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Zusammenfassung
In der vorliegenden Dissertation werden Methoden entwickelt, um die Fourierkoeffizien-
ten spezieller Reihen, namentlich vektorwertige Eisensteinreihen zur Weildarstellung eines
geraden Gitters, zu berechnen. Die bisher bekannten Formeln gehen immer von einem ge-
raden Gitter aus und leiten von diesem die „lokalen“ Daten des Gitters ab. Zur Berechnung
dieser Formeln wurde ein Programm in der Sprache python zur Benutzung mit sage ge-
schrieben. Die Eisensteinreihe selbst hängt nur von der Diskriminantenform des Gitters
ab. Vor diesem Hintergrund untersuchen wir die „globalen“ Formeln, um zu verstehen, wie
sie aus den „lokalen“ Daten des Gitters, wie zum Beispiel dem Geschlechtssymbol oder
der Zerlegung in Jordankomponenten, berechnet werden können. Aus dem Vergleich ver-
schiedener Ansätze zur Berechnung der Fourierkoeffizienten der Eisensteinreihen können
wir Formeln für die lokale Igusazetafunktion ableiten. Zuletzt benutzen wir die geschrie-
benen Programme, um alle Borcherdsprodukte, die von einer gewissen Klasse von Gittern
kommen, zu klassifizieren.

v





Contents

Introduction 1

1. Preliminaries 9
1.1. Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2. Quadratic forms on finite abelian groups . . . . . . . . . . . . . . . . . . . 10
1.3. Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4. Canonical forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5. Genus symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6. The Weil representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7. Vector valued modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8. Vector valued Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9. Jacobi Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.10. Idele class characters and Dirichlet characters . . . . . . . . . . . . . . . . 20

2. Representation numbers 25
2.1. The Igusa local zeta function - representation numbers of polynomials . . . 25
2.2. Representation numbers associated to lattices . . . . . . . . . . . . . . . . 32
2.3. Representation numbers associated to finite quadratic modules . . . . . . . 32

3. Fourier coefficients of Eisenstein series 37
3.1. The approach of Kudla and Yang . . . . . . . . . . . . . . . . . . . . . . . 38
3.2. The approach of Bruinier and Kuss . . . . . . . . . . . . . . . . . . . . . . 48
3.3. Comparing the approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4. Exact formulas depending on discriminant forms . . . . . . . . . . . . . . . 54
3.5. Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6. Vector valued Eisenstein series vs. Jacobi-Eisenstein series . . . . . . . . . 60
3.7. The Siegel-Weil formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4. Finite quadratic modules revisited 67
4.1. Enumerating representatives of L′/L . . . . . . . . . . . . . . . . . . . . . 67
4.2. Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3. Gauss sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4. The dimension of Mρ∗L,k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5. Local densities as orbit invariants . . . . . . . . . . . . . . . . . . . . . . . 76

vii



Contents

5. Borcherds products 81
5.1. Orthogonal modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2. Simple lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3. An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4. Automorphic products as Siegel modular forms . . . . . . . . . . . . . . . 87
5.5. A list of simple lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendices 91

A. An integral 2-adic change of basis 93

B. Computing Eisenstein series for the Weil representation 97

C. Test cases Siegel-Weil 103

List of Symbols 107

Bibliography 111

viii



Introduction

In this thesis, we implement various algorithms to work with even lattices and finite
quadratic modules, see [Opi18] for the implementation. The program is meant for use
with sage, (cf. [SageMath]) and written in python. In particular, we compute the Fourier
coefficients of vector valued Eisenstein series with respect to the Weil representation for
an even lattice. The main use case for our algorithms is the search and classification of
Borcherds products of singular weight. A copy of the written program is attached to this
thesis, but we explicitly refer to the online reference for future releases and bug fixes.
As it turns out, we do not need a global Z-lattice to compute Eisenstein series, a consis-

tent choice of local Zp-lattices suffices. This makes it possible to compute Eisenstein series
purely from the genus symbol of the lattice or purely from its discriminant form. For the
local algorithms, we have incorporated code from [PSAGE] and [Ehl16]. For the global
algorithms, we have built upon [SageMath] and compared our results with [Wilb].
To gain further insights, we study and compare the approaches to the computation of

the Fourier coefficients of Eisenstein series given in [KY10] and [BK01]. A key component
in the second approach is the computation of representation numbers for the lattice and in
particular the computation of the Poincaré series for these representation numbers. These
Poincaré series can be computed by means of the Igusa local zeta function Zf (t) where f is
a polynomial of degree 2. We have learned that the Igusa local zeta function can be used
to compute the Fourier coefficients of Eisenstein series from [Wil18a]. The Igusa local zeta
functions can be computed by means of [CKW17].

Representation numbers and the Igusa local zeta function

Different kinds of representation numbers appear in this thesis. The representation num-
bers of positive definite lattices appear in the Siegel-Weil formula (cf. Theorem 3.7.2),
which we use to test the algorithms written in course of this thesis. The representation
numbers of the discriminant form of a lattice (or a finite quadratic module) appear in
the dimension formula for the associated space of modular forms (see Section 4.4). The
third kind of representation numbers are obtained by counting zeros of polynomials modulo
prime powers. They can be studied through the corresponding Igusa local zeta function.
For polynomials of degree 2, these representation numbers are related to the representa-
tion numbers of discriminant forms and they also appear in the local Euler factors in the
formulas of the Fourier coefficients of Eisenstein series. The study of these local factors
motivated the following Theorem 1, which plays a central role in this thesis.
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Introduction

The Igusa local Zeta function for f ∈ Zp[x1, . . . , xn] is defined by

Zf (s) =
∫
Znp
|f(x1, . . . , xn)|spdx1 . . . dxn

and it is related to the representation numbers

Nk(f) = #
{
x ∈ Zp/pkZp

∣∣∣ f(x) ≡ 0 (mod pk)
}

by the the equality
1− tZf (t)

1− t =
∑

k∈Z≥0

Nk(f)
pnk

p−ks.

See Section 2.1 for more details. For an overview of the properties of Igusa local zeta
functions, we refer to [Den91]. We can write Zf (s) as a rational function in t = p−s. A
proof of this can be found in [Den84].

Theorem 1 (cf. Theorem 2.1.1). Let p be a prime and f ∈ Zp[x1, . . . , xn]. Let H denote
the hyperbolic plane, given by the polynomial H = xn+1xn+2 ∈ Zp[xn+1, xn+2]. The Igusa
local zeta functions of f and f +H satisfy the relation

1− tZf (t)
1− t

(
1− t

p

)
= 1− tZf+H(t)

1− t

(
1− t

p

)∣∣∣∣∣
t=pt

or equivalently
(

1− t

p

) ∑
i∈Z≥0

Ni(f)
pni

ti =
(

1− t

p

) ∑
i∈Z≥0

Ni(f +H)
p(n+2)i ti

∣∣∣∣∣∣
t=pt

in terms of (the meromorphic extension of) the Poincaré series for t = p−s and s ∈ C
(assume <(s) large for convergence).

We exploit this result in three different ways. The first is to generalize some aspects in
the approach of [BK01]. The second is to see in which way the formulas in [BK01] can
be computed purely from the genus symbol or Jordan decomposition of the lattice. The
third is to derive explicit formulas for the representation numbers of even 2-adic Jordan
components of finite quadratic modules. These Jordan components are finite abelian groups
with a quadratic form Q which takes values in Q/Z. The even 2-adic Jordan components
are denoted by qε2nII and their representation numbers

N(qε2nII , j) :=
∣∣∣{γ ∈ qε2nII : Q(γ) ≡ j (mod 1)

}∣∣∣
are given by the following theorem.
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Theorem 2 (cf. Theorem 2.3.3). Let q = 2l with l ≥ 1, ε = ±1. Then

N(qε2nII ,
j

q
)

=


(
q
2

)n [
(2n − ε)εl∑l

k′=0(ε2n−1)k′ + εl+1
]
, if j = 0 (mod 2l),(

q
2

)n
(2n − ε)εl∑l

k′=l−k(ε2n−1)k′ , if 2k ‖ j 6= 0 (mod 2l).

These representation numbers are an important ingredient in the computation of the
dimension of spaces of vector valued modular forms for the Weil representation with respect
to a finite quadratic module or lattice (see Section 4.4). By rephrasing the theorem slightly
we see that Siegel’s formulas for certain representation numbers ([Sie35, Hilfssatz 16]) also
hold for p = 2 when 2 does not divide the discriminant of the lattice and one uses the
Kronecker symbol in place of the Legendre symbol.
The representation numbers for odd 2-adic Jordan components can be obtained by means

of [Opi13]. The representation numbers for Jordan components for odd primes can be
computed by means of [Sch13], with a slight simplification from [Opi13]. We recall these
results in Section 4.2.1 and Section 4.2.2.

Fourier coefficients of Eisenstein series

The simplifications we can apply to the approach in [BK01] (see Section 3.2) amount to
the following theorem. It can be thought of to be half way in between [BK01, Theorem
4.6] and [BK01, Theorem 4.8], where we have also removed the special treatment of the
prime 2 when it does not divide the discriminant of the lattice. Note that the Eisenstein
series we use here is half of that in [BK01], as all Eisenstein series treated in this thesis are
normalized to have constant coefficient e0. We achieve this by setting

E = Eρ∗L,k,0 = 1
4

∑
(M,φ)∈〈T 〉\Mp2(Z)

e0|∗k,L(M,φ),

where the slash operator is defined with respect to the half-integer k > 2 (the weight)
and the dual Weil representation ρ∗L (see Section 1.6). The 0 in Eρ∗L,k,0 states that this
Eisenstein has constant term e0, its Fourier expansion is of the form

E = e0 +
∑

γ∈L′/L

∑
n∈Z−Q(γ)

n>0

aE(γ, n)qneγ.

Eisenstein series with respect to other isotropic elements β of the discriminant form of L
would have constant term 1

2(eβ + e−β).

Theorem 3 (cf. Theorem 3.2.4). Let γ ∈ L′ and n ∈ Z− q(γ) with n > 0. The coefficient

3
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aE(γ, n) of the Eisenstein series E of weight k > 2 for ρ∗L is equal to

2kπknk−1(−1)(2k−b−+b+)/4√
|L′/L|Γ(k)

times
σ1−k(ñ,χD)
L(k,χD)

∏
p|det(S)

Lγ,n(k, p), if 2 | m,
L(k−1/2,χD)
ζ(2k−1)

∏
p|ñ

p-detS

(
σ2−2k(pordp(f))− χD(p)p1/2−kσ2−2k(pordp(f)−1)

) ∏
p|det(S)

Lγ,n(k,p)
1−p1−2k , if 2 - m.

Here

Lγ,n(k, p) =
∑

ν∈Z≥0

Nν(f)
pnν

p−νs
(

1− p−s

p

)∣∣∣∣∣∣
s=−1−m2 +k

= 1− tZf (t)
1− t

(
1− t

p

)∣∣∣∣∣
t=p1+m

2 −k

in terms of the Igusa local zeta function for the polynomial f = Q(x)− (x, γ) +m+Q(γ)
and the representation numbers

Nν(f) = # {x ∈ (Z/pνZ)m | Q(x)− (x, γ) +m+Q(γ) ≡ 0 (mod pν)} .

The values of D,D, f, ñ are as in Theorem 3.2.3.

When the weight is small, k = 3/2 or k = 2, the Eisenstein series does not converge
absolutely. However, it can be defined by means of the usual “Hecke trick”. The resulting
Eisenstein series is no longer holomorphic in general, but a harmonic Maass form. Its
image under the ξ-operator (cf. [BF04, Section 3]) belongs to M2−k,ρL . The coefficients
with positive index (n > 0) are still given by the formula of Theorem 3.
With Theorem 1 it is now immediate that the local factors only depend on local (p-adic)

choices of Gram matrices and on the parity of the rank which is determined by the 2-adic
data of the lattice (genus symbol or Jordan decomposition). We discuss this in Section 3.4.
Comparing Theorem 3 to the formulas derived from [KY10], we see that the local factors

are essentially given by the same rational functions and we can exploit this to give formulas
for the Igusa local zeta function (see Section 3.3). We believe that this connection has not
been made explicitly yet.

Estimates of Fourier coefficients
We define the hyperbolic plane as the lattice

U = (Z2, (x, y) 7→ xy)

4



Introduction

and denote the scaled hyperbolic planes by

U(N) = (Z2, (x, y) 7→ Nxy)

for an integer N .
In the case that a lattice splits a scaled hyperbolic plane, we can estimate the represen-

tation numbers appearing in Theorem 3. Specializing to the case that the weight is half
of the rank of the lattice, the local factors essentially reduce to a representation number.
This allows us to estimate the Fourier coefficients of the lattice when they are not zero.
The result was obtained together with Markus Schwagenscheidt (cf. [OS18]), we give the
proof in Section 3.5.

Theorem 4 (cf. Theorem 3.5.2). Let L be a lattice of signature (b+, b−) (b+ even) with
rank 2k = m ≥ 3 such that L = L1⊕U(N) for some even lattice L1 of rank m−2 ≥ 1. Let
d be the determinant of the Gram matrix of L. Let γ ∈ L′ and n ∈ Z − q(γ) with n > 0.
The coefficient aE(γ, n) of the Eisenstein series with respect to the dual Weil representation
and of weight k = m/2 is either 0 or

(−1)b+/2aE(γ, n) ≥ Ck,d,N · nk−1,

where Ck,d,N is given by
2k+1πk√
|d|Γ(k)

times 
2−ζ(k−1)
ζ(k)

∏
p|2d

p(3−2k) ordp(N)(1− 1/p), 2 | m,
2−ζ(k−1/2)
ζ(k−1/2)

∏
p|2d

p(3−2k) ordp(N)(1−1/p)
1−p1−2k , 2 - m.

This theorem is the main ingredient in our search for Borcherds products of singular
weight.

Searching for Borcherds products
The search for a specific class of Borcherds products can be reduced to solving the linear
equations

n

2 − 1 = −1
2

∑
γ∈L′/L

∑
n<0

af (γ, n)aE(γ,−n)

and ∑
γ∈L′/L

∑
n<0

af (γ, n)ag(γ,−n) = 0

for every cusp form g with respect to the dual Weil representation for an even lattice L
(2, n). We only allow solutions af (γ, n) ≤ 0 to ensure that the resulting Borcherds product
is holomorphic. For a simple lattice, there are no cusp forms, so the second condition is

5
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trivial. Going through the finite list of simple lattices of type (2, n) from [BEF16a] and
estimating the Fourier coefficients of E with Theorem 4 gives only finitely many solutions
to the above condition. Together with Markus Schwagenscheidt (cf. [OS18]), we obtain
the following classification result.

Theorem 5 (cf. Theorem 5.0.5). Holomorphic Borcherds products (coming from vector
valued modular forms with non-negative principal part) of singular weight n

2 − 1 for simple
lattices L of type (2, n), n ≥ 3, only exist in the following cases.

n genus lattice level
3 2+1

7 4+2 A1(−1)⊕ U ⊕ U(4) 4
2+3

7 4+2 A1(−1)⊕ U(2)⊕ U(4) 4
2+1

7 4+4 A1(−1)⊕ U(4)⊕ U(4) 4
2+44+1

7 A1(−2)⊕ U(2)⊕ U(2) 8
8+1

7 A1(−4)⊕ U ⊕ U 16
4 3+5 A2(−1)⊕ U(3)⊕ U(3) 3
6 2−6 D4(−1)⊕ U(2)⊕ U(2) 2
10 2+2 E8(−1)⊕ U ⊕ U(2) 2
26 1+1 E8(−1)⊕ E8(−1)⊕ E8(−1)⊕ U ⊕ U 1

Here U denotes the hyperbolic plane Z2 with Q(x, y) = xy, and A1, A2, D4, E8 denote the
usual root lattices. Further, if (L,Q) is a lattice and N a positive integer, we write L(N)
for the scaled lattice (L,NQ).

The Siegel-Weil formula
The Siegel-Weil formula (cf. [Wei64] and Section 3.1.2) is an important test case for our
implementation of the Fourier coefficients of Eisenstein series. In the special case of positive
definite even lattices of rank greater equal 5, we can write it in the following form.

Siegel-Weil formula, Theorem 6 (cf. Theorem 3.1.3 and Theorem 3.7.2). For a positive
definite even lattice L of rank n ≥ 5, we have

Θsym,gen
L = EρL,n2 ,0,

where EρL,n2 ,0 is the vector valued Eisenstein series for the Weil representation ρL and of
weight n

2 . The series Θsym,gen
L is a vector valued theta series for L symmetrized once with

respect to all the classes in the genus of L and once with respect to the orthogonal group of
the discriminant form of L.

The equality in the µ-th component is essentially given by applying [Kud03, Theorem
4.1 and Proposition 4.22] to the Schwartz function φ = 1

|O(L′/L)|
∑
σ∈O(L′/L) char(σµ + L̂),

6
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where µ ∈ L′/L and L̂ = L⊗ Ẑ. We use the notation from [Ros15], where this formulation
of the Siegel-Weil formula is proved when 2 does not divide the discriminant of L.
We list the lattices we considered as test cases in Appendix C.

Outlook
In this thesis we have developed all the necessary ingredients to compute the vector valued
Eisenstein series Eρ∗L,k,0 purely from the genus symbol of a lattice or finite quadratic module,
by making a consistent choice of local Gram matrices. The same choice gives Eρ∗L,k,β for
isotropic β 6= 0 when using the formulas from [Sch18]. Using Poincaré square series as
defined in [Wil18a] for the same choice can give us a basis of cusp forms. The local
factors appearing in all formulas can be stated in terms of the Igusa local zeta function,
which we have already tested versus the formulas for generalized local densities. These in
turn have been tested versus the Siegel-Weil formula and versus Jacobi-Eisenstein series.
Implementing these modular forms is the next natural step. Then we will have the whole
space at our (computational) disposal.
Once we have a basis of cusp forms, we can generalize our search for Borcherds products

by dropping the assumption that the given lattices are simple. This is work in progress
together with Stephan Ehlen and Markus Schwagenscheidt. The setup here is to first
enumerate the genus symbols of lattices of type (2, n) with small obstruction space (small
dimension of the space of cusp forms). We then check if these lattices split a scaled
hyperbolic plane (this can be done purely by looking at the local data). If they do, we can
search for Borcherds products by solving a system of linear equations, like before.

7





1. Preliminaries
In this chapter we introduce the basic objects studied in this thesis. These include quadratic
forms, lattices, discriminant forms, the Weil representation and (vector valued) automor-
phic forms. The expositions in this chapter cover well documented basics. Therefore we
usually give several references and no proofs.

1.1. Quadratic forms
We recall some basic facts about quadratic forms, quadratic spaces and lattices. Some
standard references are [Ser73], [Cas78], [Kit93], [CS99] and [Kne02]. For further reading
and some historical notes, [Cox13] can also be recommended. For an introduction in a
modular forms based setting, we refer to [Bru+08]. Finally for the technique of discriminant
forms, we refer to [Nik79].
Let R be a ring with unity 1 and let M be a finitely generated R-module.

Definition 1.1.1. A quadratic form Q on M is a map Q : M → R such that

(i) Q(rx) = r2Q(x) for all r ∈ R and x ∈M ,

(ii) (x, y) := Q(x+ y)−Q(x)−Q(y) is a bilinear form.

We refer to (x, y) as the bilinear form associated to Q. We call the pair (M,Q) a quadratic
module. In the case that R is a field, (M,Q) is a quadratic space. Note that (x, x) = 2Q(x).

From now on let (M,Q) denote a quadratic module.

Definition 1.1.2. Let x, y ∈M .

(i) If (x, y) = 0, we say that x and y are orthogonal to each other.

(ii) If Q(x) = 0, we say that x is isotropic. If Q(x) 6= 0, x is anisotropic.

(iii) For a subset U ⊂M , we define its orthogonal complement by

U⊥ := {x ∈M | (x, y) = 0 for all y ∈ U} .

For an element x we analogously denote by x⊥ the set of all elements orthogonal to
x.

(iv) If M⊥ = {0}, the quadratic module is said to be non-degenerate.

9



1. Preliminaries

Note that a non-degenerate quadratic module can have isotropic elements.
Definition 1.1.3. Let (M̃, Q̃) be another quadratic module. An injective linear map
σ : M → M̃ satisfying Q = Q̃ ◦ σ is called an isometry. If σ is bijective, the quadratic
spaces are called isometric and we write (M,Q) ' (M̃, Q̃) which we sometimes abbreviate
by M ' M̃ . The orthogonal group of M is the group of isometries from M onto itself and
denoted by O(M).
Example 1.1.4. Let (b+, b−) be non-negative integers. We denote by Rb+,b− the quadratic
space over R given by Rb++b− with the quadratic form

Q(x1, . . . , xb++b−) = x2
1 + · · ·+ x2

b+ − x2
b++1 − · · · − x2

b++b− . (1.1.1)

Proposition 1.1.5. Any non-degenerate quadratic space (V,Q) over R is isometric to
Rb+,b−. The values b+, b− are unique and satisfy b+ + b− = dim(V ).
Definition 1.1.6. The type of V ' Rb+,b− is defined by the pair (b+, b−). The signature
of V is the value

sign(V ) = b+ − b−. (1.1.2)

1.2. Quadratic forms on finite abelian groups
Introductions to this topic can be found in the section on discriminant forms in [Sch09] or
in the section on finite quadratic modules in [Str13].
Finite abelian groups are Z-modules. However they are not freely generated. Therefore

we need to modify our previous definition of quadratic forms in the following manner. It
should always be clear from the context which kind of quadratic form is used.
Definition 1.2.1. A quadratic form Q on a finite abelian group D is a map Q : D → Q/Z
such that
(i) Q(rx) = r2Q(x) for all r ∈ Z and x ∈ D,

(ii) (x, y) := Q(x+ y)−Q(x)−Q(y) is a bilinear form.
Again, we refer to (x, y) as the bilinear form associated to Q. Orthogonality, orthogonal
complements and isometric/anisotropic elements are defined analogously to the case of
quadratic modules. We say that Q is non-degenerate if D⊥ = {0}. This is equivalent to
the map D → Hom(D,Q/Z), γ 7→ (γ, · ) being an isomorphism. If Q is non-generate, we
call the pair (D,Q) a finite quadratic module.

Remark 1.2.2. Finite quadratic modules arise naturally as (L′/L,Q (mod 1)) where L is
an even lattice with quadratic form Q and L′ is the dual lattice. By identifying elements
in γ ∈ L′/L with a representative in γ ∈ L′, the conditions Q(γ) = 0 (mod 1), Q(γ) = Z
and Q(γ) ∈ Z all mean the same. If D arises from an even lattice in this manner, it is
also called the discriminant form of the lattice L. Every finite quadratic module can be
obtained as a discriminant form.
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Definition 1.2.3. Let (D,Q) and (D̃, Q̃) be finite quadratic modules. An injective ho-
momorphism σ : D → D̃ satisfying Q = Q̃ ◦ σ is called an isometry. If σ is bijective, the
quadratic spaces are called isometric and we write D ' D̃. The orthogonal group of D is
the group of isometries from M onto itself and denoted by O(D).
Definition 1.2.4. We define the (orthogonal) direct sum of two finite quadratic modules
(D1, Q1) and (D2, Q2) by

(D1 ⊕D2, Q1 ⊕Q2) := (D1 ×D2, (γ1, γ2) 7→ Q1(γ1) +Q2(γ2)). (1.2.1)

We say that a finite quadratic module D decomposes into D1 and D2, if it is isometric to
D1 ⊕D2. If D cannot be decomposed, it is called irreducible.
Definition 1.2.5. The level of D is the smallest positive integer N such that N ·Q(γ) ∈ Z
for all γ ∈ D.
Any finite quadratic module D decomposes (orthogonally) into its maximal p-subgroups.

We write
D =

⊕
p|N

Dp, (1.2.2)

where N is the level of D and p runs through the prime divisors of N . These Dp decompose
into Jordan components for which we introduce the symbols q±n (p-adic components) where
q is the power of an odd prime p and the symbols q±nt (odd 2-adic components) and q±2n

II

(even 2-adic components) where q is a power of 2, t ∈ Z/8Z and n ≡ t (mod 2). The
irreducible Jordan components are the ones with n = 1. Jordan components for the same
p-power compose and decompose as follows.

qε1n1 ⊕ qε2n2 ' q(ε1·ε2)(n1+n2), (1.2.3)
qε1n1
t1 ⊕ qε2n2

t2 ' q
(ε1·ε2)(n1+n2)
t1+t2 , (1.2.4)

qε1n1
t1 ⊕ qε22n2

II ' q
(ε1·ε2)(n1+2n2)
t1 . (1.2.5)

The ranks and subscripts add and the signs multiply.
Definition 1.2.6. Let q be the power of an odd prime p. The irreducible p-adic Jordan
components of exponent q are given by

qε1 :=
(
Z/qZ, γ 7→ a

q
γ2
)
, with

(
2a
p

)
= ε. (1.2.6)

If q is a power of 2, the irreducible even 2-adic Jordan components of exponent q are

q+2
II := ((Z/qZ)2, (γ1, γ2) 7→ 1

q
γ1γ2), (1.2.7)

q−2
II := ((Z/qZ)2, (γ1, γ2) 7→ 1

q
(γ2

1 + γ1γ2 + γ2
2)) (1.2.8)

11
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and the irreducible odd 2-adic Jordan components of exponent q are

qε1t :=
(
Z/qZ, γ 7→ t

2qγ
2
)
, with

(
t

2

)
= ε. (1.2.9)

We will further need the following invariants.

Definition 1.2.7. For an odd prime p and a p-power q we define the p-excess. For p = 2
and q a power of 2 we define the oddity. These invariants are given by

p-excess(qεn) :=

n(q − 1) (mod 8), if q = � or ε = +1,
n(q − 1) + 4 (mod 8), else,

(1.2.10)

oddity(qε2nII ) :=

0 (mod 8), if q = � or ε = +1,
4 (mod 8), else,

(1.2.11)

oddity(qεnt ) :=

t (mod 8), if q = � or ε = +1,
t+ 4 (mod 8), else,

(1.2.12)

where q = � means that q is a square. We extend these invariants to any finite quadratic
module by adding the invariants of the components in its Jordan decomposition. This is
well defined and yields additive invariants with respect to orthogonal direct sums. Further
we define the multiplicative Weil invariants γp(D) by setting

γp(D) =

e (oddity(D)/8) , if p = 2,
e (−p-excess/8) , else.

(1.2.13)

Remark 1.2.8. The Weil invariants of a finite quadratic module correspond to the classical
Weil invariants defined in [Wei64]. A proof can be found in [Zem15, Prop. 4.1].

Definition 1.2.9. We define the signature of a finite quadratic module D by

sign(D) := oddity(D)−
∑
p≥3

p-excess(D) (mod 8). (1.2.14)

If D is the discriminant form of an even lattice L, this agrees with the definition

sign(D) := sign(L) (mod 8). (1.2.15)

In this case equation (1.2.14) is called oddity formula (or Weil reciprocity law [Wei64,
Prop. 5]).
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1.3. Lattices
Let R be the ring of integers Z or a ring of p-adic integers Zp. Let F be the corresponding
field of fractions, that is Q or Qp.
Definition 1.3.1. An R-lattice L is a finitely generated R-module with a quadratic form
Q : L⊗R F → F such that the quadratic space (L⊗R F,Q) is non-degenerate. By lattice,
we mean a Z-lattice and by p-adic lattice, we mean a Zp-lattice.

Definition 1.3.2. For an R-lattice L with associated quadratic form Q and a factor f ∈ R,
we denote by L(f) the lattice L with scaled quadratic form f ·Q.

Definition 1.3.3. For an R-lattice L, we define its dual lattice L′ as

L′ := {λ ∈ L⊗R F | (λ, µ) ∈ R for all µ ∈ L} (1.3.1)

which is contained in the quadratic space associated to L.

Definition 1.3.4. If we L′ = L, we call the lattice L unimodular. We define the hyperbolic
plane as the unimodular lattice

U =
(
Z2, (x, y) 7→ xy

)
.

Definition 1.3.5. We define the Gram matrix of an R-lattice L with respect to a basis
b1, . . . , bn of L to be the matrix S with coefficients (bi, bj). This allows us to define

det(L) := det(S). (1.3.2)

Further we define the discriminant of this lattice by

disc(L) := (−1)
n(n−1)

2 det(L), (1.3.3)

where n is the rank of the lattice L.
Choosing a different R-basis for the lattice can change the determinant by a factor in

(R×)2. If L is a Z-lattice, the determinant is well-defined. Note that the discriminant
remains unchanged when adding hyperbolic planes.
Definition 1.3.6. An R-lattice L is called integral if its bilinear form takes values in R,
that is (λ, µ) ∈ R for all λ, µ ∈ L. If its quadratic form takes values in R, it is called even.
We see that even lattices are integral. Also a lattice is integral if and only if L ⊂ L′. In

this case we have the equality

|L′/L| = | det(L)| = | disc(L)|. (1.3.4)

If the rank of L is odd, then its discriminant form must have an odd 2-adic component
which is equivalent to 2| det(L) or 2| disc(L) (cf. [Kne02, chapter 2]).

13
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Definition 1.3.7. The discriminant form of an even Z-lattice L with quadratic form Q is
the finite quadratic module (L′/L,Q (mod 1)).

Definition 1.3.8. The level of an even lattice is the level of its discriminant form. This
is the smallest positive integer N such that N ·Q(γ) ∈ Z for all γ ∈ L′.

From now on let L be an even lattice. We define the associated p-adic lattices to be
Lp := L⊗Z Zp with quadratic form Qp(λ⊗ s) = s2Q(λ). In the same manner we can allow
real scalars, to associate the real quadratic space L⊗Z R to L.

Definition 1.3.9. The type and signature sign(L) of a lattice L are given by the corre-
sponding qualities of the real quadratic space associated to L.

The associated p-adic lattices also appear in the decomposition of the discriminant form
of L, that is

L′/L '
⊕
p

L′p/Lp (1.3.5)

where the concrete isometry is given by the Chinese Remainder Theorem. The quadratic
form on the components of the right hand side can be obtained by applying the Chinese
Remainder Theorem as a group isomorphism and then taking the quadratic form on L′/L.
This is isomorphic to choosing

L′p/Lp
Qp−→ Qp/Zp

'−→ Z[p−1]/Z ⊂−→ Q/Z. (1.3.6)

An isometry proving (1.3.5) is constructed explicitly in Section 4.1, where we give change
of basis Tp ∈ GLn(Zp) such that

L′p/Lp
T−→ L′p/Lp

Qp−→ Qp/Zp
'−→ Z[p−1]/Z ↪→ Q/Z (1.3.7)

gives the quadratic form for the right hand side of (1.3.5).

1.4. Canonical forms
Every p-adic lattice is an orthogonal direct sum of canonical forms. For proofs on how to
obtain such a direct sum (including the needed change of basis), see [Cas78]. We construct
the missing change of basis in the p = 2 case in Section A in the appendix. The canonical
forms correspond to Jordan components of discriminant forms and are as follows.

Lemma 1.4.1. Let p 6= 2 and Lp ' Znp with Gram matrix Sp. Then Sp is GLn(Zp)-
equivalent to a matrix of the form

diag(2ε1p
l1 , . . . , 2εnpln), (1.4.1)

with εi ∈ Z×p and li ∈ Z. If Lp is even, we have li ≥ 0. A block of length r of the form
pl · diag(4, . . . , 4, 4a) corresponds to (pl)εr in the Jordan decomposition, where ε =

(
a
p

)
.
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Let p = 2 and L2 ' Zn2 with Gram matrix S2. Then S2 is GLn(Z2)-equivalent to a matrix
of the form

diag(ε1p
l1 , . . . , εnp

lH )⊕
(
M⊕
i=1

2mi
(

0 1
1 0

))
⊕

 N⊕
j=1

2nj
(

2 1
1 2

) , (1.4.2)

with εh ∈ Z×2 and lh,mi, nj ∈ Z. If L2 is even, we have lh ≥ 1, mi ≥ 0 and nj ≥ 0. A block
of the form (t2l) corresponds to (pl)ε1t in the Jordan decomposition, where ε =

(
t
2

)
. Blocks

of the form 2m
(

0 1
1 0

)
correspond to components (2m)+2

II . Analogously the form 2m
(

2 1
1 2

)
corresponds to (2m)−2

II .

Conversely, this lemma allows us to “guess” local Gram matrices for discriminant forms.
We will use such a guess to compute Eisenstein series for even lattices purely from local
data, that is, purely from the genus symbol of the lattice in Section 3.4.

1.5. Genus symbols
Definition 1.5.1. Two R-lattices L,M are isometric if there is an isometry σ of the
associated quadratic spaces mapping one lattice to the other, that is σ(L) = M . In this
case we write L 'M and say that these lattices are in the same (isometry) class. We say
that two Z-lattices L and M are in the same genus, if we have Lp ' Mp for all primes p
and L⊗ R 'M ⊗ R.

Every genus consists of finitely many isometry classes [Kne02, Satz 21.3]. If the lattices
L and M are in the same genus, then L + H ' M + H are isomorphic, i.e. they belong
to the same class [Kne02, (27.6)]. From this we can deduce that L and M represent the
same element in the Witt group and hence have the same discriminant.

Definition 1.5.2. We define the genus symbol of a discriminant form or a lattice to be the
symbol of its Jordan decomposition. A genus is determined by its genus symbol together
with the type of its lattices.

Remark 1.5.3. It is possible, to obtain the discriminant of a lattice L purely from its
genus symbol. This is done as follows:
The genus symbol encodes the Jordan decomposition of the discriminant form of L. From

the oddity formula, we know the signature s = b+− b− (mod 8) of L and in particular the
parity of the rank n = b+ + b− of L. We have

sign(disc(L)) = (−1)
n(n−1)

2 sign(det(L)) = (−1)
n(n−1)

2 (−1)−b− =

(−1) b
+−b−

2 , n even,
(−1) b

+−b−−1
2 , n odd.
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From this we deduce

disc(L) =

 (−1) b
+−b−

2 |L′/L|, n even,
(−1) b

+−b−−1
2 |L′/L|, n odd,

 = (−1)
s(s−1)

2 |L′/L|. (1.5.1)

The right hand side can be computed purely from the genus symbol without knowledge of
the rank of L.

Remark 1.5.4. The parity of the rank of L is determined by the 2-adic components in
the Jordan decomposition.

Example 1.5.5. (i) The genus symbol 3−1 stands for the finite quadratic module(
Z/3Z, x 7→ x2

3 (mod 1)
)
,

which we can also realize as(1
3Z/Z, x 7→ 3x2 (mod 1)

)
.

We calculate

sign(3−1) = 0− 3-excess(3−1) = 0− 6 ≡ 2 (mod 8)

and
disc(3−1) = (−1) 2

2 |Z/3Z| = −3.

If we want to realize 3−1 as the discriminant form of an even lattice L, then L must
have even rank. It is easily seen, that L = (Z2, x 7→ xt ( 2 1

1 2 )x) fulfills the above
criteria. Over Z3, the Gram matrix of the lattice is equivalent to ( 2 0

0 6 ), which is itself
equivalent to ( 4·2 0

0 4·2·3 ) with
(

2
3

)
= −1 in accordance with Lemma 1.4.1.

(ii) The genus symbol 2−1
3 8−43−1 can be decomposed into irreducible components as

2−1
3 8+28−23−1. This means we can realize it as

Z/2Z× (Z/4Z)2 × (Z/4Z)2 × Z/3Z,

Q(x1, . . . , x6) = 3
4x

2
1 + 1

8x2x3 + 1
8
(
x2

4 + x4x5 + x2
5

)
+ 1

3x
2
6 (mod 1).

This finite quadratic module has level 12. Its signature is

s ≡ sign(2−1
3 8−43−1)

≡ oddity(2−1
3 ) + oddity(8−4)− 3-excess(3−1)

≡ (3 + 4) + 4− 6 ≡ 5 (mod 8)
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and the discriminant is given by

disc(2−1
3 8−43−1) = (−1)

s(s−1)
2 · 2 · 84 · 3 = 24576.

1.6. The Weil representation
For the definition of the Weil representation in our case, we follow [Bru02a]. Other aspects
of the Weil representation are introduced where needed. We realize the metaplectic double
cover Mp2(R) of SL2(R) as the group of pairs (M,φ(τ)), where M = ( a bc d ) ∈ SL2(R), and
φ is a holomorphic square root of cτ+d for τ ∈ H. Further we define Mp2(Z) as the inverse
image of SL2(Z) under the covering map Mp2(R)→ SL2(R). It is well known that Mp2(Z)
is generated by

T =
((

1 1
0 1

)
, 1
)

and S =
((

0 −1
1 0

)
,
√
τ

)
(1.6.1)

The Weil representation ρL with respect to an even lattice L is a unitary representation of
Mp2(Z) on the group ring C[L′/L] which we endow with the standard scalar product. If
we denote the standard basis of C[L′/L] by (eγ)γ∈L′/L, the Weil representation is defined
by

ρL(T )eγ = e(Q(γ))eγ, ρL(S)eγ = e((b− − b+)/8)√
|L′/L|

∑
δ∈L′/L

e(−(γ, δ))eδ, (1.6.2)

where b+− b− is the signature of L. We see that the signature of L is only needed modulo
8 and that the Weil representation only depends on the discriminant form of L.
We denote the dual Weil representation by ρ∗L which is essentially the same as the Weil

representation for the lattice L(−1).

Definition 1.6.1. For a half-integer k ∈ 1
2Z and an even lattice L, we define actions of

Mp2(Z) on C[L′/L]-valued functions on H via the Petersson slash operator

f |k,L(M,φ)(τ) = φ(τ)−2kρL(M,φ)−1f(Mτ), (1.6.3)
f |∗k,L(M,φ)(τ) = φ(τ)−2kρ∗L(M,φ)−1f(Mτ). (1.6.4)

1.7. Vector valued modular forms
Definition 1.7.1. A holomorphic function f : H → C[L′/L] is called a (weakly holomor-
phic) modular form of weight k ∈ 1

2Z with respect to ρL if

(i) f |k(M,φ) = f for all (M,φ) ∈ Mp2(Z) and

(ii) f has at most a pole at ∞.
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More precisely, this means that f has a Fourier expansion of the form

f(τ) =
∑

γ∈L′/L

∑
n∈Q

n�−∞

af (γ, n)e(nτ)eγ, (1.7.1)

that is, af (γ, n) = 0 for all but finitely many n < 0. The finite Fourier polynomial

Pf (τ) =
∑

γ∈L′/L

∑
n<0

af (γ, n)e(nτ)eγ (1.7.2)

is called the principal part of f . If the principal part is 0, we call f a (holomorphic) modular
form. Additionally if all Fourier coefficients af (γ, n) vanish for n ≤ 0, we call f a cusp
form. We denote the space of cusp (resp. holomorphic modular, resp. weakly holomorphic
modular) forms by Sk,ρL , (resp. Mk,ρL , resp. M !

k,ρL
) and we have the natural inclusions

Sk,ρL ⊂Mk,ρL ⊂M !
k,ρL

.

Note that the coefficients of f satisfy the symmetry af (γ, n) = (−1)k−(b+−b−)/2af (−γ, n)
for all n ∈ Q, γ ∈ L′/L. Every finite sum as in (1.7.2) which satisfies this symmetry will
be called a formal principal part.

1.8. Vector valued Eisenstein series
We fix an even lattice L and a weight k such that 2 < k ∈ 1

2Z. In analogy to the case of
classical modular forms, we define vector valued Eisenstein series of weight k with respect
to ρL by

EρL,k,β = 1
4

∑
(M,φ)∈〈T 〉\Mp2(Z)

eβ|k,L(M,φ) (1.8.1)

for any isotropic vector β ∈ L′/L. The Eβ define holomorphic modular forms and as
in the classical case, every holomorphic modular form for ρL can be written as a linear
combination of Eisenstein series and cusp forms.
In this thesis, we use formulas from [KY10], to compute the Fourier coefficients of

E = EρL,k,0 with sage. For a positive definite lattice of rank greater than 4, the Eisenstein
series E appears in the Siegel-Weil formula as a weighted sum of vector valued theta series
for representatives of classes in the same genus. We use the Siegel-Weil formula to test our
program. A second test is provided using the theory of Jacobi forms.
The Fourier coefficients of 2Eρ∗L,k,0 with respect to the dual Weil representation have

also been previously computed in [BK01]. Note that these formulas can be evaluated
using Igusa local zeta functions and that this approach is described in [Wil18c]. We use
these formulas to estimate the Fourier coefficients in the case that the lattice L splits a
scaled hyperbolic plane. As these Fourier coefficients are an obstruction to the existence
of certain Borcherds products, their estimates play a crucial role in trying to find new
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Borcherds products systematically.

1.9. Jacobi Forms
The Algorithm for the computation of vector valued modular forms for the Weil represen-
tation can be tested against the theory of Jacobi forms. Our standard reference is [EZ85].

Jacobi forms of even weight k ∈ Z≥4 and index m ∈ Z>0 for the group SL2(Z) are
holomorphic functions

f : H× C→ C.

that satisfy the following transformation laws

(i) f(aτ+b
cτ+d ,

z
cτ+d) = (cτ + d)ke

2πimcz2
cτ+d f(τ, z) for ( a bc d ) ∈ SL2(Z),

(ii) f(τ, z + λτ + µ) = (cτ + d)ke−2πim(λ2τ+2λz)f(τ, z) for (λ, τ) ∈ Z2,

and have a Fourier expansion of the form

(iii) f(τ, z) = ∑∞
n=0

∑
r∈Z

r2≤4nm
c(n, r)e2πi(nτ+rz).

As in the case of (vector valued) modular forms, we obtain examples of Jacobi forms by
defining Jacobi-Eisenstein series. This approach yields

Ek,m = 1
2
∑
c,d∈Z

(c,d)=1

∑
λ∈Z

(cτ + d)−kem
(
λ2aτ + b

cτ + d
+ 2λ z

cτ + d
− c2

cτ + d

)
, (1.9.1)

the Jacobi-Eisenstein series of weight k and index m. These series correspond to vector
valued Eisenstein series for a certain lattice (cf. Section 3.6). This allows us to test the
Fourier coefficients of these series against each other. The Fourier expansion is given by
the following theorem.

Theorem 1.9.1. The Fourier coefficients ek,m(n, r) of the Jacobi-Eisenstein series of
weight k and index m are given by 1 if 4nm = r2 and r ≡ 0 mod 2m, and by 0 if
4nm = r2 and r 6≡ 0 mod 2m. If 4nm > r2, we have

ek,1(n, r) = Lr2−4n(2− k)
ζ(3− 2k) , (1.9.2)

ek,m(n, r) = m−k+1 ∏
p|m

(
1 + p−k+1

)−1 ∑
d2|m
d|r

µ(d)
∑

a|(n, r
d
,m
d2 )
ak−1ek,1( nm

a2d2 ,
r

ad
). (1.9.3)

The Dirichlet L-series LD(s) is the usual one if D is a fundamental discriminant, i.e.
D = 1 or D is the discriminant of the quadratic field Q(

√
D). If D is not a fundamental
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discriminant, we may write D = D0f
2 where f ∈ Z≥0 and D0 is the discriminant of

Q(
√
D). We extend the definition of Dirichlet L-series to

LD(s) =


0, if D 6≡ 0, 1 mod 4,
ζ(2s− 1), if D = 0,
LD0(s)∑d|f µ(d)

(
D0
d

)
d−sσ1−2s(fd ), if D ≡ 0, 1 mod 4, D 6= 0.

(1.9.4)

Proof. The formula for ek,1 is given in [EZ85, Theorem 2.1], the general formula follows from
equation (13) in [EZ85, in Chapter 4] together with the formulas for Fourier coefficients
under Hecke operations in the same chapter.

Remark 1.9.2. If m is square-free, the factors in front of the sum simplify to

m−k+1 ∏
p|m

(
1 + p−k+1

)−1
= σ1−k(m)−1 (1.9.5)

in accordance with equation (7) after Theorem 2.1 in [EZ85].

1.10. Idele class characters and Dirichlet characters

It is a well-known fact that idele class characters with finite image correspond one-to-
one to primitive Dirichlet characters. We work out this correspondence explicitly in the
case of quadratic characters. In this case, an idele class character given by a Hilbert
symbol corresponds to a Dirichlet character given by a Kronecker symbol. The general
correspondence can be found in [Dei10]. More information on Hilbert symbols can be
found in [Ser73]. In the treatment of Dirichlet characters we follow [Zag81].
Let Ẑ = ∏

p<∞ Zp. We denote the finite adeles by Af = Ẑ ⊗Z Q and the adeles by
A = R×Af . For an element x = (xp)p≤∞ ∈ A, we denote by xf = (xp)p<∞ ∈ Af the finite
part of x. We denote the ideles by A× and refer to [Dei10, Chapter 5] for the topology
of A and A× which is given by the topology of restricted products. The rational numbers
can be embedded diagonally into A and we have Q× ⊂ A1 = {a ∈ A× | |a| = 1} where the
norm is given by

|a| =
∏
p≤∞
|ap|p.

The isomorphism
A×/Q× ' A1/Q× × (0,∞),

(xf , x∞)Q× 7→ ((xf ,
x∞
|x|

)Q×, |x|),

(xf , rx∞)Q× ←[ ((xf , x∞)Q×, r)

together with the fact that characters of A1/Q× have finite image shows that characters of
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1.10. Idele class characters and Dirichlet characters

A1/Q× correspond to characters of A×/Q× with finite image. The isomorphism

A1/Q× ' Ẑ× = (
∏
p<∞

Zp)× =
∏
p<∞

Z×p ,

(xp)Q× 7→
1
x∞

xf ,

(xf , 1)Q× ← [ xf

allows us to use the Chinese Remainder Theorem. We have∏
p<∞

Z×p ' lim←−
N∈Z≥0

(Z/NZ)×,

((zpj)j)p 7→ (zN)N , zN :=
n∑
i=1

z
p
ji
i

N

pjii

(
N

pjii
(mod pjii )

)−1

(mod N) for N =
n∏
i=1

pjii ,

((zpj)j)p ←[ (zN)N .

The correspondence of characters uses the following lemma.

Lemma 1.10.1 ([Dei10, Lemma 6.3.2]). The isomorphism

A1/Q× '
∏
p<∞

Z×p ' lim←−
N∈Z≥0

(Z/NZ)×

induces a bijection between the set of characters of the group A1/Q× and the set of all prim-
itive Dirichlet characters as follows: For a primitive Dirichlet character χ with modulus
N0, the composition

A1/Q× ' lim←−
N∈Z≥0

(Z/NZ)× proj.−−−→ (Z/N0Z)× χ−−→ T

defines a character of A1/Q×.

Let κ ∈ Q\{0}. The character ( · , κ) : A×/Q× → T has finite image. Without loss of
generality we may assume that κ is a square-free integer. Working through the various
isomorphisms yields the following correspondence.
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1. Preliminaries

Correspondence 1.10.2.

( · , κ) : A×/Q× → T,
(xp) 7→

∏
p≤∞

(xp, κ)p

l

( · , κ) : A1/Q× → T,
(xp) 7→

∏
p≤∞

(xp, κ)p

l

( · , κ) : Ẑ× =
∏
p<∞

Z×p → T,

(xp) 7→
∏
p<∞

(xp, κ)p

l

( · , κ) : lim←−
N∈Z≥0

(Z/NZ)× → T,

(zN) 7→
∏
p<∞

(xp, κ)p = (z8, κ)2
∏

2<p<∞
(zp, κ)p

where xp = (zp, zp2 , zp3 , . . .)

l

χD =
(
D

·

)
: Z/DZ→ T,

n 7→
(
D

n

)
,

where D is the fundamental discriminant defined by

D =

κ, if κ ≡ 1 mod 4,
4κ, else.

The last step in this correspondence deserves some more attention. The Hilbert symbol
on the fields Qp for p ≤ ∞ can be evaluated using Legendre symbols as in the following
theorem.
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1.10. Idele class characters and Dirichlet characters

Theorem 1.10.3 ([Ser73, Chapter III, Theorem 1]). For a, b ∈ R×, the Hilbert symbol
(a, b)∞ is 1 if a > 0 or b > 0 and −1 if a < 0 and b < 0. For a, b ∈ Q×p we write a = pαu
and b = pβv with u = (up, up2 , . . .), v = (vp, vp2 , . . .) ∈ Z×p . We then have

(a, b)p = (−1)αβε(p)
(
up
p

)β (
vp
p

)α
if 2 < p <∞,

(a, b)2 = (−1)ε(u4)ε(v4)+αω(v8)+βω(u8) if p = 2.

Here ε(t) := t−1
2 (mod 2) and ω(t) := t2−1

8 (mod 2).

We see that 2-adic integers are only needed modulo 8 in the 2-adic Hilbert symbol,
for all other primes p the p-adic integers are only needed modulo p. The last step in
Correspondence 1.10.2 is now a matter of case distinction. Recall that κ is a square-free
integer and zp ∈ Z×p .

If p is odd and p - κ, we have

(xp, κ)p = (−1)0·0·ε(p)
(
zp
p

)0 (
κ

p

)0

= 1.

If p is odd and p | κ, we get

(xp, κ)p = (−1)0·1·ε(p)
(
zp
p

)1 (
p−1κ

p

)0

=
(
zp
p

)
=
(
p′

zp

)
= χp′(zp),

using quadratic reciprocity with p′ = (−1)ε(p)p.

If p = 2, we see that

(x2, κ)2 = (−1)ε(z4)ε(2−ν2(κ)κ)+ν2(κ)ω(z8)

=

(−1)ε(z4)ε(κ), if 2 - κ,
(−1)ε(z4)ε(2−1κ)+ω(z8), if 2 || κ,

=



1, if κ ≡ 1 mod 4,(
−4
z4

)
= χ−4(z4), if κ ≡ 3 mod 4,(

8
z8

)
= χ8(z8), if κ ≡ 2 mod 8,(

−8
z8

)
= χ−8(z8), if κ ≡ 6 mod 8,

is given in terms of Kronecker symbols.

Putting all cases together using the fact that primitive Dirichlet characters with coprime
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1. Preliminaries

modulus are multiplicative yields

(z8, κ)2
∏

2<p<∞
(zp, κ)p = (z8, κ)2

∏
p|κ
p 6=2

(zp, κ)p

=



∏
p|κ χp′(zp), if κ ≡ 1 mod 4,

χ−4(z4)∏p|κ χp′(zp), if κ ≡ 3 mod 4,
χ8(z8)∏p|κ2

χp′(zp), if κ ≡ 2 mod 8,
χ−8(z8)∏p|κ2

χp′(zp), if κ ≡ 6 mod 8,

=

χκ(zκ), if κ ≡ 1 mod 4,
χ4κ(z4κ), else.

This proves the last step in Correspondence 1.10.2.
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2. Representation numbers

In this chapter we study different types of representation numbers. For polynomials, these
numbers count how often it takes the value 0 in a certain sense. Their Poincaré series is
related to the Igusa local zeta function. The representation numbers of lattices can be
viewed as the representation numbers for polynomials of degree 2.
Counting how often discriminant forms take certain values can be reduced to computing

these representation numbers for the Jordan components. We derive explicit formulas for
the 2-adic Jordan components. The Jordan components for odd primes can be treated by
computing the lengths of orbits with respect to the action of the orthogonal group.

2.1. The Igusa local zeta function - representation
numbers of polynomials

For our purposes it suffices to define the Igusa local zeta function as

Zf (s) =
∫
Znp
|f(x1, . . . , xn)|spdx1 . . . dxn, (2.1.1)

where the measure is normalized such that vol(Zp, dxi) = 1, f ∈ Zp[x1, . . . , xn] and s ∈ C
with <(s) > 0. For an overview and generalizations, we refer to [Den91]. The Igusa
local zeta function is a polynomial in t = p−s (cf. [Den84]). Whenever we state s ∈ C
without a condition on its real part, we talk about meromorphic extensions of the regarding
functions. Whenever convergence is an issue, we assume s to have a large real part and
usually <(s) > 0 suffices.
If we define Nk(f) = #

{
x ∈ Zp/pkZp

∣∣∣ f(x) ≡ 0 (mod pk)
}
, we have the equality

1− tZf (t)
1− t =

∑
k∈Z≥0

Nk(f)
pnk

p−ks. (2.1.2)

The term on the right hand side appears in the computations of [BK01], where it is eval-
uated without use of the Igusa local zeta function.
Note that the Igusa local zeta function can be computed for quadratic polynomials by

means of [CKW17]. These formulas were implemented in [Wilb].
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2. Representation numbers

2.1.1. Adding hyperbolic planes

The following theorem which was inspired by Observation 3.0.7 and Remark 3.1.7 shows
the behaviour of the Igusa local zeta function and the Poincaré series under addition of a
hyperbolic plane.

Theorem 2.1.1. Let p be a prime and f ∈ Zp[x1, . . . , xn]. Let H denote the hyperbolic
plane, given by the polynomial H = xn+1xn+2 ∈ Zp[xn+1, xn+2]. The Igusa local zeta
functions of f and f +H satisfy the relation

1− tZf (t)
1− t

(
1− t

p

)
= 1− tZf+H(t)

1− t

(
1− t

p

)∣∣∣∣∣
t=pt

(2.1.3)

or equivalently
(

1− t

p

) ∑
i∈Z≥0

Ni(f)
pni

ti =
(

1− t

p

) ∑
i∈Z≥0

Ni(f +H)
p(n+2)i ti

∣∣∣∣∣∣
t=pt

(2.1.4)

in terms of the Poincaré series for t = p−s and s ∈ C.

The proof relies on the following identity of representation numbers.

Lemma 2.1.2. Let p be a prime and f ∈ Zp[x1, . . . , xn]. Let H denote the hyperbolic plane,
given by the polynomial H = xn+1xn+2 ∈ Zp[xn+1, xn+2]. The representation numbers of f
and f +H satisfy the relation

pi
(
Ni(f)− pn−1Ni−1(f)

)
= Ni(f +H)− p(n+2)−1Ni−1(f +H)

for i > 0.

Proof. We recall the well known formula (cf. Lemma 3.5.3)

Ni(H − α) =

(ordp(α) + 1)(1− 1
p
)pi, ordp(α) < i,

i(1− 1
p
)pi + pi, ordp(α) ≥ i,

(2.1.5)

for any n ∈ Zp and i ∈ Z≥0. It is important that the representation number depends only
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2.1. The Igusa local zeta function - representation numbers of polynomials

on i and ordp(α), i.e. Ni(H − α) = Ni(H − pordp(α)). For i > 0, we deduce

Ni−1(f +H)

=Ni−1(f)Ni−1(H) +
∑

x∈(Zp/pi−1Zp)n
f(x)6≡0 (mod pi−1)

Ni−1(H − f(x))

=Ni−1(f)Ni−1(H) +
i−2∑
ν=0

#
{
x ∈ (Zp/pi−1Zp)n

∣∣∣ ordp(f(x)) = ν
}
Ni−1(H − pν)

=
(

(i− 1)(1− 1
p

)pi−1 + pi−1
)
Ni−1(f)

+
i−2∑
ν=0

#
{
x ∈ (Zp/pi−1Zp)n

∣∣∣ ordp(f(x)) = ν
}

(ν + 1)(1− 1
p

)pi−1

and

Ni(f +H)

=Ni(f)Ni(H) +
∑

x∈(Zp/piZp)n
f(x)6≡0 (mod pi)

Ni(H − f(x))

=Ni(f)Ni(H) +
i−1∑
ν=0

#
{
x ∈ (Zp/piZp)n

∣∣∣ ordp(f(x)) = ν
}
Ni(H − pν)

=
(
i(1− 1

p
)pi + pi

)
Ni(f) +

i−1∑
ν=0

#
{
x ∈ (Zp/piZp)n

∣∣∣ ordp(f(x)) = ν
}

(ν + 1)(1− 1
p

)pi

=
(
i(1− 1

p
)pi + pi

)
Ni(f) + #

{
x ∈ (Zp/piZp)n

∣∣∣ ordp(f(x)) = i− 1
}
i(1− 1

p
)pi

+
i−2∑
ν=0

#
{
x ∈ (Zp/piZp)n

∣∣∣ ordp(f(x)) = ν
}

(ν + 1)(1− 1
p

)pi

=
(
i(1− 1

p
)pi + pi

)
Ni(f) + (pnNi−1(f)−Ni(f)) i(1− 1

p
)pi

+
i−2∑
ν=0

pn#
{
x ∈ (Zp/pi−1Zp)n

∣∣∣ ordp(f(x)) = ν
}

(ν + 1)(1− 1
p

)pi

= piNi(f) + pnNi−1(f)i(1− 1
p

)pi

+
i−2∑
ν=0

pn+1#
{
x ∈ (Zp/pi−1Zp)n

∣∣∣ ordp(f(x)) = ν
}

(ν + 1)(1− 1
p

)pi−1.
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2. Representation numbers

Together, this yields

Ni(f +H)− pn+1Ni−1(f +H)

=piNi(f) + pnNi−1(f)i(1− 1
p

)pi − pn+1
(

(i− 1)(1− 1
p

)pi−1 + pi−1
)
Ni−1(f)

=pi
(
Ni(f)− pn−1Ni−1(f)

)
,

which finishes the proof.

Example 2.1.3. Let p = 3, n = 1, i = 2 and f(x1) = x2
1. By counting, we get

N1(f) = 1, N1(f +H) = 9,
N2(f) = 3, N2(f +H) = 99.

We see that
32(3− 30 · 1) = 18 = 99− 32 · 9,

and no simpler relation between the representation numbers seems possible.

Proof of Theorem 2.1.1. The left hand side of (2.1.4) is(
1− t

p

) ∑
i∈Z≥0

Ni(f)
pni

ti =
∑
i∈Z≥0

Ni(f)
pni

ti − Ni(f)
pni+1 t

i+1

= 1 +
∑
i>0

(
Ni(f)
pni

− Ni−1(f)
pn(i−1)+1

)
ti

= 1 +
∑
i>0

(
Ni(f)− pn−1Ni−1(f)

) ti

pni
.

The right hand side is
(

1− t

p

) ∑
i∈Z≥0

Ni(f +H)
p(n+2)i ti

∣∣∣∣∣∣
t=pt

=
∑
i∈Z≥0

Ni(f +H)
p(n+2)i (pt)i − Ni(f +H)

p(n+2)i+1 (pt)i+1

= 1 +
∑
i>0

(
Ni(f +H)
p(n+1)i − Ni−1(f +H)

p(n+2)(i−1)+1−i

)
ti

= 1 +
∑
i>0

(
Ni(f +H)− p(n+2)−1Ni−1(f +H)

) ti

p(n+1)i .

By Lemma 2.1.2, both sides agree.

Applying Theorem 2.1.1 repeatedly, yields the following result.

28



2.1. The Igusa local zeta function - representation numbers of polynomials

Corollary 2.1.4. Let p be a prime and f ∈ Zp[x1, . . . , xn]. Let H(h) denote h ∈ Z≥0 copies
of the hyperbolic plane, given by the polynomial

H(h) = xn+1xn+2 + · · ·+ xn+2h−1xn+2h ∈ Zp[xn+1, . . . , xn+2h].

The Igusa local zeta functions of f and f +H(h) satisfy the relation

1− tZf (t)
1− t

(
1− t

p

)
=

1− tZf+H(h)(t)
1− t

(
1− t

p

)∣∣∣∣∣
t=pht

, (2.1.6)

or equivalently
(

1− t

p

) ∑
i∈Z≥0

Ni(f)
pni

ti =
(

1− t

p

) ∑
i∈Z≥0

Ni(f +H(h))
p(n+2h)i ti

∣∣∣∣∣∣
t=pht

(2.1.7)

in terms of the Poincaré series for t = p−s and s ∈ C.

Choosing f = 0 ∈ Zp (as a polynomial in 0 variables), we can compute the Igusa local
zeta function of h copies of the hyperbolic plane. Note that

Z0(t) = 0. (2.1.8)

Corollary 2.1.5. For h ∈ Z≥0 we have

ZH(h)(t) =

(
1− 1

p

) (
1− 1

ph

)
(
1− t

p

) (
1− t

ph

) .
This formula agrees with [CKW17, Lemma 5.7], where hyperbolic planes are represented

by double the polynomials we use here.
Choosing any f ∈ Zp, we could also recover Lemma 3.5.3 by computing Z−f+H(t). This

is a nice exercise. As a first step one would compute

Zf (t) = tordp(f), (2.1.9)

which is 0 if f = 0. We now combine this with Corollary 2.1.4.

Proposition 2.1.6. Let p be a prime and f ∈ Zp. Let H(h) denote h ∈ Z≥0 copies of the
hyperbolic plane, given by the polynomial

H(h) = x1x2 + · · ·+ x2h−1x2h ∈ Zp[x1, . . . , x2h].
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2. Representation numbers

The representation numbers of −f +H(h) are given by

Ni(−f +H(h))

=


ph(i−1)

[
(ph − 1)∑i

k′=0 p
(h−1)k′ + 1

]
, if ordp(f) ≥ i,

ph(i−1)(ph − 1)∑i
k′=i−ordp(f) p

(h−1)k′ , if ordp(f) < i,

=



pi
(
i
(
1− 1

p

)
+ 1

)
, if ordp(f) ≥ i and h = 1,

pi (ordp(f) + 1)
(
1− 1

p

)
, if ordp(f) < i and h = 1,

ph(i−1)
[
ph−1
ph−1−1

(
p(h−1)(i+1) − 1

)
+ 1

]
, if ordp(f) ≥ i and h > 1,

ph(i−1) ph−1
ph−1−1

(
p(h−1)(i+1) − p(h−1)(i−ordp(f))

)
, if ordp(f) < i and h > 1.

Proof. Let j = ordp(f). The case f = 0 follows from f 6= 0 for large j, so we assume
f 6= 0, i.e. j <∞. We have Z−f (t) = Zf (t) = tordp(f), so by Corollary 2.1.4, the equality

1− tj+1

1− t

(
1− t

p

)
=

1− tZ−f+H(h)(t)
1− t

(
1− t

p

)∣∣∣∣∣
t=pht

holds. Replacing by the Poincaré series on the right hand side gives

(1− tj+1)
(
1− t

p

)
(1− t) (1− ph−1t) =

∑
i∈Z≥0

Ni(−f +H(h))
p2hi (pht)i.

Carrying out the multiplication in the numerator and replacing the denominator on the
left hand side by geometric series, we get(

1− t

p
− tj+1 + tj+2

p

) ∑
k∈Z≥0

k∑
l=0

p(h−1)ltk =
∑
i∈Z≥0

Ni(−f +H(h))
phi

ti.

Comparing the coefficients of both sides finishes the proof.

Note that for odd primes this result is a special case of [Sie35, Hilfssatz 16] (compare
[BK01, Theorem 4.5]). We could also have obtained it analogously to [BM17, Lemma 2.4].

2.1.2. A special case for p = 2
The aim of this section is to prove version of [Sie35, Hilfssatz 16] for p = 2 (cf. Theorem
2.3.3).

Proposition 2.1.7. Let α ∈ Z2 and f = −α + x2
1 + x1x2 + x2

2 ∈ Z2[x1, x2]. Let H(h−1)
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2.1. The Igusa local zeta function - representation numbers of polynomials

denote h− 1 ∈ Z≥0 copies of the hyperbolic plane, given by the polynomial

H(h−1) = x3x4 + · · ·+ x2h−1x2h ∈ Zp[x3, . . . , x2h].

The representation numbers of f +H(h−1) are given by

Ni(f +H(h−1))

=


2h(i−1)

[
(2h + 1)(−1)i∑l

k′=0(−2h−1)k′ + (−1)i+1
]
, if ord2(α) ≥ i,

2h(i−1)(2h + 1)(−1)i∑i
k′=i−ord2(α)(−2h−1)k′ , if ord2(α) < i,

=


2h(i−1)

[
2h+1

2h−1+1

(
2(h−1)(i+1) − (−1)i+1

)
+ (−1)i+1

]
, if ord2(α) ≥ i,

2h(i−1) 2h+1
2h−1+1

(
2(h−1)(i+1) − (−1)ord2(α)+12(h−1)(i−ord2(α))

)
, if ord2(α) < i.

Proof. Let j = ord2(α). The case α = 0 follows from f 6= 0 for arbitrarily large j, so we
assume f 6= 0, i.e. j <∞. For h = 1, we have Proposition 2.3.2, i.e.

Ni(f) =

2i−1 3+(−1)i
2 , if ord2(α) ≥ i,

2i−1 3 1+(−1)ord2(α)

2 , if ord2(α) < i.

This gives the Poincaré series

∑
i∈Z≥0

Ni(f)
22i ti =

(
1 + (−1)j

2j+1 t
j+1
) (

1 + t
4

)
(
1− t

2

) (
1 + t

2

) .

Applying Corollary 2.1.4, we get(
1 + (−1)j

2j+1 t
j+1
) (

1 + t
4

)
(
1− t

2

) (
1 + t

2

) (
1− t

2

)
=

∑
i∈Z≥0

Ni(f +H(h−1))
22hi ti

(
1− t

2

)∣∣∣∣∣∣
t=2h−1t

,

which simplifies to(
1 + (−1)j

2j+1 t
j+1
) (

1 + t
4

)
(1− 2h−2t)

(
1 + t

2

) =
∑
i∈Z≥0

Ni(f +H(h−1))
22hi (2h−1t)i,

Carrying out the multiplication in the numerator and replacing the denominator on the
left hand side by geometric series, we get(

1 + t

4 + (−1)j
2j+1 t

j+1 + (−1)j
2j+3 t

j+2
) ∑
k∈Z≥0

1− (−21−h)k+1

1 + 21−h tk =
∑
i∈Z≥0

Ni(f +H(h−1))
2−(h+1)i ti.

Comparing the coefficients of both sides finishes the proof.
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2. Representation numbers

2.2. Representation numbers associated to lattices
Let L be an even lattice and γ ∈ L′. Following [BK01], we define the representation
numbers

Nγ,n(a) = NL
γ,n(a) = # {r ∈ L/aL | Q(r − γ) + n ≡ 0 (mod a)} (2.2.1)

for an integer a. Identifying L with (Zn, x 7→ 1
2x

tSx), we can write

Nγ,n(a) = NL
γ,n(a) = #

{
r ∈ (Z/aZ)n

∣∣∣ (r − γ)tS(r − γ) + n ≡ 0 (mod a)
}
. (2.2.2)

These representation numbers are multiplicative, i.e.

Nγ,n(a1a2) = Nγ,n(a1)Nγ,n(a2)

for coprime a1 and a2. For prime powers, these are special cases of the representation
numbers of the last section. We will use this relation in Section 3.2 to compute vector
valued Eisenstein series for the dual Weil representation.

2.3. Representation numbers associated to finite
quadratic modules

In this section, we recall how to compute representation numbers of finite quadratic mod-
ules from [Opi13] and derive a closed formula for the representation numbers of even
2-adic Jordan components. Let D = ⊕

pDp be a finite quadratic module decomposed into
its maximal p-subgroups.
We define representation numbers of D by

N(D, j) := |{γ ∈ D : Q(γ) ≡ j (mod 1)}| (2.3.1)

for any j ∈ Q/Z. They count how often the quadratic form Q takes the value j (mod 1)
on D.
One need for computing representation numbers arises from their appearance in the

dimension formula for spaces of vector valued modular form with respect to the Weil
representation associated to D (cf. Section 4.4).
The representation numbers of orthogonal direct sums can be obtained by repeatedly

applying
N(D ⊕D′, j) =

∑
j1 (mod 1)
j2 (mod 1)

j1+j2=j (mod 1)

N(D, j1) ·N(D′, j2). (2.3.2)

Hence it suffices to compute the representation numbers of the Dp.
If p is odd and Dp is a finite quadratic module of order pl, then the representation
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2.3. Representation numbers associated to finite quadratic modules

numbers can be computed with the theory from Section 4.2.1 and Section 4.2.2 as follows.
The orbits O denote orbits of Dp with respect to the action of the orthogonal group O(Dp).

N(Dp, j) =
∑

v1|vp|···|vpk |p
l

v
pj

v
pi
t
pj
≡pj−itpi (mod 1)

v1t1≡j (mod 1)

|O(D, pk+1, v1, . . . , vpk , t1, . . . , tpk)|

=
∑

O an orbit of D with v1t1≡j (mod 1)
|O|

(2.3.3)

where elements γ ∈ O(D, pk+1, v1, . . . , vpk , t1, . . . , tpk) have norm Q(γ) = v1t1 (mod 1).

2.3.1. 2-adic Jordan components

We know that we can decompose odd 2-adic Jordan components as follows.

q±nt '



q±nt , if n = 1,

q±1
t1 ⊕ q

+1
t2 , if n = 2,

q±1
t1 ⊕ q

+1
t2 ⊕ q

+1
t3 ⊕ q

+2n−3
2

II , if n ≥ 3 is odd,

q±1
t1 ⊕ q

+1
t2 ⊕ q

+1
t3 ⊕ q

+1
t4 ⊕ q

+2n−4
2

II , if n ≥ 4 is even,

(2.3.4)

where ∑i ti = t (mod 8),
(
t1
2

)
= ±1 and

(
ti
2

)
= +1 if i ≥ 2. If such ti do not exist then

q±nt is not a valid Jordan component. This can only happen if n = 1 or n = 2 as long as
t ≡ n (mod 2). Recall that for even 2-adic Jordan components, we have

q±2n
II '


q+2n
II , if ± = +,

q−2
II ⊕ q

+2(n−1)
II , if ± = −.

(2.3.5)

It suffices to know the representation numbers of all the components occurring in (2.3.4)
and (2.3.5) since we can combine them using equation (2.3.2).
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2. Representation numbers

Proposition 2.3.1 ([Opi13, Theorem 3.3]). Let q = 2l with l ≥ 1. Then

N(q+2n
II ,

j

q
)

=


(
q
2

)n [
(2n − 1)∑l

k′=0 2(n−1)k′ + 1
]
, if j = 0 (mod 2l),(

q
2

)n
(2n − 1)∑l

k′=l−k 2(n−1)k′ , if 2k ‖ j 6= 0 (mod 2l),

=



q
2 (l + 2) , if j = 0 (mod 2l) and n = 1,
q
2 (k + 1) , if 2k ‖ j 6= 0 (mod 2l) and n = 1,(
q
2

)n [ 2n−1
2n−1−1

(
2(n−1)(l+1) − 1

)
+ 1

]
, if j = 0 (mod 2l) and n > 1,(

q
2

)n 2n−1
2n−1−1

(
2(n−1)(l+1) − 2(n−1)(l−k)

)
, if 2k ‖ j 6= 0 (mod 2l) and n > 1.

Proof. This is Proposition 2.1.6 for p = 2. The original proof used induction on n. The
case n = 1 can be obtained by induction on l and is well known (cf. Lemma 3.5.3). The
induction step was done by a lengthy computation using equation (2.3.2).

Proposition 2.3.2 ([Opi13, Theorem 3.4]). Let q = 2l with l ≥ 1. Then

N(q−2
II ,

j

q
)

=


q
2

3+(−1)l
2 , if j = 0 (mod 2l),

q
2 3 1+(−1)k

2 , if 2k ‖ j 6= 0 (mod 2l),

=



2l, if j = 0 (mod 2l) and l is even,

2l−1, if j = 0 (mod 2l) and l is odd,

3 · 2l−1, if 2k ‖ j 6= 0 (mod 2l) and k is even,

0, if 2k ‖ j 6= 0 (mod 2l) and k is odd.

Proof. We sketch the proof form [Opi13] for the convenience of the reader. For small l we
obtain the representation numbers by counting appropriate elements. This yields

N(2−2
II , 0) = 1,

N(2−2
II ,

1
2) = 3

(2.3.6)
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2.3. Representation numbers associated to finite quadratic modules

and
N(4−2

II , 0) = 4,

N(4−2
II ,

1
4) = 6,

N(4−2
II ,

1
2) = 0,

N(4−2
II ,

3
4) = 6.

(2.3.7)

For l > 2, we can prove the recursion formula

N(q−2
II , j) =


2 ·N(

(
q
2

)−2

II
, j), if j is odd,

0, if 2 ‖ j 6= 0 (mod q).
(2.3.8)

The complete formula follows by induction.

Combining these propositions using equation (2.3.2), we get a closed formula for all even
2-adic components. Note that this is a generalization of [Sch06, Proposition 3.1].
Theorem 2.3.3. Let q = 2l with l ≥ 1, ε = ±1. Then

N(qε2nII ,
j

q
)

=


(
q
2

)n [
(2n − ε)εl∑l

k′=0(ε2n−1)k′ + εl+1
]
, if j = 0 (mod 2l),(

q
2

)n
(2n − ε)εl∑l

k′=l−k(ε2n−1)k′ , if 2k ‖ j 6= 0 (mod 2l),

=



q
2 (l + 2) , if j = 0 (mod 2l), ε = +1 and n = 1,
q
2 (k + 1) , if 2k ‖ j 6= 0 (mod 2l), ε = +1 and n = 1,(
q
2

)n [ 2n−ε
2n−1−ε

(
2(n−1)(l+1) − εl+1

)
+ εl+1

]
, if j = 0 (mod 2l), ε = −1 or n > 1,(

q
2

)n 2n−ε
2n−1−ε

(
2(n−1)(l+1) − εk+12(n−1)(l−k)

)
, if 2k ‖ j 6= 0 (mod 2l), ε = −1 or n > 1.

Proof. For ε = +1, this is Proposition 2.3.1. For ε = −1, this is Proposition 2.1.7.

The representation numbers of irreducible odd 2-adic Jordan components are all closely
related. They can be reduced to

Nsq(n, j) := |{a ∈ {0, . . . , n− 1} : a2 = j (mod n)}| (2.3.9)

for n ∈ Z≥1 and j ∈ Z, which we call square representation numbers.
Lemma 2.3.4 ([Opi13, Lemma 3.6]). Let q = 2l with l ≥ 1. We have

N(q±1
t ,

j

2q ) = 1
2Nsq(2q, jt−1), (2.3.10)
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2. Representation numbers

where t−1 refers to the inverse of t (mod 2q).

The square representation numbers can be given as follows.

Proposition 2.3.5 ([Opi13, Proposition 3.7]). Let q = 2l with l ≥ 1. We have

Nsq(q, j) =



2 l
2 , if l is even and j = 0 or j = 2l−2 (mod 2l),

2 l−1
2 , if l is odd and j = 0 or j = 2l−1 (mod 2l),

2 k
2 +2, if j = 2ka (mod 2l) with a = 1 mod 8 and k ≤ l − 3 is even,

0, else.

We define 2-torsion representation numbers of D by

N2-torsion(D, j) := |{γ ∈ D : 2γ = 0 and Q(γ) = j (mod 1)}| (2.3.11)

for any j ∈ Q/Z. It tells us how often the quadratic form Q takes the value j mod 1
on D2. The non trivial 2-torsions of D are elements of the 2-adic part of D. It suffices to
calculate them for the Jordan components occurring in (2.3.4) and (2.3.5).

Lemma 2.3.6 ([Opi13, Bemerkung 5.1]). Let q = 2l with l ≥ 1. We have

N2-torsion

((
qε2nII

)
2
,
j

q

)
=



4n+ε2n
2 , if l = 1 and j = 0 (mod 2),

4n−ε2n
2 , if l = 1 and j = 1 (mod 2),

4n, if l ≥ 2 and j = 0 (mod 2l),
0, if l ≥ 2 and j 6= 0 (mod 2l),

(2.3.12)

and

N2-torsion

((
q±1
t

)
2
,
j

2q

)
=


1, if l = 1 and j = 0 or t (mod 4),
1, if l = 2 and j = 0 or q (mod 2q),
2, if l ≥ 3 and j = 0 (mod 2q),
0, else.

(2.3.13)
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3. Fourier coefficients of Eisenstein
series

One way to obtain formulas for the vector valued Eisenstein series for the Weil representa-
tion is described in [KY10], where the computation of certain p-adic integrals (generalized
local densities) is key. This setting gives a straight forward interpretation of the Siegel-Weil
formula in the case of positive definite even lattices of rank greater or equal to 5.
A second way is obtained using the formulas from [BK01, Theorem 4.6] and to state them

in terms of the Igusa local zeta functions which can be evaluated by means of [CKW17].
This approach has been used in [Wil18a; Wil18b; Wil18c] from which we can also get
cusp forms. Using this approach with the formulas from [Sch18], we can also compute the
Fourier coefficients of Eρ∗L,k,β for any isotropic β ∈ L′/L and a suitable weight.
By comparison of both ways and the respective formulas we can obtain a proof for the

following observation. This leads to formulas for the Igusa local zeta function in terms of
the generalized local densities, a connection we believe has not been made explicitly before.

Observation 3.0.7. Comparing the generalized local densities and the local factors in
[Wilb](some documentation in [Wila], using the Igusa local zeta function) we observe the
following equality of rational functions. For an even lattice L = Zn with Gram matrix S
and µ ∈ L′ = S−1Zn, we have

Wp,m,µ(X) =
1− tZ− 1

2x
tSx+xtSµ+m−Q(µ)(t)

1− t

(
1− t

p

)∣∣∣∣∣
t=pX

. (3.0.1)

This observation in itself leads to much of the simplifications which can be made in the
approach of [BK01]. This is achieved by translating properties which are immediate for
the local densities Wp,m,µ(X) on the left hand side to properties regarding the Igusa local
zeta function. Most notable is the case of “adding hyperbolic planes”, which we described
in Section 2.1.1.
The algorithms to compute the Fourier coefficients of the vector valued Eisenstein series

were first tested against [Bun98], where three bases for specific spaces of holomorphic
modular forms are computed in terms of classical theta functions. As a second test case,
the Fourier coefficients were tested against the Fourier coefficients of Jacobi forms. The
most general test cases are obtained be the Siegel-Weil formula. We list the considered
lattices in appendix C.
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3. Fourier coefficients of Eisenstein series

3.1. The approach of Kudla and Yang
In this section, we adapt the formulas in [KY10] to our setting. We want to compute the
Fourier coefficients of the Eisenstein series

EL(τ, s; `) = 1
4

∑
γ∈〈T 〉\Mp2(Z)

[
=(τ)(s+1−`)/2e0

] ∣∣∣
`,L
γ. (3.1.1)

When s = ` − 1 > 1, we obtain the holomorphic vector valued Eisenstein EρL,`,0.We do
not restrict to this case too early in order to keep the implementations derived form these
formulas open to future use cases.
We replace the group ring C[L′/L] with a ring of Schwartz functions. This amounts to

replacing the standard generators eµ by characteristic functions φµ in our notation.

3.1.1. Setup

The basic setup taken from [Kud03; BY09; KY10] is as follows.
Let G = SL2 viewed as an algebraic group over Q, and let P = NM be its parabolic

subgroup of upper triangular matrices with notation

M = {m(a) | a invertible} , m(a) =
(
a 0
0 a−1

)
,

N = {n(b) | b} , n(b) =
(

1 b
1 0

)
.

We have the Iwasawa decomposition G(A) = P (A)K, where K = K∞Kf is given by
K∞ = SO2(R) at the Archimedean place and Kf = SL2(Ẑ) = ∏

p<∞ SL2(Zp) at the finite
places. For θ ∈ R and τ = u+ iv ∈ H, we define

kθ =
(

cos θ sin θ
− sin θ cos θ

)
∈ SO2(R), gτ = n(u)m(v 1

2 ) ∈ P (R). (3.1.2)

The Möbius transformation associated to kθ fixes i, whereas gτ sends i to τ .
We let

1→ C1 → G′A → G(A)→ 1 (3.1.3)

be the metaplectic extension of G(A) by C1, the unit circle in C. For details on this exten-
sion, we refer to [KRY06, Chapter 8.5]. Elements of G′A are written as (g, z) ∈ G(A)× C1

and the multiplication can be given in terms of the Leray cocycle.
We fix an even lattice L with quadratic form Q of signature b+ − b− and rank n. We

say that we are in the “even case”, if the rank of L is even, otherwise we are in the “odd
case”. Define the set of “bad primes” to be S = {p | p prime and p | det(L)}. The prime
2 is always bad in the odd case. To L we associate the quadratic space V = L ⊗Z Q and
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3.1. The approach of Kudla and Yang

the quadratic characters

χV (x) = (x, disc(L))A× , χV,p(x) = (x, disc(L))p (3.1.4)

given in terms of adelic and p-adic Hilbert symbols. We represent these characters by a
square-free integer κ satisfying

χV (x) =

(x, κ)A, in the even case,
(x, 2κ)A, in the odd case.

(3.1.5)

We assume (−1)` = sign(κ), in the even case,
` ≡ 1

2sign(κ) (mod 2), in the odd case,
(3.1.6)

which is equivalent to 2` ≡ b+ − b− (mod 4).

Remark 3.1.1. If we were using the dual Weil representation instead, we would get the
above condition for L(−1), where the roles of b+ and b− are interchanged. This is equivalent
to the condition 2`+ b+ − b− ≡ 0 (mod 4) encountered in [BK01] for ρ∗L.

For s ∈ C, we have the principal series representation I(s, χV ) of G′A. The sections
Φ(s) ∈ I(s, χV ) are smooth functions on G′A satisfying

Φ((n(b)m(a), z)g′, s) = χV (a)|a|s+1Φ(g′, s)

1, in the even case,
z, in the odd case,

(3.1.7)

for all b ∈ A and a ∈ A×. Such a section is called standard, if its restriction to K ′ (the
inverse image of K in G′A) is independent of s. To a standard section Φ(s) ∈ I(s, χV ), we
associate the Eisenstein series

E(g′, s,Φ) =
∑

γ∈P (Q)\G(Q)
Φ(γg′, s). (3.1.8)

It is known that this series is convergent for <(s) > 1 and that it has a meromorphic
continuation to the whole s-plane.
The components of the vector valued Eisenstein series can be given in terms of Eisenstein

series for standard sections. We follow [BY09] for this identification. We fix the standard
additive character ψ : A/Q→ C× given by ψ∞(x∞) = e(x∞) = e2πix∞ and ψp(xp) = e(−xp)
(cf. [Dei10, Kapitel 5.4]). We define the characteristic functions φµ = char(µ+ L⊗ Ẑ) for
µ ∈ L′/L. They span the space SL ⊂ S(V (Af )) of Schwartz functions on V (Af ). There is
a Weil representation ω = ⊗ωV,ψp acting on Schwartz functions and a G(A)-intertwining
map

λ : S(V (A))→ I(n2 − 1, χV ), λ(φ)(g′) = (ω(g′)φ)(0). (3.1.9)
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3. Fourier coefficients of Eisenstein series

At the Archimedean place, we use the unique standard section Φ`
∞ ∈ I(s, χV ) satisfying

Φ`
∞(kθ, s) = ei`θ. (3.1.10)

Using the Iwasawa decomposition, this amounts to

Φ`
∞(n(b)m(a)kθ, s) = χV (a)|a|s+1ei`θ. (3.1.11)

The vector valued Eisenstein series can now be written in the form (cf. [BY09, equations
(2.16) and (2.17)])

EL(τ, s; `) = 1
4

∑
γ∈〈T 〉\Mp2(Z)

[
=(τ)(s+1−`)/2φ0

] ∣∣∣
`
γ

= v−`/2
∑

µ∈L′/L
E(gτ , s; Φ`

∞ ⊗ λf (φµ))φµ.
(3.1.12)

We denote the components by

E(τ, s,Φ`
∞ ⊗ λf (φµ)) := v−`/2E(g′τ , s,Φ`

∞ ⊗ λf (φµ)). (3.1.13)

3.1.2. The Siegel-Weil formula

The Siegel-Weil formula identifies an integral of a theta function with an Eisenstein series
at s = s0 := n/2 − 1 (i.e. weight n/2). We will state it in a vector valued form in the
case of positive definite even lattices of rank n ≥ 5. We state the Siegel-Weil formula as
given in [Kud03]. The mass of the genus of L appears naturally and we use methods and
notation from [Kne02, Kapitel X] to discuss this.
Let L be a positive definite even lattice of rank n ≥ 5. As before we set V = L ⊗Z Q.

We define the adelic orthogonal groups by

OA(V ) =

u = (up)p ∈
∏
p≤∞

O(Vp)

∣∣∣∣∣∣ upLp = Lp almost all p

 ,
OAf (V ) =

u = (up)p ∈
∏
p<∞

O(Vp)

∣∣∣∣∣∣ upLp = Lp almost all p

 .
(3.1.14)

For a lattice M ⊃ L, we define the stabilizer

OAf (V,M) =
{
u ∈ OAf (V )

∣∣∣ uM = M
}
. (3.1.15)

For g′ ∈ G′A, h ∈ OA(V ) and a Schwartz function φ ∈ S(V (A)), the theta series

θ(g′, h, φ) =
∑

x∈V (Q)
ω(g′)φ(h−1x) (3.1.16)
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3.1. The approach of Kudla and Yang

defines a smooth function on G′A ×OA(V ). The theta integral

I(g′, φ) =
∫
O(V )\OA(V )

θ(g′, h, φ)dh (3.1.17)

converges absolutely by Weil’s convergence criterion. The measure is normalized such
that vol(O(V )\OA(V ), dh) = 1. In our particular case, the Siegel-Weil formula takes the
following form.

Siegel-Weil formula, Theorem 3.1.2 (cf. [Kud03, Theorem 4.1]).

E(g′, s0, λ(φ)) = I(g′, φ)

We follow the proof of [Kud03, Proposition 4.22] to further evaluate the right hand side
of the Siegel Weil formula in the case that φ = φµ for µ ∈ L′/L. As a special case of
[Kne02, Satz 31.13], we have the decomposition

OAf (V ) =
h(L)⋃
j=1

O(V )hjOAf (V, L) (3.1.18)

where h(L) is the class number of L. The hj can be chosen such that the lattices hjL
represent all classes in the genus of L. Their orthogonal groups are given by

O(hjL) ' Γj := O(V ) ∩
(
OR(V )hjOAf (V, L)h−1

j

)
. (3.1.19)

These are finite groups because the hjL are positive definite. We let φ0(x) = e−2πQ(x)

denote the Gaussian and calculate

I(g′, λ(φ0 ⊗ φµ))dh =
∫
O(V )\OA(V )

θ(g′, h, λ(φ0 ⊗ φµ))dh

=
∑
j

∫
Γj\ORhjOAf (V,L)

θ(g′, h, λ(φ0 ⊗ φµ))dh
(3.1.20)

By [Nik79, Corollary 1.9.6], the canonical homomorphism OAf (V, L)→ O(L′/L) is surjec-
tive. Hence we can symmetrize φµ with respect to O(L′/L) without changing the integral.

∑
j

∫
Γj\ORhjOAf (V,L)

θ(g′, h, λ(φ0 ⊗ φµ))dh

=
∑
j

∫
Γj\ORhjOAf (V,L)

θ

g′, h, λ
φ0 ⊗

1
|O(L′/L)|

∑
γ∈O(L′/L)

φγµ

 dh

= vol(OR(V )OAf (V, L))
∑
j

1
|O(hjL)|θ

g′, hj, λ
φ0 ⊗

1
|O(L′/L)|

∑
γ∈O(L′/L)

φγµ


(3.1.21)
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3. Fourier coefficients of Eisenstein series

For g′ = g′τ , we have
(ω∞(g′τ )φ0)(x) = v`/2e2πiQ(x)τ . (3.1.22)

We recall the normalization of the measure dh, and infer

1 = vol(O(V )\OA(V ), dh)
= vol(OR(V )OAf (V, L)),

(3.1.23)

which implies

vol(OR(V )OAf (V, L)) =
∑

j

1
|O(hjL)|

−1

(3.1.24)

which is the reciprocal of the mass of the genus of L in the sense of [Kne02, (35.1)].
Summarizing, we have the following expression for the Eisenstein series of weight ` = n/2,

E(τ, s0,Φ`
∞ ⊗ λf (φµ))

= v−`/2E(g′τ , s0, λ(φ0 ⊗ φµ))
= v−`/2I(g′τ , φ0 ⊗ φµ)

= 1
|O(L′/L)|

∑
j

1
|O(hjL)|

−1 ∑
γ∈O(L′/L)

∑
j

1
|O(hjL)|

∑
x∈V (Q)

char(hjγ(µ+ L))(x)qQ(x)

= 1
|O(L′/L)|

∑
j

1
|O(hjL)|

−1 ∑
γ∈O(L′/L)

∑
j

1
|O(hjL)|

∑
x∈hjγ(µ+L)

qQ(x).

(3.1.25)
We can think of this as the sum ∑

x∈µ+L q
Q(x) symmetrized once with respect to O(L′/L)

and once with respect to the classes in the genus of L. In analogy to [Kud03, Proposition
4.22] we obtain the following theorem.

Siegel-Weil formula, Theorem 3.1.3. For a positive definite even lattice of rank n ≥ 5,
the Eisenstein series of weight ` = n/2 has the Fourier expansion

E(τ, `− 1,Φ`
∞ ⊗ λf (φµ)) =

∑
m∈Q≥0

rµ(m)qm,

where

rµ(m) = 1
|O(L′/L)|

∑
j

1
|O(hjL)|

−1 ∑
γ∈O(L′/L)

∑
j

1
|O(Lj)|

∑
x∈hjγ(µ+L)
Q(x)=m

1.

Equivalently, if L1, . . . , Lh(L) are representatives for the classes in the genus of L and we
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identify their discriminant forms such that µj ∈ L′j/Lj corresponds to µ ∈ L′/L, we have

rµ(m) = 1
|O(L′/L)|

∑
j

1
|O(Lj)|

−1∑
j

1
|O(Lj)|

∑
γ∈O(L′j/Lj)

∑
x∈γ(µj+Lj)
Q(x)=m

1.

In Section 3.7, we give a vector valued version of this Siegel-Weil formula and some
examples.

3.1.3. Fourier coefficients

For m ∈ Q we write
4κm = dc2, (3.1.26)

where d is the fundamental discriminant of Q(
√
κm). For a prime p we let k = ordp(c),

vp =
(
d
p

)
and X = p−s and define bp(κm, s;D) as


1−vpX+vppkX2k+1−pk+1X2k+2

1−pX2 , p - D and k ≥ 0,
(1−vpX)(1−p2X2)−vppk+1X2k+1+pk+2X2k+2+vppk+1X2k+3−p2k+2X2k+4

1−pX2 , p | D and k ≥ 0,
1, k < 0.

(3.1.27)

We set bp(κm, s) = bp(κm, s; 1) and b(κm, s) = ∏
p bp(κm, s). The following functions are

given by products of primes which are not in S. Any appearing χ is a Dirichlet character.
In our setup, it will always be χV or χκm, the Dirichlet character associated to Q(

√
κm).

ζS(s) =
∏
p/∈S

(1− p−s)−1 = ζ(s) ·
∏
p∈S

(1− p−s), (3.1.28)

LS(s, χ) =
∏
p/∈S

(1− χ(p)p−s)−1 = L(s, χ) ·
∏
p∈S

(1− χ(p)p−s), (3.1.29)

σSs (m,χ) =
∏

ordp(m)≥0
p/∈S

ordp(m)∑
r=0

(χ(p)ps)r, (3.1.30)

bS(κm, s) =
∏
p/∈S

bp(κm, s) =
∏
p|c
p/∈S

bp(κm, s) =
∏

ordp(m)≥0
p/∈S

bp(κm, s). (3.1.31)

We also need the following product over generalized local densities Wp(s,m, µ) for the
even lattice L given by

Wm,S(s) =
∏
p∈S

γp(L)| det(L)|
1
2
pWp(s,m, µ). (3.1.32)
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The values of these local densities have been computed in [KY10]. We give the formulas
in the next section. The γp(L) are the Weil invariants of the discriminant form L′/L.
Fixing the quadratic Dirichlet characters χ associated to the Hilbert symbol ( · , κ) by

Correspondence 1.10.2 and χκm associated to Q(
√
κm), we can give the following formulas

for the Eisenstein series.

Theorem 3.1.4 ([KY10, Proposition 2.6]). Let L be an even lattice L and µ ∈ L′/L.
When ` > 2, the the special value

E(τ, `− 1,Φ`
∞ ⊗ λf (φµ)) = e0 +

∑
µ∈L′/L

∑
m>0

aE(µ,m)qneγ (3.1.33)

is holomorphic. In the even case its Fourier coefficients are given by

aE(µ,m) = (−2πi)`m`−1

Γ(`)LS(`, χ) σ
S
1−`(m,χ)Wm,S(`− 1). (3.1.34)

In the odd case, they are given by

aE(µ,m) = (−2πi)`m`−1

Γ(`)ζS(2`− 1)L
S(`− 1

2 , χκm)bS(κm, `− 1
2)Wm,S(`− 1). (3.1.35)

3.1.4. Generalized local densities
In this section, we explain how to compute the local densities (also called local Whittaker
functions)Wp(s,m, µ) which are needed for the above formulas for the Fourier coefficients of
vector valued Eisenstein series for the Weil representation. Recall that L is an even lattice
and µ ∈ L′/L. We identify Lp with Znp such that the Gram matrix Sp is in canonical form,
as given in Lemma 1.4.1. By this identification we have µ ∈ S−1Znp/Znp . An appropriate
change of basis can be computed by following the steps in [Cas78, Chapter 8, Section 4].
We have computed the missing change of basis for the even 2-adic case in Appendix A.

The case p 6= 2

We assume L = Znp with Gram matrix

S = diag(2ε1p
l1 , . . . , 2εnpln), (3.1.36)

where εi ∈ Z×p and li ∈ Z≥0. Write µ = (µ1, . . . , µn) ∈ L′ = S−1Znp = ⊕p−liZp, where we
identify µ ∈ L′/L with a representative in L′. We fix the values

s0 = n

2 − 1, (3.1.37)

Hµ = {i | µi ∈ Zp} , (3.1.38)
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K0 = K0(µ) = min({li + ordp(µi) | i /∈ Hµ} ∪ {∞}), (3.1.39)

Lµ(k) = {i ∈ Hµ | li − k < 0 is odd } , (3.1.40)

lµ(k) = #Lµ(k), (3.1.41)

dµ(k) = k + 1
2
∑
i∈Hµ

min(li − k, 0), (3.1.42)

εµ(k) =
(
−1
p

)[ lµ(k)
2 ] ∏

i∈Lµ(k)

(
εi
p

)
, (3.1.43)

tµ(m) = m−
∑
i/∈Hµ

εip
liµ2

i , (3.1.44)

aµ(m) = ordp(tµ) (3.1.45)

for k ∈ Z≥0 and m ∈ Q. Furthermore, we need the function

f1(αpa) =

−
1
p
, if lµ(a+ 1) is even,

(α, p)p 1√
p
, if lµ(a+ 1) is odd,

(3.1.46)

where α ∈ Z×p . With this notation the p-adic local Whittaker function can be computed
as follows.

Theorem 3.1.5 ([KY10, Theorem 4.3]). If m /∈ Q(µ) + Zp, then Wp(s+ s0,m, µ) = 0. If
m ∈ Q(µ) + Zp, we set X = p−s and distinguish two cases:

(i) If 0 ≤ a < K0, then

Wp(s+ s0,m, µ) = 1 +
(

1− 1
p

) ∑
0<k≤a

lµ(k) even

εµ(k)pdµ(k)Xk

+ εµ(a+ 1)f1(tµ(m))pdµ(a+1)Xa+1.

(3.1.47)

(ii) If a ≥ K0, then

Wp(s+ s0,m, µ) = 1 +
(

1− 1
p

) ∑
0<k≤K0
lµ(k) even

εµ(k)pdµ(k)Xk. (3.1.48)
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The case p = 2

We assume L = Zn2 with Gram matrix

S = diag(ε1p
l1 , . . . , εnp

lH )⊕
(
M⊕
i=1

2mi
(

0 1
1 0

))
⊕

 N⊕
j=1

2nj
(

2 1
1 2

) , (3.1.49)

where εh ∈ Z×2 , 1 ≤ lh ∈ Z≥0 and mi, nj ∈ Z≥0. Write

µ = (µ1, . . . , µH , µ
′
1, . . . , µ

′
M , µ

′′
1, . . . , µ

′′
N)

∈ ⊕Hh=1p
−liZ2 ⊕

(
⊕Mi=12−miZ2

2

)
⊕
(
⊕Nj=12−njZ2

2

)
= S−1Zn2 = L′,

(3.1.50)

where we identify µ ∈ L′/L with a representative in L′. Note that the coefficients of µ
with dashes are 2-dimensional. For these coefficients, we define

ord2(t1, t2) = min(ord2(t1), ord2(t2)).

We fix the values

s0 = n

2 − 1, (3.1.51)

Hµ = {h | µh ∈ Z2} , (3.1.52)

Mµ =
{
i
∣∣∣ µ′i ∈ Z2

2

}
, (3.1.53)

Nµ =
{
i
∣∣∣ µ′′j ∈ Z2

2

}
, (3.1.54)

K0 = K0(µ) = min({lh + ord2(µh) | ord2(µh) < −1} ∪ {lh | ord2(µh) = −1} (3.1.55)

∪ {mi + ord2(µ′i) | i /∈Mµ} ∪
{
nj + ord2(µ′′j )

∣∣∣ j /∈ Nµ

}
∪ {∞}),

(3.1.56)

Lµ(k) = {i ∈ Hµ | li − k < 0 is odd } , (3.1.57)

lµ(k) = #Lµ(k), (3.1.58)

dµ(k) = k + 1
2
∑
h∈Hµ

min(lh − k, 0) +
∑
i∈Mµ

min(mi − k, 0) +
∑
j∈Nµ

min(nj − k, 0), (3.1.59)

pµ(k) = (−1)
∑

j∈Nµ
min(nj−k,0)

, (3.1.60)

εµ(k) =
∏

h∈Lµ(k)
εh, (3.1.61)
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3.1. The approach of Kudla and Yang

δµ(k) =


0, if lh = k for some h ∈ Hµ,

1, else,
(3.1.62)

tµ(m) = m−
∑
h/∈Hµ

εh2lh−1µ2
h −

∑
i/∈Mµ

2miµ′i1µ′i2 −
∑
j /∈Nµ

2nj((µ′′i1)2 + µ′i1µ
′
i2 + (µ′′i2)2), (3.1.63)

aµ(m) = ord2(tµ), (3.1.64)

ν = ν(m, k) = tµ23−k −
∑
h∈Hµ
lh<k

εh, (3.1.65)

α(ν) =


0, ν /∈ 4Z2,

−1, ν ∈ 4 + 8Z2,

1, ν ∈ 8Z2,

(3.1.66)

for k ∈ Z≥0 and m ∈ Q. With this notation the 2-adic local Whittaker function is as
follows.

Theorem 3.1.6 ([KY10, Theorem 4.3]). If m /∈ Q(µ) + Z2, then W2(s+ s0,m, µ) = 0. If
m ∈ Q(µ) + Z2, we set X = 2−s and have

W2(s+ s0,m, µ)

= 1 +
∑

0<k≤min(K0,a+3)
lµ(k) odd

δµ(k)pµ(k)2dµ(k)− 3
2

(
2

εµ(k)ν

)
Xk

+
∑

0<k≤min(K0,a+3)
lµ(k) even

δµ(k)pµ(k)2dµ(k)−1
(

2
εµ(k)

)
α(ν)Xk.

(3.1.67)

3.1.5. Properties of local densities
Let µ ∈ L′ and p a prime. We have seen in the previous theorems, that the local densities
are given in terms of polynomials, which we call Whittaker polynomials and denote them
by Wp,m,µ(X) such that

Wp(s+ s0,m, µ) = Wp,m,µ(p−s). (3.1.68)

For now, these polynomials depend on an even lattice. The Eisenstein series only depends
on the discriminant form, this should also hold for the generalized local densities. To prove
this, we collect some of their properties. This will allow us to compute the generalized
local densities purely from the discriminant form.
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Remark 3.1.7. Tracking changes when adding a hyperbolic plane, we see that

Wp,L(s+ s0,m, µ) = Wp,L⊕H((s− 1) + (s0 + 1),m, (µ, 0, 0)) (3.1.69)

stays invariant. Note that this fact is used in the proofs for the above formulas of local
densities in [KY10].

Proof. Evaluation of the right hand side (using Theorem 3.1.5 and Theorem 3.1.6) gives
the formula of the left hand side, where dµ(k) has been replaced by dµ(k)−k and X = p−s

has been replaced by p−(s−1) = pX. These changes cancel.

Lemma 3.1.8. For fixed µ, the local densities Wp(s + s0,m, µ) and their corresponding
polynomials only depend on m (mod pK0), that is

Wp(s+ s0,m+ pK0 , µ) = Wp(s+ s0,m, µ) (3.1.70)

for any s ∈ C, m ∈ Q, µ ∈ L′ and K0 = K0(µ) 6=∞.

Proof. If p is odd, we look at the changes in the formulas of Theorem 3.1.5, when replacing
m by m+ pK0 . The value of tµ(m) changes to tµ(m) + pK0 .
If a = ordp(tµ(m)) < K0, then ordp(tµ(m)) = ordp(tµ(m) + pK0) and a remains un-

changed. In the computation of f1(tµ(m) + pK0), the value α changes to α + pK0−a which
has no effect on the Hilbert symbol.
On the other hand, if a ≥ K0, it might be replaced by a bigger value which has no effect

on the case distinction and on (3.1.48).
If p = 2, , we look at the changes in the formulas of Theorem 3.1.6, when replacing m

by m+ 2K0 . The value of tµ(m) changes to tµ(m) + 2K0 .
If a = ord2(tµ(m)) < K0, then ord2(tµ(m)) = ord2(tµ(m) + 2K0) and a remains un-

changed. If a ≥ K0, then a it might be replaced by a bigger value. In both these cases,
the value min(a+ 3, K0) remains unchanged.
By verifying that ν changes by a multiple of 8, we see that formula (3.1.67) is invariant.

3.2. The approach of Bruinier and Kuss
In this section, we adapt the formulas in [BK01] to our setting. Let L be an even lattice
of type (b+, b−), rank m and with Gram matrix S. Let 2k − b− + b+ ≡ 0 (mod 4). As in
equation (1.8.1), we define the Eisenstein series of weight k > 2 by

E = Eρ∗L,k,0 = 1
4

∑
(M,φ)∈〈T 〉\Mp2(Z)

e0|∗k,L(M,φ), (3.2.1)
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which is normalized to have constant coefficient 1 and is thus half of the Eisenstein series
in [BK01]. It has a Fourier expansion of the form

E = e0 +
∑

γ∈L′/L

∑
n∈Z−Q(γ)

n>0

aE(γ, n)qneγ. (3.2.2)

The Fourier coefficients can be obtained as follows.

Proposition 3.2.1 (cf. [BK01, Proposition 4.3]). Let γ ∈ L′ and n ∈ Z − Q(γ) with
n > 0. The coefficient aE(γ, n) equals the value at s = k of the analytic continuation in s
of

2kπknk−1(−1)(2k−b−+b+)/4√
|L′/L|Γ(k)ζ(s−m/2)

Lγ,n(s). (3.2.3)

Here ζ(s) denotes the Riemann zeta function and Lγ,n(s) the L-series

Lγ,n(s) =
∑
a≥1

Nγ,n(a)a1−m/2−s =
∏
p

∑
ν≥0

Nγ,n(pν)pν(1−m/2−s)

 (3.2.4)

for the representation numbers

Nγ,n(a) = # {r ∈ L/aL | Q(r − γ) + n ≡ 0 (mod a)} . (3.2.5)

We may write the Euler product as

Lγ,n(s) = ζ(s−m/2)
∏
p

(1− pm/2−s)∑
ν≥0

Nγ,n(pν)pν(1−m/2−s)


= ζ(s−m/2)

∏
p

(1− pm/2−s)∑
ν≥0

Nγ,n(pν)
pmν

pν(1+m/2−s)


= ζ(s−m/2)

∏
p

(1− t

p

)∑
ν≥0

Nγ,n(pν)
pmν

tν

∣∣∣∣∣∣
t=p1+m/2−s


= ζ(s−m/2)

∏
p

(1− t

p

)
1− tZf (t)

1− t

∣∣∣∣∣
t=p1+m/2−s



(3.2.6)

using an appropriate polynomial f and the Igusa local zeta function Zf (t). The coefficient
aE0(γ, n) can be obtained by the analytic continuation of

2kπknk−1(−1)(2k−b−+b+)/4√
|L′/L|Γ(k)

∏
p

Lγ,n(s, p) (3.2.7)
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with

Lγ,n(s, p) =
(1− t

p

)∑
ν≥0

Nγ,n(pν)
pmν

tν

∣∣∣∣∣∣
t=p1+m/2−s

. (3.2.8)

By Theorem 2.1.1, the Lγ,n(s, p) are invariant under addition of hyperbolic planes to L
(where we add two zeros to γ). This insight allows us to obtain the simplifications stated
in [BK01] for the case k = m/2 for all weights.

Lemma 3.2.2 ([BK01, Lemma 4.4], cf. [Sie35, Hilfssatz 13]). Let p be a prime and let dγ
denote the order of γ in L′/L. Put

wp = 1 + 2 ordp(2ndγ).

Then the equality
Nγ,n(pα+1) = pm−1Nγ,n(pα)

holds for any α ≥ wp.

Using geometric series, the Euler factors are hence given by

Lγ,n(s, p) =
(
1− pm/2−s

) wp−1∑
ν=0

Nγ,n(pν)pν(1−m/2−s) +Nγ,n(pwp)pwp(1−m/2−s). (3.2.9)

In the case s = m/2, the factor in front of the sum vanishes and we can compute what is
left with the following theorem. It is a generalization of [Sie35, Hilfssatz 16] in the version
of [BK01, Theorem 4.5] where p = 2 was excluded. We include the case p = 2.

Theorem 3.2.3. Let p be a prime not dividing det(S) and α ∈ Z with α > ordp(n).

(i) Suppose that m is even. Put D = (−1)m/2 det(S). Then

pα(1−m)Nγ,n(pα) =
(
1− χD(p)p−m/2

) (
1 + χD(p)p1−m/2 + · · ·+

(
χD(p)p1−m/2

)ordp(n)
)
.

(ii) Suppose that m is odd. Write n = n0f
2 (where n0 ∈ Q and f ∈ Z≥0) such that

(f, det(S)) = 1 and ord`(n0) ∈ {0, 1} for all primes ` with (`, det(S)) = 1. Let
ñ0 = n0d

2
γ and D = 2(−1)(m+1)/2ñ0 det(S). If m ≥ 3, then

pα(1−m)Nγ,n(pα) = 1− p1−m

1− χD(p)p(1−m)/2

(
σ2−m(pordp(f))− χD(p)p(1−m)/2σ2−m(pordp(f)−1)

)
.

If m = 1, we have
Nγ,n(pα) =

(
χD(p) + χD(p)2

)
pordp(f).

Proof. If 2 is factor of det(S), this is [BK01, Theorem 4.5]. This is always the case if the
rank of L is odd.
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If 2 does not divide det(S), then the Gram matrix S of L is Z2-equivalent to one of

diag (H, . . . , H) or diag
((

2 1
1 2

)
, H, . . . , H

)
.

The first case occurs when disc(L) ≡ 1 (mod 8), which implies χD(2) = 1. The second
case occurs when disc(L) ≡ 5 (mod 8), which implies χD(2) = −1. Since 2 does not
divide det(S), we have γ ∈ Zm2 and we can assume γ = 0. Setting ε = χD(2) and using
Theorem 2.3.3, we get

2α(1−m)Nγ,n(2α) = 2α(1−m)N((2α)ε2(m/2)
II ,−n)

= 2α(1−m)2(α−1)m/2(2m/2 − ε)εα
α∑

k′=α−ord2(n)
(ε2m/2−1)k′

= 2α(1−m)2(α−1)m/22m/2(1− ε2−m/2)εα(ε2m/2−1)α
α∑

k′=α−ord2(n)
(ε21−m/2)k′

= (1− ε2−m/2)
ord2(n)∑
k′=0

(ε21−m/2)k′

= (1− χD(2)2−m/2)
ord2(n)∑
k′=0

(χD(2)21−m/2)k′

which finishes the proof.

We know from the theory of Igusa local zeta functions (and equation (3.2.9)) that the
local factors Lγ,n(s, p) are rational functions in p−s. Let p be a prime not dividing det(S)
and let 2 < s = m

2 + h ∈ m
2 + Z≥0. We add h hyperbolic planes to L and argue

Lγ,n(s, p) =
(1− t

p

)∑
ν≥0

NL
γ,n(pν)
pmν

tν

∣∣∣∣∣∣
t=p1+m/2−s

=
(1− t

p

)∑
ν≥0

NL+H(h)
γ,n (pν)
p(m+2h)ν tν

∣∣∣∣∣∣
t=p1+(m+2h)/2−s

= NL+H(h)

γ,n (pwp)pwp(1−m/2−h−s)

= NL+H(h)

γ,n (pwp)pwp(1−m−2h)

(3.2.10)

by Corollary 2.1.4 and equation (3.2.9). Applying Theorem 3.2.3, this yields

Lγ,n(s, p) =
(
1− χD(p)p−s

)(
1 + χD(p)p1−s + · · ·+

(
χD(p)p1−s

)ordp(n)
)

(3.2.11)
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in the even case and

Lγ,n(s, p) = 1− p1−2s

1− χD(p)p1/2−s

(
σ2−2s(pordp(f))− χD(p)p1/2−sσ2−2s(pordp(f)−1)

)
(3.2.12)

in the odd case. Since these are rational functions in p−s, these equations hold for all s ∈ C.
Note that this is equivalent to [KY10, Proposition 2.1]. In analogy to [BK01, Theorem
4.8], the Fourier coefficients of the Eisenstein series are given as follows.

Theorem 3.2.4. Let γ ∈ L′ and n ∈ Z− q(γ) with n > 0. The coefficient aE0(γ, n) of the
Eisenstein series E0 of weight k > 2 for ρ∗L is equal to

2kπknk−1(−1)(2k−b−+b+)/4√
|L′/L|Γ(k)

(3.2.13)

times
σ1−k(ñ,χD)
L(k,χD)

∏
p|det(S)

Lγ,n(k, p), if 2 | m,
L(k−1/2,χD)
ζ(2k−1)

∏
p|ñ

p-detS

(
σ2−2k(pordp(f))− χD(p)p1/2−kσ2−2k(pordp(f)−1)

) ∏
p|det(S)

Lγ,n(k,p)
1−p1−2k , if 2 - m.

(3.2.14)
Here

Lγ,n(k, p) =
∑

ν∈Z≥0

Nν(fγ,n)
pmν

p−νs
(

1− p−s

p

)∣∣∣∣∣∣
s=−1−m2 +k

= 1− tZfγ,n(t)
1− t

(
1− t

p

)∣∣∣∣∣
t=p1+m

2 −k

(3.2.15)

in terms of the Igusa local zeta function for the polynomial fγ,n = Q(x)− (x, γ) +n+Q(γ)
and the representation numbers

Nν(fγ,n) = # {x ∈ (Z/pνZ)m | Q(x)− (x, γ) + n+Q(γ) ≡ 0 (mod pν)} . (3.2.16)

The values of D,D, f, ñ are as in Theorem 3.2.3.

Remark 3.2.5. In the odd case we have the equality∏
p|ñ

p-detS

(
σ2−2k(pordp(f))− χD(p)p1/2−kσ2−2k(pordp(f)−1)

)

=
∑
d|f
µ(d)χD(d)d1/2−kσ2−2k(f/d).

(3.2.17)

If k = m/2, Theorem 3.2.4 reduces to [BK01, Theorem 4.8].
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3.3. Comparing the approaches

In this section, we compare the approach of Kudla and Yang with the approach, we derived
from Bruinier and Kuss. Let L be an even lattice of type (b+, b−) and rank n. Further,
let µ ∈ L′/L and 0 < m ∈ Q(µ) + Z. Let S denote the set of prime divisors of det(L) and
suppose 2` ≡ b+ − b− (mod 4). The Eisenstein series E = EρL,`,0 and E = Eρ∗

L(−1),`,0 are
equal by definition, so their Fourier coefficients match. By Theorem 3.1.4 and Theorem
3.2.4, these Fourier coefficients are given by

aE(µ,m) = (−2πi)`m`−1

Γ(`)LS(`, χ) σ
S
1−`(m,χ)Wm,S(`− 1),

aE(µ,m) = 2`π`m`−1(−1)(2`−b++b−)/4√
|L′/L|Γ(`)

· σ1−`(m̃, χD)
L(`, χD)

∏
p∈S

Lµ,m(`, p)
(3.3.1)

in the even case. In the odd case, they are given by

aE(µ,m) = (−2πi)`m`−1

Γ(`)ζS(2`− 1)L
S(`− 1

2 , χκm)bS(κm, `− 1
2)Wm,S(`− 1),

aE(µ,m) = 2`π`m`−1(−1)(2`−b++b−)/4√
|L′/L|Γ(`)

· L(`− 1/2, χD)
ζ(2`− 1)

·
∏
p|m̃
p/∈S

(
σ2−2`(pordp(f))− χD(p)p1/2−`σ2−2`(pordp(f)−1)

) ∏
p∈S

Lµ,m(`, p)
1− p1−2` .

(3.3.2)

We recall equation (3.1.32)

Wm,S(s) =
∏
p∈S

γp(L)| det(L)|
1
2
pWp(s,m, µ).

The local factors for L(−1) are given by (3.2.15),

Lµ,m(`, p) =
∑

ν∈Z≥0

Nν(fµ,m)
pnν

p−νs
(

1− p−s

p

)∣∣∣∣∣∣
s=−1−n2 +`

= 1− tZfµ,m(t)
1− t

(
1− t

p

)∣∣∣∣∣
t=p1+n

2−`
,

in terms of the Igusa local zeta function for the polynomial fµ,m = −Q(x)+(x, µ)+m−Q(µ).
Using the oddity formula (1.2.14), we can identify the occurring terms by checking

(−i)`
∏
p∈S

γp(L) = (−1)(2`−b++b−)/4,
∏
p∈S
| det(L)|

1
2
p = 1√

|L′/L|
,
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3. Fourier coefficients of Eisenstein series

LS(`, χ) = L(`, χD), σS1−`(m,χ) = σ1−`(m̃, χD),

ζS(2`− 1) = ζ(2`− 1)
∏
p∈S

1− p1−2`, LS(`− 1
2 , χκm) = L(`− 1/2, χD),

and finally

bS(κm, `− 1
2) =

∏
p|m̃
p/∈S

(
σ2−2`(pordp(f))− χD(p)p1/2−`σ2−2`(pordp(f)−1)

)
.

From this we infer the equality∏
p∈S

Wp(`− 1,m, µ) =
∏
p∈S

Lµ,m(`, p) (3.3.3)

for infinitely many possible values of `. Using the fact that all factors are rational functions
in p−` we can deduce

Wp(`− 1,m, µ) = Lµ,m(`, p) (3.3.4)

for all p ∈ S, we leave the details to the reader. The equality for all primes p can be
obtained by realizing that the formulas for the Fourier still hold, when enlarging the set
S. An alternative is the direct comparison of equations (3.2.11) and (3.2.12) with [KY10,
Proposition 2.1]. We have proved Observation 3.0.7.

Theorem 3.3.1. For an even lattice L = Zn with Gram matrix S and µ ∈ L′ = S−1Zn,
the equality

Wp,m,µ(X) =
1− tZ− 1

2x
tSx+xtSµ+m−Q(µ)(t)

1− t

(
1− t

p

)∣∣∣∣∣
t=pX

holds for all primes p.

3.4. Exact formulas depending on discriminant forms
In this section, we discuss in which sense the above formulas only depend on the discrimi-
nant form L′/L (or the genus symbol) of an even lattice L. The ingredients which depend
on L are the rank n = rank(L), the discriminant disc(L) and the Gram matrices Sp in
canonical form together with the corresponding changes of basis for every p| disc(L). The
change of basis is only needed, to associate local coordinates µp ∈ S−1

p Znp to an element
µ ∈ L′.
By Remark 1.5.3 and Remark 1.5.4, we can recover the parity of the rank, n (mod 2),

and the discriminant of L from the genus symbol via the oddity formula. We know from
Lemma 1.4.1, how Jordan components relate to canonical Gram matrices. For the sake
of computing vector valued Eisenstein with respect to a discriminant form we need a
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consistent choice of Gram matrices Sp.
A precise condition on the minimal rank of any lattice having a fixed discriminant form

is given by [Nik79, Theorem 1.10.1]. For the sake of computational simplicity, we choose a
possibly higher rank.

Lemma 3.4.1. Let D be a finite quadratic module generated by r elements. Then D is the
discriminant form of an even lattice L of rank n ≥ 2 + r with n ≡ sign(D) (mod 2).

Proof. For such an n, we can always find t(+), t(−) with n = t(+) + t(−) satisfying [Nik79,
Corollary 1.10.2]. Hence a lattice L with signature t(+) − t(−) and discriminant form D
exists.

With this in mind, we can choose local Gram matrices for a finite quadratic module in
the following way.

Lemma 3.4.2. Let D be a finite quadratic module. Let n be the minimal rank satisfying
Lemma 3.4.1 and L be a lattice of rank n such that L′/L ' D. Further, we let Cp be the
rp × rp block diagonal matrix consisting of the canonical choices for Gram matrices of the
Jordan decomposition of Dp as given by Lemma 1.4.1, where rp is the minimal number of
generators of Dp. There is a Zp-basis such that the Gram matrix of L can be presented in
the form

Sp =



H
. . .

H
Up

Cp

 , Up =



0 1
1 0

 or
2 1

1 2

 , p = 2,
2

. . .
2

2ε

 , p 6= 2,
(3.4.1)

where ε ∈ Z×p is chosen such that disc(Sp) ≡ disc(D) (mod (Z×p )2) is satisfied.

Proof. All given Gram matrices give the right discriminant form by Lemma 1.4.1 and
they have the same dimension. The rest follows from the classification of p-adic quadratic
forms.

Given a finite quadratic moduleD, we can now compute the corresponding local densities
by fixing local Gram matrices Sp as in Lemma 3.4.2 and representing µ ∈ D by the local
coordinates µp ∈ S−1

p Znp/Znp for every prime p.
When computing or implementing this, we do not need to keep track of the hyperbolic

planes by Remark 3.1.7 when we use the approach of Kudla and Yang. When using the
approach of Bruinier and Kuss, this remains true by Theorem 2.1.1.
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3.5. Estimates

In this section we estimate the Fourier coefficients of Eisenstein series with respect to the
dual Weil representation for an even lattice of type (b+, b−) and of weight k = b++b−

2 . We
need the assumptions that b+ is even and that the lattice L splits a scaled hyperbolic
plane. The case that L splits a hyperbolic plane is treated in [BM17]. In particular, we are
interested in the case b+ = 2 to search for Borcherds products in a systematic manner. The
results of this section were obtained together with Markus Schwagenscheidt (cf. [OS18]).

Theorem 3.5.1 ([BK01, Thm. 4.8]). Let γ ∈ L′ and n ∈ Z − Q(γ) with n > 0. The
coefficient aE(γ, n) of the Eisenstein series E of weight k = m/2 for ρ∗L is equal to

2k+1πknk−1(−1)b+/2√
|L′/L|Γ(k)

(3.5.1)

times
σ1−k(ñ,χ4D)
L(k,χ4D)

∏
p|2 det(S)

pwp(1−2k)NL
γ,n(pwp), if 2 | m,

L(k−1/2,χD)
ζ(2k−1)

∑
d|f
µ(d)χD(d)d1/2−kσ2−2k(f/d) ∏

p|2 det(S)

pwp(1−2k)NL
γ,n(pwp )

1−p1−2k , if 2 - m.
(3.5.2)

Here S is the Gram matrix of L and

NL
γ,n(a) = #{r ∈ L/aL : Q(r − γ) + n ≡ 0 (mod a)} (3.5.3)

is a representation number. The definition of wp, D, D, f and ñ can be found in Section
3.2, Theorem 3.2.3.

If the lattice in question splits a rescaled hyperbolic plane U(N) = (Z2, (x, y) 7→ Nxy),
we may estimate the coefficients as follows.

Theorem 3.5.2. Let L be a lattice of signature (b+, b−) (b+ even) with rank 2k = m ≥ 3
such that L = L1 ⊕ U(N) for some even lattice L1 of rank m − 2 ≥ 1. Let d be the
determinant of the Gram matrix of L. Let γ ∈ L′ and n ∈ Z − q(γ) with n > 0. The
coefficient aE0(γ, n) of the Eisenstein series with respect to the dual Weil representation
and of weight k = m/2 is either 0 or

(−1)b+/2aE0(γ, n) ≥ Ck,d,N · nk−1, (3.5.4)

where Ck,d,N is given by
2k+1πk√
|d|Γ(k)

(3.5.5)
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times 
2−ζ(k−1)
ζ(k)

∏
p|2d

p(3−2k) ordp(N)(1− 1/p), 2 | m,
2−ζ(k−1/2)
ζ(k−1/2)

∏
p|2d

p(3−2k) ordp(N)(1−1/p)
1−p1−2k , 2 - m.

(3.5.6)

The proof is accomplished using the following lemmas. The methods follow and gener-
alize the estimates in [BM17]. The following lemma is well known.

Lemma 3.5.3. Let n ∈ Z and ν ∈ Z≥0. Then

N
U(1)
0,n (pν) =

(ordp(n) + 1)(1− 1
p
)pν , ordp(n) < ν,

ν(1− 1
p
)pν + pν , ordp(n) ≥ ν.

(3.5.7)

Corollary 3.5.4. We have

(1− 1
p

) ≤ p−νN
U(1)
0,n (pν) ≤ ν + 1. (3.5.8)

Lemma 3.5.5. Let p be a prime, ν ∈ Z≥0, N ∈ Z and γ =
(
γ1
N
, γ2
N

)
∈ U(N)′ = 1

N
Z2.

We write pνN‖N , pνγ‖(γ1, γ2) (νγ = ∞ for γ = (0, 0)) and n = ` − γ1γ2
N

with ` ∈ Z.
Furthermore, we define νmin = min(ν, νγ, νN). The representation numbers for a rescaled
hyperbolic plane are given by

NU(N)
γ,n (pν) =


0, pνmin - `,
p2νNN

U(1)
0,ñ (pν−νN ), νN ≤ min(ν, νγ) and pνmin | `,

pν+min(ν,νγ), νN > min(ν, νγ) and pνmin | `,
(3.5.9)

where ñ = Nnp−2νN .

Proof. We may write

NU(N)
γ,n (pν) = #{(a, b) ∈ (Z/pνZ)2 : Nab− (aγ2 + bγ1) ≡ −` (mod pν)}. (3.5.10)

If pνmin - `, then the condition for (a, b) implies 0 ≡ −l 6≡ 0 (mod pνmin). This condition
cannot be fulfilled and the representation number is 0 in this case.
If νN ≤ min(ν, νγ), we write N = N ′ · pνN and find an integer N ′ such that

N
′ ≡ (N ′)−1 (mod pν). (3.5.11)

The bijection
(a1, b1) 7→ (N ′(a1 + γ1

pνN
), N ′(b1 + γ2

pνN
)) =: (a, b) (3.5.12)
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shows that

NU(N)
γ,n (pν) = #{(a1, b1) ∈ (Z/pνZ)2 : a1b1 ≡ −Np−2νNn (mod pν−νN )}

= p2νNN
U(1)
0,ñ (pν−νN ).

(3.5.13)

This proves the second case.
If νN > min(ν, νγ), we distinguish two cases. If νγ ≥ ν, the condition for (a, b) is trivial

and we have p2ν = pν+min(ν,νγ) solutions. If νγ < ν, we may assume that pνγ‖γ2. We see

NU(N)
γ,n (pν) = #{(a, b) ∈ (Z/pνZ)2 : a ≡

(
N

pνγ
b− γ2

pνγ

)−1
bγ1 − `
pνγ

(mod pν−νγ )}

= pν+νγ ,

(3.5.14)

so again, we have pν+min(ν,νγ) solutions.

Lemma 3.5.6. Let L be a lattice of rank 2k = m ≥ 3 such that L = L1 ⊕ U(N) for some
even lattice L1 of rank m− 2 ≥ 1. Then either NL

γ,n(pν) = 0, or

pν(1−2k)NL
γ,n(pν) ≥ p(3−2k)νN (1− 1

p
). (3.5.15)

An upper bound is given by

pν(1−2k)NL
γ,n(pν) ≤ pνmin(ν − νmin + 1). (3.5.16)

Proof. Write γ = γ1 + γ2 with γ1 ∈ L′1 and γ2 ∈ U(N)′. We may write

NL
γ,n(pν) =

∑
λ1∈L1/pνL1

N
U(N)
γ2,n+Q(λ1−γ1)(p

ν). (3.5.17)

To estimate the summands we define νγ := νγ2 , νN and νmin as in Lemma 3.5.5. If all
summands are 0, there is nothing to prove. Therefore, we may assume that there is a λ1
such that the corresponding summand NU(N)

γ2,n+Q(λ1−γ1)(pν) is nonzero. This implies

pνmin | ` = n+Q(λ1 − γ1) +Q(γ2). (3.5.18)

If we change λ1 modulo pνminL1, this remains true. This gives at least p(ν−νmin)(m−2) nonzero
summands, which we can estimate using Lemma 3.5.5.
We distinguish the cases νN ≤ min(ν, νγ) and νN > min(ν, νγ).
In the first case, the nonzero summands are of the form

p2νNN
U(1)
0,ñ (pν−νN ) ≥ p2νNpν−νN (1− 1

p
) (3.5.19)
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where ñ might depend on λ1 and we use Corollary 3.5.4 for the estimate. This yields

NL
γ,n(pν) ≥ p(ν−νmin)(m−2)p2νNpν−νN (1− 1

p
) = p(m−1)νp(3−m)νN (1− 1

p
) (3.5.20)

for the sum.
In the second case, the nonzero summands are of the form

pν+min(ν,νγ) = pν+νmin . (3.5.21)

This yields

NL
γ,n(pν) ≥ p(ν−νmin)(m−2)pν+νmin = p(m−1)νp(3−m)νmin ≥ p(m−1)νp(3−m)νN (1− 1

p
) (3.5.22)

where we have used 3−m ≤ 0 and νmin ≤ νN .
The upper bound can be found by similar estimates using Lemma 3.5.5 and the upper

bound of Corollary 3.5.4.

Note that the characters χ4D and χD appearing in the Fourier expansion of E(z) given
in Theorem 3.5.1 are quadratic Dirichlet characters. For even rank, we need the following
estimate.

Lemma 3.5.7. Let χ be a real Dirichlet character and n ∈ Z≥0, s ≥ 2. Then

ζ(s) ≥ σ−s(n, χ) ≥ 2− ζ(s). (3.5.23)

Proof. We have

σ−s(n, χ) =
∑
d|n
χ(d)d−s ≥ 2−

∑
d|n
d−s ≥ 2− ζ(s) (3.5.24)

and
σ−s(n, χ) =

∑
d|n
χ(d)d−s ≤

∑
d≥1

d−s = ζ(s). (3.5.25)

This finishes the proof.

For odd signature, the following two estimates are useful.

Lemma 3.5.8. Let χ be a real Dirichlet character, let f ∈ Z≥0, and let k ≥ 5/2 be a
half-integer. Then we have∑

d|f
µ(d)χ(d)d1/2−kσ2−2k(f/d) > 2− ζ(k − 1/2). (3.5.26)
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Proof. We split off the term for d = 1 on the left hand side and estimate∑
d|f
µ(d)χ(d)d1/2−kσ2−2k(f/d) = σ2−2k(f) +

∑
d|f
d 6=1

µ(d)χ(d)d1/2−kσ2−2k(f/d)

≥ 2σ2−2k(f)−
∑
d|f
d1/2−kσ2−2k(f/d).

(3.5.27)

Now σ2−2k(f/d) ≤ σ2−2k(f) for d | f , so the last expression is greater or equal than

σ2−2k(f)
2−

∑
d|f
d1/2−k

 > σ2−2k(f) (2− ζ(k − 1/2)) ≥ 2− ζ(k − 1/2). (3.5.28)

This finishes the proof.

Lemma 3.5.9. Let χ be a real Dirichlet character and let s ∈ R, s > 1. Then

ζ(s) ≥ L(s, χ) ≥ ζ(2s)
ζ(s) . (3.5.29)

Proof. For s > 1 we have

L(s, χ) =
∏
p

1
1− χ(p)p−s ≥

∏
p

1
1 + p−s

= ζ(2s)
ζ(s) (3.5.30)

and
L(s, χ) =

∏
p

1
1− χ(p)p−s ≤

∏
p

1
1− p−s = ζ(s). (3.5.31)

This completes the proof.

3.6. Vector valued Eisenstein series vs. Jacobi-Eisenstein
series

By [EZ85, theorem 5.1] Jacobi forms of weight k and index m ≥ 1 correspond to vector
valued modular forms for the Weil representation of weight k− 1

2 with respect to the even
lattice (Z, Q(x) = −mx2). The concrete correspondence of the Fourier coefficients is given
by

alattice(
r

2m,n)↔ aJacobi(
[n] + r2

4m , r), (3.6.1)

where γ = r
2m ∈ L′/L and n ∈ Q(γ) + Z. In particular, this correspondence sends

the vector valued Eisenstein series to the Jacobi-Eisenstein series, allowing us to test our
implementation of the Fourier coefficients against Theorem 1.9.1. The Fourier coefficients
we used as test are the first 1000 coefficients in every coordinate for all combinations of
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index 1, 2 . . . , 15 and weights 4, 6, . . . , 50. All these test cases only test the formulas for
lattices of odd rank (rank 1 to be specific). Nonetheless, with Jacobi forms, the formulas
for p = 2 are tested quite thoroughly. The Siegel-Weil formula provides more general test
cases.
We give an example of the above Correspondence 3.6.1. The given coefficients also agree

with [EZ85, Table 1].

Example 3.6.1. The Jacobi-Eisenstein series of weight k = 4 and index m = 1 is given
by

E4,1(τ, z) =
∞∑
n=0

∑
r∈Z
r2≤4n

e4,1(n, r)qnζr

= 1 +
(
1ζ−2 + 56ζ−1 + 126ζ0 + 56ζ1 + 1ζ2

)
q1

+
(
126ζ−2 + 576ζ−1 + 756ζ0 + 576ζ1 + 126ζ2

)
q2

+
(
56ζ−3 + 756ζ−2 + 1512ζ−1 + 2072ζ0 + 1512ζ1 + 756ζ2 + 56ζ3

)
q3

+O(q4),

(3.6.2)

whereas the vector valued Eisenstein series for the lattice L = (Z, Q(x) = −x2) of weight
7
2 is given by

EL = (1 + 126q1 + 756q2 + 2072q3 +O(q4))e0+L

+ (56q3/4 + 576q7/4 + 1512q11/4 + 4032q15/4 +O(q19/4))e 1
2 +L

(3.6.3)

and we see that the coefficients agree in the sense of (3.6.1).

3.7. The Siegel-Weil formula
In this section, we introduce vector valued theta series and state the Siegel Weil formula
3.1.3 in its vector valued version.

Definition 3.7.1. Let L be a positive definite even lattice of rank n ≥ 5. We define

Θγ+L =
∑

µ∈γ+L
qQ(µ) for γ ∈ L′/L, (3.7.1)

ΘL =
∑

γ∈L′/L
Θγ+Leγ, (3.7.2)

ϕ∗(ΘL) =
∑

γ∈L′/L
Θγ+Leϕ(γ) for ϕ ∈ O(L′/L), (3.7.3)

Θsym
L = 1

|O(L′/L)|
∑

ϕ∈O(L′/L)
ϕ∗(ΘL), (3.7.4)
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Θsym,gen
L =

 ∑
M∈gen(L)/∼

1
|O(M)|

−1 ∑
M∈gen(L)/∼

1
|O(M)|Θ

sym
M . (3.7.5)

Note that in the above formula, we need to identify the discriminant forms M ′/M for
all M representing classes in the genus of L. If there is only one class in the genus, this
becomes unnecessary and we also do not need the size of the orthogonal groups of the
lattices.

Siegel-Weil formula, Theorem 3.7.2. For a positive definite even lattice L of rank
n ≥ 5, we have

Θsym,gen
L = EL, (3.7.6)

where EL is the vector valued Eisenstein series for the Weil representation ρL associated
to L of weight n

2 .

Proof. This is a reformulation of the Siegel-Weil formula as stated in Theorem 3.1.3. An
alternative proof using vector valued Hecke operators in the case of odd level (and hence
even rank) can be found in [Ros15, Theorem 4.18]. This second approach generalizes the
arguments for unimodular lattices in [KK07, chapter 5].

The Siegel-Weil formula provides test cases for our implementation of the Fourier coef-
ficients of the vector valued Eisenstein series. In most considered tests, there is only one
class in the genus of the lattice. We also give an example with class number 2.

Example 3.7.3. Let L = E8 denote the even unimodular E8 root lattice, which can be
realized as (Z8, x 7→ 1

2x
tSx) with Gram matrix

S =



4 −2 0 0 0 0 0 1
−2 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
1 0 0 0 0 0 0 2


, (3.7.7)

as can be deduced from [CS99, chapter 4, equation (99)]. As for all unimodular lattices,
the vector valued modular forms for the Weil representation associated to this lattice are
scalar valued modular forms. All lattices in the genus of E8 are isomorphic, i.e. there is
only one class in this genus. Since L′ = L there is no need to symmetrize and the Siegel-
Weil formula states that the theta series associated to E8 is the Eisenstein series of weight
4 associated to this lattice. This is the classical holomorphic Eisenstein series of weight 4.
By enumerating elements of γ ∈ L′ = L with Q(γ) < 6, we see that

EL = ΘL =
(
1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 +O(q6)

)
e0+L (3.7.8)
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which we recognize as the classical holomorphic Eisenstein series of weight 4.

In the last example there was no need to sort elements of µ ∈ L′ with respect to their
cosets µ ∈ γ + L. To show how this can be done, we look at the E7 root lattice.

Example 3.7.4. Let L = E7 denote the even E7 root lattice, which can be realized as
(Z7, x 7→ 1

2x
tSx) with Gram matrix

S =



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 0 −1 0 0 2


, (3.7.9)

as can be deduced from [CS99, chapter 4, equation (110)]. This lattice is also known to have
class number 1, i.e. there is only one class in its genus. The discriminant form L′/L has only
2 elements which we can represent by 0 = (0, 0, 0, 0, 0, 0, 0) and γ = (1/2, 0, 1/2, 0, 0, 0, 1/2).
The genus symbol of E7 is 2−1

3 and it has level 4.
In order to enumerate short vectors, we identify L′ = S−1Z7 with (Zn, x 7→ 1

2x
tS−1x) by

sending x 7→ Sx. Since the algorithm (Q.short_vector_list_up_to_length for a quadratic
form Q in sage) we use to enumerate short vectors needs an even lattice, we scale the
above lattice by the level N = 4 and look at (Zn, Q(x) = xtNS−1x). This yields

ΘL =
∑
ν∈Zn

q
Q(ν)
N eS−1ν+Zn (3.7.10)

and in order to compute this theta series to precision ω, we need to sort the elements of
Zn with Q(ν) < Nω with respect to their cosets S−1ν +Zn. Choosing precision ω = 5, we
get

ΘL =
(
1 + 126q + 756q2 + 2072q3 + 4158q4 +O(q5)

)
e0

+
(
56q3/4 + 576q7/4 + 1512q11/4 + 4032q15/4 + 5544q19/4 +O(q5)

)
eγ,

(3.7.11)

where

0 = (0, 0, 0, 0, 0, 0, 0) + Z7,

γ = (1/2, 0, 1/2, 0, 0, 0, 1/2) + Z7.

Due to the simple structure of the discriminant form, there are no nontrivial isometries,
so ΘL is already symmetrized and we have

EL = ΘL, (3.7.12)
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where EL is the vector valued Eisenstein series of weight 7
2 for the Weil representation ρL.

We give one final and more general example for the Siegel-Weil formula.

Example 3.7.5. Let L = A8 denote the even A8 root lattice, which can be realized as
(Z8, x 7→ 1

2x
tS0x) with Gram matrix

S0 =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


, (3.7.13)

as given in [CS99, chapter 4, equation (53)]. This lattice is known to have class number 2
and the second class in its genus is represented by lattice L1 with Gram matrix

S1 =



2 1 −1 0 0 −1 1 1
1 2 −1 1 1 −1 1 0
−1 −1 2 0 0 0 −1 −1

0 1 0 2 1 −1 1 0
0 1 0 1 2 −1 1 0
−1 −1 0 −1 −1 2 −1 0

1 1 −1 1 1 −1 2 1
1 0 −1 0 0 0 1 6


, (3.7.14)

which can be found on [LMFDB]. The discriminant form L′/L has 9 elements. The genus
symbol is 9−1 and it has level 9. Sending x 7→ −x is the only non trivial isometry of the
discriminant form. There are 5 orbits, each containing 2 elements except for the orbit of
0. The 5 orbits are

0 ∈ L′/L represented by (0, 0, 0, 0, 0, 0, 0, 0),
0 6= γ0 ∈ L′/L with Q(γ0) = 0 + Z repr. by ± (1/3, 2/3, 0, 1/3, 2/3, 0, 1/3, 2/3) + Z8,

γ1 ∈ L′/L with Q(γ1) = 1/9 + Z repr. by ± (4/9, 8/9, 1/3, 7/9, 2/9, 2/3, 1/9, 5/9) + Z8,

γ2 ∈ L′/L with Q(γ2) = 4/9 + Z repr. by ± (1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 8/9) + Z8,

γ3 ∈ L′/L with Q(γ3) = 7/9 + Z repr. by ± (2/9, 4/9, 2/3, 8/9, 1/9, 1/3, 5/9, 7/9) + Z8.

For both Gram matrices, we can determine the corresponding theta series as in the last
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example. We get

ΘL =
(
1 + 72q + 756q2 +O(q3)

)
e0

+
(
84q + 402q2 +O(q3)

)
(eγ0 + e−γ0)

+
(
0q1/9 + 126q10/9 + 756q19/9 +O(q3)

)
(eγ1 + e−γ1)

+
(
9q4/9 + 252q13/9 + 1332q22/9 +O(q3)

)
(eγ2 + e−γ2)

+
(
36q7/9 + 513q16/9 + 1764q25/9 +O(q3)

)
(eγ3 + e−γ3)

(3.7.15)

and

ΘL1 =
(
1 + 126q + 756q2 +O(q3)

)
e0

+
(
57q + 702q2 +O(q3)

)
(eγ0 + e−γ0)

+
(
1q1/9 + 126q10/9 + 812q19/9 +O(q3)

)
(eγ1 + e−γ1)

+
(
1q4/9 + 182q13/9 + 1332q22/9 +O(q3)

)
(eγ2 + e−γ2)

+
(
56q7/9 + 577q16/9 + 1639q25/9 +O(q3)

)
(eγ3 + e−γ3).

(3.7.16)

The vector valued Eisenstein series of weight 4 for the Weil representation ρL is

EL =
(
1 + 78q + 756q2 +O(q3)

)
e0

+
(
81q + 702q2 +O(q3)

)
(eγ0 + e−γ0)

+
(1

9q
1/9 + 126q10/9 + 6860

9 q19/9 +O(q3)
)

(eγ1 + e−γ1)

+
(73

9 q
4/9 + 2198

9 q13/9 + 1332q22/9 +O(q3)
)

(eγ2 + e−γ2)

+
(344

9 q7/9 + 4681
9 q16/9 + 15751

9 q25/9 +O(q3)
)

(eγ3 + e−γ3).

(3.7.17)

Both theta series are already symmetrized and we have

EL = 8
9ΘL + 1

9ΘL1 . (3.7.18)
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In this chapter, we take a second look at finite quadratic modules. In particular we are
interested in their isometries and orbits under the action of the orthogonal group. The
formulas for orbit lengths are from [Sch13]. They were tested in [Opi13], where some
representation numbers for the 2-adic case have also been computed. We generalize the
formula for representation numbers of even 2-adic Jordan components.

4.1. Enumerating representatives of L′/L

Let L be an even lattice of rank n with Gram matrix S represented by (Zn, x 7→ 1
2x

tSx).
The dual lattice L′ is given by S−1Zn and the discriminant form is L′/L = S−1Zn/Zn. To
find a set of representatives, we write S in Smith normal form, that is

D = USV, (4.1.1)

where U, V ∈ GLn(Z) and

D =


d1 0

. . .
0 dn

 (4.1.2)

is the diagonal matrix consisting of the elementary divisors of S. We see that

S−1Zn = V D−1UZn = V D−1Zn. (4.1.3)

Writing the columns of V as V = (v1, . . . , vn), we can represent S−1Zn/Zn by the elements
n∑
i=1

ji
di
vi + Zn, ji ∈ Z. (4.1.4)

Two such elements represent the same coset if and only if ji ≡ j′i (mod di) for all i = 1, . . . , n.
This implies that a set of representatives is given by

n∑
i=1

ji
di
vi, ji ∈ {0, . . . , di − 1}. (4.1.5)

To enumerate representatives for L′p/Lp, the maximal p-subgroup of L′/L, we can restrict
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the above to elements whose denominators are a power of p.
n∑
i=1

ji
pordp(di)

vi + Zn, ji ∈ Z. (4.1.6)

Analogously to the above, two such elements represent the same coset if and only if
ji ≡ j′i (mod pordp(di)) for all i = 1, . . . , n. This implies that a set of representatives is
given by

n∑
i=1

ji
pordp(di)

vi, ji ∈ {0, . . . , pordp(di) − 1}. (4.1.7)

The above ways to write elements give rise to the group isomorphism

L′/L '
⊕
p

L′p/Lp,

n∑
i=1

ji
di
vi + Zn 7→

(
n∑
i=1

ji
pordp(di)

vi + Znp

)
p

,

n∑
i=1

∑
p jp,i

di
pordp(di)

((
di

pordp(di)

)−1
(mod pordp(di))

)
di

vi + Zn ← [
(

n∑
i=1

jp,i
pordp(di)

vi + Znp

)
p

,

(4.1.8)
where we applied n instances of the Chinese Remainder Theorem. Evaluating the quadratic
form on L′/L after applying the group isomorphism to an element of the form

(0, . . . , 0, xp, 0 . . . , 0) ∈
⊕
p

L′p/Lp, (4.1.9)

where
xp =

n∑
i=1

jp,i
pordp(di)

vi + Znp = V D−1
p Jp + Znp ∈ L′p/Lp (4.1.10)

and

Dp =


pordp(d1) 0

. . .
0 pordp(dn)

 , (4.1.11)

gives the same result as the composition

L′p/Lp
'−→ L′p/Lp

Qp−→ Qp/Zp
'−→ Z[p−1]/Z ⊂−→ Q/Z,

xp 7→ Tpxp
(4.1.12)
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with

Tp = V



((
d1

pordp(d1)

)−1
(mod pordp(d1))

)
0

. . .
0

((
dn

pordp(dn)

)−1
(mod pordp(dn))

)
V −1

∈ GLn(Zp).
(4.1.13)

Remark 4.1.1. We see that if we start from a lattice, there is no way (known to us)
around using the Chinese Remainder Theorem. However, if we were to ignore this, we
would still get a finite quadratic module which is isometric to the discriminant form we
started with.
To see that the isomorphism given by Tp is necessary, we look at the the discriminant

form of the even lattice of rank 1 with Gram matrix (18).
Example 4.1.2. Let L = (Z, x 7→ 9x2). We have S = (18), D = (18), U = V = (1),
L′ = 1

18Z and
1
18Z/Z '

1
2Z2/Z2 ⊕

1
9Z3/Z3,

x

18 + Z 7→
(
x

2 + Z2,
x

9 + Z3

)
,

9x2 + 10x3

18 + Z←[
(
x2

2 + Z2,
x3

9 + Z3

)
.

(4.1.14)

To get an orthogonal decomposition, we need to choose the quadratic forms for the p-adic
lattices as (

1
2Z2/Z2,

x2

2 + Z2 7→ 9
(9x2

18

)2
= 1

4x
2
2 (mod Z2)

)
(4.1.15)

and (
1
9Z3/Z3,

x3

9 + Z3 7→ 9
(10x3

18

)2
= 7

9x
2
3 (mod Z3)

)
. (4.1.16)

This truly gives an orthogonal decomposition, since

Q( x18) = 1
36x

2 ≡ 1
4x

2 + 7
9x

2 (mod 1). (4.1.17)

If we made the “naive” choice(
1
9Z3/Z3,

x3

9 + Z3 7→ 9
(2x3

18

)2
= 1

9x
2
3 (mod Z3)

)
, (4.1.18)

we would not have the “right” orthogonal decomposition, since

Q( x18) = 1
36x

2 6≡ 13
36x

2 = 1
4x

2 + 1
9x

2 (mod 1). (4.1.19)
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However, if we construct a finite quadratic module orthogonally from the “false” choices,
we would get the finite quadratic module

D = (Z/2Z× Z/9Z, (x2, x3) 7→ 1
4x

2
2 + 1

9x
2
3 (mod 1) (4.1.20)

which is isometric to L′/L under the isometry

Z/2Z× Z/9Z→ 1
18Z/Z,

(x2, x3) 7→ 9x2 + 2x3

18 + Z.
(4.1.21)

4.2. Isometries
In this section, we collect information about the isometries of a finite quadratic module and
some invariants of the elements under the action of the orthogonal group. The formulas for
orbit lengths and representation numbers have been implemented using magma in [Opi13].
In the course of this thesis, a python version for use within sage has been implemented.
This code has been used in [BEF16a; BEF16b] for which it was incorporated into the class
for genus symbols in [Ehl16].
Let D be a finite quadratic module. We have already mentioned that D decomposes

orthogonally into its maximal p-subgroups

D =
⊕

p|ord(D)
Dp. (4.2.1)

If D is the discriminant form of an even lattice L, the previous section shows how to get
the Dp. The orthogonal group O(D) decomposes into the Cartesian product

O(D) =
∏

p|ord(D)
O(Dp). (4.2.2)

We can enumerate the isometries of a discriminant form or finite quadratic module by
choosing appropriate images of generators successively. This can be done as follows.

Algorithm 4.2.1.

(i) Choose generators µ1, . . . , µn of D. Set i = 1.

(ii) If i = 0: Stop.

(iii) For all γi with ord(γi) = ord(µi) and Q(γi) = Q(µi) (mod 1) such that γ1, . . . , γi
have not been previously checked do:
(a) If B(γj, γk) = B(µj, µk) for all 1 ≤ j ≤ k ≤ i:

i. If i = n, we have found an isometry by mapping µ1 7→ γ1, . . . , µn 7→ γn.

70



4.2. Isometries

ii. If i < n, set i = i+ 1 and go to (iii).
(b) Else we choose the next γi. If we have already checked all of them, set i = i− 1

and go to (ii).
Note that it is much faster, to apply Algorithm 4.2.1 to the maximal p-subgroups Dp

and to combine the results using the Chinese Remainder Theorem. For odd primes, one
can also use reflections as generators of O(Dp).
Remark 4.2.2. By a theorem in [Sch13], the orthogonal group of a finite quadratic module
of odd level is generated by reflections. If the level is even, this does not hold in general.

4.2.1. Orbits
Following [Sch13], we want to describe the orbits of a finite quadratic module D under
the action of its orthogonal group O(D). By equation (4.2.2), we can assume that D is a
discriminant form of level pl for a prime p. Additionally we need to assume that p is odd.
Any integer m acts by multiplication on D and we denote the kernel of this action by

Dm and the image by Dm. This gives rise to the exact sequence

0→ Dm → D → Dm → 0. (4.2.3)

The quotient D/Dm is a finite quadratic module with quadratic form given by

Q : D/Dm → Q/Z,
x+Dm 7→ mQ(x).

(4.2.4)

We denote the canonical projection by πm : D → D/Dm. The finite quadratic module
D/Dm is isomorphic to Dm, which we endow with the quadratic form

Q : Dm → Q/Z,
mx 7→ mQ(x).

(4.2.5)

For an element γ ∈ D, we define the multiplicity

v(γ) = max
({
pk
∣∣∣ k ∈ Z≥0 and there is µ ∈ D with pkµ = γ

})
(4.2.6)

and the reduced norm

Qred(γ) = v(γ)Q(µ) for some µ ∈ D with v(γ)µ = γ. (4.2.7)

The reduced norm is well defined (for odd p) and these values are invariant under isometries
of D. We can generalize these invariants to obtain

tpj = vpj(γ) = p−jv(pjγ),
vpj = Qred

pj (γ) = Qred(pjγ),
(4.2.8)
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for j = 0, . . . , k where ord(γ) = pk+1. Note that these are the multiplicities and reduced
norms of pjγ ∈ Dpj and also of πpj(γ). By [Sch13], these invariants identify the orbit of γ
(with respect to the action of the orthogonal group O(D)) and we write

O(D).γ = O(D, pk+1, v1, . . . , vpk , t1, . . . , tpk) (4.2.9)

Note that the orbit invariants fulfill the relations

v1 | vp | · · · | vpk | pl,
vpj

vpi
tpj ≡ pj−itpi (mod 1), (4.2.10)

for 0 ≤ i ≤ j < k. This allows us to predict the orbits which we can expect from a
discriminant form. We make this precise in the following two technical lemmas. The first
predicts the multiplicities which can occur, the second predicts fitting reduced norms.

Lemma 4.2.3 (cf. [Opi13, Lemma 4.4]). Let p be a prime and let

0 6= γ = (γ1, . . . , γn) ∈ Z/pi1Z⊕ · · · ⊕ Z/pinZ

be an element of order pk+1. We have

v(πpk(γ)) ∈ {pir−k−1 : r ∈ {1, . . . , n} with ir > k}

and if j ∈ {0, . . . , k − 1}, we have

v(πpj(γ)) ∈ {pir−j−1 : r ∈ {1, . . . , n} with ir > j and pir−j−1 ≤ v(πpj+1(γ))}.

Lemma 4.2.4 (cf. [Opi13, Lemma 4.5]). Let γ ∈ O(D,m, v1, . . . , vpk , t1, . . . , tpk). We have

tpk ∈
1
p
Z

and for j ∈ {0, . . . , k − 1}. For j ∈ {0, . . . , k − 1} let d denote the denominator of tpj+1.
We then have

tpj ∈
(

min
(
vpj+1

dpvpj
,
1
p

))
Z.

4.2.2. Orbit lengths
We summarise some results from [Sch13] and [Opi13] on how to compute the lengths
of the orbits from the last section. These computations depend purely on the Jordan
decomposition.

Proposition 4.2.5 ([Sch13]). Let D be a finite quadratic module of order pl where p is an
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odd prime. We have

|O(D, pk+1, v1, . . . , vpk , t1, . . . , tpk)| = |O(Dv1 , pk+1,
v1

v1
, . . . ,

vpk

v1
, t1, . . . , tpk)|.

Proposition 4.2.6 ([Sch13], cf. [Sch06, Proposition 3.2]). Let D be a finite quadratic
module with Jordan decomposition pεn where p is an odd prime. Then

|O(D, p, 1, t)| =

pn−1 − ε
(
−1
p

)n/2
p(n−2)/2, if n is even and t 6= 0,

pn−1 + ε
(
−1
p

)n/2 (
pn/2 − p(n−2)/2

)
− 1, if n is even and t = 0,

pn−1 + ε
(
−1
p

)(n−1)/2 (2
p

) (
pt
p

)
p(n−1)/2, if n is odd and t 6= 0,

pn−1 − 1, if n is odd and t = 0.

(4.2.11)

Proposition 4.2.7 ([Sch13]). Let D be a finite quadratic module of order pl where p is an
odd prime. Choose a Jordan decomposition of D. Define A as the sum over the Jordan
components of order p and B as the sum over the remaining components. Then D = A⊕B
and

|O(D, p, 1, t)| =

|O(A, p, 1, t)||Bp|, if A 6= 0,
0, if A = 0.

Theorem 4.2.8 ([Sch13]). Let D be a finite quadratic module of order pl where p is an
odd prime. The orbit length

|O(D,m, 1, . . . , 1, t, pt, . . . , pkt)|

depends only on
(
mt
p

)
.

Proposition 4.2.9 ([Sch13]). Let D be a finite quadratic module of order pl where p is an
odd prime. We have

|O(D,m, 1, . . . , 1, t, pt, . . . , pkt)| = |Dpk |
pk
|O(D/Dpk , p, 1, pkt)|.

Theorem 4.2.10 ([Sch13]). Let D be a finite quadratic module of order pl where p is an
odd prime. Suppose v1 = · · · = vpj = 1 and vpj+1 > 1 for some j ∈ {0, . . . , k − 1}. Further
suppose that tpi = pit1 (mod 1) for all i = 1, . . . , j. Choose a Jordan decomposition of D.
Let A denote the sum over the Jordan components whose level divides vpj+1pj+1 and B the
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sum of the remaining components. Then

|O(D, pk+1, v1, . . . ,vpk , t1, . . . , tpk)| =∑
pj+1r=t

pj+1 (mod 1)
s+v

pj+1r=t1 (mod 1)

|O(A, pj+1, 1, . . . , 1, s, ps, . . . , pjs)|

|O(Bv
pj+1 , pk+1, 1, . . . , 1, vpj+1

vpj+1
, . . . ,

vpk

vpj+1
, r, pr, . . . , pjr, tpj+1 , . . . , tpk)|.

In the case that we have a valid orbit description in the sense of (4.2.10). These formulas
can be further simplified.

Proposition 4.2.11 ([Sch13]). Suppose the assumptions of Theorem 4.2.10 hold.
If vpj+1tpj+1 = pj+1t1 (mod 1) then

|O(D,m, v1, . . . ,vpk , t1, . . . , tpk)| =
|O(A, pj+1, 1, . . . , 1, a, pa, . . . , pja)|∑

pj+1r=t
pj+1 (mod 1)

|O(Bv
pj+1 ,m, 1, . . . , 1, vpj+1

vpj+1
, . . . ,

vpk

vpj+1
, r, pr, . . . , pjr, tpj+1 , . . . , tpk)|

where a is any element in Q/Z such that pja = pjt1 −
v
pj+1

p
tpj+1.

If vpj+1tpj+1 6= pj+1t1 (mod 1), then |O(D,m, v1, . . . , vpk , t1, . . . , tpk)| = 0.

Theorem 4.2.12 ([Opi13, Theorem 2.9, Korollar 2.10]). Suppose the assumptions of The-
orem 4.2.10 hold.
If vpj+1tpj+1 = pj+1t1 (mod 1) then

|O(D,m, v1, . . . ,vpk , t1, . . . , tpk)| =
pj+1 · |O(A, pj+1, 1, . . . , 1, a, pa, . . . , pja)|

· |O(Bv
pj+1 ,m, 1, . . . , 1, vpj+1

vpj+1
, . . . ,

vpk

vpj+1
, b, pb, . . . , pjb, tpj+1 , . . . , tpk)|

where a is any element in Q/Z such that pja = pjt1 −
v
pj+1

p
tpj+1 (mod 1) and b is any

element in Q/Z such that pj+1b = tpj+1 (mod 1).
If vpj+1tpj+1 6= pj+1t1 (mod 1), then |O(D,m, v1, . . . , vpk , t1, . . . , tpk)| = 0.

Proof. This is obtained by applying Proposition 4.2.11 to its own summands. One shows
that the pj+1 summands are all the same.

Note that when computing the lengths of orbits which have the same multiplicities, the
discriminant forms appearing in the above recursion are always the same. Hence they only
have to be computed once.
Also note that the above formulas depend only on the Jordan decomposition D. The

orbits can be computed purely from the genus symbol.
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4.3. Gauss sums

4.3. Gauss sums

We define the Gauss sums of a finite quadratic module D by

G(c,D) =
∑
µ∈D

e(cQ(µ)) (4.3.1)

for any integer c. One way to calculate them is to use the representation numbers of D.
This approach gives

G(c,D) =
∑

j (mod 1)
e(cj)N(D, j), (4.3.2)

which is a finite sum. There is also a closed formula, for which we define

xc =
(
2k−1, . . . , 2k−1

)
∈ (2k)±nt (4.3.3)

if 2k||c and D has a maximal odd component of this form. If there is no such odd com-
ponent, we set xc = 0. We define the coset Dc∗ = xc + Dc and for any integer q, we
denote the greatest common divisor of q and c by qc = (q, c). Furthermore, we define the
value Q′(αc) = cQ(γ) + (xc, γ) for any α = xc + cγ ∈ Dc∗. This is well defined by [Sch09,
Proposition 2.2].

Theorem 4.3.1 ([Sch09, Theorem 3.8 and 3.9]). Let D be a finite quadratic module, c ∈ Z
and α ∈ D. We have

∑
µ∈D

e(cQ(µ) + (α, µ)) =

0, if α 6∈ Dc∗,

εce(−Q′(αc))
√
|Dc||D|, if α ∈ Dc∗,

(4.3.4)

where

εc =
∏
2|q-c

γ2
(
(q/qc)εqnqt/II

)
e
(
(c/qc − 1) oddity

(
(q/qc)εqnqt/II

)
/8
)( c/qc

(q/qc)nq

)
∏
p|q-c
p odd

γp ((q/qc)εqnq)
(

c/qc
(q/qc)nq

)
.

(4.3.5)

and the products run over the Jordan components qεqnq of D.

Since 0 ∈ Dc∗ if and only xc = 0 we can calculate the Gauss sums as follows.
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4. Finite quadratic modules revisited

Corollary 4.3.2. Let D be a finite quadratic module, c ∈ Z and α ∈ D. We have

G(D, c) =
∑
µ∈D

e(cQ(µ))

=


0, if D has an odd 2-adic Jordan

component of level 2k+1 where 2k||c,

εc
√
|Dc||D|, else.

(4.3.6)

4.4. The dimension of Mρ∗L,k

The dimension of the vector space of vector valued modular forms of weight k for the dual
Weil representation Mρ∗L,k

is computed in [Bru02b] for the case 2k+ sign(L) ≡ 0 (mod 4).
Note that the formula only depends on the discriminant form D = L′/L. Let N denote
the level of D. The dimension of the modular forms (resp. cusp forms) are

dimC(Mρ∗L,k
) = d+ dk

12 − α1 − α2 − α3,

dimC(Sρ∗L,k) = d+ dk

12 − α1 − α2 − α3 − α4,

(4.4.1)

where

d = |D/{±1}| = 1
2(|D|+ | {γ ∈ D | 2γ = 0} |),

α1 = d

4 −
1

4
√
|D|

e((2k + sign(D))/8) <(G(2, D)),

α2 = d

3 + 1
3
√

3|D|
<(e((4k + 3sign(D)− 10)/24) (G(1, D) +G(−3, D))),

α3 =
∑

γ∈D/{±1}
−Q(γ)− [−Q(γ)]

= 1
2

N∑
j=1

N − j
N

(
N
(
D,

j

N

)
+N2-torsion

(
D,

j

N

))
,

α4 =
∣∣∣{γ ∈ D/{±1}

∣∣∣ γ2/2 = 0 mod 1
}∣∣∣

= 1
2(N (D, 0) +N2-torsion (D, 0)).

(4.4.2)

4.5. Local densities as orbit invariants
In this section, we show that generalized local densities can be used as orbit invariants. Let
L be an even lattice with discriminant form D = L′/L. By Remark 3.1.7, the Whittaker

76



4.5. Local densities as orbit invariants

polynomials for a prime p depend mainly on the parity of the rank of L and on the maximal
p-subgroup Dp of D.

Lemma 4.5.1. Let p be a prime and L an even lattice with discriminant form D = L′/L
of order pl. If there is an isometry of D mapping µ ∈ D to µ′ ∈ D, then

Wp,m,µ(X) = Wp,m,µ′(X) (4.5.1)

for all m ∈ Q.

Proof. The vector valued Eisenstein series associated to L of weight k is invariant under
O(D), which means that the Fourier coefficients at eµ and eµ′ coincide. Since all other
factors in the formulas of Theorem 3.1.5 and Theorem 3.1.6 are non zero, the local densities
must coincide for an infinite number of possible weights. This means that the Whittaker
polynomials satisfy

Wp,m,µ(p−s) = Wp,m,µ′(p−s) (4.5.2)

for infinite values of s, so the polynomials must be the same.

Since the last lemma is only useful if the rank of L is even or if D has order 2l, we
need a different approach for odd rank and odd primes. We look at the even lattice
L2 = (Z, x 7→ x2). We have L′2 = 1

2Z and using Lemma 3.1.8 we compute

W2,m, 1
2
(X) =

X + 1, if m ≡ 1
4 (mod 2),

−X + 1, if m ≡ 5
4 (mod 2).

(4.5.3)

Lemma 4.5.2. Let p be an odd prime and Lp an even lattice with discriminant form
D = L′p/Lp of order pl. Let L = L2⊕Lp. If there is an isometry of L′p/Lp mapping µp ∈ D
to µ′p ∈ D, then the local Whittaker polynomials of L satisfy

Wp,m,( 1
2 ,µ)(X) = Wp,m,( 1

2 ,µ
′)(X) (4.5.4)

for all m ∈ Q.

Proof. The vector valued Eisenstein series associated to L of weight k is invariant under
O(D), which means that the Fourier coefficients at e( 1

2 ,µ) and e( 1
2 ,µ
′) coincide. Since all

other factors in the formulas of Theorem 3.1.5 and Theorem 3.1.6 are non zero, the local
densities must coincide for an infinite number of possible weights. This means that the
Whittaker polynomials satisfy

W2,m,( 1
2 ,µ)(2−s)Wp,m,( 1

2 ,µ)(p−s) = W2,m,( 1
2 ,µ
′)(2−s)Wp,m,( 1

2 ,µ
′)(p−s) (4.5.5)

for infinitely many values of s. Since W2,m,( 1
2 ,µ)(2−s) = W2,m,( 1

2 ,µ
′)(2−s) is non zero for

infinite values of s by equation (4.5.3), the Whittaker polynomials for p must be equal.

Let L be an even lattice with discriminant form D = L′/L.
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4. Finite quadratic modules revisited

Proposition 4.5.3. If there is an isometry of D mapping µ ∈ D to µ′ ∈ D, then

Wp,m,µ(X) = Wp,m,µ′(X) (4.5.6)

for all primes p and all m ∈ Q.

Proof. For a fixed prime p, the above equation is only concerned with the p-adic properties
of L and µ. We can therefore assume that it is an isometry of Dp which sends µ to µ′.
If the rank of L is even or p = 2, then there is an n such that L plus n hyperbolic planes

is p-adically isometric to a lattice where Lemma 4.5.1 applies and Remark 3.1.7 implies
(4.5.6).
If the rank of L is odd and p 6= 2, then there is an n such that L plus n hyperbolic

planes is p-adically isometric to a lattice where Lemma 4.5.2 applies and again Remark
3.1.7 implies (4.5.6).

For odd primes p, the Whittaker polynomials can be viewed as a generalization of the
orbit invariants described in Section 4.2.1. To see this, recall that for odd primes p, an orbit
with respect to the orthogonal group of a finite quadratic module of order pl is uniquely
determined by the order of its elements together with the multiplicities and reduced norms
of multiples of its elements.
Let µ = (µp)p ∈

⊕
pDp. For odd p we have

v(µp) = pK0 , (4.5.7)

so by Lemma 3.1.8, the Whittaker polynomials Wp,m,µp(X) have modulus v(µp) in m.
Taking a look at Theorem 3.1.5, we see that out of the Whittaker polynomials

Wp,Q(µ)+m,µ(X), m = 0, . . . , v(µ)− 1 (4.5.8)

only Wp,Q(µ),µ(X) has a coefficient with even numerator in front of XK0 . This implies that
the Whittaker polynomials determine Q(µ) (mod v(µ)Zp), from which we can deduce the
reduced norm of Qred(µp) = Q(µp)

v(µp) (mod 1).
The same argument shows that the multiplicity of µp (for odd p) is the smallest modulus

satisfied by the Whittaker polynomials Wp,m,µ(X) in the sense of Lemma 3.1.8, so we can
also recover the multiplicity v(µp) from them.
We have proved the following theorem.

Theorem 4.5.4. Let D be a finite quadratic module of order pl for an odd prime p.
Let µ, µ′ ∈ D have the same order pk+1 and the same multiplicities vpj(µ) = vpj(µ′) for
j = 0, . . . , k. There is an isometry mapping µ ∈ D to µ′ ∈ D if and only if

Wp,m,pjµ(X) = Wp,m,pjµ′(X) (4.5.9)

for all m ∈ Q and j = 0, . . . , k. It suffices to check m = Q(pjµ), Q(pjµ) + 1, . . . , Q(pjµ) +
vpj(µ)− 1.
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4.5. Local densities as orbit invariants

For odd primes p both theWhittaker polynomials and the reduced norms are well defined.
For p = 2, the reduced norms are not generally well defined, so the Whittaker polynomials
are new orbit invariants. We do not yet know however, if they determine a unique orbit.
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5. Borcherds products
In this chapter, we use our algorithm for the computation of vector valued Eisenstein series
to classify Borcherds products of singular weight arising from simple lattices. This is joint
work with Markus Schwagenscheidt (cf. [OS18]).
In his celebrated work [Bor98], Borcherds defined a multiplicative lifting map from vector

valued modular forms for the Weil representation associated to an even lattice L to modular
forms on the hermitian symmetric domain corresponding to L. The resulting modular
forms have infinite product expansions at the cusps and are therefore called automorphic
(or Borcherds) products. The smallest possible weight of a non-constant holomorphic
modular form for the orthogonal group of an even lattice L of type (2, n) with n ≥ 3, called
the singular weight, is given by n

2 − 1, compare [Bun01]. Borcherds products of singular
weight have interesting Fourier and product expansions which often yield denominator
identities of generalized Kac-Moody algebras [Sch06]. Furthermore, there are not many
known holomorphic Borcherds products of singular weight, and it is a folklore conjecture
that there are only finitely many of them, which makes it an interesting problem to classify
them all.
Scheithauer [Sch06] obtained a complete list of the symmetric and reflective Borcherds

products of singular weight for lattices of square free level. In [Sch17], he classified all
reflective (not necessarily symmetric) holomorphic automorphic products of singular weight
for lattices of prime level, and he gave an effective bound for the possible types of lattices of
prime level (with prescribed discriminant group) allowing holomorphic Borcherds products
of singular weight. His student M. Dittmann informed us that he was able to remove the
requirement of being symmetric for all lattices of square free level [Dit18].
Following a somewhat different direction, Dittmann, Hagemeier and Schwagenscheidt in

[DHS15] classified the simple lattices of square free level (hence even signature) and the
corresponding holomorphic Borcherds products of singular weight. Here, an even lattice
L of type (2, n) is called simple if the space of cusp forms of weight n

2 + 1 for the dual
Weil representation of L vanishes. For a simple lattice, every formal principal part is the
principal part of a vector valued modular form, which implies that a simple lattice allows
many Borcherds products. One of the main result of [DHS15] is a list of 15 (isomorphy
classes) of simple lattices of square free level. It was further proven that only four of them
admit holomorphic automorphic products of singular weight, which were then constructed
explicitly. Bruinier, Ehlen and Freitag [BEF16b] determined all simple lattices of arbitrary
level and type (2, n). The main result of this chapter is the classification of the holomorphic
Borcherds products of singular weight for all simple lattices. To ensure that the Borcherds
product is holomorphic, we assume that the corresponding vector valued modular form has
only non-negative coefficients in its principal part.
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5. Borcherds products

Theorem 5.0.5. Holomorphic Borcherds products (coming from vector valued modular
forms with non-negative principal part) of singular weight n

2 − 1 for simple lattices L of
type (2, n), n ≥ 3, only exist in the following cases.

n genus lattice level
3 2+1

7 4+2 A1(−1)⊕ U ⊕ U(4) 4
2+3

7 4+2 A1(−1)⊕ U(2)⊕ U(4) 4
2+1

7 4+4 A1(−1)⊕ U(4)⊕ U(4) 4
2+44+1

7 A1(−2)⊕ U(2)⊕ U(2) 8
8+1

7 A1(−4)⊕ U ⊕ U 16
4 3+5 A2(−1)⊕ U(3)⊕ U(3) 3
6 2−6 D4(−1)⊕ U(2)⊕ U(2) 2
10 2+2 E8(−1)⊕ U ⊕ U(2) 2
26 1+1 E8(−1)⊕ E8(−1)⊕ E8(−1)⊕ U ⊕ U 1

Here U denotes the hyperbolic plane Z2 with Q(x, y) = xy, and A1, A2, D4, E8 denote the
usual root lattices. Further, if (L,Q) is a lattice and N a positive integer, we write L(N)
for the scaled lattice (L,NQ).

We remark that the automorphic products for the lattices with n ≥ 4 in the above table
were already found in [DHS15].
We briefly explain the idea of the proof. Let L be an even lattice of type (2, n), let L′

denote its dual lattice and let L′/L be its discriminant form. We let C[L′/L] be the group
ring of L′/L, which is generated by the basis elements eγ for γ ∈ L′/L. Let

f(z) =
∑

γ∈L′/L

∑
n�−∞

af (γ, n)e2πinzeγ,

be a weakly holomorphic modular form of weight 1 − n
2 for the Weil representation of L

with real coefficients af (γ, n). To make sure that the associated Borcherds product Ψf is
holomorphic we assume that the coefficients af (γ, n) with n < 0, i.e., the coefficients of
the principal part of f , are non-negative integers. The weight of Ψf is given by the linear
combination

−1
2

∑
γ∈L′/L

af (γ, n)aE(γ,−n), (5.0.1)

where aE(γ,−n) are the Fourier coefficients of an Eisenstein series of weight n
2 + 1 for the

dual Weil representation (see Section 3.2). In Section 3.5, we have given an explicit lower
bound for the absolute value of the coefficients of this Eisenstein series of the following
form.
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5.1. Orthogonal modular forms

Theorem 5.0.6 (cf. Theorem 3.5.2). Let L be an even lattice of type (b+, b−) (b+ even)
and rank m ≥ 3, and let d = |L′/L|. Suppose that L splits a scaled hyperbolic plane U(N).
Let d = |L′/L|. Let γ ∈ L′/L and n ∈ Z−Q(γ) with n > 0. The coefficient aE(γ, n) of the
Eisenstein series of weight k = m

2 for the dual Weil representation is either 0 or satisfies
the estimate

(−1)b+/2aE(γ, n) ≥ Ck,d,N · nk−1

for some explicit constant Ck,d,N > 0 depending on k, d, and N , but not on γ and n.
The theorem implies that the weight of Ψf is bigger than the singular weight for all

but finitely many choices of the principal part of f . For the few remaining choices of the
principal part of f , we explicitly compute the coefficients of the Eisenstein series to check
whether Ψf has singular weight.

5.1. Orthogonal modular forms
Let L be an even lattice of type (2, n) with n ≥ 3 and let V = L ⊗ R. We let Gr(V ) be
the Grassmannian of positive definite planes in V . Choose some primitive isotropic vector
z ∈ L and some vector z′ ∈ L′ with (z, z′) = 1, and let K = L ∩ z⊥ ∩ z′⊥. The complex
manifold {Z = X+ iY ∈ K⊗C : (Y, Y ) > 0} has two connected components. We pick one
of them and denote it by Hn. It can be viewed as a generalized upper half-plane. There is
a bijection Gr(V ) ∼= Hn which endows Gr(V ) with a complex structure, compare [Bru02a,
Section 3.2].
We let O(L)+ = O(L) ∩ O(V )+ be the intersection of the orthogonal group O(L) of

L with the identity component of O(V ), and we let ΓL be the kernel of the natural map
O(L)+ → O(L′/L). It has finite index in O(L)+. The action of O(L)+ on Gr(V ) induces an
action on Hn. Further, there is a natural factor of automorphy j(σ, Z) for σ ∈ O(L)+ and
Z ∈ Hn, see [Bru02a, Section 3.3]. A meromorphic function Ψ : Hn → C is called a modular
form of weight k ∈ 1

2Z for ΓL and multiplier system χ if Ψ(σZ) = χ(σ)j(σ, Z)kΨ(Z) for
all σ ∈ ΓL and Z ∈ Hn. The smallest possible positive weight of a non-trivial holomorphic
modular form for ΓL is called the singular weight. It is given by n

2 − 1, compare [Bun01].
For γ ∈ L′/L and n < 0 we define the Heegner divisor of index (γ, n) by

HL(γ, n) =
∑

X∈L+γ
Q(X)=n

X⊥ ⊂ Gr(V ).

Here X⊥ ⊂ Gr(V ) denotes the set of all positive definite planes orthogonal to X. The
corresponding divisor in Hn will be denoted by the same symbol HL(γ, n).
Theorem 5.1.1 ([Bor98, Theorem 13.3]). Let f = ∑

γ,n af (γ, n)e(nz)eγ be a weakly holo-
morphic modular form of weight 1 − n

2 for ρL with af (γ, n) ∈ Z for all n ≤ 0, γ ∈ L′/L.
Then there exists a meromorphic function Ψf : Hn → C with the following properties:
(i) Ψf is a meromorphic modular form of weight af (0, 0)/2 for ΓL with some multiplier

system of finite order.

83



5. Borcherds products

(ii) The divisor of Ψf is given by

1
2

∑
γ∈L′/L

∑
n<0

af (γ, n)HL(γ, n).

Here HL(γ, n) has multiplicity 2 if 2γ = 0 in L′/L, and multiplicity 1 otherwise.

(iii) Ψf has an infinite product expansion.

The product expansion of Ψf can be written down explicitly, but we did not include it
here since we will not use it. The modular form Ψf is called the Borcherds product or
automorphic product associated to f . We remark that it depends on the choice of the
primitive isotropic vector z, and different choices of z correspond to expansions of Ψf at
other cusps.
We are particularly interested in Borcherds products of singular weight n

2 −1. Therefore,
we need to control the constant coefficient af (0, 0) of f . Let κ = n

2 + 1, and recall the
definition of the vector valued Eisenstein series for the dual Weil representation ρ∗L,

E(z) = 1
4

∑
(M,φ)∈〈T 〉\Mp2(Z)

e0|∗k(M,φ).

It is a modular form of weight κ for ρ∗L and it has a Fourier expansion of the form

E(z) = e0 +
∑

γ∈L′/L

∑
n>0

aE(γ, n)e(nz)eγ.

If f is a weakly holomorphic modular form of weight k = 1− n
2 = 2− κ, then the function∑

γ∈L′/L fγ(z)Eγ(z)dz is a meromorphic 1-form on SL2(Z)\H. By the residue theorem its
residue vanishes, which yields the formula

af (0, 0) = −
∑

γ∈L′/L

∑
n<0

af (γ, n)aE(γ,−n).

Therefore, the constant coefficient of f , and hence the weight of the associated Borcherds
product, is determined by the principal part of f and certain coefficients of an Eisenstein
series.

5.2. Simple lattices

An even lattice L of type (2, n) is called simple if the space of cusp forms of weight n
2 + 1

for ρ∗L is trivial. This space of cusp forms is also called the obstruction space for L. The
significance of this notion is the fact that a formal principal part as in (1.7.2) is the principal
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part of a weakly holomorphic modular form if and only if∑
γ∈L′/L

∑
n<0

af (γ, n)ag(γ,−n) = 0

for every cusp form g in the obstruction space. Hence, for a simple lattice every formal
principal part is the principal part of a weakly holomorphic modular form, and hence every
Z-linear combination of Heegner divisors is the divisor of a Borcherds product.
The simple lattices of square free level and the corresponding holomorphic Borcherds

products of singular weight were determined in [DHS15]. Later, all simple lattices of
arbitrary level were computed in [BEF16b], but the corresponding Borcherds products of
singular weight were not studied. For convenience of the reader, we give a list of the simple
lattices of type (2, n) with n ≥ 3 at the end of this chapter in Section 5.5.

5.3. An example
For a given lattice of type (2, n) we are interested in solutions to the equation

n

2 − 1 = 1
2af (0, 0) = −1

2
∑

γ∈L′/L

∑
n<0

af (γ, n)aE(γ,−n)

where f has a non-negative principal part, i.e. af (γ, n) ∈ Z≥0. We know from Theorem
3.5.1 that the Eisenstein coefficients on the right hand side are non-positive.
For any γ ∈ L′/L and any n, we have af (γ, n) = af (−γ, n) and aE(γ,−n) = aE(−γ,−n).

Hence any nonzero summand for a γ of order greater than 2 occurs twice, once for γ and
again for −γ 6= γ.
We can only find a solution to the above equation, if there is an Eisenstein coefficient

satisfying 2 − n ≤ aE(γ,−n) < 0 and 2γ = 0 or an Eisenstein coefficient satisfying
1− n

2 ≤ aE(γ,−n) < 0 and 2γ 6= 0.

The lattice L = A1(−1) ⊕ 2U(4) has genus symbol 2+1
7 4+4 and type (2, 3). We need to

check for Eisenstein coefficients satisfying −1 ≤ aE(γ,−n) < 0 and 2γ = 0 or Eisenstein
coefficients satisfying −1

2 ≤ aE(γ,−n) < 0 and 2γ 6= 0. The lattice splits a hyperbolic
plane scaled by 4, which leads to the estimate

−aE(γ, n) ≥ C4,512, 5
2
· n

3
2

for the non zero coefficients of the Eisenstein series with respect to the dual Weil represen-
tation. We have

C4,512, 5
2

= − 1
90 π

2 + 2
15 ≈ 0.023671.

For
n ≥

[
C
− 2

3
4,512, 5

2

]
+ 1 = 13
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this implies aE(γ, n) < −1.
Let f be a modular form of weight −1

2 for ρL with coefficients af (γ, n). In view of the
discussion above and formula (5.0.1) for the weight of the Borcherds products Ψf , we see
that the weight of Ψf will be bigger than the singular weight 1

2 if af (γ, n) > 0 for some
n ≤ −13. Hence it suffices to compute the Eisenstein cofficients aE(γ, n) for n < 13. The
discriminant form of L is isomorphic to Z/2Z × (Z/4Z)4 and it has 8 orbits with respect
to the action of its orthogonal group. Since the Eisenstein series is invariant under the
orthogonal group it suffices to list the coefficients of the Eisenstein series once for each
orbit. The following table gives a representative for each orbit, the size of the orbit and
the coefficients of the Eisenstein series for an element in this orbit.

orbit repr. #orbit q-expansion

(0, 0, 0, 0, 0) 1
1− 10 q1 − 70 q4 − 48 q5 − 120 q8 − 250 q9

−240 q12 + O( q13)

(0, 1, 0, 0, 0) 120
−4 q1 − 8 q2 − 16 q3 − 32 q4 − 32 q5 − 48 q6

−64 q7 − 64 q8 − 100 q9 − 112 q10 − 112 q11

−128 q12 + O( q13)

(0, 2, 0, 0, 0) 15
−4 q1 − 8 q2 − 16 q3 − 32 q4 − 32 q5 − 48 q6

−64 q7 − 64 q8 − 100 q9 − 112 q10 − 112 q11

−128 q12 + O( q13)

(0, 1, 1, 0, 0) 120
−2 q 3

4 − 8 q 7
4 − 14 q 11

4 − 24 q 15
4 − 38 q 19

4

−40 q 23
4 − 56 q 27

4 − 80 q 31
4 − 76 q 35

4 − 104 q 39
4

−126 q 43
4 − 112 q 47

4 − 156 q 51
4 + O( q 55

4 )

(0, 1, 2, 0, 0) 120
−1 q 1

2 − 6 q 3
2 − 14 q 5

2 − 20 q 7
2 − 31 q 9

2

−46 q 11
2 − 50 q 13

2 − 68 q 15
2 − 92 q 17

2 − 82 q 19
2

−108 q 21
2 − 148 q 23

2 − 131 q 25
2 + O( q 27

2 )

(1, 0, 0, 1, 0) 120
−1

2 q
1
4 − 4 q 5

4 − 25
2 q

9
4 − 20 q 13

4 − 24 q 17
4

−40 q 21
4 − 121

2 q
25
4 − 60 q 29

4 − 72 q 33
4 − 100 q 37

4

−96 q 41
4 − 124 q 45

4 − 337
2 q

49
4 + O( q 53

4 )

(1, 0, 0, 0, 0) 10
−1 q 1

4 − 25 q 9
4 − 48 q 17

4 − 121 q 25
4 − 144 q 33

4

−192 q 41
4 − 337 q 49

4 + O( q 53
4 )

(1, 2, 2, 0, 0) 6
−8 q 5

4 − 40 q 13
4 − 80 q 21

4 − 120 q 29
4

−200 q 37
4 − 248 q 45

4 + O( q 49
4 )

We see that there are exactly two possibilities to obtain holomorphic Borcherds products
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5.4. Automorphic products as Siegel modular forms

of singular weight, namely by setting

af (γ, 1
4) = af (−γ, 1

4) = 1

for any γ in the 6th orbit or by setting

af (γ, 1
4) = 1

for any γ in the 7th orbit. The coefficients af (γ, n) for all other γ ∈ L′/L, n < 0 have to be
set to 0. We call these elements γ (which lead to Borcherds products of singular weight)
good elements. The other simple lattices can be treated analogously. We obtain the list
given in Theorem 5.0.5. The automorphic products for the simple lattices of type (2, 3)
will be described more explicitly in the next section.

5.4. Automorphic products as Siegel modular forms
In order to identify the automorphic products in our list, we follow the setup of [Lip08].
We consider the real quadratic space

V =



x5 −x3 0 −x1
x4 −x5 x1 0
0 −x2 x5 x4
x2 0 −x3 −x5

 : xi ∈ R


with the quadratic form

Q(X) = −1
4 tr(X2) = x1x2 + x3x4 − x2

5.

It has type (2, 3). Occasionally, we identify V with R5 and writeX = (x1, x2, x3, x4, x5) ∈ V
to ease the notation. The group Sp4(R) acts as isometries on V by conjugation. In fact, the
identity component O(V )+ of the orthogonal group of V is isomorphic to Sp4(R)/{±1}.
Let H2 be the Siegel upper half-space of genus 2. For Z = ( z1 z2

z2 z3 ) ∈ H2 we let

X(Z) = 1√
det(Y )


z2 −z1 0 det(Z)
z3 −z2 − det(Z) 0
0 −1 z2 z3
1 0 −z1 −z2

 ∈ V (C).

Note that X(Z) has norm 0, and that the real and the imaginary part have norm 1 and
are orthogonal. The map

Z 7→ span
(
<X(Z),=X(Z)

)
gives a bijection between H2 and the Grassmannian Gr(V ) of positive definite planes in V ,
which is compatible with the corresponding actions of Sp4(R). Note that the Siegel upper
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5. Borcherds products

half-plane H2 can be naturally identified with the orthogonal half-plane H3 corresponding
to the primitive isotropic vector z = (1, 0, 0, 0, 0) and z′ = (0, 1, 0, 0, 0). Thus, orthogonal
modular forms on H3 can be viewed as Siegel modular forms of genus 2.
Let L be an even lattice in V , and let γ ∈ L′/L and n ∈ Z + Q(β) with m < 0. In the

Siegel upper-plane model of Gr(V ), the Heegner divisor HL(γ, n) corresponds to the set

∑
X∈γ+L
Q(X)=n

{(
z1 z2
z2 z3

)
∈ H2 : x2(z2

2 − z1z3) + x4z1 − 2x5z2 + x3z3 + x1 = 0
}
.

The ten even theta constants

ϑa,b(Z) =
∑
g∈Z2

exp
(
πi
(
Z[g + a/2] + bt(g + a/2)

))
,

with a, b ∈ {0, 1}2, a1b1 + a2b2 ≡ 0 (mod 2), are Siegel modular forms of weight 1/2 for
the principal congruence subgroup Γ(2), see [Fre83, Satz 3.2]. The divisor of ϑ1,1,1,1(Z) on
H2 is given by Γϑ{Z ∈ H2 : z2 = 0}, where Γϑ is the theta group, see [Fre83, Bemerkung
A 2.3]. Since Sp4(Z) acts transitively on the even theta constants, we can easily determine
the divisors of the other theta functions from this. The following result is well known.
Lemma 5.4.1. The divisor of ϑa,b(Z) on H2 is given by the set of all Z ∈ H2 satisfying
an equation

x2(z2
2 − z1z3) + x4z1 − 2x5z2 + x3z3 = 0

for some (x1, . . . , x5) ∈ Z5 satisfying x1x2 +x3x4−x2
5 = −1 and the following congruences

mod 4:

ϑa1,a2,b1,b2 x1 x2 x3 x4 x5

ϑ0,0,0,0 2 2 2 2 ±1
ϑ0,0,0,1 0 2 2 0 ±1
ϑ0,0,1,0 0 2 0 2 ±1
ϑ0,0,1,1 0 2 0 0 ±1
ϑ0,1,0,0 2 0 0 2 ±1
ϑ0,1,1,0 0 0 0 2 ±1
ϑ1,0,0,0 2 0 2 0 ±1
ϑ1,0,0,1 0 0 2 0 ±1
ϑ1,1,0,0 2 0 0 0 ±1
ϑ1,1,1,1 0 0 0 0 ±1

We remark that the divisors of the ten even theta constants can be written as Heegner
divisors with respect to the lattice

√
2Z5 ⊂ V , but we chose the above formulation to make
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5.4. Automorphic products as Siegel modular forms

everything as explicit as possible.
We now describe the Borcherds products of singular weight 1

2 found in Theorem 5.0.5 in
terms of theta constants. In each case, we first realize the simple lattice under consideration
as a sublattice of V , which amounts to choosing a cusp at which we expand the Borcherds
products for this lattice. We will frequently use the fact that, by the Koecher principle,
a holomorphic Siegel modular form of weight 0 for some finite index subgroup of Sp4(Z)
and some multiplier system of finite order is constant. Hence, in order to show that our
Borcherds products of weight 1

2 are given by theta constants, it suffices to compare their
divisors.

5.4.1. The lattice A1(−4)⊕ U ⊕ U

We realize L as the subset of V consisting of thoseX = (x1, . . . , x5) ∈ V with x1, . . . , x4 ∈ Z
and x5 ∈ 2Z. Then the dual lattice L′ is then given by thoseX ∈ V with x1, . . . , x4 ∈ Z and
x5 ∈ 1

4Z. There are two good elements in L′/L, which are inverses of each other, namely
±γ = ±(0, 0, 0, 0, 1

4) + L. The corresponding Heegner divisor HL(γ,− 1
16) translates into

the set

{Z ∈ H2 : x2(z2
2 − z1z3) + x4z1 − 2x5z2 + x3z3 + x1 = 0 , xi ∈ Z,

x1x2 + x3x4 − x2
5 = −1, x1 ≡ . . . ≡ x4 ≡ 0(4), x5 ≡ ±1(8)}.

This is the divisor of the theta constant ϑ1,1,1,1(Z), which implies that the Borcherds
product of weight 1

2 with Heegner divisor HL(γ,− 1
16) equals ϑ1,1,1,1(Z) up to multiplication

by a constant.

5.4.2. The lattice A1(−1)⊕ U(4)⊕ U

We realize L as the subset of V with x1, x3, x4, x5 ∈ Z and x2 ∈ 4Z. There is one good
element of order 2 in L′/L, namely γ = (1

2 , 2, 0, 0,
1
2) + L. By comparing the Heegner

divisor HL(γ,−1
4) in H2 to the divisors of the theta constants as above, we see that the

corresponding Borcherds product is given by ϑ0,0,0,0(2Z).

5.4.3. The lattice A1(−1)⊕ U(4)⊕ U(2)

We realize L as the subset of V with x1, x3, x5 ∈ Z and x2 ∈ 4Z, x4 ∈ 2Z. There are eight
good elements γ with order 2 in L′/L. The corresponding Heegner divisors H(γ,−1

4) in
H2 can be worked out and compared to the divisors of the theta constants as before. The
resulting Borcherds products are given by
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5. Borcherds products

ϑ0,0,0,0(2Z), ϑ0,0,0,0

(
4z1 2z2
2z2 z3

)
, ϑ0,0,1,0(2Z), ϑ0,0,0,1

(
4z1 2z2
2z2 z3

)
,

ϑ0,1,0,0(2Z), ϑ1,0,0,0

(
4z1 2z2
2z2 z3

)
, ϑ0,1,1,0(2Z), ϑ1,0,0,1

(
4z1 2z2
2z2 z3

)
.

5.4.4. The lattice A1(−2)⊕ U(2)⊕ U(2)

We realize L as the subset of V with x1, . . . , x5 ∈
√

2Z. There are 20 good elements in
L′/L which come in pairs ±γ. The corresponding Borcherds products are exactly the ten
even theta constants. This case has been treated in detail in the Diploma thesis of Lippolt
[Lip08], written under the supervision of Freitag.

5.4.5. The lattice A1(−1)⊕ U(4)⊕ U(4)

We realize L as the subset of V with x1, x2, x3, x4 ∈ 2Z and x5 ∈ Z. There are 10 good
elements of order 2 in L′/L, which lead to the ten even theta constants, and 120 good
elements which do not have order 2, and which form a single orbit under the action of
O(L′/L). For example, one pair of good elements is given by ±γ = ±(1, 0, 1, 0, 1

2) + L,
and the Borcherds product corresponding to the Heegner divisor HL(γ,−1

4) is given by
ϑ0,0,0,0

( 2z1 z2
z2

z3
2

)
. The remaining Borcherds products can be determined analogously.

5.5. A list of simple lattices

We list the simple even lattices of type (2, n), n ≥ 3. They have been determined by
Bruinier, Ehlen and Freitag and can be found in the appendix of the extended online
version [BEF16a] of their journal article [BEF16b].
Every genus in the following list contains exactly one class. We describe the correspond-

ing lattices in terms of the hyperbolic plane U = (Z2, Q(x, y) = xy), the standard positive
definite root lattices An, Dn, E6, E7, E8 and the lattice

S8 =

−8 −4 0
−4 −2 −1
0 −1 −2


with genus symbol 8−1

3 . For a lattice (L,Q) and an integer N we let L(N) = (L,NQ)
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5.5. A list of simple lattices

denote the scaled lattice.

n genus lattice
3 2+1

7 A1(−1)⊕ U ⊕ U
2+3

7 A1(−1)⊕ U(2)⊕ U
2+1

7 4+2 A1(−1)⊕ U(4)⊕ U
2+5

7 A1(−1)⊕ U(2)⊕ U(2)
2+3

7 4+2 A1(−1)⊕ U(2)⊕ U(4)
2+1

7 4+4 A1(−1)⊕ U(4)⊕ U(4)
4+1

7 A1(−2)⊕ U ⊕ U
2+24+1

7 A1(−2)⊕ U(2)⊕ U
2+44+1

7 A1(−1)⊕ U(2)⊕ U(2)
2+1

1 3+1 A1(−3)⊕ U ⊕ U
2+1

7 3−2 A1(−1)⊕ U(3)⊕ U
2+1

7 3+4 A1(−1)⊕ U(3)⊕ U(3)
8+1

7 A1(−4)⊕ U ⊕ U
8−1

3 S8 ⊕ U
2+28−1

3 S8 ⊕ U(2)
4 3+1 A2(−1)⊕ U ⊕ U

3−3 A2(−1)⊕ U(3)⊕ U
3+5 A2(−1)⊕ U(3)⊕ U(3)
2+23+1 A2(−1)⊕ U(2)⊕ U
2+43+1 A2(−1)⊕ U(2)⊕ U(2)

n genus lattice
5 4−1

5 A3(−1)⊕ U ⊕ U
2+24−1

5 A3(−1)⊕ U(2)⊕ U
2+44−1

5 A3(−1)⊕ U(2)⊕ U(2)
6 2−2 D4(−1)⊕ U ⊕ U

2−4 D4(−1)⊕ U(2)⊕ U
2−6 D4(−1)⊕ U(2)⊕ U(2)
5+1 A4(−1)⊕ U ⊕ U

7 4−1
3 D5(−1)⊕ U ⊕ U

2+1
1 3−1 A5(−1)⊕ U ⊕ U

8 3−1 E6(−1)⊕ U ⊕ U
2+2

2 D6(−1)⊕ U ⊕ U
7+1 A6(−1)⊕ U ⊕ U

9 2+1
1 E7(−1)⊕ U ⊕ U

4+1
1 D7(−1)⊕ U ⊕ U

8+1
1 A7(−1)⊕ U ⊕ U

10 1+1 E8(−1)⊕ U ⊕ U
2+2 E8(−1)⊕ U(2)⊕ U

18 1+1 2E8(−1)⊕ U ⊕ U
26 1+1 3E8(−1)⊕ U ⊕ U
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A. An integral 2-adic change of basis
In [Cas78, Chapter 8, Section 4, Lemma 4.1], Cassels states that the canonical forQ2-valued
forms under Z2-equivalence are

2ex2, 2e(3x2), 2e(5x2), 2e(7x2),
2e(2x1x2),

2e(x2
1 + 2x1x2 + x2

2)

where e ∈ Z. In his proof, he also deals with bilinear forms

h(y1, y2) = h11y
2
1 + 2h12y1y2 + h22y

2
2

with h11, h12, h22 ∈ Z2 and

|h12|2 = 1, |h11|2 < 1, |h22|2 < 1.

He leaves it to the reader to verify that h(y1, y2) is Z2-equivalent to2y1y2, if h2
12 − h11h22 ≡ 1 (mod 8),

y2
1 + 2y1y2 + y2

2, if h2
12 − h11h22 ≡ 5 (mod 8).

In both cases we will compute a basis to prove these Z2-equivalences.

Let h, h11, h12, h22 be as above. Then h11 is a 2-adic unit, 2 | h11 and 2 | h22. We will
frequently use the following well known fact which can for example be found [Ser73].

Remark A.0.1. An element u ∈ Z∗2 is a square, if and only if u ≡ 1 (mod 8).

As a first consequence, we get h2
12 − h11h22 ≡ 1− 4h11

2
h22
2 ≡ 1 or 5 (mod 8).

A.0.1. Case 1
In the case h2

12 − h11h22 ≡ 1 (mod 8), we need to find a Z2-basis (b1, b2) of Z2
2 such that

h(b1, b1) = 0, h(b1, b2) = 1 and h(b2, b2) = 0.

If h11 = 0, the elements

b̃1 =
(

1
0

)
, b̃2 =

(
−h22

2
h12

)

93



A. An integral 2-adic change of basis

are isotropic,

det
(

1 −h22
2

0 h12

)
= h12 ∈ Z×2

and

h(b̃1, b̃2) = 0 · 1 · −h22

2 + h12(1 · h12 + −h22

2 · 0) + h22 · 0 ·
−h22

2 = h2
12 ∈ Z×2 .

In this case
b1 = 1

h12
b̃1 =

( 1
h12
0

)
, b2 = 1

h12
b̃2 =

(−h22
2h12
1

)
gives a basis with the desired properties.

If h11 6= 0, the elements

b̃1 =
(
−h12 +

√
h2

12 − h11h22
h11

)
, b̃2 =

(
−h12 −

√
h2

12 − h11h22
h11

)

are isotropic,

det
(
−h12 +

√
h2

12 − h11h22 −h12 −
√
h2

12 − h11h22
h11 h11

)
= 2h11

√
h2

12 − h11h22 6= 0

and

h(b̃1, b̃2) = h11(−h12 +
√
h2

12 − h11h22)(−h12 −
√
h2

12 − h11h22)

+ h12h11(−h12 +
√
h2

12 − h11h22 +−h12 −
√
h2

12 − h11h22) + h22h
2
11

= h11(h2
12 − (h2

12 − h11h22))− 2h2
12h11 + h22h

2
11

= − 2h11(h2
12 − h22h11) 6= 0.

If h11 ≡ 2 (mod 4),

b1 = 1
−2(h2

12 − h22h11) b̃1, b2 = 1
h11

b̃2

gives a basis with the desired properties.

If h11 ≡ 0 (mod 4) and h22 ≡ 0 (mod 4), the transformation(
1 1
0 1

)(
h11 h12
h12 h22

)(
1 0
1 1

)
=
(
h11 + 2h12 + h22 h12 + h22

h12 + h22 h22

)
=:
(
h̃11 h̃12
h̃12 h̃22

)

yields a quadratic form h̃ with h̃11 ≡ 2 (mod 4). We already know how to deal with this
case.
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If h11 ≡ 0 (mod 4) and h22 ≡ 2 (mod 4), we use the transformation(
0 1
−1 0

)(
h11 h12
h12 h22

)(
0 −1
1 0

)
=
(
h22 −h12
−h12 h11

)
=:
(
h̃11 h̃12
h̃12 h̃22

)

to get h̃ with h̃11 ≡ 2 (mod 4).

A.0.2. Case 2
In the case h2

12 − h11h22 ≡ 5 (mod 8), we need to find a Z2-basis (b1, b2) of Z2
2 such that

h(b1, b1) = 2, h(b1, b2) = 1 and h(b2, b2) = 2.

We have h11 ≡ h22 ≡ 2 (mod 4). We know that a root
√
c2(h2

12 − h11h22) + 2h11 ∈ Z×2
exists for all c ∈ Z×2 . Define

ai(c) =
−ch12 + (−1)i

√
c2(h2

12 − h11h22) + 2h11

h11

for c ∈ Z×2 , i ∈ {0, 1}. We have h(ai(c), c) = 2 for all c ∈ Z×2 and i ∈ {0, 1}.

If h11 ≡ 2 (mod 16), a square root c =
√

−3h11
2(h2

12−h11h22) exists and

b1 =
(
a0(c)
c

)
, b1 =

(
a1(c)
c

)

gives a basis with the desired properties.

If h11 ≡ 6 (mod 16), a square root c =
√

−h11
2(h2

12−h11h22) exists and

b1 =
(
a0(c)
c

)
, b1 =

(
a0(−c)
−c

)

gives a basis with the desired properties.
If h11 ≡ 10 or 14 (mod 16) and h22 ≡ 2 (mod 4), we use the transformation(

1 4
0 1

)(
h11 h12
h12 h22

)(
1 0
4 1

)
=
(
h11 + 8h12 + 16h22 h12 + 4h22

h12 + 4h22 h22

)
=:
(
h̃11 h̃12
h̃12 h̃22

)

to get h̃ with h̃11 ≡ 2 or 6 (mod 16). We already know how to deal with this case.
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B. Computing Eisenstein series for the
Weil representation

To use the algorithms provided for integer lattices, start sage from within the directory
containing the source files. From then on the first steps could look as follows:

sage: from eisenstein import EisensteinSeries

The classical Eisenstein series of weight 4:

sage: EisensteinSeries (’’, 4)

A vector valued q-series with coefficients
(): 1 q^(0) + 240 q^(1) + 2160 q^(2) + O(q^(3))

These Fourier coefficients were tested with the Siegel-Weil formula:

sage: EisensteinSeries (matrix (2 ,2 ,[2 ,1 ,1 ,2]) , weight = 5)

A vector valued q-series with coefficients
(0, 0): 1 q^(0) + 246 q^(1) + 3600 q^(2) + O(q^(3))
(1/3 , 1/3): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3) + O(q

^(10/3) )
(2/3 , 2/3): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3) + O(q

^(10/3) )

Using the negative Gram matrix and the dual Weil representation gives the same result:

sage: EisensteinSeries (- matrix (2 ,2 ,[2 ,1 ,1 ,2]) , weight = 5,
dual = True)

A vector valued q-series with coefficients
(0, 0): 1 q^(0) + 246 q^(1) + 3600 q^(2) + O(q^(3))
(1/3 , 1/3): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3) + O(q

^(10/3) )
(2/3 , 2/3): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3) + O(q

^(10/3) )

We can also compute the Eisenstein series from a genus symbol:
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sage: EisensteinSeries (’3^-1’, 5)

A vector valued q-series with coefficients
((3, (0, 0, 0, 0)) ,): 1 q^(0) + 246 q^(1) + 3600 q^(2) + O(q

^(3))
((3, (0, 0, 0, 1/3)) ,): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3)

+ O(q ^(10/3) )
((3, (0, 0, 0, 2/3)) ,): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3)

+ O(q ^(10/3) )

Using the genus symbol for the finite quadratic module twisted with −1 and the dual Weil
representation gives the same result:

sage: EisensteinSeries (’3^1 ’, 5, dual = True)

A vector valued q-series with coefficients
((3, (0, 0, 0, 0)) ,): 1 q^(0) + 246 q^(1) + 3600 q^(2) + O(q

^(3))
((3, (0, 0, 0, 1/3)) ,): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3)

+ O(q ^(10/3) )
((3, (0, 0, 0, 2/3)) ,): 3 q^(1/3) + 723 q^(4/3) + 7206 q^(7/3)

+ O(q ^(10/3) )

For lattices, the Eisenstein series is computed by the class “Lattice”:

sage: from integer_lattice import Lattice
sage: L = Lattice (matrix (2 ,2 ,[0 ,1 ,1 ,0]))
sage: L. eisenstein_series (4, prec = 5)
{(0, 0): {0: 1, 1: 240, 2: 2160 , 3: 6720 , 4: 17520}}
sage: L. eisenstein_series (6, prec = 5)
{(0, 0): {0: 1, 1: -504, 2: -16632 , 3: -122976 , 4: -532728}}
sage: L. eisenstein_series (8, prec = 5)
{(0, 0): {0: 1, 1: 480, 2: 61920 , 3: 1050240 , 4: 7926240}}
sage: eis = _
sage: eis [(0 ,0) ][1]
480

Lattices are always assumed to be Zn and even. Different lattices are given by different
Gram matrices. In our example, we have chosen a hyperbolic plane an recovered the usual
Eisenstein series of weight 4, 6 and 8 respectively. Note that the program computes the
Eisenstein series for the Weil representation using the formulas from [KY10]. The formulas
in [BK01] will give you an Eisenstein series for the dual Weil representation. If we want to
compute an Eisenstein series for the dual Weil representation, we can use the negative of
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our Gram matrix. The computed Eisenstein series∑
γ∈L′/L

∑
n∈Q(γ)+Z

n≥0

a(γ, n)qneγ

is given by the dictionary of the form

{
γ1: {nγ1,1: a(γ1, nγ1,0), . . . , nγ1,prec−1): a(γ1, nγ1,prec−1)}
, . . . ,
γm: {nγm,1: a(γ1, nγ1,0), . . . , nγm,prec−1): a(γm, nγm,prec−1)}

},

where prec is the precision to which this Eisenstein series was computed. If d is this
dictionary, then d[γ][n] will yield a(γ, n). Using the class “EisensteinSeries”, we can
print the dictionary as a vector of q-series:

sage: L = Lattice (matrix (2 ,2 ,[0 ,1 ,1 ,0]))
sage: L. eisenstein_series (4, prec = 10)
{(0, 0): {0: 1,

1: 240,
2: 2160 ,
3: 6720 ,
4: 17520 ,
5: 30240 ,
6: 60480 ,
7: 82560 ,
8: 140400 ,
9: 181680}}

sage: EisensteinSeries (_)

A vector valued q-series with coefficients
(0, 0): 1 q^(0) + 240 q^(1) + 2160 q^(2) + 6720 q^(3) + 17520

q^(4) + 30240 q^(5) + 60480 q^(6) + 82560 q^(7) + 140400 q
^(8) + 181680 q^(9) + O(q^(10))

sage: L. eisenstein_series (6, prec = 10)
{(0, 0): {0: 1,

1: -504,
2: -16632 ,
3: -122976 ,
4: -532728 ,
5: -1575504 ,
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B. Computing Eisenstein series for the Weil representation

6: -4058208 ,
7: -8471232 ,
8: -17047800 ,
9: -29883672}}

sage: EisensteinSeries (_)

A vector valued q-series with coefficients
(0, 0): 1 q^(0) + -504 q^(1) + -16632 q^(2) + -122976 q^(3) +

-532728 q^(4) + -1575504 q^(5) + -4058208 q^(6) + -8471232
q^(7) + -17047800 q^(8) + -29883672 q^(9) + O(q^(10))

Note that we had to use different weights to get a meaningful result. This is due to a
congruence condition on the weight and the signature of the lattice which is equally present
in [KY10] and [BK01]. Since some of the computations done by the Lattice class are quite
expensive, the class will save some data. This data can then be stored in a file from which
the Lattice object can be restored. If no file name is given, the save method will return a
StringIO from which the Lattice can also be recovered.

sage: m = matrix (2 ,2 ,[0 ,1 ,1 ,0])
sage: L = Lattice (m)
sage: s = L.save (). getvalue ()
sage: print s[s.find(’lattice_data ’):]
lattice_data =\
{\

’gram_matrix ’ : \
matrix ([\

[0, 1],\
[1, 0],\

]) ,\
}
sage: LL = Lattice (s)
sage: LL
Lattice given by " Ambient free module of rank 2 over the

principal ideal domain Integer Ring" endowed with the
quadratic form " Quadratic form in 2 variables over Integer
Ring with coefficients :

[ 0 1 ]
[ * 0 ]"
sage: LL == L
True

When loading from a file, the file is expected to have a .sage extension.

sage: f = open( tmp_filename (ext = ’.sage ’))
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sage: L.save(f.name)
sage: LL = Lattice (f)
sage: L == LL
True

From within the Lattice class, we can compute the genus symbol of the lattice. This uses
the FiniteQuadraticModule class from psage. The lattice can also access the L-functions
and modular forms database [LMFDB] to find the lmfdb label of the lattice.

sage: L = Lattice (matrix (1 ,1 ,[2]))
sage: L. genus_symbol ()
’2_1’
sage: L. lmfdb_label ()
’1.2.4.1.1 ’

Some more functions are as follows.

sage: L. gram_matrix ()
[2]
sage: L.dim ()
1
sage: L.det ()
2
sage: L. is_positive_definite ()
True
sage: L.level ()
4
sage: L. smith_form ()
([2] , [1], [1])
sage: for el in L. discriminant_form_iterator ():
....: print el
....:
(0)
(1/2)
sage: L. local_normal_form (2)
([2] , [1], [1])
sage: L. p_excess (3)
0
sage: L.oddity ()
1
sage: L. weil_index (2)
e^(1/4*I*pi)
sage: L. isometry_orbits ()
[[(0)], [(1/2) ]]
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sage: L. eisenstein_series_by_orbits (5/2 , prec = 5)
{0: {0: 1, 1: -70, 2: -120, 3: -240, 4: -550},

1: {1/4: -10, 5/4: -48, 9/4: -250, 13/4: -240, 17/4: -480}}

The last two functions are particularly useful if the discriminant form of the lattice has
large orbits. Since the q-expansion of the Eisenstein series is the same at any two elements
belonging to the same orbit (with respect to isometries of the discriminant form), we only
list this q-expansion once. The index of the q-expansion is the same as the index for the
orbit in the list of orbits.
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C. Test cases Siegel-Weil
The positive definite lattices with class number one which we used to test the computation
of the Fourier coefficients of Eisenstein series for the Weil representation were obtained from
[LMFDB]. They are given in the following tables, where we give the lmfdb label (rank,
determinant, level, class number, some number), the genus symbol and the precision to
which the theta and Eisenstein series were computed.

Rank 7 to 9
lmfdb label genus symbol precision lmfdb label genus symbol precision
7.2.4.1.2 2−1

3 7 7.64.32.1.1 22.167 4
7.4.8.1.2 47 7 7.128.16.1.3 24

0.8−1
3 4

7.6.12.1.1 21.3 6 7.128.16.1.4 42.8−1
3 4

7.8.4.1.1 23
7 6 7.128.16.1.5 42.87 4

7.8.16.1.1 87 6 8.4.2.1.1 22 5
7.8.16.1.2 8−1

3 6 8.4.4.1.1 2−2
4 5

7.8.16.1.3 87 6 8.5.5.1.1 5−1 5
7.10.20.1.1 2−1

3 .5−1 6 8.9.3.1.1 3−2 5
7.12.24.1.1 4−1

5 .3−1 5 8.9.9.1.1 9 4
7.16.8.1.2 22.47 5 8.16.2.1.1 24 4
7.16.32.1.1 167 5 8.16.4.1.1 24

0 4
7.18.36.1.1 2−1

3 .9 5 8.16.4.1.2 42 4
7.24.48.1.1 8−1

5 .3 5 8.16.4.1.3 4−2 4
7.32.4.1.1 2−5

3 5 8.64.4.1.2 22.42 3
7.32.4.1.2 2−1

3 .42 5 8.64.4.1.3 22.4−2 3
7.32.16.1.1 2−2

4 .87 5 8.64.4.1.4 2−2
4 .42 3

7.32.16.1.2 22.87 5 9.2.4.1.1 21 4
7.32.16.1.3 22.8−1

3 5 9.8.16.1.1 8−1
5 4
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Rank 6
lmfdb label genus symbol precision lmfdb label genus symbol precision
6.3.3.1.1 3 11 6.48.6.1.1 24.3 7
6.4.4.1.1 22

6 10 6.48.6.1.2 2−4.3−1 7
6.7.7.1.1 7−1 9 6.48.12.1.1 24

0.3 7
6.8.8.1.1 2−1

3 .47 9 6.48.12.1.2 4−2.3 6
6.11.11.1.1 11 8 6.48.12.1.3 42.3 7
6.12.6.1.1 22.3 8 6.64.4.1.3 22

6.42 6
6.12.6.1.2 2−2.3−1 8 6.64.8.1.2 2−2.42

2 6
6.12.12.1.1 2−2

4 .3 8 6.64.8.1.4 2−2.4−2
2 6

6.15.15.1.1 3−1.5 8 6.64.8.1.7 22
2.4−2

4 6
6.15.15.1.2 3.5−1 8 6.64.16.1.1 23

7.8−1
3 6

6.16.4.1.1 2−4
2 8 6.64.16.1.2 82

6 6
6.16.8.1.3 42

6 8 6.64.16.1.3 8−2
2 6

6.16.8.1.5 4−2
6 8 6.108.6.1.1 22.3−3 6

6.16.16.1.1 2−1
3 .87 8 6.112.14.1.1 24.7−1 6

6.20.20.1.1 22
6.5−1 8 6.128.32.1.1 8−1

5 .16−1
5 5

6.23.23.1.1 23−1 7 6.192.12.1.1 22.42.3 5
6.27.3.1.1 3−3 7 6.192.12.1.2 22.4−2.3 5
6.27.9.1.1 3.9 7 6.192.12.1.3 2−2

4 .42.3 5
6.27.9.1.2 3.9−1 7 6.243.9.1.1 3.92 5
6.28.14.1.1 22.7−1 7 6.243.9.1.2 3.9−2 5
6.32.16.1.1 47.87 7 6.256.8.1.4 22

6.82 5
6.32.32.1.1 21.16−1

5 7 6.256.16.1.3 2−2
4 .82

6 5
6.32.32.1.2 2−1

3 .167 7 6.432.6.1.1 2−4.33 4
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Rank 5

lmfdb label genus symbol precision lmfdb label genus symbol precision
5.4.8.1.3 4−1

5 19 5.40.80.1.1 8−1
5 .5 12

5.6.12.1.1 2−1
3 .3 17 5.48.24.1.1 2−2.47.3−1 11

5.8.4.1.1 2−3
1 16 5.48.96.1.1 167.3 11

5.10.20.1.1 21.5 16 5.54.12.1.1 2−1
3 .3−3 11

5.12.24.1.1 47.3 15 5.54.36.1.1 2−1
3 .3.9 11

5.12.24.1.3 4−1
3 .3−1 15 5.54.36.1.2 2−1

3 .3.9−1 11
5.14.28.1.1 2−1

3 .7−1 15 5.56.112.1.1 87.7−1 11
5.16.8.1.2 22

2.4−1
3 14 5.64.8.1.3 43

5 11
5.16.8.1.7 2−2.41 14 5.64.8.1.6 4−3

5 11
5.16.32.1.1 16−1

5 14 5.64.32.1.1 22
2.16−1

3 11
5.18.12.1.1 21.32 14 5.64.32.1.2 22

6.167 11
5.20.40.1.1 4−1

5 .5−1 14 5.64.32.1.3 2−2
4 .16−1

5 11
5.22.44.1.1 2−1

3 .11 13 5.64.32.1.5 22.16−1
5 11

5.24.12.1.1 23
7.3 13 5.72.48.1.1 8−1

5 .32 10
5.24.48.1.1 8−1

3 .3 13 5.96.12.1.1 2−1
3 .42.3 10

5.24.48.1.2 87.3 13 5.96.48.1.1 2−2
4 .8−1

3 .3 10
5.28.56.1.1 47.7−1 13 5.96.48.1.2 22.87.3 10
5.30.60.1.1 2−1

3 .3.5−1 13 5.96.48.1.3 22.8−1
3 .3 10

5.32.8.1.2 21.4−2
4 12 5.108.24.1.1 47.3−3 10

5.32.16.1.5 2−2.8−1
5 12 5.108.72.1.1 47.3.9−1 10

5.32.16.1.6 2−2.81 12 5.128.8.1.1 21.8−2 9
5.32.16.1.7 22

6.87 12 5.128.16.1.4 4−2
4 .81 9

5.36.24.1.1 4−1
5 .3−2 12 5.128.16.1.5 4−2

4 .8−1
5 9

5.40.80.1.1 8−1
5 .5 12 5.128.16.1.7 2−1

3 .82
6 9

5.48.24.1.1 2−2.47.3−1 11 5.128.64.1.2 22
6.327 9

5.48.96.1.1 167.3 11 5.162.12.1.1 21.3−4 8
5.54.12.1.1 2−1

3 .3−3 11 5.216.48.1.1 87.3−3 8
5.54.36.1.1 2−1

3 .3.9 11 5.216.144.1.1 87.3.9 8
5.54.36.1.2 2−1

3 .3.9−1 11 5.256.8.1.5 41.8−2 8
5.56.112.1.1 87.7−1 11 5.256.32.1.1 42.16−1

5 8
5.64.8.1.3 43

5 11 5.256.32.1.2 4−2.16−1
5 8

5.64.8.1.6 4−3
5 11 5.256.32.1.4 4−2

2 .16−1
3 8

5.64.32.1.1 22
2.16−1

3 11 5.256.32.1.6 42
2.16−1

3 8
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List of Symbols
(D,Q) A finite quadratic module, 10

(a, b) = gcd(a, b), the greatest common divisor of a and b

(a, b)p the p-adic Hilbert symbol of a and b

(x, y) A bilinear form, 9

A The adeles of Q, 21

af (γ, n) Fourier coefficients of f , 18

An The An root lattice, 82

(b+, b−) The type of a lattice of space, 10

bS(κm, s) A function used to compute local densities, 43

C The field of complex numbers

χ A Dirichlet character

Ck,d,N A constant used to estimate Fourier coefficients of Eisenstein series, 57

D A diagonal matrix of elementary divisors, 67

D/Dm A finite quadratic module derived from D, 71

det(L) The determinant of the lattice L, 13

disc(L) The discriminant of the lattice L, 13

Dm A finite quadratic module derived from D, 71

Dn The Dn root lattice, 82(
D
p

)
The Kronecker symbol

e(x) = e2πix

EρL,k,β The vector valued Eisenstein series for an isotropic β, 18
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List of symbols

Ek,m The Jacobi-Eisenstein series of weight k and index m, 19

EL(τ, s; `) An Eisenstein series associated to L, 38

En The En root lattice, 82

G(c,D) A Gauss sum, 75

H The complex upper half-plane, H = {z ∈ C | =(z) > 0}

HL A Heegner divisor, 83

=(z) The imaginary part of z

k Usually a half-integer (a weight)

κ A square-free integer associated to the discriminant of L, 39

L A lattice (usually even), 13

L′ The dual lattice of L, 13

L′/L = (L′/L,Q (mod 1)), the discriminant form of the lattice L, 14

L(f) A lattice with quadratic form scaled by f , 13

Lp The p-adic lattice associated to L, 14

LS(mχ) A modified L-function, 43

N The level of a lattice or finite quadratic module, 11

N(D, j) A representation number, 32

N2-torsion(D, j) A representation number with regard to 2-torsions, 36

Nγ,n(a) A representation number, 56

Nsq(n, j) A square representation number (mod n), 35

O(D) The orhtogonal group of D, 70

O(D, pk+1, v1, . . . , vpk , t1, . . . , tpk) The description of an orbit of D, 72

oddity(D) The oddity of D, 12

p Usually a prime

p-excess(D) The p-excess of D, 12

Pf The principal part of f , 18
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Q A quadratic form, 9

q Usually q = e2πiτ or q = pl

q±n A Jordan component for an odd prime, 11

q±2n
II An even 2-adic Jordan component, 12

q±nt An odd 2-adic Jordan component, 12

Qp The field of p-adic numbers

Qred(γ) The reduced norm of γ, 71

<(z) The real part of z

ρL The Weil representation associated to the lattice L, 17

ρ∗L The dual Weil representation associated to the lattice L, 17

S Usually a set of “bad” primes or a Gram matrix, 43

σS(m,χ) A modified divisor sum, 43

sign(D) The signature of the finite quadratic module D, 12

sign(L) The signature of the lattice L, 14

sign(V ) The signature of the real space V , 10

� A square

τ τ = u+ iv ∈ H

θa,b(Z) An even theta constant, 88

Θγ+L A theta series for the coset γ + L, 62

ΘL A vector valued theta series, 62

Θsym
L A symmetrized vector valued theta series, 62

Θsym,gen
L A special weighted sum of symmetrized vector valued theta series, 62

U(N) A scaled hyperbolic plane, 56

U⊥ The orthogonal complement of U , 9

v(γ) The multiplicity of γ, 71

Wm,S(s) A product of local densities, 44
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List of symbols

Wp,m,µ,X A Whittaker polynomial, 47

Wp(s+ s0) A generalized local density or Whittaker function, 45

Z The ring of integers

Z>0 The set of positive integers

ζS(s) A modified zeta function, 43

Zf (s) The Igusa local zeta function, 25

Zp The p-adic integers
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