
.

Steerable Texture Synthesis
for Vector Field Visualization

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl.-Ing. Francesca Taponecco

aus Sarzana

Referenten der Arbeit: . . . Prof. Dr.-Ing. Marc Alexa, Technische Universität Berlin
. . . Hon. Prof. Hans-Christian Hege, ZUSE Institute Berlin
. . . Prof. Dr. Bernt Schiele, Technische Universität Darmstadt

Tag der Einreichung: 29. August 2006
Tag der mündlichen Prüfung: 11. Oktober 2006

D17
Darmstädter Dissertation 2006

I

Acknowledgments

This dissertation could become a reality thanks to the help of numerous people who contributed in
different ways supporting me in these years of research.

Foremost I want to express my special thanks to my advisor Marc Alexa. I would like to
thank him for his guidance during my research at the Darmstadt University of Technology; he
provided useful suggestions and support, giving me the freedom and the encouragement to pursue
this research. Thanks to his experience and competence in every field of quest and thanks to his
friendly way of leading the group, he represented an important reference point for me. He encour-
aged me in investigating interesting topics in computer graphics and related fields, supporting my
cooperation with other researchers and giving me also the chance to spend a period of exchange
research at the University of Minnesota, where I had the opportunity to work with experts involved
in my research field. I am really grateful for the opportunity to work in his team and it has been a
valuable experience for me.

I would like to sincerely thank Professor Hans-Christian Hege and Professor Bernd Schiele for
kindly having accepted being my co-advisors, for showing interest and for taking the time and the
trouble, and occupying themselves with my work.

I would like to express my deepest gratitude to Professor José Luis Encarnação for giving
me the chance to work in his institute. Being in contact with many colleagues from the Univer-
sity and the research Institute for Computer Graphics and Data Processing has been an excellent
opportunity, enabling me to learn and grow in an international, stimulating research environment.

Many thanks to Professor Vicki Interrante and her group at the University of Minnesota, for
having welcome me so friendly and for the stimulating discussions during my stay in Minneapolis,
it has been and it is a pleasure working with them. My appreciations also go to my colleagues at
the Graphical Interactive Systems Group GRIS, Anders Adamson, Sabine Bartsch, Uwe Berner,
Carola Eichel, Roya Foroughi, Rolf Lindner, Dietmar Hildenbrand, Andy Nealen, Thomas Rieger
and Silke Romero, for the friendly and creative atmosphere in the graphics group. I would like to
thank all my fellow scientists who helped me in my work through informal discussion, showing
interest in my work and encouraging me to keep up with this research, I am particularly thankful
to the researchers who allowed me to use some of their pictures, which I reprinted for the state of
the art survey of this thesis.

I thank all my friends, in Italy, Germany and other countries, who also helped me with their
support and friendship, and a special thank goes to Thomas for his support, understanding and
patience. Finally, and most importantly, I would like to thank my family in Italy for their constant
support throughout every phase of my life, being an essential point of reference and source of
support for me also in this time away from home.

III

Zusammenfassung

Übersicht

In dieser Arbeit werden neue Methoden zur Visualisierung von Vektorfeldern und zur Generierung
einer kontrollierbaren Textursynthese vorgestellt. Ein intuitiver Ansatz wird eingeführt, welcher
flexibel und einfach erweiterbar ist.

Traditionelle Theorien der Bildverarbeitung für Textursynthese wurden für dieses Ziel verwen-
det und angepasst. Texturen sind musterbasierte Bilder, welche statistische und/oder strukturelle
Eigenschaften als räumliche Verteilung von Pixel zeigen. Texturen sind charakterisiert von einem
Satz von perzeptiven, visuellen Dimensionen und sind deshalb besonders geeignet als Paradigma
für eine flexible Informationsabbildung in der Visualisierung. Die Steuerung von anisotropen
Texturen entlang einem Vektorfeld ermöglicht eine flexible und effektive Visualisierung von vek-
toriellen Distributionen. Somit können Teile von Texturen oder texturellen Elementen, auch Texel
genannt, als Primitive benutzt werden, für den Zweck der Vektorfeldvisualisierung und felderges-
teuerten Textursynthese. Der Hauptinhalt von vektoriellen Datensätzen, und bedeutsame Attribute
können daher mittels intuitiver Transformationen über texture seeds kodiert werden. Die Kontrolle
über den Syntheseprozess ermöglicht und generiert eine Varietät von Effekten in dem resultieren-
den Bildergebnis.

Grundidee

Die Grundidee ist, dass Vektorfelder mit dem folgenden Ansatz visualisiert werden können: die
Farbe oder die Intensität der Outputpixel kann abhängig von kalkulierten Ähnlichkeitsfunktionen
einfach gesetzt werden.

Diese Methode ist texturbasiert aber, anders als das blurring und smearing einer starting noise
texture entlang der Richtung des Vektorfeldes, sie passt ein ausgewähltes Startmuster dem Vektor-
feld an, und sie transformiert das Muster von einer anisotropen Beispieltextur um, zur Darstellung
und Visualisierung der Eigenschaften und Variation der Vektorfelder.

Der traditionelle Textursyntheseprozess funktioniert wie folgt: ein kleines, stationäres und
lokales Textursample ist gegeben und aus dem wird eine größere Textur (mit beliebiger Auflö-
sung) synthetisiert, die zu dem Sample visuell ähnlich ist. Das heißt, der Output soll so aussehen
ob er von dem gleichen unterliegenden Prozess generiert worden wäre; zwei Texturen werden
gleich erscheinen, wenn einige bestimmte Statistiken von diesen Bildern korrespondieren. Der
Syntheseprozess wird angepasst, um vektorielle Informationen einzuschließen.

Ansatz: Vektorfeldvisualisierung und kontrollierbare Textursynthese

Die hier präsentierte Methode erzeugt eine Textur, welche durch pixel per pixel Synthetisierung
generiert wird. In diesem Standardverfahren wird in einem Outputbild jedes Pixel in scan-line Rei-
henfolge gesetzt, in dem man die Pixelnachbarschaft mit den formgleichen Nachbarschaften aus
dem Inputsample vergleicht. Eine Distanzfunktion wird berechnet, auf Basis von Farbewertähn-
lichkeit und Nähe zu dem aktuellen Pixel. Die Nachbarschaften des Pixels werden verglichen
und der beste Pixelwert wird statistisch ermittelt. Das Pixel mit der ähnlichsten Nachbarschaft ist
dann das wahrscheinlichste, welches an die aktuelle Position im Outputbild zu setzen ist. In dem
beschriebenen Verfahren wurde der Syntheseprozess mit Multiresolutionsanalyse implementiert,
welche auf Gaussian Pyramide basiert.

IV

In diesem Ansatz wird nicht mehr in einem einzigen Inputsample nach den bestpassenden
Pixel gesucht, sondern es wird in einem Set von Samples gesucht. Bei diesem Verfahren wird
daher als Input ein Satz von Samples spezifiziert und benutzt. Dank der Benutzung von Filter
und Transformationen, kann das Verfahren zur Benutzung und Erzeugung von beliebigen Textur-
mustern verallgemeinert werden. Der erweiterte Syntheseprozess ist generell und ermöglicht auch
die Synthese von nicht-homogen Texturen.

Dieser Satz besteht aus verschiedenen Versionen eines ursprünglichen Musters, welches in
Richtung, Amplitude und noch weiteren verschiedenen Parametern (so wie graduelle Farbän-
derung, Bildbearbeitungsfilter) verarbeitet wurde. Diese Parameter entsprechen den Pixelinfor-
mationswerten, welche zu einer modifizierten, bzw. filtrierten Version zu dem ursprünglichen
Sample korrespondieren. Jeder Punkt des erzeugten Bildes ist abhängig von seiner Position im
Vektorfeld. Dieser liefert die Werte für Phase und Amplitude, welche die Rotation und Skalierung
des ursprünglichen Musters bestimmen. Im Outputbild wird jedes einzelne Pixel aus einem Satz
von Feldparametern definiert: es liefert die Werte, die ein spezielles Inputsample bestimmen. Im
Allgemeinen erlaubt die Methode jede prozedurale oder manuelle Art zur Definition einer Kor-
relation und Abbildung zwischen Vektorraum bzw. Parameterraum und Beispielbilderraum. Fil-
trierungen und Transformationen tragen dazu bei, dass Beispielbilder möglichst frei transformiert
werden können. Folglich bietet der vorgestellte Ansatz beliebige Freiheitsgrade zur Darstellung
der Repräsentation des resultierenden Feldes. Die vorgestellte Methode kombiniert die Eigen-
schaften der Intuitivität von iconic mapping (direkte Visualisierung) mit den Eigenschaften der
Lokalität und einer mächtigen Kodierung, welche typisch sind für texturbasierte Techniken. Die
Methode erlaubt ebenfalls die Extraktion von interessanten, physisch wichtigen Attributen, so wie
es bei geometrischen und featurebasierten Visualisierungsmethoden gemacht wird. Dies trägt zur
besseren Darstellung der Feldhaupteigenschaften bei.

Die Generierung von kontrollierten oder deformierten und gekrümmten Texturen kann auch
mit dem vorgestellten Ansatz einfach erreicht werden. In diesem Fall, mit einem besonderen Au-
genmerk auf Bewahrung der Strukturkomplexität der Beispieltextur. In beiden Anwendungsfällen,
für Vektorfeldvisualisierung und für constrained texture synthesis, werden speziell anisotrope
Muster verwendet. Direktionale Muster zeigen deutliche Eigenschaften auf einer Achse auf. Aus
diesem Grund sind sie hervorragend geeignet, da sie am besten Krümmungen und Bewegungen
entlang von kontrollierten Richtungen auswerten. Somit betonen die anisotropen Muster die In-
formation von dem Kontrollfeld. Aus diesem Grund wird ein neuer Ansatz zur Spezifizierung der
Nachbarschaften und der Pixelgewichtung vorgestellt, zusammen mit einer resultierenden Reihe
von neuen Nachbarschaftsmodellen, die geeignet für die Bewahrung und Betonung der Richtung
sind.

Ausblick

Der Hauptbeitrag von dieser Arbeit ist eine Generalisierung des Textursyntheseprozesses und die
Einführung neuer Techniken zur Vektorfeldvisualisierung und der kontrollierbaren Textursynthese.
In dem generierten Outputbild kann jeder Punkt, der von Interesse ist, auf spezielle Weise her-
vorgehoben werden. So können kritische Punkte oder Bereiche von besonderem Interesse ver-
schieden synthetisiert werden. Man kann auch aus einer einfachen Textur eine komplizierte, neue
Textur generieren, mit Hilfe verschiedener Bildbearbeitungsfiltern, die lokal anwendbar sind. Das
Verfahren ist generell, vielseitig, fl exibel und einfach zu verwenden. Transformationseffekte und
künstlerische Variationen sind möglich; vielversprechende Erweiterungen sollen weiter erforscht
und getestet werden.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline . 4

2 Context of related work 5
2.1 State of the art in Perception and Cognitive Science 5

2.1.1 Introduction . 5
2.1.2 Gestalt principles of perception . 6
2.1.3 Human Vision Theory . 7
2.1.4 Preattentive, attentive and postattentive processing 8
2.1.5 Comments: integrating perceptual issues in visualization 11

2.2 State of the art in Texture Synthesis . 12
2.2.1 Introduction . 12
2.2.2 Problem statement . 12
2.2.3 Categorization of textures . 12
2.2.4 Classification of approaches . 14
2.2.5 Comments and open issues . 20

2.3 State of the art in Vector Field Visualization . 22
2.3.1 Introduction . 22
2.3.2 Definitions and notation . 22
2.3.3 Techniques classification . 22
2.3.4 Comments . 28

2.4 Summary . 29

3 Steering Texture Synthesis for Vector Field Visualization 31
3.1 Methodology: visualizing vector fields using statistical theory 32

3.1.1 Texture synthesis fundamentals . 33
3.1.2 Markov Random Field theory . 34

3.2 Sample-based visualization . 35
3.2.1 Conveying vectorial information through anisotropic patterns 36
3.2.2 Texture databases . 37
3.2.3 Input matrix seed . 39

3.3 Synthesis approach . 40
3.3.1 Control vector field . 41
3.3.2 Field-driven sample alignment and transformation 42

V

VI CONTENTS

3.3.3 Building causal neighborhood models 45
3.3.4 Calculating distances and measuring similarity probabilities 48
3.3.5 Finding the best matching pixel . 49

3.4 Algorithm description and implementation . 50
3.4.1 Steps of the procedure . 53
3.4.2 Pseudocode . 53

3.5 Results and discussion . 54
3.5.1 Comments: limitation and benefits . 54
3.5.2 Contribution . 57

4 Directional enhancement in texture-based vector field visualization 61
4.1 Motivation and contribution . 62
4.2 Synthesis neighborhoods . 62

4.2.1 Standard squared and L-shaped neighborhoods 62
4.2.2 Different neighborhood shapes . 63

4.3 Non-uniform neighborhood filtering . 64
4.3.1 Anisotropic neighborhood model specifications 64
4.3.2 Bilateral filtering . 64
4.3.3 Gaussian filtering and kernel coefficients 64

4.4 Isotropic and anisotropic weighting schemes . 65
4.4.1 Circular neighborhood . 65
4.4.2 Elliptical neighborhood . 67
4.4.3 Further weighting schemes: blobs . 70

4.5 Extensions . 70
4.5.1 Spherical and ellipsoidal neighborhoods 70
4.5.2 Sample textures bending . 70

4.6 Comments . 71

5 Multi-valued visualization 73
5.1 Multivariate fields . 74

5.1.1 Multi-parameter fields . 74
5.1.2 Height fields . 75
5.1.3 Temporal fields . 75

5.2 Higher order vector fields . 84
5.2.1 Tensors . 84

5.3 Multiple scalar and vector fields visualization 86
5.3.1 Interweaving vector fields . 86
5.3.2 Integrating streamline-based and texture-based visualization 86
5.3.3 Dual vector fields . 89

6 Extracting and encoding data content 95
6.1 Motivation and challenges . 95
6.2 Vector field parameters . 96

6.2.1 User selected vs. field intrinsic features of interest 96
6.2.2 Deriving vector field attributes . 96

6.3 Topological analysis . 98

6.3.1 Basic notions . 98
6.3.2 Piecewise linear interpolation . 100
6.3.3 Eigen-analysis . 101

6.4 Augmenting the MRF algorithm with data encoding 105
6.4.1 Texture visual dimensions and texture space 105
6.4.2 Visual representations and correspondences of features 109

6.5 Filters and convolution kernels . 110
6.5.1 Filter banks . 111
6.5.2 Convolution kernels . 111
6.5.3 Filtering effects . 113

6.6 Adaptive information layering . 118
6.6.1 Showing composite information . 119
6.6.2 Layering information . 120
6.6.3 Comments . 122

7 Other applications 123
7.1 Steerable texture synthesis . 123

7.1.1 Introduction and motivation . 123
7.1.2 Synthesizing non-homogeneous textures 124
7.1.3 Controlling the texture generation . 125
7.1.4 Results and discussion . 128

7.2 Time- and space-variant texture synthesis . 129
7.2.1 Introduction and motivation . 129
7.2.2 Motion in texture synthesis . 130
7.2.3 Animating textured images . 133
7.2.4 Results and discussion . 137

7.3 Concluding remarks . 139
7.3.1 Texture mixture and metamorphosis . 140
7.3.2 Solid textures . 140
7.3.3 Inpainting . 140

8 Conclusions 143
8.1 Summary and contributions . 143
8.2 Future work . 146

A Multi-resolution synthesis 151
A.1 Progressive refinement . 151
A.2 Image pyramids: analysis and synthesis steps 151

A.2.1 Gaussian image pyramids . 153
A.2.2 Laplacian pyramids . 154
A.2.3 Steerable pyramids . 156

List of Figures 164

List of Tables 165

Bibliography 181

VIII CONTENTS

Chapter 1

Introduction

Figure 1.1: Using steerable texture synthesis for vector field visualization.

1.1 Motivation

Visualization is a fundamental field of research with uncountable applications, spanning from the
fields of computer graphics and vision to the humanities. A key feature in visualization studies
is thus the interdisciplinary nature of this research field, and it is interesting to note the numerous
relative benefits and open directions where investigations can be guided.

In the last years, importance of visualization is constantly growing as, thanks to the fast com-
puter advances, it is possible to collect and handle large data sets. Consequently, focusing on
scientific visualization techniques still reserves much attention and, although several valid visu-
alization methods exist, further investigation is required. A fundamental open issue is the need
for more control. The broad variety of tasks and the different level of expertise of users also re-
quire degrees of freedom and adaptivity to allow customizing the visualization process, effectively
representing data sets. Such features would be especially beneficial in computer vision and imag-
ing applications as well as for textures generation. The need for local control and the ability to
constrain the synthesis of textures are nowadays relevant issues due to the fundamental role that
textures play in computer graphics, providing realism and variety in digital scenes and objects. Un-
fortunately, most synthesis approaches still just allow generating simple homogeneous and regular
textures, leaving a great part of texture potential unexplored.

In this work, I propose novel techniques for the visualization of vectorial data sets, offering
local as well as global control in the visualization process. I use statistical theory from texture syn-
thesis and concepts from perception and cognition to optimize the resulting image and encode the
information in the visualization. Furthermore, I introduce straightforward extensions to standard

1

2 CHAPTER 1. INTRODUCTION

texture synthesis algorithms, allowing the generation of constrained textures, field-driven textures
and a variety of texture filtering and transformation effects.

Figure 1.2: Generating controlled texture synthesis.

Main idea

Textures are pattern-based images whose spatial distribution of pixels exhibits statistical, or struc-
tural properties, of both. Textures are characterized by a set of perceptual visual dimensions and
are thus particularly suited as paradigm for powerful and fl exible information mapping in visual-
ization. Steering anisotropic textures along a vector field provides a fl exible and effective visu-
alization of the vectorial distributions. In this way, pieces of textures, or textural elements called
texels, can be used as primitives for the scope of vector field visualization and field-driven texture
synthesis. The main content of vectorial data sets and meaningful attributes are thus encoded using
intuitive transformations over texture seeds.

This research introduces a novel approach to vector field visualization, using theory from
statistics and texture synthesis. The work mainly deals with image generation, especially for
application in the fields of multi-parameter scientific visualization (Fig. 1.1) and controlled texture
synthesis (Fig. 1.2). Steering the synthesis process allows several degrees of freedom and the
creation of a variety of effects in the resulting output.

1.2 Contributions

This work especially focuses on the design of visualization techniques, which are particularly
useful for scientific multi-variate fields, offering a wide set of adaptive settings for intuitive data
analysis. The visualization methodology is sample-based and makes use of textures as visual
primitives to provide a fl exible representation through information encoding. The visualization of
a given data set is achieved through a synthesis algorithm, which uses theories from statistics and
texture synthesis. The main novelty of this work is to provide a very fl exible approach for the prob-
lem of scientific visualization. Using the proposed algorithm, complicated vector fields, steady or
unsteady, fields with multiple variables and in higher dimensionality, as well as multi-fields or tem-
poral evolution of fl ows, can be easily visualized having the advantages of both direct and dense
visualization techniques. An adaptive scheme for layer-based presentation of the information is
also proposed, allowing a task- and user-driven visualization technique. Perceptual theories have
been taken into account in the design of the visual primitives and the mapping options. Being the
method general, it results to be useful and straightforward to apply in many different application
scenarios and for several traditional research disciplines. Moreover, the method can easily be ex-
tended, integrating further components in the presented visualization approach, or combining it
together with other techniques.

1.2. CONTRIBUTIONS 3

This work concentrates on scientific visualization and controlled texture synthesis, it deals
with diverse research areas, also attempting to find correlations between them. The resulting
contributions have thus effects on disparate fields; a summary of the primary contributions and
related publications is given in the following:

Vector field visualization:

• Local control: A novel algorithm that allows local control in vector field visualization is
introduced; it provides several degrees of freedom for versatile information encoding [200,
192]. The proposed algorithm and techniques allow smooth continuous visualization of
vector fields, both steady and unsteady.

• Prominent field attributes: Improvements are proposed to allow accurate representation of
information also in particular areas of interest, such as singularities or critical areas of strong
curvature. For this purpose, ad hoc specification of the input textural elements has been done
to improve the results, guaranteing smoothness and accuracy [204].

• Multivariate data: In case the number of variables increases, visualization of multiparameter
data and fl exible information encoding can be achieved using the proposed approach [200].
Animation: Extensions for temporal evolution of vectorial data are presented, and frames
animation is possible using an adapted simple scheme of the algorithm [195]. A layer-based
approach is also introduced [197].

• Multi-field visualization: The approach has been also extended for the visualization of multi-
fields, and especially dual-fields, generating an effective interwoven representation of two
co-existent vectorial data sets [205].

Texture synthesis:

• Non-homogeneous textures: Non-homogeneous textures can be easily ad hoc designed, tex-
ture blending, metamorphosis and mixture can be integrated. Manipulation and locality in
the control of the image generation are provided [193, 203].

• Steerable texture synthesis: Through a control vector field, a given texture pattern can be
modified, transformed, deformed according to field-driven transfer functions and aligned
along the newly specified directions [201]. Flow textures and texture animation: Extensions
of the algorithm allow the generation of fl ow textures and their relative animation [196].

• Neighborhood models and weighting scheme: For this new approach to constrained texture
synthesis, as opposed to standard regular texture synthesis, novel neighborhood models have
been proposed, together with appropriate weighting schemes, to enhance texture feature of
directionality [204].

Perceptually motivated visualization:

• Intuitive feature correspondence: the approach allows a simple way to map field attributes
onto visual representation for adequate mapping and representation of the vectorial infor-
mation. The textural elements used as seed in the visualization approach yield a particularly
easy and effective feature specification and encoding.

• Design of visual primitives: textures are well suited to serve as paradigm for effective visu-
alization. Taking advantage of their various visual dimensions, expressive and meaningful
information encoding is possible. In this work I propose some solutions, which can be inter-
esting and useful for several applications. In this way it is possible to define a texture input
set as primitive and powerful instrument for visualization [197].

4 CHAPTER 1. INTRODUCTION

1.3 Outline

An overview of the structure of this dissertation is here presented; the thesis is organized as fol-
lows:

After the brief introduction of Chapter 1 where motivation of this work is discussed and the
main contributions and areas of investigation are presented, a discussion on prior related work is
provided to introduce the context of this research.

The state of the art in Chapter 2 surveys perceptual issues (introducing some notions of per-
ception, cognition and vision theory) and the most relevant techniques existing in the literature for
the fields of texture synthesis and scientific visualization. I especially review some works that at
most are related to my research or that in part gave me an inspiration in this research direction.

I then introduce my approach in Chapter 3. I start introducing the main novel ideas that are
at the base of this work. I propose resulting visualization techniques and explain their usefulness
and benefits. In the Chapter, details are given about the presented algorithm, its implementation
steps and system structure. Mathematical notation as well as analytical formulæ are provided and
the concepts are illustrated. The algorithm is at first explained in detail for simple vector fields in
single resolution.

I extend the approach to its multi-resolution version and provide the necessary explanations in
Appendix A, together with necessary basic notions from texture synthesis theory and multi-scale
images.

Next, I investigate some solutions for optimization in Chapter 4. Here, improvement are pro-
posed to enhance the directional properties of the represented images. Novel definitions for the
specification of neighborhood structures and relative weighting schemes are presented.

In Chapter 5, I expand the approach to multi-variate multi-dimensional fields. The special
case of temporal evolution of vector fields is analyzed as sub-case of multi-valued visualization.
Brief functional formalism is given for a basic definition of tensorial entities, which can be treated
in a vectorial way extending the steerable approach to multi-parameter visualization. The case
of multi-fields visualization is also considered and solutions are presented. In particular, a novel
approach to interweave co-existent distributions is proposed.

Especially motivated by the possible presence of multiple parameters, combinations of ap-
proaches are proposed and more sophisticated concepts for information extraction and encoding
are surveyed and presented in Chapter 6. A discussion on possible visual representations to be
used as primitives for the data mapping is offered. Vector field variables and attributes of interest
are selected or extracted using a topological approach. Relative notions about eigen-analysis are
here introduced and explained in more detail. An adaptive schema for information layering and
proposals for customization options are also presented.

Similar considerations are valid for textures; in Chapter 7, I illustrate a novel approach to
non-homogeneous texture generation, based on the field-driven synthesis which I called steerable
texture synthesis. Extensions, results and various possible fields of application are shown, and a
discussion is provided.

Finally, Chapter 8 concludes summarizing the research done, discussing the main novelty and
contributions, considering benefits and limitations, and presenting possible future directions for
improvements, extensions and further work.

Chapter 2

Context of related work

In visualization, and especially when dealing with scientific visualization of vectorial data sets, it is
important to provide an expressive and effective representation of the data content; it is necessary
to extract the most relevant part of the contained information and to successively map it onto
adequate visual representations.

For this scope, considerations from different research fields need to be done; this is useful in
order to better handle and represent complicated large data sets, and especially multivariate vector
fields, highlighting their main features of interest. Perceptual criteria and concepts from cognition
and vision validate several assumptions that are done in this thesis. Some existing synthesis pro-
cedures for automatic generation of textures have in part inspired the proposed approach: starting
from statistical principles, standard synthesis theory has been here extended and adapted to pro-
duce vector field visualization. Various visualization techniques from the literature have been then
taken into account to combine their benefits into a general and fl exible visualization algorithm.

Therefore, I introduce in this chapter concepts from perception and cognition, following with
theory from texture synthesis and finally reviewing some previous work done in the field of scien-
tific visualization. Comments are finally given to place my research in this context, highlighting
the main challenges, open questions and problems, which still need to be solved or deeper investi-
gated.

2.1 State of the art in Perception and Cognitive Science

2.1.1 Introduction

In order to produce really effective visualization algorithms and tools, it is necessary to apply the
basics of human visual perception to visualization. The general purpose of a visualization system
is to transform numerical or functional data into images in which structures of interest become
perceptually apparent, and through which it is possible to develop physical intuition of the visu-
alized quantities. An understanding of perception can significantly improve both the quality and
the quantity of information being displayed [235]. In order to convey information effectively, the
design of visualization systems has to be infl uenced by perception theories and conducted user
studies. To deeply understand when and why a given technique is effective is a very interesting
point, which bases on perception principles. Perceptual theory is particularly motivated by mul-
tivariate visualization; with the increase in the amount and dimensionality of collected data, new
approaches to the design of displays of such data have become essential. The general aim is to
provide ways for raw data, and the statistical and mathematical structure they comprise, to be in-
stantaneously understandable and, thereby, enable scientists to conduct exploratory, in addition to
confirmatory analyses of the data1. On such basis, an advanced and combined visualization tech-

1Exploratory data analysis (EDA) was founded by John Tukey [222, 223], as opposed to confirmatory data analysis
(CDA), which assumes an underlying structure to the data and proceeds with inference on the basis of such assumptions.

5

6 CHAPTER 2. CONTEXT OF RELATED WORK

nique should be able to effectively convey correct information based on the characteristics of the
data set being displayed and the questions being asked by the viewer. This can in many instances
be predicted, based on an understanding of how the visual system perceives color, 2D regions, 3D
shape, motion, and other salient features.

2.1.2 Gestalt principles of perception

Gestalt is a German word that means conformation, figure, shape; it refers to the way a thing has
been placed or put together and is used to indicate coherent perception in phycology2. To the
Gestaltists the context plays a fundamental role in perception. Fundamental gestalt principles are:

Figure and Ground The terms figure and ground explain the use of elements of a scene which
are similar in appearance and shape and how to group them together as a whole (Fig. 2.1).

Figure 2.1: Figures and ground interchanging in the pictures.

Similarity, Proximity or Contiguity, Continuity Similarity: The principle of similarity states
that things which share visual characteristics such as shape, size, color, texture, value or
orientation will be seen as belonging together. Proximity or Contiguity: The principle of
proximity or contiguity states that things which are closer together will be seen as belonging
together. Continuity: The principle of continuity predicts the preference for continuous fig-
ures. In the picture to the left, in Fig. 2.2, the figure is perceived as two crossed lines instead
of 4 lines meeting at the center. (Refer to Fig. 2.2).

Figure 2.2: Similarity in color and shape (left), proximity (center), and continuity (right).

Tukey often related EDA to detective work, since the role of the researcher is to explore the data in as many possible
ways as possible until a plausible "story" of the data emerges. Often, both the approaches are complementary, since
human expectation contributes and plays an important role in data visualization. In fact, the confirmatory approach
bases on cognition and an experimental logic, and experimental logic in turn results from observation logic.

2Gestalt theory first arose in 1890 as a reaction to atomism, which was the prevalent psychological theory of the
time. Atomism examined parts of things with the idea that these parts could then be put back together to make wholes.
Atomists believed the nature of things to be absolute and not dependent on context. Gestalt theorists, on the other hand,
focused on the way our mind perceives wholes out of incomplete elements [15, 141].

2.1. STATE OF THE ART IN PERCEPTION AND COGNITIVE SCIENCE 7

Closure, Area, Symmetry Closure: The principle of closure applies when we tend to see com-
plete figures even when part of the information is missing. Area: The principle of area states
that the smaller of two overlapping figures is perceived as figure while the larger is regarded
as ground. Symmetry: The principle of symmetry describes the instance where the whole
of a figure is perceived rather than the individual parts which make up the figure. (Refer to
Fig. 2.3).

Figure 2.3: Concepts of closure (left), area (center), and simmetry (right).

Furthermore, the human visual system (HVS) is not immune to confusion. Specifically, it is
susceptible to a number of illusions [162, 167]. These include:

1. The perceived size of an object may be infl uenced by its color.

2. The perceived hue of a color may be infl uenced by its saturation.

3. The perceived saturation of a color may be infl uenced by its hue.

4. The perceived depth of an object may be infl uenced by its color.

5. The perceived color of an object may be infl uenced by the color of surrounding objects.

Whenever possible, the conditions which give rise to these illusions should be avoided. Albers
[6] motivates some color adjacency effects (Fig. 2.4) saying that "ground subtracts its own hue
from color which it carries and therefore infl uences".

Figure 2.4: Joseph Albers’ experiments: the same color (top-right) in the two central boxes looks
different under different backgrounds (top-left); different colors (bottom-right) in the two central
boxes look alike under some given backgrounds (bottom-left).

2.1.3 Human Vision Theory

"The complexity of the visual system and our incomplete understanding of its operation inhibit our
ability to develop effective visualizations of complex multi-variate and multi-dimensional data"

8 CHAPTER 2. CONTEXT OF RELATED WORK

[68]. A deep understanding about the way we see and perceive an image and identify its basic
properties significantly has to contribute to create representations that take advantage of the hu-
man visual system. Briefl y, rods and cones function as sensors that detect light falling on the
retina3. Human vision theory dictates that neural signals from the rods and cones in the retina
are transformed by neural connections in the visual cortex into three opponent color channels: a
luminance channel (black-white) and two chromatic channels (red-green and yellow-blue). The
luminance channel conveys the most information, letting us see form, shape, and detailed patterns
to a much greater extent than the chromatic channels. Perception in the chromatic channels tends
to be categorical. That is, we tend to place colors into categories like red, green, yellow, and blue.
However, we see hues such as turquoise or lime green more ambiguously. There are three different
types of cones, each sensitive to different frequencies of light. Peak sensitivity is in the yellow-
green range. Figure 2.5-left shows how the eye can detect more shades of green than any other
color. CIE chomaticity diagram of Fig. 2.5-right describes the range of human color perception.
Color perception: Human eyes are exquisitely sensitive to color variation: a trained colorist can
distinguish among 1.000.000 colors, at least when tested under contrived conditions of pairwise
comparison. Some 20.000 colors are accessible to many viewers, with the constraints for practical
applications set by the early limits of human visual memory rather than the capacity to discriminate
locally between adjacent tints. For encoding abstract information, however, more than 20 or 30
colors frequently produce not diminishing but negative returns.

Color scientists proposed several discrimination metrics (e.g. CIELAB) and color appearance
methods (e.g. RLAB, Hunt and Nayatani’s work). Another relevant theoretical point is that si-
multaneous contrast (the phenomenon by which perceived color is affected by surrounding colors)
occurs in all three opponent channels. This can cause large errors when viewers try to read val-
ues in the data based on color. Hence, it is possible [117] to draw some conclusion regarding the
design of color sequences:

1. If we want the color sequence to reveal form (such as local maxima, minima, and ridges),
or if we need to display detailed patterns, then we should use a sequence with a substantial
luminance component.

2. If we want to display categories of information, then we should use a chromatic sequence.

3. If we want to minimize errors from contrast effects, then we should arrange a sequence to
cycle through many colors.

This is demonstrated by experiments that design and validate the guidelines in applied settings
[234]. Beside color, textures are also a fundamental instrument in conveying shape and informa-
tion. Evidence from the psychophysics [210] suggests that certain kinds of surface texture can
facilitate shape perception, however, many points to exactly characterize this mechanism are still
unknown. In addition, context problems have to be further investigated as well: it is necessary to
discover complicated interactions between surface texture and shading, between texture orienta-
tion and surface geometry, and between aesthetics and convention.

2.1.4 Preattentive, attentive and postattentive processing

Color and texture attributes can be classified in pre- and post-attentive features depending on the
way the human visual system perceives them.

3Perception of intensity (rods) is logarithmic: e.g., the amount of difference between intensities of 0.1 and 0.2
appears the same as the difference between 0.2 and 0.4. Color (cones) is perceived with less spatial resolution than
intensity.

2.1. STATE OF THE ART IN PERCEPTION AND COGNITIVE SCIENCE 9

Figure 2.5: Color sensitivity (left) and CIE chomaticity diagram (right).

Preattentive vision

Vision and psychology researchers have been investigating how the human visual system analyzes
images. A fundamental result highlighted the fact that, during image observation, a limited set of
visual properties are detected very rapidly and accurately by the low-level visual system. These
properties were initially called preattentive, since their detection seemed to precede focused atten-
tion4. This suggests that certain information in the display is processed in parallel by the low-level
visual system. On the contrary, when preattentive features are missing, subjects revert to serial
search.

Experiments in psychology have used these features (Fig. 2.6) to perform the following preat-
tentive visual tasks:

target detection : users rapidly and accurately detect the presence or absence of a "target" ele-
ment with a unique visual feature within a field of distractor elements.

boundary detection : users rapidly and accurately detect a texture boundary between two groups
of elements, where all of the elements in each group have a common visual property.

region tracking : users track one or more elements with a unique visual feature as they move in
time and space.

counting and estimation : users count or estimate the number of elements with a unique visual
feature.

Julesz theories

Bela Julész was also instrumental in expanding our understanding of what we "see" in an image
[103, 104, 105, 109, 106, 107, 108]. Julész’s initial investigations focused on statistical analysis of
texture patterns. His goal was to determine whether variations in a particular order statistic were

4We now know [82] that attention plays a critical role in what we see, even at this early stage of vision. The term
preattentive continues to be used, however, since it conveys an intuitive notion of the speed and ease with which these
properties are identified. Typically, tasks that can be performed on large multi-element displays in less than 200 to 250
milliseconds (msec) are considered preattentive. Eye movements take at least 200 msec to initiate, and random locations
of the elements in the display ensure that attention cannot be prefocused on any particular location, yet viewers report
that these tasks can be completed with very little effort.

10 CHAPTER 2. CONTEXT OF RELATED WORK

Figure 2.6: Treisman’s preattentive experiments: target searching based on a difference of hue (up-
left) and shape (up-right). In the bottom-left image, on the right, horizontal boundary detection is
detected, while vertical boundary defined by conjunction of features (red circles and blue squares
on the left, blue circles and red squares on the right) is not intuitive. In the bottom-right image, an
example of a conjunction search for a target red circle is presented

seen (or not seen) by the low-level visual system. Examples of variations in order statistics include
contrast (a variation in a texture’s first-order statistic), orientation and regularity (a variation of the
second-order statistic), and curvature (a variation of the third-order statistic). First-order variations
were detected preattentively. In addition, some (but not all) second-order variations were also
preattentive, as were an even smaller set of third-order variations. Based on these findings, Julész
modified his theory of how preattentive processing occurs. He suggested that the early visual
system detects a group of features called textons. Textons can be classified into three general
categories:

1. Elongated blobs (e.g., line segments, rectangles, ellipses) with specific properties such as
hue, orientation, and width.

2. Terminators (ends of line segments).
3. Crossings of line segments.
Julész believed that only a difference in textons or in their density can be detected preatten-

tively. No positional information about neighbouring textons is available without focused atten-
tion. Like Treisman, Julész suggested that preattentive processing occurs in parallel and focused
attention occurs in serial.

Further theories of preattentive processing

Besides the more popular Treisman and Julesz theories, a number of competing theories have
been proposed to explain how preattentive processing occurs within the visual system. In general
[81], four well-known models are: feature integration theory (Treisman), texton theory (Julesz),
similarity theory [160], and guided search theory [249].

Postattentive Vision

Research conducted studies [250] show that attention to different objects may allow a viewer to
learn what is in a scene (if the objects are familiar and recognizable), but it does not allow the
viewer to see the scene in a different manner. Wolfe argues that if multiple objects are recognized
simultaneously in the low-level visual system, it would involve a search for links between the
objects and their representation in long-term memory (LTM). LTM can be queried nearly instan-

2.1. STATE OF THE ART IN PERCEPTION AND COGNITIVE SCIENCE 11

taneously, compared to the 40− 50msec per item required to search a visual scene or to access
short-term memory (concepts derived from Cognitive Psychology5). In general thus, cognition
plays a fundamental role in image understanding, also because viewers often see some of what
they expect to see, they better understand what they are used to, and this is in large measure re-
lated or based on their past experiential explorations of the world. In 1613 Galileo Galilei [69]
published the first telescopic observation of Saturn and its rings; he makes use of images to sup-
plement words, even typeset among them, and such images, never seen before, become a new
affective sentence element (Fig. 2.7).

Figure 2.7: Galileo’s text and illustration.

Visual analytic

Visual Analytic has a particular focus on human intuition and interaction. Studying the users’
mental behavioral process, in some cases concentrating not only on a successful outcome, but
in spite of it on how a graph is interpreted, provides insights on the human analytical reasoning,
useful to better design visualization techniques.

2.1.5 Comments: integrating perceptual issues in visualization

Vision theory and perception are very complex fields of study; deeper investigation is still required
to answer questions and provide valid solutions to open problems. The disciplines that deal with
these themes are numerous and they approach the problem in different ways. Providing a complete
summary of those contributions is under the scope of this thesis, so I remand to perception and
vision literature for deepening.

In summary, I take into account some well-accepted concepts to better motivate some choices
done later. It has been proved and it can be stated that preattentive features, such as color, direc-
tionality and contrast, are easy and intuitive to perceive. For this reason, mapping data information
onto such features and characterizing in this way texture primitives can contribute to effective vi-
sualization. Additionally, also cognition plays a fundamental role in perception: an arrow is for

5In cognitive psychology the human brain is assumed to consist of a number of processing centers that interact with
one another. Experimental methods are designed to test models of these processing centers. The classic example of a
cognitive theory is the division of memory into long term and short term components.

12 CHAPTER 2. CONTEXT OF RELATED WORK

instance associated to information of direction and orientation, and is traditionally used in this
way for iconic mapping. Similarly, further symbols and information encoding can be done. Us-
ing adaptive schemes to encode features in visual representations allows analytical reasoning and
fl exibility.

2.2 State of the art in Texture Synthesis

2.2.1 Introduction

Synthetic texture generation has been and still is an increasingly active area of research. Textures
are fundamental in Computer Graphics, Computer Vision, Image Processing and many other dis-
ciplines, they enrich objects and computer generated scenes decorating them and conferring them
realism as they can describe a wide variety of appearances. For this reason, textures are used to
improve the perception of synthetic images or computer rendered objects, without increasing their
geometric complexity. Sense of depth and curvature, as well as shape or material perception, are
relevant examples. In these last years, lot of research focused on the analysis and synthesis of
textures: especially due to storage requirements it is needed to synthesize large textures starting
from a little sample.

2.2.2 Problem statement

The target of texture synthesis can be stated (at least under a probabilistic point of view) as follows:
given a little sample of a pattern, or example texture, one wants to generate a new one that is a
larger version of it, in arbitrary resolution, and which is perceived to be generated by the same
underlying stochastic process by a human observer, appearing to be characterized by the same
structure as the original one, still being sufficiently different from the original, which means that it
should incorporate a sort of randomness to avoid repetitive artifacts (Fig. 2.8). That is, two texture
images are perceived by human observers to be the same if some appropriate statistics of these
images match: this has to be achieved by the synthesis algorithm. Briefl y stated, the new texture
should differ from the original one, yet having perceptually identical texture characteristics.

Figure 2.8: Synthesizing arbitrary resolution textures (right) starting from a little sample (left).

2.2.3 Categorization of textures

Textures in visual perception

The term "texture" originates from the Latin word "textura", from "texere", which means "to
weave". According to common consideration [40], thus, textures can be defined as following:

2.2. STATE OF THE ART IN TEXTURE SYNTHESIS 13

"the term texture generally refers to repetition of basic texture elements called texels. A texel
contains several pixels, whose placement could be periodic, quasi-periodic or random. Natural
textures are generally random, whereas artificial textures are often deterministic or periodic. Tex-
ture may be coarse, fine, smooth, granulated, rippled, regular, irregular, or linear" [95]. Other
possible definitions are to find in [247]: "textured regions are spatially extended patterns based on
the more or less accurate repetition of some unit cell (texton or subpattern)", or in [183]: "textures
are homogeneous patterns or spatial arrangements of pixels that regional intensity or color alone
does not sufficiently describe. As such, textures have statistical properties, structural properties, or
both. They may consist of the structured and/or random placement of elements, but also may be
without fundamental subunits". Bar-Joseph [12] extends this definition in the following way: "a
texture is a signal that exhibit the following property. Using any window of size larger than some
critical size, the information content exhibited in the window is invariant to the window’s position
within the given sample". Another suitable definition of texture is that by Zhu et al. [256]: "a
texture is a realization from stationary stochastic process with spatially invariant statistics".

It can be said that texture is the visual cue due to the repetition of image patterns, if seen in
a deterministic way, which may be perceived as being directional or non-directional, smooth or
rough, coarse or fine, regular or irregular, etc. (Fig. 2.9).

a b

c d e

Figure 2.9: Samples of textures: regular (a), near-regular (b), irregular (c), near-stochastic (d) and
stochastic (e).

More in general, textures can thus be divided in several groups, covering the texture spec-
trum from regular (strongly structured patterns), near regular (quasi-periodic) and irregular, to
near stochastic and stochastic (random, such as many natural textures). Briefl y, a deterministic or
structural texture is characterized by a set of primitives (texture elements or texels) and a place-
ment rule, while a stochastic texture does not have easily identifiable explicit primitives. Many
natural textures that occur in the real world are neither deterministic nor stochastic, but they are
characterized by some mixture of both these aspects.

Texels and Textons

A texel, or texture element, represents the smallest graphical element in a two-dimensional texture.
A texel is similar to a pixel (picture element) because it represents an elementary unit in a graphic.
In stochastic textures, for example, each such texel behaves like a seed, and a texture is generated
by randomly scattering the seeds over the image lattice. In a stochastic texture, texels appear with
no explicit placement rules and have mostly weak spatial interrelations. In this class, a synthetic
texture can be formed by sampling, repeating and randomly placing of the distinct training texels.
In structured or semi-structured textures, instead, repetitions of various texels create periodicity,

14 CHAPTER 2. CONTEXT OF RELATED WORK

structure and symmetry in a texture. A special placement rule is derived to model spatial rela-
tionship between texels, i.e. how the image locations of multiple occurrences of a single texel or
different texels are related in forming a texture pattern.

As alternative term, in psychology, basic texture elements are called textons. They refer to
small objects or characteristic regions that comprise a texture. Research shows that only the dif-
ference in textons or in their density can be detected pre-attentively by human early visual system
[106]. Conceptually, each texton, as a feature descriptor in the spectral domain, represents a par-
ticular statistical spectral feature describing repetitive patterns of a texture in the spatial domain.

Nevertheless, although most researchers use the terms texel and texton interchangeably, a use-
ful distinction can be made. Texels, by analogy with pixels, define a partitioning (or tiling) of the
texture, with each texel having a finite, non-overlapping spatial extent. On the other hand [134],
Julesz’s textons serve the role of statistical features without concern for overlap.

2.2.4 Classification of approaches

Texture synthesis methods can be divided in groups according to several criteria. A common way
to classify texture features, and texture analysis and synthesis methods, is for instance to loosely
divide them into two categories - statistical and structural [78], plus model-based and signal pro-
cessing methods [219]. Additionally to this first classification, methods can be categorized in
base of the kind of approach used to define a model for the texture: physical simulation, MRF
sampling, feature matching. Most synthesis approaches have been thus designed resulting to be
mainly specialized or best suited to synthesize one or another family of textures.

Statistical methods

Statistical methods define textures in terms of local grey-level statistics which are constant or
slowly varying over a textured region. Different textures can be discriminated by comparing the
statistics computed over different sub-regions. With statistical methods, the stochastic properties
of the spatial distribution of grey levels in an image are characterized. Many of the methods are
based on the fact that the human visual system uses statistic features for texture discrimination,
which are broadly classified into first-order, second-order, and higher-order statistics. Statistical
algorithms treat textures as realizations of probability distributions, and generate new textures
by sampling from such distributions. The main challenge is in fact to model how to estimate the
stochastic process that describes the input pattern, and to define the sampling procedure to produce
the new texture from a given model [239, 241]. For example, statistical random fields like Markov
random field and Gibbs sampling are widely employed to model textures [153].

Structural texture models

Structural (geometrical) texture models try to determine the primitives which compose the texture.
The extracted primitives and their placement rules can be utilized not solely to recognize textures
but also to synthesize new images with a similar texture.

Model-based texture methods

Model-based texture methods try to capture the process that generated the texture. With model-
based features, some image model is assumed, its parameters estimated for a sub-images, and the
model parameters or attributes derived from them, are used as features. There are currently three
major model-based methods: Markov Random Fields (MRF) by Cross and Jain [40] and Dubes
and Jain [51], fractals by [64, 147, 126], and the multi-resolution autoregressive (AR) features
introduced by Mao and Jain [136]. For detailed discussions of image models see also Kashyap
[110], and Chellappa et al. [36].

2.2. STATE OF THE ART IN TEXTURE SYNTHESIS 15

Signal processing methods

Signal processing methods are another way to model a texture. They analyze the frequency content
of the image. They perform frequency analysis of the textures using spatial filters or through
filtering in the frequency domain [125].

In human visual psychophysics research, the focus of texture perception studies has been on
developing physiologically plausible models of texture discrimination. These models involve de-
termining to which measurements of textural variations humans are most sensitive. Typically based
on the responses of oriented filter banks, such models are capable of detecting variations across
some patches perceived by humans to be different textures [105, 105, 135, 18, 17, 19, 16]. The
approach of De Bonet [26] later uses these resulting psychophysical models to provide constraints
on a statistical sampling procedure.

Physically-based approaches

Primary relevant approaches represent textures via developing procedural models that emulate the
underlying physical generative process of the texture (physical simulation) [53]. They use models
based on cellular texturing [62, 251] and reaction diffusion interactions to simulate seashells [248]
or animal skin and fur [224]. Nevertheless, they are hard to use, as they are difficult to control and
require hand-crafted parameters, and are only limited to and suitable for certain specific textures
(such as biological patterns, wood, marble, or animal skin). A main advantage of such procedural
methods - noise-based - is that they are based on a underlying mathematical function and they may
be evaluated in any order and sampled arbitrarily.

Feature or histogram matching

Some algorithms model textures as a set of features, and generate new images by matching the
features in an example texture. They reduce the amount of calculation and are more efficient than
MRF-based methods. Some works consider textures as samples from probabilistic distributions
and depend on the structure of the probability density estimator used in the sampling procedure
[26, 256]. In [133], multi-resolution Markov Random Fields are used to model relationships be-
tween spatial frequencies within texture images. Heeger and Bergen [83] model stochastic textures
by matching marginal distributions (or histograms) of the image pyramids (filter outputs). They
iteratively modify a random noise image so that its intensity histogram matches the histogram of
the sample texture across each of the subbands in a pyramid representation of each image. Their
technique is capable of generating highly stochastic textures but fails on more structured ones.

In the work of De Bonet [26], the sampling methodology is based on the hypothesis that
texture images differ from typical images in that there are regions within the image which, to some
set of feature detectors, are less discriminable at certain resolution than others. By rearranging
textural components at location and resolution where the discriminability is below threshold, new
texture samples are generated which have similar visual characteristics. He uses multi-resolution
image pyramids to match texture statistics at multiple frequencies simultaneously. De Bonet [26]
synthesizes then new images by randomizing an input texture sample while preserving the cross-
scale dependencies. This method works on structured textures, but it can produce visible boundary
artifacts if the input texture is not tileable.

Simoncelli and Portilla [182, 154] generate textures by matching the joint statistics of the
image pyramids. Their method can successfully capture global textural structures but fails to
preserve local patterns.

Texture synthesis from samples: practical approaches classification

Although a number of different classifications, as described above, are possible, often texture
synthesis methods are more practically and generally grouped (e.g. [48]) in patch-based and

16 CHAPTER 2. CONTEXT OF RELATED WORK

pixel-based, with the further extension to hybrid methods. Both these approaches compute global
statistics from sample textures and then generate new texture images, which hold the same statis-
tics. This characterization is mainly based on the way different elements are cut and copied from
the input to the output texture. Pixel-based methods perform an iterative processing for every
output pixel, while patch-based methods copy larger patches from the input to the output. This
results in different performances and applicability to classes of textures. Obviously, further sub-
classifications are possible.

Figure 2.10: Patch-based approach: Efros and Freeman’s image quilting (image courtesy of
Alyosha Efros).

Patch-based synthesis

Patch-based approaches basically consist in tiling the sample texture and then use the blocks de-
rived from the sample to compose a larger output texture. Obviously, the main problem of such
approach is that, even if the sample allows seamless tiling, this will produce repetitive artifacts.
Patch-based methods result to be particularly fast and computationally efficient, since they syn-
thesize the output textures in patches. Therefore several methods also exist, as extension, for the
synthesis of textures directly on three dimensional surfaces (see also below).

Efros and Freeman [54], using image quilting, stitch together random blocks from the sample
image and modify them in a consistent way. The block substitution is here optimized by piecing
together small adjacent patches of existing images and reduce boundary artifacts by minimizing
the error on the boundary cut where the patches join (minimum error boundary cut). In Fig. 2.10,
square blocks from the input texture are patched together to synthesize a new texture sample: (a)
blocks are chosen randomly, (b) the blocks overlap and each new block is chosen so as to agree
with its neighbors in the region of overlap, (c) to reduce blockiness the boundary between blocks is
computed as a minimum cost path through the error surface at the overlap. Liang et al. [74, 128]
use similar patch-based sampling, alpha-blending the overlap regions (feathering). Interesting
alternative methods to generate images from examples are the fast patch-based technique of Xu’s
chaos mosaic [75] and Kwatra’s [120] Graphcut, and more recently the Wang Tiles by Cohen et
al. [38].

Pixel-based synthesis

Pixel-based synthesis algorithms synthesize textures pixel by pixel, which makes them rather fl ex-
ible and easy to extend for application in different areas.

2.2. STATE OF THE ART IN TEXTURE SYNTHESIS 17

Figure 2.11: Wei and Levoy’s pixel based approach (image courtesy of Li-Yi Wei).

The new texture is here generated in a pixel-by-pixel fashion. Non-parametric sampling by
Efros and Leung [55] iteratively finds and copy the best matching pixel from the input to the
output. They model textures as a Markov Random Field and perform an exhaustive search for
each synthesized pixel. The neighborhood of a pixel is defined by a square window around the
pixel, and the size of this window is a constant that can set by the user. This parameter interprets
how stochastic the texture is and it roughly corresponds to the "degree of randomness" in the
synthesized texture. The work of Wei and Levoy [241] is a fundamental step in this direction:
they model the texture using Markov Random Fields, combining the classical Efros and Leung’s
approach [55] and De Bonet sampling theory on image pyramids [26]. They use now a fix-sized
neighborhood, and use deterministic searching. They generate the output texture pixel by pixel,
determining each pixel value so that local similarity is preserved (Fig. 2.11). Starting with an
example texture patch (left), and a noise texture (center), they force this random noise texture to
look like the sample by transforming each pixel in a raster scan ordering (right). The initialization
of the output image with random noise (typically uniform white noise) seeds the algorithm with
the necessary amount of randomness or entropy required for the synthesis of a realistic texture,
introducing uncertainty in the neighborhood matching process, to avoid repetitive artifacts. The
technique is based on neighborhood comparison and reproduces the input texture by synthesizing
colors at each vertex in the output. Vertices are colored by fl attering their local neighborhoods
and regularly sampling the already synthesized texture. At each step, a best matching pixel is
found inside the input sample, which is both stationary and local, and copied over to the current
output vertex. Techniques to speed up these calculations have been proposed (multiresolution,
tree-structured vector quantization TSVQ). Particularly effective is the coherent search developed
by Ashikhmin [10], and later generalized by Tong et al. in the k-coherent synthesis [212], which
reduces the search space significantly. The synthesis process is faster, but only suits particular
types of textures well. Ashikhmin recognizes that the position in the input, around which nearby
output pixels were copied, are likely good matches for new output pixels. He presents a technique
for synthesizing natural textures based on repeating patterns consisting of small objects of familiar
but irregular sizes such as fl owers and pebbles. Hertzmann et al. [87] (Image Analogies) combine
[241] and [10]; they use principal component analysis PCA, and approximates nearest neighbor
search ANN to accelerate the search process. They additionally use a parameter to weight and
choose between the contributions of each (texture-by-numbers). Recent pixel based approaches
almost achieve interactivity: the jump maps of Zelinka and Garland [253, 254] accelerate texture
synthesis, partitioning the synthesis task into a slower analysis phase (pre-processing stage) and a
faster synthesis phase. The key idea of their approach is to divide the method in two phases: in
the first one, a jump map is generated, in the second one, the jump map, which is a lookup table,
is used to assign addresses from the input texture. At each pixel in the input texture, the jump map
stores a set of links to pixels with similar neighborhoods. Each jump is weighted according to the
similarity of the neighborhoods. In this way, via an approximated pre-computing of the possible
matches, they avoid performing the costly neighborhood matching at run-time.

18 CHAPTER 2. CONTEXT OF RELATED WORK

Hybrid synthesis

The hybrid method by Nealen and Alexa [142] is a compromise between the above two classes of
methodologies: it starts copying larger patches from the input to the output, as done in patch-based
approaches, and successively refines the output at a per-pixel level, where the error reaches a given
user-defined tolerance value.

In the hybrid algorithm, the use of large patches improves the reproduction of global struc-
ture, and the remaining errors in the overlap regions are eliminated using pixel-based re-synthesis
(Fig. 2.12). The method uses the Fourier domain for finding the best match, that is, the patch from
the input texture which minimizes overlap error with the existing synthesis result. The approach
in based on two steps: overlap re-synthesis and adaptive patch sampling. In the first step each
new patch overlaps already synthesized regions. In these overlap regions an error is computed for
each pixel and mismatched pixels are re-synthesized using a per-pixel texture synthesis strategy.
To ensure sufficient valid neighborhoods for these pixels, they are ordered using morphological
dilation of the valid regions. In the second step they adapt the patch size so that the error in over-
lap regions is bounded. The error bound allows a trade-off between preserving global structure
and avoiding detail artifacts: increasing the error threshold leads to generally larger patches and a
higher probability that large structures are preserved, however, at the cost of having more invalid
pixels in the overlap region that need to be fixed, which is not always possible. The method has
been later speeded up using a k-nearest neighbor data structure [143].

Figure 2.12: Hybrid texture synthesis (image courtesy of Andy Nealen).

Further texture synthesis methods

Texturing Surfaces: Most 3d texturing methods are direct extension of pixel- and patch-based
techniques. In [225], Turk proposes the use of oriented patches for surface texture synthesis
(Fig. 2.13). Neyret and Cani [144] map 2D textures on 3D surfaces, but extension to anisotropic
patterns is not obvious. Praun et al. [157] propose Lapped Textures, an approach that uses overlap-
ping irregular sample patches and iteratively copies them over a surface, using then texture blend-
ing to help hide boundary artifacts. They extend the chaos mosaic to surfaces with a pre-computed
vector field to direct anisotropy. Anyway patterns should contain enough high frequency detail
and natural irregularity to avoid patches overlap artifacts. Ying et al. [252] synthesize per-texel
using a texture atlas of the polygonal mesh. Gorla et al. [72, 73] add textures to surfaces, letting
the dominant orientations of texture patterns follow the surface shape along the principal direc-
tions of curvature. Soler et al. [185] demonstrated how a mesh can be seamlessly textured with
only the input texture and a set of texture coordinates for each vertex. Zhang et al. [255] realize a
progressively variant synthesis for texture mapping on surfaces. Bhat et al. [23] later synthesize
a variety of geometric textures on a model surface. Another significant approach that synthesizes
textures directly on surfaces is from [242]; they also densely tessellate the input mesh and then
perform a per-vertex color synthesis (Fig. 2.14).

Bidirectional Texture Function Synthesis: In Liu et al.’s work reflectance texture synthesis
[129], geometry is recovered, synthesized and used to generate templates for each viewing and
lighting setting. These templates then guide the actual BTF synthesis, thereby preserving global
mesostructure. Tong et al. [212] extend Ashikhmin’s algorithm [10] by adding the k-nearest
neighbors to each candidate pixel of the Ashikhmin-set (k-coherence search).

Geometrically Motivated Texture Synthesis: Dischler and Ghanzfarpour have published

2.2. STATE OF THE ART IN TEXTURE SYNTHESIS 19

Figure 2.13: Texturing surfaces (image courtesy of Greg Turk).

Figure 2.14: Wei and Levoy’s surface texture synthesis: given a texture sample (a) and a model
(b), they synthesize a similar texture directly over the model surface (c) (image courtesy of Li-Yi
Wei).

many geometrically and structurally motivated algorithms which are of semiprocedural nature, yet
also resemble the input so closely that they could be classified as texture synthesis algorithms. In
their work [47], a highly structured texture is analyzed with some user intervention, from which
the algorithm generates seemingly random structured texture. Texture Particles [48] are gathered
by segmentation and the analysis of spatial arrangements using morphological operations. These
are then procedurally assembled in the synthesis stage. They extract particles from the sample
texture by color thresholding and then paste them onto surfaces.

Figure 2.15: Wei’s solid textures from 2d view: (a) fire, (b) smoke, (c) ocean waves (image cour-
tesy of Li-Yi Wei).

Further approaches: Besides standard methods for texture synthesis, in the last years there
were several attempts to introduce some kind of user control in the synthesis process, also turning

20 CHAPTER 2. CONTEXT OF RELATED WORK

to different applications in imaging. Perlin [148] and Peachey [146] independently invented the
solid texture as a function that returns a color value at any given point in 3d-space. Solid textures
are ideal for simulating surfaces that have been carved out of a block of material such as wood
or marble, as done for stereological textures [94]. Perlin also introduced the 3D noise function,
which can be used to create patterns such as water waves, wood grain and marble. The early work
of Perlin ("An Image Synthesizer") already stated the need for synthesizing naturalistic looking
textures. He creates stochastic functions that, once combined, yield a remarkably rich set of visual
textures. The use of a training set for image generation is a solution to a broad class of appli-
cation, as for example texture transfer [54, 10] by Efros & Freeman (Fig. 2.17) and Ashikhmin
(Fig. 2.16), and image analogies [87]. Ashikhmin produces the effect of rendering a given image
with the texture appearance of a sample image. Hertzmann et al. [87] process images by exam-
ples: their method involves two stages: a design phase, in which a pair of images (one is a filtered
version of the other) is presented as training data, and an application phase, in which the learned
filter is applied to a new target image in order to create an analogous filtered result. Brooks and
Dogson [31] propose self-similarity texture warping to replicate operations (painting, warping,
cloning) globally over the image for texture editing. Freeman et al. [66] perform super-resolution
by example: they train using different pairs of images with low and high resolution. A further
approach for creating textures with local variations is through chemical or biological simulations.
Turk [224] proposes generating textures (on surfaces) using reaction diffusion differential equa-
tions; this approach works particularly well for textures modelled after organic processes. Liu et
al. [130] analyze near-regular textures that deviate from periodic tilings. Relevant applications are
also constrained texture synthesis [241] or fragment-based image completion [50], where damaged
images can be corrected, or a unwanted foreground elements or portions of the original image can
be removed and then replaced by synthesizing the background texture over them. Bertalmio et al.
[20, 21] also fill in missing regions of a picture, for example for restoration and reconstitution -
inpainting - of images. Inpainting is a technique for extending an image across the pixel region
damaged or left blank from removing unwanted objects from the picture. Their approach works
for the structure and for the texture (image details) of the picture as well. Wei [240] suggests
creating solid textures (Fig. 2.15) from multiple 2D-views and texture metamorphosis: from a pair
of samples, an average one is computed and used for the transition area. Zhang et al. [255] also
investigate metamorphosis by weighted blending and texton masks, inspired by the work of Toni-
etto and Walter [213, 214], who use synthesis of textures in several scales to offer tileable textures
with arbitrary size. However, in those works usually only a couple of parameters (typically just
the resolution) can be modified and no arbitrary control is offered.

Figure 2.16: Texture transfer (image courtesy of Michael Ashikhmin).

2.2.5 Comments and open issues

Texture synthesis approaches seem to have reached a mature state. Recently developed algorithms
are stable and efficient and each of them is particularly effective for given classes of textures. Both
the patch- and pixel-based approaches, plus the hybrid method, which is basically patch-based,
are characterized by advantages and disadvantages, and the one or the other could be preferable to

2.2. STATE OF THE ART IN TEXTURE SYNTHESIS 21

Figure 2.17: Efros and Freeman’s texture transfer: they transfer the rice texture (left) onto another
image (center) for a strikingly different result (image courtesy of Alyosha Efros).

solve a specific synthesis problem, according to the texture and task under consideration.
Patch-based synthesis algorithms tend to be faster and more stable, and do not suffer from blur-

ring and garbage growing. They produce reasonable results for a wide variety of texture classes,
they preserve global structure, but often introduce unwanted visual artifacts along patch bound-
aries. They are, furthermore, less fl exible since they generate textures by copying whole patches
from the input. Pixel-based synthesis algorithms, on the other hand, tend to maintain a consistent
texture impression, and, what is of relevance for my research, they can allow more freedom in
applying local control up to a per-pixel level. Pixel-based methods are extensible in several di-
rections and this potential controllability is one reason why I use some of these concepts for my
visualization approach.

Steerable solution

One of the main open issue in texture generation is the integration of more degrees of freedom in
the synthesis process. Adding local control and user intervention is still challenging and promises
a variety of interesting applications. Although some of the works cited above propose ideas to
edit or modify textures according to the user desires, they provide little control over the amount of
texture variability. For this reason, a lot of work and a deeper investigation still need to be done in
this direction. Especially the generation of non-uniform textures remains an open problem, which
deserves lot of interest and promises significant applications. Non-homogeneous textures are to
find everywhere in nature and in the real world: while we often just have a synthetic sample to
enlarge using a synthesis procedure, a complete method, which could also be able to directly gen-
erate a non-homogeneous texture is still missing. This should be fl exible enough to allow the user
to define, choose or design variables and transformation functions in an appropriate manner, also
taking into account lighting effects and surrounding information. The main limitation in standard
texture synthesis methods is the lack of local control. Moreover, homogeneous textures often result
too synthetic, while non-homogeneous textures can better represent real appearance of materials,
which is usually not regular. Being able to generate non-uniform, varying patterns is important for
instance when joining two different textures, and when desiring to vary scale, orientation, color,
shape and further texture attributes to ad hoc create new textures. Some proposal for incorporating
local control and degrees of freedom in the texture synthesis process are proposed in Chapter 3
and 7, together with some reference to pioneer related works and a more detailed discussion on
possible applications. It would be of relevance in computer graphics to extend these ideas also
to animations and deformations of textures, allowing arbitrary control and manipulation over a
given starting pattern. I believe this task, although demanding, can results in many interesting and

22 CHAPTER 2. CONTEXT OF RELATED WORK

relevant applications.

2.3 State of the art in Vector Field Visualization

2.3.1 Introduction

Vector field visualization plays a fundamental role in science and engineering. Almost all scientific
disciplines deal with several kinds of vectorial data sets: electromagnetism, physic, computational
fl uid dynamic, fl uid mechanics, dynamical systems, climate modelling are just a few relevant ex-
amples. Hence, the analysis and visualization of vector fields have drawn constantly increasing
attention in the last decades. Through the visualization of vectorial data sets, a wide variety of
physical phenomena can be described and visually represented. Often vector fields exhibit quite
a complex structure, and their equations or abstract data sets are difficult to be interpreted; conse-
quently, the information contained in the data can be studied and analyzed by means of adequate
visualization approaches.

2.3.2 Definitions and notation

The term field is used to refer to a process which associates a physical quantity with each point
in a region of space. Fields can be scalar, vector, or tensor valued. A vector field on R

n is a map
or a function Φ : A ⊂ R

n → R
n that assigns an n-dimensional vector Φ(x) to every point x in its

domain A.
In two dimensions though, we speak about planar vector fields. Hence, a vector field in the

plane is defined in a planar domain D ⊂ R
2 = {(x,y)|x,y ∈ R

2} and is a function Φ that assigns to
each point (x,y) in the plane a vector Φ(x,y) =< Φx(x,y),Φy(x,y) >.

Φ : D → R
2

(x,y) →
(

Φx(x,y)
Φy(x,y)

)

(2.1)

Hence, visualization methodologies should be able to adequately depict the vector field values
Φ(x,y) at the various locations (x,y) in the output domain. Common requirements for the visual
representation include accuracy, intuitivity, locality. A plethora of different techniques approaches
the problem in various ways, depending on the specific application or audience. In the following,
I present existing techniques classification and discuss features and limitations of the approaches.

2.3.3 Techniques classification

A categorization of the numerous existing techniques for vector visualization can be done, usually
according to the different requirements of the user and application. A common conceptual classi-
fication, besides classifications done on the base of dimensionality or steadiness vs. unsteadiness,
distinguishes visualization techniques in

• direct

• geometric

• feature-based

• texture-based

Nevertheless, as explained below, such families of methods are often overlapping and no com-
plete distinction can be actually done, since some of these approaches conceptually work in a
similar way, or originate the ones from the others.

2.3. STATE OF THE ART IN VECTOR FIELD VISUALIZATION 23

Direct visualization, global imaging techniques

Direct, or global, visualization is performed using as direct as possible translation of the data into
visualization cues, such as by drawing arrows or color coding velocity at discretely sampled grid
locations. Such kind of visualization aims at providing immediate investigation of the vectorial
data, without a lot of mental translation effort. They present the complete data set, or a large
subset of it, at a low level of abstraction. The mapping of the data to a visual representation is
direct, without complex conversion or extraction steps. Difficulties may arise in case the long-term
behavior induced by the data needs to be investigated, this could then require cognitive integration
of visualization results. Another problem is given by the fact that too sparse representation of the
field may lead to a loss of detail and information (for instance a singularity could be missed and a
small vorticity could not be displayed).

Glyphs, arrow plots: Arrow plots provide the simplest way for vector field visualization; an
arrow can be used to depict field direction at a unique point (Fig. 2.18). Proper scaling and coloring
allow encoding scalar quantities. Arrows are a very natural and intuitive cue to visualize vectors.
When arrows are not normalized (unit length), and thus have varying length, which is proportional
to the fl ow velocity, they can visualize fl ow velocity besides fl ow direction. This is the so called
hedgehog visualization, because of the bristly result [115]. Extension to the temporal domain are
possible, but with lack of continuity. Further simple direct visualization techniques map a line or
a glyph to each sample point in the field, oriented according to the fl ow field. Usually a regular
placement of cues is used in 2d, for example, on an evenly-spaced Cartesian grid.

Color coding: Together with arrow plots, color coding is a widely distributed, standard tech-
nique for visualization of vectorial data sets. A common solution is to map vector attributes such as
velocity, pressure, or temperature to color. Since color plots are widely distributed, this approach
results in very intuitive depictions. At this point, it is crucial to carefully choose the color scales
for the mapping with respect to perceptual differentiation. Color coding for 2d fl ow visualization
extends to time-dependent data very well, resulting in moving colors plots according to changes
of the fl ow properties over time.

Figure 2.18: Direct visualization.

Geometric visualization

Many vector field visualization algorithms use spatial resolution to represent the vector field.
These include sampling the field, such as with streamlines or particle traces, and using icons at
every vector field coordinate. Streamlines and particle tracing techniques critically depend on the
placement of the "streamers" or the particle sources. Depending on their placement, eddies or cur-
rents in the data field can be missed. Consequently, the main disadvantage of these method is the
loss of accuracy. Icons, on the other hand, do not miss data, but use up to a considerable amount of
spatial resolution limiting their usefulness to small vector fields. Here the main disadvantage is the

24 CHAPTER 2. CONTEXT OF RELATED WORK

loss of controllability. Geometric visualization techniques entail extracting geometric objects for
which their shape is directly related to the underlying data. Integration-based approaches can be
used to integrate the data and extract integral geometric objects (such as streamlines, streaklines,
pathlines) that refl ect the properties of the field, and that are finally visualized in place of the com-
plete data-set for a better communication of the field behavior. Here the seeding problem must be
addressed to realize a satisfying distribution of the integral objects. In particular, a best choice of
initial conditions needs to be performed.

Streamlets: if fl ow vectors are integrated for a very short time, streamlets are generated.
Streamlines: if longer integration is performed, streamlines or integral lines or curves are

gained. They are a natural extension of glyph-based techniques and offer intuitive semantics:
users easily understand that fl ow evolves along integral objects. They are tangent to a vector field
in every point.

Streaklines, timelines, and pathlines: when unsteady fl ow data are investigated, several distinct
integral objects are used for fl ow visualization. A pathline or particle trace is the trajectory that a
single particle follows in a fl uid fl ow. A timeline joins the positions of particles released at the same
instant in time from different insertion points, i.e., joints points at a constant time t. A streakline is
traced by a set of particles that have previously passed through a unique point in the domain (the
set of particles emitted from the same insertion point). Streaklines relate to continuous injection
of foreign material into real fl ow. Note that in steady fl ows pathlines, streamlines and streaklines
are identical curves.

Integration-based approaches

Integration-based approaches allow a better communication of the long term behavior induced by
fl ow dynamics. These methods first integrate the fl ow data and use resulting integral objects as
basis for visualization, e.g. streamlines. A streamline [102] is a sequence of so-called sample
points. Each sample point is obtained by integrating its position as a function of the position of
the previous sample point. A streamline is an integral curve that is everywhere tangent to a given
vector field.

The main problem in geometric visualization is to adequately choose the seeds as starting
points of the streamlines, avoiding to miss interesting areas of the field and attempting to gener-
ate a properly sparse field. In their work "Image-guided streamlines placement" [226], Turk and
Banks propose an approach to accurate control the streamlines density (Fig. 2.19). They introduce
a technique that uses an energy function to guide the placement of streamlines at a specified den-
sity. This energy function uses a low-pass filtered version of the image to measure the difference
between the current image and the desired visual density. He reduces the energy, and thereby
improves the placement of streamlines, by changing the positions and lengths of streamlines, join-
ing streamlines that nearly abut, and creating new streamlines to fill sufficiently large gaps. They
discusse an approach to select a certain number of stream lines to be automatically and equally
distributed all over the computational domain, in order to characterize in a sketch type represen-
tation the significant aspects of the field. An energy minimization process is used to generate the
actual distribution of streamlines. Further approaches have been introduced to improve streamlines
placement [100], attempting creating evenly-spaced streamlines.

Streamlines are a very intuitive visualization method, anyway the placements of such visual-
ization cues is a critical issue [155]:

1) an even distribution of seed locations usually does not result in an even distribution of
integral objects.

2) occlusion could raise special challenges: dense placement often results in severe cluttering
within rendered images.

3) when using feature-based strategies, placement needs to be coupled (and aligned) with the
feature extraction parts of the visualization.

2.3. STATE OF THE ART IN VECTOR FIELD VISUALIZATION 25

Figure 2.19: Grid-seeded streamlines (left) and optimized placement (right) (image courtesy of
Greg Turk).

Feature-based visualization

Visualization methods based on topology are an alternate approach to vector field visualization.
They rely on the extraction of topological features such as critical points and separatrices (vector
field topology methods), and consequently they visualize the vectorial data at a high level of ab-
straction. Especially in case of data that are complicated to read and analyze [155], techniques
based on feature extraction, vector field clustering and topology extraction may result useful to
simplify the visualization, separating and highlighting relevant information contained in the data,
e.g. topological features. This results in a high level of abstraction. During the abstraction step,
interesting objects and meaningful patterns need to be determined, quantified, described, and then
extracted from the data set, and can be finally visualized efficiently and without the original data.
Therefore, just the features of interest are visible and a huge data reduction is achieved; this makes
this approach suitable for large data sets, while the features extraction requires a lot of time and is
performed during the data preprocessing.

Common features of interest to extract (e.g. in fl uid dynamics applications) are vortices, shock
waves, separation and attachment lines, recirculation zones and boundary layers. Although most
feature detection techniques are specific for a particular type of feature, in general the feature-based
techniques [155] can be divided into three approaches: based on image processing, on topological
analysis, and on physical characteristics.

Texture-based visualization

Dense, texture-based visualization can also be conceptually seen as obtained from geometric visu-
alization through a dense seeding strategy. That is, densely seeded geometric objects result in an
image similar to that obtained by dense, texture-based techniques. Likewise, the path from dense,
texture-based visualization to visualization using geometric objects is obtained using something
such as a sparse texture for texture advection.

Texture-based techniques can provide dense spatial resolution images. They are effective,
versatile, and applicable to a wide spectrum of applications. They mainly apply the directional
structure of a fl ow field to random textures. The basic idea is to advect a noise texture along the
fl ow by integrating the texture coordinates back in time. Traditional visualization approaches, such
as vector plot, particle tracing, stream surfaces, volume rendering, and so on, often provide a rather
coarse spatial resolution. This problem can be tackled by texture-based algorithms, which can
provide the vector and fl ow visualization by high resolution output texture. These dense methods
reveal to be effective, versatile, and suitable for a large spectrum of applications.

Here, a disadvantage here could be represented by loss of controllability, since the approaches
heavily depend on the form of the texture.

26 CHAPTER 2. CONTEXT OF RELATED WORK

Figure 2.20: Spot noise (image courtesy of Jack van Wijk).

Spot noise: Spot noise by van Wijk [230] is a technique for texture synthesis, which is very
useful for vector field visualization. Spot noise generates a texture by distributing a set of intensity
functions, or spots, over the domain. Each spot represents a particle moving over a small step
in time and results in a streak in the direction of the local fl ow from where the particle is seeded
(Fig. 2.20). One limitation was the lack of velocity magnitude information in the resulting texture.
Enhanced Spot noise [45] helps better visualizing highly curved vector fields, by adapting the
shape of the spots to the local velocity field. Further, filtering of spots is proposed to eliminate
undesired low frequency components from the spot noise texture. Spot noise creates noise-like
textures by compositing many replicas of a shape, the spot (Fig. 2.21). The spots are then stretched,
or elliptically shaped, according to a given vector field to illustrate its direction. Nevertheless, the
technique heavily depends on the form of the texture itself and specifically it does not easily
generalize to other forms of textures that might be better suited to a particular class of vector data.

Figure 2.21: Texture-based techniques: Image based fl ow visualization (image courtesy of Jack
van Wijk).

DDA (Digital Differential Analyzer) convolution: Generalizing traditional DDA line draw-
ing algorithms [28], each vector in a field is used to define a long, narrow, DDA generated filter
kernel tangential to the vector and going in the positive and negative vector direction some fixed
distance6.

6The basic idea of the DDA is to draw a digital line determining the pixel y coordinate by evaluating the change in

2.3. STATE OF THE ART IN VECTOR FIELD VISUALIZATION 27

A texture is then mapped one-to-one onto the vector field. The input texture pixels under the
filter kernel are summed, normalized by the length of the filter kernel, and placed in an output pixel
image for the vector position. The input texture image is white noise. Anyway, this algorithm is
very sensitive to symmetry of the DDA algorithm and filter. Additionally, it is inherently inaccurate
in the case of points where the local radius of curvature is smaller than the length of the DDA line,
being now the straight line a bad approximation. This is also a problem of spot noise, when
stretched along the vector field direction: in case the major axis of the elliptical spots exceeds
the local length scale of the vector field, the spot noise will inaccurately represent it. Cabral and
Leedom [35] recognize that an accurate measure of local field behavior would require a global
analysis of the field. Such technique currently does not exist for arbitrary fields [35]. Another
disadvantage is the loss of accuracy.

Line Integral Convolution (LIC): Differently then in DDA, here a local streamline is used
instead of a vector, to generate the filter. LIC by Cabral and Leedom [35] is a very popular
technique that has become a standard in vector field visualization (Fig. 2.22-left). Briefl y, it filters
an input image along local stream lines defined by an input vector field and generates an output
image. The system takes as input the vector field on a Cartesian grid and a white noise of the
same size. In LIC a random texture is locally smoothed or blurred along the path of the field lines
(streamlines) of a stationary 2d vector field using a one-dimensional filter kernel. The procedure
stretches a given image along paths that are directed by the vector field. In this approach, linear
and curvilinear filtering techniques are used to locally blur textures along the vector field. Hence,
convolving the filter with regular images generates motion blur through a smearing effect.

A limitation of LIC is that it only visualizes local vector field tangents, but not their direction.
Using filtering, and especially periodic motion filtering, they simulate motion by use of special
convolutions. Due to its simplicity, LIC has become very popular and has been broadly extended
and accelerated, and further developed to a high degree of sophistication. Well-known extensions
include Fast LIC [188], enhanced LIC [84], and FROLIC (Fast Rendering of Oriented LIC) [238].

Reaction diffusion techniques: Reaction diffusion techniques visualize vector fields mapping
vector data onto differential equations, since the controlling differential equations are inherently
vectors in nature, to come up with a vector visualization technique.

Perona and Malik [150] firstly introduced a continuous diffusion model which allows the de-
noising of images together with images enhancing. Using anisotropic nonlinear diffusion for
fl ow visualization, Diewald, Preusser and Rumpf smooth an initial noisy image along stream-
lines, sharpening the image in the orthogonal direction [46]. The method is based on a continuous
model and requires the solution of a parabolic PDE (partial differential equation) problem. It is
discretized only in the final implementation step. They identify that a common problem of some
popular approaches as LIC or spot noise is that when a coarser or finer scale in the visualization is
needed, LIC requires a recomputation: when for instance a finer or coarser scale of the convolution
pattern is required, the LIC computation has to be restarted with another adequate initial image
intensity. In case of spot noise, different sized (larger) spots have to be selected and their stretching
along the field has to be increased.

Texture advection, Lagrangian-Eulerian Advection (LEA): Jobard and Lefer [101] use a
motion map data structure for animating steady state fl ow fields. The motion map contains both a
dense representation of the fl ow and the information required to animate the fl ow. Another valid
texture-based method for the visualization of unsteady fields is the one proposed by Jobard et al.
[98]. This consists in a hybrid scheme (LEA) that combines the advantages of the Eulerian and
Lagrangian frameworks. The algorithm encodes the particles into a texture that is then advected
(Fig. 2.22-right). It is a kind of dense visualization, which can be applied also to time-dependent
vector fields. They treat every particle equally, handling texture advection and dye advection; they
blend successive frames to achieve spatial and temporal correlation. Unlike the most approaches
for vector field visualization, LEA can handle also unsteady fields. A dense set of particles is
stored as coordinates in a texture. Each iteration is defined by a Lagrangian step (backward time
integration of the particles) and an Eulerian step (update of the image pixel colors). They achieve

the y position of the ideal line when x increases by 1.

28 CHAPTER 2. CONTEXT OF RELATED WORK

temporal and spatial correlation through the blending of successive frames.

Figure 2.22: Left: LIC-based vector field. Right: frames obtained varying the opacity value of the
advected noise array (image courtesy of Bruno Jobard).

2.3.4 Comments

Although numerous valid techniques have been proposed, vector field visualization remains a
challenging subject. Direct techniques are intuitive, but may miss important features and are often
inaccurate. Texture-based approaches are well suited for dense, accurate field visualization, but at
the same time they are not so accurate in depicting field features and encoding parameters. Also,
they are not so successful at showing, in a single, static image, the fl ow magnitude, moreover the
local fl ow direction is ambiguous in the sense that it can be interpreted to be either of two directions
that are 180 degrees apart. Cabral and Leedom [35] recognize that few techniques can image vector
fields in a general manner; they are in some cases effective, but break down when operating on
very dense fields and do not generalize to other applications. Line Integral Convolution (LIC) is
the predominantly used technique in 2D fl ow visualizations. While quite effective, LIC textures
represent only one particular choice from among the vast spectrum of possible texture patterns
that could be used to convey fl ow information. In their STAR [156], Post et al. note that most
visualization techniques, especially feature-based and geometric approaches, are generally very
specific for a certain type of problem (such as vortex detection), the relation with the original raw
data is indirect, and the reduction is achieved at the cost of loss of other information, which is
considered non relevant for the purpose. But it is opinable to have techniques that generalize well
to analysis of data, leading to condensed visual summaries. Attempting to combine the features
of different techniques could be a possible solution for a more complete and general visualization
method.

As demonstrated by the LIC method, texture-based approaches provide a dense visualization;
textures have the advantage, as opposed to discrete direct visualization, of providing a continuous
representation of a vector field. Nevertheless, texture is a visual primitive, which has been much
less explored. By exploring methods for conveying vectorial data using features derived from
natural texture patterns, it is possible to profoundly expand the range of possibilities in texture-
based vector field representation, and to introduce the possibility of using texture type itself as a

2.4. SUMMARY 29

visual variable for conveying information about the field. In this work, textures, and especially
directional textures, are employed in a sample-based approach for vector field representations. In
this way, textures are not textured noise to smear or advect through integration in the direction of
the vector field, but serve as visual cue that is continuously transformed according to the values
and attributes of the vector field. Texture images are in this way used in a statistical synthesis
approach based on neighborhood comparisons to set the colors of the pixels in the resulting output
image. Directional textures provide an intuitive natural way for representing vector fields at high
spatial resolution.

Intrinsically, it is possible to recognize lots of intern correlation between textures and vector
visualization methods. Nevertheless, the potential of textures has not been deeply investigated
and used for this task. The user study by Laidlaw et al. [123] proved that existing methods may
have problems in representing relevant vector fields attributes. Till now, the use of textures has
been mostly limited to white noise and spot elements, to smear or animate. But a texture can be
additionally used as a powerful visual primitive, can itself carry a great amount of information,
taking advantages of its perceptual attributes to exploit numerous encoding possibilities.

In a sense, the visualization approach proposed in this thesis is a sort of hybrid method among
the direct and the texture-based visualization techniques. Attempting to combine the advantages
and benefits of such complementary methods, the main goal of this work is to provide a vector
imaging algorithm, which is able to produce high resolution images in a straightforward way, at
the same time being able to reveal vector characteristics, such as direction, orientation, magnitude,
in an effective meaningful manner.

2.4 Summary

My work is thus placed in this context, as a sort of hybrid solution, attempting a combination
and integration of concepts from the field of texture synthesis, statistics and image processing for
applications in scientific visualization and in steerable texture synthesis, taking into consideration
theory from cognition and perception, psychology and human vision for more rigorous validation.
Several remarkable contributions to the field of computer graphics are presented in the following
chapters.

30 CHAPTER 2. CONTEXT OF RELATED WORK

Chapter 3

Steering Texture Synthesis for Vector
Field Visualization

Figure 3.1: Vector field visualizations synthesized using MRF texture synthesis with a gradient
example texture that is rotated and scaled according to the vector field. The two images use
different sample textures, which are characterized by lines of different orientations.

This thesis focuses on methodologies and algorithms for scientific visualization, with applica-
tions also in the field of texture synthesis. In the following, I present my research done for user-
and task-driven vector field visualization.

Although numerous valid methods for scientific visualization and texture synthesis exist, there
is still a strong need for local and global control in the image generation process. Intuitively
representing the information contained in complicated and abstract data sets is a fundamental and
challenging task with uncountable applications. Interaction is often needed, and the broad variety
of possible applications and scenarios also requires a fl exible and general user-centered approach.
In this chapter, I start illustrating the basics of a novel approach to vector field visualization, which
has also resulted in some papers publications [200, 192]. The ideas and research proposed here
are valid for a variety of applications and are further broadly extensible; I explain further valuable
case studies in Chapter 5 and application to controlled texture synthesis in Chapter 7.

31

32 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Figure 3.2: Basic visualization block scheme.

3.1 Methodology: visualizing vector fields using statistical theory

Vector field visualization aims in general at generating images in order to convey the information
existing in the data. In this approach, I use Markov Random Field (MRF) texture synthesis theory
to generate the visualization result, starting from a set of sample textures (Fig. 3.2). MRF-based
methods allow generating images that are locally similar to a given example image. This idea is
here extended for vector field visualization (Fig. 3) by identifying each vector value with a repre-
sentative example image, e.g. a strongly directed texture that is rotated according to a 2D vector
Φ(x,y). The visualization is synthesized pixel by pixel, where each pixel is chosen from the sample
texture according to a similarity assessment conducted with respect to the vector values measured
at the local pixel. The visualization locally communicates the vector information, because each
pixel is chosen from a sample that is representative of the vector (Fig. 3.3). Furthermore, the re-
sulting image is smooth, as MRF texture synthesis searches for best fitting neighborhoods. This
leads to dense and continuous visualizations with the additional freedom of using arbitrary textures
as representation for any vector value.

Figure 3.3: Correspondences between sample images and vector field values lead to a meaningful
representation of the data set.

Idea and approach

Briefl y, I can summarize the main novelty of the idea as follows: instead of commonly using given
vectorial data sets to integrate particle positions along the vector directions and performing the
required amount of operations to visualize the behavior of a vector field (cf. Section 2.3), I use
the abstract data set to directly control the appearance of a directional example image, which is
re-aligned and modified according to the local vectorial information (Fig. 3.4). This leads to a
natural and intuitive visual representation of the data information, and it additionally contributes
to provide a variety of degrees of freedom to better depict the vector field.

As introduced, this novel approach to visualization of vectorial data sets is based on statistical
concepts and borrows theory from texture synthesis. For this reason, I briefl y review below some

3.1. VISUALIZING VECTOR FIELDS USING STATISTICAL THEORY 33

basic notions and fundamental concepts about synthesis theory and Markov Random distributions
to subsequently explain the proposed algorithm in detail.

Figure 3.4: Steerable texture synthesis approach to vector field visualization.

3.1.1 Texture synthesis fundamentals

Since the nineties, texture analysis and synthesis approaches (including [26, 154]) began to adopt
theory from statistics, and adapted it to texture generation, defining algorithms that are able to rec-
ognize, learn and reproduce pattern structures on the base of their frequential information. Also
recent texture synthesis methods, as those referred in the State of the Art chapter (§ 2.2), use sta-
tistical theory to achieve the goal of generating a new texture in arbitrary resolution, starting from
a little sample. The new synthesized texture should replicate the input appearance, appearing to be
generated by the same underlying process to a human observer. Approaches mostly differ in the
model used to describe the stochastic process that generates the textures. Pixel-based techniques,
as described in 2.2.4, are well suited for a large class of textures and patterns, due to their locality
and accuracy in finding the best matching pixel at each output location.

Recent approaches model textures as Markov Random Fields (MRF) [55, 241, 10, 87] and
generate the output texture in a pixel by pixel fashion. The idea of these works is roughly the
same. The new texture is generated in scan-line order or, more generally, on a space filling curve,
and each pixel is synthesized by comparing its neighborhood to all similarly shaped neighborhoods
in the sample texture (Fig. 3.5). These comparisons lead to a distance function, which is used to
compute the probability to choose the best fitting pixel. Very similar neighborhoods result in
highest probabilities. Random number generation together with the probability distribution lead to
the selection of the neighborhood, which contains the pixel to be synthesized. The following
equation indicates how the value of each pixel (x,y) in the output texture Iout depends, via a
function F , on the input sample Iin and on its neighborhood Nx,y:

Iout(x,y) = F(Iin,Nx,y) (3.1)

In this chapter, I propose a pixel-based algorithm; the possibility to control the synthesis of
each single point in the output image is particularly important to provide a large number of ad-
ditional degrees of freedom and, thus, a strong controllable framework. Extending some starting
concepts that are valid for the generation of uniform textures, a novel algorithm is now designed
with particular focus on fl exibility and user intervention. In this schema, the vector field is visu-
alized using theory from texture synthesis, and the following equation indicates how each pixel
(x,y) in the output image Iout depends on a given input sample Iin|(x,y) chosen within an input set
{Iin}, on its neighborhood Nx,y and on the vector field value Φ(x,y) assumed at (x,y):

Iout(x,y) = F(Iin|(x,y),Nx,y,Φ(x,y)) (3.2)

34 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Figure 3.5: Standard pixel-based approach to texture synthesis: the pixels Pi of the output Iout are
set checking the most probable pixels in the input Iin.

3.1.2 Markov Random Field theory

Markov Random Fields (MRF) models have been successfully introduced in many fundamental
areas of image analysis and computer vision, such as image restoration and segmentation, edge
detection, computer tomography, surface reconstruction, stereovision, motion analysis, or scene
interpretation. In texture synthesis they define an efficient and powerful framework to specify
nonlinear interactions between features of the same nature or of a different one. They provide
a fl exible mechanism for modelling spatial dependence. For this reason, they promise interesting
results also in the research field discussed here: I investigate their application to vector field visual-
ization and present in the following the developed approach, together with results and discussion.

Random field models analyze spatial variations in two dimensions. Global random field mod-
els treat the entire image as a realization of a random field, whereas local random field models
assume relationships of intensities in small neighborhoods. A widely used class of local random
field models type are Markov random field models. The MRF model for textures assumes that the
texture field is stochastic and stationary, and satisfies a conditional independence assumption.

Markov Random Fields have been proven to cover the widest variety of usable texture types
[241], that is, they are a good approximation to model a broad range of textures, they are general
and produce good results. Algorithms model textures by Markov Random Fields, or in a different
mathematical form, Gibbs Sampling, and generate textures by probability sampling [55]. MRF
models are used to describe the probability distribution governing the intensity values of pixels
in a specific neighborhood1 also known as a clique2. The technique uses texture primitives to
guide the synthesis process. The use of multiple primitives in my approach is necessary to exhibit
different field features. The pixels of a randomly initialized image are iteratively updated until the
representation of the vector field emerges.

In general, the value of each pixel p in a texture should depend on the pixels of its neighbor-
hood Np:

p(x,y) = F(Np(x,y)) (3.3)

1Figure 3.6 shows how textures differ from images. (a) is a general image while (b) is a texture. Movable windows
with two different positions are drawn as black squares in (a) and (b), with the corresponding contents shown below.
Different regions of a texture are always perceived to be similar (b1, b2), which is not the case for a general image (a1,
a2). In addition, each pixel in (b) is only related to a small set of neighboring pixels. These two characteristics are
called stationarity and locality, respectively.

2A clique is a collection of sites, or places, which are neighboring elements.

3.2. SAMPLE-BASED VISUALIZATION 35

Figure 3.6: Locality and stationarity properties in textures (image courtesy of Marc Levoy).

The method of [55] assumes a MGRF model of textures so that a pixel p ∈ I only depends on
the pixels in a local neighborhood Np ∈ I. The distance d(Nq,Np) between neighborhoods Np and
Nq, e.g. the sum of square differences (SSD), provides a metric of pixel similarity between p and q.
To synthesize a pixel p, the algorithm seeks for a pixel q from the training texture that minimizes
the distance between Np and Nq, and then uses the value of pixel q for pixel p:

q = argmin
j∈I

d(Nq,Np) (3.4)

An approximation to the conditional probability distribution

P(p|Np) (3.5)

where the value of the pixel p is conditioned to its neighborhood Np, needs to be constructed,
and then it is possible to sample from it. Modelling a texture using MRF, leads to the fact that
the value of p is independent from the rest of the input sample I, given its neighborhood Np.
In this method, the Markov property of a texture is preserved in a non-parametric way; it ranks
samples of observed pixel neighborhoods and selects the closest one based on a similarity metric.
Essentially, the sampling attempts to maintain local integrity of texture. Every pixel in the image
can be expressed by a color value that is dependent on the surrounding pixels, lagged both in space
and in time (see also § 5.1.3).

In the next sub-chapters, I introduce the requirements that the approach should fulfill and I
explain the algorithm, starting illustrating the conditions to satisfy, and the specifications for the
input parameters and settings.

3.2 Sample-based visualization

In the sense of texture synthesis theory, the proposed approach to vector field visualization is thus
sample-based. The algorithm learns and reproduces the characterizing structure of the pattern of
the input image, transferring it from the little example texture to the larger output (Fig. 3.7). In this
way, personalization of the visualization process is offered; this versatility is directly connected to
the freedom of choosing the starting seed patterns. Input images may be chosen from a pre-defined

36 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

set or can be user-specified. They may be ad hoc designed to better refl ect and transmit given
characteristics and special features to the output image, allowing for instance both photorealistic
and non-photorealistic visualization. This in general permits conditioning the illustration style of
the resulting visualization and therefore offers a fl exible way to control the output appearance.

In this section, details are provided to appropriately specify the samples that the visualization
algorithm takes as input. The sample set is then organized in a matrix of seed samples (§ 3.2.3).

Figure 3.7: Different input appearances lead to different appearances in the resulting vector field.

3.2.1 Conveying vectorial information through anisotropic patterns

A key point in the presented approach is the variation of the input sample in relation to the vectorial
data set that one wants to visualize. When visualizing a vector field, particular relevance needs to
be conferred to the change of curvature and direction of the lines of fl ow that characterize the
vector field. For this reason, special attention needs to be paid to the specification of the samples.
Samples that exhibit a main direction are best suited to this visualization approach, since they can
be well adapted to follow the field lines.

Anisotropic patterns

Anisotropic samples that present a major direction, and smoothly vary along the other one, are best
suited for use in this visualization approach. They result in fact to be well adaptable to rotations
and changes of curvature that often occur in a vectorial visualization. Hence, using directional
samples guaranties an accentuated directional displacement of the information in the output, and
thus the vectorial information is easier to perceive. A suitable set of possible samples is shown in
Figure 3.8.

Anisotropic oriented patterns

Besides just using directional patterns, it can be useful to generate directional oriented example
textures; this contributes to convey and enhance both vectorial information of direction and orien-
tation (an example is the 8th pattern in Fig. 3.8). Taking inspiration from line integral convolution
(LIC), and especially OLIC and FROLIC (oriented- and fast rendering of oriented line integral

3.2. SAMPLE-BASED VISUALIZATION 37

convolution), a ramp-like convolution kernel can be used to produce streamlets with varying inten-
sity along the trace, using asymmetric convolution kernels (e.g.: the 9th pattern in Fig. 3.8). Such a
filter can be applied to white noise, by integrating it along a constant direction, to generate a sparse
example texture, where the varying intensity of the streamlets makes it possible to recognize ori-
entation in fl ow fields. Alternatively, simple image manipulation and 2d graphical programs can
be used to produce similar input examples.

Figure 3.8: Possible set of grey-scale anisotropic patterns used as input seeds.

Anisotropic patterns and rotation-invariant features

Samples that present rotation-invariant characteristics, like in the 5th pattern of Fig. 3.8, are less
sensible to edge- and step-wise artifacts, while too naïvely designed samples (such as the 1st pattern
in Fig. 3.8) could be susceptible to aliasing (Fig. 3.29). They can limit or avoid aliasing during
rotation, and in this way more continuous visualization is warranted. For the same reason, good
quality is achieved also using samples that are characterized by a gradual and smooth change of
color in the direction perpendicular to the major one (e.g. the 3rd pattern in Fig. 3.8).

Quasi-anisotropic patterns plus anisotropy and orientation encoding

When additionally taking into account considerations on information mapping and relative encod-
ing options (more details in Chapter 6), also almost-isotropic or isotropic input samples can be
used for the proposed approach. A possible example is given by an isotropic pattern describing
isotropic granular material in a vectorial data set representation; its appearance can be augmented
via color coding to create the impression of movement along the vector field direction. A further
example is given by a hybrid mapping of velocity magnitude to directionality. In this case di-
rectional patterns highlight particles of the fl ow field with high velocity, while isotropic patterns
represent areas with low or zero velocity. In this way, different velocities can be simulated using
different patterns.

Shape of the example textures

Regarding the shape of the input samples, they are for simplicity squared in standard cases. In the
proposed approach I also mostly use squared input samples; however, no restriction exists, and
rectangular as well as differently shaped samples can be used without any problem.

3.2.2 Texture databases

Several texture databases are available in the Computer Graphics and especially in the Image Pro-
cessing literature. They are mostly used to classify textures for algorithm testing, image segmen-
tation and retrieval. These databases have been tested for the presented approach, and especially
for the controlled texture synthesis described in Chapter 7.

38 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Brodatz textures

Brodatz textures [29, 30] are a well known set of natural textures, which have broadly been used
for texture synthesis and image processing. These samples are in gray scale and mainly represent
natural materials. The Brodatz collection comprises of a relative large number of texture classes;
the popular album [29] consists of homogeneous categories of naturally occurring textures. Al-
though it has become a standard for evaluating texture algorithms, the Brodatz set is very limited
in variety; it is all monochrome, and consists mostly of homogeneous patterns photographed under
studio lighting at an angle parallel to the film plane, for this reason, it may be better integrated with
further databases for a more complete evaluation.

VisTex

The VisTex collection (available at [3]) has been assembled and maintained at the Vision and Mod-
eling Group at the MIT Media Lab. These data are freely distributed; VisTex has been built using
textures in large sets of natural color scenes, taken under arbitrary lighting and perspective, cat-
egorized into mutually exclusive groups. For instance, their lighting conditions include daylight,
artificial-fl orescent and artificial-incandescent. A sub set is shown in Figure 3.9. The VisTex set
consists of heterogeneous categories of texture images, that is, each class may have more than
one type of texture. For example, the fl ower category may have fl ower images at three different
resolutions, thus making the set more difficult to classify, but also offering more fl exibility.

Figure 3.9: A sub-set of the VisTex texture database.

MeasTex

MeasTex (the MEASurement of TEXture classification algorithms) [1] is an image database and
a quantitative measurement framework for image texture analysis algorithms. The textures are
available for the classes: asphalt, concrete, grass and rock. They are mostly isotropic and stochastic
(Figure 3.10), for this reason they are not of particular interest for the approach proposed here. A
number of texture sets (artificial and natural textures) in MeasTex have been compiled by other
texture databases such as the Brodatz texture database and the VisTex database.

Figure 3.10: A sub-set of the MeasTex texture database.

3.2. SAMPLE-BASED VISUALIZATION 39

Deriving or designing a specific sample

Further texture databases exist; several issues, for instance the issue of homogeneity of an image,
can be examined by defining a database containing a given amount of perceptually similar, most
uniform, images.

However, for the scope of this thesis, no restriction to a specific database or texture catego-
rization needs to be done. When choosing the input samples, the sole considerations to guarantee
good results are de facto the directional specifications explained above. Therefore, I prevalently
tested anisotropic or quasi-anisotropic samples and suggest the use of such patterns, as they can in
general produce perceptually intuitive results. The samples can thus be, without distinction, either
hand-designed, derived from photographs, or from existing databases. In addition, texture samples
can be typically created by scanning in existing artworks, by using a 2d paint program, or they can
be synthesized from procedural image models.

3.2.3 Input matrix seed

One of the novelties of the presented approach is that it makes use of a large set of input samples
instead of using just a single input. I adapt the MRF-based synthesis to accept a space of input
seeds and adequately modify them with respect to the vector field to visualize. Some previous
works consider the idea of using more than one example texture or to adapt the texture to local
properties. In particular, works that synthesize texture directly on manifold surfaces embedded in
3-space [157, 225, 242] use a direction field over the surface and adapt an anisotropic example so
that it conforms with the direction field. This is in part somewhat similar to our approach. How-
ever, here we focus on the visualization of the properties of a given vector field, while texturing a
manifold surface allows to adapt the direction field to the purpose of texturing.

Figure 3.11: Correspondences (potentially bijective) between samples and vector field values.

This set of samples constitutes the array - or better the matrix - of input samples that are used
as seed for the visualization (Fig. 3.11). The variety of the samples that build such structure derives
from the generation of field-dependent rotated and resized versions of the original chosen sample.
Auxiliary filter banks can be then applied to generate variation in the samples and to transform
them progressively (see also § 6.5). Additionally, also uncorrelated samples can compose the
sample set for applications of texture mixing and metamorphosis (see Chapter 7).

40 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

In (Wn * Hn) , n = N

Pi , i = Xi + Yi * Wout

Xi

Yi

Wout

Hout

Iout

Pj

I1 (W1 * H1) I5 (W5 * H5)

Ij (Wj * Hj)

Ii (Wi * Hi)

.......

.............

.............

.............................

......................................

........

PN , N = (Wout * Hout)

P1 P5

Figure 3.12: Synthesis process (cf. Fig. 3.5) using the matrix of samples seeds.

3.3 Synthesis approach

Once the matrix of samples has been defined, either through selection of samples or via the use of
filter banks, the appearance of the resulting image is already in part and implicitly conditioned. In
a later synthesis phase though, it is still possible to decide which visual representations will map
the vector field values and special features of interest (Chapter 6).

The next step is now to synthesize the vector field visualization using the per-pixel procedure.
In this section, the role of the control vector field is described and details are provided about the
MRF-based modelling of the texture examples, as well as about the deterministic search of best
fitting pixels.

One-pass algorithm: single resolution

For simplicity and clarity of explanation, I begin introducing the idea and the implementation of
the algorithm for the case of two-dimensional vector field visualization. The explanations are here
related to the single resolution version of the algorithm. Later on, in Appendix A, I also explain
the extension to a multi-resolution approach (Fig. 3.13) and the relative implementation. In such
scheme, the one-pass algorithm is repeated in a multi-resolution approach using Image Pyramids.

As briefl y introduced above, for each output pixel a neighborhood-based search for the best
matching pixel within the input sample under consideration has to be run. The most time consum-
ing process during the synthesis is indeed the comparison of a given neighborhood with all similar
blocks in the input sample. A look-up table can be used to speed up this process significantly [31].
Another way to synthesize large textures in a faster manner is to copy blocks rather than pixels
in each step of the algorithm [54]. Recent methods can use texture theory to synthesize outputs
in an interactive way [254]. They use a computationally expensive pre-processing step where all
neighborhoods are pre-tested; then the synthesis step can efficiently synthesize the output texture.

3.3. SYNTHESIS APPROACH 41

Figure 3.13: Pyramid levels for the multiresolution synthesis process of the image in Figure 3.

Unluckily this computationally expensive pre-processing step cannot be applied to the presented
approach, since, differently from Zelinka and Garland approach, where they only need to run it
once, here constantly different samples are used, which may be even modified and processed in
run-time.

3.3.1 Control vector field

Together with the specification of the sample seeds (§ 3.2), the vectorial data set one wants to
visualize is the primary input entity for the synthesis procedure. The vector field plays here the
role of a deformation or control field over the chosen sample pattern. I call it a deformation field
because, in a sense, and especially if it is seen as extension of the standard approach to static texture
synthesis, a given directional anisotropic pattern - taken as input - will be curved, deformed and
aligned along the new directions specified by the vectorial data set.

The information contained in the vector field should be visualized in a perceptually intuitive
way (cf. § 2.1). To achieve this, this approach lets the data set directly condition the value of each
output pixel in an easy way. The algorithm controls the appearance of the starting original sample,
modifying it accordingly to the values that the vector field assumes at each output location. This
means that a given point at a general location (x,y) in the output will be chosen, using MRF-based
statistical theory, from a sample, or a modified version of the original sample, which uniquely
communicates the values of the vector field at that point. A detailed explanation of the procedure
is given below in the implementation section (§ 3.4), where the algorithm is described step by step
and the used variables and methods are listed and illustrated in relative tables.

42 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

3.3.2 Field-driven sample alignment and transformation

The control vector field - input data set - is therefore responsible of various transformations over
the sample, including re-alignment, resizing, change of color. The essential field attributes and
the values assumed by the variables need to be adequately mapped using visual representations,
in order to effectively communicate the behavior of the field. I illustrate this in the following and
remand to § 2.1 and Chapter 6 for some theory on perceptually motivated correspondence among
texture visual dimensions and field attributes, and for basic notions of filtering and information
mapping, plus further examples and results.

Let interpret a static standard texture synthesis process as the synthesis of a given input sample
along a unitary uniform vector field with zero phase. This means that we can now generate any
other texture-based vector field, synthesizing a texture along a given vector field, and this just
varying the control action using an arbitrary vector field. The presented visualization approach is
achieved in this sense extending and constraining texture synthesis. In this way the vector field will
infl uence the starting sample to follow new directions and it will deform or distort it according to
non-unitary magnitude values (Fig. 3.14). Assuming to be then interested in visualizing extra field
attributes, it is straightforward to take into consideration further information, such as an additional
third dimension in space or time, further field entities as divergence or curl, or special features
as critical points, separatrices and regions or points of interest. More details about field features
extraction, relative information encoding and more sophisticated mapping options are given in the
following related chapters of this thesis (Chapters 5, 6).

Figure 3.14: Correspondence between samples and vector values: transforming a sample through
scaling and rotating operators.

Rotating the texture sample

Let consider a two-dimensional vector field and let start just focusing on the representation of the
vector phase as single field feature of interest.

One mapping solution, may be the most uncomplicated and intuitive one, is to start with a
directional input sample and successively rotate it by the phases defined by the angles that the
vector field builds with the x-axis of the plane coordinate system (analytical details in 3.4). This
leads to the generation of a set of sample instances, which accordingly communicate the different
phases of the field at the various output locations (Fig. 3.15). This rotating process can be done
on the fl y during the synthesis, but it is obviously more efficient to pre-rotate the sample in a
pre-processing stage and then use a look-up table to choose, for each output angle value, the
correspondent rotated version of the sample. This improves the performances, being the texture
synthesis process the most time consuming part of the algorithm.

3.3. SYNTHESIS APPROACH 43

The rotating process produces diamond-structured images; as a portion of the previous window
size remains empty, a border area of the resulting images needs to be cut away (Fig. 3.16). In
general (using simple Pythagoras theorem), one can use a squared image with side of length r′ =
r
√

2/2, where r′ is the new side length and r the old one. Anyway, for simplicity, one uses r′ = r/2
side, which corresponds to a sample which is the half in size of the original one; for this reason is
opportune to chose starting sample images which lead to sufficient resolution after transformation.

Figure 3.15: Rotated sample input images.

Figure 3.16: The rotating operator over the sample, generates diamond structures, whose border
windows need to be cut away.

Re-scaling the texture sample

The second most common vector field feature, which is of interest to visualize, is the vector magni-
tude. Depending on the particular physical meaning of the vector field, it may represent a velocity
scalar field, a signal amplitude, and so on. Again, this quantity is calculated at all the output loca-
tions of the vector field, and then used to accordingly resize the input sample (Fig. 3.17). In this
way, the sample resolution will be magnified if at that location the field amplitude is larger than
one, it will scaled down if the magnitude is smaller than one, while the resolution stays unvaried
if the amplitude value is unitary.

When using the resizing operator to encode information of magnitude, one needs to have a
sufficient large input sample as starting input. In fact, when scaling down the sample, a smaller
sample results from this operation and is now available for the synthesis process, so that it needs
to contain enough information in order to guarantee the proper functioning of the algorithm. On
the contrary, when enlarging the starting sample by a given magnitude factor, a border portion of
the resulting sample may be cut away, of course under the condition that the magnified structure
of the pattern still stays recognizable and the cut sample still contains enough information after the
border cutting (Fig. 3.18).

Figure 3.17: Scaled sample input images.

44 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Figure 3.18: The resizing operator over the sample image (left) re-scales it by a factor A, generating
sample versions in different resolution (left: A = 1, center: A > 1, right: A < 1).

Arbitrarily transforming the texture sample

The correspondence of the rotation and resizing operators with, respectively, the field values of
phase and magnitude is just one of the possible mapping options. Several further choices are
possible and especially combinations of them are available.

In a more general case, and especially in presence of a more numerous set of field parameters
to represent, it is possible to map every feature of interest of the vector field using ad hoc specified
transfer functions. Consequently, not exclusively rotated and scaled variants of the original image
may be produced, but also filtered - in the sense of image processing operators - versions of it
(Fig. 3.19, 3.20). Color, brightening, embossing and other filtering operators may also, however,
be applied in a post-processing stage of the synthesis. This, besides maintaining the same perfor-
mances, also has the advantage of offering the user interactivity and adaptivity in the information
mapping stage. More details and relative illustrations of the system block scheme are given in
Chapter 6, 7. In conclusion, any reasonable arbitrary mapping from vector values to example im-
ages can be defined, leading to a variety of possible effects. The vector values serve as argument
for the chosen filtering operator, which transforms (transfer function) the sample by that factor.

Quantizing the encoding of the information

In any case, regardless to the chosen information encoding, an appropriate mapping should estab-
lish correspondences between vector values and sample images. If the vector field presents very
few variation in its domain, a one-to-one correspondence between each different vector value and
an example image best represents the peculiar field characteristics, allowing to discriminate the
different values. Otherwise, in case the field features are easily recognizable, a quantization of
the filtering factor is possible. In practice, the original sample is pre-rotated, pre-scaled, and in
general pre-transformed, in a quantized number of orientations, resolutions, and in general new
transformed versions. In this way a reduction of the necessary sample transformations is achieved,
and hence a reduction of the computation time.

The so defined range of field values (angles of phase, magnitudes, etc.) should be sufficient
to adequately characterize the vector field. For each field value, the algorithm chooses the trans-
formed sample version that most closely resembles the values locally specified by the vector field.
This range in turn determines the amount of sample images necessary for a proper representation
of the carried information. Obviously, different quantization can be performed depending on the
variance of the considered field feature: the phase of the field may be represented with a one-to-
one correspondence between phase value and rotated sample in order to enhance and precisely
visualize the direction of the field, while the magnitude may be represented just using a sub-set
of the assumed magnitude values if this information is of secondary importance or if this field
attribute is simply recognizable even using quantization.

3.3. SYNTHESIS APPROACH 45

Figure 3.19: Transforming the input sample Iin to Iout using a field-driven transfer function
T (Iin,Φ(x,y)) (top), and example of rotation by 90 degrees as particular operator TR, where
ϕR(x,y) represents the field feature of orientation, or angle of rotation, at a given output position
(x,y) (bottom).

Figure 3.20: Generalization of Figure 3.19 to generic transfer functions. This general scheme
illustrates a set of transformation operators (rotation, up-scaling, re-coloring) over the input sample
image Iin. Correspondences are set between transfer functions Ti(I) and the field variables ϕi(x,y)
taken as parameters.

3.3.3 Building causal neighborhood models

Let now consider the central element of the synthesis algorithm: the neighborhood model. As
explained in § 3.1.2, MRF-based synthesis models a texture as a Markov Random Field, assigning
properties of stationary and locality to the represented texture (Fig. 3.6). This means that each
pixel belonging to the texture can be described by a set of surrounding pixels. The neighborhood
model is thus the instrument to specify how neighboring pixels contribute to the estimation of
the output pixel values, which is the core step of the synthesis procedure. In fact, the statistical
approach consists on predicting each output pixel color value on the base of its neighboring pixels.

46 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Pi , i = Xi + Yi * Wout

Xi

Yi

Wout

Hout

Iout

Pj

I1 (W1 * H1)

I2 (W2 * H2)

Ij (Wj * Hj)

Ii (Wi * Hi)

.......
.........................

PN , N = (Wout * Hout)

P1 P5

.......

In (Wn * Hn)

I0 (W0 * H0)

Filter

Filter

Filter

Filter

.......
.........................

.......

Filter

Pi , i = Xi + Yi * Wout

Xi

Yi

Wout

Hout

Iout

Pj

I1 (W1 * H1)

I2 (W2 * H2)

Ij (Wj * Hj)

Ii (Wi * Hi)

.......
.........................

PN , N = (Wout * Hout)

P1 P5

.......

In (Wn * Hn)

I0 (W0 * H0)

Filter

Filter

Filter

Filter

.......
.........................

.......

Filter

Figure 3.21: Two possible filter bank schemes for independent and iterative sample transformation.

Consequently, for each point in the output image, an appropriate neighborhood region is defined.
The pixels that belong to this region contribute with their color values and with their relative
distances from the central pixel to estimate and measure the local structure of the image.

Causal neighborhoods

A standard and broadly accepted way to proceed for the generation of an output image is to syn-
thesize it in scan line order; the causal property of the neighborhood accelerates the convergence
speed of the algorithm. Consequently, the regularly used neighborhoods are L-shaped, that is, the
causal portion of a squared window around the central pixel is considered (Fig. 3.22). They are
causal neighborhoods, since they are defined through already known pixels; the neighborhood will
only include pixels that have already been generated during the raster scan. This ensures that ev-
ery output pixel is updated on the base of previously generated pixels and not from random noise.
Only the first few pixels of the output image use white noise as their neighborhoods in the first
iteration, while subsequently all pixels will use neighborhoods that have been visited in an earlier
pass. As in causal systems, those known pixels represent the observed information that is used to
determine the following pixels. This is due to the fact that, while proceeding in raster order, each
pixel at location (x,y) can take advantage of the a priori already known values of the pixels located
on its left and above itself (Fig. 3.22). The L-shape of the neighborhoods also leads to the fact that,
when using symmetric neighborhoods centered on the current pixel, the size n of such models is
always an odd-defined size. Starting from the simplest case, one can use three-sized neighbor-
hoods, five-sized neighborhoods and so on. A general n-sized neighborhood contains then (n∗n)
pixels, and its L-version (n∗n−1)/2 pixels.

In case of multiresolution - or multi-pass - approach (see § A.2.1 for the relative explanation
and illustrations), the neighborhoods from previously synthesized levels will be squared and fully
populated instead of L-shaped.

Setting the neighborhood size

The neighborhood size, and in turn the amount of the pixels contained in it, strongly depends on
the structure complexity of the given input sample, i.e. the pattern resolution plays a fundamental
role for the definition of a proper neighborhood size. The size of the neighborhood needs to be ad-
equately specified, since using a n−sized neighborhood enables to conserve the spatial coherency
of texture elements that are up to n pixels large. The size of the neighborhood is then responsible
for the algorithm performance, as it directly determines the number of calculations needed for the
choice of the output pixels.

3.3. SYNTHESIS APPROACH 47

Figure 3.22: Causal or L-shaped neighborhood structure.

In the figure below (Fig. 3.23) I show three simple possible input samples for use in vector
field visualization. From left to right they present increasing structure size and thus require larger
neighborhoods in order to allow the algorithm procedure to learn the sample statistics and repro-
duce them in a proper way. Organizing different patterns in a texture space (§ 6.4.1) also allows to
choose a proper neighborhood size, corresponding to the different pattern structures.

Figure 3.23: Samples characterized by structures with different complexity require different neigh-
borhood sizes.

Edge and corner treatment: toroidal neighborhoods

When considering pixels that are near to the edges of the image, or directly lie on the margins
of the image, their relative neighborhoods result to be cut and incomplete. Consequently, such
neighborhoods would be not symmetric around the central pixel anymore. A possible solution
to handle them, as already suggested in [83] is to build those neighborhoods toroidally, and thus
considering pixels from the corresponding opposite side of the image where pixels are missing, in
order to complete the neighborhood. This corresponds to define a circular convolution:

I(x,y) = I(xmodN,ymodN) (3.6)

where I(x,y) is an image with size N ×N. This works well especially for textures that tile
seamlessly (Fig. 3.24).

Alternatively, a reasonable border handler is to pad the image with a refl ected or mirrowed
copy of itself (except for obliquely oriented textures). Otherwise, if the sample is large enough
or contains enough information to communicate its intrinsic statistical distribution and apparent
structure, the synthesis can be performed disregarding the pixels on the boundaries, hence using a
sub-image obtained cutting away the external boarder area (a squared or rectangular frame) of the
sample.

48 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Figure 3.24: Building toroidal neighborhoods (right-left and up-down).

3.3.4 Calculating distances and measuring similarity probabilities

The example images in the matrix serve as seed in that pixels are selected and copied from the
input to the output image. This is done after comparing the neighborhood of the current output
pixel with similarly-shaped neighborhoods within the input sample. This consists in a measure
of distance between pixel values, which, in practice, corresponds to a degree of similarity with
the output region under consideration. A similarity function, commonly based on the L2-norm,
is computed to evaluate the relative distances. The comparison leads to the selection of the most
similar neighborhood, in term of minimum distance; its central pixel is then chosen for the actual
output position. This pixel is thus the most probable to fit at the current location. For each step
and output location, a best matching pixel from the input sample is chosen and its color is set to
be the value in the output.

Similarity metrics

The similarity between different neighborhoods - arrays of neighboring pixels - can be calculated
using a distance function. This calculation can be done using different metrics or distance func-
tions. A simple solution is to use the L2 norm. The L2 norm is a standard to measure similarity in
images, due to its simplicity and efficiency. It is a compromise between computational efficiency
and accuracy.

The L2 norm, or Euclidean norm, of an n-dimensional vector d is simply given by the square
root of the sum of the elements squared:

d =









d1
d2
...

dn









| d |= (∑
i
| d2

i |)1/2 (3.7)

where the vector elements di represent the Euclidean distances

di = d(p j, pk) = ‖pk − p j‖ (3.8)

between the neighborhood arrays of pixels p j and pk , where p j, pk ∈ N, j,k ∈ [1,(n2 −1)/2]
and n is the size of the neighborhood N. More precisely, such distances between arrays correspond
to the differences of the color values of the arrays elements. In fact, arrays are used to describe the
L-shaped neighborhoods and they are constructed to contain the color values of each pixel of the
neighborhood, concatenated to build a long vector. The difference between two neighborhoods is
then quantified as the difference between their neighborhood vectors. The quality of a match is

3.3. SYNTHESIS APPROACH 49

determined by calculating the (possibly weighted) sum of squared differences between the already
colored pixels around the current output pixel and the pixels surrounding a candidate pixel in the
input image.

Although the L2 norm does not provide a quality measure of perceptual similarity between
images, it is very fast and easy to compute; moreover it performs adequately for texture synthesis.
Nealen and Alexa [142] also recognize that the use of metrics based on human perception does not
noticeably improve the results.

Weighting the neighboring pixels

The pixels belonging to the neighborhoods are weighted through a Gaussian function, in order to
assign different relevance to the pixels of the neighborhoods. The pixels adjacent or near to the
center are assigned a higher weight, as the correlation with the central pixel is stronger, while the
correlation factor decreases when considering the external pixels.

G(x,y) =
1

2πσ2 e−
x2+y2

2σ2 (3.9)

In this way, the local structure of the texture can be emphasized. The circular weighting
scheme used in this approach helps preserving continuity when performing the synthesis along the
varying curved direction of the vector field. Furthermore, as opposed to standard texture synthesis
approaches, where the target is to reproduce an existing starting pattern, here a directional pattern
is synthesized along the curved lines of a vector field, and for this reason the currently synthesized
pixel constantly conditions changes in the input sample, and strong locality and particular attention
on the central pixel and its neighborhood is required to achieve continuity in the visualization.
Hence, a relationship between the radius of curvature and the standard deviation σ (and thus with
the variance σ2 of the Gaussian) is beneficial to achieve smoothness in the resulting visualization.

Another weighting approach is proposed in Chapter 4, where novel anisotropic and non-
uniform weighting schemes are investigated and presented, even more sensitive to directionality
and change of curvature, in order to further enhance the property of directionality in vector field
visualization (Fig. 3.25).

Figure 3.25: Circular and elliptical (§ 4.3) weighting schemes.

3.3.5 Finding the best matching pixel

In this way, the neighborhood of the output pixel is compared with all the similarly shaped neigh-
borhoods inside the particular input sample that is under consideration for that specific current
output vector value (Fig. 3.26). Such comparison leads to a minimum. The neighborhood with
minimum distance - in terms of pixel values differences - corresponds to the most similar neigh-
borhood:

Nbestin = argminNind(Nout ,{Nin}) (3.10)

50 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

d0 = d(Nout ,Nbestin) (3.11)

Consequently, the central pixel of such neighborhood has the highest probability to fit in the
output and can be chosen to be set at the current output location. In this way, each pixel in the
output is set under best-matching criteria. During the search process, a candidate pixel Pin may
come into question when the distance between his neighborhood and the output neighborhood
satisfies

d(Nout ,Nin) ≤ dthreshold = (1+ ε) ·d0, ε > 0 (3.12)

where d0 is a minimal distance set as constraint, and ε is a positive infinitesimal (for instance
ε = 0.1 in [55]). Also in [55] a normalized sum of squared differences metric dSSD is used as
suitable distance. This leads to

Ω(Pin) = {Pin ⊂ Iin : d(Nout ,Nin) ≤ dthreshold} (3.13)

where Ω(Pin) is a set of pixels in the input image Iin that are best candidate to fit at the current
output location. Randomly, one of such pixels can be chosen to be set in the output. Also the
parameter ε in the definition of the threshold distance dthreshold may contribute with some variance
to produce randomness, avoiding not realistic repetitive effects in the output image. The distance
or match value between two neighborhoods d(Nout ,Nin) is the component-by-component sum of
the squared differences. Anyway, repetitive unwanted effects especially occur in standard texture
synthesis, while I experienced that using the proposed approach to vector field visualization does
not produce such artifacts, also due to the intrinsic variation of the vector field that constantly uses
different input seeds. For this reason, and in order to speed up the best pixel search, I adopt a
variation in the searching process. After having tested and performed the best pixel search using
exhaustive and deterministic search, and having then tested the use of threshold plus variance
setting, I alternatively execute the search allowing a break as soon as a zero distance or, since
there might not be any perfect match, a user-set minimum distance ∆min is reached (see pseudo code
below, § 3.4.2). This, besides allowing a faster process, also proved not to suffer from additional
artifacts or loss of quality. To avoid finding always the same neighborhood with zero distance, it
is sufficient to let the search in the input sample regularly start from a different pixel or constantly
change the pixel count. In this way, the best fitting pixel can be chosen in a semi-stochastically
way from a set of equally best matching pixels. Anyway, the fact that a matrix of samples, instead
a single one, is used as seed, alone guarantees that no repetition artifact occurs. Although I did
not experienced the occurring of repetitive artifacts, in case it is desired (e.g. if appearing too
synthetic) to insert more variation for realism (randomization of the sample), it is straightforward
to non-uniformly modify the input samples, for instance adding rotational, horizontal or vertical
jitter in directional seeds.

3.4 Algorithm description and implementation

In this section, I more formally describe the algorithm implementation, presenting pseudo code
and illustrating variables and methods used in the synthesis process.

Mathematically, I need to define a function F that, as introduced above (§ 3.1.1), takes a
vectorial data set and an input sample pattern Iin (or sample set {Iin}) to a new output image
Iout , which represents the vector field Φ. As explained, the input parameters that play a role
in the synthesis process are the input sample that determines the output appearance, the MRF
probabilistic search, which leads to the definition of pixel neighborhoods, and the vectorial data
set; this schematically can be expressed as:

Iout = F(Iin,N,Φ) (3.14)

3.4. ALGORITHM DESCRIPTION AND IMPLEMENTATION 51

Figure 3.26: Proposed approach: unlike basic texture synthesis approaches (Fig. 3.5), the best
matching pixels are here derived from diverse samples that resembles the vectorial information.

In the remainder of this section, I illustrate the required steps in detail.
Let Φ be a vector field in d dimensions over R

2:

Φ : R
2 → R

d (3.15)

Each vector~v = Φ(x,y) defines an example texture image, i.e.

τ(~v) : [0,1]2 → [0,1]c (3.16)

with c = 1 for gray level and c = 3 for colored textures.
To generate a visualization of a certain part of the vector field one defines the pixel counts of the
output image, which in turn define the sampling of the vector field. The i− th output pixel Pi at
(x,y) is computed using an appropriate neighborhood Nx,y (or neighborhood pyramid {Nx,y(l)},
being l the level of the image pyramid - refer to § A.2.1) of that pixel and the MRF texture syn-
thesis method with example texture τ(Φ(x,y)). The pixels {P(xi,y j)} of a general n-sized squared
neighborhood can be defined as:

Nx,y = {P(xi,y j)}
{

xi ∈ [x−h, . . . ,x+h]
y j ∈ [y−h, . . . ,y+h]

(3.17)

where i = x + y ·W , h = (n−1)/2 defines the offset of the neighboring pixels w.r.t. the center, W
is the output width and n is the neighborhood size.

Note that this approach combines the ideas of glyph-based visualization with dense, texture-
based approaches. Each vector value could have its own glyph texture and the texture synthesis
technique assures that these glyphs are combined in a seamless way. This approach is quite general
and allows arbitrary example images for different vector values. To achieve expressive results,
however, the mapping from vector values to example textures has to be continuous and intuitive.
In most cases one wants to visualize the properties (i.e. direction and magnitude) of the vector
field. In the Euclidean space, Φ can be expressed as

Φ(x,y) =< Φx(x,y),Φy(x,y) >= Φx(x,y) · î+Φy(x,y) · ĵ (3.18)

52 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

where Φ(x,y) · î and Φ(x,y) · ĵ are, respectively, the components of the vector Φ(x,y) along the x
and y axis of the Euclidean plane, and î, ĵ the versors, or orthonormal vectors. The magnitude can
then be easily computed using an appropriate norm of the values, i.e.

A(x,y) = ||Φ(x,y)|| =
√

Φx(x,y)2 +Φy(x,y)2 (3.19)

Assigning a direction requires a projection of the vector onto the image plane. Let Φx(x,y)
and Φy(x,y) be those projection then

θ(x,y) = ∠Φ(x,y) = arctan
Φy(x,y)
Φx(x,y)

(3.20)

is the angle of the tangent in the vector field relative to the x-axis, and we let the direction
correspond to the phase of the vector.

As above introduced, a straightforward approach for the mapping from vector values to exam-
ple images would be to use the information in A and θ to scale and rotate an example image. This
is also the approach that I have used to generate the examples presented in this chapter. Typical
example images should have a certain directional structure and scale features so that their scale and
rotation is easy to perceive (§ 3.2.1). A set of example images I have used is depicted in Figure 3.8.
In a first stage of this research, as illustrated in this chapter, I have mostly used simple gray scale
images that are constant along one direction and smoothly vary along the other. Figures 3 and 3.30
show the visualization results obtained for the same vector field using different example textures
(i.e. using the first two samples of Figure 3.8. See Figure 3.31 for further examples.

Figure 3.27: Visualization of critical points.

Critical points are prominent features in vector fields. I have generated visualizations of iso-
lated critical points to evaluate how prominent those features become in the visualization. The

3.4. ALGORITHM DESCRIPTION AND IMPLEMENTATION 53

Figure 3.28: Different parts of the vector field visualized using the same output resolution.

result is depicted in Figure 3.27. In addition, it is possible to perform a local analysis and deter-
mine critical points using the eigenvalues of the Jacobian; this is described later in § 6.3. Special
textures could then be devoted to the different classes of critical points.

3.4.1 Steps of the procedure

To sum up, the structure of the algorithm to realize the proposed MRF-based vector field visual-
ization uses the following steps:

• An example image defines the visualization primitive. The primitive should be anisotropic
and scale-dependent.

• The dimensions of the output image are set; the dimensions also define the sampling of the
vector field. It is assumed that these samples are accessible.

• For every pixel in the output image, the sample image is modified according to the vector
values, that is, the input texture is typically rotated and scaled by these parameters (see
Figure 3.15).

• For every pixel, an L-shaped neighborhood is defined, which is constituted by neighboring
pixels (the size is user defined).

• Every pixel in the output image is generated in scan order with a routine that searches the
most similar pixel in the modified sample image, according to a probability model.

• The probabilities are defined by comparing the distances between the neighboring pixels
inside the neighborhoods.

3.4.2 Pseudocode

In term of pseudo-code, the synthesis algorithm can be described as in following (Tables 3.1-3.4).
The used variables and methods are then listed in Tables 3.5, 3.6.

54 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Function synthesizePixel-a

1 for(y = 0; y < Hout; y++) {
2 for(x = 0; x < Wout; x++) {
3 Nx,y|out = calculateNeighborhood(x,y);
4 A = calculateMagnitude(x,y);
5 θ = calculatePhase(x,y);
6 resizeInput(A);
7 rotateInput(θ);
8 for(j = 0; j < Hin; j++) {
9 for(i = 0; i < Win; i++) {
10 Ni, j|in = calculateNeighborhood(i,j);
11 distancei, j = compareNeighborhood(Nx,y|out,Ni, j|in);
12 }
13 }
14 minDistance = findMinimumDistance({distancei, j});
15 bestMatch = getBestPixelValue(minDistance);
16 Iout(x,y) = synthetizeOutputPixel(bestMatch);
17 }
18 }
19 return Iout;

Table 3.1: Synthesis procedure (specially designed for rotation and scaling transformations).

3.5 Results and discussion

3.5.1 Comments: limitation and benefits

The size of a sample image plays a critical role in the rotating and scaling of the image and has
to be chosen appropriately. Small examples allow details to be visualized, however, it is hard to
achieve continuity for changing vector values (see Figure 3.29). Large structures allow to use
larger neighborhoods for comparison and are likely to yield smoother results. Yet, this comes at
the price of locality.

Figure 3.29: Using a small scale example texture might lead to aliasing artifacts in the synthesized
visualization.

The core of the synthesis algorithm computes the similarity functions and probabilities for
the choice of the best matching pixels in run time. Due to the fact that the input samples vary
with respect to the vector values at the various output locations, it is not possible to pre-compute
this part in order to speed up the calculation. Computation time is the main drawback; this is an

3.5. RESULTS AND DISCUSSION 55

intrinsic characteristic of pixel-based algorithms. However, the time needed for generating the
visualization is identical to the synthesis method used for standard textures. Rotated and scaled
versions of the examples are precomputed and fetched from look-up tables.

The method attempts combining the intuitivity of iconic mapping from direct visualization
techniques with the locality and powerful encoding typical of texture-based techniques, also allow-
ing the extraction of physically meaningful features of interest, such as in geometric and feature-
based visualization for a better communication of the field behavior. We feel that the approach has
several notable features. These include:

Accuracy The synthesis method works pixel by pixel - this guaranties a smooth and continuous
output, especially thanks to the statistical search procedure for the best matching pixel. This
method can faithfully represent the structure of arbitrary complicated vector fields. Although
there is no need for interpolation methods or robust numerical integration algorithms, this
approach can simply but precisely visualize vectorial data sets.

Locality of calculation, controllability Depending on the smoothness and continuity to achieve,
but also on the possibility to offer sufficient distinguishable visual representation and en-
coding, the input matrix may consist of (at most) as many samples as the different vector
values assumed by the vector parameter under consideration (parameter range), or it may
consist of a sampled version of this range, which permits to reduce the complexity and num-
ber of operations, still achieving satisfying continuous outputs with enough variation in the
information mapping. Locality of calculation thus yields a precise and reliable representa-
tion of the vector field information. Generating the output image on a per-pixel basis not
only allows to change the direction and resolution of the texture patterns, but also several
texture characteristics according to any arbitrary transformation function (§ 6.4) that refl ects
variation in the parameter values of the vector field.

Figure 3.30: Synthesized outputs: two vector fields are obtained both using two sets of different
input sample images chosen from Figure 3.8

Versatility The sample-based visualization provides a wide variety of appearances and visual at-
tributes, to improve the quality of the visualization and to contribute to an intuitive and
meaningful data representation. Various kinds of textures can be generated using a few pa-
rameters and can be used as seed for the resulting appearance, producing various types of
images. The presented method can depict the data information in an intuitive and easy to
understand way, which is desirable in every visualization approach. In fact, a severe draw-
back of many established existing techniques is that they are often even too sophisticated

56 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

and require a significant amount of interpretation to understand the relevant structures of a
vector field from its visual representation.

Generality The approach is fully general: every arbitrary vector field can be visualized, given an
arbitrary mapping from vector values to texture samples. This allows the generation of pop-
out visual features for application dependent critical values. High vorticity, as well as strong
curvature areas and singularities can be represented without limitations. The simplicity and
versatility of this algorithm allow its application in several different fields, representing a
confl uence of signal and image processing, computer graphics and vision, scientific visual-
ization and engineering applications.

Ease of use The method is easy to use and implement. Meaningful mapping between field param-
eters and image attributes is easy to define or select. For instance, a meaningful mapping
from vectors to examples can be defined by using phase and amplitude of the field to rotate
and scale a single sample texture. Once the parameters are set, the image generation is auto-
matic, but the user is still allowed to personalize in part the visualization in a post-processing
stage. The basic concepts can be mathematically described using concise formalism and a
few simple equations.

Customizability Process customization is easy thanks to a set of control commands. In a prepro-
cessing and initialization stage, it is necessary to set the inputs of the system, and eventually
select some visualization options. At a post-processing stage, again mapping options can be
applied to the generated image, offering the possibility to analyze the output under different
perspectives, testing different available encoding operators, which is particularly advanta-
geous, especially to optimize the perception of multiple co-existent scalar distributions (see
also Chapter 6).

Figure 3.31: Examples of synthesized vector fields.

3.5. RESULTS AND DISCUSSION 57

3.5.2 Contribution

The approach to vector field visualization presented in this chapter combines the fl exibility of
direct, icon-based methods with the effective use of display area typical for texture-based methods.
In a sense, the method generalizes texture-based methods to use arbitrary texture samples rather
than only noise.

It is fairly straightforward to use special example textures for critical points or special appli-
cation specific values in the vector field; furthermore, incorporating this feature should lead to
stronger visual results. For this reason it is important to exploit the idea of using special example
textures for critical points or special application specific values in the vector field.

This approach is also promising for the visualization of higher dimensional data or tensor fields
if some reasonable mapping from values to example textures could be defined. In general, I feel
that more investigation for suitable mappings from data values to example textures is needed, and
I go on in this direction in Chapter 5, 6. Finally, the current implementation would benefit from
using the latest possibilities in speeding up the texture synthesis computation.

To test the robustness of the algorithm under various conditions, I analyzed a number of dif-
ferent synthetic distributions, specially designed to characterize different vector field classes, also
characterized by singularities, areas of strong curvature or rapid change of direction. The final
images effectively capture the input sample appearance and represent the vector field information.

In summary, the proposed algorithm allows a direct mapping of the information contained in
the data onto textural visual representations. This results in a straightforward approach to vectorial
data visualization and controlled texture synthesis, regardless to the data set complexity.

.

.

.

Function synthesizePixel-b

1 for(y = 0; y < Hout; y++) {
2 for(x = 0; x < Wout; x++) {
3 {f(x,y)} = calculateFeatures(x,y);
4 Iin|(x,y) = transformSample({f(x,y)});
5 }
6 }

1 for(y = 0; y < Hout; y++) {
2 for(x = 0; x < Wout; x++) {
3 Nx,y|out = calculateNeighborhood(x,y);
6 {Ni, j}|in = calculateNeighborhoods(Iin);
7 bestMatch = compareNeighborhoods(Nx,y|out,{Ni, j}|in);
8 Iout(x,y) = synthetizeOutputPixel(bestMatch);
9 }
10 }
11 return Iout;

Table 3.2: Pre-computation of field features and input samples for generalized synthesis procedure.
Note that in this case the input samples Iin(x,y) (Win ×Hin) are pre-computed transforming Iin in
dependance of the features of the vector field calculated at the output locations (x,y).

.

.

.

.

.

58 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Function compareNeighborhoods-a

1 for each pixel (i,j) in Iin {
2 newDistance = D(Nx,y|out, Ni, j|in)
3 if(newDistance < ∆0) ∆0 = newDistance;
4 }
5 bestMatch = getBestPixelValue(P(i,j)|∆0);

Table 3.3: This function exhaustively compares the current output neighborhood with all neigh-
borhoods within the corresponding input sample.

Function compareNeighborhoods-b

1 for each pixel (i,j) in Iin {
2 newDistance = D(Nx,y|out,Ni, j|in)
3 if(∆δ < newDistance < ∆0) {
4 ∆0 = newDistance;
5 if(newDistance ≤ ∆δ) break;
6 }
7 }
8 bestMatch = getBestPixelValue(P(i,j)|∆0);

Table 3.4: This function compares the current output neighborhood with those within the corre-
sponding input sample until a specified threshold distance is reached.

.

.

Variable Meaning

Iin input sample image
Iout output sample image
Iout(x,y) value of output pixel (x,y)
Wout horizontal size - width - of Iout
Hout vertical size - height - of Iout
Nx,y|out L-shaped neighborhood of pixel P(x,y)|out
A vector field magnitude at current output position (x,y)
θ vector field angle of phase at (x,y)
Win horizontal size of Iin
Hin vertical size of Iin
Ni, j|in L-shaped neighborhood of pixel P(i,j)|in
distancei, j difference between the L-shaped neighborhoods
minDistance minimum distance between Nx,y|out and the neighborhoods

within {Ni, j}|in
bestMatch best match chosen after distance comparison
{f(x,y)} array of vector field features calculated at (x,y)
Iin|(x,y) instance of Iin transformed according to {f(x,y)}
{Ni, j}|in array of neighborhoods of the input image pixels
∆0 starting value for minimum distance
∆δ threshold distance

Table 3.5: Table of symbols

.

.

.

3.5. RESULTS AND DISCUSSION 59

Method Meaning

calculateNeighborhood calculates the neighborhood of the given pixel
calculateMagnitude calculates A at output location (x,y)
calculatePhase calculates θ at output location (x,y)
resizeInput scales the resolution of the input sample
rotateInput rotates the input sample by the argument
compareNeighborhoods calculates the distance between the neighborhood of

the current output pixel with that of one input pixel
findMinimumDistance compares all distances and finds the minimum one
getBestPixelValue within the input image, chooses the pixel, whose

neighborhood leads to minDistance
synthetizeOutputPixel sets the current output pixel (x,y) to the value of

bestMatch

calculateFeatures calculates features of interest of the vector field at (x,y)
transformSample modifies the original sample Iin according to the field

features taken as parameters for the transformation
compareNeighborhoods calculates an array of neighborhoods for the pixels of

the considered input sample

Table 3.6: Table of functions

.

.

.

.

.

.

.

.

.

60 CHAPTER 3. STEERING TEXTURE SYNTHESIS FOR VISUALIZATION

Chapter 4

Directional enhancement in
texture-based vector field visualization

In the context of this research (Chapter 3), texture synthesis algorithms have been applied for the
special application of vector field visualization. As explained later in this thesis this technique can
be successfully applied for the production of oriented and controlled textures, offering a variety of
effects. Recent related works in Computer Graphics (refer to § 2.2) also demonstrate increasing
interest in this sector. The use of textures, in fact, can provide in general a rich and diverse set of
possibilities for the visualization of fl ow data. Nevertheless, textures are often characterized by
more complex and structured patterns than those used in the previous chapter.

In this chapter, I introduce new classes of neighborhood models and weighting functions for
enhancing vector field direction in a synthesized, texture-based visualization. This investigation
provides new insights based on the specification and classification of neighborhood structures for
synthesizing a texture that accurately depicts a vector field; it results to be particularly effective
for textures applied to vector field visualizations, oriented textures and nonhomogeneous textures
in general. Suggestions for neighborhood shape, weighting functions, and similarity metrics are
presented in order to improve the synthesis of the resulting image, enhancing its property of direc-
tionality and resulted in [204]. This is especially motivated by the need for preserving continuity
and smoothness in the resulting visualization while using complex and structured patterns. Tex-
tures, in fact, are a traditional and natural instrument to visualize vector fields for the purpose of
analyzing the form and behavior of fl ow consistent with theoretical models, and to infer the under-
lying behavior of experimentally-generated fl ow fields. The use of textures allows for a consistent
and highly-detailed representation of a vector field, allowing an observer to both analyze and better
understand fl uid dynamics.

Figure 4.1: Standard texture synthesis vs. controlled texture synthesis: the controlled, field-driven
synthesis algorithm requires the input pattern to be synthesized along new directions.

61

62 CHAPTER 4. DIRECTIONAL ENHANCEMENT

4.1 Motivation and contribution

The need for innovative neighborhood specifications also arises from new applications that deal
with the synthesis of curved patterns, and also refer to Chapter 7). In order to visualize vector
fields and in order to generate controlled textures, patterns can be deformed, curved, modified and
controlled to follow given directions and orientations (cf. figures 4.1 and 4.2. Consequently, a
variety of deformation operations must be used to align a given pattern along a newly specified
direction, in addition to modifying the texture color, resolution and appearance in general. Current
texture synthesis techniques, however, do not adequately highlight the anisotropy of a texture
when synthesized in this fashion. In such cases, the output textures are directional outputs and
the synthesis procedure requires to be specially designed and improved in order to highlight and
stress the attribute of anisotropy. Although recent approaches (§ 2.2) has arisen, which consider
the idea of controlling texture generation, there have been surprisingly almost no investigation and
attempts to improve standard neighborhood models and weighting schemes.

Taking into consideration the texture-based visualization of vector fields introduced in the
previous chapter, the neighborhood search used to find the best fitting pixels at the output locations
requires a dynamic procedure. This procedure adapts to varying conditions by using different input
samples (Fig. 4.2) at different output orientations at each step in the algorithm. For this purpose,
I build a new class of neighborhoods, based on different pixel weighting functions. The main
contribution of this investigation is to provide an approach for accurate synthesis of controlled
textures along vector fields, using novel specifications to preserve the directionality of the samples
and maintain good resolution while changing the pattern alignment.

Figure 4.2: Standard texture synthesis vs. controlled texture synthesis: the pixels Pi of the output
Iout are set checking the most probable pixels in the input Iin (left); the best matching pixels are
derived from diverse samples (right).

4.2 Synthesis neighborhoods

4.2.1 Standard squared and L-shaped neighborhoods

As introduced in the previous chapters, in standard pixel-based texture synthesis [55, 241], the
output texture is commonly generated in raster scan order using either the squared or L-shaped
neighborhood structures. These structures are illustrated in figure 4.4. Since the main problem
in standard texture synthesis is to reproduce the characteristics of a small texture sample in a
larger domain, the neighborhood kernel must include sufficient surrounding information about the
pixels in order to reproduce the given pattern in a perceptually similar way. Consequently, the
neighborhood size is crucial and directly depends on the pattern structure complexity (Fig. 4.3).

4.2. SYNTHESIS NEIGHBORHOODS 63

The neighboring pixels around the current point serve to build an array of color values, which
have to be compared to similar neighborhoods, leading to the measurement of a probability. Such
a measure, usually a distance function based on the L2-norm, is used to find the neighborhood that
is most similar for the selection of the best matching pixel.

Figure 4.3: Different complexity in the structure resolution of the example textures.

Neighborhood size

Experimentations with different kernel sizes indicate that the output image quality is largely de-
pendent on finding a suitable neighborhood size for both the sample pattern structure and the vector
field. The image quality is often enhanced using longer kernel lengths, as the structure characteris-
tics of the sample pattern can better reproduce the statistics of the texture. However, a large kernel
size can be detrimental in the case of vector field that contains strong curvatures (short curvature
radius), as the resulting texture will have significant deviations from the vector field. Often times,
a compromise is required to obtain the best kernel size to accurately refl ect the texture sample and
the vector field.

Figure 4.4: Standard texture synthesis: the enlarged picture shows the L-shaped “causal neighbor-
hood” structure (yellow) around the current pixel to synthesize (green). The light-blue portion of
the image still needs to be completed.

4.2.2 Different neighborhood shapes

Using the standard texture synthesis approach, however, does not adequately highlight the anisotropy
that may be displayed in the sample input texture. For this reason, I build a new class of neighbor-
hoods, based on different pixel weighting functions. The goal is to provide an accurate synthesis
of controlled textures along vector fields, using novel specifications to preserve the directionality
of the samples and maintain good resolution while changing the pattern alignment.

In the course of this research, I have examined several novel shapes, such as rectangular, half-
rectangular, trapezoidal, or rhomboidal, for neighborhoods that could possibly better communicate
directional characteristics than a squared, or L-shaped, neighborhood. Insights from these exper-
iments have lead to the use of asymmetric instead of symmetric neighborhoods. The asymmetric
neighborhoods lead to improvements - stressing orientation in addition to directionality, or high-
lighting topological features extracted from the vector data. This also can be beneficial for the

64 CHAPTER 4. DIRECTIONAL ENHANCEMENT

synthesis of textures whose structure presents a secondary minor direction in addition to its prin-
cipal anisotropic direction. For these textures, an asymmetric (especially a trapezoidal) weighting
scheme is able to account for the two existing pattern directions.

Although it is straightforward to model and use irregular structures, I mainly prefer here, in
order to maintain algorithm consistency, to use regularly-shaped neighborhoods (eventually setting
the weights for the edges/corners to be zero), and to use the weighting schemes introduced later to
simulate different behaviors and neighborhood shapes.

4.3 Non-uniform neighborhood filtering

4.3.1 Anisotropic neighborhood model specifications

Using a MRF-based approach to vector field visualization, the input samples are weighted heavily
or oriented in a principal direction. I especially use anisotropic directional patterns that present a
major direction and smoothly vary along the other one. The method is easily adaptable to rotations
and changes of curvature that often occur in a vector field. In order to maintain and enhance the
properties of the vector field during the synthesis, the pixels that build a neighborhood should not
be uniformly weighted as in the standard texture synthesis case. An anisotropic weighting scheme
is better suited to preserve the directionality and to enhance continuity along the field direction.

4.3.2 Bilateral filtering

Bilateral filtering has been introduced by Tomasi and Manduchi [211] and later applied in several
applications (refer for instance to [52]). It is a non-iterative scheme for edge-preserving smoothing.

The basic idea of bilateral filtering is to operate in the range of an image in the same man-
ner traditional filters do in the domain. Two pixels can be close to one another by occupying
nearby spatial location, or they can be similar to one another by having nearby values, possibly
in a perceptual meaningful fashion. Closeness refers to vicinity in the domain (geometric close-
ness), similarity to vicinity in the range (photometric similarity). A possibility for measuring pixel
similarity is to use the CIE-Lab color space, which enables a measure of color similarity that
is correlated with human color discrimination performance. The bilateral filter was designed to
maximally suppress image noise with minimal impact on the underlying signal image [211]. The
kernel of a bilateral filter is composed of an inner product of two low-pass filters in real space. The
first is a normal low-pass filter, which averages the neighboring pixel count values with decreas-
ing weights for pixels at larger distances. The second kernel is also a type of low-pass filter, but
the weights for the neighboring pixels are derived from the pixel count value differences from the
center pixel, instead of geometric distances. Hence, the larger pixel count difference, the smaller
the pixels’ contribution during filtering, resulting in a measure of similarity.

Under these considerations, concepts from bilateral filtering can be used in the weighting
schemes approach as illustrated below. The feature of edge-preserving smoothing is particularly
advantageous to enhance directionality in texture-based vector field visualization. I use the mea-
sures of Euclidean distance (domain) and intensity differences (range) as similarity metrics. The
bilateral filter kernels take a form that depends on the weighting function. I use for instance the
Gaussian case; consequently, the combination of the two filtering operators (product of Gaus-
sians) leads to coefficients that fall off with distance and dissimilarity from the central pixel of the
weighted neighborhood.

4.3.3 Gaussian filtering and kernel coefficients

Gaussian low-pass filtering computes a weighted average of pixel values in the neighborhood, in
which the weights decrease with distance from the center. To derive the kernel coefficients, digital
filters can be designed using a direct (FIR) or recursive (IIR) form. The direct form is obtained as

4.4. ISOTROPIC AND ANISOTROPIC WEIGHTING SCHEMES 65

Figure 4.5: Circular and elliptical weighting schemes.

a finite number of samples of the desired impulse response. The recursive form is designed as a
ratio of polynomials in the z domain. Further, binomial filters provide a third method for designing
Gaussian filters, they are obtained with cascaded convolution of a kernel filter composed of [1,1]
(auto-convolution). The set of filter coefficients is known as binomial series, and can be computed
using Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 5 1
1 7 21 35 35 21 7 1

(4.1)

In this triangular structure, each entry can be derived by summing the relative two parents from
the upper level. Analytically, the coefficients Cn,k (n representing the row in the triangle, and k the
coefficient count in the row) are given by:

Cn,k =

(

n
k

)

=
n!

k! · (n− k)!
(4.2)

Cn,k =

{

1 i f k = 0,k = n
Cn−1,k−1 +Cn−1,k ∀ k 6= 0,n (4.3)

4.4 Isotropic and anisotropic weighting schemes

As opposed to storing the pixels of the neighborhoods in a uniform fashion, it is possible to
adopt non-uniform weighting scheme to give more relevance to pixels near to the center - circular
isotropic weighting scheme, or to particularly enhance directionality properties in the synthesis
- elliptical anisotropic weighting scheme. Thus, when comparing neighborhood arrays, pixels
distances are weighted in dependence on their location with respect to the center.

4.4.1 Circular neighborhood

The circular neighborhood model can enhance the information contained in the current pixel in a
simple way, letting the value of the surrounding pixels decrease with respect to the distance from
the center.

66 CHAPTER 4. DIRECTIONAL ENHANCEMENT

Figure 4.6: Anisotropic weighting of a 3-sized neighborhood, where grey pixels are assigned
stronger weights to stress the direction of the vector field. The 4 orientation instances circled in
yellow are usually sufficient to produce good results.

Unlike standard texture synthesis, this approach, seen as field-driven texture synthesis, con-
stantly uses different input samples. These samples are commonly modified versions of an original
input pattern, which are derived from different conditions that depend on the control vector field.
Thus, the neighbor search for the best match is dynamic; the best fitting pixel selection does not
constantly take place inside the same input sample and therefore the pixels chosen to synthesize
the output could produce visual artifacts in the resulting texture.

To avoid these artifacts, a pixel-centered approach can be used, where the weighting function
considers the pixels in a circular manner. The values of the pixels near the pixel being considered
are given a stronger weight, while the edges and corners are assigned a less significant weight.
In case of strong curvatures in the vector field, the pixels in the neighborhood of the pixel under
consideration still contribute to describe the field direction, while the pixels at the corners or edges
of the neighborhood are derived from a previous synthesis using rotated versions of the neighbor-
hood. The infl uence of the pixels on the outside of the filter needs to be constrained as they could
lead to discontinuities in the resulting image. This motivates that the synthesis algorithm to not
operate in scanline order, as is traditionally done, but in the direction given by the vector field [73].
This ensures that the algorithm maintains the pattern continuity in the principal direction.

The functions that are most suited for such weighting are monotonically descending functions,
such as fall-off Gaussian functions or decreasing exponential functions, where the decay factor
can be specified in dependence of the field velocity and the curvature radius. Again, there exists
a trade-off between computation efficiency and image accuracy. A simple radially symmetric
weighting function using a 2d Gaussian can be described by

GC(x,y) =
1

2πσ2 exp−
x2+y2

2σ2 (4.4)

and leads to the weighting scheme illustrated in figure 4.5-left.

4.4. ISOTROPIC AND ANISOTROPIC WEIGHTING SCHEMES 67

Figure 4.7: Directional enhancement using the elliptical weighting scheme.

4.4.2 Elliptical neighborhood

Next, I adapt the circular neighborhood structure to a more directionality sensitive one: the ellip-
tical structure. I specify this family of neighborhood models for use in controlled oriented texture
synthesis. The relative structure is elliptically shaped (Fig. 4.5-right). In other words, the weights
of the neighboring pixels are weighted using an elliptical scheme.

I use the following expression

GE(x,y) =
1

2πσxσy
exp

−
x2

2σ2
x exp

−
y2

2σ2
y (4.5)

to obtain an elliptical Gaussian for the weighting scheme. In this formula, two standard de-
viations σx and σy are used to differently control the fall-off of the Gaussians along the x and y
directions.

An oriented elliptical Gaussian can be then expressed by

GE,ϑ(x,y,ϑ) =
1

2πσuσv
exp

−
u2

2σ2
u exp

−
v2

2σ2
v (4.6)

with the change of coordinates:

{

u = x · cosϑ− y · sinϑ
v = x · sinϑ+ y · cosϑ (4.7)

that controls the rotation by the angle ϑ. Examples of possible masks, where intensity values
are used for the weighted pixels, are shown in Fig. 4.8-top. Similar to the circular neighborhood,
the intensity of the weights decreases from the central pixel to the external borders of the neigh-
borhood. In contrast to the circular neighborhood, the pixel weights do not isotropically decrease
from the center. Instead, the weights more rapidly decrease in the direction of the minor axis and
more slowly in the major axis direction of the ellipse. The major axis of the elliptical neighbor-
hood is oriented in the direction of the vector field that defines the new pattern orientation and
controls the deformation of the resulting textured image (Fig. 4.7). Orientating the major direction

68 CHAPTER 4. DIRECTIONAL ENHANCEMENT

of the elliptical neighborhood along the deformation or the vector field allows for a better control
the output texture generation. This direction is given by the phase of the control vector field.

The range of values, angles, and orientations depend on the size of the neighborhood structure.
Smaller neighborhood models can define just a few independent directions, as the two principal
axis cannot greatly differentiate in orientation if the size is limited. On the contrary, neighborhoods
characterized by having large size can better distribute anisotropic weights, specifying several
possible directions and orientations for the major axis. The amount of such degrees of rotation is
directly related to the radius of the neighborhood model.

In figure 4.6, I show for simplicity the case of a 3-sized neighborhood, where possible orienta-
tion spanning in the range [0◦,360◦] and where the 4 principal orientations for elliptical weighting
are circled. Note that in case the original pattern only presents characteristics of directionality,
the orientations that differ by 180 degrees are identical. In case the original pattern additionally
presents directionality (e.g. directional glyphs), one can also distinguish between opposite aligned
cases.

In squared circular elliptical

Table 4.1: Controlled texture synthesis (fabric and green-scale patterns) along curved vector fields.
Using a five-sized kernel, the proposed elliptical weighting scheme (right) shows significant im-
provements with respect to the circular and the standard squared neighborhood.

Table 4.1 shows a comparison of results obtained using the different neighborhood structures.
For each example, I generated the textures using the same input sample and the same neighbor-
hood size. The anisotropic elliptical weighting scheme (right column) proves to achieve significant
improvements in the quality of the images with respect to the standard approach based on squared
neighborhoods (left) and also to the circular scheme (middle). It results that elliptical and circu-
lar schemes typically produce more detailed images with fewer artifacts than the squared neigh-
borhood. Additionally, it can be said that the more directional the pattern, the more significant
improvements are achieved with the elliptical scheme.

It is necessary to note that good results can be obtained using standard neighborhood structures
as well: examples, in part obtained without the enhancement improvement, can be seen in Chapter
7; nevertheless, in order to achieve results with the same quality of those obtained with the elliptical
scheme, larger neighborhoods are needed, leading to longer computational times and complexity.

4.4. ISOTROPIC AND ANISOTROPIC WEIGHTING SCHEMES 69

Figure 4.8: Elliptical weighting schemes, with different eccentricity and orientation (top); weight-
ing schemes designed by composition of oriented elliptical Gaussians (bottom).

Table 4.2: Obtained results for fabric, bricks, tissue, straw and green-scale patterns patterns.

70 CHAPTER 4. DIRECTIONAL ENHANCEMENT

4.4.3 Further weighting schemes: blobs

Blobs, first introduced by Blinn [25] are procedural surfaces, which can be generated by summa-
tion of several functionals. Simplifying these concepts, summation of 2D Gaussians can be applied
here to specify arbitrary weighting schemes, to optimally fit the pattern of structured textures. Ex-
amples of possible weighting masks are shown in Fig. 4.8-bottom.

For instance, the sum of the elliptical Gaussians GE(x,y) and GE,ϑ(x,y,ϑ) leads to

GB,ϑ(x,y,ϑ) =
1

2πσxσy
exp

−
x2

2σ2
x exp

−
y2

2σ2
y +

1
2πσuσv

exp
−

u2

2σ2
u exp

−
v2

2σ2
v (4.8)

where the same rotation of coordinates (from equation 4.7) applies. This expression corre-
sponds to an envelope of the two 2d Gaussians, the one oriented by an angle ϑ, with respect to the
other. This roughly corresponds to a trapezoidal neighborhood scheme, as described in § 4.2.2,
which is beneficial for weighting complex textures that present two (orthogonal or not) or more
principal directions.

4.5 Extensions

4.5.1 Spherical and ellipsoidal neighborhoods

MRF-based vector field visualization can been extended to the temporal domain, permitting the
visualization of unsteady vector fields. Additional fields of applications can be found in the visu-
alization of tensors, as well as in generating solid textures. To achieve this, a three-dimensional
cubic neighborhood is used (see Chapters 5, 7).

Extending the proposed neighborhood specifications to the three-dimensional domain, the
weighting functions can be usefully adapted adding a third extra dimension. Circular neighbor-
hoods become spherical neighborhoods and elliptical neighborhoods become ellipsoidal neigh-
borhoods. The concepts explained above for the two-dimensional case apply here in the same
way, with the only addition of the third dimension. The weighting functions are now defined to
operate in the space (x,y,z) instead of simply in the plane (x,y).

4.5.2 Sample textures bending

A further improvement can be achieved through specification of optimized input samples. An ex-
ample is given by patterns containing multi-frequency characteristics, as introduced in the previous
chapter. This guaranties more continuity and better matching chances between pixels, especially
when synthesizing an output using several resized samples.

A further notable improvement can be achieved curving anisotropic samples and using them to
compose a broader set of input seeds, characterized by different degrees of eccentricity to match
different values of curvature for the vector field visualization. In fact, an intrinsic structural lim-
itation of using static example patterns as primitive for vectorial outputs is given by the fact that,
although anisotropic inputs still can be arbitrarily modified through rotation and further operators,
they do not present anyway curved features. It could occur, in areas of strong curvature of the
vector field, that discontinuities arise, since the best matching search within the input pattern is not
able to find the optimal pixel corresponding to the output field feature, but only a sub-optimal one.

However, since the algorithm works at a per-pixel level, and since rotation or transforma-
tion over the sample can be performed in an accurate continuous way, the presented results show
that the proposed steerable texture synthesis still works pretty well and better than previous tech-
niques, especially in critical areas of the vector field, where it presents strong curvature. Although
the method produces satisfying results, preliminary investigation, which considers bending input
texture examples to build a more complete matrix of input seed providing a more complete input

4.6. COMMENTS 71

set, provides promising improvements and interesting extensions that require further research.

4.6 Comments

The use of textures allows for a consistent and highly-detailed representation of a vector field,
allowing an observer to both analyze and better understand the dynamics of fl uid fl ow. Flow
textures have traditionally been limited to synthesized renderings where additional attributes are
displayed with color, differences in spatial frequency, or contrast enhancements and are added
in an artificial manner. The presented approach utilizes the qualities and attributes of textures to
visualize scalar distributions and vector fields related to a planar velocity field.

The texture synthesis algorithm presented allows for a controlled, pixel-by-pixel approach that
mimics the sample texture effectively in areas of high curvature as well as throughout the en-
tire domain. By using an elliptical kernel oriented in the principal direction of fl ow, the texture
synthesis approach effectively captures the fl ow orientation, minimizing artifacts, while maintain-
ing the statistical properties and appearance of the input texture. Novel model specifications and
weighting schemes to model the neighborhoods are introduced. They produce promising results
to enhance directionality in texture-based vector field visualization and guarantee continuity also
in areas of strong curvature. The use of anisotropic filters for texture synthesis, unlike conven-
tional algorithms, results in fact in a higher quality texture as it is synthesized over a vector field.
This technique allows the integrity of the texture to be maintained while it accurately refl ects the
underlying curvature of the fl ow.

72 CHAPTER 4. DIRECTIONAL ENHANCEMENT

Chapter 5

Multi-valued visualization

Experiments and numerical simulations yield nowadays high-resolution multivariate data. Data
sets can be incredibly rich and complex, consisting of several quantities, defined at numerous
points on a two- or three-dimensional grid. The size of these data sets increases rapidly as the
dimensionality grows when the data are dependent on time or on one or more parameters [85].
Although the inherent 2d layout of printed paper, the display of the computer screen and its lim-
ited spatial resolution restrict the number of graphical icons that can be displayed at one time,
techniques can be developed to enhance visualization effectiveness and perception of data dimen-
sionality. In the following, strategies for multi-valued visualization applications are proposed to
solve this problem. This research has been in part conducted in cooperation with Professor Vic-
toria Interrante and Timothy Urness, from the department of Computer Science and Engineering,
during my stay at the University of Minnesota, in Minneapolis, and has resulted in some related
publications [192, 195, 204], and some ongoing work [205]. Beside proposing a solution for the
popular task of vector field visualization, the aim of this research is to provide a general approach
for the visual representation of multi-valued data sets. As recognized in the STAR of Post et al.
[155], comparative visualization and multisource comparative data analysis, as well as visualiza-
tion of multivariate fields with scalar, vector and tensor data are particular important and need
additional work. The behavior of complex phenomena in the real world is often described by a
combination of many quantities and physical laws: several parameters and data sets have to be
taken in account in order to generate a suitable visualization of the carried information, which has
to be good perceived and understood. Many multi-parameter fields are variable over time and their
features may need to be tracked along such temporal variation. Higher order fields as well, such as
tensors, are present in numerous scientific fields and play a fundamental role, nevertheless they still
often remain difficult to investigate and understand, due to their high dimensionality. In addition,
from one side, a given field may comprise several variables and need an independent visualiza-
tion of such information at every point; from another point of view, one may want to visualize
more than one vector field at the same time. Such a simultaneous visualization of different fields
- multi-field visualization - on the same grid is significant for instance for comparison or for the
analysis of possible relative infl uence or interaction. The techniques presented in this chapter at-
tempt enabling users, both experienced or not, to obtain an effective and meaningful visualization
of multi-valued data and allow the simultaneous or independent visualization of several scalar and
vector distributions, permitting an easy understanding and user-centered analysis of the quantities
and features of interest.

With respect to the basic approach described in Chapter 3, I focus here on a more general
and broad approach to visualization of vector fields, regardless to their amount of parameters,
dimensionality and temporal dependence. To achieve this more complex target, the proposed
algorithm is here extended to allow multi-parameter visualization. The extensions go in several
directions: in the following I describe the general context of multi-valued visualization, together
with notions and relative required algorithm adaptations for

• multivariate multi-parameter fields and especially temporal fields

73

74 CHAPTER 5. MULTI-VALUED VISUALIZATION

• higher-dimensional fields

• multi-fields

Solutions and examples are proposed for each of these cases.

5.1 Multivariate fields

Context and fields of application

Multivariate analysis is important in many areas of scientific inquiry. In the simple case of basic
measurements of an element, the description of its condition requires at least the coordinate of its
3d physical position, its temperature, pressure and density at a given time. Hence, in such example,
already a plenty of variables are present simultaneously. If the subject matter to be studied is more
complicated, it will involve much more dimensions. In addition, some variables often interact with
each other and it could be desired to visualize multivariate relationships. Vector variables are for
instance velocity, vorticity, magnetic or electric field, a force or the gradient of some scalar field,
etc. Tensor variables might correspond to stress, strain or rate of deformation, et cetera.

Multivariate visualization comes to the fore when researchers have difficulties in compre-
hending many dimensions at one time. Researchers of many different scientific and engineering
communities (but concepts are also extensible to statistics or human sciences) have always been
interested in a deeper understanding of the key mechanism and meaning of complex data sets.
Visualization techniques are often considered valuable to meet the demands of multivariate data
because of their ability to portray numerous aspects of the data simultaneously.

In this section, I consider multivariate vector fields, distinguishing between significant sub-
classes:

• vector fields characterized by multiple variables: multi-parameter fields

• three-dimensional fields, such as terrains: height fields

• fields that vary over time: temporal fields

Briefl y explained, general attributes can be visualized through data encoding, elevation vari-
able can be represented through bump mapping (related to the z cartesian coordinate), and tem-
poral evolution can be achieved generating successive field frames, depending on the additional
t temporal coordinate. It can still be considered that, with theory translation and limited effort,
the combined visualization of different multi-valued fields is possible. While the first two classes
(multi-parameter and height fields) can be treated as done for simpler fields, taking advantage
of intuitive encoding strategies, on the other side visualizing time-variant vector fields, depicting
their evolution over time, requires a more consistent algorithm extension. For this reason, I briefl y
describe applications for the first two classes of multi-valued fields (§ 5.1.1, 5.1.2) and spend then
more time in explaining temporal fields (§ 5.1.3), which represent a very common and important
case of multi-parameter fields.

5.1.1 Multi-parameter fields

In Chapter 3, I limited for simplicity the representation of a vector field Φ to the representation of
its phase and magnitude. The vector field Φ, as in equation 3.15, is in general in d dimensions:

Φ(x,y) ∈ R
d = {ϕ0 ϕ1 ϕ2 . . . ,ϕd−1} (5.1)

Hence, when additional parameters such as general scalar and vectorial distributions are of
interest to be visualized, this information can be simply mapped using encoding strategies. For

5.1. MULTIVARIATE FIELDS 75

this target, in the next chapter solutions are presented to map data onto visual representations,
according to intuitive criteria. This can be achieved also using layers and transparency, to allow
data investigation, focusing on one or more variables at the same time, and using several visual
representations to depict multiple data attributes.

Using encoding strategies, it is possible to augment the visualization approach described in
Chapter 3. This allows simple 2d images to display several variables; it is in fact possible to
map additional variables representing them by different shapes, sizes, colors, and locations of
complex symbols (glyph). In this sense, this leads to a sort of hybrid visualization technique, where
the proposed dense texture-based algorithm developed using MRF statistical theory is integrated
with global imaging techniques making use of direct, geometric and feature-based visualization
concepts. Symbol size and placement (angle, orientation) can contribute to map an additional
variable, or icons can be added to indicate parameters as well. In the next chapter, I provide a
more detailed explanation and present an approach to multi-valued visualization based both on
multiple-symbols (§ 6.4) and on multiple-views (§ 6.6).

5.1.2 Height fields

Most two-dimensional visualization techniques do not allow the representation of three-dimensio
nal data. Using special encoding methodologies, it is possible to visualize this additional variable.
In the presented approach, height or elevation fields are basically treated like other vector fields,
with the difference that their peculiar feature of elevation needs now to be visualized with particular
focus. Information encoding using colormaps or glyphs can be used to visualize and highlight the
height variable, as well as small-scale geometric texture characteristics.

A particularly effective and perceptually intuitive way to represent such additional information
is given by the bump mapping technique. When visualizing three-dimensional data sets in the
plane, the third dimension along the z axis can be encoded using bump mapping. Such filter
provides a sense of depth in a very effective way. Perception of bump and valley is automatic
and a simple luminance map provides an impression of a three-dimensional visualization, still
furnishing simple 2d output image, where it is still possible to map further attributes. The intensity
values of the bump map image can be interpreted as height displacements.

The bump mapping technique was invented by Jim Blinn [24], and was later used for a variety
of applications, including BLIC (Bumped LIC) [171].

Bump mapping can be easily integrated in the proposed approach, to map the additional scalar
z, augmenting the output image with bumps and depressions (Fig. 5.1). In some cases, a redundant
visualization of some parameters may help better data analysis1. This method is able to simulate
bumps and wrinkles like in a surface, without the need for geometric modifications2. In the case
examined in this work, the scalar z is used to obtain a bump map (or altitude map) that leads
to bumps or depressions according to the sign of the scalar z. This can be used over the output
image, or also to modify the input samples, letting correspond this scalar value only to the lines
characterizing the lines of the field fl ow, and thus leaving the background of the samples unvaried.

5.1.3 Temporal fields

Besides being characterized by a set of diverse parameters, vectorial fields also may vary over time.
Time-dependent vector fields represent a special class of multivariate vector fields. Additionally
to other variables, the time domain needs thus to be represented and leads to the generation of
successive temporal frames, which depict the evolution of the vector field over time, and which
can successively be animated.

1By using a redundant representation, different perceptual channels can simultaneously process features of the data
distribution [162].

2In bump mapping, the surface normal of a given surface is perturbed according to a bump map, and the perturbed
normal is used instead of the original one when shadows are computed using the Lambertian technique. I remand to
[24] for a more detailed explanation of the technique.

76 CHAPTER 5. MULTI-VALUED VISUALIZATION

Figure 5.1: Vector field visualization enhanced by a brightness map.

The analysis and the visualization of time-dependent vector fields, in general unsteady fields,
is fundamental in scientific visualization and computer graphics. Relevant applications can be
found for instance in kinematics, solid mechanics, fl uid- and aerodynamics, magnetics and elec-
tromagnetism, meteorology, physics, and many others. Despite intensive research efforts and many
interesting methods that have been developed, the representation of complex fl ow fields and mul-
tivariate vector fields remains challenging, and the need for a general and adaptive method still
exists, especially when visualizing unsteady vector fields.

In this section, a fl exible approach to time-variant vector fields is proposed. It incorporates the
temporal domain as additional variable as extension of the previously explained method (Chapter
3). This method uses a simple approach to generate a smooth and continuous visualization with
correlation in the spatial and temporal domains.

Handling not-stationary vector fields

Usually, visualizing the evolution of vector fields and the variation of their parameters is difficult
and most visualization approaches encounter problems or have difficulties when the fields are
not stationary or unsteady. Unsteady flows originate from fields that vary over space and time.
Temporal vector field visualization is a very productive area of research and numerous techniques
exist. For this reason, I remand to [155, 156] for good surveys and more complete state of the art
on temporal vector fields and fl ow visualization.

The most prominent dense and texture-based techniques for fl ow visualization are adaptation
or extensions from existing methods valid for steady field visualization. Many methods base on the
Line Integral Convolution (LIC) technique [35] and achieve good correlation. The basic primitive
is a noise texture that is smeared in the direction of the vector field. UFLIC (Unsteady Flow LIC)
is based on the Line Integral Convolution technique [177] and achieves good spatial and temporal
correlation. However [99], the images are difficult to interpret: the paths are blurred in regions of
rapid change of direction and are thickest where the fl ow is almost uniform. Spot noise [230, 206]
uses a spot as basic primitive: a spot is an ellipse or another shape that is warped and distributed
visualizing the vector field. The method has later been adapted [45] to fl ow visualization and
extended [43]. The spot noise technique also has been extended to the visualization of unsteady
fl ows [41], but, as in the steady case, a large collection of spots is created to cover the image,
their positions need then to be integrated along the fl ow, bent along the local pathline, and finally
blended into the animation frame. Further methods, still based on particle position integration,
have been proposed [138, 13, 98]. Max & Becker [138], van Wijk [231] visualize fl ows anima-
tions respectively by warping textures on triangles, and advecting and motion blurring particles by
the fl ow field. Successively, Crawis and Max [39] extend the method in 3d using texture splats.
Traditionally, unsteady fl ows are represented via a collection of pathlines that originate from user-
defined seed points. These trajectories are often visualized in experimental laboratories through
the injection of dye into the fl uid [99]. As for steady fields, though, using user-defined seed points
could lead to problems in the visualization, in case the chosen points miss regions of interest. Ap-

5.1. MULTIVARIATE FIELDS 77

proaches for dense visualization are possible, the major challenge, however, is to guarantee good
spatial and temporal correlation and to generate smooth animations. Combining the advantages
of Lagrangian and Eulerian formalisms, the LEA method [98, 99] provides a good solution for
unsteady fl ow visualization at interactive rates. In advection, pixel or texels are advected back-
ward (backward coordinate integration) in the direction of the vector field. Accelerated version of
the method have been proposed [246]. An interesting extension to LIC, also using concepts from
advection is the image based flow visualization (ibfv) by van Wijk [232]. He simulates advection
and decay of dye by defining each frame of a fl ow animation as a blend between a warped version
of the previous image and a number of background images.

These methods help providing good visualization, but do not always result to be general: as
described in the vector field visualization survey (§ 2.3), also their extensions to unsteady field and
fl ow visualization still suffer the same limitations. Direct visualization is intuitive but may miss
density and accuracy, geometric visualization directly communicates information but is sometimes
too simplified; feature-based visualization may be too specialistic for inexperienced users.

Unlike the existing techniques, the method presented in this thesis allows a straightforward
extension for the visualization of unsteady fields as done in the simpler case of steady fields.
This technique provides dense representation of time-dependent vector fields; the visualization
approach is still based on the proposed MRF algorithm, which makes use of texture synthesis and
statistical theory, so that it does not encounter additional difficulties when the field is variable in
the temporal domain. This approach does not need critical variations under changed conditions.
No physical equation needs to be solved and no time integration is necessary. The key point is still
the setting of the pixel color on the base of best matching neighborhood search.

Steady vs. unsteady fields

Steady fields Φ(x) are n−dimensional (nD) fields whose lines of fl ow do not vary over time: x
represents here the n ·D locations of the vectors within the fl ow domain Ω. The placement of
the lines of fl ow do not change, and if it is desired to visualize the variation of a given parameter
over time, color coding or similar direct techniques (for instance using intuitive color table map or
advection) can be used to represent particle motion

Φ(x) = ẋ =
dx
dt

, x ∈ Ω ⊆ Rn,Φ ∈ Rn, t ∈ R (5.2)

along the fl ow lines. This ordinary differential equation determines the integral curves of the
vector field. A simple algorithm extension can thus communicate dynamics and variation of vari-
ables, ideas of relationship and sense of movement in a straightforward manner. In case only a
single scalar parameter of the vectorial data set is changing, color shift and changes in a given
color range can easily produce a very effective visual communication of the varying phenomenon.
In effect, in case of steady fields, the texture pattern representing the streamlines, once computed,
remains valid for all frames, being in time-independent fields the topology and magnitude distri-
bution of the fl ow constant over time.

In the case of more complicated unsteady fields, i.e. time-dependent, Φ(x, t):

Φ(x, t) = Φ(x(t), t) = ẋ(t) = dx(t)
dt

Φ(x, t) : Ω×Π → Rn,x ∈ Ω ⊂ Rn, t ∈ Π ⊂ R
(5.3)

the lines of the fl ow field vary their trajectories over time, and pathlines are solution of the
differential equation for a given starting position x(0). Here, potential visual artifacts, such as
pulsation, synchronization, fl ickering effects must be avoided when animating the sequence of the
MRF-based images, which represent the temporal instances of the unsteady vector field. In the
formula above x is again the spatial reference of the fl ow, Ω is the n−D Euclidean space, and t
represents the system time, consequently, if t is considered to be constant, i.e. for steady fl ow data,
the more simple case of Φ(x) : Ω → Rn is given.

78 CHAPTER 5. MULTI-VALUED VISUALIZATION

Tracking of features

An appropriate mapping of features to visual patterns, symbols or colors highlights the variation of
time-dependent parameters and permits to observe them moving or changing during the animation.
This allows to follow and track a special attribute of the field during its temporal evolution, or
to analyze the behavior of singularities or special areas of interest while the lines of fl ow vary
over time (refer to § 6.3 for topological extraction of features). This is of relevance to describe
how features evolve in time. During the evolution, certain events can occur, such as interactions
between two or more features, or significant changes in the features shape.

Achieving temporal and spatial coherence

Let Φ be now a time-dependent vector field Φ(x, t), or here Φ(x,y; t), we aim at visualizing its
variation ∂Φ/∂t in time. In the algorithm, each vector ~v = Φ(x,y; t) defines an example texture
image τ(~v). In the visualization, every frame of the vector field temporal evolution is generated
similarly as done in Chapter 3; each pixel at (x,y) and at time step t is computed using an appro-
priate (see detail below) neighborhood or neighborhood pyramid of that pixel and a MRF-based
texture synthesis method with example texture τ(Φ(x,y)).

Adapting the proposed technique to accept time as extra dimension allows producing dense
smooth visualization of unsteady vector fields in a very uncomplicated way. The suggested algo-
rithm remains texture-based: the field, which may depend on various quantities and on time, still
determines how a chosen basic pattern of a texture has to be transformed and adapted to locally
represent the features and variation of the field. The texture synthesis method aims at generating
globally smooth textures and yields dense visualizations of the vector field. Extending this syn-
thesis in time leads to texture-based animations with frame-to-frame coherence. Smoothness in
spatial and temporal domain is achieved. This approach is general and produces unsteady field
visualizations in an intuitive and straightforward way.

Briefl y, I adapt the algorithm and the basic technique from Chapter 3 to accept time as extra
dimension. A set of frames is generated, where each one represents a temporal instant of the vector
field evolution; this sequence of frames can be then animated to visualize the field variation. An
enlarged 3d neighborhood is introduced and illustrated below as novel structure to specify inter-
pixel correlation; in this way it is possible to keep trace of previously synthesized frames and use
this information to maintain coherence and continuity along the temporal evolution besides the
spatial domain. According to which one of the past frames is being considered to contribute to the
next step of the temporal sequence, an adequate weighting of the neighborhood pixels is used. In
this way, a sequence of frame-coherent textured images produces the animation.

One-frame synthesis for multi-valued visualization

For the generation of the starting frame of the temporal sequence, I use the basic algorithm (§ 3.4).
As previously done, a given array of vector values or an arbitrary functional expression of the field
are accepted as input to generate a dense visualization of variable vector fields. The target is again
to produce a vector field visualization, where every point in the output is appropriately colored.
This color value should represent the combined information of scalar values, direction, orientation,
carried by the field at that specific point and time. The user may choose sample patterns to control
the appearance and certain properties of the vector field. In this sense, the visualization remains
sample-based, as a space of example images is used to create an appropriate appearance of the
resulting field.

The technique is implemented using a multi-resolution representation (§ A.2.1). In this way
it is possible to generate static vector fields combining the technique with the controlling action
of a deformation field. By adequately modifying the input samples through operators (typically
scale A(x,y; t) = ||Φ(x,y; t)||, and rotation θ = arctan Φy(x,y;t)

Φx(x,y;t)) the vector field is turned into a visual
representation. The basic technique described for static vector fields is used to visualize the starting

5.1. MULTIVARIATE FIELDS 79

source
data

MRF-based
visualization

process

output

vector field

sample

CP

ROI

attributes

features
and

information
mapping

topological
analysis

image
processing

filtersuser

Figure 5.2: Block diagram for the generation of one frame (left) and resulting example (right).

step of a field temporal evolution, and it is then extended to generate the succeeding frames. Figure
5.2-left sketches the pipeline to initialize the visualization process. In the scheme, the blocks on
the left side are the inputs of the system. The source file may be in form of raw data or functional
description. Through topological analysis prominent features can be calculated while they vary
over time: this includes identifying critical points (CP), choosing regions of interest (ROI) and
calculating further fl ow attributes, as direction, orientation, magnitude, divergence, curl, etc. At
this step, the user can directly contribute to personalize the visualization process. He may decide
how to map those field features in order to get an intuitive visualization and observe how some
peculiar attributes change and move over time. For instance one can highlight the field velocity
through brightness intensity, or map a scalar temperature or pressure field to a given color range.
He can also use image processing filters (e.g. blurring, sharpening, embossing) to progressively
modify the input example in an adaptive way, by mapping features variations to gradual change of
filter parameters. Some of the described blocks in Figure 5.2 are optional: in the simplest case just
the example texture and the source data are available as input for the system. The user still may
adaptivelymap the field attributes in a post-processing phase.

Synthesizing consecutive frames

When using the basic approach to static vector field visualization, the method achieves continuity
in the spatial (x,y) domain through the per-pixel synthesis that takes advantage of spatial locality.
On the other hand, in order to preserve continuity in the temporal domain t as well, I take now
into account information from the previous steps. The MRF model helps to combine and organize
spatial and temporal information by introducing strong generic knowledge about the features to
be estimated, namely, the pixel values of our visualization. Consider to synthesize a still frame
representing the structure of the fl ow at a fixed time t: an appropriate value is assigned to each
point of the output frame after taking into consideration information from the spatial and the
temporal domain. This information is namely derived using the pixel neighboring pixels plus a
neighborhood, or set of neighborhoods (§ A.2.1), at the corresponding position from the previously
synthesized step, or steps, at time (t −1), or {(t −1),(t −2), . . .}.

The block scheme in Figure 5.3 illustrates the generation of the output sequence. Note that the
scheme of Figure 5.2 has to be inserted here in the pipeline and it represents the dashed block. Us-
ing the previous iterations as feedback, the set of subsequent frames is synthesized in a recursive
way. The iteration loop is performed T times, where T is the desired number of frames, determin-
ing the length of the output sequence. The animation of the whole set shows then the vector field
in motion.

80 CHAPTER 5. MULTI-VALUED VISUALIZATION

t=0

t>0

t=0
t=1

t=T

recursive synthesis

single frame
synthesis

output sequence

...

input

Figure 5.3: Block diagram (left) for visualization of unsteady fields frames (right).

Three-dimensional neighborhood - cubic neighborhood structure

In order to accurately visualize unsteady fields, a special neighborhood N 3 is here introduced,
which is constructed using a cubic structure (Figure 5.4). The use of a three-dimensional model
confers continuity to the temporal visualization. This novel structure can take into account co-
herency from the surrounding pixels in the current planar image, and, in addition, it includes
information contained in the latter already generated frame.

Figure 5.4: Spatio-temporal coordinate axis system and 3d neighborhoods for n=3, n=5.

Pixel weighting

The pixels that build the extended neighborhood have to be appropriately considered: in the spa-
tial domain they should be radially (or elliptically: § 4.3) weighted around the current one. As ex-
plained in Chapter 4, a non-uniform weighting of the pixels within the planar spatial neighborhood
can help achieving better results in static field visualization. Accordingly, this also applies to the
temporal cubic neighborhood: the pixels in a 2d planar neighborhood should be considered with
decreasing weighting factor when far away from the neighborhood center, and this should happen
in the 3d neighborhood as well. The weighting function should decrease from the neighborhood
midpoint both in the planar L-neighborhood and in the previous temporal squared neighborhoods.
The preceding temporal frames have to contribute with non-uniform weights, since pixels in the
actual frame present less correlation with pixels belonging to previous frames. The number of the
underlying layers, which have to be taken into consideration at each step, depends on the chosen
neighborhood size, which in turn depends on the complexity of the example pattern. In the sim-
plest case of a regularly and fine structured sample (such as those used in Chapter 3), usually a
3-sized neighborhood suffices, so that just one previous frame is required to visualize a new one.
In case of 5-sized neighborhood, the synthesis needs to acquire information from two previous
frames, and so on. In general, for a n-sized neighborhood, (n− 1)/2 previous frames are taken
into consideration. In this way, the neighborhood structure is able to correlate pixels in space and
time along the spatial and temporal evolution of the vector field. Consequently, as anticipated in
Chapter 4, and especially in § 4.5.1, this correspond to build spherical or ellipsoidal weighting
schemes for the neighborhood models (see Figure 5.5).

5.1. MULTIVARIATE FIELDS 81

Figure 5.5: Spherical (left) and ellipsoidal (right) weighting schemes for 3D neighborhoods, with
respect to the uniform scheme of Fig. 5.4. for N=3, N=5.

Figure 5.6: Example of temporal frames generation. A grey-scale sample is adapted locally to
produce a sequence of frames for the time-varying vector field.

Generation and animation of successive temporal frames

The whole process is implemented to work in an automatic way, so that, starting from a given
frame, a sequence of its evolution in time is generated without the need of further intervention. In
this manner, the algorithm computes temporal series - in arbitrary length - of correlated images.
Every still frame depicts the instantaneous structure of the fl ow, and the sequence of such frames
can be successively animated to reveal the fl ow evolution.

Temporal frames animation

In order to generate an animation of Φ over an arbitrary period of time T , successive frames are
generated. Let Ft = {F0,F1, . . . ,Fi, . . . ,FT} be those frames, Fi = Φ|t=i represents the still vector
field at time t = i. The desired set of frames Ft is then generated as follows:

Ft(x,y) =

{

synthesis2D(τ(x,y),Φ(x,y;0)) t = 0
synthesis3D(τ(x,y),Φ(x,y; t),Ft−1(x,y)) t > 0 (5.4)

where synthesis2D represents the visualization process for the vector field at time t = 0
(see the sub-section One-frame synthesis above, and refer to the method synthesizePixel
of Table 3.1 and 3.2). The method synthesis3D (refer to the sub-section Consecutive frames
above, and see table 5.1) performs the temporal visualization of successive frames and gets previ-
ously visualized instantaneous vector fields as input. Note that in table 5.1 the case of a 3-sized
neighborhood is considered; consequently, only the previous frame is taken into consideration
for the synthesis of the next one. The relative considerations for larger n-sized neighborhoods

82 CHAPTER 5. MULTI-VALUED VISUALIZATION

Function synthesis3D(t)

1 for(x = 0; x < Wout; x++) {
2 for(y = 0; y < Hout; y++) {
3 N3

x,y,t |out = calculateNeighborhood3D(x,y,Iout(x,y,t-1));
4 A = calculateMagnitude(x,y,t);
5 θ = calculatePhase(x,y,t);
6 resizeInput(A);
7 rotateInput(θ);
8 for(i = 0; i < Win; i++) {
9 for(j = 0; j < Hin; j++) {
10 N3

i, j,t |in = calculateNeighborhood3D(i,j,Iin(x,y,t-1));
11 distancei, j,t = compareNeighborhood(N3

x,y,t |out,N3
i, j,t |in);

12 }
13 }
14 minDistance = findMinimumDistance({distancei, j,t});
15 bestMatch = getBestPixelValue(minDistance);
16 Iout(x,y,t) = synthetizeOutputPixel(bestMatch);
17 }
18 }
19 return Iout(t);

Table 5.1: Temporal synthesis procedure (consistent with synthesizePixel-a of Table 3.1).

Function animateFrames

1 Iout(0) = synthesis2D();
2 for(t = 1; t < T; t++) {
3 Iout(t) = synthesis3D(Iout(t-1));
4 }
5 loop({Iout(t)});

Table 5.2: Temporal frames generation and succession

are reported above, and (n− 1)/2 previous frames are considered in a general case. Both meth-
ods are explained for clarity in single resolution; straightforward extensions to multiresolution are
achieved using the concepts explained in § A.2.1.

Figure 5.7: A set of generated temporal frames.

Results and Discussion

The results in Figures 5.7, 5.8 show some frames extracted from longer generated sequences.
Different patterns are used as seed to generate unsteady fields evolution. Figure 5.9-right shows
two sets of successive frames; here, each one shows the underlying time-dependent vector field
structure together with color coding, which is used to map the varying intensity of the velocity

5.1. MULTIVARIATE FIELDS 83

Figure 5.8: A set of generated temporal frames.

field. Since the visualization of variable vector fields is a kind of multi-variate visualization, it is
possible to use multiple information mapping. Figure 5.9-left shows an application implemented
to superimpose and blend layers that carry different information (see more in Chapter 6). This
supports an easy understanding of the features of a particular fl ow. Starting from the same input
data, a user may generate different frame sets, and then decide to analyze the one that better
communicates the field information. Figure 5.9 illustrates how the use of transparency provides
stronger or weaker evidence to the mapped features.

Limitation and optimization

The ideas reported here are to provide a general and fl exible technique for the visualization of
unsteady fields, to generate an arbitrary number of frames for later off-line animation. Once the
fl ow is structurally visualized, it is possible to observe it in motion and the user may interactively
edit or analyze it modifying parameters and mapping features using masks and filters in a post-
processing phase. Anyway, as the approach requires a couple of minutes to visualize 2562- and
5122-sized frames, it cannot be used at interactive rates.

Discussion

This extension outlines a novel technique for generating continuous visualizations of unsteady and
multi-variate fields. The algorithm automatically generates a set of frames, which in turn represent
the structure of the fl ow field at several time steps. Besides providing a methodology for precise
smooth visualization of dense fl ow fields, one of the main targets was to allow user intervention
for local and global control in the visualization process. This method combines the intuitivism
of icon-based methods and the benefits of geometric and feature-based methods, offering at the

84 CHAPTER 5. MULTI-VALUED VISUALIZATION

Figure 5.9: Screenshot of the blender application, the sliders are responsible for controlling the
intensity of the encoding in the information masks (left). Generated frame sets with different rate
of transparency (right).

same time a dense representation of the field, avoiding to miss important details and generating
a smooth visualization. Another advantage of this technique with respect to others is that this
approach is independent of a particular discretization of the data. Consequently, this permits an
adaptive sampling for use in non-structured or non uniform grids, which is often required in indus-
trial applications. These features enrich the visualization process with more fl exibility; this is an
important step to cover fundamental perception issues in visualization, and, further, it is possible
to combine scientific visualization together with information visualization to get benefits in data
analysis. As the pattern representing the field may be chosen arbitrarily, illustrative concepts can
be taken into account as well: depending on the kind of fl ow to visualize, it is straightforward to
select a wave- or a wind-like pattern, which could be better suited to depict the stream data set.
Similarly, it is possible to design a specific pattern, in order to individually condition the resulting
field appearance through traditional design principles. This can be of relevance for engineering
and other scientific applications.

5.2 Higher order vector fields

5.2.1 Tensors

In scientific visualization, tensorial data are almost ubiquitous, they are useful in many medical,
mechanical and physical applications. In general, a tensor field is considered as a force field that
deforms an object placed inside it.

Tensors provide a general notation to include scalars, vectors, and tensors in general. The
most common tensors are scalar fields, or 0−rank tensors, vector fields, or 1−rank tensors, and
tensor fields, or 2-rank tensors, which can be represented in matricial notation (n×n matrix). For
simplicity, I consider here planar tensors. A tensor is said to be planar when defined in 2D space
(x,y). In this case, a 2−rank tensor is a map that associates at each point in space a 2×2 matrix.
A general 2D planar tensor can be expressed by the matrix:

T (x,y) =

[

T11(x,y) T12(x,y)
T21(x,y) T22(x,y)

]

(5.5)

that contains four unique quantities, or three for a real symmetric tensor. Common 2-rank

5.2. HIGHER ORDER VECTOR FIELDS 85

planar tensors are in fact symmetric, which means that they can be expressed as:

T (x,y) =

[

α(x,y) β(x,y)
β(x,y) γ(x,y)

]

(5.6)

this guarantees that they are diagonalized, and the analysis leads to two eigenvalues λ1 ≥ λ2
with corresponding eigenvectors v1⊥v2.

In matricial analysis, we need to calculate the eigenvalues λ and the corresponding eigenvec-
tors v; this means solving the 2× 2 eigensystem {(v1,λ1),(v2,λ2); λ1 > λ2}, associated to the
tensor [T], for each pixel (see more about eigenanalysis later in § 6.3.3). In particular, in the 2D
case, 2 eigenvalues λ1, λ2 can be found, which are in general a major eigenvalue λ+ and a minor
eigenvalue λ− (λ1 > λ2), with corresponding principal and secondary eigenvectors v1 and v2.

In this way, the visual representation of tensors can be treated in a vectorial way as done with
the MRF-based approach, visualizing, ∀ pixel (x,y) in space, the principal eigenvector, oppor-
tunely mapping its information, e.g. phase (corresponding to the value of its angle of orientation)
and magnitude (corresponding to the value of its eigenvalue). The information related to the minor
eigenvector can be mapped using color coding or further encoding cues. A possibility to com-
pletely display the tensorial information is to use iconic mapping [122, 113], for instance using
ellipsoids in 3D (if the tensor is a 3× 3 matrix), the axis of which have lengths equal to the 3
eigenvalues (major, medium, minor) of the tensor (Fig. 5.10).

Figure 5.10: Diffusion tensor image (DTI) visualized using ellipsoids (left) and concepts from
painting (right) (image courtesy of David H. Laidlaw).

In the 2D case, ellipses can serve the same function; they can be displayed at sampled positions
in the output, representing a geometrical equivalence with the tensor data. Such ellipses are placed
aligning their major axis (whose length is proportional to the corresponding major eigenvalue) in
the direction of the principal eigenvector, and the minor axis (proportional to the corresponding
minor eigenvalue) in the direction of the secondary eigenvector, which is perpendicular to the
major one (v1⊥v2). Hence, eigenvectors give the ellipse orientation and eigenvalues the ellipse
size (defining the size of the two major axis). Especially when dealing with stress and strain
tensors3, the sign of the eigenvalues indicated regions of expansion and compression [89]. Often,
approaches concentrate on the representation of the eigendirections and neglect the importance of
the eigenvalues.

There are several possibilities to depict tensors. A tensor field can be decomposed into its
eigenvector fields. One approach is thus to represent the major eigenvector of the tensor, as done
for vector fields, and to encode the minor eigenvector, for instance using color coding or as the
change in the cross section along streamlines. In this way, it is possible to simply extend the
approach proposed in Chapter 3 to visualize tensors, treating them as vectors. Another possibility

3In continuum mechanics, deformation is measured by the strain tensor ε = 1
2 (J+Jt) where J is the velocity gradient

matrix (∂vi
∂x j

)i, j .

86 CHAPTER 5. MULTI-VALUED VISUALIZATION

is to represent both eigenvectors and visualize them simultaneously, conferring more relevance or
more significative value to the major one. In this case, more details about possible solutions to
visualize multiple vectorial distributions are provided in the following section.

5.3 Multiple scalar and vector fields visualization

The simultaneous visualization of multiple fields on the same display finds important applications
in scientific visualization. The comparison, as well as the detection of potential interference or
correlation between data sets can lead to relevant observations. In science and engineering, it is
often fundamental to visualize multiple scalar or vectorial distributions at the same time and at
the same place. Special interest arises when different distributions are copresent and need to be
conjunctly analyzed, or when two or more different processes may occur simultaneously and could
create interference. Finding potential correlations or being able to compare several distributions is
important to detect behaviors, to estimate possible intercorrelations and understand whether and
how some variables could affect the behavior of other ones.

5.3.1 Interweaving vector fields

A common way to visualize multiple distributions is to use layers, superimposing the different in-
formation. Anyway, this approach could suffer from the same problems of standard visualization,
and in addition stronger occlusion could occur. The problem is that, in the absence of indications
to the contrary, objects are generally perceived to lie in the background over which they are super-
imposed [71]. When layering two surfaces, in fact, visual confounding between the images may
occur [11].

Layering can be anyway improved by means of transparency rates to separately control the
infl uence and relevance of distinct layers (a possible solution is proposed later in § 6.6). In gen-
eral, a too sparse, glyph-based, or too dense, noise-based visualization algorithm fails to provide
effective representations of multiple copresent multivariate vectorial data sets. In this context, we
are investigating, in cooperation with Tim Urness and Victoria Interrante, a hybrid streamline- and
texture-based approach as solution to multi-field visualization.

In this section, we demonstrate how directional example-based textured visualization algo-
rithm and streamlines are better suited for the visualization of multiple vector fields. The target
[228] is to obtain a reliable, integrated understanding of the multiple fields. The goal of this re-
search is to explore strategies for developing effective methods for the visual representation of
multiple co-located vector and scalar fields to allow each field to be understood and analyzed both
individually and in the context of the other. It is sometimes challenging to distinguish two co-
located data sets, especially in regions where the orientations are aligned, as it could be difficult to
determine which field is being represented by which texture at any given location. It is necessary
to maintain continuity, as the accidental patterns of intersections between streamlines in different
vector fields can lead to visual artifacts that may cause an inaccurate perception of the data.

The main idea is based on the concept of interweaving vector fields. This is an innovative
approach to the problem of multi-fields visualization. The main benefit is given by a resulting
representation of the fields, that are presented at the same level, thus avoiding occlusion and en-
hancing mutual correlation.

5.3.2 Integrating streamline-based and texture-based visualization

Besides layering (§ 6.6), we investigated two different methodologies, based on streamlines and
textures, for multi-fields visualization. I explain in the following both these approaches and rel-
ative two solution proposals in more detail. The methods are designed to produce oriented and
controlled textures that accurately refl ect the complex patterns that occur in vector field visualiza-
tions. A goal of this research is to better understand how the properties of textures can effectively

5.3. MULTIPLE SCALAR AND VECTOR FIELDS VISUALIZATION 87

be used to represent various components of fl ow data. Textures have the ability to provide a richly
diverse set of possibilities that allow various aspects of the underlying fl ow field to be visualized.
We introduce textures to convey this information in a way that preserves the integrity of the vector
field while also taking advantage of the many perceptual dimensions that textures can exhibit such
as regularity, directionality, contrast, and spatial frequency.

Streamlines are a successful approach to visualize vector fields. Accurately choosing seed
points is fundamental to avoid missing relevant areas of interest or singularities when visualizing
the vectorial distribution [227]. Urness et al. recognized that textures can be used to enhance stan-
dard LIC. Texture mapping streamlines can supply to the lack of mapping option that is probably
the major lack of LIC techniques; it is a computationally efficient method that utilizes outlining
textures to depict fl ow orientation. An additional advantage of this techniques is that, through the
mapping of textures onto streamlines, also images and fields visualization that are inherently 2d
acquire a 3d sense of depth and the streamlines are given width to. Successively, standard meth-
ods are applied to control streamline density and seed placement [226, 101]. For instance sparse
equally spaced streamlines are used in order to let the overlaying and underlying fields be visible.
The resulting image is composed then on a pixel-by-pixel basis.

On the other side, texture-based approaches (and in this way an adapted version of the MRF
technique) also can be successfully applied for multi-field visualization. Texture synthesis algo-
rithms allow a variety of information encoding that is useful and particularly suited to intuitively
portray complex multi-parameter data sets. Another advantage of textures and especially of the
proposed MRF-based visualization approach, is that it guarantees more continuity, being pixel-
based. When considering dense interweaved fields in fact, a particular attention needs to be paid
to the matching of different field lines, and a best fitting search typical of the proposed method can
contribute to this point. Additionally, when interweaving streamlines, it is sometimes difficult to
control their density in every area of the display, and when the lines of the different fields overlap
in different and non-regular way, this could lead to visual artifacts, while pre-specified samples are
more easily controllable.

Texture mapping streamlines

I briefl y report here some more detailed concepts on texture mapping streamlines, which is part of
our work in progress (see [205] for a pre-printed version and a complete description of this work),
and which is also used for § 5.3.3.

Figure 5.11: Left: a thick streamline (bottom) is constructed from a 1D streamline (top). Right:
polygons are generated according to an adaptive step-size algorithm that allows for smaller poly-
gons to be generated around areas of high curvature.

Texture mapping can be seen as an alternative to texture synthesis to display textures for the
representation of a vector field. The capabilities of textures and texture attributes can be examined
to represent vector fields and correlated data, such as vector magnitude.

88 CHAPTER 5. MULTI-VALUED VISUALIZATION

Applying a texture to a streamline requires that the streamline be extended to include width,
as textures are inherently 2D and do not project well to streamlines or single pixels [45, 233]. A
thick streamline is constructed [205] by first calculating a 1D streamline given the vector field that
defines the fl ow to be visualized (Fig. 5.11-left, top). The streamline is then given width by consid-
ering the normal component to the streamline at each point. A user-specified width is multiplied
by the normal component to give the location for each point of the thick streamline (Fig. 5.11-
left, bottom). The coordinates of the thick streamline are used to construct polygons in which a
texture can be easily applied using standard texture mapping techniques. Segmenting the thick
streamline into polygons allows a texture-mapped streamline to effectively bend and curve in any
direction. An adaptive step size is used during the streamline integration computation to construct
polygons that can effectively represent the streamline around areas of high curvature [188]. Using
the fourth-order Runge-Kutta formula and given a user-defined error tolerance, an adaptive step
size approach chooses a large enough step size to define each polygon while observing the toler-
ance specified by the user. The effect of this approach is that smaller polygons are generated in
areas of high curvature (Fig. 5.11-right). Controlling streamline density allows an entire field of
thick streamlines to be created and equally spaced so that applied textures can be perceived [100].

Figure 5.12: Left: using texture-mapped thick streamlines to visualize a fl ow field. Right: an
illustration of texture outlining used to disambiguate streamline orientation.

Several artifacts can occur when texture mapping streamlines. To avoid artifacts that may occur
with a repeated texture on the same streamline, a sufficiently large texture sample is used. To avoid
artifacts that may occur with repeated texture being applied at the same interval on neighboring
streamlines, a random texture offset is used when constructing the first texture-mapped polygon of
the thick streamline. Additionally, where portions of streamlines overlap, pixels are assigned an
opacity value of zero, giving priority to streamlines already defined. The result is the ability for
streamlines to effectively merge due to convergence or divergence of the fl ow but not to obstruct a
previously placed streamline (Fig. 5.12-left).

Texture mapping a texture to a field of thick streamlines may not create an effective visualiza-
tion if the orientation of the applied texture is not obvious. Fig. 5.12-right (top) shows the result
of applying an isotropic texture to streamlines and the ambiguous orientation of streamlines that
results. The orientation of the streamlines can be specified by combining the texture with an out-
line of the calculated streamlines. The outline of the streamlines is constructed by mapping an
outlining texture to the calculated streamlines defined by the vector field. The outlining texture
consists of a luminance ramp, from black to white, emanating from each side of the texture. The
intention is to mimic a diffuse lighting effect that would be created if the thick streamline were
three dimensional and tubular in shape. The effect of applying this outlining texture to stream-

5.3. MULTIPLE SCALAR AND VECTOR FIELDS VISUALIZATION 89

lines is displayed in Fig. 5.12-right (middle). Finally, the two images can be overlaid allowing the
orientation of the fl ow field to be displayed (Fig. 5.12-right, bottom).

Figure 5.13: Illustration of using texture attributes to represent a scalar distribution. The scale
of the texture is here related to Reynolds shear stress - a scalar field used to characterize regions
where drag is generated in turbulent boundary layers.

Texture mapping streamlines gives great fl exibility in changing texture parameters (Fig. 5.13)
and the number of different appearances that a vector field representation can have (Fig. 5.14).

Figure 5.14: Examples of the diversity of natural textures that can be applied to a vector field. A
circular fl ow is used demonstrate each example.

5.3.3 Dual vector fields

Using the theory on texture mapping streamlines described above, we attempt now visualizing
vector fields interweaving them.

The term interweaving means displaying two vector fields (Φ1 and Φ2) in an inter-woven
fashion, and is derived from cloth material or tissue terminology. This art to represent copresent
distributions depicts two fields that are interlaced together. This has the particular advantage of
simultaneously presenting two or more fields visualizing them at the same level and thus showing

90 CHAPTER 5. MULTI-VALUED VISUALIZATION

them with the same relevance, while most layered approaches could give the impression of differ-
ent level of importance due to the superimposition of the last layers on top of the previous ones,
and occlusion, or color mixture and confusion could occur.

Texture mapping streamlines is used to ad hoc generate a set of input samples, where two
different textures are mapped onto two co-present and misaligned sets of streamlines. The MRF-
based method proposed in Chapter 3 can be effectively extended to visualize such copresent inter-
laced vector fields.

Basically, the MRF approach to vector field visualization works adapting a chosen directional
texture pattern to the vector field to visualize. The example pattern is chosen to determine the
appearance of the resulting generated output field, and it is optimally chosen to be anisotropic to
better locally align its major direction to the direction of the vector field, conveying the vectorial
information. In the case of dual fields visualization, every point in the output image should yield at
the same time the information related to both the two vector fields, which are usually misaligned.
An inter-woven representation of the fields is achieved using a collection of input samples that
are ad hoc specified by the set of the relative directions between the two vector fields at the
various output locations (Fig. 5.15). In this way it is possible to deal with two distinct vectorial
distributions at the same time. This set of samples is produced as described above, generating
interweaved streamlines of the two fields, with a respective phase drift derived by the reciprocal
misalignment of the two fields at each given point. Figure 5.17 shows a subset of possible input
samples and Figures 5.18, 5.19 show a couple of results.

Phase
extraction

Phase
extraction

-
MRF-based
synthesis
process

Phase
difference

output
image

Vector
field 1

Vector
field 2

generate
matrix
seed ...

Figure 5.15: Scheme block for simultaneous dual field representation.

More precisely, for each location (x,y) in the output image Iout , the adapted algorithm measures
the angular direction of both vector fields Φ1 and Φ2. In this way, it is easy to extract (equation
3.20) the two angles of phase θ1 and θ2 and to calculate δθ as the difference of such values (δθ = θ1
- θ2), leading to the reciprocal phase difference between the two vector fields at that point. This is
done for every output point and it results in an array ∆ϑ = {δϑ0,δϑ1, . . . ,δϑn} of phase differences,
where n corresponds in the most general case to the dimension of the output image, and which are
used to generate or chose correspondent sample textures {Iin}.

Consequently, if the two fields at a given point are not aligned, there exists between them
a rotational offset. If this angle measures for instance 45◦C in degrees, or equivalently π/4 in
radians, an example pattern is generated, which is characterized by two linear interwoven patterns:
one is horizontally oriented (the reference one), and the other is oriented at π/4 with respect
to the first one. The lines characterizing the second field are interwoven with respect to those
of the first ones, using a generation lines algorithm based on texture mapping described above
[205]. In this way, this example pattern is used to find the best matching pixel for the texture-
based synthesis algorithm at a location where the two fields have a relative orientation of π/4.

5.3. MULTIPLE SCALAR AND VECTOR FIELDS VISUALIZATION 91

Function synthesizeInterwoven

1 for(y = 0; y < Hout; y++) {
2 for(x = 0; x < Wout; x++) {
3 Nx,y|out = calculateNeighborhood(x,y);
4 θ1 = calculatePhase(x,y,Φ1);
5 θ2 = calculatePhase(x,y,Φ2);
6 δθ = θ1 - θ2;
7 selectInput(δθ);
8 rotateInput(θ1);
9 for(j = 0; j < Hin; j++) {
10 for(i = 0; i < Win; i++) {
11 Ni, j|in = calculateNeighborhood(i,j);
12 distancei, j = compareNeighborhood(Nx,y|out,Ni, j|in);
13 }
14 }
15 minDistance = findMinimumDistance({distancei, j});
16 bestMatch = getBestPixelValue(minDistance);
17 Iout(x,y) = synthetizeOutputPixel(bestMatch);
18 }
19 }
20 return Iout;

Table 5.3: Interwoven synthesis of two co-located vector fields. The pseudo-code is consistent
with a simplified version of that from synthesizePixel-a of Table 3.1.

Similarly, a set of further samples is generated, in dependence of every different occurring phase
shift between the angles of the two fields. The rest of the synthesis algorithm does nor require
additional modification (see also Tables 5.3, 5.4).

Figure 5.16: Relative phase difference between the two vector fields at a given point.

The calculations needed to measure the fields phases, to calculate the relative angle differences,
to generate corresponding interweaved example textures and to store such data in corresponding
arrays, are performed in an automatic way and can be completed in a pre-synthesis stage, before the
visualization algorithm starts. Consequently, the method does not add complexity in the essential
part of the synthesis algorithm and neither computational time. Similarly, a comprehensive set of
samples can be produced, specified by a uniformly varying difference of phase and thus leading
to a complete array of samples describing phase-displaced streamlines with a ∆ϑ spanning in the
range [0,π], or [0,2π] in case of samples that presents also attributes of orientation. The algorithm

92 CHAPTER 5. MULTI-VALUED VISUALIZATION

Variable / method Meaning

Φ1 vector field # 1
Φ2 vector field # 2
selectInput selects the input sample that exhibits the given phase

drift between Φ1 and Φ2

Table 5.4: Table of symbols and methods

Figure 5.17: Samples generation for dual fields representation.

then goes on picking the required samples corresponding to the shift occurring between the angles
of the two vector fields in the output image. In this way, the array of samples is not specially
computed for a given data set and can more generally be used for any different pair of vector
fields. When the fields allow it and no loss of accuracy can be noted, the array can be eventually
reduced to a quantized version of phase differences.

Further applications

The concepts used to visualize to co-located vector fields can be used for samples that exhibit more
major directions. A further reason why the study of textures being characterized by two principal
directions is interesting, is that studies have proven [112] that, for a large class of application cases,
"two directions seem better than one" in showing shape with texture. Using textures with two
principal directions as stimuli has proven how observers can make more accurate surface shape
judgement. Furthermore, when texturing arbitrary double curved surfaces, textures that contain
elongated elements that can be interpreted to follow both of the principal directions simultaneously
can contribute to shape perception more than using textures in which the elongated elements solely
in one of the two principal directions. This reserves applications in texturing surfaces, providing
better perception of 3d objects form.

Our further current and future work also deals with the use of such techniques, streamline-
based as well as pixel-based, to better represent multi-parameter data sets taking advantage of

5.3. MULTIPLE SCALAR AND VECTOR FIELDS VISUALIZATION 93

Figure 5.18: Dual fields representation.

Figure 5.19: Dual fields representation.

the perceptual dimensions of textures. Furthermore, we are interested in visualizing multi-fields
within the same image; for this we are also using (as introduced in § 4.2.2) a pseudo-trapezoidal
weighting scheme, which can take into account two principal axis of orientation (e.g. for the
simultaneous visualization of two vector fields) at several different phase differences.

94 CHAPTER 5. MULTI-VALUED VISUALIZATION

Chapter 6

Extracting and encoding data content

“The world is complex, dynamic, multidimensional; the paper is static, fl at”. There exists a need
for representing the rich visual world of experience and measurements; in his book [221], Tufte ex-
presses the need for designing strategies or enhancing the dimensionality and density of portrayals
of information.

Appropriately encoding the information carried by the data set into effective visual represen-
tations is still an extremely actual and fundamental challenge to produce effective visualization.
Adequate information mapping should facilitate the rapid, intuitive detection and analysis of the
essential features and main content of data sets. The solution to this problem, translating data to
images, is not always obvious and is often on the contrary a very demanding task; analytical data
need to be transformed into clear and concise representations.

This chapter seeks to provide some description and a summary about extraction and encod-
ing of information. Here, as more detailed compendium to concepts and explanations done in
the previous chapters, a discussion on vector field parameters and an explication of relative topo-
logical analysis to extract relevant field attributes are presented. In particular, I describe a set
of fundamental field variables, explaining how to derive them and proposing some possible solu-
tions for expressive mapping and visual communication. This also has lead to the publications of
[195, 197]. A survey on important encoding possibilities is also presented. An approach based on
filtering and transfer operators is then introduced, which can contribute adding a great amount of
encoded information and leading to a variety of different effects and applications. Findings from
perception and resulting implications validate the choices done. In particular, a generalized fl exi-
ble approach is proposed to allow adaptive data encoding for user- and task-driven applications. It
leads to promising preliminary benefits in visualization, and it is open to further extensions. The
approach is based on layers constrained by transparency rates to vary the intensity of the attribute
mapping.

6.1 Motivation and challenges

Achieving effective visualization is not trivial, especially when considering multivariate multi-
dimensional data sets. The visualization of such data mandates the development of techniques for
information mapping, which have to be intuitive to understand, in order to allow fast and easy data
analysis and interpretation, at the same time avoiding confusion that could arise due to the numer-
ous parameters and due to the potential interference deriving from the chosen representations.

Another main reason that motivates deeper investigation in information encoding is given by
the fact that the visualization approach proposed in this thesis is based on textured images. Tex-
tures can be employed as powerful visual primitives; their visual characteristics can be exploited,
specifying a paradigm for effective data representation. The approach is thus particularly suited
for data encoding. As better described below (§ 6.4, 6.6), in fact, textures offers a very fl exible
way to map a broad set of variables, thanks to their rich visual dimensions.

95

96 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

6.2 Vector field parameters

6.2.1 User selected vs. field intrinsic features of interest

The basic algorithm explained in Chapter 3 visualizes vectorial data sets representing their lines of
fl ow mainly in terms of direction and magnitude. Extending this approach to accept an arbitrary
amount of parameters, as for the cases discussed in Chapter 5, means that further fields attributes,
either user selected or field intrinsic, can be extracted and adequately mapped (Fig. 6.1).

User selected features are points or areas that are of interest for the user (regions of interest,
ROI); they can be selected to focus on relevant attributes of the field and on zones of the domain.
Besides simple definitions of information encoding discussed here to highlight particular areas of
the field, in general arbitrary region selection and more complicated specifications to visualize user
selected features could be implemented. Special image processing filtering operators can be here
applied in a straightforward manner to the resulting output vector field, for instance specifying the
coordinates of the window of interest. In this way, a specific or restricted region of interest of the
field can be highlighted, or it is possible to limit the visualization to pre-defined disjoint areas.

Intrinsic field features inherently characterize the vector field, and are directly taken into ac-
count for visualization. It is for instance possible to simultaneously show the information related
to the magnitude and the phase of the field, as well as further field attributes, such as curl and
divergence, which can be encoded in the texture appearance. Further topological information pro-
vides a meaningful characterization of the field and can be extracted from the data set (see § 6.3).
Especially the singularities strongly characterize the behavior of a vector field; hence, it is often
interesting to visualize them, also employing a classification of critical points, attained through
eigen-analysis. In a starting step, field parameters can be calculated, extracted or selected, and
can then be mapped in a pre- or post-processing stage of the visualization process, or either in run
time.

Vector field

User

Topological
analysis

ROI selection

attributes
derivation

Synthesis
process

Output

Input sample

Features
correspondences

and mapping

Field intrinsic
features

User-selected
features

Sample
transformation

and matrix seed

Figure 6.1: Field features extraction and selection for data mapping during the synthesis stages.

6.2.2 Deriving vector field attributes

Relevant vector field attributes are parameters that communicate meaningful information and, if
adequately mapped, lead to an intuitive representation of the nature of the vector field. As intro-
duced in § 3.4 (equations 3.19, 3.20), the magnitude A and phase θ of a vector field are respectively
derived as:

A = ||Φ|| =
√

Φ2
x +Φ2

y θ = ∠Φ = arctan
Φy

Φx
(6.1)

6.2. VECTOR FIELD PARAMETERS 97

These attributes, as explained in Chapter 3, provide a first global representation of the field;
further attributes as vorticity, shear stresses, etc. may be potentially mapped in a similar way
to contribute to a more complete field representation (see future extension in Chapter 8). The
Jacobian matrix J, or matrix of the first derivatives of the vector field (see § 6.3 for a detailed
introduction), can be used to compute a number of derived fields, such as the divergence, curl,
helicity, acceleration, curvature.

Divergence

In terms of fl uid fl ow, divergence can be interpreted as the fl ux over an infinitely small loop.
Divergence is a measure of the difference between the amount of fl ow leaving and approaching
the measurement point. Hence, positive divergence is found at source points, negative divergence
is found at sinks, while zero divergence occurs in case of saddle points. In the two-dimensional
case, divergence is defined as:

divΦ = ∇·Φ =
∂Φx

∂x
+

∂Φy

∂y
(6.2)

This derives from the general expression for the vector field in the space Φ(x,y,z) = < Φx(x,y,z),
Φy(x,y,z),Φz(x,y,z) >, Φ(x,y,z) = Φx(x,y,z) · î + Φy(x,y,z) · ĵ + Φz(x,y,z) · k̂:

divΦ = ∇·Φ, ∇ = ∂
∂x · î+ ∂

∂y · ĵ + ∂
∂z · k̂

divΦ = ∂Φx
∂x · î+ ∂Φy

∂y · ĵ + ∂Φz
∂z · k̂ (6.3)

Curl

Curl is equivalent to the circulation in an infinitely small loop. Curl is a measure of how twisted
or non-linear the fl ow lines are around a particular point (axis of rotation); it is a measure of the
amount of fl ow that circles around the measurement point. The curl of a velocity field is called the
vorticity. This parameter represents the local fl ow rotation, both in speed and direction.

In the plane case, the curl of a vector field is defined as:

curlΦ = ∇×Φ =
∂Φy

∂x
− ∂Φy

∂y
(6.4)

which is derived from the more general expression of a vector field in the space:

curlΦ = ∇×Φ =

∣

∣

∣

∣

∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Φx Φy Φz

∣

∣

∣

∣

∣

curlΦ = (∂Φz
∂y − ∂Φy

∂z) · î+(∂Φx
∂z − ∂Φz

∂x) · ĵ +(
∂Φy
∂x − ∂Φx

∂y) · k̂
(6.5)

Divergence and curl are two useful analytic characterizations of a vector field1. Mapping
divergence and curl information strongly contributes for compelling, meaningful visualization.
Curl is quite difficult to visualize along with other metrics, but it does give information that is not
quite easy to see using just streamlines and hedgehogs.

1Depending on the application, a divergence-free vector field is also known as Hamiltonian, solenoidal, or incom-
pressible; a curl-free vector field as gradient, conservative, or irrotational.

98 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

6.3 Topological analysis

Performing a topological analysis of the data set allows integrating new features in the presented
approach and augments the algorithm with the benefits of feature-based visualization. Topological
approaches are based on the mathematics underlying the physical phenomenon. Observing the
vector field, or a frame of reference in a fl ow field, it is possible to determine critical points that,
connected by principal lines or planes, determine the topology of the field. Then, eigen-analysis
is used to classify the singularities. The extraction of features of interest or high-level information
from a data set leads to selection and simplification of the set based on content (selective visualiza-
tion), and consents to visualize the data from a problem-oriented point of view. In fact, topological
features exhibit the qualitative properties of a field in a synthetic way. Topological analysis was
initially inspired by the qualitative theory of dynamical systems [151, 9] and differential geome-
try [187]. The basic idea is that of focusing the visualization of a vector field on its singularities
and spatial integral curves that connect them, partitioning the domain into subregions of uniform
qualitative behavior.

Vector field attributes
derivation

Field intrinsic
features

Magnitude
Norm

PhaseAngle
exptraction

...

Topological analysis

Singularities

Further
attributes

Zero-crossing
Zeros

Eigen-analysis

classification

Figure 6.2: Block scheme illustrating field features (including zero crossing, eigen-analysis, fea-
ture extraction and classification).

6.3.1 Basic notions

Tangent curves

A tangent curve is a curve for which the tangent vector at any point along the curve is parallel to
the vector field at that point. The tangent vector at each point along the curve is the derivative
of the position vector along the curve with respect to the arc length. Given the critical points and
their principal tangent curves, an observer can visually infer the shape of other tangent curves and
hence the structure of the whole vector field. Consequently, topology contributes to simplify the
visualization of a vector field, communicating its essential information in a condensed form.

6.3. TOPOLOGICAL ANALYSIS 99

Phase portrait, topological skeleton

The phase portrait of a vector field is defined as the family of all its paths over the plane [216]. It
depends on the number, type and arrangement of the critical (or equilibrium) points.
The topological skeleton consists of critical points and connecting separatrices.

Separatrices, periodic orbits

A separatrix Γ is a trajectory x(t) such that limt→∞x(t) or limt→−∞x(t) is a saddle. They are
curves connected with saddle points along the eigenvectors, they typically start at a source or end
at a sink. Γ is homoclinic if and only if limt→∞x(t) = limt→−∞x(t). Otherwise it is heteroclinic.
Basically, a heteroclinic separatrix connects a saddle with another singularity, typically an attractor
or a repellor, or a periodic orbit. A homoclinic separatrix leaves a saddle from one of its outgoing
directions and comes back to the saddle in one of its incoming directions.

A periodic orbit Γ is a trajectory x(t) such that there is a positive number t0 and x(t +t0) = x(t)
for any t ∈ R. the minimal positive value for t0 is the period of Γ. Furthermore, if there exists
a neighborhood U of Γ such that ω(U) = Γ, then it is an attracting limit cycle. Similarly, if
α(U) = Γ, then Γ is a repelling limit cycle.

Critical points

Critical or singular points are those points at which the magnitude of the vector field (velocity
vector) is zero. Such points are also called equilibrium states, zeros, fixed or stationary points,
while non singular points are called regular. Their specificity is that they are the only locations
where stream lines (the integral curves) can meet or intersect. These points can be characterized
according to the behavior of nearby tangent curves.

Given a vector field, its topology, or topological description, mainly consists of its critical
points. It can also be said that the critical points are the nodes of the topological graph. Separatri-
ces represent the edges of the topological graph. Critical points of different order and separatrix
lines strongly characterize a vector field and help determining its nature. Many of the interesting
field features are associated with singularities, hence their visualization is integral to communicate
the main sense and behavior of the data set. Such singularities can be automatically visualized or
emphasized using the proposed approach and are here used for additional features mapping.

Geometrically, the topology of a vector field is given by the structure of its integral curves.
From this point of view, thus, critical points can be classified as following:
Center type: Singularities are of center type if they are approached by no integral curve. In this
case, one can find a neighborhood of the point where all paths are closed, inside one another, and
contain the singular point in their interior (Fig. 6.3-a).
Non center type: In this case, one has at least two paths converging to (or leaving) the singular
point. Such two semi-paths tend to the singular point and the curvilinear sector is the open region
bounded by the two integral curves and the respective arc (Fig. 6.3-b). There exist three different
types of curvilinear sectors:

- Hyperbolic or saddle sector, which is defined by so called α− and ω− separatrices (Fig. 6.3-
c).

- Parabolic sector, also called α− or ω− parabolic sector if the integral curves respectively
tend to the singular point for t →−∞ or for t → ∞ (Fig. 6.3-d).

- Elliptic sector, if the bounding paths defining the sector are two semi-paths on the same path
through the singular point. These curves form nested loops tending to the singular point for
both t → ∞ and t →−∞ (Fig. 6.3-e).

100 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

After having considered singular points from a general and geometrically motivated viewpoint,
they can be analytically considered using common piecewise linear vector fields. This approach
confers fl exibility in modelling the topological structure for the singular points [88].

Figure 6.3: Center (a) vs. non-center singularities: general curvilinear sector (b), hyperbolic (c),
parabolic (d) and elliptic (e) sectors (illustrations derived from [216]).

6.3.2 Piecewise linear interpolation

Finding critical points

Usually, classification of singularities based on the local linearization of the vector field is used.
Note that, for consistency with literature classical notation, the vector field Φ, as referred to in the
previous chapters:

Φ : E2 → R
2

(x,y) →
(

Φx(x,y)
Φy(x,y)

)

(6.6)

with the planar domain E2 being a closed and compact subset of the Euclidean space E
2, is

here referred to as a velocity field v.
As introduced, critical points (x0,y0) can be identified as those points at which the components

of v all simultaneously vanish:

(x0,y0) ∈ E2 : v(x0,y0) = (0,0)T = 0 (6.7)

and v(x,y) 6= 0 ∀ (x,y) 6= (x0,y0) in a certain neighborhood of (x0,y0).

Linear interpolation

The field in the neighborhood of each critical point is approximated by the Taylor series expansion2

of v, which, about a point x0, is expressed as follows:

vi(x) = vi(x0)+
∂vi(x0)

∂x j
(x j −x0 j)+O(4xk4xl) (6.8)

assuming v to be sufficiently smooth and differentiable for the Taylor expansion to exist3. In
the equation, and considering a first order expansion, the term ∂vi(x0)

∂x j
(x j −x0 j) is the first derivative

2The Taylor expansion of an infinitely differentiable real (or complex) function f defined in an open interval (a−

r,a+r) is the power series: T (x) = ∑∞

n=0
f (n)(a)

n! (x−a)n, where n! is the factorial of n, and f (n)(a) is the n−th derivative
of the function f evaluated at the point a.

3A function is differentiable if it is possible to approximate it, in the neighborhood of each point, using a linear
function, with rest of infinitesimal order higher than the first in the distance of the point. The differential is the linear
approximating operator, which is expressed by a matrix called the Jacobian matrix.

6.3. TOPOLOGICAL ANALYSIS 101

v′i(x0) of the function vi evaluated in x0; the terms of order greater than the first term of the series
expansion are O(4xk4xl) and are disregarded. At a critical point, the first term of the expansion
vanishes by definition, and considering only the second term, each equation has two terms, one for
each coordinate direction. Consequently, the coefficients

(∇v)i j =
∂vi

∂x j
(6.9)

of the first non-zero term of such Taylor expansion around a critical point build, in the two-
dimensional case, a 2×2 matrix ∇v called Jacobian matrix. Around the critical point, the eigen-
values and eigenvectors of this matrix determine the local behavior of v. In matrix notation, this
corresponds to consider an affine linear vector field

v(x) = A(x)+b (6.10)

where

x =

(

x
y

)

A =

(

αx βx
αy βy

)

b =

(

γx
γy

)

(6.11)

consequently, if v has a zero, one takes its location as new coordinate origin and thus, as
simplification of the vector field, considers the linear field

v′(x) = J(x) (6.12)

so, an affine linear vector field is uniquely determined by its Jacobian at the location of its
possible zeros [216].

6.3.3 Eigen-analysis

Once the singularities have been found, it is possible to classify them performing an eigen-analysis
and, specifically, observing the sign of the eigenvalues of the Jacobian matrix J. The determinant
of the Jacobian matrix is called the Jacobian of the vector field4. I illustrate here the necessary
steps. In eigenanalysis, an eigenvalue of a matrix J is a (possibly complex) scalar λ which solves
the eigenvector equation:

Jx = λx (6.13)

The corresponding non-zero vector x is called eigenvector of J. The eigenvectors and eigen-
values of a Jacobian matrix determine the local behavior of v; they indicate the direction of tangent
curves of the fl ow used for a topological description of the field. In general, the eigenvectors of
∇v span the invariant manifolds of the linearized field around a critical point. Curves integrated
from initial points on the eigenvectors at a small distance from a critical point connect with other
critical points (or the boundary) to complete the topology.

Hence, observing equation 6.9, and calling the vector field Φ again, the Jacobian matrix, or
gradient matrix5, for the vector field Φ, with respect to the position at a given critical point (x0,y0),

4The Jacobian J can be also decomposed for analysis into its symmetric and antisymmetric components. Another
possibility of analyzing the Jacobian is to transform J into the local Frenet frame at some points of the trajectory [44].

5
∇ is a gradient, that means that for a scalar field p, in two dimensions, it is the vector of its partial derivatives:

grad p = ∇p = [∂p/∂x ∂p/∂y], while for a vector Φ, it is the 2×2 Jacobian matrix of its first derivatives as shown in
equation 6.14.

102 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

is given by:

JΦ(x,y)|x0,y0 =

[

∇Φx(x,y)
∇Φy(x,y)

]

∣

∣

∣

x0,y0
=

[

∂Φx
∂x

∂Φx
∂y

∂Φy
∂x

∂Φy
∂y

]∣

∣

∣

∣

∣

x0,y0

(6.14)

Starting from equation 6.13, the eigenvalues of the Jacobian matrix can be calculated by solv-
ing the following equation:

det(J−λI) = |J−λI| = 0 (6.15)

where I is a unit matrix (identity matrix) and det() represents a determinant:

∣

∣

∣

∣

∣

∂Φx(x0,y0)
∂x −λ ∂Φx(x0,y0)

∂y
∂Φy(x0,y0)

∂x
∂Φy(x0,y0)

∂y −λ

∣

∣

∣

∣

∣

= 0 (6.16)

The equation is a quadric (in two dimensions) equation for λ. Using linear algebra, the solution
of the eigensystem is a scalar λ, possibly complex, which may assume two forms:

• Two real eigenvalues: λ1 = R1, λ2 = R2

• A pair of complex conjugate eigenvalues: λ1 = R1 + i · I1, λ2 = R2 + i · I2, with R2 = R1,
I2 = −I1

Critical points classification

In practice, thus, the fl ow in the neighborhood of critical points is characterized by eigenanalysis of
the velocity gradient tensor, or Jacobian of the vector field. The eigenvectors indicate the directions
in which the fl ow approaches or leaves the critical point. The critical points are classified according
to the sign of the real R and imaginary I parts of the eigenvalues λ. Positive eigenvalues indicate
that Φ is directed away from the critical point (repelling eigendirection) and negative values the
opposite (attracting eigendirection): they correspond to velocities towards the critical points. A
complex conjugate pair of eigenvalues indicate that Φ spirals-in or -out, depending on the sign of
the real part of the eigenvalues.

Critical points can be therefore classified as nodi, foci or saddles on the basis of the eigenvalues
of ∇Φ. Nodes and foci can be further classified as attracting or repelling (sources and sinks).
Saddles have one positive and one negative eigenvalue: near a saddle, Φ approaches the critical
point along negative eigendirections and recedes along positive eigendirections. A saddle has thus
two incoming and two outgoing trajectories. Around foci, Φ spirals toward or away from the focus.
The eigenvalues are a complex conjugant pair with a positive real part indicating a repellor and a
negative part indicating an attractor. The magnitude of the imaginary part indicates the strength of
the spiraling motion. If the real part is zero, concentric ellipses occur.

Hence, using such categorization, it is straightforward to treat different classes of singularities
in separate manners. Furthermore, as mentioned above, we can for instance enhance critical points
via an embossing filter, and areas of interest around singularities via a brightening mask with
increasingly varying intensity toward the center of the ROI. In this way, feature extraction is easy
and a topological analysis is intuitive. Using such mapping it is also possible to observe how those
features vary and move over time.
Here, I summarize the classification of the different critical points (Fig. 6.4) in a schematic way:

• Repelling Focus or source: R1,R2 > 0; I1, I2 <> 0. All eigenvalues have positive real parts.
The zero is called source, because any integral curve tend to it for t →−∞ (Fig. 6.5).

- Node source: J is diagonalizable and its eigenvalues are different.

6.3. TOPOLOGICAL ANALYSIS 103

Figure 6.4: Critical point classification: repelling focus, repelling node, saddle point, center, at-
tracting node, attracting focus (clockwise from top-left corner).

- Focus source: J is diagonalizable and its eigenvalues are equal.
- Improper node source: J is not diagonalizable but has one real positive eigenvalue.
- Spiral source: J has two complex conjugate eigenvalues with positive real parts.

Figure 6.5: Repelling critical points: node source, focus source, improper node source, spiral
source.

• Repelling star or repelling node: R1,R2 > 0; I1, I2 = 0. All eigenvalues are real with positive
real parts.

• Saddle Point: R1 ∗R2 < 0; I1, I2 = 0. J has real eigenvalues of opposite signs.

• Attracting Focus or sink: R1,R2 < 0; I1, I2 <> 0. All eigenvalues have negative real parts.
The zero is called sink, because any integral curve tend to it for t →∞ (Fig. 6.6).

- Node sink: J is diagonalizable and its eigenvalues are different.
- Focus sink: J is diagonalizable and its eigenvalues are equal.
- Improper node sink: J is not diagonalizable but has one real negative eigenvalue.
- Spiral sink: J has two complex conjugate eigenvalues with negative real parts.

• Attracting star or attracting node: R1,R2 < 0; I1, I2 = 0. All eigenvalues are real with nega-
tive real parts.

104 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

Figure 6.6: Attracting critical points: node sink, focus sink, improper node sink, spiral sink.

• Center: R1,R2 = 0; I1, I2 <> 0. J has pure imaginary eigenvalues.

Thus, if the real part of an eigenvalue is less than zero, convergence occurs along the corre-
sponding eigenvector; if it is greater than zero, divergence occurs. If the imaginary part of an
eigenvalue is not equal to zero additionally a rotational movement around the fixed point is given.

Depending on their order, singularities can be further classified as follows:

First order singularities

First order singularities are also called linear, generic or hyperbolic critical points, i.e. they are
structurally stable and easy to analyze. In linear vector fields, it is only possible to find simple
or first order singularities. A critical point is a fist order critical point iff the Jacobian does not
vanishes in that point, otherwise the critical point is of higher order. In order to detect more
complex topological features, it is necessary to perform further tests.

Higher order singularities

Non-hyperbolic or degenerate critical points occur when the matrix J has not full rank. In this
case, the Jacobian determinant is zero: the real part of one or both eigenvalues is equal to zero, the
eigenvectors are not uniquely defined, and more complex topological patterns (than those illus-
trated above) around the critical point can appear. Other exceptional cases occur when defective
matrices are encountered and hence eigenvectors coincide. These degenerate cases, though unsta-
ble, do occur in fl ows with imposed constraints such as symmetry or incompressibility.

One example is represented by the dipole (Fig. 6.7-left):

v(x,y) = (x2 − y2,2xy) (6.17)

Another example is given by the so called monkey saddle (Fig. 6.7-right):

v(x,y) = (x2 − y2,−2xy) (6.18)

the name derives from the observation that a saddle for a monkey, seen as surface, requires
three depressions: two for the legs, and one for the tail. The term horse saddle is used, by contrast
with monkey saddle, to designate a saddle point that is a minimax, that is to say a local minimum
or maximum depending on the intersecting plane used. The monkey saddle will have a local
maximum along certain planes, but it won’t be a local minimum along others, just a point of
infl ection.

Tensor topology

For the popular case of two-dimensional symmetric second order tensor fields (§ 5.2.1), 2× 2
symmetric matrices have to be considered. As explained in § 5.2.1, a real two-dimensional sym-
metric matrix M has always two real eigenvalues λ1 ≤ λ2 with associated orthogonal eigenvectors.

6.4. AUGMENTING THE MRF ALGORITHM WITH DATA ENCODING 105

Figure 6.7: Higher order singularities: dipole and monkey saddle.

In this way, a major eigenvector corresponding to the major eigenvalue can be identified for the
visualization. In points where the two eigenvalues are equal, the eigenvectors cannot be uniquely
determined; this corresponds to a zero value of the deviator and singularities, trisectors or wedge
points, exist [216].

6.4 Augmenting the MRF algorithm with data encoding

As introduced in the survey of § 2.3, some of the methods referred in the state-of-the-art-report
cannot be generalized or fail in visualizing some scientific data sets appropriately; anyway they of-
ten result to be complementary one to another, since some of them are specially designed to solve
a given problem case or to enhance a specific aspect of the data. Direct visualization is particularly
suited to rapidly convey a global impression of the data abstracting in part the information and
simplifying it. LIC-based methods, on the other hand, densely represent the data information, but
they offer less opportunity for information encoding. The methodology I propose is mainly based
on the adapted MRF algorithm, but it also can integrate and combine some features from existing
visualization techniques, taking advantage of their complementarity. Vector fields attributes, as
those described above in § 6.2, need to be appropriately mapped using effective visual representa-
tion, and I introduce some solutions in the remainder of this section (Fig. 6.8). In the following,
I start with a discussion on texture properties and visual dimensions. Defining a sort of texture
space based on the rich texture visual dimensionality provides a powerful and fl exible encoding
instrument for the specification of features vs. correspondences of representations. Such texture
properties also motivate the use of textures in scientific visualization.

6.4.1 Texture visual dimensions and texture space

Texture as visual paradigm: characteristic visual attributes

When using visual properties that are preattentively processed (see § 2.1.4), viewers do not have to
focus their attention on a specific region in an image to determine whether elements with the given
property are present or not. Such features result for the human eye of better and faster perception.
Besides improving in general the effectiveness of a visualization, the use of preattentive features
results of particular interest when it is required to perform a side-by-side examination of simi-
lar images (data sets comparison), for instance when visualizing slice data and when observing
variations side-by-side [81]. Commonly used preattentive features include hue, curvature, size,
intensity, orientation, length, motion, and depth of field. Textures (see Texture parameter space
following subsection) are characterized by a variety of visual dimensions, and the most promi-
nent of them are indeed preattentive features. They can incorporate all the significant attributes
described above and use this potentiality to map relevant information extracted from the field onto
such features. For this reason, textures are particularly tailored for information encoding and are a

106 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

Vector field

User

generalized MRF-based synthesis process

Output

Input sample

Features
classification

Field analysis

Features
selection

Features
extraction

Attribute
correspondences

Transfer
functions

Filter banks

Texture and
parameter space

Figure 6.8: Generalized block scheme: augmenting the MRF-based approach.

valid powerful instrument as visual primitives for use in visualization applications. Textures offer
strong fl exibility and are for this reason a valid tool to depict information and a good solution
for scientific visualization. They can be hand-designed, allowing stylistic and illustration-based
visualization, which is of particular interest, e.g. for educational purposes.

Parametrization

Textures can be arbitrarily complex and it can take ten to twenty parameters to define a texture
with a reasonably complex set of texture elements and color components [11]. For a basic overlap
of two surfaces, in [11] each texture is made up of four layers; a background and three layers
of features are composited over the background. Two of the feature layers are lines, and the
third layer consists of dots. Lines provide the ability to create crosshatching and linear structure,
while dots provide the ability to create a high frequency, mottled look. This is a quite complete
parametrization of the texture space, allowing the generation of a number of different textures. As
also recognized by Interrante [92], giving overlapping surfaces partially transparent textures can
help to define and distinguish them.

Texture parameter space

In order to create or construct a perceptually meaningful multidimensional texture space that can
be indexed in the same fashion as a color space, it is necessary to proceed from a rigorous and
experimentally supported understanding of how human observers perceive and interpret texture
patterns, under the conditions in which it is intended for these patterns to ultimately be viewed
[91]. A number of researchers have conducted studies to try to elucidate the most significant
perceptual dimensions of textures [161]. In the most experiments, using simple texture samples
as stimuli, subjects are generally asked to cluster them into groups, estimating the salience of
differences in various properties of texture patterns. Textures comprise of several compositional
visual elements such as contrast, lighting, directionality. There appears to be general agreement
that a small number (about three) of characteristic dimensions seem sufficient to describe most of
the structure underlying this classification. Then, classified patterns may remain good candidates
for further similarity grouping, according to other characteristic dimensions. The interpretation
of the dimensions varies from study to study [91], but most often, as discussed also in the survey
(§ 2.2.3), it includes aspects of the following:

• periodic (consisting of repeated discrete elements) vs. non-periodic

6.4. AUGMENTING THE MRF ALGORITHM WITH DATA ENCODING 107

• strongly directional vs. rotationally invariant

• coarse vs. fine (spatial frequency of the dominant detail)

• regular (deterministic) vs. random

• high contrast vs. low contrast

• homogeneous (spatially invariant) vs. heterogeneous

Clearly, there is some overlap in these categorizations. Also, it is not evident that we can deter-
mine an orthogonal basis that encompasses all members of the texture pattern set [91]. However,
the apparent low perceptual dimensionality of the space and the strong agreement between the
studies bodes well for application of textures to scientific visualization.

On the one hand, Ware and Knight [237] considered orientation, size, and contrast as the
primary orderable dimensions of texture. As pre-attentive features of individual elements, size,
contrast, and orientation differences are undisputedly important in facilitating pop-out (§ 2.1.4).
In addition to determining which textures tend to cluster, it is important for creating a perceptually
linear texture space to quantify the perceptual distances between individual texture patterns. It is
also necessary to estimate the extent of a given texture characteristic dimension and the magnitude
of the perceived distance due to the differences along each of the feature dimensions6. Studies
using individual element arrays have found that salience (or the tendency to pop-out) tends to
increase when the targets are characterized by redundant, unique properties such as luminance
and hue or color and orientation [145]. Similarly, the salience of the target tends to decrease as
the heterogeneity of the distracter elements increases, even when the heterogeneity occurs along
a different perceptual dimension. It may additionally be of interest to determine how many dif-
ferent texture types people can simultaneously discriminate, using a methodology similar to what
Healey employed for studying color [80]. In [11], the color variables hue, saturation and value
are parameters of interest, and in all cases the hue and saturation variables have more variation
than value. On the other hand, often variables can be simply used to change the visualization to
aesthetic taste. An important role is also given by the four opacities in covering a surface: the
size, randomness, separation and probability of being drawn of each of the features. Bertin [22]
classifies size, value, texture, color, orientation, shape, as "retinal properties", according to their
value of organization7. Recent evaluation studies [4] also use the following design factors to map
data: data resolution8, feature resolution9, linearity10, visual bandwidth11, dominance12, time to
read13 and intuitive association14.

Although no standard definition actually exists to define in a unique way the visual dimensions
that characterize textures, most scientists agree in recognizing particular importance to the features
of orientation, scale and contrast, as well as periodicity, directionality and randomness. Thus,

6One possible approach is to estimate the magnitude of the change required to enable a just noticeable difference
between images along individually selected texture dimensions such as scale, contrast, orientation, regularity, and so on
using psychophysical methods. Another possibility, which may be more appropriate for judging the kinds of differences
that cannot be easily brought down to threshold levels, is to measure the pre-attentive discriminability or salience of
differences in features of individual texture patterns randomly embedded in homogeneous and heterogeneous fields
of distracters. The objective in this case is to determine how large of a difference is required to allow the effortless
identification of the odd man out, masked stimulus presentations [91].

7whether they could be used to represent quantitative, qualitative, or ordered information, and the number of steps
they could take.

8the number of different levels of a data variable that can be distinguished by a viewer.
9the minimum spatial feature size that can be reliably represented.

10the perceptual linearity of the mapping from the data value to visual property.
11the percentage of a method that can be covered when combined with other methods, but still remains readable.
12the forcefulness or punchiness of the data mapping.
13average time to comprehend the data.
14to measure whether any associative readings of a method might interfere with the desired numerical reading.

108 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

textures are well suited to incorporate many factors and use them for the data mapping. While
encoding information, it is crucial to consider potential interference, as this could strengthen or
confuse the information in the visualized image. Furthermore, understanding how distinguishable
are different features is of particular importance to better design the visualization.
Creating a texture palette: in the approach proposed in this thesis, a matrix consisting of texture
samples to be used as seeds for scientific visualization has been introduced (§ 3.2.3) and proposal
for extension and improvement have been proposed (§ 4.5.2). In the previous chapters, such matrix
bases on a few simple transformations over an original input sample. More in general, in order
to create a possibly consistent and complete texture palette to span the defined texture space, it
is possible to begin with a collection of well-chosen input images, which are potentially uncorre-
lated, and which exhibit characteristic visual dimensions such as those listed above (Fig. 6.9 shows
an example, derived from the Brodatz textures). Intermediate textures can be derived through a
sort of texture interpolation [91]. They can be either adequately manually designed or obtained
through blending and morphing operators [137], deterministically filling the space at equal per-
ceptual distances along each of the dimensions to complete the space. Some of the difficulties
in constructing this palette are that there may be interaction among certain dimensions (such as
contrast and spatial frequency), which can lead to distracting or confusing effects; moreover some
texture type mixtures may not be meaningful, since the co-presence of diverse visual dimensions
may produce effects, where two distinct pieces of information are no more separately recognizable
and discernable. This could inhibit the perception, and for this reason I use in this thesis a simple
texture space, making use of a limited set of parameters to parameterize the texture appearance, as
suggested by various vision studies.

Figure 6.9: A small potential texture palette. Scale increases along the horizontal axis, regularity
increases along the vertical axis, and intensity increases along the left-to-right descending diago-
nal.

Interrante [91] uses texture images for information visualization (and in particular to repre-
sent the distribution of agricultural products within countries of the USA). With respect to the
applications to scientific visualization and the representation of vectorial data sets analyzed here,
information visualization applications do not need to pay special attention to the issue of conti-
nuity and smoothness in the definition of a texture space. Nevertheless, her considerations about
feasibility issues are common to my approach: some of her open questions are:

• What does a reasonable partitioning of a natural texture space look like?

• Would it be feasible to try to choose exemplars at the endpoints of each perceptually relevant
texture dimension, characterize them statistically, then interpolate to obtain intermediate
textures that fill out the space?

6.4. AUGMENTING THE MRF ALGORITHM WITH DATA ENCODING 109

• To what extent do we need to guarantee that different textures will meld continuously into
each other at the transitions between level set regions?

• How can we most effectively combine color with texture to convey yet more information in
a meaningful way?

Regarding these open questions, in this thesis, and specifically for the case of vector field
visualization, I partition the texture space using a set of dimensions as motivated in § 2.1.4 and
illustrated for instance in Fig. 6.9. For the applications shown in this work, such dimensions,
together with the relative correspondences between visual representations and vector field param-
eters, proved to produce good and perceptually meaningful results for an intuitive visualization.
The interpolation between different images in the texture space and the continuity between dif-
ferent adjacent samples was driven depending on the particular dimension under consideration.
For very significant dimensions, such as angle of phase, a particularly precise set of intermedi-
ate images (as described more extensively in the quantization subsection of § 3.3.2) must exist to
guarantee smoothness in the vector field visualization. Other dimensions allow vice versa different
quantization, i.e. larger distances or steps in the interpolation. In general, in order to guarantee
continuity in the results, in most cases I generate the sample matrix that spans the texture space by
means of cascades of filters that iteratively and progressively operate transformations between the
samples.

The visualization method must balance a trade-off between the need of representing many
variables simultaneously and the consideration about the human optical limitations to produce
effective visualization, allowing the user to visually separate relevant information and different
features in the data sets. Scientists may want to maximize the amount of comprehensible data
presented in one visualization, examining a vector field and several derived quantities.

6.4.2 Visual representations and correspondences of features

The amount of variables (§ 6.2), which characterize the multivariate field, represents the infor-
mation that needs to be visualized, in order to provide an effective representation of the vector
field and in order to convey its behavior. This information can be visually displayed taking ad-
vantage of the various visual dimensions of the texture examples, and in addition also using iconic
mapping over the texture seeds. Such way to encode information contributes to a more holistic
understanding of the data content in the visualization output.

A critical issue is to specify appropriate meaningful mapping functions, establishing a rela-
tionship among field features, either field-intrinsic or user-selected, and adequate visual represen-
tations. In § 3.4, I specify a correspondence between the phase and the magnitude of the vector
field with, respectively, a rotation and a scaling operator. Such attributes and transformations are
tightly coupled and result thus in intuitive visual representations. Similarly (§ 6.2), further field
attributes can be associated to further transformation operators. These operators are in general
transfer functions, which are responsible of modifying the starting sample through an action and
by a factor corresponding to the desired transformation and the considered field attribute value.

Additionally, as done in direct visualization approaches, simple visual representations as arrow
plots, or their extension to tensor probes15, can be used. The same visual representation could
serve more than one graphical purpose (graphical element). Ad hoc designed glyphs, for instance,
can simultaneously convey different pieces of information, although they use a little portion of
the image; they describe a graphical entity whose shape and appearance is modified by mapping
data values to some of its graphical attributes. Color can be used to report additional variables.
Such multifunctional graphical elements, if designed with care, can effectively display complex,
multivariate data. An early example of multi-varied visualization through multiple-symbol format

15A vector field probe can indicate, beyond direction and magnitude, properties obtained from a first order field
expansion that can be decomposed into characteristic components such as curvature and torsion, which are representable
by a set of geometric symbols.

110 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

and geometric coding is represented by the Chernoff faces [37]. These are popular in information
visualization and are also applied to other types of graphs under the multiple-symbol paradigm
[7]. In a Chernoff face, multiple variables are represented by different facial features. However, as
in direct visualization, the display could become too crowded and tend to overload the viewer, also
considering that mapping multiple variables in a graphical element can require space and several
pixels, avoiding a continuous visualization.

In general, data encoding can take effect on the sample seed, both changing its appearance
(e.g. color coding: feasible to represent scalar distributions) and its structure (e.g. adding glyphs,
shearing, resizing: best suited to represent special regions and features). As mentioned in § 2.1,
issues from perception, cognition and psychology are addressed when specifying correspondences
between the relevant field attributes and the visual representations. From such studies it can be de-
rived that humans easily associate a change of resolution in the structure of a pattern to a perceived
change of the amount of a given parameter. Similarly, rotating a directional pattern intuitively con-
veys a change of direction. Again, considering established studies in human vision, special color
scala are used to map the range of variation of the given field parameters. Below in § 6.5, similar
concepts are considered to encode for instance uncertainity, areas of interest, elevation, tempera-
ture, etc. respectively using blurring or texture irregularity, brightening and contrast, embossing,
rainbow colorscala, etc. Although these correspondences have been chosen under perceptual con-
siderations, they are interchangeable and different effects can be combined together.

Vector
field

User

Input
sample

Feature
extraction

[attribute - visual
representation]
correspondence

Vector field
parameter Transfer

function ()

modified sample
for vector field
visualization

Figure 6.10: A block scheme representing a single variation of a given input sample using a
transform operator, whose effect is specified according to an adequate feature correspondence,
and which takes the vector field parameter as argument.

6.5 Filters and convolution kernels

After having discussed vector field parameters and having specified correspondences with visual
representations, I need now to describe the instrument used to perform the information encoding
(Fig. 6.10). A gradual and also very versatile way to map information onto a texture example is
to use filtering masks, where the primary parameters are related to the variables to visualize. In
the proposed approach, I apply different Digital Image Processing (DSP) Filters to vary some of
the texture characteristics in the sample image, to modify and highlight some regions of interests
in the output image, as well as to augment a texture with artistic effects. In general, any arbitrary
filter can be designed, taking as argument the field variable one wants to represent and using this
parameter to control an appropriate convolution kernel. In this way, different filter design results
in different outcoming texture spaces. Filters, besides being general and besides allowing manual
design, also have the advantage of offering a pixel-based mapping of the information, while most

6.5. FILTERS AND CONVOLUTION KERNELS 111

iconic representations require too many pixels. Furthermore, the filtering effect over an image can
be performed in a continuous way, using progressive filtering, as well as in a generic way, using
more general filter banks.

6.5.1 Filter banks

I illustrate some possible schemes for filter banks use (Fig. 6.11, 6.12). The illustrations enlarge
the block diagrams introduced in Fig. 3.21 in Chapter 3. The filtering can be performed in a
linearly progressive way over the whole vector field, or choosing to affect just a specified area,
independently from the rest of the image. In general, since the vector field is visualized in a
per-pixel fashion, there is no limit in applying filtering operations to customize the output.

Pi , i = Xi + Yi * Wout

Xi

Yi

Wout

Hout

Iout

Pj

I1 (W1 * H1)

I2 (W2 * H2)

Ij (Wj * Hj)

Ii (Wi * Hi)

.......
.........................

PN , N = (Wout * Hout)

P1 P5

.......

In (Wn * Hn)

I0 (W0 * H0)

Filter

Filter

Filter

Filter

.......
.........................

.......

Filter

Figure 6.11: In this filtering scheme, the filter bank builds up of filters, which can be also uncorre-
lated and may modify the input sample in an individual way.

6.5.2 Convolution kernels

In order to perform a convolution, it is necessary to define the kernel of the convolution. The
convolutional kernel of the filter refl ects the filter behavior. Kernels can be energy conservative,
which means, as terms derived from the physics, that the filter leaves the mean energy of the image
unaltered. In this case the sum of the kernel elements is 1, and this leads to the fact that the sum
of the total values of the luminance does not vary in the image. In the other cases, filters are non
energy preserving. Several image processing tools provide a set of convolutional filters, generally
so called if translation invariant and linear, to modify images. Additionally it is often possible to
manually create and edit a custom filter.

In practice, a kernel is a matrix K that describes how a pixel and its neighboring pixels (local
filters) are used to calculate the new value of the pixel (filter response). Mathematically, a kernel
can be represented as a grid, generally squared, and the performed operation - convolution - is the

112 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

Pi , i = Xi + Yi * Wout

Xi

Yi

Wout

Hout

Iout

Pj

I1 (W1 * H1)

I2 (W2 * H2)

Ij (Wj * Hj)

Ii (Wi * Hi)

.......
.........................

PN , N = (Wout * Hout)

P1 P5

.......

In (Wn * Hn)

I0 (W0 * H0)

Filter

Filter

Filter

Filter

.......
.........................

.......

Filter

Figure 6.12: In this filtering scheme, vice versa, the filter bank builds up of filters, which are
iteratively connected and progressively transform the input sample.

sum of the products of all the kernel elements by the image elements:

K =









k0,0 k0,1 . . . k0,n
k1,0 k1,1 . . . k1,n

...
...

. . .
...

kn,0 kn,1 . . . kn,n









(6.19)

I′(x,y) = k(i, j)⊗ I(x,y) = ∑
i, j

k(i, j) · I(x− i,y− j) (6.20)

where k(i, j) in the equation represent the element of the convolutional kernel ki, j, and I(x,y)
and I′(x,y) are respectively the original and the filtered images (see also Fig. 6.13).

Input Image I

y

x

Output Image I'
(filtered)

y

x

k1,1 k1,2 k1,3

k2,1 k2,2 k2,3

k3,1 k3,2 k3,3

3x3
kernel

filter window

I'p,q

Ip-1,q-1 Ip,q-1 Ip+1,q-1

Ip-1,q Ip,q Ip+1,q

Ip-1,q+1 Ip,q+1 Ip+1,q+1

convolution

Figure 6.13: Convolution scheme relative to equation 6.20.

6.5. FILTERS AND CONVOLUTION KERNELS 113

6.5.3 Filtering effects

In addition to potential structural differences between the images of the texture space (Fig. 6.9),
filtering operators can transform the texture samples enlarging the texture space (refer for instance
to Fig. 6.14 and to the following chapter). Starting from a simple example texture like those defined
in § 3.2, image processing operators are able to arbitrarily and precisely modifying it according to
the user’s desires and task requirements. A simple anisotropic sample can thus represent simple
lines or a more sophisticated directional structure, and can additionally be augmented with icon
plots. Using iconic mapping, the calculated attributes can be mapped onto the parameters of
certain parametric icons. This results in controlled image density, covering the field of different
representations from sparse (classical streamline-based images) to dense (texture-like images),
while one usually needs a few completely different approaches to achieve the same effects in the
result. As done in Chapter 3 for more simple cases, I explain and discuss here some of the most
prominent filtering operators for the task of information mapping in vector field visualization.

Figure 6.14: A possible texture palette obtained using image filters.

Input seed processing

The filters and operators that act over the input texture example (or examples) may operate at
runtime, as well as at a pre- or at a post-processing stage.

- Filters are applied during the synthesis process to structurally modify the sample seed, as
in the case of the scaling operator, which is responsible of varying the resolution of the
example texture.

- Operators may modify the input texture before the synthesis starts; the rotating operators
pre-computes for instance rotated versions of the original sample, generating an input set to
be used as source during the synthesis.

- Further DSP filters, as blurring, brightening, embossing, coloring, may be applied directly
on the synthesized output. They get extracted field variables of relevance, which have to be
used as parameters to define the kernels.

114 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

Color coding

Color maps can be used to encode tone factors over the starting sample. Different color scala can be
specified to map different field variables; more details and reasons that motivate such specification
and special choices are given in § 2.1. The data must represent a continuous function across the
area of the image, i.e., adjacent points in the data set should have adjacent data values. Color
coding is particularly effective to visualize for instance pressure fields or other scalar distributions.
Additional special attributes, as for example vorticity, are sometimes difficult to visualize in an
effective way. Color coding can be used to add or stress a special color component at those
locations of interest. Different or complementary colors can be expressively used to encode right-
wise or left-wise vorticity sense of rotation. Adding color detail can sometimes make the fine
structure of a value distribution more apparent. One solution is to use color scales with high
frequency components. Such scales make small values differences more apparent [162].

As introduced in § 2.1, a lot of research has been conducted to study color perception, and sev-
eral past, as well as recent works, support the efficacy of color as a differentiating variable among
data. The choice of colors and transformation mapping functions is not trivial when visualization
method and data sets are complex and present challenges. In the vast majority of cases, effective
visualization uses a unique transfer function between data values and color, and employs perceptu-
ally equiluminant colorscales (used especially in presence of close proximity of differing colors in
the representations). These colorscales ensure that two colors representing the same proportionate
value on two colorscales appear equally bright. While perceptually equiluminant is, at best, an
approximation across different viewers, methods have been developed to facilitate the selection
and evaluation of potential colorscales for perceptual equiluminance.
The role of color: tying color to information is as elementary and straightforward as color tech-
nique in art: Paul Klee ironically tried to formulate the painting principles with a simple rule: “Gut
malen ist einfach folgendes: richtige Farben an den richtigen Ort setzten” (To paint well is simply
this: to put the right color in the right place). To some extent, this also applies to visualization.
Quoting Tufte [220], as example of representation of multiple information, some fundamental uses
of color in information design that can be transferred to scientific complex data visualization are to
label (for annotations: color as nouns), to measure (color as quantity, for example distinguishing
entities with contours and rate of change by darkening), to represent or imitate reality (color as
representation, for instance using shadow hachures in geographical maps, representing water with
blue, land with green and so on), and to enliven and decorate (color as beauty). Additionally,
interplay of light and shadow can highlight other areas strengthening particular meanings as well
as the use of backgrounds. As introduced in § 2.1, regarding color perception, limited but focused
color is sometimes more effective than strong rainbow colors; additionally, a broad set of partial
color blindness and color deficiency exist between humans and can be taken into account when
choosing color gamuts.

Compositing color with texture

Besides using color to represent the value of a single variable at a given location, it can be useful
or necessary to represent the values of multiple variables at the same point at the same time.
Shenas and Interrante [179] present an overview of methods to achieve this task and propose a
technique for automatically interweaving multiple colors through the structure of a texture pattern
(Fig. 6.15-left). Such an approach can also be used as a pre-stage for the presented approach, in
order to generate special textures to be used as input, as well as in a post-stage, to stress patterns
that still result ambiguous or lead to confusing understanding. Color interweaving also proved to
achieve interesting results in [229] (Fig. 6.15-right).

Bump mapping, embossing

In the previous chapter, in § 5.1.2, I applied the bump mapping technique for the purpose of
visualizing a third spatial dimension. In this way, it is possible to easily map the additional variable,

6.5. FILTERS AND CONVOLUTION KERNELS 115

Figure 6.15: Left: compositing color with texture, right: color interweaving (image courtesy,
respectively, of Haleh Hagh-Shenas and Timothy Urness).

still producing an essentially 2d output image.
But bump mapping is not restricted to the representation of height fields; it is, more in general,

a powerful filtering operator that is able to effectively highlight a given distribution, due to its
pop-out effect. The encoded variable, in fact, visually comes out of the plane. An important
point is also that our visual system is not always well adapted to interpret large data sets, whereas
we have superb capabilities for understanding depth-cued images. For this reason, this technique
is often used in Computer Graphics to add surfaces details in an easy way, saving in geometric
details. Embossing is for instance used to act on the normals of a surface for height mapping and
to simulate geometric features and relief.

Figure 6.16: Depth of field enhancing the chessmen that threaten the knight on e3. (image courtesy
of Robert Kosara).

Depth of field, blurring

A further example of information enhancement is provided by depth of field considerations. Blur-
ring different parts of an image in dependence of their relevance is a common way the human
visual system works when focusing on specific elements16. In visual perception, the viewing pro-
cess that leads to perception of depth and distance of objects is called stereopsis. The difference
between sharp and blurred parts can effectively guide the viewer’s attention. The viewer automat-
ically detects sharp features, while the blurred parts provide non disturbing context for the objects

16Whenever interested in a specific part of the environment, the human eye brings the object of interest into the center
of the eye where the area of most acute vision, the fovea centralis is located, and focuses on that object.

116 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

of interest.
Although blurring effects provide an effective way to focus on specific parts of a scene, there

have been surprisingly few attempts to use depth of field in visualization. Kosara [118] conduces
a study evaluating the semantic depth of field (SDOF), a technique for guiding a viewer to specific
information in an image (Fig. 6.16). SDOF is based on the depth-of-field effect from photography,
where different parts of a picture are in- or out-of-focus, based on their distance from the focal
point of the lens. Generalizing this concept, an object sharpness depends not on its physical
position, but on its relevance. Viewers are immediately drawn to the sharp (that is, highly relevant)
parts of the image, but they can still choose to look at other, out-of-focus objects. He designed
an experiment that contained both basic perception and application components. Sense of depth
is there presented as an alternative to focus and context display of information. He also explains
how DOF is an intrinsic part of the human eye, and for this reason, because of the similarity to the
familiar depth-of-field effect, it results to be a quite natural metaphor (effortless by most users) for
visualization.

As explained above, the blur operation can be understood as a convolution operation of the
image with a blur kernel. Gaussian filtering can be used to simulate depth of field cues.

Contrast, brightening vs. darkening

A possible meaningful mapping could base on contrast, as well as on brightening effects. Both
these operators can be effectively used in visualization, since they are able to enhance and high-
light relevant areas or features. In contrasted or bright areas, information is clearly visible and
more easily detectable. Highly contrasted images allow to immediately detect zones of particular
interest.

Stylistic representations

A sub-class of visual representations is represented by stylistic glyphs or, more in general, by
pictorial representations. Especially from an educational and artistic point of view, the possibility
of using stylistic glyphs to match special data sets or points of interest enriches the visualization
and offers a broad variety of possibilities. In Computer Graphics, the use of artistic styles has been
used in the last years for non-photorealistic rendering and exploits the capacity of visualization.
The use of art in visualization, and especially in scientific visualization, still needs more profound
research, especially from the area of perception and psychology. This is thus under the scope
of this thesis, nevertheless some inspiration can be gained from considerations and preliminary
experimental findings; for this reason I introduce some related concepts and a brief discussion.

Although the endeavors of artists and scientists may strongly differ, visual art can contribute
guiding the design and development of effective methods for scientific visualization. In the SIG-
GRAPH 2001 # 32 course [2], Interrante explains how visualization can be viewed as the art of
creating a pictorial representation that eloquently conveys the complexity of a data set; at the same
time, "visualization differs from art in that its ultimate goal is not to please the eye, but to commu-
nicate information. The arts derive from long and experimental studies and historically leads to
successful approach to visual communication, creating visual forms that are evocative and convey
meaning". Prominent examples, where centuries of experience and knowledge produced several
advances, include architecture and cartography. Visual art can be thus examined to gain some un-
derstanding of the basis of human perception of the surrounding world, additionally contributing
with creativity. Figure 6.17 illustrates examples of 2D fl ow visualizations developed by students
in the SIGGRAPH 2001 # 32 course. Many studies have shown that seeing is an act of imagina-
tion, since the brain tries to extract and abstract important qualities of an image or scene. This is
currently a fundamental topic in computer graphics in general, as proved by the numerous recent
works and research done on sketching. Consequently, although in many cases the targets of arts
and science differ, their synergy can at least provide inspiration and new interesting insights in
visualization. Kirby cites how Vibeke Sorensen, in her essay "Art, Science" [186] alludes to the

6.5. FILTERS AND CONVOLUTION KERNELS 117

necessity of a Renaissance team, "to encounter the divisional chasm between artistic and scientific
disciplines", which has been caused by specialization. She also argues how Leonardo da Vinci is
by the most considered as the epitome of the artist-scientist combination. This ideal was soon lost
to specialization, but can be reached through interdisciplinary research and collaborative efforts.

Figure 6.17: Examples of artistically inspired fl ow visualizations (image courtesy of Robert M.
Kirby).

Pictorial styles

Numerous are the techniques, inspired by the arts, that involve pictorial styles in visualization.
Some early works attempts incorporating artistic effects in visualization, taking advantage of the
visual richness and effectiveness of the arts, attempting to capture visual design knowledge into
guidelines. This is motivated by the fact that artistic works have the ability to evoke powerful
emotional perceptive responses. In his inspiring work Paint by numbers [76], Haeberly proposes
non-photorealism as an alternative to photo-realistic images. He creates impressionistic paintings
using an ordered collection of brush strokes and controlling their individual color, size, shape and
orientation. Later, Meier [139] shows how to layer strokes, as done to build up oil paintings. Sim-
ilarly, it is possible here to adopt this technique by choosing differently characterized samples and
then using them to abstract the resulting visualization or to confer it a stylistic appearance. Texture
transfer for instance recognizes a given pictorial style in an image and transfers it to another one,
Photomosaic subdivides an image in sub-areas giving the impression of a mosaic, illustrative visu-
alization and suggestive contours are used in CG to abstract shapes and images, synthesizing them
in a few strokes or lines, which convey their essential essay. Illustration provides the potential to
interpret physical reality and hierarchically guides the attentional focus accentuating the important
information. The pictorial technique called chiaroscuro can confer a three dimensional aspect to
images, and is de facto used in contrasted images as explained above. Common pictorial styles
are well known examples recovered from the arts, such as cubism. Cubism (inspired for instance
by Picasso’s works) is hardly the only example of seing of essentials. Brush strokes were moti-
vated for instance by Van Gogh’s style. Further styles as impressionism, expressionism, dadaism
and pointillism, among others, also deal with isolate visual essences such as color, form, texture
and light. On the other side, realism focuses on the most faithful representation of the real world.
Figure 6.18 illustrates examples of painterly visualizations [114].

Recent proposal based on art are for instance the pointillistic glyph-based visualization [172],
which has been applied to visualize nanoparticles in formation. Through pointillism, Saunders et
al. represent a single mean and standard deviation pair with a larger area square of pixellated tex-
ture in the output image (Fig. 6.19). They use spot glyphs and target motif glyphs using concentric
rings of color tied to underlying particle count values. This approach, as well as others stylistic
approaches, can be easily integrated in the presented work. The pointillistic visualization is in fact
glyph- and texture-based and can be used for the visualization of multivariate data.

118 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

Figure 6.18: Kirby et al. experimented with varying the visual representation of underlying data
by changing stroke shapes, texture, color, size, and placement. The top and bottom image in each
pair are the same underlying data (image courtesy of Robert M. Kirby).

In the context of this research, stylistic texture can confer a sketched appearance to abstract
vector field representation, as done in illustrative visualization. More complex artistic styles are
not suited for the presented approach, but could contribute to aesthetic effects in controlled texture
synthesis (Chapter 7).

Figure 6.19: Pointillistic visualization (image courtesy of P. Coleman Saunders).

6.6 Adaptive information layering

As explained above, textures can incorporate many visual dimensions for intuitive and fl exible
data encoding, and can thus serve as effective seed primitives for use in scientific visualization.
As special application, I propose here a level-based visualization approach, with a special focus
on systematic layering of information. This provides an interesting methodology, especially to
visualize complex multi-dimensional and multi-variate scientific datasets in an intuitive and fl ex-
ible way. It allows to easily synthesize information and to derive insights from the data, as such
study facilitates data exploration and analysis. The approach can combine different techniques and
link them together through perceptually-based principles. The system is customizable; Fig. 6.20
shows preliminary result, where it is possible to control the information encoding through a set of
adaptive sliders, this also allows specifying and superimposing layers where different portion of
information is represented. In the remainder of this chapter, a discussion about this starting idea is

6.6. ADAPTIVE INFORMATION LAYERING 119

provided, open to further extensions and sophistication.
Considering different tasks and audiences, it is necessary to find a compromise between the

need for visualizing a lot of variables at the same time and the need for abstracting and simpli-
fying the information. For this purpose, in this final part of the chapter I introduce a methodical
approach for information layering that can contribute to effective and expressive visualization of
multivariate data sets. The starting idea is driven by the target of investigating and applying vari-
ous visualization principles to scientific visualization and it is especially motivated by the deal of
offering a simple visualization framework for different users and tasks.

Figure 6.20: Using adaptive sliders to vary the visual representation of the data.

User- and task-driven data depiction

When visualizing a scientific dataset, it is important to consider that such representation can be
perceived in different ways: an effective visualization is not always and not for everybody an
effective visualization. Especially in the case of multi-valued multi-variate datasets, users may
want to observe the carried information under different perspectives: they may want to display
so much information as possible at the same place, in order to investigate possible correlations
and interactions between the several variables of the scalar, vectorial or tensorial dataset, or they
may want to just isolate some of them to highlight their behavior. Users also may have a different
level of expertise and hence, using a too complicated or specialistic visualization may results in
confusion. A very simple example is given by the rainbow color scala used to map temperature
scalar data to a range of colors ranging from red to blue. Although the rainbow scala is not
perceptually optimal, it results of very intuitive understanding for this task: every user can interpret
the information at a glance without the need of reading labels or further explanations.

Using an adaptive visualization system, it is possible to differently map the information con-
tained in the data onto different visual representation; such ad hoc visualization can be also used
to match or confirm user expectations and to help them in the data analysis; it puts the basis for
a task- and user-oriented approach. In vision research it is important to consider the role of cog-
nitive infl uence in perception, as perceptual judgment is done in context of our prior experience
and expectation, and our state of situational awareness (§ 2.1). Theory from cognition proves that
what is familiar results to be intuitive to understand; to quote Goethe: "That which we know, we
have first seen".

6.6.1 Showing composite information

In a level-based schema, filtering and focusing can be implemented to allow simple screen out of
unwanted data or to highlight points and areas of interest. The interchangeability of visual rep-
resentations and mapping criteria allows visualizing the data under several different perspectives.
Key issues of abstraction are also considered. The main motivation is that humans use linear think-
ing, while understanding high-dimensionality is sometime critical. At a panel discussion at the ieee
vis 2005 [67], Pat Hanrahan illustrated the main misconcepts in visualization, and explained why
the followings do not have to be assumed a priori:

1.) 3d is better than 2d,

120 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

2.) animation is better than static,
3.) the more variables the better,
4.) more views are better than one,
5.) realistic is better than abstract.

The reason of this is that everything has side effects, so the answer to the question: more is better?
is actually often: less is more. Consequently, a layering approach, together with user interven-
tion, can be a valid solution, providing a custom-designed visualization for data exploration under
different perspectives. Providing just a visualization could leave some possibilities unexplored
or could ignore potential parameters interactions. In conclusion, adaptivity in the visualization
process may contribute to efficiency, controllability and perception.

Avoiding visual interference

An effective method to display more features simultaneously can increase the number of attributes
and variables we can represent at one time, and thus, the information to visualize. Nevertheless,
when integrating these features together for early vision, it is necessary to determine the amount
of visual interference that occurs during visualization. The experiments of [215] show (Fig. 2.6)
how color or change of curvature are instantaneously recognizable in simple cases, while it is not
the case in presence of distractors. Taking into account these theories provides insights for a more
effective visualization. A deep understanding of how humans perceive color, shape, and images
in general, can help in ad hoc designing the tool that serves as instrument for such visualization,
telling what is visually compelling. For this reason, methods based on human perception more
successfully achieve the goal of visualization, and preattentive features are of particular interest
for our visualization approach, allowing a visual pop-out of relevant features. This motivates the
assumptions and the specifications done above (§ 6.4.1) for the texture and the attribute space.

6.6.2 Layering information

Layering information for better perception has its origin in the past, may be the most prominent
example is the Vitruvian man of Leonardo da Vinci. In this drawing, Leonardo exemplifies the
canons of human proportions, postulated by the roman architect Vitruvius in the I century a.C.
The theory shows that the human proportions are seamlessly inscribable in two perfect geometric
figures, the circle and the square. Leonardo illustrates this theory with the innovation of using
a single drawing, where he superimposes the same human figure giving the perception of two
different simultaneous images (Fig. 6.21).

Layering information allows an effective fl exible data representation, offering the possibility
to visualize multiple datasets simultaneously, or extracting and isolating a part of the informa-
tion. Considering complex datasets, in general multi-dimensional and multi-variate, we can take
advantage of texture features for effective layered data encoding. The method is general and cus-
tomizable: the user-centered visualization offers easy data interpretation, also making the reading
of the data more appealing, which is of great relevance, especially in education. An early example
that proves this importance is given by the work of [139], which simulates painting animations,
showing how painters repetitively use strokes to build up oil paintings.

The proposed visualization approach is based on layered information and designed to sys-
tematically separate relevant scientific information on different levels. When adopting layers,
superimposition of information is useful in visualizing datasets via different levels of abstraction.
The possibility of separating the information and presenting it with different complexity allows to
combine or blend slices of information together. Thus, it is possible to show a great amount of
information, but it is also possible to leave a portion of it by side, in case too many overlapping
layers result to be complicated and avoid intuitive visualization.

The way each layer contributes to the final data representation can be stressed by the user by
setting a transparency rate. This can affect a whole slice of information or locally just a portion

6.6. ADAPTIVE INFORMATION LAYERING 121

Figure 6.21: Medieval illustrations of Vitruvius’s theory (left) and Leonardo’s drawing with both
the “homo ad circulum” and the “homo ad quadratum” (right)

of it. The representation can be controlled through a set of sliders, buttons, values and threshold
settings, letting complex options blending or switching on the base of the level of expertise of
the user. Also binary variables may be fundamental in the visualization, allowing to switch-on or
-off some mappings or representations of features. The visualization framework builds up of all
information slices and for this reason it methodically includes the peculiarities of valid existing
visualization techniques. Testing different cases, it has been found that a good compromise is to
use up to four layers, allowing several combinations by changing the relationship among layers. It
is important to select a good tradeoff between the need for concentrating the amount of data in a
single visualization, and the need for highlighting just a relevant part of it. Further, intervention is
possible to customize in part the layer representation; depending on the particular application or
user, not only the amount and complexity of information can vary, but also the visualization style,
focusing for instance on scientific, theoretical, informative or artistic glyphs.

Systematic information layering

As introduced, a level-based approach also allows the visualization of data sets as a combination
of several methods. The information layering can be designed to systematically separate relevant
scientific information on different levels. Several aspects of existing techniques, as classified in
direct, geometric, feature-based, texture-based (§ 2.3), can be covered in the proposed approach.

The presented texture-based method is for instance well suited for the visualization of vectorial
data, since a dense visualization better represents a complex field avoiding the risk of missing
peculiar information, as it could occur in sparsely sampled visualization. As illustrated in the
previous chapters, this intuitively conveys the basic structure of the vector field. The technique is
particularly intuitive in conveying the principal characteristics (e.g. magnitude, curvature). Being
then the method sample-based, it adapts a directional texture to the field, accordingly changing its
orientation, resolution and attributes. this also allows principles of direct visualization, by means
of visual cues and artistic styles: either to highlight singularities or to stress points or regions
of interest, it is possible to use glyphs, icons and special visual representations (feature-based
visualization). In this way it is easier to recognize the features of the vectorial dataset. The level
-based approach offers finally the possibility to abstract the visualization as done in geometric
approaches.

122 CHAPTER 6. EXTRACTING AND ENCODING DATA CONTENT

6.6.3 Comments

In summary, effectively visualizing the information contained in given data sets is a fundamental
issue, as data need to be analyzed and interpreted, and information has to be extracted and under-
stood. One of the main problems in visualization is that our ability to collect data is increasing at
a faster rate than our ability to analyze it. Also, tools at our disposal may allow the storing of a
huge amount of data, but effective ways of analyzing them still need to be investigated, especially
understanding how and why some visual representation are easier and faster to perceive than oth-
ers. Human vision, cognitive sciences and perception provide the needed feedback to achieve this
target.

A visualization system that offers variable settings results to be appealing and interesting for
educational issues, since different users may set parameters in different ways while analyzing
the data and while trying to derive information or identify particular features of interest. Human
vision theories, cognitive issues and perception, together with psychology, come as useful com-
plementary information to computer science for such definition and provide an important step in
producing perceptually optimized visualizations. In the Computer Graphics community lot of at-
tention is recently given to such research areas and further investigation need to be conducted in
this direction.

Chapter 7

Other applications

The approach to vector field visualization presented in this thesis finds applications in popular
areas of scientific visualization, including the representation of scalar, vectorial and tensorial
fields, which are potentially unsteady and multi-variate. Besides such research fields, covered
in the preceding chapters, the texture-based synthesis approach finds interesting applications in
image processing, for instance for controlled image generation, and especially controlled texture
synthesis. This investigation has resulted in the following publications: [193, 201, 203, 196].
As introduced in Chapter 6, image processing DSP filters can be locally applied in a straight-
forward way. Similarly, thanks to numerous options of the information mapping, applications in
information visualization can be found as well. In addition, there are several interdisciplinary con-
tributions; techniques for image generation and information encoding can be further investigated
and exploited to stronger connect and relate scientific versus information visualization, also taking
advantage of perception and vision theories.

Texture deformation and animation

Deforming and animating textures attract a lot of attention and interest in Computer Graphics.
Characteristics of texture appearance may evolve or change in time and/or space, a particular
characteristic may appear, vary, move or disappear, similarly as for vector fields when describing
complex physical phenomena.

Up to this point, I have used texture synthesis theory for the target of fl exible vector field
visualization. But the underlying theory is in turn useful for controlled texture synthesis itself, re-
serving interesting applications in computer graphics and computer vision, for instance to generate
non-homogeneous or dynamic textures. I introduce such ideas and discuss interesting applications
in the following sections.

7.1 Steerable texture synthesis

7.1.1 Introduction and motivation

Standard texture synthesis is typically concerned (§ 2.2) with the creation of an arbitrarily sized
texture from a small sample, where the pattern of the generated texture should be perceived as
resembling the example. Following a Markov model approach, the texture is generated by finding
best matching pixels or patches in the sample and then copying them to the target. The concept is
here extended to incorporate arbitrary filters acting on the sample before matching and transferring;
the filters may vary over the generated texture. Steering the filters with properties connected
to the output image allows generating a variety of effects. Large textures are found and used
everywhere in computer graphics these days. They are fundamental for many applications in
computer graphics, computer vision and image processing. Synthesizing these textures from small

123

124 CHAPTER 7. OTHER APPLICATIONS

samples is in general a powerful way of saving on storage. Textures enrich synthetic objects and
computer generated scenes with variety and realism, helping perception of shape, curvature and
material. However, due to the complexity of processes generating textures in the real world, one
sample is typically not sufficient to describe a large texture. Oftentimes, a texture seems to be
generated from a few underlying processes, which blend or merge over the surface. In addition,
other easily discerned properties such as lightness, saturation, color, orientation, size, etc. change
over the surface.

Approaches to regular texture synthesis, as those cited in § 2.2, have been optimized over
the last years and are capable of generating high quality results at reasonable computation times;
though, most of them only synthesize homogeneous textures starting from single samples. How-
ever, it would be interesting to produce ad hoc modified outputs, allowing the user to vary fea-
tures of a chosen pattern, still reproducing its main structure. Recently, a considerable number
of techniques, including [225, 252, 185, 242, 72] recognize the lack of local control for output
textures and the necessity to offer more fl exibility and user intervention for a better match with
real appearances of natural objects. Nevertheless, interaction on textures and the generation of
non-homogeneous textures is still challenging and promises interesting applications. This work
aims at progressing the idea of adding more control over the texture generation process.

Unlike stationary textures, which are characterized by stationary stochastic models, non-homo
geneous textures account for a larger class of real world textures [255]. Coating patterns of var-
ious animals [224, 213] can be for instance described by textures whose elements change in a
progressive fashion. The texture is stationary in a small neighborhood around each point, but the
overall texture characteristics vary continuously over the texture domain. The generalization of
the per-pixel texture synthesis, as presented in Chapter 3, can accommodate these effects and lead
to the synthesis of dynamic processes. The main idea is again to allow the texture being generated
from a set of pattern samples, now represented by more complex and structured textures. Each
output texel is associated to a sample texture in the set. The set might be generated from a small
discrete set of input samples that is enlarged using steerable filters. Filters change properties such
as orientation or size. In this section I present obtained results and discuss areas of interest where
steering texture synthesis is of relevance.

Figure 7.1: Standard pixel-based approach to texture synthesis (left): the pixels Pi of the output
Iout are set checking the most probable pixels in the input Iin. Proposed approach (right): unlike
the basic approach, the best matching pixels are derived from diverse samples.

7.1.2 Synthesizing non-homogeneous textures

As previously introduced (§ 3.2.3), the proposed method facilitates a set of samples (see Fig. 7.1-
right), instead of only taking a single sample as input (Fig. 7.1-left). These samples may be

7.1. STEERABLE TEXTURE SYNTHESIS 125

modified versions of a single generator, or, more generally, an arbitrary set of at most one sample
per output pixel. This means that for each pixel in the output the algorithm chooses a specific input
sample, inside which the most similar neighborhood and, thus, the output pixel are determined.
The process of neighborhood matching is the key factor to enforce continuity in the output (as long
as the input is continuous). The idea is conceptually simple, but allows a powerful and general way
to produce a large variety of output textures.

7.1.3 Controlling the texture generation

When using the framework illustrated in Fig. 7.1-right (cf. Fig. 7.1-left), it is possible to speak
about controlled texture synthesis: in fact, the approach allows non-homogeneous texture genera-
tion or vector-driven texture synthesis, in that filters or a deformation field can control the setting
of the output pixels.

The concepts and notations presented here are partly similar to the explanations of Chapter
3; the considerations done in this chapter are derived from the approach to vector field visualiza-
tion, and provide now an extension to more complex texture patterns, other than simple line-like
directional samples. For this reason, the weighting schemes introduced in Chapter 4 are partic-
ularly useful, being complex texture samples often characterized by several principal directions.
Observing Fig. 7.1-right, note how the pixels Pi in the texture Iout are set executing a query in-
side corresponding samples Ii. The crucial point is how the input set Iin = {I0, I1, . . . , Ii, . . . , In} is
composed. A special input Ii may be used to set one or more specific output pixels, i.e. n ≤ N.
In the most generic case, n = N, the user may control every single output pixel Pi in an individ-
ual way, deriving it from an uniquely corresponding sample. Note that the inputs Ii might also
have different pixel counts. This generalized approach is introduced in Chapter 3 and illustrated
in Fig. 3.12 where the input set is composed by a matrix of samples in correspondence with the
output pixels. Complex filtering and blending produce transformations between diverse textures.
The input set may comprise of independent miscellaneous samples, and the desired output may
transit between the various appearances. Formally, let Iout be the desired output texture of dimen-
sions (Wout ×Hout), and Pi an output pixel at position (x,y): every Pi corresponds to an array a of
dimension n:

∀(x,y)out ∈ Iout ⇒ a ∈ Rn (7.1)

The dimensionality n depends on the number of parameters (each of them can in turn be an
array) that operate over the input set. Thus, the array a contains information that refl ects image
characteristics and defines the input samples Ii:

a ⇔ Ii (7.2)

More specifically, we have correspondence between the current pixel at (x,y) and the particular
input texture Ii:

a|(x,y) ⇔ Ii|(x,y) (7.3)

Now, let all the samples of Iin be filtered versions of an original sample I0, and T the transfer
function of this filter, then

Ii|(x,y) = I0 · T (a|(x,y)) (7.4)

where T gets as arguments the n components of the array a and transforms I0 on the base of a
set of correspondence rules. For a straightforward explanation, a simple case study is described by
the results of Fig. 7.2, 7.3, where the user intention is to just modify the sample appearance through
gradual parameter variation along a specified curve or direction. Consequently, a progressive filter
iteratively operates over the input I0, generating modified versions of it. This guarantees smooth

126 CHAPTER 7. OTHER APPLICATIONS

variations and continuous outputs.

Figure 7.2: Variations along y-axis: coloring & changing direction (left); modifying cloth pattern
sinusoidally (right).

Figure 7.3: Further results: curving an original pattern along a field (left) and gradually modifying
color components over the image plane.

Since this mechanism adds visual effects to each pixel according to user- controlled com-
mands, it is possible to generalize it in a broad way. To modify a starting sample, the system
implements image-processing filters, including:

Scaling: to change the resolution of the sample

Rotating: to rotate the sample along specified directions

Coloring: to regulate color effects and rgb-transitions

Brightening, darkening: to modify the sample by increasing or decreasing its luminosity prop-
erties

Contrasting: to enhance contrast present in the texture example

Embossing, blurring: to introduce emboss or blur effects

7.1. STEERABLE TEXTURE SYNTHESIS 127

Shearing: to stretch the sample and enhance directionality

Warping, bending: to curve the sample stressing curvature

Some of the described operations are collected in Fig. 7.4. Consequently, the synthesis process
requires the specification of a set of operators, and also a description of how these operators have
to act over the samples. The way a filter is applied to transform the input may be related to several
correspondence rules (§ 6.4) that can be pre-specified or user-selected. Such rules are for instance
based on:

• the coordinate axis of the output image

• the behavior of a specified function defined over the output image

• the intensity of a force field

• the curvature information of a force field

• a magnification factor to emulate relief in the output texture

• a mixture of various rules

Figure 7.4: Scaling, rotating, brightening and darkening, incrementing red and blue component,
embossing.

In general, it is up to the user to choose intuitive and significative mappings. In Figures 7.5,
7.6, 7.7, 7.8, 7.9, 7.10, 7.11 and 7.12 several effects are illustrated.

128 CHAPTER 7. OTHER APPLICATIONS

Figure 7.5: Controlled Texture Synthesis: the input sample (a) is modified through a superim-
posed field (b): phase information is used to change the direction of the pattern (c), magnitude
information is considered in addition to scale the original pattern (d).

Figure 7.6: Transformation masks: enhancing brightness (a), scaling (b), scaling plus brightness
(c), and embossing (d).

Figure 7.7: Further results: waves and bricks patterns.

7.1.4 Results and discussion

This section illustrates a new method for customized texture generation. Essentially, the main nov-
elty of this approach is a generalization of pixel-by-pixel texture synthesis that takes into account
a mapping from output pixels to input sample. The main observation is that continuity of the out-
put results from the neighborhood matching and, especially, smoothness across the different input
samples is not necessary. The implemented algorithm is intuitive and the system is easy to use:
the user is able to freely combine filters and parameters yielding easy and fl exible control over the

7.2. TIME- AND SPACE-VARIANT TEXTURE SYNTHESIS 129

generation of the output texture.
The results shown in this section were produced using the proposed method (§ 3.4) imple-

mented using improvements presented in Chapter 4 and using the multi-resolution approach based
on Gaussian Pyramids, as explained in Appendix (§ A.2.1). For the examples, 16 × 16-sized
samples were mostly used and the system required a few minutes to synthesize 256× 256 and
512× 512 large output textures. Again, as the input sets can be pre-computed or pre-filtered, the
processing times are not delayed, regardless of how many variables the user is modifying; conse-
quently, there is no penalty for the added degrees of freedom.

Figure 7.8: Further filtering: increasing the red (a), green (b), blue (c) component along with field
amplitude variation, in a local manner.

Figure 7.9: Applying different color masks: with (a, b) and without (c) magnitude scaling.

7.2 Time- and space-variant texture synthesis

7.2.1 Introduction and motivation

In addition to texture variation illustrated above, objects appearance can be infl uenced by several
surrounding circumstances over time, and, as such, temporal texture synthesis plays a fundamental
role. Furthermore, controllability remains a crucial point to generate desired outputs. In the spirit
of Section 5.1.3, it is possible to extend the controlled static texture synthesis (§ 7.1) to the more
general controlled animation of textures. In this section, I present a fl exible methodology for con-
trollable synthesis of time-varying textures. The objective is to control textures in a general way,
generating motion along given directions and simultaneously infl uencing the texture appearance
in a dynamic way. The proposed algorithm allows producing a variety of outputs and provides a
smooth and continuous temporal animation of the frames.

130 CHAPTER 7. OTHER APPLICATIONS

Figure 7.10: Further results.

The contribution of this extension is to provide a straightforward methodology to perform the
synthesis of dynamic textures in a user-defined way. Although approaches to synthesis of station-
ary processes exist, there has been comparatively little work in the specific area of field-driven
texture synthesis. The extension to steerable texture synthesis proposed here permits intuitive
sample-based and arbitrarily field-constrained texture synthesis enriched by a variety of customiz-
able effects. In particular, this method allows local control to change the texture resolution, beside
its color and other attributes.

7.2.2 Motion in texture synthesis

Significant techniques have emerged in the computer graphics and image processing literature;
much effort has been invested in producing useful and effective algorithms, nevertheless, the need
for visualization of variable complex phenomena requires further investigation. As compendium
to the State of the Art on texture synthesis (§ 2.2), I succinctly introduce here some works that
deal with variable texture synthesis. In particular, I review on existing approaches for the synthe-
sis of time-varying textures. Although many advances have been achieved in texture synthesis, the
lack of control still remains a focal issue in designing new synthesis techniques. As recognized
by [124], most techniques that offers some kind of control, only provide little amount of texture
variability and are mainly restricted to random seeding of boundary conditions, obtaining rather
unpredictable results. Lefebvre and Hoppe [124] propose texture variability, but their target and
approach differs from the one presented here. They desire an aperiodic infinite texture that they
modify introducing new elements via drag-and-drop. Kwatra et al. [119] visualize textures con-
trolled through a fl ow field. Nevertheless, the approaches are basically different: they use a global
synthesis optimization process, which takes effect on the whole output texture, while we want
local control and we can manage numerous texture attributes (such as resolution, color, shading,
embossing, besides orientation) in a general way, in order to provide additional degrees of freedom
for controlled synthesis of the texture variation and evolution.

Regarding statistical methods that model textures in motion or that produce a sort of variation
in textures, they mainly concentrate on repetitive processes and deal with the modelling and re-
production of temporal stationarity, like in sea-waves, smoke, steam, foliage, whirlwind but also
talking faces, traffic scenes etc. (Fig. 7.13). These approaches typically suggest to use a sequence
of frames to simulate cyclic motion or periodic effects that are in some way similar to movement.
For this task, an input sequence of samples - input movie - is needed. This input has the function
of training data, from which the procedures directly acquire the necessary information and repro-
duce it through statistical learning in an output sequence. The first approach that gives a statistical
characterization of textures is the early work of Julesz [103]; successively, about twenty years ago,

7.2. TIME- AND SPACE-VARIANT TEXTURE SYNTHESIS 131

Figure 7.11: Examples of a variety of synthesized textures.

he introduced [106] the concept of textons as "putative elementary units of texture perception" and
therewith opened the road to a very extensive research, also in the field of modelling motion in
texture.

In recent years, Wei and Levoy [241] propose a 3d extension to their model to create solid tex-
tures or, as particular case, temporal textures, in case the motion data is local and stationary both in
space and time. Bar-Josef et al. [12] employ multi-resolution analysis (MRA) of the spatial struc-

132 CHAPTER 7. OTHER APPLICATIONS

Figure 7.12: Examples of a variety of synthesized textures.

ture of 2d textures and extend the idea to dynamic textures (movie texture), they directly analyze a
given input movie and generate a similar one through statistical learning. Akin to this, Pullen and
Bregler [159] propose, modelling local dynamics, a multi-level sampling approach to synthesize
motion textures: new (cyclic) motions that are statistically similar to the original. Li et al. [127]
propose a technique named motion texture for synthesizing human-figure motion: they model a
motion texton by a Linear Dynamic System (LDS). Schoedl et al. [173] also model textons with
LDS for video texture, looping the original frames in a manner that the synthetic reproduction is
minimally noticeable to the user. Doretto et al. [49] generate dynamic textures. Dynamic textures
are sequences of images of moving scenes that exhibit temporal regularity, intended in a statistical
sense. In the specific case of spatially coherent textures (textures that exhibit temporal statistics),
Soatto et al. [184] (and [49] for both spatial and temporal regularity) synthesize a homogenized
version of the original sequence, through a model designed for maximum-likelihood or minimal
prediction error variance. They use LDS to model a texture by an auto-regressive, moving aver-
age (ARMA) multi-scale process. Similarly, Fitzgibbon [61] uses an autoregressive (AR) model.
Again for stationary data, Szummer and Picard [190] use a spatial-temporal autoregressive model
(STAR), which provides a base for both recognition and synthesis. This model produces convincing
results, nevertheless, it cannot capture curvature and rotational motion.

Modelling more complex variations - nonlinear dynamics - is difficult, it requires the use of
multiple linear systems, and thus it is still challenging [127].

7.2. TIME- AND SPACE-VARIANT TEXTURE SYNTHESIS 133

Figure 7.13: Temporal regularity is exploited in animation of clouds, smoke, fire, steam, waves,
waterfall.

7.2.3 Animating textured images

The works cited above mainly consider sequences of images that exhibit certain stationary prop-
erties, specifically repetitivity or cyclicity, in time. For this reason, most methods are limited to
the visualization of natural processes like sea-waves or wavy water, rising steam, fire, smoke, fo-
liage, whirlwind, etc. Another problem is that the synthesized motion may lack global variations
when the training data is limited. These techniques require a starting frames sequence, or input
movie, which has to be learned, capturing the essence of the dynamic process, from the system
and then reproduced. Therefore, these methods particularly focus on statistical learning, having
as task texture analysis and recognition besides texture synthesis. They usually assume the texture
to have been generated from an unknown stochastic source process, which they need to estimate
and model.

Also for this reason, the idea presented here is different from previous works. The intention is
now not constrained to reproduce repetitive or cyclic motions; the target is to model general varia-
tions of textures. Instead of visualizing cyclic processes such as repetitive waves, I concentrate on
distorting a given pattern by progressively varying some of the attributes that define its structure.
Starting with an input texture, a control field, and a suitable synthesis algorithm, it is possible to
arbitrarily modify textures in a variety of ways and then to continuously animate this transforma-
tion. Briefl y, a sequence of frames is synthesized, that depicts the evolution of a texture over time.
The algorithm still works at a per-pixel level, and the synthesis is performed in multi-resolution.

Field-driven synthesis

The motion and variation in time are controlled through the selection of a control field. This
field is potentially multi-valued and multi-dimensional; it varies the texture structure aligning and
adapting it along new directions. Such vector field is variable over time, hence, at each time step
the synthesis process produces a corresponding texture frame. User intervention is allowed in
defining the field to infl uence a given example. In this way, textures may be arbitrarily controlled,
deformed, varied over time.

134 CHAPTER 7. OTHER APPLICATIONS

Figure 7.14: Block diagram for the generation of multiple subsequent frames: their animated
succession generates a time varying texture.

Recursive passes

The block scheme of Figure 7.14 sketches the generation of the output sequence. As done in § 5.1.3
for the visualization of unsteady field variation, the synthesis is recursively iterated a desired num-
ber τ of frames. The dashed block representing the single frame generation (used for standard
texture synthesis) has been appropriately extended to additionally acquire information from the
previous synthesized frame. For this scope, the cubic neighborhood model defined in § 5.1.3 is
here used, again building a three-dimensional structure around the pixels. Figure 7.15 shows how
to construct spatio-temporal neighborhoods; it illustrates three-sized models in single-resolution.
Figure 7.16 shows a five-sized model in multi-resolution.

Let consider the current pixel to synthesize, then its cubic neighborhood incorporates the adja-
cent pixels in the L-shaped neighborhood - spatial information - plus a number of square-shaped
neighborhoods - temporal information - at corresponding location from the underlying complete
layers at previous time steps. Such neighboring pixels carry coherence information; in this way,
this synthesis procedure achieves continuity and preserves smoothness in the spatial domain (x,y)
and in the temporal domain t as well. In fact, when synthesizing temporal evolution of a texture,
the individual frames are not independent realizations from a stationary distribution, for there is a
temporal coherence intrinsic in the temporal field that drives the animation.

Algorithm

Referring to Figure 7.14, let Iin(x) be again the selected input sample; I define Iout(x) to be an
output texture in desired resolution, where x is a vector, for simplicity in two-dimensions: x =
(x,y). The target is to generate an animation of Iout(x) under the action of a control field, now
called in general deformation field D(x, t), and during an arbitrary period of time τ: t ∈ [τ]. The
basic pattern of the texture is modified by the time-varying deformation field and its features are
potentially controlled through ad hoc definition of transfer functions T (x, t) (similarly as done in
Chapter 6). More precisely, D(x, t) and T (x, t) infl uence the specified texture example over time,
respectively by forcing it along new directions, and by modifying its appearance.

Formally, I synthesize a texture sequence Iout(x, t), with t = 0,1, . . . ,τ, and Iout(x) ∈ R2. As
drafted below in the Implementation steps paragraph, this frame collection {Iout(x)}t=1,...,τ is gen-

7.2. TIME- AND SPACE-VARIANT TEXTURE SYNTHESIS 135

Figure 7.15: Synthesis schema for the generation of two successive frames (t = 0, t = 1) using a
neighborhood of size = 3.

erated in an automatic way with a recursive system (refer to Figure 7.14): the synthesis of each
temporal frame is infl uenced by information derived from the previous frame (or from a set of
previous frames). This facilitates achieving smoothness along the temporal evolution. Figure 7.15
illustrates the synthesis of two successive frames in single pass resolution. Assuming to have al-
ready completed the starting frame (t = 0) using standard planar synthesis, it is now desired to
synthesize a generic pixel (the dark blue one) inside the following frame (t = 1). At this synthesis
stage, the light green part of the image has been synthesized, and, proceeding in scan-line order,
the neighboring pixels above and on the left of the current pixel at position (x0,y0) are known,
together with the pixels belonging to previous frames. In order to incorporate temporal informa-
tion, the pixel at the corresponding location (x0,y0) that belongs to the previous step is considered.
That frame has been entirely synthesized, therefore the complete squared neighborhood around
that pixel is known. In this way, it is possible to build three-dimensional neighborhoods (bright
blue pixels), which comprise of the L-shaped neighborhood from the current frame t plus the
corresponding squared neighborhood from previous time step (t − 1). The pixels that build the
extended neighborhood have to be adequately taken into consideration: it is important to note that
the preceding temporal frames contribute to the 3d-neighborhood with different - non-uniform -
weights, as pixels in the current frame present less correlation with pixels that belong to previous
frames (see also Chapter 4). As done in § 5.1.3, concepts from § 4.5.1 lead here to spherical
and ellipsoidal weighting schemes for the neighborhood models, which are depicted in Figure 5.5.
Such weighting schemes are particularly beneficial for complex texture patterns.

This is also shown in Figure 7.16, which describes the technique for a three-frames synthesis
process in case of larger sized neighborhood (size = 5) and with two levels of multi-resolution
image pyramids. From left to right, the illustrations show the texture evolution in time: the right-
most output slice represents the current frame. Looking instead from right to left, the frames go
back in time and the infl uence of the layers with respect to the right most one decreases. From
bottom (coarse scale) to top (details), multi-pass synthesis is executed using sub-band transforms.

Implementation steps

The algorithm synthesizes all the output pixels of a single frame, and this for each frame in succes-
sion. Since the concepts have been extensively explained in the previous chapters, I just provide
here a brief step-by-step summary.

136 CHAPTER 7. OTHER APPLICATIONS

A cubic neighborhood N3 is build for every output pixel Po(x,y), with x∈ [0,Wout], y∈ [0,Hout],
being Wout and Hout , respectively, the width and the height of the output image. A similarity metric,
which accounts for these neighboring pixel values, is computed using least squares, and is then
used as distance function to measure neighborhood similarity. In this way the best matching pixels
can be chosen.

Figure 7.16: Five-sized neighborhood model (L-shaped plus square-shaped) with two-level multi-
resolution synthesis (L = 2). Lighter colors in the synthesized frames means weaker correlation to
the current one (t = 2).

The fundamental steps are:

1. Initialization: set values of output image dimension, time period, pyramid levels; define the
controlling deformation field

2. First step: perform two-dimensional synthesis (t = 0)

3. Further steps: perform three-dimensional synthesis (t > 0)

The algorithm from § 3.4 is used for the first step of the algorithm. The synthesis steps for the
generation of the frames at general time step t > 0 are conducted as follows:

• Build a neighborhood N3 for every pixel Po(x,y), including the L-shaped neighborhood and
further squared neighborhoods (in number and resolution depending on the size of N3 and
on the number of pyramid levels L)

• Evaluate the deformation field D(x,y; t) at the current output position and time instant, cal-
culate prominent field features (phase, magnitude, curl, . . .)

• Use this information to accordingly modify the input sample infl uencing its structure and
setting the calculated directions to be the new orientation

• Build all possible N3 around Pi(i, j) inside the input sample and calculate the similarity
metrics

• Compare the entries of the array of input neighborhoods with N3(Po(x,y)), on the base of
distance function, and choose the most similar one

7.2. TIME- AND SPACE-VARIANT TEXTURE SYNTHESIS 137

• Select that value Pi(i, j)|Max_similarity and set it to be the current output pixel

• Proceed in scan-line order till the output texture is completed

• Repeat this procedure for all levels l of image pyramid and for all following temporal frames
t within the sequence of temporal range τ

Filtering

As shown in Figure 7.16, in addition to the use of a deformation field, textures may be modified
over time in a progressive way through filtering operators. Such functionalities are integrated in
this approach to allow more manipulation. Figures 6.11 and 6.12 from Chapter 6 show possi-
ble blocks schemes for generic and progressive filtering. This operation may be inserted in the
temporal synthesis scheme to extend its functionalities (note the filter blocks in Figure 7.14).

Figure 7.17: Examples of filtered texture frames sequences. In both cases, four temporal frames
extracted from a longer sequence are shown. They represent the time-varying texture at different
time instants.

7.2.4 Results and discussion

The approach has been tested in a variety of cases, in particular for structured textures (Figure 7.18,
7.19, 7.20). Mainly directional or semi-structured samples have been employed, since patterns that
present accentuated features along a major axis better exploit movement in the given directions.
Using textures having anisotropic pattern, it is easier to visualize and enhance the information car-
ried by the control vector field. Complex patterns (Fig. 7.17) may present artifacts when adopting
small neighborhoods for the synthesis. Anyway, patterns containing more principal directions can
be as well successfully employed adopting the weighting schemes of Chapter 4.

The values that were typically used to produce the outputs presented in this section are 16×16
or 32×32 pixels for the size of the input samples, and 256×256 and 256×512 points resolution
for the generated outputs. The synthesis time is essentially comparable to the other pixel-based
approaches. The length of the frames sequence can be arbitrary and animations could be in theory
endless. Therefore it is possible to generate infinitely long sequence of images that can be looped
seamlessly by opportunely designing a cyclic controlling function, which can repetitively deform
the pattern without producing artifacts or discontinuities between different animation cycles.

138 CHAPTER 7. OTHER APPLICATIONS

Figure 7.18: A sinusoidal distortion field modifies a sample (top), and a filter based on a blue
component additionally highlights the field intensity in the same frame series (bottom).

The algorithm is based on a recursive synthesis procedure that uses the introduced three-
dimensional neighborhood model. This approach is promising for many applications, including
the visualization of animated textures and the texturing of dynamically varying surfaces, as it is
possible to generate animations of textures in an automatic and straightforward way. The algorithm
does not present any restriction for the choice of the control field expression and of the filtering
parameters. This offers a technique, which is easily adaptable for a variety of applications.

Limitations and optimization

When using texture patterns characterized by having a complex structure, a large sized neigh-
borhood is required to allow the synthesis algorithm to learn and reproduce the sample statistics.
In such a case, the computational complexity rapidly increases. In addition, the eventual use of
time-varying scaling operators over the input sample also leads to a larger neighborhood size.

An important point to consider is the following: in a few cases, the occurrence of a sort of
fl ickering effects in the transition between some frames during the animation was noted. The input
sample may occasionally strongly varies (through rotation, scaling and other operators) between
the different time steps: in such a case, the collection of successive neighborhoods for the best pixel
choice could present discontinuity. This problem is solved by considering, for the neighborhood
matching, only samples that were a posteriori re-rotated, with respect to the current pixel as center
of the operation. This guaranties better and smoother results. Occasional spatial or temporal
discontinuities might occur due to the pattern structure of the chosen sample and they result from
the nature of the algorithm: in this case they can be removed in a simple way by using a larger
neighborhood or a higher pyramid levels number, or could be blurred away. Smoothing for output
refinement also could be applied at a post-processing stage.

7.3. CONCLUDING REMARKS 139

Figure 7.19: A fabric (top) and a directional (bottom) texture are controlled by a vector field.
Scaling of the sample refl ects magnitude information of the field; the resolution of the original
sample is accordingly locally adjusted.

Figure 7.20: Example of a varying grey-scale and bricks-like texture patterns.

7.3 Concluding remarks

Concluding, this chapter outlines a technique for the synthesis of non-homogeneous varying tex-
tures and for the generation of continuous texture animations. Interesting applications include
decoration of deformed surfaces or surfaces in motion such as cloths or other materials. Tex-
tures are a valid solution for helping shape and material perception, and local control during the
generation and variation process is fundamental to augment such features.

The method is simple and general, but also fl exible and capable of generating a variety of ef-
fects. User intervention is offered: it is possible to produce specific output sequences through easy
and intuitive setting of control parameters and formulæ. The synthesized output frames conserve
appearance and structural properties similar to the input sample. They are controlled through a

140 CHAPTER 7. OTHER APPLICATIONS

specified vector field: they have to be adapted locally to follow specified directions, and accord-
ingly vary their structure and attribute in a non-homogeneous way. Resolution of the original
texture pattern, as well as color or shading attributes, can be easily varied. This synthesis pro-
cedure, being pixel-based, does not run at interactive rates. The advantages, on the other hand,
include the smoothness of the outputs and the presence of extra degrees of freedom in the texture
synthesis process, since local control has effect over individual pixels. In conclusion, the main
contribution of this work is to offer a general and intuitive technique to synthesize variable tex-
tures and later to animate them. In this way, a broad variety of pattern variation can be described.
Starting from such concepts, it is possible to extend and apply the presented ideas to several fields
of interest, also integrating different concepts together. I briefl y discuss some possible remarkable
cases in the following.

7.3.1 Texture mixture and metamorphosis

Sometimes in the real world, a single object exhibits more than one uniform look: the object
may be built up of different materials and its appearance may derive from a mixture of several
different appearances. Composing together dissimilar aspects in the same object is an important
task with many applications in texturing natural 3d objects. Interesting traditional examples of
metamorphosis are those by M. C. Escher (e.g. Metamorphosis III [59]). Applying the proposed
method, this task can be solved without the need of blending functions. Nevertheless, the use
of blending could serve to produce a user-designed continuous set of input samples. Morphing,
as well as changing the aspect of textures depending on surrounding circumstances or lighting
effects, is thus another interesting point to investigate in. Possible extensions can be achieved by
investigating new kinds of filters and various artistic effects (§ 6.5.3) in order to further differentiate
and map particular samples and appearances to different regions of the output. Transitions and
blending transformations between different images also need to be further explored.

7.3.2 Solid textures

Generating solid textures is of interest in general for texture synthesis applications, but also in
particular in the material and biological sciences [94]. A precise quantitative characterization of
heterogeneous materials is needed to study structures that are built or grown from these materials.
As alternative to producing temporal texture frames, also spatial texture slices can be produced
using the same approach (Fig. 7.21).

Figure 7.21: Solid textures can be obtained generating spatially consistent texture slices.

7.3.3 Inpainting

As extension to steerable texture synthesis, controllable inpainting can be performed. The tech-
nique of inpainting usually attempts re-synthesizing a portion of an image where a little area is
missing or has been damaged [20]. Inpainting also can be used to remove unwanted little objects
from a scene, replacing them with the background. Using the proposed steerable technique, an

7.3. CONCLUDING REMARKS 141

interesting extension could be to remove a portion of a texture and replacing it synthesizing a user-
designed or field-driven patch as substitute. The missing region is thus constrained by specified
conditions and can be extrapolated using the steerable texture synthesis. The pixel-based synthesis
still can guarantee continuity at the borders or boundary conditions where the patch is cut and later
pasted; this can be optimized using a spiral order synthesis instead of scan line order synthesis as
proposed in standard image inpainting (Fig. 7.22).

Figure 7.22: Scan line order for causal image generation (left) vs. spiraling order synthesis for
steerable inpainting (right). In both illustrations, the dark grey part of the image is already synthe-
sized while the white parts need to be synthesized.

142 CHAPTER 7. OTHER APPLICATIONS

Chapter 8

Conclusions

In this work, a novel approach to scientific visualization and steerable texture synthesis is pre-
sented. Vector field visualization and synthesis techniques for controlled, field-driven texture gen-
eration are proposed, discussed, and extended to allow more control and degrees of freedom in the
image creation. Concepts from perception and cognition, as well as statistical theory for standard
texture synthesis, were investigated and used to motivate and improve the proposed techniques.
The approach results to be general, fl exible, and open to further extensions and integrations.

The approach to visualization of vectorial data sets can be interpreted as an hybrid algorithm,
which combines features of direct intuitive visualization, such as simplicity, intuitivity, generality,
together with features from dense visualization techniques, such as powerful information encod-
ing, locality of calculation, accuracy. The variety of tasks and the different level of expertise and
experience of users motivate and strongly require such versatility.

The steerable generation of non-homogeneous textures offers several degrees of freedom in
the synthesis process, allowing a variety of effects for appealing output images. Textural elements
used as primitive provide for this task a numerous set of visual dimensions for arbitrary variation.

In general, the proposed techniques bring together concepts from human vision and percep-
tion, statistics and texture synthesis, and visualization, in an interesting interdisciplinary research
that promises encouraging results for several fields of applications, offering a number of open
directions for future work.

8.1 Summary and contributions

Vector fields can be visualized in a straightforward manner by setting the color of output pixels
on the base of computed similarity functions. The proposed method is texture-based, but instead
of blurring and smearing an initial noise texture along the directions of the field, it locally adapts
and transforms a chosen basic pattern of an anisotropic texture to represent the features and the
variation of the field. Consequently, unlike other methods, this one offers arbitrary degrees of
freedom in representing the appearance of the resulting field. Continuity is achieved thanks to
a statistical approach based on neighborhood comparisons, which is here adapted to incorporate
spatial as well as temporal information in order to guarantee correlation; hence, also areas of strong
curvature can be accurately visualized. To incorporate the benefits of feature-based approaches,
field analysis is provided to extract and better detect special attributes, such as singularities, and
to potentially track them along the field evolution. In addition, user options contribute to local
control, to allow observing and interpreting particular values in the data in a user-customized way.
This adds useful fl exibility to visualization of multivariate vector fields. In general, the proposed
method allows any procedural or manual way to define a mapping from vector space to example
image space. Additional degrees of freedom offer ways for user intervention (e.g. filtering and
blending) or taking into consideration perception issues. This also makes this methodology useful
and adaptable for a broad range of applications. For all these reasons, I use the term steerable, as

143

144 CHAPTER 8. CONCLUSIONS

the process of synthesizing textures is driven by the content and by the features of the vector or
deformation field to visualize.

The main novelty and contributions to the field of computer graphics are here summarized:

Vector field visualization:

The proposed algorithm allows smooth continuous visualization of vector fields, both steady and
unsteady. The approach works particularly well for multi-parameter vector fields, and can be
applied to scalar, vector and tensor field visualization, being in general designed for multi-variate
multi-dimensional data sets.

• Local control: a novel algorithm has been introduced; it provides local control and several
degrees of freedom for the visualization of vectorial data sets. The pixel-based synthesis
algorithm allows a direct control onto the output values of the resulting image, up to every
pixel. Non-ambiguous one-to-one mapping leads thus to effective local control. See Chapter
3. A multi-resolution approach, based on image pyramids is applied for improvement (see
Appendix A).

• Prominent field attributes: improvements have been proposed to allow accurate representa-
tion of information also in particular areas of interest, such as singularities or critical areas
of strong curvature. For this purpose, ad hoc specification of the input textural elements has
been done to improve the results, guaranteing smoothness and accuracy. See Chapters 3, 6.

• Multivariate data: visualization of multiparameter data and fl exible information encoding
is straightforward using the proposed approach. Complicated multi-dimensional and multi-
variate data sets, as well as higher order fields, can be visualized. The synthesis technique
allows powerful information encoding taking advantage of the texture visual dimensions.
See Chapter 5, 6. Unsteady field visualization: extensions for temporal evolution of vecto-
rial data are presented, and frames animation is possible using an adapted simple scheme.

• Multi-field visualization: the approach has been also extended to the visualization of multi-
fields, and especially dual-fields, generating an effective interwoven representation of two
co-existent vectorial data sets. See Section 5.3.

Texture synthesis:

• Neighborhood models and weighting schemes: In this new approach to constrained texture
synthesis, as opposed to standard texture synthesis, novel neighborhood models, together
with appropriate filtering functionals and weighting schemes have been proposed to enhance
texture feature of directionality and to preserve texture pattern complexity. See Chapter 5,
4.

• Non-homogeneous textures: Non-homogeneous textures can be easily designed following
users’ needs and tasks requirements; blending and texture metamorphosis can be integrated.
The use of filter banks, as well as that of a matrix of input texture seeds have been introduced.
See Chapter 7.

• Ad hoc output generation: locality in the control of the image generation is provided: pre-
processing, post-processing and on-line processing contribute to free and arbitrary genera-
tion of desired outputs. See Chapter 7.

• Steerable texture synthesis: Through a control vector field, a given texture pattern can be
modified, transformed, deformed. Texture effects on shape and material perception can be
easily customized. See Section 7.1. Flow textures and texture animation: extensions of the
algorithm allow the generation of fl ow textures and a field-driven animation of textures. See
Section 7.2.

8.1. SUMMARY AND CONTRIBUTIONS 145

Perceptually motivated visualization:

• Intuitive feature correspondence: the approach allows a simple way to map field attributes
onto visual representation for adequate mapping and representation of the vectorial infor-
mation. The textural elements used as seed in the visualization approach yield a particularly
easy and effective feature specification and encoding. See Chapters 3, 6.

• Design of visual primitives: textures are well suited to serve as paradigm for effective visu-
alization. Taking advantage of their various visual dimensions, expressive and meaningful
information encoding is possible. In this work I propose and discuss some solutions, which
can be interesting for several applications. Specially defining a texture input set is a powerful
instrument for visualization. See Chapter 6.

• Layer-based visualization: taking advantage of the texture visual dimensions, layered vi-
sualization is a good solution for adaptive representation of information: for comparison
between several data sets, for analysis of several co-existent distributions potential relative
interference, as well as for data abstraction and simplification. Rates of transparency helps
constraining the infl uence of the several levels of information. See Section 6.6.

The main benefits of the proposed approach are:

Simplicity

One significant technical contribution of this work is to present a single straightforward method
to generate a wide variety of vector field images, ranging from dense texture-like to hand-drawing
abstracted and sketched streamline-like styles. Indeed just the sample characterizing the result-
ing appearance has to be chosen or designed, while the essential structure of the algorithm does
not change. The method is sample-based, thus every kind of sample image can be theoretically
chosen. Obviously, as discussed and motivated in Chapter 3, depending on the particular case, a
sample can yield a better result than another one. However, even though the results are of best
quality for anisotropic ordered or quite structured textures, the method also works for stochastic
textures. Although quasi-isotropic patterns are almost orientation-insensitive, their synthesis along
a vector field may enhance their latent directions, making apparent unexpected orientation depen-
dencies that exist, due for instance to subtle pattern structuring or to structures that stems from
illumination process. The proposed steerable texture synthesis approach also allows a straight-
forward generation of a variety of effects, which are beneficial for instance for the synthesis of
non-homogeneous and anisometric textures.

Generality

Since the algorithms simply set pixel colors, no restriction exists for the choice of the data set or
functional of the control field. To test the generality of the algorithm under various conditions, I
analyzed a number of different synthetic distributions, specially designed to characterize different
vector field classes, also characterized by singularities, areas of strong curvature or rapid changes
of direction. This has been done to test the algorithm also in cases some features, often critical
to be visualized, occur. The final images effectively capture the input sample appearance and
represent the vector field information. Regarding textures, I also have tested the approach using
many different images from standard texture sets. The used MIT VisTex database contains for
instance real world textures photographed under natural lighting conditions. Additional results
have been achieved combining different textures together, to investigate more complicated and
general cases. The use of textures in visualization proves to be a valid and fl exible solution to
several targeted visualization problems.

146 CHAPTER 8. CONCLUSIONS

Controllability and versatility

The method is more time-consuming than interactive LIC-based visualization methods, neverthe-
less it is comparable to texture synthesis based approaches, in addition being able to offer a wider
range of encoding options and controls settings to infl uence the rendering of the resulting image
with extra degrees of freedom. A nice feature of this method is the possibility to allow multi-way
transitions among more than two textures, thanks to the use of a matrix of input seeds. The use of
transfer functions and filtering operators over the sample images can be freely used, providing a
great variety of potential texture transformations and effects.

8.2 Future work

Numerous are the possible future directions. This work is a first step to contribute to the synergy
of visualization and many related disciplines of Computer Graphics. The interdisciplinarity of
the research is open to several further investigations and extensions. The potential of this area of
research has actually no limits like advances in computer graphics constantly show. Especially a
deeper investigation in human vision could improve and optimize the design and specification of
the proposed ideas and techniques, integrating them with more advanced theories. Parallel contri-
butions from perception and cognition, as well as from psychology should stronger contribute to
the effectiveness of visualization methods in general.

I see in particular the following points for future work and believe they reserve interesting
applications:

Handling advanced topology

Beyond existing vector field visualization methods, only feature-based approaches allow a topo-
logical analysis of the data set. With the proposed approach, eigen-analysis is performed and
integrated to augment the field representation with its characterizing topological features. The
ability to map singularities onto arbitrary suitable representations, also taking advantage of the
layered approach, contributes to intuitive representation, whereas the most approaches only work
for distributions with a limited set of singularities and need topological simplification to handle
more complicated cases [42, 217, 245]. Nevertheless, more advanced field analysis [243, 244],
such as considering higher order singularities, could be taken into account for integration in the
proposed algorithm, making it more sophisticated and allowing it to automatically deal with higher
order mathematical aspects and attributes, for a more rigorous and specialistic analysis of the data
sets. Taking into consideration such aspects of the data, that are usually disregarded by the most
visualization approaches, could be a relevant contribution. Furthermore, given a pre-processing
extraction or selection of such features, their visual representation would add no additional com-
plexity, since the algorithm still simply works setting feature correspondences and output pixel
colors. For example, the evolution and variation of singularities over time, when visualizing un-
steady vector fields, has drawn increasing attention in the last years. Time-dependent topology
deals with changes that occur, over time, between stable states. Such changes are called bifurca-
tions. Some of them, called local bifurcations, only affect the nature of a singular point or a closed
orbit and the corresponding new stable state is found in the neighborhood. Among local bifur-
cations, Hopf bifurcations, pairwise annihilations1 and fold bifurcations are the most prominent
examples. Others, called global bifurcations, entail significant changes in the global structure of
the fl ow and, involving large domains, cannot be deducted from local information. An example
of such class is given by basin bifurcations. Refer to [218, 208, 209] for more detail. Vortex
regions are further special features of interest to eventually consider. There exist several methods
to find vortex regions and vortex cores2 (refer to [155] for a detailed distinction). One possibility

1Two singularities with opposite indices
2The integral curve within a vortex that has a minimum curvature.

8.2. FUTURE WORK 147

is to search for regions of low pressures [164]. Alternatively, Jeong and Hussain [96] define a
vortex as a region where two eigenvalues of the symmetric matrix S2 + S′2 are negative, where S
and S′ are the symmetric and antisymmetric parts of the Jacobian of the vector field, respectively:
S = 1

2(J + JT) and S′ = 1
2(J − JT). This method is known as the λ2 method. Recent research

[169, 207] has provided solutions to extract and track vortex core lines, also in time-dependent 3D
fl ow fields.

Output refinement

The results shown this thesis are purely obtained using the MRF-based algorithm. To better il-
lustrate the algorithm itself, no kind of refinement was used, but in case it is desired to smooth
the resulting images, improvements can be achieved using simple directional low-pass filtering (as
done for instance in several visualization approaches, as LIC, LEA, IBFV),to improve the vector
field along the fl ow lines, improving spatial and temporal image correlation. This refinement pro-
cess can be particularly useful to ulteriorly smooth temporal frames, increasing continuity along
their sequential animation. One could need this postprocessing step when using sample images
with coarse structure, which may cause artifacts or aliasing, noticeable in areas of strong curva-
ture of the field, or where the curvature radius is larger than the resolution of the sample. Several
smoothing filters are possible for such improvement: LIC can remove the effects of artifacts while
preserving and enhancing the directional correlation resulting from the controlled synthesis phase.
In this way, when necessary, potential discontinuities can be disguised. Non-linear diffusion tech-
niques can be considered: the image is smoothed in the direction of the field, whereas it is sharp-
ened in the orthogonal direction. Obviously, further solutions for optimal filtering can be further
investigated.

Advection

The LEA method proposed by Jobard [98] combines the advantages of the Lagrangian and Eule-
rian formalisms for continuous visualization of fl ow fields. Briefl y, a dense collection of particles
is integrated backward in time (Lagrangian step), while the color distribution of the image pixels
is updated in place (Eulerian step). Briefl y, a dense collection of particles is represented by a noise
texture, and is then transported according to the motion of the particles3. LEA method achieves
very good results at interactive rates, A combination with our method would possibly take advan-
tage from LEA efficiency, still offering the rich variety of texture-based information encoding. A
problem to address is anyway the potential texture distortion and spatio-temporal aliasing effects
that could occur during the advection process, being then eventually visible during the frames
animation. A possible solution could be to periodically reset texture coordinates (fading up and
down mechanism for coordinate re-initialization) with respect to the texture structure, constrain-
ing texture distortion into bounds, in case the visible distortion should exceed the limit, which is
proportional to the effective fl ow distortion. A combination with the LEA method would allow to
visualize particle fl ow using the MRF-based algorithm.

Integrating texture metamorphosis

In the presented work, the appearance of the resulting output is directly determined by the set of
samples chosen as input patterns. The variety of such inputs provides non-homogeneous images.
Typically, I make use of a pre-defined matrix of samples, or let the user choose a set of rules to
condition the behavior of a set of filter banks, which operate over original samples in a progressive
continuous way. Texture mixture and metamorphosis can therefore be achieved using uncorrelated
samples and letting one transit into further image targets. To achieve more sophisticated results,

3The Lagrangian coordinate for the texture transport can be computed using a numerical scheme for convection
equations [189]: ∂ρ(x,t)

∂t + v(x, t) ·∇ρ(x, t) = 0, where v is the vector field, ρ(x, t) is the property field, where property
values representing the particles are stored.

148 CHAPTER 8. CONCLUSIONS

hardware-based blending methods could be used to let samples vary in a user defined way, also
allowing to choose between a large variety of intermediate appearances. The method of Matusik et
al. [137] could be for this scope integrated. The work of Liu et al. [131] is specially valid to morph
textures containing discernable and similar patterns and could be also used to generate morphing
sequences for the input set. Nevertheless, this method still needs user experience to recognize and
select the texture features, in order to establish the right morphing correspondences.

3D Extension

Texture synthesis has revolutionized the construction of texture maps and the application of tex-
tures to surfaces. Nevertheless, problems still exist when texturing surfaces. Texture mapping
over surfaces particularly requires textures to be adequately designed and modelled to match the
geometry of the three dimensional object. For this reason, local control over the texture can allow
more precision and fl exibility for the mapping. Furthermore, being able to produce several sorts
of variations in a texture consents to avoid the geometric simulation of such features and visual
details, still providing a realistic and detailed resulting output.

Texturing surfaces: Early studies by Interrante [90, 72] generate custom-fitted textures. Such
studies show how the orientation of anisotropic patterns, with respect to the lines of maximum and
minimum normal curvature over an object surface, may affect an observer’s perception of the un-
derlying surface shape4. Texturing a surface can not only profoundly enhance its visual richness,
but can also significantly affect the perception of the object geometry. Finding principal directions
in arbitrary double curved surfaces is not always trivial [73], and seams, projective distortions, rep-
etition artifacts should be avoided. Researchers in perceptual psychology have been investigating
the effects of various texture pattern characteristics on surface shape perception through controlled
observer experiments [93]. In order to adapt the method proposed in this thesis to generate textures
on arbitrary surfaces, a possibility could be to extract critical points and curvature values from the
mesh, and use these set of points to control the change of parameters along the texture, the vector
field, or the fl ow [168]. Further valid approaches to estimate curvature and find critical points are
those by Interrante [92], Alliez [8] and Rusinkiewicz [168], or methods based on Morse theory5

and Reeb graphs [191]. Inconsistencies due to surface curvature could be then avoided using the
presented approach, which can arbitrarily adapt the appearance and structure of the sample, for
instance using blending or other filtering operators and transformations, such as scaling, over the
sample.

3D Textures: Extensions to the three-dimensional domain could be implemented. A possi-
bility is to use 2d slices as done for the temporal animation, in this case adding the third spatial
dimension z to achieve slice-based 3D textures. The extension to the three-dimensional domain
finds applications not only for textures, but in the same way also for vector field visualization over
surfaces and 3D vector fields. Issues of clutter and occlusion should be considered and could be
addressed for instance by selectively fading out uninteresting regions, using filtering and layering.

Discriminability and uniqueness of information encoding

Deeper investigation and cooperation with human vision theory could improve the concepts used
here to guarantee a 1-to-1 mapping of field features onto adequate visual representations. Es-
pecially, considerations on color space and optimal color gamuts need deeper inquiry. This will
contribute to an improved, more rigorous specification of the entries of the input matrix, the fil-
tering functions, the transformation operators, which control the output generation. Perception
issues are fundamental to guarantee the human eye to distinguish between different encoding, to

4Recent studies in vision research support the idea that the principal directions play an important role in surface
shape understanding.

5Morse theory [140] bases on early ideas developed in the context of topography. In differential topology, Morse
theory gives a direct way of analyzing the topology of a manifold by studying differentiable functions on that manifold,
obtaining information about their homology.

8.2. FUTURE WORK 149

avoid redundancy, confusion or interference, and to recognize meaningful correspondences to data
features. Human theory itself is a field that still bases its theories in the past fifties, but promising
research is recently being conducted and reserves great potential for integration in computer vision
applications. Hence, further investigation in this direction is of particular interest.

Fast implementation

As explained in the implementation section (§ 3.4), the main drawback of the proposed approach
is represented by its performances. Although the algorithm processing time is comparable with
those of standard pixel-based approaches to texture synthesis, it suffers from that intrinsic com-
putational slowness. For this reason, improving and speeding up the algorithm could be a point
to further work on. Nevertheless, discussion with scientists from the fields of engineering, and
especially aerospace engineering, fl uid dynamics, but also magnetics and electrics, proved that
often, in practice, the rendering of vector fields do not necessarily need interactive rates in the
visualization (what we are used to in computer graphics); while the option of powerful mapping
and fl exible visual representations are a more critical and fundamental requisite. Consequently, in
most practical visualization applications, images can be pre-computed and later rendered.

150 CHAPTER 8. CONCLUSIONS

Appendix A

Multi-resolution synthesis

A.1 Progressive refinement

In Chapter 3, for clarity and brevity, the algorithm implementation is first shown in single reso-
lution. However, principles of multi-resolution image generation from image processing can be
used. Such theory has been successfully applied to texture synthesis; this guaranties to achieve
similar results to those obtained using single resolution, though requiring smaller neighborhoods
and hence reducing the computation time. The multi-resolution approach to image generation can
be briefl y summarized as follows. The output is first generated on lower resolution using a low-
pass filtered version of the example texture. The resolution of the output is then refined using
examples with more detail: successive spatial frequency bands from the input example are sam-
pled. This process is repeated until the last and finest level of the example is reached, as it is done
in painting processes adding brush strokes in multiple passes. In this way, this synthesis proce-
dure is helpful to capture image features on several scales. For pixel-by-pixel synthesis methods,
the size of the neighborhood depends on the structure of the texture we want to synthesize: the
neighborhood has to comprise enough information in order to be able to reconstruct the texture
pattern in the output image. Using multi-resolution, smaller neighborhoods produce analogous
results to larger ones in single-resolution. More details about the multi-pass approach and relative
smoothing filtering are given below.

A.2 Image pyramids: analysis and synthesis steps

A linear image transform represents an image I(x,y) as a weighted sum of basis functions. The
image is thus represented as a sum over an indexed collection of functions gi(x,y):

I(x,y) = ∑
i

yigi(x,y) (A.1)

where yi are the transform coefficients that are computed from the image signal by projecting
it onto a set of projection functions hi(x,y):

yi = ∑
x,y

hi(x,y)I(x,y) (A.2)

In many image processing applications, an image is decomposed into a set of subbands, and
the information within each subband is processed more or less independently of that in the other
subbands. The subbands are computed by convolving the image with a bank of linear filters.
Each of the projection function is a translated (or shifted) copy of one of the convolution kernels
[180, 33]. An image pyramid is a particular type of subband transform. The defining characteristic
of an image pyramid is that the basis or projection functions are translated and dilated copies (by

151

152 APPENDIX A. MULTI-RESOLUTION SYNTHESIS

a factor of 2 j for some integer j) of one another. The subbands are computed by convolving and
sub-sampling. For each successive value of j, the sub-sampling factor is increased by a factor of
2. This yields a set of subband images of different sizes - hence the name image pyramid - that
correspond to different frequency bands. In an independent context, mathematicians developed a
form of continuous function representation called wavelets that are very closely related to image
pyramids. Both wavelets and image pyramids can be implemented in an efficient recursive manner
[83].

The Image Pyramid is a hierarchical structure composed of L levels of the same image at
different resolutions. An image with the highest resolution - detail - is at the bottom level of a
pyramid, while an image with the coarser resolution - large-scale features - is at a higher pyramid
level (refer also to [83, 26, 154] for more details on multi-resolution sampling theory). Image
pyramids are obtained in the simplest case using a low-pass filtered version of the original im-
age. In summary thus, the procedure is a multi-resolution synthesis process based on sub-band
transforms, and the pyramid is composed by a multi-scale set of image levels.

There are two basic pyramid operations [34], namely, reduce and expand (refer to the pseu-
docode listed below in Table A.1). The reduce operation involves filtering and down-sampling
an image to obtain a new image at the coarser resolution. The expand operation involves up-
sampling and interpolating an image to obtain an image at the finer resolution. The process of
constructing a pyramid from an image is called decompose, which involves continuous re-
duce operations. While the process of obtaining an image from a pyramid is called collapse,
which involves continuous expand operations (Fig. A.1).

input
sample

reduce synthesis expand
output
texture

down-
sampling

up-
sampling

decompose collapse

Figure A.1: Illustration of the multi-resolution synthesis, using reduce and expand operations.

Different pyramids correspond to different trade-off between spatial and frequency resolution.
The Gaussian [153, 241], Laplacian [33, 83], steerable [83, 182] and feature-based [26] pyramids
are among the most popular ones used in image processing. Gaussian and Laplacian pyramids
respectively involve Gaussian and Laplacian-of-Gaussian base functions, while steerable pyra-
mid uses wavelet transforms for decomposing an image. In the pyramid-based texture synthesis,
the Laplacian and the steerable pyramids decompose a texture into multiple bands of spatial fre-
quencies and orientations respectively. Each pyramid level represents certain texture features at a
particular frequency or orientation. The histogram of each pyramid level is chosen as a descriptor
of the related features. The synthesis is based on the idea that a new texture could be generated
by matching all the available features (histograms) with the training texture [83]. For the research
done in this thesis, I considered Gaussian, Laplacian and Steerable pyramids for the decomposition
of vector field and textured images. Anyway, although steerable pyramids could be better suited
for directional samples, being orientation sensitive, they are calculation intensive, since the orien-
tation of the patterns constantly varies in the applications considered in this thesis. The Gaussian
case results to be the best trade-off between complexity and efficiency. Gaussian reduce and
expand only require simple up- and down-sampling and the last level of the output Gaussian
pyramid directly provides the desired output, so that no final collapse operation is needed. In
the following, for completeness, I provide an explanation of all three possible image decompo-
sition approaches, spending more effort in the explanation of the Gaussian case and providing a
detailed illustration for the extension of the basic algorithm of Chapter 3.

A.2. IMAGE PYRAMIDS: ANALYSIS AND SYNTHESIS STEPS 153

input
sample

blur filtering

subsampling 2

blur filtering

subsampling 2

Gaussian
image pyramid

Figure A.2: Illustration of the multi-resolution synthesis, using reduce and expand operations.

A.2.1 Gaussian image pyramids

The multi-resolution analysis and image pyramids can be simply implemented using Gaussian
pyramids. Here, each level is obtained via successive filtering and down-sampling operations by
a factor of 2 (↓ 2); i.e. the images result to be blurred and decimated versions of the original
one, through low pass filtering. Using Gaussian pyramids, the desired output image is simply
available at the highest resolution pyramid level (Fig. A.2). Using image pyramid, a neighborhood
N(x,y, l) of a pixel (x,y) at resolution level l in the pyramid, contains pixels of the same level l
in the current resolution, and pixels from lower resolution levels (Fig. A.3). The position of the
central pixel in the multi-resolution neighborhood is consistent with the parent levels (x vs. x/2
and y vs. y/2 in Fig. A.3). An extended multi-resolution neighborhood can be handled building
neighborhood vectors that include the pixels of the causal and squared neighborhoods in scan-line
order. Again, similarity between two multi-resolution neighborhoods is computed, for instance
using the sum of the squared distances of all pixels within them, and these lower resolution pixels
constrain the synthesis process so that the added high frequency details will be consistent with
the already synthesized low frequency structures. In fact, in the output image each of its spatial
frequency bands is generated so that, as higher frequency information is added, textural similarity
is preserved.

L = 2

l l+1

x

y

x/2

y/2

Figure A.3: Example of 2-level Gaussian pyramid. Level l + 1 is obtained down-sampling by a
factor of 2 (↓ 2) previous level l. A causal multiresolution neighborhood with size {5×5,L = 2}
is considered.

In Tables A.1, A.2, A.3 below, I illustrate the modified version of the pseudocode presented
in § 3.4, now implemented in multiresolution. Pyramids GIin of the input samples Iin are built in

154 APPENDIX A. MULTI-RESOLUTION SYNTHESIS

Function synthesizePixel (multiresolution)

1 for(l = 0; x < L; l++) {
2 for(x = 0; x < Wout(l); x++) {
3 for(y = 0; y < Hout(l); y++) {
4 Nl(x,y)|out = calculateNeighborhood(x, y, l);
5 {f(x,y)} = calculateFeatures(x,y);
6 transformSample({f(x,y)});
7 for(i = 0; i < Win(l); i++) {
8 for(j = 0; j < Hin(l); j++) {
9 Nl(i, j)|in = calculateNeighborhood(i, j, l);
10 distancei, j = compareNeighborhoods(Nl(x,y)|out,Nl(i, j)|in);
11 }
12 }
13 minDistance = findMinimumDistance({distancei, j});
14 bestMatch = getBestPixelValue(minDistance);
15 GIout(x,y,l)=synthetizeOutputPixel(bestMatch);
16 }
17 }
18 Iout = collapse(Gout);
19 }

Table A.1: Multi-resolution version of the synthesis procedure.

an analysis process, and a pyramid GIout of the output image Iout is generated during the synthesis
process, proceeding from lower to higher frequency levels. In this way, each higher resolution
level is constructed from already synthesized lower resolution levels. The considerations done for
the algorithm in single resolution apply now separately to each level of the pyramid.

Initialization

L ← setPyramidLevels(L)
GIin ← buildPyramid(Iin)
GIout ← buildPyramid(Iout)
Wout ← setOutputWidth(Wout)
Hout ← setOutputHeight(Hout)
n ← setNeighborhoodSize(n)
Iin ← selectInputSample(Iin)

Table A.2: Initialization

A.2.2 Laplacian pyramids

In Laplacian pyramid formulation [26, 83], band pass filtering is used. Also in this case, the
pyramid represents the image at different levels of resolution, where each level carries information
related to a given space of frequencies. At each level l of the pyramid L, frequency information at
point (x,y) of the image I at level l is given by:

LI(x,y, l) = (GI(l)−2 ↑ [GI(l +1)])(x,y) (A.3)

where GI(l) is a low-pass down-sampling operation:

GI(l) = 2 ↓ [GI(l −1)⊗g] (A.4)

where 2 ↑ [·] and 2 ↓ [·] are the 2×up- and down-sampling operations respectively, g is a two

A.2. IMAGE PYRAMIDS: ANALYSIS AND SYNTHESIS STEPS 155

Variable Meaning

Iin input sample image
Iout output sample image
GIin Gaussian pyramid built from Iin

GIout Gaussian pyramid built from Iout

L number of levels of image pyramid (0 ≤ l < L)
G(l) l-th level of Gaussian pyramid G
G(l,x,y) pixel at position (x,y) and level l of G
Wout horizontal size of sample output image Iout

Hout vertical size of sample output image
Nl(x,y)|out extended (multiresolution) neighborhood of pixel (x,y)
A vector field magnitude at current output position P(x,y)|out

θ vector field angle of phase at current output position
Win horizontal size of sample input image Iin

Hin vertical size of sample input image
distance difference between the extended neighborhoods
bestMatch best match chosen by distance comparison

Table A.3: Table of symbols

dimensional Gaussian kernel or convolution mask, and GI(0) = I. Each level of the Laplacian
pyramid contains the information from a one octave spatial frequency band of the input [19].

The Laplacian pyramid is computed using the basic operations reduce and expand. The
reduce operation applies a low-pass filter and then subsamples by a factor of two (padding with
zeros in between pixels) and then applies the same low-pass filter. A commonly used low-pass
filter kernel (applied separately to the rows and columns of an image) is: 1

16(1,4,6,4,1) [83]. One
complete level of the pyramid consists of two images, l0 (a low-pass image), and b0 (a high-pass
image), that are computed as follows:

l0 = reduce(im)
b0 = im−expand(l0)

(A.5)

where im is the original input image. Note that the original image can be trivially reconstructed
from l0 and b0:

reconstructedImage =b0+expand(l0) (A.6)

The next level of the pyramid is constructed by applying the same set of operations to the l0

image, yielding two new images l1 and b1. The full pyramid is constructed (via the makePyra-
mid function) by successively splitting the low-pass image li into two new images li+1 (a new
low-pass image) and bi+1 (a new high-pass image). The combined effect of the recursive low-pass
filtering and sub-sampling operations yields a subband transform whose basis functions are (ap-
proximately) Gaussian functions. In other words, the transform represents an image as a sum of
shifted, scaled, and dilated (approximately) Gaussian functions. The projection functions of this
transform are (approximately) Laplacian-of-Gaussian (mexican-hat) functions, hence the name
Laplacian pyramid (Fig. A.4). Note that the pyramid is not computed by convolving the image
directly with the projection functions. The recursive application of the reduce and expand
operations yields the same result, but much more efficiently. In the end, we get a collection of
pyramid subband images consisting of several bandpass images and one leftover lowpass image.
These images have different sizes because of the sub-sampling operations: the smaller images

156 APPENDIX A. MULTI-RESOLUTION SYNTHESIS

correspond to the lower spatial frequency bands (coarser scales). Note that the original image can
always be recovered from the pyramid representation (via the collapsePyramid function) by
inverting the sequence of operations, as exemplified above.

input
sample

blur filtering

subsampling 2

Laplacian
image pyramid

blur filtering

subsampling 2

+
-

+
-

Figure A.4: Obtaining a Laplacian image pyramid.

A.2.3 Steerable pyramids

Texture that have oriented or elongated structures are not captured by the Laplacian pyramid anal-
ysis because its basis functions are (approximately) radially symmetric. To synthesize anisotropic
textures, it is possible to adopt the steerable pyramid transform [149, 181]. Like the Laplacian
pyramid, this transformation decomposes the image into several spatial frequency bands. In addi-
tion, it further divides each frequency band into a set of orientation bands. In this way, information
related to the orientation of the image features is taken into account. In Fig. A.5, the left-hand
side of the diagram is the analysis part (makePyramid) and the right hand side is the synthesis
part (collapsePyramid). The circles in between represent the decomposed subband images.
The transform begins with a high-pass (H)/low-pass (L) split using a low-pass filter with a radially
symmetric response: the high-pass band corresponds to the four corners of the spatial frequency
domain. Each successive level of the pyramid is constructed from the previous level’s low-pass
band by applying a bank of band-pass filters and a low-pass filter (B are oriented bandpass filters).
The orientation decomposition at each level of the pyramid is steerable [65], that is, the response
of a turned to any orientation can be obtained through a linear combination of the responses of the
four basis filters computed at the same location. The steerability property is important because it
implies that the pyramid representation is locally rotation-invariant. The steerable pyramid, unlike
most discrete wavelet transforms used in image compression algorithms, is not-orthogonal and
over-complete; the number of pixels in the pyramid is much greater than the number of pixels in
the input image (note that only the low-pass band is sub-sampled). This is done to minimize the
amount of aliasing within each subband. Avoiding aliasing is critical because the pyramid-based
texture analysis/synthesis algorithm treats each subband independently. Improvements to reduce
the redundancy have been proposed. The steerable pyramid is self-inverting: the filters on the syn-
thesis side of the system diagram are the same as those on the analysis side of the diagram. This
allows the reconstruction (synthesis side) to be efficiently computed despite the non-orthogonality.

.

.

.

.

A.2. IMAGE PYRAMIDS: ANALYSIS AND SYNTHESIS STEPS 157

H0 H0

L0 L0B0 B0

B1 B1

B2 B2

L1 L12 2

Figure A.5: System diagram for steerable image pyramid, redrawn from [83]. The input image is
initially split into high- and lowpass bands. The lowpass band is then further split into a lower-
frequency band and a set of oriented subbands [154].

.

.

.

.

.

.

.

158 APPENDIX A. MULTI-RESOLUTION SYNTHESIS

List of Figures

1.1 Using steerable texture synthesis for vector field visualization. 1
1.2 Generating controlled texture synthesis. 2

2.1 Figures and ground interchanging in the pictures. 6
2.2 Similarity in color and shape (left), proximity (center), and continuity (right). . . 6
2.3 Concepts of closure (left), area (center), and simmetry (right). 7
2.4 Joseph Albers’ experiments: the same color (top-right) in the two central boxes

looks different under different backgrounds (top-left); different colors (bottom-
right) in the two central boxes look alike under some given backgrounds (bottom-
left). 7

2.5 Color sensitivity (left) and CIE chomaticity diagram (right). 9
2.6 Treisman’s preattentive experiments: target searching based on a difference of hue

(up-left) and shape (up-right). In the bottom-left image, on the right, horizontal
boundary detection is detected, while vertical boundary defined by conjunction of
features (red circles and blue squares on the left, blue circles and red squares on
the right) is not intuitive. In the bottom-right image, an example of a conjunction
search for a target red circle is presented . 10

2.7 Galileo’s text and illustration. 11
2.8 Synthesizing arbitrary resolution textures (right) starting from a little sample (left). 12
2.9 Samples of textures: regular (a), near-regular (b), irregular (c), near-stochastic (d)

and stochastic (e). 13
2.10 Patch-based approach: Efros and Freeman’s image quilting (image courtesy of

Alyosha Efros). 16
2.11 Wei and Levoy’s pixel based approach (image courtesy of Li-Yi Wei). 17
2.12 Hybrid texture synthesis (image courtesy of Andy Nealen). 18
2.13 Texturing surfaces (image courtesy of Greg Turk). 19
2.14 Wei and Levoy’s surface texture synthesis: given a texture sample (a) and a model

(b), they synthesize a similar texture directly over the model surface (c) (image
courtesy of Li-Yi Wei). 19

2.15 Wei’s solid textures from 2d view: (a) fire, (b) smoke, (c) ocean waves (image
courtesy of Li-Yi Wei). 19

2.16 Texture transfer (image courtesy of Michael Ashikhmin). 20
2.17 Efros and Freeman’s texture transfer: they transfer the rice texture (left) onto an-

other image (center) for a strikingly different result (image courtesy of Alyosha
Efros). 21

2.18 Direct visualization. 23
2.19 Grid-seeded streamlines (left) and optimized placement (right) (image courtesy of

Greg Turk). 25

159

160 LIST OF FIGURES

2.20 Spot noise (image courtesy of Jack van Wijk). 26
2.21 Texture-based techniques: Image based fl ow visualization (image courtesy of Jack

van Wijk). 26
2.22 Left: LIC-based vector field. Right: frames obtained varying the opacity value of

the advected noise array (image courtesy of Bruno Jobard). 28

3.1 Vector field visualizations synthesized using MRF texture synthesis with a gradient
example texture that is rotated and scaled according to the vector field. The two
images use different sample textures, which are characterized by lines of different
orientations. 31

3.2 Basic visualization block scheme. 32
3.3 Correspondences between sample images and vector field values lead to a mean-

ingful representation of the data set. 32
3.4 Steerable texture synthesis approach to vector field visualization. 33
3.5 Standard pixel-based approach to texture synthesis: the pixels Pi of the output Iout

are set checking the most probable pixels in the input Iin. 34
3.6 Locality and stationarity properties in textures (image courtesy of Marc Levoy). . 35
3.7 Different input appearances lead to different appearances in the resulting vector

field. 36
3.8 Possible set of grey-scale anisotropic patterns used as input seeds. 37
3.9 A sub-set of the VisTex texture database. 38
3.10 A sub-set of the MeasTex texture database. 38
3.11 Correspondences (potentially bijective) between samples and vector field values. 39
3.12 Synthesis process (cf. Fig. 3.5) using the matrix of samples seeds. 40
3.13 Pyramid levels for the multiresolution synthesis process of the image in Figure 3. 41
3.14 Correspondence between samples and vector values: transforming a sample through

scaling and rotating operators. 42
3.15 Rotated sample input images. 43
3.16 The rotating operator over the sample, generates diamond structures, whose border

windows need to be cut away. 43
3.17 Scaled sample input images. 43
3.18 The resizing operator over the sample image (left) re-scales it by a factor A, gen-

erating sample versions in different resolution (left: A = 1, center: A > 1, right:
A < 1). 44

3.19 Transforming the input sample Iin to Iout using a field-driven transfer function
T (Iin,Φ(x,y)) (top), and example of rotation by 90 degrees as particular operator
TR, where ϕR(x,y) represents the field feature of orientation, or angle of rotation,
at a given output position (x,y) (bottom). 45

3.20 Generalization of Figure 3.19 to generic transfer functions. This general scheme
illustrates a set of transformation operators (rotation, up-scaling, re-coloring) over
the input sample image Iin. Correspondences are set between transfer functions
Ti(I) and the field variables ϕi(x,y) taken as parameters. 45

3.21 Two possible filter bank schemes for independent and iterative sample transforma-
tion. 46

3.22 Causal or L-shaped neighborhood structure. 47
3.23 Samples characterized by structures with different complexity require different

neighborhood sizes. 47
3.24 Building toroidal neighborhoods (right-left and up-down). 48

LIST OF FIGURES 161

3.25 Circular and elliptical (§ 4.3) weighting schemes. 49
3.26 Proposed approach: unlike basic texture synthesis approaches (Fig. 3.5), the best

matching pixels are here derived from diverse samples that resembles the vectorial
information. 51

3.27 Visualization of critical points. 52
3.28 Different parts of the vector field visualized using the same output resolution. . . 53
3.29 Using a small scale example texture might lead to aliasing artifacts in the synthe-

sized visualization. 54
3.30 Synthesized outputs: two vector fields are obtained both using two sets of different

input sample images chosen from Figure 3.8 . 55
3.31 Examples of synthesized vector fields. 56

4.1 Standard texture synthesis vs. controlled texture synthesis: the controlled, field-
driven synthesis algorithm requires the input pattern to be synthesized along new
directions. 61

4.2 Standard texture synthesis vs. controlled texture synthesis: the pixels Pi of the
output Iout are set checking the most probable pixels in the input Iin (left); the best
matching pixels are derived from diverse samples (right). 62

4.3 Different complexity in the structure resolution of the example textures. 63
4.4 Standard texture synthesis: the enlarged picture shows the L-shaped “ causal neigh-

borhood” structure (yellow) around the current pixel to synthesize (green). The
light-blue portion of the image still needs to be completed. 63

4.5 Circular and elliptical weighting schemes. 65
4.6 Anisotropic weighting of a 3-sized neighborhood, where grey pixels are assigned

stronger weights to stress the direction of the vector field. The 4 orientation in-
stances circled in yellow are usually sufficient to produce good results. 66

4.7 Directional enhancement using the elliptical weighting scheme. 67
4.8 Elliptical weighting schemes, with different eccentricity and orientation (top);

weighting schemes designed by composition of oriented elliptical Gaussians (bot-
tom). 69

5.1 Vector field visualization enhanced by a brightness map. 76
5.2 Block diagram for the generation of one frame (left) and resulting example (right). 79
5.3 Block diagram (left) for visualization of unsteady fields frames (right). 80
5.4 Spatio-temporal coordinate axis system and 3d neighborhoods for n=3, n=5. . . . 80
5.5 Spherical (left) and ellipsoidal (right) weighting schemes for 3D neighborhoods,

with respect to the uniform scheme of Fig. 5.4. for N=3, N=5. 81
5.6 Example of temporal frames generation. A grey-scale sample is adapted locally to

produce a sequence of frames for the time-varying vector field. 81
5.7 A set of generated temporal frames. 82
5.8 A set of generated temporal frames. 83
5.9 Screenshot of the blender application, the sliders are responsible for controlling

the intensity of the encoding in the information masks (left). Generated frame sets
with different rate of transparency (right). 84

5.10 Diffusion tensor image (DTI) visualized using ellipsoids (left) and concepts from
painting (right) (image courtesy of David H. Laidlaw). 85

5.11 Left: a thick streamline (bottom) is constructed from a 1D streamline (top). Right:
polygons are generated according to an adaptive step-size algorithm that allows
for smaller polygons to be generated around areas of high curvature. 87

162 LIST OF FIGURES

5.12 Left: using texture-mapped thick streamlines to visualize a fl ow field. Right: an
illustration of texture outlining used to disambiguate streamline orientation. . . . 88

5.13 Illustration of using texture attributes to represent a scalar distribution. The scale
of the texture is here related to Reynolds shear stress - a scalar field used to char-
acterize regions where drag is generated in turbulent boundary layers. 89

5.14 Examples of the diversity of natural textures that can be applied to a vector field.
A circular fl ow is used demonstrate each example. 89

5.15 Scheme block for simultaneous dual field representation. 90
5.16 Relative phase difference between the two vector fields at a given point. 91
5.17 Samples generation for dual fields representation. 92
5.18 Dual fields representation. 93
5.19 Dual fields representation. 93

6.1 Field features extraction and selection for data mapping during the synthesis stages. 96
6.2 Block scheme illustrating field features (including zero crossing, eigen-analysis,

feature extraction and classification). 98
6.3 Center (a) vs. non-center singularities: general curvilinear sector (b), hyperbolic

(c), parabolic (d) and elliptic (e) sectors (illustrations derived from [216]). 100
6.4 Critical point classification: repelling focus, repelling node, saddle point, center,

attracting node, attracting focus (clockwise from top-left corner). 103
6.5 Repelling critical points: node source, focus source, improper node source, spiral

source. 103
6.6 Attracting critical points: node sink, focus sink, improper node sink, spiral sink. . 104
6.7 Higher order singularities: dipole and monkey saddle. 105
6.8 Generalized block scheme: augmenting the MRF-based approach. 106
6.9 A small potential texture palette. Scale increases along the horizontal axis, regular-

ity increases along the vertical axis, and intensity increases along the left-to-right
descending diagonal. 108

6.10 A block scheme representing a single variation of a given input sample using a
transform operator, whose effect is specified according to an adequate feature cor-
respondence, and which takes the vector field parameter as argument. 110

6.11 In this filtering scheme, the filter bank builds up of filters, which can be also un-
correlated and may modify the input sample in an individual way. 111

6.12 In this filtering scheme, vice versa, the filter bank builds up of filters, which are
iteratively connected and progressively transform the input sample. 112

6.13 Convolution scheme relative to equation 6.20. 112
6.14 A possible texture palette obtained using image filters. 113
6.15 Left: compositing color with texture, right: color interweaving (image courtesy,

respectively, of Haleh Hagh-Shenas and Timothy Urness). 115
6.16 Depth of field enhancing the chessmen that threaten the knight on e3. (image

courtesy of Robert Kosara). 115
6.17 Examples of artistically inspired fl ow visualizations (image courtesy of Robert M.

Kirby). 117
6.18 Kirby et al. experimented with varying the visual representation of underlying

data by changing stroke shapes, texture, color, size, and placement. The top and
bottom image in each pair are the same underlying data (image courtesy of Robert
M. Kirby). 118

6.19 Pointillistic visualization (image courtesy of P. Coleman Saunders). 118

LIST OF FIGURES 163

6.20 Using adaptive sliders to vary the visual representation of the data. 119
6.21 Medieval illustrations of Vitruvius’s theory (left) and Leonardo’s drawing with

both the “ homo ad circulum” and the “ homo ad quadratum” (right) 121

7.1 Standard pixel-based approach to texture synthesis (left): the pixels Pi of the output
Iout are set checking the most probable pixels in the input Iin. Proposed approach
(right): unlike the basic approach, the best matching pixels are derived from di-
verse samples. 124

7.2 Variations along y-axis: coloring & changing direction (left); modifying cloth pat-
tern sinusoidally (right). 126

7.3 Further results: curving an original pattern along a field (left) and gradually mod-
ifying color components over the image plane. 126

7.4 Scaling, rotating, brightening and darkening, incrementing red and blue compo-
nent, embossing. 127

7.5 Controlled Texture Synthesis: the input sample (a) is modified through a superim-
posed field (b): phase information is used to change the direction of the pattern
(c), magnitude information is considered in addition to scale the original pattern (d).128

7.6 Transformation masks: enhancing brightness (a), scaling (b), scaling plus bright-
ness (c), and embossing (d). 128

7.7 Further results: waves and bricks patterns. 128
7.8 Further filtering: increasing the red (a), green (b), blue (c) component along with

field amplitude variation, in a local manner. 129
7.9 Applying different color masks: with (a, b) and without (c) magnitude scaling. . . 129
7.10 Further results. 130
7.11 Examples of a variety of synthesized textures. 131
7.12 Examples of a variety of synthesized textures. 132
7.13 Temporal regularity is exploited in animation of clouds, smoke, fire, steam, waves,

waterfall. 133
7.14 Block diagram for the generation of multiple subsequent frames: their animated

succession generates a time varying texture. 134
7.15 Synthesis schema for the generation of two successive frames (t = 0, t = 1) using

a neighborhood of size = 3. 135
7.16 Five-sized neighborhood model (L-shaped plus square-shaped) with two-level multi-

resolution synthesis (L = 2). Lighter colors in the synthesized frames means
weaker correlation to the current one (t = 2). 136

7.17 Examples of filtered texture frames sequences. In both cases, four temporal frames
extracted from a longer sequence are shown. They represent the time-varying
texture at different time instants. 137

7.18 A sinusoidal distortion field modifies a sample (top), and a filter based on a blue
component additionally highlights the field intensity in the same frame series (bot-
tom). 138

7.19 A fabric (top) and a directional (bottom) texture are controlled by a vector field.
Scaling of the sample refl ects magnitude information of the field; the resolution of
the original sample is accordingly locally adjusted. 139

7.20 Example of a varying grey-scale and bricks-like texture patterns. 139
7.21 Solid textures can be obtained generating spatially consistent texture slices. . . . 140
7.22 Scan line order for causal image generation (left) vs. spiraling order synthesis for

steerable inpainting (right). In both illustrations, the dark grey part of the image is
already synthesized while the white parts need to be synthesized. 141

A.1 Illustration of the multi-resolution synthesis, using reduce and expand opera-
tions. 152

A.2 Illustration of the multi-resolution synthesis, using reduce and expand opera-
tions. 153

A.3 Example of 2-level Gaussian pyramid. Level l +1 is obtained down-sampling by a
factor of 2 (↓ 2) previous level l. A causal multiresolution neighborhood with size
{5×5,L = 2} is considered. 153

A.4 Obtaining a Laplacian image pyramid. 156
A.5 System diagram for steerable image pyramid, redrawn from [83]. The input image

is initially split into high- and lowpass bands. The lowpass band is then further
split into a lower-frequency band and a set of oriented subbands [154]. 157

List of Tables

3.1 Synthesis procedure (specially designed for rotation and scaling transformations). 54
3.2 Pre-computation of field features and input samples for generalized synthesis pro-

cedure. Note that in this case the input samples Iin(x,y) (Win × Hin) are pre-
computed transforming Iin in dependance of the features of the vector field cal-
culated at the output locations (x,y). 57

3.3 This function exhaustively compares the current output neighborhood with all
neighborhoods within the corresponding input sample. 58

3.4 This function compares the current output neighborhood with those within the
corresponding input sample until a specified threshold distance is reached. 58

3.5 Table of symbols . 58
3.6 Table of functions . 59

4.1 Controlled texture synthesis (fabric and green-scale patterns) along curved vec-
tor fields. Using a five-sized kernel, the proposed elliptical weighting scheme
(right) shows significant improvements with respect to the circular and the stan-
dard squared neighborhood. 68

4.2 Obtained results for fabric, bricks, tissue, straw and green-scale patterns patterns. 69

5.1 Temporal synthesis procedure (consistent with synthesizePixel-a of Table
3.1). 82

5.2 Temporal frames generation and succession . 82
5.3 Interwoven synthesis of two co-located vector fields. The pseudo-code is consis-

tent with a simplified version of that from synthesizePixel-a of Table 3.1. 91
5.4 Table of symbols and methods . 92

A.1 Multi-resolution version of the synthesis procedure. 154
A.2 Initialization . 154
A.3 Table of symbols . 155

165

.

.

.
Akademische Werdegang

Francesca Taponecco studierte Telecommunications Engineering an der Fakultät für Ingenieurwis-
senschaft der Universität zu Pisa, in Italien. Sie absolvierte ihr Studium und bekam ihr Diplom als
Ingenieur im Oktober 2000.
Seit 2001 arbeitete sie als Wissenschaftliche Mitarbeiterin innerhalb des Fachgebiets Graphisch-
Interaktive Systeme (GRIS), im Fachbereich Informatik, an der Technischen Universität Darm-
stadt. Sie beschäftigte sich mit Informationsvisualisierung, Polarkurvenapproximation, sowie
prozeduralen Modellierung natürlicher Prozesse. Sie spezialisierte sich dann in den Forschungs-
gebieten von Vektorfeldvisualisierung und Textursynthese, und präsentierte ihre Ergebnisse in
verschiedenen internationalen Grafikkonferenzen. In 2005 erhielt sie den zweite Platz bei der
Verleihung des "Best Paper Award" innerhalb des INI-GraphicsNet für ihre Forschungsarbeit.
Sie promovierte im Oktober 2006.

Bibliography

[1] Meastex. texture database for the measurement of texture classification algorithms, the uni-
versity of queensland. http://www.cssip.edu.au/meastex/meastex.html.

[2] Nonphotorealistic rendering in scientific visualization. Siggraph 2001, course # 32,
http://www.siggraph.org/s2001/conference/courses/crs32.html.

[3] Vistex database. vision and modeling group of the mit media lab-
oratory. http://vismod.media.mit.edu/vismod/imagery
/VisionTexture/vistex.html.

[4] D. Acevedo, D. Laidlaw, C. Jackson, and F. Drury. Using visual design expertise to char-
acterize the effectiveness of 2d scientific visualization methods. Poster IEEE Visualization,
2005.

[5] J. Albers. One Plus One Equals Three or More: Factual Facts and Actual Facts. Search
Versus Re-Search (Hartford, 1969).

[6] J. Albers. Interaction of Color. Yale University Press, 1971.

[7] M. Alexa and W. Müller. Visualization by examples: Mapping data to visual representations
using few correspondences. In E. Gröller, H. Löffelmann, and W. Ribarsky, editors, Data
Visualization ’99, Eurographics, pages 23–32. Springer-Verlag Wien, May 1999.

[8] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic polygonal
remeshing. In Siggraph‘03, pages 485–493.

[9] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier. Theory of Bifurcations of
Dynamic Systems on a Plane. Wiley, New York, 1973.

[10] M. Ashikhmin. Synthesizing natural textures. In Proceedings of 2001 ACM Symposium
on Interactive 3D Graphics, pages 217–226, March 2001. Research Triangle Park, North
Carolina March 19-21.

[11] A. Bair, D. H. House, and C. Ware. Perceptually optimizing textures for layered surfaces.
In Applied Perception in Graphics and Visualization, 2005.

[12] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman. Texture mixing and texture
movie synthesis using statistical learning. In IEEE Transactions on Visualization and Com-
puter Graphics, volume 7(2), pages 120–135. IEEE Computer Society, 2001.

[13] J. Becker and M. Rumpf. Visualization of time-dependent velocity fields by texture trans-
port. In D. Bartz, editor, Visualization in Sientific Computing ’98, Eurographics, pages
91–102. Springer-Verlag Wien New York, 1998.

[14] J. T. Behrens. Principles and procedures of exploratory data analysis. Psychological Meth-
ods, (2):131–160, 1997.

[15] R. Behrens. Design in the visual arts. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

167

168 BIBLIOGRAPHY

[16] J. R. Bergen. Theories of visual texture perception. volume 10b, pages 114–134. Macmil-
lian, New York, 1991.

[17] J. R. Bergen and E. H. Adelson. Early vision and texture perception. Nature, 333:363–367,
1988.

[18] J. R. Bergen and B. Julesz. Rapid discrimination of visual patterns. IEEE Transactions on
Systems, Man, and Cybernetics, 13:857–863, 1983.

[19] J. R. Bergen and M. S. Landy. Computational modeling of visual texture segregation, July
1991. MIT Press, Cambridge MA.

[20] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In SIGGraph-
2000, pages 417–424, 2000.

[21] M. Bertalmio, L. A. Vese, G. Sapiro, and S. Osher. Simultaneous structure and texture
image inpainting. In CVPR, pages 707–712. IEEE Computer Society, 2003.

[22] J. Bertin. Semiology of graphics. U. Wisconsin Press, 1983.

[23] P. Bhat, S. Ingram, and G. Turk. Geometric texture synthesis by example. In Symposium
on Geometry Processing, pages 43–46, 2004.

[24] J. F. Blinn. Simulation of wrinkled surfaces. In Computer Graphics SIGGRAPH ’78 Pro-
ceedings, volume 12, pages 286–292, Aug. 1978.

[25] J. F. Blinn. A generalization of algebraic surface drawing. ACM Trans. Graph, 1(3):235–
256, 1982.

[26] J. S. D. Bonet. Multiresolution sampling procedure for analysis and synthesis of texture
images. volume 31 of Computer Graphics Proceedings, Annual Conference Series, pages
361–368. ACM SIGGRAPH, Aug. 1997.

[27] J. S. D. Bonet and P. Viola. Texture recognition using a non-parametric multi-scale sta-
tistical model. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition,
1998.

[28] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal,
4(1):25–30, July 1965.

[29] P. Brodatz. Textures: A photographic album for artists and designers. Dover Publications,
New York, 1966.

[30] P. Brodatz. Wood and wood grains: a photographic album for artists and designers. Dover
Publications, New York, 1966.

[31] S. Brooks and N. A. Dodgson. Self-similarity based texture editing. ACM Transactions on
Graphics, 21(3):653–656, July 2002. Proceedings of ACM SIGGRAPH 2002.

[32] J. M. Buhmann, D. W. Fellner, M. Held, J. Ketterer, and J. Puzicha. Dithered color quanti-
zation. 17(3):C219–C231, Sept. 1998. Proceedings of Eurographics’98.

[33] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans.
Commun., 31(4):532–540, Apr. 1983.

[34] P. J. Burt and E. H. Adelson. A multiresolution spline with applications to image mosaic.
ACM Trans. on Graphics, (2):217–236, 1983.

[35] B. Cabral and L. C. Leedom. Imaging vector fields using line integral convolution. In Pro-
ceedings of SIGGRAPH 93, Computer Graphics Proceedings, Annual Conference Series,
pages 263–272, Aug. 1993.

BIBLIOGRAPHY 169

[36] R. Chellappa, R. L. Kashyap, and B. S. Manjunath. Model based texture segmentation and
classification. In Handbook of Pattern Recognition and Computer Vision, 1997. Chapter
II:2.

[37] H. Chernoff. The use of faces to represent points in k-dimensional space graphically. Jour-
nal of the American Statistical Association, 68:361–368, 1973.

[38] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for image and texture genera-
tion. In J. Hodgins and J. C. Hart, editors, Proceedings of ACM SIGGRAPH 2003, volume
22(3) of ACM Transactions on Graphics, pages 287–294. ACM Press, 2003.

[39] R. Crawfis and N. L. Max. Texture splats for 3D scalar and field visualization. In G. M.
Nielson and R. D. Bergeron, editors, IEEE Visualization, pages 261–267. IEEE Computer
Society, 1993.

[40] G. Cross and A. K. Jain. Markov random field texture models. IEEE Trans. Pattern Anal.
Machine Intell., 5(1):25–39, Jan. 1983.

[41] W. C. de Leeuw and R. van Liere. Spotting structure in complex time dependent fl ow. In
H. Hagen, G. M. Nielson, and F. H. Post, editors, Scientific Visualization, pages 47–53.
IEEE Computer Society, 1997.

[42] W. C. de Leeuw and R. van Liere. Collapsing fl ow topology using area metrics. In IEEE
Visualization, pages 349–354, 1999.

[43] W. C. de Leeuw and R. van Liere. Visualization of global fl ow structures using multiple
levels of topology. In Joint Eurographics-IEEE TCVG Symposium on Visualization, pages
45–52, May 1999.

[44] W. C. de Leeuw and J. J. van Wijk. A probe for local fl ow visualization. In IEEE Visualiza-
tion ’93 Proceedings, pages 39–45. IEEE Computer Society, Oct. 1993.

[45] W. C. de Leeuw and J. J. van Wijk. Enhanced spot noise for vector field visualization. In
IEEE Visualization ’95 Proceedings, pages 233–239. IEEE Computer Society, Oct. 1995.

[46] U. Diewald, T. Preußer, and M. Rumpf. Anisotropic diffusion in vector field visualization
on euclidean domains and surfaces. IEEE Trans. Vis. and Comp. Graphics, 6(2):139–149,
2000.

[47] J.-M. Dischler and D. Ghazanfarpour. A geometrical based method for highly complex
structured textures generation. Computer Graphics Forum, 14(4):203–215, Oct. 1995.

[48] J.-M. Dischler, K. Maritaud, B. Lévy, and D. Ghazanfarpour. Texture particles. Computer
Graphics Forum, 21(3), 2002.

[49] G. Doretto, E. Jones, and S. Soatto. Spatially homogeneous dynamic textures. In Pro-
ceedings of European Conference on Computer Vision ECCV ’04, pages Vol II: 591–602,
Prague, Czech Republic, may 2004.

[50] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based image completion. In ACM
Siggraph, pages 303–312, 2003.

[51] R. C. Dubes and A. K. Jain. Random field models in image analysis. Journal of applied
statistics, 16(2):131–164, 1989.

[52] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range
images. Proceedings of ACM Siggraph, 21(3):257–266, 2002.

[53] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and Worley. Texturing and Modeling: A
Procedural Approach. Academic Press, Oct. 1994.

170 BIBLIOGRAPHY

[54] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference
Series, pages 341–346. ACM Press / ACM SIGGRAPH, August 2001. ISBN 1-58113-292-
1.

[55] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In Interna-
tional Conference on Computer Vision, pages 1033–1038, 1999.

[56] J. L. Encarnação. Computer graphics visions and challenges: A european perspective. IEEE
Computer Graphics and Applications, 26(4):83–89, 2006.

[57] J. Encarnação, W. Straßer, and R. Klein. Graphische Datenverarbeitung 1, volume 1. R.
Oldenbourg Verlag, München, 4. edition, 1996.

[58] J. Encarnação, W. Straßer, and R. Klein. Graphische Datenverarbeitung 2, volume 2. Old-
enbourg, München, 4. edition, 1997.

[59] M. C. Escher. Metamorphosis iii. http://mcescher.com/.

[60] D. W. Fellner and C. Helmberg. Robust rendering of general ellipses and elliptical arcs.
ACM Trans. Gr., 12(3):251–276, July 1993.

[61] A. W. Fitzgibbon. Stochastic rigidity: Image registration for nowhere-static scenes. In
Proceedings of International Conference on Computer Vision ICCV ’01, volume 1, pages
662–670, Vancouver, BC, Canada, july, 2001.

[62] K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H. Barr. Cellular texture generation.
In ACM SIGGRAPH, pages 239–248, 1995.

[63] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, and R. Phillips. Introduction to Com-
puter Graphics. Addison-Wesley, 1993.

[64] A. Fournier, D. Fussell, and L. Carpenter. Computer rendering of stochastic models. Com-
munications of the ACM, 25(6):371–384, June 1982.

[65] W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 13(9):891–906, Sept. 1991.

[66] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-resolution. IEEE
Computer Graphics and Applications, 22(2):56–65, 2002.

[67] K. Gaither, D. Ebert, D. Weiskopf, and P. Hanrahan. The visualization process: The path
from data to insight. Panel, ieee vis 2005, pages =.

[68] K. Gaither, B. Geisler, D. H. Laidlaw, and D. Ebert. Panel: In the eye of the beholder:
The role of perception in scientific visualization. In Proceedings of IEEE Visualization
Conference, pages 567–568, October 2004.

[69] G. Galilei. Istoria e dimostrazioni intorno alle macchie solari. 1613. Roma, appresso
Giacomo Mascardi.

[70] H. Garcke, T. Preußer, M. Rumpf, A. C. Telea, U. Weikard, and J. J. van Wijk. A phase
field model for continuous clustering on vector fields. IEEE Transactions on Visualization
and Computer Graphics, 7(3):230–241, 2001.

[71] J. J. Gibson. The Perception of the Visual World. 1950. Houghton Miffl in, Boston, MA.

[72] G. Gorla, V. Interrante, and G. Sapiro. Growing fitted textures. SIGGRAPH 2001 Confer-
ence Sketches and Applications, page 191, Aug. 2001.

BIBLIOGRAPHY 171

[73] G. Gorla, V. Interrante, and G. Sapiro. Texture synthesis for 3D shape representation. IEEE
Transactions on Visualization and Computer Graphics, 9(4):512–524, 2003.

[74] B. Guo, L. Liang, C. Liu, H.-Y. Shum, and Y. Xu. Real-time texture synthesis by patch-
based sampling. Technical Report MSR-TR-2001-40, Microsoft Research (MSR), Mar.
2001.

[75] B. Guo, H. Shum, and Y.-Q. Xu. Chaos mosaic: Fast and memory efficient texture synthesis.
Technical Report MSR-TR-2000-32, Microsoft Research (MSR), Apr. 2000.

[76] P. E. Haeberli. Paint by numbers: Abstract image representations. In F. Baskett, editor,
Computer Graphics SIGGRAPH ’90 Proceedings, volume 24, pages 207–214, Aug. 1990.

[77] C. Hansen and C. R. Johnson, editors. The Visualization Handbook. Academic Press, 2004.

[78] R. M. Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE,
67(5):786–804, May 1979.

[79] J. W. Harris and H. Stocker. Handbuch of Mathematics and Computetional Science.
Springer, 1998.

[80] C. G. Healey. Choosing effective colours for data visualization. In IEEE Visualization,
pages 263–270, 1996.

[81] C. G. Healey, K. S. Booth, and J. T. Enns. Visualizing real-time multivariate data us-
ing preattentive processing. ACM Transactions on Modeling and Computer Simulation,
5(3):190–221, July 1995.

[82] C. G. Healey and J. T. Enns. Building perceptual textures to visualize multidimensional
datasets. In IEEE Visualization ’98 (VIS ’98), pages 111–118, Washington - Brussels -
Tokyo, Oct. 1998. IEEE.

[83] D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH
95 Conference Proceedings, pages 229–238. ACM SIGGRAPH, Aug. 1995. Los Angeles,
California, 06-11 August 1995.

[84] H.-C. Hege and D. Stalling. Fast LIC with piecewise polynomial filter kernels. In H.-C.
Hege and K. Polthier, editors, Mathematical Visualization, pages 295–314. Springer Verlag,
Heidelberg, 1998.

[85] J. L. Helman and L. Hesselink. Representation and display of vector field topology in fl uid
fl ow data sets. IEEE Computer, 22(8):27–36, August 1989.

[86] J. L. Helman and L. Hesselink. Visualizing vector field topology in fl uid fl ows. IEEE
Computer Graphics & Applications, 11(3):36–46, May 1991.

[87] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies. In
Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 327–340. ACM Press / ACM SIGGRAPH, August 2001. ISBN 1-58113-
292-1.

[88] M. W. Hirsch and S. Smale. Differential equations, dynamical systems, and linear algebra.
Academic Press, New York, 1974.

[89] I. Hotz, L. Feng, H. Hagen, B. Hamann, and K. I. Joy. Tensor fields visualization using a
metric interpretation. IEEE Transactions on Visualization and Computer Graphics, pages
269–281, 2005. in Joachim Weickert and Hans Hagen, eds., Visualization and Image Pro-
cessing of Tensor Fields. Heidelberg, Germany.

172 BIBLIOGRAPHY

[90] V. Interrante. Investigating the effect of texture orientation on the perception of 3D surface
shape. In Human Vision and Electronic Imaging HVEI VI, SPIE 2001, pages 330–339.

[91] V. Interrante. Harnessing natural textures for multivariate visualization. IEEE Computer
Graphics and Applications, 20(6):6–11, 2000.

[92] V. Interrante, H. Fuchs, and S. M. Pizer. Conveying the 3D shape of smoothly curving trans-
parent surfaces via texture. IEEE Transactions on Visualization and Computer Graphics,
3(2):98–117, Apr./June 1997.

[93] V. Interrante, S. Kim, and H. Hagh-Shenas. Conveying 3d shape with texture: Recent
advances and experimental findings. Human Vision and Electronic Imaging VII, SPIE 4662,
2002.

[94] R. Jagnow, J. Dorsey, and H. E. Rushmeier. Stereological techniques for solid textures.
ACM Trans. Graph, 23(3):329–335, 2004.

[95] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs,
NJ, 1989.

[96] J. Jeong and F. Hussain. On the identification of a vortex. In Journal of Fluid Mechanics,
pages 69–94, 1995.

[97] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Hardware-accelerated texture advection for
unsteady fl ow visualization. In IEEE Visualization 2000, pages 155–162, Oct. 2000.

[98] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-eulerian advection for unsteady
fl ow visualization. In T. Ertl, K. Joy, and A. Varshney, editors, Proceedings of the Confer-
ence on Visualization 2001 (VIS-01), pages 53–60, Piscataway, NJ, Oct. 21–26 2001. IEEE
Computer Society.

[99] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-eulerian advection of noise and
dye textures for unsteady fl ow visualization. In IEEE TVCG, volume 8, pages 211–222,
2002.

[100] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density. Pro-
ceedings of the 8th Eurographics Workshop on Visualization in Scientific Computing, pages
43–55, 1997.

[101] B. Jobard and W. Lefer. The motion map: Efficient computation of steady fl ow anima-
tions. In R. Yagel and H. Hagen, editors, IEEE Visualization’97, pages 323–328, Phoenix,
Arizona, USA, Oct. 1997. IEEE Press.

[102] B. Jobard and W. Lefer. Unsteady fl ow visualization by animating evenly-spaced stream-
lines. Comput. Graph. Forum, 19(3), 2000.

[103] B. Julesz. Visual pattern discrimination. IT-8(2):84–92, 1962. IRE Transaction on Infor-
mation Theory.

[104] B. Julesz. Foundations of Cyclopean Perception. University of Chicago Press, Chicago,
Illinois, 1971.

[105] B. Julesz. Experiments in the visual perception of texture. Scientific American, 232(4):34–
43, Apr. 1975.

[106] B. Julesz. Textons, the elements of texture perception, and their interactions. 290:91–97,
Mar. 1981. Nature.

[107] B. Julesz. A theory of preattentive texture discrimination based on first-order statistics of
textons. Biological Cybernetics, 41:131–181, 1981.

BIBLIOGRAPHY 173

[108] B. Julesz and R. Bergen. Textons, the fundamental elements in preattentive vision and
perception of textures. Bell System Tech., 62(6):1619–1645, 1983.

[109] B. Julesz and T. M. Caelli. On the limits of fourier decompositions in visual texture percep-
tion. Perception, 8:69–73, 1978.

[110] R. L. Kashyap and A. Khotanzad. A model-based method for rotation invariant texture
classification. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(4):472–481, July
1986.

[111] G. Kepes. The Language of Vision. Chicago, Theobald, 1948.

[112] S. Kim, H. Hagh-Shenas, and V. Interrante. Showing shape with texture: Two direc-
tions seem better than one. In Proceedings of Human Vision and Electronic Imaging VIII
(HVEI’03), volume 5007 of SPIE Proceedings Series, pages 332–339, Bellingham, Wash-
ington, 2003. SPIE.

[113] G. L. Kindlmann. Superquadric tensor glyphs. In O. Deussen, C. D. Hansen, D. A. Keim,
and D. Saupe, editors, VisSym, pages 147–154. Eurographics Association, 2004.

[114] R. M. Kirby, D. F. Keefe, and D. H. Laidlaw. Painting and visualization, Mar. 22 2004. In
Visualization Handbook. Academic Press.

[115] R. V. Klassen and S. J. Harrington. Shadowed hedgehogs: A technique for visualizing 2D
slices of 3D vector fields. In IEEE Visualization, pages 148–162, 1991.

[116] L. Kobbelt, M. Stamminger, and H.-P. Seidel. Using subdivision on hierarchical data to re-
construct radiosity distribution. 16(3):C347–C355, 1997. Proceedings of Eurographics’97.

[117] R. Kosara, C. G. Healey, V. Interrante, D. H. Laidlaw, and C. Ware. User studies: Why,
how, and when? IEEE Computer Graphics and Applications, 23(4):20–25, 2003.

[118] R. Kosara, S. Miksch, and H. Hauser. Semantic depth of field. In 2001 IEEE Symposium on
Information Visualization (INFOVIS ’01), pages 97–104, Washington - Brussels - Tokyo,
Oct. 2001. IEEE.

[119] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization for example-based
synthesis. j-TOG ACM Transactions on Graphics, 24(3):795–802, July 2005.

[120] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. GraphCut textures: Image and
video synthesis using graph cuts. pages 277–286, 2003. ACM Transactions on Graphics,
Siggraph.

[121] E. P. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg. Non-linear approximation
of refl ectance functions. In Proc. SIGGRAPH ’97, volume 31, pages 117–126, 1997.

[122] D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J. Avalos, R. E. Jacobs, and C. Readhead.
Visualizing diffusion tensor images of the mouse spinal cord. In IEEE Visualization, pages
127–134, 1998.

[123] D. H. Laidlaw, R. M. Kirby, C. D. Jackson, J. S. Davidson, T. S. Miller, M. da Silva, W. H.
Warren, and M. J. Tarr. Comparing 2D vector field visualization methods: A user study.
IEEE Trans. Vis. Comput. Graph, 11(1):59–70, 2005.

[124] S. Lefebvre and H. Hoppe. Parallel controllable texture synthesis. ACM Trans. Graph,
24(3):777–786, 2005.

[125] J.-P. Lewis. Texture synthesis for digital painting. In H. Christiansen, editor, Computer
Graphics (SIGGRAPH ’84 Proceedings), volume 18, pages 245–252, July 1984.

174 BIBLIOGRAPHY

[126] J. P. Lewis. Generalized stochastic subdivision. ACM Trans. Graph, 6(3):167–190, 1987.

[127] Y. Li, T. Wang, and H.-Y. Shum. Motion texture: A two-level statistical model for character
motion synthesis. In J. Hughes, editor, SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, pages 465–471. ACM Press/ACM SIGGRAPH, 2002.

[128] L. Liang, C. Liu, Y.-Q. Xu, B. Gu, and H.-Y. Shum. Real-time texture synthesis by patch-
based sampling. In J. Hodgins, editor, ACM Transactions on Graphics, volume 20, pages
127–150. ACM Press, July 2001. ISSN 0730-0301.

[129] X. Liu, Y. Hu, J. Zhang, X. Tong, B. Guo, and H.-Y. Shum. Synthesis and rendering of
bidirectional texture functions on arbitrary surfaces. IEEE Transactions on Visualization
and Computer Graphics, 10(3):278–289, 2004.

[130] Y. Liu, W.-C. Lin, and J. Hays. Near-regular texture analysis and manipulation. ACM Trans.
Graph, 23(3):368–376, 2004.

[131] Z. Liu, C. Liu, H.-Y. Shum, and Y. Yu. Pattern-based texture metamorphosis. In Pacific
Conference on Computer Graphics and Applications, pages 184–193. IEEE Computer So-
ciety, 2002.

[132] Y. L. Lous. Report on the First Eurographics Workshop on Visualization in Scientific Com-
puting. 9(4):371–372, Dec. 1990.

[133] M. R. Luettgen, W. C. Karl, A. S. Willsky, and R. Tenney. Multiscale representations of
markov random fields. IEEE Trans. Signal Processing, 41(12):3377–3396, Dec. 1993.

[134] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and regions: Cue integration
in image segmentation. In Proceedings of the 7th IEEE International Conference on Com-
puter Vision (ICCV-99), volume II, pages 918–925, Los Alamitos, CA, Sept. 20–27 1999.
IEEE.

[135] J. Malik and P. Perona. A computational model of texture perception. Technical Report
UCB/CSD 89/491, Computer Science Division, University of California, Berkeley, CA,
Feb. 1989.

[136] J. Mao and A. K. Jain. Texture classification and segmentation using multiresolution simul-
taneous autoregressive models. Pattern Recognition, 25(2):173–188, 1992.

[137] W. Matusik, M. Zwicker, and F. Durand. Texture design using a simplicial complex of
morphable textures. ACM Trans. Graph, 24(3):787–794, 2005.

[138] N. Max and B. Becker. Flow visualization using moving textures. In Proceedings of the
ICASW/LaRC Symposium on Visualizing Time-Varying Data, pages 77–87, Sept. 1995.

[139] B. J. Meier. Painterly rendering for animation. SIGGRAPH Conference Proceedings, pages
477–484, 1996. In H. Rushmeier, Ed., New Orleans, Louisiana.

[140] M. Morse. The foundations of a theory of the calculus of variations in the large in m-space.
Trans. Amer. Math. Soc., 1929.

[141] K. Mullet and D. Sano. Designing visual interfaces: Communication oriented techniques.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995.

[142] A. Nealen and M. Alexa. Hybrid texture synthesis. In P. Christensen and D. Cohen-Or,
editors, Proceedings of the 14th Eurographics Workshop on Rendering, pages 97–105, Aire-
la-Ville, Switzerland, June 25–27 2003. Eurographics Association.

[143] A. Nealen and M. Alexa. Fast and high quality overlap repair for patch-based texture syn-
thesis. In Computer Graphics International, pages 582–585. IEEE Computer Society, 2004.

BIBLIOGRAPHY 175

[144] F. Neyret and M.-P. Cani. Pattern-based texturing revisited. In ACM SIGGRAPH, pages
235–242, 1999.

[145] H. Nothdurft. Salience from feature contrast: additivity across dimensions. Vision Research,
40:1183–1201, 2000.

[146] D. R. Peachey. Solid texturing of complex surfaces. In Computer Graphics SIGGRAPH
’85 Proceedings, pages 279–286, July 1985. volume 19, number 3.

[147] A. P. Pentland. Fractal-based description of natural scenes. IEEE Trans. Pattern Analysis
and Machine Intelligence, 6(6):661–674, Nov. 1984.

[148] K. Perlin. An image synthesizer. Computer Graphics SIGGRAPH ’85, 19(3):287–296, July
1985.

[149] P. Perona. Deformable kernels for early vision. In Proceedings IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 222–227, 1991.

[150] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Machine Intell., 12(7):629–639, July 1990.

[151] H. Poincaré. Mémoire sur les cóurbes définés par lés équations différentielles. Gauthie-
Villar, Paris, 1880-1890.

[152] K. Popat. Conjoint probabilistic subband modeling. 1997. Massachusetts Institute of
Technology, Media Lab.

[153] K. Popat and R. W. Picard. Cluster-based probability model and its application to image
and texture processing. IEEE Transactions on Image Processing, 6(2):268–284, 1997.

[154] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of
complex wavelet coefficients. International Journal of Computer Vision, 40(1):49–70, Dec.
2000.

[155] F. H. Post, R. S. L. B. Vrolijk, H. Hauser, and H. Doleisch. Feature extraction and visualisa-
tion of fl ow fields. IEEE Computer, pages 69–100, September 2002. In Dieter Fellner and
Roberto Scopigno, editors, Eurographics 2002 State of the Art Reports. The Eurographics
Association, Saarbrücken, Germany.

[156] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state of the art
in fl ow visualisation: Feature extraction and tracking. Computer Graphics Forum, 22(4),
2003.

[157] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In K. Akeley, editor, Siggraph
2000, Computer Graphics Proceedings, Annual Conference Series, pages 465–470. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[158] T. Preußer and M. Rumpf. Anisotropic nonlinear diffusion in fl ow visualization. In IEEE
Visualization ’99, pages 325–332, Oct. 1999.

[159] K. Pullen and C. Bregler. Motion capture assisted animation: Texturing and synthesis. In
Proceedings of SIGGRAPH 2002. ACMPress, july, 2002.

[160] P. T. Quinlan and G. W. Humphreys. Visual search for targets defined by combinations
of color, shape, and size: An examination of task constraints on feature and conjunction
searches. In Perception & Psychophysics, volume 41, 5, pages 455–472, 1987.

[161] A. R. Rao and G. L. Lohse. Identifying high level features of texture perception. Graphical
Models and Image Processing, CVGIP, 55(3):218–233, May 1993.

176 BIBLIOGRAPHY

[162] P. Rheingans and C. Landreth. Perceptual principles for effective visualizations, Jan. 19
1995. In Perceptual Issues in Visualization, pages 59-73. Springer.

[163] T. Rieger and F. Taponecco. Interactive information visualization of entity-relationship-
data. In WSCG, pages 99–106, 2002.

[164] S. K. Robinson. Coherent motions in the turbulent boundary layer. In Annual Review of
Fluid Mechanics, volume 23, pages 601–639, 1991.

[165] M. Roth and R. Peikert. A higher-order method for finding vortex core lines. In IEEE
Visualization ’98 (VIS ’98), pages 143–150, Washington - Brussels - Tokyo, Oct. 1998.
IEEE.

[166] Y. Rubner and C. Tomasi. Perceptual Metrics for Image Database Navigation. Kluwer,
Dec. 2000.

[167] H. E. Rushmeier, H. H. Barrett, P. Rheingans, S. P. Uselton, and A. Watson. Perceptual
measures for effective visualizations. In IEEE Visualization, pages 515–517, 1997.

[168] S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In Sym-
posium on 3D Data Processing, Visualization, and Transmission, 3DPVT, pages 486–493.
IEEE Computer Society, 2004.

[169] J. Sahner, T. Weinkauf, and H.-C. Hege. Galilean invariant extraction and iconic represen-
tation of vortex core lines. In K. Brodlie, D. Duke, and K. Joy, editors, Eurographics /
IEEE VGTC Symposium on Visualization, pages 151–160, Leeds, United Kingdom, 2005.
Eurographics Association.

[170] A. Sanna, B. Montrucchio, and P. Montuschi. A survey on visualization of vector fields by
texture-based methods. 1(1):13–27, 2000. Research Developments in Pattern Recognition.

[171] A. Sanna, C. Zunino, B. Montrucchio, and P. Montuschi. Adding a scalar value to texture-
based vector field representations by local constrast analysis. In D. Ebert, P. Brunet, and
I. Navazo, editors, Proceedings of the symposium on Data visualisation 2002, pages 035–
041, Barcelona, Spain, 2002. Eurographics Association.

[172] P. C. Saunders, S. C. Garrick, and V. Interrante. Visualization of nanoparticle formation in
turbulent fl ows. In IEEE Visualization, page 23. IEEE Computer Society, 2004.

[173] A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. Video textures. In Proceedings of
SIGGRAPH 2000, pages 489–498. ACMPress, july, 2000.

[174] G. Scheuermann, H. Hagen, H. Kruger, M. Menzel, and A. Rockwood. Visualization of
higher order singularities in vector fields. In IEEE Visualization ’97 (VIS ’97), pages 67–
74, Washington - Brussels - Tokyo, Oct. 1997. IEEE.

[175] H.-P. Seidel. Polar forms for geometrically continuous spline curves of arbitrary degree.
ACM Trans. Gr., 12(1):1–34, Jan. 1993.

[176] H.-W. Shen, C. R. Johnson, and K.-L. Ma. Visualizing vector fields using line integral
convolution and dye advection (Graphics: S. 102). In Proceedings of the Symposium on
Volume Visualization, pages 63–70, New York, Oct. 28–29 1996. ACM Press.

[177] H.-W. Shen and D. L. Kao. A new line integral convolution algorithm for visualizing time-
varying fl ow fields. IEEE Trans. Vis. Comput. Graph, 4(2):98–108, 1998.

[178] H.-W. Shen, G. Li, and U. Bordoloi. Interative visualization of three-dimensional vector
fields with fl exible appearance control. IEEE Transactions on Visualization and Computer
Graphics, 10(4):434–445, 2004.

BIBLIOGRAPHY 177

[179] H. H. Shenas and V. Interrante. Compositing color with texture for multi-variate visualiza-
tion. In S. N. Spencer, editor, GRAPHITE, pages 443–446. ACM, 2005.

[180] E. P. Simoncelli and E. H. Adelson. Subband transforms. Subband Image Coding, pages
143–192, 1990.

[181] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable multiscale
transforms. IEEE Transactions on Information Theory, 38(2):587–607, 1992.

[182] E. P. Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet coef-
ficient magnitudes. In Proceedings of the 5th IEEE Int’l Conf on Image Processing, pages
62–66, Chicago, Illinois, oct 1988.

[183] J. R. Smith and S.-F. Chang. Integrated spatial and feature image query. Multimedia Syst,
7(2):129–140, 1999.

[184] S. Soatto, G. Doretto, and Y. N. Wu. Dynamic textures. In Proceedings of ICCV ’01, pages
439–446, Vancouver, BC, Canada, july, 2001.

[185] C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern mapping. ACM Trans. Graph,
21(3):673–680, 2002.

[186] V. Sorensen. Art, science, 1995. School of Cinema-Television, University of Southern
California.

[187] M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc.,
Boston, 1979.

[188] D. Stalling and H.-C. Hege. Fast and resolution independent line integral convolution.
In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference
Series, pages 249–256, Aug. 1995.

[189] J. Stam. Stable fl uids. In Proceedings of ACM SIGGRAPH 1999, pages 121–128, 1999.

[190] M. Szummer and R. W. Picard. Temporal texture modeling. In Proceedings of ICIP 1996,
pages 823–826, Lausanne, Switzerland, June 01 1996.

[191] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for extract-
ing correct critical points and constructing topological graphs from discrete geographical
elevation data. Computer Graphics Forum, 14(3):181–192, Aug. 1995. Proceedings of
Eurographics ’95. ISSN 1067-7055.

[192] F. Taponecco. Visualizing vector fields and their fl ow. In Topics, Reports on Computer
Graphics, volume 17, 3/2005.

[193] F. Taponecco. User-defined texture synthesis. In WSCG 2004, pages 251–258, Plzen, Czech
Republic, 2004.

[194] F. Taponecco. Using potential theory and dense texture-based visualization for external
motion applications. In IEEE International Conference on Computational Intelligence for
Modelling, Control and Automation, pages 426– 431, Vienna, Austria, 2005. IEEE Press.

[195] F. Taponecco. Dense texture-based visualization of unsteady and multi-variate vector fields.
In Journal of COMPUTERS & GRAPHICS, pages 353–358. Elsevier Science, 2006. Spe-
cial Issue on Computer Graphics in Italy, C&G, An International Journal of Systems &
Applications in Computer Graphics.

[196] F. Taponecco. Local control for temporal evolution of textured images. In International
Conference on Computer Graphics Theory and Applications, GRAPP 2006, pages 57–60,
Setúbal, Portugal, 2006.

178 BIBLIOGRAPHY

[197] F. Taponecco. A study on textures and their perceptual visual dimensions as application
for fl exible and effective scientific visualization. In G. Gallo, S. Battiato, and F. Stanco,
editors, Eurographics Italian Chapter Conference, pages 123–127, Catania, Italy, 2006.
Eurographics.

[198] F. Taponecco and M. Alexa. Scan converting spirals. In WSCG International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision, pages 115–120,
2002.

[199] F. Taponecco and M. Alexa. Piecewise circular approximation of spirals and polar poly-
nomials. In WSCG 2003, in co-operation with EUROGRAPHICS, Plzen, Czech Republic,
2003.

[200] F. Taponecco and M. Alexa. Vector field visualization using markov random field texture
synthesis. pages 195–202, Grenoble, France, 2003. ACM Press, New York. Proceedings of
Eurographics/IEEE TVCG Symposium on Data Visualization.

[201] F. Taponecco and M. Alexa. Steerable texture synthesis. In Proceedings of Eurographics,
pages 57–60, Grenoble, France, 2004. ACM Press.

[202] F. Taponecco and W. Mueller. Visual data mining of time-dependent data. In Topics, Reports
on Computer Graphics, volume 15, 6/2003.

[203] F. Taponecco and T. Rieger. A fl exible approach to non-homogeneous texture generation.
2005. WSCG 2005, International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision.

[204] F. Taponecco, T. Rieger, T. Urness, and V. Interrante. Elliptical weighting for directional
enhancement in controlled texture synthesis. Research Poster, ACM SIGGRAPH 2006,
Boston, MA.

[205] F. Taponecco, T. Urness, and V. Interrante. Directional enhancement in texture-based vector
field visualization. accepted for publication in Proceedings of ACM Siggraph GRAPHITE
2006.

[206] A. Telea and J. J. van Wijk. Simplified representation of vector fields. In IEEE Visualization
’99, pages 35–42, Oct. 1999.

[207] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Extraction of parallel
vector surfaces in 3D time-dependent fields and application to vortex core line tracking. In
IEEE Visualization, page 80. IEEE Computer Society, 2005.

[208] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Stream line and path line oriented
topology for 2D time-dependent vector fields. In IEEE Visualization, pages 321–328. IEEE
Computer Society, 2004.

[209] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological methods for 2D time-
dependent vector fields based on stream lines and path lines. IEEE Transactions on Visual-
ization and Computer Graphics, 11(4):383–394, July - August 2005.

[210] J. T. Todd and F. D. Reichel. Visual perception of smoothly curved surfaces from double-
projected contour patterns. Journal of Experimental Psychology: Human Perception and
Performance, 16(3):665–674, 1990.

[211] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. Proceedings of
the 1998 IEEE International Conference on Computer Vision, pages 839–846, 1998.

[212] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum. Synthesis of bidirectional
texture functions on arbitrary surfaces. ACM Trans. Graph, 21(3):665–672, 2002.

BIBLIOGRAPHY 179

[213] L. Tonietto and M. Walter. Towards local control for image-based texture synthesis. In
SIBGRAPI, page 252. IEEE Computer Society, 2002.

[214] L. Tonietto and M. Walter. Morphing textures with texton masks. In SIBGRAPI, pages
348–353. IEEE Computer Society, 2004.

[215] A. Treisman. Preattentive processing in vision. CVGIP: Image Understanding, 31(2):156–
177, Aug. 1985.

[216] X. Tricoche, G. Scheuermann, and H. Hagen. Higher order singularities in piecewise linear
vector fields. In R. Cipolla and R. Martin, editors, Proceedings of the 9th IMA Conference
on the Mathematics of Surfaces (IMA-00), volume IX of The Mathematics of Surfaces,
pages 99–113, London, Berlin, Heidelberg, Sept. 4–7 2000. Springer.

[217] X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar
vector fields. In T. Ertl, K. Joy, and A. Varshney, editors, Proceedings of the Conference
on Visualization 2001 (VIS-01), pages 159–166, Piscataway, NJ, Oct. 21–26 2001. IEEE
Computer Society.

[218] X. Tricoche, G. Scheuermann, and H. Hagen. Topology-Based visualization of Time-
Dependent 2D vector fields. In D. Ebert, J. M. Favre, and R. Peikert, editors, Proceedings
of the Joint Eurographics - IEEE TCVG Symposium on Visualizatation (VisSym-01), pages
117–126, Wien, Austria, May 28–30 2001. Springer-Verlag.

[219] M. Tuceryan and A. K. Jain. Texture analysis. Handbook of Pattern Recognition and
Computer Vision, pages 235–276, 1993.

[220] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
Connecticut, 1983.

[221] E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, Connecticut, 1990.

[222] J. W. Tukey. Exploratory data analysis. Reading, MA: Addison-Wesley Publishing Com-
pany, 1977.

[223] J. W. Tukey. We need both exploratory and confirmatory. The American Statistician, 34:23–
25, 1980.

[224] G. Turk. Generating textures on arbitrary surfaces using reaction-diffusion. In Proceedings
of ACM SIGGRAPH 1991, pages 289–298. ACM Press / ACM SIGGRAPH, 1991.

[225] G. Turk. Texture synthesis on surfaces. In Proceedings of ACM SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Conference Series, pages 347–354. ACM Press / ACM
SIGGRAPH, August 2001. ISBN 1-58113-292-1.

[226] G. Turk and D. Banks. Image-guided streamline placement. Proceedings of SIGGRAPH
96, pages 453–460, 1996.

[227] T. Urness, V. Interrante, E. Longmire, and I. Marusic. Flow visualization using natural
textures, 2005. University of Minnesota, Technical Report 05-014.

[228] T. Urness, V. Interrante, E. Longmire, I. Marusic, S. O’Neill, and T. W. Jones. Strategies
for the visualization of multiple co-located vector fields, 2005. University of Minnesota,
Technical Report 05-032.

[229] T. Urness, V. Interrante, I. Marusic, E. Longmire, and B. Ganapathisubramani. Effectively
visualizing multi-valued fl ow data using color and texture. In G. Turk, J. J. van Wijk, and
R. M. II, editors, IEEE Visualization, pages 115–121. IEEE Computer Society, 2003.

180 BIBLIOGRAPHY

[230] J. J. van Wijk. Spot noise-texture synthesis for data visualization. In Computer Graphics
(Proceedings of SIGGRAPH 91), volume 25, pages 309–318, July 1991.

[231] J. J. van Wijk. Flow visualization with surface particles. IEEE Computer Graphics &
Applications, 13(4):18–24, July 1993.

[232] J. J. van Wijk. Image based fl ow visualization. ACM Transactions on Graphics, 21(3):745–
754, July 2002. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002).

[233] V. Verma, D. Kao, and A. Pang. Plic: Bridging the gap between streamlines and lic. Proc.
Symposium on Data Visualization 1999, pages 341–348, 1999.

[234] C. Ware. Color sequences for univariate maps: theory, experiments, and principles. IEEE
Computer Graphics and Applications, 8(5):41–49, Sept. 1988.

[235] C. Ware. Information visualization: perception for design. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2000.

[236] C. Ware and J. C. Beatty. Using color dimensions to display data dimensions. Human
Factors, 30(2):127–142, Apr. 1988.

[237] C. Ware and W. Knight. Using visual texture for information display. ACM Trans. Graph,
14(1):3–20, 1995.

[238] R. Wegenkittl and E. Gröller. Fast oriented line integral convolution for vector field visual-
ization via the internet. In IEEE Visualization ’97, pages 309–316, Nov. 1997.

[239] L.-Y. Wei. Deterministic texture analysis and synthesis using tree structure vector quanti-
zation. In SIBGRAPI, pages 207–214. IEEE Computer Society, 1999.

[240] L.-Y. Wei. Texture synthesis from multiple sources. In SIGGRAPH 2003, Applications and
Sketches. ACM Press, 2003.

[241] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantization.
In K. Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, Annual Conference
Series, pages 479–488, New York, July 23–28 2000. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman.

[242] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces. In SIGGRAPH,
pages 355–360, New York, NY 10036, USA, 2001. ACM Press.

[243] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological construction and visu-
alization of higher order 3D vector fields. Comput. Graph. Forum, 23(3):469–478, 2004.

[244] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Extracting higher order
critical points and topological simplification of 3D vector fields. In IEEE Visualization,
page 71. IEEE Computer Society, 2005.

[245] D. Weiskopf and G. Erlebacher. Flow visualization overview, 2004. in Handbook of Visu-
alization.

[246] D. Weisskopf, G. Erlebacher, M. Hopf, and T. Ertl. Hardware accellerated lagrangian-
eulerian texture advection for 2dfl ow visualizations. In Proceedings of the Vision Modeling
and VisualizationConference, pages 439–446, Nov. 2002.

[247] R. Wilson and M. Spann. Image Segmentation and Uncertainty. Wiley, New York, 1988.

[248] A. Witkin and M. Kass. Reaction-diffusion textures. In T. W. Sederberg, editor, Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 299–308. ACM Press / ACM
SIGGRAPH, July 1991.

BIBLIOGRAPHY 181

[249] J. M. Wolfe. Guided search 2.0: a revised model for visual search. In Psychonomic Bullettin
& Review, volume 30,2, pages 201–238, 1994.

[250] J. M. Wolfe, N. Klempen, and K. Dahlen. Postattentive vision. In Journal of Experimental
Psychology: Human Perception & Performance, 2000. volume 26,2, pages 693–716.

[251] S. Worley. A cellular texture basis function. In Proceedings of ACM SIGGRAPH 1996,
pages 291–294, 1996.

[252] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin. Texture and shape synthesis on sur-
faces. In EG Workshop on Rendering, pages 301–312, 2001.

[253] S. Zelinka and M. Garland. Towards real-time texture synthesis with the jump map. In
S. Gibson and P. Debevec, editors, Proceedings of the 13th Eurographics Workshop on
Rendering (RENDERING TECHNIQUES-02), pages 99–104, Aire-la-Ville, Switzerland,
June 26–28 2002. Eurographics Association.

[254] S. Zelinka and M. Garland. Jump map-based interactive texture synthesis. ACM Transac-
tions on Graphics, 23(4):930–962, Oct. 2004.

[255] J. Zhang, K. Zhou, L. Velho, B. Guo, and H.-Y. Shum. Synthesis of progressively vari-
ant textures on arbitrary surfaces. ACM Transactions on Graphics, TOG (Siggraph ’03
Proceedings), 22(3):295–302, 2003.

[256] S. C. Zhu, Y. N. Wu, and D. Mumford. Filters, random-fields and maximum-entropy
(frame): Towards a unified theory for texture modeling. International Journal of Computer
Vision, 27(2):107–126, Mar. 1998.

