4. Parallelizing a molecular dynamics code

4.1. Introduction

The investigation of polymeric materials by means of Molecular Dynamics (MD)"
simulations usually requires simulation times in the order of nanoseconds and thus
demands big amounts of CPU time. Therefore, the efficiency of MD codes becomes an
acute problem. In addition, one also tries to parallelize MD calculations and thus to
decrease the turn around time of a simulation.

In a typical application roughly 90% of the total CPU time is consumed by the
calculation of the forces between non-bonded atoms (non-bonded forces). This part has
been the target of most of the efforts aimed at speeding up MD calculations.

The evaluation of additional terms associated with bond stretching, valence angle
bending, torsional deformations and inversions (internal forces), on the other hand, has
received comparatively little attention (see, however, refs.?). While the computational
cost of evaluating the internal interactions tends to be smaller than that of non-bonded
interactions it is, however, by no means negligible.

In addition, one often tries to increase the length of the time step by freezing out
high-frequency motions, which in general arise from vibrations of chemical bonds. This
is most conveniently accomplished by modifying the equation of motion to include bond
constraints*” and thereby keeping the bond lengths at fixed values. For general molecular
systems this is done by an iterative procedure (SHAKE)**". Again, this step takes a
minor but not negligible part of the overall computing time.

The optimization of the number of operations to be performed is the first step
toward increasing the efficiency of a method. Most methods used to perform non-bonded
forces calculations can be classified into two categories: neighbour-list or link-cells
algorithms, or hybrids of the two. In the neighbour-list method® all possible pairs of non-
bonded atoms are examined at intervals of a fixed number of time steps and a list is made
up, which contains all pairs of atoms that are closer than a specified cutoff radius r,, .

Only forces between pairs on the list are then considered. The neighbour list is roughly of
the length 4w, pN /6, where p is the particle density and N is the number of atoms.

Hence, for a given density, the time for calculating the non-bonded forces from a
neighbour list is proportional to the number of atoms, rather than to its square. Updating
the neighbour list by searching all possible atom pairs still is an N> operation, but it is
only done every few time steps.

In the link-cells method’ the system is geometrically divided into cells. For each
cell it is established which atoms it contains. Non-bonded interactions are then calculated
only between atoms in adjacent cells. For a large enough system, the computational cost
is proportional to the number of atoms.

The relative merits of both methods have been discussed extensively in the
literature (see e.g. ref.'®'"), and the discussion is not to be repeated here. The link-cells
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algorithm becomes competitive if the cutoff radius used in calculations is small compared
to the system dimensions. For dense molecular systems of 500 to 1000 atoms, the
neighbour-list appears to be the most efficient method while the link-cells is the method
of choice for very large systems'>. The MD code, whose parallelization is described in
the present paper, switches between the two methods (neighbour-list and hybrid link-
cells/neighbour list) automatically depending on the size of the simulation box and the
cutoff radius used to find neighbouring atoms.

Since the number of bonds in the system is fixed, the time for the calculation of
the internal forces is proportional to the number of atoms. Here, the main consumers of
CPU time are the calculations of trigonometric functions for bond and torsional angles,
and the constraints implemented through the multi-colour SHAKE’ algorithm.

The second step in performance improvement is the exploitation of techniques for
parallelization of calculations on different levels, which have become available with
present-day computers and operating systems: vector and pipelining capabilities, as well
as multi-processor (MP) parallel calculations. There exist two parallel architectures:
shared memory and distributed memory. In the first model many processors have access
to a common (shared) part of memory and this memory space can be used for data
exchange or for storage of common data. In the second, all processors have only their
own memory and have to communicate with each other, in order to keep up to date the
data they operate with during calculations. An intermediate model is the so-called non-
uniform memory access (NUMA), where a processor has fast access to “its” memory and
slower access to the memory owned by other processors, whereas the shared-memory
paradigm is formally preserved. Programs on NUMA-architectures have to account for
the memory hierarchy to achieve optimum performance.

These two models — shared memory through OpenMP13 and distributed memory
through MPI (Message-Passing Interface)'* — have been extensively used for parallelizing
MD algorithms 1528 These parallelized MD algorithms are available within many
different software packages such as GROMACSIS, IMD]6, M.DynaMix”, DL_POLY‘S,
and others. Additionally, some interesting work has been done aimed at increasing of
ease of programming and modularity of the code using object-oriented”” and functional®
approaches.

Within the shared memory paradigm there is no big difference between operating
on shared or private (to each processor) memory, particularly if implemented using
OpenMP. Typically, differences are limited to declaration and allocation of variables and
arrays. The largest distinction and complication lies in controlling the threads used for
parallel calculation if they are used explicitly%. If, on the other hand, one concentrates
only on the parallelization of the most CPU-time consuming cycles, this implies
relatively small changes to the code'* 26,

Two ways of the implementation of the shared memory model into an MD code
are possible. The first requires changes to be done in the sequential code thereby
operating (creating, synchronizing, assigning task, and etc.) with threads is done
explicitly”’. Although, such code can be fully compatible with the parent sequential one,
it becomes parallel intrinsically (see for instance ref.*®). The second way needs only small
changes in the code, which is still sequential in its essence. Instructions used to
parallelize selected sections of the code are given in specific format in blocks, which
enclose these sections. Even if explicit parallel statements (calls to some specific
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functions) are necessary in addition to the parallelization blocks, they still can be simply
masked by directives (e.g. #ifdef/#endif directives in C/C++). The OpenMP standard'
supports the parallelization of code through special comment block directives. Moreover,
MD codes parallelized via OpenMP can be easily ported to other platforms.

In this contribution, the implementation of the most CPU-time consuming parts of
the MD code YASP®® using OpenMP is described: non-bonded forces, the neighbour-list
scheme, constraints (multi-colour SHAKE’), dihedral and bond angle forces. The parallel
implementation is done without the help of software tools such as autoparallelizing
compilers, as previous experience suggests that hand-crafted parallelization usually
achieves better performance. It is also explained how to build a parallel MD algorithm
from its sequential robust version. Performance tests of the parallelized MD code were
done on the architectures we had access to: a multi-processor IBM Regatta p690+ under
AIX 5.2 and a dual processor IBM PC (Intel Xeon 2.8 GHz, IGB Memory) under Linux.

4.2. Some features of OpenMP

4.2.1. The model

A shared-memory process consists of multiple threads that run in the same
memory space. OpenMP is based upon multiple threads. It is an explicit (not automatic)
programming model, which employs so-called “fork-join” model and offers a
programmer full control over parallelization (Fig. 4.1).
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Figure 4.1. The “fork-join” model used by OpenMP.

All OpenMP programs start as single process: the master thread. The master
thread executes sequentially as any other program until the first parallel region is
encountered. At this point the master thread creates a team of parallel threads (FORK),
which then execute in parallel the program statements enclosed by the parallel region.

21



When the team threads complete the parallel region, they synchronize and terminate,
leaving only the master thread executing further (JOIN).

Virtually all OpenMP parallelism is specified by special compiler directives
which are embedded into the C/C++ or Fortran source code.

4.2.2. Parallel regions and work-sharing

A paralle]l region in an OpenMP program is always enclosed by the directives
parallel and end parallel. All directives, which are used to share work between parallel
threads, synchronize threads and others, are placed only within these blocks. While
specifying the parallel block, one also identifies those variables (scalars, arrays, etc.) that
are accessed by all threads (shared) and those, which are local to each thread of the team
and are not affected by other threads (private). The list of private variables can be
extended specifically for some parallel construct when specifying the construct inside the
parallel block.

As the main goal of the parallelization of a serial program is the reduction of the
real execution time, OpenMP supports special directives to share the total amount of
work between the team threads. There exist three different types of specification, which
are used to share the work of the program section (work-sharing construct): DO,
SECTIONS, and SINGLE. Since only the DO work-sharing construct was used, the
function of SECTIONS and SINGLE constructs will not be described here.

By means of the DO work-sharing directive one can divide iterations of the
immediately following loop into sets, which are then executed in parallel by the team
threads (Fig. 4.2). It is obvious that all iterations of the loop must be absolutely
independent and program correctness must not depend upon which thread executes a
particular iteration.

p |— | (-
O-O~O
~R~8-1~
Master ) | [
Thread K-p-N

Parallel Region / Team Threads

Figure 4.2. Schematic representation of the execution of a parallel region specified by
the DO work-sharing construct.
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4.2.3. Load balancing

While performing any loop in parallel, it is crucial to keep all team threads
working as much as possible. One needs to tune the work load balancing in order to
reduce idle time of the team threads. Within OpenMP, load balancing of the parallelized
loops is determined by special clauses of the DO work-sharing directive. There exist
three different strategies for load balancing in the OpenMP standard: static load
balancing, dynamic balancing, and guided balancing. In addition, IBM has introduced an
extension for the Power PC IBM Aix Platform (Fortran, C/C++) — “affinity” load
balancing.

Static load balancing. The loop iterations are divided into partitions and are then
statically assigned to the team threads. Each partition is executed by the thread it was
initially assigned to.

Dynamic load balancing. The loop iterations are split into chunks and these
chunks are dynamically scheduled among the threads. When a thread finishes one chunk,
it is dynamically assigned another.

Guided load balancing. Similar to dynamic load balancing. However, the size of
the first chunk is taken to be [(Number of loop iterations)/(Number of the team threads)].
The size of each successive chunk is reduced exponentially until it reaches a specified
minimum.

“Affinity” load balancing. In this hybrid scheme, iterations are initially divided
into partitions equal to the number of the team threads and equal in size. Each partition is
initially assigned to a thread, and is then subdivided into chunks of specified size. When a
thread becomes free, it takes the next chunk from its initially assigned partition. If there
are no more chunks in that partition, then it grabs the next available chunk from a
partition that was initially assigned to another thread.

4.2.4. Critical sectioning

When one deals with multithreaded programming and common shared resources,
in particular shared variables and arrays, the support of critical sectioning within parallel
region becomes necessary. If during parallel execution of many threads each thread needs
sometimes exclusive access to a resource common for all threads, then critical sectioning
guarantees it. E.g. threads fill an array, to whose elements some value is added in each
iteration. There is a situation possible when this operation is done by different threads for
the same array element. In this case, the thread, which adds a value to the array element,
needs to lock the access to the element for reading and writing. Otherwise two different
threads could read the value of the same element simultaneously, add to it their values,
and then write the results back to the array. As the same previous value of the element
was read by both threads, the contribution of the first of the calculated values will be lost.
The second thread will overwrite it. The block of code of the program that needs to be
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performed only by one thread at a time is enclosed between special clauses of OpenMP,
which define the critical section.

4.3. Program and data structure

4.3.1. The parallelization strategy
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Figure 4.3. Schematic representation of the OpenMP molecular dynamics algorithm
described in this article. The following parts of the MD code are parallelized: neighbour-
list, part of the bonded forces (dihedral angles, bond angles), non-bonded forces, and
constraints.

The sequential YASP molecular dynamics program™ has an overall structure,
which is typical for many MD codes. After reading the input data and performing
necessary initializations the main MD cycle is entered. Every few time steps the
neighbour list is updated. In every step, the bonded and non-bonded forces are evaluated.
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After forces are completed, the equations of motions are integrated, and the positions
evolve. If necessary, bond constraints are applied. Optionally, thermodynamic or other
averages are accumulated and the current configuration is dumped into a trajectory file.
Then the new cycle step begins. When the program has executed the required number of
time steps, it performs finalization (calculation of averages and fluctuations, closing of
files) and exits.

In the paralle]l OpenMP implementation this structure is retained and most parts of
the program are unchanged. The majority of the tasks are performed by the master thread.
The most CPU-time consuming parts of the code (neighbour list construction, non-
bonded forces, constraints and some of bonded forces) are executed in parallel by all
team threads (Fig. 4.3). This has several advantages over a full parallelization. The most
important one is the ease of implementation and of keeping a full compatibility with
sequential version and the rest of the YASP package.

4.3.2. Neighbour list

Index array Pointer array Index array
A | P1/N4 > A
B Po/N,
C P3/N3 \ An
D P4/Ng4 A,
E
F A,

A
A
Sequential Parallel
Verlet Neighbour list Neighbour list

Figure 4.4. Modifications to the Verlet neighbour list structure. In the parallelized
version, each atom has a fixed and equal number of elements for its neighbours to be
stored.

Some changes are necessary in order to perform the neighbour list update in
parallel. Due to possible density fluctuations one cannot predict in advance precisely how



many non-bonded neighbours every atom will have. It becomes obvious that each atom
must have a reserved number of elements in the neigbour list array where indices of
neighbouring atoms are stored (Fig. 4.4). The number of elements must be large enough
to be able to save all found neighbours of the atom.

For keeping neighbours for each atom in the sequential Verlet neighbour list two
arrays are used (Fig. 4.4). The index array keeps indices of neighbouring atoms. The
second is used to keep pointers P;, which refer to that element in the index array, from
which on the indices of the neighbours for the atom in question are stored. The number of
neighbours kept for an atom i is easily calculated as N;eighbours — p. P, Since in the
parallel version every atom has the same number of elements » reserved to keep indices
of neighbours, the start element can be computed as P; = n*(i-1) + [ (the formula implies
that array and atom indices start from 1). The pointer array is then used to keep actual
number of neighbours found for each atom N eighbours
In the sequential version all atoms are examined sequentially. Therefore, the array must
be long enough to keep all neighbours of all atoms. There is an imbalance in the number
of neighbours. The first atom (with order number 1) has usually twice as many as atoms
in the center. The last atom has no neighbours at all (Fig. 4.5). As, in the parallel
implementation, every atom has the same number of elements reserved in the neighbour-
list array, there are unused gaps and the array is approximately twice as long as in the

sequential version. The length of the parallel neighbour list is approximately 47z, pN / 3,

whereas the sequential list is roughly 4m oN / 6. According to this change of the

neighbour structure, the part of the code that calculates non-bonded forces was also
accordingly slightly modified. The neighbours search algorithm in this case becomes
worse (i.e. doubled length of the neighbour list array and unused gaps within it).

Number of non-bonded neighbours

A

v

Order number of atom

Figure 4.5. Schematic representation of contents of the neighbour-list array. The first
atom has about twice as many neighbours as an average atom. The last atom does not
have any neighbours, as it was examined last and, therefore, was already included in all
possible atom pairs.
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In principle, one could use the Brode-Ahlrichs scheme® for the neighbour-list
construction, which does not waste memory. It is, however, difficult to integrate this
scheme with the neighbour-list construction by link-cells, which is used by YASP, when
the system exceeds a few thousand atoms, i.e. in most cases. It would also slow the
calculations, as additional if-branches would be required in the innermost loop. We,
therefore, opted for the faster execution and easier implementation instead of memory
economy.

4.3.3. Atomic forces

All parts of the program that evaluate atomic forces, bonded as well as non-
bonded, have one thing in common. There is one cycle, which iterates over the atoms, the
flexible bond angles or the dihedral angles of all molecules, calculates forces for all
atoms participating in these interactions and adds them into arrays. These arrays are used
to keep the Cartesian components of the force on each atom and to integrate the equations
of motion. This cycle consumes most of the CPU-time of the subprogram it belongs to.
The details of calculation are different in different subprograms.

Listing 4.1. Schematic representation of the part of the sequential code that evaluates
atomistic non-bonded forces.

! Loop over all atoms

01 DO i=1, N

02 nlfirst = nlptr(i)

03 nllast = nlptr(i+l) - 1

04 DO m = nlfirst, nllast

05 j = nllist(m)

06 fx = <<evaluate x-component of force (i,3j)>>
07 fy = <<evaluate y-component of force (i,3j)>>
08 fz = <<evaluate z-component of force (i,7j)>>
09 fix = fix + fx

10 fiy = fiy + fy

11 fiz = fiz + fz

12 fxatom(j) = fxatom(j) - £fx

13 fyatom(j) = fyatom(j) - fy

14 fzatom(j) = fzatom(j) - fz

15 END DO

16 fxatom(i) = fxatom(i) + fix

17 fyatom(i) = fyatom(i) + fiy

18 fzatom(i) = fzatom(i) + fiz

19 CONTINUE
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Listing 4.1 schematically presents the sequential version of a loop, which
evaluates one of three types of forces — bonded angles, bonded dihedral angles, or non-
bonded. It shows the calculation of all three components of the force (fix, fiy, fiz) between
non-bonded atoms. These computed forces are then added into the arrays that keep
atomic forces for all atoms — fxatom, fyatom, and fzatom. The array niptr (lines 02, 03) is
the array, which keeps the pointer to the first element of the array of neighbours nilist
(see Fig. 4.4). The evaluation of forces of bond angles and dihedral angles is simpler, as
they proceed along a predefined static list of interactions. Forces within each iteration are
evaluated for three (bonded angles) and four atoms (dihedral angles). It needs also to be
mentioned that YASP uses the “reaction field” algorithm to estimate electrostatic forces.
In this case dispersive attraction described by Lennard-Jones potential and electrostatic
interactions can be merged into one cycle.

Listing 4.2 represents schematically the parallelized version of this cycle. Similar
to listing 4.1, the cycle is given only for the calculation of non-bonded forces. Line 0/
calculates the maximum number of elements in neighbour list nmaxnl array that each
atom can have, where mn/ is the total length of the array. Line 02 of listing 4.2 defines
the size of chunks, into which the whole cycle will be split later. The total number of
chunks is equal to the number of threads N ..qs multiplied by 5. The number of threads is
returned by the function OMP GET MAX THREADS. The final number of chunks can
be one more than 5 times the number of threads because the number of iterations N might
be not divisible by 5N eqds- This will result in a small residual chunk.

The next two lines (03, 04) open the parallel region, which is performed by all
threads simultaneously. The clause default(shared) determines that, if not specified
otherwise, all variables declared previously are shared by all threads. The clause
private(fxa_local, fya local, fza local) means that local private copies of the arrays
(referred to in the brackets) will be created for each thread. The number of elements in
these arrays and in the shared forces arrays fxatom, fyatom, and fzatom is equal to the
number of atoms. The local forces arrays are set to zero before the start of the main loop.

When the local arrays are initialized, the team threads start iterations of the outer
loop. The comment block, which precedes the cycle, establishes the parallel environment
for performing the cycle and defines the strategy to execute iterations. Line 08 declares
the cycle as parallel, and it defines the list of variables that should be private to each
thread (in the same way as in line 04). Line 09 declares shared variables, which serve as
accumulators, i.e. in each iteration a value is added and the final outcome is the total sum
for all iterations done. Examples are the virial and different energies. The last line /0
stipulates dynamic load balancing (see section 4.2.3).

Lines 02-03 of listing 4.1, which define start and end elements of the neighbour
list array where neighbours of the current atom are stored (see Fig. 4.4), are now changed
and turned into lines /2-13 of listing 4.2.

Line 30 closes the parallel cycle and also controls the behaviour of the team
threads upon the completion of the cycle. When a thread finishes all available chunks of
iterations of the cycle it does not wait for other threads and proceeds to the next statement
following the cycle (nowait option).

The following code section (lines 3/ — 35) collects the forces from all threads,
which are kept in the local arrays fxa local, fya local, and fza local, into the shared
arrays fxatom, fyatom, and fzatom respectively.

28



Listing 4.2. Schematic representation of the parallel version of the code that evaluates
atomic non-bonded forces.

01 mmaxnl = mnl / (natom - 1)

02 nomp_chunk = N_iter / (OMP_GET_MAX_THREADS () *5)
03 !Somp parallel default (shared)

04 !Somp& private(fxa_ local, fya local, fza local)

! Initialize arrays of forces

05 fxa_local = 0
06 fya_local = 0
07 fza_local = 0

08 !Somp do private (<<variables 1ist>>)
09 !Somp& reduction (+:<<variable 1list>>)
10 !Sompé& schedule (dynamic, nomp_chunk)
! Loop over or all atoms

11 DO i=1, N

12 nlfirst = (i-1)*nmaxnl + 1

13 nllast = (i-1)*nmaxnl + nlptr (i)

14 DO m = nlfirst, nllast

15 j = nllist(m)

16 fx = <<evaluate x-component of force (i,7])>>

17 fy = <<evaluate y-component of force (i,7])>>

18 fz = <<evaluate z-component of force (i, j)>>
19 fix = fix + fx

20 fiy = fiy + fy

21 fiz = fiz + fz

22 fxa_local(j) = fxa_local(j) - fx
23 fya_local(j) = fya_local(j) - fy
24 fza_local(j) = fza_local(j) - fz
25 END DO

26 fxatom(i) = fxatom(i) + fix

27 fyatom(i) = fyatom(i) + fiy

28 fzatom(i) = fzatom(i) + fiz

29 CONTINUE

30 !'Somp end do nowait

31 !Somp critical (forces_add_lock)

32 fxatom = fxatom + fxa_local
33 fyatom = fyatom + fya_local
34 fzatom = fzatom + fza_ local

35 !Somp end critical (forces_add_lock)

36 !Somp end parallel

In this reduction, critical sectioning must be used in order to avoid data loss (see section
4.2.4). This is done by enclosing the piece of the code between lines Somp critical
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(forces_add lock) and Somp end critical (forces add lock). The first line starts the
critical section named forces_add lock. The second one closes this critical section.

In the implementation of YASP, all OpenMP instruction comment blocks and
additional parallel code outside these blocks are enclosed within #ifdef/#endif
preprocessor directives. Therefore, it is possible to choose the parallel or sequential
version of the MD code through compiler options.

434. Constraints

The multi-colour SHAKE' is implemented in the YASP packagezg. Its idea is to
split the list of constraints into sublists in such a way that no atom appears more than
once in each of the sublists. This makes the algorithm vectorisable and parallelizable. The
outermost cycle iterates until all constrained distances are converged. The intermediate
cycle runs over the sublists of independent constraints. The innermost loop solves
constraints in the current sublist and performs necessary changes to atom positions. Only
this cycle is parallelizable.

While all other cycles, such as building non-bonded neighbour list or calculation
of non-bonded and bonded forces, were parallelized using dynamic load balancing option
used, the cycle of constraints solver was parallelized with static balancing. Since all
iterations in the innermost cycle require an equal amount of work, they are divided into
partitions of the same size.

An alternative could be the Gauss-Seidel and Jacobi iterations®'. These methods
are the constraints solvers, which are intrinsically parallel (within one iteration), and they
offer substantiated performance improvements over the standard SHAKE. As we are
using the parallelizable multi-colour SHAKE, we expect only a limited possible speedup
from using the Gauss-Seidel and Jacobi iterations. In the view of the larger operations
count of these methods, we prefer to use the simpler multi-colour SHAKE.

4.4. Assessment of performance

For the water systems, simulations were carried out for 1000 time steps (2 fs per
step), the neighbour list was updated every 15 time steps for benchmark purposes. The
simulation of polyamide was done for 5000 time steps (2 fs per step), the neighbour list
was updated every 30 time steps. All systems were equilibrated first. The arrangement of
water molecules and polyamide chains in all systems is amorphous. All computations
were performed in 64-bit precision. No other computations were running on the
computers while the benchmarks were taken.

Four work load balancing schemes for calculating the forces — static, dynamic,
guided, and “affinity”— were investigated. The performance for static and guided
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balancing turned out to be unacceptable even for two processors and is, therefore, not
reported here.

Table 4.1. Benchmark systems used to test parallel MD code.

Name System size Mass Cutoff radius [nm] Neighbour list length
Molecules | Atoms densit;/ Potential | Neighbour | sequential | parallel
[kg/m’] list Total Total
(per atom) | (per
atom)
SPC/E  Water, 300 900 1017 0.75 0.8 118074 236149
300 K (131) (262)
SPC/E Water, 3000 9000 1004 | 0.75 0.8 1167345 2334690
300 K (130) (260)
SPC/E  Water, 9000 27000 1001 0.75 0.8 3487887 6975775
300 K (129) (258)
SPC/E  Water, 9000 27000 1000 1.0 1.1 9068451 18136902
300K (336) (672)
Polyamide 6,6 24 18360 1083 09 1.0 5092068 10184136
(Nylon), 350 K 277) (555)

Defining W as the amount of work done, and ¢ as the corresponding execution
time, the throughput with respect to some reference case can be defined as (W/Wier)(tret/t),
where W and .. are the work done in the reference case and time it takes, respectively.
The reference is the sequential version of YASP, not the parallel version running on 1
CPU. Since the amount of work is the same for the sequential and the parallel version,
W/W, is 1. The efficiency is obtained as the throughput divided by number of
processors. The following figures (Fig. 4.6-Fig. 4.10) show throughput and efficiency as
a function of the number of processors for all benchmark systems.
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Figure 4.6. Throughput (left) and efficiency (right) for the system of 300 SPC/E water
molecules.
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Each figure displaying throughput has an orientation line (triangles) that
represents the ideal case of a 100% efficient parallel computer. In all figures (4.6-4.10)
throughput and efficiency of affinity (rhombus) and dynamic (squares) work-load
balancing strategies are shown.

For both parallelization strategies the efficiency drops with each new processor
added. Except for the 300 water molecules, the decrease is approximately linear. The
charts reveal that there also exists a limit of number of processors (LNP), beyond which
throughput starts to decrease. Such behaviour develops due to increase of CPU overhead,
such as synchronization of threads during access to critical sections of code; FORK/JOIN
sections require more CPU time to treat more threads (especially in constraints solver
cycle); distributing work-load among the threads; inefficient memory access; memory
and bus conflicts. Beside these factors, the sequential parts of the code, e.g. solution of
the equations of motion, sampling averages, output of intermediate information into files,
always take the same time. The CPU-time required for the sequential code in the
benchmarks is about 1-5% of the total time. Therefore, the maximum achievable speedup
(for 5% of sequential part) in the ideal case of parallelization at the limit of infinite
number of processors according to Amdahl’s law is 20.

It is seen from the graphs (Fig. 4.6 — Fig. 4.10) that the LNP depends on the size
of the molecular system being studied (Fig. 4.6 — Fig. 4.8), atom (not mass) density,
cutoff radius (Fig. 4.8 and Fig. 4.9), and complexity of the molecules in the system (Fig.
4.10).

The results shown in Fig. 4.6-4.10 were extracted with all timings done on a
dedicated node, so there were not any other programs running simultaneously. Under real
conditions, when node is shared with other running calculations, throughput and
efficiency were found to be even more favourable.

Additionally, the separate throughputs for bonded forces, non-bonded forces,
neighbour list, and constraints were investigated in order to understand the behaviour
shown in Fig. 4.6-4.10. Since in almost all cases dynamic scheduling yielded slightly
better results, affinity scheduling is not considered in the following. Two benchmarks
were used to get separate timings of mentioned parts of the code: 9000 SPC/E water
molecules with 1.0 nm cutoff radius and 24 molecules of polyamide.
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Figure 4.11. Separate throughput (left) and efficiency (right) of non-bonded-forces,
neighbour list, and constraints for the system of 9000 SPC/E water molecules with cutoff
radius 1.0. The throughput and efficiency of bonded forces are not shown, since SPC/E
water molecule is rigid, and, therefore, does not have any bonded forces.
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Figure 4.12. Separate throughput (left) and efficiency (right) of bonded forces, non-
bonded-forces, neighbour list, and constraints for the system of 24 polyamide (6,6)
(nylon) molecules.

The throughput (Fig. 4.11, 4.12) shows that the neighbour list search algorithm,
although not fully optimized scales relatively well. The computing of non-bonded forces
showed slightly worse but still useful scaling behaviour. However, the parallel
computation of bonded forces (Fig 4.12.) shows an extremely poor increase in
throughput, whose maximum is achieved with only 3 processors. In the case of
constraints, the throughput showed also bad scaling with maximum of 7 processors for
water (Fig 4.11) and only 4 processors for polyamide (Fig. 4.12). It is obvious that
bonded forces and constraints are the parts of the parallelized code, which define the
LNP. It is achieved when the throughput decrease due to bonded forces and constraints
overcomes the increase due to neighbour list and non-bonded forces.

In principle, the situation could be improved applying the scheme of
parallelization offered in ref>°, where bonded forces are calculated simultaneously with
computing of non-bonded forces (constraints can be resolved only after all forces are
computed and the equation of motion is integrated). However, all timings of the
polyamide benchmark demonstrated that the elapsed time taken by the calculation of
bonded forces in the sequential version is always less than the elapsed time spent for the
computation of non-bonded forces regardless of the number of processors used.
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Therefore, it is possible to estimate the total time ¢/, for an ideal parallel version on n

processors (n >2)as t. =t —t, ,'Zn.f. is

est tot tot.f.

+t! ,» where 7, is the total elapsed time, ¢

tot
the total elapsed time consumed for calculations of all forces, and 7', is the elapsed

time spent for calculations of non-bonded forces. The ideal case implies that all possible
additional time overheads are neglected.
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Figure 4.13. Estimation of throughput for the hypothetical case of simultaneous
calculation of bonded and non-bonded forces for benchmark with polyamide (6,6)
(nylon), compared to the throughput achieved without overlapping these tasks and using
dynamic load balancing.

Fig. 4.13 shows the estimated throughput of the benchmark with polyamide in this
hypothetical case. The LNP is still the same for both cases and is equal to 13 processors.
The difference in throughput at this point is approximately 22%.

In principle, overlapping bonded and non-bonded forces could be done by
enclosing function calls of bonded and non bonded forces by the SECTIONS clause. This
would be technically cumbersome and is not supported by all compilers, and one would
have to use non-standard constructs. For instance, the Portland Group Fortran 90
(PGF90) compiler does not allow a parallelized DO loop to be enclosed within
SECTIONS clause. As the performance gain is limited, we have chosen not to implement
a simultaneous calculation of all forces.

Another possible solution to increase the LNP for the whole simulation would be
to freeze the number of processors used for constraints and bonded forces at their
respective maxima. This was not successful. The system was that of 9000 of SPC/E water
molecules, the total number of processors was fixed at 22. The number of processors
(threads) used to calculate constraints through special option of Somp parallel do clause —
num_threads(N) — was systematically reduced from 22 down to 17. The total throughput
continued to reduce for all steps (fewer threads, less throughput), although one would
have expected an increase. The reasons are not yet understood.

The benchmarks were also run on a dual processor PC (Intel Xeon 2.8 GHz, 1GB
Memory). The PGF90 compiler was used with the compiler flags “-fast —fastsse -
Knoieee” for both the sequential and the parallel version. Table 4.2 represents results
achieved on this machine. It is seen that the throughput and efficiency of the parallel MD
code depend on the system size very weakly. However, they have a noticeable
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dependence on the cutoff radius and even more on the chemical complexity of the
system.

Table 4.2. Benchmark systems used to test parallel MD code.

‘ Execution time [s] ‘ Throughput ‘ Efficiency
Water, 300K, 300 molecules (900 atoms)
Sequential 38 =1 =1
Parallel, 1 CPU 42 0.91 091
Parallel, 2 CPU 22 1.73 0.86
Water, 300K, 3000 molecules (9000 atoms)
Sequential 442 =1 =1
Parallel, 1 CPU 487 0.91 0.91
Parallel, 2 CPU 248 1.78 0.89
Water, 300K, 9000 molecules (27000 atoms)
Sequential 1344 =1 =
Parallel, 1 CPU 1468 0.92 0.92
Parallel, 2 CPU 769 1.75 0.87
Water, 300K, 9000 molecules (27000 atoms), rc,,=1.0
Sequential 3085 =1 =
Parallel, 1 CPU 3269 0.94 0.94
Parallel, 2 CPU 1697 1.82 0.91
Polyamide 6,6 (Nylon), 350K, 24 molecules (18360 atoms)
Sequential 5254 =1 =1
Parallel, 1 CPU 7181 0.73 0.73
Parallel, 2 CPU 3726 1.41 0.71

4.5. Summary and conclusions

A partially parallelized MD code for shared memory computers is described,
which achieves a substantial speed-up over the sequential version of the program. The
parallel implementation using OpenMP constructs is relatively easy because only the
most CPU time consuming cycles, i.e. calculation of non-bonded forces, building non-
bonded neighbour list, application of constraints (Multi-colour SHAKE), evaluation of
dihedral angle and bond angle forces, were parallelized. The rest of the code is taken
from the sequential version. The approach takes a few small modifications to the
structure of the non-bonded neighbours array and the implementation of the algorithm
that fills it. Additionally, the evaluation of the forces (non-bonded, dihedral and bond
angle) needs to be synchronized between the team threads. The resulting parallel version
is fully compatible with the parent sequential version of the YASP program.

The efficiency and throughput of the parallel MD code was found to increase with
density and size of the simulated system. This means that the parallel version will be
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useful for simulating larger jobs. It has also been found that the throughput and efficiency
are higher for systems of simpler molecules, such as molecular fluids.

For every given molecular system, there is a limit of the number of processors
that can be usefully employed. It directly depends on the density, the system size, and the
complexity of the molecular compounds studied, as these system characteristics
determine the fraction of CPU-time consumed by the parallelized cycles. The parallelized
computing of non-bonded forces showed slightly worse scaling behaviour than that one
of the neighbour list generation algorithm. The parallel calculation of bonded forces and
constraints were found to be the main reasons, which limit the increase of the throughput,
and which even cause a decrease of the throughput beyond a certain number of
processors.

The neighbour list generation algorithm is not fully optimized, as it requires twice
as much memory as the sequential version. However, measured timings revealed very
good scalability of the parallelized version. Since memory is not a big issue on modern
computers, especially on supercomputers, one can disregard this concern in most
applications.

The speed-up obtained with the OpenMP implementation is very similar to that
found in similar problems, see e.g. refs'***. The speed-up obtained on the dual-processor
IBM PC (Intel Xeon 2.8 GHz, 1GB Memory, Linux) using the PGF90 compiler differs
from that achieved on the Power PC IBM Aix 4.3. The efficiency and throughput are
found notably smaller on the IBM PC. Still they are high enough to be useful for practical
calculations.

In summary, the OpenMP technique has been found quite useful if one wants to
parallelize an existing sequential version of a standard MD code, while keeping the effort
to a minimum.
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5. lon binding to cucurbit[6]uril: structure and dynamics

5.1. Introduction

Much work is currently being done in the field of synthetic molecular receptors.
Many have been synthesized and characterized. The inclusion of guest molecules into
their active sites has the potential to lead to novel chemical transformations, to mimic
enzymatic activity', to isolate reactive species’, and, combined with controlled capturing,
to allow drug delivery®”. Along with the experimental research, molecular simulations of
such receptors are being carried out in order to investigate the molecular mechanisms of
host-guest complexing™®.

One class of synthetic molecular receptors are the cucurbiturils (cucurbit[n]uril, or
CBjJn]). Cucurbit[6]uril, which is investigated in this thesis, is a hexameric macrocyclic
compound that has a cavity of ~0.55nm in diameter and high symmetry with two
identical openings (Fig. 5.1). It was produced first in 1905’ but fully characterized only in
1981 by Freeman et al.® (For recent reviews, see Lagona ef al.’ and Lee et al.'®) The
mechanism of complexation of cucurbituril with various guest compounds as well as
other properties have been studied intensively''™'”: complexation in aqueous and acidic
solution'*; co-crystals formed by cucurbituril’; assembly into nanotubes'’; molecular and

biomolecular recognition' .

Figure 5.1. Tetramethylurea (left) and cucurbit[6]uril (right) molecules. Tetramethylurea
was used as a building block of cucurbituril (outlined in the right figure).

Moreover, the interaction of cucurbituril with metal ions and their influence on
properties and complexation behaviour under different conditions have also been
considered'"*!'*%_ In particular, the complexation of metal cations at the oxygens can
result in ternary complexes composed of cucurbituril, a guest molecule, and a metal
cation. It has been suggested that the cations function as “lids” sealing the portals and
stabilizing the complex'**"**. Furthermore, the encapsulation and release of the guest can
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be controlled by pH*, which makes cucurbiturils applicable as molecular containers for
drug delivery. Despite the great interest, relatively little is known about the microscopic
dynamics and the quantitative effects of metal ion “lids” on the inclusion of the guest'”.

The investigation of different cyclic receptors by simulation methods and in
particular molecular dynamics simulations (MD) is well established, e.g. cyclodextrin23'
> calixarenes®®?’, crown ethers® >, and cryptands™ (including complexes with metal
cations®?%).  Although cucurbituril complexes are being intensively studied
experimentally, we are not aware of any such simulations for cucurbituril so far. In the
current study, we prepare an MD model of cucurbit[6]uril. We report the results of
simulations of CB[6] in water, and in aqueous solutions of potassium, sodium, and
calcium chloride. Static properties such as structure, cation complexation and binding
energies are discussed. The cation binding dynamics at the oxygens and the dynamics of
capturing of water molecules in the CB[6] cavity are investigated.

5.2. Computational details

Since no cucurbituril model for MD simulations has been reported yet, its
geometrical properties (bond lengths, angles, dihedrals) were derived from the structure
optimized (energy minimization) by the PM3 semi-empirical method® ™. A density
functional theory optimization (ADF software’®, VWN functional (LDA)’’, gradient
corrections (GGA): Becke**-Perdew’’, double-{ basis set, relativistic effects: Scalar
Zora'**), however, did not reveal big discrepancies: the maximum distance difference
was 0.04A, the maximum angle difference was 5°, and the maximum dihedral difference
was 3°. Parameters of Lennard-Jones parameters and atomic partial charges have been
taken from a force-field for tetramethylurea (TMU) in aqueous solution®, as  this
molecule can be considered as a building block of cucurbituril (Fig. 5.1). The CH and
CH; groups are connected to two nitrogens, as opposed to TMU. Therefore, their charges
were set to double charges of TMU CHj3 to keep the total charge equal to zero. These
parameters and the bond lengths are reported in tables 5.1 and 5.2 respectively. A united
atom model has been used for the CH,, groups.

Table 5.1. Parameters of atoms: masses, Lennard-Jones parameters, partial charges.

Atom mass [au] ¢ [kJ/mol] ¢ [nm] q [e]
CH 13.007825 0.5356 0.37538 0.2202
N 14.0031 0.5314 0.325 -0.29605
C 12 0.4393 0.375 0.7954
0O 15.9949 0.5314 0.2965 -0.6437
CH; 14.01565 0.5356 0.37538 0.2202
K" 39.09831 0.418454 0.3334 1.0

Na' 22.98977 0.418454 0.2586 1.0

Ca” 40.078 0.418454 0.2872 2.0

Cr 35.4532 0.418454 0.4404 -1.0
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Table 5.2. Bond constraints.

Bond length [nm]
CH-CH 0.159141
CH-N 0.145851
N-C 0.137022
N-CH, 0.145140
C-0 0.121137

Table 5.3. Bond angles.

bond angle 0o [°] bond angle 0o [°]
CH-CH-N 102.423 N-C-N 105.777
CH-N-C 115.053 N-C-O 126.889
CH-N-CH, 120.127 N-CH,-N 111.597
C-N-CH; 123.927

Table 5.4. Dihedral angles.

dihedral angle 7o [°]
CH,-N-C-O (1-2-3-4, Fig. 5.1) 3.0
CH,-N-C-O (6-5-3-4, Fig. 5.1) -3.0
CH-N-C-O (7-5-3-4, Fig. 5.1) 173.0
The Lennard-Jones parameters are given for separate atoms. The united
12 6
interaction parameters o1, and g1, between two atoms U, = 4812[(&] - (&] } are
4P 4P

o, +0,

calculated as follows: ¢, =./€,&,; 0, = . Nonbonded interactions between

atoms that are connected by fewer than four bonds were eliminated. Those are atoms
participating in bonds, bond angles, and all possible dihedrals, not only those that are
shown in Table 5.4.

Bond lengths have been kept rigid by the SHAKE algorithm*®*® (Table 5.2). For
both bond angles and dihedral angles, harmonic terms have been used. The CB[6]
molecule is a stiff cage, and its conformation does not crucially depend on the precise
values of the force constants. Therefore, we used one force constant for all bond angles
(350 kJ/(mol'rad’)) and one for all improper (harmonic) dihedral angles (170
kJ/(mol'rad®)). The equilibrium values of bond angles go and dihedrals 7, are given in
Tables 5.3 and 5.4.

CB[6] was simulated in pure water and also in aqueous salt solutions. All systems
have approximately the same molarities — 0.0184 mol/L. of CB[6] and 0.183 mol/L of
salt. Each of the simulated systems contained 3000 water molecules and 1 CB[6]. 10 ion
pairs (NaCl, KCI) or triplets (CaCl,) were used to simulate salt solutions. CB[6] is poorly
soluble in water under standard conditions. However, as only one molecule was
simulated and, therefore, it was “forced” to dissolve. In presence of alkali salts
cucurbituril becomes appreciably soluble®.
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The SPC/E model of water*’ and the models of potassium, sodium, and calcium
chloride in aqueous solutions suggested by Koneshan et al. *° (Table 5.2) have been used
in our simulations. To account for electrostatic interactions, the reaction field method was
used with the dielectric constant of pure water (72). That was done since all solutions
were dilute and a small variation does not change the final results much.

All simulations were done with the program YASP’'™’ at constant temperature of
300K (coupling time 0.2ps) and constant isotropic pressure of 101.3 kPa (coupling time
3.0 ps) (NPT)>*. The simulation time step was 2fs, with the sampling period 2ps. The
neighbour list was updated every 15 time steps. The cutoff radius was 1.Inm for the
neighbour list and 1.0nm for calculating the Lennard-Jones and the electrostatic
potentials. All systems have been sampled for approximately 10-12ns after an
equilibration period of about 1ns.

5.3. Results and discussion

5.3.1.  Hydration of cucurbituril

The densities of the simulated systems were than that of pure water (Table 5.5), as
one would have expected.

Table 5.5. Densities, self-diffusion coefficients, and rotational correlation times in the
simulated systems (T=300K).

# | System Density | Diffusion coefficient [10°cm?/s] Rotational
[kg/m3] correlation times
[ps]
Water | CB Cation | Anion | 7;(C)) 72 (C>)

1 | Water, CB 1009.1 2.62 1.1 - - 546 177

2 | Water, CB,Na', CI" | 1016.2 2.60 031 | 141 1.52 424 139

3 | Water, CB, K", CI 1016.8 2.72 0.48 | 1.49 1.69 699 232

4 | Water, CB, Ca™, CI" | 1025.0 242 0.25 ]0.59 1.48 435 142

5 | Water, CB, K’ 1011.4 | 2.67 0.28 |3.35(K" - -

The analysis of radial distribution functions (RDF) of CB[6] in pure water (Fig. 5.2)
showed a peak between oxygen of CB[6] and water oxygen [O(CB)-O(H,0)] of about
1.5 at approximately 0.265nm. RDFs of other sites of CB[6] have the first peak of less
than 1.0 at 0.483nm (nitrogen) and at 0.371nm (carbon). The higher first peak of the RDF
for the crown CB[6] oxygen implies that only these sites are hydrophilic. Although the
excluded volume of CH, groups (n=0..2) is bigger than that of nitrogen (N), the water
oxygen is notably further from the latter. This is explained by the fact that the nitrogens
point inward the cavity of CB[6] and access to them is hindered by the surrounding CH,
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groups. Moreover, the methylene groups are pointed towards water and this also
determines the peak at the closer distance.

—— O(CB)-O(H,0)
L I N(CB)-O(H,0)
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Figure 5.2. Radial distribution functions of CB[6] sites (O, N, CH,) and the oxygen
atoms of water molecules (O). The lower box in the figure indicates the positions of the
first minima after the first peaks followed by the number of water molecules in the shell

up to this distance for each site of CB[6].

The presence of salt ions in solution hardly affected the CB[6]-water RDFs. The
first peak of the CB[6] oxygen-water RDF became a bit smaller; the first minimum after
the peak increased slightly (Fig. 5.3). This can be explained by the fact that positive ions
come close to the negatively charged CB[6] oxygens and displace some water molecules
(Fig. 5.3). The other negative site of CB[6] is nitrogen. But for the same reasons as for
water, cations do not bind to it.
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Figure 5.3. Radial distribution functions of CB[6] oxygen and water oxygen in NaCl
solution and pure water.
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