────────────────────
│ dw1 = = (µ DoorView | name = ‘admin.’)
│ dw 2 = = (µ DoorView | name = ‘library’)
│ dw 3 = = (µ DoorView | name = ‘dormitory’)
│ dw 4 = = (µ DoorView | name = ‘instruct.’)
│ dw 5 = = (µ DoorView | name = ‘campus’)
│ dw 6 = = (µ DoorView | name = ‘campus’)
│ dw 7 = = (µ DoorView | name = ‘campus’)
│ dw 8 = = (µ DoorView | name = ‘campus’)
│ dw 9 = = (µ DoorView | name = ‘room for definition tools’)
│ dw10 = = (µ DoorView | name = ‘room for searching document’)
│ dw11 = = (µ DoorView | name = ‘admin.’)
│ dw12 = = (µ DoorView | name = ‘library’)
│
│ c = = (µ Place | name = ‘campus’ ∧
│ placeType = campus ∧
│ owner = ∅)
│ a = = (µ Place | name = ‘admin.’ ∧
│ placeType = administrationalBuilding ∧
│ owner = ∅)
│ l = = (µ Place | name = ‘library’ ∧
│ placeType = library ∧
│ owner = ∅)
│ d = = (µ Place | name = ‘dormitory’ ∧
│ placeType = dormitory ∧
│ owner = ∅)
│ i = = (µ Place | name = ‘instruct.’ ∧
│ placeType = instructionalBuilding ∧
│ owner = ∅)
│ dr = = (µ Place | name = ‘room for definition tools’ ∧
│ placeType = specificRoom ∧
│ owner = ∅)
│ sr = = (µ Place | name = ‘room for searching document’ ∧
│ placeType = instructionalBuilding ∧
│ owner = ∅)

 74

│
│ d1= = (µ Door | status = true ∧ doorType = concrete)
│ d 2 = = (µ Door | status = true ∧ doorType = concrete)
│ d 3 = = (µ Door | status = true ∧ doorType = concrete)
│ d 4 = = (µ Door | status = true ∧ doorType = concrete)
│ d 5 = = (µ Door | status = true ∧ doorType = concrete)
│ d 6 = = (µ Door | status = true ∧ doorType = concrete)
│
│ places’ = {c, a, l, d, i, dr, sr }
│ campus’ = c
│ dormitory’ = d
│ contains’ = {c ↦ a, c ↦ l, c ↦ d, c ↦ i, a ↦ dr, l ↦ sr}
│ hasDoorView’ = {c ↦ { dw1, dw 2 , dw 3 , dw 4 },
│ a ↦ { dw 5 , dw 9 },
│ l ↦ { dw 6 , dw10 },
│ d ↦ { dw 7 },
│ i ↦ { dw 8 },
│ dr ↦ { dw11 },
│ sr ↦ { dw12 }}
│ approach’ = { dw1↦ d1 , dw 5↦ d1 , dw 2↦ d 2 , dw 6 ↦ d 2 ,
│ dw 3 ↦ d 3 , dw 7 ↦ d 3 , dw 4↦ d 4 , dw 8 ↦ d 4 ,
│ dw 9 ↦ d 5 , dw11 ↦ d 5 , dw10 ↦ d 6 , dw12 ↦ d 6 }
│ connect’ = {(d1, c ↦ a), (d 2 , c ↦ l), (d 3 , c ↦ d),
│ (d 4 , c ↦ l), (d 5 , a ↦ dr), (d 6 , l ↦ sr) }
│ aGroupDefinitionTool = = (µ GroupDefinitionTool)
│ aKnowledgeStructureDefinitionTool = = (µ KnowledgeStructureDefinitionTool)
│ aCollaborationProtocolDefinitionTool = = (µ CollaborationProtocolDefinitionTool)
│ aDocumentSearchEngine = = (µ DocumentSearchEngine)
│ aSCPDefinitionTool = = (µ SCPDefinitionTool)
│ specificToolLocation’ = {aGroupDefinitionTool ↦ dr,
│ aKnowledgeStructureDefinitionTool ↦ dr,
│ aCollaborationProtocolDefinitionTool ↦ dr,
│ aSCPDefinitionTool ↦ dr,
│ aDocumentSearchEngine ↦ sr }
│agent’ = ∅
│document’ = ∅
│actorLocation’ = ∅
│editorLocation’ = ∅
│bookshelfLocation’ = ∅
│messageBoxLocation’ = ∅
│calendarLocation’ = ∅

 75

│somewhereIn’ = ∅
│currentDoc’ = ∅
│usedBy’ = ∅
│storedIn’ = ∅
│inMessageBox’ = ∅
│connectedTo’ = ∅
└───

The initial state of a virtual institute is the state generated by applying the
initialization operation when creating a new virtual institute. The system creates a set
of door views, a set of places including campus and dormitory, a set of doors, a set of
specific tools. The relations among these entities are also generated. However, the set
of agents and the set of document are still empty. Editor, bookshelf, message box, and
calendar are not installed in any place.

4.3.3.2.2 Login/logout, Movement, and Construction of Institute Space

When a user login in a virtual institute, the system will check whether a user with that
name login in the virtual institute for the first time by using a predicate ∀ a : Actor | a
∈ actors • userName? ≠ a.name. If the predicate is true, this user will be regarded as a
newcomer. Otherwise, the user is already a member of actors in this virtual institute.
Therefore two alternative operations are described for the login operation. That is,

Login ≙ LoginFirstTime ∨ LoginAgain.

When a user logs in to a virtual institute for the first time, the user will be registered
in the virtual institute as a new actor and a home will be created for the actor. Some
variables change such as actors (adding the newcomer), places (adding the newly
created home), bookshelfLocation (a new bookshelf is installed in the home). Some
variables keep unchanged such as groups.

┌─ LoginFirstTime ─────────────────────────────────────
│ ∆ VirtualInstitute
│ userName? : STRING
├─────────────────────────────
│ ∀ a : Actor | a ∈ actors • userName? ≠ a.name
│
│ newcomer = = (µ Actor | name = userName?)
│ homeEntrance = = (µ DoorView | name = userName?)
│ homeExit = = (µ DoorView | name = ‘dormitory’)
│ userHome = = (µ Place | name = userName? ∧
│ placeType = home ∧
│ owner = newcomer)
│ homeDoor = = (µ Door | status = true ∧ doorType = concrete)
│ aBookshelf = = (µ Bookshelf)
│ aCalendar = = (µ Calendar)
│ aMessageBox = = (µ MessageBox)
│

 76

│ actors’ = actors ∪ { newcomer }
│ groups’ = groups
│ agents’ = agents ∪ { newcomer }
│ actorLocation’ = actorLocation ∪ { a ↦ campus }
│ places’ = places ∪ { userHome }
│ contains’ = contains ∪ { dormitory ↦ userHome }
│ hasDoorView’ = hasDoorView ∪ { dormitory ↦
│ (second ({dormitory}⊳ hasDoorView) ∪ { homeEntraince }),
│ userHome ↦ { homeExit }}
│ approach’ = approach ∪
│ { homeEntraince ↦ userHome, homeExit ↦ dormitory }
│ connect’ = connect ∪ {(homeDoor, dormitory ↦ userHome)}
│ bookselfLocation’ = bookshelfLocation ∪ { aBookshelf ↦ userHome }
│ calendarLocation’ = calendarLocation ∪ { aCalendar ↦ userHome }
│ messageBoxLocation’ = messageBoxLocation ∪ { aMessageBox ↦ userHome }
│ editorLocation’ = editorLocation
│ somewhereIn’ = somewhereIn
│ currentDoc’ = currentDoc
│ usedBy’ = usedBy
│ storedIn’ = storedIn
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
└───

When a user who has registered in the virtual institute logins again, only the function
actorLocation adds a new member that represents the actor is in the campus. In order
to shorten the description of this operation, a schema is defined.

∆ ActorChangeLocation ≙ Ξ VirtualInstitute \ (actorLocation, actorLocation’) ∧
∆ VirtualInstitute

Here, hiding a particular before and after component in Ξ VirtualInstitute \
(actorLocation, actorLocation’) gives a before and after state that does not have
actorLocation and actorLocation’, but still has all the other components, unchanged.
Conjoining this with ∆ VirtualInstitute reintroduces the declaration of actorLocation
and actorLocation’, and any predicate involving them, but does not include the
predicate actorLocation = actorLocation’. Hence Ξ VirtualInstitute \ (actorLocation,
actorLocation’) ∧ ∆ VirtualInstitute is a schema describing a before and after state of
VirtualInstitute that includes all the constructs on VirtualInstitute and
VirtualInstitute’, and in addition has all the components, except actorLocation,
unchanged.

 77

┌─ LoginAgain ─────────────────────────────────────
│ ∆ ActorChangeLocation
│ userName? : STRING
├─────────────────────────────
│ {∃ a : Actor | a ∈ actors • userName? = a.name }
│
│ actorLocation’ = actorLocation ∪ { a ↦ campus }
└───

An actor can move from one place to another place by choosing a door view. For a
successful movement, the door view should belong to the place in which the actor is
currently located and the status of the door referred by the door view should be
‘open’. The movement also depends on the type of the door. If the predicate is not
met, an operation will handle the error. The combination of these two operations is the
complete description for the move operation. That is,

Move ≙ MoveOK ∨ MoveError

Here, only the successful move operation is described.

┌─ MoveOK ─────────────────────────────────────
│ ∆ ActorChangeLocation
│ a? : Actor
│ doorView? : DoorView
├─────────────────────────────
│ {a?}⊳ actorLocation ≠ ∅ ∧ doorView? ∈ hasDoorView (|{a?}⊳ actorLocation |)
│ ∧ (approach doorView?).status = true
│
│ actorLocation’ = actorLocation ⊕ { a? ↦
│ if (approach doorView?).doorType = concrete
│ then if actorLocation a? = first (approach connect doorView?)
│ then second (approach connect doorView?)
│ else first (approach connect doorView?)
│ else second (approach connect doorView?) }
│ places’ = places
│ contains’ = contains
│ hasDoorView’ = hasDoorView
│ approach’ = approach
│ connect’ = connect
│ actorLocation’ = actorLocation
└───

When an actor leaves the virtual institute in which the actor logged in, s/he will leave
from the place in which the actor is located and the editors in which the actor
currently works.

 78

┌─ Logout ─────────────────────────────────────
│ ∆ ActorChangeLocation
│ a? : Actor
├─────────────────────────────
│ {a?}⊳ actorLocation ≠ ∅
│
│ actorLocation’ = { a } actorLocation
│ usedBy’ = usedBy { a }
│ editorLocation’ = editorLocation
└───

It is allowed for an actor to create a new instructional building in the campus, or to
create a public room in an instructional building.

∆ InstituteSpaceChange ≙ [∆ VirtualInstitute; Ξ ToolBase; Ξ Community;
Ξ HyperdocumentBase]

┌─ CreateInstructionalBuildingOK ────────────────────────────
│ ∆ InstituteSpaceChange
│ a? : Actor
│ buildingName? : STRING
├─────────────────────────────
│ {a?}⊳ actorLocation ≠ ∅ ∧ actorLocation a? = campus
│
│ buildingEntrance = = (µ DoorView | name = buildingName?)
│ buildingExit = = (µ DoorView | name = (actorLocation a?).name)
│ newBuilding = = (µ Place | name = buildingName? ∧
│ placeType = instructionalBuilding ∧
│ owner = a?)
│ buildingDoor = = (µ Door | status = true ∧ doorType = concrete)
│
│ places’ = places ∪ { userHome }
│ contains’ = contains ∪ { campus ↦ newBuilding }
│ hasDoorView’ = hasDoorView ∪ { campus ↦
│ (second ({campus}⊳ hasDoorView) ∪ { buildingEntrance }),
│ newBuilding ↦ { buildingExit }}
│ approach’ = approach ∪
│ { buildingEntrance ↦ newBuilding, buildingExit ↦ campus }
│ connect’ = connect ∪ {(buildingDoor, (actorLocation a?) ↦ newBuilding)}
│ actorLocation’ = actorLocation
│ bookselfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ editorLocation’ = editorLocation
│ somewhereIn’ = somewhereIn
│ currentDoc’ = currentDoc
│ usedBy’ = usedBy

 79

│ storedIn’ = storedIn
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
└───

┌─ CreatePublicRoomOK ─────────────────────────────────
│ ∆ InstituteSpaceChange
│ a? : Actor
│ roomName? : STRING
├─────────────────────────────
│ {a?}⊳ actorLocation ≠ ∅ ∧
│ ((actorLocation a?).placeType = instructionalBuilding
│ ∨ (actorLocation a?).placeType = publicRoom)
│
│ roomEntrance = = (µ DoorView | name = roomName?)
│ roomExit = = (µ DoorView | name = (actorLocation a?).name)
│ newRoom = = (µ Place | name = roomName? ∧
│ placeType = publicRoom
│ owner = ?)
│ roomDoor = = (µ Door | status = true ∧ doorType = concrete)
│ aBookshelf = = (µ Bookshelf)
│ aCalendar = = (µ Calendar)
│ aMessageBox = = (µ MessageBox)
│
│ places’ = places ∪ { newRoom }
│ contains’ = contains ∪ { (actorLocation a?) ↦ newRoom }
│ hasDoorView’ = hasDoorView ∪ { (actorLocation a?) ↦
│ (second ({actorLocation a?}⊳ hasDoorView) ∪ { roomEntrance }),
│ newRoom ↦ { roomExit },
│ approach’ = approach ∪
│ { roomEntraince ↦ newRoom, roomExit ↦ (actorLocation a?) }
│ connect’ = connect ∪ {(roomDoor, (actorLocation a?) ↦ newRoom)}
│ bookselfLocation’ = bookshelfLocation ∪ { aBookshelf ↦ newRoom }
│ calendarLocation’ = calendarLocation ∪ { aCalendar ↦ newRoom }
│ messageBoxLocation’ = messageBoxLocation ∪ { aMessageBox ↦ newRoom }
│ actorLocation’ = actorLocation
│ bookselfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ editorLocation’ = editorLocation
│ somewhereIn’ = somewhereIn
│ currentDoc’ = currentDoc
│ usedBy’ = usedBy
│ storedIn’ = storedIn
│ inMessageBox’ = inMessageBox

 80

│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
└───

All doors are open when being created. An actor can close a door and open again if
the actor is the owner of the place of the inside door. Here is the successful operation
for closing a door

┌─ CloseDoorOK ─────────────────────────────────────
│ ∆ InstituteSpaceChange
│ a? : Actor
│ doorView? : DoorView
├─────────────────────────────
│ {a?}⊳ actorLocation ≠ ∅ ∧
│ doorView? ∈ ran ({actorLocation a?}⊳ hasDoorView) ∧
│ (approach doorView?).status = true ∧
│ ((approach doorView?).doorType = concrete ∧
│ (second (approach connect doorView?)).owner = a?) ∨
│ (approach doorView?).doorType = virtual)
│
│ (approach doorView’).status = false
│ places’ = places
│ contains’ = contains
│ hasDoorView’ = hasDoorView
│ approach’ = approach
│ connect’ = connect
│ actorLocation’ = actorLocation
│ bookselfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ editorLocation’ = editorLocation
│ somewhereIn’ = somewhereIn
│ currentDoc’ = currentDoc
│ usedBy’ = usedBy
│ storedIn’ = storedIn
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
└───

Some operations such as creating a virtual door, moving forward and backward, and
removing a place are ignored, because the specification of these operations is similar
to those for operating a concrete door, except for being only an uni-directed
connection.

 81

4.3.3.2.3 Community Operations

Actors can define the community structure of a virtual institute by using the group
definition tool. The community structure defined in this way represents the formal
structure among agents, such as organizations, project teams, and roles. These groups
do not refer to the concept of communities of practice defined in situated learning
theory. Communities of practice are formed and developed by actors informally in a
virtual institute. The groups defined here will be used to define PBL protocols and
PBL-plan (see section 4.5 and 4.6).

The operation of CreateGroup will add a new group in the community.

┌─ CreateGroupOK ────────────────────────────────────
│ ∆ Community
│ name? : STRING
├─────────────────────────────
│ ∀ g : Group | g ∈ groups • g.name ≠ name?
│
│ let newGroup = = (µ Group | name = name?) •
│ groups’ = groups ∪ {newGroup}∧ agents’ = agents ∪ {newGroup}
│ aMemberOf’ = aMemberOf
│ aSubGroupOf’ = aSubGroupOf
│ actors’ = actors
└───

Defining a sub-group of a group is done by performing a JoinGroup operation. It is
important to note that the sub-group to be defined can not be a group that is a parent
directly or indirectly of the other group.

┌─ JoinGroupOK ─────────────────────────────────────
│ ∆ Community
│ childGroup?, parentGroup? : Group
├─────────────────────────────
│ childGroup? ∈ groups ∧ parentGroup? ∈ groups
│ ∧ (childGroup? ↦ parentGroup?) ∉ aSubGroupOf
│ ∧ (parentGroup? ↦ childGroup?) ∉ (aSubGroupOf �)⁺
│
│ actors’ = actors
│ groups’ = groups
│ agents’ = agents
│ aMemberOf’ = aMemberOf
│ aSubGroupOf’ = aSubGroupOf ∪ {childGroup? ↦ parentGroup?}
└───

A LeaveGroupOK operation describes the situation in which a sub-group of another
group is no longer a sub-group of the other group.

┌─ LeaveGroupOK ─────────────────────────────────────
│ ∆ Community

 82

│ childGroup?, parentGroup? : Group
├─────────────────────────────
│ childGroup? ∈ groups ∧ parentGroup? ∈ groups
│ ∧ (childGroup? ↦ parentGroup?) ∈ aSubGroupOf
│
│ actors’ = actors
│ groups’ = groups
│ agents’ = agents
│ aMemberOf’ = aMemberOf
│ aSubGroupOf’ = aSubGroupOf \ {childGroup? ↦parentGroup?}
└───

The DissolveGroupOK operation is used to remove a group. For example, if a project
is finished, then the project team will dissolve.

┌─ DissolveGroupOK ───────────────────────────────────
│ ∆ Community
│ g? : Group
├─────────────────────────────
│ g? ∈ groups
│
│ actors’ = actors
│ groups’ = groups \ {g?}
│ agents’ = agents \ {g?}
│ aMemberOf’ = aMemberOf {g?}
│ aSubGroupOf’ = {g?} aSubGroupOf {g?}
└───

When an actor participates in a group or ends participation in a group, the operations
ParticipateInGroupOK and EndParticipationInGroupOK are used.

┌─ ParticipateInGroupOK ─────────────────────────────────
│ ∆ Community
│ a? : Actor
│ g? : Group
├─────────────────────────────
│ a? ∈ actors ∧ g? ∈ groups ∧ (a? ↦ g?) ∉ isMemberOf
│ aMemberOf’ = aMemberOf ∪ {a? ↦ g?}
│ aSubGroupOf’ = aSubGroupOf
│ actors’ = actors
│ groups’ = groups
│ agents’ = agents
└───

┌─ EndParticipationInGroupOK ─────────────────────────────
│ ∆ Community
│ a? : Actor
│ g? : Group

 83

├─────────────────────────────
│ a? ∈ actors ∧ g? ∈ groups ∧ (a? ↦ g?) ∈ isMemberOf
│ aMemberOf’ = aMemberOf \ {a? ↦ g?}
│ aSubGroupOf’ = aSubGroupOf
│ actors’ = actors
│ groups’ = groups
│ agents’ = agents
└───

4.3.3.2.4 Tool Operation

Actors can change a learning context by installing or removing tools. Installing any
types of tools leads to a similar change of states. Hence, only the operations to install
and remove a document editor are described.

Most of the operations will change the state of the virtual institute. However, some
operations change only one of components such as Editors or Bookshelves. Hence the
following schemas are useful to shorten the description.

∆ ToolAndDocumentChange ≙ [∆ VirtualInstitute; Ξ InstituteSpace; Ξ Community]

┌─ CreateEditorOK ────────────────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ e? : DocumentEditor
│ type? : EditorType
├─────────────────────────────
│ e? ∉ dom editorLocation ∧
│{a?}⊳ actorLocation ≠ ∅ ∧ actorLocation a? ≠ campus
│
│ newDocument = = (µ Document | title = ∅ ∧
│ owner = a? ∧
│ topic = ∅ ∧
│ texts = ∅ ∧
│ tables = ∅ ∧
│ images = ∅)
│
│ e’.type = type?
│ e’.history = {1 ↦ newDocument }
│
│ editorLocation’ = editorLocation ∪ { e? ↦ actorLocation a? }
│ currentDoc’ = currentDoc ∪ { e? ↦ newDocument }
│ usedBy’ = usedBy ∪ { e? ↦ a? }
│ somewhereIn’ = somewhereIn ∪ { newDocument ↦ actorLocation a? }
│ documents’ = documents ∪ { newDocument }

 84

│ documentRefs’ = documentRefs ∪ { newDocument ↦ ∅ }
│ referTo’ = referTo
│ actorLocation’ = actorLocation
│ bookselfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ storedIn’ = storedIn
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
└───

┌─ RemoveEditorOK ───────────────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ e? : DocumentEditor
├─────────────────────────────
│ e? ∈ dom editorLocation ∧ ({e?}⊳ usedBy) {a?} = ∅ ∧
│ ((e?.type = computer ∧ e? ∉ ran connectedTo) ∨ e?.type ≠ computer)
│
│ editorLocation’ = editorLocation \ { e? ↦ actorLocation a? }
│ currentDoc’ = currentDoc \ { e? ↦ currentDoc e?}
│ usedBy’ = usedBy \ { e? ↦ a? }
│ storedIn’ = storedIn ∪
│ { currentDoc e? ↦ first (bookshelfLocation ⊲{actorLocation a?})}
│ actorLocation’ = actorLocation
│ bookselfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ specificToolLocation’ = specificToolLocation
│ somewhereIn’ = somewhereIn
│ inMessageBox’ = inMessageBox
│ connectedTo’ = connectedTo
│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
└───

4.3.3.2.5 Handling Documents

Documents are created by using document editors. As described above, creating a
new document editor will create a document. Another way to create a new document
is to create a reference to the new document in the currently edited document of the
editor. Documents in a virtual institute are connected and form hyperdocuments. A
document reference and the referred document are created together.

 85

┌─ CreateReferenceAndDocumentOK ──────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ editor? : DocumentEditor
│ referenceName? : STRING
│ topic? : STRING
├─────────────────────────────
│ {editor?}⊳ usedBy ⊲{a?} ≠ ∅
│
│ docRef = = (µ DocumentReference | name = referenceName?)
│ newDoc = = (µ Document | title = referenceName?
│ topic = topic? ∧
│ owner = a? ∧
│ text = ∅ ∧
│ tables = ∅ ∧
│ images = ∅)
│ documents’ = documents ∪ { newDoc }
│ documentRefs’ = documentRefs ⊕ { (currentDoc editor?) ↦
│ second ({currentDoc editor?}⊳ documentRefs) ∪ { docRef } }
│ referTo’ = referTo ∪ { docRef ↦ newDoc }
│ actorLocation’ = actorLocation
│ editorLocation’ = editorLocation
│ bookshelfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ currentDoc’ = currentDoc
│ usedBy’ = usedBy
│ somewhereIn’ = somewhereIn ∪ { newDoc ↦ actorLocation a? }
│ storedIn’ = storedIn
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
└───

Users can jointly edit a document by adding, removing, or modifying media objects in
the content of the document. We take the specification of operation to add a media
object as an example for all these operations.

┌─ CreateAMediaObjectInDocumentOK ───────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ editor? : DocumentEditor
│ doc? : Document
│ object? : MediaObject
├─────────────────────────────
│ {editor?}⊳ usedBy ⊲{a?} ≠ ∅
│
│ doc’.content = doc?.content ∪ {object?}

 86

│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
│ actorLocation’ = actorLocation
│ editorLocation’ = editorLocation
│ bookshelfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ currentDoc’ = currentDoc
│ usedBy’ = usedBy
│ somewhereIn’ = somewhereIn
│ storedIn’ = storedIn
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
└───

Actors who are using a document editor can navigate in the hyperdocument base by
following a link indicated by a document reference. The precondition of this operation
is that the actor is a current user of the editor and the document reference connects to
a document and can be found on the current editing page of the editor. After
performing this operation, the currently edited document of the editor will change to
the document referred to. The editing history will add a new item in the history queue.
The former currently edited document will be put back to the bookshelf installed in
the place in which the editor exists.

┌─ FollowReferenceOK ──────────────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ editor? : DocumentEditor
│ docReference? : DocumentReference
├─────────────────────────────
│ {editor?}⊳ usedBy ⊲{a?} ≠ ∅ ∧ docReference? ∈ dom referTo ∧
│ docReference? ∈ second (documentRefs ⊲ {currentDoc editor?})
│
│ currentDoc’ = currentDoc ⊕ { editor? ↦ referTo docReference?}
│ storedIn’ = storedIn ∪ { (currentDoc editor?) ↦
│ first (bookshelfLocation ⊲{actorLocation a?})}
│ \ { (referTo docReference?) ↦
│ first (bookshelfLocation ⊲{actorLocation a?})}
│ editor?.history’ = editor?.history⁀< referTo docReference?>
│ actorLocation’ = actorLocation
│ editorLocation’ = editorLocation
│ bookshelfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ usedBy’ = usedBy

 87

│ somewhereIn’ = somewhereIn
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
└───

As described above, if an actor removes a document editor or navigates to another
document, the previously edited document of the document editor will be put in the
bookshelf. A document stored in a bookshelf can be opened in two ways.

One way is to take a document from a bookshelf and open it in a new private
document editor. After this operation, a new editor is created and the document is the
currently edited document of the editor. The document should be removed from the
bookshelf.

┌─ TakeDocumentFromBookshelfOK ──────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ d? : Document
├─────────────────────────────
│{a?}⊳ actorLocation ≠ ∅ ∧
│ d? ∈ dom storedIn ⊲ dom bookshelfLocation ⊲{actorLocation a?}
│
│ let e = = (µ : DocumentEditor | type = privateEditor ∧ history = {1 ↦ d? })
│ editorLocation’ = editorLocation ∪ { e ↦ actorLocation a? }
│ currentDoc’ = currentDoc ∪ { e ↦ d? }
│ usedBy’ = usedBy ∪ { e ↦ a? }
│ storedIn’ = storedIn \{ d? ↦ first (bookshelfLocation ⊲{actorLocation a?})}
│ actorLocation’ = actorLocation
│ bookshelfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ specificToolLocation’ = specificToolLocation
│ somewhereIn’ = somewhereIn
│ inMessageBox’ = inMessageBox
│ connectedTo’ = connectedTo
│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
└───

Another way is to take a document from a bookshelf and put it on an existing
document editor, which takes the document as the currently edited document. The
document should be removed in the bookshelf, but the previous editing document of
the editor should be put into the bookshelf.

 88

┌─ DragDocumentDropInEditorOK ───────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ d? : Document
│ e? : DocumentEditor
├─────────────────────────────
│{a?}⊳ actorLocation ≠ ∅ ∧
│ d? ∈ dom (storedIn ⊲ dom (bookshelfLocation ⊲{actorLocation a?})) ∧
│ e? ∈ dom (editorLocation ⊲{actorLocation a?})
│
│ editorLocation’ = editorLocation
│ currentDoc’ = currentDoc ∪ { e ↦ d? }
│ storedIn’ = storedIn \ { d? ↦ first (bookshelfLocation ⊲{actorLocation a?})}
│ ∪ { (currentDoc e?) ↦
│ first (bookshelfLocation ⊲{actorLocation a?})}
│ e?.history = e?.history⁀< d?>
│ actorLocation’ = actorLocation
│ usedBy’ = usedBy
│ somewhereIn’ = somewhereIn
│ bookshelfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ inMessageBox’ = inMessageBox
│ specificToolLocation’ = specificToolLocation
│ connectedTo’ = connectedTo
│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
└───

Operations to take a document from and to put it into a message box are similar to the
operations described above, except that it is needed to choose a place or an actor as
the receiver of the document when sending it through the message box.

So far, the data types and some operations of a context-based virtual learning system
are formally described.

4.3.3.3 Awareness of Learning Context

The pre-condition of social interaction is that users are able to be aware of the
situation in which they are. As mentioned above, a virtual institute is designed as a
hypermedia structure, in which a place is modeled as a hypermedia node and actors,
documents, and tools located in the place are modeled as content elements of this
node. These elements are symbolically presented on the node. Displaying a
hypermedia node in the user interface visualizes a learning context. The advantage of

 89

this approach is that users of the system can intuitively be aware of and then interact
with the learning context. In addition, in such a hypermedia structure, doors are
created to connect places. These doors are established by placing 'door views’ as
navigation buttons on places. Compared to a list of isolated places, these door views
enable users to be aware of closely related places and to access to these places
conveniently. That is, hypermedia provides navigation facilities and guided tours,
which sequence access in ways that make the places and their contents more
meaningful. It also provides flexibility for users to reorganize places to form new
learning contexts.

Some awareness information can be computed according to the information
associated with the place in which an actor is located. These include:

1) Actors in the same place:

actorsInSamePlace = = { a : actors | {a}⊳ actorLocation ≠ ∅ •

dom (actorLocation ⊲ {actorLocation a}}

2) Tools available in the place:

toolsInSamePlace = = { a : actors | {a}⊳ actorLocation ≠ ∅ •

dom (editorLocation ⊲ {actorLocation a}) ∪
first (chatboardLocation ⊲ {actorLocation a}) ∪
dom (phoneLocation ⊲ {actorLocation a}) ∪
first (calendarLocation ⊲ {actorLocation a}) ∪
first (messageBoxLocation ⊲ {actorLocation a}) ∪
first (bookshelfLocation ⊲ {actorLocation a}) }

3) Who is working in which editor:

whoWorksOnEditor = = { a : actors | {a}⊳ actorLocation ≠ ∅ •

(dom (editorLocation ⊲ {actorLocation a})
⊳ usedBy }

Some information can be obtained by using simple enquiry operations. Two examples
are given below:

1) Which documents stored in the bookshelf installed in an actor’s location can be
computed by:

documentListInBookshelf = = { a : actors | {a}⊳ actorLocation ≠ ∅ •

dom (storedIn ⊲ first (bookshelfLocation ⊲ {actorLocation a}))}

2) The email address of another actor who is located in the same place can be
obtained by computing:

 90

emailAddrOfActor = = (a, another : actors | {a}⊳ actorLocation ≠ ∅ ∧

another ∈ dom (actorLocation ⊲ {actorLocation a} •
another.emailAddr)

Some indirect enquiry operations can be defined. Two examples are given below:

1) When an actor is reading a document and has questions about the content of the
document, s/he may want to ask someone who may be able to provide help. Potential
candidates can be computed by:

whoCanHelpMe = = (λ VirtualInstitute; d : Document •
 { Actor | θ Actor ∈ actors ∧ d.topic ∈ expertise • name })

2) The place in which the creator of a document is located now can be computed by:

whereIsOwnerOfDocument = = (λ VirtualInstitute; d : Document •
 if {d.owner}⊳ actorLocation ≠ ∅

then first ({d.owner}⊳ actorLocation)
 else ∅)

A lot of information about a document can be inquired by using a search engine in the
library. For examples, where is a given document? Who is the owner or the current
users of a given document? What are the documents stored in a given place or in the
suitcase of given actor? Which documents are related to a given topic?

Some awareness information is displayed as graphical elements in the user interface.
For example, an arrow with a label “talk” between two pictures of actors indicates
that these two actors are talking by means of a conversation tool. Some awareness
information is retrieved by clicking the graphical unit of the inquired entity and being
displayed in pop-up windows. For example, clicking on a picture of an actor leads to
poping up a window, which contains personal information of the actor such as name,
email address, telephone, expertises, and so on.

4.3.3.4 Social Interaction in a Learning Context

As Wenger [Wenger98] points out, members of a community are informally bound by
what they do together and what they learned through their mutual engagement in
these activities. Social interaction occurs in all stages of development of CoPs. At a
point in time, the users of a virtual learning environment may be distributed in
multiple virtual places of a virtual institute. Some of them work individually and
others may work in teams. It is possible that some users are not logged in the virtual
institute at this time, but they need interaction with each other as well. This subsection
describes how to support social interaction when the users are at the same/different
time present at the same/different virtual places. Note that geographically co-
locate/distributed users can work in the same or in different virtual places in a virtual
institute.

 91

4.3.3.4.1 Synchronous Interaction in the Same Virtual Place

By using the speaker tool installed in a virtual place, an actor can listen to and talk to
other people in the same virtual place. When an actor wants to make a private
conversation with somebody in the same place, s/he can start a conversation tool that
supports text-based communication between two conversation partners.

A whiteboard can be used to establish a synchronous session for all users in the same
place. Documents dragged onto the whiteboard can be edited collaboratively by using
a hypermedia document editor. Any change to the hypermedia document will be
propagated to other users’ windows, and all users navigate through the hypermedia
document together. As they do this, they share the same view of the document;
specifically, all users share one scrollbar and change pages simultaneously. This is a
pure WYSIWIS (What You See Is What I See) collaboration mode [Stefik86].

Furthermore, if users in the same virtual place want to split into two or more sub-
groups such that each sub-group works on different documents in a pure WYSIWIS
collaboration mode, then they can simply create a whiteboard for each sub-group and
drag the corresponding documents onto the whiteboard. If all sub-groups want to
work on the same document, but on different positions of the document, they can
create a whiteboard for each sub-group and drag a reference copy of the document
onto their whiteboards. In this case, users in the same sub-group work in a pure
WYSIWIS collaboration mode and people in different sub-groups work in a relaxed
WYSIWIS collaboration mode [Stefik86], but they all work on the same document.

4.3.3.4.2 Synchronous Interaction in different Virtual Places

There are a number of ways to communicate with somebody located in different
virtual places. By using a phone tool, an actor can establish audio channels with a
partner in a given virtual place.

A virtual computer is used as perceptual metaphor to establish a session for people in
different virtual places [Miao99b]. Users working in different virtual places can view
and edit the same document in a pure WYSIWIS collaboration mode without leaving
their current virtual places by connecting their virtual computers. When the common
activity is finished, they can cut the logical connection and then the mode of coupling
and sharing will recover to the mode before connection. Therefore, rich and flexible
forms of sharing information and of coupling of user interfaces are provided by using
virtual computers. The formal descriptions of the connection of computers and of
following a document reference in a virtual computer are given below.

┌─ ConnectComputersOK ─────────────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ c? : DocumentEditor
│ another? : DocumentEditor
│ p? : Place

 92

├─────────────────────────────
│{a?}⊳ actorLocation ≠ ∅ ∧ p? ∈ places ∧ actorLocation a? ≠ p? ∧
│ c? ∈ dom (editorLocation ⊲{ actorLocation a? }) ∧ c.type = computer ∧
│ another? ∈ dom (editorLocation ⊲{ p? }) ∧ another?.type = computer ∧
│ (c? ↦ another?) ∉ connectedTo
│
│ connectedTo’ = connectedTo ∪ { c? ↦ another? }
│ c?.history’ = c?.history⁀< currentDoc another?>
│ currentDoc’ = currentDoc ⊕ { c? ↦ currentDoc another? }
│ usedBy’ = usedBy
│ actorLocation’ = actorLocation
│ editorLocation’ = editorLocation
│ bookshelfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ specificToolLocation’ = specificToolLocation
│ inMessageBox’ = inMessageBox
│ somewhereIn’ = somewhereIn
│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
└───

┌─ FollowReferenceInComputersOK ───────────────────────────
│ ∆ ToolAndDocumentChange
│ a? : Actor
│ c? : DocumentEditor
│ docReference? : DocumentReference
├─────────────────────────────
│{a?}⊳ actorLocation ≠ ∅ ∧ c? ∈ dom (editorLocation ⊲{ actorLocation a? }) ∧
│ c?.type = computer ∧ c? ∉ dom connectedTo ∪ ran connectedTo
│ {c?}⊳ usedBy ⊲{a?} ≠ ∅ ∧ docReference? ∈ dom referTo ∧
│ docReference? ∈ second (documentRefs ⊲ {currentDoc editor?})
│
│ c?.history = c?.history⁀< referTo docReference?>
│ currentDoc’ = currentDoc ⊕ { c? ↦ referTo docReference?}
│
│ (∀ computer : DocumentEditor |
│ (c? ↦ computer) ∈ (connectedTo�)⁺ ∪ connectedTo⁺ •
│ computer.history = computer.history⁀< referTo docReference?> ∧
│ currentDoc’ = currentDoc ⊕ { computer ↦ referTo docReference?}
│
│ editorLocation’ = editorLocation
│ usedBy’ = usedBy
│ connectedTo’ = connectedTo

 93

│ actorLocation’ = actorLocation
│ bookshelfLocation’ = bookshelfLocation
│ calendarLocation’ = calendarLocation
│ messageBoxLocation’ = messageBoxLocation
│ specificToolLocation’ = specificToolLocation
│ inMessageBox’ = inMessageBox
│ somewhereIn’ = somewhereIn
│ documents’ = documents
│ documentRefs’ = documentRefs
│ referTo’ = referTo
└───

4.3.3.4.3 Asynchronous Interaction in the Same Virtual Place

The chatboard tool can also support asynchronous communication among users in the
same virtual place. A chatboard records all contributions of users of this tool as
permanent information, which can be retrieved at any time.

Another possiblity is to use a shared whiteboard. As mentioned above, a session can
be established by creating a shared whiteboard in a place. An actor can join the
session by clicking on the whiteboard icon, and a local window of the shared
whiteboard will open for the actor. Actors in this place can view and edit the same
document in the session via local window of the whiteboard. A user can leave a
session by closing his/her local window of the shared whiteboard. Even in the case
that all users leave the session, the session is still active. When someone joins the
session by openning a local window of the shared whiteboard later, s/he will find that
the working context keeps unchanged and can work continually. The session ends
when the shared whiteboard is removed. By using whiteboards, actors can
asynchronously collaborate in the same place.

4.3.3.4.4 Asynchronous Interaction in different Virtual Places

Message boxes can be used to transfer documents from one virtual place to another.
After being transferred, a document can be taken and used later on. Virtual computers
can also be used to establish an asynchronous session for users working in different
virtual places. A user can connect his/her virtual computer to a virtual computer
located in another place. The user of that virtual computer perhaps has already left the
session. However, the user can work in this session, and his change are recorded for
later use.

4.3.4 Related Work and Discussion

In the literature we find three categories of virtual learning environments: document-
based, conferencing-based, and room-based systems. In the following, we look briefly
at each of these systems and compare them to our approach of a context-based virtual
learning environment.

 94

Document-based learning systems primarily serve as a repository for documents and
control the access to documents. The users of this kind of systems can interact only
indirectly with each other by navigating through the information space, and by
viewing and manipulating information items in the shared database (e.g., CSILE
[Scardamalia94] and Collaboratory Notebook [Edelson94]). Unlike context-based
systems, these systems do not attempt to provide a very sophisticated context, but one
which is based mainly on a document structure and which supports limited social
interaction.

Conferencing-based systems support real-time learning activities such as CCL
[Koschmann90]. They support typical class and seminar style activities such as
discussion and lecture. For example, a PBL environment described in [Cameron99] is
based on Microsoft NetMeeting [Summers99]. Such a kind of systems are developed
by adopting conferencing-based approach. Unlike context-based systems, these
systems provide limited persistence of documents and do not support asynchronous
activities.

Room-based systems are often based on a number of isolated virtual rooms, which
often include a fixed set of embedded tools such as whiteboard, audio/video tools and
so on. Users in the same room can view and edit information items in a shared
workspace simultaneously, and they can talk to others and see others in the same
room (e.g., TeamRooms [Roseman96] and VITAL [Pfister98a]). It is important to
note that such systems are general-purpose virtual learning environments. Although
there is no PBL-specific support, they can be used to conduct PBL activities. Context-
based systems are derived from room-based systems, but both types of systems differ
in several aspects: Firstly, in room-based systems, the organization of people, and the
structure of documents (if any) rely on the structure of rooms, and tools belong to
certain rooms. In context-based systems, the organization of people and documents is
dynamic and flexible, rather than being fixed in a particular place. Some tools can
belong to actors and be carried around. Secondly, in room-based systems the room
structure and the internal structure of a room are rigid. In context-based systems, the
place structure and the internal structure of a place can be reorganized and customized
to establish a set of rich, dynamic, purpose-specific environments for situated
learning. For example, a driving school may consist of virtual lecture hall, virtual
practice grounds, and so on. Thirdly, in room-based systems, social interaction is
limited within the scope of certain rooms. In context-based systems, a context may be
formed beyond the boundaries of certain places. Thus, social interaction can be
carried out across places.

4.3.5 Summary

Based on the theory of situated learning, a context-based virtual learning environment
has been designed. The virtual learning environment enables the learners themselves
to create and modify their learning environments. They therefore provide a
customized learning context in which learning processes and communications
between learners can be situated. The characteristics of this approach are: the use of a
set of perceptual metaphors, the flexible combination of these metaphors within the
learning environment, and the support for awareness of the learning context and the

 95

social interaction within it. In this section, the design of a context-based learning
environment was specified formally.

The virtual institute metaphor allows users to reuse the culture existing in real
learning environments. The users of the context-based virtual learning environment
can intuitively use basic educational tools and learning resources as they do in real
learning environments. It is important to note that the virtual learning environment
described in this chapter is a general-purpose learning environment. That is, domain-
specific support hasn’t be mentioned. In fact, tools for acquiring and applying
domain-specific knowledge (such as experimental instruments for science learning)
are very important for supporting the idea of a context-based learning environment.
These tools should be provided when developing a domain-specific learning support
system.

4.4 PBL-net: An Activity-oriented, Graphical

Knowledge Representation Language for PBL

In section 4.1, it is suggested that the role of cultural mediation for the PBL activity
should be addressed when designing a virtual learning environment. In the last
section, a context-based approach for a virtual learning environment is presented. In
such a virtual learning environment a major part of the culture used in real learning
environments can be applied. This virtual learning environment can support many
forms of learning and many knowledge domains. However, in order to support
problem based learning, PBL-specific culture should be supported in a virtual learning
environment. Language is one of the important cultural factors. Thus, in this section
we discuss a knowledge representation language for PBL.

In order to perform a problem based learning activity collaboratively, participants
have to represent their ideas to other collaborators and understand others’ ideas so that
they can construct consistent, shared knowledge. A PBL-specific language is helpful
to exchange ideas and information within PBL communities. When performing
problem based learning in a virtual learning environment, rich communication
channels are lost. Exchanging ideas and information mainly relies on a shared
database in which the participants of a PBL activity externally represent their
knowledge and transfer information in an electronic form. A knowledge
representation method, which is used to organize ideas and information in such a
shared database, is crucial to facilitate mutual understanding and to construct shared
knowledge. There are some methods of knowledge representation available in the
education area such as Concept Maps [Jonassen93] and RESRA [Wan94a] [Wan94b].
However, these methods are designed to support traditional subject based learning.
According to [Woods96], PBL forces the learners to acquire knowledge in the context
of needing it to solve a problem. Consequently, knowledge is acquired in formats
different from subject based learning. In such traditional settings, knowledge is well
structured and learning materials are prepared in advance by the teachers before
transferring it in the form of a lecture presentation. In contrast, in PBL, knowledge is
ill-structured and constructed collaboratively by learners in the course of the learning
process. Some computer-supported PBL environments made initial efforts to provide
mechanisms to facilitate knowledge representation (e.g., Web-SMILE [Guzdial97]

 96

and Belvedere [Suthers97]). However, a systematic approach to develop a knowledge
representation method for PBL and a PBL-specific knowledge representation
language are still missing.

In this section, the main principles of constructivist and situated learning are
described. According to these principles, a model of collaborative learning is
developed. This model is used to derive requirements for the design of a graphical
knowledge representation method for collaborative learning. The main body of this
chapter describes an activity-oriented approach to knowledge representation for
learning. The approach is applied specifically to problem-based learning. Then we
compare our approach with other graphical knowledge representation methods for
education and with other problem-based learning support systems described in
Chapter 3. The last subsection summarizes the work described in this section.

4.4.1 Theoretical Background and

a Conceptual Model of Collaborative Learning

The theoretical background of the proposed model is based on two paradigms: firstly,
the constructivist paradigm, whereby learners actively construct their own knowledge
as they interact with the environment. They learn through conflicts and by socially
negotiating with others. The second paradigm is situated learning, which also stresses
the importance of the environment in which learning is carried out through purposeful
activities. In the following subsection the main principles of these two paradigms are
described.

4.4.1.1 The Constructivist Learning Perspective

From a constructivist view, learning is the process of constructing knowledge - not
merely acquiring it - in social environments [Brooks93]. Knowledge is socially
constructed and taken-to-be-shared within communities of learners [Roth92].
"Knowledge is a dialectical process the essence of which is that individuals have
opportunities to test their constructed ideas on others, persuade others of the virtue of
their thinking, and be persuaded" [Cognition and Technology Group at Vanderbilt
91]. “The role of education in a constructivist view is to show students how to
construct knowledge, to promote collaboration with others to show the multiple
perspectives that can be brought to bear on a particular problem, and to arrive at self-
chosen positions (emphasis added) to which they can commit themselves, while
realizing the basis of other views with which they may disagree" [Cunningham93].

John R. Savery and Thomas M. Duffy [Savery95] characterize the philosophical view
of constructivism in terms of three primary propositions that are listed as follows:

“1. Understanding is in our interactions with the environment. This is the core
concept of constructivism. We cannot talk about what is learned separately from how
it is learned, as if a variety of experiences all lead to the same understanding. Rather,
what we understand is a function of the content, the context, the activity of the
learner, and, perhaps most importantly, the goals of the learner. Since understanding
is an individual construction, we cannot share understandings but rather we can test

 97

the degree to which our individual understandings are compatible. An implication of
this proposition is that cognition is not just within the individual but rather it is a part
of the entire context, i.e., cognition is distributed.

2. Cognitive conflict or puzzlement is the stimulus for learning and determines the
organization and nature of what is learned. When we are in a learning environment,
there is some stimulus or goal for learning -- the learner has a purpose for being there.
That goal is not only the stimulus for learning, but it is a primary factor in
determining what the learner attends to, what prior experience the learner brings to
bear in constructing an understanding, and, basically, what under standing is
eventually constructed. In Dewey's terms it is the ‘problematic’ that leads to and is the
organizer for learning [Dewey38b] [Roschelle92]. For Piaget it is the need for
accommodation when current experience cannot be assimilated in existing schema
[Piaget77] [vonGlaserfeld89]. We prefer to talk about the learner's ‘puzzlement’ as
being the stimulus and organizer for learning since this more readily suggests both
intellectual and pragmatic goals for learning. The important point, however, is that it
is the goal of the learner that is central in considering what is learned.

3. Knowledge evolves through social negotiation and through the evaluation of the
viability of individual understandings. The social environment is critical to the
development of our individual understanding as well as to the development of the
body of propositions we call knowledge. At the individual level, other individuals are
a primary mechanism for testing our understanding. Collaborative groups are
important because we can test our own understanding and examine the understanding
of others as a mechanism for enriching, interweaving, and expanding our
understanding of particular issues or phenomena. As vonGlaserfeld [vonGlaserfeld89]
has noted, other people are the greatest source of alternative views to challenge our
current views and hence to serve as the source of puzzlement that stimulates new
learning.”

4.4.1.2 The Situated Learning Perspective

“The activities of a domain are framed by its culture. Their meaning and purpose are
socially constructed through negotiations among present and past members. Activities
thus cohere in a way that is, in theory, if not always in practice, accessible to members
who move within the social framework. These coherent, meaningful, and purposeful
activities are authentic. … Authentic activities then, are most simply defined as the
ordinary practices of the culture. … Within a culture, ideas are exchanged and
modified and belief systems developed and appropriated through conversation and
narratives” [Brown89].

According to [Education by Design], four important principles of situated learning are
as follows:

1) “Learning takes place through purposeful activities, driven by dilemma in

authentic situations.
2) Learners construct meaning in shared social contexts or in ‘communities of

practice.’
3) Learning occurs through direct engagement with objects and tools.

 98

4) Learning is the result of reflecting on experience, engaging in dialogue with
others, and negotiating meaning within specific contexts.”

Situated learning emphasizes learning by doing, in which the focus is on an activity
rather than simply on the subject content. Learning does not take place in the abstract
or in isolation, but in a rich learning context, where learners work in collaboration
with other learners.

4.4.1.3 A Conceptual Model of Collaborative Learning

The paragraphs below describe a conceptual model of collaborative learning, which is
developed according to the constructivist and situated learning principles outlined
above. The model focuses on the way in which both individual knowledge and shared
knowledge evolve during collaborative learning activities [Miao00a]. We do not
model collaborative learning in its entirety, but rather we focus specifically on the role
played by shared artifacts during collaborative learning. We then go on to use this
model to derive requirements for the design of a graphical knowledge representation
tool, which supports problem-based learning.

In Figure 4.6, the small circles at the top of the diagram represent the individual
memories of two people, while the big lower circle represents the shared artifact that
is collaboratively constructed by the learners. Both the knowledge which is held
inside individual memory and the information that is carried by the shared artifact,
can each be defined as being in one of two states: conflict or coherent. At the
individual level, the learner constructs new knowledge by integrating the new
information into his own cognitive structure. When new information contradicts
existing knowledge of the individual then we say that conflict occurs. The learner
must therefore reconcile the conflict, perhaps by modifying his cognitive structure. At
the group level, when one or more learners disagree with existing information in the
shared workspace then this also provides a conflict. In this case, the learners in the
group might negotiate together to decide how both perspectives can be represented in
the shared workspace. They will need to identify points of conflict, and then to
reconcile the conflict by discussing with one another.

The arrows between the shared artifact and the individual memories represent
information flow within the collaborative learning process. Information flows in two
directions. Firstly, individuals use the shared artifact to represent the knowledge that
they have, and want to communicate to the rest of the group. As a result of this
representation activity information is able to flow from the individual to the shared
artifact. Secondly, each learner explores the information that has been represented, by
themselves and by others, in the shared artifact. As a result, information flows from
the shared artifact to each individual.

Through the four activities of construction, representation, exploration and
negotiation, knowledge in the individuals’ minds and the information which is held in
the shared artifact evolve together throughout the collaborative learning process.

 99

Figure 4.6: Conceptual Model of Collaborative Learning Between Two Learners

4.4.2 Requirements

The shared artifact is an important part of the learning context in collaborative
learning processes. In conventional learning environments, the shared artifact is
usually carried on paper or blackboards and is recorded in the form of text, tables, or
diagrams, etc. The learners have rich communication channels with which to
exchange their ideas and negotiate knowledge face-to-face. However, in virtual
learning environments, because of the distribution of learners in time and space, and
the limitation of the communication channels, exchange of knowledge mainly relies
on the shared artifact being represented in an electronic form. An essential
requirement to support exchange of knowledge in such virtual environments is to
provide a shared workspace. Within the shared workspace learners can access and
construct a shared artifact. However, if the collection of information is ill-organized,
then this makes it difficult for learners to represent their knowledge, and to negotiate
and explore the information in the shared artifact.

It has been suggested that graphical knowledge representation methods can be used to
organize the information contained in shared artifacts [Suthers99a]. Such methods
should help the learners to clarify thinking, to represent and reflect on their
knowledge, to integrate new knowledge, to identify misconception, to detect points at
which their individual knowledge structures are in conflict, and thereby to pursue
common understanding and to build a coherent representation of their common
knowledge. We suggest that a method, which gives more explicit support for the
process of representation, negotiation, and exploration of information, will aid
collaborative learning.

 100

The construction activity cannot be directly facilitated by the system, but when we
support the other processes effectively, then the construction activity will benefit in
turn. We claim that a graphical knowledge representation method, which gives
effective support for representation, negotiation and exploration, will indirectly
improve the way in which learners individually construct their own knowledge.
Representation, negotiation and exploration are directly associated with the shared
artifact, which serves as a medium for communication and cooperation and provides a
group memory.

We now describe in more detail what is required from the graphical knowledge
representation method in order to support above three activities. Among the
requirements described below, some of them can be directly derived from the abstract
model of collaborative learning. Others have been identified in the chapter 3 and are
repeated here.

4.4.2.1 Support for Representation

To support the representation process, the following factors should be considered:

Types of knowledge. When the learning content is ill-structured, as for example in
PBL, the learners should be able to express their knowledge according to the activities
which they are carrying out. More specifically, the individual needs some way to
express why they are including a new piece of information, and what role this
information plays within the overall shared knowledge structure. It should be possible
to clarify the contribution that a particular piece of information makes to the overall
task. This could be achieved by allowing the learner to label their contributions.

Expressing relationships. In order to support learners to describe the role that each
piece of information plays in the whole, it is needed to allow them to build and label
relationships between their contributions.

Integrating associated information. Learners should be able to show how additional
information, which perhaps describes the wider context or gives more detail, relates to
the information displayed on the shared artifact.

Expressing perspective. Once two or more learners have created their contributions to
the shared artifact, each individual learner should be able to indicate the extent to
which they agree or disagree with the contributions made by others.

4.4.2.2 Support for Exploration

To support the exploration process, the following factors should be considered:

Providing an overview and point of access. Learners should be supported to have an
overall picture of the shared information that has been contributed by the group
members. In our view, this overview should also provide the access point from which
learners can reach all parts of the information carried in the shared artifact.

 101

Supporting search. Learners should be supported to search the information in the
shared artifact. For example they might search for the most recently contributed
information chunks, or for certain types of knowledge. In PBL, for example, learners
might want to view their learning goals in isolation, or simply to view problems and
their solutions. All other information could then be hidden. In this way the group
could focus on particular aspects of their task without interference from the wider
context.

Detecting conflict. The system should provide a visual indication of the points at
which conflict occurs. When exploring the information space, learners can then easily
see points they should further discuss with other learners, or gather more information.

Reusability. The knowledge in the shared artifact should be reusable for the learners
themselves at a later point in time, and could also serve as a source of information for
other interested learners who may not have originally contributed to the shared
artifact. The information in the shared artifact should be stored persistently, and
consideration should be given to the level of accessibility given to other interested
parties.

4.4.2.3 Support for Negotiation

To support the negotiation process, the following factors should be considered:

Automatically initiating negotiation process. In addition to measure conflict, the
system should be able to initiate negotiation processes automatically according to the
result of the measurement.

Conflict Resolution. Depending on the nature of the conflict, the system should be
able to provide support to guide the learners to resolve their different opinions.

4.4.3 An Activity-oriented, Graphical

Knowledge Representation Method

In the paragraphs below, we describe the conceptual design of our graphical
knowledge representation method, which addresses above requirements.

The method that we have adopted is based on the idea of an Activity Space in which
knowledge is represented as a network of nodes and links [Streitz89, Streitz92,
Haake92]. The concept of the activity space was used by Streitz et al. to support the
task of authoring. Four aspects of the authoring task were identified: planning (the
planning space), collecting content (the content space), elaborating arguments (the
argumentation space), and the creation of a reader-oriented and coherent final
document (the rhetorical space). Four separate activity spaces were used to enable
authors to visually represent their knowledge in the form of specialized
hyperdocuments. They were specialized in the sense that in any one activity space
only a restricted set of node and link types could be used. These node and link types
were designed to match the characteristics of the activity. In this way authors were

 102

forced to structure their hyperdocument in a pre-specified way. The authors
performed their authoring tasks by travelling through the four activity spaces.

We have applied the activity space concept to collaborative learning situations. We
are particularly concerned to support situations in which the content domain is ill-
structured. This is typically the case when learning topics arise on the basis of need,
rather than within more traditional subject-based contexts. In such more traditional
learning situations, the content of the knowledge domain itself can be used to
structure knowledge, and therefore naturally provides the representational means to
present this knowledge piece by piece to the learner. In contrast, the knowledge
handled in learner-centered approaches, such as the problem-based learning process,
is ill-structured. We therefore cannot use the content as the basis on which to organize
the shared knowledge. We choose instead to organize the shared knowledge on the
basis of learning actions, such as exploring problems, identifying learning issues,
setting learning goals, planning, collecting learning resources, applying knowledge, or
negotiating shared knowledge. For each type of learning action, we propose that
specific node types and link types can be designed, which will appropriately restrict
the structure of the hyperdocument that the learners can build. Thus, this method is
called an activity-oriented knowledge representation method [Miao00a]. It meets the
requirements for the representation of ill-structured knowledge.

In the activity-oriented knowledge representation method, the first step is to identify
what learning actions we should support. The second step is to define which
knowledge types are handled in these actions. These knowledge types are used to
indicate the purpose and intention of a created information unit. The third step is to
define the relationship between the knowledge types. These relationships are
indicated by the link types. The final step is to define the task-specific operations that
can be performed on the information units represented as typed nodes and typed links.
The identified node types and link types form a knowledge representation schema.
According to this schema, learners can represent their ideas with indicating the types
of the ideas. They can also indicate the types of relationships between the ideas. In
addition, they can provide more detailed information for explaining their ideas. The
typed ideas and typed relationships form a net of information items.

As illustrated in Figure 4.7, a net of information items consists of typed nodes and
typed links. A typed node may refer to a document that provides more detailed
information for the node. All nets in a virtual institute form a net base that is the
shared artifact of the virtual institute.

 103

Figure 4.7: Conceptual Architecture of the Shared Artifact

The paragraphs below formally specify the net base.

Definition (Node Type): A node type is used to indicate a specific type of
information unit.

NodeType = = STRING

Definition (Link Type): A link type is defined as a pair. The first element of the pair
is a string that serves as a label. The second element is a pair that indicates between
which node types the link can connect.

LinkType = = STRING ↔ (NodeType ↔ NodeType)

Definition (Net Schema): A net schema is defined by a name, a set of node types and
a set of link types. Within a net schema, every node type has unique label. Every link
type has a label and can only connect node types present in the NetSchema. A net
schema specifies all elements of a knowledge representation.

┌─ NetSchema ───────────────────────────────────────
│ name : STRING
│ nodeTypes : ℙ NodeType
│ linkTypes : ℙ LinkType
├─────────────────────────────
│ ∀ s, d : LinkType | s ∈ NodeType ∧ d ∈ NodeType • s ≠ d
│ ∀ l : LinkType | l ∈ linkTypes •
│ first (second l) ∈ nodeTypes ∧ second (second l) ∈ nodeTypes
└───

 104

In order to support knowledge representation in a virtual institute, different net
schemata can be defined and used for facilitating different learning activities. When a
net schema is chosen, information units and their relations should be organized
according to the framework defined by the selected net schema. As mentioned above,
these information units and their relations are represented as typed nodes and typed
links. The node types and link types are used as an attribute to define data type:
TypedNode and TypedLink.

Definition (Typed Node): A typed node represents an information unit that is
categorized by its node type. A typed node has a statement attribute to represent
knowledge. The information about the creator of the node is recorded.

┌─ TypedNode ───────────────────────────────────────
│ statement : STRING
│ nodeType : NodeType
│ owner : Actor
└───

Definition (Typed Link): A typed link is a data type that represents a relation
between two information units. A typed link is categorized by its link type. A typed
link records information about two typed nodes between which a link is connected.
The information about the creator of the link is recorded as well.

┌─ TypedLink ───────────────────────────────────────
│ linkType : LinkType
│ sourceNode : TypedNode
│ destinationNode : TypedNode
│ owner : Actor
└───

It is important to note that typed nodes and typed links may have distinct attributes.
The specific operations on these typed nodes and typed links will be defined based on
these specific attributes. For example, in problem based learning, the typed node
“learning issue” has additional attributes such as “who knows”, “who don’t know”,
“who needs to know”, and so on. Specific operations are defined to change the values
of these attributes. However, to simplify discussion, we don’t specify such details
here. Only for some typed nodes, we will show a more detailed specification.

Definition (Net): A net can contain typed nodes and typed links to show the intention
of the authors when creating information. However, it can not contain basic
information elements such as text and image. Each net has an “net type” attribute that
is specified by a net schema.

┌─ Net ───────────────────────────────────────
│ title : STRING
│ topic : STRING
│ owner : Actor
│ netType : NetSchema
└───

 105

Definition (Net Base): A net base consists of a set of nets, a set of typed nodes, and a
set of typed links. Each typed node or typed link belongs to a certain net. Some typed
nodes refer to documents. Typed nodes can connect to documents via hyperlinks. If a
typed link connects two typed nodes, all of them should be in the same net, and the
type of the typed nodes should be consistent with the definition of the typed link.

┌─ NetBase ───
│ nets : ℙ Net
│ typedNodes : TypedNode → Net
│ typedLinks : TypedLink → Net
│ referToDoc : TypedNode Document
├─────────────────────────────
│ ran typedNodes ⊆ nets ∧ ran typedLinks ⊆ nets
│ ∀ s, d : TypedNode; l : TypedLink | l.sourceNode = s ∧ l.destinationNode = d •
│ (typedNodes s) = (typedNodes d) = (typedLinks l) ∧
│ s.nodeType = first (second l.linkType) ∧
│ d.nodeType = second (second l.linkType)
└───

So far, some data types are specified. For a complete specification of the activity-
oriented approach to knowledge representation, the operations are still unspecified. As
mentioned above, the specification of operations depends on a specific activity. In the
next subsection, we will discuss how this approach is applied to support problem
based learning activities.

4.4.4 PBL-net

In this subsection, we discuss how the activity-oriented knowledge representation
method is applied to support problem-based learning activities. First of all we
describe the PBL schema and how it is defined. The schema then provides the
framework according to which learners will collaborate with each other in order to
create their own PBL-nets. Then we will explain how the PBL-net supports
representation, exploration and negotiation in PBL processes.

4.4.4.1 PBL-net Schema

When applying the activity-oriented knowledge representation method in supporting
PBL, the first step is to identify what types of nodes and links are used in the problem
based learning process. The result is a PBL-specific net schema, called PBL-net
schema. The types of nodes and links that we define are based on the various tasks
that make up the PBL process. One can refer to the scenario described in chapter 2.
There are various descriptions of the tasks involved in PBL, for example the eight
tasks detailed in [Course Material]. These are (1) explore the problem, (2) identify
what learners know, (3) identify what learners do not know, (4) identify the goals and
make action plan, (5) collect information, (6) discuss information collected, (7) apply
knowledge to the problem, (8) review the process.

 106

For the task of exploring the problem, the learner must define problems. Therefore we
define a ‘problem’ node type. A problem can be decomposed into sub-problems,
using an ‘is_a_sub_of_problem’ link between the main problem and its sub-parts. A
‘source’ node type is defined so that background material to the problem can also be
represented. An information unit with a ‘source’ node type can inform about an
information unit with a ‘problem’ node type. A ‘inform_about’ link type is introduced
in the PBL-net schema. Similarly, learners will need to identify what aspects of the
problem they need to learn about. In the schema, a ‘issue’ node type is provided as a
means to allow them to indicate this.

When performing tasks (2), (3), and (4), learners declare what learning issues they
know or don’t know. They identify what knowledge is still missing. They decide who
will be responsible for collecting information about what issues. They also have to
identify the relations between learning issues. Link types to express relationships
among the learning issues are ‘is_prior_to’, ‘is_sub_of_, and ‘is_a_ prerequisite_for’.
This information will be used as the basis on which to define learning goals and to
make a learning plan. The process to make an action plan and to execute the defined
action plan will be discussed in the section 4.6.

In order to decide what information is needed and to integrate the collected
information, the ‘resource’ node type and the ‘concern’ link type are defined. The
‘concern’ link type is used to indicate to which learning issue an information unit is
related.

Then, learners will debrief information and discuss by abstracting what they learnt
from the collected information. The ‘principle’ and ‘evidence’ node types serve to
represent the acquired knowledge. Meanwhile, it is needed to indicate from which
resource the new knowledge was derived by using the ‘derived_from’ link type.

To support task (7), the ‘hypothesis’ and ‘solution’ node types are defined. There are
three possible relations between ‘hypothesis’ node type: ‘is_similar_to’,
‘is_contrary_to’, and ‘is_a_prerequisite_for’. The ‘based_on’ relation between
‘solution’ and ‘hypothesis’ is defined to indicate that a solution is generated based on
a hypothesis. A hypothesis is generated to suggest which problem or sub-problem can
be represented by using ‘suggest’ link type. A solution is generated to solve a problem
or sub-problem, this can be represented by using the ‘solve’ link type. Learners can
use ‘support’ or ‘counter’ link type to represent the relations among ‘principle’,
‘evidence’, ‘hypothesis’, and ‘solution’ in negotiation processes.

To support task (8), the ‘comment’ node type is defined. The relation between a
comment and an information unit being commented is indicated by using the
‘comment_on’ link type.

It is important to note that information units of ‘comment’, ‘hint’, and ‘question’ node
type can be created whenever it is needed. Participants of a PBL activity can connect
these types of information units to any type of information unit by using links of type
‘comment_on’, ‘about’, and ‘about’, respectively. An information unit with node type
‘answer’ can be created to answer a ‘question’ node with a ‘answer’ type link.

 107

For each task in PBL, we have chosen appropriate node types and link types. All node
types and link types for each task are represented in the PBL net schema. In the
virtual institute, a PBL-net schema is initialized according to the specification in this
thesis. Therefore, it is defined as a variable with net schema type.

Definition (PBL-net Schema): A PBL-net schema is specific net schema for
structure knowledge for PBL. Its value of name attribute is ‘PBL-net schema’. The
node types and link types are those identified above. The current version of the PBL-
net schema is defined as following.

pblNetSchema = = (‘PBL-Net schema’,
 {‘source’, ‘problem’, ‘issue’, ‘resource’, ‘evidence’, ‘principle’,
 ‘hypothesis’, ‘solution’, ‘comment’, ‘hint’, ‘question’, ‘answer’},
 { (‘inform_about’ ↦ ‘source’ ↦ ‘problem’),
 (‘is_a_sub_problem_of’ ↦ ‘problem’ ↦ ‘problem’),
 (‘is_a_sub_issue’ ↦ ‘issue’ ↦ ‘issue’),
 (‘is_prior_to’ ↦ ‘issue’ ↦ ‘issue’),
 (‘is_a_prerequisite_for’ ↦ ‘issue’ ↦ ‘issue’),
 (‘repect_to’ ↦ ‘issue’ ↦ ‘problem’),
 (‘concern’ ↦ ‘resource’ ↦ ‘issue’),
 (‘derive_from’ ↦ principle’ ↦ ‘resource’),
 (‘derive_from’ ↦ ‘evidence’ ↦ ‘resource’),
 (‘support’ ↦ ‘principle’ ↦ ‘hypothesis’),
 (‘support’ ↦ ‘principle’ ↦ ‘solution’),
 (‘support’ ↦ ‘evidence’ ↦ ‘hypothesis’),
 (‘support’ ↦ ‘evidence’ ↦ ‘solution’),
 (‘counter’ ↦ ‘principle’ ↦ ‘hypothesis’),
 (‘counter’ ↦ ‘principle’ ↦ ‘solution’),
 (‘counter’ ↦ ‘evidence’ ↦ ‘hypothesis’),
 (‘counter’ ↦ ‘evidence’ ↦ ‘solution’),
 (‘solve’ ↦ ‘solution’ ↦ ‘problem’),
 (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’),
 (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’),
 (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’),
 (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’),
 (‘to’ ↦ ‘answer’ ↦ ‘question’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘source’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘problem’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘issue’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘resource’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘evidence’),

 108

 (‘comment_on’ ↦ ‘comment’ ↦ ‘principle’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘hypothesis’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘solution’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘comment’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘hint’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘question’),
 (‘comment_on’ ↦ ‘comment’ ↦ ‘answer’),
 (‘about’ ↦ ‘hint’ ↦ ‘source’),
 (‘about’ ↦ ‘hint’ ↦ ‘problem’),
 (‘about’ ↦ ‘hint’ ↦ ‘issue’),
 (‘about’ ↦ ‘hint’ ↦ ‘resource’),
 (‘about’ ↦ ‘hint’ ↦ ‘evidence’),
 (‘about’ ↦ ‘hint’ ↦ ‘principle’),
 (‘about’ ↦ ‘hint’ ↦ ‘hypothesis’),
 (‘about’ ↦ ‘hint’ ↦ ‘solution’),
 (‘about’ ↦ ‘hint’ ↦ ‘comment’),
 (‘about’ ↦ ‘hint’ ↦ ‘hint’),
 (‘about’ ↦ ‘hint’ ↦ ‘question’),
 (‘about’ ↦ ‘hint’ ↦ ‘answer’),
 (‘about’ ↦ ‘question’ ↦ ‘source’),
 (‘about’ ↦ ‘question’ ↦ ‘problem’),
 (‘about’ ↦ ‘question’ ↦ ‘issue’),
 (‘about’ ↦ ‘question’ ↦ ‘resource’),
 (‘about’ ↦ ‘question’ ↦ ‘evidence’),
 (‘about’ ↦ ‘question’ ↦ ‘principle’),
 (‘about’ ↦ ‘question’ ↦ ‘hypothesis’),
 (‘about’ ↦ ‘question’ ↦ ‘solution’),
 (‘about’ ↦ ‘question’ ↦ ‘comment’),
 (‘about’ ↦ ‘question’ ↦ ‘hint’),
 (‘about’ ↦ ‘question’ ↦ ‘question’),
 (‘about’ ↦ ‘question’ ↦ ‘answer’) }
)

A diagram representation of the PBL-net schema is shown in Figure 4.8. In this
figure, the squares represent node types, while the arrows represent link types. By
using the schema, learners can be supported to create task-specific knowledge
representations as a knowledge representation language.

 109

Figure 4.8: PBL-Net Schema

4.4.4.2 PBL-net and its Operations

After defining the PBL-net schema, we can define the PBL-net. Then, operations on a
PBL-net can be specified.

Definition (PBL-net): A PBL-net is a net whose value of the net type attribute is the
pblNetSchema defined above.

Definition (Declaration): A declaration is a data type that is used to represent the
perspective of learners to a certain discussion point. The declarer attribute is used to
indicate who declares. The confidence attribute is used to indicate the degree of
confidence the declarer has on this perspective. This issue will be discussed later in
more detail.

Perspective = = ℝ [-1, 1]
Confidence = = ℝ [0, 1]

┌─ Declaration ───────────────────────────────────────
│ declarer : Actor
│ perspective : Perspective
│ confidence : Confidence
└───

 110

Definition (PBL-net Base): A PBL-net base is a part of net base of a virtual institute.
In this thesis, we focus on support for PBL activities. Therefore, we only discuss
PBL-nets.

┌─ PBLNetBase ──────────────────────────────────────
│ pblNets : ℙ Net
│ typedNodes : TypedNode → Net
│ typedLinks : TypedLink → Net
│ referToDoc : TypedNode → Document
│ declareNode : Declaration → TypedNode
│ declareLink : Declaration → TypedLink
├─────────────────────────────
│ ∀ n : Net | n ∈ pblNets • n.netType = pblNetSchema
│
│ ran typedNodes ⊆ pblNets ∧ ran typedLinks ⊆ pblNets
│ ∀ s, d : TypedNode; l : TypedLink | l.sourceNode = s ∧ l.destinationNode = d •
│ (typedNodes s) = (typedNodes d) = (typedLinks l) ∧
│ s.nodeType = first (second l.linkType) ∧
│ d.nodeType = second (second l.linkType)
└───

In the paragraphs below, we define the operations on the PBL-net base

4.4.4.2.1 Representation of Shared Knowledge

Using the PBL-net schema that we have just defined, participants of a PBL activity
are able to create, delete or modify typed nodes and typed links in order to form their
PBL-net. First of all, actors can create a new PBL-net. The specification of this simple
operation is ignored. We focus on how an actor creates a typed node or a typed link in
a given PBL-net.

To create a typed node in a PBL-net, an actor chooses a node type (e.g. problem,
issue, or source, etc) and makes a statement about that typed node, which serves to
describe the content of that node or publish a point of view to others.

┌─ CreateTypedNodeOK ─────────────────────────────────
│ ∆ PBLNetBase
│ a? : Actor
│ aNet? : Net
│ statement? : STRING
│ type? : NodeType
├─────────────────────────────
│ let aNode = = (µ TypedNode | statement = statement? ∧
│ nodeType = type? ∧
│ state = proposed ∧
│ owner = a?) •

 111

│ typedNodes’ = typedNodes ∪ { aNode ↦ aNet? }
│
│ pblNets’ = pblNets
│ typedLinks’ = typedLinks
│ referToDoc’ = referToDoc
│ declareNode’ = declareNode
│ declareLink’ = declareLink
└───

To create a typed link on a PBL-net, an actor has to choose a link type and connect
two typed nodes with correct types.

┌─ CreateTypedLinkOK ──────────────────────────────────
│ ∆ PBLNetBase
│ a? : Actor
│ aNet? : Net
│ s? : TypedNode
│ d? : TypedNode
│ label? : STRING
├─────────────────────────────
│ (s? ↦ aNet?) ∈ typedNodes ∧ (d? ↦ aNet?) ∈ typedNodes ∧
│ (label? ↦ s?.nodeType ↦ d?.nodeType) ∈ aNet?.netType.linkTypes
│
│ let aLink = = (µ TypedLink | linkType = (label? ↦ s?.nodeType ↦ d?.nodeType)∧
│ sourceNode = s? ∧
│ destinationNode = d? ∧
│ owner = a?) •
│ typedLinks’ = typedLinks ∪ { aLink ↦ aNet? }
│
│ pblNets’ = pblNets
│ typedNodes’ = typedNodes
│ referToDoc’ = referToDoc
│ declareNode’ = declareNode
│ declareLink’ = declareLink
└───

A typed node can be connected to a normal document as its content. There are two
possibilities to connect with documents. One way is to create a content document of
the typed node upon the node’s creation. Another way is to connect a typed node to an
existing document.

┌─ CreateContentDocumentForNodeOK ─────────────────────────
│ ∆ PBLNetBase
│ a? : Actor
│ n? : TypedNode
│ topic? : STRING
├─────────────────────────────
│ newDoc = = (µ Document | title = n?.statement

 112

│ topic = topic? ∧
│ owner = a? ∧
│ text = ∅ ∧
│ tables = ∅ ∧
│ images = ∅)
│ documents’ = documents ∪ { newDoc }
│ documentRefs’ = documentRefs
│ referTo’ = referTo
│
│ pblNets’ = pblNets
│ typedNodes’ = typedNodes
│ typedLinks’ = typedLinks
│ referToDoc’ = referToDoc ∪ { n? ↦ newDoc }
│ declareNode’ = declareNode
│ declareLink’ = declareLink
└───

┌─ ConnectNodeToDocumentOK ───────────────────────────
│ ∆ PBLNetBase
│ node? : TypedNode
│ doc? : Document
├─────────────────────────────
│ doc? ∈ documents ∧ node? ∈ dom typedNodes
│
│ referToDoc’ = referToDoc ∪ { node? ↦ doc? }
│ pblNets’ = pblNets
│ typedNodes’ = typedNodes
│ typedLinks’ = typedLinks
│ declareNode’ = declareNode
│ declareLink’ = declareLink
└───

The operations to remove typed node or typed link are specified as follows.

┌─ RemoveTypedNodeFromNetOK ───────────────────────────
│ ∆ PBLNetBase
│ n? : TypedNode
│ aNet? : Net
├─────────────────────────────
│ (n? ↦ aNet?) ∈ typedNodes ∧ n? ∉ dom referToDoc
│ pblNets’ = pblNets
│ typedNodes’ = typedNodes \ {n? ↦ aNet? }
│ typedLinks’ = typedLinks \ { ∀ l: TypedLink |
│ l.sourceNode = n? ∨ l.destinationNode = n? • l ↦ aNet? }
│ referToDoc’ = referToDoc
│ declareNode’ = declareNode
│ declareLink’ = declareLink
└───

 113

┌─ RemoveTypedLinkFromNetOK ────────────────────────────
│ ∆ PBLNetBase
│ link? : TypedLink
│ aNet? : Net
├─────────────────────────────
│ {link? ↦ aNet? }∈ typedLinks
│ pblNets’ = pblNets
│ typedNodes’ = typedNodes
│ typedLinks’ = typedLinks \ { link? ↦ aNet? }
│ referToDoc’ = referToDoc
│ declareNode’ = declareNode
│ declareLink’ = declareLink
└───

A PBL-net provides a means that all involved actors can contribute to by creating
typed nodes and links in the shared PBL-net. However, each contribution represents a
personal perspective. Other actors may have different points of views. Different
personal perspectives drive collaboration. Most collaborative learning support
systems provide mechanisms for learners to represent different perspectives. Systems
like CSILE [Scardamalia94] and CaMILE [Soloway94] support personal perspectives
by different representations of the same information. WebGuide [Stahl99] supports to
represent different perspectives on the same information item by indicating the status
of the information item (e.g., personal perspective, team perspective, and negotiation
perspective). In WebGuide, the term “perspective” is defined as a particular, restricted
segment of an information repository that is being considered, stored, categorized, and
annotated. Pfister et al. [Pfister99] defined perspective based on a set of facts
pertaining to a topic. A perspective is represented as a possible combination of known
facts. In this thesis, a perspective is defined based on a statement that each typed node
contains. A perspective is represented as a mapping function from the statement or a
relation between two statements to a value that ranges from –1 to 1. Each learner can
have personal perspectives on the same statement. In PBL, the knowledge items
represented in terms of nodes and links normally are not an elementary assertion that
can be simply judged as true or false. Example statements may be “the pollution
makes the frog deformed” or “the insect topic is related to the deformed fog
problem.” If an actor fully believes a statement, the perspective of this actor on the
statement is assigned a 1. If an actor fully does not believe a statement, the
perspective of this actor on the statement is assigned a -1. A partially belief or
partially unbelief is assigned a value in between –1 and 1. Furthermore, because
members of a PBL group may have different background and expertise, their values
of confidence in their perspective may vary, no matter whether they totally or partially
(don’t) believe a statement. The operation to profess an actor’s perspective on a typed
node is defined as follows.

┌─ DeclarePerspectiveForNodeOK ────────────────────────────
│ ∆ PBLNetBase
│ Ξ Editors
│ Ξ HyperDocument
│ a? : Actor

 114

│ node? : TypedNode
│ perspective? : Perspective
│ confidence? : Confidence
├─────────────────────────────
│ let aDeclaration = = (µ Declaration | declarer = a? ∧
│ perspective = perspective? ∧
│ confidence = confidence?) •
│ declareNode’ = declareNode ∪ { aDeclaration ↦ node?}
│
│ pblNets’ = pblNets
│ typedNodes’ = typedNodes
│ typedLinks’ = typedLinks
│ referToDoc’ = referToDoc
│ declareLink’ = declareLink
└───

In the same way, the operation to profess an actor’s perspective on a typed link can be
defined. After learning or discussion, an actor may change his perspective or
confidence. The specifications for these two operations are ignored.

4.4.4.2.2 Exploration of Shared Knowledge

Learners are supported to explore the information contained in the shared artifact in a
number of ways. Each learner uses the PBL net as an access point from which to
retrieve information from the hyperdocument. The learner is able to retrieve
hyperdocuments by following hyperlinks.

┌─ MoveToDocumentFromNodeOK ───────────────────────────
│ ∆ PBLNetBase
│ ∆ Editors
│ Ξ HyperDocument
│ a? : Actor
│ editor? : DocumentEditor
│ node? : TypedNode
├─────────────────────────────
│ {editor?}⊳ usedBy ⊲{a?} ≠ ∅ ∧ node? ∈ dom referToDoc ∧
│ typedNodes node? = (currentDoc editor?))
│
│ currentDoc’ = currentDoc ⊕ { editor? ↦ referToDoc node? }
│ storedIn’ = storedIn ∪ { currentDoc editor? ↦
│ first (bookshelfLocation ⊲{actorLocation a?})}
│ editor?.history = editor?.history⁀< referToDoc node?>
│
│ pblNets’ = pblNets
│ typedLinks’ = typedLinks
│ referToDoc’ = referToDoc
│ declareNode’ = declareNode

 115

│ declareLink’ = declareLink
└───

In addition, learners can be supported by the system to search for specific types of
information. For example, the learner requests to view only problem nodes, or only
learning issue nodes. Perhaps they could request to see problems and their associated
solutions.

┌─ ShowProblemAndSolutionOK ────────────────────────────
│ Ξ PBLNetBase
│ aNet? : Net
│ nodes! : ℙ TypedNode
│ links! : ℙ TypedLink
├─────────────────────────────
│ nodes! = { n : TypedNode | n ∈ typedNodes ⊲ {aNet?} ∧
│ (n.nodeType = ‘problem’ ∨ n.nodeType = ‘solution’) }
│ links! = { l : TypedLink | l ∈ typedLinks ⊲ {aNet?} ∧
│ l.sourceNode.nodeType = ‘problem’ ∧
│ l.destinationNode.nodeType = ‘solution’}
└───

A PBL-net allows learners to know others’ perspective and confidence on a given
typed node. The operation to access information about others’ declaration on a given
typed link can be defined in a similar way.

┌─ KnowActorDeclarationForNodeOK ─────────────────────────
│ Ξ PBLNetBase
│ Ξ Editors
│ Ξ HyperDocument
│ a? : Actor
│ node? : TypedNode
│ p! : Perspective
│ c! : Confidence
├─────────────────────────────
│ ∃! d : Declaration | d ∈ dom declareNode • d.declarer = a?
│
│ p! = (λ PBLNetBase; node? : TypedNode •
│ { Declaration | θ Declaration ∈ (dom declareNode) ∧
│ d.declarer = a? • perspective })
│ c! = (λ PBLNetBase; node? : TypedNode •
│ { Declaration | θ Declaration ∈ (dom declareNode) ∧
│ d.declarer = a? • confidence })
└───

Definition (Mutual Understanding): A mutual understanding means that every
member knows anyone else’s perspective and confidence, even if they have different
perspectives. The pre-condition to get a mutual understanding is that all members of

 116

the group declared their perspectives and the declaration information is accessible to
all members.

While exploring a shared workspace, learners need know the point at which there is
conflicting knowledge. The learners may therefore pay special attention to this point.
In WebGuide [Stahl99], the negotiation perspective indicates this perspective hasn’t
be accepted by the group. It needs to be discussed continually. When all members
accept the negotiated perspective, it becomes a team perspective. However, two states
(the negotiation perspective and the team perspective) can not capture the degree of
conflict. Pfister et al. [Pfister99] uses quantitative measure to indicate different
perspectives. They developed the concept of degreement. The degreement between
two people on a topic, which consists of a set of facts, is measured by the difference
between the ratio of commonly known facts and the ratio of facts that only one of
them knows. The limitation of this approach is that the degreement can only be
measured when a topic can be decomposed into multiple facts. In PBL, an opinion
such as a hypothesis and a solution is not necessarily and even can not be decomposed
into multiple facts.

The approach proposed in this thesis combines the advantages of these two
approaches and overcomes their limitations. We take an example to explain this
approach. We assume that n students (S1 , .. S n) learn a database course together

through solving a real problem – developing a course management database system.
A statement (use ORACLE) as a solution is proposed to solve a sub-problem (which
DBMS do we use?). If all of them understand this statement and have consensus, it is
not a point that needs to be discussed. Whenever a student has a different perspective
to this statement, the student will represent a different perspective on this statement by
using a declaration operation described above. This statement becomes a conflict
point that forces the group to discuss. Perspectives are distributed in the range [-1, 1].
In order to measure the conflict, some concepts are defined.

Definition (Group Perspective): A group perspective is measured as an average sum
of all members’ perspectives.

 n

GroupPerspective = = (∑ S i .perspective)∖ n
 i = 1

Definition (Conflict Degree): A conflict degree is measured as an average sum of all
personal perspectives’ weighted deviation from the group perspective.

 n

ConflictDegree = = (∑ | GroupPerspective - S i .perspective | * S i .confifence) ∖ n
 i = 1

If the conflict degree is larger that 0.5, this conflict is regarded as a strong conflict.
Otherwise it is a weak conflict. This initial value of 0.5 should be adjusted after
experiental evaluation.

 117

4.4.4.2.3 Negotiation of Shared Knowledge

When a conflict has occurred, the conflict will stimulate the learning group to
negotiate perspectives and resolve the conflict for building common understanding.
Computer-mediated negotiation can be used to merge several perspectives into a
common one [Stahl99]. A PBL-net can support negotiation of knowledge in two
ways. Firstly, when a conflict degree is larger than a number (e.g., 0.5), the virtual
learning environment can automatically initiate a computer-mediated process to
support negotiation according to the nature of the conflict. Secondly, the status of
typed nodes will influence the negotiation procedure. This topic will be discussed in
the next chapter.

4.4.5 Related Work and Discussion

We compare our approach with related work regarding two aspects. Firstly, we
compare the activity-oriented, graphical knowledge representation method with
existing, alternative graphical knowledge represent methods in the education area.
Secondly, we compare the PBL-net with the corresponding features offered by other
PBL support systems described in Chapter 3.

4.4.5.1 Alternative Approaches to Visually Represent Structured
Knowledge

We first look at existing graphical knowledge representation methods for education.
We do not compare with other forms of knowledge representation methods (such as
text-based or threaded discussion methods). We adopt a graphical knowledge
representation method because of viewing the advantages of this method. As Larkin
[Larkin87] pointed out, a diagram conveys a lot of information. Graphical knowledge
representation languages can help learners to clarify thinking, to identify
misconceptions, to reinforce understanding, and to integrate new knowledge.
Similarly, we do not discuss the methods of knowledge representation used in
Artificial Intelligence such as predicate logic and frames, since although they have
been used to support learning (e.g. in Intelligent Tutoring Systems) they aim at
formalizing knowledge for machine reasoning. However, the primary purpose of our
graphical knowledge representation language is to help human learners construct
shared knowledge and to facilitate interactions among human learners.

We review the state-of-the-art for graphical knowledge representation methods within
the following three categories that we ourselves have defined: content-based methods,
didactic-oriented methods and activity-oriented methods. We briefly consider each
method in terms of the three groups of requirements: representation, exploration and
negotiation.

4.4.5.1.1 Content-based knowledge representation methods

These methods, such as concept maps, represent knowledge as a network of nodes
and links [Novak84, Jonassen93]. The nodes are used to present concepts or ideas

 118

(e.g. human, living thing, food) and they are linked with a content-oriented relation
(e.g. is_a, eat) as a formal or semi-formal diagram. This in part satisfies the
requirements for the representation of knowledge within a shared artifact. However,
the content-based approach is not suitable for representing ill-structured knowledge,
because for ill-structured domains also the knowledge structure would be ill-
structured. Content-based methods give good support for exploration, since they
provide an overview of the learning material, although they have not been used so far
to indicate points of conflict between learners. Similarly, content-based methods to
date have not been developed in order to address the requirements of negotiation
support. In PBL, knowledge related to a real-world problem is ill structured from the
perspective of content. Therefore, Content-based knowledge representation methods
are not suitable to represent knowledge structure in PBL.

4.4.5.1.2 Didactic-oriented knowledge representation methods

Didactic-oriented representation methods use didactic notions to type the chunks of
information within a structured net [Trigg83, Baloian95]. In the didactic net the nodes
describe the type of learning material (e.g., concept, definition, explanation, example)
while the link types define the type of didactic relation (refined_by, defined_by,
explained_by, exemplified_by) between the nodes. This method has been used to
produce courseware, and to guide the learner to receive information piece by piece. It
satisfies all of the requirements for representation, except that of expressing conflict.
In terms of exploration, didactic methods also provide a satisfactory overview of
material, and supports reusability by the learners because they make the nature of
information chunks and the relations between them explicit and easily understood.
However, once more, there was no intention for these nets to be used to give specific
support for collaboration and negotiation between students. It is needed to note that a
learning environment can be developed as a multi-user system by adapting this
approach. The system described in [Baloian95] can support multiple teachers to co-
author the courseware collaboratively. When a teacher presents the prepared
knowledge, multiple students can synchronously follow the teacher’s navigation in
the didactic net, exactly as they passively receive knowledge piece by piece in the
conventional classrooms. However, in PBL students are actively involved in the
construction of shared knowledge collaboratively without any didactic intention.

4.4.5.1.3 Activity-oriented knowledge representation methods

As discussed above, content-based knowledge representation methods and didactic-
oriented knowledge representation methods are obviously not suitable for
representing knowledge for PBL. An activity-oriented approach to graphical
knowledge representation was introduced and extended for supporting PBL. The
main goal of activity-oriented methods is not to describe the contents of a topic in its
entirety. Rather, a network of labeled nodes and links is used to structure the
knowledge in ways that support different activities. According to our definition, some
systems can be regarded as having used an activity-oriented approach to represent
knowledge, such as gIBIS that was developed to support issue-based argumentation
[Conklin87a]. Secondly, SEPIA which was designed to support authoring [Streitz89,
Streitz92]. However, neither of these two systems was designed for educational use.

 119

Other examples, which have been used for educational purposes are Belvedere, for
example, which supports scientific inquiry [Suthers99a] [Suthers99b], or CLARE
[Wan94a] which provides support for understanding papers. CLARE is a text based
hypertext system that didn’t support graphical knowledge representation. The
advantage of the activity-oriented methods is that they are designed to support a
specific activity, rather than simply to represent the content of a domain. Because of
this they are an ideal means of tackling ill-structured topics. However, all these
systems still do not address the question of support for representation of conflict
perspective and negotiation.

4.4.5.2 Comparison with PBL Support Systems

In this subsection, we will briefly outline the kind of features offered by other systems
designed to support PBL. We used our collaborative learning model as the framework
within which to consider these other systems. We now would like to assess the extent
to which others existing systems described in chapter 3 can serve to support the PBL
learning process under the same conditions. In other words we will assess the extent
to which they address support for representation, exploration and negotiation as
defined in our model.

Representation. Each of these systems provides typing of information units. This
ranges from 3 to 8 different types across the six systems. None of these systems,
except for Belvedere, provide link types between the information units as provided by
our method. Most of them provide a threaded text outline in which indentations (i.e.
sub-headings) are typed. There is no graphical view of the overall structure. Using
such a threaded text representation it is harder to identify relationships between the
information units. All systems provide support for commenting on information units
that can be used for expressing different perspective, but these must be sought and
read in detail before the nature of the conflict can be identified.

Exploration. As mentioned, most of these systems provide an overview of all
information in the shared artifact, albeit textual. Belvedere provides graphical
representation, but Belvedere’s Inquiry Diagram only supports inquiry activity.
However, all of these systems serve as a pool of information which once entered
cannot easily be deleted or rearranged by the learners. Detecting conflict is difficult,
since there is no explicit way to indicate the point at which it occurs.

Negotiation. Since conflict perspectives on the same statement cannot be expressed,
this cannot serve as a starting point for negotiation. Similarly, there is no special
facility by which learners can visually indicate the extent of their knowledge about the
contents of a particular information unit. Once again, this can be expressed indirectly
by means of textual comments about each unit or by creating separate statements.

4.4.6 Summary

The theoretical basis for this work lies in the constructivist and situated learning
paradigms. This led us to identify two key areas in which graphical knowledge
representation methods should be developed. We therefore see the following as the

 120

two main findings. Firstly, in constructivist the principle of cognitive conflict is
central to learning. A conceptual model of collaborative learning is developed that
addresses the conflict on individual memory level and on group memory level.
Considering the state-of-the-art in terms of graphical knowledge representation
methods, we found a marked absence of support for the resolution of such conflict
and the support of negotiation during collaborative learning in virtual environments.
Secondly, in situated learning theory, activities rather than content are emphasized.
By choosing an activity-oriented approach, rather than the content-based or didactic-
oriented approaches, we have begun to address the question of how to provide
structured shared information spaces, which will be appropriate for ill-structured
knowledge domains. We are confident that this new approach to support the
representation, exploration and negotiation of shared knowledge can be further
developed to provide a significant contribution to cooperative learning in the
workplace. As the first application of the activity-oriented graphical knowledge
representation approach, a graphical knowledge representation language was
developed.

4.5 PBL-protocols: Guiding and Controlling Social
Interaction in PBL Processes

As discussed in Chapter 2, problem-based learning is an innovative instruction
method and requires learners to actively gather and apply knowledge in order to solve
ill-structured real-world problems. Contrary to traditional instructional methods,
where the teacher organizes and imparts information to the students, problem-based
learning is guided by tutors who take a facilitator role, encouraging students to engage
in active and meaningful learning. However, teachers used to teaching through
lectures and discussions lack the skills of a facilitator in guiding learners to discover
information for themselves. As a facilitator they can give hints, provide resources and
ask searching questions, but they must withhold information that they would
previously have simply given to the students. Learners are also slow to adjust to the
PBL method, and to the change in their role from passively receiving information to
actively engaging in a problem-solving process. When teachers and learners are
unfamiliar with PBL, they tend to be reluctant to change their traditional roles
[Jones94] [Bridges92]. Additional problems arise when the PBL method is applied in
virtual learning environments where participants are distributed and weak
communication channels make group interactions difficult. It is hard to coordinate
operations performed by different people and to make and keep track of progress
towards learning goals efficiently. In order to support problem-based learning in
virtual learning environments, it is argued that computational mechanisms can be
designed to help overcoming the difficulties discussed above. In this section, firstly, a
brief introduction to schema theory is given. In the light of schema theory, an
approach to model and execute collaboration processes is presented. Secondly, we
show how this approach is applied to guide and control problem-based learning
processes in virtual learning environments. Thirdly, we compare the proposed
approach with other approachs to support cooperative processes and features offered
by other PBL support systems discussed in the Chapter 3. Finally, a short summary is
presented.

 121

4.5.1 Theoretical Background

Our approach to model and execute a special kind of collaboration processes is
theoretically based on schema theory [Schank77]. According to schema theory,
generalized knowledge about a sequential list of the characteristic events involved in a
common routine is called a script [Schank77] [Schank82]. Scripts can be used to
organize knowledge, to assist recall, to guide behavior, to predict likely happenings,
and to help us to make sense of our current experiences. People know how to behave
and what to expect in particular situations by using scripts. Scripts are mental
structures representing the person’s knowledge about objects, people, or situations.
They are derived from prior knowledge and experience, and set up expectations about
what is probable and appropriate in relation to particular social contexts.

Figure 4.9: A Typical Restaurant Script

Figure 4.9 shows a diagram that illustrates a script of a typical restaurant, in which the
process of eating at a restaurant is divided into five ‘scenes’: sitting, ordering, serving,
eating, and paying. When a scene finishes, another scene may start. In this restaurant
script, there are three roles: consumer, waiter, and cooker. The scripts embody
knowledge about how people in a particular role (e.g. waiter, or customer) are
expected to behave in each scene. For example, it is expected that a cook prepares the
food that the customer ordered and a waiter passes the food to the customer in the
serving scene. After being served, the customer should eat the food in the eating
scene. Such expected behaviors are called behavior rules. The people with a certain
role should follow the behavior rules in the social interaction. Violation of behavior
rules will make trouble, for example, a waiter eats the food. It is important to note that
there are many variations possible in this general script having to do with different
types of restaurants or procedures, for example, MacDonald's or a Buffet. Such

 122

variations are opportunities for misunderstandings or incorrect inferences [Script
theory].

4.5.2 Collaboration Protocol

In modern society, success increasingly relies on the collective effort of a group of
people. This is because the problems we face are more and more complicated such
that no single individual has the complete knowledge and all the necessary skills and
they can not finish work in limited time. Group members need to cooperate in order to
achieve their shared goal. There are two typical kinds of cooperative processes:
collaboration processes and coordination processes.

4.5.2.1 Collaboration

Collaboration is defined here as a cooperative process where individuals share a
common goal and need to make collective contributions to achieve the shared goal.
There are two categories of collaboration: synchronous collaboration and
asynchronous collaboration.

In asynchronous collaboration, the shared goal can be decomposed into sub-goals.
Individuals have different roles and contribute seperately (i.e., in turn) in order to
achieve these various sub-goals. When all sub-goals are achieved, their overall goal is
finally achieved. A simple example of an asynchronous collaboration process is a
4×100 meters relay race. The overall process is decomposed into four phases and each
member of a team with a given role is assigned to be responsible for running 100
meters in turn. The relay baton has to be handed over from the first member to the last
member one by one. Whenever a member gets the relay baton, this member’s goal is
to run and pass the relay baton to the next one or to reach the termination line as
quickly as possible. At that time, the efforts of the rest members (e.g., running or
shouting) have no or less influence on the result. Although all their contributions as a
whole determine their success, the single contribution of individuals can be evaluated
separately.

In synchronous collaboration, the shared goal can not be decomposed into sub-goals.
All individuals with different roles often work together in order to achieve the
common goal. At the end of the synchronous collaborative process, the single
contributions of individuals are difficultly isolated. The product is an entity in which
the results of individual contributions cannot be seen. The product as a whole is of
central importance. A simple example is rowing a boat. There are two different roles
in a team: rowers and a coxswain who steer the boat. No matter which role they take,
all members have to contribute together from the beginning to the end. The whole
process has only one phase. It is expected that members with different roles contribute
in different ways. That is, the behavior rules belonging to each role must be complied
with. Individuals have no distinct sub-goals, but only the common goal. There is no
predefined routine that every member has to follow. Success of the team relies on the
collective contribution of all members, but it is difficult to evaluate single
contributions of individuals separately. Individuals’ efforts will influence the final

 123

result. For example, if one of them rows too hard, the balance may be broken and the
boat will change its direction.

Through a close investigation of synchronous collaboration processes, we can further
devide synchronous collaboration processes into two categories. Some synchronous
collaboration processes have multiple distinct collaboration states. These states are
not phases in the sense of the relay-race example given above – i.e. a sequence of
steps. Rather they represent distinct conditions or situations in a collaboration process.
The transitions between different states are triggered by some events, and not by
predefined routines. A simple example is playing soccer. Roughly speaking, there are
two distinct states: attacking and defending. Members of a team play different roles
such as attacker, rear guard, and goalkeeper. In each state, it is expected that each
member with a given role should behave appropriately. The transitions between states
are triggered by events, rather than predefined routine. For example, in the state of
attacking, if they score a goal or lose the control of the ball, the state automatically
changes to defending. For each state, different strategies can be adopted. For example,
in attacking state, they may attack from the centerline or from one of the sidelines.
Which strategies they apply depend on the characteristics of the team and the
characteristics of their opponent, and the specifics of the current situation. When they
decide to use a strategy (e.g., centerline), each member with a given role should
behave appropriately to realize the strategy. Furthermore, they can shift from the
currently used strategy to another strategy (e.g., left sideline), as the situation changes.
Each member has to adjust his/her behavior to fit the change. When the state changes,
the strategy used in this state will be terminated immediately. For example, if they
attack by using centerline-attacking strategy, most members should run forward. In
particular, the attack players should look for a chance to approach the goal and the
player who has the ball should pass it to him. However, when the ball is intercepted,
the state changes into defending state. The currently used centerline-attacking strategy
is given up immediately. From this simple example, we analyze the characteristics of
such a kind of collaboration processes. A process with such characteristics is defined
in this thesis as a multi-state collaboration process. However, other synchronous
collaboration processes may have a unique collaboration state from the beginning to
the end such as rowing a boat, as mentioned above. Such a synchronous collaboration
process is called a single-state collaboration process.

4.5.2.2 Coordination

Coordination refers to a cooperative process where individuals or teams need to adjust
their separate actions with those of others towards a shared goal. The main problem in
coordination is the synchronization of people, actions and the consistency of the
individual actions with respect to the whole process. Both synchronous collaboration
processes and asynchronous collaboration processes need coordination.

In order to support coordination of asynchronous collaboration processes by using
information technology, a lot of efforts have been made in the workflow area.
Coordination of asynchronous collaboration processes primarily occurs at sub-goal or
task level. This topic will be discussed in the next section.

 124

In order to support synchronous collaboration process, a lot of computer-based
support systems such as DOLPHIN [Streiz94] and COSOFT [Zhao94] [Zhao95] have
been developed by providing a shared workspace that is accessible to all participants.
Co-located or distributed participants can manipulate information objects in the
shared workspace synchronously. Coordination of synchronous collaboration
processes primarily occurs at the operation level. These systems support coordination
of synchronous collaboration by controlling concurrent accesses to the same
information object.

Figure 4.10: Conceptual Architecture of

Collaboration Protocols and Protocol Instances

In order to support multi-state collaboration process, concurrency control is
insufficient, because concurrency control does not care of multiple states and multiple
roles. This section presents an approach to support the coordination of multi-state
collaboration processes. The central concept of this approach is the collaboration
protocol that is defined here as a computational description of a collaboration policy
(strategy) [Miao98b]. In terms of schema theory, a collaboration protocol is a
computerised script. A collaboration protocol is described as an extended, hierarchical
state-transition-diagram. As illustrated in Figure 4.10, a collaboration protocol
consists of a set of protocol states connected by a set of protocol transitions. A sub-
protocol may be embedded in a protocol state. A behavior rule combines a protocol
role, an operation, and an object. A behavior rule can be bound to protocol states and
protocol transitions. That is, a behavior is expected in some state, and a behavior may
results in a state transition. As a description of a collaboration strategy, a
collaboration protocol may have one or more instances, called protocol instances. A
protocol instance is executed by one or more agents who play certain protocol roles.
A protocol instance has a current state, in which all bound behavior rules are expected
to be complied with. A behavior may result in a transition from the current state to

 125

another state. In addition, the executors of a protocol instance can initiate a sub-
protocol that is embedded in the current state. A formal specification of collaboration
protocol and protocol instance is given below.

4.5.2.1 Modeling Collaboration Protocols

This subsection formally specifies the related concepts to collaboration protocol and
how to model a collaboration protocol.

Definition (Protocol Role): A protocol role represents a certain role played in a
given type of collaboration processes. An agent with a role has a set of privileges and
responsibilities in a multi-state collaboration process. For example, the possible
protocol roles in the playing soccer processes are attacker, rear guard, and goalkeeper.

[ProtocolRole]

Definition (Operation): An operation represents a possible act. For example, the
operations performed in a playing soccer process are control, pass, and shooting. In
this definition, an operation is an abstract description of an act, but not an actual
operation. However, it associates to an act operation such as creating a typed node.

[Operation]

Definition (Object): An object represents objects on which an operation performed.
For example, the objects in a playing soccer process are ball, goal, and opponent.

[Object]

It is important to note that protocol role, operation and object are defined as abstract
data types without further characteristics. This provides us with the basic building
blocks to develop other notions for defining the collaboration protocol. When defining
a concrete collaboration protocol, the protocol roles, operations and objects refer to
collaboration protocol specific protocol roles, operations and objects.

Definition (Behavior rule): A behavior rule specifies which protocol role is
permitted to perform which operation on which object. For example, a possible
behavior rule in a playing soccer process is the goalkeeper holds the ball. Other team
members can not hold the ball.

BehaviorRule = = ProtocolRole ↔ (Operation ↔ Object)

Definition (Protocol State): A protocol state specifies a certain condition or situation
that is distinguished from other conditions or situations in the whole collaboration
process. For example, a protocol state in a playing soccer process is defending. A
protocol state is identified by a name.

┌─ ProtocolState ─────────────────────────────────────
│ name : LABEL
└───

 126

Definition (Protocol Transition): A protocol transition specifies a transition
between two protocol states. For example, a protocol transition in a playing soccer
process is a change from attacking to defending. A protocol transition is identified by
a label.

ProtocolTransition = = LABEL ↔ (ProtocolState ↔ ProtocolState)

Definition (Protocol Family): A protocol family denotes all possible collaboration
protocols that are representing different strategies of the same kind of collaboration.
For example, playing soccer is a kind of collaboration and playing volleyball is
another kind of collaboration. When playing soccer, different strategies can be used,
which form a family. Collaboration protocols within the same family are defined
based on the same set of behavior rules. A protocol family is distinguished from other
family by its name.

┌─ CollaborationProtocolFamily ─────────────────────────────
│ name : STRING
└───

Definition (Collaboration Protocol): A collaboration protocol (protocol for short in
this thesis) represents a policy or a strategy that can be adopted in a given
collaboration. For example, in playing soccer, an attack-based strategy can be defined
as a protocol, and a defend-based strategy can be regarded as another one. These two
strategies have not been in detail described in the example above. However, the sub-
strategies (e.g., centerline attacking or sideline attacking) within a state (e.g.,
attacking) were discussed in the example above. A sub-strategy can be described as a
sub-protocol as well. A protocol is distinguished from other protocols by its name.
Each protocol belongs to a protocol family.

┌─ CollaborationProtocol ─────────────────────────────────
│ name : STRING
│ protocolFamily : CollaborationProtocolFamily
└───

Definition (Protocol Base): A protocol base consists of a set of protocol families, a
set of protocols, and a set of functions. Each protocol state or protocol transition is
defined for a certain protocol. Each protocol should have a start state from which a
collaboration protocol begins to be executed. Each protocol role is defined for a
certain protocol. There is a binding relation between a behavior rule to a protocol
state. A protocol transition is bound to a behavior rule. Some protocols can be defined
as sub-protocols that can be initiated in a certain protocol state. There are constrains
in the protocol base. All protocol states and protocol transitions have to be defined for
an existing protocol. If a protocol transition connects two protocol states, these two
protocol states and the protocol transition must be defined for the same protocol. If
two different protocol states are defined in the same protocol, their names and their
bound behavior rules are not equal. Each protocol has only one start state, or the start
state hasn’t been defined. The start state of a protocol should be one of the defined
protocol states of the protocol. If two protocol transitions of the same protocol are
equal, it means that their names, departure state and arrival state are the same. If two

 127

protocols belong to the same family, their protocol roles should be equal.
Furthermore, for two protocol states belonging to different protocols within the same
family, they take the same name if and only if they are bound by the same set of
behavior rules. This constraint is defined in order to support shifting protocols. For a
detailed explanation see section 4.5.2.3.

┌─ ProtocolBase─────────────────────────────────
│ protocolFamilies : ℙ CollaborationProtocolFamily
│ protocols : ℙ CollaborationProtocol
│ protocolState : ProtocolState → CollaborationProtocol
│ protocolStartState : CollaborationProtocol → ProtocolState
│ protocolTransition : ProtocolTransition → CollaborationProtocol
│ protocolRole : ProtocolRole → CollaborationProtocol
│ stateBinding : BehaviorRule → ProtocolState
│ transitionBound : ProtocolTransition → BehaviorRule
│ subProtocol : CollaborationProtocol ProtocolState
├─────────────────────────────
│ ran protocolState ⊆ protocols ∧ ran protocolTransition ⊆ protocols
│ (∀ s, d : ProtocolState; t : ProtocolTransition |
│ first second t = s ∧ second second t = d •
│ (protocolState s) = (protocolState d) = (protocolTransition t))
│
│ (∀ s 1 , s 2 : ProtocolState | protocolState s 1 = protocolState s 2 ∧ s 1 ≠ s 2 •

│ s 1 .name ≠ s 2 .name) ∧

│ dom stateBinding ⊲ { s 1 } ≠ dom stateBinding ⊲ { s 2 }
│
│ (∀ p : CollaborationProtocol | p ∈ protocols • # (protocolStartState ⊲ { p }) ≤ 1)
│ (∀ s : ProtocolState; p : CollaborationProtocol | (p ↦ s) ∈ protocolStartState •
│ s ∈ dom protocolState ⊲ { p })
│
│ (∀ t 1 , t 2 : ProtocolTransition | (protocolTransition t 1 = protocolTransition t 2 ∧

│ t 1 = t 2) ⇔ (first t 1 = first t 2 ∧

│ first second t 1 = first second t 2 ∧

│ second second t 1 = second second t 2)
│
│ (∀ p 1 , p 2 : CollaborationProtocol | p 1 .protocolFamily = p 2 .protocolFamily •

│ dom protocolRole p 1 = dom protocolRole p 2 ∧

│ (∀ s 1 , s 2 : ProtocolState | s 1 ∈ p 1 ∧ s 2 ∈ p 2 • s 1 .name = s 2 .name ⇔

│ (dom stateBinding ⊲ { s 1 } = dom stateBinding ⊲ { s 2 })))
└───

 128

So far, data types and an abstract state for modeling collaboration protocols are
defined. As mentioned in Chapter 5, a tool, called collaboration protocol definition
tool has been developed for defining collaboration protocols. In the paragraphs below,
the operations to define collaboration protocols are specified.

First of all, we have to create a protocol family before defining a protocol member in
the family.

┌─ CreateProtocolFamilyOK───────────────────────────────
│ ∆ ProtocolBase
│ name? : STRING
├─────────────────────────────
│ (∀ f : CollaborationProtocolFamily | f ∈ protocolFamilies •
│ f.name ≠ name?)
│
│ let family = = (µ CollaborationProtocolFamily | name = name?) •
│ protocolFamilies’ = protocolFamilies ∪ { family }
│ protocols’ = protocols
│ protocolState’ = protocolState
│ protocolStartState’ = protocolStartState
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound
│ subProtocol’ = subProtocol
└───

When a protocol family exists, we can define a protocol in this family.

┌─ CreateCollaborationProtocolOK───────────────────────────
│ ∆ ProtocolBase
│ name? : STRING
│ family? : CollaborationProtocolFamily
├─────────────────────────────
│ (∀ p : CollaborationProtocol | p ∈ protocols • p.name ≠ name?) ∧
│ family? ∈ protocolFamilies
│ let aProtocol = = (µ CollaborationProtocol | name = name? ∧
│ protocolFamily = family?) •
│ protocols’ = protocols ∪ { aProtocol }
│ protocolState’ = protocolState
│ protocolStartState’ = protocolStartState
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound
│ protocolFalimies’ = protocolFamilies
│ subProtocol’ = subProtocol
└───

 129

The operations to define protocol states and protocol transitions are specified as
follows:

┌─ CreateProtocolStateOK─────────────────────────────────
│ ∆ ProtocolBase
│ name? : LABEL
│ protocol? : CollaborationProtocol
├─────────────────────────────
│ protocol? ∈ protocols
│ (∀ s : ProtocolState | protocolState s = protocol? • s.name ≠ name?)
│
│ let state = = (µ ProtocolState | name = name?) •
│ protocolState’ = protocolState ∪ { state ↦ protocol?}
│ protocols’ = protocol
│ protocolStartState’ = protocolStartState
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound
│ protocolFalimies’ = protocolFamilies
│ subProtocol’ = subProtocol
└───

┌─ CreateProtocolTransitionOK──────────────────────────────
│ ∆ ProtocolBase
│ name? : LABEL
│ protocol? : CollaborationProtocol
│ s?, d? : ProtocolState
├─────────────────────────────
│ protocol? ∈ protocols ∧
│ (s? ↦ protocol?) ∈ protocolState ∧ (d? ↦ protocol?) ∈ protocolState
│
│ let transition = = (µ ProtocolTransition | • (name? ↦ s? ↦ d?)) •
│ protocolTransition’ = protocolTransition ∪ { transition ↦ protocol?}
│ protocols’ = protocol
│ protocolStartState’ = protocolStartState
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound
│ protocolFalimies’ = protocolFamilies
│ subProtocol’ = subProtocol
└───

A protocol role is defined by performing the following operation:

┌─ DefineProtocolRoleOK──────────────────────────────
│ ∆ ProtocolBase
│ role? : ProtocolRole

 130

│ protocol? : CollaborationProtocol
├─────────────────────────────
│ (role? ↦ protocol?) ∉ protocolRole
│
│ protocols’ = protocols
│ protocolState’ = protocolState
│ protocolStartState’ = protocolStartState
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole ∪ { role? ↦ protocol? }
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound
│ protocolFalimies’ = protocolFamilies
│ subProtocol’ = subProtocol
└───

For executing a protocol, it is needed to define a start state for the protocol.
Otherwise, the initiated protocol has no start point.

┌─ DefineProtocolStartStateOK──────────────────────────────
│ ∆ ProtocolBase
│ state? : ProtocolRole
│ protocol? : CollaborationProtocol
├─────────────────────────────
│ (state? ↦ protocol?) ∈ protocolState
│
│ protocols’ = protocols
│ protocolState’ = protocolState
│ protocolStartState’ = (protocolStartState { protocol? }) ∪ {state? ↦ protocol?}
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound
│ protocolFalimies’ = protocolFamilies
│ subProtocol’ = subProtocol
└───

Binding a behavior rule with a protocol state or a protocol transition for a protocol is
realized by performing the following operation:

┌─ BindRuleWithProtocolStateOK────────────────────────────
│ ∆ ProtocolBase
│ rule? : BehaviorRule
│ state? : ProtocolRole
│ protocol? : CollaborationProtocol
├─────────────────────────────
│ (state? ↦ protocol?) ∈ protocolState ∧ (rule? ↦ state?) ∉ stateBinding
│
│ protocols’ = protocols

 131

│ protocolState’ = protocolState
│ protocolStartState’ = protocolStartState
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding ∪ { rule? ↦ state?}
│ transitionBound’ = transitionBound
│ protocolFalimies’ = protocolFamilies
│ subProtocol’ = subProtocol
└───

┌─ BindRuleWithProtocolTransitionOK─────────────────────────
│ ∆ ProtocolBase
│ rule? : BehaviorRule
│ transition? : ProtocolTransition
│ protocol? : CollaborationProtocol
├─────────────────────────────
│ (transition? ↦ protocol?) ∈ protocolState ∧
│ (transition? ↦ rule?) ∉ transitionBound
│
│ protocols’ = protocols
│ protocolState’ = protocolState
│ protocolStartState’ = protocolStartState
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound ∪ { transition? ↦ rule?}
│ protocolFalimies’ = protocolFamilies
│ subProtocol’ = subProtocol
└───

A protocol can be defined as a sub-protocol under a state. Consequently, the sub-
protocol can be initiated only under this state.

┌─ DefineSubProtocolOK─────────────────────────────────
│ ∆ ProtocolBase
│ state? : ProtocolRole
│ subProtocol? : CollaborationProtocol
├─────────────────────────────
│ (subProtocol? ↦ state?) ∉ subProtocol
│
│ protocols’ = protocols
│ protocolState’ = protocolState
│ protocolStartState’ = protocolStartState
│ protocolTransition’ = protocolTransition
│ protocolRole’ = protocolRole
│ stateBinding’ = stateBinding
│ transitionBound’ = transitionBound
│ protocolFalimies’ = protocolFamilies

 132

│ subProtocol’ = subProtocol ∪ { subProtocol? ↦ state?}
└───

The major operations to define collaboration protocols were specified above.
Collaboration protocols can be predefined and can be stored in a protocol base. The
predefined protocols can be initiated as an instance when using them. It is important
to note that the predefined protocol can be modified even when it is executed. It
provides flexibility for users to change the definition of the currently used protocol to
fit some situations that were not predicted when the protocol was defined. In the next
subsection, we discuss how an instance of a protocol is initiated and executed.

4.5.2.2 Protocol Instances

The purpose of defining a collaboration protocol is to use it at run time. When group
members perform a collaborative activity, they can use a pre-defined collaboration
protocol to guide and control the group interaction. A collaboration protocol can be
executed as a protocol instance. One collaboration protocol can have more than one
protocol instance at the same time. Each protocol instance is executed independently
following the definition of the chosen collaboration protocol.

Definition (Protocol Instance): A protocol instance represents an execution of a
collaboration protocol.

[ProtocolInstance]

Definition (Protocol Instance Base): A protocol instance base consists of a protocol
base and a set of a protocol instances. Each protocol instance exploits definitely one
collaboration protocol as the currently executed protocol. Each protocol instance
records the current state of protocol execution. An assign relation specifies which
agent is assigned to a certain protocol role of a protocol instance. The parentOf
relation is used to specify that the first protocol instance is a parent of the second one.
In other words, the second protocol instance is initiated from the current state of the
first protocol instance. In the protocol instance base, the set of protocol instances is
exactly equal to the domain of the currentProtocol function and equal to the domain of
the currentState function. The protocol role to be assigned for a protocol instance
should be one of the protocol roles defined in the protocol that serves as the current
protocol of the protocol instance. If one protocol instance is the parent of another
protocol instance, the currently used protocol of the latter protocol instance should be
one of the sub-protocols defined in the current state of former protocol instance.

┌─ ProtocolInstanceBase ─────────────────────────────────
│ ProtocolBase
│ protocolInstances : ℙ ProtocolInstance
│ currentProtocol : ProtocolInstance → CollaborationProtocol
│ currentState : ProtocolInstance → ProtocolState
│ assign : Agent → (ProtocolRole → ProtocolInstance)
│ parentOf : ProtocolInstance ProtocolInstance

 133

├─────────────────────────────
│ protocolInstances = dom currentProtocol = dom currentState
│ ∀ a : assign | (first second a ↦ currentProtocol (second second a)) ∈ protocolRole
│ ∀ i 1 , i 2 : ProtocolInstance | (i 1 ↦ i 2) ∈ parentOf •

│ currentProtocol i 2 ∈ dom subProtocol ⊲ {currentState i 1 }
└───

A protocol instance can be initiated simply by choosing a defined protocol in the
protocol base. After a protocol instance is initiated, it will begin execution at the start
state of the collaboration protocol. That is, the current state of the instance is the start
state.

┌─ InitiateRootProtocolInstanceOK ───────────────────────────
│ ∆ ProtocolInstanceBase
│ Ξ ProtocolBase
│ selectedProtocol? : CollaborationProtocol
├─────────────────────────────
│ selectedProtocol? ∈ protocols
│
│ initiatedInstance = = (µ ProtocolInstance)
│ protocolInstances’ = protocolInstances ∪ { initiatedInstance }
│ currentProtocol’ = currentProtocol ∪ { initiatedInstance ↦ selectedProtocol?}
│ currentState’ = currentState ∪
│ { initiatedInstance ↦ (protocolStartState selectedProtocol?)}
│ assign’ = assign
│ parentOf’ = parentOf
└───

When executing a protocol instance, the initiator of the protocol instance needs to
assign protocol-roles to the potential participants of the collaborative learning activity.

┌─ AssignProtocolRoleOK ──────────────────────────────
│ ∆ ProtocolInstanceBase
│ Ξ ProtocolBase
│ instance? : ProtocolInstance
│ agent? : Agent
│ role? : ProtocolRole
├─────────────────────────────
│ instance? ∈ protocolInstances ∧
│ role? ∈ dom protocolRole ⊲{ currentProtocol instance? }
│
│ protocolInstances’ = protocolInstances
│ currentProtocol’ = currentProtocol
│ currentState’ = currentState
│ assign’ = assign ∪ { agent? ↦ role? ↦ instance? }

 134

│ parentOf’ = parentOf
└───

A protocol can be initiated as a sub-protocol instance under the current state of a
protocol instance, if the selected protocol is defined as a sub-protocol of state of the
protocol, which is exactly the currently used protocol of the protocol instance.

┌─ InitiateSubProtocolInstanceOK ────────────────────────────
│ ∆ ProtocolInstanceBase
│ Ξ ProtocolBase
│ instance? : ProtocolInstance
│ subProtocol? : CollaborationProtocol
├─────────────────────────────
│ instance? ∈ protocolInstances ∧ selectedProtocol? ∈ protocols ∧
│ selectedProtocol? ∈ dom subProtocol ⊲{ currentState instance? }
│
│ subProtocolInstance = = (µ ProtocolInstance)
│ protocolInstances’ = protocolInstances ∪ { subProtocolInstance }
│ currentProtocol’ = currentProtocol ∪ { subProtocolInstance ↦ selectedProtocol?}
│ currentState’ = currentState ∪
│ { subProtocolInstance ↦ (protocolStartState selectedProtocol?)}
│ assign’ = assign
│ parentOf’ = parentOf ∪ { instance? ↦ subProtocolInstance }
└───

In order to make the specifications of the following operations short and clear, we
define a relation “_belongTo_”. The first element of a pair in this relation is an actor
and the second element of the pair is a group. This means that an actor directly or
indirectly belongs to the group.

│_belongTo_ = { ∀ anActor : Actor; aGroup : Group |
│ anActor ∈ actors ∧ aGroup ∈ groups ∧
│ ((anActor ↦ aGroup) ∈ aMemberOf ∨
│ (∃ anotherGroup : Group | anotherGroup ∈ groups •
│ (anActor ↦ anotherGroup) ∈ aMemberOf ∨
│ (anotherGroup ↦ aGroup) ∈ aSubGroupOf ⁺)) •
│ anActor ↦ aGroup }

When an actor performs an operation on an object, it will be checked whether the
actor is permitted to do it in the current state of the protocol instance according to the
bound behavior rules, assignment, and relationships between agents. It is needed to
note that the operation and object specified so far are still abstract notions. In a
concrete collaboration protocol, the operation and object has concrete meaning.
Therefore, there is no change in the protocol base and protocol instance base so far.

 135

┌─ PerformOperationOnObjectOK ────────────────────────────
│ Ξ ProtocolInstanceBase
│ Ξ ProtocolBase
│ instance? : ProtocolInstance
│ actor? : Actor
│ operation? : Operation
│ object? : Object
├─────────────────────────────
│ instance? ∈ protocolInstances ∧
│ (∃ rule : BehaviorRule | rule ∈ dom stateBinding ⊲{ currentState instance? }•
│ first second rule = operation? ∧ second second rule = object? ∧
│ (∃ agent : Agent; a : assign | agent = first a ∧
│ first second assign = first rule ∧
│ second second assign = instance? •
│ actor actor? = agent ∨
│ (∃ g : Group | actor? _belongTo_ g ∧ group g = agent)))
└───

When an actor with an appropriate protocol-role performs an operation that is bound
to a protocol transition, it will trigger a state transition according to the definition of
collaboration protocol. The destination state of the transition then becomes the current
state of the protocol instance. All instances initiated in the previous state will be
terminated automatically.

┌─ TriggerTransitionOK ────────────────────────────
│ ∆ ProtocolInstanceBase
│ Ξ ProtocolBase
│ instance? : ProtocolInstance
│ actor? : Actor
│ operation? : Operation
│ object? : Object
├─────────────────────────────
│ instance? ∈ protocolInstances ∧
│ (∃ transition : ProtocolTransition | first second transition = currentState instance?∧
│ first second transitionBound transition = operation? ∧
│ second second transitionBound transition = object? ∧
│ (∃ agent : Agent; a : assign | agent = first a ∧
│ first second assign = first transitionBound transition ∧
│ second second assign = instance? •
│ actor actor? = agent ∨
│ (∃ g : Group | actor? _belongTo_ g ∧ group g = agent)))
│
│ protocolInstances’ = protocolInstances \ { ∀ child : ProtocolInstance |
│ (instance? ↦ child) ∈ parentOf ⁺ • child }
│
│ currentProtocol’ = currentProtocol \ { ∀ child : ProtocolInstance |
│ (instance? ↦ child) ∈ parentOf ⁺ • child ↦ (currentProtocol child)}

 136

│
│ currentState’ = currentState \ { ∀ child : ProtocolInstance |
│ (instance? ↦ child) ∈ parentOf ⁺ • child ↦ (currentState child)}
│ ⊕ { initiatedInstance ↦
│ (∃ 1 transition : ProtocolTransition | first transition = currentState instance? ∧
│ first second transitionBound transition = operation? ∧
│ second second transitionBound transition = object? ∧
│ (∃ agent : Agent; a : assign | agent = first a ∧
│ first second assign = first transitionBound transition ∧
│ second second assign = instance? •
│ actor actor? = agent ∨
│ (∃ g : Group | actor? _belongTo_ g ∧ group g = agent)) •
│ second second transition)}
│
│ assign’ = assign \{ ∀ a : assign | second second a = instance? • a}\
│ { ∀ child : ProtocolInstance; a : assign | (instance? ↦ child) ∈ parentOf ⁺ ∧
│ second second a = child • a }
│
│ parentOf’ = (∀ child : ProtocolInstance | (instance? ↦ child) ∈ parentOf ⁺ •
│ parentOf { child })
└───

The operation to terminate a protocol instance means to terminate the protocol
instance itself and it children.

┌─ TerminateInstanceOK ────────────────────────────────
│ ∆ ProtocolInstanceBase
│ Ξ ProtocolBase
│ instance? : ProtocolInstance
├─────────────────────────────
│ instance? ∈ protocolInstances
│
│ protocolInstances’ = protocolInstances \ { instance?}\
│ { ∀ child : ProtocolInstance | (instance? ↦ child) ∈ parentOf ⁺ • child }
│
│ currentProtocol’ = currentProtocol \ { instance? ↦ (currentProtocol instance?)} \
│ { ∀ child : ProtocolInstance | (instance? ↦ child) ∈ parentOf ⁺•
│ child ↦ (currentProtocol child)}
│
│ currentState’ = currentState \ { instance? ↦ (currentState instance?)} \
│ { ∀ child : ProtocolInstance | (instance? ↦ child) ∈ parentOf ⁺ •
│ child ↦ (currentState child)}
│
│ assign’ = assign \{ ∀ a : assign | second second a = instance? • a}\

 137

│ { ∀ child : ProtocolInstance; a : assign | (instance? ↦ child) ∈ parentOf ⁺ ∧
│ second second a = child • a }
│
│ parentOf’ = (∀ child : ProtocolInstance | (instance? ↦ child) ∈ parentOf ⁺ •
│ parentOf { child })
└───

The operations to execute abstract collaboration protocols are now specified. We will
discuss concrete collaboration protocols and its execution when we apply this
approach to support problem based learning in the next section. Before discussing it,
we discuss an open issue of collaboration protocols: how to shift between protocols.

4.5.2.3 Shifting between Collaboration Protocols

As discussed above, group interaction is supported at run time by the execution of a
protocol instance of a pre-defined collaboration protocol. In order to support a certain
collaborative activity (e.g., playing soccer), a family of collaboration protocols can be
defined. As we known, team members vary in age, running speed, skills, personal
character, and so on. Different teams may exploit different collaboration protocols to
carry out their collaboration processes, because of the characteristics of the teams or
the characteristics of their opponent. There is no single collaboration protocol that is
suitable to every type of team and to every match. Furthermore, as team conducts a
collaborative activity, some factors may change over time. For example, when a team
attacks by using the strategy of centerline breakthrough, the opponent defends by
using a strategy of tight formation in centerline. Therefore, teams may want to shift
from the currently used collaboration protocol to another collaboration protocol to fit
the changes.

A simple approach to shift between protocols is to terminate the currently executed
protocol instance first and then to initiate a new protocol instance based on the target
collaboration protocol. However, in some cases, this is not allowed. For example, in
playing soccer, it is impossible to resume an attack from the beginning. In some cases,
it is possible. However, the execution environment of the current protocol instance
will be lost upon terminating the current protocol instance. The group members then
have to repeat efforts to reach the equivalent state in the new protocol instance. For
example, when a group uses the “first-request-first-take” floor token control protocol,
the members’ requests for the floor token are recorded in the request queue of the
current protocol instance. If the group wants to change the floor token control
protocol by stopping the current protocol instance and initiating a new protocol
instance of another floor token control protocol (e.g., the “mediator-assigning” floor
token control protocol), the request queue of the current protocol instance will be lost.
Group members need to request the new floor token in the new protocol instance
again.

An alternative approach is to enable end-users to modify the definition of the
collaboration protocol in use at run time. However, our experiences reveal that it is a
difficult and time-consuming task for end-users to change a collaboration protocol
dynamically.

 138

Therefore, we adopted an approach where end-users are enabled to shift between
collaboration protocols by simply choosing another protocol from the same family of
pre-defined collaboration protocols [Miao00c]. Because all collaboration protocols in
a family are carefully defined to support the same collaborative activity, they use
identical sets of objects, such as the types of objects and their associated operations,
and identical protocol-roles. Collaboration protocols within the same family vary in
the definition of the state of collaboration and transitions, and in the binding relation.
An analysis of collaboration protocols in the same family showed that some states of
collaboration defined in different collaboration protocols are bound to the same set of
behavior rules, and that some states of collaboration defined in different collaboration
protocols are refined to different degrees. Manually, for any state of any collaboration
protocol from which to shift we can find an appropriate state in any target
collaboration protocol from where to continue execution after shifting. Therefore, a
family of collaboration protocols can be defined by a protocol diagram in which all
collaboration protocols are contained as sub-diagrams. A new shift relation is defined
by edges that connect each state in any sub-diagram to a state in any other sub-
diagram, from which execution can be continued after a shift.

In order to discuss the general case, we suppose that in a family there are m
collaboration protocols denoted by P 1 , P 2 , … P m , respectively. The numbers of
states in each collaboration protocol are n 1 , n 2 , …, n m , respectively. Then, the
number of states in the diagram of the protocol family is n = n 1 + n 2 + … + n m and
 n

the number of shift arrows is ∑ n i * (m - 1). When adding a new collaboration
 i = 1

 n

protocol with n k states in this family, we have to add ∑ n i + m* n k shift arrows.
 i = 1
This diagram becomes very complex when the number of collaboration protocols and
the numbers of states in these protocols are large. It is also difficult to maintain the
diagram when adding or removing or modifying collaboration protocols. Thus,
manual maintenance of the shift relation is difficult.

In order to shift between collaboration protocols in a systematic manner, we defined a
rule-based method for capturing the shift relation. Readers should remember that a
state within a collaboration protocol is distinguished from other states, because a
certain sub set of behavior rules is bound to this state. Within a collaboration protocol,
two different states are bound to two different sub sets of behavior rules. Different
collaboration protocols within a protocol family are defined to support the same type
of collaboration. That is, the set of protocol roles, objects and their associated
operations are the same. Collaboration protocols are different from each other because
the states in different protocols are defined in different ways. That is, in different
collaboration protocols, states are refined or specialized to different degree by binding
to different sub sets of behavior rules. According to the sub set of behavior rules
bound to states, the relation between two states within two different collaboration
protocols can fall into one of four categories. Given s 1 is a state of a collaboration
protocol P 1 and s 2 is a state of a collaboration protocol P 2 (P 1 ≠ P 2), the relation

 139

between first stateBinding⊲{s 1 } and first stateBinding⊲{s 2 } leads to one of the
following four situations:

1) equal: first stateBinding⊲{s 1 } = first stateBinding⊲{s 2 };
2) contained: first stateBinding⊲{s 1 } ⊂ first stateBinding⊲{s 2 } ∨

first stateBinding⊲{s 1 } ⊃ first stateBinding⊲{s 2 };
3) intersected: first stateBinding⊲{s 1 } ⊄ first stateBinding⊲{s 2 } ∧

first stateBinding⊲{s 2 } ⊄ first stateBinding⊲{s 1 } ∧
(first stateBinding⊲{s 1 } ∩ first stateBinding⊲{s 2 } ≠ ∅);

4) separated: first stateBinding⊲{s 1 } ∩ first stateBinding⊲{s 2 } = ∅ .

For all collaboration protocols in the same family, we define a unified set of labels.
According to these four situations we can establish a shift relation between labels of
states instead of establishing a shift relation between states of two collaboration
protocols. In the first case, we label two states by the same name. In the other three
cases, we have to use different names for these two states.

Definition (Label Relation Graph): A label relation graph represents relations
between labels assigned to protocol states of all protocols within the same family.

┌─ LabelRelationGraph──────────────────────────────────
│ aProtocolFamily : CollaborationProtocolFamily
│ labels: ℙ LABEL
│ uniDirectedRelation : LABEL LABEL
│ biDirectedRelation : LABEL LABEL
├─────────────────────────────
│ labels = {∀ s : ProtocolState | (protocolState s).protocolFamily = aProtocolFamily •
│ s.name }
│
│ uniDirectedRelation = {∀ s1 , s 2 : ProtocolState |
│ protocolState s 1 ≠ protocolState s 2 ∧
│ s1 .name ∈ labels ∧ s 2 .name ∈ labels ∧
│ dom stateBinding ⊲ { s 1 } ⊃ dom stateBinding ⊲{ s 2 }•
│ s1 .name ↦ s 2 .name }
│
│ biDirectedRelation ⊆ {∀ s1 , s 2 : ProtocolState |
│ protocolState s 1 ≠ protocolState s 2 ∧
│ s1 .name ∈ labels ∧ s 2 .name ∈ labels ∧
│ (dom stateBinding ⊲ { s1 } ∩ dom stateBinding ⊲ { s 2 }) ≠ ∅ ∧
│ dom stateBinding ⊲ { s 1 } ⊄ dom stateBinding ⊲ { s 2 }∧
│ dom stateBinding ⊲ { s 2 } ⊄ dom stateBinding ⊲{ s 1 }•
│ s1 .name ↦ s 2 .name}
│

 140

│ (∀ label1 , label 2 : LABEL | (label1 ↦ label 2) ∈ biDirectedRelation •
│ (label 2 ↦ label1) ∈ biDirectedRelation
└───

It is important to notice that not all intersected states have bi-directional relations
between their labels. In some cases, the behavior rules bound to two states are almost
the same but they have subtle difference because they are defined to emphasize or
ignore intentionally some details more or less. They can be regarded as mutually
shiftable states and a bi-directional relation can be defined between the labels. In other
cases, no shift should be possible between two states although the behavior rules
bound to the two states are associated to more or less common behavior rules. Thus,
the bi-directional relations need to be designed carefully by protocol designers.

After defining the label relation graph, we can define the operation to shift between
protocols and describe the algorithm. It is important to note that Z language is used to
specify the change of an abstract state before and after an operation. How to
implement this change is hidden in the specification. It gives a freedom for software
developer to code by using different algorithm. Therefore, in this thesis the algorithm
used to shift between protocols is specified separately by using a Z language-like
description method.

┌─ ShiftProtocolOK ────────────────────────────────────
│ ∆ ProtocolInstanceBase
│ Ξ ProtocolBase
│ instance? : ProtocolInstance
│ anotherProtocol? : CollaborationProtocol
├─────────────────────────────
│ instance? ∈ protocolInstances ∧ anotherProtocol? ∈ protocols ∧
│ anotherProtocol?.protocolFamily = (currentProtocol instance?).protocolFamily
│
│ protocolInstances’ = protocolInstances \ { child : ProtocolInstance |
│ (instance? ↦ child) ∈ parentOf ⁺ • child }
│
│ currentProtocol’ = currentProtocol ⊕ { instance? ↦ anotherProtocol? }\
│ { child : ProtocolInstance | (instance? ↦ child) ∈ parentOf ⁺ •
│ child ↦ (currentProtocol child)}
│
│ currentState’ = currentState \ { child : ProtocolInstance |
│ (instance? ↦ child) ∈ parentOf ⁺ • child ↦ (currentState child)}
│ ⊕ { instance? ↦ (the value of the return state of the following algorithm)}
│ assign’ = assign
│ parentOf’ = (∀ child : ProtocolInstance | (instance? ↦ child) ∈ parentOf ⁺ •
│ parentOf { child })
└───

 141

Step 1: if (∃ state : ProtocolState | (state ↦ anotherProtocol?) ∈ protocolState ∧
(currentState instance?).name = state.name) then return state

Step 2: if (∃ state : ProtocolState | (state ↦ anotherProtocol?) ∈ protocolState ∧
(currentState instance?).name ↦ state.name) ∈ biDirectedRelation)
then return state
else let searchPoint = (currentState instance?).name

Step 3: let Children = { child : LABEL | child ∈ labels ∧
(searchPoint ↦ child) ∈ uniDirectedRelation }
if #Children = ∅ ∧ (searchPoint ≠ (currentState instance?).name)

 then return up level
if (∃ sequence : iseq ProtocolState, someChildren : ℙ LABEL |
 someChildren ⊆ Children ∧
 (∀ item 1 , item 2 : sequence |

 (second item1 ↦ anotherProtocol?) ∈ protocolState ∧
 (second item 2 ↦ anotherProtocol?) ∈ protocolState ∧

(second item1 ↦ second item 2) ∈
(ran (dom protocolTransition ⊲{ anotherProtocol?})) ⁺ •

first item1 > first item 2) ∧
 (∀ state : ProtocolState | state ∈ ran sequence •

(∃ c : someChildren | state.name = c ∧
(state ↦ anotherProtocol?) ∈ protocolState))

 then return sequence 1
if (∃ sequence : seq₁ ProtocolState, someChildren : ℙ LABEL |
 someChildren ⊆ Children ∧
 (∀ item 1 , item 2 : sequence |

 (second item1 ↦ anotherProtocol?) ∈ protocolState ∧
 (second item 2 ↦ anotherProtocol?) ∈ protocolState ∧

(second item1 ↦ second item 2) ∈
(ran (dom protocolTransition ⊲{ anotherProtocol?})) ⁺) ∧

 (∀ state : ProtocolState | state ∈ ran sequence •
(∃ c : someChildren | state.name = c ∧
(state ↦ anotherProtocol?) ∈ protocolState))

 then let transitiveRelation = { n : ℕ, state : ProtocolState |
state ∈ ran sequence ∧
(protocolStartState anotherProtocol? ↦ state) =

 (ran (dom protocolTransition ⊲{ anotherProtocol?})) ⁿ •
n ↦ state}

 return (item : transitiveRelation |
first item = min dom transitiveRelation • second item)

 else for each c : Children let searchPoint = c goto Step 3
 let searchPoint = (currentState instance?).name
Step 4: let Fathers = { father : LABEL | father ∈ labels ∧

 142

(father ↦ searchPoint) ∈ uniDirectedRelation }
if # Fathers = ∅ ∧ (searchPoint ≠ (currentState instance?).name)
 then return up level

if (∃ sequence : iseq ProtocolState, parents : ℙ LABEL |
 parents ⊆ Fathers ∧
 (∀ item 1 , item 2 : sequence |
 (second item1 ↦ anotherProtocol?) ∈ protocolState ∧

 (second item 2 ↦ anotherProtocol?) ∈ protocolState ∧
(second item1 ↦ second item 2) ∈
(ran (dom protocolTransition ⊲{ anotherProtocol?})) ⁺ •

first item1 > first item 2) ∧
 (∀ state : ProtocolState | state ∈ ran sequence •

(∃ c : someChildren | state.name = c ∧
(state ↦ anotherProtocol?) ∈ protocolState))

 then return sequence 1
if (∃ sequence : seq 1 ProtocolState, someChildren : ℙ LABEL |
 parents ⊆ Fathers ∧
 (∀ item 1 , item 2 : sequence |

 (second item1 ↦ anotherProtocol?) ∈ protocolState ∧
 (second item 2 ↦ anotherProtocol?) ∈ protocolState ∧

(second item1 ↦ second item 2) ∈
(ran (dom protocolTransition ⊲{ anotherProtocol?})) ⁺) ∧

 (∀ state : ProtocolState | state ∈ ran sequence •
(∃ c : someChildren | state.name = c ∧
(state ↦ anotherProtocol?) ∈ protocolState))

 then let transitiveRelation = { n : ℕ, state : ProtocolState |
state ∈ ran sequence ∧
(protocolStartState anotherProtocol? ↦ state) =

 (ran (dom protocolTransition ⊲{ anotherProtocol?})) ⁿ •
n ↦ state}

 return (item : transitiveRelation |
first item = min dom transitiveRelation • second item)

 else for each f : Fathers let searchPoint = f goto Step 3
Step 5: return protocolStartState anotherProtocol?

The systematic method to model and execute collaboration protocols and shift
between protocols has now been formally specified. In the next section, we apply this
method to problem based learning.

 143

4.5.3 PBL-protocols

In the last subsection, we discussed the method to support the coordination of multi-
state collaboration processes on the operational level by guiding and controlling group
interaction. This is a general-purpose method that can be applied to many application
domains. An application example is to support collaborative design [Miao98b]. The
prerequisite of its application is that the collaboration processes to be supported
should have the same characteristics as discussed in the last subsection. Through an
analysis of collaborative learning processes, we found that some collaborative
learning processes have those characteristics. The approach was applied to support
such collaborative learning processes. The concept of learning protocol was
established, which denotes a computational description of such collaborative learning
processes [Pfister98b]. When applying the approach to collaborative learning, this
approach was developed to fit the collaborative learning domain and schema theory
was used as the theoretical basis of this approach [Wessner99]. Furthermore, we
applied this approach to support problem based learning.

In order to apply the approach to a collaborative activity, two important prerequisites
have to be met. The first one is whether multiple distinct states and the transitions
between them exist in the collaborative activity. The second one is whether a set of
the collaborative activity specific behavior rules can be computerized and bound to
protocol states and protocol transitions. Some collaborative activities have no multiple
states (e.g., rowing boat). They can be regarded as single state collaboration. For such
collaborative activities, collaboration protocols make no sense. Some collaborative
activities meet the first precondition, but don’t meet the second precondition. In this
case, a collaboration protocol can be used only for analysis. That is, the computational
mechanisms can not be used to guide and control their interaction. For example, the
playing soccer activity meets the first one, but the behavior rules can not be
computerized. However, if we want to develop a collaborative computer game for
playing soccer, the family of collaboration protocols for playing soccer can be
developed. Furthermore, the activity-specific behavior rules have to be bound to
protocol states and protocol transitions. For example, a collaboration protocol for
playing a soccer game may look like a collaboration protocol for playing basketball
game from the view of states and transitions. However, the behavior rules associated
to states and transitions are totally different.

In this subsection, the application of this approach to support problem based learning
is presented. A collaboration protocol for PBL and a sub-protocol for supporting
negotiation are specified.

4.5.3.1 Modeling PBL-protocols

In this subsection, we investigate whether the idea of the collaboration protocol can be
applied to support the problem based learning activity. Within the literature on
problem-based learning it is clear that the problem based learning process is well
structured and has a number of distinct states and transitions [Savery95] [Wolfson]
[Stepien93b] [Duncan98]. In each state, expected contributions of tutor or of learners
are distinguished. Furthermore, PBL-specific behavior rules can be computerized and

 144

can be bound with protocol states. This makes problem based learning an ideal
application domain for collaboration protocols.

In a virtual institute, as discussed in the last chapter, all participants of a PBL activity
can jointly construct a shared PBL-net synchronously or asynchronously. They can
make any kind of contributions at any time (e.g., identifying a learning issue,
proposing a solution, referring to a document, etc). Without coordination support, the
learning process is not effective, in particular when the size of a group is large.
Normally, participants have to use social protocols to coordinate their interaction.
Although coordination of group interaction is most flexible with vocal agreements,
prevention of violations is impossible. That is, potentially unexpected interactions and
unpredictable conflicts may occur during manipulating the shared PBL-net.
Therefore, the idea of collaboration protocols can be used to guide and control the
social interaction for the construction of PBL-nets. The result of the application of
collaboration protocol to PBL is the PBL-protocol [Miao00c]. The paragraphs below
specify the PBL-protocols.

Definition (PBL-protocol Family): A PBL-protocol family is a collaboration
protocol family for representing PBL protocols. Its value of the name attribute is
‘PBL-protocol family’.

Definition (PBL-protocol): A PBL-protocol is a PBL-specific collaboration protocol.
It can be defined and modified by using a collaboration protocol definition tool. Its
value of the name attribute is the name of the PBL-protocol. Its value of the
protocolFamily attribute is a collaboration family with the name of ‘PBL-protocol
family’. A PBL-protocol is a computational description of a PBL strategy.

Notably, different PBL-protocols can be defined depending on the size and structure
of the learning group or according to the knowledge, skills, interests and learning
styles of the individual members. These factors will lead to alternative strategies
being adopted to perform problem-based learning. Hence, a set of PBL-protocols can
be defined in the PBL-protocol family.

So far, three PBL-protocols are defined and stored in the Protocol Base in the virtual
institute. In this section, we describe a PBL-protocol whose name is ‘Systematic PBL
protocol’. In order to simplify the description, the name or label of each entity is used
to represent the entity.

Each participant of the PBL activity can be categorized into one of three protocol
roles: ‘learner’, ‘tutor’, and ‘expert’. The operations are defined in the last chapter
such as ‘create’, ‘remove’, ‘move’, ‘declare’, and so on. The objects are typed nodes
and typed links defined in the last chapter such as ‘problem’, ‘issue’, ‘resource’,
‘hypothesis’, ‘solution’, ‘comment’, (is_a_sub_problem_of ↦ ‘problem’ ↦ problem’)
(‘solve’ ↦ ‘solution’ ↦ ‘problem’), and so on. A behavior rule is defined as a tuple
element of the Cartesian product of these three sets. For example, (‘learner’ ↦
‘create’ ↦ ‘hypothesis’) is a behavior rule in the PBL activity, and (‘expert’ ↦
‘create’ ↦ ‘resource’) is another behavior rule.

 145

As illustrated in Figure 4.11, the protocol states in the PBL-protocol are: ‘identifying
problem’, ‘identifying learning issue’, ‘setting goal & making plan’, ‘learning
knowledge’, ‘applying knowledge’, and ‘assessing and reflecting’. The start state of
this PBL-protocol is the state ‘identifying problem’. The protocol transitions are:

 (‘identifying issue’ ↦ ‘identifying problem’ ↦ ‘identifying learning issue’),
 (‘setting goal’ ↦ ‘identifying learning issue’ ↦ ‘setting goal & making plan’),
 (‘collecting resource’ ↦ ‘setting goal & making plan’ ↦ ‘learning knowledge’),
 (‘applying’ ↦ ‘learning knowledge’ ↦ ‘applying knowledge’),
 (‘analyzing problem’ ↦ ‘applying knowledge’ ↦ ‘identifying problem’), and
 (‘assessing’ ↦ ‘applying knowledge’ ↦ ‘assessing and reflecting’).

Figure 4.11: A PBL-protocol Diagram

The behavior rules can be bound to protocol states and protocol transitions. We take
the ‘identifying problem’ state as an example. In the ‘identifying problem’ state, the
bound behavior rules are:

(‘tutor’, ‘create’, ‘source’),
(‘learner’, ‘create’, ‘problem’),
(‘learner’, ‘create’, (is_a_sub_problem_of ↦ ‘problem’ ↦ ‘problem’)),
(‘learner’, ‘create’, (‘inform_about’ ↦ ‘source’ ↦ ‘problem’)),
(‘tutor’, ‘create’, ‘hint’),
(‘tutor’, ‘create’, ‘comment’),
(‘tutor’, ‘create’, (‘about’ ↦ ‘hint’ ↦ ‘problem’)),

 146

(‘tutor’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘problem’)),
(‘tutor’, ‘remove’, (‘inform_about’ ↦ ‘source’ ↦ ‘problem’)),
(‘learner’, ‘remove’, ‘problem’),
(‘learner’, ‘remove’, (is_a_sub_problem_of, ‘problem’, problem’)),
(‘learner’, ‘remove’, (‘inform_about’ ↦ ‘source’ ↦ ‘problem’)),
(‘tutor’, ‘remove’, ‘hint’),
(‘tutor’, ‘remove’, ‘comment’),
(‘tutor’, ‘remove’, (‘about’ ↦ ‘hint’ ↦ ‘problem’)),
(‘tutor’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘problem’)).

From the bound behavior rules, we can observe that in PBL the role of tutor is
different from a traditional teacher. The tutor can contribute to the shared PBL-net by
creating or removing ‘source’ nodes. Only the learner can actually define the problem
using ‘problem’ nodes and ‘is_a_sub_problem_of’ links in order to show how the
problem decomposes into sub problems. During this state, the tutor can also
manipulate ‘hint’ and ‘comment’ nodes, and ‘about’ and ‘comment_on’ links, giving
indirect help in how to define the problem.

Like the ‘identifying the problem’ state, each protocol state and protocol transition is
has a set of associated behavior rules. However, in order to save the space, the
specifications of bindings to other protocol states and protocol transitions are omitted
in the thesis.

Furthermore, sub-protocols can be defined under a protocol state. The sub-protocols
will refine the protocol state by describing the collaboration process in more detail. In
the next subsection, we discuss some sub-PBL-protocols.

4.5.3.2 Sub-PBL-protocols

As mentioned in subsection 4.5.2.1, a protocol state can be refined by defining sub-
protocols under this protocol state. Each sub-protocol specifies a possible strategy that
can be adopted to carry out a task under the protocol state. The use of sub-protocols
provides flexibility so that learning groups can initiate them on demand. It doesn’t
force each learning group to execute all refined sub-processes. We present the idea of
sub-protocol by using a sub-protocol that is defined under the ‘applying knowledge’
state.

In the ‘applying knowledge’ state, learners can generate hypotheses and solutions, and
can support or oppose the generated hypotheses and solutions by providing evidences
and principles they learned. That is, they can create corresponding typed nodes and
typed links to present their ideas to others on the PBL-net. Each learner can also
comment on others’ ideas or declare his perspective and confidence to the created
ideas. The bound behavior rules are listed as follows.

(‘learner’, ‘create’, ‘hypothesis’),
(‘learner’, ‘create’, ‘solution’),
(‘learner’, ‘create’, ‘evidence’),

 147

(‘learner’, ‘create’, ‘principle’),
(‘learner’, ‘create’, ‘comment’),
(‘learner’, ‘create’, (‘support’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘support’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘support’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘support’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘solve’ ↦ ‘solution’ ↦ ‘problem’)),
(‘learner’, ‘create’, (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘derive_from’ ↦ principle’ ↦ ‘resource’)),
(‘learner’, ‘create’, (‘derive_from’ ↦ ‘evidence’ ↦ ‘resource’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘evidence’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘principle’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘comment’)),
(‘learner’, ‘modify_statement’, ‘hypothesis’),
(‘learner’, ‘modify_statement’, ‘solution’),
(‘learner’, ‘modify_statement’, ‘evidence’),
(‘learner’, ‘modify_statement’, ‘principle’),
(‘learner’, ‘modify_statement’, ‘comment’),
(‘learner’, ‘remove’, ‘hypothesis’),
(‘learner’, ‘remove’, ‘solution’),
(‘learner’, ‘remove’, ‘evidence’),
(‘learner’, ‘remove’, ‘principle’),
(‘learner’, ‘remove’, ‘comment’),
(‘learner’, ‘remove’, (‘support’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘support’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘support’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘support’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘evidence’ ↦ ‘solution’)),

 148

(‘learner’, ‘remove’, (‘solve’ ↦ ‘solution’ ↦ ‘problem’)),
(‘learner’, ‘remove’, (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘derive_from’ ↦ principle’ ↦ ‘resource’)),
(‘learner’, ‘remove’, (‘derive_from’ ↦ ‘evidence’ ↦ ‘resource’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘evidence’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘principle’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘comment’)),
(‘learner’, ‘declare’, ‘hypothesis’),
(‘learner’, ‘declare’, ‘solution’),
(‘learner’, ‘declare’, ‘evidence’),
(‘learner’, ‘declare’, ‘principle’),
(‘learner’, ‘declare’, ‘comment’),
(‘learner’, ‘declare’, (‘support’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘support’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘support’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘support’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘solve’ ↦ ‘solution’ ↦ ‘problem’)),
(‘learner’, ‘declare’, (‘derive_from’ ↦ principle’ ↦ ‘resource’)),
(‘learner’, ‘declare’, (‘derive_from’ ↦ ‘evidence’ ↦ ‘resource’)),
(‘learner’, ‘declare’, (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)).

In some cases, learners need to coordinate their contributions by using a sub-strategy.
The sub-strategy can be defined in the same way a protocol is defined, except to
specify a protocol state under which the sub-protocol can be initiated. As shown in
Figure 4.12, an example strategy, called “negotiation protocol” is described. This sub-
protocol consists of five sub-protocol states: ‘brainstorming’, ‘declaring’,
‘commenting’, ‘proving’, and ‘summarizing’. The protocol transitions in this sub-
protocol are:

 149

(‘declaring’↦ ‘brainstorming’ ↦ ‘declaring’)
(‘commenting’↦ ‘declaring’↦ ‘commenting’)
(‘proving’↦ ‘commenting’↦ ‘proving’)
(‘summarizing’↦ ‘proving’↦ ‘summarizing’)
(‘brainstorming again’ ↦ ‘summarizing’↦ ‘brainstorming’)
(‘declaring again’ ↦ ‘summarizing’↦ ‘declaring’).

Figure 4.12: A Sub-PBL-Protocol Diagram

The bound behavior rules with each sub state are specified as below.

brainstorming:
(‘learner’, ‘create’, ‘hypothesis’),
(‘learner’, ‘create’, ‘solution’),
(‘learner’, ‘create’, (‘solve’ ↦ ‘solution’ ↦ ‘problem’)),
(‘learner’, ‘create’, (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘modify_statement’, ‘hypothesis’),
(‘learner’, ‘modify_statement’, ‘solution’),

 150

(‘learner’, ‘modify_statement’, ‘evidence’),
(‘learner’, ‘modify_statement’, ‘principle’),
(‘learner’, ‘modify_statement’, ‘comment’),

declaring:
(‘learner’, ‘declare’, ‘hypothesis’),
(‘learner’, ‘declare’, ‘solution’),
(‘learner’, ‘declare’, ‘evidence’),
(‘learner’, ‘declare’, ‘principle’),
(‘learner’, ‘declare’, ‘comment’),
(‘learner’, ‘declare’, (‘support’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘support’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘support’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘support’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘counter’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘declare’, (‘solve’ ↦ ‘solution’ ↦ ‘problem’)),
(‘learner’, ‘declare’, (‘derive_from’ ↦ principle’ ↦ ‘resource’)),
(‘learner’, ‘declare’, (‘derive_from’ ↦ ‘evidence’ ↦ ‘resource’)),
(‘learner’, ‘declare’, (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘declare’, (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),

commenting:
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘evidence’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘principle’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘comment_on’ ↦ ‘comment’ ↦ ‘comment’)),

proving:
(‘learner’, ‘create’, ‘hypothesis’),
(‘learner’, ‘create’, ‘solution’),
(‘learner’, ‘create’, ‘evidence’),
(‘learner’, ‘create’, ‘principle’),
(‘learner’, ‘create’, ‘comment’),
(‘learner’, ‘create’, (‘support’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘support’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘support’ ↦ ‘evidence’ ↦ ‘hypothesis’)),

 151

(‘learner’, ‘create’, (‘support’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘counter’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘create’, (‘solve’ ↦ ‘solution’ ↦ ‘problem’)),
(‘learner’, ‘create’, (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘create’, (‘derive_from’ ↦ principle’ ↦ ‘resource’)),
(‘learner’, ‘create’, (‘derive_from’ ↦ ‘evidence’ ↦ ‘resource’)),

summarizing:
(‘learner’, ‘modify_statement’, ‘hypothesis’),
(‘learner’, ‘modify_statement’, ‘solution’),
(‘learner’, ‘modify_statement’, ‘evidence’),
(‘learner’, ‘modify_statement’, ‘principle’),
(‘learner’, ‘remove’, ‘hypothesis’),
(‘learner’, ‘remove’, ‘solution’),
(‘learner’, ‘remove’, ‘evidence’),
(‘learner’, ‘remove’, ‘principle’),
(‘learner’, ‘remove’, ‘comment’),
(‘learner’, ‘remove’, (‘support’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘support’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘support’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘support’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘principle’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘principle’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘evidence’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘counter’ ↦ ‘evidence’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘solve’ ↦ ‘solution’ ↦ ‘problem’)),
(‘learner’, ‘remove’, (‘based_on’ ↦ ‘solution’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘is_similar_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘is_contrary_to’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘is_a_prerequisite_for’ ↦ ‘hypothesis’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘derive_from’ ↦ principle’ ↦ ‘resource’)),
(‘learner’, ‘remove’, (‘derive_from’ ↦ ‘evidence’ ↦ ‘resource’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘evidence’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘principle’)),

 152

(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘hypothesis’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘solution’)),
(‘learner’, ‘remove’, (‘comment_on’ ↦ ‘comment’ ↦ ‘comment’)),

As discussed in the last chapter, learners need negotiation to pursue consensus and to
construct shared knowledge. Stahl et al. [Stahl99] suggested that computational
negotiation procedures could help groups to merge individuals’ results systematically
into a group product. Stahl et al. developed a such negotiation procedure. In this
procedure, a student can pose a personal perspective for team as a proposal. Students
can select a proposal, modify it, and decide whether the new proposal should be
accepted as a team perspective or not. Some negotiation rules are established in the
system. For example, all new proposals must be negotiated by all team members, or
alternatively the people who either originally created the proposal or subsequently
modified it need to negotiate. In the same line, the sub-protocol described above was
developed as a computer-mediated process to support negotiation. The negotiation
protocol described above has two distinct features in comparison to the negotiation
procedure described in [Stahl99]. Firstly, this protocol is suitable to support
synchronous negotiation, whereas Stahl’s procedure only supports asynchronous
negotiation. Secondly, it supports negotiation by allowing learners to reason, not only
by simply accepting or refusing.

4.5.4 Related Work and Discussion

We compare our approach with related work from two perspectives. Firstly, we
compare our collaboration protocol modeling method with state-transition-diagrams
and statecharts. Secondly, we compare the PBL-protocol approach with
corresponding features offered by other PBL support systems described in Chapter 3.

4.5.4.1 Comparison with State-transition-diagram and Statechart

The state-transition-diagram is a very popular method to model processes. It is easy to
use and understand. However, there are two limitations such that it can not be
exploited directly to model collaboration protocols. Firstly, it doesn’t provide support
to bind behavior rules to states. Secondly, it is described as a flat graph that can not
support nested sub-state.

Statechart supports the modelling of nested sub-state. However, in the statechart, the
relation between a state and the embedded sub-state is fixed. It is impossible to
execute a sub-process or not on demand. Furthermore, it doesn’t provide support to
binding behavior rules with states.

The modeling method presented in this section can be regarded as an extended,
modularized, hierarchical state-transition-diagram. It combines the advantage of state-
transition-diagram and statechart, and overcomes their limitations. This method
provides a flexibility for learners to execute a sub-process or not on demand. In
addition, binding behavior rules is a special requirement that state-transition-diagram
and statechart don’t care about. Behavior rules allow a role-based state-dependent

 153

specification of access control, which is required by multiple-state collaboration
processes.

4.5.4.2 Comparison with PBL Support Systems

Other PBL support systems do not deal with the question of how to support users to
behave within their predefined role types through the different states of the problem
based learning process. Collaboratory Notebook [O’Neill94], McBAGEL
[Huebscher96], CALE [Mahling95] and CSILE [Scardamalia94] are systems which
store the contributions of all users, whether teachers or learners, in a central database.
Any user can contribute to the database at any time, and can retrieve the contributions
of others at any time in order to read them. Belvedere [Suthers95], McBAGEL
[Huebscher96], and Web-SMILE [Guzdial97] distinguish between the different states
of the problem based learning process, but does not restrict user operations according
to their role as learner, tutor or expert. It doesn’t support execution of processes.

4.5.5 Summary

In this section, the theoretical background for the use of collaboration protocols to
support collaborative processes was described. The collaboration protocol provided a
role-based, state-dependent access control mechanism. The approach to model and
execute of collaboration protocols was formally specified. In addition, a systematic
method to shift between collaboration protocols was presented.

The approach was applied to support users of the PBL method within virtual learning
environments. The PBL-protocol was developed to help learners to overcome two key
difficulties. Firstly, neither learners nor tutors, who are used to more traditional
methods of teaching, know exactly what to expect from PBL or how to behave
appropriately within their new roles. Secondly, these problems are compounded by
having to interact within a socially unfamiliar computer-based learning environment.
The resulting PBL protocols restrict behavior to fit within pre-defined roles, and to
guide users from one state of the PBL process to the next. In addition, the idea of sub-
protocol provides flexibility for learners to execute refined sub-processes on demand.
A negotiation protocol was described, which can be used to support negotiation
processes for construction of shared knowledge.

4.6 PBL-plan: Coordinating Actions in PBL Processes

In traditional education, the teacher and the institution structure the learning activity.
The learner is told what objective to work toward, what resources are to be used and
how (and when) to use them, and how any accomplishment of the objectives will be
evaluated. In PBL, learners are responsible for setting learning goals and making
learning plans. That is, they have to identify the important issues in the problem, to
identify current gaps in knowledge or understanding, to consider time constrains,
learning resources, and objectives, to set priorities regarding the relative importance
of each learning issue, to identify prerequisites for researching a learning issue, and to
arrange actions and divide labor to research the identified learning issues, and to

 154

evaluate whether each learning goal is achieved. The identification of learning issues
will reflect the biases and individual characteristics of each learning group.

As mentioned in chapter 2, in order to support such a self-directed learning process, a
virtual PBL environment should provide mechanisms to help learners to structure the
learning activity and coordinate learning actions. This chapter begins with a brief
introduction of the theory of self-directed learning. Based on self-directed learning
theory, an approach to model and execute self-directed learning processes is
developed in order to support PBL processes in virtual learning environments. The
main body of this subsection describes the approach to help learners to set learning
goals, to create, monitor, and refine their learning plan, and to coordinate their
learning actions by automatic execution of the learning plan. After a comparison with
workflow management systems, this chapter ends with a summary.

4.6.1 Theoretical Background

The theoretical background of the research work described in this section is based on
the theory of self-directed learning. Self-directed learning has existed even from
classical antiquity. However, it is during the last three decades that self-directed
learning has become a major research area. Knowles, as the founder of this theory,
attempted to develop a theory specifically for adult learning. As Hiemstra
[Hiemstra94] wrote: Knowles’ publication [Knowles75] “… provided foundational
definitions and assumptions that guided much subsequent research: (a) self-directed
learning assumes that humans grow in capacity and need to be self-directing; (b)
learners' experiences are rich resources for learning; (c) individuals learn what is
required to perform their evolving life tasks; (d) an adult's natural orientation is task
or problem-centered learning; (e) self-directed learners are motivated by various
internal incentives, such as need for self-esteem, curiosity, desire to achieve, and
satisfaction of accomplishment.” Brockett and Hiemstra [Brockett91] view the term
self-directed learning as “an instructional process centering on the assessing needs,
securing learning resources, planning, implementing learning activities, and
evaluating learning where learners assume primary responsibility for the process.”
Hiemstra and Sisco [Hiemstra90] have presented an approach for individualizing
instruction derived from principles of humanism and designed specifically for
working with adult learners. The individualizing instruction process model consists of
six steps, which are related to each other in a circular rather than linear sequence. The
six steps are: “(a) activities prior to the first session (e.g., developing a rationale,
preplanning); (b) creating a positive learning environment (physical, social, and
psychological); (c) developing the instructional plan (with active involvement of
participants in assessing personal and relevant group needs, ascertaining the relevance
of past experience, and prioritizing knowledge areas to be covered); (d) identifying
the learning activities (determining learning activities and techniques); (e) putting
learning into action and monitoring progress (formative evaluation); and (f)
evaluating individual learning outcomes (matching learning objectives to mastery).”

The work of Knowles [Knowles80] [Knowles84] has resulted in a need by many
teachers of adults to provide some mechanism for learners to build on past experience
and determined needs as they carry out learning activities. The use of learning
contracts with adult learners has gained cogency during the past decade. The learning

 155

contract is a device that provides a vehicle for making the planning of learning
experiences a mutual undertaking between learners and facilitators. Most contracts
contain information on the learning goals, anticipated learning resources and
strategies, a projected time line, and ideas for how to evaluate or validate the learning
achievements [Knowles86]. According to [LEARNING CONTRACTS], how to
complete and utilize a learning contract can be summarized as below:

“Diagnose learning needs. A learning need is the gap between where you are now
and where you want to be in regard to a particular set of competencies. You may
already be aware of certain learning needs as a result of a personal appraisal or the
long accumulation of evidence for yourself regarding any gaps between where you are
now and where you would like to be.

Specify learning objectives. Each of the learning needs should be translated into a
learning objective. Be sure that your objectives describe what you will learn, not what
you will do. State them in terms that are most meaningful to you--Content acquisition,
terminal behaviors, or direction of growth.

Specify learning resources and strategies. Identify the resources (material and
human) you plan to use in your various learning experiences and the strategies
(techniques, tools) you will employ in making use of them.

Specify target dates for completion. Put realistic dates, unless there are institutionally
or other required deadlines.

Specify evidence of accomplishment. Describe what evidence you will collect to
indicate the degree to which you have achieved each objective.

Specify how the evidence will be validated. For each objective, first specify the
criteria by which you propose the evidence will be judged. After you have specified
the criteria, indicate the means you propose for verifying the evidence according to
these criteria. For example, if you produce a paper, who will read it and what are their
qualifications?

Review the contract with consultants. After you have completed the first draft of
your contract, you will find it useful to review it with two or three friends,
supervisors, or other expert resource people to obtain their reaction and suggestions.

Carry out the contract. You now simply do what the contract calls for. But keep in
mind that as you work on it you may find that your notions about what you want to
learn and how you want to learn are changing. So don't hesitate to revise or
renegotiate your contract as you go along.

Evaluate the learning. When you have completed your contract you will want to get
some assurance that you have in fact learned what you set out to learn.”

The concept of the learning contracts provides the guideline to develop a
computational mechanism for representing and executing learning plans in virtual
PBL environments.

 156

4.6.2 PBL-plan

Through an analysis of the example scenario described in chapter 2 according to the
theory of self-directed learning, the characteristics of PBL processes at the action
level can be identified.

Firstly, the overall collaborative learning process encompasses multiple actions and
each action takes place in a certain place. The PBL group often divides the labor and
normally multiple learners are responsible for performing an action. Some actions are
performed in synchronous sessions and others are carried out in asynchronous
sessions. In collaborative learning processes, artifacts such as learning materials and
reports are collected or constructed jointly.

Secondly, the actions are executed sequentially, concurrently, or in parallel. For
example, some learning actions have to be performed after the prerequisite knowledge
is acquired. Learning knowledge of different topics can be carried out in parallel. The
actions (e.g., searching on the Web and inquiring experts) to collect the information
on the same topic can be performed concurrently. The difference between concurrent
sessions and parallel sessions is that the former deal with the same artifact at the same
time and the later need not. Some artifacts produced in one session will be consumed
in other sessions, and the delivery of artifacts in one action may results in the starting
of other actions that consume the delivered artifacts. Some actions that are performed
in the synchronous sessions will start at scheduled time or when all participants of the
actions join the actions.

Thirdly, performing a PBL activity often is a long-term task (ranging from a couple of
days to a semester). A learning group has to work out a detailed project plan to help
communication, understanding, and coordination among group members, rather than
teachers or institutions predefine the learning plan. Each learning group has a unique
learning plan. In addition, the main part of a learning plan is defined during the
learning process as a collective effort.

Fourthly, the learning group executes the PBL activity according the definition of the
learning plan. However, it is impossible to define a correct and detailed project plan in
advance, which then would be executed exactly. That is, collaboration processes are a
kind of ad hoc processes. Some details of the learning plan are defined during the
execution of the learning process and the learning plan has to be revised in the
progress to fit some changes.

In order to support collaborative processes with the characteristics described above in
a computer-based system, the concept of session-based collaborative processes has
been developed [Miao98a] [Miao99a]. The term session is defined as that a process is
executed in a synchronous or asynchronous collaboration mode on a shared
workspace by a group of people to achieve a goal. The notion of a session-based
collaboration process denotes the whole work process that consists of a coordinated
set of sessions. An approach to support session-based collaboration processes in
computer-based collaboration environments is proposed in [Miao98a] [Miao99a]. The
proposed approach is characterized by providing:

 157

1) a visual process modeling language for describing a session-based collaborative
process,

2) a collaborative tool to support definition of session-based collaborative processes
as a hypertext document, and

3) a cooperative environment to execute session-based collaborative processes by a
team and to enact the sessions and provide shared data and shared views.

This approach is further developed in this thesis to fit self-directed learning processes
and is then applied to support PBL activities in virtual learning environments. By
using this approach, a problem based learning process can be described as a hypertext
document, called a PBL-plan [Miao00d].

Figure 4.13: Conceptual Architecture of the PBL-plan

As illustrated in Figure 4.13, a PBL-plan consists of a set of action nodes, a set of
connection nodes, and a set of artifact nodes. A PBL-plan may have a sub-plan.
Action nodes and connection nodes can be connected in sequence. A place should be
allocated as a location for each action. One or more agents should be assigned to each
action as the participants of the action. An action may use and produce artifacts,
which refer to documents in the virtual institute. Tools may be used in actions. A
PBL-net and a PBL-protocol can be initiated in actions. Rather than a representation
of learning procedure, the PBL-plan can be executed automatically to coordinate
actions carried out by learners or sub-groups at same/different time and in
same/different virtual places. This subsection describes the PBL-plan formally.

Definition (PBL-plan): A PBL-plan represents a whole or a part of a problem based
learning process. Each PBL-plan has a name.

 158

┌─ PBLPlan ───
│ name : STRING
└───

Definition (Plans): Plans represent a set of learning plans. Each learning plan has a
state. The possible states are created, defined, active, and finished.

PlanState ::= created | defined | active | finished

┌─ Plans───
│ plans : ℙ PBLPlan
│ currentPlanState : PBLPlan → PlanState
├─────────────────────────────
│ dom currentPlanState = plans
└───

Definition (Action): An action represents a scheduled and executable learning task.
Each action has a name and a goal. When scheduling an action, it is needed to specify
when and how long the action will be carried out. It is needed to specify the
collaboration mode used to perform the action. A synchronous session requires that
all participants are present when the action is carried out, and an asynchronous session
allows that participants contribute at different times. It is also needed to specify the
active-condition under which the action can be started and the terminated-condition
under which the action can be terminated. The active-condition and terminated-
condition of an action are specified by predicates. A predicate is represented as a
logical expression that is a combination of logical operations on the elementary
logical statements. Examples of elementary logical statements are: whether the
scheduled start time has arrived, whether all participants of the action have joined the
action, whether the necessary documents of the action are available, whether the
produced documents of the action are finished, whether the preceding actions are
terminated, and so on. The actual start time of an action is used to record the point of
time when the action actually starts.

Condition = = Predicate
Duration = = ℕ
Mode :: = synchronousSession | asynchronousSession

┌─ Action ───
│ name : STRING
│ goal : STRING
│ scheduledStartTime : TIME
│ estimatedDuration : Duration
│ collaborationMode : Mode
│ actionActiveCondition, actionTerminateCondition : Condition
│ actualStartTime : TIME
└───

Definition (Actions): Actions represents a set of learning actions. Some learning
actions are defined as a step of a learning plan. Others can be defined as independent

 159

actions from learning plans. Each action has a state and the possible states are created,
defined, enabled, active, suspended, and finished. An action is assigned to some
agents who are responsible for carrying out the action. A place is assigned as a
location for an action where the action is carried out.

ActionState :: = created | defined | enabled | active | suspended | finished

┌─ Actions ───
│ VirtualInstitute
│ Plans
│ actions : ℙ Action
│ actionInPlan : Action → PBLPlan
│ currentActionState : Action → ActionState
│ actionParticipants : Action ↔ Agent
│ actionLocation : Action → Place
├─────────────────────────────
│ dom actionInPlan ⊆ actions ∧ ran actionInPlan ⊆ plans
│ dom currentActionState = actions
│ dom actionParticipants ⊆ actions ∧ ran actionParticipants ⊆ agents
│ dom actionLocation ⊆ actions ∧ ran actionLocation ⊂ places
└───

Definition (Artifact): An artifact represents a document reference in a PBL-plan.
Each artifact has a name and a refered document.

┌─ Artifact ───
│ name : STRING
│ referTo : Document
└───

Definition (Artifacts): Artifacts represent a set of artifacts, which is defined in a plan
and is used, shared, or produced in one or more actions. Each artifact has an attribute
to represent the current state of the artifact. The possible states are created, inEditing,
and finished.

ArtifactState :: = created | inEditing | finished

┌─ Artifacts ───
│ Plans
│ Actions
│ artifacts: ℙ Artifact
│ artifactInPlan : Artifact → PBLPlan
│ currentArtifactState : Artifact → ArtifactState
│ actionProduceArtifact : Action Artifact
│ artifactConsumedByAction : Artifact Action
│ actionSharedArtifact : Action Artifact
├─────────────────────────────

 160

│ dom artifactInPlan = artifacts ∧ ran artifactInPlan ⊆ plans
│ dom currentArtifactState = artifacts
│ dom actionProduceArtifact ⊆ actions ∧ ran actionProduceArtifact ⊆ artifacts
│ dom artifactConsumedByAction ⊆ artifacts
│ ran artifactConsumedByAction ⊆ actions
│ dom actionSharedArtifact ⊆ actions ∧ ran actionSharedArtifact ⊆ artifacts
└───

Definition (Connection Nodes): Connection Nodes represent special check points in
learning plans. There are six types of connection nodes: StartPoint, EndPoint,
AndJoin, OrJoin, AndSplit, and OrSplit. StartPoint is used to trigger actions that are
connected to the StartPoint when a plan starts to execute. EndPoint is used to
terminate a plan. A plan can have only one StartPoint and one EndPoint. Split nodes
are used to fork actions in a way that either all subsequent actions will be executed in
parallel or one of them will be executed and others will be suspended. Split nodes are
used to specify when the execution can continue: either all of the preceding actions
need to be finished or at least one of them needs to be finished. Join nodes provide a
simple mechanism to synchronize actions that specifies when the execution can
continue: either all of the preceding actions need to be finished or at least one of them
needs to be finished. The detailed semantics of these data types will be specified in
section 4.6.4.

[StartPoint, EndPoint, AndJoin, OrJoin, AndSplit, OrSplit]

┌─ ConnectionNodes────────────────────────────────────
│ Plans
│ planStartPoint : PBLPlan ↣ StartPoint
│ planEndPoint : PBLPlan ↣ EndPoint
│ andJoinInPlan : AndJoin → PBLPlan
│ orJoinInPlan : OrJoin → PBLPlan
│ andSplitInPlan : AndSplit → PBLPlan
│ orSplitInPlan : OrSplit → PBLPlan
├─────────────────────────────
│ dom planStartPoint ⊆ plans ∧ dom planEndPoint ⊆ plans
│ ran andJoinInPlan ⊆ plans ∧ ran orJoinInPlan ⊆ plans
│ ran andSplitInPlan ⊆ plans ∧ ran orSplitInPlan ⊆ plans
└───

Definition (Temporal Relations): Temporal Relations are used to represent the
temporal relations between plans, actions, and connection nodes in plans. It is
important to note that a plan can be embeded in another plan as a sub-plan, but it is
not allowed to form a loop when defining the relation “parentPlan”. For all relations
except for the relation “parentPlan” specified in this abstract state, if a pair of
elements belongs to one of these relations, they should be defined in the same plan.
Each action and each plan can connect to at maximum one of action, plan, or a type of
connection nodes and can be connected at maximum to one of action, plan, or a type
of connection nodes. Each startPoint can connect to at maximum one of action, plan,
or a type of other connection nodes. Each endPoint can connect to at maximum one of

 161

action, plan, and a type of other connection nodes. Each AndSplit and each OrSplit
can be connected at maximum to one of action, plan, or a type of other connection
nodes. Each AndJoin and each OrJoin can connect to at maximum one of action, plan,
or a type of other connection nodes. Note that in a well-defined learning plan, each
action should be exactly one destination and one source of temporal relationships.
However, during definition, it is possible that no temporal relationship is defined for
an action. Therefore, as specified by a predicate in the following schema, the number
of incoming temporal relationship of an action node is either zero or one, and the
number of outgoing temporal relationship of an action node is either zero or one as
well. Similar constraints apply to a plan node.

┌─ TemporalRelations───────────────────────────────────
│ Plans
│ Actions
│ ConnectionNodes
│ parentPlan : PBLPlan PBLPlan
│ startPointToAction : StartPoint Action
│ startPointToPlan : StartPoint PBLPlan
│ actionToEndPoint : Action EndPoint
│ planToEndPoint : PBLPlan EndPoint
│ actionSequence : Action Action
│ planToPlan : PBLPlan PBLPlan
│ actionToPlan : Action PBLPlan
│ planToAction : PBLPlan Action
│ actionToAndJoin : Action AndJoin
│ actionToOrJoin : Action OrJoin
│ actionToAndSplit : Action AndSplit
│ actionToOrSplit : Action OrSplit
│ andJoinToAction : AndJoin Action
│ orJoinToAction : OrJoin Action
│ andSplitToAction : AndSplit Action
│ orSplitToAction : OrSplit Action
│ planToAndJoin : PBLPlan AndJoin
│ planToOrJoin : PBLPlan OrJoin
│ planToAndSplit : PBLPlan AndSplit
│ planToOrSplit : PBLPlan OrSplit
│ andJoinToPlan : AndJoin PBLPlan
│ orJoinToPlan : OrJoin PBLPlan
│ andSplitToPlan : AndSplit PBLPlan
│ orSplitToPlan : OrSplit PBLPlan
│ startPointToOrJoin : StartPoint OrJoin
│ startPointToAndSplit : StartPoint AndSplit
│ startPointToOrSplit : StartPoint OrSplit
│ andJoinToEndPoint : AndJoin EndPoint
│ orJoinToEndPoint : OrJoin EndPoint
├─────────────────────────────
│ disjoint < parentPlan ⁺, id PBLPlan >
│
│ (∀ sa : startPointToAction | (∃ p : PBLPlan | p ∈ plans ∧

 162

│ (p ↦ first sa) ∈ planStartPoint ∧ actionInPlan (second sa) = p))
│
│ (∀ sp : startPointToPlan | (∃ p : PBLPlan | p ∈ plans ∧
│ (p ↦ first sp) ∈ planStartPoint ∧ (second sp ↦ p) ∈ parentPlan)
│
│ (∀ ae : actionToEndPoint | (∃ p : PBLPlan | p ∈ plans ∧
│ (p ↦ second ae) ∈ planEndPoint ∧ actionInPlan (first ae) = p))
│
│ (∀ pe : planToEndPoint | (∃ p : PBLPlan | p ∈ plans ∧
│ (p ↦ second pe) ∈ planEndPoint ∧ (first pe ↦ p) ∈ parentPlan)
│
│ (∀ a 1 , a 2 : Action | (a 1↦ a 2) ∈ actionSequence �

│ actionInPlan a 1 = actionInPlan a 2)

│ (∀ a : Action | (#(dom startPointToAction ⊲ {a}) +
│ #(dom actionSequence ⊲ {a}) + #(dom planToAction ⊲ {a}) +
│ #(dom andJoinToAction ⊲ {a}) + #(dom orJoinToAction ⊲ {a}) +
│ #(dom andSplitToAction ⊲ {a}) + #(dom orSplitToAction ⊲ {a}) ≤ 1) ∧
│ (#(ran {a}⊳ actionToEndPoint) +
│ #(ran {a}⊳ actionSequence) + #(ran {a}⊳ actionToPlan) +
│ #(ran {a}⊳ actionToAndJoin) + #(ran {a}⊳ actionToOrJoin) +
│ #(ran {a}⊳ actionToAndSplit) + #(ran {a}⊳ actionToOrSplit) ≤ 1)
│
│ (∀ a : Action; p : PBLPlan | (a ↦ p) : actionToPlan �
│ actionInPlan a = parentPlan p)
│ (∀ a : Action; p : PBLPlan | (p ↦ a) : planToAction �
│ actionInPlan a = parentPlan p)
│ (∀ a : Action; andJoin : AndJoin | (a ↦ andJoin) ∈ actionToAndJoin�
│ actionInPlan a = andJoinInPlan andJoin)
│ (∀ a : Action; orJoin : OrJoin | (a ↦ orJoin) ∈ actionToOrJoin �
│ actionInPlan a = orJoinInPlan orJoin)
│ (∀ a : Action; andSplit : AndSplit | (a ↦ andSplit) ∈ actionToAndSplit�
│ actionInPlan a = andSplitInPlan andSplit)
│ (∀ a : Action; orSplit : OrSplit | (a ↦ orSplit) ∈ actionToOrSplit�
│ actionInPlan a = orSplitInPlan orSplit)
│ (∀ a : Action; andJoin : AndJoin | (andJoin ↦ a) ∈ andJoinToAction �
│ actionInPlan a = andJoinInPlan andJoin)
│ (∀ a : Action; orJoin : OrJoin | (orJoin ↦ a) ∈ orJoinToAction �
│ actionInPlan a = orJoinInPlan orJoin)
│ (∀ a : Action; andSplit : AndSplit | (andSplit ↦ a) ∈ andSplitToAction �
│ actionInPlan a = andSplitInPlan andSplit)
│ (∀ a : Action; orSplit : OrSplit | (orSplit ↦ a) ∈ orSplitToAction �

 163

│ actionInPlan a = orSplitInPlan orSplit)
│ (∀ ae : andJoinToEndPoint | (∃ p : PBLPlan | p ∈ plans ∧
│ (p ↦ second ae) ∈ planEndPoint ∧ andJoinInPlan (first ae) = p))
│ (∀ oe : orJoinToEndPoint | (∃ p : PBLPlan | p ∈ plans ∧
│ (p ↦ second oe) ∈ planEndPoint ∧ orJoinInPlan (first oe) = p))
│
│ (∀ p1 , p 2 : PBLPlan | (p1↦ p 2) ∈ planToPlan � parentPlan p1 = parentPlan p 2)

│ (∀ p : PBLPlan | (#(dom planToPlan ⊲ {p}) +
│ #(dom startPointToPlan ⊲ {p}) + #(dom actionToPlan ⊲ {p}) +
│ #(dom andJoinToPlan ⊲ {p}) + #(dom orJoinToPlan ⊲ {p}) +
│ #(dom andSplitToPlan ⊲ {p}) + #(dom orSplitToPlan ⊲ {p}) ≤ 1) ∧
│ (#(ran {p}⊳ planToPlan) +
│ #(ran {p}⊳ planToEndPoint) + #(ran {p}⊳ planToAction) +
│ #(ran {p}⊳ planToAndJoin) + #(ran {p}⊳ planToOrJoin) +
│ #(ran {p}⊳ planToAndSplit) + #(ran {p}⊳ planToOrSplit) ≤ 1)
│
│ (∀ p : PBLPlan; andJoin : AndJoin | (p ↦ andJoin) ∈ planToAndJoin �
│ parentPlan p = andJoinInPlan andJoin)
│ (∀ p : PBLPlan; orJoin : OrJoin | (p ↦ orJoin) ∈ planToOrJoin �
│ parentPlan p = orJoinInPlan orJoin)
│ (∀ p : PBLPlan; andSplit : AndSplit | (p ↦ andSplit) ∈ planToAndSplit �
│ parentPlan p = andSplitInPlan andSplit)
│ (∀ p : PBLPlan; orSplit : OrSplit | (p ↦ orSplit) ∈ planToOrSplit �
│ parentPlan p = orSplitInPlan orSplit)
│ (∀ p : PBLPlan; andJoin : AndJoin | (andJoin ↦ p) ∈ andJoinToPlan �
│ parentPlan p = andJoinInPlan andJoin)
│ (∀ p : PBLPlan; orJoin : OrJoin | (orJoin ↦ p) ∈ orJoinToPlan �
│ parentPlan p = orJoinInPlan orJoin)
│ (∀ p : PBLPlan; andSplit : AndSplit | (andSplit ↦ p) ∈ andSplitToPlan �
│ parentPlan p = andSplitInPlan andSplit)
│ (∀ p : PBLPlan; orSplit : OrSplit | (orSplit ↦ p) ∈ orSplitToPlan �
│ parentPlan p = orSplitInPlan orSplit)
│
│ (∀ n : StartPoint | #(ran {n}⊳ startPointToAction) +
│ #(ran {n}⊳ startPointToPlan) + #(ran {n}⊳ startPointToOrJoin) +
│ #(ran {n}⊳ startPointToAndSplit) + #(ran {n}⊳ startPointToOrSplit) ≤ 1
│ (∀ n : EndPoint |
│ #(dom actionToEndPoint ⊲ {n}) + #(dom planToEndPoint ⊲ {n}) +
│ #(dom andJoinToEndPoint ⊲ {n}) + #(dom orJoinToEndPoint ⊲ {n}) ≤ 1
│ (∀ n : AndSplit | #(dom startPointToAndSplit ⊲ {n}) +
│ #(dom actionToAndSplit ⊲ {n}) + #(dom planToAndSplit ⊲ {n}) ≤ 1

 164

│ (∀ n : OrSplit | #(dom startPointToOrSplit ⊲ {n}) +
│ #(dom actionToOrSplit ⊲ {n}) + #(dom planToOrSplit ⊲ {n}) ≤ 1
│ (∀ n : AndJoin | #(ran {n}⊳ andJoinToPlan) +
│ #(ran {n}⊳ andJoinToAction) + #(ran {n}⊳ andJoinToEndPoint) ≤ 1
│ (∀ n : OrJoin | #(ran {n}⊳ orJoinToPlan) +
│ #(ran {n}⊳ orJoinToAction) + #(ran {n}⊳ orJoinToEndPoint) ≤ 1
└───

Definition (Plan Base): A plan base represents a set of defined plans in which the
actions, artifacts, connection nodes, and their relations are specified.

┌─ PlanBase──
│ Plans
│ Actions
│ Artifacts
│ ConnectionNodes
│ TemporalRelations
└───

So far, the data types and abstract state of the PBL-plan have been specified. Now, the
operations to define PBL-plans are specified below.

A plan can be created as a root plan or as a sub-plan of another plan. Users can create
a root plan by assigning a name to the plan or create a sub-plan by assigning a name
to the currently created plan and specifying the parent plan.

┌─ CreateRootPlanOK───────────────────────────────────
│ ∆ Plans
│ name? : STRING
├─────────────────────────────
│ (∀ p : PBLPlan | p ∈ plans • p.name ≠ name?)
│
│ let aPlan = = (µ PBLPlan | name = name?) •
│ plans’ = plans ∪ { aPlan } ∧
│ currentPlanState’ = currentPlanState ∪ { aPlan ↦ created? }
└───

∆ChangeSubPlan ≙ ΞTemporalRelations \ (parentPlan, parentPlan’) ∧
∆TemporalRelations

Here, hiding a particular before and after component in ΞTemporalRelations \
(parentPlan, parentPlan’) gives a before and after state that does not have parentPlan
and parentPlan’, but still has all the other components, unchanged. Conjoining this
with ∆TemporalRelations reintroduces the declaration of have parentPlan and
parentPlan’, and any predicate involving them, but does not include the predicate
parentPlan = parentPlan’. Hence ΞTemporalRelations \ (parentPlan, parentPlan’) ∧
∆TemporalRelations is a schema describing a before and after state of

 165

TemporalRelations that includes all the constructs on TemporalRelations and
TemporalRelations’, and in addition has all the components, except parentPlan,
unchanged.

┌─ CreateSubPlanOK───────────────────────────────────
│ ∆ Plans
│ ∆ ChangeSubPlan
│ name? : STRING
│ plan? : PBLPlan
├─────────────────────────────
│ plan? ∈ plans ∧ (∀ p : PBLPlan | p ∈ plans • p.name ≠ name?)
│
│ let aPlan = = (µ PBLPlan | name = name?) •
│ plans’ = plans ∪ { aPlan } ∧
│ currentPlanState’ = currentPlanState ∪ { aPlan ↦ created? } ∧
│ parentPlan’ = parentPlan ∪ { aPlan ↦ plan? }
└───

The operations to create and define an action are specified as follows. The operation
to modify the definition of an action is similar to the operation “DefineActionOK”.
Therefore, the specification of this operation is omitted.

┌─ CreateActionOK─────────────────────────────────
│ ∆ Actions
│ Ξ Plans
│ Ξ VirtualInstitute
│ name? : STRING
│ aPlan?: PBLPlan
├─────────────────────────────
│ (∀ a : Action | a ∈ actions • a.name ≠ name?) ∧ aPlan ∈ plans
│
│ anAction = = (µ Action | name = name? ∧ goal = ∅ ∧
│ scheduledStartTime = ∅ ∧ estimatedDuration = ∅ ∧
│ actualStartTime = ∅ ∧ collaborationMode = ∅ ∧
│ actionActiveCondition = ∅ ∧ actionTerminateCondition = ∅)
│ actions’ = actions ∪ { anAction }
│ currentActionState’ = currentActionState ∪ { anAction ↦ created }
│ actionInPlan’ = actionInPlan ∪ { anAction ↦ aPlan? }
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

┌─ DefineActionOK─────────────────────────────────
│ ∆ Actions
│ Ξ Plans
│ Ξ VirtualInstitute
│ a? : Action
│ goal?: STRING

 166

│ startTime? : TIME
│ duration? : Duration
│ activeCondition?, terminateCondition? : Condition
├─────────────────────────────
│ a? ∈ actions ∧ currentActionState a? = created
│
│ (θ a?’ | name = a?.name ∧ goal = goal? ∧
│ scheduledStartTime = startTime? ∧
│ estimatedDuration = duration? ∧
│ collaborationMode = aMode? ∧
│ actionActiveCondition = activeCondition? ∧
│ actionTerminateCondition = terminateCondition?)
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ { a? ↦ defined }
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

The operations to assign participants and allocate a place for an action are specified as
follows.

┌─ AssignActionParticipantOK──────────────────────────────
│ ∆ Actions
│ Ξ Plans
│ Ξ VirtualInstitute
│ a? : Action
│ agent?: Agent
├─────────────────────────────
│ a? ∈ actions ∧ agent? = agents ∧ (a? ↦ agent?) ∉ actionParticipants
│
│ actions’ = actions
│ currentActionState’ = currentActionState
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants ∪ { a? ↦ agent? }
│ actionLocation’ = actionLocation
└───

┌─ AllocateActionLocationOK──────────────────────────────
│ ∆ Actions
│ Ξ Plans
│ Ξ VirtualInstitute
│ a? : Action
│ place?: Place
├─────────────────────────────
│ a? ∈ actions ∧ place? = place s ∧ (a? ↦ place?) ∉ actionLocation
│

 167

│ actions’ = actions
│ currentActionState’ = currentActionState
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation ⊕ { a? ↦ place? }
└───

The following schema is a specification of the operation to define an artifact in a plan.

┌─ CreateArtifactOK─────────────────────────────────
│ ∆ Artifacts
│ Ξ Plans
│ Ξ Actions
│ name? : STRING
│ aPlan?: PBLPlan
├─────────────────────────────
│ aPlan ∈ plans
│
│ aDocument = = (µ Document | title = name?)
│ anArtifact = = (µ Artifact | name = name? ∧ referTo = aDocument)
│ artifacts’ = artifacts ∪ { anArtifact }
│ artifactInPlan’ = artifactInPlan ∪ { anArtifact ↦ aPlan? }
│ currentArtifactState’ = currentArtifactState ∪ { anArtifact ↦ created }
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact
└───

In each PBL-plan, there is a start point from which a plan starts to execute, and an end
point at which a plan is finished. Because these two types of points are created in the
same way, only the operation to create a start point of a plan is specified.

┌─ CreateStartOK─────────────────────────────────
│ ∆ ConnectionNodes
│ Ξ Plans
│ startPoint? : StartPoint
│ aPlan?: PBLPlan
├─────────────────────────────
│ {aPlan?}⊳ planStartPoint = ∅
│
│ startPoint?.currentState = false
│ planStartPoint’ = planStartPoint ∪ {aPlan? ↦ startPoint?}
│ planEndPoint’ = planEndPoint
│ andJoinInPlan’ = andJoinInPlan
│ orJoinInPlan’ = orJoinInPlan
│ andSplitInPlan’ = andSplitInPlan
│ orSplitInPlan’ = orSplitInPlan
└───

 168

Four types of connection nodes (AndJoin, OrJoin, AndSplit, and OrSplit) can be used
to define the temporal relations between actions. We take the specification of the
operation to create an AndJoin node as an example to show how to specify the
operations for creating connection nodes.

┌─ CreateAndJoinOK─────────────────────────────────
│ ∆ ConnectionNodes
│ Ξ Plans
│ andJoinPoint? : AndJoin
│ aPlan?: PBLPlan
├─────────────────────────────
│ (andJoinPoint? ↦ aPlan?) ∉ andJoinInPlan’
│
│ andJoinPoint?.currentState = false
│ planStartPoint’ = planStartPoint
│ planEndPoint’ = planEndPoint
│ andJoinInPlan’ = andJoinInPlan ∪ { andJoinPoint? ↦ aPlan? }
│ orJoinInPlan’ = orJoinInPlan
│ andSplitInPlan’ = andSplitInPlan
│ orSplitInPlan’ = orSplitInPlan
└───

The operation “CreateActionSequenceOK” is used to define a temporal relation
between two actions.

┌─ CreateActionSequenceOK───────────────────────────────
│ ∆ TemporalRelations
│ Ξ Plans
│ Ξ Actions
│ Ξ ConnectionNodes
│ a 1 ?, a 2 ? : Action
│ aPlan?: PBLPlan
├─────────────────────────────
│ a 1 ? ∈ actions ∧ a 2 ? ∈ actions ∧

│ actionInPlan a 1 ? = actionInPlan a 2 ? = aPlan? ∧

│ (a 1 ? ↦ a 2 ?) ∉ actionSequence
│
│ parentPlan’ = parentPlan
│ startPointToAction’ = startPointToAction
│ startPointToPlan’ = startPointToPlan
│ actionToEndPoint’ = actionToEndPoint
│ planToEndPoint’ = planToEndPoint
│ actionSequence’ = actionSequence ∪ { a 1 ? ↦ a 2 ? }
│ planToPlan’ = planToPlan
│ actionToPlan’ = actionToPlan
│ planToAction’ = planToAction

 169

│ actionToAndJoin’ = actionToAndJoin
│ actionToOrJoin’ = actionToOrJoin
│ actionToAndSplit’ = actionToAndSplit
│ actionToOrSplit’ = actionToOrSplit
│ andJoinToAction’ = andJoinToAction
│ orJoinToAction’ = orJoinToAction
│ andSplitToAction’ = andSplitToAction
│ orSplitToAction’ = orSplitToAction
│ planToAndJoin’ = planToAndJoin
│ planToOrJoin’ = planToOrJoin
│ planToAndSplit’ = planToAndSplit
│ planToOrSplit’ = planToOrSplit
│ andJoinToPlan’ = andJoinToPlan
│ orJoinToPlan’ = orJoinToPlan
│ andSplitToPlan’ = andSplitToPlan
│ orSplitToPlan’ = orSplitToPlan
│ startPointToOrJoin’ = startPointToOrJoin
│ startPointToAndSplit’ = startPointToAndSplit
│ startPointToOrSplit’ = startPointToOrSplit
│ andJoinToEndPoint’ = andJoinToEndPoint
│ orJoinToEndPoint’ = orJoinToEndPoint
└───

The relation between the start point of a plan and an action in the plan is defined by
using the following operation.

┌─ CreateStartActionOK───────────────────────────────
│ ∆ TemporalRelations
│ Ξ Plans
│ Ξ Actions
│ Ξ ConnectionNodes
│ a? : Action
│ startPoint? : StartPoint
│ aPlan?: PBLPlan
├─────────────────────────────
│ a? ∈ actions ∧ actionInPlan a? = aPlan ∧
│ startPoint? = planStartPoint aPlan ∧ (startPoint?↦ a?) ∉ startPointToAction
│
│ parentPlan’ = parentPlan
│ startPointToAction’ = startPointToAction ∪ { startPoint?↦ a? }
│ startPointToPlan’ = startPointToPlan
│ actionToEndPoint’ = actionToEndPoint
│ planToEndPoint’ = planToEndPoint
│ actionSequence’ = actionSequence
│ planToPlan’ = planToPlan
│ actionToPlan’ = actionToPlan
│ planToAction’ = planToAction
│ actionToAndJoin’ = actionToAndJoin
│ actionToOrJoin’ = actionToOrJoin

 170

│ actionToAndSplit’ = actionToAndSplit
│ actionToOrSplit’ = actionToOrSplit
│ andJoinToAction’ = andJoinToAction
│ orJoinToAction’ = orJoinToAction
│ andSplitToAction’ = andSplitToAction
│ orSplitToAction’ = orSplitToAction
│ planToAndJoin’ = planToAndJoin
│ planToOrJoin’ = planToOrJoin
│ planToAndSplit’ = planToAndSplit
│ planToOrSplit’ = planToOrSplit
│ andJoinToPlan’ = andJoinToPlan
│ orJoinToPlan’ = orJoinToPlan
│ andSplitToPlan’ = andSplitToPlan
│ orSplitToPlan’ = orSplitToPlan
│ startPointToOrJoin’ = startPointToOrJoin
│ startPointToAndSplit’ = startPointToAndSplit
│ startPointToOrSplit’ = startPointToOrSplit
│ andJoinToEndPoint’ = andJoinToEndPoint
│ orJoinToEndPoint’ = orJoinToEndPoint
└───

The operation to define a relation between an action and an AndJoin node is specified
below. In the same way, we can specify the operation to define a relation between an
action and an OrJoin node. In order to save space, the specification of this operation is
omitted.

┌─ CreateActionToAndJoinOK──────────────────────────────
│ ∆ TemporalRelations
│ Ξ Plans
│ Ξ Actions
│ Ξ ConnectionNodes
│ a? : Action
│ andJoin? : AndJoin
│ aPlan?: PBLPlan
├─────────────────────────────
│ a? ∈ actions ∧ actionInPlan a? = aPlan ∧
│ andJoin? ∈ dom (andJoinInPlan ⊲ {aPlan}) ∧
│ (a? ↦ andJoin?) ∉ actionToAndJoin
│
│ parentPlan’ = parentPlan
│ startPointToAction’ = startPointToAction
│ startPointToPlan’ = startPointToPlan
│ actionToEndPoint’ = actionToEndPoint
│ planToEndPoint’ = planToEndPoint
│ actionSequence’ = actionSequence
│ planToPlan’ = planToPlan
│ actionToPlan’ = actionToPlan
│ planToAction’ = planToAction
│ actionToAndJoin’ = actionToAndJoin ∪ { a? ↦ andJoin? }

 171

│ actionToOrJoin’ = actionToOrJoin
│ actionToAndSplit’ = actionToAndSplit
│ actionToOrSplit’ = actionToOrSplit
│ andJoinToAction’ = andJoinToAction
│ orJoinToAction’ = orJoinToAction
│ andSplitToAction’ = andSplitToAction
│ orSplitToAction’ = orSplitToAction
│ planToAndJoin’ = planToAndJoin
│ planToOrJoin’ = planToOrJoin
│ planToAndSplit’ = planToAndSplit
│ planToOrSplit’ = planToOrSplit
│ andJoinToPlan’ = andJoinToPlan
│ orJoinToPlan’ = orJoinToPlan
│ andSplitToPlan’ = andSplitToPlan
│ orSplitToPlan’ = orSplitToPlan
│ startPointToOrJoin’ = startPointToOrJoin
│ startPointToAndSplit’ = startPointToAndSplit
│ startPointToOrSplit’ = startPointToOrSplit
│ andJoinToEndPoint’ = andJoinToEndPoint
│ orJoinToEndPoint’ = orJoinToEndPoint
└───

The operation to define a relation between an action and an AndSplit node is specified
as follows. An important predicate of this operation is that there is no such pair
between the action and the AndSplit node in the relation “actionToAndSplit”. In the
same way, we can specify the operation to define a relation between an action and an
OrSplit node. Here, the specification of the operation to define a relation between an
action and an OrSplit node is omitted.

┌─ CreateActionToAndSplitOK──────────────────────────────
│ ∆ TemporalRelations
│ Ξ Plans
│ Ξ Actions
│ Ξ ConnectionNodes
│ a? : Action
│ andSplit? : AndSplit
│ aPlan?: PBLPlan
├─────────────────────────────
│ a? ∈ actions ∧ actionInPlan a? = aPlan? ∧
│ andSplit? ∈ dom (andSplitInPlan ⊲ {aPlan?}) ∧
│ (a? ↦ andSplit?) ∉ actionToAndSplit ∧ actionToAndSplit ⊲ {andSplit?} = ∅
│
│ parentPlan’ = parentPlan
│ startPointToAction’ = startPointToAction
│ startPointToPlan’ = startPointToPlan
│ actionToEndPoint’ = actionToEndPoint
│ planToEndPoint’ = planToEndPoint
│ actionSequence’ = actionSequence
│ planToPlan’ = planToPlan

 172

│ actionToPlan’ = actionToPlan
│ planToAction’ = planToAction
│ actionToAndJoin’ = actionToAndJoin
│ actionToOrJoin’ = actionToOrJoin
│ actionToAndSplit’ = actionToAndSplit ∪ { a? ↦ andSplit? }
│ actionToOrSplit’ = actionToOrSplit
│ andJoinToAction’ = andJoinToAction
│ orJoinToAction’ = orJoinToAction
│ andSplitToAction’ = andSplitToAction
│ orSplitToAction’ = orSplitToAction
│ planToAndJoin’ = planToAndJoin
│ planToOrJoin’ = planToOrJoin
│ planToAndSplit’ = planToAndSplit
│ planToOrSplit’ = planToOrSplit
│ andJoinToPlan’ = andJoinToPlan
│ orJoinToPlan’ = orJoinToPlan
│ andSplitToPlan’ = andSplitToPlan
│ orSplitToPlan’ = orSplitToPlan
│ startPointToOrJoin’ = startPointToOrJoin
│ startPointToAndSplit’ = startPointToAndSplit
│ startPointToOrSplit’ = startPointToOrSplit
│ andJoinToEndPoint’ = andJoinToEndPoint
│ orJoinToEndPoint’ = orJoinToEndPoint
└───

In a similar way, we can specify the operations to define relations between one type of
connection nodes and an action.

┌─ CreateAndJoinToActionOK──────────────────────────────
│ ∆ TemporalRelations
│ Ξ Plans
│ Ξ Actions
│ Ξ ConnectionNodes
│ a? : Action
│ andJoin? : AndJoin
│ aPlan?: PBLPlan
├─────────────────────────────
│ a? ∈ actions ∧ actionInPlan a? = aPlan? ∧
│ andJoin? ∈ dom (andJoinInPlan ⊲ {aPlan?}) ∧
│ (andJoin? ↦ a?) ∉ andJoinToAction ∧ {andJoin?} ⊳ andJoinToAction = ∅
│
│ parentPlan’ = parentPlan
│ startPointToAction’ = startPointToAction
│ startPointToPlan’ = startPointToPlan
│ actionToEndPoint’ = actionToEndPoint
│ planToEndPoint’ = planToEndPoint
│ actionSequence’ = actionSequence
│ planToPlan’ = planToPlan
│ actionToPlan’ = actionToPlan

 173

│ planToAction’ = planToAction
│ actionToAndJoin’ = actionToAndJoin
│ actionToOrJoin’ = actionToOrJoin
│ actionToAndSplit’ = actionToAndSplit
│ actionToOrSplit’ = actionToOrSplit
│ andJoinToAction’ = andJoinToAction ∪ { andJoin? ↦ a?}
│ orJoinToAction’ = orJoinToAction
│ andSplitToAction’ = andSplitToAction
│ orSplitToAction’ = orSplitToAction
│ planToAndJoin’ = planToAndJoin
│ planToOrJoin’ = planToOrJoin
│ planToAndSplit’ = planToAndSplit
│ planToOrSplit’ = planToOrSplit
│ andJoinToPlan’ = andJoinToPlan
│ orJoinToPlan’ = orJoinToPlan
│ andSplitToPlan’ = andSplitToPlan
│ orSplitToPlan’ = orSplitToPlan
│ startPointToOrJoin’ = startPointToOrJoin
│ startPointToAndSplit’ = startPointToAndSplit
│ startPointToOrSplit’ = startPointToOrSplit
│ andJoinToEndPoint’ = andJoinToEndPoint
│ orJoinToEndPoint’ = orJoinToEndPoint
└───

┌─ CreateAndSplitToActionOK──────────────────────────────
│ ∆ TemporalRelations
│ Ξ Plans
│ Ξ Actions
│ Ξ ConnectionNodes
│ a? : Action
│ andSplit? : AndSplit
│ aPlan?: PBLPlan
├─────────────────────────────
│ a? ∈ actions ∧ actionInPlan a? = aPlan? ∧
│ andSplit? ∈ dom (andSplitInPlan ⊲ {aPlan?}) ∧
│ (andSplit? ↦ a?) ∉ andSplitToAction
│
│ parentPlan’ = parentPlan
│ startPointToAction’ = startPointToAction
│ startPointToPlan’ = startPointToPlan
│ actionToEndPoint’ = actionToEndPoint
│ planToEndPoint’ = planToEndPoint
│ actionSequence’ = actionSequence
│ planToPlan’ = planToPlan
│ actionToPlan’ = actionToPlan
│ planToAction’ = planToAction
│ actionToAndJoin’ = actionToAndJoin
│ actionToOrJoin’ = actionToOrJoin
│ actionToAndSplit’ = actionToAndSplit

 174

│ actionToOrSplit’ = actionToOrSplit
│ andJoinToAction’ = andJoinToAction
│ orJoinToAction’ = orJoinToAction
│ andSplitToAction’ = andSplitToAction ∪ { andSplit? ↦ a?}
│ orSplitToAction’ = orSplitToAction
│ planToAndJoin’ = planToAndJoin
│ planToOrJoin’ = planToOrJoin
│ planToAndSplit’ = planToAndSplit
│ planToOrSplit’ = planToOrSplit
│ andJoinToPlan’ = andJoinToPlan
│ orJoinToPlan’ = orJoinToPlan
│ andSplitToPlan’ = andSplitToPlan
│ orSplitToPlan’ = orSplitToPlan
│ startPointToOrJoin’ = startPointToOrJoin
│ startPointToAndSplit’ = startPointToAndSplit
│ startPointToOrSplit’ = startPointToOrSplit
│ andJoinToEndPoint’ = andJoinToEndPoint
│ orJoinToEndPoint’ = orJoinToEndPoint
└───

The operations to create relations between sub-plan and connection nodes are similar
to the operations that create relations between action and connection nodes.
Therefore, the specifications of operations to create relations between sub-plan and
connection nodes are omitted.

The relations between actions and artifacts are defined by using the following
operations. The first operation is used to specify that an artifact is produced in an
action. The second operation is used to specify that an artifact is consumed by an
action. The third operation is used to specify that an action shares an artifact usually
with other concurrent actions.

┌─ CreateActionProduceArtifactOK───────────────────────────
│ ∆ Artifacts
│ Ξ Plans
│ Ξ Actions
│ artifact? : Artifact
│ a? : Action
│ aPlan?: PBLPlan
├─────────────────────────────
│ artifact? ∈ artifacts ∧ artifactInPlan artifact? = aPlan? ∧
│ a? ∈ actions ∧ actionInPlan a? = aPlan? ∧
│ (a? ↦ artifact?) ∉ actionProduceArtifact ∧
│ (artifact? ↦ a?) ∉ artifactConsumedByAction ∧
│ (a? ↦ artifact?) ∉ actionSharedArtifact
│
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ actionProduceArtifact’ = actionProduceArtifact ∪ {a? ↦ artifact?}

 175

│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact
└───

┌─ CreateArtifactConsumedByActionOK────────────────────────
│ ∆ Artifacts
│ Ξ Plans
│ Ξ Actions
│ artifact? : Artifact
│ a? : Action
│ aPlan?: PBLPlan
├─────────────────────────────
│ artifact? ∈ artifacts ∧ artifactInPlan artifact? = aPlan? ∧
│ a? ∈ actions ∧ actionInPlan a? = aPlan? ∧
│ (artifact? ↦ a?) ∉ artifactConsumedByAction ∧
│ (a? ↦ artifact?) ∉ actionProduceArtifact ∧
│ (a? ↦ artifact?) ∉ actionSharedArtifact
│
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction ∪ {artifact? ↦ a?}
│ actionSharedArtifact’ = actionSharedArtifact
└───

┌─ CreateActionSharedArtifactOK───────────────────────────
│ ∆ Artifacts
│ Ξ Plans
│ Ξ Actions
│ artifact? : Artifact
│ a? : Action
│ aPlan?: PBLPlan
├─────────────────────────────
│ artifact? ∈ artifacts ∧ artifactInPlan artifact? = aPlan? ∧
│ a? ∈ actions ∧ actionInPlan a? = aPlan? ∧
│ (a? ↦ artifact?) ∉ actionSharedArtifact ∧
│ (a? ↦ artifact?) ∉ actionProduceArtifact ∧
│ (artifact? ↦ a?) ∉ artifactConsumedByAction
│
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact ∪ {a? ↦ artifact?}
└───

 176

The operations to create elements of a PBL-plan and the relations between these
elements were specified in this section. In order to focus on the major design ideas
and to save space, the operations to delete and modify the definition of the created
elements and their relations were omitted in this specification. The users of a virtual
learning environment can define and modify their own PBL-plan by using these
operations. When a PBL-plan is defined, it can be executed according to the definition
of the PBL-plan. It is allowed to modify those parts of a PBL-plan that are currently
not executed. Before specifying how a PBL-plan is executed, we describe facilities to
help users to define PBL-plans in the next two sections.

4.6.3 From Learning Issues and Necessary Learning Resources to a
PBL-plan

As described in chapter 2, a learning group has to discover areas in which the
collective knowledge is deficient. Recognizing such a deficiency, the learning group
may elect to treat it as a learning issue which will need to be researched, applied to the
problem, and appropriately integrated with other information. For researching
learning issues, the learning group has to identify learning resources including texts,
journal articles, library resources, computer information and database, and faculty.

Dolmans et al. wrote: “It is the policy of the particular implementation of PBL that
learning issues are always to be generated by the learners in the PBL group, rather
than determined in advance by the faculty. Producing a learning issue is a
collaborative effort, therefore, requiring the learners to assess their current
understanding and evaluate their current need to know. Recording an item as a
learning issue, therefore, represents a commitment on the part of the group to further
research the topic. Learning issues have been shown to be critical determinants of
learners’ self-directed learning and, on this basis, they represent an important
component of the method” [Dolmans94].

Koschmann et al. [Koschmann97] pointed out that “… to become a learning issue a
topic must satisfy three conditions. Firstly, there must be a recognizable knowledge
deficiency. Secondly, the learners must see the missing knowledge as relevant to or
necessary for understanding and solving the problem under study. Thirdly, there must
be consensus about the timeliness of undertaking the study.”

During identifying learning issues, according to [Koschmann97], “participants should
continuously re-negotiate the boundaries of the topic. In general, any group member
may clarify, expand, restrict, or otherwise alter a topic. The set of identified learning
issues is not static but dynamic and emergent. Much of the conversational work that
takes place within this discourse is devoted to specifying just what the topic of the
discussion actually is. This process is important, for it directly affects how a learning
issue gets identified, which in turn will crucially influence the success of subsequent
research on the issue.”

In [Pross99], it is suggested that the learners need to clarify their plans for their own
learning by:

 177

1) “identifying all of the significant issues arising from the problem under study -
what is known for understanding and solving the problem and what do they need
to know?

2) settling on a ‘do-able’ list of learning tasks and deciding which issues everyone
will tackle and which will be divided up (some issues are so fundamental to the
whole area that all students should read about them themselves).

3) deciding what specific questions individuals will try to answer (even minor issues
should be looked up by at least two individuals, to promote discussion).

4) deciding on the ‘enquiry strategy’ - how they will address these learning issues
(e.g. by looking up notes from a course, reading a section of a textbook, doing a
literature search, searching the internet, consulting an expert, accessing
community resources, conducting experiment, and so on).”

After identifying the learning issues and learning resources, a learning group will
arrange actions to research the learning issues by collecting and using learning
resources. As described in chapter 3, in the CALE system, an items in the need more
information category can be turned into an action item, which in turn would be
assigned to team members with a due date. The transformed action items are
organized as a list of commitments. Following this idea, a virtual PBL environment
can provide further support to help learners make learning plans by creating
preliminary learning plans based on the information recorded during the discourse of
identifying learning issues and resources.

As discussed in section 4.4, all members of a PBL group collaboratively construct a
shared PBL-net. A PBL-net provides a means for learners to negotiate learning issues
and identify resources. As a result, the issue nodes, resource nodes, and their relations
(represented as typed links) are created in the PBL-net.

In order to support the process of identifying learning issues, we define following data
types and operations.

Definition (Profession): A profession is used to make a public profession of a
learner’s belief about a learning issue. The needToKnow attribute is used to indicate
whether the declarer needs to know the learning issue. The knowOrNotKnow attribute
is used to indicate whether the declarer has knowledge about the learning issue.

┌─ Profession ───────────────────────────────────────
│ declarer : Actor
│ needToKnow : BOOLEAN
│ knowOrNotKnow : BOOLEAN
└───

Definition (Profession Issues): Profession issues are used to record the learner’s
professions about learning issues.

┌─ ProfessionIssues ───────────────────────────────────
│ PBLNetBase
│ professLearningIssue : Profession → TypedNode
├─────────────────────────────

 178

│ ∀ p : professLearningIssue | p.nodeType = ‘issue’
└───

The operation to make a public profession is specified as follows.

┌─ ProfessOK ──────────────────────────────────────
│ ∆ ProfessionIssues
│ a? : Actor
│ node? : TypedNode
│ need? : BOOLEAN
│ knk? : BOOLEAN
├─────────────────────────────
│ node?.nodeType = ‘issue’
│
│ let aProfession = = (µ Profession | declarer = a? ∧
│ needToKnow = need? ∧
│ knowOrNotKnow = knk?) •
│ professLearningIssue’ = professLearningIssue ∪ { aProfession ↦ aNode }
└───

Based on the information in a PBL-net, a preliminary learning plan can be created by
the system. The algorithm to create a preliminary learning plan is described below.

Given (aPBLNet : Net | aPBLNet ∈ pblNets) that recorded the information created
during the discourse of identifying learning issues. Only the issue and resource nodes
and the links between these nodes in the given PBL-net are used as original
information to create the preliminary learning plan. These nodes and links form a sub-
net on the given PBL-net. In such a sub-net, there are two types of nodes and four
types of links.

Issues = { n : TypedNode | n.nodeType = ‘issue’ ∧ (n ↦ aPBLNet) ∈ typedNodes }
Resources = { n : TypedNode | n.nodeType = ‘resource’ ∧ (n ↦ aPBLNet) ∈

 typedNodes }

SubLinks = { l : TypedLink | l.linkType = ‘is_a_sub_issue’ ∧ (l ↦ aPBLNet) ∈

typedLinks }
PriorLinks = { l : TypedLink | l.linkType = ‘is_prior_to’ ∧ (l ↦ aPBLNet) ∈

typedLinks }
PrerequisiteLinks = { l : TypedLink | l.linkType = ‘is_a_prerequisite_for’ ∧
 (l ↦ aPBLNet) ∈ typedLinks }
ConcernLinks = { l : TypedLink | l.linkType = ‘concern’ ∧ (l ↦ aPBLNet) ∈

 typedLinks }

We take an example to explain the algorithm to create a preliminary learning plan.
We assume that a PBL-net contains ten issue nodes (I1, I2, I3, I 4, I5, I6, I7, I8, I9, and
I10), one resource node (R), six prerequisite links (pre1, pre2, pre3, pre4, pre5, and pre6),
six sub-links (sub1, sub2, sub3, sub4, sub5, and sub6), and two concern links (con1 and

 179

con2). The sub-net of this PBL-net is shown in Figure 4.14. We assume that the name
of the preliminary learning plan created based on this sub-net is P0.

Figure 4.14: The Sub-net of a PBL-net

Each issue node belongs to one of four categories, according to the relations between
the issue node and other issue nodes. These four categories of issue nodes are turned
into actions or sub-plans, respectively.

Step 1: creating plans and actions for corresponding issue nodes.

For the learning issue nodes that are only connected to other issue nodes with
SubLinks, create a corresponding plan node (represented as n≫plan) that is a sub-
plan of the aPlan.
∀ n ∈ Issues; ∄ l 1 ∈ SubLinks; ∃ l 2 ∈ SubLinks | l 1 ≠ l 2 ∧

l 1 .sourceNode = n ∧ l 2 .destinationNode = n

create n≫plan : PBLPlan
plans’ = plans ∪ { n≫plan }
parentPlan’ = parentPlan ∪ {n≫plan ↦ aPlan}

In the example net, only I3 meets the condition. Therefore, a sub-plan P1 is created as
a sub-plan of P0 (see Figure 4.15).

 180

Figure 4.15: Creating a Sub-plan of the Overall PBL-plan

For the learning issue nodes that connect to and are connected from other issue nodes
with SubLinks, create a corresponding plan node (n≫plan) that is a sub-plan of the
plan (l 1 .destinationNode≫plan) that is created correspondingly for the issue node
l 1 .destinationNode.
∀ n ∈ Issues; ∃ l 1 , l 2 ∈ SubLinks | l 1 ≠ l 2 ∧

 l 1 .sourceNode = n ∧ l 2 .destinationNode = n

create n≫plan : PBLPlan
plans’ = plans ∪ { n≫plan }
parentPlan’ = parentPlan ∪ {n≫plan ↦ l 1 .destinationNode≫plan }

In the example net, only I4 meets the condition. Therefore, a sub-plan P2 is created as
a sub-plan of P1 (see Figure 4.16).

Figure 4.16: Creating a Sub-plan of Another Sub-plan

For the learning issue nodes that only connect to other issue nodes with SubLinks,
create a corresponding action node (n≫action) that is defined in the plan
(l 2 .destinationNode≫plan), which is created correspondingly for the issue node
l 2 .destinationNode.
∀ n ∈ Issues; ∄ l 1 ∈ SubLinks; ∃ l 2 ∈ SubLinks | l 1 ≠ l 2 ∧

 181

l1 .destinationNode = n ∧ l 2 .sourceNode = n

create n≫action: Action
actions’ = actions ∪ { n≫action }
actionInPlan’ = actionInPlan ∪ {n≫action ↦ l 2 .destinationNode≫plan }

In the example net, I5, I6, I7, I8, and I9 meets the condition. Therefore, five actions are
created in sub-plan P1 and P2 (see Figure 4.17).

Figure 4.17: Creating Actions in Sub-plans

For the learning issue nodes that neither connect to nor are connected from other issue
nodes with SubLinks, create a corresponding action node (n≫action) that is defined
in the aPlan.
∀ n ∈ Issues; ∄ l ∈ SubLinks | l.sourceNode = n ∨ l.destinationNode = n

create n≫action: Action
actions’ = actions ∪ { n≫action }
actionInPlan’ = actionInPlan ∪ {n≫action ↦ aPlan }

In the example net, I1, I2, and I10 meets the condition. Therefore, three actions are
created in the overall plan P0 (see Figure 4.18).

Figure 4.18: Creating Actions in the Overall PBL-plan

 182

Step 2: creating temporal relations between plans, actions, and connection nodes
for corresponding PrerequisiteLinks.

For two issue nodes that are connected by a unique link in the PrerequisiteLinks,
create a temporal relationship according to the correspondingly created actions or
plans.
∀ n1 , n 2 ∈ Issues; ∃ l 1 ∈ PrerequisiteLinks; ∄ l 2 ∈ PrerequisiteLinks |
 n1 ≠ n 2 ∧ l 1 ≠ l 2 ∧

l 1 .sourceNode = n1 ∧ l 1 .destinationNode = n 2 ∧
(l 2 .sourceNode = n1 ∨ l 2 .destinationNode = n 2) •

actionSequence’ = actionSequence ∪ {n1≫action ↦ n 2 ≫action } ∨
planToPlan’ = planToPlan ∪ {n1≫plan ↦ n 2 ≫plan} ∨
actionToPlan’ = actionToPlan ∪ {n1≫action ↦ n 2 ≫plan } ∨
planToAction’ = planToAction ∪ {n1≫plan ↦ n 2 ≫action }

In the example net, (I1, I2) and (I2, I3) meets the condition. Therefore, two temporal
relationships are created (see Figure 4.19).

Figure 4.19: Creating Temporal Relationships

For a set of ‘is_a_prerequisite_for’ links that connect to the same issue node, create an
AndJoin node and create temporal relationships between the correspondingly created
actions or plans and the AndJoin node, and create a temporal relationship between the
AndJoin node and the correspondingly created action or plan for the common
destination.
∀ n ∈ Issues | # { l ∈ PrerequisiteLinks | l.destinationNode = n } ≥ 2

create anAndJoin : AndJoin;
(actionToAndJoin’ = actionToAndJoin ∪

{l.sourceNode≫action ↦ anAndJoin } ∨
planToAndJoin’ = planToAndJoin ∪ {l.sourceNode≫plan ↦ anAndJoin }) ∧
(andJoinToAction’ = andJoinToAction ∪ {anAndJoin ↦ n≫action} ∨
andJoinToPlan’ = andJoinToPlan ∪ {anAndJoin ↦ n≫plan})

 183

In the example net, (I7, I9) and (I8, I9) meets the condition. Therefore, an AndJoin
node and three temporal relationships are created (see Figure 4.20).

Figure 4.20: Creating an AndJoin Node and Temporal Relationships

For a set of ‘is_a_prerequisite_for’ links that are connected from the same issue node,
create an AndSplit node and create temporal relations between the AndSplit node and
the correspondingly created actions or plans, and create a temporal relation between
the correspondingly created action or plan for the common source and the AndSplit
node.
∀ n ∈ Issues | # { l ∈ PrerequisiteLinks | l.sourceNode = n } ≥ 2

create anAndSplit : AndSplit
(actionToAndSplit’ = actionToAndSplit ∪ {n≫action ↦ anAndSplit} ∨
planToAndSplit’ = planToAndSplit ∪ {n≫plan ↦ anAndSplit}) ∧
(andSplitToAction’ = andSplitToAction ∪ {anAndSplit ↦

l.destinationNode≫action} ∨
andSplitToPlan’ = andSplitToPlan ∪

{anAndSplit ↦ l.destinationNode≫plan})

In the example net, (I4, I5) and (I4, I6) meets the condition. Therefore, an AndSplit
node and three temporal relationships are created (see Figure 4.21).

Figure 4.21: Creating an AndSplit Node and Temporal Relationships

 184

Step 3: creating artifacts and relations between artifacts and actions.

For resource nodes that connect to an issue node by a link that is a member of the set
ConcernLinks, create a corresponding artifact node (n≫artifact) and a relation
between this node and the correspondingly created action for the issue node.
∀ n ∈ Resources | (∃ l : ConcernLinks | l.sourceNode = n)

create n≫artifact : Artifact
artifacts’ = artifacts ∪ { n≫artifact }
artifactConsumedByAction’ = artifactConsumedByAction ∪
{ n≫artifact ↦ l.destinationNode≫action }

In the example net, R is a resource node, which connects to I1 and I2. Therefore, an
artifact node and two artifact relationships are created (see Figure 4.22).

Figure 4.22: Creating a Artifact and Two Artifact Relationships

Step 4: assign participants for each action.

For each action (issue≫action) that is created correspondingly for a learning issue
(issue : Issues), assign participants for the action.
∀ issue≫action : Action |

actionParticipants’ = actionParticipants ∪
{ ∀ p : Profession | (p ↦ issue) ∈ professLearningIssue ∧

p.needToKnow = true ∧ p.knowOrNotKnow = false •
(issue≫action ↦ p.declarer)}

By using this algorithm, a preliminary learning plan can be created. The preliminary
learning plan created based on the example net is shown in Figure 4.23.

 185

Figure 4.23: The Example Preliminary Learning Plan

This transformation automates a lot of users’ work to define a learning plan.
However, in order to complete a definition of learning plan, learners have to
continually work on the definition of the learning plan. For example, they should
allocate a place for each action, specify the active-condition and terminated-condition
for each action, schedule start time and duration, specify which actions produce or
share which artifacts, and so on. If necessary, they have to modify the learning plan.
Defining a learning plan is a very error-prone and time-consuming task. The next
section presents an approach to support refining learning plans.

 186

4.6.4 Modifying and Refining PBL-plans Interactively

As mentioned above, it is not an easy task to define a good learning plan. Many
actions may be carried out in the same period of time. Normally, multiple participants
are assigned to perform an action and the action may be carried out in a synchronous
session. An actor may take part in multiple actions. Furthermore, some resources have
to be shared across time. For example, some virtual places provide specific learning
contexts which are suitable to perform task-specific actions. However, these actions
can not be performed in the same virtual place and at the same time. In addition, a set
of constraints are specified as temporal relations and artifact relations between actions
in plans. Generally, arranging resources (people, time, place, and artifact) for actions
by systems is problematic. Some efforts are made to schedule meetings automatically.
For example, the electronic calendar system [Ehrlich87] tried to find a time
convenient for all participants by checking the calendar for each person. Why it is
rarely used was explained in [Grudin94]. The major problems are "disparity between
those who will benefit and those who must do the work" and "free time is not free".
Instead of providing fully automatic support, in this thesis an alternative approach is
developed. Adopting this approach, the system can help learners modify and refine
learning plan in an interactive way. That is, on demand the system detects and
displays the incomplete definitions and potential conflicts between the scheduled
actions in a plan. Learners, then, modify and refine the definition of the learning plan
to resolve the detected conflicts. Even if a learning plan has not been defined
completely or it contains conflicts, it can be executed. However, whenever a conflict
is reached or necessary information is still missing during execution, the execution
will pause. It can be resumed from the interrupted point after modifying or refining
the plan. This subsection presents how the system detects incomplete definitions and
possible conflict situations in PBL-plans.

4.6.4.1 Incomplete definition

Some values of attributes are assigned as default values such as the state of action.
However, learners have to assign some values. Otherwise, the learning plan can not
execute or will stop in the process of execution. The situations of incomplete
definition and how these situations can be detected by predicates are listed below.
These predicates are used when editing a plan finishes in order to detect the presence
of incomplete definition.

1) No actor is arranged as the participant of an action.

{ a : Action | a ∈ actions ∧ #(ran {a}⊳ actionParticipants) = 0}

2) No place is allocated for an action.

{ a : Action | a ∈ actions ∧ #(ran {a}⊳ actionLocation) = 0}

3) How to start an action hasn’t been specified.

{ a : Action | a ∈ actions ∧

 187

a.scheduledStartTime = ∅ ∧ a.actionActiveCondition = ∅ ∧
startPointToAction ⊲{a}= planToAction ⊲{a}= actionSequence ⊲{a}= ∅ ∧
(∄ aj : AndJoin | (aj ↦ a) ∈ andJoinToAction) ∧
(∄ oj : OrJoin | (oj ↦ a) ∈ orJoinToAction) ∧
(∄ as : AndSplit | (as ↦ a) ∈ andSplitToAction) ∧
(∄ os : OrSplit | (os ↦ a) ∈ orSplitToAction) ∧
(∄ artifact : Artifact | (artifact ↦ a) ∈ artifactConsumedByAction)}

4) The estimated duration of an action hasn’t been specified.

{ a : Action | a ∈ actions ∧ a.estimatedDuration = ∅ }

5) The StartNode or EndNode of a plan is missing.

{ p : PBLPlan | p ∈ plans ∧

(#(ran {p}⊳ planStartPoint) = 0 ∨ #(ran {p}⊳ planEndPoint) = 0) }

6) The connection node lacks of connection.

{ s : StartPoint | s ∈ ran planStartPoint ∧
 (#(ran {s}⊳ startPointToAction) + #(ran {s}⊳ startPointToPlan) +
 #(ran {s}⊳ startPointToOrJoin) + #(ran {s}⊳ startPointToAndSplit) +
 #(ran {s}⊳ startPointToOrSplit) = 0) }

{ e : EndPoint | e ∈ ran planEndPoint ∧
 (#(dom actionToEndPoint ⊲{e}) + #(dom planToEndPoint ⊲{e}) +
 #(dom andJoinToEndPoint ⊲{e}) + #(dom orJoinToEndPoint ⊲{e}) = 0)}

{ aj : AndJoin | aj ∈ ran andJoinInPlan ∧
 ((#(ran {aj}⊳ andJoinToAction) + #(ran {aj}⊳ andJoinToPlan) +

#(ran {aj}⊳ andJoinToEndPoint) = 0) ∨
 (#(dom actionToAndJoin ⊲{aj}) + #(dom planToAndJoin ⊲{aj}) = 0))}

{ oj : OrJoin | oj ∈ ran orJoinInPlan ∧
 ((#(ran {oj}⊳ orJoinToAction) + #(ran {oj}⊳ orJoinToPlan) +

#(ran {oj}⊳ orJoinToEndPoint) = 0) ∨
 (#(dom actionToOrJoin ⊲{oj}) + #(dom planToOrJoin ⊲{oj}) +

#(dom startPointToOrJoin ⊲{oj}) = 0))}

{ as : AndSplit | as ∈ ran andSplitInPlan ∧

((#(ran {as}⊳ andSplitToAction) + #(ran {as}⊳ andSplitToPlan) = 0) ∨
 (#(dom actionToAndSplit ⊲{as}) + #(dom planToAndSplit ⊲{as}) +

 188

 #(dom startPointToAndSplit ⊲{as}) = 0))}

{ os : OrSplit | os ∈ ran orSplitInPlan ∧

((#(ran {os}⊳ orSplitToAction) + #(ran {os}⊳ orSplitToPlan) = 0) ∨
 (#(dom actionToOrJoin ⊲{os}) + #(dom planToOrJoin ⊲{os}) +

#(dom startPointToOrJoin ⊲{os}) = 0))}

7) Isolated artifact
{ a : Artifact | a ∈ artifacts ∧
 (#(dom actionProduceArtifact ⊲{a}) + #(dom actionSharedArtifact ⊲{a}) +

#(ran {a}⊳ artifactConsumedByAction) = 0)}

4.6.4.2 Potential conflicts

The situations of conflicts are listed below:

1) An actor is assigned to two or more actions that overlap in time and are performed
in the synchronous collaboration mode.
{ a : Actor | a ∈ actors ∧

(∃ action1 , action 2 : Action | action1 ≠ action 2 ∧

action1 ∈ actions ∧ action 2 ∈ actions ∧

action1 . collaborationMode =
action 2 . CollaborationMode = synchronousSession ∧

((action1 . scheduledStartTime ≤ action 2 . scheduledStartTime ≤

action1 . scheduledStartTime + action1 . estimatedDuration) ∨
(action 2 . scheduledStartTime ≤ action1 . scheduledStartTime ≤

action 2 . scheduledStartTime + action 2 . estimatedDuration)) ∧

((actor a) ∈ ran {action 1 }⊳ actionParticipants ∨
(∃ g : Group | a _belongTo_ g ∧
(group g) ∈ ran {action1 }⊳ actionParticipants)) ∧

((actor a) ∈ ran {action 2 }⊳ actionParticipants ∨

(∃ g : Group | a _belongTo_ g ∧
(group g) ∈ ran {action 2 }⊳ actionParticipants)) }

Notes that ‘group’ is a function which turns a variable g into an agent. Same for
‘actor’ function. Both functions are defined as branches of free type Agent (see
definition “Agent” in section 4.3.3.1).

 189

2) A place is allocated for two or more actions that overlap in time.
{ p : Place | p ∈ places ∧

(∃ action1 , action 2 : Action | action1 ≠ action 2 ∧

action1 ∈ actions ∧ action 2 ∈ actions ∧

(action1 ↦ p) ∈ actionLocation ∧ (action 2↦ p) ∈ actionLocation ∧

((action1 . scheduledStartTime ≤ action 2 . scheduledStartTime ≤

action1 . scheduledStartTime + action1 . estimatedDuration) ∨
(action 2 . scheduledStartTime ≤ action1 . scheduledStartTime ≤

action 2 . scheduledStartTime + action 2 . estimatedDuration)) }

3) An action is scheduled to start before the preceding action doesn’t start.
{ action1 , action 2 : Action | action1 ≠ action 2 ∧

action1 ∈ actions ∧ action 2 ∈ actions ∧

((action1↦ action 2) ∈ actionSequence ∨

(∃ aj : AndJoin | (action1↦ aj) ∈ actionToAndJoin ∧
(aj ↦ action 2) ∈ andJoinToAction) ∨

(∃ oj : OrJoin | (action1↦ oj) ∈ actionToOrJoin ∧
(oj ↦ action 2) ∈ orJoinToAction) ∨

(∃ as : AndSplit | (action1↦ as) ∈ actionToAndSplit ∧
(as ↦ action 2) ∈ andSplitToAction) ∨

(∃ os : OrSplit | (action1↦ os) ∈ actionToOrSplit ∧
(os ↦ action 2) ∈ orSplitToAction)) ∧

(action1 .scheduledStartTime > action 2 . scheduledStartTime • action 2 }

4) An action is scheduled to start before a consumed artifact can be produced.
{ action1 , action 2 : Action | action1 ≠ action 2 ∧

action1 ∈ actions ∧ action 2 ∈ actions ∧

(∃ artifact : Artifact | (action1↦ artifact) ∈ actionProduceArtifact ∧
(artifact ↦ action 2) ∈ artifactConsumedByAction ∧

(action1 .scheduledStartTime > action 2 . scheduledStartTime • action 2 }

The above incomplete definition and potential conflicts can be detected by the system.
Learners can define a learning plan interactively. That is, after modifying and refining

 190

the preliminary learning plan, they can require the system to display the incomplete
definition and potential conflicts, and then modify and refine the learning plan again
and again until a satisfied learning plan is produced. It is important to note that it is
allowed to modify and refine a learning plan in this way when the learning plan is
already executed. The next section presents the execution of a defined learning plan.

4.6.5 Execution of PBL-plans

In section 4.6.2, a process framework was presented, which defines the fundamental
elements, relationships, constraints of a process, and related operationts for
constructing a valid learning process. In a virtual institute, multiple learning plans
may exist and execute at a point in time, because it is allowed that multiple PBL
groups carry out PBL activities concurrently. It is possible that a learner participates
in more than one PBL activity and a place will be used by more than one PBL group.
The system provides two ways for learners to execute learning plans and get
information about learning plans. Firstly, learners can execute and monitor a learning
process from the PBL-plan definition tool (see subsection 6.1.6) in which all actions,
sub-plans, and more detailed information of the learning plan are organized and
displayed as a hierarchical diagram. Secondly, there is a calendar in each home and
each public room (see subsection 4.3.3.1). The calendar in a home lists all actions of
which the owner of the home is a participant. The calendar in a public room lists all
actions of which the public room is the location. The calendar can also be used to
schedule isolated actions.

Normally, the organizer of a PBL activity defines a root PBL-plan and is responsible
for executing the root learning plan. As a learning plan is executed, the state changes
of the learning plan can be observed in the PBL-plan definition tool and in calendars.
The documents defined as artifacts in the learning plan will be transferred from one
place to another place by using message-boxes.

A PBL-plan can be executed by using the following operation. When a PBL-plan
starts to execute, the plan and its sub-plans that are connected directly or indirectly to
the StartPoint of the plan will change their state to “active”. All actions that are
connected directly or indirectly to the StartPoint of the plan change their state to
“enabled”.

┌─ StartPlanOK──────────────────────────────────────
│ ∆ PlanBase
│ ∆ Plans
│ ∆ Actions
│ Ξ Artifacts
│ Ξ ConnectionNodes
│ Ξ TemporalRelations
│ plan? : Plan
├─────────────────────────────
│ plan? ∈ plans ∧ currentPlanState plan? = defined
│
│ plans’ = plans
│ currentPlanState’ = currentPlanState ⊕ {plan? ↦ active} ⊕ {

 191

│ ∀ p : plans | (p ↦ plan?) ∈ parentPlan ∧
│ (((planStartPoint plan?) ↦ p) ∈ startPointToPlan ∨
│ (∃ as : AndSplit | (oj ↦ plan?) ∈ andSplitInPlan ∧
│ ((planStartPoint plan?) ↦ as) ∈ startPointToAndSplit ∧
│ (as ↦ p) ∈ andSplitToPlan) ∨
│ (∃ os : OrSplit | (os ↦ plan?) ∈ orSplitInPlan ∧
│ ((planStartPoint plan?) ↦ os) ∈ startPointToOrSplit ∧
│ (os ↦ p) ∈ orSplitToPlan) ∨
│ (∃ oj : OrJoin | (oj ↦ plan?) ∈ orJoinInPlan ∧
│ ((planStartPoint plan?) ↦ oj) ∈ startPointToOrJoin ∧
│ (oj ↦ p) ∈ orJoinToPlan)) •
│ p ↦ active}
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ { ∀ a : Action |
│ a ∈ actions ∧ (a ↦ plan?) ∈ actionInPlan ∧
│ ((planStartPoint plan?) ↦ a) ∈ startPointToAction ∨
│ (∃ as : AndSplit | (oj ↦ plan?) ∈ andSplitInPlan ∧
│ ((planStartPoint plan?) ↦ as) ∈ startPointToAndSplit ∧
│ (as ↦ a) ∈ andSplitToAction) ∨
│ (∃ os : OrSplit | (os ↦ plan?) ∈ orSplitInPlan ∧
│ ((planStartPoint plan?) ↦ os) ∈ startPointToOrSplit ∧
│ (os ↦ a) ∈ orSplitToAction) ∨
│ (∃ oj : OrJoin | (oj ↦ plan?) ∈ orJoinInPlan Action
│ ((planStartPoint plan?) ↦ oj) ∈ startPointToOrJoin ∧
│ (oj ↦ a) ∈ orJoinToAction)) ∧
│ (∀ subPlan : PBLPlan | subPlan ∈ { p : PBLPlan |
│ (p ↦ plan?) ∈ parentPlan ∧
│ (((planStartPoint plan?) ↦ p) ∈ startPointToPlan ∨
│ (∃ as : AndSplit | (oj ↦ plan?) ∈ andSplitInPlan ∧
│ ((planStartPoint plan?) ↦ as) ∈ startPointToAndSplit ∧
│ (as ↦ p) ∈ andSplitToPlan) ∨
│ (∃ os : OrSplit | (os ↦ plan?) ∈ orSplitInPlan ∧
│ ((planStartPoint plan?) ↦ os) ∈ startPointToOrSplit ∧
│ (os ↦ p) ∈ orSplitToPlan) ∨
│ (∃ oj : OrJoin | (oj ↦ plan?) ∈ orJoinInPlan ∧
│ ((planStartPoint plan?) ↦ oj) ∈ startPointToOrJoin ∧
│ (oj ↦ p) ∈ orJoinToPlan)) } ∧
│ (a ↦ subPlan) ∈ actionInPlan ∧

 192

│ ((planStartPoint subPlan) ↦ a) ∈ startPointToAction ∨
│ (∃ as : AndSplit | (oj ↦ subPlan) ∈ andSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ as) ∈ startPointToAndSplit ∧
│ (as ↦ a) ∈ andSplitToAction) ∨
│ (∃ os : OrSplit | (os ↦ subPlan) ∈ orSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ os) ∈ startPointToOrSplit ∧
│ (os ↦ a) ∈ orSplitToAction) ∨
│ (∃ oj : OrJoin | (oj ↦ subPlan) ∈ orJoinInPlan Action
│ ((planStartPoint subPlan) ↦ oj) ∈ startPointToOrJoin ∧
│ (oj ↦ a) ∈ orJoinToAction))) •
│ a ↦ enabled}
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

If the state of an action is ‘enabled’, learners can enact the action manually by
performing the operation ‘start’. The state of the action turns into active or suspended
according to the definition of the action. If the active-condition of the action is not
met, the state of the action becomes suspended. For example, if the consumed artifacts
haven’t been delivered or not all participants are presented in the location of the
action. If the enacted action is connected by an OrSplit node that connects to some
other actions, then the state of those actions turns into suspended. The OrSplit node is
used in the situation that several scheduled actions can be performed to achieve the
same goal. If one of them is performed in the execution process, it is not necessary to
perform one of the other actions. When an action starts, the state of the produced
artifacts of this action turns into inEditing.

┌─ StartActionOK─────────────────────────────────────
│ ∆ Actions
│ ∆ Artifacts
│ a? : Action
├─────────────────────────────
│ a? ∈ actions ∧ currentActionState a? = enabled
│
│ a?.actualStartTime = now
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ {
│ if a?.actionActiveCondition = true
│ then (a? ↦ active)
│ else (a? ↦ suspended)} ⊕ {
│ ∀ a : Action | a ∈ actions ∧ currentActionState a = enabled ∧
│ (∃ orSplit: OrSplit | (orSplit ↦ a?) ∈ OrSplitToAction ∧
│ (orSplit ↦ a) ∈ OrSplitToAction) •

 193

│ a ↦ suspended}
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ currentArtifactState’ = currentArtifactState ⊕
│ { ∀ a : Artifact | (a? ↦ a) ∈ actionProduceArtifact • a ↦ inEditing } ⊕
│ { ∀ a : Artifact | (a? ↦ a) ∈ actionSharedArtifact ∧
│ (a ↦ created) ∈ currentArtifactState • a ↦ inEditing }
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact
└───

For an action whose collaboration mode is a synchronous session, the action is
enacted when all participants are presented in the location of the action. Meanwhile,
the state of artifacts that are produced or shared by this action turns into inEditing.

┌─ JoinActionOK─────────────────────────────────────
│ ∆ Actions
│ ∆ Artifacts
│ ∆ VirtualInstitute
│ actor? : Actor
│ action? : Action
├─────────────────────────────
│ action? ∈ actions ∧ currentActionState a? = suspended ∧
│ action?.collaborationMode = synchronousSession ∧
│ actor? ∈ actors ∧ (actor ↦ actionLocation action?) ∉ actorLocation ∧
│ (∃ agent : Agent | (action? ↦ agent) : actionParticipants •
│ actor actor? = agent ∨
│ (∃ g : Group | actor? _belongTo_ g ∧ group g = agent))
│
│ actorLocation’ = actorLocation ⊕ {actor ↦ actionLocation action?}
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ {
│ if a?.actionActiveCondition = true
│ then (action? ↦ active) }
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ currentArtifactState’ = currentArtifactState ⊕
│ { ∀ a : Artifact | (action? ↦ a) ∈ actionProduceArtifact ∧
│ action?.actionActiveCondition = true • a ↦ inEditing } ⊕

 194

│ { ∀ a : Artifact | (action? ↦ a) ∈ actionSharedArtifact ∧
│ action?.actionActiveCondition = true ∧
│ (a ↦ created) ∈ currentArtifactState • a ↦ inEditing }
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact
└───

For an action in which some artifacts will be produced, delivering an artifact will
trigger the actions that are waiting for consuming the artifact. If the terminated-
condition of an action is true and all produced artifacts are delivered, the event of
delivering artifacts will trigger the change of the state of the actions.

┌─ ActionDeliverArtifactOK──────────────────────────────
│ ∆ Artifacts
│ ∆ Actions
│ a? : Action
│ artifact? : Artifact
├─────────────────────────────
│ a? ∈ actions ∧ currentActionState a? = active ∧
│ artifact? ∈ artifacts ∧ currentArtifactState artifact? = inEditing ∧
│ ((a? ↦ artifact?) ∈ actionProduceArtifact ∨
│ (a? ↦ artifact?) ∈ actionSharedArtifact)
│
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ currentArtifactState’ = currentArtifactState ⊕ { artifact? ↦ finished }
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕
│ {∀ a : Action | a ∈ actions ∧ currentActionState a = suspended ∧
│ (artifact? ↦ a) ∈ artifactConsumedByAction ∧
│ a.actionActiveCondition = true •
│ a? ↦ active }
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

┌─ DeliverArtifactTerminateActionOK─────────────────────────
│ ∆ Artifacts
│ ∆ Actions
│ a? : Action
│ artifact? : Artifact
├─────────────────────────────

 195

│ a? ∈ actions ∧ currentActionState a? = active ∧
│ artifact? ∈ artifacts ∧ currentArtifactState artifact? = inEditing ∧
│ ((a? ↦ artifact?) ∈ actionProduceArtifact ∨
│ (a? ↦ artifact?) ∈ actionSharedArtifact) ∧
│
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ currentArtifactState’ = currentArtifactState ⊕ { artifact? ↦ finished }
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact
│ actions’ = actions
│ currentActionState’ = currentActionState
│ (if a?.terminatedCondition = true then { a? ↦ finished }) ⊕ {
│ ∀ a : Action | a ∈ actions ∧ currentActionState a = defined ∧
│ a?.terminatedCondition = true ∧
│ ((a?↦ a) ∈ actionSequence ∨
│ (∃ andJoin : AndJoin | (a? ↦ andJoin) ∈ actionToAndJoin ∧
│ (andJoin ↦ a) ∈ andJoinToAction ∧
│ (∀ action : Action | a ∈ dom actionToAndJoin ⊲ {andJoin}•
│ currentActionState action = finished)) ∨
│ (∃ orJoin : OrJoin | (a? ↦ orJoin) ∈ actionToOrJoin ∧
│ (orJoin ↦ a) ∈ orJoinToAction) ∨
│ (∃ andSplit : AndSplit | (a? ↦ andSplit) ∈ actionToAndSplit ∧
│ (andSplit ↦ a) ∈ andSplitToAction) ∨
│ (∃ orSplit : OrSplit | (a? ↦ orSplit) ∈ actionToOrSplit ∧
│ (orSplit ↦ a) ∈ orSplitToAction) ∨
│ (∀ subPlan : PBLPlan |
│ (a? ↦ subPlan) ∈ actionToPlan ∧
│ ((planStartPoint subPlan) ↦ a) ∈ startPointToAction ∨
│ (∃ as : AndSplit | (oj ↦ subPlan) ∈ andSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ as) ∈ startPointToAndSplit ∧
│ (as ↦ a) ∈ andSplitToAction) ∨
│ (∃ os : OrSplit | (os ↦ subPlan) ∈ orSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ os) ∈ startPointToOrSplit ∧
│ (os ↦ a) ∈ orSplitToAction) ∨
│ (∃ oj : OrJoin | (oj ↦ subPlan) ∈ orJoinInPlan Action
│ ((planStartPoint subPlan) ↦ oj) ∈ startPointToOrJoin ∧
│ (oj ↦ a) ∈ orJoinToAction))) •
│ a ↦ enabled ⊕ {
│ {∀ a : Action | a ∈ actions ∧ currentActionState a = suspended ∧

 196

│ (artifact? ↦ a) ∈ artifactConsumedByAction ∧
│ a.actionActiveCondition = true •
│ a ↦ active }
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

Learners can terminate an action manually. If the terminated action is not the last
action in the plan, the subsequent actions will be enacted according to the definition
of the plan. Otherwise, the plan will be finished.

┌─ TerminateActionOK──────────────────────────────────
│ ∆ Actions
│ a? : Action
├─────────────────────────────
│ a? ∈ actions ∧ currentActionState a? = active ∧
│ (∄ endPoint : EndPoint |
│ (a? ↦ endPoint) ∈ actionToEndPoint) ∨
│ (∄ andJoin : AndJoin |
│ (a?↦ andJoin) ∈ actionToAndJoin ∧
│ (andJoin ↦ endPoint) ∈ andJoinToEndPoint ∧
│ (∀ a : Action | a ∈ actions ∧ a ≠ a? ∧
│ currentActionState a = finished ∧
│ (a ↦ andJoin) ∈ actionToAndJoin) ∧
│ (∀ p : PBLPlan | p ∈ plans ∧
│ currentPlanState p = finished ∧
│ (p ↦ andJoin) ∈ planToAndJoin)) ∨
│ (∄ orJoin : OrJoin |
│ (a?↦ orJoin) ∈ actionToOrJoin ∧
│ (orJoin ↦ endPoint) ∈ orJoinToEndPoint))
│
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ { a? ↦ finished } ⊕
│ { ∀ a : Action | a ∈ actions ∧ currentActionState a = defined ∧
│ ((a?↦ a) ∈ actionSequence ∨
│ (∃ andJoin : AndJoin | (a? ↦ andJoin) ∈ actionToAndJoin ∧
│ (andJoin ↦ a) ∈ andJoinToAction ∧
│ (∀ action : Action | a ∈ dom actionToAndJoin ⊲ {andJoin}•
│ currentActionState action = finished)) ∨
│ (∃ orJoin : OrJoin | (a? ↦ orJoin) ∈ actionToOrJoin ∧
│ (orJoin ↦ a) ∈ orJoinToAction) ∨
│ (∃ andSplit : AndSplit | (a? ↦ andSplit) ∈ actionToAndSplit ∧

 197

│ (andSplit ↦ a) ∈ andSplitToAction) ∨
│ (∃ orSplit : OrSplit | (a? ↦ orSplit) ∈ actionToOrSplit ∧
│ (orSplit ↦ a) ∈ orSplitToAction) ∨
│ (∀ subPlan : PBLPlan |
│ (a? ↦ subPlan) ∈ actionToPlan ∧
│ ((planStartPoint subPlan) ↦ a) ∈ startPointToAction ∨
│ (∃ as : AndSplit | (oj ↦ subPlan) ∈ andSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ as) ∈ startPointToAndSplit ∧
│ (as ↦ a) ∈ andSplitToAction) ∨
│ (∃ os : OrSplit | (os ↦ subPlan) ∈ orSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ os) ∈ startPointToOrSplit ∧
│ (os ↦ a) ∈ orSplitToAction) ∨
│ (∃ oj : OrJoin | (oj ↦ subPlan) ∈ orJoinInPlan Action
│ ((planStartPoint subPlan) ↦ oj) ∈ startPointToOrJoin ∧
│ (oj ↦ a) ∈ orJoinToAction))) •
│ a ↦ enabled}
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

┌─ TerminateLastActionOfPlanOK───────────────────────────
│ ∆ Actions
│ ∆ Plans
│ a? : Action
├─────────────────────────────
│ a? ∈ actions ∧ currentActionState a? = active ∧
│ (∃ endPoint : EndPoint |
│ (a? ↦ endPoint) ∈ actionToEndPoint ∨
│ (∃ andJoin : AndJoin |
│ (a?↦ andJoin) ∈ actionToAndJoin ∧
│ (andJoin ↦ endPoint) ∈ andJoinToEndPoint ∧
│ (∀ a : Action | a ∈ actions ∧ a ≠ a? ∧
│ currentActionState a = finished ∧
│ (a ↦ andJoin) ∈ actionToAndJoin) ∧
│ (∀ p : PBLPlan | p ∈ plans ∧
│ currentPlanState p = finished ∧
│ (p ↦ andJoin) ∈ planToAndJoin)) ∨
│ (∃ orJoin : OrJoin |
│ (a?↦ orJoin) ∈ actionToOrJoin ∧
│ (orJoin ↦ endPoint) ∈ orJoinToEndPoint))
│

 198

│ plans’ = plans
│ currentPlanState’ = currentPlanState ⊕ {actionInPlan a? ↦ finished}
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ { a? ↦ finished }
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

If time is specified as a factor of the active-condition or terminated-condition of an
action in the definition of a plan, the event that the scheduled time is coming will
trigger the change of the state of the actions and related artifacts.

┌─ TimeTriggerActionActiveOK─────────────────────────────
│ ∆ Actions
│ ∆ Artifacts
│ a? : Action
├─────────────────────────────
│ a? ∈ actions ∧ a?.scheduledStartTime = now
│
│ a?.actualStartTime = now
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ {
│ if a?.actionActiveCondition = true
│ then (a? ↦ active)
│ else (a? ↦ suspended)} ⊕
│ { ∀ a : Action | a ∈ actions ∧ currentActionState a = enabled ∧
│ (∃ orSplit: OrSplit | (orSplit ↦ a?) ∈ OrSplitToAction ∧
│ (orSplit ↦ a) ∈ OrSplitToAction) •
│ a ↦ suspended}
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
│ artifacts’ = artifacts
│ artifactInPlan’ = artifactInPlan
│ currentArtifactState’ = currentArtifactState ⊕
│ { ∀ a : Artifact | (a? ↦ a) ∈ actionProduceArtifact • a ↦ inEditing } ⊕
│ { ∀ a : Artifact | (a? ↦ a) ∈ actionSharedArtifact ∧
│ (a ↦ created) ∈ currentArtifactState • a ↦ inEditing }
│ actionProduceArtifact’ = actionProduceArtifact
│ artifactConsumedByAction’ = artifactConsumedByAction
│ actionSharedArtifact’ = actionSharedArtifact
└───

 199

┌─ TimeTriggerActionTerminatedOK──────────────────────────
│ ∆ Actions
│ a? : Action
├─────────────────────────────
│ a? ∈ actions ∧ currentActionState a? = active ∧
│ a?.actualStartTime + a?.estimatedDuration = now ∧
│ a?.actionTerminateCondition = true ∧
│ (∄ endPoint : EndPoint | (a? ↦ endPoint) ∈ actionToEndPoint) ∧
│ (∄ andJoin : AndJoin |
│ (a?↦ andJoin) ∈ actionToAndJoin ∧
│ (andJoin ↦ endPoint) ∈ andJoinToEndPoint ∧
│ (∀ a : Action | a ∈ actions ∧ a ≠ a? ∧
│ currentActionState a = finished ∧
│ (a ↦ andJoin) ∈ actionToAndJoin) ∧
│ (∀ p : PBLPlan | p ∈ plans ∧
│ currentPlanState p = finished ∧
│ (p ↦ andJoin) ∈ planToAndJoin)) ∨
│ (∄ orJoin : OrJoin |
│ (a?↦ orJoin) ∈ actionToOrJoin ∧
│ (orJoin ↦ endPoint) ∈ orJoinToEndPoint))
│
│ actions’ = actions
│ currentActionState’ = currentActionState ⊕ { a? ↦ finished } ⊕
│ { ∀ a : Action | a ∈ actions ∧ currentActionState a = defined ∧
│ ((a?↦ a) ∈ actionSequence ∨
│ (∃ andJoin : AndJoin | (a? ↦ andJoin) ∈ actionToAndJoin ∧
│ (andJoin ↦ a) ∈ andJoinToAction ∧
│ (∀ action : Action | a ∈ dom actionToAndJoin ⊲ {andJoin}•
│ currentActionState action = finished)) ∨
│ (∃ orJoin : OrJoin | (a? ↦ orJoin) ∈ actionToOrJoin ∧
│ (orJoin ↦ a) ∈ orJoinToAction) ∨
│ (∃ andSplit : AndSplit | (a? ↦ andSplit) ∈ actionToAndSplit ∧
│ (andSplit ↦ a) ∈ andSplitToAction) ∨
│ (∃ orSplit : OrSplit | (a? ↦ orSplit) ∈ actionToOrSplit ∧
│ (orSplit ↦ a) ∈ orSplitToAction) ∨
│ (∀ subPlan : PBLPlan |
│ (a? ↦ subPlan) ∈ actionToPlan ∧
│ ((planStartPoint subPlan) ↦ a) ∈ startPointToAction ∨
│ (∃ as : AndSplit | (oj ↦ subPlan) ∈ andSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ as) ∈ startPointToAndSplit ∧
│ (as ↦ a) ∈ andSplitToAction) ∨

 200

│ (∃ os : OrSplit | (os ↦ subPlan) ∈ orSplitInPlan ∧
│ ((planStartPoint subPlan) ↦ os) ∈ startPointToOrSplit ∧
│ (os ↦ a) ∈ orSplitToAction) ∨
│ (∃ oj : OrJoin | (oj ↦ subPlan) ∈ orJoinInPlan Action
│ ((planStartPoint subPlan) ↦ oj) ∈ startPointToOrJoin ∧
│ (oj ↦ a) ∈ orJoinToAction))) •
│ a ↦ enabled}
│ actionInPlan’ = actionInPlan
│ actionParticipants’ = actionParticipants
│ actionLocation’ = actionLocation
└───

4.6.6 Related Work and Discussion

Workflow systems are a way of routing information objects among users, and to
specify automatic actions to be taken in that routing typically according to certain
process models [Winograd86] [Ellis94] [Abbott94] [Schael96]. Normally, in order to
model the workflow in organizations, there are two dominating paradigms: The
Customer-Supplier (CS) paradigm and the Input-Process-Output (IPO) paradigm.

The CS paradigm focuses on coordination among people. The typical workflow
systems in this paradigm are Coordinator [Bullen91] and ActionWorkflow [Medina-
Mora92]. This paradigm suits for explicitly modeling the chain of commitments that
exists between people in order to satisfy the customer. However, the specific activities
carried out in order to meet the contract are not modeled. In addition, the information
produced and needed in each activity is not described. Thus, it is not suitable to model
session-based collaboration processes.

In the IPO paradigm the workflow is regarded as a chain of actions that takes
information as input and produces information as output. This approach was first
applied to coordination problems in software engineering and office information
automation. The approach takes the view that process descriptions should be thought
of and implemented as software [Osterweil87]. The definition of the process (process
model) includes the description of the resources used in the process (humans, tools,
etc.), the policies followed in the process, the actions in which the process is
structured, and any other information useful to characterize the process. The purposes
of the process models are summarized in [Curtis92], ranging from understanding aids
to automate execution support. A process model can be described by using a process
modeling language as a network of asynchronous sub-processes or steps that are
loosely coupled and which need from time to time to communicate between the group
members engaged in the process. The overall pattern of these exchanges reflects the
cooperative structure of the modeled process. Developing a process model involves
decomposing cooperative work into activities and roles, and defining the
dependencies between roles. Activities may be carried out either manually or by using
software tools embedded in the support environment. A role refers to a logically
coherent collection of obligations and responsibilities related to the achievement of a

 201

defined goal. The dependencies between roles are referred to as interactions. Such
dependencies normally reflect the need of two roles to exchange information.

Many products of workflow management systems are already on the market with a
different set of features and different degrees of support [Georgakopoulos95]. The
Workflow Management Coalition (WfMC) was founded to define standards for
terminology and interfaces of workflow management systems [WfMC]. The approach
described in this chapter follows the framework proposed by the WfMC to support
session-based collaborative processes. However, session-based collaborative
processes have some distinguished characteristics that business processes have not.
Therefore, existing workflow management products can not be exploited directly.
This subsection compares the approach described in this section with existing
workflow management products.

Firstly, in session-based collaborative processes, an action is carried out in a
synchronous or asynchronous session that provides a shared workspace. The
participants of the action collaboratively work to achieve the common goal by
exploiting the tools and documents available in the shared workspace. Participants
with the same role and even with different roles (e.g., teacher and learner) can
perform the same action. In other workflow systems, an activity (or a work step) is
defined as a process element that is performed by an individual performer manually or
by means of a specific application tools. The shared workspace of an activity is not
explicitly modeled. Instead of modeling a shared workspace, for each activity exactly
one role is defined whose members can invoke a specific application tool to perform
the tasks. Even if multiple performers with the same role are engaged in the same
step, they deal with different work items individually.

Secondly, in session-based collaborative processes, the artifacts are defined for
sharing. Artifacts produced jointly by participants in a session are maintained
permanently within the shared workspace, or are transferred to other virtual places by
using message-boxes. Furthermore, some artifacts can be viewed and edited
synchronously by the people working on different actions. However, artifacts or
documents in other workflow systems are designed for exchange. In the document-
centric form of workflow, individual documents flow through a predefined network
step by step. In each step the documents may be modified or transformed by one
individual with a specific role working at this step. It is impossible that individuals
working in different steps access or update the same document at the same point in
time.

Thirdly, session-based collaborative processes are ill structured. The actions are
enacted in various ways. Sometimes, an action is enacted when all preceding actions
are terminated. Sometimes, it starts when necessary artifacts produced by other
actions are delivered. Sometimes, it is enacted by the scheduled start time, and
sometimes it starts when all participants join the action. In other workflow systems,
activities are enacted by either temporal sequence or document routine.

Fourthly, in session-based collaborative processes, members of the group often work
as a whole. The work procedure is defined collaboratively by the group and executed
by the same group within the work processes. They frequently meet to exchange
informal information, to carry out their substantive tasks, to develop or revise their

 202

work plan, to assign tasks to individuals or sub-groups, and to perform tasks
individually or in sub-groups according to the defined work plan. In other workflow
systems, the process models are normally developed by business process experts
before the process models are initiated. An instance of a process model is executed by
other people who may don’t care and have no knowledge about the whole process
model. Some workflow systems allow dynamic alterations to process definition from
the run-time operational environment. Examples are EuroCoOp Task Manager
[Hennessy92, Busbach93], Regatta [Swenson93], and TeamWARE Flow
[TeamWARE], which allow dynamic modification of work plans by end-users on the
fly. The term of collaborative planning has been used in Regatta [Swenson93]. It
refers to means by which a computerized representation of a work procedure is
defined and modified cooperatively by a group of people. The planning tool of
Regatta supports some form of plan fragmentation where different capabilities can be
assigned to different people for different fragments. Each plan fragment could be
modified by the owner of the fragment or by delegates. However they can not modify
a plan fragment jointly. Furthermore, at any given time workers engaged in a work
process are often doing different things. In most cases, a worker always performs the
same type of task (for dealing with different work items) one by one.

Fifthly, PBL-specific support (e.g., creating preliminary PBL-plan and interactive
modifying and refining PBL-plan) is a distinct feature of the approach described in
this thesis.

4.6.7 Summary

Based on the theory of self-directed learning and an analysis of the characteristics of
PBL processes, an approach to support PBL processes at the action level was
presented in this chapter. Through a comparison with other workflow management
systems, the major characteristics of this approach can be summarized as following.

1) The idea of session-based collaborative processes is developed to capture

processes that consist of a set of coordinated actions. Each action is executed on
a shared workspace by a group of people employing a synchronous or
asynchronous collaboration mode.

2) A visual process modeling language is developed for describing problem based
learning processes. This visual process modeling language consists of the
components of processes (e.g., nested processes, actions, and artifacts), and
allows representing process properties, the relations between the components,
and constrains.

3) Based on the visual process modeling language, a collaborative tool can be
developed to support definition of problem based learning processes as a
hypertext document (see chapter 5). In order to ease construction, some
mechanisms such as creating a preliminary PBL-plan and interactive modifying
and refining a PBL-plan are provided.

4) A cooperative environment is provided to execute these cooperative processes by
a team. Learners can join an action by selecting an action item from calendars or
from the hypertext document that represents the defined PBL-plan. Learners can
also manipulate and monitor the state of actions by using calendars or the
hypertext document. An action can be enacted by using a various ways. Multiple

 203

participants can collaboratively perform an action by using shared tools and
documents available in the shared workspace of the action. The artifacts can be
transferred from one place to others by using message-boxes according to the
definition of the PBL-plan.

 205

5 Implementation

In chapter 4, an approach to design a collaborative PBL environment has been
presented. This chapter describes how this approach is implemented. Section 5.1
describes the system architecture of the virtual PBL environment described in this
thesis. Section 5.2 presents an abstract implementation model of the virtual PBL
environment, which delineates architectural components and communication between
these components, including software modules, users’ data, and control information.
Then how the abstract implementation model is mapped on the system architecture is
described. Section 5.3 describes how to implement the system architecture. Section
5.4 presents how cooperative hypermedia technology is used to implement a
prototype system.

5.1 System Architecture

A collaborative virtual PBL enrionment is a groupware application system that
enables geographically separated and co-located people to conduct synchronous and
asynchronous PBL activities. Such a system manages a collection of shared
information objects and communication channels through which users can interact
with each other. It support the real-time presentation and manipulation of shared
information so that users can see other users' operations as reflected in changes to the
shared information. We choose a client/server communication architecture, in which
each application instance has a communication channel with a central server. Any
update event to the shared information is transferred among application instances
through the server. Comparison with the distributed communication architecture that
provides one communication channel for every pair of application instances, the
client/server communication architecture is easy to implement and manage. In
addition, traffic on the network is lower. However, a disadvantage of client/server
communication architecture is that the server is a bottleneck when the number of
clients increases. It is not a serious problem for a collaborative virtual PBL
environment, because most PBL programs use small group approach. As Woods
noted: in the McMaster Medical School model of PBL, “the tutor is a facilitating
presence used as needed by a group of 5 to 9 to ‘solve the case’” [Woods96].

Figure 5.1 illustrates the system architecture. It consists of multiple clients and a
server. A client consists of user interface and application functionality, local
shared/replicated data, and communication management. The server consists of
communication management, concurrency control, and shared data repository. Each
client provides a user interface for users to interact with the application. A user’s
operation in the user interface results in an event. An event will be handled by the
system calling a certain function that may update some shared data objects. Then an
update message will be created and sent by the communication management module
of the client and will be received by the communication management module of the
server. The update message will be processed by the concurrency control module. If
the update is allowed, the server will update the shared data objects in its repository.
Meanwhile, the server broadcast the update message to all clients, which, in turn, will
update their local shared/replicated data objects to keep consistency.

 206

Figure 5.1: System Architecture

5.2 A Mapping from an Abstract Implementation Model to

The System Architecture

This section describes the high-level implementation architecture of the virtual
learning environment. And then it presents how the components of the abstract
implementation model are mapped on the system architecture.

5.2.1 Abstract Implementation Model

The main functional components of the virtual learning environment are illustrated in
figure 5.2. The abstract implementation model has three types of components. The
first type of components is system definition and control data that are used by one or
more software modules (shown in light gray). The second type of components are
users’ data that represents learning materials and learning recordings (shown
unfilled). The third type of components are software modules that provide support for
various functions within the virtual learning environment (shown in dark gray). The
arrows in Figure 5.2 represent data flows. The roles of the major functional
components within the virtual learning environment are described below.

 207

Figure 5.2: Abstract Implementation Model

5.2.1.1 System Definition and Control Data

In the virtual PBL environment, there are six modules of system definition and control
data.

5.2.1.1.1 PBL-net Schema Base

The PBL-net schema base is a repository of the defined PBL-net schema (see
subsection 4.4.4), which specifies a PBL-specific knowledge representation language.

 208

In addition, further refined PBL-nets can also be stored in this base. Other knowledge
representation languages for learning can be stored as schemas in this base as well. A
schema contains a set of node types and link types.

5.2.1.1.2 PBL-protocol Schema Base

The PBL-protocol schema base contains all definitions of PBL-protocol schemas (see
subsection 4.5.3), which can be instantiated in PBL processes. The important
information contained in a PBL-protocol includes protocol states, state transitions,
and bound behavior rules.

5.2.1.1.3 Community definition

The community definition component contains the information about all agents
(actors and groups) and their relations, including information about the properties of
agents as well (see subsection (4.3.3.1.1).

5.2.1.1.4 PBL-plan Base

The PBL-plan base contains all necessary information about PBL-plans in a virtual
institute to enable them to be executed by the PBL-plan enactment software. This
includes information about sub-plan, constituent actions, artifacts, connection nodes,
and their relations. Important information about actions includes goal, participants,
scheduled start time, duration, location, active-condition, and terminated-condition.
The dynamic information such as the states of actions and current participants is
included as well (see subsection 4.6.2).

5.2.1.1.5 PBL-protocol Instance

The PBL-protocol instance component contains information about all PBL-protocol
instances (see subsection 4.5.2.2). Each PBL-protocol instance has information such
as PBL-protocol, current state, and memberships of each protocol role (i.e., an agent
having a specific role).

5.2.1.1.6 Virtual Institute definition

The virtual institute definition component contains information about all virtual
institutes associated with all virtual places and their relations. Each place has
information such as current actors, installed tools, available documents, and their
relations (see subsection 4.3.3.1).

5.2.1.2 Users’ Data

There is only one users’ data module, which is the hyperdocument base (see below).

 209

5.2.1.2.1 HyperDocument Base (Including PBL-net Base)

The hyperdocument base contains information about all documents created by users
and the relationships between these documents. Although the documents in a virtual
institute are distributed in different places, they are connected to each other to form
hyperdocuments. Each document has information such as the title, owner, topic, state,
and hyperlinks to other documents. Furthermore, some information contained in a
document represents learning materials and learning recordings in the form of texts,
tables, images, and graphics (see subsection 4.3.3.1.3). In addition, a PBL-net is
created by a PBL group during a learning process. As a special kind of document, a
PBL-net contains typed nodes that serve as hyperlinks to normal documents. A PBL-
net and the documents directedly and indirectedly connected to the PBL-net form a
hyperdocument, called a PBL hyperdocument (see subsection 4.4.4). All PBL
hyperdocuments are also maintained in the hyperdocument base.

5.2.1.3 Software Modules

There are eight software modules.

5.2.1.3.1 PBL-net Schema Editor

The PBL-net schema editor is used to define and modify the PBL-net schemas (see
subsection 4.4.3). Users can create and delete node types and link types of the PBL-
net schema by using this tool. It is important to note that this tool can also be used to
define other graphical knowledge representation schemas. Users can load and delete
defined schemas as well by means of this tool.

5.2.1.3.2 PBL-protocol Schema Editor

The PBL-protocol schema editor is used to define PBL-protocol schemas and save
them in the PBL-protocol schema base (see subsection4.5.2.1). Users can create and
delete protocol states and transitions between protocol states. The behavior rules can
be defined and bound to the states and state transitions by using this tool. When
defining PBL-protocols, the PBL-net schemas will be used. Users can also load,
modify, and delete the protocol schema stored in the PBL-protocol schema base by
means of this tool.

5.2.1.3.3 Group Definition Tool

By using the group definition tool, users can define the organizational structure of the
agents in a virtual institute (see subsection 4.3.3.2.3). Actors, groups, their individual
properties, and the memberships of groups can be defined by using this tool. The
definition of the agents and their relations can be stored in the community definition
module and retrieved later on.

 210

5.2.1.3.4 PBL-plan Definition, Monitoring, and Execution Tool

The PBL-plan definition, monitoring, and execution tool is primarily used to create
the work process description in a computer tractable form as a PBL-plan (see
subsection 4.6.2). The PBL-plan defined by using this tool can be stored in the PBL-
plan base and be loaded later on. When defining a PBL-plan, information about the
community (see the community definition module) and virtual institute (see the
virtual institute definition) is used. In particular, information from a PBL-net can be
used to create a preliminary PBL-plan. This tool also provides the functionality to
guide users to modify and refine PBL-plans. Because each learning group has a
unique PBL-plan that can not be reused by other learning groups, this tool doesn’t
distinguish the process model and process instance. That is, each PBL-plan is
regarded as both a process model and its unique instance. Because this tool provides a
graphic representation of executed learning plans, users can use it to monitor the state
of executed PBL-plan. Some functions for users to execute a PBL-plan such as enact
actions and terminate actions are also provided in this tool.

5.2.1.3.5 PBL-protocol Instance Management & Control

The PBL-protocol instance management & control software provides functions to
initiate a PBL-protocol instance, to assign agents to protocol roles, to guide and
control execution of the protocol instance, and to shift PBL-protocols (see subsection
4.5.2.2 and 4.5.2.3). The information stored in the PBL-net schema base, the PBL-
protocol schema base, the community definition, and the PBL-protocol instance is
used to determine the state change of protocol instances.

5.2.1.3.6 PBL-plan Enactment

The PBL-plan enactment software interprets and controls the PBL-plans. When an
event occurs, for example, a user terminates an action, some changes will be triggered
such as enacting a certain action or delivering artifact according to the definition of
the executed learning plan (see subsection 4.6.5). Information about PBL-plan
definition, community definition, virtual institute definition, and the state of related
documents is used to change the state of the PBL-plans and the state of their
constituent actions and artifacts.

5.2.1.3.7 Hyperdocument Editor and Browser

The hyperdocument editor and browser provide functions for users to edit information
items and hyperlinks in the currently edited document (see subsection 4.3.3.2.5 and
4.4.4.2.1). User can also navigate around the hyperdocument by following the
hyperlinks or by selecting an item in the navigation history queue. When a PBL-
protocol is invoked, the currently edited document will be treated as a PBL-net. And
then, the information about the PBL-protocol instance will be used to restrict users’
behaviors to fit within the corresponding protocol roles (see subsection 4.5.3).

 211

5.2.1.3.8 Virtual Institute Editor and Browser

The virtual institute editor and browser software enables users to navigate from one
place to another in a virtual institute and to construct and customize learning contexts
(see subsection 4.3.3.2).

In order to focus on the important components of the virtual learning environment,
some tools (e.g., chatboard, audio tool, bookshelf, calendar, message box, and so on)
are not drawn in Figure 5.2.

5.2.2 A Mapping from the Components to the System Architecture

Now we discuss how the components of the abstract implementation model are
mapped on the system architecture.

Eight software modules (the PBL-net schema editor, the PBL-protocol schema editor,
the group definition tool, the PBL-plan definition, monitoring, and execution tool, the
PBL-protocol instance management and control software, the hyperdocument editor
and browser, and the virtual institute editor and browser) are implemented in the ‘user
interface and functions’ component of each client. The system definition and control
data (the PBL-net schema base, the PBL-protocol schema base, the community
definition, the PBL-plan base, the PBL-protocol instance, the virtual institute
definition) and the users’ data (the hyperdocument base including PBL-net base) are
partially replicated in each client as ‘local shared/replicated data’, because only those
shared data objects that interest a client are maintained by the client. However, the
server maintains a complete shared data objects in the ‘shared data repository’
component.

5.3 Implementation of the System Architecture

This section describes how the system architecture is implemented. The prototype
systems are developed based on COAST (stands for cooperative application systems
technology). COAST is an object-oriented toolkit for the development of synchronous
groupware. It supports the development of groupware by providing both generic
components (e.g., session manager, replication manager, and transaction manager)
and abstract classes that can be refined to implement a specific application
[Schuckmann96]. COAST employs a distributed and replicated architecture. As
shown in Figure 5.3, a complete architecture of COAST application consists of three
kinds of components: client, mediator, and server [COAST manual]. The COAST
clients provide a user interface to enable the end-user to actively manipulate
application data. The COAST mediators deal with the synchronous sharing of
application data. They maintain the primary copy of the data that is shared among
their clients. The COAST servers retrieve data from a persistent storage and send it
over the network to a mediator upon request. When this data is to be shared among
several clients, the COAST server identifies/creates a COAST mediator that will then
deal with sharing aspects. The COAST server and the COAST mediator are generic

 212

components that are independent from specific application data. In the figure 5.3, big
boxes denote potentially different sites/processes in a networked computer
environment. Arrows denote communication channels between processes. A small
box represents a bundle of application data, where boxes with the same shading are
different replicas of the same bundle of application data.

Figure 5.3: COAST Application Architecture (taken from [COAST manual])

Figure 5.4 illustrates the version supported by the first release of COAST [COAST
manual], which is suitable for a medium-sized group of users. Our prototype systems
are implemented by using this version, in which a mediator keeps shared application
data consistent between clients. In fact, different COAST application architectures are
transparent for the COAST application developers.

Figure 5.4: Application Architecture of

Current Version of COAST (taken from [COAST manual])

So far, two prototype systems have been developed. Firstly, the concept of
‘collaboration protocol’ and ‘general plan’ and their execution within session-based

 213

collaborative processes were tested successfully in SCOPE (for “session-based
collaborative process-centered environment”) [Miao98a] [Miao99a]. Based on these
results, a collaborative virtual PBL environment, called CROCODILE (for “creative
open cooperative distributed learning environment”) [Pfister98] [Miao00e] has been
implemented, which realizes the specification of the concepts of this thesis. Like the
current version of COAST, these two systems are written in VisualWorks Smalltalk,
Version 3.0, and can run on Window’95, Window’98, Window NT and Solaris.

Figure 5.5 illustrates the CROCODILE architecture, which is also a fully distributed
and replicated architecture. Each user interacts with an individual instance of
CROCODILE. As shown in Figure 5.5, a CROCODILE client has two layers. The top
layer is the CROCODILE UI layer, through which users communicate (or interact)
with CROCODILE. The next layer contains the data types and operations specified in
the last chapter. The next layers belong to a COAST client. The first layer is the
shared application framework layer, which provides mechanisms to define the shared
data model. The second layer supports transaction management, shared data
management, and communication with a COAST mediator. The CROCODILE server
ins implemented by using the COAST mediator. The COAST mediator provides
generic transaction, replication and storage management.

Figure 5.5: CROCODILE Architecture

 214

By means of the COAST facilities, users of CROCODILE can cooperate with each
other no matter whether they are geographically co-located or distributed. When a
user performs an operation on shared objects (e.g., moving to another place through a
door, modifying the statement of a typed node on a PBL-net, and so on) in the virtual
institute, the system treats this operation as a transaction. The transaction is not only
processed locally, but also propagated to other clients via the mediators to keep data
consistent. Finally, all clients will update their user interfaces according to the up-to-
date information (for details, see [Schuckmann96]).

5.4 A Cooperative Hypermedia Approach

This subsection describes our technological approach to implement the virtual
problem based learning environment. It uses cooperative hypermedia technology to
implement the virtual institute metaphor, PBL-net, PBL-protocol, and the PBL-plan
as hyperdocuments in a unified style.

5.4.1 Implementation of the Virtual Institute Metaphor

Humans interact with real learning environments and with computer-based learning
environments through their perceptions. A large part of the success of a system comes
from the effectiveness of the user's experience interacting with the system. In order to
enable users of the system to intuitively use their skills of social interactions in the
virtual learning environment, firstly the elements of the interface are designed to
correspond to the real world counterparts as perceptual metaphors that, in turn, are
presented as graphical icons. Secondly, system functions are organized based on these
metaphors. Another important design issue is to choose 2-D or 3-D user interface. 3-D
user interfaces may be better for understanding the learning context. However, 2-D
user interfaces need lower cost of computation, don’t need complex input devices, and
support easy navigation and manipulation of the learning environment. In particular,
in this thesis, the emphasis is on the concepts of learning context, PBL-net, PBL-
protocol, and PBL-plan. For the sake of simplicity, a 2-D user interfaces is adopted in
this implementation. A place is visualized as a 2-D area wherein all objects in the
place are visualized as icons. A visualization of a place is called a place page. Each
concrete door will be visualized in the two places to be connected. Each virtual door
is visualized only in the source place. The visualization of a door depends on (1) what
types of places the door connects and (2) the status of the door. For example, if a
concrete door connects a campus and an instructional building, this concrete door is
visualized as an instructional building icon in the campus page, and as an exit door
icon in the instructional building page. When the status (i.e. open or closed) of the
door changes, the icon of the door will change correspondingly.

Actors, documents, and tools are represented in this hyperdocument as leaf nodes. A
leaf node contains data whose internal structure is application dependent and is not
part of the model. Navigating to such a node invokes an application according to the
type of the nodes.

An actor is visualized in a place page as a picture of the actor (its human user).
Navigating to an actor node leads to opening a menu. If the ‘info’ item is selected, a

 215

window will open, in which information about the actor (such as name, learning
interests, expertise, email address, telephone number, etc) is displayed. A user can
edit his/her personal information in the window, but can not edit others’ information
by using this window. If a user do not let others see her/him, s/he can hide him-/her-
self by select the ‘hide’ item from the menu.

A document contained in a place is visualized in a place page as a document icon with
the title of the document. Navigating to a document node leads to opening a document
editor (see explanations below).

A tool is visualized as a tool icon. There are various types of tools such as document
editor, bookshelf, message box, chatboard, phone, speaker, conversation tool,
suitcase, calendar, and specific tool. Each type of tool is visualized as a distinct icon.
The icon of a tool may change when the tool is used. Navigating to a tool node leads
to invoking a corresponding application tool. The paragraphs below briefly describe
some application tools used in the prototype system:

1) A document editor is an application tool that can be used to browse and edit the

PBL hyperdocument Three types of tool icons can invoke document editors:
whiteboard, computer, and private editor. Depending on the type of tool node the
document editor might offer different capabilities. A whiteboard can be used by a
group of users, who are located in the same place, while multiple users who may
be located in different places can use computers. Only one user at a point in time
can use a private editor. When one or more users use a tool, their pictures will be
displayed on the tool icon.

2) A bookshelf is a kind of application tool that is used to store documents.
Documents contained in a bookshelf are not visible in the place page. The act of
navigation to a bookshelf will open an application window, in which all titles of
the documents in the bookshelf are listed in a certain order (such as alphabetical,
creation time, topic, and so on). Users may open a document from this list. Users
can also put a document back to a bookshelf by dragging the document icon and
dropping it on the bookshelf icon.

3) A message box is a kind of application tool that is used to transfer documents
between places. Like the bookshelf, the act of navigation to a message box will
open an application window, which give a list of titles of the documents in the
message box. Users can take a document from this list and open it in the place. If
a user want to send a document to someone or some place, s/he can drag the
document icon and drop it on the message box icon. As a consequence, a window
will popup, which displays a list of names of users and public places. After the
user selects one or more items in the list, the system will distribute the document
to the message boxes of the selected persons’ homes and message boxes of the
selected public places.

4) A calendar is a kind of application tool that is used to manage actions. Clicking on
a calendar icon will open the corresponding application. Users can use it to
schedule actions and monitor the states of actions.

5) A chatboard and a conversation tool are text-based communication tools. A
chatboard is used by multiple users located in the same place, while a
conversation tool supports a private conversation between two users. When two
users are talking by using this tool, a link with a label (which shows the topic of

 216

the conversation), which connects the pictures of two users, can be viewed in that
place.

6) An audio tool supports oral communication. The act of navigation to two types of
tool nodes can invoke this application tool: speaker and phone tool nodes. A
speaker tool is used by multiple users located in the same place, while a phone
tool is used by two users who are located in different places. When clicking a
phone icon, a user can see that a window pops up, which shows the user’s
personal phone number list. If the user selects a number, the phone with this
number will ring in the place where the phone is located. If a user in this place
clicks on the phone icon, an audio communication channel will be established for
them.

7) The group definition tool is used to define the structure of the community of the
institute. A picture of a user with his/her name represents the user, and a group
icon with a name represents a group. Clicking an icon results in opening a
window, which can be used to edit information of an actor or a group depending
on the type of the icon. An arrow between two icons represents a relationship.

So far, the primary elements of the institute hyperdocument model and their relations
have been described. By different combinations of these elements, various learning
contexts can be constructed. The paragraph below now describes the primary
operations on the institute hyperdocument.

Places, tools and documents can be added/removed/moved in an institute
hyperdocument and people can navigate within an institute hyperdocument. However,
some operations depend on the place type. For example, it is allowed to create
instructional buildings in a campus and to create public rooms in instructional
buildings. If a new place is created in the current place, the new place becomes a
place contained in the current place (i.e. a nesting relationship is created). Meanwhile,
a concrete door between these two places will be created together. Users can also
connect two existing places by creating a virtual door. Performing “open” and “close”
operations can change the status of a door. Only the owner of the place has the right to
open a door.

This hyperdocument model has a distinct feature. According to the categories of
Conklin [7], a concrete door in this model can be regarded as an organizational link
and a virtual door can be regarded as a referential link. However, the link in our
model has an additional attribute - status. If an actor don’t want to be disturbed by
others when s/he is doing something in a place, s/he can simply close the door. When
a door is closed, it is impossible to navigate through the door. A link with a status
attribute provides a flexible navigation control mechanism.

Figure 5.6 shows an example of a virtual institute, which is represented as a
hypermedia document. This hyperdocument consists of a set of nodes connected by a
set of hyperlinks. The node types and link types are explained in the figure. In this
virtual institute, three users are registered currently and two of them are working in a
public room (Alice and David) and are editing a document by using a computer tool.
The third user (John) is working at home and is editing the same document through a
computer tool that is connected to the computer tool in the public room. That is, users
can collaborate both within the same place and across places.

 217

Figure 5.6: A Hyperdocument Representing a Virtual Institute

5.4.2 Implementation of the PBL-net

As discussed in the last chapter, a document editor tool can be used to construct
shared knowledge. When users of a document editor use the PBL-net schema to
facilitate the construction of shared knowledge, this tool can be regarded as a
collaborative knowledge representation tool for PBL. This tool is implemented by
using cooperative hypermedia technology. By means of this tool, participants of a
PBL activity are able to collaboratively construct a particular knowledge
representation as a hyperdocument, called as a PBL hyperdocument. The start node of
a PBL hyperdocument is a special document node whose content contains a set of
typed nodes and typed links between the typed nodes. This special document node is
called a PBL-net node and its content is called a PBL-net. Each typed node and typed
link contained in a PBL-net has a “type” attribute whose value will be a node type or
a link type defined in the PBL-net schema. Each typed node in a PBL-net has its
content page and “statements” attribute whose value is the title of the content page of
the typed node. The content page of a typed node is a representation of the typed node
that reflects the values of the typed node. The content page of a typed node contains
detailed information about the typed node in the form of text, table, image, scribble,
and even untyped node. An untyped node has the same set of attributes as a typed
node except for the “type” attribute. The content page of an untyped node, in turn,
contains detailed information and even other untyped nodes. Therefore, a PBL
hyperdocument has two levels: PBL-net level and information level. There are some
constraints in the PBL hyperdocument. For example, there is only one PBL-net node

 218

in a PBL hyperdocument. The structure of a PBL-net has to comply with the
definition of the PBL-net schema. The PBL-net node can not be contained by any
untyped node. Untyped nodes can not appear in the PBL-net.

Figure 5.7: An Hyperdocument Representing a PBL-net

Figure 5.7 gives an example of a PBL hyperdocument. N0 is a PBL-net node and its
content is a PBL-net. The PBL-net contains two typed nodes N1 (“problem” type), N2
(“solution” type) and a typed link A (“solve” type). N1 contains an untyped node N3.
N2 contains untyped nodes N4, N5, and N3 as well.

A document editor can be used to browse and edit a PBL hyperdocument jointly. First
of all, to start a PBL activity, users can create a PBL-net node by using the document
editor. Then they can construct their own PBL-net by creating and manipulating typed
nodes or typed links on the PBL-net. To create a typed node in a PBL-net, a user
should assign values to the attributes of the node: node type and node statement. The
node statement serves to briefly describe the content of the node and to publish a
point of view to others. While a typed node is created, its content page will be created
automatically. Typed links can be created to connect two existing typed nodes while
complying with the definition of the PBL-net schema. Node type specific operations
can be performed on the corresponding typed nodes. For example, on the nodes with
“issue” type, learners can assign values such as “I know” and “I need to know” to the
corresponding attributes.

Users can navigate to the content page of a typed node. When any user of the same
shared document editor navigates to the content page of the typed node, all users of

 219

the document editor will go together. That is, all users of the same document editor
always work on the same document page. By using the same document editor, users
can edit information units in the form of text, table, image, scribble, and untyped
node. Users can create a content page for an untyped node or connect it to an existing
document page. By manipulating a shared PBL hyperdocument, the users can
collaboratively construct a shared knowledge representation and interact with each
other through the shared knowledge representation.

5.4.3 Implementation of the PBL-protocol

As mentioned in the last chapter, a PBL-protocol is defined as an extended,
hierarchical state-transition diagram, which is represented as a hypertext document.
The PBL-protocol schema editor is used to define PBL-protocols. A PBL-protocol
consists of a set of nodes connected by a set of links. A node represents a protocol
state. A node in a diagram may contain a sub diagram describing the state represented
by that node in more detail, called a sub-PBL-protocol. That is, a node serves as a
hyperlink connecting to a sub-PBL-protocol. A link in the diagram represents a
protocol transition. Nodes are identified by a unique name within a PBL-protocol. A
user of this tool can define a new protocol state by creating a node. Then, the user can
click the created node and a dialog window will pop up, which allows the users to
select one or more items from a list of behavior rules. In a similar way, a link can be
defined. If the user make an ‘open’ operation on a node, the user will navigate to the
sub-PBL-protocol that is nested in the node. S/he can edit this sub-PBL-protocol by
manipulating the diagram of the sub-PBL-protocol.

Figure 5.8: A Hyperdocument Representing two PBL-protocols

 220

For executing a PBL-protocol instance, each user has to be assigned to a certain
protocol role. When a user performs an operation on an object, the system will check
whether this member is permitted to execute the operation according to the behavior
rules defined for the currently executed protocol state. If this check fails, nothing
happens except for displaying a warning message. If the check is successful, an
update event will be propagated to all other clients to keep data consistence. If a user
performs an operation following a behavior rule bound to a protocol transition link
(i.e., changing a protocol state or proposing a solution), a state transition will be
caused according to the definition of the used PBL-protocol.

Figure 5.8 illustrates two PBL-protocols. In this figure, each rectangle represents a
protocol state and each arrow represents a protocol transition. Those protocol states
which are linked to circles are start states (e.g., state 1 and state 4) of PBL-protocols.
PBL-protocol 2 is a sub-PBL-protocol of PBL-protocol 1 in the state 2. That is, when
an instance of PBL-protocol 1 is executed in state 2, an instance of PBL-protocol 2
will be initiated.

5.4.4 Implementation of the PBL-plan

The PBL-plan definition, monitoring, and execution tool is implemented by using
collaborative hypertext technologies. This tool provides a visual process model
language for the definition of PBL-plans. A defined PBL-plan contains information
about all scheduled actions that constitute the plan, the values of attributes of each
action, and the relationships among these actions. Like a PBL-protocol, a PBL-plan is
described as a hypermedia document consisting of layered nodes, which are
connected via links. A PBL-plan can potentially be decomposed into sub-PBL-plans.
A sub-PBL-plan is represented visually by a node with the label “Process Node” and
the name of the PBL-plan. The components and structure of a sub-PBL-plan are
described on the content page of the node. An action is represented visually by a
node, too, but it carries the label “Session Node” and the action name. A relationship
among actions and sub-plans is represented as a link in the hypertext document. The
tool provides six types of connection nodes: start point, end point, or-split, and-split,
or-join, and and-join. They are used to specify temporal relationships between actions
and sub-PBL-plans. Artifacts are also represented visually by nodes with the label
“Artifact”, “Artifact Input”, and “Artifact Output”. “Artifact Input” and “Artifact
Output” are used to transfer artifact across sub-PBL-plans, while “Artifact” nodes are
used to transfer artifacts within a sub-PBL-plan. A temporal relationship is
represented as a link as well.

Different colors are used to represent different states of actions and plans. When a
PBL-plan is executed, users can monitor the changes of the states through viewing the
changes of the colors of the nodes from the hyperdocument representing the PBL-
plan. Operations for execution of a PBL-plan can be implemented by manipulating
the hyperdocument representing the PBL-plan. For example, terminating an action
can be done by clicking the session node representing the action and selecting the
“terminate” item from the popup menu.

Figure 5.9 illustrates two PBL-plans. In this figure, each rectangle represents a session
node or a process node. Each circle represents a connection node. Each arrow

 221

represents a temporal relation or an artifact relation. PBL-plan 2 is a sub-PBL-plan of
PBL-plan 1, which is nested in the process node 2.

Figure 5.9: A Hyperdocument Representing two PBL-plans

 223

6 A Usage Scenario and Experiences

This chapter describes a usage scenario of the prototype system and reports
preliminary experiences with this approach.

6.1 A Usage Scenario

This section describes what the virtual learning environment looks like from the
user’s perspective and how the users interact with the virtual PBL environment in a
usage scenario. In this scenario, a user navigates in the virtual institute and then
participates in a collaborative PBL activity.

6.1.1 Virtual Institute Editor and Browser

When a user starts running the system, the start window of the system will open. The
user can select a virtual institute and input the user’s password. If the password of the
user is correct, the virtual institute editor and browser window will open.

Figure 6.1: The Campus of the Virtual Institute

Figure 6.1 illustrates the virtual institute campus in the virtual institute editor and
browser. The browser shows a window title bar showing the institute’s name. The

 224

upper part of the window contains the system logo, a building button, a “TOP” button
(for going to the campus as a shortcut), and a text field (for showing the name of the
current place). Below, the window displaying the content of the place where the user
is currently located is presented.

When the user enters a virtual institute, he is located in the campus of the institute. In
the window, the user can see his picture and the pictures of other users who are
currently located in the campus of the virtual institute. As the user’s cursor moves in
the window, his picture will follow the movement of the user’s cursor (it functions
like a tele-pointer). He can observe the movement of other users’ pictures while their
cursors move. As shown in Figure 6.1, in the campus, there is a set of different iconic
presentations of buildings’ metaphors, including an administrational building, a
library, a dormitory, and several instructional building icons. The administrational
building, the library, and the dormitory are constructed by the system when the
institute is created. The user can create an instructional building by clicking the
building button, typing a name of the instructional building, and anchoring it in the
window. As mentioned in chapter 4 and chapter 5, the virtual institute is modeled and
implemented as a hypermedia document that consists of a set of virtual places and
connections between places. A building icon or a door icon in each place presents a
hyperlink to the connected place. The tool supports navigation within the virtual
institute by changing the currently displayed virtual place when the corresponding
door icon or building icon is clicked. Therefore, the user can enter a building by
clicking on the icon of the selected building.

Figure 6.2: The Corridor of the Dormitory

 225

When the user enters a building (e.g., the dormitory), the window content of the
virtual institute editor and browser window will change to show the inside view of the
building (see Figure 6.2). In addition, the place edit button bar will change. From left
to right, the buttons in the button bar are door, bookshelf, private hyperdocument
editor, whiteboard, computer, chatboard, phone, speaker, calendar, and message-box.
These buttons enable users to customize a learning context by editing a place. The
inside view of the building looks like a corridor with a set of door metaphors. As
illustrated in Figure 6.2, a set of door icons represent an exit to the campus and
entrances to all homes of users. In addition, tools may be available in the corridor
(e.g., the telephone). The pictures of all users who are currently located in this place
can be seen in the window as well. If the user wants to know information about a user
in this place, he can click the picture of the user. A window will open in which the
information about the user (e.g., email address, telephone number, expertise, learning
interest, and so on) is displayed. They can talk with each other by using a
conversation tool. As illustrated in Figure 6.2, when a pair of users is talking with
each other, the user can observe an arrow that connects the two pictures of those
users. He can join the conversation by clicking on the arrow. The user can enter his
home by clicking on the icon of the home door. The user can open/close the door of
his home, but can not open/close any home door of others. If the view of a room door
is represented by a closed-door icon, he can not enter the place. This provides a
flexible mechanism for access control. If a door is opened, the user can enter a place
or go to the campus by clicking the corresponding door icon.

Figure 6.3: A Public Room

 226

In this way, the user can navigate around the virtual institute. If an action is scheduled
to be performed in a public room (the CONCERT Lab in this example), the user can
move to this room on time. In this room, necessary tools and documents are available.
The user can use them while carrying out the action. As illustrated in Figure 6.3, in
this room there is a chatboard, a speaker, a calendar, a message-box, a bookshelf, a
phone, and a whiteboard. When the user selects a tool by clicking on the icon of the
tool, the corresponding tool window will open. For example, a chatboard is a text-
based communication tool used by the users in this room. The speaker is an audio tool
that enables the users in this room to speak and listen to each other. The calendar is
used to arrange and monitor actions that are performed in this room. The phone can be
used to talk with someone who is currently working in another room. The user can
look up documents stored in the bookshelf or in the message-box by clicking the
corresponding icon. The documents inside it will be listed in a pop-up window. The
user can open a document by selecting it. In Figure 6.3, two documents (titled as
“Woods’ book” and “Concept Map”) are put on the floor. As indicated by a picture of
a user on one document icon, that user is reading this document. The other document
is closed so that any user can open it. When a document is in use, other users can not
open it. The user of a document can put it back to the bookshelf by dragging it and
dropping it on the bookshelf icon. If the user drags the document icon and drops it to
the message-box, the system will ask the user where to send this document. If the user
wants to share this document with others, he can drag and drop it on a whiteboard
icon. A shared hyperdocument editor that represents the whiteboard will treat this
document as the currently edited document. When the user clicks on the icon of the
whiteboard, the window of the shared hyperdocument editor will pop up on the
screen. The pictures of users on the whiteboard indicate who is currently working on
the whiteboard. The hyperdocument editor is an important cooperative learning tool
that will be discussed in detail at the end of this section.

6.1.2 PBL-net Schema Editor

The user can go to the administration building to use the PBL-net schema editor. As
illustrated in Figure 6.4, the user can create and delete node types and link types of the
PBL-net schema by using this tool. The user can also load, create, rename, and delete
schema by means of this tool if necessary.

 227

Figure 6.4: PBL-net Schema Editor

6.1.3 PBL-protocol Schema Editor

The PBL-protocol schema editor is located in the administration building. The user
can use it to create and define a PBL-protocol schema by creating and deleting
protocol states and state transitions in a diagram (see Figure 6.5). First, a learning net
schema should be selected from the learning net schema base or a new one should be
created. Secondly, the protocol roles should be defined as a list of names. Thirdly, a
learning net schema should be selected from the learning-net schema base. A protocol
schema is defined as a diagram on the window content of this editor window. While
defining a state, the user clicks the “state” button and types the name of this protocol
state in the pop-up dialog window, and then positions it on the window content. A
transition is created by a gesture to drawing a line from the source state to the
destination state node. When the user clicks a state or transition in the diagram, a
window will pops up and the user can define a set associated behavior rules for the
state or the transition. The user can define a sub-protocol of the currently edited
protocol as well by selecting the name of a predefined sub-protocol and binding it to a

 228

state of the currently edited protocol. The user can also load, rename, and delete the
protocol schema stored in the PBL-protocol schema base if necessary.

Figure 6.5: Learning Protocol Schema Editor

6.1.4 Group Definition Tool

The group definition tool is also located in the administration building. As illustrated
in Figure 6.6, there are two agent icons (actor and group) in the button bar. The user
can click on an agent icon, type the name of the agent, and anchor it in the content
window. After clicking the picture of an actor in the content window, a window pops
up and the profile of the actor can be edited by input information such as email
address, telephone number, learning interests, expertise, and so on. In the same way,
the properties of a group can be specified. By using group definition tool, the user can
also define the organizational structure by creating arrows between agents.

 229

Figure 6.6: Group Definition Tool

6.1.5 Protocol Control Panel

When a group of learners construct a shared PBL-net by using a hyperdocument
editor, they can initiate a PBL-protocol to guide them to carry out a PBL activity.
After an instance of the selected PBL-protocol is created, a protocol control panel for
this protocol will open (see Figure 6.7). The user can select one or more agents to take
a protocol role from the entry list. From this panel the information about the currently
used PBL-protocol schema and the current state of the protocol instance can be
observed. The user can shift from currently used protocol to another protocol from the
protocol family to which both protocols belong in the lifecycle of the protocol
instance. At any point in time, only behaviors that are associated to the current state
are allowed when manipulating the PBL-net by using the hyperdocument editor. The
protocol control panel allows users to shift from current state of the protocol instance
to another state by clicking the “previous” or “next” buttons. The state of the protocol
instance will change according to the definition of the protocol schema, and the tool
will provide guidance about how to perform this task and what contributions are
expected to each protocol role.

 230

Figure 6.7: Protocol Control Panel

6.1.6 PBL-plan Definition, Monitoring, and Execution Tool

As illustrated in Figure 6.8, by using the process definition tool, the user can create
the work process description as a learning plan in a computer tractable form. This tool
provides a visual process model language for process definition. A learning plan is
described as a hypertext document (a hierarchical diagram) consisting of layered
nodes, which are connected via hyperlinks. A process can potentially be decomposed
into sub-processes that act as sub-plans. A learning plan or a sub-learning plan is
represented visually by a node with the label “Process Node” and the name of the
plan. The components and structure of a (sub-) learning plan are described on the
content page of the node. An action is represented visually by a node too, but it carries
the label “Session Node” and the name of the session. Session nodes are elements of
processes and each session has a number of attributes, which have to be specified. A
relationship among sessions and sub-processes is represented as a typed link in the
diagram. There are two kinds of relationships: temporal relationship and artifact
relationship. A temporal relationship represents the time dependence between
sessions. If session A precedes a session B, it means that when A is finished, the
active-condition of B is evaluated. This tool provides six types of checkpoints. They
are start point, end point, or-split, and-split, or-join, and and-join. A temporal
relationship is represented as a black arrow in the diagram. An artifact relationship is
used to represent a kind of dependence of artifacts between sessions, such as
transferring and sharing. An artifact transferring relationship denotes the situation
when an output artifact of one session will be transferred into another session as an
input artifact. An artifact sharing relationship means that an artifact can be viewed and
manipulated by people working in different sessions running concurrently. An artifact
relationship is represented in the process description as a blue arrow pointing to/from

 231

a named rectangle representing an artifact. This implementation meets the
specification of PBL-plan (see section 4.6)

Figure 6.8: PBL-plan Definition, Monitoring, and Execution tool

Process execution is concerned with the enactment of a process following the defined
work plan. When users start to execute the work plan, all sessions connected to the
start node of the plan will be active. As the process executed, the state of the sessions
described in the work plan will change. The different colors indicate the different
states of sub-processes or sessions. Even when a work plan has already been
executed, parts of the work plan could be modified. That is, the values of attributes of
the corresponding sessions could be modified and the sub-plan could be altered.

6.1.7 HyperDocument Editor and Browser

Three tools including the private hyperdocument editor, the whiteboard, and the
computer provide same functionality for users to edit hypermedia documents. The
difference between these three tools is: the private hyperdocument editor is not a
synchronously shared tool; the whiteboard can be used by multiple users who are
located in the same place; and the computer tool can be used by multiple users who
are located in the same place and in different places as well. Because their appearance
is designed for different use situations, users interact differently with these tools.

 232

Figure 6.9: HyperDocument Editor and Browser

As shown in Figure 6.9, the hyperdocument editor and browser consists of a system
logo, a user bar, an iconic edit button bar, a text field (showing the title of the
currently edited document page), and the editing area (showing the content of the
currently edited document node). The iconic edit button bar contains (from left to
right) “node”, “text”, “image”, “table”, “annotation”, “cut”, “copy”, “paste”, “external
text paste”, “merge”, “protocol”, “backward”, “forward”, “print”, “garbage”, and
“close” buttons. By using this editor, a PBL hyperdocument can be collaboratively
constructed. The window shown in Figure 6.9 corresponds to the opened whiteboard
shown in the Figure 6.3. As mentioned before, the hyperdocument editor can be used
to construct a PBL-net. When a PBL-protocol is initiated by clicking on the
“protocol” button, the currently edited document will be treated as a PBL-net. And
then, the information about the PBL-protocol instance will be used to restrict users’
behaviors to fit within the corresponding protocol roles. When the user clicks the
whiteboard icon (mentioned above), the hyperdocument editor window that represents
the whiteboard pops up. Including the user, five users whose pictures are listed in the
user bar (left side of the window) are currently working on the PBL-net. In the upper
part of window there is an icon bar that contains node button, text button, image
button, table button, annotation button, cut button, copy button, paste button, external
text paste button, merge button, protocol button, backward button, forward button,
print button, garbage button, and close button. To create typed nodes, the user clicks
on the node button (the left most icon in the icon bar), and drags it into the window
content to position the node. If more than one node type is pre-defined by the schema,
then a selection box appears, from which the user chooses from a series of text
options describing the node types available. The user then types in the statement that

 233

describes the content of the node. The user creates links by a draw-line gesture going
from the source to the destination node. A selection box once more allows them to
define its link type, by choosing from a series of text options describing the link types
available.

Figure 6.10: An Example PBL-net

 234

Information associated to negotiation of knowledge can be connected to each node
using the pop-up menu of that node. The user expresses his perspective and
confidence with the contents of a node by assigning values to the ‘perspective’ and
the ‘confidence’ attributes from the pop-up window. The profession of learners in
their knowledge about the content of a node with the type of “issue” is also expressed
via the pop-up menu options, specifically ‘I know or do not know’ and ‘I need to
know or not’. The group perspective regarding a node or a link is represented in the
net by a colored line, so does the profession. Each node in the net also serves as a
hyperlink that connects to other document in which more information about this node
is provided. The user can navigate in the hyperdocument by following the hyperlinks
or selecting an item in the navigation history queue. Figure 6.10 shows the content of
the example PBL-net in a more readable form.

6.2 Experience

The prototype system has been tested and used in our division. Five people used the
problem-based learning approach that is supported in CROCODILE to tackle a
research topic of interest in our research group. One person took the role of the tutor.
This trial lasted two weeks, on average, one hour per working day. Sometimes they
worked in a synchronous collaboration mode in our laboratory (because the quality of
the audio tool is not good enough), and sometimes they worked in different office-
rooms in an asynchronous collaboration mode.

The virtual institute created in this trial had seventeen places. The users were able to
use the system functionality intuitively to navigate in the virtual institute, and to
create new places and artifacts when they needed them. They found that the
information about the local learning context is rich and is easy to be understood. They
used their experience in the real world to choose tools available or create a tool, to
handle documents, and to interact with each other in the virtual institute. In this trial, a
PBL net was created and many documents were created and connected as a
hyperdocument. The PBL hyperdocument contained about 90 nodes totally. The PBL
net contained about 50 typed nodes and about 130 typed links, not counting typed
nodes and links, which were removed during editing. The PBL net schema was
tailored to each stage of the learning process, by making different node and link types
available. The typed nodes and links supported them to construct shared knowledge
corresponding to each stage of the PBL process. Although the users found the PBL
net useful, they considered the restrictions of the computer screen width to be a
difficulty. They, therefore, created separate whiteboards, which contained different
sub nets as they moved through the stages of the learning process. They created one
problem brainstorming net, containing mainly problem nodes, and networked them by
using the “is_a_sub_of” link type. The second net was more varied, in which the users
focussed specifically on the issues which they needed to learn about. They used this
net to develop their learning plan and allocate tasks. They then used separate
workspaces to collect information individually, but organized the results of the
investigation using a third net, including the node types “resource”, “evidence”,
“principle”, “hypothesis”, and “solution”. Because the synchronous work was done
primarily in a co-located mode, they rarely used temporary node types such as
“question”, “answer”, and “hint”.

 235

Overall, our experience indicates that the system enables users to easily understand
the local learning context, to intuitively navigate around, interact with, and tailor the
virtual institute. The PBL net supports meaningful thinking and meaningful learning,
and facilitates social interaction and social construction of knowledge. The trial also
raised two questions. The first question is how to handle the situation, in which a user
want to navigate a document following the structure of a PBL hyperdocument by
using an document editor in place A, but the document is currently used by another
user in place B. The second question is how to manage the size of the PBL-net that is
created so as to maintain a good overview.

We currently work on a larger test use in winter, which will be conducted at
Darmstadt University of Technology.

 237

7 Conclusions and Future Work

This chapter concludes the research work described in this thesis. This research work
is motivated by developments in the area of learning theories and learning methods
and by the technological advances in hypertext/hypermedia, CSCW, and CSCL. The
goal of this thesis work is to develop concepts and an approach for building
collaborative learning environments for PBL, and to demonstrate the feasibility of the
approach by describing a sample virtual PBL environment. This chapter highlights the
main contributions of this thesis work by summarizing this thesis and comparing it to
the state of art (with respect to approaches and prototype systems). Finally, it
identifies a number of directions in which this research work might be extended.

7.1 Main Contributions of this Thesis

In this thesis a collaborative virtual PBL environment has been designed and
implemented. This environment consists of four components: the virtual institute
metaphor, the PBL-net, the PBL-protocol, and the PBL-plan. The virtual institute
metaphor is designed and implemented to organize learning contexts, to support rich
forms of social interaction, and to facilitate orientation in and tailoring of the virtual
learning environment. The PBL-net provides a graphical knowledge representation
language for PBL, which facilitates the pursuit of mutual understanding and the
construction of shared knowledge. The PBL-protocol offers a role-based and state-
dependent access control mechanism, which can support situated roles. The PBL-plan
enables learning groups to define their own learning plans in a computational form.
Such a learning plan can be automatically executed to coordinate actions. This section
presents the major contributions of this research work.

7.1.1 A Conceptual Framework for the Development of

Virtual PBL Environments

Based on activity theory, a conceptual framework for building virtual learning
environments (see section 4.1) has been developed [Miao00e]. Through analyzing the
characteristics of PBL processes based on a scenario and on literature, especially from
the perspective of activity theory, the requirements to develop computer-based
collaborative learning environments for PBL have been systematically identified. It is
proposed that the roles of cultural and social mediation should be addressed to support
PBL activities conducted in virtual learning environments. The conceptual framework
consists of eight components: agent, place, tool, language, document, action, work
description, and behavior rule (see subsection 4.1.3). It is suggested that these eight
components should be modeled in virtual PBL environments appropriately. In
addition, important design issues and possible design choices for developing virtual
PBL environments are discussed. This conceptual framework can be used as a basis to
analyze existing virtual PBL environments and as a guideline to design a virtual PBL
environment. This conceptual framework has been applied to design a virtual PBL
environment, in which cultural and social mediation in the PBL activity is reflected by

 238

four concepts: the virtual institute metaphor, the PBL-net, the PBL-protocol, and the
PBL-plan.

7.1.2 A Context-based Approach to the Design of Collaborative

Virtual Learning Environments: the Virtual Institute Metaphor

Based on the theory of situated learning, which emphasizes the importance of context
and social interactions, the concept of learning context and an approach to develop
context-based virtual learning environments (see section 4.3) have been developed
[Miao99d]. The collaborative learning environments developed by adopting this
approach enable the learners themselves to create and modify their learning
environments. They therefore support customized learning contexts in which learning
processes and interaction between learners can be situated. Comparison with
document-based approach, conferencing-based approach, and room-based approach,
(see subsection 4.3.4) the characteristics of context-based approach are the use of a
set of perceptual metaphors, the flexible combination of these metaphors within the
learning environment, and the support for awareness of the learning contexts and for
the social interaction within it. This approach is used to design a hierarchically
structured learning context, called as a virtual institute metaphor (see subsection
4.3.3). The virtual institute metaphor reflects parts of the culture used in learning
environments without computers. A context-based virtual learning environment
enables users to customize learning contexts at will, to intuitively navigate within the
virtual learning environment, and to interact with learning contexts as they do in real
world.

7.1.3 An Activity-oriented Approach towards a Graphical

Knowledge Representation: the PBL-net

Based on the theory of constructivism and situated learning, an abstract model of
collaborative learning (see subsection 4.4.1) is developed [Miao00a]. This model
addresses the conflict at the individual memory level and at the group memory level.
Considering the state-of-the-art in terms of graphical knowledge representation
methods, it is found that support for the resolution of such conflict and support of
negotiation during collaborative learning in virtual learning environments are both
insufficient. It is also found that existing graphical knowledge representation
approaches such as the content-based approach and didactic-oriented approach are
not suitable to support the PBL activity. In this thesis, an activity-oriented approach
to visually represent structured knowledge (see subsection 4.4.3) is developed
[Miao00a]. By adopting this approach, a virtual learning environment can support the
construction of graphical, shared knowledge in a shared information space. This
approach is appropriate for supporting the representation, exploration and negotiation
of shared knowledge in ill-structured knowledge domains. As an application of the
activity-oriented approach, the PBL-net schema (see subsection 4.4.4), a graphical
knowledge representation language for PBL is developed. By means of such a
knowledge representation language, users can construct a PBL-net, representing their
shared knowledge. The PBL-net mediates PBL processes by providing a meta-

 239

cognitive framework that facilitates and guides collaborative learning to pursue
common understanding and to construct shared knowledge in the PBL processes.

7.1.4 An Approach to Guide and Control Social Interaction:

 the PBL-protocol

The concept of multi-state collaborative process (see subsection 4.5.2) has been
developed and its characteristics have been identified. A multi-state collaborative
process consists of multiple states with state transitions between them. Under each
state, different behaviors of people with different roles are expected. As state changes,
the expected behaviors of each role change as well. Based on schema theory, the
concept of collaboration protocol and an approach to model and execute
collaboration protocol (see subsection 4.5.2.1 and subsection 4.5.2.2) have been
developed [Miao98b]. A collaboration protocol is a computerized script of a
collaboration strategy, which explicitly specifies the expected behaviors of each role
in the social interaction. The execution of a collaboration protocol supports role-based
and state-dependent access control. A collaboration protocol can be refined by sub-
protocols and can be initiated as protocol instances. An algorithm to shift between
collaboration protocols (see subsection 4.5.2.3) is developed [Miao00c]. The
approach is applied to develop PBL-protocols (see subsection 4.5.3) that support PBL
groups within virtual learning environments [Miao00b]. The resulting PBL-protocols
are used to guide and control construction of the shared PBL-nets by suggesting and
restricting behaviors of roles in each state of the PBL process. In addition, the idea of
sub-protocol is used to develop a negotiation protocol (see subsection 4.5.3.2), which
can facilitate negotiation processes for the construction of shared knowledge. The
PBL-protocol mediates PBL processes at the operation level and coordinates the
contributions of people based on their different roles.

7.1.5 An Approach to Support Session-based Collaborative

Processes: the PBL-plan

The concept of session-based collaborative processes (see subsection 4.6.2) has been
developed to address supporting multi-phase synchronous collaboration processes
[Miao98a] [Miao99a]. The term session is defined as that a process is executed in a
synchronous or asynchronous collaboration mode on a shared workspace by a group
of people to achieve a goal. The notion of a session-based collaboration process
denotes the whole work process that consists of a set of coordinated sessions. An
approach to support the session-based collaboration processes in computer-based
collaboration environments is developed. Based on an analysis of the PBL process
from the perspective of self-directed learning theory, this approach is adapted and
applied to support PBL processes in virtual learning environments. By using this
approach, a PBL process can be described in a computerized form, called a PBL-plan
(see subsection 4.6.2) [Miao00d]. In addition, in order to ease making-plan,
mechanisms to automatically create a preliminary PBL-plan and to support interactive
modification and refinement of a PBL-plan are provided (see subsection 4.6.3 and
subsection 4.6.4). When compared with existing workflow management systems, this
approach has four major characteristics. Firstly, the idea of session-based

 240

collaborative processes is used to capture processes that consist of a set of coordinated
actions. Each action is executed on a shared workspace by a group of people
employing a synchronous or asynchronous collaboration mode. Secondly, a visual
process modeling language can be used to describe a PBL process that consists of the
components and relations (including temporal and artifact relations) between the
components, and to represent process properties and constrains. Thirdly, a
collaborative tool supports the definition of PBL processes as a hyperdocument. It
provides mechanisms to create a preliminary PBL-plan and to enable interactive
modification and refinement of a PBL-plan in order to ease the definition of PBL-
plans. Fourthly, a cooperative environment is provided to execute the session-based
collaborative processes. Users can join an action by selecting an action item from
calendars or from the hyperdocument that represents the defined PBL-plan. Learners
can also manipulate and monitor the state of actions by using calendars or the
hyperdocument. An action can be triggered by using various ways. Multiple
participants can collaboratively perform an action by using shared tools and
documents available in the shared workspace of the action. The artifacts can be
transferred from one place to others by using message-boxes according to the
definition of the PBL-plan. The PBL-plan mediates PBL processes at the action level
and coordinates the contributions of people made in different tasks.

7.1.6 Extension and Application of

a Cooperative Hypermedia Model

When implementing the system, cooperative hypermedia technology is used to
support representation and manipulation of the virtual institute metaphor, the PBL-
net, the PBL-protocol, and the PBL-plan (see section 5.3).

The virtual institute is represented based on an extended hypermedia model [Miao01]
that has two distinguished natures. Firstly, a place is modeled as a node and a door is
modeled as a bi-directional hyperlink. This hyperlink has a status, which value is open
or closed. When a door is closed on one side, people in both sides can not move from
one side of the door to the other side of the door. Such a hyperlink provides a flexible
navigation control mechanism. Secondly, most of metaphors and even activities are
visually presented as graphical nodes and links of hypermedia documents. Therefore,
users of the system can easily perceive learning environments and navigate within
learning environments intuitively. They can use tools and documents by manipulating
the corresponding graphical nodes directly and can interact with other people in the
virtual learning environment. In addition, information in a virtual institute is
structured and represented as hypermedia documents. A PBL-net is represented as a
hypermedia document, from which other hypermedia documents can be reached by
clicking on the typed nodes of the PBL-net. Therefore, a PBL-net and the associated
documents can be manipulated as a logical whole by multiple users.

The PBL-protocol and the PBL-plan are described as hypertext documents. The
process structure and process properties are represented by means of hypertext nodes
and links and their attributes. For example, the set of behavior rules bound to a
protocol state is represented as an attribute of a node that represents the protocol state.
The processes on different abstract levels and different segments of a process are
represented as individual nodes, but the hyperlinks are used to represent

 241

decomposition relations (such as sub-protocol and sub-plan) between them. The
enactment mechanisms of processes are built on the properties of the hypertext
document.

It is important to note that the concepts and approaches described above can be
applied not only to PBL, but also to other domains. In fact, some concepts and
approaches (such as collaboration protocol and session-based collaborative process)
were originally developed for supporting collaborative design [Miao98a] [Miao99a].
These approachs can be used to support any collaborative process that has the
identified characteristics (those of the multi-state collaborative process or the session-
based collaborative process).

7.2 Comparison with other PBL Support Systems

This section compares CROCODILE with the PBL support systems discussed in
chapter 3 based on the requirements identified in chapter 2. Generally speaking, other
PBL support systems focus on supporting collaborative PBL between homogenous
learners of high schools or of universities. These systems focus mainly on supporting
science inquiry. In addition, most of them are implemented based on the Web, so that
a large number of users can conduct PBL primarily in an asynchronous collaboration
mode. However, the potential users of CROCODILE are adult learners who come
from different background and want to improve their competence in their professional
career. The problems used to drive collaborative learning are usually more authentic,
complex, and related to their professional work. The PBL processes carried out by
using CROCODILE are usually arranged and scheduled and are performed primarily
in synchronous collaboration mode. In addition, other systems often emphasize
support of one or a limited number of aspects of the PBL process (i.e., text-based
communication, synchronous collaboration, identification of problems and learning
issues, and so on). CROCODILE is developed based on a conceptual framework and
intends to provides a systematical, complete support for PBL.

CROCODILE enables users to construct and customize their virtual institute and to
navigate within it. Any user can socially present himself/herself by the position and
movement of the user’s picture. Detailed information about the user is available via
the user’s picture, which can be retrieved by others when clicking the picture. The
user can interact with other users who are located in the same place or in different
places by using tools such as conversation tools, message-boxes, and phones. Multiple
users can construct shared knowledge synchronously or asynchronously by using
private hypermedia editors, computers, and whiteboards. Other PBL support systems
are developed as document-based systems (CSILE [Scardamalia92, Scardamalia96],
CALE [Mahling95], CNB [Edelson95], McBAGEL [Narayanan95, Guzdial96], and
Web-SMILE [Guzdial97, Kolodner98]) or conferencing-based systems (CCL
[Koschmann90, Koschmann92] and Belvedere [Suthers97, Suthers99b]. In these
systems, the collaborative PBL activity is mainly mediated by the shared information
spaces. Some systems such as CSILE and Belvedere support communication by
providing a chatboard that is used separately from the shared information spaces. All
these systems do not address the problems of social orientation, group awareness, and
customizing learning contexts.

 242

CROCODILE enables users to construct a shared PBL-net that consists of typed
nodes and typed links. The types indicate the users’ intention when creating the piece
of information. More detailed or related information can be accessed by following the
hyperlinks. The negotiation of different perspectives about a statement is supported by
the declaration function and the negotiation protocol. All other PBL support systems
except for CCL enable users to categorize their ideas more or less and to provide
detailed information and connect it to their ideas. In these systems, different
perspectives are represented by separate statements so that the inconsistent knowledge
has to be detected by carefully reading the separate statements. These systems support
users to organize their ideas by using discussion threads, except for Belvedere that
supports graphical knowledge representation. However, Belvedere only supports
science inquiry activity, which is a simple form of PBL. For example, Belvedere does
not support collaborative generation of a solution to solve the problem under study.

CROCODILE uses PBL-protocols to coordinate group interaction at the operation
level. A PBL-protocol defines a number of possible states. In each state, the
responsibilities and obligations of each role are clearly defined as behavior rules. At
different states, behavior rules associated to a certain role may be different. The PBL-
protocol not only guides social interaction by suggesting appropriate behaviors for
each role, but also controls social interaction by restricting unexpected behaviors. In
order to support a collaboration process, a family of protocols can be developed for
supporting different collaboration strategies. Users can use one of them on demand
and exploit sub-protocols to get more fine support. It is possible to change protocols
in the course of using a protocol. In comparison with other PBL support systems, only
Belvedere and Web-SMILE provide the definition of distinct states and transitions as
a diagram. They also provide guidance for users to perform the focal task at each
state. However, these systems do not attempt to support a synchronized collaborative
activity. That is, users can work under different states at a point in time. They can not
navigate together as collaboration state changes. In addition, the behavior rules
associated with different roles can not be defined and bound to collaboration states in
these two systems. Therefore, these two systems can not control social interaction to
avoid unexpected behaviors. Furthermore, it is impossible in these systems to support
change of collaboration strategies.

CROCODILE uses the PBL-plan to coordinate actions. Each action is performed in a
place individually or as a team to achieve a sub-goal. Users can use the PBL-plan
definition tool to describe their work process by decomposing goals, arranging actions
to achieve each sub-goal, dividing labor, allocating place and resources, determining
the conditions to start and terminate each action, and specifying the relations between
actions. The system also supports the execution and monitoring of the PBL-plan.
Furthermore, mechanisms to create a preliminary PBL-plan and to support interactive
modification and refinement of a PBL-plan are provided in order to release some
users’ burden to define a PBL-plan. Some PBL support systems described in chapter 3
enable users to define actions. However, these actions are represented as a list of
isolated commitments. Most of the information necessary to enact actions of a process
is missing in these systems. Therefore, these systems can not support the coordination
of actions by executing and monitoring the defined learning plans. Except for CALE,
which provides primitive support for defining actions, no system supports the creation
of a preliminary learning plan and the detection of conflicting allocation of shared

 243

resources and participants on demand. The following table summarizes the discussion
above.

 CCL CSILE CALE CNB Belvedere McBAGEL Web-
SMILE

CROCODILE

R1.1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ +
R1.2 ∅ ∅ ∅ ∅ ∅ ∅ ∅ +
R1.3 - - - - - - - +
R1.4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ +
R2.1 ∅ + + + + + + +
R2.2 ∅ ∅ ∅ ∅ - ∅ ∅ +
R2.3 ∅ + + + ∅ ∅ + +
R2.4 ∅ - - - - - - +
R3.1 ∅ + + ∅ ∅ ∅ ∅ +
R3.2 ∅ ∅ ∅ ∅ + - + +
R3.3 ∅ ∅ ∅ ∅ ∅ ∅ ∅ +
R3.4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ +
R4.1 ∅ ∅ - - ∅ - ∅ +
R4.2 ∅ ∅ - ∅ ∅ ∅ ∅ +
R4.3 ∅ ∅ - ∅ ∅ ∅ ∅ +
R4.4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ +

Table 7.1: Comparison of CROCODILE with Other PBL Support Systems

Table 7.1 summarizes to what degree systems fulfill the requirements presented in the
chapter 3. Like Table 3.1, the notion “∅ ” indicates “no support”. The notion “+”
indicates “full support”. The notion “-” means “partial fulfill” or “weak support”. The
requirements identified in chapter 2 are listed below:

(R1.1): support social orientation
(R1.2): support group awareness
(R1.3): support rich forms of social interaction
(R1.4): support customization of learning environments

(R2.1): support representation of various types of ideas
(R2.2): support representation of relations between ideas
(R2.3): support provision of referential information
(R2.4): support negotiation of shared knowledge

(R3.1): support definition of roles
(R3.2): provision of guidance according to PBL strategies
(R3.3): support synchronization of collaborative activities
(R3.4): support shifting between PBL strategies

(R4.1): support definition of action plans
(R4.2): support allocation of resources.
(R4.3): release users’ burden to make action plans
(R4.4): support execution of action plans

 244

7.3 Open Issues

While this research work provides a foundation for the development of
comprehensive virtual PBL environments, a number of open issues are raised by this
research. The purpose of this section is to suggest directions for future research based
on this work.

7.3.1 Short-term Directions

From this research, several issues arose regarding conceptual framework, the virtual
institute metaphor, the PBL-net, the PBL-protocol, and the PBL-plan. This subsection
discusses these issues in detail.

Conceptual framework

The conceptual framework developed based on activity theory is still abstract,
because activity theory provides a very abstract model of an activity. In order to
support PBL, more PBL-specific cultural and social characteristics should be
identified from the perspective of activity theory. For example, traditional methods
for evaluating students’ learning such as test sheet with standard answers are not
suitable for PBL. The PBL-specific culture and social relations are used during
evaluating students’ learning. How to design computational mechanisms to support
PBL-specific characteristics is a research issue. The design issues and the possible
choices for these design issues should be more systematically taken into account.
Especially, which kind of combination of choices for every design issue is appropriate
for supporting a given form of PBL?

Virtual institute metaphor

Usually a virtual learning environment is developed as a database system, a meeting
or conference system, or a room-based system. Information in such systems is
structured and distributed according to a unique criterion such as information topic, a
class, or a room. Users retrieve information using the same criterion. In a context-
based system information is structured and distributed according to multiple co-
existing criteria such as document owner, document relationships in contents or in
references, where documents are stored or handled in tools, and where they are
located. On the one hand, a context-based system enables users to retrieve information
in multiple and flexible ways; On the other hand, some situation will confuse users.
For example, when a user navigates a document following the structure of a PBL
hyperdocument by using an document editor in place A, the document may be
currently used by another user in place B. They may work on the same document, but
they are not at the same place. Such situations can not happen in the real world. How
to handle such a problem is a research issue.

 245

The PBL-net

The usefulness of defined node types and link types should be evaluated. The result of
such an evaluation may suggest adding new types or removing defined types. The
current version of PBL-net schema is a generic knowledge representation language
for PBL. There are different forms of PBL such as project-based learning, science
inquiry, and so on. For supporting each concrete form of PBL, more refined PBL-net
schemas should be developed. In addition, the patterns of conflict perspectives such as
flat conflict, single point conflict, and multiple-point conflict should be defined and
identified carefully in order to support learners to resolve conflicts. Another research
issue is the choice between a plain PBL-net or a nested PBL-net. A plain PBL-net
offers a better overview and direct operation on any information node. However,
when the number of nodes and links in a PBL-net increases, the PBL-net editing area
seems too crowded because of the limitation of the editing area in space. In unlimited
space, orientation becomes difficult, too. A nested PBL-net solves the problem
existing in the plain PBL-net, but users can not get a whole picture of a PBL-net at
one sight.

PBL-protocol

Learning groups are different in group size, group structure, and geographical
distribution. Group members vary in age, sex, knowledge, skills, interests, learning
style, and so on. A hypothesis is that for a certain group with some characteristics or
in some special situations there exists one or more PBL-protocols, which are suitable
for such a group. How to define and refine PBL-protocols for different kinds of
learning groups is a research issue. Furthermore, is it possible that the virtual learning
environment actively suggests one or some PBL-protocols for a learning group
according to the execution situation? More negotiation protocols should be researched
in order to help learners to resolve different patterns of conflict perspectives described
above. How can the system automatically initiate an appropriate negotiation protocol
according to the confidences of learners’ perspectives, the confict degree and the
conflict pattern of their perspectives?

PBL-plan

A friendlier user interface for the definition of active-/terminated-condictions should
be provided, so that the users who are not familiar with predicate logic can express
active-/terminated-condictions.

7.3.2 Long-term Directions

This subsection identifies long-term research directions based on this research work.
Generally speaking, the system should be extended to support learning at work and
learning for work. Initial research work in this direction was presented in [Miao99c].
Such a system would support a group of people who work together on the same
project and are committed to continuous improvement of their work processes. More
work can be done in this general direction:

 246

First of all, the system can be extended to provide integrated support for problem-
based learning and problem solving. Problem solving is an activity that has many
commonalities with problem-based learning activity. The main goal of problem
solving is to propose effective solutions to a problem and solve it. Learning activities
may occur within the problem solving processes, but learning is just a means for
achieving the goal. The main goal of problem-based learning is not to solve a
problem, but to acquire knowledge surrounding the problem and to improve the
abilities and skills through solving a problem. However, the tasks performed and
information types handled in both activities are almost the same. These two activities
are normally carried out by a group of people. In some cases, the subject and object of
these two activities may be the same, and these two processes intertwine. The
problem raised in the real work can be used as the starting point of a PBL process.
Such a problem provides rich authentic and social contexts that are good for PBL. The
knowledge and skills acquired in the learning processes can then be applied
immediately to work.

Project-based learning is a form of complex, learning-by-doing PBL. This learning
method is typically applied in learning domain-specific knowledge, such as software
engineering and civil engineering. The domain-specific knowledge models and task-
specific tools will be used in the learning processes. This learning method can be used
in professional training centers and at the work settings. When conducting project-
based learning in a work setting, the collaborative learning process and the
collaborative work process are intertwined. In this situation, many questions arise.
Whether the virtual institute can be extended by adding components such as virtual
company and virtual office to form a virtual world? How to model the community?
The workers are also learners and the learning groups and working groups are
intertwined. How to manage documents so that work documents and learning
documents can be shared in both processes securely? How can the PBL-net schema be
extended into domain-specific instantiations of this representation? What protocols
should be developed? How to integrate a session-based collaborative process support
system with business process support systems (e.g., workflow systems)? How to
implement a scaleable and longitudinal collaborative system?

 247

8 References

[The Activity System] The Activity System. Available in URL:
http://www.helsinki.fi/~jengestr/activity/6b.htm

[Abbott94] Abbott, K., and Sarin, S. (1994). Experiences with workflow management: Issues
for the next generation. In Proceedings of the Conference on CSCW’94, Chapel Hill, USA.
ACM, pp. 113-120.

[Aspy93] Aspy, D.N., Aspy, C. B., and Quimby, P.M. (1993). What doctors can teach
teachers about problem-based learning. Educational Leadership, Vol. 50, No. 7, pp. 22-24.

[Baloian95] Baloian, N., Hoppe, U., and Kling, U. (1995). Structured Authoring and
Cooperatrive Use of Instructional Multimedia for a Computer-integrated Classroom. In:
Proceedings of ED-MEDIA’95.

[Barden94] Barden, R., Stepney, S., and Cooper, D. (1994). Z in Practice. BCS Practitioner
Series. Prentice-Hall, 1994.

[Barrows80] Barrows, H.S. and Tamblyn, R.M. (1980). Problem-Based Learning. An
Approach to Medical Education. Springer Publishing Company : New York.

[Belvedere Webpages] Available in URL:
http://advlearn.lrdc.pitt.edu/belvedere/tours/quad.html

[Boud91] Boud, D., and Feletti, G. (1991). The Challenge of Problem-Based Learning,
London: Kogan Page.

[Bridges92] Bridges, E. M. (1992). Problem based learning for administrators. Eugene, OR:
ERIC Clearinghouse on Educational Management. (ERIC Document Reproduction Service
No. ED pp. 347, 617)

[Brockett91] Brockett, R G, Hiemstra, R (1991). Self-direction in Learning: Perspectives in
Theory, Research, and Practice. Routledge, London, UK

[Brooks93] Brooks, J.G., & Brooks, M.G. (1993). In search of understanding: The case for
constructivist classrooms. Alexandria, VA: Association for Supervision and Curriculum.

[Brown89] Brown, J.S., Collins, A. and Duguid, S. (1989). Situated cognition and the culture
of learning. Educational Researcher, Vol. 18, No. 1, pp.32-42. Also available in URL:
http://www.ilt.columbia.edu/ilt/papers/JohnBrown.html

[Brown92] Brown, G. and M. Pendleberry (1992). Assessing Active Learning. Parts 1 and 2,
CVCP Universities' Staff Development and Training Unit, UK.

[Brundage80] Brundage, D. and MacKeracher, D. (1980) Adult Learning Principles and Their
Application to Program Planning. Toronto: The Minister of Education.

 248

[Bullen91] Bullen, C., and Bennett, J. (1991). Groupware in Practice: An Interpretation of
Woek Experiences. In C. Dunlop and R. Kling (eds.), Computerization and Controversy,
Academic Press, 1991, pp. 257-287.

[Burtis97] Burtis, J. (1997). Sociocognitive Design Issues for Interactive Learning
Environments Across Diverse Knowledge Building Communities. In: Proceedings of The
Annual Meeting of the American Educational Association, Chicago, March 24, 1997.

[Busbach93] Busbach, U. and Kreifelts, T. (1993). Support for Meeting using the EuroCoOp
Task Manager. S. Srivener (Hrsg) CSCW: The Multimedia and Networking Paradigm,
Avebury Technical, Ashgate Publ. Ltd, 1993, p.149-170.

[Cameron99] Cameron, T., Barrows, H. S. and Crooks, S. M. (1999). Distributed Problem-
Based Learning at Southern Illinois University School of Medicine. In proceedings of
Computer Support for Collaborative Learning’99. December 12-15, 1999. Palo Alto,
California.

[Camp96] Camp G. Problem-based learning: A paradigm shift or a passing fad? Med Educ
Online 1996, Vol. 1, No. 2, 1996. Available in URL: http://www.med-ed-
online.org/f0000003.htm

[COAST manual] (1996). Available in URL:
 http://www.darmstadt.gmd.de/publish/ocean/software/coast/doku/COAST-manual-3.PDF

[Cognition and Technology Group at Vanderbilt 91] (1991). Some thoughts about
constructivism and instructional design. Educational Technology, Vol. 39, No. 9, pp. 16-18.

[Collins89] Collins, A., Brown, J. S., and Newman, S. (1989). Cognitive Apprenticeship:
Teachning the Crafts of Reading, Writing and Mathematics. In Lauren B. Resnick (Ed.),
Knowing, Learning, and Instruction. Essays in Honor of Robert Glaser (pp. 453 - 494),
Hillsdale, NJ.: Erlbaum.

[Conklin87a] Conklin, J. and Begeman, M. L. (1987). gIBIS: A hypertext tool for team design
deliberation. In: Proceedings of Hypertext'87 Proceedings, Chapel Hill, NC, pp. 247-252.
New York: ACM.

[Conklin87b] Conklin, J., (1987). Hypertext: An Introduction and Survey. Computer, Vol. 20,
No. 9, pp17-41, 1987.

[Course Material] Available in URL:
 http://www.rcc.ryerson.ca/learnontaria/idnm/mod2/mod2-5/mod2-5.htm

[CoVis Webpages] Available in URL: http://www.covis.nwu.edu/

[CSILE’s Webpages] Available in URL: http://csile.oise.utoronto.ca/

[Cunningham93] Cunningham, D. (1993). Assessing Constructions and Constructing
Assessments. In Duffy, T. and Jonassen, D. (Eds.), Constructivism and the technology of
instruction: A conversation. Hillsdale, NJ: Lawrence Erlbaum.

 249

[Curtis92] Curtis, B., Kellner, M.I., and Over, J. (1992). Process Modelling. communications
of the ACM, Vol. 35, No. 9, pp.75-90. Sep., 1992.

[Dewey38a] Dewey, J. (1938) Experience and Education. New York: Collier and Kappa Delta
Pi.

[Dewey38b] Dewey, J. (1938). Logic: The Theory of Inquiry, New York: Holt and Co.

[Dolmans94] Dolmans, D., Schmidt, H. and Gijselaers, W. (1994) The relationship between
student-generated learning issues and self-study in problem-based learning. Instructional
Science, Vol. 22, pp.251–267, 1994.

[Duffy96] Duffy, T. M., and Cunningham, D. J. (1996). Constructivism: Implications for the
design and delivery of instruction. In D. H. Jonassen (Ed.), Handbook of Research for
Educational Communications and Technology (pp. 170-198). New York: Simon & Schuster
Macmillan.

[Duncan98] Duncan-Hewitt W. and Mount D. (1998). Problem-based learning by Grian.
Available in URL: http://www.grian.com/pblpage/pbl1.html

[Edelson94] Edelson, D.C., and O'Neill, D.K. (1994). The CoVis Collaboratory Notebook:
Computer Support for Scientific Inquiry. Presented at the Annual Meeting of the American
Educational Research Association, New Orleans, LA, April 1994, as part of a symposium
entitled Computer-Supported Collaboration for Scientific Inquiry: Bringing Science Learning
Closer to Science Practice.

[Edelson95] Edelson, D., O'Neill, K., Gomez, L., D'Amico, L. (1995). A design for effective
support of inquiry and collaboration. In J. Schnase and E. Cunnius (Eds.), Proceedings of the
Conference on Computer Support for Collaborative Learning, pp. 107-111. Mahwah, NJ:
Lawrence Erlbaum.

[Edelson96a] Edelson, D., Pea, R., and Gomez, L. (1996). Constructivism in the
Collaboratory. In B. G. Wilson (Ed.), Constructivist learning environments: Case studies in
instructional design, (pp. 151-164). Englewood Cliffs, NJ: Educational Technology
Publications.

[Edelson96b] Edelson, D., Pea, R., and Gomez, L. (1996). The Collaboratory Notebook.
Communications of the ACM, Vol. 39, No. 4, pp. 32-33.

[Education by Design] Available in URL:
http://www.edbydesign.org/foundations/ebd_theory.htm

[Ehrlich87] Ehrlich, S. F. (1987). Strategies for encouraging successful adoption of office
communication systems. ACM Transactions on Office Information Systems. Vol. 5, pp.340-
357, 1987.

[Ellis94] Ellis, C. and Wainer, J. (1994). A Conceptual Model of Groupware. In: Proceedings
of the ACM Conference on Computer-Supported Cooperative Work (CSCW'94). Chapel Hill.
N. C., USA (October 22-26, 1994) ACM Press pp.79-88, 1994.

 250

[Engestroem87] Engestroem, Y. (1987). Learning by expanding: An activity-theoretical
approach to developmental research. Helsinki: Orienta-Konsultit.

[Ertmer93] Ertmer, P. A. and Newby, T. J. (1993). Behaviorism, cognitivism, constructivism:
comparing critical features from an instructional design perspective. Performance
Improvement Quarterly, Vol. 6, No. 4, pp. 50-72.

[Felder88] Felder, R.M. and L. Silverman (1988) Learning and teaching styles in engineering
education. Eng. Ed., Vol. 78, No. 7, pp.674-681.

[Georgakopoulos95] Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An Overview
of Workflow Management: From Process Modelling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, Vol. 3, No. 2, 1995.

[Greeno98] Greeno, J. G., and the Middle School Mathematics Through Applications Projects
Group. (1998). The situativity of knowing, learning, and research. American Psychologist,
Vol. 53, No. 1, pp. 5-26.

[Grabe98] Grabe, M. and Grabe C. (1998). Integrating Technology for Meaningful Learning
2e. Houghton Mifflin.

[Grayson74] Grayson, L.P., and J.M. Biedenbach (1974). Individualized Instruction in
Engineering Education. ASEE, Washington, DC.

[Grudin94] Grudin, J. (1994). Eight Challenges for Developers. Communications of the
ACM, Vol. 37, No. 1, Jan., 1994.

[Guzdial96] Guzdial, M., Kolodner J.L., Hmelo, C, Narayanan, H., Carlson, D., Rappin, N.,
Huebscher, R., Turns, J., and Newstetter, W. (1997). Computer Support for Learning through
Complex Problem Solving. Communication of the ACM, Vol. 39, No. 4, pp. 43-45, April
1996.

[Guzdial97] Guzdial, M., Hmelo, C, Hübscher, R., Nagel, K., Newstetter, W., Puntembakar,
S., Shabo, A., Turns, J., and Kolodner J.L., (1997). Integrating and Guiding Collaboration:
Lessons learned in computer-supported collaboration learning research at Georgia Tech. In R.
Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of Computer-Supported Collaborative
Learning '97, pp. 91-100. Toronto, Ontario, Canada.

[Haake92] Haake, J. M., and Wilson, B. (1992) Supporting Collaborative Writing of
Hyperdocuments in SEPIA. In: Proceedings of ACM CSCW’92, pp. 138-146.

[Hennessy92] Hennessy, P., Kreifelts, T., and Ehrlich, U. (1992). Distributed work
management: activity coordination within the EuroCoOp project. Computer Communications,
Vol. 15, No. 8, October 1992, p.477-488.

[Hiemstra90] Hiemstra, R., and Sisco, B. (1990). Individualizing instruction for adult
learners: Making learning personal, powerful, and successful. San Francisco: Jossey-Bass.

[Hiemstra94] Hiemstra, R. (1994). Self-directed learning. In T. Husen & T. N. Postlethwaite
(Eds.), The International Encyclopedia of Education (second edition), Oxford: Pergamon
Press. Available in URL: http://home.twcny.rr.com/hiemstra/sdlhdbk.html

 251

[Hmelo95] Hmelo, C. E., Vanegas, J. A., Realff, M., Bras, B., Mulholland, J., Shikano, T.,
and Guzdial, M. (1995). Technology support for collaboration in a problem-based curriculum
for sustainable technology. In J. L. Schnase & E. L. Cunnius (Eds.), Computer Support for
Collaborative Learning (CSCL '95), pp. 169-172.

[Huebscher96] Huebscher, R., Hmelo, C., Narayanan, N., Guzdial, M., and Kolodner, J.
(1996). McBAGEL: A Shared and Structured Electronic Workspace for Problem-Based
Learning. Proceedings of the Second International Conference on the Learning Sciences,
Evanston, Illinois.

[Johnson82] Johnson, D.W. and Johnson, F.P. (1982) Joining Together. 2nd edition, Prentice
Hall, Englewood Cliffs, NJ.

[Johnson91] Johnson, D.W., Johnson, R.T. and Smith, K.A. (1991) Active learning:
cooperation in the college classroom. Interaction Books, Edina, MN.

[Jonassen91] Jonassen, D. (1991). Thinking technology: Context is everything. Educational
Technology, Vol. 31, No. 6, pp. 35-37.

[Jonassen93] Jonassen, D.H., Beissner, K., and Yacci, M. (1993). Structural knowledge:
Techniques for representing, conveying, and acquiring structural knowledge. Hillsdale:
Erlbaum.

[Jones94] Jones, B., Valdez, G., Norakowski, J., & Rasmussen, C. (1994), Designing
Learning and Technology for Educational Reform. North Central Regional Educational
Laboratory.

[Keller68] Keller, F.S. (1968) Good-bye, Teacher. Journal of Applied Behaviour Analysis,
Vol.1, pp.79-89.

[Kibler74] Kibler, R.J., D.J. Cegala, D.T. Miles and L.L. Barker (1974) Objectives for
Instruction and Evaluation.

[Knowles75] Knowles, M. S. (1975) Self-Directed Learning: A Guide for Learners and
Teachers. New York: Association Press, 1975.

[Knowles80] Knowles, M. S. (1980). The modern practice of adult education (revised and
updated). Chicago: Follett Publishing Company.

[Knowles84] Knowles M.S. and Associates (1984) Andragogy in Action: Applying Modern
Principles of Adult Learning. San Francisco: Jossey-Bass, Inc.

[Knowles86] Knowles, M. S. (1986). Using learning contracts. San Francisco: Jossey-Bass,
Inc.

[Kolodner93] Kolodner, J. (1993). Case Based Reasoning. San Mateo, CA: Morgan
Kaufmann Publishers.

[Kolodner98] Kolodner, J. L., Crismond, D., Gray, J., Holbrook, J., Puntambekar, S. (1998).
Learning by Design from Theory to Practice. In A. Bruckman, M. Gudial, J. Kolodner, & A.

 252

Ram (eds.), In: Proceedings of International Conference of the Learning Sciences 1998, pp.
16-22. Atlanta, Georgia.

[Koschmann90] Koschmann, T.D., Feltovich, P.S., Myers, A.M. and Barrows, H.S.
Designing communication protocols for a computer-mediated tutorial laboratory for problem-
based learning. Proceedings of the 14th Annual Symposium on Computer Applications in
Medical Care, Los Alamitos, CA: IEEE Computer Society Press, 1990, pp. 464-468

[Koschmann92] Koschmann, T.D.,Feltovich, P.S., Myers, A.M. and Barrows, H.S. (1992),
Implications of CSCL for Problem-Based Learning. Barrows in the proceedings of the Spring
'92 ACM Conference on Computer Supported Collaborative Learning, Vol. 21, No.3, ACM
Press.

[Koschmann97] Koschmann, T.D., Glenn, P., Conlee, M. (1997). Analyzing the Emergence
of a Learning Issue in a Problem-Based Learning Meeting. Med Educ Online, Vol. 2, No. 2,
1997.

[Larkin87] Larkin, J.H. and Simon, H. A.. (1987). Why a diagram is (sometimes) worth ten
thousand words. Cognitive Science Vol. 11, No. 1, pp. 69-99. 1987.

[Lave91a] Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral
Participation. Cambridge, UK: Cambridge University Press.

[Lave91b] Lave, J. (1991). Situated learning in communities of practice. In L.B. Resnick,
J.M. Levine, & S.D. Teasley (Eds). Perspectives on socially shared cognition (pp. 63-82).
Washington, DC: American Pscyhological Association.

[LEARNING CONTRACTS] available in URL:
http://home.twcny.rr.com/hiemstra/contract.html

[Lemke97] Lemke, J. L. (1997). Cognition, context, and learning: A social semiotic
perspective. In D. Kirschner & J. A. Whitson (Eds.), Situated cognition: Social, semiotic and
psychological perspectives (pp. 37-55). Mahwah NJ: Erlbaum.

[Leontiev47] Leontiev, A.N. (1947). Problems of the Development of Mind. English
translation, Moscow, 1981, Progress Press. (Russian original published 1947).

[Mager62] Mager, R.F. (1962). Preparing educational objectives. Fearon Publishers, San
Francisco, CA.

[Mahling95] Mahling, D. E., Sorrows, B. B., and Skogseid, I. (1995). A Collaborative
Environment for Semi-Structured Medical Problem Based Learning. In: Proceedings of
CSCL'95.

[Mayo93] Mayo, P., Donnelly, M. B., Nash, P. P., & Schwartz, R. W. (1993). Student
Perceptions of Tutor Effectiveness in problem based surgery clerkship. Teaching and
Learning in Medicine. Vol. 5, No. 4, pp. 227-233.

[McDermott99] McDermott, R. (1999) Learning Across Teams: The Role of Communities of
Practice in Team Organizations. Knowledge Management Review, May/June, 1999. Available
in URL: http://www.co-i-l.com/coil/knowledge-garden/cop/learning.shtml

 253

[Miao98a] Miao, Y. and Haake, J. M. (1998). Supporting Concurrent Design by Integrating
Information Sharing and Activity Synchronization. In Proceedings of the 5th ISPE
International Conference on Concurrent Engineering Research and Applications (CE 98), pp.
165-174, Tokyo, Japan, July 15-17, 1998.

[Miao98b] Miao, Y. and Haake, J. M. (1998). Flexible Support for Group Interactions in
Collaborative Design. In Proceedings of the Third International Workshop on CSCW in
Design (CSCWID 98), Tokyo, Japan, July 15-18, 1998.

[Miao99a] Miao, Y. and Haake, J. M. (1999). Supporting Concurrent Design in SCOPE. in
The International Journal of Concurrent Engineering Research and Applications Vol. 7, No.
1, pp.55-66, March 1999.

[Miao99b] Miao, Y., Pfister, H. R., and Wessner, M. (1999). Combining the Metaphors of an
Institute and of Networked Computers for Building Collaborative Learning Environments.
Poster published in Proceedings of the 4th Annual ACM SIGCSE/SIGCUE ITiCSE 99, pp.
188, Cracow, Poland, June 27 - July 1, 1999.

[Miao99c] Miao, Y., Pfister, H. R., Wessner, M., and Haake, J. M. (1999). SCOPE: An
Environment for Continuous Improvement Teams in Virtual Corporations. In Proceedings of
ED-MEDIA 99 - World Conference on Educational Multimedia, Hypermedia &
Telecommunications, pp. 957-962, June 19-24, 1999, Seattle, Washington, U.S.A.

[Miao99d] Miao, Y., Fleschutz, J.M., and Zentel, P. (1999). Enriching Learning Contexts to
Support Communities of Practice. In: Proceedings of the Computer Support for Collaborative
Learning (CSCL'99), pp. 391-397, December 12-15, 1999. Palo Alto, California, U.S.A.

[Miao00a] Miao, Y., Holst, S., Holmer, T., Fleschutz, J.M., and Zentel, P. (2000). An
Activity-Oriented Approach to Visually Structured Knowledge Representation for Problem-
Based Learning in Virtual Learning Environments. In: Proceedings of the Fourth
International Conference on the Design of Cooperative Systems (COOP’2000), pp. 303-318.
May 23-26, 2000. Sophia Antipolis, France.

[Miao00b] Miao, Y., Holst, S., Haake, J.M., and Steinmetz, R. (2000). PBL-protocols :
Guiding and Controlling Problem Based Learning Processes in Virtual Learning
Environments. In: Proceedings of the Fourth International Conference on the Learning
Sciences (ICLS’2000), pp. 232-237. June 14-17, 2000, Ann Arbor, U.S.A.

[Miao00c] Miao, Y., Haake, J.M., and Steinmetz, R. (2000). A Rule-based Method to Shift
between Learning Protocols. In: Proceedings of the ED-MEDIA 2000 - World Conference on
Educational Multimedia, Hypermedia & Telecommunications. June 26 - July 1, 2000,
Montréal, Canada.

[Miao00d] Miao, Y. (2000). Supporting Self-directed Learning Processes in a Virtual
Collaborative Problem Based Learning Environment. In: Proceedings of the 2000 Americas
Conference on Information Systems (AMCIS’2000), pp. 1784-1790, August 10-13, 2000,
Long Beach, California, U.S.A.

[Miao00e] Miao, Y. (2000). An Activity Theoretical Approach to A Virtual Problem Based
Learning Environment. In: Proceedings of the 2000 International Conference on Information

 254

Society in the 21 Century: Emerging Technologies and New Challenges, pp. 647-654,
November 5 - 8, 2000, Aizu, Japan.

[Miao01] Miao, Y. and Haake, J. M. (in press). Supporting Problem Based Learning by a
Collaborative Virtual Environment: A Cooperative Hypermedia Approach. Accepted by the
34th Hawaii International Conference on System Sciences (HICSS-34), January 3-6, 2001,
Hawaii, U.S.A.

[Narayanan95] Narayanan, H., Hmelo, C., Petrushin, V., Newstetter, W., Guzdial, M., and
Kolodner J.L., (1995). Computer Support for Learning through Generative Problem Solving.
In proceedings of Computer Support for Collaborative Learning’95.

[Neal98] Neal, L. (1998). Tutorial on Distance Learning, at GMD-IPSI, on Sept 1, 1998.

[Norman92] Norman, G.R. and Schmidt, H.G. (1992). The psychological basis of problem-
based learning: a review of the evidence, Academic Medicine, Vol. 67, pp. 557-565.

[Norman96] Norman, D. A. and Spohrer, J. C. (1996). Learner-Centered Education.
Communication of ACM, Vol. 39, No. 4, pp.24-27, 1996.

[Novak84] Novak, J.D. and Gowin, D.B. (1984). Learning how to learn. New York:
Cambrifge University Press.

[Novak89] Novak, J. (1989). Helping students learn how to learn: a view from a teacher-
researcher. Third Congress of Research and Teaching in Science and Mathematics, Santiago
de Compostela, Spain, Sept. reviewed in PS News 69.

[O’Neill94] O'Neill, D. K. (1994). The Collaboratory Notebook: A Networked Knowledge-
Building Environment for Project Learning. In T. Ottmann & I. Tomek (Eds.), Educational
Multimedia and Hypermedia, pp. 416-423. 1994. Charlottesville, VA: AACE.

[Oshima96] Oshima, J., and Scardamalia, M. (1996). Knowledge-building and conceptual
change: An inquiry into student-directed construction of scientific explanations. In D. C.
Edelson & E. A. Domeshek (Eds.), Proceedings of the Second International Conference on
the Learning Sciences, Northwestern Univ., Evanston, IL.

[Osterweil87] Osterweil, L. (1987). Software processes are software too. in Proc. 9th Int'l
Conf. Software Eng. , pp. 2-13, ACM Press, New York, 1987.

[Pea93] Pea, R. (1993). The collaborative visualization project. Communications of the ACM,
Vol. 36, No. 5, pp60-63, May 1993.

[Perret93] Perret-Clermont, A. N. (1993). What is it that develops? Cognition and Instruction,
11, pp.197-205.

[Pfister98a] Pfister, H. R., Schuckmann, C., Beck-Wilson, J., and Wessner, M. (1998). The
metaphor of virtual rooms in the cooperative learning environment CLear. Streitz, N.,
Konomi, S., and Burkhardt, H.J. (Eds.), Cooperative Buildings. Integrating Information,
Organization and Architecture. pp. 107-113. Berlin: Springer.

 255

[Pfister98b] Pfister, H. R., Wessner, M., Beck-Wilson, J., Miao, Y., and Steinmetz, R. (1998).
Rooms, protocols, and nets: metaphors for computer-supported cooperative learning of
distributed groups. In: Proceedings of the Third International Conference on the Learning
Sciences (ICLS-98), pp. 242-248, Dec. 16-19, 1998. Georgia Tech, Atlanta.

[Pfister99] Pfister, H. R., Wessner, M., Holmer, and Steinmetz, R. (1999). Negotiating about
Shared Knowledge in a Cooperative Learning Environment. In: Proceedings of Computer
Support for Collaborative Learning (CSCL’99), pp. 454-457. December 12-15, 1999. Palo
Alto, California.

[Piaget73] Piaget, Jean. (1973). To Understand is to Invent. New York: Grossman, 1973.

[Piaget77] Piaget, J. (1977). The development of thought: Equilibrium of cognitive structures.
New York: Viking Press.

[Popham70] Popham, W.J. and E.L. Baker (1970). Establishing instructional goals. Prentice
Hall, Englewood Cliffs, NJ.

[Pross99] Pross, H. (1999). Problem-Based Learning Handbook. Available in URL:
http://meds.queensu.ca/medicine/pbl/pblprint.htm

[Puntambekar98] Puntambekar, S. and Kolodner, J. L. (1998). The design diary: development
of a tool to support students learn science by design. Proceedings of the Third International
Conference on the Learning Sciences (ICLS’98), pp. 230-236. Dec. 16-19, 1998. Georgia
Tech, Atlanta.

[Rhem98] Rhem, J. (1998). Problem-Based Learning: An Introduction. The National
Teaching & Learning Forum, Vol. 8, No. 1, pp.1-4, December, 1998.

[Roseman96] Roseman, M. and Greenberg, S. (1996). TeamRooms: Network places for
collaboration. In: Proceedings of the ACM Conference on Computer Supported Cooperative
Work (CSCW'96), pp. 325-333, November 16-20, 1996, Boston, Mass.

[Roschelle92] Roschelle, J. (1992). Reflections on Dewey and Technology for Situated
Learning. Paper presented at annual meeting of the American Educational Research
Association, San Francisco, CA.

[Roschelle95] Roschelle, J. & Teasley, S. (1995). The construction of shared knowledge in
collabrative problem solving. In C.E. O'Malley (Ed) Computer-supported collaborative
learning. Heidelberg: Springer-Verlag.

[Roth92] Roth, W.M. and Roychoudhury, A. (1992). The social construction of scientific
concepts or the concept map as conscription device and tool for social thinking in high school
science. Science Education, Vol. 76, No. 5, pp. 531-557, 1992.

[Savery95] Savery, J. R. and Duffy, T. M. (1995). Problem based learning: An instructional
model and its constructivist framework. Educational Technology, Vol. 35, No. 5, pp. 31-38,
1995.

 256

[Scardamalia89] Scardamalia, M., Bereiter, R. S., Swallow, M. J., and Woodruff (1989).
Computer-supported intentional learning environment. Journal of Educational Computing
Research, 5, 51-68.

[Scardamalia92] Scardamalia, M., Bereiter, C., Brett, C., Burtis, P. J., Calhoun, C., and Lea,
N. S.(1992). Educational applications of a networked communal database. Interactive
Learning Environments, 2, 45-71.

[Scardamalia94] Scardamalia, M., Bereiter, C., and Lamon, M. (1994). The CSILE project:
Trying to bring the classroom into World 3. In K. McGilly (ed.), Classroom lessons -
Integrating cognitive theory and classroom practice (pp. 201-228). Cambridge, MA: MIT
Press.

[Scardamalia96] Scardamalia, M., and Bereiter, C. (1996). Student communities for the
advancement of knowledge. Communications of the ACM, Vol. 39, No. 4, pp. 36-37, 1996.

[Schael96] Schael, T. (1996): Workflow Management Systems for Process Organisations.
Berlin: Springer Verlag.

[Schank77] Schank, R. C., and Abelson, R. P. (1977). Scripts, plans, goals, and
understanding. Hillsdale, NJ: Erlbaum.

[Schank82] Schank, R. C. (1982). Dynamic memory. Hillsdale, NJ: Erlbaum.

[Schuckmann96] Schuckmann, C., Kircher, L., Schuemmer, J., Haake, J. (1996). Designing
Object-Oriented Synchronous Groupware With COAST. In Proceedings of ACM CSCW’96,
pp. 30-38, 1996.

[Schmidt92] Schmidt, H. G., Henny, P. A., and de Vries, M. (1992). Comparing problem-
based with conventional education: A review of the University of Limburg medical school
experiment. Annals of Community-Oriented Education, 5, pp. 193-198.

[Script theory] Available in URL: http://www.gwu.edu/~tip/schank.html

[Soloway94] Soloway, E., Guzdial, M., Hay, K. (1994) Learner-centered design: The next
challenge for HCI. ACM Interactions. Vol. 1, No. 2, pp. 36-48.

[Spivey89] Spivey, J. M. (1989). The Z Notation: A reference Manual. 2nd edition, Prentice
Hall International Series in Computer Science, 1992.

[Stahl99] Stahl, G., Herrmann, T. (1999). Intertwining Perspectives and Negotiation. In
proceedings of ECSCW’99.

[Stefik86] Stefik, M., et al. (1986). WYSIWIS Revised: Early Experiences with Multiuser
Interfaces. In: Proceedings of the Conference on Computer-supported Cooperative Work
(CSCW’86), pp. 276-290, Dec. 3-5, 1986.

[Stepien93a] Stepien, W., and Gallagher, S. (1993). Problem-Based Learning: As authentic as
it gets. Educational Leadership, pp. 25-28.

 257

[Stepien93b] Stepien, W. J., Gallagher, S. A., and Workman, D. (1993). Problem-Based
Learning for traditional and interdisciplinary classrooms. Journal for the Education of the
Gifted, Vol. 4, pp. 338-345.

[Streiz89] Streitz, N.A., Hannemann, J., and Thuering, M. (1989). From Ideas and Arguments
to Hyperdocuments: Travelling through Activity Spaces. In: Proceedings of the 2nd ACM
Conference on Hypertext (Hypertext '89), Pittsburgh, PA, November 5-8, 1989, pp. 343-364,
1989.

[Streiz92] Streitz, N., Haake, J., Hannemann, J., Lemke, A., Schuett, H., Schuler, W., and M.
Thuering (1992). SEPIA: A cooperative hypermedia authoring environment. In: Proc. of
ACM Conference on Hypertext ECHT’92, pp.11-22.

[Streitz94] Streitz, N. A., Geissler, J., Haake, J. and Hol, J. (1994). DOLPHIN: Integrated
Meeting Support across LiveBoards, Local and Remote Desktop Environments. In:
Proceedings of ACM 1994 Conference on Computer-Supported Cooperative Work
(CSCW'94), pp. 345-358. Chapel Hill. N. C. , U.S.A., October 22-26, 1994, ACM Press.

[Suchman87] Suchman, L.A. (1987). Plans and Situated Actions: The problem of human-
machine communication. Cambridge: Cambridge University Press, 1987.

[Summer Sleuths Program] Available in URL:
http://www.imsa.edu/team/cpbl/ipbln/sleuths/problems/frogs/index.html

[Summers99] Summers, B. Official Microsoft® NetMeeting™Book,
http://mspress.microsoft.com/prod/books/1546.htm

[Suthers95] Suthers, D. and Weiner, A. (1995). Groupware for developing critical discussion
skills. In: Proceedings of Computer Supported Cooperative Learning '95, Bloomington,
Indiana, October 17-20, 1995.

[Suthers97] Suthers, D., Toth, E., and Weiner, A. (1997). An Integrated Approach to
Implementing Collaborative Inquiry in the Classroom. In R.Hall, N.Miyake, & N. Enyedy
(Eds.), Proceedings of Computer-Supported Collaborative Learning '97, pp. 272-279,
December 10-14, 1997. Toronto, Ontario, Canada.

[Suthers99a] Suthers, D. (1999). Representational Support for Collaborative Inquiry. In:
Proceedings of the Hawaii International Conference on System Sciences, January 5-8, 1999.

[Suthers99b] Suthers, D. D. (1999). Effects of Alternate Representations of Evidential
Relations on Collaborative Learning Discourse. In: Proceedings of Conference on Computer
Supported Collaborative Learning (CSCL99), pp.611-621. Stanford, December 11-15, 1999.

[Swenson93] Swenson, K. D. (1993). Visual Support for Reengineering Work Processes. In:
Proceedings of the Conference on Organisational Computing Systems, Nov. 1993.

[Tam00] Tam, M. (2000). Constructivism, Instructional Design, and Technology:
Implications for Transforming Distance Learning. Educational Technology & Society, Vol. 3,
No. 2, 2000. Available in URL: http://ifets.ieee.org/periodical/vol_2_2000/tam.html.

[TeamWARE] TeamWARE Flow. Available in URL:

 258

http://www.teamware.com/homepage.htm

[Trigg83] Trigg, R. (1983). A Network-based Approach to Text Handling for the Online
Scientific Community. PhD sissertation. Department of Computer Science, University of
Maryland.

[Trilling99] Trilling B. and Hood P. (1999) Learning, Technology, and Education Reform in
the Knowledge Age or "We're Wired, Webbed, and Windowed, Now What?".
EDUCATIONAL TECHNOLOGY, May-June 1999. Available in URL:
http://www.sasked.gov.sk.ca/~parkland/webbed.htm

[VonGlaserfeld84] Von Glaserfeld, E. (1984). Radical constructivism. In Watzlawick, P.
(Ed.) The invented reality, Cambridge, MA: Harvard University Press, pp. 17-40.

[VonGlaserfeld89] Von Glaserfeld, E. (1989). Cognition, Construction of Knowledge, and
Teaching, Synthese, 80, pp. 121-140.

 [Vygotsky78] Vygotsky, L.S. (1978). Mind in society: the development of higher
psychological processes. Cambridge: Harvard University Press.

[Wan94a] Wan, D. and Johnson, P. M. (1994). Computer Supported Collaborative Learning
Using CLARE: The Approach and Experimental Findings. In: Proceedings of the ACM
CSCW94, pp. 187-198, Oct. 22-26, 1994, Chapel Hill, NC.

[Wan94b] Wan, D. and Johnson, P. M. (1994). Experiences with CLARE: a Computer-
Supported Collaborative Learning Environment. International Journal of Human-Computer
Studies, October 1994.

[Wenger98] Wenger, E. (1998). Communities of Practice: Learning as a Social System, The
Systems Thinker, Vol. 9, No. 5, June/July 1998. Pegasus Communications Inc., Waltham,
MA, USA.

[Wessner99] Wessner, M., Pfister, H. R., and Miao, Y., (1999). Using Learning Protocols to
Structure Computer-Supported Cooperative Learning. In: Proceedings of the ED-MEDIA'99,
pp. 471-476, Seattle, Washington, June 19-24, 1999.

[WfMC] Workflow Management Coalition. Available in URL: http://www.aiim.org/wfmc/

[Winograd86] Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition:
A New Foundation for Design. Norwood, New Jersey: Ablex Publishing Corp.

[Wolfson] Available in URL:
http://www.knowarch.com/index/front_office/evaluation/year_three.html

[Woods85] Woods, D.R. (1985). Total Quality Management. McMaster University, Hamilton
ON.

[Woods85] Woods, D.R. (1993) New Approaches for developing problem solving skills, J.
College Science Teaching, Vol. 23, pp. 157-158.

 259

[Woods96] Woods, D. R. (1996). Problem Based Learning: How to Get the Most from PBL,
McMaster University, 3rd edition, March 1996.

[Zhao94] Zhao, J. and Hoppe, U. (1994). Supporting Flexible Communication in
Heterogeneous Multi-User Environments. In: Proc. of the 14th International Conf. on
Distributed Computing Systems, IEEE Computer Society Press. pp. 442-449, June, 1994.

[Zhao95] Zhao, J. and Hoppe, U. (1995). Getting Serious About Flexible UI Coupling. Proc.
of the International Workshop on the Design of Cooperative Systems, pp. 507-515, France,
January, 1995.

 261

Appendix A: List of Definitions

A

Action ... 158
Actions ... 159
Actor .. 63
Agent .. 63
Artifact... 159
Artifacts ... 159

B

Behavior rule ... 125
Bookshelf ... 68

C

Calendar .. 69
Collaboration Protocol 126
Community .. 63
Conflict Degree.. 116
Connection Nodes 160

D

Declaration .. 109
Document ... 67
Document Editor... 68
Document Reference 67
Door.. 65
Door View .. 65

G

Group ... 63
Group Perspective..................................... 116

H

Hyperdocument Base.................................. 68

I

Institute Space ... 65

L

Label Relation Graph 139
Learning Context .. 71
Link Type .. 103

M

Message Box .. 68

Mutual Understanding..............................115

N

Net...104
Net Base ..105
Net Schema ..103
Node Type ..103

O

Object ...125
Operation ...125

P

PBL-net ..109
PBL-net Base ...110
PBL-net Schema ..107
PBL-plan ..157
PBL-protocol..144
PBL-protocol Family.................................144
Place..64
Plan Base ..164
Plans ...158
Profession ...177
Profession Issues ..177
Protocol Base ...126
Protocol Family ...126
Protocol Instance132
Protocol Instance Base132
Protocol Role..125
Protocol State...125
Protocol Transition126

S

Specific Tool...69

T

Temporal Relations160
Tool Base ..70
Typed Link...104
Typed Node ..104

V

Virtual Institute ...70

 263

Appendix B: List of Figures

Figure 3.1: An Example WebCSILE Public Forum.. 28
Figure 3.2: Progressive Inquiring by Using Theory-building Scaffold...................... 29
Figure 3.3: The Table of Contents of a Notebook and the Content of a Page 31
Figure 3.4: Belvedere Inquiry Diagram.. 33
Figure 3.5: The McBAGEL’s Whiteboard with Four Sub-spaces 34
Figure 3.6: The Problem-solving Flowchart in Web-SMILE.................................... 36
Figure 3.7: Web-SMILE’s Whiteboard .. 37
Figure 3.8: Guidance Information for a Stage of the Process.................................... 38
Figure 4.1: The Structure of Human Activity ... 44
Figure 4.2: The Hierarchical Structure of Activity ... 44
Figure 4.3: The Conceptual Framework ... 46
Figure 4.4: The Conceptual Architecture of a Virtual Learning Environment........... 48
Figure 4.5: The Conceptual Architecture of a Virtual Institute 62
Figure 4.6: Conceptual Model of Collaborative Learning Between Two Learners.... 99
Figure 4.7: Conceptual Architecture of the Shared Artifact 103
Figure 4.8: PBL-Net Schema ... 109
Figure 4.9: A Typical Restaurant Script ... 121
Figure 4.10: Conceptual Architecture of Collaboration Protocols and

Protocol Instances ... 124
Figure 4.11: A PBL-protocol Diagram... 145
Figure 4.12: A Sub-PBL-Protocol Diagram ... 149
Figure 4.13: Conceptual Architecture of the PBL-plan... 157
Figure 4.14: The Sub-net of a PBL-net .. 179
Figure 4.15: Creating a Sub-plan of the Overall PBL-plan 180
Figure 4.16: Creating a Sub-plan of Another Sub-plan... 180
Figure 4.17: Creating Actions in Sub-plans.. 181
Figure 4.18: Creating Actions in the Overall PBL-plan .. 181
Figure 4.19: Creating Temporal Relationships ... 182
Figure 4.20: Creating an AndJoin Node and Temporal Relationships..................... 183
Figure 4.21: Creating an AndSplit Node and Temporal Relationships.................... 183
Figure 4.22: Creating a Artifact and Two Artifact Relationships 184
Figure 4.23: The Example Preliminary Learning Plan.. 185
Figure 5.1: System Architecture... 206
Figure 5.2: Abstract Implementation Model... 207
Figure 5.3: COAST Application Architecture .. 212
Figure 5.4: Application Architecture of Current Version of COAST 212
Figure 5.5: CROCODILE Architecture.. 213
Figure 5.6: A Hyperdocument Representing a Virtual Institute 217
Figure 5.7: An Hyperdocument Representing a PBL-net.. 218
Figure 5.8: A Hyperdocument Representing two PBL-protocols 219
Figure 5.9: A Hyperdocument Representing two PBL-plans 221
Figure 6.1: The Campus of the Virtual Institute ... 223
Figure 6.2: The Corridor of the Dormitory... 224
Figure 6.3: A Public Room .. 225
Figure 6.4: PBL-net Schema Editor ... 227
Figure 6.5: Learning Protocol Schema Editor... 228
Figure 6.6: Group Definition Tool ... 229

 264

Figure 6.7: Protocol Control Panel ... 230
Figure 6.8: PBL-plan Definition, Monitoring, and Execution tool 231
Figure 6.9: HyperDocument Editor and Browser ... 232
Figure 6.10: An Example PBL-net ... 233

 265

Appendix C: List of Tables

Table 3.1: Comparison of Existing PBL Support Systems ………………………… 41
Table 7.1: Comparison CROCODILE with Other PBL Support Systems ……….. 243

