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Zusammenfassung

Behandelt wird das Problem der Quellendetektion mit Hilfe von Sensorgruppen bei
ungleichformiger Verteilung der Rauschleistung auf die Sensoren. Derartiges kann
bei verschiedenen Anwendungen wie Funkiibertragungen, Radar, Sonar oder in der
biomedizinischen Technik beobachtet werden. Das dargestellte Problem ist in der
Theorie eindeutig 16sbar, abgesehen von dem Fall eines gekoppelten Arrays. Dieser
Fall ist in der Praxis jedoch unbedeutend. Die Schitzung der Anzahl der Quel-
lensignale ist aquivalent zur Bestimmung der Dimension des Signal-unterraumes.
Unter Betrachtung des idealen Falles mit gleichmafBiger Verteilung der Rauschleis-
tung tiber alle Sensoren wird der Effekt der Modellstérung auf die Qualitdt der
Signalraumschatzung untersucht und es werden praktische Limi-tierungen in der
Trennbarkeit zwischen Signal- und Rauschunterraum identifiziert. Basierend auf
dieser Analyse und unter Annahme einer normalformigen  Rauschdichte wird ein
sequentieller Hypothesentest vorgeschlagen, wobei die a-symptotische Wahrschein-
lichkeitsdichte der Teststatistik hergeleitet wird. Die Teststatistik resultiert aus
einer Transformation des Arrays und Anwendung des Gerschgorin-Theorems. Im
Falle von nicht-normalférmigem Rauschen oder bei ungeniigenden Kenntnissen iiber
die statistische Verteilung der Daten wird das Bootstrap-Verfahren zur empirischen
Schitzung der Verteilung verwendet. Dieser Ansatz wurde erfolgreich auf Mess-
daten aus einem Kernkraftwerk angewandt. Basierend auf der Giite der Schatzung
des Signalunterraumes werden verschiedene Informationskriterien vorgeschlagen und
deren asymptotische Leistung sowohl analytisch als auch durch Simulationen unter-
sucht. Unter der Annahme, dass ein Kriterium zur Quellendetektion zur Verfiigung
steht, wird das Problem der Parameterschatzung in ungleichformigem Rauschen
untersucht und ein modi-fizierter approximativer Maximum-Likelihood-Schéatzer fir

gaufiverteilte Signale angewandt. Simulationsbeispiele illustrieren die Charakteris-



ii

tiken, Vorteile und Limitierungen der vorgestellten Methoden und vergleichen sie zu

bereits exis-tierenden.



Abstract

We address the problem of source detection in array signal processing when the
noise over the sensors does not have a uniform power. Such spatial nonunifor-
mity is observed in several applications including communications, radar, sonar and
biomedical engineering. The problem of interest is theoretically non-identifiable,
however, the only case of non-identifiability is very unrealistic in practical coupled
arrays. Estimation of the number of sources is equivalent to the determination
of the dimension of the signal subspace. Considering the ideal uniform scenario,
we evaluate the effect of noise-power perturbation on the quality of the estimated
signal subspace and identify practical limits to the separability between the noise
and signal subspaces. Based on this analysis, under the Gaussian-data scenario,
we propose a sequential hypothesis test for source detection, deriving an expression
for the asymptotic distribution of the proposed test statistics. The latter follows
from a transformation of the array and Gerschgorin’s theorem. When the data are
assumed non-Gaussian, or when no sufficient prior knowledge of the distribution of
the data is available, we propose to employ the bootstrap to empirically estimate
the distributions of interest. To support the approach, we use a set of real data
from a nuclear power plant. Based on the same measure of quality of the estimated
signal subspace, we also propose a set of information theoretic criteria and analyze
their asymptotic performance both analytically and through simulation. Given a
criterion for source detection is available, we investigate the problem of parameter
estimation in nonuniform noise and apply a modified approximate maximum likeli-
hood estimator in the stochastic Gaussian case. Simulation examples are provided
to illustrate the characteristics, advantages and limitations of the different methods,

and compare them to existing methods.
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Chapter 1
Introduction

Source localization using an array of sensors has always been at the core of signal
processing research [51, 91, 92, 99]. Localization often translates to the estimation
of directions of arrival (DOA) and/or other related quantities characterizing the
source signals from a parametric model [12, 107]. A prerequisite condition for correct
localization is that the number of sources is known with enough accuracy prior to
parameter estimation [99, 106, 108]. Applications of both source number estimation
or source detection and DOA estimation include wireless communications, radar,
sonar, biomedical engineering and seismic exploration [29, 47, 99, 108, 121].

Source detection employs model order selection techniques. Several detection
schemes with a number of variants have been proposed and analyzed in the literature,
ranging from hypothesis testing [17, 27, 37, 112, 120] to information theoretic criteria
[1, 60, 80, 106, 113].

DOA estimation algorithms can be classified into two families. The first family
corresponds to spectral-based methods, including beamforming [51, 99] and subspace
separation techniques [24, 83, 104]. The second family encompasses parametric
methods, i.e., maximum likelihood (ML) techniques [13, 42, 53, 65, 91].

The major classic detection and estimation techniques are reviewed in more detail
in the sequel.

Fundamental detection and estimation methods rely on the key assumption that
the background noise is spatially uniform, i.e., the noise powers are assumed to be
identical over all array sensors. However, in many applications, where the array

structure and the noise environment remain unknown or change slowly with time
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[55, 74], the assumption of spatial uniformity of the background noise is not neces-
sarily valid. Typical practical cases where spatial nonuniformity is observed include
magneto-encephalography systems with a large number of sensors [47|, sparse ar-
rays with prevailing external noise and hardware non-idealities in receiving channels
(34, 69, 97, 103].

If the noise powers are different from one sensor to another, performance of the
standard detection and estimation methods can degrade dramatically due to the
induced model mismatch. Similarly, methods designed for colored noise cannot be
expected to yield satisfactory performance because they ignore important a priori
information on the structure of the noise samples. In addition, these methods often
deal with the detection or estimation problem following a case-by-case approach
and result in a considerable computation effort, restricting them to pure theoretical

analysis.

Several attempts were made to generalize the detection schemes to cases where
the noise covariance matrix is not an identity matrix. Hypothesis tests were pro-
posed in [37, 89] for the case of spatially correlated noise under the assumption
that the noise covariance matrix has a band structure. The approach in [37] can
be extended to nonuniform noise but can use half of the available sensors at most,
thus making it a very restrictive approach. An information criterion was proposed
based on Gerschgorin’s theorem to increase the robustness against model mismatch.
However, similarly to the other classical approaches, the method fails to correctly de-
tect the sources in nonuniform noise because it incorporates the erroneously ordered

eigenvalues of the data covariance matrix.

For estimation under the uniform noise scenario, the latter key assumption is
inherent to many useful simplifications, leading to a reduction of the dimension of
the unknown parameter space, as well as the resulting computational load [36, 76].
Few methods have been proposed to specifically deal with the spatial nonuniformity
of the noise. A DOA estimator based on the deterministic ML, was proposed in
[76], leading to a non-convex optimization problem. It is important to mention that
while the nonuniform ML of [76] provides accurate estimates at a relatively high
computational cost, simplifications based on subspace methods, or specific high-
resolution methods are not available, as no suitable subspace criterion has been

proposed for nonuniform noise.
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1.1 Aims and Objectives

Taking into account the limitations of classical detectors in nonuniform noise, we
address in this work the problem of estimating the dimension and parameters of the
signal subspace without using the erroneously ordered eigenvalues of the covariance
matrix of the data. It is important to stress that the assumption of spatially white
noise is maintained.

Throughout the analysis, we emphasize the applicability of the proposed solu-
tions. We therefore favor computation-efficient and implementable approaches over
iterative and case-specific strategies inspired from scenarios with colored noise. We
also support the most general proposed detection scheme by a test involving real
data.

More particularly, we propose to perform the following:

e Analyze the effect of noise-power perturbation on the quality of the estimated

signal subspace,

e develop simple detection algorithms to estimate the dimension of the signal

subspace, with a practical accuracy,

e analyze the performance of the proposed detectors and extend the approach

to wider distributions,

e upon correctly detecting the number of sources, investigate parameter estima-

tion in nonuniform noise.

The steps followed in our work can be summarized by the diagram of Figure 1.1.

1.2 Contributions

The major contributions of this work are:

e A hypothesis test relying on a measure of the estimated subspace quality (ESQ)
for source detection, based on the discriminating property of the transformed
Gerschgorin radii. This detector follows from an array transformation and
is considerably more robust to noise-power variation than classical detectors,

while being simple to implement.
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A nonuniform version of information theoretic criteria for source detection,

following the same Gerschgorin radii approach and an exclusion of the explicit

contribution of the sample eigenvalues.

e Robust bootstrap versions of the above ESQ hypothesis test, suitable for a

wide range of data distributions.

e An approximate stochastic ML estimator of the DOAs in nonuniform noise,

for a specific array configuration.

e An extension of the estimation approach to the two-dimensional (2D) case,

through the example of joint DOA-Doppler frequency estimation.

Analyze noise nonuniformity effects

f

Evaluate signal s/space quality

f

Define new s/space separation metric

Yes ¢ No
oo Distribution known?

Analyze and test

case by case

Gaussian data?

Define test statistic(s)

f

Empirically estimate

distribution (bootstrap)

Chapter 3

Define test statistic(s)

f

Derive asymptotic

distribution - analytically|

Derive expression of

LL function

f

f

f

Hypothesis test (ESQ)

Add penalty function(s) 3

Information criteria

_Chapter6 i e (NU-MDL - NU-AIC)
| Hypothesis test (ESQ) R
‘L ,,,,,,,,,, ¢ ,,,,,,,,,,,
3 Obtain estimated number of sources ;
: ‘ |
: { f |
Chapter 7 ‘ '
,,,,, p, S | = signal par s (NU-MUSIC) Estimate signal parameters (NU-AML) |:

Figure 1.1: Summarized steps of the undertaken research work.
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1.3 Outline

The dissertation is organized as follows:

Chapter 2: The basic assumptions that frame the considered data model, and an
overview of the principal detection and estimation techniques in uniform noise are

presented.

Chapter 3: The effect of spatial nonuniformity of the noise is described and the
problem of separating the signal and noise subspaces is formulated. In particular,
the statistical properties of the different metrics are outlined and the limitations of

the subspace separation approach are taken into account.

Chapter 4: Following the analysis of the previous chapter, the ESQ hypothesis

test is derived and its performance is assessed through simulation examples.

Chapter 5: Alternatively, a set of nonuniform detection criteria are derived and
their performance is analyzed both analytically and through simulation examples,

highlighting their superiority over classical approaches.

Chapter 6: An alternative formulation of the ESQ test using the bootstrap is pre-
sented. In particular a multiple hypotheses test (MHT) is applied to real data to
illustrate the validity of the approach in practice, irrespective of the particular data

distribution.

Chapter 7: DOA estimation in nonuniform noise is investigated in this chapter and
the proposed estimator is compared to existing techniques through simulations. The
principle behind the approach, namely the linear expansion of the noise covariance

matrix, is also employed in the 2D case illustrated in Appendix A.

While concluding remarks and perspectives are summarized in Chapter 8, the

various proofs and detailed derivations are left to Appendix B.



Chapter 2

Data Model and Problem

Formulation

2.1 Sensor Array Model

In what follows, we focus on the sensor array at the receiver, regardless of the nature
of the emitter such as its technology, configuration or physical nature.

We restrict ourselves to the case of a finite number of point sources emitting
signals which are either physically independent in space, or a result of the propa-
gation via distinct paths of the signal emanating from a single source. The sources
are assumed to be located in the far field. This assumption permits a reasonable
modeling of source propagation by plane waves, therefore simplifying its parameter-
ization. Additionally, for simplicity and without loss of generality, we assume that
the sources are coplanar. This assumption simplifies the array spatial response to a
parameterization in the 2D case at most.

We also restrict our analysis to the narrowband (NB) assumption on the signals.
Equivalently, we assume that the array aperture (i.e., its physical size measured
in signal wavelengths) is significantly smaller than the inverse relative signal band-
width. The assumption of NB signals essentially implies that the array spatial
response to an impinging signal is constant and does not vary with time. From
a system representation point of view, the array response is modeled as a linear
instantaneous mixture of the received signals.

Without noise, for a source signal s(¢) impinging on an array composed of M
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sensors arranged in a given geometry, the M-dimensional array output vector is
given by
x(t) := as(t) (2.1)

where a := [ay,...,ay|" is the array steering vector, and (-)7 denotes matrix trans-
pose. If p signals impinge on an M-sensor array, the noise-free output vector at

instant ¢ follows from superposition as
p
(1) ==Y ags,(t) (2.2)
qg=1

where a, denotes the array response vector to the g-th baseband' signal waveform

se(t), forg=1,...,p.

In matrix form, the array output of (2.2) can be rewritten as
x(t) = As(t) (2.3)
where the array steering matrix and the vector of signal waveforms are defined as
A = [a,...,a (2.4)
and

s(t) = [si(t),....s,()]T (2.5)

respectively.
In the presence of additive noise, represented by vector n(t), the model commonly

used in array processing is obtained as
x(t) = As(t) + n(t). (2.6)

If the number of sources p is unknown a priori, we propose to estimate it, i.e.,
detect the sources. For the problem of detection, the functional form of the array
response vector a is not of importance. However, the response to distinct sources
must materialize in linearly independent steering vectors a,, ¢ = 1,...,p, resulting

in a full column-rank steering matrix A.

'In practice, the carrier frequency of the signal is normally dropped before further processing.
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With a known number of sources p, we are interested in localizing the different
sources in space. This localization is usually performed parametrically by identifying
the DOA of each signal. DOA estimation requires an explicit parameterization of
the data model. Thus, the model (2.6) becomes

x(t) = A(0)s(t) +n(t) (2.7)
where
A(0) = [a(by),...,a(b,)] (2.8)
and the vector of DOAs of each received signal is given by
0=1[0,,...,0,] . (2.9)

The uniform linear array (ULA) configuration is an example widely employed
in array signal processing [51, 99]. When the uniform separation between the array
elements equals half the received wavelength, the functional form of the M-element
ULA steering vector in terms of a DOA 0, satisfies a Vandermonde structure, and

is simplified to

a(e) _ [1’e—j7rcos(9) e—j(]\/[—l)frcos(e)] ) (210)

g ey

Note that a source signal can be associated with a number of characteristic
parameters, such as a time-difference of arrival (TDOA), or a DOA in elevation
and in azimuth for general 2-D configurations. For simplicity, the analysis to follow
is restricted to the case of a single parameter 6, although extension to multiple
parameters per source is straightforward [51] (see Appendix A).

The knowledge of the array manifold is capital in evaluating the array’s operation
limits, both for source detection and DOA estimation [49]. A quantitative assess-
ment of the shape and orientation of the array manifold provides a measure of its
effect on the array’s operation. This assessment, which is part of the array calibra-
tion in practice, can be accomplished effectively through a study of the manifold’s
differential geometry [64]. For instance, it was shown in [64] that the detection and
resolution capabilities of a ULA are a function of the rate of change of the arc length
and the first curvature of the array manifold curve (given by the functional form

of the spatial response vector a(@)). It is worth mentioning that array calibration
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is an important and tedious practical operation. In our work, we assume that the
array manifold is known with enough accuracy and that the limits on the spatial
resolution of the array are known.

In practice, the sensor output is appropriately pre-processed and sampled at a
given rate. The signal samples are collected at time instants ¢ = 1,..., L. For
conciseness, we use the same notation, x(t), t = 1,..., L, to denote a sample from

a multi-channel random process, and for the generating model (2.7).

Source 2 Source 3
" Source 4

’
’
/
/
’,
/
/
, h
’ L
‘ .

Source 1 ,
\ 02 o
' 94/’
\\\\ 9 ‘\\ — (/////

’
i
S

VA

Sensor array

Figure 2.1: Example of an arbitrary array receiving direct waves from distinct sources,
located in the far-field at DOAs 04, ¢ =1,...,p.

2.2 Assumptions

For both source detection and DOA estimation, the linear system described by (2.7)

must be over-determined, i.e., the condition on the number of sources is p < M.
The signal parameters of interest are spatial in nature and thus require the cross-

covariance information among the various sensors, i.e., the spatial covariance matrix,

which is given by

R = E{x(t)x"(t)} (2.11)
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where F(-) denotes expectation and (-)# stands for Hermitian transpose.

The source signals are assumed to be spatially independent. Unless otherwise
stated, the source samples are modeled in the time domain as unknown random pro-
cesses. They are independent and identically distributed (iid), and have covariance

matrix Rg with the following diagonal structure:
R, = E{s(t)s"(t)}
- diag{afl,..‘,az } (2.12)

Sp
with qu being the power of the g-th source signal.
The additive noise is modeled as discrete interference sources over each sensor,
and is independent of the sources. Its samples are independent from one sensor to
another, and temporally white, with the same distribution, i.e., iid. The noise is

assumed to satisfy the following:
FE {n(tl)nH(tg)} = Q5t1t2; E {l’lT<t1)l’l(t2)} = 0. (213)

In the general case of spatial independence, the noise covariance matrix Q has a

diagonal structure, as follows:

Q = E{n(t)n”(t)}

= diag(q) (2.14)
with
= [o? 21" 2.15
q:= [Ula"'aajw] ( )
where 02, is the noise power at the m-th sensor, m =1,..., M.

Taking into account (2.13) and (2.14), the data covariance matrix (2.11) can

rewritten as

R = A(0)R,A7(0) + Q. (2.16)

2.3 Signal and Noise Subspaces

The eigen-decomposition of matrix R is given by

M

H

R = E Am€me,
m=1

= EAE”" (2.17)
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with
A =diag{\1,..., \u} (2.18)

and
E :=ley,...,eu| (2.19)
where A\, and e,,, m = 1,..., M, are the eigenvalues of R and their corresponding

eigenvectors, respectively.

Examining (2.16), one can see that in the noise-free case, the array output is
fully confined to a p-dimensional subspace of the complex M-dimensional space,
CM | which is spanned by the steering vectors, i.e., the columns of A(8). In such a

case, the M — p smallest eigenvalues are all equal to zero. We then have [44]
span {A(6)} = span {Eg} (2.20)

where span {A} is the range space of the columns of A, and Eg denotes the matrix
formed by the column concatenation of the signal subspace eigenvectors, correspond-
ing to the non-zero eigenvalues. Determining the basis Eg with enough precision con-
stitutes a solution to most detection and parametric estimation problems in array

processing.

If the power of the noise over all the sensors is the same, the noise covariance
matrix defined by (2.14) reduces to an identity matrix (up to a scalar), i.e., Q = o1,
where 02 = 02 = ... = 02,. The set of eigenvalues (ordered by magnitude), or
simply eigenspectrum, are thus scaled up by the addition of the noise floor 2. This
assumption of uniform noise provides a convenient means to distinguish between the
signal and noise subspaces. If it is not verified, all classical detection and estimation

algorithms fail to perform satisfactorily .

2.4 Overview of Source Detection in Uniform Noise

Source detection is a fundamental problem in many areas of signal processing. It is

a prerequisite step for other processing such as source estimation.
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3 Signal subspace

€2

ATrTay manifold

Figure 2.2: Geometric representation of the signal subspace in the case of an array of
M = 3 sensors receiving p = 2 sources from directions. Note here that the signal subspace

is spanned by eigenvectors e; and es.

Under the assumptions of Section 2.2 and considering that the noise is spatially

uniform, the data covariance matrix R can be rewritten as
R = ARA" 4 0’1 (2.21)
From (2.14)-(2.16) and (2.21), it follows that
M> .. >N > =...= Ay =0° (2.22)
and
span {A} = span {Eg} = span{e;,...,e,}. (2.23)

Equation (2.22), indicates that the number of sources p can be determined from
the multiplicity of the smallest eigenvalue of R.
In practice, due to the finite number of samples L, we use f{, the sample covari-

ance matrix of the data x(t), t =1,..., L, which is defined by

A 1
R =

all

3 x(t)x (2). (2.24)
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and is a consistent estimator for R.

The M —p smallest eigenvalues of R which are denoted S\m, m=p+1...,M, are
with probability one, not equal. However, it is shown that these M — p eigenvalues
concentrate around ¢ with deviation O(1/+/L) [114].

The covariance matrix R is parameterized by the vector of unknowns, n,,, defined
as

n, = [Al,_._,Ap,U2,e{,... eT]T. (2.25)

7P

The problem of model selection can be formulated as follows: Given the param-
eter space H, consider a partition of H corresponding to mutually disjoint p-order
model subsets. The problem is to find a criterion to decide, based only on the obser-
vations x(t), t = 1,..., L, to which subset H, the parameter n, belongs [33, 114].

With the data samples rewritten in matrix form as
X =[x(1),...,x(L)] (2.26)

the ML estimate of the parameter n,, is defined as

7y = arg max - f(X|n,) (2.27)
where
f(Xn,) =[] Fx®)In,) (2.28)

is the probability density function (pdf) of the data samples X, given the parameters
s

Source enumeration rests on model selection techniques [99, 120]. These detec-
tion methods range from hypothesis testing [17, 27, 112, 113] to information theoretic
criteria [1, 33, 80, 106, 116].

2.4.1 Hypothesis Tests
Eigenvalue-Equality and the Sphericity Test

In [7] and [54], the problem of source detection is tackled using a sequential hy-

pothesis test (SHT). For this sequence of nested hypotheses, test statistics must be
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adequately defined. The usual assumption of Gaussian data leads to variants of a

statistic 7, based on the ratio of the geometric mean, gq(ﬁ\), to the arithmetic mean,

A~

M,(N), of the M — ¢ smallest sample eigenvalues (corresponding to the candidate

noise subspace), i.e.,

" M o 1/(M7q)
A Hm: )‘m
_ 9 :< "“M> — g=1,...,M—1. (2.29)
M,(N) Mg 2

M—q m=q+1 7'M

7, :

The test’s threshold can be set according to the Neyman-Pearson criterion [99]
given a significance level a. This procedure requires knowledge of the distribution
of the test statistics under the global null. The exact form of the distribution
of 7, is not available in a useful form since it is generally written as an infinite
expansion in terms of basic distributions [66]. It is shown in [16, 112], from the
general theory of likelihood ratio (LR) tests, that it is possible to employ asymptotic
approximations leading to a x? distribution with AM? — 1 degrees of freedom. This
however, is only valid for a large L and if all of the eigenvalues of R are tested for
equality simultaneously. As the number of eigenvalues is reduced gradually through
the sequences of the SHT, the distribution of the statistics 7, complies with the
approximations only at a very high SNR [112]. Further investigation led to Liggett’s
variant of the test statistic [61], defined as

20M —q)*+1
T,=-2((L—1)—q— In(7,), =1,..M—1 (230
=2 (-0 - 20 ), -t (2:30

For a large L, the statistic 7} is asymptotically y?-distributed with (M —q)* —1
degrees of freedom. Other variants of test statistics based on 7, have been investi-
gated to improve the performance of the tests, especially by taking into account the
influence of the ¢ larger eigenvalues (corresponding to the candidate signal subspace)

on the distribution of the smaller eigenvalues being tested for equality [112, 117].

Predicted Eigen-Threshold

Recalling that the sample eigenvalues, 5\1, e A a, are all different with probability
one, contrary to the true eigenvalues of R, Chen et al. [27] proposed a modified
hypothesis test. The method addresses the behavior of the sample eigenvalues, which

can be described by the asymptotic joint distribution of the normalized eigenvalues,
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as well as by their marginal distributions [27]. These marginal distributions are
shown to be concentrated over certain regions, suggesting the definition of an upper
and a lower threshold. The latter is defined as the predicted eigen-threshold and is
distinct from previously used thresholds in that it is not fixed but is a function of

the eigenvalue under consideration.

Bootstrap-based Detection

The sphericity test and the predicted eigen-threshold test rely on the assumption
of Gaussian data and large samples. If Gaussianity cannot be justified or if only a
small sample is available, the pdf of 7, in (2.29) cannot be determined exactly. The
structure of 7, is well motivated and relevant in non-Gaussian scenarios. However,
the performance of the SHT can be erratic [17]. To tackle the problem of an unknown
data distribution, alternative test statistics made of all possible pairwise differences

among the sample eigenvalues were introduced in [17] as follows:
Tagy, = N — Ay, i=q+1,...,M—1 j=i+1,...,M.  (231)

Testing simultaneously all pairs results in a MHT which relies on Holm’s sequen-
tial rejective Bonferroni (SRB) procedure [45].

Since the distribution of the test statistics is not always analytically tractable,
the bootstrap [31, 121] is used successfully to approximate it [17].

A possible bias in the multiple sample eigenvalues can alter the assumption
that the noise eigenvalues have equal means. To correct the bias in the estimated
eigenvalues, a number of methods were introduced in [17]. Of special interest are

the distribution-free techniques based on the bootstrap or the Jackknife [31, 120].

2.4.2 Information Theoretic Criteria

AIC and MDL

The general idea of information theoretic criteria is based on two major principles.
First, following the LR theory, the criterion seeks to minimize the distance (or
a measure of resemblance) between two probability functions, i.e., between two
models. A representative criterion of this principle is Akaike’s Information Criterion

(AIC) [1]. Second, the criterion minimizes the length of coding of a data sample
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generated by a candidate model, and at the same time, introduces a penalty for
possibly using a more complex model [59]. The Minimum Description Length (MDL)
[80] is a well known criterion of this type.

Formulation of information criteria can be summarized as follows: Given a family
of pdfs f(X]n,), with n, € H,, for 0 < ¢ < M, we want to determine the value ¢
satisfying

g = arg mqin {—C('ﬁq) + P(q)} (2.32)

where £(n,) = In(f(X|n,)), is the log-likelihood (LL) function of the collected data,
and P(q) is a penalty function associated with the g-th family of models. 7, is the

ML estimate of the unknown parameters given the g-th family of distributions, i.e.,

1, = arg max f(X|n,). (2.33)

”IqEHq

Denoting the number of free parameters in H, by v(H ), AIC and the MDL criterion

are defined as follows:

AIC(q) := arg Ogig}w (—2£(n,) + 2v(H,)) (2.34)
and
._ : - v(H,)
MDL(q) := arg min (—ﬁ(nq) + — ln(L)) . (2.35)

The second term of the right-hand side in (2.34) and (2.35) is the penalty function
P(q). AIC and the MDL criterion essentially differ by their penalty functions.
The penalty function P(g) is monotonically increasing with v(H,), and aims at
penalizing the use of increasingly complex models. It is different from one criterion
to another.

In the particular case of Gaussian sources and noise, the above criteria become

AIC(q) = arg min (—2L(M — q)In(7,) + 2q(2M — q)) (2.36)

0<qg<M
and

MDL(g) = arg min (—L(M —q)In(7,) + w ln(L)> (2.37)

0<g<M
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where 7, is the statistic defined in (2.29).

The asymptotic performance of the detection criteria is established based on the
functional form of P(q) [33, 106]. More specifically, it is shown that AIC tends to
asymptotically overestimate the number of sources, whereas the MDL criterion is
strongly consistent? for iid data. For small samples, MDL often results in an under-
estimated model. In a sense, the information criteria can be viewed as eigenvalue-

equality tests with an adaptive significance level.

Efficient Detection Criteria (EDC)

Based on the general theory of LR, when further analyzing the asymptotic per-
formance of AIC and MDL, Zhao et al. [115] outlined a general class of strongly
consistent information theoretic criteria. The proposed class is called Efficient De-
tection Criteria (EDC). The particularity of EDC arises with the general condition
on the penalty function for a criterion to be consistent. Indeed, it is shown that a

penalty function of the form
Plq) = v(H,)-C(L) (2.38)
ensures that the information criterion is strongly consistent, provided that the func-
tion C(L) satisfies the following:
C(L)

s .
fim == =0 and o lm o Ty = (2:39)

When examining (2.35) and (2.38), it is clear that MDL is a particular case of
EDC.

Order Statistics

In the previously described techniques, the expression for the ML estimates of the
unknown parameters 7, is based on the assumption that the order of the sample
eigenvalues and the actual eigenvalues is the same. While asymptotically this as-

sumption is true, it is not verified for a finite L. Considering this limitation, the pdf

2The problem of source detection in array signal processing relies on the assumption that the
generating model is of a finite order (specular multipath for example). Hence, an information
theoretic criterion is said to be consistent if , for a large L, the estimated number of sources tends

asymptotically to the true model order with probability one.
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of the ordered sample eigenvalues is incorporated in the derivation of the goodness-
of-fit part of the information theoretic criteria [33], leading to the Order Statistics
ML Estimator (OSMLE) of the unknown parameters, and thus to the Order Statis-
tics AIC (OSAIC) and Order Statistics MDL (OSMDL). These detectors provide
an increased detection accuracy and retain the same consistency properties as the

conventional AIC and MDL, but involve an increased computational load.

Gerschgorin Radii

In addition to the ordered eigenvalues of R, the Gerschgorin-AIC (GAIC) and
Gerschgorin-MDL (GMDL) [113] employ the ordered Gerschgorin radii [111] of a
unitarily transformed version of R. This additional information provides increased
detection accuracy. While GMDL benefits from a strengthened consistency, GAIC
is, unlike most AIC-based detectors, a consistent estimator of the number of sources.
We show this fact analytically in Section 5.2.2, as we extend the principle of subspace

separation using Gerschgorin radii further to partially nonuniform noise.

2.5 Overview of DOA Estimation in Uniform Noise

Estimation of the DOAs 0, from the data samples x(t), ¢ = 1,..., L, requires
that the number of sources, p, is known a priori. Two major classes of estimation
techniques are known in the literature. These are parametric methods, based on
ML estimation, and spectral-based methods, where the DOAs constitute the highest
peaks of a defined spectrum-like function of the unknown parameters [51]. These
spectral methods are mostly based on an efficient separation between the signal and

noise subspaces.

2.5.1 Deterministic Maximum Likelihood (DML)

The signal waveforms are considered to be deterministic and unknown, so that the
measurements x(t) are modeled as iid Gaussian processes with mean A(@)s(t) and

covariance o21.
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The negative LL function of the data is then given by [22, 81]

L
1
2y _ 2 2
L£(0.s(t),0%) = Mlog (¢%) + =77 tz_; |x(t) — A(O)s(t)]||5. (2.40)
where || - ||y denotes the N-th norm operator. For simplicity, in the sequel we use

only N =2 and denote || - ||z by || - ||.

Since the parameters of interest are the DOAs 0, concentrating the LL function
with respect to the other unknowns is performed by obtaining closed-form expres-
sions of the DML estimates of o2 and s(¢) [13, 105].

The concentrated cost function whose minima are the DML estimates of the
DOAs is given by

6 = arg m@in <trace {Hf&(@)f{}) (2.41)

where TT(0) =1 —TI5(8) is the orthogonal complement of the projector onto the
nullspace of A% (), denoted TI5(0) = A(0)A#(0), with the Moor-Penrose pseudo-
inverse of matrix A given by A# = (A# A)_1 A

The DML estimates require a numerical solution to the non-linear p-dimensional
optimization problem of (2.41). With a good initialization, a Gauss-Newton tech-
nique (see [24, 102]) usually converges rapidly to the minimum of (2.41) [51]. Obtain-
ing sufficiently accurate initial estimates, however, can be a computationally expen-
sive task. Subspace separation methods (see Section 2.5.3) are a natural choice for
an initial estimator, provided that all the sources can be resolved. Other possibilities
are analyzed and commented on in [51, 71, 119].

It is worth mentioning that the DML estimates of @ attain the corresponding
deterministic, or conditional, Cramér-Rao bound (CRB), only when both M and L
tend to infinity [91]. This results from the fact that in the deterministic model the
number of signal waveform parameters s(¢) grows without bound as the number of

samples increases, implying that they cannot be consistently estimated [51].

2.5.2 Stochastic Maximum Likelihood (SML)

The sources are modeled as Gaussian random processes with zero mean and covari-
ance Ry according to the assumptions of Section 2.2. The observation vector x(t) is

therefore a white zero-mean Gaussian random vector with a covariance matrix given
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by (2.21). In this case, the likelihood function depends on 8, Rg and the power of

2

the uniform noise, 0. Ignoring constant terms, the negative LL function can be

reduced to

LOR0%) = + 3[40
= trace {Hj(e)ﬁ} (2.42)

The above criterion is highly non-linear. However, it allows an explicit separation
of the parameters. Hence, for fixed DOAs 6, concentrating the LL function (2.42)

with respect to 0 and Rg leads to the following solution:
6 = arg mein [log <det <A(0)RSAH(9) + &21>>] . (2.43)

where the concentrated ML estimates are 6% = (M — p)~*trace {IIx(8)} and R, —
A*(9) (R - 621> A#H(9).

The criterion of (2.43) is a non-linear function of its argument 8. A Newton-type
technique can be employed for the numerical search [23, 71, 88, 101], as well as Alter-
nating Projections (AP) [118] or Expected Maximization (EM) [32, 65] techniques.
Upon achieving the global minimum, the SML method produces excellent statistical
properties (consistency and efficiency). The DOA estimates obtained by SML are
shown to have a better accuracy than the DML estimates [72, 92]. This difference,
however, is only important for the non-asymptotic case. For Gaussian signals, the
SML estimates attain the unconditional CRB. This follows from the general theory
of ML estimation (see e.g. [99]), since all the unknowns in the stochastic model are

estimated consistently.

2.5.3 Multiple Signal Classification (MUSIC)

In practice, the sample covariance matrix R defined in (2.24) is used as a consistent
estimate of R, and its eigenvectors are separated into signal and noise eigenvector
sets, E; and En, respectively, from (2.23). Ideally, since the noise eigenvectors in

E,, are orthogonal to A(6), it is straightforward to see that

EZa(9) =0, for 6 € {0y,...,0,}. (2.44)
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Also, since A(@)RgAH(8) is of rank p, it follows that ,, ¢ = 1,...,p, are the
only possible solutions to (2.44), i.e., to uniquely resolve the DOA estimates, the
array is usually assumed to be unambiguous.

The MUSIC spatial spectrum is defined as [83]

1
S(0) = TR (2.45)

From (2.44), it is clear that the functional S(6) has peaks in the vicinity of
the true DOAs. If the data sample and the SNR are sufficiently large, and the
signal model is sufficiently accurate, the MUSIC algorithm can provide statistically
consistent estimates [91].

For independent sources, MUSIC is a large sample realization of DML [91, 92].
However, the important limitation of the MUSIC functional of (2.45) is its failure
to resolve closely spaced signals in small sample and low SNR scenarios. This loss
of resolution is more pronounced for highly correlated signals.

In addition to its asymptotic equivalence to DML, MUSIC is related to other
popular spatial-spectrum methods, over which it has resolution advantages, such
as the Minimum Variance Distortionless (MVD) beamformer [6], and the Minimum
Norm (MN) algorithm [68]. It was demonstrated in [68] that MUSIC is equivalent
to the limit of the MVD beamformer when the SNR tends to infinity. Also, fol-
lowing the development of [22, 68], MUSIC is interpreted as a smoothed version of
MN. Moreover, MUSIC is related to the subspace-separation approximations of ML
methods. Indeed, when ||a(@)|| is independent of §, MUSIC and the Noise Subspace
Fitting (NSF) algorithm coincide if the weighting matrix of NSF reduces to the
identity matrix, I [51]. By extension through NSF, it is also related to the Signal
Subspace Fitting (SSF) and Weighted Signal Subspace Fitting (WSSF) techniques
[100].

In the particular case of a ULA configuration, the polynomial-rooting version of
MUSIC (Root-MUSIC) allows a closed-form solution for the estimated DOAs [6].

Given the above link to a variety of other methods and being a computationally-
motivated sub-optimal high-resolution alternative to ML, MUSIC is a benchmark

method that is central to our analysis.



Chapter 3

Effect of Spatially Nonuniform

Noise

3.1 Introduction

In order to estimate the number of sources p from the model in (2.6), conventional
detection methods rely on the ordered eigenvalues of R and essentially count the
multiplicity of the smallest eigenvalue which ideally is equal to ¢2. In practice, we
have a finite sample size L and thus the sample covariance matrix R is used instead
of R.

As explained in Chapter 2, contrary to the eigenvalues of R, with probability
one, the smallest M — p sample eigenvalues are not equal [33]. In addition, when
the SNR is low or when the noise power is not ideally uniform over the sensors due
to perturbations, it can happen that the magnitude-order of the sample eigenvalues
does not coincide with the order of the true eigenvalues [33]. It results that the
strict criterion of eigenvalue-equality described by the statistic of (2.29), on which
most conventional detectors are based, may be broken, and the sample eigenvectors
may not be separated into signal and noise eigenvectors in an optimal way.

To picture this mismodeling problem, consider for example a ULA with M = 6
elements receiving p = 2 sources from DOAs 6 = [0°,13°]T. Assume that the
two first sensors out of M are perturbed such that their individual noise-powers
are respectively 5 and 4 times larger than the remaining noise-powers, which are

equal and represent the reference of the original SNR. If this SNR is 0 dB, then
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Figure 3.1: Mismodeling effect due to nonuniform noise on the MUSIC spectrum.

the ordered eigenvalues of the resulting data covariance matrix are \; = 14.41,
Ao = 9.72, A3 = 7.10, \y = 2.77, A5 = 2.00 and \¢ = 2.00, whereas the projection
of their corresponding eigenvectors onto the columns of the array steering matrix
A, results in values 1.79, 1.08, 1.17, 0.50, 0.00 and 0.00, respectively. It is therefore
clear that not only the true number of sources is difficult to deduce from the equality
of the smallest eigenvalues, but also, if the true number of sources were known a
priori, the second largest eigenvalue would not lead to the closest signal-subspace
eigenvector.

Figure 3.1 illustrates the same mismodeling effect on DOA estimation using the
classical MUSIC algorithm, where the same settings as above were employed. Note
that even when the SNR is increased to 10 dB, the DOAs are not properly recovered.

In the following, we examine the causes and effect of noise-power perturbations on
the problem of source detection and parameter estimation. The analysis essentially
addresses the feasibility of subspace separation, and more practically, assesses the
quality of an approximate separation. Based on the results of this chapter, we will

propose a set of algorithms to better tackle the problem of non-uniform noise powers.
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3.2 Limits of Eigen-based Subspace Separation in

Nonuniform Noise

e o0 o0 o0 oo
o0 o0 o0 o0 oo
e o0 o0 o0 o0 oo
o0 o0 o0 oo oo
o0 o0 o0 o0 oo
o0 o0 o0 o0 oo
e o0 o0 o0 oo
o0 o0 o0 o0 oo
o0 o0 o0 o0 oo
o0 o0 o0 o0 oo
(a) (b)

Figure 3.2: Example of applications where spatially nonuniform noise is observed: (a)
magneto-encephalography, (b) sparse arrays, and (¢) SONAR systems in inhomogeneous

media.

Noise-power perturbation, or spatial nonuniformity of the noise can also be
thought of when, for example, the inter-element spacing is increased to the limit of
element-coupling, yet making each array element undergo perturbations separately.
A typical practical case where spatial nonuniformity is observed includes magneto-
encephalography (MEG), where an array of sensors is placed over the patient’s head
to record the brain’s activity [47]. As the system contains a very large number of
different sensors whose distances from the patient’s head are slightly different, the
noise varies considerably from one sensor to another, and no a priori knowledge is
available on the array response for a reliable calibration [34]. Another application
concerns sparse arrays with prevailing external noise and hardware non-idealities in
receiving channels [68, 97, 76]. Other examples of nonuniform noise include RADAR
applications with shortcomings in the array calibration, or SONAR systems, where
the inhomogeneous propagation medium generates hydroacoustic reverberations of
different intensities at the hydrophones, provided that the separation between the
latter is large enough to ensure decorrelation of the noise from one sensor to another
[38]. In Section 6.5, we also describe a practical scenario where noise uniformity can-

not be guaranteed. Indeed, in a process monitoring system (nuclear power-plant),
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the number of sensors is very high and their pattern around the process of interest is
either random or too complex to be tractable. Furthermore, the observation time is
very long (typically several months) which makes a continuous and reliable calibra-
tion of the sensors very costly and impractical, and makes the whole measurement
process vulnerable to unpredictable small external perturbations at some sensors
[4].

With the requirement that the noise is spatially independent, nonuniform noise

is modeled by its covariance matrix Q as defined by (2.14), i.e.,

Q = diag {07,...,07%,}

with different noise powers, o2, m=1,..., M.

With the above noise model, performance of the standard detection and estima-
tion methods of Sections 2.4 and 2.5 can degrade dramatically due to the induced
mismodeling of the data. In addition, because the distribution of the noise powers
0%, ..., 0%, over the array sensors is unknown, direct estimation of the noise powers
and data prewhitening is problematic.

Denoting the eigenvalues of ARGA® by A, := diag {\1,,..., A\, 0,...,0}, it is
clear that contrary to the ideal uniform noise case where the noise covariance Q is
equal to an identity matrix T (up to a positive scalar ¢?), in the nonuniform noise
case, matrices ARgA¥ and Q are not commutative under multiplication. Therefore
the equality A, = \,,,+02 ,form =1,..., M, does not hold, and it is not possible
to directly count the multiplicity of the smallest eigenvalues of R to determine the

number of sources p.

3.2.1 Effect of Poor Clustering of the Noise Eigenvalues on

Classical Detection Criteria

Direct application of the classical detectors of Section 2.4 to nonuniform noise sce-
narios results in erroneous results. The relation between the quality of the estimated
eigenvalues and the performances of AIC and the MDL criterion for instance, were
analyzed in [60].

If the smallest eigenvalues are not clustered sufficiently closely, then the above

criteria will very likely bypass a resulting gap between the candidate signal and noise
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eigenvalues, thus leading to overmodeling. Moreover, for a fixed number of sensors
M, this overmodeling becomes more probable for an increasing number of samples
L. Following the arguments of [60], it can be deduced that in nonuniform noise the
estimated noise eigenvalues will not be clustered sufficiently closely if the SNR is not
sufficiently high, and the above criteria will result in severe overmodeling. Note that
this property is also at the root of the breakdown of AIC and MDL in the presence

of colored noise [60].

If the candidate signal and noise eigenvalues are not well separated in magni-
tude, and if the candidate noise eigenvalues are sufficiently close to each other, then
undermodeling will very likely occur. Such a case often happens when the SNR is
low. Note however that in nonuniform noise, the smallest eigenvalues are far from

being equal if the SNR is not high enough.

3.2.2 Identifiability of the Dimension of the Signal Subspace

Another obstacle to correct source enumeration using ordered eigenvalues, is the
ambiguity related to noise nonuniformity. This ambiguity is inherent to the data
model (2.16).

For nonuniform noise, the data covariance matrix R is parameterized by the
vector of unknowns n, = [p, p”, qT}T, where p = [vec” (R (Ry)), vec” (S (Rs))]T,
with vec(-) being the operator that stacks matrix columns into a single vector, and
q is defined by (2.15). Note that it is always possible to find p; # po, and thus
My, 7 My, such that R(n, ) = R(n,,). This ambiguity can be easily illustrated
by realizing that the uniform noise is a special case where all noise powers are
equal, making it possible to rearrange the hypothetical number of sources and their
respective powers. More specifically, it is shown in [33] that the problem of source
detection in nonuniform noise becomes non-identifiable in the event where at least

one of the p sources is received by only one of the M sensors. Such a source cannot

be distinguished from the noise power over that same sensor.

In the sequel, we exclude cases falling in the above non-identifiable scenario. In
practice, such a scenario is unlikely for arrays of coupled elements, and is rare in

applications of non-destructive process control (see Section 6.5).
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3.3 Subspace Estimation Quality

Ideally, the eigenvalues of R are used to indicate which subspace their corresponding
eigenvectors are likely to span. When the noise covariance matrix is an identity (up
to a scalar), the separation between the signal and noise subspaces is exact, as a
result of the orthogonality between the respective eigenvectors. In practice, this
orthogonality is lost and the separation between the subspaces is only approximate,
leading to an ambiguous intersection between the signal and noise subspaces. Clearly,
if the signals and noise are assumed spatially and temporally white, the quality of
the estimated subspaces degrades with a decreasing sample size, a low SNR, or
variable perturbations of the noise power over the sensors.

In [104], the quality of subspace estimation is measured by the angle between the
estimated and the ideal signal subspaces, for a given dimension (p = 2). Specifically,
the asymptotic expression of the Mean Square Error (MSE) of the cosine of the angle
of interest is provided. Based on the development in [104], we derive in what follows
the asymptotic distribution of the cosine of the angle between the estimated signal
eigenvectors and the ideal signal subspace on one hand, and on the other hand, the
distribution of the cosine of the angle between the estimated noise eigenvectors and
the same signal subspace reference.

Consider the ideal uniform noise case. Let E = [ey, ..., ey] be the eigenvectors
corresponding to the ordered eigenvalues A\; > ... > \j; of R as defined by (2.19) and
(2.18), respectively. With the true number of sources p, we ideally have Ay = ... =
Ay = 02. Also, consider E= [€1,..., €], the eigenvectors of the sample covariance
matrix R corresponding to eigenvalues 5\1, e Aar. Note that the order of the latter
sample eigenvalues is not guaranteed to match the order of the true eigenvalues [33].
Define ¢,,(p) as the angle between the ideal and the sample eigenvectors e,, and &,,,

for m =1,..., M, given the hypothesis that there are p sources (H,).

Lemma 3.3.1. Given the assumptions of Section 2.2 and H,, with Gaussian source

signals and noise, for L — oo and M > p, we have

1. m=1,...,p:

For m = 1,...,p, the angles ¢,,(p), corresponding to the candidate signal
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subspace, are asymptotically independent and satisfy the following:

cos(ém(p)) = X, (3.1)

D . .
where — denotes convergence in distribution, and the random variable X

satisfies the following:

Xop ~ N (s, (p). 62 (D) (3.2)
with
p
A A M—p \,0°
fo(P)=1— > 0 e T (3.3)
g=1 m q m
a#m
p 2 2 2
AmA M—p AmO
2 _ m7q ~ ) 4
=2 <L<Am - w) E <<Am —02>2) (34)
g=1
qgFm

22 m=p+1,....M:

Form =p+1,..., M, asymptotically, for L — oo and M > p, the angles
Om(p) corresponding to the complement of the candidate signal subspace, satisfy

marginally the following:

D

cos(m(p)) = Xn (3.5)
where
Xy ~ N (pn(p). 52 (p)) (3.6)
with
p(p) = 1= #ﬁ;w (3.7)
s(p) = Z (—L( Aj"_a;)Z) . (3.8)

Proof. See Appendix B.1. m
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From Lemma 3.3.1, one can visualize a threshold effect on the accuracy with
which the signal subspace is estimated, as the SNR, L and M vary. To better
illustrate this effect, consider for the noise-free case the expression of the expected

value of cos(¢n,(p)), for m =1,...,p, denoted ,u(o)( ), i.e.,

WO (p) =1 — zp: _ Amide (3.9)
sm LA, — Ag,)? )
=1 s s
q#m

where ). are the eigenvalues of ARA | i.e., pure signal eigenvalues. For a fixed
sample size, accuracy of the estimated angle ¢,,(p) depends on the spatial resolution
of the array, i.e., two closely spaced sources can lead to very close eigenvalues A,
and A, in the denominator of (3.9). For a large L, when the sources are well resolved
by the array, ,ug?,z tends asymptotically to its ideal value, 1.

In the presence of noise, using (3.3) and (3.9), xs,, (p) can be rewritten as

)\ms+>\s+a
pan(®) = 10 (p) + Z IS )
qs

q#m
M—p 1+ A\, /o>

L (An /o)’

When L is large and M > p, the second term on the right-hand side of (3.10) can

+ (3.10)

be neglected. The effect of noise is therefore described by the third term, i.e.,

M—p 1+ A\p,/o?
Lo (A /0%

The variation of Apg, (p) follows two patterns. First, when o2 > \,,., (3.11) can

Aps,, (p) = (3.11)

be rewritten as

M —p 1
A ~ 3.12
and second, when 02 < \,,,,, we obtain
M—p 1
Aps,, (p) = (3.13)

L A\ /o?

The SNR is generally defined with respect to the average noise power. Hence,
when it is high, the SNR is proportional to L, whereas for low values, it is propor-
tional to L'/2. This illustrates that due to additive noise, under the typical 0 dB
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SNR threshold, the sample size L needs to be increased quadratically, rather than
linearly, to compensate for the decrease of the SNR.

The same threshold effect can be deduced by examining the expression of ¢2, (p)
or by evaluating the MSE of cos(¢,,(p)), taking into account that its ideal value is
1. Using the same approximations as with g, (p) in (3.10), it is straightforward to
see that this MSE reduces to

_ 2 2
MSE:(M P Ao )2>

L (\,—o?
When p = 2 and m = 2, the above MSE is the same as the result of [104].

Let v, (p) denote the angle between the true signal subspace and sample eigen-

(3.14)

vector &,,, for m = p+1,..., M, corresponding to the candidate noise subspace.

Then, using Lemma 3.3.1, we can derive the following result:

Corollary 3.3.2. Given the assumptions of Lemma 3.5.1 and H,, asymptotically,
for L — oo and M > p, the angles v, (p), form =p+1,..., M, satisfy marginally

the following:
cos(vm(p)) = X, (3.15)
where
Xy~ N (p5(p): 5 (D)) (3.16)
with
ty(p) = 1— pa(p) (3.17)
G = <) (3.18)

where p,(p) and ¢2(p) are defined by (3.7) and (3.8), respectively.

Proof. See Appendix B.2. O

The above asymptotic results are an indication of the separability between the
estimated signal and noise subspaces. In the sequel we will use these results to esti-
mate the dimension of the approximately separated signal subspace, for a sufficiently
high SNR, i.e., in the case where the SNR is roughly linearly proportional to the
sample size L, as described by (3.13). Beyond this scenario, i.e., under (3.12), the
separation between the signal and noise subspaces is theoretically impossible and

any approximation is problematic.
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3.4 Numerical Examples

In Figure 3.3, we illustrate the validity of the approximate asymptotic distribution
given by (3.16). An ULA of M = 12 sensors in uniform sensor noise is considered,
receiving p = 2 signals from DOAs given by 8 = [3°,23°|T. In order to emphasize the
quality of the asymptotic approximation, we use a large sample size L = 1000 and
SNR=15 dB. The figure shows both the histogram of cos(y3(2)) after 1000 Monte
Carlo runs, and the Normal distribution with mean and variance given by (3.17)
and (3.18), respectively. In this example, the theoretical expressions of p.(2) and
02(2) as defined in Corollary 3.3.2 are 1.9294 x 10~* and 1.8518 x 10~%, respectively,
whereas the expressions of E {cos(y3(2))} and var {cos(y3(2))} as obtained through
Monte Carlo runs are 2.3942 x 10~ and 1.8385 x 1078, respectively.

T T T
3500 - = Histogram of simulated values H
—— Approximate asymptotic distribution

3000 - b
2500 b
2000 - b

1500/ b

1000 - J

Frequencies

500 b

Values of cos(yg(Z))

Figure 3.3: Example of a histogram of cos(3(2)) and the approximate asymptotic distri-
bution of Corollary 3.3.2.

The examples of Figures 3.4 and 3.5 show the threshold effect due to noise on
the quality of the estimated signal subspace. In the simulations, the noise power

is perturbed from one array sensor to another. The noise powers are randomly
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generated from a uniform distribution over the interval [02 o2 ]. The MSE of
cos(¢2(2)) as defined by (3.2), is shown varying with the Worst Noise Power Ratio
(WNPR) which is defined as [76]

0,2
WNPR := e (3.19)

2

min

and at the same time with the SNR on one hand, and the sample size L on the
other hand. The SNR is evaluated with respect to the average noise power. In both
examples, a ULA is assumed with M = 10 sensors receiving p = 2 sources from
DOAs 6 = [3°,23°]T. In Figure 3.4, L is fixed to 50 samples, whereas in Figure 3.5,
the SNR is fixed to 5 dB.

MSE

SNR (dB)

Figure 3.4: Joint effect of SNR and WNPR on the signal subspace estimation quality,
measured by MSE of cos(¢2(2)).

Both examples show similar results and give an idea on the relation between the
SNR and the sample size, as well as the range of noise perturbations over which the
quality of the estimated signal subspace remains exploitable. In all the examples,

WNPR is variable so that the best case corresponding to uniform noise (WNPR=1)
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MSE

Figure 3.5: Joint effect of L and WNPR on the signal subspace estimation quality, mea-
sured by MSE of cos(¢2(2)).

is well highlighted. Note that the WNPR does not provide an indication on the
distribution of the noise powers.

Observe that the variation of the different parameters and the WNPR have a
threshold effect of the MSE, indicating that beyond certain values of these parame-
ters, the degradation in the quality of estimation grows very quickly. This threshold
effect implies that the compensation for noise nonuniformity by improving the other
parameters can be very costly. Beyond the indicated values of WNPR, it is not
possible to rely on subspace separation techniques to correctly infer the unknown

signal parameters.

3.5 Conclusion

In the very general nonuniform noise case, the problem of estimating the number of
sources is non-identifiable. It is always possible to find two parameter sets 1, and

7,, such that the resulting LL functions are equal. This ambiguity is inherent to
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the data model and can be easily pictured by realizing that the ideal uniform noise
is a special case of spatially nonuniform noise. However the theoretical framework
that provides the only typical example of non-identifiability is extremely unlikely in
practice.

Estimation of the number of sources is related to the estimation of the signal
subspace. Under the assumptions of ideal uniform noise, and both Gaussian signals
and noise, the asymptotic behavior of the angle between the estimated signal sub-
space and its theoretical reference is shown to satisfy normality conditions. More
importantly, the MSE on the cosine of this angle shows a threshold effect which indi-
cates the range of SNR, L, and noise-power perturbation that allows an exploitable
subspace separation. It is important to stress that beyond this threshold, subspace

separation is theoretically impossible.



Chapter 4

Estimated Subspace Quality
(ESQ) Test for Source Detection

4.1 Introduction

We are interested in the problem of estimating the dimension of the signal subspace
without relying on the order of the eigenvalues of the covariance matrix of the data,

and determine to what extent such an estimation is reliable.

Based on the analysis of Chapter 3, we exploit the results of [104] and [113] in
a more useful way. More specifically, we concentrate on a measure of the closeness
of the estimated signal subspace to its ideal reference. We use this information
instead of the ordered eigenvalues of the covariance matrix of the data to infer the
dimension of the estimated signal subspace. As compared to the stricter eigenvalue-
equality criterion, the proposed approach offers an increased robustness to small

perturbations of the noise-power.

Our analysis leads to a metric for approximate subspace separation, which results
from the array transformation introduced in [113]. Based on the proposed metric, we
define a set of test statistics and formulate a new sequential hypothesis test (SHT)
for source detection. We use several simulation examples to show superiority of the
proposed hypothesis test over a number of classical approaches, including the ones

proposed by [113].
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4.2 Subspace Separation

4.2.1 Array Transformation

Consider first the ideal model of (2.21). In order to determine the number of sources,
we propose to simultaneously use a second array, which is excited by the same
wavefront from the same sources, and combine the information from both arrays.
In practice, this approach is not always realistic, especially for complicated array
geometries. It is also interesting to remark that for sensors undergoing different
noise-power perturbations (due to a finite sample size for example), increasing the
number of sensors does not necessarily improve the accessibility to the signal sub-
space, as it introduces more unknown parameters. To partially circumvent this
effect, it is possible to isolate the location of the perturbations, and create a second
array with a different array manifold, by discarding one or more sensors from the
original array, similarly to [113]. Obviously, this procedure is conducted at a cost of
a reduced spatial diversity.

In what follows, for simplicity and without loss of generality, we discard the last
element of the array, corresponding to the M-th row of the original array steering
matrix A, by applying a selection matrix UM = [I;;_1]|05,_1], where the subscripts
indicate the dimensions of the identity matrix and the vector of zeros, and super-
script (M) refers to the discarded array element!.

Assuming that p < M — 1, the resulting ((M — 1) x p)-dimensional steering

matrix is given as

AU = UlhA
= [ a", ... alM)] (4.1)

9 3

where the vectors a((IM), g=1,...,p, are the same as in (2.4) with the M-th element

being removed.
The covariance matrix of the collected data over the reduced (M — 1)-element
array has a structure similar to R in (2.21) and is related to the latter through

[R(m () ]

PO H

(4.2)
T(n,M)

!Discarding an arbitrary array element is straightforward by appropriately positioning the 0, 1

column in the selection matrix.
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where r( ) is the (M, M)-th element of R and
r(]\/[) — A(]\/[)Rsb(]\/[)H (43)

with b®) being the removed M-th row of A.

The reduced covariance matrix R®) has the following eigen-decomposition:
RWM) — M) A M)g(M)H (4.4)

with EM) ;= [egM), . ,e%ﬂ] and A = diag {)\gM), e ,)\5\]}4_)1}, where A" and
e%w ), m=1,...,M — 1, are the eigenvalues and their corresponding eigenvectors,
respectively.

In order to exploit the fact that the two arrays, with covariance matrices R and
R respectively, are excited by the same signal wavefront, a unitary transforma-
tion matrix denoted T (with TWITMHA = 1,/), can be introduced similarly to

[113], as follows:

(M)
pon | BT Ow ] . (4.5)
Oy 1 1
Applying transformation T to the covariance matrix R leads to
RM = TODHRTM) (4.6)
AM) (M)
= anH (4.7)
c T (M,M)
where the m-th element ¢a’), m = 1,...,M — 1, of vector ¢ in (4.7) has the
following structure:
Cgr]z\/[) _ egr]l\/[)HA(M)Rsb(l\/[)H
= eMHp(M) (4.8)

From (4.3), it is important to note that r®) is not corrupted by noise and is totally
defined by the signal parameters. Moreover, due to the fact that the noise subspace

is ideally orthogonal to matrix A®D, the elements ci”) satisfy the following:

(4.9)

=0 if e(M) 1s a noise eigenvector
my ) — Y m g )

#0, if e%w ) isa signal eigenvector.



38 4. Estimated Subspace Quality (ESQ) Test for Source Detection

Based on the information contained in the elements c%w), m=1,...,M—1,itis

possible to separate the noise and the signal subspaces by ordering the magnitudes
p%\/[) = |c£,]y)|, m=1,...,M — 1, such that

M /] M M
pM > > pan > M) gD g, (4.10)

— p

4.2.2 Geometric Interpretation

The elements ci”) of (4.9) can be interpreted as the projection of the noise-free

component of the M-th column of R onto the m-th eigenvector, e,(fy), of R This
clearly illustrates the isolation of the M-th sensor noise power. Since the noise and
signal subspaces are disjoint, it follows that the projection CSLM) provides a means to
separate the two subspaces (orthogonality) and thus determine their dimensions.
Alternatively, from Gerschgorin’s theorem [111], the first M — 1 eigenvalues of
the transformed covariance matrix R™) are identical to those of R and are located
in the union of Gerschgorin disks whose centers are given by the diagonal elements
of RM)_ In other words, the first M — 1 centers are the elements of A and their
corresponding radii are p%w), m=1,...,M — 1. The value of these radii indicates
the multiplicity of the eigenvalues and the subspaces that their eigenvectors span
[111, 113]. Tt follows from (4.10) that two distinct subsets of disks are identifiable,

representing the signal subspace for the p largest radii, ng), el p,(,M), and the noise

subspace for the M — 1 — p smallest radii, p;]fl), e ngf_)l

4.3 Sequential Hypothesis Test for Source Detec-
tion

We use the ordered Gerschgorin radii from (4.10) rather than the ordered eigenval-
ues, to estimate the number of sources. The proposed detection approach measures
how close is the estimated signal subspace to its theoretical reference. As it can be
inferred from the simulations of Chapter 3, this closeness criterion is looser than the
eigenvalue-equality criterion, which is used by most detectors in the literature, and
thus is expected to offer more flexibility and robustness within the case described by

(3.13). Recall that beyond this scenario, i.e., under (3.12), the separation between
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Figure 4.1: Transformed Gerschgorin disks corresponding to the example of Section 3.1.
The largest two discs are connected and correspond to the noisy signal subspace. Note
that the smallest disk is actually a point, i.e., pgj) = 0.

the signal and noise subspaces is theoretically impossible and any approximation is
problematic.

From (4.10) we can define a SHT to estimate the dimension of the signal subspace

as follows:
M M
Ho pg):---:p5\4_)1 = 0
M M
Hy P((1+1) == p§v121 =0 (4.11)
Hy—o 95\14”—)1 = 0.

Similarly to the sphericity test [112] (see Section 2.4.1), the above hypotheses
H,, ¢ =0,....,M — 2, are tested independently. The test (4.11) starts by checking
that the global null, Hy, is verified, i.e., that no source is present. If Hy is accepted,
then the estimated number of sources will be p = 0. If Hy is rejected, then it can be
deduced that at least one source is present. By stepping through the hypotheses H,
q=0,..., M—2, the contribution of the largest Gerschgorin radius pg]fl) is eliminated
sequentially and the dimension of the candidate noise subspace over which the null is
tested, is reduced. The test stops when a hypothesis is accepted, or when it reaches
Hy/_o, indicating that there are M — 2 sources.

Each hypothesis of the SHT in (4.11) is tested at the level of significance «

separately. The test is performed according to the Neyman-Pearson criterion [81].
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Thus, when no sources are present, the probability of correctly choosing p = 0 must
be controlled at 1 — a.

From (4.8) and (4.10), it is easy to verify that under H, (p # 0), for m =
p+1,...., M, we have

il = e[ cos(ym(p))- (4.12)
Hence, given that eigenvectors elM ), m=1,..., M — 1, are of unit norm, it follows
readily that
ﬁ(M)
Pas B cos(Ym(p)) (4.13)

provided that |0 # 0. In (4.13), p%"” and f are obtained from the sample
covariance matrix R and cos(ym(p)) is defined by Corollary 3.3.2.
With the Gerschgorin radii ordered by magnitude, define the following statistic:

M-1 ~(M
7

T, := (4.14)

2 TE00]

and observe that under H,, for ¢ = p,..., M — 2, the above statistic must asymp-
totically approach zero, for a large L. It is possible to employ the knowledge on the
distribution of cos(y,(p)), given by (3.16), to estimate the dimensions of the signal
subspace and its complement. In particular, when ||+ || # 0, from Corollary 3.3.2,

it follows that under H,, when L — oo, we have asymptotically
D
1, = Xr, (4.15)
where

Xr, ~ N (M =p—1)py(p), (M —p—1)(p))- (4.16)

However, the above result makes sense only for |[#(*)]| # 0, which translates to the
case of p # 0.

In the particular case of p = 0, we have lim R = 02I,,. Assuming for simplicity

L—oo

that the noise is real, the m-th element of the M-th column of f{, denoted 7(m ar),
form=1,...,M — 1, is defined as

T(m,M) = 7 t)nar(t (4.17)

IIMh
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Moreover, under Hg, the random variable n,,(t)n(t) satisfies the normal-product

distribution, given by

Dy (1) = %Ko (|u|) (4.18)

o o2

where K, (-) is a modified Bessel function of the second kind [85]. Also, since
cov {n,(t),nun ()} = 0, the variable n,,(¢)ny(¢) has a zero mean and variance o*.
Consequently, if we consider the sum of elements of #(*), which is ||#*)|;, taking
into account the reproductive property of the normal-product distribution, using
the central limit theorem, we can state that under Hy, we have asymptotically, for

L — o0
FOD]; 2 X, (4.19)

where

X~ N (0, ML_ 104) . (4.20)

Note that the statistics T, and ||[£*)||, are completely confined to ’R(M), which
is defined as R := TODHRTOD Since R™M is a unitary transformation of R,
and R is a sufficient statistic of R, it is straightforward to verify that T, and [|#D]|;
are also sufficient statistics, as the joint pdf of the data under the assumptions of

Section 2.1, given by

1 L .
f(X|n,) = exp (——trace {RlR}> 4.21
(XIn,) [(27)Mdet(R)]¥/? 2 42D
satisfies Fisher-Neyman'’s factorization theorem [81].
/ N
For a candidate number of sources ¢ = 0, ..., M —2, define 62 := Zﬁf:_qlﬂ (M/\ETD’

and let f,(p) and ¢3(p) be defined by (3.5) and (3.8) respectively, with the sample
eigenvalues of R®) replacing the true eigenvalues of R, It is important to men-
tion here that the sample eigenvalues are ordered according to the magnitudes of
the corresponding sample Gerschgorin radii following (4.10). Thus, the test (4.11),
designated Estimated Subspace Quality (ESQ) test, can be summarized as follows:
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1. Let ¢ = 0. If |#)||; < & (a) is satisfied, where, given the asymptotic
distribution (4.20), the threshold &(a) is given by?

Ela) = (&2 (M —1) /L> erfe (@)
then accept Hy, set p = ¢ = 0 and stop the test.

2. Let g — q+ 1. If T, < &,(a) is satisfied, where, given the asymptotic
distribution (4.16), we have

&) = (&) /M =g —1) erfe™ (@) + (M — g = 1)jin(q)
then accept Hy, set p = ¢ and stop the test.
3. If g < M —2, go to step 2.

4. set p = M — 2 and stop the test.

When the structure of the actual noise covariance matrix is known with enough
accuracy, it is possible to make the above hypothesis test increasingly conservative,
in the same way as the sphericity test [112]. When no accurate knowledge on
the data structure is available beforehand, as it is mostly the case in practice, the
test needs to be considerably more liberal to induce a significant result. As an
indication, it was suggested in [112] to safely use a within the range 10% and 25%
for the sphericity test. In our simulation examples, we restricted our analysis to
levels not exceeding 5%. The global performance of our proposed hypothesis test
varies with the actual structure of the data. Given the structure of the employed
test statistics, the performance is expected to yield slightly different results when
checking for p = 0 sources, or for any p > 0. In order to reduce the dependence on
manually preset significance levels, one can resort to the use of penalty functions

and information theoretic criteria, as explained in the next chapter.

2erfc™1(-) is the inverse of the complementary error function erfc(-), which is defined as erfe(u) :=
1 — erf(u). The error function erf(-), which will be used in the sequel, is defined as erf(u) :=

\/% [¥ . exp(—v?/2)dv.
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Empirical propability of correct detection

SNR (dB)

Figure 4.2: Performance of the detectors vs SNR.

4.4 Numerical Examples

We show the performance of the proposed ESQ test and compare it to the sphericity
test (SPH), AIC, MDL, and GAIC, GMDL [113]. In the examples, a ULA is assumed
with M = 6 sensors. The true number of sources is p = 2. We simulated different
noise perturbations over the sensors. The employed noise powers are given by the
vector

q = [0.50,0.81,0.64,0.51,0.53, 1.00] "

therefore we have WNPR=2. All the examples illustrate the empirical probability
of correct detection resulting from 1000 Monte Carlo runs. In the examples, we
illustrate both cases of p > 0 and p = 0. For the first case, we have a true number of
sources p = 2 as using other values produces very similar results. The performance

is illustrated with respect to a number of parameters as follows:

e Figure 4.2 describes a comparison of performance with respect to the SNR,
which is defined with respect to the average noise-power. The fixed parameters
are the number of snapshots L = 100 and the DOAs 8 = [0°, —23°|T, whereas
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Figure 4.3: Performance of the detectors vs L.

the SNR varies from —5 dB to 20 dB. The proposed ESQ test is applied with a
significance level a = 2%. The SPH test is applied with the same significance
level. As expected, with perturbed noise powers, the proposed nonuniform
detector outperforms the eigenvalue-based detectors. With a level a = 2%,
the ESQ test is relatively sensitive to the variation of the SNR.

Figure 4.3 illustrates the performance with respect to the number of snapshots
L which varies from 5 to 100. The fixed parameters are SNR=15 dB and the
DOAs 0 = [0°,—23°]T. The performance of the eigenvalue-based detectors
does not improve within the illustrated range of the sample size. This shows
the threshold effect on the quality of the estimated signal subspace and the
relative robustness of the proposed ESQ test against the variation of noise

powers.

Figure 4.4 illustrates the performance with respect to the angular resolution
Af. The first DOA is fixed at #; = 0° whereas the second one, 65, varies
from —26° to 0°, while the other parameters are fixed as in the previous ex-

amples. Overall, the same relative performance of the applied detectors can
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Empirical propability of correct detection

Angular separation A6 (°)

Figure 4.4: Performance of the detectors vs A#f.

be observed. Similarly to the SNR example, the ESQ test is relatively sensi-
tive to angular separation. Note that the degradation in performance of the
eigenvalue-based detectors appears to be due merely to the spatial nonunifor-
mity of the noise rather than the spatial resolution of the DOAs, as seen in

the following example.

e The effect of noise nonuniformity is illustrated in Figure 4.5. In this example,
the WNPR varies from 1 to 10, and the noise powers are generated from
a uniform distribution over [1, WNPR] and normalized by their mean. The
other parameters are fixed to SNR=10 dB, L = 100 and 6 = [0°, —23°]%.
When the WNPR approaches 1, the scenario is close to the ideal uniform
noise case. Recall that the general case, the variation of the WNPR does
not provide an indication on the distribution of the noise powers. Observe
that all the detectors undergo the effect of noise nonuniformity in a similar
way, i.e., the performance decreases with increasing WNPR. However, the
performance of the eigenvalue-based detectors drops abruptly as the criterion

of equality of the noise eigenvalues is violated very quickly. Note the relative
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Figure 4.5: Performance of the detectors vs WNPR.

robustness of the ESQ test to the variation of the WNPR within the scenario
of (3.13). Recalling the threshold effect on the estimation quality of the signal
subspace, when the WNPR is further increased, the detectors’ performance
will degrade significantly, as the effect of additive noise will induce a strong
model mismatch preventing subspace separation. Observe also that the ESQ
test is perfectly suitable for uniform noise (corresponding to WNPR=1) as it
performs similarly to the standard detectors. However, in this case, the ESQ
suffers from a limited resolution as it requires an array transformation through

the removal of one sensor.

In Figures 4.6 and 4.7, we illustrate the ability of the detectors, and especially
the hypothesis tests, to correctly decide that no sources are present. The data
is thus limited to the noise. The performance is shown in terms of the variation
of the sample size L and the WNPR. Here, the significance level of the ESQ
and SPH tests is set to a = 2%.

In the example of Figure 4.6, the WNPR is fixed to 3 and L varies from 5
to 140. The figure shows that the ESQ test performs at a level of 5%. This
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Figure 4.6: Probability of correctly detecting zero sources vs L.

fact is a result of a poor estimation of the statistics pdf tails. In addition
to noise-power perturbations, one source of error that may account for this
result is the finite sample size which deviates from the asymptotic conditions,
i.e., the data samples may become increasingly correlated and far from the
assumption of Gaussianity. For the same settings, when the significance level
is made less conservative with a = 5%, the ESQ test tends to maintain the
assigned level. The result appears to be independent of the sample size. The
SPH test, as expected, rejects every hypothesis of equal eigenvalues, therefore

failing to correctly assess that there are no sources present.

The effect of the noise nonuniformity through the variation of the WNPR
is stronger, as illustrated by Figure 4.7, where the sample size is fixed to
L = 100. If the WNPR increases, the noise sources with the largest powers
will erroneously be assimilated to dominating signal sources, and eventually,

the global significance level of the test will not be maintained.
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Figure 4.7: Probability of correctly detecting zero sources vs WNPR.

4.5 Conclusion

The proposed ESQ test indirectly measures the quality of the estimated signal sub-
space. It is more relaxed than the eigenvalue-equality criterion that is used by
classical detectors. The offered flexibility can be exploited up to a certain threshold
on the variation of the subspace estimation error. Beyond such a threshold, the
effect of additive noise prevents any subspace separation.

The proposed detectors follow from a transformation of the covariance matrix of
the data, resulting from array element suppression to cope with possible noise-power
discrepancies. Using Gerschgorin’s theorem, a metric different from the ordered
eigenvalues is used for subspace separation.

Simulation results show the power of the detection schemes and their robustness
to small noise-power perturbations. However, a superior performance in spatially
nonuniform noise implies a more restrictive identifiability condition on the number

of array sensors, i.e., p < M — 1 and not p < M.



Chapter 5

Nonuniform Information Theoretic

Criteria

5.1 Introduction

In what follows, we propose an alternative detection criterion by deriving a new
stochastic likelihood function. The method partially copes with noise-power pertur-
bation by the same approach of successively eliminating the contribution of single
elements from the array. The resulting LL function demonstrates robustness to the
variation of the noise powers.

Even-though the proposed information criteria are based on large-sample ap-
proximations, they fill a gap between simple but sensitive detection approaches, and

robust but more complicated methods requiring prior knowledge on the data.

5.2 Information Theoretic Criteria for Source De-
tection

Under the Gaussianity assumption, the stochastic negative LL function of the ob-

served data is given by [81]

L(n,) = Ln{det [R(n,)]} + trace {R_l(np)f{} (5.1)



50 5. Nonuniform Information Theoretic Criteria

where we introduce the dependence of R on the vector of unknown parameters n,.

Similarly to the ESQ hypothesis test of Chapter 4, in what follows we do not
use any a priori knowledge on the order of the eigenvalues of R and discard it
completely from the LL function. Instead, we use the information provided by the
ordered Gerschgorin radii p%Vf), m=1,...,M — 1, as defined in (4.10).

Recalling that the transformation matrix T4 of (4.5) is unitary, matrix R can
be replaced by the transformed covariance matrix R defined in (4.6)'. Leaving
an explicit dependence of the LL function only on p, the following modified negative

LL function is obtained:
-1 . (ny
LM (p) = Lin {det (’R,(M) (p)) } + trace { (’R,(M) (p)> ’R,(M)} . (5.2)

Exploiting the fact that matrix A®) in (4.7) is diagonal, relation (4.10) and

properties of (2 x 2)-block matrices, we have

~1
det (R(M) (p)) = det (A(M)> det <7”(M,M) — c(MH (A(M)) c(M))
M—1 P <p1(111\1)>2
(H )\7(7]1\4)> (MM — Z W . (5.3)
m=1 m=1 m

From (4.6) we also have

trace { (’R(M) (p)) B ’f\’,(M)} = trace {R_l(p)f{} ~ M. (5.4)

Using (5.3) and (5.4), and omitting terms independent of p, the negative LL

function (5.2) reduces to

2
w - ()
L£3M) (p) =LIn T(M,M) — W . (5.5)
m=1 m

The obtained LI function is monotonic with respect to the squared values of p,(qim,

m = 1,...,p. Note that only these elements provide the necessary information

for the estimation of the number of sources p. The corresponding eigenvalues )\%VI)’

!The effect of the unitary transformation T) can be seen as a re-parameterization of R(n,)
into RM) (p, (M),



5.2. Information Theoretic Criteria for Source Detection 51

m = 1,...,p, are ordered accordingly and are only scaling factors. Following Section
2.4.2, this LL function describes the goodness-of-fit part for a detection criterion
[106]. The number of free parameters in the negative LL function (5.5) is clearly p
for the elements ngVI)’ and p? for the signal subspace which translates to the rank
condition on R or R™) [108, 113]. Following the development in [106], a penalty
function, denoted P(p), can be used, leading to an information theoretic criterion,

KM (p), for automatic source number estimation as follows [1, 80, 106, 116]:
KW (p) = LY (p) + P(p) (5.6)

where the estimated number of sources, p, is obtained by minimizing the criterion
(5.6). In practice, due to the finite data length, the sample Gerschgorin radii and the
sample eigenvalues are used. The above criterion does not measure the equality of
the smallest eigenvalues of R®™) and is therefore less sensitive than the conventional
criteria for cases where the noise-power undergoes small perturbations.

Bearing in mind this robustness to some degree of noise nonuniformity, using the
expressions of the penalty functions in (2.36) and (2.37) respectively, we define the
Nonuniform Akaike Information Criterion (NU-AIC) and the Nonuniform Minimum
Description Length (NU-MDL) as

ATOOMD) (Y . (M) 2
NU-AICY (p) := arg 0B {£™" )+ @*+p)} (5.7)
and
1
_ (M) () . — i (M) Z(p2
NU-MDLY/(p) := arg oD {[, (p) + 2(]9 +p) ln(L)} (5.8)

or a more general version of the latter, the Nonuniform Efficient Detection Criterion

(NU-EDC) as [115]

NU-EDC™)(p) = arg  min {£M )+ (p*+p) - C(L)} (5.9)

0<p<M—1
where C(L) is a function satisfying Llim C(L)/L =0 and Llim C(L)/In(In(L)) = oo,
and superscript (M) stands for the removed M-th element of the array.

5.2.1 Asymptotic Performance

Following the derivation in [106], consistency of the above detectors can be estab-
lished by showing that in the large-sample limit, the criteria defined in (5.6) are

minimized for the true source number p.
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Lemma 5.2.1. Under the assumptions of Section 2.2, with Gaussian source samples
and noise and L large, the NU-MDL criterion defined by (5.8) is a consistent source
number estimator, whereas the NU-AIC defined by (5.7) is not consistent.

Proof. See Appendix B.3. m

Consistency of the proposed detectors can also be verified through the evaluation
of their probability of error. The latter comprises the probability of missing a source,
or probability of under-modeling, denoted Py;(p), and the probability of false alarm,
or probability of over-modeling, denoted Pg(p), for a given number of sources p.

These probabilities are defined as

Py(p) = P{p<plH} (5.10)
Pr(p) = P{p>p/Hy}. (5.11)

Similarly to [104] and [33], for simplicity, we assume that for L — oo, we have

P{p=p—1|H,} > P{p<p—1[H,} (5.12)
P{p=p+1H,} > P{p>p+1H,} (5.13)

hence simplifying expressons (5.10) and (5.11) to

Pu(p) = P{KMp=p—1) <K (p
Pe(p) ~ PR (p=p+1) < K(p

p)IH, } (5.14)
p)[Hy} . (5.15)

The evaluation of the asymptotic probability of error requires at least a suffi-
ciently accurate approximation of the distribution of the eigenvalues of R. This
issue was addressed in [104, 50] for the case of classical information criteria. For
m = 1,...,p the signal sample eigenvalues are known to be asymptotically indepen-

dent and as L — oo, they satisfy the following [2]:
Amo ~ N Ay A2 /L) (5.16)

Besides, the empirical results of [50] show that as L. — oo, the largest noise sample
eigenvalue can be approximated with great accuracy by a Gaussian random variable
X, such that

X, ~ N (02 (1 + C(M\}% L)) ,a4§(M’Lp’ L)> (5.17)
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with,

C(M,p,L) = O(2v/M —p) (5.18)
0<eMpL)<1 . (5.19)

Moreover, a less strict approximation resulting from setting (M, p, L)/ VL =0 and
&(M,p, L) =1 when L — oo, does not lead to a significant change in the asymptotic
performance of the information criteria of interest [50]. Therefore, for simplicity, in
order to easily compare the asymptotic performance of several detectors, we shall
resort to the latter approximate asymptotic distribution of the sample eigenvalues,
as was initially suggested by [104]. Hence, in what follows, as L — oo, for m =
1,...,p+ 1, the sample eigenvalues Am are considered to asymptotically satisfy the
distribution (5.16).

Result 5.2.2. From Corollary 3.5.2, using the expression of the asymptotic distri-
bution of cos(Vm(p)) provided by (3.16), and the expression of the LL function of
(5.5), forp=1,...,M —2 and L — oo, probability (5.14) is given by

rM|=L /W (p) AP L—
S (p)
Forp=1,...,M — 2, when L — oo, probability (5.15) is given by
@O DA 1)/L —
Pt 1 — e[ EITVT I DEPG T DL - @) oy
g’y<p)
and for p =0 and L — oo, probability (5.15) converges asymptotically to

VW()AP(1)/2

Pp(0) =1— erf = (5.22)

where AP(p) = P(p) —P(p—1), i.e., a penalty-function difference, p(p) and <(p)
are defined by (3.17) and (3.18), respectively, and

Wi(p) = )\;M) T(M,M) — Z

m=1 m

(5.23)

with W(l) = )\S_N[)T’(]\/[,M).
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Proof. See Appendix B.4. O

In [104], a similar result was established for the conventional eigenvalue-based
information criteria (such as AIC, MDL), for the special cases of p = 0,1 and 2. For
instance, the expressions of Py, (1) and Pg, (1) of [104] are given by

B V2AP(1) — vVLMSNR
Pun(1) = orf ( 1+ MSNR ) (5.24)

Pe (1) = 1—erf< 2AP(2)> (5.25)

where subscript A refers to the ordered eigenvalues of R, and under H;, we have
A1 = (1 + MSNR)c2.
A simple comparison of the probabilities of false alarm Pp(1) and Pg, (1) indi-

cates the following:

Result 5.2.3. Using Result 5.2.2, under Hy, the proposed nonuniform information
criteria result in an asymptotically smaller probability of false alarm than the con-

ventional eigenvalue-based information criteria, i.e., for L — oo, we have
Pr(1) < Pry(1). (5.26)
Proof. See Appendix B.5. ]

However, it is also readily verifiable that the total probability of error is almost
entirely determined by the probability of missing a source, as the probability of false
alarm is negligible in comparison. Moreover, comparing Py/(1) and Py, (1) shows
a different result, i.e., asymptotically, for a large L, we have Py, (1) < Py(1),
as a result of a higher spatial resolution due to an extra active sensor and a better
conditioning of the data covariance matrix. As L becomes infinite, both probabilities
coincide.

An exception to this result occurs when L is sufficiently large to justify the

asymptotic approximation (5.20) but not enough to compensate for a strong decrease
of the SNR.

Result 5.2.4. Using Result 5.2.2, under Hq, for large L and M, with MSNR <
1 and L < 1/(MSNR)?, the proposed nonuniform information criteria result in
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an asymptotically smaller probability of missing a source than the conventional

eigenvalue-based information criteria, i.e.,

Pu(l) < Pu(1). (5.27)

Proof. See Appendix B.5. [

Hence, for a sufficiently large observation time, under the above particular sce-
nario, it appears that the transformed Gerschgorin radii lead to a better source
detection than the ordered sample eigenvalues. This fact is accentuated when the
noise is spatially nonuniform. Indeed, the effect of noise-power perturbations at
the sensors can be seen as an increase in the overall SNR, or MSNR in (5.24).
This follows from the observation that the closest matrix (in Frobenius norm) to
R = Z%Zl Amemel such that the overall noise power is of multiplicity M — p, is
given by R =" _ \nenel + Zn]v{:pﬂ (Z%:pﬂ A /(M — p)) enel both matri-
ces being of rank p [33]. In this case, nonuniform noise would result in a larger
overall SNR. The dependence between the SNR and L and their effect on the qual-
ity of the estimated signal subspace, for both uniform and nonuniform noise, was
illustrated through simulation examples in Chapter 3.

Under the assumptions of Chapter 2, a similar analysis can be extended to cases
other than p = 1 (typically Pr(0), Py(2) and Pp(2)). The above results essentially
follow from the common penalty function P(p) and the asymptotic properties of the

angles between the estimated noise eigenvectors and the ideal signal subspace.

5.2.2 Comparison with the Gerschgorin Likelihood Estima-

tor

A similar formulation, namely the Gerschgorin Likelihood Estimator (GLE), was
presented in [113]. The resulting GAIC and GMDL criteria (Section 2.4.2) apply
the same penalty function as in (5.7) and (5.8), respectively, while their goodness-

of-fit part, or LL function, has the following expression:

2
o ,(:0) NGD

m=1

(5.28)
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given that the discarded sensor is of index M.

As compared to (5.5), the above LL function contains an extra part in addition
to the contribution of the elements of ¢ as seen previously. This extra part is
related to the statistics of (2.29), as it specifically incorporates a priori knowledge
on the order of the eigenvalues corresponding to the noise subspace. It measures the
equality of these eigenvalues, like other conventional detection criteria.

Another important difference concerns consistency. It can be easily shown that
GMDL is consistent, in the same way as MDL and NU-MDL. However, while most
AIC-based criteria are not consistent, the GAIC is shown in [113] to be consistent
by graphical proof [114].

For a more general framework, this consistency can be easily confirmed analyti-

cally.

Lemma 5.2.5. Under the conditions of Section 2.2, for a large L, the GAIC crite-
rion defined by the LL function of (5.5), and penalty function P(p) = p* + p, is a

consistent source number estimator.
Proof. See Appendix B.7. m

The above Lemma indicates that asymptotically, as I, — 0o, the combination of
the correct order of the sample eigenvalues with the transformed Gerschgorin radii
on which the GLE criteria are based, provides an improved performance over both

classical and our nonuniform criteria.

Result 5.2.6. Under Hy, the GLE criteria of [113] result in an asymptotically
smaller probability of error than both the conventional eigenvalue-based and the pro-

posed nonuniform criteria, i.e., when L — 0o, we have

Prgp(l) < Pay (1) (5.29)
PFG’LE(l) = PFA(l) |
Purgp(1) < Par(1) (5.30)
Pr, (1) < Pp(1) |

where Py, .(p) and Pg.,.(p) are the probabilities of missing a source and of false-

alarm of the GLE criteria, respectively.

Proof. See Appendix B.8. m
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Figure 5.1: Performance of the detectors vs SNR.

However, it is worth mentioning that the advantage of the GLE criteria is
based on the exact ordering of the sample eigenvalues. Similarly to other classical
eigenvalue-based criteria, the GLE criteria are sensitive to noise-power perturba-
tions and low SNR. In such a scenario, our proposed nonuniform criteria provide a
better performance, as will be illustrated by the simulations of the next section.

Note also that although our proposed nonuniform criteria use the ordered Ger-
schgorin radii of R, they are not a generalization of the the GLE criteria of [113],

as they result from a different LL function.

5.3 Numerical Examples

In this section we illustrate the performance of the proposed criteria for the same
settings as in Chapter 4, i.e., we employ a ULA with M = 6 sensors for p = 2

sources, and the noise perturbations over the sensors are given by the vector

q = [0.50,0.81,0.64,0.51,0.53, 1.00]*
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Figure 5.2: Performance of the detectors vs L.

therefore we have WNPR=2. Also, the examples illustrate the empirical probability
of correct detection resulting from 1000 Monte Carlo runs. Similarly to the previous
chapter, we illustrate both cases of p > 0 and p = 0. For the first case, we use
a true number of sources p = 2 and emphasize that using other values produces
similar results. It is important to mention that although the proposed nonuniform
information criteria often outperform the ESQ test, the latter provides a probability

measure of the correctness of the result, a feature important in practice.

e Figure 5.1 shows the performance with respect to the SNR, which is defined
with respect to the average noise power. The ESQ hypothesis test of Chapter
4, as well as the SPH test, are applied with a significance level a = 2%.
Observe that NU-AIC and NU-MDL retain the general relative performance
of AIC and MDL in the uniform noise case [33, 104, 106]. Observe also that the
eigenvalue-based information criteria consistently over-model the data. This
observation conforms to the analysis of [60], illustrating the mismatch due to
a poor clustering of the noise eigenvalues. Note the relative robustness to the

SNR of the nonuniform information criteria as opposed to the ESQ test.
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Figure 5.3: Performance of the detectors vs A#f.

e Figure 5.2 illustrates the performance with respect to the number of snap-
shots L. We can see the threshold effect on the quality of the estimated signal
subspace and the relative robustness of the proposed nonuniform detectors
against the variation of the noise powers. As expected, the nonuniform cri-
teria consistently outperform the conventional detectors that undergo model

mismatch.

e Figure 5.3 illustrates the performance with respect to the angular resolution
Af. Overall, the same relative performance of the applied detectors can be
observed. Here again, the ESQ test is more sensitive to the angular separation
than the nonuniform information criteria, which are known for their consis-
tency. From the expressions of the first- and second-order moments of the
cosine of the angle between the ideal signal subspace and the available esti-
mate, it is clear that close sources may induce a significant bias in the sample
Gerschgorin radii, which impacts on the ESQ test if it is too conservative. The

nonuniform criteria use a fixed penalty function.
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Empirical propability of correct detection

WNPR

Figure 5.4: Performance of the detectors vs WNPR.

e The effect of noise nonuniformity is illustrated in Figure 5.4. Recalling the

threshold effect on the estimation quality of the signal subspace, when the
WNPR is further increased, the detectors’ performance will degrade signifi-
cantly, as the effect of additive noise will induce a strong model mismatch.
Recall that in the general case, the WNPR does not provide an information

on the distribution of the noise powers.

In Figures 5.5 and 5.6, we illustrate the ability of the detectors, especially the
hypothesis tests, to correctly decide that no sources are present. The data is
thus limited to the noise. All the settings are the same as for the examples
of the previous chapter. Note that while often outperforming the eigenvalue-
based detectors for an increasing L, the proposed information criteria, i.e.,
NU-AIC and NU-MDL, perform poorly. In particular, NU-AIC provides too
small a detection rate to be useful. The reason can be seen from the asymptotic
expression of Pr(0) in (5.22). Clearly, the probability of error depends only on
the functional form of the particular penalty function and its variation with

L. The sensitivity of NU-AIC then becomes apparent.



5.3. Numerical Examples

61

0.9F .
-V = a
A 4 -
g 0.8F .
§ RPN
- 11
S 071 .. |
Q v S
g 1 T
S 0.6/t Seo
- ] . /4
o 11 \
> 051 S 4
= N
= ] A A
% 04f ‘ *® N
° A ~ -
= 1 ks \\
] \
g 03 N N ~0- SPH H
=~ A Y
B n, w A= AIC
g* 02 Se ~. =¥~ MDL
M R g Sy N g A GAIC
Ao v X RS v GMDL ¥
o1 D PO 5% -e- ESQ H
Ve‘v ~ \‘2— - - _ | #& NU-AIC
x‘A”\'A “““ A""\”"’A‘ """" P Ay IRERRRRRRRRE L wA(-.u_w --‘ .t..r\‘I‘U_N\IDL
20 40 60 80 100 120 140

Sample size L

Figure 5.5: Probability of correctly detecting zero sources vs L.

Y nid £ T T T
A ——6—6—o¢ © © L
0.9¢ \ o b
A\ v -V- v
= Y—v— 7 + Y ¥
.0 0-8‘; \ N b
S \ ‘
8 vy \
3 0.7 “ \ \\ i
E ¥ ¥
£ v v
8 0.6 N \ =
S \‘ \
5] ) \
z 0sp LA A A A . i
= \
e}
) M
& o4l \ \ 1
g, V. \ \
s \ \
s 03+ \ \ =0~ SPH H
Ié \\ \ =& AIC
\4 \ =v- MDL
& 02} o \\ \ A GAIC
\‘ k 'y GMDL
0.1F \\,v ~ ::: ESQ I
W, ~ _
A 4 . NU-AIC

WNPR

Figure 5.6: Probability of correctly detecting zero sources vs WNPR.



62 5. Nonuniform Information Theoretic Criteria

5.4 Conclusion

Similarly to the ESQ test, the proposed criteria, i.e., NU-AIC and NU-MDL, follow
from array transformation and Gerschgorin’s theorem. They are based on a criterion
measuring the quality of the estimated signal subspace and do not include any a
priori knowledge on the ordered eigenvalues of the data covariance matrix.

The performance of the criteria of interest is asymptotically analyzed and com-
pared to the classic detectors. This analysis, supported by simulation examples,
showed the superiority of the nonuniform detectors over classical methods of the
same type.

Due to the required array transformation, this improvement in the global per-
formance comes at a cost of reduced spatial diversity and stricter identifiability

conditions on the number of resolvable sources with respect to array elements.



Chapter 6

Application of the Bootstrap to

Source Detection

6.1 Introduction

The main drawback of the nonuniform information criteria of Chapter 5 is that
their LL function is specifically derived for Gaussian signals. If the assumption of
Gaussianity is not verified, especially for a low SNR and spatially close sources, the

behavior of the aforementioned detectors can degrade significantly.

In what follows, we propose an alternative detection scheme based on hypothesis
testing, without making prior assumptions on the distribution of the data. Similarly
to the ESQ test, the proposed test statistics are based on the discriminating property
of the Gerschgorin radii [113]. To fully take into account the information provided
by the subspace projectors, or equivalently the transformed Gerschgorin radii, a
formulation of a conventional SHT and a MHT is considered. To keep the experiment
as wide as possible (wide variety of data distributions), the null distributions of the

employed test statistics are empirically inferred using the bootstrap [31, 121].
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6.2 Source Detection

6.2.1 Sequential Hypothesis Test

The SHT of (4.11) is applied in the same way as the sphericity test [112], i.e., it
starts by testing the global null Hy (no sources), and only upon rejection of Hg,
hypothesis H; is tested. The same procedure is repeated until a hypothesis H, is
accepted where the test stops, indicating that p = ¢ sources are present.

Beyond the stochastic Gaussian case, the separation of the signal and noise
subspaces based on the ordered Gerschgorin radii remains valid, and the cumulated
squared radii can still be used to indicate the dimension of the signal and noise

subspaces. This suggests the following test statistic:

M-1
Te, = > (pM0)°, g=0,...,M—2. (6.1)
m=q+1

In practice, the values of the statistic Tx, will be close to zero if all the radii that
it encloses correspond to the noise subspace, and significantly greater than zero
otherwise.

Alternatively, in order to more easily check for zeros, a test statistic based on the

difference between two metrics can be formulated for ¢ = 0,..., M — 2, as follows:
1 M-1 M-1 )
T, = (—M 5 > ﬁﬁéW) - ( I1 <ﬁ£3“>““q) - (6.2)
q m=q+1 m=q+1

The statistic TA, compares the arithmetic and geometric means of the radii. Each
of these two metrics will be close to zero when the considered radii correspond to
the noise subspace, i.e., when the null is in force, leading to a value of Tx, that can
be closer to zero, as compared to that of Ty, .

As explained in Chapter 4, the global null corresponds to the case where all
the Gerschgorin radii are equal to zero. The threshold for the test of hypotheses
in (4.11) can be set according to the desired significance level a (Neyman-Pearson

criterion).

6.2.2 Multiple Hypothesis Test

Following the same approach, to further emphasize the difference between a number

of metrics when checking for zeros, one can consider all possible pairwise differences
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between the radii. A test statistic corresponding to such a comparison is defined as

~(M ~(M
Tip, = o =i, (6.3)

i=q+1....M—2 j=i+1,....,M—1.

Obviously, the difference T{;;), will be closer to zero only when both radii pEM) and
pg-M) correspond to the noise subspace. A similar formulation based on the equality of
the noise eigenvalues for the uniform noise case is reported in [17] and is summarized
in Section 2.4.1 through the statistics (2.31).

To integrate the simultaneous test for zero of all possible pairs into the test of
(4.11), every hypothesis H,, ¢ = 0,..., M — 2, can be formulated as the intersection

between hypotheses H;;), as follows:

._ 1) _ (M)
Hy == [He, Hip, 1o =p; s (6.4)
4,J

i=q+1...,M—2, j=i+1,....,M—1.

with alternative
K, : not H,. (6.5)

The MHT of H,, ¢ =0, ..., M —2, in (6.4) is also conducted with the requirement
of maintaining a global significance level a. In order to take into account the logical

implications between the significance values F;), , corresponding to H;,, we use

¢
Holm’s SRB procedure [17]. For every combined test H,, this procedure tests the
single hypothesis H;;), corresponding to the smallest significance value, at a level
a/card(H,), where card(H,) denotes the number of hypotheses comprising H,. The
SRB allows a strong control of the global level of the test, ensuring that all single
hypotheses comprising the global null are verified [17, 45]. Otherwise, if at least one
of the single hypotheses H;),, 1 = q+1,..., M =2, =1t+1,..., M —1, is rejected,
hypothesis H, is systematically rejected.

6.3 Bootstrap-based Detector

Thresholding the significance values P, (specifically P , Pa, or F;),) requires that
the distribution of the corresponding test statistics 15 (specifically Tx, , Ta, or 1(;;),)
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is known under the null. In Section 4.3, it was deduced that for the unconditional
Gaussian scenario, under H,, the Gerschgorin radii, ;37%“, m=p+1,....M —1,
corresponding to the candidate noise subspace, are asymptotically normal random
variables. However, if either the distribution of the data is unknown, or the data
sample size is too limited to permit useful asymptotic approximations, the distribu-
tion of the test statistic is consequently unknown or intractable.

Since no assumption is made on the distribution of the data, an empirical estima-
tion of the required distributions can be thought of, using repeated experiments and
Monte Carlo methods. Unfortunately, reproducing the exact experiment conditions
is prohibitive in cost, if not impossible. Here, we employ the bootstrap as a means

to empirically estimate the distribution of the statistics 7, from the available data

sample, without a priori knowledge of its distribution.

6.3.1 Estimation of the Null Distribution

The bootstrap is based on the paradigm that the sample x(¢), t = 1,..., L, is an
empirical estimate of the true distribution. By sampling with replacement from x(t),
t =1,...,L, many times, bootstrap data sets are created. Computing for each of
these resamples the statistics Tj, it is possible to infer their bootstrap distribution.
More detailed analysis and different applications of the bootstrap for hypothesis
testing can be found in [109, 121].

j Real World Bootstrap World
Unknown Estimated
Probability Probability
-~ Distribution Observed Dat Distribution Bootstrap Dat
Monte Carlo f F — X F I X*
' T(X) T*(X7)
Statistic of interes Bootstrap Statisti
Bootstrap y

Figure 6.1: Principle of the bootstrap.
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In [17] sub-sampling was investigated as a means to ensure a weak convergence
of the noise eigenvalues to their asymptotic distributions. Nevertheless, it was ex-
perimentally shown that the conventional bootstrap provided a sufficiently accurate
estimate. Here, this observation was also made for the estimated distribution of the
smallest Gerschgorin radii, essentially under the assumption of iid data samples [78].
As a remark, when the data samples are not iid, mowving block bootstrap variants have
been investigated to create resamples [70], provided the number of blocks is much
smaller than the number of data samples.

Let the b-th conventional bootstrap resample of the data be denoted x}(t), for
t=1,....,L,and b= 1,...,B. From B bootstrap resamples, the estimate of the

empirical distribution of the test statistics under the null can be obtained as [31]

o) =10)-T,, b=1,...,B (6.6)

q

where T is the test statistic evaluated from the data x(t), while T7(b) is the test
statistic evaluated from the resample x}(¢). The significance values for the hypoth-

esis tests of (4.11) are given by [31]

Pyi= 5 S (T < 1T0)) (6.7

b=1
with /(-) being the indicator function.
With a preset significance level o, starting from ¢ = 0, if P, > a then H, is

accepted, otherwise set ¢ < ¢ + 1 and repeat the test.

6.3.2 Studentizing and Bias Correction

Deviation from asymptotic conditions usually results in an exceeded level of the test.
This excess is, in many cases, inversely proportional to the data sample size [70]. To
better control the global significance level, it is desirable to reduce the distribution’s
dependence on unknown parameters. To this end, one resorts to studentizing the
test statistic by empirically estimating its sample variance [31, 121]. This estimation
is also conducted using the bootstrap through a nested routine [121].

In our case though, under the iid assumption of the data, experimental results did

not justify the computational cost associated with the nested bootstrap procedure!,

!The shape of the distribution of the studentized test statistics is often different from that of
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thus the Gerschgorin radii are not studentized. It is of interest to mention that for
the eigenvalue-based case, the bootstrap was also applied without studentizing the

sample eigenvalues [17].
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Figure 6.2: Mean value of the noise radii computed from R (—), and from R, first without

bias correction (——), and then using a bootstrap bias estimator (...).

The significance level of the test can also be exceeded if the test statistic T
is not estimated correctly. The test of hypotheses in (4.11) is sensitive to any
statistically significant difference between the sample radii ﬁﬁ,i”), m=1...,M —1.
If these estimated radii contain an error, or bias, the resulting test statistics become

inaccurate. It was shown in [17] that the sample eigenvalues corresponding to the

the original statistics. However, for relatively large data samples, the resulting improvement in the
detectors’ performance is imperceptible. On the other hand, for small samples, while the detection

rate improves, it remains bounded at a relatively low level.
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noise subspace are asymptotically biased. Several techniques were then proposed
to estimate the bias and alleviate its effect, including robust estimators based on
the bootstrap as well as the jackknife [31]. In our case, the sample radii [)%V[),
m=p+1...,M —1, corresponding to the candidate noise subspace are very close
to zero. It is expected therefore that estimating such small values may induce some
bias. A bias in the estimated radii can be geometrically interpreted as an excess
in the size of the disks corresponding to the disjoint signal and noise subspaces
[111, 113]. If the bias is significant, the two sets of disks can expand to the point of

intersecting, thus preventing an accurate separation of the two subspaces.

Figure 6.2 illustrates the mean of the sample radii corresponding to the candidate
noise subspace as a function of the number of snapshots L, computed from both R
and R. The examples employ an array of M = 6 sensors, with perturbed noise
powers given by the vector q = [1.0,0.5,2.8,1.7,4.1,5.0]”. The true number of
sources is p = 2, and the average SNR is set to 10 dB. In example (a), the data
samples are Gaussian, whereas in (b) they are Laplacian. The mean of the radii
is averaged over 1000 Monte Carlo runs. In both examples, a bootstrap-based bias

estimator is used to improve the quality of the estimated sample radii.

Observe that the individual bias of the radii is of the same order of magnitude.
This suggests that for a test statistic based on the difference of two metrics, and more
particularly the difference of two radii such as 7{;;), in (6.3), the effect of this bias
on the test statistic is significantly reduced by the algebraic structure of the latter.
Indeed, from preliminary experimental results, the effect of the bias in the estimated
radii on the detectors’ performance is observed to be negligible, for different values
of SNR. In the scenario considered here, including a nested bootstrap or jackknife

routine in the evaluation of the test statistics does not appear to be necessary.

6.3.3 Bootstrap detection procedure

Direct application of the bootstrap to source detection using the SHT of (4.11) can

be summarized as follows:
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. Let ¢ = 0.

. Forb=1,...,B, using (6.6) and (6.1), calculate qu (b) (respectively
. Using (6.7), calculate the significance value P,, with T, replaced by

. If P, > «a is satisfied, then accept H,, set p = ¢ and stop the test.
CIfg< M — 2, set ¢+ g+ 1 and go to step 2.

. Set p= M — 2 and stop the test.

Tg'q(b), using (6.6) and (6.2)).

Ty, (respectively Tx, ).

The incorporation of the MHT of (6.4) in the bootstrap-based detection proce-

dure yields the following variation:

. Let ¢ =0.

.Fori=q+1..... M—2and j=i+1,...,M —1, calculatef(?j)q(b)

.Fori=¢q+1,.... M —2and 5 =i+ 1,...,M — 1, calculate the

. If min; ; {P(Z-j)q} > a/h is satisfied, where h = M — 2 — ¢ is the total

g < M —2, set ¢+ g+ 1 and go to step 2.

. Set p= M — 2 and stop the test.

using (6.6) and (6.3), forb=1,..., B.

significance values F;j), using (6.7), with T; replaced by T(;;,.

number of individual hypotheses H;;), comprising Hy, then accept Hg,

set p = ¢ and stop the test.

Using the conventional bootstrap on the described test statistics, the perfor-

mance of the resulting source detectors as a function of the data parameters, is

illustrated in the following section.
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Figure 6.3: Performance of the detectors vs SNR (Gaussian sources and noise).

6.4 Numerical Examples

In what follows, the detectors corresponding to the test statistics (6.1), (6.2) and
(6.3), are denoted Ty, Ta and MHT, respectively, and are compared to the NU-MDL
of Chapter 5, and the EDC of [116] (see Section 2.4.2). The first four detectors are
based on the transformed sample Gerschgorin radii. Because of their robustness to
noise-power perturbation, we refer to them as nonuniform detectors as indicated in
the previous chapter. In the simulations, the discarded sensor is of index M, i.e.,
the last array sensor. The EDC is designed for an arbitrary noise covariance matrix.
Its use is best known for spatially correlated noise fields.

Although a specification of the functional form of the array manifold is not
necessary for the detectors to work, the examples are restricted to a ULA with
M = 6 sensors. The true number of sources is p = 2. The employed noise powers
are given by the vector q = [1.0,0.5,2.8,1.7,4.1,5.0]", and WNPR = 10. The
performance is illustrated through the empirical probability of correct detection
resulting from 500 Monte Carlo runs.

Figures 6.3, 6.4, 6.5 and 6.6 describe a comparison of performance with respect
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Figure 6.4: Performance of the detectors vs SNR (Laplacian sources, Gaussian noise).

to the SNR, for different combinations of source and noise distributions. The fixed
parameters are the number of snapshots L = 100 and the DOAs 6 = [0°,25°]7,
necessary for the ULA parameterization. The SNR varies from —25 dB to 25 dB.
The number of bootstrap resamples is the same for 7%, Ta and MHT, and is fixed
at B = 500. The significance level of the tests is set to a = 2%.

e In the example of Figure 6.3, the sources and the noise are both Gaussian. In
this scenario, all the nonuniform detectors outperform the EDC. The latter
consistently overmodels the data, as it assumes that the main diagonal of
the noise covariance matrix is equipotent. When the SNR is low, the poor
clustering of the noise eigenvalues reduces the detection rate of EDC [60, 117].
When the SNR increases, this mismodeling still bounds the detection rate at a
useless level. Note that because it is specifically derived for the unconditional
Gaussian case, the NU-MDL provides better results than the hypothesis tests
for the smaller values of SNR. In addition, the bootstrap detectors are different
from the NU-MDL information criterion, which is known for its consistency

properties [80, 106]. Observe the relative improvement in performance of T
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as opposed to Tx. This can be explained by the fact that when testing for
the null, the structure of T (difference between two metrics) allows it to be
closer to zero “more often” than 7%. For the same reason, the MHT performs
slightly better than Tx. It should be remembered however, that the MHT is
more demanding in terms of bootstrap resamples. Indeed, the MHT requires
an accurate estimation of the null distributions for a larger number of single

statistics.

e In the examples of Figures 6.4 and 6.5, the sources and the noise are distributed
differently as Gaussian or Laplacian, and vice versa. The global performance
of all the previous detectors is similar to the fully Gaussian case. First, EDC
overestimates the number of sources due to the same mismodeling problem.
Second, NU-MDL similarly to all variants of MDL in uniform noise, is less
sensitive to the distribution of the data, provided that the spatial resolution of
the sources and the sample size are sufficiently high. Equivalently, NU-MDL
is more sensitive to the correlation among the sources, and thus to the rank

condition on the covariance matrix of the data. The settings of the examples,
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Figure 6.6: Performance of the detectors vs SNR (Laplacian sources and noise).

i.e., spatially well separated sources, do not seriously alter a correct detection.
Finally, the bootstrap detectors are relatively robust and insensitive to the
distribution of the data. This robustness is indicated by a performance similar
to the fully Gaussian case. Moreover, as the SNR increases, the bootstrap

detectors consistently outperform NU-MDL.

Figure 6.6 shows the detectors’ performance when both the sources and the
noise are Laplacian. Overall, the same observations can be made as for the
previous examples, noting by the way a further decline in the performance of
NU-MDI as compared to the bootstrap detectors, which do not require any a
priori knowledge of the distribution of the data.

Figure 6.7 illustrates the performance with respect to the number of snap-
shots L which varies from 5 to 145. The fixed parameters are SNR=10 dB,
WNPR=10, and the DOAs 8 = [0°,45°]T. The number of bootstrap resamples
is B = 500 and the level of the test is fixed at a = 2%. Here the data sam-

ples are Gaussian. As expected, the performance of the nonuniform detectors
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Figure 6.7: Performance of the detectors vs the sample size L (Gaussian sources and

noise).

improves with an increasing L, as the discriminating capability of the trans-
formed sample Gerschgorin radii on which the detectors are based, sharpens.
The relative performance between the three bootstrap detectors is the same
as for the previous settings. Also, as L increases, EDC abruptly ceases the
overestimation of the source number. The increasing range of the sample size
enhances the effect of the SNR and thus, the threshold between the signal and
noise eigenvalues becomes more clear. This results in a performance of EDC,
which is similar to other consistent information criteria like MDL. It is worth
mentioning that EDC exploits a larger spatial diversity due to a larger number

of sensors, M, as compared to the nonuniform detectors (M — 1).

e Figure 6.8 illustrates the performance with respect to the angular resolution
Af. The first DOA is fixed at #; = 0° whereas the second one, 6, varies from
1° to 10°, while SNR=10 dB, WNPR= 10, and L = 100. Here also, B = 500,
a = 2%, and the data samples are Gaussian. Note that the small angular

separation between the two sources has an effect on the rank condition of the
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data covariance matrix, which is accentuated with a discarded array element
(for the nonuniform detectors). As the rank drops because of too closely sep-
arated sources, the detection rate falls considerably. The relative performance
between the bootstrap detectors is similar to the previous examples, while

EDC undergoes data mismodeling.

e The effect of noise-power perturbation is illustrated in Figure 6.9. In this ex-
ample, the WNPR varies from 1 to 10, and the noise powers are generated
from a uniform distribution over [1, WNPR] and normalized by their mean.
Here SNR=10 dB, L = 80 and 6 = [0°,15°]7. The number of resamples
B = 500 and a = 2%. The data are Gaussian. Note that when the WNPR
approaches 1, the scenario is close to the ideal uniform noise case. As the noise
nonuniformity increases, the performance of the detectors decreases. Observe
that NU-MDL is less sensitive to the values of WNPR than the bootstrap
detectors (for the settings of the example). As the WNPR increases, the con-

tribution of the largest noise power is such that it contaminates the signal
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subspace, therefore increasing its dimension and leading to an erroneous de-
tection. Equivalently, estimation of the correct significance values for the test
statistics becomes less accurate as the WNPR increases. The NU-MDL copes
with this problem through a fixed penalty function (Gaussian case). Observe
also that EDC systematically fails to correctly detect the number of sources
due to a strong mismodeling of the noise. Because of the threshold effect on
the estimation quality of the signal subspace, when the WNPR is further in-
creased, the detectors’ performance will degrade significantly, as the additive

noise will induce a strong model mismatch preventing subspace separation.

e In Figure 6.10, we illustrate the ability of the bootstrap detectors to correctly
assess that no sources are present. In the example, the data samples are limited
to the Gaussian noise. The performance is shown in terms of the variation of
the sample size L and the WNPR. Here, like for the previous examples, the
significance level of the tests is set to a = 2%, and the number of bootstrap
resamples is B = 500. For the settings of the example, Figure 6.10 (a) shows

a strongly controlled significance level, independently of the sample size. This
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indicates that the bootstrap permits a sufficiently precise estimation of the
null distribution of the test statistics. It is worth mentioning that the quality
of the estimation of the significance values P, partially depends on the number
of bootstrap resamples B. The number of resamples is in turn affected by the
data size, i.e., the combination of the array size M, and the number of collected
snapshots L. Hence, if B is not chosen appropriately, the global significance

level of the test cannot be maintained.

e The effect of noise nonuniformity through the variation of the WNPR appears
to be stronger, as illustrated by Figure 6.10 (b). However, for a sufficiently
high B, the significance level is maintained. Note that in both cases, MHT
is more demanding that T, and Tx and normally requires a higher number
of resamples B, due to the logical implications between the larger number
of inherent single hypotheses. Yet, increasing B beyond a certain level does
not necessarily improve the performance of the detectors, while inducing a
much higher computational cost. For reference, it was shown in [43] that

for univariate data for example, for a desired confidence interval 1 — «, it is
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Figure 6.10: Probability of correctly detecting zero sources vs (a): L, and (b): WNPR

(Gaussian sources and noise).
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sufficient to choose an integer number of resamples B, such that B/(B+ 1) =
1 — a. This property? follows from the fact that a test statistic resulting
from B resamples divides the real line into B + 1 parts. Considering the
multivariate case that we are interested in, the number of resamples B must
be adjusted accordingly, as a smaller B can result in longer confidence intervals,
and consequently, the confidence level of the test will be exceeded. For a given
B, the effect of the total collected data is illustrated in the following example.
As indicated previously, if the WNPR increases, the noise sources with the
largest powers will erroneously be assimilated to dominating signal sources,

and eventually, the global significance level of the test will not be maintained.

e The effect of the data size, through the combination of the sample size L and
the number of sensors M, on the performance of the bootstrap detectors is
shown in Figure 6.11. For simplicity, only the SHT based on Ty, and Tx are
illustrated. The fixed parameters are the DOAs 6 = [25°, 35°]7, SNR=10 dB,
and WNPR=5. The number of snapshots is set to vary from 20 to 120. Here,
B = 100 and a = 2%. The data samples are Gaussian. The performance is
evaluated for different values of M. In general, as expected, the performance
improves as L increases, as previously indicated in Figure 6.7. Note however
that for a fixed significance level a, even asymptotically, the hypothesis tests
stay below 100% detection rate. As the number of sensors M increases (in-
creasing degrees of freedom of the data vector x(t)), the bootstrap requires
a larger “minimal” number of snapshots to faithfully estimate the empirical
distribution of the different test statistics under the null. For instance, with
Ty, when L < 70, the detection rate is lower with M = 7 than with M = 4.
On the other hand, above a certain value (L = 80), the bootstrap gives better
results, and the joint effect of increasing M and L improves the detection rate
significantly. Because of its structure, T shows a better performance than
Tx.

2This theoretical result is drawn for pivotal statistics. It is valid for a studentized test statis-
tic. In the experiments however, for a given number of resamples B, the difference in detection

performance with or without studentizing remains negligible.
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Figure 6.11: Joint effect of the number of sensors M and sample size L on the global

performance of the detectors (Gaussian sources and noise).

6.5 Application to Power Plant Process Monitor-
ing

In a nuclear power plant based on a pressurized water reactor (PWR), ordinary light
water is used as coolant. The water in the primary circuit of a PWR is normally
pressurized but is not directly used to drive a turbine. Instead, steam generators
are employed to transfer heat to a secondary circuit, where water reaches boiling
state, producing steam for electricity generation. The water in the cooling circuit is

employed to condensate the steam in the secondary circuit (Figure 6.12).
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Figure 6.12: Diagram of a PWR power plant and application of source detection.

Electricité de France (EDF) is the European leader of electricity production.
About 75% of its total production is of nuclear origin and most EDF’s nuclear
plants are based on PWRs. EDF regularly conducts non-destructive assessments of
different parts of its plants in order to monitor and improve its industrial processes.
One such assessment involves the evaluation of several physical variables and their

effect on the behavior of the cooling process in a typical PWR. As part of this
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assessment, many measurements are conducted around the cooling circuit, without
direct access to the coolant water. The measurements are a combination of the effects
of a number of physical quantities. Attempting to identify the individual influence
of each major physical quatity from the data mixture is one step of the analysis.
When the data are appropriately modeld, the problem translates to blind source
separation, or more generally independent component analysis (ICA) [10, 26, 48].

Like for most array signal processing problems involving the model of (2.6),
source detection is prerequisite for blind source separation as indicated in Chapters
1 and 2. In addition, as the distribution of the measured data is unknown, the use
of a robust source detector becomes well motivated. Therefore, in what follows,
we propose to use our bootstrap detectors on a set of real measurements from the
cooling circuit of a nuclear reactor?.

It is important to mention that the purpose of our application is the valida-
tion of the proposed detection approach on real data. Consequently, the physical

interpretation of the whole assessment process is beyond the scope of this work.

6.5.1 Data model

Although the most precise modeling of the cooling circuit (as most processes in
a nuclear plant) introduces convolutive mixtures, we approximate the behavior of
our system by an instantaneous-mixture linear model following (2.6), as a trade-off
between precision and computational complexity [30]. The size of the measured data
sample is therefore defined to partially corroborate this assumption, i.e., a large M
and a large number of collected snapshots, L.

We have p latent signals measured simultaneously by a set of sensors yielding M
outputs. The source signals correspond to the physical quantities to be monitored,
which are mainly the temperature, pressure and flow of the water. However, the
operator is initially unable to observe a single characteristic signal for each quantity,
but receives a mixture of measurements emanating from different and arbitrary loca-
tions in the process. The operator predicts 2 to 3 independent major sources in the
system, given that the water temperature and pressure can be strongly correlated.

Yet, for our blind analysis, the number of sources p is assumed unknown and is to be

3The tests and data formatting of this section were conducted within the scope of [4].
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estimated and validated. The number of sensors M is much larger than the number
of sources p. The modulation and conditioning of the sources are conducted in a
NB framework. The sources in the process are known to be mostly non-Gaussian
[4].

Depending on the combination of measured physical quantities, the technology
of the particular sensors is variable. In addition, they are not necessarily located
in a homogeneous pattern around the process, so that the most representative in-
formation is collected. Moreover, given the relatively large values of M and L, it
appears that a uniform calibration of all the sensors over the total duration of the
measurement is very difficult. Although the measurements are pre-processed to level
the power of the noise, some residual perturbation may appear from one sensor to

another.

6.5.2 Data Sample and Pre-processing

The data sample of interest is collected and formatted by EDF, from its Nogent-
sur-Seine site. The measurements correspond to the operational phase of the PWR,
as opposed to the trial phase, and the collected data sample is of size M = 142 by
L = 3 x 10°. The data are sampled above the Nyquist rate, at a period of 1 min*.
The sensor outputs are correlated and have the same general shape over time. As
an example, one such output wave-form is illustrated in Fig. 6.13.

Two different operation modes of the power plant can be easily identified. First,
between t = 0 and t = 10°, a steady-state mode, where the measurements are
mostly stationary around their nominal value, and second, between ¢ = 1.5 x 10°
and t = 3x 10°, a network-steered mode, where the measurements are non-stationary
and strongly vary with the load on the network. In this analysis, we are interested
only in the steady-state operation, and thus limit the sample size to L = 10° (10°
minutes).

Note that other segments are visible. These are also discarded from our analysis.
They correspond to irrelevant situations, such as an interrupted measurement due
to the opening of the reactor’s heart, or constant measured values due to a likely

dysfunction of the sensors.

4The typical time constant of such a process is about 7 min [30]. The employed sample rate

therefore emphasizes a linear quasi-static model which can be accurately described by (2.6).
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Figure 6.13: Example of an output signal wave-form.

The collected data of interest are further cleaned from short constant segments
and outlier points, and then tested for stationarity. Depending on the application,

the data can also be whitened and centered (see [4] for details).

6.5.3 Experimental Results
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Figure 6.14: Sample eigenvalues and Gerschgorin radii.

The number of sources is estimated using MDL, NU-MDL, the bootstrap SHT,
both with Tx and Ta of (6.1) and (6.2), and the MHT. In our example, the number of
output signals used for this estimation is limited to 15 to reduce the computational
load (recall that the complexity associated with the eigen-decomposition of R is of

the order O(M3)). The test significance level is a = 5%, whereas the number of
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L (x1000)
6|9 |12]15|18 |21 |24 2731

MDL [15]|15 |15 |15 |15 |15 | 15| 15|15
NU-MDL| 4 | 4 |4 | 4|7 |7\ 7T|T]|T7
Ty, 2121212133 3]3]3
Ta 212121333 (3]3]3
MHT |22 2|2 3|3 |3]|3]3

Table 6.1: Estimated number of sources.

bootstrap resamples is set to B = 3000. The number of resamples B is chosen to

take into account the dimension of the data and the total number of hypotheses in
the MHT.

Fig. 6.14 shows the ordered eigenvalues and Gerschgorin radii. Note that we
have a strongly dominating eigenvalue, which translates to a large Gerschgorin ra-
dius, although the transformation reduces the magnitude dispersion. Hence, in our
relatively high SNR case, we expect the detectors to yield a small number of sources.
It should be kept in mind however, that the dominating source can possibly mask
the smaller sources. At the same time, because of the poor clustering of the smallest

eigenvalues, the information criteria can typically overmodel the system [60].

Application of the detectors (25 independent trials) results in the estimates
shown in Table 6.1. The accuracy of the detection improves with an increasing
sample size L. The Gerschgorin-based criteria outperform the conventional MDL.
Despite the high SNR, the main reason for the failure of MDL is the non-Gaussianity
of the embedded sources, which are thus strongly mismodeled by the informative
part of MDL. The non-Gaussianity of the sources affects the NU-MDL in the same
negative way. The bootstrap detectors on the other hand are more suitable for un-
known distributions of the data. In addition, determination of the signal and noise
subspace dimensions is carried-out through the ordered Gerschgorin radii rather than
the ordered eigenvalues, thus reducing the possibility of masking smaller sources.
The result is more sensible, irrespective of the sample size L. Despite the increased
computational complexity, this result validates the relevance of the bootstrap in

practice, especially for off-line analysis.
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Figure 6.15: Histogram of the magnitudes of the estimated sources.

After application of the ICA algorithms to the data mixture, the obtained sepa-
rated sources are mostly non-Gaussian®, in conformity with the initial assumptions.
The first source shows small fluctuations and some impulsive bursts. It is somehow
heavytailed. In the steady-state operation mode, it is likely to correspond to the
variation of the temperature/pressure of the cooling water. The second source is
nearly Gaussian. It is likely to correspond to an internally-generated perturbation,
which is rather independent of the variation of the physical quantities of interest.

The third source is multi-modal and shows progressive variations, which likely cor-

Source separation was applied to the data mixture using three different ICA methods, i.e.,

SOBI [10], JADE [26], and FastICA [48], with quasi-identical results [4].
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respond to the flow of the cooling water.

6.6 Conclusion

A hypothesis test has been proposed for source detection when no a priori knowl-
edge is available, neither on the distribution of the data, nor on the order of the
eigenvalues of the sample covariance matrix.

When the assumptions on the distribution of the data are minimal, no infor-
mation is available on the null distribution of the proposed test statistics. This
distribution can be inferred empirically using the nonparametric bootstrap.

Simulation results show that the bootstrap detectors are relatively robust to the
particular distribution of the data, and in cases where Gaussianity or asymptotic
conditions are not verified, they outperform standard information criteria. Never-
theless, a good performance in spatially perturbed noise requires a more restrictive
identifiability condition on the number of array sensors.

Also, a linear instantaneous-mixture has been successfully employed to model the
cooling process in one of EDF’s power plants. The bootstrap, through Gerschgorin-
based detection criteria, is applied to the measured data and yields conclusive results.
These experimental results show the power of the bootstrap-based detector and its
advantage over other methods in a real case where the distribution of the data

samples in unknown.



Chapter 7

Direction of Arrival Estimation in

Spatially Nonuniform Noise

7.1 Introduction

Most standard DOA estimation techniques, as seen in Section 2.5, are based on
the assumption that the additive noise is spatially uniform. When this assumption
is not verified, the above techniques cannot be applied directly, due to the severe
model mismatch. If the individual noise powers are known in advance, then it is
possible to scale the data and transform the model to the standard uniform case.

However, these noise powers are often unknown in practice.

In what follows, we summarize the few existing approaches that specifically take
noise nonuniformity into account, and discuss their properties. We also suggest
alternatives such as a modified MUSIC estimator, and a stochastic ML, approach
for the particular case of a ULA configuration. The first method is based on the
approximated subspace separation principle discussed in the previous chapters, while
the proposed SML variant attempts to estimate the noise covariance matrix as a first
step. The estimate of noise is then parameterized in terms of the unknown signal

attributes and is used in the LL function.
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7.2 Existing DOA Estimators for Nonuniform Noise

In this section, we summarize existing DOA estimation algorithms which are specifi-
cally dedicated to the case of spatially nonuniform noise. These methods are mostly

parametric methods related to the ML approach.

7.2.1 Nonuniform Maximum Likelihood Estimator (MLDOA)

ML methods play an important role in array signal processing for their excellent
asymptotic and threshold performances [76, 94, 103]. However, total ML solutions
are generally computationally very demanding [38]. It is possible to partially reduce
this computational load if prior information about the structure of the covariance
matrix of the data is available. In addition to a less complicated implementation,
this information leads to a significant improvement of the ML estimator performance
[76, 103].

Standard uniform ML estimators, as well as ML techniques for colored noise,
ignore important knowledge on the noise and cannot be expected to yield good

results when applied in nonuniform noise.

Many noise models have been addressed where the spectral distribution of the
noise has been considered [41, 42, 76], leading to a linear parameterization of the
noise covariance matrix. Despite this parameterization, the colored noise assumption
remains very general. In many real applications, the general assumption of colored

noise can be simplified to a spatially nonuniform white noise.

In [103], a ML estimator of DOAs in block-correlated noise has been proposed,

with a variant called MLDOA, for the special case of nonuniform white noise [76].

Under the assumption that the signal waveforms are deterministic unknowns,

the LL function of the data can be written as

L(n,) = —Lhn(det(Q)) - Ix( 0)s(t)]" Q7' [x(t) — A(6)s(t)]
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where

x(t) = QV%(1) (7.2)
AB) = QY2A(0) (7.3)

fort =1,...,L, and Q defined by (2.14).
From (7.1), keeping the irrelevant parameters fixed and by nulling the derivative
of the LL function with respect to the unknown matrix of signal samples, its ML

estimate is obtained as follows:

S:= A*(9)X (7.4)
where

X = Q¥2X (7.5)

and matrix X is defined in (2.26).

Define the following M x L noise-sample matrix:
N:=X-A(6)S. (7.6)

Similarly, if the remaining parameters are considered to be fixed, the ML estimate

of the noise covariance matrix can be obtained as
L1 -
Q = +diag <NN ) . (7.7)

Hence, replacing (7.7) into (7.1) and omitting constant terms, we obtain the

following expression of the LL function:

L) = trace {m (%NNH> }

= trace {m (%Hi(@)f{f{ffni(a)) }
= wrace {In <Hj(0)f{1'[j(0)>} (7.8)
where
R = %XXH (7.9)
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It is important to mention that in (7.8), the In(-) function is applied elementwise.
The cost function (7.8) shows that the main difference between MLDOA and the
uniform DML of Section 2.5.1 lies in the fact that the latter cost function is made
independent of the common noise power by factoring it out.

Because of the mutual dependence between the unknown noise covariance matrix
Q and the unknown signal parameters S, it is not possible to analytically concentrate
the LL function with respect to either one of these parameters. Instead, [76, 103]
suggests an interactive numerical concentration by first initializing the estimated
noise covariance matrix to Q = I and obtaining initial estimates of the DOAs,
0. These estimates are in turn used to improve the noise estimate and the whole
procedure is repeated a few times until a convergence criterion is satisfied. The
optimization typically involves two iterations. This stepwise numerical concentration
of the LL function is inspired from AP [119], IQML [18] and MODE [93].

The MLDOA algorithm is also subject to some limitations, namely with regard
to the convexity of the cost function in (7.8). In [58], the issue of existence of the
global minimum of the negative LL function is addressed. It is shown that for the
typical case of spatially nonuniform noise, the number of nuisance parameters in
the deterministic LI function increases through the different noise powers, and thus
induces a form of indeterminacy. The latter is responsible for a sub-optimal perfor-
mance of the MLDOA estimator. Recall that in the uniform noise case, the DML
is already known for being inefficient as the number of unknown signal parameters
increases without bound [51]. The indeterminacy in the model, rather than a failure
of the ML approach itself, translates to a nonexistence of a global maximum of the
LL objective function, and highlights saddle points instead. This limitation is also
partly responsible for the occasional degradation in performance when increasing

the number of iterations beyond two.

7.2.2 Weighted Least Squares Approach

The MLDOA cost function can analogously be obtained by following a Weighted
Least Squares (WLS) approach leading to the following cost function [63]:

>

V(n,) = Z %)~ A@)s(r)| (7.10
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where the scaled data and steering matrix %(t) and A (@) are defined by (7.2) and
(7.3), respectively. Owing to this scaling, the solution to the above cost function
becomes similar to the standard uniform noise case.

For a fixed A(O), it is straightforward to see that the estimate of the signal

samples is obtained as
§(t) = A#(O)i(t). (7.11)

Substituting (7.11) into (7.10) leads to the following modified cost function:

v(e) =S|Ik 0)x(t)| (7.12)

which, for a fixed Q, is equivalent to the ML cost function described previously.
The minimization of the cost function V(0) is also iterative, i.e., the noise co-
variance matrix is initialized first, yielding initial DOA estimates, which in turn are

used to improve noise parameter estimates, and so on.

7.2.3 Power Domain Solution

The Power Domain Solution (PDS) was suggested in [63]. It follows from the ob-
servation that the columns of R — Q are solely dependent on the signal subspace.

These columns, denoted k,,,, m = 1,..., M, have the following structure:

Ks, i=Tpm — Oim (7.13)

m

where, as indicated previously, r,, is the m-th column of R, o2 is th noise power at

the m-th sensor and vector i, is defined as

. 1 ;5 1=m
i, == (7.14)
0 ; i#m.

It follows from the above that the solution corresponding to the minimum sum

of errors for a given vector of unknowns 7, is given by

M
V(n,) =Y wl Ix(0)k,, (7.15)
m=1
where one makes use of the property

I, (0)T1(0) =TI (0)I13"(0) = 115 (6). (7.16)
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Using partial derivation, the minimization of (7.15) with respect to the individual
noise powers results in
in 5 (0)rm + raTIx (0)inm

2 717
" 23T, (0)., (7.17)

0

form=1,..., M.
By substituting (7.17) into (7.15), the final PDS cost function reduces to

M

V(6)=> (rﬁﬂj(@)rm _® (iiglll;;((:;irm)] ) . (7.18)

m=1

Note that the above cost function does not depend on the unknown noise powers.
The PDS method involves a considerably smaller computational cost as compared
to MLDOA. In particular, both methods require O(p®) computations to estimate
the signal parameters, however MLDOA further needs many more calculations to
estimate the noise powers over each iteration. In addition, the PDS solution can be
improved by increasing the number of iterations, whereas MLDOA suffers from the
non-convexity of its cost-function. MLDOA usually resorts to comprehensive opti-
mization routines based on Genetic Algorithms (GA) to ensure convergence, whereas
PDS can rely on considerably simpler Newton-based optimization techniques, sim-
ilarly to the conventional DML [63]. It is worth mentioning that the PDS is also
related to the Covariance Matching Estimation Technique (COMET) [73].

7.3 DOA Estimation using Approximate Subspace

Separation

Standard beamforming methods suffer from a poor spatial resolution, which worsens
with a lower SNR or a smaller sample size. If the noise powers are very different, this
limited resolution is amplified as noise nonuniformity drives the model further away
from the asymptotic ideal case. As a result, the obtained DOA estimates include a
significant bias and are inefficient.

Subspace separation methods, similarly to the source detectors described pre-
viously, require a sufficiently accurate separation criterion. This accuracy can be

severely limited by a higher WNPR, following the analysis of Chapter 3. Unless the
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SNR is very high and the sources are well separated in space, methods like standard
MUSIC will result in erroneous DOA estimates as illustrated in Figure 3.1.

When a criterion testing the rank deficiency of the covariance matrix of the data
is available, it is possible to separate the signal and noise subspaces, and hence, use
high resolution estimators to retrieve the DOAs, 6. Recall that when the noise is
spatially nonuniform, this separation is only approximate. Thus, when the error
on the estimated signal subspace is below the threshold described in Section 3.3,
one can think of applying a MUSIC-like estimation technique. As opposed to ML
methods, subspace techniques alleviate the difficulty related to the convexity of the
cost function and can reduce the problem to a liner search over a single dimension.

Following the notation of Section 4.2, let V™) he a matrix whose columns are the
M —1—p eigenvectors of R corresponding to the smallest M — 1 —p Gerschgorin

radii p™), i.e.,

y M M
VD _ [V]g+1>,...,v§w_)1 (7.19)
(M) : : . (M) -~
where ey, /, defined in (4.4), is not necessarily equal to vy, ’, for m=1,..., M — 1.

Under (3.13), VM) approximately spans the noise subspace, or equivalently, the null
space of A (@). Hence, a Nonuniform MUSIC (NU-MUSIC) objective function

can be defined as follows:

1
M —
st )(0) T a(M)H(Q)V(M)V(M)Ha(M) (9) (7.20)

where again, superscript (M) represents the index of the removed array element.
The objective function S™)(f) provides a solution over the range of 6 and the

estimates are obtained through a 1D search over the range of DOAs as follows:
0= argmgxxS(M)(Q). (7.21)

Obviously, other high resolution estimators can also be used in a similar way
to MUSIC, as the required separation between the signal and noise subspaces is
provided by (4.10).

The computational complexity of the NU-MUSIC algorithm as summarized by
(7.20), is mainly dominated by the eigen-decomposition of the (M — 1) x (M — 1)-

dimensional covariance matrix R®) which involves O ((M — 1)?) computations.
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Since the noise powers are not equal from one sensor to another, accuracy of the
NU-MUSIC estimator depends on the index of the particular array element to be
removed. It is clear that M distinct NU-MUSIC objective functions can be obtained
from the same array and an alternative estimator can be formulated by averaging
the result over the M DOA estimates as follows:

M

- 1
I (m)
S0) = +; mz::ls () (7.22)
with
0 = arg rngLXS(Q). (7.23)

The averaged NU-MUSIC in (7.22), involves M times the computational cost of a

single estimator.

It is important to stress that because of the limits of approximate subspace
separation, application of NU-MUSIC makes sense only under the scenario described
by (3.13) and not (3.12), i.e., when the SNR and the sample size are sufficiently high,

and for a limited noise nonuniformity range (WNPR).

Another drawback of the NU-MUSIC is the reduced angular resolution of the
estimated sources, which results from a discarded array element. In particular, the
estimation quality degrades significantly in instances where the number of sources

p is very close to the number of sensors M.

7.4 Nonuniform Approximate Maximum Likeli-

hood

In what follows, we consider a stochastic ML estimator for the specific case of a ULA
configuration of M sensors. The proposed method attempts to estimate the noise
parameters and scale the data in a single step. It is based on a linear expansion of

the noise covariance matrix and signal parameter mapping.



96 7. Direction of Arrival Estimation in Spatially Nonuniform Noise

7.4.1 Noise Modeling

In the following, the spatial covariance matrix of the noise, Q, is assumed to have

the following general structure:

M

Q:=> 0,9, (7.24)
m=1

When the noise in the different sensors is assumed to be uncorrelated with different

power levels, matrices W,, are defined by

where vectors i, are defined in (7.14).

The structure of W,, is defined a priori. Note that other cases of known noise
covariance structures can be considered and modeled by (7.24) [42]. One way of
choosing the latter is to regard the noise as a continuous external source whose
power is assumed to be dependent on the DOAs [41, 42]. The noise covariance

matrix is therefore defined as

Q- /0 " a(0)02(9)a” (8)d6 (7.26)

2

where o7

(0) is the periodic DOA-dependent power of the noise. This periodicity
(with period 27) makes it possible to expand the power function using Fourier

series, resulting in
o2(0) = ngeﬂ“e. (7.27)
k=0

The coefficients of the harmonic terms g will be small with increasing k, depend-
ing on the smoothness of o2(#). This suggests a truncation of the Fourier series

expansion to an order k = M — 1, leading to the following expression
27 ]
W, — / a(0)e™Mat (9)do. (7.28)
0

Other choices for the structure of base matrices ¥, and a more thorough de-

scription are referred to in [41, 42] and the references therein.
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7.4.2 Parameter Space Mapping

Consider a ULA of M sensors receiving p NB signals from sources with unknown
DOAs 6.

The signal waveforms are assumed to be random zero-mean Gaussian processes
[76, 91|, satisfying the assumptions of Section 2.2. Hence, the joint pdf of the data
is given by (4.21).

From (2.16), a consistent estimate of Rg can be obtained by fixing the irrelevant
parameters and nulling the derivative of the LL function with respect to the unknown

matrix of interest, leading to the following ML estimate [42]:

~

R. = A#(6) (R - Q) A (9). (7.29)
Replacing (7.29) into (2.16) leads to
R(n,) = TA(0) (R - Q) 1A (0) + Q (7.30)

where 7, is the vector of unknown parameters as defined in Section 3.2.
First, we seek an estimate of the unknown noise parameter q, as defined by
(2.15). Thus, let us define the set D of parameters d = [1,dy, ..., d,|T, such that in

the complex plane, we have [93]

p

P d 2P 4+ d, = H(z — ejmos(‘%)) (7.31)
qg=1
with
P
D = {dq quzp*q #0 for |z| # 1} . (7.32)
qg=1

Similarly to IQML and MODE, observe that the set of unknown parameters @
can be reparameterized in terms of d since the mapping from {6,} € R to {d,} € D
is an application, under the condition that we eliminate the non-uniqueness related
to the case dy # 1.

Since the polynomial (7.31) has all of its zeros on the unit circle, its coefficients
satisfy the conjugate symmetry constraint [53, 93] as follows:

dy = d

p—q’

qg=0,...,p. (7.33)



98 7. Direction of Arrival Estimation in Spatially Nonuniform Noise

with (+)* standing for complex conjugate.

From the analysis of [93], it is clear that the above constraint is necessary but
not sufficient for {d,} € D. Nevertheless, sticking to the constraint (7.33) implies a
very minor loss of performance in practice [57]. The commonly used normalization
is dy = 1 [57].

Define matrix D as

: d 1
0 dy ... di 1 ... 0

D:=| . . . (7.34)
0 dy ... dy 1

and observe that, due to the ULA configuration, we have

DA(9) = 0. (7.35)

7.4.3 Parameter Estimation

Using (7.35), we define the following (where we drop the dependence on 7, for now):

Rq4 := DR(n,)D”
—= DQD”. (7.36)

Furthermore, taking into account properties of the trace(-) and vec(-) operators [19],

we define the following WLS cost function:

V(q,d) = trace { <Rd . Rd> w (Rd . Rd) W}
= vecl (Rd — Rd> vec [W (Rd — Rd> W]
= (ra—ta)" (W' @ W) (rq — q) (7.37)

where W is a weighting matrix, ® denotes Kronecker product and Ry = DRD# ,
with

Pq := vec (f{d> (7.38)
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and

rq = vec(Ryq)
= (D*®D)vec(Q)
= (D*®D)Fq
= G(d)q (7.39)
and matrix F defined as
F:=| vec{®;} ... vec{W¥y} (7.40)

where matrices W,,, m = 1,..., M, are defined in (7.25).

Using properties of the trace(-) and vec(-) operators [19], we can further simplify
cost function (7.37) to

V(q,d) = (ra — ta)” W (rq — fa) (7.41)

where W = W7 @ W.
Furthermore, from (7.37), (7.38), and (7.39), cost function (7.41) becomes

V(a,d) = (G(d)q — tq)” W (G(d)q — tq) . (7.42)

Keeping d fixed and nulling the quadratic expression (7.42) with respect to q,
we obtain the following WLS solution:

a(d) = |G7(@WG(a) VG () Wig
= A(d)rq. (7.43)

For this WLS problem, it is shown in [81, 42| that the choice for the weighting
matrix as W = R;l ensures asymptotic convergence to the CRB on the estima-
tion error. It is also shown that these asymptotic properties can be maintained by
replacing Rgl by its consistent estimator Rgl.

From (7.35), since rank (A(€)) = p and rank(D) = M — p, it results that

1,(6) = I-D7(DD”)"'D
— T (7.44)
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Thus, replacing (7.43) and (7.44) into (7.30) results in

~

R(d) = TTh, (R — ding {a(d)} ) Ty + ding {a(d)} (7.45)

Note that R(d) in (7.45) is completely parameterized in terms of d. The obtained
expression (7.45) can then be replaced into the initial stochastic LL cost function to

give the following new reparameterized LL function:

~

£(d) = n (det (R(@)) ) + trace {R ()R } (7.46)

Finally, as the above approximate LL function is only parameterized in terms of
the unknown coefficients d, the algorithm reduces to the single step of minimizing
(7.46). The parameters of interest @ can then be easily obtained from the previously
described application form R into D, by reconstructing the polynomial of (7.31)

using the estimated values d and solving for its roots, where

d = [Ldy,....dy)7
= in £(d). 7.47
arg{cgl}lélD (d) ( )

Similarly to MODE and IQML, the approximate constraint of (7.33) is usually
eliminated by reparameterizing the cost function in terms of a real-valued vector
B € RPHDX1 satisfying

d:=Kg (7.48)

with K being a square (p + 1) x (p + 1)-dimensional matrix of appropriately set
elements 0, 1 and +j, and 3y = 1 [57].

The main difference to MODE and IQML however, is that the proposed ML
approach is stochastic rather than deterministic. Also, because of the noise nonuni-
formity, cost function (7.47) is considerably more sensitive to initial values, in a way
similar to MLDOA. Because of the noise covariance matrix reparameterization de-
scribed in Section 7.4.1, the proposed ML estimator is similar to the AML approach
[42]. The method offers at least a simpler solution as compared to MLDOA, as it
does not estimate the DOAs and the nuisance parameters iteratively. Similarly to
the PDS, it also retains similar features to the COMET class of estimators [73].
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7.5 Identifiability and the Cramér-Rao Bound

Identifiability of the unknown parameters translates to the bound on the number
of equations versus the number of unknowns in the model [46]. It is obvious that
identifiability is not guaranteed when the number of unknowns exceeds the number
of equations. Recall that for DOA identifiability, the number of sources p is assumed
to be known a priori. Taking into account its rank p, and dimension M x M, it
follows that matrix A(@)RsA¥ () is parameterized by p(2M — p) real entries, as
it is nonnegative definite. Keeping in mind the diagonal structure of Q, it is clear
that the number of independent equations in R is also p(2M — p) [18, 46]. On
the other hand, there are p> unknowns in Rg, p unknowns in @, and M unknowns
in Q. Therefore, given the system of (2.6), it is necessary for the identifiability
of the unknown parameters that the number of equations satisfies the inequality

p(2M — p) > p* + p + M, which leads to the condition p < M.
Derivation of the NU-MUSIC algorithm of Section 7.3 is based on a reduced

model after an arbitrary sensor is discarded from the original array. The first conse-
quence of this reduction is a more restrictive identifiability condition. Specifically, in
addition to A (@), the reduced matrix A™) (@) must be of full column rank, meaning
that p < M — 1, which follows from the number of independent equations in the

reduced covariance matrix R™),

The second consequence appears in the asymptotic performance of the NU-
MUSIC estimator. More specifically, the variance of the estimated DOAs é, will
not reach the CRB corresponding to the original covariance matrix R. In the best
case, a specific NU-MUSIC leads to estimates that can asymptotically converge to
the CRB corresponding to R (noted here CRB®)). Tt is worth reminding that
the identifiability conditions mentioned above ensure the nonsingularity of Fisher’s
Information Matrix (FIM) and thus the existence of the CRB [39].

Obviously, for a given number of nuisance parameters, a decreasing number of
sensors inevitably results in an increasing value of CRB®) [39]. At the same time,
as the noise covariance matrix Q differs from one model to another, variation of
the value of CRB™) depends on the distribution of the noise powers and more
particularly the value of ¢%;, corresponding to the removed sensor. Indeed, by

discarding one sensor, the nuisance parameter o3, is discarded from the data model,
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leading to a decreasing CRB™) [76, 91]. It is clear therefore that the relation
between CRB™) and the original CRB depends on the number of sensors, as well
as the actual values of the noise variances. Such a relation is shown in Figure 7.2,
where the value of CRB varies with the number of sensors M for two examples. In
both examples, the DOAs are fixed at 6 = [0°,45°]T and the number of samples at
L = 100. The noise powers are defined by individual SNRs (in dB) by vectors q

and qa, for examples (a) and (b), respectively, as follows:

q = [-1,-6,—2,-5,0,—55, —55, —57,15]",
92 = [-1,-6,—2,-5,0,—55,35,35,37]".

Every smaller array is considered by simply removing the last sensor from the larger
one (therefore discarding one nuisance parameter). Note how the CRB varies with
an increasing M, describing the value of CRB™) as opposed to CRB. Both examples
show the same values of CRB up to M = 6. It appears clearly that addition of more
sensors does not necessarily improve the estimation accuracy in a significant manner.
Equivalently, if the removed sensor undergoes intensive noise, the cost for a reduced
spatial diversity can be negligible (asymptotically).

The combination of the number of sensors and the values of the corresponding
noise variances describes the degree of nonuniformity of the sensor noise.

Derivation of the approximate ML estimator of the previous section implies more
restrictive identifiability requirements. In addition to the requirement that R is of
rank p, the WLS system of (7.37) must be completely determined [81], and the
(M — p)? X p-dimensional matrix A(d) of (7.43) must be tall, or equivalently (M —
p)? > p must be satisfied. Note that the latter condition on the number of sensors
M is more restrictive than the usual M > p condition.

For reference, the uniform MUSIC estimator is a large sample realization of the
uniform ML estimator [91], with M > p. At the same time, the quantitative results
of [91, 92] show that for close sources and a fixed SNR, efficiency of the MUSIC
estimator can drop below 50% for typical values of p = 2 and M = 5,10; which
are above the threshold (M — p)? > p. This uniform MUSIC and ML performances
further degrade as the sources become more correlated and the noise deviates from
the uniform model. Therefore, in such scenarios the requirement of (M — p)? > p

can be acceptable given the improvement in performance that can be induced by
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Figure 7.1: Effect of noise-related nuisance parameters on the CRB, through the variation

of M.

the nonuniform ML approach.

In the general case of a covariance matrix R, depending on whether the data
signals s(t) are modeled as deterministic unknowns, or normally distributed random
variables, the deterministic and stochastic CRBs for nonuniform noise were derived

in [76], and are respectively given by:

CRB((0) = % {&e (A’H(e)nj(e)A'(e)) © Rs}_l (7.49)
and
CRBgt(8) = % {2% [(RSAH(O)R—lA(e)RS)
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where

A'(0) = Q1/2A/(0) (7.51)
A0) = { i, @, } (7.52)
R, = %SSH (7.53)
2R { (RlA(@)RS)T © (AIH(G)Hi(o)) } (7.54)

w3
I

_ (frl)*@frl—(HA(O)R*I)*@(HA(@E*) (7.55)

and ® stands for Schur-Hadamard matrix product, i.e., elementwise product.

The CRB expressions in (7.49) and (7.50) are also derived under a more general
framework in [42, 103].

We extended this derivation for the 2D case when evaluating the 2D-AML for
the specific case of localizing low-flying targets. As detailed in Appendices A and
B.7, the linear expansion of the noise covariance matrix using known base matrices

is exploited, in a similar way to (7.24).

7.6 Numerical Examples

In what follows we show the performance of the nonuniform stochastic ML, estimator
of Section 7.4, as well as the NU-MUSIC estimator of Section 7.3, and compare it
to the stochastic and deterministic CRB. Although designed for the deterministic
signal scenario, we also illustrate the behavior of the PDS of Section 7.2.1 and
MLDOA of Section 7.2.3, along with the uniform DML and conventional MUSIC of
Sections 2.5.1 and 2.5.3, respectively, to visualize the degradation of performance in
nonuniform noise due to model mismatch. For conciseness purposes, we illustrate
the results corresponding to the second source only, as estimates of both DOAs have
similar properties.

Note that the performance of both nonuniform ML estimators is very similar.
The number of sources is set to p = 2 and a ULA with M = 6 sensors is used.
All the examples illustrate the estimators’ performance in terms of the Root Mean
Square Error (rMSE) of the estimated DOAs, over 200 Monte Carlo runs.
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Figure 7.2: Performance of the estimators vs SNR in nonuniform noise.

e Figure 7.2 illustrates the performance with respect to the SNR. The fixed
parameters are the number of snapshots L = 100 and the DOAs 8 = [0°, 17°]T,
whereas the SNR varies from —5 dB to 10 dB. The WNPR is fixed at 10, and
the noise powers are generated from a uniform distribution over the interval
[1, WNPR] and normalized by their mean values. As expected, both uniform
estimators, i.e. MUSIC and DML, fail to resolve the DOAs at low SNR,
whereas all other detectors are more suitable to varying noise-powers. Note
however that due to the reduced array size, the NU-MUSIC finds its relative
advantage over the uniform MUSIC only when SNR is very low, otherwise it
induces a significant bias in the estimated DOA, which does not improve with
increasing SNR, but is rather dependent on the spatial separation between
the sources. All other methods are considerably more robust to noise-power
variation. The performance shows a slight bias in the estimates that is due
to the choice of the optimization routine and the preset convergence criterion.
Here we used standard nonlinear programming for a relatively low number of

iterations. For the ML estimators, both stochastic and deterministic, accuracy
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Figure 7.3: Performance of the estimators vs L in nonuniform noise.
of the estimation is dependent on the choice of the initial DOA values. These
initial estimates are obtained using MUSIC under the assumption that Q = 1.
The PDS methods emerges as an accurate method, which is the fastest to
converge to a minimum.
e Figure 7.3 illustrates the performance with respect to the number of snap-

shots L which varies from 30 to 600. The fixed parameters are SNR=10 dB
and the DOAs 6 = [0°,17°]T.
example are used, thus the same WNPR applies. Similarly, MUSIC fails to

The same noise powers as for the previous

retrieve the DOAs. The ML estimators perform considerably better and show
a similar relative performance. Note that as the number of samples increases,
the number of unknown signal parameters increases accordingly. As a result,
the deterministic estimators require a considerably higher amount of itera-
tions, or equivalently a more restrictive convergence criterion, to yield efficient

estimates.

e Figure 7.4 illustrates the performance with respect to the spatial resolution
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Figure 7.4: Performance of the estimators vs M in nonuniform noise.

of the array, where the number of sensors varies from 5 to 12. The fixed
parameters are the DOAs 6 = [0°,17°]7, SNR=10 dB, WNPR=10, and the
number of snapshots I = 100. The noise powers are generated in the same
way as in the previous examples. Note that as the number of sensors increases,
the beamwidth of the array decreases, thus increasing the angular resolution
of the sources. As expected, when the number of sensors is low, MUSIC
and NU-MUSIC, like most spectrum-based methods, fail to resolve the DOAs.
Moreover, as outlined in [76], for a small number of sensors, the number of
unknown parameters associated with nonuniform noise is very close to the
number of available equations in the model [46], which leads to very similar
performance levels among the ML-based methods. Note also that while PDS
is a faster method, it induces a larger bias in the estimated DOAs for a small

number of iterations.

e Figure 7.5 illustrates the performance with respect to the WNPR. The fixed
parameters are SNR=10 dB, the number of snapshots L = 100 and the DOAs

0 = [0°,17°]T. The noise parameters are chosen such that the WNPR is varied
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Figure 7.5: Performance of the estimators vs WNPR in nonuniform noise.

from 1 to 10. Note that the performance of all the estimators degrades as the
noise becomes more nonuniform, however the relative advantage of the ML
estimators becomes more obvious with a higher WNPR. Note also that the
high estimation error induced by NU-MUSIC is of the same order as in the
previous examples and does not improve with the variation of the WNPR. This
is essentially due to the reduced array size, and the low quality of the estimated
signal subspace, as outlined in Chapter 3. Note also that in the general case,
the WNPR does not provide an information on the specific distribution of the

noise powers.

7.7 Conclusion

We investigated the application of the Gerschgorin-based approximate subspace sep-
aration criterion to DOA estimation. The obtained NU-MUSIC retains the advan-
tages of the classical MUSIC in terms of reduced computational cost and easy im-

plementation. However, NU-MUSIC suffers from a limited angular resolution, which
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results from a discarded array element. Moreover, the overall performance of NU-
MUSIC is strongly sensitive to a high SNR and noise nonuniformity range (WNPR)
and a small sample size.

Alternatively, we proposed a new nonuniform stochastic AML estimator of the
DOAs. This algorithm relies on the knowledge of the structure of the covariance
matrix of the noise and employs a linear expansion of the latter. It is possible to
approximate the LI function by incorporating a consistent estimate of this covari-
ance matrix. In the case of a ULA (or more generally a Vandermonde-type steering
matrix), a reparameterization of the unknowns is applied to facilitate the isolation
of nuisance parameters in the global cost function. This approximation avoids an
iterative concentration of the LI function and the associated propagation of the es-
timation error. However, the method remains sub-optimal and is sensitive to initial

conditions.



Chapter 8
Conclusions

The problem of estimating the dimension of the signal subspace solely from the data
received by an unbalanced array of sensors has been addressed. When the unbalance
in the array is caused by unequal individual noise perturbations over the sensors,
the problem of estimating the number of sources is non-identifiable. However, the

only theoretical example of non-identifiability is unlikely to occur in practice.

In our analysis, we opted for practically applicable approaches, thus favoring
simple and sufficiently accurate detectors. The main idea behind this approach
was to identify and bypass the elements responsible for performance degradation of
classical detectors in spatially nonuniform noise. Hence, under the assumptions of
ideal uniform noise, and both Gaussian signals and noise, the asymptotic behavior of
the estimated signal subspace has been analyzed. It was deduced that the classical
criterion of eigenvalue-equality is very sensitive to noise nonuniformity. In addition,
a threshold on the values of the SNR, sample size and noise-power perturbation has
been highlighted, beyond which subspace separation is theoretically impossible and

any approximation becomes problematic.

Based on the above analysis, an alternative criterion of approximate subspace
separation, based on Gerschgorin’s theorem, has been proposed. The employed
criterion is in fact a measure of the closeness of the estimated signal subspace to
its theoretical reference. Up to a threshold on the variation of the estimation error,
this criterion is more relaxed than the classical eigenvalue-equality criterion. The
ESQ detector is a hypothesis test based on the above measure. It follows from a

transformation of the covariance matrix of the data, resulting from array element
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suppression to cope with potential noise-power discrepancies.

When no a priori knowledge is available on the distribution of the data, the ESQ
test has been applied with a variety of test statistics whose null distributions were
empirically estimated using the bootstrap. The algebraic structure of the employed
test statistics reduces significantly the effect of a possible bias in the value of the
estimated Gerschgorin radii, and thus saves the computational cost of the whole
testing procedure. In order to validate the approach, an example with real data has

been successfully used.

Similarly to the ESQ test, the proposed information theoretic criteria, i.e., NU-
AIC and NU-MDL, follow from array transformation and Gerschgorin?s theorem.
They are characterized by the same increased robustness to small noise power vari-
ation over the array sensors. Both theoretical and numerical performance analy-
sis have been proposed to support the superiority of these criteria over classical

eigenvalue-based detectors in the unconditional Gaussian case (asymptotically).

Nevertheless, due to the required array transformation, a good performance in
spatially perturbed noise comes at a cost of reduced spatial diversity and stricter
identifiability conditions on the number of resolvable sources with respect to array

elements.

When the SNR and the sample size are sufficiently high, and for a limited noise
nonuniformity range, the above approximate subspace separation method can be
used to estimate the signal parameters, provided that the number of sources is
known. However, while offering a smaller computational load, this approach is
limited by a reduced angular resolution of the estimated sources, as a result of a

discarded array element.

As an alternative, we have investigated a new stochastic nonuniform ML esti-
mator of the DOAs. As compared to existing approaches, this algorithm avoids a
stepwise concentration of the cost function with respect to the different unknown
parameters. In particular, isolation of the nuisance parameters in the global cost
function follows from the injection of a consistent estimate of the noise covariance
matrix, as well as a reparameterization of the source parameters. The method re-
mains sub-optimal and is sensitive to initialization.

Taking into account the nature of the addressed problem, its importance in

practice and the above concluding remarks, several issues can be further investigated
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beyond the scope of this dissertation. These aspects include the following:

e Similarly to the analysis of Chapter 6, it is interesting to analyze the effect of
a possible bias in the estimated Gerschgorin radii in the Gaussian data case
of Chapter 4. In particular, one is interested in deriving an expression for the
bias and investigating simple and efficient methods to circumvent its effect in
scenarios where the sample size is small or the SNR is low. Note that the
settings of the examples in Chapter 4 correspond to a case where additional

processing to account for the bias is not required.

e Observe that the WNPR is only a rough measure of noise-power nonunifor-
mity. It is interesting to further investigate the effect of particular noise-power
distributions on the performance of existing methods, as well as the proposed

algorithms.

e Note that the comparison between the original ESQ hypothesis test of Chapter
4 and the bootstrap version of Chapter 6 is made indirectly by considering the
performance of NU-MDL as a common reference. However, further analysis
can be conducted to better identify the limits of the methods and their relative
advantages in different scenarios, especially for deviations from asymptotic
cases. In particular, one is interested in assessing the limits of validity of
the normality properties of the test statistics of Chapter 4, and verifying the

robustness of the bootstrap as an alternative.

e One direction for a possible performance improvement of both source detection
and parameter estimation, is to investigate a different array transformation
that allows full use of the available spatial diversity offered by the array. Al-
ternatively, the simultaneous use of a number of sub-arrays, in a way similar
to the generalized ESPRIT method can be analyzed. This approach, espe-
cially when supported by real-data experiments, can be of particular interest

in smart antennae or spatially distributed antenna networks.

e Another direction is to conduct a thorough performance analysis, both for
asymptotic and finite sample cases, of the existing and new DOA estimation

methods, with an emphasis on potential equivalences between ML and other
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sub-optimal estimators. Useful approximations are of particular interest, sug-

gesting which ML estimator is better in practice.

e Finally, a full analysis of the problem is worth being conducted beyond the
threshold on the estimated subspace quality, which is described in Chapter 3,

i.e., under the more restrictive scenario of (3.12).



Appendix A

Joint Estimation of Angles and
Frequencies in Partially Unknown

Noise

A.1 Approximate Maximum Likelihood (AML)

Given the model (2.16), assume that the noise covariance matrix has a band struc-
ture, and consider the (2M — 1)-dimensional vector of unknown noise parameters
q, given as q = [dqq, R(qy), S(ay), -, R(apr_1), S(ap1)]", where qq = o? is the
spatially uniform noise power, corresponding to the diagonal elements of the noise
covariance matrix Q(q). More generally, Q(q) can be modeled as a linear combina-
tion of 2M — 1 known weighting matrices ¥; and a set of unknown real parameters

¢; (the elements of q) [14, 42], i.e.,

2M—1

Q@) = > a¥: (A.1)

In [42], an application to underwater acoustics of the model (A.1) is described.
Other examples include cases where the noise covariance matrix is approximated
by a sum of weighted Fourier coefficients and the base matrices W, are functions
of the known array geometry (see Section 7.4.1). This approximation is a result of
a Fourier series expansion of the spatial noise power function [36]. More general

models are also considered where the noise is spatially correlated, with a banded
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and Toeplitz covariance matrix. Due to the Hermitian structure of Q(q), the base
matrices W; have diagonals composed of zeros, +1, and +j [37].
The AML algorithm [42] is based on the application of the properties of the

vec(-) operator to (2.16) and using the expansion in (A.1),
vec(R)=vec (A(0)R,,A"(0)) + vec(Q(q)). (A.2)
Defining A(0)=[A*(0)®A(0)] and r.=vec(R,), (A.2) can be written as
vee(R) = | A(6) P | [ i ] (A.3)
q

where P = [vec(W) ... vec(Papr—1)].
Define the following:

M(6) = | A@B) P | (A.4)
p = [r] (A.5)
q

From (A.3), a consistent estimate p can be obtained as [42]
A o -1 ~ ~
p=|MT(RTeR)M| M7 (RTeR™) i (A.6)

where R is the sample covariance matrix of the data, defined in (2.24), and t =

~

vec(R).
Substituting (A.6) into (A.2) leads to the compressed LI function

£(6) = (det (R(9) ) ) + trace {R"{(O)R} (A7)
where f{(B) = R(0,p). Consequently, estimation of the parameters reduces to

solving the following optimization problem

~

0 = arg moin {L£(0)}. (A.8)

A.2 Extension to 2D: Application to Low-Flying

Target Localization

Target localization and tracking in radar systems involve the estimation of Doppler

frequencies, DOAs in azimuth/elevation, and TDOAs. Tracking low-flying targets is
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usually complicated because the received echo signal reaches the radar site via two or
more paths. This is due to the close proximity of the target to a reflecting surface. A
detailed model for the surface reflection in different situations has been established
in [8], [110]. The reflected signal consists of both specular and diffuse components.
When the ray grazing angle is small, the specular component dominates. In the case
of a two path scenario, the radar spots two targets, i.e., the true target and its image
created by the reflected echo. For an elevation measurement, the reflected image
usually has an angular position that appears to be below the surface, and a range
difference often less than the range resolution of the radar. In addition, the direct
and reflected signals add constructively or destructively due to their phase difference.
Another problem that arises in low-angle tracking is the small angular separation
between the impinging echoes (in terms of the beamwidth) [8]. Making use of

classical beamforming to spatially separate the two signals is therefore problematic.

The various techniques that have been proposed to solve the problem include
parametric approaches where the problem at hand can be looked at in three different
ways. First, the target and its image can be considered as two separate sources,
second, the target and its image can be linked via a geometric relation and third,
some a priori knowledge of the reflection coefficients can be used. These techniques
are basically ML estimators [52]. The advantage of ML is that it is less sensitive to
signal coherence as compared to subspace decomposition techniques, provided that

the stochastic properties of the data are known.

Introducing a priori knowledge in ML considerably improves the performance
[62]. This knowledge is derived from a highly deterministic multipath model, using
geometric information and a set of physical parameters like the refractivity gradient,
the reflection coefficient, the specular and diffuse scattering coefficients, and the
divergence factor [15]. Based on this information, a refined model (RM) has been
developed for low angle tracking [15, 96|, leading to a refined ML (RML) technique,
with a variant accounting for incoherent multipath signals [15]. Compared to the
classical DOA model, with unknown pairs of angles, amplitudes and phases, the RM
model has fewer unknown parameters (signal amplitude, signal phase, and height of
the target) as the other parameters (range, height of the receiver, grazing angle, etc)
are expressed in terms of the unknowns. This model assumes known environment

parameters and spatially white noise and/or nonfluctuating complex amplitudes that
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account for reflection coefficients and radar cross section (RCS) factors [62, 96]. In
practice however, the environment parameters are difficult to obtain or unavailable.

In what follows, we summarize the problem of localization for low-elevation tar-
gets. We consider a specular reflection model, which is directional and follows the
laws of classical optics. The RCS is assumed to be fluctuating from one pulse rep-
etition interval (PRI) to another. We address joint ML estimation of DOAs and
Doppler frequencies in the presence of a partially unknown noise field. The pro-
posed approach uses a priori knowledge on the structure of the noise as it employs

a linear expansion of its covariance matrix [14].

A.3 Data Model

Consider a ULA of M identical antenna elements. We assume that the radar observes
its received waveforms over K successive PRIs. The following scenario is considered:

The radar receives a direct signal and a reflected echo from unknown angles.

Figure A.1: Reflection model for a spherical smooth earth.

Thus, for m = 1,..., M, the output of each antenna element can be given by

Tm(t) = Aa,asa(t) + Ar, &r8r () + nim(t). (A.9)

where Ay, and A, = are the antenna responses to the direct and the reflected signals,
sq(t) and s,.(t), respectively. &; and &, are complex factors related to both signals

and accounting for the RCS of the target [11], and n,,(t) is the additive noise.
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In our low-elevation scenario, for a small grazing angle, the direct and reflected
echoes fall in the same range gate, and the two signals differ by their amplitudes
and phase shifts. Hence, considering the set of all M antenna elements, using vector

notation, the array output can be written as
x(t) = A(0)diag(&)s(t, f) + n(t) (A.10)

where & = [¢, &]7, and s(t, f) = [es2mfat eﬂ”th]T. In the case of a ULA with
element spacing of half-wavelength, the spatial steering matrix is defined as A(0) =
[A; A,] with

Ad _ [1 efjﬂ'cos(éd). ) .efj(Mfl)wcos(Gd)i| T (All)
A, = [1 efjwcos(t%). ) ‘efj(]\/lfl)w cosé‘,~:| T (A12)
0=1006," and f=1af" (A.13)

where 04, f; and 6., f. are the DOA and Doppler frequency of the direct and
reflected signals, respectively.
The noise n(t) depends on physical variables such as thermal noise, clutter and

possibly jammer interference.

A.3.1 Model Transformation

The samples under consideration are available in three processing dimensions, allow-
ing the discrimination of multiple echoes in azimuth/elevation, range and Doppler
frequency. In our case, we are interested in the joint DOA and Doppler frequency
estimation, while the third dimension (range) is used to reduce the effect of the
power nulling problem of the signals received from the low-elevation target [11]. We
use several consecutive PRIs (K > 2) to calculate the estimates. We assume for
simplicity that the DOAs and Doppler frequencies are invariant throughout the con-
sidered PRIs!, while the complex factors &, k = 0,..., K — 1, vary from one PRI
to another.

Over each of the K PRIs, we assume that x(t) is sampled at a high rate, and

that L samples are collected. The observation samples are denoted by x,, (), with

IThe PRI is assumed to be comprised within the coherent pulse interval (CPT).
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Figure A.2: Data processing over three dimensions.

m=1,....,M;1=0,...,L—1and k =0,..., K. In other words, z,,(t;x) is the
[-th sample of the m-th antenna output over the k-th PRI.
Suppressing the dependence on @ and f, the received data over the k-th PRI

can be arranged in matrix form as follows

X = A diag(&,) diag(¢,)F + Ny (A.14)
where
by [ (+=DTn (=17 }T (A.15)
and
1 At (I-1)At o (L-1)At
F= (bdm ((1l—1)At ¢?L—1)At (A.16)
1 o2t ... o e O
with
¢g = e*™¢ and ¢, = eI Ir (A.17)
and

Nk = [n(t07k), N ,n(t(L,l),k)} . (A18)
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After sampling, the columns of X}, are concatenated in a L M-dimensional vector

v as follows:
yi = vec(Xg). (A.19)

For arbitrary matrices A, C and a diagonal matrix diag(b), it can be readily
verified that vec(Adiag(b)C) = (C” o A) b, where o denotes Khatri-Rao product

(a column-wise Kronecker product). Hence, it is straightforward to write (A.14) as

yr = vec{A diag(§,) diag(¢;) F + Ny}
= (FToA) (&, 0 @) + vec(Ny). (A.20)

Repeating the same operation over all the K PRIs and arranging the obtained

data vectors in a matrix leads to

Y = [}’1 o YK
= UG, HH+ Y (A.21)

where the space-frequency steering matrix is defined as U(0, f) = F! o A, and
H=Z20®, with E = [£,...£x]. The effect of the additive noise is given by
Y = [vec(Ny)...vec(Ng)]. Depending on whether the environment parameters
are assumed steady or fluctuating, H is modeled as deterministic unknown or as
random with probability densities described in [95]. For simplicity and without loss
of generality, we focus only on the Swerling I case [95]. Thus, the pulse amplitude
over the collected PRIs is considered as a single random variable with a Rayleigh
distribution. The initial pulse phase is assumed to be uniformly-distributed over [0
27].

The unknown parameters 8 and f depend on the array geometry and the target
velocity, respectively. As they vary, matrix U in (A.21) describes a space-frequency
manifold. Note that it is straightforward to extend the model to the case of more
than 2 paths. Processing the data received over several PRIs exploits the diversity
among the multidimensional measurements and reduces the effect of power nulling
in the scenario of a low grazing angle, making the estimation of more paths than
antennas possible. Indeed, if the number of paths is p, the dimension of the manifold
matrix U is LM x p, and the necessary condition on U for the identifiability of the
unknown parameters is LM > p and U is full rank, p. Thus, if p > 2, only
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M = 2 antennas are sufficient to recover the unknown paths, provided the number
of samples over each PRI, L, is high enough.
In what follows we assume that the data is modeled as a Gaussian stochastic

process, with a covariance matrix R, given by
R = E{ywi } = UR,U" + Q(q) (A.22)

where Q(q) is the covariance matrix of the noise Y, parameterized by the vector
of unknown real elements q. The following assumptions on the noise samples vy

(columns of Y') are considered
E{vww/'} =Q(q)dn ; E{viv}=0. (A.23)

Above, R,; is the covariance matrix of the unknown scaled samples in H, col-
lected over the K PRIs. The columns h; of H are assumed to be independent from

the noise and satisfy the following:

E{hh/} =R, 0y ; E{hih}=0. (A.24)

A.4 Joint Maximum Likelihood Estimation

Based on the above assumptions, the unconstrained negative LL function of the

observed data, after normalization and omitting constant terms, is given by [42, 81]
L(n) = In (det (R(n))) + trace{R ()R} (A.25)

where, for the transformed model case, the sample covariance matrix R is given by

1 K
~ o H
k=1
1

— gYYH (A.26)

and n = [OT, fr. o, q’]? is the vector of unknown real parameters, with p being
the vector of real entries (real and imaginary parts) of the elements of R. At this
stage, we seek a further simplified LL cost function by replacing Q(q) by a favorable
estimate Q(q).
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Applying the linear expansion (A.1) to matrix Q(q) (where we have 2LM — 1
real entries instead of 2M — 1), and replacing matrix A(@) in (A.3), by the 2D-
parametrized matrix U (0, f), defined as

U@, f) = U6, ) @ U6, f) (A.27)
we easily arrive to the following modified negative LL function:

£(6, f) = (det (R(8, £)) ) + trace {R (6, )R} (A.28)
and estimation of the unknown parameter-pairs of interest reduces to solving the

following optimization problem:

A ~

0.f = argmin {£(6, f)}. (A.29)

A.5 Cramér-Rao Bound

Derivation of the stochastic CRB on the unknown pairs of interest, corresponding to
the model (A.2) follows from the general analysis of [39] and is conveniently based

on the linear expansion of the noise covariance matrix in (A.19).

Lemma A.5.1. Under the assumptions of Section A.3, the stochastic CRB on the
pairs (0, f) given the model (A.14) is given by

CRBgy,(0, f) = % (e —omz om) (A.30)
ith, o . .
w £:2m{[122®<RHUHR—1URH)]T@ [DHngD] (A.31)
m—20{(1;® 7)" (DI )& (Re" OTRT) P° (A.32)
s::m{f:H (R*T ® ng) ’P} —PH [ o TSP (A.33)
where
R = Q'"RQ'? (A.34)
U = QYU (A.35)
D = QYD (A.36)
P = |vec(Wy) ... vec(\ilgLM_l)] (A.37)
v, = Q'V*w,Q Y2 (A.38)

Proof. See Appendix B.9. O]
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Figure A.3: rMSE of the DOA vs SNR for the different methods. M = 12, K = 200,
L=3,p=0.9.

A.6 Numerical Examples

We use the following simulation scenario: Assume a 4/3-earth model [11]; a radar
over a smooth earth is operating at a height of 3 m. The array is a ULA of M
sensors. The target is at a distance of 12 km, flying at constant altitude of 200 m.
The range is assumed roughly known. L is set to a value around the range bin of
the target echo?.

The actual noise covariance matrix is modeled as Qmn = o2 plh—1l g (m-1)
where p is the correlation coefficient and ( is a scaling factor.

In the following, the noise vectors vy, in (A.21) are modeled as a combination of

two parts as follows:

Vg = Zp+ Wg

The first part wyg, is an unstructured noise generated internally by the electronics

2The method proposed in this Appendix serves as a benchmark to the AML-OP estimator [29],

which is derived under the scope of [28].
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Figure A.4: rMSE of the Doppler frequency vs SNR for the different methods. M = 12,
K =200, L =3, p=0.9.

of the receiver. The second part is an external structured noise zg, resulting from
filtering an unknown white process wy, through a known linear system G € CEM*P),
with LM > P and P known. This linear process can be regarded as a set of P base
matrices spanning the noise subspace (structured). Matrix G models the effect
of any non-noiselike signal that interferes with the transmitted pulse. It can be
estimated off-line. This can be done, for example, using known target-free signals
or, a known land clutter (environment) model. For instance, it is shown in [84] that
low-angle land clutter is non-noiselike. Note that knowledge of G up to a unitary

matrix, say T, is sufficient to retrieve the structured noise subspace, the latter being

excited by a process wj, = T~lw;, which is also white.

In the simulations, the unstructured noise component wy is modeled as a white
noise with variance o2, where oy, < 0. The structure of the noise covariance matrix
is of the form Q = GG +021. Thus, the process G is chosen to be the square-root
matrix of Q — 021. Note that this is not a unique choice. In practice G can be
estimated up to a unitary matrix from known target-free signals or known land-

clutter models. The value of the SNR is 10log;y(02/0?), where o2 is the signal
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Figure A.5: rMSE of the DOA vs the correlation coefficient for the different methods.
M =14, K =200, L = 3, SNR = 10 dB.

power.

Alternatively, the noise vector q clearly contains 2LM — 1 real elements, i.e.,
o2 for the main diagonal of Q, 02p®cos(i¢) for the real part of the i-th super- and
sub-diagonals of Q, and +0?p'sin(i¢) for the imaginary part of the i-th super-
and sub-diagonals of Q, respectively, with ¢ = 1,..., LM — 1. The corresponding
base matrices W,,, m = 1,...,2LM — 1, can be easily deduced to have diagonals
composed of zeros, 1, and +j, as described in [37].

We illustrate the performance of the proposed approach in terms of the rMSE
versus the SNR, the spatial correlation coefficient p, the number of collected PRIs K,
and the number of sensors M. We also illustrate the effect of the range on the DOA
tracking. We compare the performance of the proposed technique to the classical
SML (see Section 2.5.1), where the noise is assumed spatially and temporally white,
as well as to the Oblique-Projector AML (AML-OP) [29] and the stochastic CRB,
which is provided by (A.30). The parameter sets are indicated in the corresponding
figure captions. The obtained results are averaged over 200 Monte Carlo runs.

The results for the direct and reflected echoes are similar, therefore only those
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Figure A.6: rMSE of the Doppler frequency vs the number of sensors for the different
methods. M = 400, p = 0.95, L = 3, SNR = 10 dB.

corresponding to the reflected echo are shown.

e Figures A.3 and A.4 illustrate the performance of AML-OP and 2D-AML

versus SNR, in terms of rMSE. The AML-OP performs slightly better than
the 2D-AML for DOA estimation and inversely, 2D-AML outperforms the
AMIL-OP for Doppler frequency estimation. Overall, the AML-OP is observed
to perform similarly to SML for SNR< 10dB and similarly to 2D-AML for
SNR> 10dB. Also, AML-OP outperforms 2D-AML for low SNR. For the above
settings the two estimators do not reach the CRB as the results show a bias

in the estimates.

Figure A.5 shows the variation of the TMSE of the estimated DOA as the
correlation coefficient p varies. Note that SML diverges as p approaches one.
As expected, AML-OP and 2D-AML perform better at higher values of p.
Variation of the rMSE of the Doppler frequency is similar, therefore it is not
shown for conciseness purposes. More generally, the same remarks as for the

previous example can be made here, especially with respect to the relative
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Figure A.7: Tracking of the direct and reflected DOAs for the different methods. M = 12,
K =200, p=0.95, L =3, SNR =10 dB.

performance of AML-OP and 2D-AML.

e Figure A.6 illustrates the performance of the Doppler frequency estimation as
we increase the number of antenna elements. Similarly, the same remarks as

above apply for this example too.

e Figure A.7 shows the improvement of the performance as the angle difference
between the direct and reflected paths increases (as the target approaches the
radar site). The other parameters are kept fixed. Observe that 2D-AML and
AML-OP still provide separable DOAs at any range unlike SML which fails to

separate two DOAs that are merged around 0° at a range greater than 20 km.



Appendix B

Proofs of Lemmas and Results

B.1 Proof of Lemma 3.3.1

The proof of Lemma 3.3.1 partly follows from the development of [104]. Consider

the following definition:
[emeén]

cos(¢m(p)) = TemllTeml el (B.1)

and let &,, denote the unnormalized sample eigenvector, such that €, = &,,/||&].

Thus, we have

cos(D(p)) = e/l ] /6]l (B2)

To proceed with the proof, we need to consider separately the two cases, m =

1,...,p,andm=p+1,..., M.

I.m=1,...,p:

Form =1,...,p, it is shown in [2] that when L — oo, the sample eigenvectors

e,, are asymptotically independent and satisfy
El{e,} =en, +O(L1) (B.3)
and the covariance matrix of e, is

TS A
COVv {ém} = z Z ﬁeqef + O(L_Q)
g=1 "™

a#m
form=1,...,p (B.4)
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Note that under H,, for m = 1,...,p, the rank of cov {&,,} is M —1 [104], due
to p — 1 distinct eigenvalues given by (¢ # m)

A A
L E— B.5
T L — A2 (B5)
and one eigenvalue of multiplicity M — p, given by
A 02
l, = —"" . B.6
P L\, — 02)2 (B.6)
From (B.4), it is clear that Llim lenén| = 1, and Llim cos(dm(p)) = ||€ml| =

Moreover, from the theory of sampling distributions and quadratic forms [20,

79], we have

&’e,, B X, (B.7)
where
p
Xe~ 1+ Z qu% + le%(M—p)- (B.8)
q=1
g#m

It follows that when L — oo, we have

D
cos(ém(p)) 2 X, (B.9)
where
—1/2
P

Xop ~ |1+ Z qug + le%(M—p) : (B.10)

qg=1

q#m

Since for a large L, a large M (M > p) and a relatively high SNR, the ideal

value of cos(d,(p)) is 1, implying that >_? X3+ lpxg( AM_p) 18 very small,

a=1lg£m
we can use the following approximation:

D

cos(¢m(p)) = Xo (B.11)

where

~1=3 Z quz sz M—p) (B.12)

qsém
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and finally, using applying the generalized central limit theorem to a large
set of x2-distributed variables, with mean v and variance 2v, directly obtain,

when L — oo, the asymptotic distribution (3.2), for m=1,...,p.

.m=p+1,...,M:

Second, for m = p+1,...,M, let E, = [ept1,...,€en], le., the matrix
whose columns are the eigenvectors corresponding to the eigenvalue of mul-
tiplicity greater than one. Similarly, consider the unnormalized matrix E, =
[€p11,- -+ €nrl.

Unlike the signal eigenvectors, the columns of E, are not asymptotically in-
dependent. However, given our particular case where only one eigenvalue is of
multiplicity greater than one and is ideally equal to o2, it is possible to deduce

asymptotic marginal distributions with enough accuracy.

It is shown in [2] that under the assumption of Gaussian data, when L — oo,

we have asymptotically

E,=E,A+ L2 zp: e, T, (B.13)

q=1
where the limiting distribution of A as I — o0, is the conditional Haar invari-
ant distribution, or equivalently 2 times the Haar measure over orthogonal
matrices with positive diagonal elements. Moreover, the limiting distribution
of Ty as L — oo, is normal with zero mean and variance A\,02/ (A, — 02)°,

withg=1,...,p.

Using the above, as L — oo, it is easy to verify that A converges asymptot-
ically to Iy, and consequently, for m = p +1,..., M, the sample eigenvalues

satisfy marginally the following:
E{é,}=e,+0O(L" (B.14)

and
cov{en} — zp: N i (L)
my Lq:l ()\q_az)z >q

form=p+1,..., M. (B.15)
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Hence, similarly to the previous case with m = 1,...p, from (B.15) one can
see that under H,, for m = p+1,..., M, the rank of cov{&,,} is p, due to p
distinet eigenvalues given by I, = A\,0%/ (L(\; — 0?)?) with ¢ = 1...,p, and
when L — oo, it leads to [20, 79]

D
cos(ém(p) 2 X, (B.16)
where
» ~1/2
Xy, ~ |1+ quX§] : (B.17)
q=1
Using the same approximations as for m = 1,..., p, along with the generalized

central limit theorem, when L — oo, the asymptotic distribution (3.6) follows

for the case m=p—+1,...,M.

B.2 Proof of Corollary 3.3.2

Ideally, under H,, if the noise subspace is completely disjoint from any signal at-
tributes, the angle between e,,, m = p+1,..., M, and a subspace defined only by the
signal parameters must be /2. Thus, using the unnormalized sample eigenvectors

€,,, it can be easily deduced that v,,(p) = 7/2 — ¢,,(p). This implies that

c0s”(Ym(p)) = 1 — cos®(¢m(p))- (B.18)

Hence, form (B.17), when L — oo, we have
1 — cos®(vm(p)) 2 X; (B.19)

where

-1
p

X; ~ 1+Zlq><§] . (B.20)
q=1

For alarge L, a large M (M > p) and a relatively high SNR, the value of cos(v,,(p))

is very small. Also, using the approximation leading from (B.10) to (B.12), i.e.,

P

=1 l,X3 being small, we can approximate (B.20) by

1 —2c0s(ym(p)) = X; (B.21)
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where
P
Xj~ 1= 3 (B.22)
q=1
or
cos(Ym(p)) 2 Xy (B.23)
where
1 p
Xp ~ 5 leng (B-24)
q:

and finally using the central limit theorem, when L — oo, we obtain the asymptotic

distribution (3.16), form =p+1,..., M.

B.3 Proof of Lemma 5.2.1
Similarly to [106], for some estimated source number p, define the following difference
A = (Az+Ap) (B.25)

with Az = LM (p) — LM (p) and Ap = P(p) — P(p).

Assume first that p < p and consider Llim A/L. Since r(a,ar), AM) and p%U L m =
1,...,p,...,p, are all non-negative, L™M)(p) in (5.5) is a monotonically decreasing

function of p. As a result, Lhm Az/L < 0 holds with probability one. Also, note
that if Ap is bounded with respect to L, then lim Ap /L = 0 with probability one.
It follows that hm A < 0 holds with probablhty one when p < p. This is the case

for both NU- MDL(M (p) and NU-AIC™)(p) as defined in Section 5.2.

Assume next that p < p and consider lim — 2A. Under H;, we have the vector
of unknown parameters 1, = [p, p,s, a2t C(;);Slder the theoretical case of a similar
array of M elements with spatially nonuniform noise and p sources, such that every
source of index ¢ > p, is received by a single array-sensor only, and the power of

every such source added to the power of the noise at the corresponding array-sensor
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2

is equal to o®. In this case, under Hy, the covariance matrix of the data R(ﬁﬁ) is

parameterized by the vector of unknowns 7, = [p, f)g, o2, €l'T, where € is the vector

of appropriately assigned noise-power perturbations over the sensors.

Observe that the model where R(n,), with i, = [p.p,,0”]", with spatially
uniform noise, is one special case of the above nonuniform noise model, and R(np) =
R(7n;) due to the model ambiguity associated with noise nonuniformity [34], i.e.,
the joint distribution of the data in both cases is the same. At the same time,
it follows that vectors n; and 7, are inner points of the same subspace Hj of
candidate models [117]. Consequently, the term —2A, is equivalent to the LR
between two hierarchically nested models. Indeed, it is twice the LL of the ML
parameter estimator under the hypotheses H, and H;, respectively. This LR statistic
approximately follows a x? distribution, with degrees of freedom v equal to the
number of additional parameters in the more complex model [106], i.e., the difference
of the dimensions of the parameter spaces under the two hypotheses. In our case,
this difference is v = p + p*> — (p + p?). Thus, as the sample size L increases, the
probability that —2A, exceeds —2Ap in (B.25) is given by the area in the tail from
—2Ap of the X%ﬁ 52 —pp?) distribution. Hence, if ngrolo —2Ap = oo, then the tail area
of the X%ﬁ 5 —p—p?) distribution tends to zero. As a result, ngr;o — A > 0 holds with
probability one when p < p. This is clearly verified for NU-MDL®™) (p), but not for
NU-AICM) (p) since the corresponding probability that —A is positive is not one as
L tends to infinity when p < p.

Combination of the two cases (p > p and p < p) implies that NU-MDL®) (p)

is minimized for p = p, as L increases, making it, as expected, a consistent source

number estimator, whereas NU-ATC*)(p) is not consistent.

B.4 Proof of Result 5.2.2

Using the expressions (5.5), (5.20) and the definition of W (p) in (5.23), it is straight-
forward to see that forp=1,..., M — 2

()] —arw)
P]\/[(p) =P<{In|l-— = > P H

o) : ) (B.26)
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where W (p) is defined by (5.23) with the sample eigenvalues and sample Gerschgorin
radii instead of their ideal counterparts.

Note that under H,, for m = 1,...,p — 1, the values 77, pﬁ,i”) and S\%V[) all
contain signal components and are significantly greater than zero. Also, given the
asymptotic properties of the independent signal sample eigenvalues [104], it follows

that asymptotically, as L — oo, W (p) converges to W (p). Thus, asymptotically, we

can write
A(M)>2
(Pp —AP(p)
= In |1— H, >. .2

)

Under H,, when L — oo, the value of ﬁ,gM is very small (ambiguity leading

to under-modeling). It results that the value of cos(v,(p)) is also very small and
asymptotically, it reasonably satisfies (3.16). Moreover, since /3,(,M) is small, it is

possible to linearize In(1 — u) around uy = 0, and (B.27) can be approximated by

P <pA’§’M))2 APP)|

Pur(p) = P{cosm(p)) < o0 AP H,,}. (.29

Hence, given the asymptotic distribution of (3.16), when L — oo, the expression of
Py (p) in (5.20) follows directly.

In the same way, from (5.5), (5.20) and the definition of W(p) in (5.23), for
p=0,...,M — 2, we have

P+ AF p+ |
F(p) = lll —( ) < —F P (B30)

Under Hp,, when L — oo, the value of ﬁl()]fl) is very small, and similarly to (B.28),

the above equation can be approximated by

(ﬁ(sz)Q AP(p+1)
? > P H

W(p+1) L P (B:31)

Pr(p) = P
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Under H,, recall that when L — oo, we have cos(vp41(p)) ~ N (1y(p), 2(p)), where

)\I(JM) > )\éffl) = ¢2. Thus, for p=1,..., M — 2, we obtain

Pr(p) =P { cos(Ypr1(p)) > ||f.(M)||1\/W<p +1DAP(p+1)

L

H,,} . (B.32)

Hence, given the asymptotic distribution (3.16), for p = 1,..., M —2, the expression
of Pr(p) in (5.21) is deduced directly.

When p = 0, it is not possible to divide by |[r*)]| as it is equal to zero. However,

once can see that Llim RM) = 521 m—1. Therefore, we also have Llim é%w) = i, for
—00 —00
m=1,...,M — 1, where i,, is an (M — 1)-dimensional vector of zeros except for

its m-th element which is equal to one. Thus, asymptotically, we can reasonably

approximate &M

eM) are ordered according to their magnitudes as in (4.10). Moreover, considering

by 7(1,a) as given by (4.3), bearing in mind that the elements

the normal product distribution (4.18), when I — oo, we can use the generalized

central limit theorem to asymptotically obtain

M x Fan 2 X, (B.33)
where
X.~N(0,0'/L). (B.34)

Equivalently, since |é§M)| = ﬁgM), for the case of real additive noise and for a large

L, we have asymptotically

L/ a2 o
= <p§M>) 2 x (B.35)

p

where
X, ~ X7 (B.36)

Consequently, ﬁgM) V'L/o? has a x; distribution with mean /2/7 and variance (7 —
2)/m. Tt is also a half-normal distribution with parameter ¢ = /7/2. Therefore,

from (B.31), when L — oo, we have

Pp(0) = P { gﬁgw > W(1)2AP<1>

g

HO} (B.37)

and given the half-normal distribution of p{""'v/L /o2, expression (5.22) follows.
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B.5 Proof of Result 5.2.3

Observe that relation (5.26) can be reformulated as

[rON = APW(2)/L — (1)
=0 > \/2AP(2) (B.38)

or

D)X
AP2)W(2) >
OWR) 2 - =on

Under H;, we have )\gM) > )\éM) = o2. Note that most penalty functions can be

[1 + M] . (B.39)

factorized as P(p) = v - C(L), where v is the number of free parameters in the
data model, and C(L)/L tends to zero as L increases. Thus, using the definitions
of (1), ¢2(1), AP(2), and W (2), it can be easily seen that for a large L, relation
(5.26) is approximately satisfied.

B.6 Proof of Result 5.2.4

Given the definitions of W(1), p,(1) and ¢, (1), and using A — [1+(M—1)SNR|o?,

we have

W(l) = [1+4 (M —1)SNR]o*raarn (B.40)
1+ MSNR

pay(1) = L(MSNR)? (B.41)
1+ MSNR

When MSNR < 1, we can rewrite Py/(1) as

Ix 01 Vo ranan APA)/L
Py (1) =~ erf : —-1]. B.4
(1) & er ( 1/L(MSNR)? (B43)
At the same time, using the expression of Py, (1) in (5.24), we obtain
Pary (1) ~ erf (\/QAP(I) . \/ZMSNR) . (B.44)

Remark that under H;, we are in a scenario where A\; and /\gM) are very close to
0? (under-modeling) and ||[r®|| is very small but different form zero. Hence, given
that erf(-) is a non-decreasing function and L(MSNR)? < 1, by comparing (B.43)
and (B.44), relation (5.27) is verified straightforwardly.
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B.7 Proof of Lemma 5.2.5

Rewrite the criterion as GAIC) (p) = LM (p) + PO (p) with

(HM—l A\ ))1/(M_1_p)
m=p+1 7\

L0 (p)=—L(M —~1-p)n 1 ZZ\/[fl A1) (B.45)
M—1—p LZem=p+1 "M
and
- p (p%”))z
'P(A/[)(p) = Lln T(M.M) — +p2 +p (B46)

A

m=1

Observe that £M)(p) in (B.45) is the conventional eigenvalue-based LL [106, 113],
i.e., the ratio of the geometric mean to the arithmetic mean of the noise-only eigen-

values. Tt is shown in [114] that L) (p) satisfies the following:

AM) (A O(LIn(In(L))) ; p <p,
e _{ Omm(L)) i 5>y (A7
therefore, it can be seen that
Jim (LIn(in(L)) / P(B) = o0 5 p<p, (B.48)
Jlim. P(p) / (In(In(L))) = oo ; p>p. B.49)

Combining (B.47), (B.48) and (B.49), it is clear that GATIC)(p) is minimized for

p = p and therefore is a consistent source number estimator.

B.8 Proof of Result 5.2.6

From [104] and the approximations of Section 5.2.1, under H;, for L. — oo, we

asymptotically have

2\ o2

(E<M>(1) _ EW)(O)) ~ L (ﬁ _ 1) (B.50)

(E<M>(2) . E<M>(1)) ~ L (ﬁ _ 1> (B.51)

2\ o2
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where £ (p) is defined by (B.45).
Hence, defining Py, . (p) and Pgg, . (p) similarly to (5.14) and (5.15), respec-

tively, it can be readily verified that, for L — oo, we have

) N arw) |
1 1
Prreus(1) W) + B (; — 1) < 7 Hy (B.52)
: <A<M>> 2 \
P2 1 (X AP(2)
\ /

Observe that in both the under- and overmodeling cases, (A/02 — 1) > 0 and
(A2/o% — 1) > 0. Thus, using the results of [104] leading to expressions (5.24) and
(5.25), and the derivations of Appendix B.4 leading to expressions (5.20) and (5.21),
and taking into account that erf(-) is a non-decreasing function, Result 5.2.6 follows

directly.

B.9 Proof of Lemma A.5.1

In what follows, we present the details relative to the derivation of the stochastic
CRB. Recall that the CRB is given by the inverse of the FIM of the unknown
parameters of interest. Considering the vector of unknown real parameters 1 defined

in Section A.4, the (4, j)-th element of the FIM, F,, is given by [81]

OR OR
Fi; = Ktrace R—l—R—l—} : B.54
! { oni On; (B.54)
Let v := [0" fT}T, and D := [Dg Dy|, with
Dg:=F" 0% and Dy:=%-o0A. (B.55)
Using the expression of D and the results of [76, 91, 103], note that
8R aR o T H

R

{(UR,i;i]) ® 17 } D (B.56)

where 1, = [1 1]T, and i; is defined in (7.14).



B.9. Proof of Lemma A.5.1 139

From (B.56) and using results of [39, 76, 103], we have the following:

Foo = KI'[Dj® (RUY)+ (R"U") @ Dy]
(®) e ®)]
D} ® (RUT) + (R"UT) @ DY)" T (B.57)

Fss = KI'"[D}® (RUY)+ (R'UT) @ DY]
(R o ®)7]

DT ® (RUT) + (RTUT) @ DY)" T (B.58)

where T = [vec(ii]) vec(i»if)]. From the structure of Z, it can be easily shown
that ZT [AB]Z = A © B . Using this property with (B.56) and the identity (A ®
B)(C ® D) = AC ® BD, it can be readily verified that F,, can be written as
(39, 76]

Fu=2KR { [122® (RHUHRilURH)] © (DHRﬂD)T_;_
126 (R, U"RD)] o (R, U"R~'D) 011}
(B.59)

with 122 = 121%

Using results of [39, 76, 103], from the expansion of Q in (A.14), we get
Foa=KP"|(RT) @R | P (B.60)

where P is defined in (A.4), applied to Ry, instead of R..

Note that R,; has a Hermitian structure and is completely unknown. This sug-
gests that R, can be written as a linear combination of p? base matrices, in the
same way as Q, where p is the number of sources, and in our case is equal to 2.
Moreover, it can be shown that the parameterization of R,; in terms of ¥;’s does
not have an impact on the final expression of the CRB on v [39]. Thus, similarly to

F 414, We obtain

Fpo= KPS U7 0 UM [(RY) " o R]
U* @ U|P, (B.61)
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with P, = [vec(¥;)...vec(¥,2)] and p = 2.
Using (B.59), (B.60) and (B.61), the cross-terms F,q, F,, and Fpq can be
easily deduced.

From the obtained expressions of the auto- and cross-terms along with properties

of block-matrix inversion, we get the following expression for the CRB:

CRB,' = Fou+ Fup (Fop— FraF i Fap)
("qu}-aéfqu - j:PV) +
:FVq (-’qu _qufppilfPQ)_
(fqp]:ppilfpv o ]:q'/) ) (B.62)

1

Using the results of [39, 76, 90] and applying them to (B.62), the closed-form
expression of the stochastic CRB of (A.30) can be deduced straightforwardly.
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