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Abstract

Several cumulative methods were developed to define and evaluate fatigue and creep damage
with dependence on state variables. A phenomenological damage definition is selected under
the scope of continuum damage mechanics, which fulfills various requirements of independency
of critical damage on state variables.

In this thesis, experimental data of strain-controlled LCF experiments performed with and with-
out hold-time on high-chromium steels were received. A method to determine the true and
critical damage is shown, where the critical damage is independent of the temperature and
the strain range. Also, damage threshold based on accumulated plastic strain is determined
showing explicit dependence on strain range. Moreover, the material parameter of the damage
evolution equation is calculated by minimizing the equation using function minimizing
algorithms, where it is approximately same for experiments without and with hold-time at
the same temperature. Multiaxial fatigue damage model (Sermage et al., 2001) is employed
to compute damage showing reasonable results with an error as high as 9.17%. Furthermore,
lifetime prediction is performed using constants from experiments without hold-time for exper-
iments with hold-time showing acceptable results with an error as high as 16.66%. Also, the
error for prediction of experiment with a service-type cycle is 15.9%.
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1 Introduction

Engineering materials employed in service are exposed to adverse conditions through mechani-
cal loading, chemical action, hot and cold temperature working processes or sometimes a com-
bination of these. During such operations, the working state of the engineering components
gets worse by the induction of microscopic defects such as cracks and voids in the material.
These microcracks and microvoids coalesce with the progressive process at which the compo-
nents are being serviced, contributing to the degradation of mechanical properties or damage.
With increasing damage, several mechanical properties of the components are deteriorated such
as strength, toughness, rigidity, and the life of the component. The research on the behavior
of engineering materials due to microscopic flaws is of particular interest to mechanists and as
well as material scientists.

High-temperature processes are a norm for the aerospace, steam turbine, and power genera-
tion industries. Several types of high chromium steels are utilized as the component material
in these industries. These processes are being conducted at severe conditions of cyclic load-
ing and varying temperatures, producing mechanical and thermal stresses, which induces creep
damage as well as fatigue damage (also called creep-fatigue interaction) in the components.
For the improvement of process efficiency, the working temperatures and pressures must be
increased resulting in the components being required to bear more acute conditions, which
poses enhanced damage and an early lifetime end. The creep damage has a detrimental effect
on fatigue, which enhances it. Therefore, the creep-fatigue interaction mechanism of failure
is of primary importance for high-temperature components [1, 2]. The damage process is un-
avoidable during the service, and therefore, the requirement of damage evolution laws for the
quantitative and qualitative evaluation is necessary. Besides, lifetime prediction assessment for
the components is also indispensable to avoid massive losses in the form of premature failures.
Accurate damage evolution concerning the number of cycles and the critical damage value at
crack initiation is of fundamental importance in proposing the lifetime of a component.

In the past, various damage accumulation models have been proposed by the researchers since
early 1970s for the accumulation of creep damage. Some of these include time-fraction model,
ductility exhaustion model, modified ductility exhaustion model, strain-energy ductility exhaus-
tion model, etc [3–6]. For fatigue damage, Miner’s rule [7] is the renowned cumulative fatigue
damage model which is the reciprocal of the fatigue life. Several researchers have used these
models for the damage assessment and the life-prediction of steels and alloys utilized as high-
temperature components. Although these models are widely used, they largely depend on the
experimental parameters such as temperature, strain range, stress and the time to failure. Even
though the strain-energy exhaustion model shows relatively less dependence on these parame-
ters than the other models, there exists a healthy amount of deviation from the statistical results.
For instance, Takahashi et al. [6] studied the data of several materials with tensile-hold creep-
fatigue tests, with strain control having a fixed hold time at maximum strain for each cycle and
evaluated the results by using different damage accumulation models. Fig. 1 depicts the accu-
mulated total damage versus the strain range, where explicit dependence of the total damage
on the strain range can be observed.

The main motivation behind this thesis is to find and implement a damage model (damage
variable) which has a physical meaning and is able to predict lifetime of the components. The
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critical damage should be independent of the state variables, such as, stress, strain, and tem-
perature. Furthermore, it should be able to suggest the same threshold value for different stress
triaxialities. It is sought to achieve this objective by using CDM approach.

Figure 1: Dependency of total damage on strain range. - by utilizing (a) Time fraction model, (b)
Ductility exhaustion model, (c) Modified ductility exhaustion model, and (d) Energy-
based model [6].

CDM or Damage Mechanics, is nowadays widely used to investigate and analyze damage. It
is based on continuum mechanics and is a phenomenological theory for damage assessment
and failure processes of a material. This theory was developed in the early 1980s by several
researchers [8–12] in an attempt to have a physical and phenomenological definition of damage,
that does not depend on the state variables (parameters). Constitutive and damage evolution
equations have been presented till date by the researchers under the umbrella of CDM, which
are beneficial for damage assessment and lifetime predictions. Furthermore, this theory also
offers the idea of critical damage value or damage threshold at which a visible crack initiates.
Moreover, the damage variable is independent of the state variables, through which damage can
be proved as material property.

In this thesis, experimental data of strain-controlled Low-Cycle Fatigue (LCF) experiments, with
and without tension and compression-hold times at maximum strain levels performed on high
chromium steels at the Institute of Materials Technology (MPA / IfW), Department of Mechan-
ical Engineering, Darmstadt University of Technology, were received. Moreover, damage evo-
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lution and assessment has been carried out using the multiaxial fatigue damage evolution and
constitutive equations as proposed by Sermage et al. [13]. Also, critical damage value for micro-
crack initiation has been determined. Furthermore, material parameter of the damage evolution
equation has been minimized by using the Nelder-Mead [14] and the BFGS algorithm [15] and
lifetime prediction analysis has been performed. In addition, computed tomography (CT) is also
performed after LCF-experiment to measure the volume of the defects.
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2 Theoretical Background

2.1 Selection of Damage Definition

Damage is a phenomenon long studied under various assumptions and notions. Cumulative
damage models [2–7] have been used to date, but their drawback lies in the fact that they rely on
the cumulation of either time to rupture or fracture strain, thereby showing direct dependence
for damage.

In this thesis, it is sought to utilize a damage definition that has the following properties:

1. The damage is a material property.

2. The critical damage must be strain independent.

3. The critical damage must be temperature independent.

4. The damage model must define a threshold value which is independent of the stress-
triaxiality.

5. The damage must be quantifiable, where it can be calculated directly from the experiment.

Above listed criteria suggests that the definition should be phenomenological in approach. A
comprehensive survey of fatigue damage models [16] lists most of the famous techniques to
measure damage. CDM looks promising enough to fulfill the above criteria. Thus, it is discussed
and utilized further in the report to evaluate the damage.

2.2 Damage Definition

Damage is a continuous physical phenomenon that is accompanied by deterioration or impair-
ment of a component or its usefulness. In CDM, it is studied as the difference between the
virgin and the damaged material and its mechanisms are studied through damage variables
(mechanical variables). According to Murakami [8], Krajcinovic [9], and Lemaitre [12], the
damage is the progressive process of creation and growth of the microvoids or microcracks in
the microscopic, mesoscopic and macroscopic scale and the failure through the deterioration
of mechanical properties. At the microscopic scale, the damage process can be understood as
the creation and growth of microcracks and microvoids due to the breakage of bonds. At the
mesoscopic scale, it is primarily the initiation of a visible crack due to the coalescence of the
microvoids. At the macroscopic scale, it can be seen as the development of the initiated macro-
crack. CDM is utilized for the damage assessment at the microscopic and mesoscopic level and
therefore, relies mainly on continuum mechanics.

2.3 Mechanisms of Damage

Damage in its definition is quite general. Although, macroscopically, damage can be understood
as the simple failure of an engineering material due to microstructural defects. It has different
mechanisms when the damaged materials are investigated at the microscopic scale. In principle,
it is the atomic debonding which can be initiated due to the following different mechanisms as
shown in Fig. 2.
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Figure 2:Mechanisms of damage at the microscopic scale [1].

2.3.1 Cleavage

Cleavage is a mechanism of damage that occurs due to the tensile decohesion of atoms on
the crystallographic planes that are inherent to the crystal. This phenomenon primarily occurs
in poly-crystalline materials such as inorganic materials of body-centered cubic (BCC) metals.
The characteristic of cleavage is that it occurs by direct separation of the lattice planes due
to the breaking of atomic bonds. Cleavage is accompanied by elastic deformation and no or
little plastic deformation. The fracture associated with this type of damage is called Cleavage
fracture. It desirably takes place at the lattice planes where the atomic binding or cohesive
energy is the weakest and induces at the point where the stress concentration is high due to
defects in the material. For instance, it could occur at the grain boundaries due to the stress
concentration because of the dislocation pile-up.

2.3.2 Growth of Microvoids

During the deformation of a ductile material, for instance, tensile loading of a ductile material
as shown in Fig. 3, large plastic deformation is observed. Due to the deformation, separation
of the inclusion-matrix interface occurs, contributing to the creation of microvoids. As the
deformation progresses, these microvoids coalesce and grow. Dislocation pile-up against the
inclusions is the leading cause that this decohesion between inclusion-matrix interface occur.
The fracture associated with this type of damage is called Dimple fracture because dimples
or dents are formed on the surface due to microvoid growth and coalescence when observed
through a microscope.

2.3.3 Glide Plane Decohesion

Glide plane decohesion is the fracture of poly-crystalline materials along specific slip planes
due to the creation of new surfaces, which happens due to the significant plastic deformation.
This type of damage mechanism usually occurs during fatigue and is responsible for fatigue
failure. Materials that are highly pure and have very less number of defects such as inclusions
are deformed to a great extent because there are fewer means of void formation and dislocation
glide is carried out in slip planes. Due to extensive deformations, the cross-sectional area of
the material lowers to nearly zero. Therefore, such type of fracture is called point-type or
chisel-edge fracture [1].

2.3.4 Grain Boundary Diffusion

In poly-crystalline metals, the role of temperature is evident on the microstructural properties
of the material. It is usually seen at temperatures higher than 1/3 of the melting point Tm of the
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Figure 3: Schematic representation of the creation and growth of microvoids during the defor-
mation of a ductile material [17].

material. When such metals are subjected to static loads for a long time at high temperature,
the diffusion of defects such as vacancies gives rise to the formation of voids on grain bound-
aries. This grain boundary diffusion is much faster than the bulk diffusion because the defect
concentration is small in bulk in comparison to the grain boundary. The growth of these cavities
on grain boundaries causes microscopic decohesion.

2.4 Damage Types

In the previous section (Sec. 2.3), we have familiarized ourselves with the mechanisms of
damage that occur at the microscale, which is essentially the tensile or shear decohesion or in
simple words the separation of atomic bonds. Although the microscopic phenomenon is the
same, the damage can have different characteristics at the mesoscale depending upon the type
of material, type of load and the temperature. The damage may be categorized as follows [1,
18]:

2.4.1 Brittle Damage

Brittle damage is a type of damage in which no apparent plastic deformation takes place.
Growth and coalescence of microvoids are accomplished not only at the micro scale but also
at the mesoscale, and a crack is initiated, which means that the debonding forces are less than
the slip-strength but are higher than the cohesive or binding strength of the material. Brittle
damage usually occurs in ceramics, concretes, rocks, and composites. Fig. 4 shows an SEM
fractograph of brittle cleavage fracture in tempered martensitic chrome alloy steel.

2.4.2 Ductile Damage

On the contrary, if the development and coalescence of microvoids occur due to significant
plastic deformation then the type of damage is called ductile. In poly-crystalline metals, ductile
damage results due to the fracture of inclusions or due to the separation of the inclusion-matrix
interface, which form cavities/voids. These voids then grow and coalesce and form a dimples
or dents which is often observable on the fracture surface. Ductile metals, especially those
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Figure 4: SEM fractograph of tempered martensitic steel showing brittle cleavage fracture [19].

having high purity, show substantial deformation with an elongation to failure of atleast 5% or
a reduction in area to failure of atleast 20% under suitable conditions [20]. Fig. 5 shows an
SEM fractograph of a ductile fracture surface in transformation toughened Nichrome alloy.

Figure 5: SEM fractograph of a ductile fracture surface in transformation toughened Nichrome
alloy [21].

2.4.3 Creep Damage

When poly-crystalline metals are subjected to high temperatures (more than 1/3 of their abso-
lute melting temperature Tm) at static load for a long time, plastic deformation involves viscosity.
Due to the diffusion of vacancies on grain boundary, intergranular decohesion takes place. These
vacancies create and grow on grain boundaries due to the application of constant stress for an
extended span of time and eventually lead to macroscopic crack formation. It usually occurs at
stresses well below the yield strength. This type of damage is known as Creep damage. Due
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to time-dependency, this type of damage is called visco-plastic damage. Fig. 6 shows grain
boundary cavitation due to creep damage in copper.

Figure 6: Creep damage in copper at 250°C [1].

2.4.4 Low Cycle Fatigue Damage

Fatigue damage causes when the material is subjected to cyclic loading, the irreversible plastic
damage accumulates over time generating microvoids. These voids grow to form cracks and
give rise to rupture of the material. Microscopically, this form of damage is localized than creep
and ductile damage.

In metals, fatigue damage is caused by the deformation along the slip planes inducing glide
plane decohesion which leads to initiation of cracks. When the applied load or stress is very
high, it induces transgranular slip in material, causing it to fracture in a relatively small number
of cycles. If the number of cycles to fatigue failure NR is less than 10000 (< 104), then it is
usually called low cycle fatigue (LCF). Fig. 7 shows an example of low cycle fatigue of Inconel
718.
In the same category, if the number of cycles to fatigue failure NR is less than 100 (< 102),
then the type of damage is called very low cycle fatigue. For such type of damage, the stresses
are very high in order to initiate the damage at very less number of cycles. Normal damage
evolution and fatigue life prediction rules for usual LCF are not applicable for very low cycle
fatigue and predicted values of damage are often high [22].

2.4.5 High Cycle Fatigue Damage

If the cyclic stresses are extremely low in magnitude, the transgranular slip occurs in fewer
numbers of planes on the material surface due to which plastic deformation is small at the
mesoscale. Furthermore, the accumulated damage per cycles is small so that cycles to fracture
rises. The number of cycles to failure NR may be very large (> 105). This type of damage is
called high cycle fatigue.

It was assumed that fatigue failure would never occur in iron and steels for loads up to a partic-
ular value at which the material can bear an unlimited number of cycles and the corresponding
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Figure 7: Low cycle fatigue due to glide plane decohesion in Inconel 718 [1].

magnitude of the load has been defined as fatigue limit. However, in recent times, it has been
showed that even for loads less than the fatigue limit, fatigue crack could initiate in the mate-
rials if the number of cycles to failure NR exceeds 108 through 1010. Such type of damage is
called very high cycle fatigue or ultrahigh cycle fatigue.

2.4.6 Creep-Fatigue Damage

When cyclic loading with dwell times at high temperature is applied to poly-crystalline met-
als, creep as well as fatigue damage develops in the material simultaneously. Creep damage,
as discussed, accumulates at the intergranular sites through grain boundary diffusion whereas
fatigue damage accumulates at the surface through transgranular slip. Due to different mecha-
nisms at the mesoscale, both types of damage develop separately without interacting with each
other in early cycles. However, at later stages of the lifetime, there builds an influence of both
types of damage on each other, resulting in accelerated overall damage. This type of damage
is called creep-fatigue interaction or creep-fatigue damage. As fatigue damage is much more
localized than the creep damage, the effect of fatigue on creep is less compared to the effect
of creep on fatigue. Creep-fatigue damage is an essential damage mechanism that is frequently
encountered in high-temperature components and hampers their performance. Fig. 8 shows a
schematic illustration of different modes of damage in creep-fatigue interaction.
Here NR, NF I and NC I denote the number of cycles to creep-fatigue failure, number of cycles to
fatigue crack initiation and number of cycles to creep void nucleation, respectively. As shown,
interaction occurs when creep voids are nucleated earlier than fatigue crack initiation. Though
the interaction is negligible at the beginning, it increases with time.

2.5 Mechanical Representation of Damage

To describe the damage variable, few concepts are needed to be understood. In the view of
CDM, the damage variables are first defined and then damage evolution is discussed by the use
of these damage variables.
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100% Fatigue Competing Creep-Fatigue
Interaction

100% Creep

Figure 8: Schematic representation of different modes of damage in creep-fatigue interaction
[1].

2.5.1 Representative Volume Element

In Continuum Mechanics, the Representative Volume Element (RVE) is a concept used to illus-
trate the effect of different microscopic discontinuities on the smallest volume of an element
that represents the value of the whole element. Therefore, mechanical effects of the microstruc-
ture must be homogenized and represented as a continuous macroscopic field in the material.
In case of periodic elements, the unit cell can be chosen merely as the RVE, but for non-periodic
elements, the situation is not straightforward.

For its representation, the smallest volume V is assumed at the mesoscale around the material
at point P(x) in body B. According to the assumption, the microstructural defects in volume V
can be statistically homogeneous, and the mechanical state of the material can be explained by
the statistical average of the mechanical variables in V . If the considered volume V satisfies this
condition then the volume V is called an RVE [23].

The material can be idealized as a continuum employing the statistical average of the mechanical
state if an RVE of proper size can be taken at each point of the system. When an RVE is a
statistical illustration of the material, then the mechanical state of the continuum is unique. For
such RVE, following conditions need to be fulfilled [1]:

1. For statistical homogenization of the RVE, its size must be large enough to encapsulate a
sufficient number of microstructural defects.

2. For representing a non-uniform macroscopic mechanical field utilizing a continuum, the
size of the RVE must be significantly small to avoid the variation of the macroscopic vari-
able in it, which will be minimal.
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The order of the magnitude of an RVE can be different for different materials, i.e., it depends
on the microstructure of the material. The typical sizes are as follows [1, 24]:

• Metal and ceramic (0.1 mm)3

• Polymer and composites (1 mm)3

• Timber (10 mm)3

• Concrete (100 mm)3

The size of an RVE also depends on the type of phenomenon under consideration. For instance,
creep and ductile damage are far more localized than the brittle and fatigue damage so the RVE
for brittle and fatigue damage must be larger than that of the creep and ductile damage.

2.5.2 Damage Variables

Damage mechanics is employed for the modeling and quantification of the damage. Generally,
a damage model is utilized for this purpose which can illustrate different damage processes,
damage growth, and the crack initiation.

The definition of a damage variable is not straightforward as there exist a variety of mechanisms
which induce damage. Also, the shape and size of every micro-cavity are different which lead
towards the difficulty in describing the geometry of every cavity. Therefore, researchers have
attempted to propose an abstract damage variable which can be considered as scalar or tensor
and can represent the phenomenological description for every micro-cavity. According to the
thermodynamics, the damage variable must show the irreversible processes of microstructural
changes within the material. Therefore, the damage variable is an internal variable [25] and
must be capable of representing the damage growth. Furthermore, the damage variable should,
in general, have a tensorial nature since the crack initiation and growth depends on the direction
of the stress or strain in the RVE. The choice of a damage variable is not simple, as there are
many aspects of evaluating damage which will be discussed in further sections. The fundamental
consideration of the damage variable is the density of defects (cracks and voids) on a plane
intersecting the RVE (Fig. 9). Many researchers have used the following variables for the
modeling of damage within the thermodynamics of irreversible process as mentioned in Table
2.

Table 2: Set of variables utilized in CDM to model damage [25].
Observable Variables Internal Variables Associated Variables
Elastic strain tensor �e Accumulative hardening parameter γ Stress tensor σ
Temperature T Damage variable D Entropy s

Isotropic hardening variable
R
Damage strain energy re-
lease rate Y
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2.5.2.1 Scalar Damage Variable

Suppose a small volume of a damaged solid at the mesoscale around a material point in the
body as shown in Fig. 9. Let δS be the area of the volume element intersecting the plane of the
RVE identified by its normal �n and δSD be the active area of the intersection of microvoids or
microcracks which reside in δS.

Therefore, the damage variable is:

D =
δSD

δS
. (1)

From the definition, it follows that the value of D is bounded by 0 and 1 (0 ≤ D ≤ 1). 0
refers to an undamaged material whereas 1 refers to an entirely damaged material. In reality,
failure can occur even at D < 1. The damage variable is considered scalar if the damage is
isotropic, for instance, in the case of random or isotropic distribution of microvoids. However,
in the case of anisotropic damage due to the oriented distribution of microvoids, the scalar
damage variable can still be utilized if the density of microvoids is minimal. It is used for one-
dimensional problems and also for easy evaluation of three-dimensional problems. Moreover,
its mathematical procedure is simple than the tensorial damage variable.

2.5.2.2 Plural Damage Variables

In some situations, the use of a single damage variable is not sufficient to characterize the value
of damage even if the distribution of microvoids is isotropic. For instance, there is a requirement
of two damage variables when modeling the change in elastic properties due to the increasing
damage even in isotropic materials [26]. Also, plural damage variables are needed, for exam-
ple, in some models of creep-fatigue interaction where creep damage variable DC and fatigue
damage variable DF are used separately. Furthermore, there can be more than one damage phe-
nomenon present in the damage evolution which can be represented by two individual damage
variables. For example, the delamination of fibers and the cracking of matrix in a conventional
composite. In this case, up to three variables are used.

Figure 9: Schematic illustration of RVE [24].
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2.5.2.3 Tensorial Damage Variable
Damage state is anisotropic when the microvoid distribution is oriented. Damage state is speci-
fied by the decrease in load carrying effective area due to void growth. Therefore, it is possible to
formulate a tensorial damage variable. The density of microvoids in a plane with normal �n acts
through an operator which transforms the surface into smaller continuous area δS̃ = δS − δSD
and into another normal �̃n.

(δi j − Di j)njδS = ñiδS̃ , (2)

where Di j is a component of second order tensor while δi j is the Kronecker delta.

The damage variable of largest generality is the fourth order tensor as mentioned in literature
[1]. As mentioned previously, consider an RVE having a damage area δS, a vector normal to it
�n and a reference vector �v such that the tensor vin jδS is the geometrical reference configura-
tion. CDM describes the effective continuous configuration through a modified area δS̃ and a
modified normal �̃n as illustrated in Fig. 10.
The damage � is a fourth order tensor which converts the second order tensor vin jδS into an
effective configuration of vi ñ jδS̃. Therefore:

(Ii jkl − Di jkl)vknlδS = vi ñ jδS̃ , (3)

with the following symmetries Di jkl = Di jlk = Djikl = Dkli j.

Figure 10: CDM approach for reference and effective configurations [25].

2.5.3 Effective Stress Concept

As shown in Fig. 9, the development of microvoids progresses due to the damage. The mechan-
ical effect of the area δS is reduced by δSD, since δSD is the total void area in δS.

δS̃ = δS −δSD (4)

Now suppose the deformation of a cylindrical bar shown in Fig. 11. The bar in Fig. 11b is in
damaged state D with an applied tensile load δF having a cross-sectional area δS. In this case,
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the actual load-carrying cross-sectional area or the effective area is δS̃ [11]. Therefore, using
Eqs. (1) and (4), the effective area δS̃ is given by:

δS̃ = (1− D)δS . (5)

The stress σ being generated in the result of the tensile load δF increased due to the reduction
in the cross-sectional area. Using Eq. (5), the magnified stress σ̃ is given by:

σ̃ =
δF

δS̃
=

σ

1− D
. (6)

Since all stress components act on the same effective area when multiaxial isotropic damage is
considered, the effective stress second order tensor can be given by:

σ̃i j =
δF

δS̃
=
σi j

1− D
. (7)

For the case of anisotropic damage, the representation of the effective stress tensor is com-
plicated. The effective stress tensor is deduced from the general representation of the fourth
order damage tensor as described in section 2.5.2.3. The effective stress tensor is defined by the
projection of the stress tensor σi j on the referenve vector �v as shown in Fig. 10.

σ̃i j(Ii jkl − Di jkl)vknlδS = σkl vknlδS (8)

The stress σ̃ is named as the effective stress [27, 28] since it is the increased magnitude of
stress due to the area reduction that occurs due to the damage. However, this definition of the
effective stress applies to the material in tensile loading [18]. In compression, some defects
might close, but the overall damage remains same. If all of the defects close, then the effective
stress σ̃ is equal to the normal stress σ.

With the help of Eqs. (5) and (6), it is notable that the damaged cylindrical bar of Fig. 11b
with cross-sectional area δS and tensile force δF is mechanically equivalent to the undamaged
cylindrical bar of Fig. 11c having a cross-sectional area δS̃ and the same tensile force δF .
Consequently, the state of Fig. 11c is termed as fictitious undamaged bar [1, 25].

2.5.4 Basic Hypotheses in Damage Mechanics

For the derivation of constitutive and evolution equations of damage, the concept of effective
stress and hypotheses of mechanical equivalence between the damaged and fictitious undam-
aged material are utilized, because they allow modeling of the damage state.

2.5.4.1 Hypothesis of Strain Equivalence
The hypothesis of strain equivalence was proposed by Lemaitre and Chaboche [1, 25] showing
the mechanical equivalence between the damaged and fictitious undamaged materials. The
hypothesis suggests that the inelastic constitutive equation of a damaged material with applied
stress is equivalent to that of a fictitious undamaged material under the effective stress.

Suppose a damaged and a fictitious undamaged configuration as shown in Fig. 12 which in-
cludes the concept of effective stress. The effect of the applied stress σ on the configuration
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Figure 11: Illustration of damage of a bar under a tensile load.

in Fig. 12a is equivalent to the effect of the effective stress σ̃ on the configuration in Fig.
12b. Hence, the deformation of the damaged configuration should be equal to the fictitious
undamaged configuration.

Various effective stress tensors have been provided in the literature [1] by researchers. A general
form of an effective stress tensor can be given by:

σ̃ =�(�) : σ , (9)

where �(�) is a fourth-order tensor function and is called the damage effect tensor. It trans-
forms the stress tensor σ into a corresponding effective stress tensor σ̃. The tensor � specifies
an even-order damage tensor respectively among the zero, second and fourth order tensors D,
D, and �.

Now suppose an inelastic undamaged material whose constitutive equation can be given as:

� = Fo(σ,α) , (10)

where α denotes an internal parameter which expresses the changes in the material other than
damage. Thus, according to the hypothesis mentioned earlier, the constitutive equation for a
fictitious undamaged material with the damage variable � can be given by replacing the stress
tensor σ by the effective stress tensor σ̃ in Eq. (10) [1]. Therefore:

� = F(σ,�,α) = Fo(σ̃,α) . (11)
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Figure 12: Configurations depicting hypothesis of strain equivalence.

When elastic deformation occurs then the constitutive equations for undamaged and damaged
materials can be expressed as:

� = �o : σ (12a)

� = �(�) : σ , (12b)

where �o and �(�) denotes the fourth-order compliance tensor of the respective materials.
According to the hypothesis of strain equivalence, the elastic constitutive equation (Eq. (12b))
of the damaged material and relative compliance tensor �(�) can be given as:

� = �o : σ̃ = [�o :�(�)] : σ = �(�) : σ (13a)

�(�) = �o :�(�) . (13b)

Also, the damage effect tensor is related to the compliance tensor as given below:

�(�) = �−1
o : �(�) . (14)

Even though the hypothesis of strain equivalence is easily understandable and implementable,
the compliance tensor � has disadvantage of its asymmetry [1]. However, the damage variable
� is a state and is calculable through different methods. Therefore, a new compliance tensor
�∗(D) can be defined by taking a new damage variable �∗.

�∗(D) = 1
2
[�o :�(�∗) +�T (�∗) : �o] (15)
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Now �(�∗) is symmetric and the new damage variable �∗ is related to the damage variable �
by means of the following relation:

�(�∗) = �−1
o : �∗(�)

=
1
2
[�−1

o :�(�∗) +�T (�∗) : �o] .
(16)

The physical interpretation of the hypothesis of strain equivalence is depicted in Fig. 13.
The stress-strain relation for the damaged material can be defined as:

σ = �̃ : � or

σi j = �̃i jkl�kl .
(17)

And that for the fictitious undamaged material can be defined as:

σ̃ = � : � or

σ̃i j = �i jkl�kl ,
(18)

where �̃ is the even-order tensor for the damaged material.

Figure 13: Schematic illustration of the hypothesis of strain equivalence [25].

According to the hypothesis, for an isotropic undamaged material, the effective stress σ̃ in Eq.
(18) can be replaced according to the Eq. (6).

σ

1− D
= �� (19)

Considering Eq. (17) for an isotropic damage case and comparing it with Eq. (19), following
expression can be obtained:
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�̃ = (1− D)� . (20)

Eq. (20) gives the relationship formula between the damaged and the undamaged material.
Thus, the following material properties variate with damage according to the relations given
below:

Ẽ = (1− D)E (21a)

ν̃= ν (21b)

G̃ = (1− D)G, (21c)

where Ẽ, ν̃, and G̃ are effective Young’s modulus, effective Poisson’s, and effective shear modulus
of the elastic isotropic damaged material.
According to the Eqs. (21a), (21b), and (21c), it is clear that the properties of the damaged
material are affected by the constant factor Ψ = (1 − D) except for the Poisson’s ratio, which
remains unaffected.

2.5.4.2 Hypothesis of Stress Equivalence
The hypothesis of stress equivalence (Sec. 2.5.4.1) has a contrary meaning to the hypothesis
of strain equivalence in a similar way. The hypothesis proposes that stress corresponding to a
damaged state under the actual strain is equivalent to the stress corresponding to its fictitious
undamaged state under the effective strain [25].

The physical interpretation of the hypothesis of stress equivalence is illustrated in Fig. 14.

Figure 14: Schematic illustration of the hypothesis of stress equivalence [25].

The stress-strain relation for the damaged material can be defined as Eq. (17).

σ = �̃ : � or

σi j = �̃i jkl�kl
(22)
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For the fictitious undamaged state, according to the hypothesis, the stress-strain relation can be
defined as:

σ̃ = � : � or

σ̃i j = �i jkl�kl .
(23)

Considering that the constant factor Ψ or the damage variable D are defined by effective elastic
modulus as:

Ψ =
Ẽ
E

or (24a)

D = 1− Ẽ
E

. (24b)

In case of one-dimensional damage, the stress-strain relation is σ = Ẽ� while the stress-strain
relation for the fictitious undamaged state can be given by σ = E�̃. Therefore, according to the
hypothesis of stress equivalence:

�̃ =
Ẽ
E
� = Ψ� = (1− D)� . (25)

Thus, it can be understood that according to the hypothesis of stress equivalence, the stress-
relation of damaged material and fictitious undamaged materials are equivalent when the real
strain � is replaced by the effective strain �̃.

2.5.4.3 Hypothesis of Complementary Strain Energy Equivalence
The hypotheses of stress and strain equivalence are rational regarding their ease of application
to isotropic damage state. The deformation due to the real stress to a damaged material is
equivalent to the deformation due to the effective stress to an undamaged material. However,
in the anisotropic case, the implementation is not simple due to the asymmetric effective stress
tensor.

The cope up with this, Cordebois and Sidoroff [29] proposed a hypothesis considering energy
equivalence between the damaged and the fictitious undamaged material. This hypothesis pro-
vides the symmetry requirement of elastic tensors of the materials. The hypothesis states that
the complementary strain energy function of the damaged material is equivalent to that of the
undamaged material if the effective stress replaces the stress in the latter.

Consider a damaged and an undamaged configuration of an elastic-plastic material as shown in
Fig. 15, where the internal state variable α represents the change in the material due to plas-
tic deformation. The complementary strain energy functions of the damaged and undamaged
configurations can be represented as follows [1]:
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Vo(σ,α) =
1
2
σ : �o : σ−φ(α) (26a)

V (σ,�,α) =
1
2
σ : �(�) : σ−φ(α) . (26b)

Now, the elastic constitutive equations can be defined as:

� =
∂ Vo

∂ σ
= �o : σ (27a)

� =
∂ V
∂ σ
= �(�) : σ . (27b)

According to the hypothesis, the constitutive equation can be derived by replacing the real stress
σ with the effective stress σ̃ in Eq. (26a). Thus:

V (σ,�,α) = Vo(σ̃,α) . (28)

Using the hypothesis, the equation for elastic strain (Eq. (27b)) leads to:

� =
∂ V (σ,�,α)

∂ σ
= �(�) : σ

=
∂ Vo(σ̃,α)
∂ σ

=
∂

∂ σ

�
1
2
σ̃ : �o : σ̃
�

=
1
2
∂

∂ σ
[(�(�) : σ) : �o : (�(�) : σ)]

= [�T (�) : �o :�(�)] : σ .

(29)

The result of Eq. (29) leads to the elastic compliance tensor of the damaged material, given as:

�(�) =�T (�) : �o :�(�) . (30)

According to the Eq. (30), the tensors �(�) and �o uniquely describe the damage effect tensor
�(�). The symmetric form of�(�) can be defined as:

�(�) =
��
�−1

o : �(�) :
�
�−1

o . (31)

Moreover, using Eq. (9), a new effective strain tensor can be defined as:

�̃ =�−T (�) : � . (32)

According to Cordebois and Sidoroff [29], the elastic constitutive equation (Eq. (26b)) can then
be written as:

20



Figure 15: Configurations depicting hypothesis of complementary strain energy equivalence.

V =
1
2
σ : � −φ(α) = 1

2
σ̃ : �̃ −φ(α)

�̃ = �o : σ̃ .
(33)

The physical interpretation of the hypothesis of complementary strain energy equivalence is
shown in Fig. 16.

Figure 16: Schematic illustration of the hypothesis of complementary strain energy equivalence
[25].
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As defined in Eq. (20), the relationship formula between the damaged and undamaged material
under the hypothesis of complementary strain energy equivalence is given as [25]:

D̃ = (1− D)2� . (34)

Therefore, the following material properties change with damage according to the relations
given below:

Ẽ = (1− D)2E (35a)

ν̃= ν (35b)

G̃ = (1− D)2G . (35c)

Hence, according to the hypothesis, it can be comprehended that the constitutive equations of
damaged and fictitious undamaged materials are equivalent when both the real stress σ and
strain � are replaced by the effective stress σ̃ and strain �̃ respectively.

2.5.4.4 Hypothesis of Elastic Strain Energy Equivalence
Similar to the hypothesis of complementary strain energy equivalence (Sec. 2.5.4.3), the hy-
pothesis of elastic energy equivalence utilizes the effective strain rather than the effective stress
in the strain energy function [29]. It states that the strain energy function of the damaged ma-
terial can be represented as the strain energy function of the undamaged material by replacing
the strain with the effective strain.

The strain energy functions for the damaged and undamaged materials can be expressed as:

Wo(�,α) =
1
2
� : �o : � +φ(α) (36a)

W (�,�,α) =
1
2
� : �(�) : � +φ(α) , (36b)

where �o and �(�) are the elastic modulus tensors. Therefore, the elastic constitutive equations
of the damaged and undamaged materials can be defined as:

σ =
∂Wo

∂ �
= �o : � (37a)

σ =
∂W
∂ �
= �(�) : � . (37b)

According to the hypothesis, the constitutive equation can be derived by replacing the real strain
� with the effective strain �̃ in Eq. (36a). Therefore:

W (�,�,α) =Wo(�̃,α) . (38)

In case of one-dimensional damage,the hypothesis of elastic strain energy equivalence:
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Figure 17: Schematic illustration of the hypothesis of elastic strain energy equivalence [25].

�̃ =
�

Ẽ
E

�1/2
� = Ψ1/2� = (1− D)1/2� . (39)

Similar to the hypothesis of complementary strain energy equivalence, the relationship formula
between the damaged and undamaged material is identical to Eq. (34). Hence, the correspond-
ing material properties of the damaged material are also the same as mentioned in Eq. (35).
The physical interpretation of the hypothesis of elastic energy equivalence is depicted in Fig. 17.

2.5.4.5 Hypothesis of Total Energy Equivalence
The hypotheses of energy equivalence (Sec. 2.5.4.3 and Sec. 2.5.4.4) are reasonable to utilize
as they have the feature of defining the equivalence between the damaged and the fictitious
undamaged material through the state of energy, which shows each effect of stress and strain.
Furthermore, they also ensure the symmetry of the elastic modulus and compliance tensors.
However, they are relevant for the case of elastic state [1].
Saanouni et al. [30] overcame this constraint by reviewing the problem under the domain of ir-
reversible thermodynamics with internal variables and postulated the hypothesis of total energy
equivalence for thermo-inelastic deformation accompanied by isotropic damage by extending
the energy equivalence hypothesis proposed by Cordebois and Sidoroff.

Consider an RVE for the damaged configuration of Fig 18a by assuming that the following set
of state variables can define the inelastic damage state:

(σ, �e), (R, r), (A, α), (T, −s), (Y, D) , (40)

where σ, R, A, T , and Y denote the stress tensor, isotropic hardening variable, kinematic hard-
ening variable, temperature, and the strain energy release rate due to damage respectively, with
the damage variable D. Other symbols such as �e, r, and α are the elastic strain, the associated
variables of R and A, and the entropy of the configuration respectively.
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Figure 18: Configurations depicting hypothesis of total energy equivalence.

Consider another RVE for the fictitious undamaged configuration of Fig. 18b having similar total
strain energy W T . Concerning Eq. (40), the following set of effective variables can be expressed
as:

(σ̃, �̃e), (R̃, r̃), (Ã, α̃), (T, −s), (Y = 0, D = 0) . (41)

The total strain energy WT in both the configuration can be defined as the sum of the reversible
elastic energy WE and that of the irreversible isotropic hardening WI and the kinematic harden-
ing WK .

WT (�
e, r,α, D) =WT (�̃

e, r̃, α̃, D = 0) =WE +WI +WK (42)

As both the configurations are mechanically equivalent, the following relations must fulfill:

WE(�
e, D) =WE(�̃

e, 0) =
1
2
σ : �e =

1
2
σ̃ : �̃e (43a)

WI(r, D) =WI(r̃, 0) =
1
2

Rr =
1
2

R̃r̃ (43b)

WK(α, D) =WK(α̃, 0) =
1
2

A : α=
1
2

Ã : α̃ . (43c)

When the effective variables σ̃, �̃, R̃, r̃, Ã, and α̃ are defined as below, the relations (Eq. (43))
are always fulfilled.
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σ̃ =
σ

g(D)
, �̃e = g(D)�e (44a)

R̃=
R

h1(D)
, r̃ = h1(D)r (44b)

Ã=
a

h2(D)
, α̃= h2(D)α , (44c)

where the scalar functions g(D), h1(D), and h2(D) are the positive decreasing function of the
damage variable D. According to the Saanouni et al. [30], these functions satisfy the following
condition:

g(D) = h1(D) = h2(D) = (1− D)1/2 , (45)

and proposed the hypothesis that the mechanical behavior of the material in the damaged con-
figuration is derived from the state- and the dissipation-potential functions of the equivalent
material in the fictitious undamaged configuration by replacing the state variables with the
effective state variables.

2.6 Damage Measurement

Except for the direct measurement, the damage is calculated by its coupling to the internal
material properties, for instance, elasticity. Following are few of the damage measurement
techniques, where the strain equivalence hypothesis is assumed.

2.6.1 Variation of Effective Area

Kachanov [27] studied the brittle creep damage of metal through uni-axial experiments and ob-
served that creep damage occurs due to the microvoids that were developed during the process.
He modeled the state of damage by a scalar damage variable Ψ (0 ≤ Ψ ≤ 1), where 0 signifies
the undamaged state and 1 signifies the complete damage state, i.e., the specimen is broken.
Moreover, he proposed a damage evolution equation:

Ψ̇ = −A
�σ
Ψ

�m
. (46)

where (˙) represents the time-derivative, whereas A and m are the material parameters.
Afterwards Rabotnov [28] modified Kachanov’s theory and presented a new scalar damage
variable D = 1 - Ψ (0 ≤ D ≤ 1) and by proposing that the creep rate �̇ is affected by damage,
which can be expressed as:

Ḋ = A
� σ

1− D

�m
(47a)

�̇ = B
� σ

1− D

�n
, (47b)

where A, B, m, and n are material parameters. Eq. (47) is referred to as the Kachanov-Rabotnov
theory which is the fundamental theory for many continuum damage models. The damage
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variables D and Ψ are understood as the reduction in the load-carrying effective area due to
microvoid nucleation.

As described previously (Sec. 2.5.3), the effective area is given by Eq. (5). Therefore, the
damage variables D and Ψ can be expressed as:

Ψ =
δS̃
δS

(48a)

D = 1−Ψ = δS −δS̃
δS

=
δSD

δS
. (48b)

Even though the Kachanov-Rabotnov model is quite simple in approach, the actual damage
process is much more complicated, and thus the model has limited validity [1]. A precise
description of damage phenomenon is discussed in the damage models that have been proposed
subsequently [1, 12, 13, 18, 24, 25, 31].

2.6.2 Variation of Young’s Modulus

Since there is a reduction of stiffness of the RVE in the material due to the nucleation of mi-
crovoids and microcracks, the damage can be modeled as the variation of Young’s modulus
[18].

Suppose a damaged bar and a fictitious undamaged bar as shown in Fig. 11. According to the
hypothesis of strain equivalence (Sec. 2.5.4.1) and the effective stress concept (Sec. 2.5.3), the
strain � in the bar (b) under the stress σ is equal to the strain � in the bar (c) under the effective
stress σ̃. Therefore:

σ = Ẽ� , σ̃ = E� or (49a)

� =
σ

Ẽ
=
σ̃

E
, (49b)

where E and Ẽ are the Young’s moduli of the material in undamaged and damaged state respec-
tively. A new definition of the effective stress can be expressed as:

σ̃ =
E
Ẽ
σ . (50)

Considering the effective stress definition as defined in Eq. (6) and the one described above in
Eq. (50), the damage variable depending on the variation of Young’s modulus can be express
as:

Ẽ = (1− D)E (51a)

D = 1− Ẽ
E

. (51b)
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The application of this method is achieved by measuring the elastic modulus from the hysteresis
loop data. It is usually done by setting up an experiment (Fig. 19) that measures the strain
utilizing strain extensometer during unloading. The damage can also be determined as a func-
tion of the accumulated plastic strain p =

� t
0 ṗ d t for an LCF experiment. As shown in Fig.

19, Young’s modulus decreases per successive cycles and the damage continues to increase. At
about 30% of the accumulated plastic strain p, the is an extraordinary increase in the damage
that continues to increase up to fracture. This behavior is also seen in our experiments, which
is discussed later in Sec. 4.

This technique can be used to determine any type of damage, but it needs much care for the
measurement of strain because the damage is not uniformly distributed in the volume on which
the strain is measured which is the main limitation of the procedure.

Other non-linearity precautions must also be undertaken. For instance, for ductile or LCF dam-
age in metals, there is a slight decrease in Young’s modulus during the first few cycles. Reversible
movements of dislocations cause microplasticity which is the cause of this non-linearity [18].

Figure 19: Damage measurement utilizing variation of Young’s modulus [18].

2.6.3 Variation of Young’s Modulus by Ultrasonic Waves Propagation

The damage state can also be characterized by the evaluation of variation of Young’s modulus
by measuring the propagation of ultrasonic waves. The speed of a wave is related to a solid
material through its density ρ and elastic properties [18]. Suppose the longitudinal waves in
an isotropic, linear, and elastic cylindrical bar with Poisson’s ratio ν and Young’s modulus E, the
wave speed is given by:

v 2 =
E
ρ

(1− ν)
(1+ ν)(1− 2ν)

. (52)
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When the material is damaged, Young’s modulus decreases with increasing damage, but density
remains the same if the damage consists mainly of microcracks and the Poisson’s ratio also
remains the same if the microcracks are distributed randomly. The wave speed then becomes:

ṽ 2 =
Ẽ
ρ

(1− ν)
(1+ ν)(1− 2ν)

. (53)

The damage then can be calculated as:

D = 1− ṽ 2

v 2
. (54)

This method is a time of flight experiment, i.e., the time of propagation of the waves is measured
for the damage evaluation. The limitation of this method is that it requires the distance covered
by the waves to be large, but due to the localization of the damage, the distance covered is
small. Therefore, for metals, this method may not be accurate enough, but for concretes (Fig.
20), it works accurately with a frequency of 0.1 KHz to 1 MHz. Another limitation is the size,
for metals, because the size of ultrasonic transducers is large in comparison to the specimens
[18].

Figure 20: Evolution of brittle damage in a concrete through ultrasonic waves propagation [18].

28



The following ranges of frequency can be used:

• Metals 1.0 - 50 MHz

• Polymers 1.0 - 5 MHz

• Woods 1.0 - 5 MHz

• Concrete 1.0 - 1 MHz

2.6.4 Variation of Density by Void Volume Fraction

In ductile metals, the damage can be caused by the nucleation and coalescence of microvoids.
These defects can be formed due to the plastic deformation, e.g., by the fracture of inclusions,
by grain boundary sliding or by the decohesion of the interface between the matrix and the
inclusions. Thus, the damage state can be characterized by the void volume fraction f of the
material [32].

Consider an RVE of a material at point P(x) as shown in Fig. 21. Suppose dV , dVo and dVD be
the volume of RVE, the volume of the matrix, and the volume of the microvoids respectively.
The void volume fraction f can be expressed by:

f =
dV − dVo

dV
=

dVD

dV
. (55)

Figure 21: An RVE of a material with microvoids [1].

The direct measurement of the void volume fraction is a complicated task. On the other hand,
it is simple to measure the density because it decreases as the microvoids continue to nucleate
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and coalesce [1]. Therefore, if the density of the damaged and the undamaged material is ρ̃
and ρ respectively, then void volume fraction can be written as:

f =
ρ − ρ̃
ρ

= 1− ρ̃
ρ

or

D = f = 1− ρ̃
ρ

.
(56)

In this work, it is attempted to measure the volume of the defects by first performing Computed
Tomography (CT) and then calculating the volume of defects via VGSTUDIO MAX1 visualization
software.

The main limitation of this method is that it can only be used for the efficient evaluation of
ductile damage. Also, the voids considered in the method are roughly spherical. Therefore, its
application is limited to ductile damage in metals.

2.6.5 Variation of Microhardness

Microhardness is related to the damage state through the softening effect based on the plasticity-
yield criterion (uniaxial state of stress) through the kinetic coupling. It is observed that hardness
of the damaged material decreases with increasing damage. The hardness is defined as the
resistant to plastic deformation induces by mechanical indentation or abrasion. The process of
inserting a diamond indenter in the material where the load F and the projected area S are
measured and express the hardness as:

H =
F
S

. (57)

When the isotropic damage is supposed with the same effect on tension and compression, the
plasticity-yield criterion can be expressed by the effective stress σ, the yield stress σY and the
isotropic hardening stress R as [1]:

��� σ
1− D

���− R−σY = 0 . (58)

From this relation (Eq. (58)), the plastic yield stress in the material can be written as:

σs = (σY + R)(1− D) . (59)

Extensive experimentation and theoretical analysis provide a linear relationship between the
hardness and the plastic yield stress as following [18, 25]:

H = kσs , (60)

1 https://www.volumegraphics.com/en/products/vgstudio-max.html
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where k is the proportionality coefficient.
When the microhardness test is performed on the virgin part of a material where there is no
hardening effect, the hardness is expressed as:

H = kσY . (61)

When the microhardness is performed on the damaged part of the same material where there is
quasi-saturated hardening (R+σY ≈ σu) [24], the hardness is expressed as:

H = kσY , (62)

where σu is the ultimate stress. From Eqs. (61) and (62), the damage state can be determined
as:

D = 1− H̃
H
σY

σu
. (63)

This method to determine damage is as effective as the elasticity method, but the only limitation
is that the internal stresses in this method are not considered which are often distributed in
zones subjected to a high amount of plastic strains and may increase or decrease the damage
[18].

2.6.6 Variation in Electrical Resistance

The damage can also be evaluated as the variation in the electrical resistance of the material
also known as potential drop method. As the effective stress is defined, the effective intensity of
the electrical resistance can also be defined as:

Ĩ =
I

1− D
, (64)

where Ĩ is the intensity which exists in the damaged volume element.
Considering Ohm’s law, the potential difference V is related to the resistivity R for an undamaged
material of length L and area S as:

V = R
L
S

I . (65)

Also, for the damaged material of the same length L and area S, the relation becomes:

Ṽ = R̃
L
S

Ĩ , (66)

where R̃ is the effective resistivity of damaged material due to the change of volume.
For the same intensity I of the current for both undamaged and damaged materials, the damage
may be evaluated as:
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V
Ṽ
=

R
R̃

L/S.I
L/S.I/1− D

D = 1− V
Ṽ

R̃
R

.
(67)

For small values of D, the R̃/R value is close to 1 due to the change of volume [18]. Therefore,
damage is defined as:

D � 1− V
Ṽ

. (68)

2.7 Damage Evolution and Constitutive Equations of Material with Isotropic Damage

In this section, a brief concept of continuum in thermodynamics is presented to derive the
constitutive and damage evolution equations.

2.7.1 Concept of Continuum in Thermodynamics

A thermodynamic system consists of variables which characterize its state. Among these vari-
ables, the variables which specify the current state are called state variables. The state of the
system is said to be in thermodynamic equilibrium, if there is no change in the state variables
with respect to time, while the system is non-equilibrium if the state variables change with re-
spect to time due to the action of some forces. The change brought about by these forces is
called a thermodynamic process. If the change in the state of the system is reversed by reversing
the action of the forces, the process is called reversible, whereas if the change is not reversed,
then the process is called irreversible.

The internal states of a continuum, for example, strain and temperature may differ from one
location to another and change with time, when it experiences the process of deformation [1].
Therefore, it is deducible that the thermodynamic state of a continuum is non-uniform, is in
a non-equilibrium state, and the process is irreversible. However, this non-equilibrium process
cannot be explained by classical thermodynamics. To solve this issue, the principle employed
to discuss the above problem in continuum thermodynamics is the principle of local state [33].
The principle of local state states that in a small element of a material at a given point in a
body, a thermodynamic state of the element at any given time is specified by a set of state
variables. Even if the element is in a non-equilibrium state, the state variables at any time
are specified by the same thermodynamic relations as for the equilibrium condition. Thus, this
hypothesis postulates that a material element in a continuum in an equilibrium state shows a
similar thermodynamic response to the one in the non-equilibrium state.

By using the first and the second law of thermodynamics and the employment of Gauss’ diver-
gence theorem along with Reynold’s transport theorem [1], gives the following relation:

σ : �̇ −ρ(Ψ̇ + Ṫ s)− q .
gradT

T
≥ 0 , (69)
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where q is the heat supplied to the system and Ψ = e− Ts is the Helmholtz free energy. Eq. (69)
is called the Clausius-Duhem inequality which must be satisfied for every process [34]. Besides,
this relation is the base for the thermodynamic constitutive theory for a continuum and puts
vital restrictions on the constitutive equations.

2.7.2 1D Inelastic Constitutive Equations

In materials having a random distribution of the microcracks or the isotropic distribution of the
microvoids, the damage induced can be evaluated as isotropic damage. Also, the damage in the
material even having a specific distribution of the defects can be considered isotropic, if their
size and density are minimal. In this case, the damage can be represented by the scalar damage
variable D.

Consider the uniaxial (tensile) loading of a strain hardening elastic-plastic material as shown in
Fig. 22. The damage D in the material starts when the plastic strain �p reaches to a threshold
plastic strain �p

D and then with increasing �p, the damage D increases. When fracture plastic
strain �p

R is attained, the damage D attains to a critical damage Dcrit value and material starts to
fracture. The damage then can be calculated by using Eq. (51b).

The curve of Fig. 22 from the yield stress point up to the ultimate tensile stress in the strain
hardening region represents strain hardening. The subsequent yield stress, which is required
to induce succeeding plastic strain, increases with the plastic strain �p. The increment in this
subsequent yield stress is the strain hardening. Therefore, it is plausible to express the subse-
quent yield stress as the sum of the actual yield stress σY , isotropic hardening variable R, and
the kinematic hardening variable A. Thus:

σ = σY + R+ A . (70)

By using a yield function f , Eq. (70) can be written as:

f = | σ− A | −R−σY = 0 , (71)

which characterizes the evolution of plastic strain �p in the material as �̇p �= 0, for f =
0 and ḟ = 0 and �̇p = 0, for f < 0 and ḟ < 0.
For a damaged material, by using the hypothesis of strain energy equivalence, the yield function
becomes:

f = | σ̃− A | −R−σY = 0 . (72)

The Eqs. (71) and (72) are called the 1D elastic-plastic constitutive equations and are the base
for the 3D constitutive equations.
The increment of stress accompanies deformation typically, but the viscoplastic deformation
could result from constant stress. For instance, in metallic materials at temperatures above 1/3
of the melting temperature, time-dependent deformation at constant stress can be observed.
This phenomenon of time-dependent irreversible deformation under constant stress is called
viscous deformation [1] and the time-dependent plastic deformation under constant stress is
called viscoplastic deformation.
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Figure 22: Typical stress-strain behavior under tensile loading [35].

Now consider viscoplastic deformation of a metallic material. It is clear that the viscoplastic
deformation starts when the applied stress reaches a threshold (i.e., subsequent yield stress).
Thus, the difference between the applied stress and the threshold can be express as:

σV = σ− (σY + R+ A) , (73)

where σV is the viscous stress. The yield function for the viscoplastic deformation can be ex-
pressed as:

f = | σ− A | −R−σY = σV . (74)

For the damaged material, it can be expressed by replacing the stress σ by the effective stress
σ̃:

f̃ = | σ̃− A | −R−σY = σV . (75)

By employing the Norton law, creep rate or viscous strain rate �̇v can be defined as:

�̇v =
�σV

KV

�n
(76a)

�̇v = ln
�
1− σV

K∞

�−N
, (76b)

where n, KV and N , K∞ are material constants. Also, the viscoplastic constitutive equations of
the damaged material in uniaxial state of stress can be expressed as:
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�̇v p =
� f̃

KV

�n
(77a)

�̇v p = ln
�
1− f̃

K∞

�−N
, (77b)

where Eqs. (76b) and (77b) are the alternative logarithmic laws.

2.7.3 3D Inelastic Constitutive Equations

In this section, by using thermodynamic constitutive theory and the 1D inelastic constitutive
equations, 3D inelastic constitutive equations will be derived. Considering a small deformation,
the total strain � is divided into the elastic �e and the plastic �p part:

� = �e + �p . (78)

According to the principle of local state, a non-equilibrium process in a continuum can be de-
scribed by the process of change in its state variables. In the case of strain hardening in 3D
deformation, the thermodynamic state is described by the strain � and the temperature T . The
scalar damage variable D can be utilized assuming the isotropy of damage. Along with strain and
temperature, strain hardening is accompanied by the associated variables of isotropic hardening
r and kinematic hardening α. Thus, the Helmholtz free energy can be expressed as:

Ψ = Ψ(�e, T, r,α, D) . (79)

Substituting Eqs. (78) and (79) in Clasius-Duhem inequality (Eq. (69)) gives:

�
σ−ρ ∂Ψ

∂ �e

�
: �̇e −ρ
�
s+
∂Ψ

∂ T

�
Ṫ +σ : �̇p −ρ∂Ψ

∂ r
ṙ −ρ∂Ψ

∂ α
α̇−ρ∂Ψ

∂ D
Ḋ− gradT

T
.q ≥ 0 , (80)

which must be satisfied for every thermodynamic process [1]. Now, considering first event of
elastic deformation in a uniform temperature field. As the internal state remains unchanged,
thus:

gradT = 0, �̇p = 0, r = 0, α= 0, and D = 0. (81)

Thus, the Eq. (80) gives:

�
σ−ρ ∂Ψ

∂ �e

�
: �̇e −ρ
�
s+
∂Ψ

∂ T

�
Ṫ ≥ 0 . (82)

For any choice of �̇e and T , this inequality should be satisfied. Implementing this requirement
gives the following state equations:

σ = ρ
∂Ψ

∂ �e
, s = −∂Ψ

∂ T
. (83)
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Using the above relation, Eq. (80) becomes:

σ : �̇p −ρ∂Ψ
∂ r

ṙ −ρ∂Ψ
∂ α

: α̇−ρ∂Ψ
∂ D

Ḋ− gradT
T

.q ≥ 0 . (84)

Now the associated variables with internal variables r, α, D and q can be defined as:

R≡ ρ∂Ψ
∂ r

, A≡ ρ∂Ψ
∂ α

, Y ≡ −ρ∂Ψ
∂ D

, g ≡ −gradT . (85)

Considering Eqs. (84) and (85), the Clausis-Duhem inequality (Eq. (69)) can be rewritten as:

Φ = σ : �̇p − Rṙ − A : α̇+ Y Ḋ+ (g/T ).q ≥ 0 . (86)

Eq. (86) gives the dissipation Φ, where the internal and their associated variables are expressed
as a product. It can be seen that the product contains a generalized force vector and a general-
ized flux vector. As a convention, the force causes the flux. Thus, the generalized force vector X
and the generalized flux vector J in considered case will be:

X ≡ (σ,−R,−A, Y, g/T ) (87a)

J ≡ (�̇p, ṙ, α̇, Ḋ, q) . (87b)

Then, a compact form of the Eq. (86) can be written as:

Φ = X . J ≥ 0 . (88)

A potential distribution function in the case on considered internal and their associated variables
can be defined as:

F(X ) = F(σ, R,A, Y, g/T ;�p, r,α, D, T ) . (89)

According to Rice [36], the evolution equations of the flux vector J can be described as a
function of the force vector F as follows:

J = Λ̇
∂ F
∂ X

, (90)

where Λ̇ is an indeterminate multiplier.
Conclusively, the relations can be deduced from the Eq. (90) as follows:

�̇p = Λ̇
∂ F
∂ σ

, ṙ = −Λ̇∂ F
∂ R

, α̇= −Λ̇∂ F
∂ A

, Ḋ = Λ̇
∂ F
∂ Y

, q = Λ̇
∂ F

∂ (g/T )
. (91)

The dissipation potential function is distributed into potential due to plastic deformation, strain-
hardening and damage. The dissipation potential due to damage is dependent on the strain
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energy release rate Y , the associated variable of isotropic hardening r, and on the damage D
itself [1, 12]. Therefore, the damage dissipation potential can be written as:

F D = F D(Y, r, D) . (92)

Lemaitre [12] formulated the following damage dissipation potential and damage evolution
equation by examining the ductile and brittle damage from micromechanics point of view:

F D =
S

(s+ 1)(1− D)

�
Y
S

�s+1

(93a)

Ḋ = Λ̇
∂ F D

∂ Y
=

�
Y
S

�s
ṗH(p− pD), (93b)

where s and S are material constants, pD is the threshold value for damage initiation, Λ̇ = ṙ =
ṗ(1−D) and H denotes the Heaviside function which means that the evolution equation is valid
when p > pD. Also, the initiation of a crack is assumed to occur when the damage variable D
attains a critical value, i.e., D = Dcrit .
Rest of the evolution and constitutive equations can be expressed as [1]:

�e
i j =

1+ ν
E

σi j

1− D
− ν

E
σkk

1− D
δi j, (94a)

�̇
p
i j =

3
2

σ̃D
i j − AD

i j

(σ̃− A)EQ

1
1− D

Λ̇, (94b)

ṙ = Λ̇ = ṗ(1− D), (94c)

α̇i j = �
p
i j(1− D)− 3

2A∞
AD

i jΛ̇, (94d)

R= R∞(1− exp−br), (94e)

AD
i j =

2
3

A∞cαD
i j, (94f)

where ()D denotes the deviatoric part, ()kk is the trace of a matrix and b & c are constants.

2.7.4 Equations for Isotropic von Mises Plasticity

In service conditions, the components being often utilized must bear complex or multiaxial
loadings. The concept of yielding or yield stress is simple to understand in the uniaxial case, but
for multiaxial loadings, it is not straightforward. Thus, equivalent von Mises stress or equivalent
stress is formulated to model the cumulative effect of multiaxial stresses for yielding. For a
material under multiaxial loading, yielding occurs when stress value is above the equivalent
stress. It is defined as [37]:

σEQ =

��3
2
σD

i jσ
D
i j , (95)
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where σD
i j is a component of the stress deviator tensor, also the called the deviatoric stress tensor

[37]. It is a part of the stress tensor which tends to distort the material. It can be defined as:

σD
i j = σi j −

1
3
σkkδi j, (96)

where the second term on the right-hand side in Eq. (96) is called the hydrostatic stress, which
causes the change in volume of the material, whereas σkk is the trace of the stress tensor. For
uniaxial state of stress, the principal deviatoric stresses are written as [34]:

σD
11 =

2
3
σ11, σD

22 = −
1
3
σ11, σD

33 = −
1
3
σ11 . (97)

Therefore, using Eq. (95) and the values from Eq. (97), it is clear that for uniaxial load-
ing condition, the equivalent stress is equal to the magnitude of the uniaxial stress, i.e.,
σEQ = | σ11 |.
The equivalent plastic strain in this approach is defined as [1]:

p(t) =

� t

0

ṗ(τ) dτ . (98)

Also, the equivalent plastic strain rate can be written as:

ṗ =
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p
i j �̇

p
i j . (99)

For uniaxial state of stress assuming incompressibility, the components of the equivalent plastic
strain rate can be expressed as:
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33 = −

1
2
�̇ . (100)

Thus, using Eq. (99) and the values from Eq. (100), it is plausible that the multi-dimensional
strain reduces to one-dimensional plastic strain rate and thus is equal to the plastic strain rate,
i.e., ṗ = | �̇p |. The equations of this section are later used for the calculation of multi-axial
fatigue damage.

2.7.5 Plastic Strain Threshold for Damage and Strain Energy Release Rate

The threshold value of plastic strain for damage pD of Eq. (93b) is the value of plastic strain
required to initiate the damage and is dependent on the type of loading. For uniaxial loading, its
low or several percents but for multi-axial loading, it can be as high as several hundred percents
[1]. There is no defined method of calculating the value of pD, however, in the case of multi-
axial fatigue damage, Sermage et al. [13] have determined it. The mathematical relation of pD
for fatigue damage initiation is expressed as:

pD = �
p
D

�
σU −σY

σmax
EQ −σY

�ζ
, (101)
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where ζ is a material constant and �p
D is the threshold value of plastic strain in case of pure

tension taken as a reference. Later, Eq. (101) will be modified to model not only fatigue but
also creep damage.

In section 2.7.3, the generalized force vectors which are the cause of generalized flux vectors are
discussed. It is quite clear that the variable Y also called strain energy release rate, is the force
that causes damage as shown in Eq. (85). It is shown as the partial derivative of the Helmholtz
free energy Ψ with respect to the damage D. The Helmholtz free energy of the damaged material
is given as [1]:

ρΨE(�e, D) =
1
2

Ci jkl�
e
i j�

e
kl(1− D), (102)

where ρΨE(�e, D) denotes the elastic strain energy affected by damage. Therefore, the strain
energy release rate then can be deduced by using Eq. (85) as follows:

Y = −ρ∂Ψ
E
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i j�

e
kl . (103)

Understanding the physical significance of the strain energy release rate associated with dam-
age, Chaboche [38] devised a relation for Y , which is expressed as:

Y =
W E

(1− D)
, (104)

where W E is the elastic strain energy per unit volume. It is deducible from Eq. (104) that Y
increases with increases in W E and D. Assuming the case of constant stress, the Eq. (104) is
modified into the following relation:

Y =
1
2

�
∂W E

∂ D

�

σ=const.

. (105)

Observing Eq. (105) implies that Y is the release rate of elastic strain energy due to the damage
development, therefore it is also called strain energy density release rate. Consider a damage
state A as shown in Fig. 23 on a stress-strain curve under tensile loading. To attain a state B,
it is presumed that damage develops by dD under the condition of σ = const. and the elastic
strain rises by d�e. Thus, the triangle �ABC represents the release rate of strain energy Y dD,
which implies that Y is the strain energy release rate due to damage development.
As discussed earlier, the crack initiates when the damage value attains to a critical value. Ac-
cording to this notion, fracture criterion of the damaged material is fulfilled when Y achieves a
critical value, i.e., Y = YC .
Eq. (104) defines Y for uniaxial case. For multiaxial state of stress, Y can be represented in an
alternative form as [1]:

Y =
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�2�
, (106)
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Figure 23: Illustration of strain energy release rate due to damage [1].

where σH/σEQ is the stress triaxiality ratio. It is an essential quantity which determines the
mode of fracture. The higher the value of stress triaxility, the more brittle is the fracture [1].
The term inside the square brackets in Eq. (106) is expressed as:

Rv ≡
2
3
(1+ ν) + 3(1− 2ν)

�
σH

σEQ

�2
, (107)

and is called the stress triaxiality function.

2.8 Multiaxial Fatigue Damage Model

Sermage et al. [13] suggested that the elastic-plastic constitutive and evolution equations that
were proposed by Lemaitre [12] under the assumption of the hypothesis of strain equivalence
can also be employed to model the multiaxial fatigue damage. He also showed that uncoupled
analysis can provide fairly good results. On the other hand, fully coupled analysis take much
time and computation but the results are much better.

For the evolution of fatigue damage, the evolution equations as mentioned in Sec. 2.7.3 are
utilized in this model.

Ḋ =

�
Y
S

�s
ṗ i f p > pD ,

Ḋ = 0 i f p < pD ,

(108)

where pD is the threshold value of the accumulated plastic strain for damage. In the case of
uniaxial test, pD = �

p
D. Moreover, damage initiates when damage value attains a critical value,

i.e., D = Dcrit .
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The values calculated for pD through Eq. (101) has notable difference than the measured values
from the experiment. To get rid of this irregularity, the rate of the stored energy in the material
is supposed as:

Ẇs = (σEQ −σY ) ṗ . (109)

The value dWs/dp becomes neglible as p increases. Thus, Eq. (109) can be improved as:

Ẇs = (σEQ −σY )
�

p
D

�
p
D + pD

ṗ . (110)

Integrating above equation from p = 0 to p = pD and assuming the maximum value of σEQ for
the deformation. Therefore:

Ws = (σ
max
EQ −σY )�

p
D ln

�
�

p
D + pD

�
p
D

�
. (111)

Considering the simple case of uniaxial (tensile) loading, Eq. (111) becomes:

(Ws)T = (σU −σY )�
p
D ln2 . (112)

Considering the fact that the stored energy for damage initiation for the uniaxial and the multi-
axial cases must be same. Therefore, the threshold for damage initiation is:

pD = �
p
D

�
ex p

�
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�
− 1

�
, (113)

where �p
D is the damage threshold in pure tension.
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3 Experiment

To collect the basic data for modeling of the creep-fatigue damage, the specimens were subjected
to strain-controlled LCF without hold-times and with hold-times in tension and compression at
temperatures 300 ◦C, 400 ◦C, 425 ◦C, 500 ◦C, 550 ◦C, 600 ◦C, and 625 ◦C respectively. At each
temperature, experiments have been performed at the same strain rate but with different strain
ranges.

3.1 Materials

The materials utilized for experiments are cast steel with German grade GX12CrMoVNbN9-
1 and 30CrMoNiV5-11 respectively. Material properties, such as chemical composition,
room temperature properties, and other structural information are taken from [39, 40].
GX12CrMoVNbN9-1 has a typical martensitic microstructure with ferritic sub-grains, whereas
30CrMoNiV5-11 has a ferritic-bainitic microstructure. These materials are identified in this re-
port with the prefixes "BDD" and "BAP" respectively, in the testing program of the Institute of
Materials Technology (MPA / IfW), Technische Universität Darmstadt. The provision of these
materials are carried out by the industries, such as Siemens, Alstom and MAN & Turbo SE.
Chemical composition and the material properties at room temperature of GX12CrMoVNbN9-1
(BDD) are shown in Tables 3 and 4.

Table 3: Chemical composition of GX12CrMoVNbN9-1 (BDD).
C Cr Mo B Ni V Nb N
0.12 8.90 1.00 0.0004 0.26 0.20 0.061 0.049
Mn Si P S Cu Ti Al Sn
0.48 0.36 0.011 0.002 0.05 0.014 0.012 0.007

Table 4: Room temperature mechanical properties of of GX12CrMoVNbN9-1 (BDD).
Rp0.2 (MPa) Rm (MPa) A (%) Z (%) Hardness (HV30) Av (ISO-V) (J)
523 678 20.9 59.6 219 82

Chemical composition and the material properties at room temperature of 30CrMoNiV5-11
(BAP) are shown in Tables 5 and 6.

Table 5: Chemical composition of 30CrMoNiV5-11 (BAP).
C Si Mn P S Al N Cr Cu
0.29 0.09 0.74 0.007 0.002 0.005 0.041 1.3 0.14
Mo Nb Ni Ti V Sb Sn H2 As
1.02 0.001 0.66 0.0002 0.292 0.0023 0.008 0.00011 0.0116

Table 6: Room temperature mechanical properties of 30CrMoNiV5-11 (BAP).
Rp0.2 (MPa) Rm (MPa) A (%) Z (%) Hardness (HV30) Av (ISO-V) (J)
604 736 20 69 237 -

Other information, such as heat treatment and the microstructure of the materials can be found
in [39, 40].
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3.2 Experimental Technique

In the experiments, round specimens are used for both the materials BDD and BAP respectively.
Samples utilized for experiments can be seen in Fig. 24. Table 7 shows the geometry of the used
sample types.

Table 7: Geometry and specimen type of the samples.
Specimen Type Sample Diamter (mm) Length (mm)
Type-38a BDD 7.9 ± 0.05 15.5 ± 0.05
Type-37a BAP 10.00 ± 0.05 19.95 ± 0.05

The tests are carried out at the Institute of Materials Technology (MPA / IfW), Technische Uni-
versität Darmstadt. Infrared-radiation furnaces or Three-zone induction furnaces are used to
achieve desired temperatures. Temperature measurement is carried out by utilizing high-quality
PtRh-Pt-Thermocouples (Type S) according to DIN 43710. The thermocouples are calibrated by
an in-house calibration system.

(a) BDD sample.

(b) BAP sample.

Figure 24: Samples utilized for LCF experiments.

LCF experiments are carried out according to ISO 12106 employing servo-hydraulic testing
machines, which are either equipped with Infrared-radiation furnace or three-zone induction
furnace. The straining of the samples is measured by an extensometer with ceramic based
meauring rods on the cylindrical part of the sample. The strain rate �̇ for the experiments
without hold-time is 6%/min. Also, for the experiments with hold-time the strain rate for the
ramp-up is 6%/min. For the subsequent evolution of damage, the number of cycles to crack
initiation NA is evaluated by using 5% load-drop criterion. At each temperature, different strain
ranges Δ� are employed for both cycles types. A typical strain-controlled cycle without hold-
time and with hold-time in tension and compression is shown in Fig. 25.
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(a) Strain-controlled cycle without hold-time. (b) Strain-controlled cycle with hold-time in tension
and compression.

Figure 25: Cycle types used for default LCF experiments.

3.2.1 Determination of Young’s Modulus

As cyclic data is acquired after the LCF experiments, Young’s modulus is not acquired directly,
which is essential for the evaluation of the damage and the strain energy release rate. A self-
made approach is employed to determine Young’s modulus as shown in Fig. 26. A tangent is
drawn from the 97.5% of the maximum strain to the 87.5% of the maximum strain in tension of
the hysteresis loop. Therefore, the slope of the tangent is determined, which is Young’s modulus
of the sample. This approach is used for all of the experiments and shows good results even for
service-type cycles.

3.2.2 Damage Measurement

As mention in Sec. 2.6.2, the damage can be modeled as the variation of Young’s Modulus,
due to the reduction in stiffness with the development of damage. Young’s Modulus for every
loop is calculated by the approach mentioned in the previous section. Therefore, the damage is
measured by using Eq. (51b). Fig. 27 depicts the measurement of damage.
The measured damage determined initially has an increase and is then constant nearly to the
NA5%. As mentioned in Sec. 2.6.2, the initial decrease in Young’s modulus or increase in the
damage is not truly damage [18], which will be further discussed in the results section (Sec.
4.3). Therefore, a tangent is drawn from 30% of NA5% to 85% of NA5% and the difference be-
tween the damage and the tangent is calculated and re-plotted to get actual measured damage.
Dcrit is calculated by subtracting the value of damage on the fitted line (dotted black line) from
the value of measured damage (blue line) on NA5%.

3.3 Computation

Computational analysis of the raw data has been performed, where the constitutive equations
are solved to compute damage and accumulated plastic strain over time. It is the main part of
the experimentation, which provided major results. Raw data is received from testing machines
in either Comma Separated Value (CSV) files or Data (DAT) files, which is then converted to
Extended Markup Language (XML) file through an in-house developed software called wiLDCAT.
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Figure 26: Young’s Modulus determination of sample BDD3d1.

(a) Initial plot. (b) Corrected Plot.

Figure 27: Determination of the damage.

As the data values are collected after an interval of 25 or 50 cycles and not every cycle, wiLDCAT
also provides the ability to interpolate the missing cycles. Due to this interpolation, it is then
possible to calculate the damage evolution for each cycle.

3.3.1 Optimization

Optimization (minimization) of the damage evolution Eq. (108) is performed by using the
Nelder-Mead and the BFGS algorithm [14, 15]. This algorithm minimizes a provided function
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for several parameters and returns the value which yields a minimum value of a function. In our
case, the distance between the critical damage value and the computed damage value (Dcrit −
Dcomp)2 is minimized for the material parameters s and S respectively. The time required for
the minimization depends on the amount of data from the experiment and step size used in
the iteration for the solution of damage evolution equation. As the number of experiments and
their data is high, for efficiency multiple jobs are submitted simultaneously on different cores of
the private server of the Institute of Materials Technology (MPA / IfW), Technische Universität
Darmstadt.

The optimization is carried out by using GNU Scientific Library2 (GSL). SciPy3 was first em-
ployed, but it was observed that some of the experiments containing huge amounts of exper-
imental data were taking too long to be optimized. For instance, BDD3d1 is optimized in 2
seconds using GSL, while with SciPy the optimization took approximately 300 seconds which is
around 15000% more.

3.3.2 Damage Evolution

The damage evolution equation is an Ordinary Differential Equation (ODE), which is solved by
using the Runge-Kutta Method of fourth-order (RK4) [41] by using a step size of 0.5 seconds
and setting the initial damage value to zero. Individual values of the material parameters s
and S for respective samples are utilized for the damage evolution. Like the optimization,
these computations are also carried out on the in-house server. For accurate calculation, the
threshold value of accumulated plastic strain pD is determined by plotting the measured damage
using Eq. (51b) over the calculated accumulated plastic strain p through Eq. (98) using RK4.
From the plot, pD is determined and then the condition p > pD is included in the damage
evolution computation. The strain energy release rate Y is calculated at every time point using
Eq. (108). Equations for isotropic von Mises plasticity (Sec. 2.7.4) are used for the calculating
the hydrostatic, deviatoric and equivalent stresses.

3.4 Computed Tomography

Computed Tomography (CT) is also performed in the laboratory of the Institute of Materials
Technology (MPA / IfW), Technische Universität Darmstadt. CT uses a combination of X-ray
measurements of a specimen from different angles to generate a virtual cross-sectional image,
which enables one to examine a specimen internally without damaging or cutting. CT data can
then directly be imported into analysis and 3D visualization software for examination.

The idea behind to use the CT scans in this work is to calculate the volume of the defects
in specimen after LCF experiments and to determine damage. CT data is visualized by using
VGSTUDIO MAX, which is then directly analyzed. The software is equipped with defect analysis
tool to determine the area, volume and number of defects.

2 https://www.gnu.org/software/gsl/doc/html/index.html
3 https://www.scipy.org/
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4 Results and Discussion

Let us elaborate the whole process in view of Fig. 28. Before the experimentation, the obser-
vation was that the damage depended on the state variables, even on the strain energy density
[2–7]. The question arose that whether it is possible to have a damage definition which fulfills
certain properties like in-dependency on stress, strain, and Temperature? Also, in-dependency
of the damage threshold on the triaxiality of stress. The prediction was made under the concept
of CDM for a definition that could fulfill these conditions. Detailed experimentation was per-
formed as mentioned in the previous section. In this section, the results of the experimentation
are discussed.

Observation

Question?

Hypothesis

Prediction

Experiment

Results

Theory

Reject Hypothesis

Figure 28: The flow chart of the scientific method.

4.1 Experimental Data

The test conditions for every sample is translated through wiLDCAT and further utilized for
computation. Crack positions are observed through a light microscope, and the damage is
measured as described previously. Tables 8, 9, and 10 show the test conditions and the results
of BDD samples without and with hold-time respectively. Some Dcrit values are missing in the
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tables because of missing value in the raw data due to some abnormality as discussed in Sec.
4.3.

Table 8: LCF experiment test conditions and results of BDD samples without hold-time.
Sample T (◦C) �̇ (%/min) Δ� (%) Crack position (-) Dcrit (-)
BDD3d1 300 6 1 inside 0.0871
BDD3d2 300 6 0.5 inside 0.0695
BDD3d3 300 6 0.35 inside 0.0636
BDD425d1 425 6 1 inside 0.0568
BDD425d2 425 6 0.55 inside 0.0511
BDD425d4 425 6 1 inside -
BDD5d1 500 6 2 inside 0.0328
BDD5d2 500 6 1 inside 0.0342
BDD5d3 500 6 0.5 inside 0.0871
BDD5d4 500 6 0.35 inside 0.1186
BDD5d5 500 6 0.29 inside 0.0925
BDD5d6 500 6 1 inside 0.3489
BDD55d1 550 6 1.2 outside -
BDD55d2 550 6 0.55 inside 0.0556
BDD55d3 550 6 0.35 inside 0.0139
BDD55d4 550 6 1 inside 0.0555
BDD6d1 600 6 2 inside 0.0172
BDD6d2 600 6 1 inside 0.0939
BDD6d3 600 6 0.55 inside 0.094
BDD6d4 600 6 0.35 inside 0.0979
BDD6d5 600 6 0.29 inside 0.0732
BDD6d6 600 6 0.55 inside 0.0756
BDD6d7 600 6 0.55 inside 0.0889
BDD6d10 600 6 0.55 inside 0.0919
BDD6d11 600 6 0.55 inside 0.0948
BDD6d12 600 6 0.55 inside 0.0584
BDD6d22 600 6 1 inside 0.0506
BDD625d1 625 6 1 inside 0.059
BDD625d2 625 6 0.55 inside 0.0504
BDD625d3 625 6 0.35 inside 0.1095
BDD625d4 625 6 1 inside 0.0789
BDD625d5 625 6 0.55 inside 0.0504

As described in Sec. 2.5.2.1 that D = 1 means the fracture of the material, but usually, this
value is less than 1, which can also be observed in Table 8. This is due to the instability caused
by the sudden decohesion of atoms [18, 24]. Damage progresses approximately smooth until
it encounters the critical damage value Dcrit . When the Dcrit is reached, CDM is considered as
not valid anymore. Fracture mechanics should be used after the crack is initiated. The crack
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position of the sample is discussed in relation to the variation of Young’s modulus in one of the
following chapters (Sec. 4.3).

Table 9: LCF experiment test conditions and results of BDD samples with hold-time
Sample T (◦C) �̇ (%/min) Δ� (%) tHZ/tHD (min) Crack position (-) Dcrit (-)
BDD3dh1 300 6 1 3/3 inside 0.0605
BDD3dh2 300 6 0.55 3/3 inside 0.0137
BDD5dh1 500 6 1 3/3 inside 0.1146
BDD5dh2 500 6 0.55 3/3 inside -
BDD5dh3 500 6 0.55 3/3 inside -
BDD5dh4 500 6 0.55 3/3 inside -
BDD5dh5 500 6 0.35 3/3 outside 0.0915
BDD5dh14 500 6 0.55 10/10 inside 0.0637
BDD6dh1 600 6 0.35 3/3 inside 0.0109
BDD6dh2 600 6 0.55 3/3 outside -
BDD6dh3 600 6 0.55 3/3 inside 0.0302
BDD6dh4 600 6 0.55 10/10 inside 0.0595
BDD6dh5 600 6 1 10/10 inside -
BDD6dh6 600 6 0.35 10/10 inside 0.057
BDD6dh7 600 6 0.55 10/10 inside 0.0694
BDD6dh10 600 6 1 3/3 inside 0.0556
BDD6dh11 600 6 1 3/3 inside 0.1172
BDD6dh12 600 6 0.35 3/3 outside -
BDD6dh13 600 6 0.55 3/3 inside 0.1165
BDD6dh14 600 6 0.55 3/3 inside 0.0496
BDD6dh15 600 6 0.53 10/10 inside -
BDD6dh19 600 6 1 4.5/8.5 inside -
BDD6dh20 600 6 1 4.5/8.5 inside 0.0567
BDD625dh2 625 6 0.55 3/3 inside 0.141

Table 10: LCF experiment test conditions and results of BAP samples without hold-time.
Sample T (◦C) �̇ (%/min) Δ� (%) Crack position (-) Dcrit (-)
BAP5d1 500 6 1 inside 0.1917
BAP5d2 500 6 0.67 inside -
BAP5d3 500 6 0.5 inside 0.0472
BAP5d4 500 6 0.41 inside 0.1379
BAP525d1 525 6 0.73 inside -
BAP525d2 525 6 0.53 inside 0.0185
BAP525d3 525 6 0.47 inside -
BAP525d4 525 6 0.4 inside -
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4.1.1 Critical Damage

As shown in Fig. 26, Dcrit value is measured, firstly, by plotting the linear fit of the number of
cycles from 35% to 85%, below which there exists no damage. Secondly, the damage value on
the fitted line at NA5% is subtracted from the measured damage value at NA5%. Thus, Dcrit is
acquired. This procedure is performed for all of the experiments. Fig. 29 shows the linear fit
of the critical damage Dcrit value of all BDD samples at different temperatures. The observed
value of Dcrit is 0.075, which is further utilized as a reference value for optimizing the material
parameter S.

Figure 29: Linear fit of the critical damage of all BDD samples at different temperatures.

It can be observed from Fig 29 that Dcrit is scattered over the plot. Therefore, a linear fit is
drawn to show the average value of Dcrit over different range of temperatures. The linear fit
has almost a slope of zero and thus, we can say that the Dcrit of BDD is almost same over
different ranges of temperature. Also, only one value which seem to be very high compared to
others (0.35 at 500 ◦C) is of BDD5d6, which is due to some irregularity in the sample’s behavior
which will be discussed in Section 4.3. Fig. 30 shows the Dcrit value over different strain ranges.

Again, it can be seen from Fig. 30 that there is no trend observed in the value of Dcrit with the
strain range. Also, the linear fit shows minimal slope and the average value is 0.075. Therefore,
it is claimed that Dcrit is a material property, independent of temperature and stress-triaxiality.

4.2 LCF Behavior

4.2.1 Hysteresis Loop

Fig. 31 shows the comparison of the hysteresis loops of samples without and with hold-time at
300 ◦C and 600 ◦C. All of these samples have been deformed at a strain range Δ� = 1%.
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Figure 30: Linear fit of the critical damage of all BDD samples at different strain ranges.

The hysteresis behavior of BDD3d1 and BDD3dh1 is almost same apart from the hold-time. The
stress and strain response is almost the same. Similar is the case for BDD6d2 and BDD6dh10.
Considering BDD3d1 and BDD6d2 or BDD3dh1 and BDD6dh10, the difference is the amount
of stress required to produce approximately similar strain. The stress required for samples at
600 ◦C is around 35% less, which can be due to the enhanced movement of dislocations at
high temperatures [42] due to the thermal activation. Less stress, therefore, is needed for the
movement of dislocations leading to decrease in the flow stress.

4.2.2 Load-Drop Curves

Fig. 32 shows the comparison of the load-drop curves (with normalized stress) of samples
without and with hold-time at 300 ◦C and 600 ◦C. All of these samples have been deformed at a
strain range Δ� = 1%.

The number of cycles to crack initiation NA5% at a load drop of 5% obtained for BDD3d1 and
BDD3dh1 are different, with NA5% of BDD3dh1 being lower. The reason is that BDD3d1 is
deformed at a constant cycle whereas BDD3dh1 is deformed at a cycle with holds in tension
and compression both, which clearly reduces the lifetime. In Cr-Mo steels, slight hardening
followed by softening of the material is observed at moderate temperatures and low strain rates
[43], which probably reduces the number of cycles to crack initiation and ultimately the number
of cycles to failure.

On the other hand, NA5% for BDD6d2 and BDD6dh10 has similar behavior to each other, but
in comparison to BDD3d1 and BDD3dh2, NA5% is reduced even more because of the high tem-
perature. At high temperatures and low strain rates for Cr-Mo steels, continuous softening is
observed [43], which is the reason for the sample breaking at less number of cycles.
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(a) BDD3d1 (b) BDD3dh1

(c) BDD6d2 (d) BDD6dh10

Figure 31: Hysteresis loop of samples without and with hold-times at 300 ◦C and 600 ◦C.

4.2.3 Damage Threshold

The damage threshold pD in the utilized damage model is criteria for damage to have a value or
not. Therefore, its determination is necessary for implementing the model itself. The accumu-
lated plastic strain p is calculated using Eq. (98). Fig. 33 shows the determination of damage
threshold by plotting the measured damage over number of cycles.

Measured damage is calculated by using Eq. (51b) and is then interpolated over number of
cycles and finally plotted against accumulated plastic strain p. It is clear from Fig. 33 that there
is a sudden increment at about a value of p = 13.5 and afterwards it continues to shoot. So
it can be easily concluded, that 13.5 is the value for the sample at which a crack continues to
grow until fracture. Therefore, it is called the damage threshold. Tables A1, A2, and A3 show
the value of pD determined for BDD and BAP samples without hold-time and BDD samples with
hold-time.
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(a) BDD3d1 (b) BDD3dh1

(c) BDD6d2 (d) BDD6dh10

Figure 32: Load-Drop curves (with normalized stress) of samples without and with hold-times at
300 ◦C and 600 ◦C.

Figure 34 shows the damage threshold values of BDD samples without hold-time at different
temperatures. A clear dependence of pD can be seen on the strain range Δ�. It can be seen
that with increasing Δ�, the pD value tends to decrease. The lowest being 3 for 2% Δ� and the
highest being 60 for 0.29% Δ�. However, for same Δ�, the pD value for different temperatures
does not vary greatly except for the 0.29% Δ�. There is no regular trend for values increasing
with increasing temperature at the same Δ�.

Figure 35 shows the damage threshold values of BDD samples with hold-time at different tem-
peratures. In this case also, the general trend shows decrease of pD with increasing strain
range. Also, the values of pD are in the similar range for similar Δ�. Apart from the points at
1%Δ�, there seems a variation of points from 0.55% and 0.35%Δ�. Therefore, hold-times and
temperature seem to have no or little effect on pD, but Δ� does have an effect.
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Figure 33: Determination of pD for BDD3d1.

Figure 34: Damage threshold of BDD samples without hold-time for different temperatures.

4.2.4 Plastic Hysteresis Energy Density

Fig. 36 shows the comparison of the plastic hysteresis energy density of samples without and
with hold-time at 300 ◦C and 600 ◦C. All of these samples have been deformed at a strain range
Δ� = 1%.
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Figure 35: Damage threshold of BDD samples with hold-time for different temperatures.

The plastic hysteresis energy per cycle is the area of the hysteresis loop [44] and does not vary
a great deal with cycles for strain-controlled tests. It can be observed from Fig. 36 that at the
same temperature, more energy is stored in the samples with hold-time. It can also be verified
from Fig. 31, that hysteresis loop of the samples with hold-time has a larger area than that of the
samples without hold-time. However, for samples at the higher temperature, the energy density
is lower compared to the samples at the lower temperature. Also, their overall accumulated
density is lower than the samples at the lower temperature, which can be due to the lower
value of stress required to deform the samples at the higher temperature. Moreover, samples at
600 ◦C, tends to deform at a rate slightly faster than at 300 ◦C. An initial drop can be observed
in the samples at 600 ◦C, which is due to the reduction of stiffness (Fig. 38c and 38d). However,
the sharp decrease in BDD3dh1 is due to an interpolation error.

4.2.5 Strain Energy Release Rate

Fig. 37 shows the comparison of the strain energy release rate Y of samples without and with
hold-time at 300 ◦C and 600 ◦C. All of these samples have been deformed at a strain range
Δ� = 1%. For plotting, the strain is interpolated over time first and then plotted against Y .

Starting from the centre, the strain energy release rate Y increases in tension up to the maxi-
mum strain and starts to decrease with stress relaxation. It again increases in compression up
to the minimum strain and the cycle goes on. It can be observed from Fig. 37 that Y is similar
in behavior to the plastic hysteresis energy density. It is slightly higher in magnitude in tension
and compression with hold-time than the samples without hold-time at both high and low tem-
peratures. Again, it can be verified from the hysteresis loops in Fig. 31. Moreover, samples at a
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(a) BDD3d1 (b) BDD3dh1

(c) BDD6d2 (d) BDD6dh10

Figure 36: Plastic hysteresis energy density of samples without and with hold-times.

higher temperature have a lower value of Y as compared to the samples at a lower temperature.
Therefore, Y increases slightly with hold-time and decreases with increase in temperature.

4.3 Evaluation of Young’s Modulus

Fig. 38 shows the comparison of the damage and Young’s modulus of samples without and
with hold-time at 300 ◦C and 600 ◦C. All of these samples have been deformed at a strain range
Δ� = 1%.

The damage has been measured by the technique described in Sec. 2.6.2. As shown in Fig. 38,
Young’s modulus decreases as the damage develops in the material in all four cases. Unlike the
sample at the lower temperature, the samples at higher temperature show an initial decrease of
Young’s modulus and then normal slight decreasing behavior. According to Lemaitre [24], the
initial decrease is due to the reversible movement of the dislocations and texture development.
Therefore, it is not considered damage. Moreover, materials being deformed at elevated tem-
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(a) BDD3d1 (b) BDD3dh1

(c) BDD6d2 (d) BDD6dh10

Figure 37: Strain energy release rate of samples without and with hold-times.

peratures experience dynamic re-crystallization due to which they can experience an initial loss
of strength [45]. Dynamic re-crystallization can also occur during creep. For BDD6dh10 (with
hold-time), the initial drop of Young’s modulus is larger than BDD6d2 (without hold-time). It
could be possible due to dynamic re-crystallization during creep.

4.3.1 Crack Position

As mentioned in the previous section, Young’s modulus decreases as the damage develops in
subsequent cycles. However, some of the samples showed abnormal behavior that the Young’s
modulus increases and damage decreases over the number of cycles. Fig. 39 shows Young’s
modulus over number of cycles for BDD6dh12.

As shown in Fig. 39, the decrease in Young’s modulus of the samples was observed. In the
case of BDD6dh12 and BDD6dh14, Young’s modulus started to increase from the beginning till
the end of the cycles. For BDD625dh2 and BDD5dh1, there is a sudden increase of Young’s
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(a) BDD3d1 (b) BDD3dh1

(c) BDD6d2 (d) BDD6dh10

Figure 38: Damage and Young’s modulus of samples without and with hold-times.

modulus and a decrease of damage in the very beginning. When examined by the naked eye,
it was revealed that the crack in these samples was initiated outside of the gauge marks of the
extensometer or exactly on the gauge marks. Tables 8, 9, and 10 at the pages 48 and 49 list
the crack position for samples. Figs. A1, A2, A3, and A4 show the crack position of the samples
BDD6dh12, BDD6dh14, BDD625dh2, and BDD5dh1 respectively. For some samples, the cracks
were found inside the gauge marks of the extensometer but shown some fluctuations of Young’s
modulus. One example, BDD5d6, is shown in Fig. 40.

It can be observed from Fig. 40 that Young’s modulus after being regular for half of the cycles
suddenly decreased sharply and increased at the end. The sudden decrease and then increase at
the end could be due to some irregularity or defect on the microstructural level. It also could be
possible due to some machine error, because when the raw data for BDD5d6 was examined, it
was seen that the data recorded for the cycle (where Young’s modulus increases suddenly) was
wrong or missing.
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(a) BDD6dh12 (b) BDD6dh14

(c) BDD625dh2 (d) BDD5dh1

Figure 39: Irregular behavior of Young’s modulus.

4.4 Optimization Results

Optimization of the material parameter S is carried out using the Nelder-Mead and the BFGS
[15, 41] algorithm, and the results are shown in Tables A4, A5, and A6 respectively. Initial
guess for the value of S is 2. Results, which are included in this report, are attained by using
the Nelder-Mead algorithm. Initially, SciPy was used, but the computation took too long. To get
rid of the long computation time, GSL was utilized, and only one parameter S was optimized.
The other material parameter, s, was kept at a constant value of 2.1, taken as a reference from
[13]. Tables A4, A5, and A6 also suggest that the S value in the employed model is almost same
for experiments with hold-time and without hold-time at the same temperature. Therefore, the
current model is only dependent on the pD value, where S has no influence.
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Figure 40: Irregular behavior of Young’s Modulus of BDD5d6.

4.4.1 Temperature Dependence

Fig. 41 shows the optimized value of material parameter S, with s = 2.1 over different tem-
peratures. It is clearly observable that S has a strong dependence on temperature with highest
value of 2.85 at 300 ◦C and lowest value of 0.6 at 600 ◦C. S decreases with the increase in
temperature.
Table 11 shows mean values of S and its standard deviation. For 300 ◦C, the standard devi-
ation is not reasonable because of BDD3dh2. It has increasing Young’s modulus behavior as
mentioned in Sec. 4.3.1, but without its value, the standard deviation of 300 ◦C is below 20%.
Other than that, overall standard deviation is less.

Table 11:Mean values and standard deviations of S over different temperatures.
Temperature (◦C) Mean of S (-) Standard Deviation (%)
300 2.61 54
425 1.99 2.5
500 1.66 12
550 1.16 28
600 0.85 18
625 0.77 11

4.4.2 Strain Range Dependence

Fig. 42 shows the optimized value of material parameter S, with s = 2.1 over different strain
ranges. It can be observed that there is no explicit dependence of S on the strain range. Samples
at similar temperature, show approximately same value over different strain ranges and no
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Figure 41: Optimized parameter S versus temperature.

increase or decrease in a trend is noticeable with increasing strain range. Again, for 300 ◦C, one
value of S is high due to its increasing value of Young’s modulus.

Figure 42: Optimized parameter S versus strain range.
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4.4.3 Comparison of Measured and Computed Damage

Optimization of the material parameter S is carried out one more time when pD is determined
by inducing the condition p > pD in the damage evolution equation. Therefore, S is minimized
again for the function (Dcrit − Dcomp)2.

After acquiring the parameters, the evolution equations are solved by using RK4 method [41].
Strains and stresses of all cycles are interpolated over time, and the accumulated plastic strain
p and the damage D are computed over time. Fig. 43 shows p over time of BDD3d1 for first
cycle, which increases continuously as the time increases.

Figure 43: Accumulated plastic strain p over time of BDD3d1.

Fig. 44 shows the comparison of the computed damage of samples without and with hold-time
at 300 ◦C and 600 ◦C. All of these samples have been deformed at a strain range Δ� = 1%.
Computed and measured damage shown in Fig. 44 is calculated till the NA10%.
As shown in Fig. 44, it can be seen that the applied damage model does not predict the final
damage values accurately, but it is somewhat close to the measured damage. However, the
relative error between the NA5% is quite reasonable in comparison, which is shown in Table 12.
NA5% is calculated at D = 0.075.

The difference between the measured and predicted values is in the range of 4-10%. As dis-
cussed previously (Sec. 4.4), the current model provides approximately same values of S for
experiment with and without hold-time for similar temperatures. At the same time, the pre-
dicted values of experiments with hold-time are as reasonable as for the experiments without
hold-time. Therefore, it might be possible that the samples deformed with hold-time, contains
minimal creep.
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(a) BDD3d1 (S = 1.330 and pD = 13.5). (b) BDD3dh1 (S = 1.382 and pD = 11.5).

(c) BDD6d2 (S = 0.428 and pD = 11). (d) BDD6dh10 (S = 0.399 and pD = 13).

Figure 44: Computed and measured damage of samples without and with hold-times.

Table 12: Relative error between the measured and predicted values of NA5%.
Sample Relative error (%)
BDD3d1 -9.17
BDD3dh1 -3.89
BDD6d2 -3.97
BDD6dh10 -4.06

63



4.5 Lifetime Prediction

To predict the lifetime of the components, S and pD from experiments without hold-time are
selected and used to compute the damage for experiments with hold-time. Therefore, S = 1.211
and pD = 12.5 of BDD3d1 is used to evaluate the damage of BDD3dh1 and the S = 0.428 and
pD = 11 of BDD6d2 is used to evaluate the damage of BDD6dh10 respectively, as shown in Fig.
45.

(a) BDD3dh1 (S = 1.330 and pD = 13.5). (b) BDD6dh10 (S = 0.428 and pD = 11).

Figure 45: Lifetime prediction by using S value of experiment without hold-time.

It can be observed that for BDD3dh1, the predicted damage value is lower than the measured
damage value, but for BDD6dh10 the damage value is larger than the measured damage. How-
ever, the predicted NA5% for BDD3dh1 is quite reasonable than for BDD6dh10. It is clear from
this result that the behavior of the predicted damage and the NA5% value are totally dependept
on pD in this model. This also means that if the difference in real and used pD is less, the predic-
tion will be more accurate. Thus, if pD is same so the predicted NA5% will be almost similar as
S is similar. Furthermore, it could be possible that the sample considered for damage evolution
contains less amount of creep as the hold-time is just 3 minutes in tension and compression per
cycle.

Data for one experiment with a service-type cycle, BDD6b1, were also received and the lifetime
prediction for it is also performed using the S and pD from BDD6d2. Resulting predicted value
has an error of 15.9%. Table 13 shows the relative error between measured and predicted
values.

Table 13: Relative error between the measured and predicted values of NA5%.
Sample Relative error (%)
BDD3dh1 4.61
BDD6dh10 -16.66
BDD6b1 15.91
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Fig. 46 shows the damage evolution of first cycle of BDD6d2 and BDD6dh10 without the condi-
tion of p > pD.

(a) BDD6d2 stress cycle. (b) BDD6d2 damage evolution.

(c) BDD6dh10 stress cycle. (d) BDD6dh10 damage evolution.

Figure 46: Stress over time and damage evolution of the first cycle.

For BDD6d2, it can be seen from Fig. 46a and 46b that the damage evolves smoothly with
increasing stress cycle. Even-though when stress is decreasing, the rate of increase in damage is
almost zero, but again starts to increase when the stress is maximum in compression.

For BDD6dh12, the situation is not the same. As shown in Fig. 46c and 46d, with increasing
stress the damage increases exponentially and during the hold-time in tension, it increases very
minimally. Afterwards, when stress increases in compression, then again a huge rise in damage
can be seen. Again, during hold-time in compression, the damage increases slightly. Out of the
two, BDD6dh10 acquired more damage than BDD6d2. Therefore, it can be concluded from the
result that more damage is acquired in cycle with hold-time than without hold-time, which is
the reason for early failure of BDD6dh10.
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4.6 Computed Tomography Results

Computed tomography (CT) of two samples BDD625d2 and BDD6dh14 was performed. The CT
scans were analyzed using the VGSTUDIO MAX analysis and visualization software to calculate
the volume of defects and to measure damage by the use of its defect detection tool. The
software is equipped with various algorithms, which were employed to detect defects. Figure
47 shows top view (planar-cut) of BDD625d2 sample .

Figure 47: Top view of the planar cut of BDD625d2

It can be seen in Fig. 47 that using the defect analysis tool, the defect on the right side of
the picture is detected, but at the same time a clear defect of the left side is undetected. The
problem was seen in multiple pictures where the software was able to detect some defects but
some not. Therefore, the approach is not suitable to calculate the volume of the defects.

Another approach, which could be beneficial, is to calculate the surface area and radius of
defects by employing gray analysis. Gray analysis uses the concept of difference between the
coloration of an area with its background. As cracks and voids are separation of the mate-
rial, they are displayed dark and be easily differentiated. Our coworkers4 are working on gray
analysis which is shown in Fig. 48.

Fig. 48 shows gray analysis and its result. Both the defects in the scan below are detected ef-
fectively, and their size and radius are also shown. This is much better than the results obtained
from defect detection tool of VGSTUDIO MAX. One limitation of this method is that cracks and
voids are 3D, where volume is needed to be calculated and not the surface area. However, this
technique could be extended to calculate volumes of defects.

4.7 Microstructural Evaluation

Microstructural analysis has been performed for the samples employed with service-type cycles.
No microsctructures were available for BDD samples. Therefore, BDD6b1 with a service-type
4 Institute of Materials Technology (MPA/IfW), Technische Universität Darmstadt
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(a) Defect detection (b) Surface area over radius of defects

Figure 48: Gray analysis of CT scan.

cycle at a strain range of 1% is used thereafter for analysis. Fig. 49 show the CT scan of the
area where the cracks lie.

Figure 49: CT scan of BDD6b1 zoomed at the area where cracks lie.

As shown in Fig. 49, the two cracks on the top left-side look like fatigue cracks, as they grow
transverse to the applied loading in a transgranular way [46]. Also, slight branches can be seen.
On the left-hand side, a large crack can be seen which looks like to have been formed by the
mechanism of creep involved with fatigue. As BDD6b1 is deformed at a service-type cycle, there
exists high chance of time-dependent deformation. The presence of creep can change the path
of a crack generated on the surface to be intergranular [46]. Also, branching of the crack can be
seen at the tip. Thus, it can be understood as a creep-fatigue crack. It can also be compared to
Fig. 8, where different modes of damage are shown, where creep initiates at grain boundaries
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and the fatigue cracks follows their direction. Microstructure of the large crack is shown in Fig.
50.

Figure 50:Microstructure of the longest crack in the sample.

Plastic deformation at high temperatures imposes the risk of oxidation at the material surface
or even at the grains [47].The dark area along the crack shown by an arrow on the right side in
Fig. 50 possibly indicates the oxidation of the grain boundaries, which is also a time-dependent
phenomenon.
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5 Conclusion

In conclusion, experimental data of strain-controlled LCF experiments without and with hold-
time in tension and compression performed on high-chromium steels were received. A phe-
nomenological damage definition is selected under the concept of CDM, which defines a dam-
age threshold in terms of accumulated plastic strain for damage initiation. Furthermore, RK4
method [41] is employed for solving the damage evolution equations. Material parameter S of
the damage evolution equation is minimized using the Nelder-Mead [14] and the BFGS algo-
rithm [15]. Moreover, multiaxial fatigue damage evolution model [13] is utilized for evaluating
damage, which is based on the strain energy equivalence hypothesis. Also, lifetime prediction
is performed using the material parameter from experiments without hold-time for experiments
with hold-time.

A method to determine critical value for damage initiation is shown, where Dcrit for BDD sam-
ples is found out to be 0.075. It is also shown that Dcrit is independent of temperature and
stress-triaxiality. For BAP samples, the data is not enough to draw statistical conclusion. More-
over, a method to obtain true damage from measured damage (which according to literature
[18] is not damage) is shown. Damage threshold pD for damage initiation is calculated for
every experiment. It is shown that pD is dependent on strain range Δ� and decreases with in-
creasing Δ�. Also, pD has no dependence on temperature. Furthermore, irregular behavior of
Young’s modulus is discussed regarding the crack position. It is shown that irregular behavior of
Young’s modulus is due to the initiation of crack outside the gauge marks of the extensometer.

Optimization of material parameter S is performed and it is shown that S depends on tem-
perature where it decreases with increasing temperature. Also, it is independent of Δ� and
shows approximately similar values. Furthermore, lifetime prediction is performed using the
the constants from experiments without hold-time for experiments with hold-time at 300 ◦C and
600 ◦C. The resulting predicted values are reasonable with an error as high as 16.6%, even for
experiments with a service-type cycle, and it is plausible to say that pD is the main parameter
which controls the predicted value as damage is directly dependent to it.

Therefore, the main drawback of the used model [13] is the dependence of damage on pD
which is not satisfied according to our desired damage definition (Sec. 2.1). For coping up
this dependence, a damage model based on total energy equivalence hypothesis as proposed by
Saanouni et al. [30] should be employed as to avoid any dependence on the internal variable.
Grammenoudis et al. [48, 49] have proposed damage models for isotropic and anisotropic
material response employing the hypothesis of energy equivalence which can be utilized in
future for the damage evolution.
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Appendix: Tables

Table A1: Damage threshold values of BDD samples without hold-time.
Sample pD (-) Δ� (%) Temperature (◦C)
BDD3d1 13.5 1 300
BDD3d2 15 0.5 300
BDD3d3 22 0.35 300
BDD425d1 6 1 425
BDD425d2 13 0.55 425
BDD425d4 7 1 425
BDD5d1 3 2 500
BDD5d2 9 1 500
BDD5d3 12 0.5 500
BDD5d4 12 0.35 500
BDD5d5 48 0.29 500
BDD5d6 6 1 500
BDD55d2 11 0.55 550
BDD55d3 15 0.35 550
BDD55d4 11 1 550
BDD6d1 8 2 600
BDD6d2 11 1 600
BDD6d3 11 0.55 600
BDD6d4 25 0.35 600
BDD6d5 60 0.29 600
BDD6d6 15 0.55 600
BDD6d7 12.5 0.55 600
BDD6d10 10 0.55 600
BDD6d11 13 0.55 600
BDD6d12 11 0.55 600
BDD6d22 9 1 600
BDD625d1 13 1 625
BDD625d2 15 0.55 625
BDD625d3 20 0.35 625
BDD625d4 14 1 625
BDD625d5 15 0.55 625
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Table A2: Damage threshold values of BDD samples with hold-time.
Sample pD (-) Δ� (%) Temperature (◦C)
BDD3dh1 11.5 1 300
BDD3dh2 22 0.55 300
BDD5dh1 7 1 500
BDD5dh4 13 0.55 500
BDD5dh5 115 0.35 500
BDD5dh14 20 0.55 500
BDD6dh1 12 0.35 600
BDD625dh2 12 0.55 625
BDD6dh3 10 0.55 600
BDD6dh4 15 0.55 600
BDD6dh7 21 0.55 600
BDD6dh10 13 1 600
BDD6dh11 10 1 600
BDD6dh12 28 0.35 600
BDD6dh13 6 0.55 600
BDD6dh14 44 0.55 600
BDD6dh20 10 1 600

Table A3: Damage threshold values of BAP samples without hold-time.
Sample pD (-) Δ� (%) Temperature (◦C)
BAP5d1 8 1 500
BAP5d2 12 0.67 500
BAP5d3 13 0.5 500
BAP5d4 80 0.41 500
BAP525d2 12 0.53 525
BAP525d3 20 0.47 525
BAP525d4 40 0.4 525
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Table A4: Optimization values of S for BDD samples without hold-time.
Sample s (-) S (-) Iterations (-) Δ� (%) T (◦C)
BDD3d1 2.1 2.842674255 19 1 300
BDD3d2 2.1 2.256248474 20 0.5 300
BDD3d3 2.1 1.866687775 20 0.35 300
BDD425d1 2.1 1.991920471 20 1 425
BDD425d2 2.1 1.964761734 20 0.55 425
BDD425d4 2.1 2.01644516 20 1 425
BDD5d1 2.1 1.620910645 21 2 500
BDD5d2 2.1 1.848520279 21 1 500
BDD5d3 2.1 1.550920486 21 0.5 500
BDD5d4 2.1 1.121984482 21 0.35 500
BDD5d5 2.1 1.573701859 21 0.29 500
BDD5d6 2.1 1.608503342 21 1 500
BDD55d2 2.1 1.14834404 21 0.55 550
BDD55d3 2.1 0.8852519989 21 0.35 550
BDD55d4 2.1 1.450567245 21 1 550
BDD6d1 2.1 1.189390182 21 2 600
BDD6d2 2.1 0.9947891235 21 1 600
BDD6d3 2.1 0.7121143341 23 0.55 600
BDD6d4 2.1 0.8135757446 22 0.35 600
BDD6d5 2.1 0.9749450684 21 0.29 600
BDD6d6 2.1 0.9290122986 22 0.55 600
BDD6d7 2.1 0.8204860687 22 0.55 600
BDD6d10 2.1 0.7252540588 22 0.55 600
BDD6d11 2.1 0.7341117859 22 0.55 600
BDD6d12 2.1 0.7048568726 22 0.55 600
BDD6d22 2.1 0.6005783081 22 1 600
BDD625d1 2.1 0.89868927 22 1 625
BDD625d2 2.1 0.710603714 22 0.55 625
BDD625d3 2.1 0.628490448 22 0.35 625
BDD625d4 2.1 0.8905887604 22 1 625
BDD625d5 2.1 0.7544403076 22 0.55 625
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Table A5: Optimization values of S for BDD samples with hold-time.
Sample s S Iterations Strain range Temperature
BDD3dh1 2.1 2.855342865 20 1 300
BDD3dh2 2.1 3.241504669 19 0.55 300
BDD5dh1 2.1 5.969799042 26 1 500
BDD5dh4 2.1 1.621753693 21 0.55 500
BDD5dh5 2.1 11.86532974 30 0.35 500
BDD5dh14 2.1 1.837278366 21 0.55 500
BDD6dh1 2.1 0.6192741394 22 0.35 600
BDD6dh3 2.1 0.7953472137 22 0.55 600
BDD6dh4 2.1 0.8131904602 22 0.55 600
BDD6dh5 2.1 0.0843849182 26 1 600
BDD6dh7 2.1 0.8378105164 22 0.55 600
BDD6dh10 2.1 1.005462646 21 1 600
BDD6dh11 2.1 5.830366135 26 1 600
BDD6dh13 2.1 4.49552536 27 0.55 600
BDD6dh14 2.1 4.810113907 25 0.55 600
BDD6dh20 2.1 1.284843445 22 1 600
BDD625dh2 2.1 8.239284515 28 0.55 625

Table A6: Optimization values of S for BAP samples without hold-time.
Sample s S Iterations strainRange Temperature
BAP525d1 2.1 0.0718841553 25 1 500
BAP525d2 2.1 1.626523972 21 0.67 500
BAP525d3 2.1 2.037824631 20 0.5 500
BAP525d4 2.1 2.377592087 19 0.41 500
BAP55d1 2.1 1.511554718 21 0.67 550
BAP55d4 2.1 1.52466774 21 0.4 550
BAP5d1 2.1 2.394842148 19 0.73 525
BAP5d2 2.1 2.127727509 20 0.53 525
BAP5d3 2.1 2.043897629 20 0.47 525
BAP5d4 2.1 3.456260681 19 0.4 525
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Appendix: Figures

Figure A1: Crack position of BDD6dh12.

(a) Front.

(b) Back.

Figure A2: Gauge marks and crack position of BDD6dh14.
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(a) Front.

(b) Back.

Figure A3: Gauge marks and crack position of BDD625dh2.

(a) Front.

(b) Back.

Figure A4: Gauge marks and crack position of BDD5dh1.
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