Chapter 3

Study of Common DSP Algorithms and
Their Architectures

Contents
3.1 Finite Impulse ResponseFilter 47
3.1.1 FIR Filter Architectures 48
3.2 Discrete Fourier Transform 53
3.21 FastFourier Transform 54
3.2.2 Fast Fourier Transform Architectures 58
3.3 Discrete Cosine Transformot nn.. 64
3.3.1 Reported pipelined DCT Implementations 66
34 ViterbiDecoding 69
341 ConvolutionalCoding 69
3.4.2 The Viterbi Algorithm 69
3.4.3 Proposed Parallel-Architecture Viterbi Decoder 71
3.4.4 Viterbi decoding using the R-2SDF architecture 76
3.5 Proposed Specialized Reconfigurable Architectures 78
3.5.1 The Proposed Reconfigurable Size MDCT Processor 78
3.5.2 A Reconfigurable FIR Filter Realization 82
3.5.3 TheProposed R2MDF Architecture 87
3.5.4 Reconfigurable R22MDF FFT Processors. 94
3.6 ConcludingRemarks., 99

— 45—

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
46 ARCHITECTURES

In the past few decades, developments in field of Digital Signal Processing (DSP)
combined with the advancements in process technology and computer arithmetic tech-
nology has paved the way for the realization of a magnitude of products and applica-
tions that were not previously possible to realize. Applications in areas ranging from
automatic control to cryptography and multimedia processing became now possible
to realize by utilizing the advancements in the aforementioned fields.

An economical and common solution is to implement the DSP algorithm of interest in
software and have it run it on a up. However, ;ps may not be a suitable solution when
processing speed is demanded.

This is because typically many DSP applications involve a considerable amount of
arithmetic operations. Such heavy arithmetic computation requirements need rela-
tively long computation times given the limited amount of arithmetic functional units
available in most ups. Hence, up performance will not suffice many DSP applications
demands.

In this context, specialized ASICs that are capable of delivering the required computa-
tions within the required time constraints are utilized, yielding thus orders of magni-
tude of performance increase. As was discussed in Chapter 1. This is a solution that
lacks flexibility and involves increasing amounts of NRE costs.

There are several strategies for designing processors for DSP algorithms. One way is
to design an accelerator implementing the most computationally expensive parts of
the algorithm. This approach —although it usually saves hardware— requires extra
control and data management resources especially when the implemented accelera-
tor needs to be invoked several times within the computation. This control is mostly
implemented in software which in tern elongates the total time of computation.

An other design strategy is to implement the complete algorithm in hardware investing
thus in area to increase the performance. The DSP algorithm can either be implemented
as either a “parallel architecture” or as “pipelined architecture”. In the parallel architecture
approach parallelism in the DSP application is exploited and usually blocks of data
are processed and produced at each clock cycle. This approach usually needs mini-
mal control since data is consumed, processed and produced in parallel with no need
for intermediate storage and operation scheduling because the complete Signal Flow
Graph (SFG) is implemented. However parallel architectures are very expensive in
terms of area requirements and thus are only used when high performance is critical.

In the so called pipelined approach data is consumed and produced serially. Therefore,
scheduling of intermediate data and operations is required to allow operation on the
appropriate pair (or set) of data supplied to different computational elements. The con-
trol resources needed are usually of moderate size especially when the SFG is regular.
Area requirements of both data path and control resources are typically considerably
lower than that of the parallel approach. In general, pipelined architectures are widely
used and exhibit adequate performance.

3.1. FINITE IMPULSE RESPONSE FILTER 47

The algorithms chosen for discussion in this Chapter span a wide range of DSP appli-
cations and thus a wide range of VLSI architectures as well. Finite Impulse Response
tiltering was chosen for its simplicity and regularity, the Fast Fourier Transform for
its relative complexity (involving extensive butterfly operations) and regularity, the
Discrete Cosine Transform especially for its irregularities and Viterbi Decoding for its
irregularity and involvement of bit operations. All of the four above algorithms are
widely used and a lot of work on several VLSI architectures have been reported in the
literature.

In the course of this work not only the abovementioned DSP and their VLSI archi-
tectures were studied, but moreover, some of them were realized and in some cases
improved and extended. The goal of these realizations was to design and test designs
of these DSP algorithms featuring similar and repetitive modules. This modularity
of internal components is a feature that can help clarify what computational features
are included in such modules and how is the data flowing within the data path. This
knowledge is very useful in designing the target CGRC for DSP applications: its pro-
cessing elements, routing strategies and other features.

In the next sections the above DSP algorithms are briefly described, their implemen-
tations are discussed and our contributions are also presented. In the next Section the
Finite Impulse Response filter and its implementations are discussed. This is followed
by a similar discussion on the Fast Fourier Transform and its implementations in Sec-
tion 3.2. The Discrete Cosine Transform and its implementations are discussed in Sec-
tion 3.3. In section 3.4 Viterbi decoding and its implementations are discuses. Section
3.5 presents some of out contributions in the development of VLSI architectures for the
above algorithms. A summary and remarks in Section 3.6 concludes this chapter.

3.1 Finite Impulse Response Filter

Filtering in general means allowing some parts of the input signal to pass to the out-
put according to given characteristics. In signal processing filtering allows the removal
uninteresting parts of the input signal such as random noise, or components of a given
frequency content. In digital communications filtering can be either analog or digital.
Analog filtering operates on the analog signal before analog to digital conversion. Al-
ternatively, filtering can take place on the digitized signal. Digital filtering in general
is more suited for fabrication since it can be more easily fabricated in standard C-MoS
processes. In addition, digital filters are less sensitive to ambient conditions changes
and enjoy good stability properties.

The Finite Impulse Response Filter (FIR) is a very common algorithm used in spectral
shaping, motion estimation, noise reduction channel equalization among many other
DSP applications. Because of its bounded output characteristics it takes its name “Fi-
nite Impulse Response”.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
48 ARCHITECTURES

The FIR filter is a generalization of the on going average filter. The FIR filter’s output
is computed by multiplying current and past inputs by coefficients such as shown in
the FIR filter formula below:

y(n) = Z hxx(n — k), (3.1)

or equivalently, the FIR filter’s transfer function is given by

N
H(z) =) hpz " (3.2)
k=0

The size of the FIR filter is determined by the number of coefficients. A FIR filter of
size N will have N coefficients and at least V — 1 delay elements to store past values
of the input needed to be operated on to produce the output. The size of the FIR filter
is some types expressed in taps which is the number of delay elements + 1.

3.1.1 FIR Filter Architectures

e Canonical Form Structure
The Canonical form FIR filter structure is directly derived from Equation 3.1
above. In the canonical form structure, partial products of current and previous
inputs are fed to a multiple input adder. Practical realizations of such canonical
form structure is known as the adder tree architecture. For an NV tap FIR filter, the
adder tree architecture depicted in Figure 3.1 needs N — 1 registers for storing
previous inputs, N — 1 adders and N multipliers.

e Direct Form Structure
The direct form implementation of the FIR filter can be also directly obtained
from its formula. As shown in Figure 3.2 delayed inputs are scaled by factors
producing partial products that are in tern summed to evaluate the output. No-
tice that this architecture of the FIR filter can be divided to similar portions each
containing a delay element, a multiplier and an adder each representing a tap.

o Transposed Form Structure
Figure 3.3 SEG of the direct form FIR filter of Figure 3.2. The transposition theory
states that: “Reversing the direction of all the edges in a given SFG and interchanging
the input and output ports preserves the functionality of the system” [74]. The trans-
posed SFG of the direct form FIR filter is depicted in Figure 3.4. Thereupon, the
transposed form FIR filter is shown in Figure 3.5 where the input is broadcaster

3.1. FINITE IMPULSE RESPONSE FILTER 49

x(n) oo — R . R
h(0) h(1) g h(N-2) h(N-1)

\

) 4

s
\
N

i y(n)

Figure 3.1: The adder tree architecture

) 4

——»R

WN-2) @ WN-1) @

R

B

Figure 3.2: The direct form implementation of the FIR filter

to the multipliers with the coefficients in reverse order and hence the transposed
FIR filter implementation is also o known as the broadcast implementation. Here we
can also partition the FIR filter into taps each having a multiplier and an adder.

One of the advantages of the transposed form is that the registers shown in the
bottom of Figure 3.5 serve the purpose of delaying partial products as well as
pipelining and thus saving pipelining registers pipelining hardware. However,
broadcasting implementations are not preferred in VLSI implementations be-
cause of higher parasitics and cross-talk potential ! which makes the Direct Form
FIR filter implementation preferred for VLSI implementations. An other advan-
tage of the Direct Form implementations is that it allows the implementation of
bigger FIR filters than that which can be implemented by the available hardware.
This can be done done by storing partial data in intermediate memory and then

!resulting from the long input broadcasting wires

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
50 ARCHITECTURES

-1 -1 -1

x(n)

h(0) h(1) h(N-1) h(N)

- y(n)

Figure 3.3: SFG of the direct form FIR filter

z1 z1 71 z1

y(n)

h(0) h(1) h(N-1) h(N)

x(n)

Figure 3.4: SFG of the transposed direct form FIR filter

x(n)

h(N-1) h(N-2)

Figure 3.5: The transposed direct form implementation of the FIR filter

the same hardware is used once again to complete the FIR filter computations
since the computations in later taps of the FIR filter is independent of the in-
puts. In contrast, such partitioning is not possible in the the Transposed Form
implementation since the old inputs are needed to operate on all taps and thus
additional memory is needed to store old inputs.

For linear phase filtering the FIR filter’s coefficient are symmetric and there-
fore,the number of multiplies can be reduced to the half and a symmetric FIR
filter can be realized as shown in Figure 3.6.

e Cascade Form Structure
The summation in Equation 3.2 can be factorized and thus the transfer function
can be represented by:

K
H(z) = ho H(1 + biez ™ bz ™?), (3.3)

k=0

where K = N/2if Nisevenand K = (N + 1)/2if N is odd with byx = 0.

3.1. FINITE IMPULSE RESPONSE FILTER 51

x(n)

h(0)

y(n)

Figure 3.6: The linear phase transposed direct form implementation of the FIR filter

ho

QJD C) (+) (+) y(n)

x(n)

Figure 3.7: The cascade FIR filter realization

The cascade FIR filter realization represented by Equation 3.3 is illustrated in
Figure 3.7.

e Polyphase Structure
To explain the polyphase structure consider the transfer function of a 9 tap FIR
filter expanded below:

H(Z) :ho + h12_1 + h22_2 + h32_3+ (3 4)
haz™ + hs2™° + hez™® + hy2™" + hgz 8. ’

The terms in Equation 3.4 can be grouped into say three terms such as:

H(2) =(ho + h3z™® + hgz %)+
(h1zt + hyz* + hez)+ (3.5)
(hoz % + hsz™® + hg2™®),

and the 9 tap FIR filter transfer function can be rewritten as:

H(z) = FEo(2°) + 2 T Eo(2°) + 2 2 E3(2%), (3.6)

52

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR

ARCHITECTURES
x(k) E 7] (») y(k)
R
E:) G)
R
E,:) G)
R
— Ez)

Figure 3.8: The Polyphase FIR filter structure

where,

EO(Z) = ho + Zﬁlhg + 272h6,
Ey(2) = hy + 2 thy + 2 2hy, (3.7)
Eg(Z) = hQ + Z_lh,5 + Z_th.

Each of the terms is in Equation 3.7 represents a FIR filter producing a partial
result and the final result is computed by adding the partial results as illustrated
in Figure 3.8.

Cascaded Lattice Structure
An elegant realization of the FIR filter is the cascaded lattice structure shown in
Figure 3.9. The cascaded lattice filter assumes a FIR transfer function of the form:

Hy(z) =1+ anz_”. (3.8)

An arbitrary FIR can be implemented by normalizing its factors such that by =1
and multiplying with h, at the input hence realizing the function: H(z) =
hoHN(Z) with Pn = hn/hO

In this structure, butterfly-like processing units each featuring a register, a couple
of multipliers in the feed-forward butterfly branches and a couple of adders at
the output of the processing units.

3.2. DISCRETE FOURIER TRANSFORM 53

Xy(2)

Figure 3.9: The FIR filter cascaded lattice structure

The coefficients of the multipliers are computed recursively by having the first
coefficient equal to the highest index coefficient py and then computing the new
coefficients according to the following relation:

—k _
Pl = p”—NI;N”’ 1<n<N-1
where ky is the coefficient of the highest index from the previous stage, p,, are the
remaining coefficients and p/, are the new generated coefficients. The maximum
indexed generated coefficient is taken as the next coefficient and so on.

We notice from Figure 3.9 that the cascaded lattice structure implementation of
FIR filters is more expensive than others in terms of the amount of hardware
resources required. Lattice structures —slightly different than the one shown in
Figure 3.9- are commonly used to implement other types of digital filters.

3.2 Discrete Fourier Transform

Transformations are very powerful tools in signal processing. Dealing with signals
transformed domains eases particular computations and allows better understanding
of the properties of the signal. The Fourier transform is one of the most popular trans-
formations representing the signal in the frequency domain. The Fourier transform
is used in many DSP applications such as radar implementations, multimedia pro-
cessing, Orthogonal Frequency Division Multiplexing (OFDM) and many other mobile
communication applications. The Discrete Time Fourier Transform (DTFT) is given by
the following formula:

o

X (&) = Z x(n)e 4, 3.9

n=—oo

Computation of such a formula is obviously very expensive; assuming however, that
the input signal is bounded and of length N instances and zero otherwise we reach the

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
54 ARCHITECTURES

Discrete Fourier Transform (DFT) representation of the signal using the DFT equation
below:

X(k)y=)» x(n)Wr, 0<k<N-1, (3.10)

Wit =e v =e W, (3.11)
and its inverse (IDFT) is given by:
1 N-1
z(n) = ¥ X (kYW 0<n<N-1, (3.12)

i

0

The amount of computations needed for each sample of the transformation in Equation
3.12is N complex multiplications and N — 1 complex additions which yields N 2 com-
plex multiplications and N? — N complex additions 2. This high number of complex
operations (O(N?)) makes it prohibitively expensive to build a feasible DFT processor
because of the huge amount of multipliers and address requirement.

3.2.1 Fast Fourier Transform

The Cooley and Tukey Fast Fourier Transform (FFT) algorithm [16] made use of the
symmetry and periodicity properties of the complex twiddle factors which resulted in
considerable reductions in the amount of complex computations bringing down the
order of complex computations to O(NlogsN).

Assuming a DFT size of a power of 2, the Cooley Tukey FFT algorithm uses a di-
vide and conquer technique to reduce the number of computations one step at a time.
The two main FFT algorithms are denoted the Decimation-in-Time and Decimation-in-
Frequency algorithms.

e The Decimation-in-Time Algorithm:
In the decimation-in-time (DIT) algorithm, the time-domain input values are split

’this is equivalent to 4N? real multiplications and 4N? — 2N real additions

3.2. DISCRETE FOURIER TRANSFORM 55

k
F, : QFI+WVF2

Figure 3.10: Simplified Basic butterfly SFG for the DIT FFT

into odd and even parts,

N/2—1 N/2—1
X(k) = > a3+ 3 e+ R
n=0
N/2—-1 N/2 1
= Z z(2n)e I N 2Hn 4 Z (2n + 1)e I WkEn+D
n=0
N/2—-1 N/2 1
= Z z(2n)e I NN 4 Z (2n + 1)e I N2 i
n=0
N/2-1 N/2—-1
= Z z(2n)e VR L Wk Z z(2n + 1)e /52"
n=0 n=0
N/2—1 N/2—1
= S zen)WE Wy > z(2n+1)
\n:O \nzO P
N/2 point FFT\rfor even inputs N/2 point FF;for odd inputs

Each of the resulting odd and even parts FFT can be further broken into two parts
until no further splitting is possible when only two input values are available.
This reduction results in the basic SFG simplified as illustrated in 3.10 which is
referred to as the Radix-2 decimation-in-time basic butterfly.

Furthermore, this recursive splitting operation results in dividing the N-point
DEFT operation into log, N stages each stage consisting of N/2 basic butterfly el-
ements. The output of even butterflies feeding the upper branches input of the
next stage of butterflies and the odd butterflies feeding the lower branches input
of the next stage of butterflies as the decimation-in-time FFT SFG shows in Fig-
ure 3.11. It is worth mentioning that the recursive splitting into odd and even
sets results in the input being sorted in the bit-reversed order ® while the output’s
original order is preserved as shown in Figure 3.11

e The Decimation-in-Frequency Algorithm:

%i.e. when representing the indices in binary reversing its order putting the MSB at the right and the

LSB at the left

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
56 ARCHITECTURES

o X(©O)

2
=
@]
O
O
O
O
O
O
O

b}
O
b}

x®) o»-0 0—O0 o0—O, /o X()
e /
x4 o o»°0 o—0Q 0—0 o X©
0 2
x(12) o6 >< Wi A’A \\\ ///o X(3)

w000
X2 o—o 0—0 0 o o X4
VY \ ’I
R N Q 5 \’ X(5)
X6) oo A Y N o ,‘m’, X
NP Wi s, 5 AN o X()

@ oo o N
o e NN S
x(5) o o_vzloéo><><m Wl6 ‘A‘A’A‘A o X(10)
x(13) O_V&OEO><O_V&2£O o A‘A le I‘X’X‘\ o X(11)
x3) 60 o0 Wl% ‘X‘X‘W’I‘\\ o X(12)
Wi < we O\ we [W L

O

C
O

x(1D) - o020 0—O O»C o ®
W Wi we
x(7) o o 16 16 16 O X(14)
0 2 6 7
X(15) vvl6 >< Vvl6 Vvv16 “’16 X(IS)

Figure 3.11: The decimation-in-time FFT SFG

In the Decimation-in-Frequency (DIF), the resulting frequency components of the
DFT are split into two halves: top and bottom as follows:

N/2—1
X(ky = Y an)Wir+ Z (n)Wok,
n=0 n=N/2

performing a time domain translation on the right hand term we get,

3.2. DISCRETE FOURIER TRANSFORM

57

N/2-1 v N2
X(ky= 3" amWh +we" Y a(n+ ZIWR!

= n=0

N/2-1 N

— Z x(n)WN?kx(n + g)WJ’\}’“,
n=0
N
but since W2 k = —1F,

then for even k = 2] we get,

N/2—1 N
X (20) = Z [z(n) + z(n + ?)]W]%,”l

N/2—1 N
= D b+ + W, 0<I<
2

n=0

N
S
2

?

denote X (21) = Xo(k) which is the & point DFT of zy(n) = z(n) + z(§ + n),

similarly, for odd k = 2/ + 1 we have,

X@20+1)= Z [z(n) — z(n + g)]wﬁn(Hl)

N/2-1
N N
= 3 o) —aln+ DIWEWE, 0<I<T

n=0

_1’

and denote X (2 + 1) = X; (k) which is the § point DFT of z1(n) = [z(n) + z(§ +
n)|W§. Thus, performing the above split recursively we reach the basic butterfly
SFG element shown in 3.12 leading to the Radix-2 decimation in frequency SFG
illustrated in 3.13. Here again bit reverse ordering is observed but this time at the

output side and the input is provided in normal order.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
58 ARCHITECTURES

1 O O 172

+

Xz e 7@—{>—o (X_,—XI)W;

Figure 3.12: The basic butterfly SFG of the decimation-in-frequency FFT

3.2.2 Fast Fourier Transform Architectures

Parallel implementation of the SFGs shown in Figures 3.11 and 3.13 of the Radix-2
decimation-in-time and decimation-in-frequency is unquestionably costly. especially
for large FFT sizes. Moreover, most applications do not require very fast FFT com-
putations. This makes parallel implementations of the FFT excessively powerful and
expensive. On the other hand, pure sequential implementations performance do not
suffice many applications requirements.

In this context the “pipelined” implementations of the FFT present a trade off between
pure parallel and pure sequential implementations of the FFT.

In the literature there is a wide variety of VLSI architectures proposed for implement-
ing the above and other FFT algorithm. In the following some of the Radix-2 archi-
tectures will be presented and briefly described. We are more concerned with Radix-2
architectures because their basic building element is the Radix-2 butterfly which in-
corporates adders and multipliers of two operands and a single output which is more
likely to coincide with our future reconfigurable coarse-grained processing elements
of our proposed CGRC coprocessor.

o The Radix-2 Single-Path Delay Feedback Architecture
The Radix-2 Single-Path Delay Feedback Architecture (R2SDF) [79] uses a very
elegant strategy to schedule the computations of either the SFG of Figure 3.11 or
3.13. Figure 3.14 show the R2SDF implementation of the DIF FFT SFG The basic
component is the Dynamic Butterfly whose operation is shown in Figure 3.15.

The basic idea of the R2SDF architecture operation is based on the observation
that the SFG of an N = C? point FFT can be divided into C' clusters each having
a set of butterflies whose inputs are separated by a power of two clock cycles
(assuming that the inputs are streaming in serially). Therefore, the received input
should be saved for a power of two, say d clock cycles and then operated on with
the second input arriving after d cycles. A shift register (or a FIFO) is then needed
to store the input data periodically and providing them at the proper instant to
the dynamic butterfly input.

The sizes of the feedback FIFOs therefore, start with 2¢~! and end with 1 for an
N-point decimation-in-frequency FFT to coincide with the corresponding butter-

3.2. DISCRETE FOURIER TRANSFORM 59

x(0) g o0—0, O0—o0 O0—o0 o—o X0
0
x(D) o O—0 O—0 e o><£léo X(8)
W i
X(z)o o 0—0 o520 o—o X4
2 0
/AN AN =
0
X o oMo o—o0 o—o X2
2 0
X3 oo oM xao
4 0
x(6) o o SWON o X(6)
6
x(7) o vvlﬁ 16 >< Vv16 X(14)
x®) o O—O O0—O o—o X
0
XO) o Hkd 0—0 o o><o—vﬁgo X(9)
i wo
x(10) L/ /VYVA 0O SIS oo XO5)
2 0
x(11) & \><></o o O_V&EO>—<O_V&§O X(13)
x(12)O ><><>Q< o6 o0 X(3)
0
v di! \\s ' mwm o Wy
0
x(14) o/ \ W O_,IEO o5, X(7)
6
X(15) o e R Niso = Wi, R—) X(15)

Figure 3.13: The decimation-in-frequency FFT SFG

fly input and output displacement of each stage. Similarly, for a decimation-in-
time R2SDF FFT processor, the FIFO sizes start with 1 and end with 297! as is
suggested by their SFGs.

As such, each dynamic butterfly stores the upper branch input data in the first
phase of its operation and in the second phase it carries out the butterfly as the
bottom branch inputs arrive operation.

While in the butterfly operation phase, the dynamic butterfly passes to the next
butterfly stage the upper branch outputs while utilizing the FIFO to shift in the
lower outputs that are provided to the next stage in the next phase of operation
ensuring thus correct ordering of data input to each of the butterfly stages.

Since the separation between the inputs of butterfly at each stage is two times
that of the next butterfly in the DIF FFT SFG (or half that of the next stage in the
DIT FFT SEG) and since the dynamic butterflies are half the time active and half

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR

60 ARCHITECTURES
g [) R g IR i
D_BF D_BF D_BF D_BF

w w w j

Count b3 \ b2 \ bl \ b0 \

Figure 3.14: The R2SDF implementation of the DIF FFT SFG

When control =1’ ‘When control =0’

[0

L

Figure 3.15: The Dynamic Butterfly component of the R2SDF architecture

the time passing data the dynamic butterflies can be controlled by simply a serial
counter count bits with each bit connected to the appropriate butterfly stage.

Each dynamic butterfly is cascaded with a multiplier to multiply the result with
the appropriate twiddle factor stored in a ROM whose addresses are provided
also by the counter.

The R2SDF architecture described above, requires the following hardware re-
sources:
— N — 1 dynamic butterfly stages each with two complex adders/subtracters

and multiplexors to select inputs and outputs.

N — 1 FIFOs of different sizes collectively 37, 25! words of storage.

— C — 1 complex multipliers.

C — 1 ROMs for storing the twiddle factors each N/2 words of size.

e The Radix-2* Single-Path Delay Feedback Architecture
The Radix-2? Single-Path Delay Feedback Architecture (R22SDF) FFT was intro-
duced in [42, 41, 40]. The R2?SDF algorithm and architecture aims at reducing the
hardware requirements of multipliers to (N — 1)/2. Using a change of variable
technique putting n =< %nl + %nQ +n3 > Nand n =< ki + 2ky + 4k3 > N, asin
[42, 41, 40] reaching the following relation of the FFT transform:

3.2. DISCRETE FOURIER TRANSFORM 61

N/4—1
X(ky+ ko +ks) = Y [H(Ey, ko, ng) Wit =) pygsks,
4
n3=0
where,
H(kl, k25n3) =
BI1 BE 1
_1\k1 E\ _ok1+2k2r E _1\k1 §N‘ 1
[o(1s) + (=DM + 5]+ (=) fang +) + (—1)Pa(ng + SN)]. (319
BF II

As seen from Equation above the R2?SDF frequency elements has are composed
of a big butterfly elements (BF II) joining its two inputs with a j multiplication
and both elements are in tern formed by throughly a normal butterfly. The re-
sulting R22SDF SFG is shown in Figure 3.16. Note that the j multiplication takes
place only at the lower branch output of only the bottom half butterflies which
necessitates more complicated control. Fortunately this control requirement can
be still met using the simple counter lines but this time with an extra and gate
and multiplexers as shown in Figure 3.17. The complete R2?SDF FFT processor
structure is shown in Figure 3.18.

o The Radix-2 Multi-Path Delay Commutator Architecture

The Radix-2 Multi-Path Delay Commutator Architecture (R2ZMDC) FFT pipelined
architecture [79] operates by rescheduling the butterfly inputs through feed-
forward shift registers. As Figure 3.19 illustrates, the R2MDC architecture con-
sists of delay elements, dynamic direct pass/criss-cross switches, static butterfly
units and multipliers. The operation of the dynamic switches is shown in Figure
3.20. Since the butterflies receive and produce data in pairs, they need not be
dynamic like their R2SDF counterparts. Rather data rescheduling is carried out
by the delay elements and the dynamic switches.

As data enters the R2MDC network, the upper input branch holds the first N/2
inputs (where NV is the number of points of the FFT) and when the second N
inputs arrive the correct pair of data is processed in the butterfly unit.

Note that from Figure 3.13 multiplication is performed only at the bottom output
branch of the butterflies. Therefore, the multipliers are placed only at the bottom
branch output. As can be also observed from the SFG of Figure 3.13 the upper
branch outputs and lower branch outputs supply the two half size butterflies of
the next stage such that the upper butterfly cluster of the next stage inputs are
supplied solely from the upper branch outputs of the preceding butterfly stage.
Similarly, the bottom cluster of samples its inputs only from the bottom outputs

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR

62 ARCHITECTURES
x(0) g o0—0, O0—O0 O0—0 o—o X0

X

o X(@®)

X(l)o f\ Q O—o0

Q,

O%é)
O
b} C
O

O O—0O O X(4)
@ \\ // S N A T
X4) o o &Vﬁoéo O0—O o—o X2
x(5) g \ 0 &Vfﬁo O o><o o X10)
x(6) o 0 O—V&EO><><O O o—o X(©)
x(M o 0 O—V&EO o—_<J>—o><o o X(14)
x(®) ¢ o o—vﬁogo O—O o—o X()
x©®) o o o—vﬁlgo O o><o o X9
x(10) 'A‘A‘A‘A o O_Vﬁzgo><><o o o—o0 X6)
x(11) 5 IAA o O_Vfgo O—_<J>—O><O o X(13)
x(12) o b, W o6 oo X3
x(13) o // \\s B, />O<\ Ws o o><o o X(11)

\ ; ¢

x(14) ¢ O——0 0—o0 o—o X(7)
x(15) ¢ o—<>—o o—vﬁzo o—_<J>—o><o o X5

Figure 3.16: The R2?SDF SFG [4(]

of the preceding butterfly stage. Thus, as the switch is in the direct pass mode, the
upper branch outputs are shifted in the delay elements and after N/4 cycles N/4
samples are stored and the switch is toggled to the criss-cross mode providing
correct ordered input pairs to the next butterfly stage and simultaneously storing
the bottom outputs of the preceding butterfly stage that were already preserved
for N/4 to be used as the upper branch inputs in the bottom butterfly cluster.

Obviously, since the switching activity frequency increases by a factor of two
for every stage, the control of the R2MDC architecture can also be generated by
a counter. The R2ZMDC architecture is widely used in many applications but it
sufferers from a low (25%) hardware utilization.

The Radix-2*> Multi-Path Delay Commutator Architecture
In [85] the authors work with the DFT formula reaching a SFG very much sim-
ilar to that of Figure 3.16 proposed by [42, 41, 40]. The principle profit of this

3.2.

DISCRETE FOURIER TRANSFORM 63

/D BF1 D_BF2

Count

from_reg_re to_reg_re

from_reg_im to_reg_im

from_prev_re to_next_re

from_prev_im to_next_im

mult_min_j sel

Figure 3.17: Basic butterflies of the R2?SDF FFT [4(]

Q(E D_BF1 D_BF2
w

b3 \ b2 \ b1 \ b0

Figure 3.18: The R2?SDF FFT processor structure [40]

approach is to gather the multiplications cascaded after two butterfly stages and
place them instead after one butterfly switch and cascading a regularly clustered
trivial —j multiplication after the other.

In contrast to [42, 41, 40], the authors of [85] choose to implement the resultant
FFT in an R2ZMDC structure. We denote this implementation the R22MDC archi-
tecture to differentiate between it and the regular R2ZMDC one and to point out
the resemblance in this approach and its SFG to the R22SDF architecture and SFG
discussed above.

In the R22MDC architecture the trivial —j multiplications are carried out in spe-
cial branches at the bottom output of each butterfly unit as ruled by the SFG. A
switch selects to pass an un-manipulated output or the —j multiplied one. The
R2*MDC architecture is illustrated in Figure 3.21. Because of the regularity of the
SEG of the R2?MDC SFG the switching activity control of the structure of Figure
3.21 can be simply generated by a counter.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
64 ARCHITECTURES

Count

Figure 3.19: The FFT R2MDC architecture [79]

When control =°1° When control =0’

]

Figure 3.21: The R2*MDC architecture [55]

3.3 Discrete Cosine Transform

The Discrete Cosine Transform DCT is a popular transformation that is used nowadays
in many applications. From a mathematical point of view the DCT inferior to the DFT
since it lacks many of the DFT’s elegant mathematical properties. However the DCT
has other features that make it very attractive especially in image, audio and video
compression applications.

Performing the DCT on a digital image produces a compacted form of the original
image which can be efficiently compressed using lossy compression techniques. Com-
pression’s main profit is the resulting reduction in the amount of memory needed for
storage, therefore, the reduction in the time required to process data and increases the

3.3. DISCRETE COSINE TRANSFORM 65

channel bandwidth efficiency.

Although DFT can also be used in compression algorithms the DCT offerers better
properties that makes it preferable for data compression. The DCT computations for
example involve only real operations in contrast to the DFT that whose operations are
all complex. The DCT energy compaction properties are also better than those of the
FFT. The above and other features qualified the DCT to be a popular tool used in many
applications in video teleconferencing applications, in ISDN multimedia communica-
tions, in satellite video transmission and in digital facsimile transmission.

The DCT can be expressed in vector form as:
Xe = [CN]mnX, mn=0,1, ... N—1 (3.14)

where x is the input vector of length N and X, is the resultant transformed vector. [Cy]
is the m x n transformation coefficients matrix.

The DCT is classified into four main types: I, II, I1I, and IV and their transform
matrices are given below:

5T

Chalmn = /% bmbncos<m]$7r>}, mon=0,1, .. N (3.15)
I 2 m(n+ 3w

[CN Jmn = N bmcos<T> , m,n=0,1, .., N—1 (3.16)
111 2 [(m+ 3)nm

[CN]mn = N anOS<T> 3 manzoa 1) sy N -1 (317)
2T 1 1

[CV T = N co:s((m+ Q)JEfnJr 2)T>], m,n=0,1, .., N—1 (3.18)

where, the DCT type is shown as superscripts of C' matrices and,

\/N7

by, =)
" 1, otherwise

{L ifm=0orm=N (3.19)

The DCT-Type-I of Equation 3.15 is symmetric and therefore, its inverse is the same.
This is also the case of the DCT-Type-IV given by Equation 3.18. The case is however
not the same for DCT-Type-II and DCT-Type-III where the transformation matrices are
the transpose of each other and they are therefore the inverse of each other.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
66 ARCHITECTURES

The main difficulty of DCT implementations is that the transformation matrices do not
enjoy all the attractive properties that the DFT twiddle factors posses a matter that
makes minimizations similar to those that led to the FFT algorithms not possible. As
a result, the DCT SFGs do not exhibit the regularity features of the FFT SFGs. In this
context a lot of work has been done to implement fast DCT algorithms via simplifying
the DCT flow graphs. For additional information the reader is referred to [66] where a
good survey of different fast DCT algorithms are introduced. Irregularities make the
realization of efficient pipelined processor difficult. This is mainly because the input
data of different processing nodes are of variable distances apart. Moreover, the op-
erations at different stages of the SFG are not necessarily similar. The aforementioned
problems cause the need of having different types of processing elements to suit all
types of operations at different portions of the SFG. Moreover, there is also the need of
the addition of more complicated control to help time and schedule operations and en-
sures smooth and continuous data flow through the processor. obviously, these special
considerations result in designs of lower efficiencies.

3.3.1 Reported pipelined DCT Implementations

In [38, 47] Hsiao et al. produced the 8-point DCT-Type-II SFG as well as its inverse
(DCT-Type-II) SEG. What is interesting in this realization is that the irregularities in
the SFG are separated from the regular parts. This paves the way for designing sim-
ple pipelined data path for the regular part and cascade it with a more complicated
pipelined data path to carry out the computation for irregular parts of the SFGs. More-
over, similarities in the regular parts of the aforementioned SFGs facilitate the reuse of
parts of the hardware to implement both the DCT and its inverse in one circuit.

The DCT/IDCT pipelined architecture was implemented in [38, 47] using a clever
Radix-2 Single Path Delay Commutator network. A couple of multiplexors are used
here to choose between for DCT or IDCT processing. The processing elements of the
regular parts of the DCT/IDCT SFG are controlled multiplexor passes data of correctly
displaced time stamps to the adder/subtracter unit. Different stages of the regular part
of the SFG have different time displacements between its branches and therefore, the
number of delay elements at every processing element stage differs.

In the pre and post irregularities in the DCT/IDCT SFGs data is either passed directly
or saved so pairs of data (formed current and old displaced by a given amount of time)
are processed together. There, controlled multiplexors are used to either directly pass
input data or processed data pairs.

Also, multiplications with the transformation coefficients is done by multipliers placed
in the correct positions of the pipelined architecture. The coefficients are supplied
through ROMs passing coefficients in the correct order. The control of the whole net-
work could be generated by a counter.

3.3. DISCRETE COSINE TRANSFORM 67

Figure 3.22: DCT-Type-II SFG Type A adopted by [57]

di

Figure 3.23: DCT-Type-II SFG Type B adopted in [57]

Another DCT-Type-II implementation are proposed in [66, 88, 67, 87] although here
2-dimensional DCT transformation is tackled. The 2-dimensional N x N DCT trans-
formation is carried out by performing the DCT operation on an N x N input matrix
rows and then performing the DCT transformation on the resultant columns. Again,
tuned SFGs of the DCT are utilized for simplifying the pipelined design process.

The reference DCT-Type-II SFGs considered in [57] for example is shown in Figures
3.22 showing the DCT II type a SFG and 3.23 showing the DCT II type B SFG. Firstly,
input data should be reordered to be supplied serially to the pipelined DCT processor.
The reordering process is carried out with a cascaded combinations of a very inter-
esting R2SDF-like processing units denoted Shift-Exchange Units (SEUs). Inputs or
previously stored data are either stored or passed through according to a control sig-
nal thus shuffling the input data.

The DCT operation of Figure 3.22 can then performed on the serially streaming input

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
68 ARCHITECTURES

PE.

O—®
=

Figure 3.24: R2SDF butterfly unit proposed by [87]

S 0

b)

d1 d idk

TR v A p——

Figure 3.25: The R2SDF processing of the DCT II (a) for the type-A SFG and b) pro-
cesses for the type B SFG shown in Figures 3.22 and 3.23) as in [87]

data with the aid of specialized R2SDF pipelined butterfly units shown in Figure 3.24.
Naturally a multiplier is attached to the output of the butterfly units for the multipli-
cation with the transform coefficients.

The DCT processed data is then transposed and reordered with a cascaded combina-
tions of SEU of suitable sizes. The transposed data is then processed again with a
pipelined DCT unit implementing the SFG of Figure 3.23. The DCT pipelined units
implementing the SFGs of Figures 3.22 and 3.23are shown in Figure 3.25.

In [88, 67] a similar approach is used although here the basic butterfly operation is done
with a feed-forward Radix-2 Single path Delay Commutator. It is worth mentioning
that all the control signals can be generated by a counter.

3.4. VITERBI DECODING 69

3.4 Viterbi Decoding

Shannon’s theory of channel capacity limit states that “For a given channel there exists a
channel capacity limit for error-free communications”. The channel capacity limit is given
by:

C = Blog(% + 1).

where, C' is the channel capacity in bits/sec.
B is the channel bandwidth in H z.
% is the linear signal to noise ratio.

Hence, error correction coding techniques are exploited and developed to reach the
sought theoretical channel capacity for error-free communications limit. There are two
types of error correction codes: Linear Codes and Convolutional Codes. In Linear Codes
the complete message (original data and redundancy bits) should be completely re-
ceived before decoding starts. In Convolutional Codes decoding can start before the
reception of the complete message. The Viterbi algorithm, introduced in [96], emerged
as a very popular approach for decoding convolutionally encoded messages.

3.4.1 Convolutional Coding

A convolutional encoder is a series of cascaded storage elements shifting from its input
end the original message. The output encoded message is generated by modulo adding
(XORing) samples from the current and delayed input data (XOR) according to given
generator polynomials expressed usually in octal numbers. The code rate r is defined

as the ratio of the number of input raw bits by the number of output encoded bits
No. of inputs
No. of inputs *

which is one plus the number of storage elements K = 1 + F'Fy, An example for a
K = 3,r = 1/2 with generator polynomials 7g, 53 convolutional encoder is shown in
Figure 3.26

r= The convolutional encoder is characterized by the constraint number

The state diagram of the encoder illustrated in Figure 3.26 is shown in Figure 3.27. The
state digram can also be represented as in Figure 3.27. Solid lines indicate a 1" input
and broken lines indicate a ‘0" input. Encoded outputs (or codewords) are associated
with each line.

3.4.2 The Viterbi Algorithm

In a Viterbi algorithm decoding is carried out by finding the most probable state at a
given point of time. This is done by measuring the difference between the received

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
70 ARCHITECTURES

Qutput 1

Input FF

\ 4

Output 2

Figure 3.26: An example K = 3,7 = 1/2, generating polynomials 7g, 53 convolutional
encoder.

data and the code word of every branch. Then this measure (or metric) is added to
that of the corresponding previous state. This way, the metric of every branch carries
information about its own distance from the input and “inherits” information from its
predecessor state. The best metric of each branch is then selected and becomes the
new state metric. By the knowledge of the initial state and paths from each state to the
other, the decoded data can be produced as depicted in Figure 3.27.

00 00 00
b 4
11 11 11 P
7
11 11 1n 7
7
00 00 00
[N N]
10 10 10
01 01 01
01 \ 01 01
10 10 10

1 1 0

> {

Figure 3.27: The decoding process in trellis diagram of a K = 3,7 = 1/2 with generator
polynomials of 7, 55 convolutional encoder.

A trellis diagram is formed by concatenating many state (or code trellis) diagrams.
Knowing the initial state and the decision or path from each state, the most probable
state path of the encoder can be known and hence the data can be decoded. Figure 3.27
shows the forming of a survived path after tracing back the trellis diagram.

There are two main blocks in a Viterbi decoder: the Add Compare Select (ACS) block
and the Trellis Window (TW) block. The ACS is a computational-intensive block and

3.4. VITERBI DECODING 71

is a major contributor in the area of the decoder. The feedback of previous metrics pro-
hibits pipelining of the ACS unit making it the main speed bottleneck. A convolutional
encoder of a constraint number K has S,, = 261 states. A parallel Viterbi decoder
for such an encoder would therefore contain S,, ACS cells for metrics computation.
Each ACS cell uses the input data and other internal metrics to compute the new state
metric.

The later block, namely the TW block, is mainly a block saving information about
previously received data needed to produce the output. It consists of a memory that
stores the ACS units’ output information and some simple logic for decoding. The
probability of the correctness of the guess on the output depends on the length of the
trellis window. Obviously, the on-chip real estate is directly affected by TW length.
Following we introduce briefly the two main Viterbi decoder’s architectures: the Trace
Back (TB) and the Register Exchange (RE).

e The Trace-Back Technique In the TB technique, (see Figure 3.28) the current best
state is used to predict the previous state by referencing the corresponding value
of the first column of the TW. This process is repeated for each computed state
and the corresponding column till the end of the table. The decision bit selected
by the latest computed state is passed as the output.

e The Register-Exchange Technique The RE technique is a straightforward tech-
nique for managing the decision vectors. In this technique, the TW is constructed
of a bank of registers connected in the same manner as the trellis diagram. The
newest decision bits are inserted in the left column of the TW as the oldest bits
shift out at the right of the window. Each state is assigned a row and the newest
decision bit is used as the select line of the multiplexers connecting the states.
Each row now contains the survivor path of its corresponding state. The sur-
viving paths then merge in the table with high probability and if the window is
large enough the outputs of all the states should be the same. The output then can
be sampled from any state. The structure in Figure 3.30 illustrates the Register-
Exchange method in addition to the majority counter technique discussed in Sec-
tion 3.4.3.

3.4.3 Proposed Parallel-Architecture Viterbi Decoder

In both the TB and the RE techniques discussed above the trellis table’s length is the-
oretically infinite. Moreover, since the metrics’ magnitudes increase constantly, the
metrics” bit widths should also be infinite. For the TB approach, metrics of all states
should be compared to choose the best initial state which is costly especially for large
constraint lengths. Below we propose feasible solutions —that offers minimal or no loss
in the decode quality— for the stated problems.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR

72 ARCHITECTURES
Decision Vector Sn Sn o
L_» 1 1

a3 s s

[0 [0 [0

ve) «Q «Q ocoo «Q
2o
Do
85
Metrics @

Decoded
k k Bit
_

Shift Shift

Figure 3.28: The TB architecture.

e The Add Compare Select (ACS) Unit For high constraint number parallel Viterbi

decoders, the area, the power and the time consumed by the ACS unit is signifi-
cant. To reduce this area, a Branch Metric Unit (BMU) that computes all possible
4 branch metrics needed is separated as common unit that provides all ACS units
with the appropriate branch metrics. Another practical problem is that the mag-
nitudes of the metrics are constantly increasing. Channel noise and accumulation
of metrics are the reasons behind this increase. To solve this problem, the metrics
should be frequently normalized. Attempting to keep the metrics values under a
certain threshold by naive “shift-right” approaches will not work since this divi-
sion will result in an imbalance between old and new metrics’ weights and hence
leads to wrong decisions. Therefore, the normalization process implies the inser-
tion of an extra adder in each ACS unit. This accounts for a serious increase in
area and hence, power consumption but moreover will degrade the speed. We
propose to normalize only the MSBs of the metrics in the 2’s complement repre-
sentation. This way, one small size adder can be used instead of a full size adder.
In our case, we needed only 3-bit adders to normalize 16-bit metrics. Testing only
the 3 MSBs of any metric sufficed to signal for normalization. Figure 3.29 depicts
the proposed ACS architecture.

Register Exchange In a systolic RE architecture the trellis window is the main con-
tributor for power consumption. This is because the data is being shifted through
the complete table which results in a huge transition activity. To reduce the size
of the window a majority counter was implemented as illustrated in Figure 3.30.
Our simulations show a significant improve in the decode quality with that ma-
jority counter.

The proposed Multi-Path Trace-Back Architecture
In TB decoding the starting (initial) state can be found, ideally, by comparing
the metrics of all states. The best metric corresponds to the best state number.

3.4. VITERBI DECODING 73

Feedbacks from previous metrics

Survivor branch no.

1 bit
—_—
. Normalization
metsize
Branch
metrics MSBs o
from
the L] Normalization

BMU GComp constant MSBs metsize
—49@ Best LSBs State metric

metric

Figure 3.29: The proposed ACS unit.

Decision Vector Decode Bit

J93unog Awiofepy

P

e

=
j

=

Figure 3.30: The proposed RE Viterbi decoder architecture.

Although it can be assumed that the initial state choice can be fixed supposing
that the chosen path will eventually merge in the large enough TW, the fulfillment
of this assumption will lead to a large TW and a decode quality close to that of
the smaller RE approach. On the other hand, it is impractical and expensive to
process S, = 25! states in order to find the best one. One, therefore, needs
an intelligent, yet cost and speed effective technique that facilitates choosing the
initial state with no or minimal degradation in the Bit Error Rate (BER). Some
approaches such as the M algorithm were proposed [12, 26]. A main drawback
of that approach is the need of expensive sorting hardware.

74

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
ARCHITECTURES

The proposed idea is to guess the current state number (C'S) based on our knowl-
edge of the previous state number (P.S). According to the structure of the convo-
lutional encoder, given the PS the C'S number can be either of the two following
possibilities: S(£2+0) or S(£2+ QKTA) since the new state is generated by shifting
an input bit into the encoder’s shift register. Hence, if the previous best state is
known at any point of time, the current best state can be computed by comparing
the metrics of the two possible child states. But since the decision taken depends
on the metrics of which values are affected by the channel conditions, a manip-
ulated input can result in making the wrong decision and choosing the wrong
path. Although this path should merge with the correct one later in the decode
process, there is no guarantee that the TW will be wide enough for the merge.
There is a need, therefore, to revise our previous decisions in the following cycles
to make sure that we have chosen the correct path. We need to look back in time
and choose among not only the (PS) child states, but moreover, the child states
of the (PS)’s sister state that was neglected. Or even more, we might need to look
a few cycles back in time and check all the possible resulting descendants of an
original parent state. Let LB L be the look back levels, the C'S can be chosen from
a set of candidate states as follows:

PS
_ . K—LBL-1 . LBL
C’S—best{S(2LBL + 1 %2)},i=0.2"7" -1
Previous state feedback
Metric 1 ‘
ACS Best paths
addresses
generator

O O O
ACS Metric 2

V 1 metric
° Best state

S X Comp Best current FE number to
n metrics o
state number trace-back

o] o
o

Sn metrics

LBL .
2 metrics

Metric Sn

ACS

Figure 3.31: The proposed best path selection architecture.

o Synthesis Results

To validate our approach, TB Viterbi decoders with LBL of 1 to 6 and RE Viterbi
decoders were modeled in VHDL at the RTL level and simulated. All Viterbi
decoders were of K = 7,5, = 25~! = 64 states and a metric size of 16. Simula-
tions were based on an accurate channel model and punctured coding. Synthesis

3.4. VITERBI DECODING 75

was carried out using Synopsys Design Analyzer 7% using 0.25um technology
libraries. Figures 3.33 and 3.34 depict a significant improvement in the decode
quality of the 3 LBL TB decoder over that of the proposed RE decoder with a
majority counter. Note that this proposed majority counter approach offers a de-
code quality roughly 30 window lengths better than the classical RE approach as
depicted in 3.32. The RE decoder, on the other hand, is much faster and smaller
in area (see Table 3.1). While a window length of 70 was used for the synthesis
reports shown in Table 3.1, a window length of 40 was used in the simulations
comparing between the decode quality of TB decoders of different L BLs. Figure
3.35 shows that the decode quality of the 3 LBL TB decoder is almost the same
as the 6 LBL TB decoder. Note that the performance of the 6 LBL TB decoder
is theoretically the best for a given WL since the descendants states of a parent
state 6 generations back are all the 64 states. Note also that there is a significant
difference in area and speed between the 3 LBL TB decoder and the larger LBL
ones with virtually no improvement in the BER. The 3LBL TB decoder is thus an
acceptable compromise.

Table 3.1: Timing and Speed reports for the RE and the 1, 3, 6 LBL decoders synthe-
sized using a 0.25um technology.

| Blockname | RE|[1LBL|[3LBL|6LBL|

Area (mm?)

ACS top 2.38 2.56 2.56 2.56

Best State === 0.21 0.23 0.35

T™™W 1.28 3.04 3.08 3.23

Top 3.69 5.62 5.66 5.81
Timing (ns)

ACS top 3.4 3.61 3.61 3.61

Path selection || === 396 | 1054 | 84.22

™ 4.12 473 | 1229 | 84.35

Top 4.4 475 | 1229 | 86.41

Speed (M H=z) | 227.3 210.5 81.4 11.6

A very important drawback of our Multi LBL approach is that the best state
selection becomes a determining factor in the speed of the decoder, since this
unit cannot be pipelined because of the feed-back of the P.S needed to compute
the C'S. Nevertheless, high throughput in excess of 80 Mbps can be achievable
as shown in Table 3.1. If high speed is the goal, the RE with a majority counter
approach can be used.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
76 ARCHITECTURES

““ \\\\‘\\

i

TIILRR
\\\\\\\\ \\\\\“ i \\\\\\“\‘ ~

\\\\\\\\\\\\l&\ \\\\\\\\\\\ \\\~

\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\.

Bit Error Rate (%)

-g

O
»

Window Length 20

18 16
Signal to Noise Ratio (dB)

Figure 3.32: RE decoder without a majority counter

3.4.4 Viterbi decoding using the R-2SDF architecture

In a Viterbi decoder the Add-Compare-Select (ACS) units” output metrics are fed back
to the inputs to reflect the state transition represented by the trellis diagram of the
convolutional encoder. As such, the ACS unit produces decision bits and metrics rep-
resenting the probability for a given state to be visited by the convolutional encoder.
For the sake of clarity, we illustrate our architecture for a simple case of a convolutional
encoder of a small constraint number.

Consider for example a convolutional encoder of a constraint number, K = 4. Such an
encoder has a number of flip-flops of C' = K — 1 = 3 and number of states S,, = 2¢ =8
states. The trellis diagram of a Viterbi decoder for this encoder is shown in Figure 3.27.

By reordering the right hand side states forming horizontal connections between the
states on each side of the trellis diagram and continuing this reordering process for a
number of stages we observe the recovery of the original order of states after C stages.
This reordering of states is known as in-place state replacement [9]. The trellis diagram
after in-place replacement shown in Figure 3.36 is very similar to the FFT butterfly
data flow graph. This interesting analogy unveils opportunities of exploitation of well
studied FFT architectures and fitting them for efficient realizations of Viterbi decoders.

3.4. VITERBI DECODING 77

[¢)]

20% \ \ \.
- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘“‘\‘““\\\‘\\\\Q\&‘\.
p \\\\\\““““‘\\\
0 WMA
AN 4

Signal to Noise Ratio (dB)
Figure 3.33: The proposed RE decoder with a majority counter

By adjusting the architecture of the R-2SDF FFT implementation, Jia et. al formulated
an interesting realization of the Viterbi decoder’s ACS unit [49].

While the FFT operation has a fixed number of butterfly stages in the data flow graph,
the ACS operation, however, repeats indefinitely and the computed values are reused.
The current computed metrics are stored to calculate the next metrics. Observe also
that every dynamic butterfly unit computes metrics for one stage of the trellis diagram.
Thus the C' dynamic butterfly units shown in Figure 3.37 cover C'sets of S, inputs to the
decoder. After C' stages of butterflies the resulting metrics original order is recovered as
shown in Figure 3.36 and fed back thereafter to the first stage. Unfortunately, because
of this feedback, the aforementioned architecture cannot be pipelined since pipelining
will delay the feedback data which is strongly correlated with the streaming input to
the first stage, and that will result in wrong decoding. Pipelining and slowing down
the input stream to wait for the appropriate feedback data defeats the main merit of
pipelining which is speeding up. This is the sole reason that makes the ACS unit the
speed limiting factor of any Viterbi decoder implementation. Nevertheless, the overall
throughput is still in the expected range since all C butterflies stages produce metrics
simultaneously compensating for the C' stags of ACS delays.

In Section 3.5 we propose a method that enhances the throughput and allows for trellis
decoding realization using the same architecture and clock frequency as well.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
78 ARCHITECTURES

Bit Error Rate (%)

MM R

\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\

Window Length % o
Signal to Noise Ratio (dB)

Figure 3.34: The proposed 3 LBL TB decoder

3.5 Proposed Specialized Reconfigurable Architectures

In the coarse of our study of several DSP VLSI architectures, we have developed
pipelined VLSI architectures for some of the aforementioned DSP algorithms. Our
intention was to find simply controlled modular architectures composed of a repeti-
tive structure of processing elements. Such architectures are most beneficial in under-
standing the requirements of a general purpose reconfigurable architecture for DSP
applications. In this Section some of the our results and contribution is this area are
presented.

3.5.1 The Proposed Reconfigurable Size MDCT Processor

Some applications such as the Ogg Vorbis uses a Modified DCT (MDCT) which is a
variant of the type 4 DCT. The transformation formulas are as follows: MDCT:

Z f(k) cos (o (2k: +1+ g)(2m +1)) (3.20)

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES

79

Bit Error Rate (%)
— n w B

\

N\
i
RO
«§&§&Nw@&
¥
b Nl

SO0
NN
DMMAN

Signal to Noise Ratio (dB)

oposed TB decoders with different LBLs.

Figure 3.36: Trellis diagram of a K = 4 Viterbi decoder with in-place replacement

£ 0.2 1
orm=4U..— —
2

IMDCT:

yi(p) = f(p)% > Xiy(m) cos (%(Qp +1+4 g)(2m +1))

forp=0.n—1

(3.21)

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
80 ARCHITECTURES

.

D_BF D_BF D_BF FF —

[
Control

Branch metrics
I Out 2 YOut 1 Out 0

Figure 3.37: The R2SDF ACS Architecture of a K = 4 Viterbi decoder

The MDCT SFG is shown in Figure 3.38. An example of one of the irregular blocks is
shown in Figure 3.40. Following, for each column of the SFG in Figure 3.38 we used a
corresponding block dealing with the data and passing them to the appropriate data
path at the correct instance.

As was discussed above, the basic idea behind pipelined structure is the correct
scheduling of the input data arriving serially vector after another. This is done ef-
tectively with the dynamic butterflies. Figure 3.39 shows the dynamic butterfly archi-
tecture used for the DCT computation.

Not all irregularities are similar. Figure 3.42 for example shows the irregularity 16 SFG.
We needed therefore to design different irregular block processor for each irregularity
stage. However, we have found some similar features in some of the irregularities
SFGs namely in irr_16, irr_32 and irr_64. With some minor differences in the signs of
the inputs we have categorized them as XN, XP, PX XOP, NX and WL as shown in
the Figures 3.42 and 3.38. Our solution was to design a separate data path for each
and then select the correct data path for the data according to the time position of the
streaming in data. The select line addresses is supplied by the controller through a
simple counter. Figure 3.41 shows for example the irregularity of the irr_8 block.

Ogg Vorbis needs two sizes of MDCT 1024 points and 128 points. We have designed a
reconfigurable data path that supports both sizes by feeding the input through either
the complete data path or to activate only the 128 point data path (see Figure 3.43).
With such an architecture more MDCT sizes can be supported by allowing the input to
be fed at the input of each butterfly and irregular block pair.

The MDCT processor shown in Figure 3.43 was simulated and its correctness was
proven by comparing the output files to that of the C code.

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 81
X AN XN | 5o XN |
07 : 4 | -
X1 \- gy | XN ‘v Butterfly 32 |, & Treg. Y, .
,,,,,,,,,,,,,,,,,,,,,, / &
Xion \"I v’v o Irreg. | Butterfly16 Y o
SNNY/// B o s
12 39 vv Aé% e N -
\\“’I AA Butterﬂy 16 Y32.39
Xipar vvvv I *) Butterfly 32 |—» & Irreg. Y
Xoss v’vvvvv \ Irreg. " Butterfly16 Y o 55
i RS i
X e o XN e ‘
“"“A‘ e | —* Butterfly16 Y
AV i -
Xeo. 877 \: 4V Irreg. | Butterfly 16 Yoo
XXSQSZ >@ — & Irreg Ysg,gs
X%-loa' % -
\J\ | Butterfly16 Yoo
Xum.nY \:’\\":J) A >y » Butterfly 32 —» & Trreg. Ylo4-|||
E &
X W :/ ;\ Irreg. " Butterfly16 Y|12-|19
X12«1-1z'7 eV *® 1) o & lmee. -B.ﬂyS&ir. leorm
Butterfly 128 Irreg. Butterfly 64 Irreg.

Figure 3.38: The SFG of the 128 point DCT

3.5.1.1 Synthesis Results

The reconfigurable size accelerator was modeled in RTL VHDL simulated and synthe-
sized on a a XILINX Virtex2 devise (using an XC2V8000 board) using the XILINX ISE
tools. Special coding techniques were used to utilize the multipliers and internal RAM
to implement the FIFOs and the twiddle factors memory. Table 3.4 summarizes the

synthesis results.

Table 3.2: Synthesis Results

Component Names

of Components

% of Usage

Slices 5131 11%
Multipliers 112 66%
BSRAMs 9 5%
Flip Flops 5819 6%

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
82 ARCHITECTURES

A

FIFO

in_fifo out_fifo

in_data

out_data
.

[
Y
Yy
>
o
o
; MUX4 \ MUX3 /

J—’ Sub _»

A Y
;‘ MUX2 / MUX1

cpn ctrl

Controller

Figure 3.39: The Dynamic butterfly architecture

X, D

oY,

%

°
e

X, o .Y,

Figure 3.40: The irregularity 8 SFG

3.5.2 A Reconfigurable FIR Filter Realization

Most of the FIR filter structures reviewed above have similar hardware requirements
and regular structures. The direct form and the transposed form are most interesting
because of their simplicity and regularity.

To explore the requirements of building our reconfigurable architecture that can effi-
ciently realize FIR filters, we experimented with a reconfigurable architecture for FIR
filters. We chose to take the transposed form structure since it offers hardware savings
when it comes to implementing a fully pipelined FIR filter as mentioned above. A fully
pipelined transposed form FIR filter structure is shown in Figure 3.44. From Figures
3.44 and 3.6 we see that a reconfigurable transposed form filter structure capable of
realizing general or linear-phase FIR filters should have the following features:

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 83

+\-

+\-

P
w
\ MUX2 / \ MUX1 /
.
\ MUX4 /
A
< <
~ —-

>

tel

v

v

v

v

" '\'N\\\'\';ﬁ'/'/'//'/'//'

ol

@

Figure 3.42: The irregularity 16 SFG

e A basic processing element representing a fap.

e Each tap should consist of a multiplier, an adder, a delay element to store partial
products, a register for pipelining after the multiplier and a register to store the
filter coefficient.

e Each tap should be architected such that it can be cascaded with a similar tap to
form bigger or smaller filters.

e Furthermore, for a general purpose reconfigurable FIR filter, there should be an
efficient way to pass and store coefficients.

Now to design a complete reconfigurable FIR filter taking the above points into con-
sideration, we choose a modular architecture that can also be cascaded with similar

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR

84 ARCHITECTURES
n
® Indata
5
By ey E
BF2 BF2 BF2 BF2
Irg1024 Irg512 Irg256
Irgl128 |«

w
S

I
BF2 BF2 BF2 BF2
Outdata
Irg64 Irg32 Irgl6 Irg8 —>

Figure 3.43: The block diagram of the reconfigurable IMDCT accelerator

x(n)

Y

Figure 3.44: A fully pipelined transposed form FIR filter structure.

elements forming larger and smaller filters. Moreover, odd, even and various FIR fil-
ter sizes are required to be realizable. All of the above requirements were taken into
account and a reconfigurable size FIR filter shown in Figure 3.45 was realized. The
organization of the reconfigurable FIR filter data path unit shown in Figure 3.45 illus-
trates a two row structure where the input and output of the filter are at one end of
the filter. Bigger sized filters to be realized. The data path shown above can realize a
maximum tap number of 6. As such, realize 6-tap, 12-tap, 18-tap, etc. sized FIR filters
can be realized by cascading several of the units shown in Figure 3.45. Finer tap gran-
ularity can be realized as well by the use of the multiplexors located in the bottom half
of the Figure above. To store the filter coefficients new coefficients are shifted through
the registers located at the input of the multipliers as depicted in Figure 3.45.

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 85

Figure 3.45: The reconfigurable TDF FIR filter data path.

3.5.2.1 Reconfigurable Single-Cycle FIR Filter Processor

Several of the data path units shown in Figure 3.45 can be cascaded to in a large data
path coinciding with the biggest intended FIR filter implementation form the main
processing unit shown in Figure 3.46.

This data path can realize also smaller FIR filters when reconfigured by the control unit.
The control unit manages also the initialization of the data path unit and storage of the
filter coefficients as well as the operation duration of the reconfigurable FIR filter. As
such the architecture of the system illustrated in Figure 3.46 can perform computations
for various sizes FIR filters limited only by the size of the data path unit.

3.5.2.2 Reconfigurable Multi-Cycle FIR Filter Processor

The modular reconfigurable design explained above can be used to synthesize recon-
figurable architectures of different sizes. But when synthesized, the above reconfig-
urable architecture can be used to realize filters with a tap number less than or equal
to that of the synthesized reconfigurable FIR filter. To realize bigger filters partial re-
sults should be stored in an intermediate memory and operated on again using the
same hardware to produce the final result. Such a system should include intermediate
memory and a more complicated controller along side the FIR data path unit as shown
in Figure 3.47.

Here, the controller determines the number of times it needs to use the given data path
to conclude the complete FIR filter computations and manages storage of partial data
to be used again in remaining parts of th FIR filter computation. The state diagram of
the controller is shown in Figure 3.48. As illustrated in the Figure, the controller has
4 states: IDLE, INIT, OUTPUT, OUTPUT_STORE and COMP_STORE. If the size of the

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
86 ARCHITECTURES

e e -

filter_in filter_out

Reconfigurable T

|
o FIR Filter
coef_in ‘

> Unit

output_ready

reset 4 3 Control Unit

new_data

Address

Generator

addr_coef_out

Figure 3.46: Block diagram of the Single-Cycle reconfigurable FIR filter.

required filter is less than or equal to the data path unit available the data path unit is
initialized with the proper coefficients in the INIT state and the output is completed
and produced directly in the OUTPUT state. If the required FIR filter is larger than the
available data path the coefficients corresponding to the first cycle of computation are
stored in the data path unit in the INIT state and then partial computations are carried
out and partial results are stored in the intermediate memory in the COMP_STORE
state. When all cycles of computations are done the final results are made ready in the
OUTPUT_STORE state.

o Synthesis Results

The question of the more feasible realization of the reconfigurable FIR filter being
the single cycle or the more complicated single cycle approach depends more or
less on the application requirements. While the single cycle approach is simpler
and require less control and memory resources, generally larger reconfigurable
data path unit to support larger FIR filters. On the other hand, the multi cycle
approach require more area for intermediate memories and more complicated
control resulting in area and speed penalties. Table 3.3 summarizes the synthesis
results of a 64-tap single-cycle reconfigurable FIR filter and a 32-tap multi-cycle
reconfigurable FIR filter. Table 3.3 also shows synthesis results of a normal non-
reconfigurable pipelined transposed form 64-tap FIR filter to give an idea about
overhead resulting from the reconfiguration resources invested.

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 87

filter_out

Reconfigurable Temp

FIR Filter Memory
ilter_i
filter_in Unit

I
I
I
I
I
I
I
I
I
| Sample :
I
i | Memory :
I
‘ — | T
I
clock I output_ready
T : >
reset Control Unit |
I —
T
start | : new_data
I
I
I
I
I
‘ :
I
tap_vector | Address !
‘ G —
| enerator I addr_coef_out
I
I
I
I

Figure 3.47: Block diagram of the Multi-Cycle reconfigurable FIR filter.

FIR Architecture Area (um?) | Frequency (M H z)
non-reconfigurable pipelined (64-taps) 3776560 171.8
Single-Cycle(64-taps) 3899282 120.6
Multi-Cycle (32-taps and 1k of memory) 7699733 75.6

Table 3.3: Synthesis results of various implementations of the FIR filter (using UMC
0.25 pm libraries)

3.5.3 The Proposed R2ZMDF Architecture

The main problem in architectures such as that shown in Figure 3.37 is throughput. In
[107] the proposed State Parallel (SP) Viterbi decoder was intended for the HiperLAN
2 standard. The achieved performance is over 200 Mbps, while the required speed is 56
Mbps. Surely, this performance is gained at the cost of investing in hardware having
S» ACS units. Building a sequential Viterbi decoder with only one butterfly element
to save in silicon area will not achieve the targeted minimum throughput. The R-25DF
architecture proposed in [49] is also not fast enough. Therefore, it will be beneficial
to explore the design space between the SP approach and the R-2SDF approach to
reach a compromise between area and speed. To overcome the throughput problem
we propose to split the butterflies vertically thus doubling the number of inputs and
outputs.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
88 ARCHITECTURES

Figure 3.48: The Controller of the Multi-Cycle reconfigurable FIR filter of Figure 3.47

3.5.3.1 Parallelizing the butterflies

By splitting the butterflies, every dynamic butterfly unit is replaced by two in parallel.
This way the number of inputs of the R-25DF ACS unit is doubled, the work at every
butterfly stage is divided by two and consequently, the number of outputs is also dou-
bled. Since the computation at every stage is split between two units, odd and even,
data are fed in parallel. Thus, the FIFOs sizes are halved. The stage that had a FIFO of
size 1 is replaced with an always active static butterfly unit binding the two split halves
of the data flow graph and producing 2 outputs in parallel. As depicted in Figure 3.49
the number of outputs is now 6 rather than 3 meaning that the effective throughput of
the R-2SDF unit is now 6 outputs per cycle rather than 3, naturally at the expense of
two more butterfly units but reduced FIFO sizes.

Taking this parallelization technique one step further we arrive at the configuration
of Figure 3.51. Here, with the smaller FIFO sizes and a total of 8 butterfly units we
achieve a throughput of 12 outputs per cycle which is more than that of the normal SP
implementations, again at the expense of additional hardware.

Although the butterfly count is doubled with each parallelization level the sizes of the
FIFOs are decreased. Moreover, the utilization percentage of the butterflies increases
as well. We denote this architecture the Radix-2 Multi-path Delay Feedback (R-2MDF)
architecture.

The area requirement issue is an important one to address for two reasons: Firstly, the
knowledge of the amount of hardware prior to synthesis and fabrication is important
since this helps to decide on levels of parallelism feasible to be invested in especially in

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 89

R

D_BF

FIFO2 FIFO1 , -
_’

D_BF D_BF “
’—V

Out02v vOutl2 OutlOv vOutll OutOOy v OutlO

A 4

i

A4

A 4

Figure 3.49: The proposed R-2MDF ACS unit for a K = 4 Viterbi decoder parallelized
once (I = 2)

such a design paradigm that grows exponentially with parallelization levels and con-
straint number. Secondly, when designing a reconfigurable hardware aimed at solving
such problems, it is good to have an idea about the amount of hardware that should
be thrown in to fit synthesis of the targeted problems.

Figure 3.50 shows different arrangements of the butterfly units for possible paralleliza-
tion levels of a K = 5 ACS unit using the proposed technique. The dots represent
butterfly units and for simplicity no connectivity or FIFOs are shown.

°
X

°

Y °
oo 'YX

eoeo Y °

'YX X ° ™
'YX Y X)

Y °

oo ™
eoeo

°

Paralellize

Figure 3.50: Possible levels of parallelization for a K = 5 Viterbi decoder

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
90 ARCHITECTURES

3.5.3.2 Quantitative analysis

In general, the number of inputs to the proposed super parallelized R-2MDF ACS unit
is InNo = 2! and the number of outputs generated is OpNo = Cx2' where | = 1,2, ... K
is the number of parallel inputs to the R-2MDF unit.

Proposition 1 The number of butterflies of an R-2MDF ACS with 2¢ points and 2'=1 outputs
is given by:
BFy, =272(2C — 1 + 1),

and the number of flip-flops is given by:

FFy, =2¢—92/—1

Proof 1 Looking at the butterfly elements we find that there are C' stages of dynamic butterflies.
The number of dynamic butterflies stages (columns) is reduced by 1 with every parallelization
level but the number of the dynamic butterflies rows is doubled. Hence, the number of dynamic
butterfly elements D_BF'x, as a function of C and | can be expressed as:

D_BFy, = (C — (I —1))27".

For the static always active butterflies, the number of stages increases with | starting with 0
when | = 1 and the number of rows is also doubled with . Therefore, the number of static
butterfly elements S_BFy, as a function of C and [can be expressed as:

S BFEy, = (I —1)2"72
The total number of butterflies is then

BFEyo, = D_BFn, 4+ S_BFy,.
=(C—(1—-1)2" +(1—1)2"2
=272(2C — 1+ 1).

The FIFO sizes per row is a power of 2 series starting with 2° up to 28~* where k is the number
of stages. Since the flip-flops are attached only to the dynamic butterflies and since the number
of rows increases parallelization level a factor of 2, we deduce,

C-l
FFy, =21, Z 9C-m-L
m=0

— 2¢ _9l=1,

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES

91

Nt

Out30

FF

BF

" D_BF
> Out32 Out31
FIFO1 | BF ’

[1 Our22 Out2l

D_BF

T
o]

FIFO1 <j|

D_BF

Outl2 Outll

| BF

A 4

FIFO1
j Out02

D_BF

] 0T T3

OutO1

Outl10 FF
BF [
OutO0 || FF

W

Figure 3.51: The proposed R-2MDF ACS unit for a K = 4 Viterbi decoder parallelized

twice (I = 3)

3.5.3.3 The trellis table realization

It is important to note that the outputs produced by the aforementioned method are
scrambled and need to be reordered prior to decoding in the trellis window. This
scrambling of data is due to the in-place state replacement methodology used in con-

structing this ACS unit. Hence, the output of each butterfly should be managed such

that the trellis window unit can make use of it.

There are two main ways to decode the output decision bits produced by the ACS unit:
the trace-back (TB) and the Register Exchange (RE) methods. In the TB method by

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
92 ARCHITECTURES

Control I I

Branch metrics Out 2

[mQ ¢no
49

10300
[
1IN0

[QnQ OO

449
d44

0300
0o
ano
0€In0

dd 0
l]m
AN
1 0
]
AN

Figure 3.52: The complete R-2MDF based Viterbi decoder architecture

selecting an initial state — which can be chosen according to the metrics — the decision
bit corresponding to this state is chosen and a new state is found. This process is
continued through the trellis table. On the other hand, in the RE method the trellis
table is arranged like the trellis diagram shown in Figure 3.27 with multiplexers and
registers at every node and with the select lines of the multiplexers connected to the
newest decision vector generated by the ACS unit. Because of this type of connections
we propose to use the same R-2MDF architecture for solving the RE problem.

Since the decoding quality is a function of the realized size of the trellis table, a number
of R-2MDF RE units can be cascaded to meet the required decoding quality. Longer

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 93

tables are generally preferred to achieve better decoding quality. Clearly, using too
long trellis tables is not the best solution due to chip area and power consumption
requirements. A good approach is to have a dynamic length trellis table as proposed
in [110]. Our proposed architecture here facilitates dynamic enabling or disabling of
some or parts of the cascaded R-2SDF RE window according to channel conditions.

The trellis table decode throughput should match the ACS computation speed. Thus,
the parallelization level of the register-exchange trellis must be such that the number
of inputs of the register-exchange trellis is grater or equal to that of the ACS unit. In
some cases the number of inputs and the number of outputs can be matched by using
different parallelization levels. An example of that is a K = 5 decoder with the ACS
unit parallelized 2 times and the trellis window unit parallelized 4 times. From the
equations given above, the ACS unit will have 8 outputs and the trellis window 8
inputs. In case an equal number of inputs is not possible, the next greater number is
chosen and as shown in Figure 3.52, a FIFO could be used to manage the flow of data.

3.5.3.4 Synthesis results

We have developed a parameterizable VHDL IP at the RTL level for the abovemen-
tioned architecture. The idea is by simply changing some constants in the package,
different Viterbi decoders with completely different specifications can be synthesized.
Furthermore, various levels of parallelization can be selected by editing the corre-
sponding constant in the package. This approach facilitated synthesizing more designs
with no need for re-coding.

3.5.3.5 Performance analysis

Note that a straightforward comparison of different architectures results cannot be
made. This is because these architectures do not have the same processing power. The
fastest implementation is the SP one with a throughput of S,, = oK1 outputs/cycle.
The throughput of the R-2SDF architecture is C' = K — 1 outputs/cycle. Because of the
feedback from the last stage to the first stage pipelining is not possible and therefore,
the clock cycle will be C' times slower than that of the SP which means that the R-2SDF
speed normalized to that of the SP one will be: - outputs/SP cycle. Each paralleliza-
tion level in the R-2MDS architecture doubles the throughput while mamtammg the
slow R-2SDF cycle. Thus, the normalized R-2MDF architecture’s speed is 4-.2"~! out-

puts/SP cycle. Since [ranges between 1 and K, the maximum achievable speed will be
that of the SP implementation. It can be shown that at a certain level of parallelization
the amount of hardware invested will be more than that of the SP but unfortunately
must operate at slower speed. The above formulas are therefore useful in determining
the points at which the R-2MDF does not provide an optimum solution given the con-
straint number and parallelization levels.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
94 ARCHITECTURES

Table 3.4: Timing and area reports for different realizations of a X' = 7 Viterbi decoder’s
ACS unit. synthesized using a 0.25m technology.

Architecture Cycle | Area | Butterflies | Throughput Norm. Norm.
(ns) | (mm?) | number | metrics/cycle | throughput | speed

R-2SDF (I =1) | 21.12 | 0.72 6 6 0.966 0.015
R-2MDF (I = 3) || 20.07 | 1.89 20 24 4.065 0.064
R-2MDF (I =5) || 21.30 | 5.53 64 96 15.324 0.239
SP 34 2.38 32 64 64 1.0

It is worth mentioning that the above analysis holds only for the ACS unit imple-
mentation because of the feedback while for other applications such as FFT and DCT
any level of parallelization will be rather an adequate solution if higher throughput is
needed. Furthermore, because of the decrease in the sizes of the FIFOs and the num-
ber of dynamic butterflies, each parallelization level will result in yet a more efficient
architecture in terms of hardware utilization.

Table 3.4 shows timing and area results for different parallelization levels of a K = 7
Viterbi decoder. Synthesis was carried out using Synopsys Design Analyzer 7% and
0.25um technology libraries. The last row shows the results obtained from a systolic
SP Viterbi decoder reported in [106, 107] while the previous ones are for different levels
of parallelization. The last two columns give a comparison between throughputs and
speeds of different levels of parallelization of the proposed R-2MDF architecture all
normalized to those of the SP realization. Note that for 4 levels of parallelization (I = 5)
the amount of hardware needed exceeds the SP one but still at 23.9% of its performance.
Clearly, this is a case where the R-2MDF is a suboptimal solution. Working with the
formulas above, we find that the R-2MDF with 2 levels of parallelization (I = 3) is the
maximum parallelization choice with less hardware than the SP. The speed, although
6.4% of the SP one, is still much faster than any sequential realization.

Although the clock cycle results for all the R-2MDF are almost the same, the through-
put of the 2 levels of parallelization is 22 = 4 times that of no parallelization since the
number of output metrics per cycle is quadrupled.

We base our ACS design here on the architecture proposed by [106, 107]. The paral-
lelization technique discussed here facilitates producing more outputs in parallel thus
achieving higher speeds.

3.5.4 Reconfigurable R2°MDF FFT Processors

In case only the size is the problem is to be configured, simply one extra butterfly stage
along with a FIFO of the appropriate size can be cascaded at (or remover from) the left
and then we have the new FFT as is proposed in [59]. Here because the throughput

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 95

o 7 [— — I
|] 1 I 7] |
. |BR2 BE2II BF2I BE2II 1 RE2 |
. ol !
— () 0 - |
} (817 4 3 3
: 7] - I, : 7] BRI :
: B o :
. |BR2 BF2II BF2I BF2II 3 BE2L |
o] L REE L R

Figure 3.54: 2 outputs per cycle configuration (I = 2)

should also be reconfigurable we have to take care of several more points: the variable
FIFO sizes, the functionality of the dynamic butterflies, the twiddle factors and the
interconnectivity as they change according to the amount of parallelization levels and
the FFT size sought.

Given a fixed number of processing elements (butterflies in our case) and because of
the regularity of the R22MDF architecture there are two possible approaches to go
around designing a reconfigurable FFT processor. The first approach is to design a
reconfigurable FFT processor with enough hardware resources for realizing the largest
FFT to be supported. Smaller variants can be realized by the use of a simple recon-
figuration controller managing the reconfiguration. The other approach saves on the
hardware and processes a part of the data flow graph storing intermediate data and
then processing the intermediate data to produce the outputs but at the expense of
latency. The following sections introduce these approaches.

3.54.1 Single Cycle R22MDF Architecture

To test this approach we realized a 1024-point R22MDF FFT processor with a simple
controller Figure 3.53 and 3.55 show different reconfiguration possibilities.

Since there are two butterfly types in the R22SDF which is the base of our proposed
R22MDF architecture our main building block is chosen to be two dynamic butterflies
of type I and II with a complex multiplier as illustrated in the figures below.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR
96 ARCHITECTURES

Figure 3.56: The smaller data path/multi-cycle reconfigurable data path

The twiddle factors addressing problem is solved by using a partial addressing tech-
nique to get the proper factor depending on the size of the FFT.

3.5. PROPOSED SPECIALIZED RECONFIGURABLE ARCHITECTURES 97

3.5.4.2 Multi Cycle R2°MDF Architecture

To investigate this approach, we have implemented the configurable FFT processor de-
picted in Figure 3.58. Input data can be processed in stages carrying out partial compu-
tation of the FFT flow graph and storing partial results in intermediate memory. This
process is repeated until completing the FFT flow graph. Theoretically this method
can implement any FFT size but the two limiting factors are the latency per computed
output and the size of the memory needed (FIFOs and intermediate) required for the
computations. The operation controller Figure 3.57 orchestrates this operation of this
realization facilitating 8 to 1024-point FFT was implementations. In this paradigm ex-
tra ROMs and FIFOs have to be added.

Figure 3.57: Small Data path reconfigurable FFT operation controller

3.5.4.3 Synthesis Results

VHDL models at the RTL level for both paradigms were developed and also a model
for a conventional non-reconfigurable FFT processor as well as a non-reconfigurable
two output per cycle 1024-point FFT were developed as a reference to the proposed
approach. All designs were simulated and their correctness were proven. The code
was then synthesized using Synopsys Design Analyzer with a 0.25um standard cell
libraries

Table 3.5 shows the comparison between a single output 1024-point R2?SDF FFT pro-
cessor and our proposed reconfigurable R2°MDF architecture presented in Section
3.5.4.1 which is capable of performing FFTs of different sizes and throughputs at a
very low extra cost.

CHAPTER 3. STUDY OF COMMON DSP ALGORITHMS AND THEIR

98 ARCHITECTURES
| |
| |
| |
| |
data_in : Reconfigurable : data_out
—_— I m—
. FFT ,
L Unit :
) § —>] !
I :| a I
| § Z |Q |
[S
| ? IS |
(RS g !
clock : = 3 : output_ready
| —
reset t » Control Unit !
| R + >
start : :new_data
, |
| |
| |
| A4 I
| |
, E— ¢ |
! MEMORY |
| 4%512 1
| |
| |
| |
| |
| |

Figure 3.58: Small Data path Reconfigurable FFT Processor

Table 3.5: Normal and Simple Control FFT Comparison (UMC 0.25 pm)

FFT type Area | Frequency
(um?) (MHz)
| Normal $22DF 1024-point | 5509478 | 225 |
Proposed S2°MF 1024-point | 5688091 20.3
(simple control)
Proposed S2?MF 15282254 31.8
(up to 1024 points
multi-cycle control)

On the other hand Table 3.5 shows the R22MDF FFT processor with the approach dis-
cussed in Section 3.5.4.2. Most of the area is consumed in the extra memory which is
composed of both the extra FIFOs and the intermediate data storage memory.

From the Tables above we observe that the Simple control approach is more appealing
because of the flexibility it offers at a minimal price and because the size of the needed
intermediate memory is large in comparison with the savings on butterflies.

3.6. CONCLUDING REMARKS 99

3.6 Concluding Remarks

The nature of DSP applications is extensive processing of data. Within a given algo-
rithm —as the studied SFGs suggest— the number of computations explode. Pure paral-
lel implementations result in very high throughputs at the expense of enormous hard-
ware resources especially for bigger sized algorithms. On the other hand, pipelined ar-
chitectures intend to trade hardware resources of parallel architectures for speed. This
is done by unrolling and re-rolling their SFGs swapping therein intermediate data in
dynamic data paths.

Some applications such as digital filtering are pipelined and regular in nature and thus
often do not require as much effort to optimize their architectures as required by other
irregular architectures. The other studied algorithms above, namely: FFT, DCT and
Viterbi decoding are among algorithms of higher degrees of irregularity where opti-
mizations in their implementations can result in important gains.

The R2SDF, R2MDC architectures and a couple of their variants were studied to get a
better understanding of th design challenges and requirements needed for the imple-
mentation of such structures. Although additional hardware resources are needed to
construct the final pipelined architectures and there is always less than 100% utiliza-
tion of hardware, the resulting architectures are usually orders of magnitude smaller
in areathan their parallel counterparts, yet performing at acceptable throughputs.

In some cases parallel architectures provide much higher throughputs than needed
while pipelined solutions throughputs do not suffice the needed application require-
ments. In this context, the proposed RZMDF architecture provide an intermediate solu-
tion that can be used for the implementation of several DSP algorithms” architectures.
The main idea of the RZMDC architecture is to partition vertical loops in the R2SDF
architecture by splitting them to two or more parallel data paths where possible and
joining them again with a higher throughput data path resources. The separation of
and combination of the data paths are guided by their SFGs. The resulting R2ZMDF
architecture feature better hardware utilization than the traditional R2SDF one.

Studying the antecedent and other DSP algorithms architectures, we observe that these
architectures exhibit the following aspects: they are PE based structures, the involve
dynamic switching between data paths, they need simple control data paths utilizing
counters, they have different types of PEs and they sometimes involve bit operations.

In the preceding discussion about these architectures in this Chapter, an obvious con-
clusion is that practical and optimized DSP algorithms architectures are not trivial. As
a matter of fact their development is a result deep understanding of the algorithms,
hardware design and system requirements. The resulting structures and architectures
involve a good deal of human intellectual design efforts.

Chapter 4

Problem Definition: What Features a

Reconfigurable DSP Processor Should
Posses

Contents

4.1 Observations and Extraction of Primary Architectural Features of the

Previewed DSP Architectures 102
4.2 The Relation Between Key Reconfiguration Parameters to the Target
DSP Applications i i 104
42.1 Fine-Grain vs. Coarse Grain Reconfigurable Solutions 104
422 Timinglssues 105
423 Routing e 105
424 RTIRIssueso v i i i 106
425 Partial Reconfigurability 106
426 Programming 106
4.3 Suitability of Studied Reconfigurable Architectures to DSP Appli-
cations e e e e e 107
43.1 Reviewed FG FPGA Architectures 107
43.2 Reviewed CGRC Architectures 107
4.4 Problem Solving Methodology 109
4.5 Architectural and Reconfiguration Parameters Observed in the De-
sign of the Proposed CGRC Solution 111
4.6 ConcludingRemarks., 114

-101 -

CHAPTER 4. PROBLEM DEFINITION: WHAT FEATURES A
102 RECONFIGURABLE DSP PROCESSOR SHOULD POSSES

In Chapter 3, carefully crafted architectures of various DSP algorithms were intro-
duced. Common features of these architectures were also discussed. These observa-
tions lead us to recommending primary features and functions a CGRC solution for
such applications should enjoy. By supporting these features we aim at finding an effi-
cient CGRC solution architecture where feasible realizations of DSP algorithms can be
achieved.

In this Chapter the required architectural features are extracted and discussed in Sec-
tion 4.1. Then RC architectures features introduced Chapter 2 and how they relate to
the extracted features are discussed in Section 4.4. Section 4.3 discusses the suitability
of the reconfigurable architectures introduced in Chapter 2 for high speed processing
of the DSP algorithms studied in Chapter 3. This then leads to the proposition of the
main features of our CGRC processor in Section 4.4. Finally the summary and remarks
Section concludes this Chapter.

4.1 Observations and Extraction of Primary Architectural
Features of the Previewed DSP Architectures

In the Previous Chapter the following common architectural features were observed:

o Regqular Structure of Processing Elements:
Regular and repetitive structure of processing elements is clearly observed in
most of the architectures studied in Chapter 3. This feature is most clear in the
various FIR filters structures. This is due to the simple SFG that FIR filters pos-
sess.

The FFT SFG however is more complicated. This increase in complexity result
in more complicated structures such as dynamic butterflies and FIFOs. Never-
theless, a repetitive structure of these elements consisting of adders, subtracters,
multipliers and FIFOs is observed.

For more complicated DSP algorithms such as the DCT and Viterbi decoding,
the repetitive nature of processing elements structure is less obvious because of
the higher degree of irregularity. This irregularity not only noted in the more
complex structures of processing blocks but also in irregular pattern of inter-
connectivity. The irregular patterns of interconnectivity are remedied by more
complicated structures for data rescheduling control.

e [nterconnectivity:
In the architectures review in the last chapter, the following types of connections
can be noted:

4.1. OBSERVATIONS AND EXTRACTION OF PRIMARY ARCHITECTURAL
FEATURES OF THE PREVIEWED DSP ARCHITECTURES 103

— Left-to-Right Row Connections: In most of the reviewed architectures, we note
that the data is processed in general from one side of the architecture to
the other with processing elements handing processed data to be further
processed by the adjacent ones. Therefore, most connections are found to
connect processing elements located in the same row from left to right. This
observations also support the “Connection by abutment” proposed by [36, 34,

].
— Other Left-to-Right Connections: i.e. from cells in different rows to cells in the

adjacent columns at the left. This type of connections is needed to realize
butterfly connections for example.

— Top-to-Bottom & Bottom-to-Top Connections: This type of is needed for vertical
passing of data like constants passing.

— Backward (Right-to-Left) Connections: This type of connections although
needed, is very rare and does not represent a key feature.

— Broadcasting of Data: This is needed in some cases where inputs or other
operands are needed to be shared by several processing elements for exam-
ple in the transposed form FIR filter or in the ACS operation of the Viterbi
decoder.

— Connections between different types of PEs: This is needed to facilitate inter
processing of data between storage and arithmetic units.

o Arithmetic Operations:

Most of the operations carried out previously are vector addition, subtraction
and multiplications. In multiplication truncation is needed to keep the resulting
vectors within the fixed vector size to allow further usage of the results by other
processing elements. However other operations are needed for special applica-
tions like Viterbi decoding. Such operations include comparison and selections
but more importantly bit operations. Bit operations can be used to propagate the
carry bit and produce decision bits used in the Viterbi ACS operation.

e Storage Resources:
A key feature found in most of the studied architectures is local storage. Three
main types of storage facilities were noticed:

— Storage for Holding and Passing Coefficients: this feature observed in FIR, FFT
and DCT implementations.
— FIFOs: this feature is needed for scheduling data in pipelined architectures.
— Registering and Pipelining: for pipelining and retiming of data and temporal
storage of data.
e Dynamic Data Routing:

The core feature of all the studied pipelined architectures is dynamic data rout-
ing. This enables operation scheduling and execution at the correct point of time.

CHAPTER 4. PROBLEM DEFINITION: WHAT FEATURES A
104 RECONFIGURABLE DSP PROCESSOR SHOULD POSSES

This feature is associated with control flags provided by the scheduling control
discussed next.

e Routing and Operation Scheduling Control:
The generation of the control flags needed to govern switching and routing of
data is the price traded for flexibility and area savings of non-parallel implemen-
tations. Fortunately, this is usually based on simply a counter as was illustrated
by the architectures discussed in the previous Chapter.

e Bit Manipulation Operations:
In error correction and other similar algorithms bit manipulations operations are
common. The decision bits of the Viterbi decoder and the trellis window decode
operations are two examples that has been covered in Chapter 3.

4.2 The Relation Between Key Reconfiguration Parame-
ters to the Target DSP Applications

Chapter 2 has introduced a collection of RC solutions architectures. It should be
pointed that DSP acceleration was probably not the main factor that influenced the or-
ganization of these solutions. However, several DSP applications were used to demon-
strate the speedups achieved using these architectures. In this Section the key recon-
figuration features that help better implementation of DSP applications are presented.

4.2.1 Fine-Grain vs. Coarse Grain Reconfigurable Solutions

As was discussed previously in Chapter 1, there is a tradeoff between computational
flexibility and price in terms of area and processing speed requirements. A pp gains
its versatility from the highly complex control structures it possesses and the software
computational paradigm it adopts. These are the very factors that cause high area real
estate and degrade computation time required for a given set of tasks.

On the other hand, FGRC solutions lose some of its flexibility for higher computational
speeds. However, since FGRC solutions support no specific computational paradigm
in particular, a high level of flexibility and close to maximum granularity are offered
to ensure their versatility. This in tern causes in low effective area inefficiencies. In
[20, 17] it is reported that a cost-performance factor ranging from 20 to 100 is penalized
for circuits implemented in fine-grained FPGAs.

To reduce these inefficiencies fine-grained FPGA manufactures started to implement
dedicated carefully crafted CG blocks within the FG FPGA to help achieve higher area
efficiencies. These blocks include adders, multipliers, FIFO/RAM configurable units
and even complete microprocessors as was noted in Chapter 2. In addition, FPGA

4.2. THE RELATION BETWEEN KEY RECONFIGURATION PARAMETERS
TO THE TARGET DSP APPLICATIONS 105

vendors tend to carve their FPGA building blocks and routing architectures to suit
most popular applications such as the realization of basic arithmetic operations and
dedicated routing for the carry bits. Moreover, special design models and macros are
provided to ensure efficient functional units implementations. These models include
even L soft cores.

4.2.2 Timing Issues

In CGRC solutions registering outputs is of great importance because this represents
the feature clock frequency of the CGRC solution. As a matter of fact the target fre-
quency was the factor deciding on the size of the basic functional blocks and influenc-
ing their architectures of the RAW introduced in Section .

On the other hand, the Radix 2 Feedback architectures discussed in the previous Chap-
ter prohibits registering the functional units within the dynamic butterfly unit. This is
because insertion of delays in feedback paths will result in breaking timing integrity
of the feedback loop and hence will result in wrong processing of data. This feature is
found in most FG FPGAs functional blocks.

In most CGRC solutions, outputs of processing elements are registered. Even more,
functional blocks are shaped as small ;ps, and thus more than one clock cycle delay
may result depending on the depth of their execution pipeline. This structure of pro-
cessing elements may result in considerable speed degradation in the complete DSP
algorithm computation and obstructs efficient implementation of well studied DSP al-
gorithms architectures.

4.2.3 Routing

Routing facilities dramatically affect both the area efficiency and flexibility of any RC
solution. Low flexibility in routing facilities result in higher effective area efficiency.
On the other hand, low routing flexibility usually leads to arrays with poor usability.
In [36] it states that flexible routing is a facility worth investing in. In this context
efficient and feasible routing facilities topologies are essential in realizing efficient and
versatile CGRC solutions.

For DSP applications as noted above, most connections are between adjacent process-
ing elements. This observation was noted in [36, 34, 37] and thereupon, the concept of
connection by abutment was adopted. In addition, long distance connections as well
as broadcasting of operands are sometimes needed and therefore global buses are also
implemented in the KressArray.

Some CGRC solutions adopt event-based computing paradigm. i.e. operations are
carried out only when the valid operands arrive at the consumption ports of the target

CHAPTER 4. PROBLEM DEFINITION: WHAT FEATURES A
106 RECONFIGURABLE DSP PROCESSOR SHOULD POSSES

processing element. This paradigm is not a good solution when high throughput pro-
cessing of DSP algorithms is sought. Moreover, realization of the well studied efficient
data architecture also is not made possible in such a computational environment.

4.2.4 RTR Issues

RTR capabilities maximize the functional diversity efficiency of the CGRC solution
[62]. The main benefits of RTR support are:

e Facilitation of Operation Scheduling & Synchronization: This is essential to realize
pipelined architectures such as those discussed in Chapter 3 and many more.

e Facilitation of Event Based Operation: Which is a feature that can aid in coding and
cryptographic algorithms.

e Facilitation of Fast Switching Different Between Algorithms Configurations: Assuming
the availability of configuration cache, valuable processing time can be saved if
fast switching between configurations is supported.

4.2.5 Partial Reconfigurability

Partial reconfigurability is surely a very interesting feature that opens opportunities
for many computational capabilities. When associated with RTR, partial reconfigura-
tions new endeavors of reconfigurable computing possibilities can be exploited. Partial
reconfigurations can take place within the same algorithm such as those of the afore-
mentioned pipelined architectures where dynamic butterflies are reconfigured inde-
pendently of the rest of the architecture and of each other.

When possible, and at the availability of enough unconfigured resources, partial con-
figuration enables more than one task operation. This way variable speed ups can be
achieved by parallel processing of several tasks.

4.2.6 Programming

In many of the reported CGRC solutions a high level language compiler is provided to
efficiently implement and schedule selected portions of the tasks on the CGRC coupled
solution. These efforts aim at bridging the gap between the system programmer and
the utilization of rather complex and powerful yet difficult to program reconfigurable
arrays. Compilers however are not expected to recognize the rather finely crafted spe-
cialized architectures such as those introduced previously.

4.3. SUITABILITY OF STUDIED RECONFIGURABLE ARCHITECTURES TO
DSP APPLICATIONS 107

4.3 Suitability of Studied Reconfigurable Architectures
to DSP Applications

In Chapter 2 several fine and coarse- grained reconfigurable architectures were sur-
veyed. In this section their suitability for high-speed DSP algorithms processing is
evaluated.

4.3.1 Reviewed FG FPGA Architectures

Fine-grained FPGAs reviewed in Section 2.3 suffer form the classical fine-grain disad-
vantages discussed previously in this thesis. However, it is worth mentioning that the
architectures of the newest FPGA generations enjoy several features that remedy some
of the classical fine-grained FPGAs shortcomings.

A variety of special blocks for RAM & FIFO implementations are now integrated in
XILINX, Actel and ALTERA FPGAs. In addition, specialized DSP blocks of different
flavors also appear in XILINX and ALTERA FPGAs. These DSP blocks feature mul-
tipliers with rounding/truncation capabilities. Special lines dedicated for fast carry
propagation and more optimally tuned arithmetics blocks are also introduced.

Earlier generations of these FPGAs (also discussed in Chapter 2) did not enjoy the
abovementioned improvements. This demonstrates that pure FG architectures al-
though are very flexible, do not represent the most practical computational solution.
FPGAs themselves are not pure AND-OR planes capable of implementing any num-
ber of 2 or more variable logic functions. As a matter of fact, they can be viewed as an
elegant collection of coarser-grained “logic” modules.

4.3.2 Reviewed CGRC Architectures

Reconfigurable solution discussed in Section 4.2.2 represent good examples of state of
the art CGRC architectures proposed in literature and in the market.

Coarse-Grained RC architectures presented in Section 4.2.2 have a strong FPGA flavor.
But unfortunately, not all of the FPGA features is suitable for data flow applications.
Nevertheless, deeper study of these architectures and their advocated features and
concepts reveal that they mostly have been tuned and organized with huge distributed
processing computational tasks in mind rather than pure data flow like processing. An
example of that is the MorphoSys architecture that can efficiently realize SIMD topolo-
gies. In this context, the previewed architectures offer truly powerful computational
solutions with processing power far more superior than the fastest yps. Unfortunately,

CHAPTER 4. PROBLEM DEFINITION: WHAT FEATURES A
108 RECONFIGURABLE DSP PROCESSOR SHOULD POSSES

all this processing power remains to be experimental because of the software gap be-
tween the CGRC solution and the system programmer [7, 28, 31]. This gap, if bridged,
can allow the exploitations of the most intriguing RC capabilities.

Our goal here however is to find a feasible CGRC architecture for high speed DSP
processing. In this context, The architectural features of Section 4.2.2 will be assessed
from that perspective.

The pup like strategy of most of the introduced CGRC architectures can have the clas-
sical up disadvantages discussed in Chapter 1. Moreover, the pp processing element
strategy also result in duplicating several resources to meet RTR requirements such in
the KressArray for example. However, because of the interconnectivity of the process-
ing elements the data-fetch and the write-back penalties can be partially eliminated.
However, this processing paradigm is not optimal for all high speed DSP applications
because it does not coincide with the architectural based savings of specialized VLSI
architectures as mentioned earlier.

The same argument holds for data-driven processing style adopted by the KressArray
and the PACT XPP architectures. Here, important timing and synchronization cycles
can be broken resulting thus in slower processing. In addition, data driven process-
ing can result in data loss problems, although vendors such as PACT claim that they
implement techniques that ensure prevention of such problems.

On the other hand, architectures introduced in Section 4.2.2 enjoy many advantages
including the incorporation of local data storage facilities tat are in the form of register
files in the KressArray, MATRIX, RAW, MorphoSys whereas PACT has a special type
of a flexible processing element of memory operations.

Global and hierarchical routing are features exhibited by all of the aforementioned
architectures. These features give a good deal of flexibility to the architecture. Nearest
neighbor connections as well are of great importance and they are implemented by the
abovementioned architectures. Anyhow, for DSP data flow applications full duplex
connections such as that exhibited by the RAW architecture are not needed since their
implementations mean extra area with no clear utilization in the studied family of DSP
algorithms architectures.

Both dynamic and partial reconfiguration are adopted by all the discussed architec-
tures. They are realized either by context memory of several layers or as instructions
in the instruction memory of up based architectures. Table 4.1 summarize the points
for and against the aforementioned architectures from high processing speed of DSP
algorithms point of view.

4.4. PROBLEM SOLVING METHODOLOGY 109

4.4 Problem Solving Methodology

Our goal is to design an efficient CGRC solution for DSP algorithms acceleration pur-
poses. As it was discussed in Chapter 1, a rather complete general purpose compu-
tation SoC will integrate ups, data storage facilities, ASICs, fine-grained FPGAs and
CGRC solutions resources. In this context we view our proposed CGRC solution as
a flexible and a dynamic block taking care of specific DSP algorithms computations
efficiently and making the results available to the rest of the SoC at minimal overhead
costs.

A general purpose CGRC solution design is difficult to achieve. It is important to stress
again that various design considerations as well as the computational scheme of the
sought architecture will differ according to target computational tasks. In other words
general purpose distributed computing solutions result in arrays of ;ip and event based
computing such as the RAW and PACT architectures. Such architectures do not achieve
maximum performance for many DSP algorithms and do not necessarily offer good ef-
fective area efficiencies. As a matter of fact, within a single CGRC array family, several
design parameters could be tuned according to the family of algorithms to be imple-
mented in order to achieve more efficient designs [34]. Therefore, a practical solution
for finding more efficient architectures is to optimize the CGRC solution’s architecture
for a given set of applications [29, 30]. The DSP architectures studied in the preceding
Chapter thus have inspired our design of the proposed CGRC solution.

A variety of DSP VLSI architectures were chosen for study in Chapter 3. The reason be-
hind our choice of these algorithms and their architectures was that they cover a wide
variety of features that span a very wide range of structures. The selected architectures
exhibited features ranging from being simple and regularity to more complex with
butterfly operations to irregular structures to dynamic scheduling to memory and bit
operations. Therefore, most other DSP algorithms and their architectures are believed
to be possible to implement using the our resultant CGRC solution.

Looking at the different SFGs of the DSP algorithms studied in Chapter 3 we note
that within a given algorithm the complexity of computations and data dependencies
increase dramatically within the algorithm. Hence, an accelerator implementing the
complete algorithm although may need to have a larger data path can save substantial
control efforts needed to partition the SFG and schedule its operation taking data de-
pendencies in account. This claim is supported by the experimentations and findings
discussed previously in Section 3.5 of the large data path and single cycle computation
vs. the smaller data path and multi cycle computation for both FIR filtering and FFT
operations implementations . Recall that the additional hardware for implementing
multi-cycle operation were impractical and thus it was recommended that this extra
control should be implemented in software. Still, the insertion of a software compo-
nent in the algorithm computation may very well result in additional loss of compu-
tation time. At any rate, the very software computational paradigm is what results in

CHAPTER 4. PROBLEM DEFINITION: WHAT FEATURES A
110 RECONFIGURABLE DSP PROCESSOR SHOULD POSSES

the inefficient computational scheme of pps. Thus we target a CGRC solution design
that solves an entire DSP algorithm with minimal need of additional control or aid.

As noted in Section 4.2.6 specialized compilers do not provide efficient realizations
of the target DSP algorithms. The reason behind this is that only the mathematical
formulae of the algorithm do not at the first glance reveal all the reduction possibilities
that can be advantageous in finding feasible architectures. Indeed, synthesis of DSP
algorithms involve clever mathematical reductions and derivations as well as thorough
understanding of SFG and its data dependencies.

Moreover, special architectural features such as on-the-fly scheduling of operation and
routing of data and RTR exploitation are features difficult to be efficiently achieved by
current compilation tools. As a matter of fact, compilation on its own is a non-trivial
task and complete instruction level parallelism extraction is not achieved by current
superscalar or VLIW machines compilers. Adding extra synthesis tasks involving the
above considerations plus complicated placement and routing tasks will further com-
plicate the compilation problem. In fact, current synthesis tools do not always provide
efficient results [25].

A programming paradigm that adopt library based configurations of DSP algorithms
seems therefore to be a feasible solution for DSP applications. In such a paradigm well
studied DSP algorithms’ configurations are stored in a library and loaded when the
specific algorithm is called. Here, the configuration files can be provided by the CGRC
solutions vendors who have thorough understanding of both their CGRC architecture
and the target DSP algorithms that may have influenced their design. Thus, the ef-
forts of synthesizing them become transparent to the system programmer. The system
programmer views the programming of the CGRC solution as accessing a library or a
class.

RTR is a very attractive feature to be implemented. In most pipelined architectures
dynamic reconfigurations and data routing are essential features [50]. As discussed
in Chapter 2 some CGRC solutions employ multiple configuration contexts local to
the processing elements and routing resources. This technique permits not only fast
switching between configurations, but moreover, can hide the reconfiguration time
needed to load inactive planes of contexts as the CGRC architecture is running. RTR
should be as fast as possible to reduce the overall computation time. Local reconfig-
uration operation is required in both switching between configuration contexts back-
ground loading of configurations.

The architectures studied in Chapter 3 contained different computational and storage
resources. Embracing a heterogeneous solution with different types of processing el-
ements can result in smaller processing elements, meaning less area and thus higher
effective area efficiency while maintaining higher functionality. Heterogeneity there-
fore result in high area efficiency yet with rich functionality [15, 95, 99, 76, 77, 20].

4.5. ARCHITECTURAL AND RECONFIGURATION PARAMETERS

OBSERVED IN THE DESIGN OF THE PROPOSED CGRC SOLUTION 111
e N
Controller
e M
< > ASIC/
F CGRC F coprocessor
I I
1(3) datapath array g microprocessor
FPGA
N J
{ - v I
Memory Bus

A

.

Figure 4.1: General architecture of a comprehensive computational SoC solution.

4.5 Architectural and Reconfiguration Parameters Ob-
served in the Design of the Proposed CGRC Solution

In Section 4.1 of this Chapter the key features implemented in the DSP algorithms
architectures were introduced. The relation between the main reconfiguration param-
eters and the extracted key architectural features of Section 4.2 were discussed. Next
in Section 4.3 the suitability of reviewed reconfigurable solutions in Chapter 2 was
discussed. Thereafter, our assumption and approach for our design of the proposed
CGRC Solution was introduced. In the following, we list the resulting features to be
supported by our proposed CGRC solution.

1. General Architecture:
The proposed CGRC solution is assumed to be a part of a SoC integrating a p
(one or more), a memory as well as several other peripherals as shown in Figure
4.1. We assume also lose coupling between the jip and the CGRC block.

2. Interfacing:
As stated above, we propose that our CGRC solution is a part o a more complete
system. In this context it should have enough resources to operate with minimal
need of external supervision. This important feature is intended to formulate
a rather practical solution that is very much independent from the platform it
operates in.

CHAPTER 4. PROBLEM DEFINITION: WHAT FEATURES A
112 RECONFIGURABLE DSP PROCESSOR SHOULD POSSES

2.1 General System Concept: In General, the CGRC solution should have the basic
structure illustrated in Figure 4.1.

2.2 Input & Output FIFOs: Since the CGRC system is integrated in a SoC, FIFOs
are needed to maintain constant streaming of input and output as much as
possible.

2.3 Control Resources: The control of reconfiguration, operation will obviously
be needed. More on the control is given below.

3. Heterogeneity:
For higher area efficiencies while maintaining a high degree of flexibility.

3.1 Arithmetic-Logic Operations: can be implemented using configurable ALUs
possibly of different types.
3.2 Local Storage: local to the configurable ALUs for coefficient storage.
3.3 FIFOs: of variable sizes to aid in data scheduling.
4. Mixed Granularity:
Some times bit or higher vector size operations are required therefore mixed
granularity may be useful.
4.1 Vector Operations: for targeted dominant operations operations.
4.2 Larger Vector Sizes Support: by interconnecting several processing elements.
4.3 Bit Operations: for coding operations such as Viterbi decoding.
5. Routing:
Routing is a key element determining the flexibility of the design. Nonetheless,
it should be as efficient and versatile as possible to keep the area efficiency in an

acceptable range. The following features are chosen to optimize routing to the
target DSP applications.

5.1 Data-Flow Rout ability: Most connections as seen in DSP architectures are
between adjacent elements.

5.2 Inter-Row Rout ability: To allow butterfly-like connectivity.

5.3 Feedback Paths: This feature is not frequently needed but nevertheless should
be supported.

5.4 Global Data Sharing: To enable data broadcast and operands sharing.

6. Reconfiguration:
Incorporation of effective reconfiguration techniques can maximize the profitabil-
ity of the CGRC solution. Agile reconfiguration techniques for managing various
reconfiguration aspects are to be supported. The following are the main recon-
figuration aspects to be observed.

4.5. ARCHITECTURAL AND RECONFIGURATION PARAMETERS
OBSERVED IN THE DESIGN OF THE PROPOSED CGRC SOLUTION 113

6.1 ROM Context Library: We assume supported configurations are stored in
a ROM. When needed configurations can be called from the ROM context
library and loaded to the CGRC architecture..

6.2 Reconfiguration Control: For monitoring active and inactive contexts and to
tag contexts either needed or not needed and need to keep or allow the up-
date of contexts.

6.3 Multi Context: This feature permits the support of most of the following
reconﬁguration parameters.

6.4 Background Reconfiguration: Loading contexts in the background can hide the
effect of reconfiguration time on the total computation time.

6.5 Fast Reconfiguration: Although RTR and background reconfiguration is sup-
ported, fast reconfiguration is still required to minimize the total computa-
tion time.

6.6 RTR Considerations:
To provide a good deal of flexibility and suitability for DSP applications we
consider supporting the following RTR features:

i. Fast Switching Between Contexts: 1-cycle switching feature is necessary
for the implementation of structures such as the R25DF without loss in
timing integrity.

ii. Global RTR Control: for enabling or disabling configuration switching
depending on the operation conditions is required. Also providing tim-
ing stamps is essential to orchestrate the operation and scheduling of
pipelined architectures.

iii. Support of Event Based Switching: Time stamp flags or other event flags
should be utilized to control context switching.

iv. Processing Elements and Routing Reconfiguration: Complete dynamic re-
configuration should be allowed for both the operations and data rout-
ing of various processing elements.

6.7 Partial Reconfigurability:
At least partial configuration within a given task should be allowed to en-
able configuration of only the interesting portions of the data path.

7. Operation and Control:
Reconfiguration and complete system management need control resources to
manage them. The following are the main points to be considered by the con-
troller.

7.1 Global Event Flags: Such as time stamps needed for some architectures.

7.2 Control of Operation Durations: to keep records of needed and expired con-
texts.

CHAPTER 4. PROBLEM DEFINITION: WHAT FEATURES A
114 RECONFIGURABLE DSP PROCESSOR SHOULD POSSES

7.3 Conflict Handling and Computation Halting: Assuming that the CGRC solution
is connected to a SoC cases of input or output conflicts has to be covered.
For example when valid inputs are not available, computations should be
halted while holding the data in the middle of the configured pipeline until
this input conflict is resolved.

4.6 Concluding Remarks

Because of the considerable savings achieved by CGRC solutions, a CGRC solution is
to be adopted. However since in some applications such as Viterbi decoding, bit oper-
ations are needed, a mixed grained or at least limited fine grained solution is recom-
mended. Bit operations are not only needed to produce data but moreover, to generate
RTR governing event flags needed in many applications.

From Chapters 2 and 3 we deduce that for a CGRC solution for DSP computations we
need a heterogeneous data path array architecture. RTR and partial reconfiguration
features are essential to implement structures requiring for example the realization of
dynamic butterflies.

To adhere to data flow timing considerations, an ASIC like solution is to be adopted.
In such a solution, PEs and are considered to be coordinated together rather than in-
dependently and their data are assumed to be closely correlated. Therefore, optional
registering of processing elements outputs is essential to ensure preserving breaking
timing loops within the computation.

To manage operation and reconfiguration controllers are needed to orchestrate loading
of contexts as well as the progress of operations. In this context, time stamp signals are
needed to conduct RTR in various parts of the realized data path.

For a realistic CGRC solution operating as a part of a bigger SoC computational solu-
tion, the continuous stream of data in and out of the system is not guaranteed. In this
context, FIFOs for input and output can be used to remedy this problem. In Section
5.1, these and more aspects are discussed.

4.6. CONCLUDING REMARKS

115

Table 4.1: The main advantages and disadvantages of the reconfigurable architectures
studied in Chapter2 from fast DSP algorithms processing perspective.

| Architecture | Points for

| Points against

KressArray

1.
. Global buses

. Connection by abutment
. Several context layers

=~ W N

Local memory (register files)

. Dynamic and partial Configuration
. Fast switching between contexts

1. Data-driven processing

2. Large rDPU

3. up-like processing elements
4. Multiple layers

of peripherals requirement

MATRIX

. Local memory (register files)

. Global buses

. Multi Context (instructions)

. Nearest neighbor connections

. Dynamic and partial reconfiguration
. Fast switching between contexts

1. pp-like processing elements

RAW

. Local memory (register files)

. Several routing networks

. Multi Context (instructions)

. Local data & instruction cache

. Nearest neighbor connections

. Dynamic and partial reconfiguration
. Fast switching between contexts

1. pp-like processing elements
2. Full duplex interconnections

MorphoSys

RN WINPT WN PO 01

. Local memory (register files)

. Global buses

. Several context layers

. Nearest neighbor connections

. Dynamic and partial reconfiguration
. Fast switching between contexts

. Background loading of contexts

1. SIMD-like topology
implementation

PACT XPP

ANOCT = WINRRNONU = WN

. Configuration manager
. I/O interfacing

. ALU and RAM type processing elements
. Multi context memory

. Dynamic and partial Configuration
. Background loading of contexts

1. Data-driven processing

Chapter 5

The HPad

Contents
5.1 General Organization 118
5.1.1 Integration Provisions 119
51.2 Target Computational Paradigm 120
5.1.3 The HPad Data Path Array Architecture. 120
51.4 Reconfiguration Techniques 121
5.2 The HPad DPA Architecture 123
52.1 Arithmetic Processing Elements 123
5.2.2 Memory Manipulation Processing Element 126
523 DataSharingBuses 127
524 Reconfiguration Interface Sockets 129
5.3 Reconfigurable FIFOs 134
54 The HPad Control Architecture 136
54.1 OperationControl 137
5.4.2 ReconfigurationControl 137
5.5 The HPad Reconfiguration Mechanisms 141
5.6 The HPad RoutingTopology 143
5.7 SynthesisResults 145
5.8 AreaEfficiency Analysis. 146
5.8.1 Block wise Area Efficiency 146
5.8.2 Opverall Area Efficiency 147
59 Scalability i e 147
510 ConcludingRemarks. 151

-117 -

118 CHAPTER 5. THE HPAD

In Chapter 4 both the functionality requirements of the processing elements as well
as the reconfiguration aspects were studied together with DSP algorithms architectures
in mind, reaching in conclusion the features listed in Section 5.1. The proposed CGRC
solution, the “HPad” was designed observing the aforementioned features.

The HPad design was carried out through VHDL modeling. The HPad was completely
modeled in Synthesisable Register Transfer Level (RTL) VHDL code. The developed
VHDL models are parameterizable. This parameterization approach permitted the ex-
perimentation of a variety of design features simply by modifying some constants and
recompiling generating thus different designs of different parameters. This power-
ful parameterization or “Genericity” is a property making VHDL modeling superior to
Verilog modeling in terms of parameterization possibilities. The complete adequately
commented VHDL model size exceeded 6500 lines of code.

In this Chapter the HPad RTR coprocessor architecture and features are described and
analyzed. In Section 5.1 the assumed computational environment is posted. The gen-
eral architecture of the HPad is introduced in Section 5.1 as well. Section 5.2 then
presents a detailed description of the HPad’s data path array and its different com-
ponents. Section 5.4 discusses the reconfiguration and operation control parts of the
HPad. In Section 5.7 synthesis results are presented and discussed. Section 5.8 a dis-
cussion on the HPad’s area efficiency is presented. In Section 5.9 the scalability of the
HPad is discussed. Finally, Section 5.10 conclude this Chapter.

5.1 General Organization

Observing the architectural parameters listed in Section we reach the proposed CGRC
solution architecture shown in Figure 5.1. We name our proposed CGRC solution the
Heterogeneous Pad (HPad). The heterogeneity characteristic of the HPad comes from
its different types of building blocks: data path and control as well as the different
types of processing elements within its data path array. In addition, FIFOs and a recon-
tiguration Context libraries are needed. The FIFOs are needed to ensure the continuous
streaming of data to and from the HPad’s Data Path Array. The Context library can be
realized as any arbitrary type of ROM: EPROM, EEPROM, Flash or any type of non
volatile memory storing pre defined configurations. Since - as will be discussed below
in this Chapter - configurations are written line by line to the data path array, there
is a notable similarity between it an a note pad that one uses for solving a problem,
writing thus line by line and discarding the used page when starting a new problem
(analogous to reconfiguration).

The HPad feature three main types of blocks:

e The data path processing array,

e FIFOs for input and output interfacing, and

5.1. GENERAL ORGANIZATION 119

Reconfiguration
Controller
HPad
Data Path
Array
e ——
~ Operation
Regon;igcz‘raﬁon Time-Stamp
ontexts ,
Library Generation

Figure 5.1: A simplified structure of the HPad.

e Reconfiguration and operation control.

5.1.1 Integration Provisions

Since we have designed the HPad to be loosely integrated in a SoC, we expect that
it accepts instructions and likewise, consumes and produces data from and to its sur-
rounding environment. Accordingly, we suppose that the outside environment is not
completely aware of the operation progress and conditions of the HPad. Similarly,
we deduce that, the HPad needs not to be fully aware of the operation conditions of
its surroundings. What the rest of the computational SoC components should know
about the HPad is the set of supported operations that the HPad can perform.

From the HPad side, it should accept the computational tasks when it is available and
signal if the required task can be accepted or not and likewise also signal when it is

120 CHAPTER 5. THE HPAD

completed. Hence, a simple form of handshaking is required to assign new tasks to the
HPad and to know if the new task is accepted and whether or not is the computational
task is finished.

When a computational task is accepted, the HPad should be configured and then the
operation starts and continues on the assigned scope of data. As the computations are
in progress, special synchronization flags are generated to help schedule pipelined-like
architectural implementations. The abovementioned tasks are assigned to the control
and configuration resources of the HPad.

In the same context, The HPad is assumed to be integrated with the rest of the SoC
through a shared memory bus. As the bus may be used by other components of the
SoC, it is not expected to be available to the HPad continuously.

Since the HPad is to realize high speed DSP algorithms architectures, it needs a con-
tinuous supply of inputs and correspondingly, produces continuous output for con-
sumption. In order for it to operate correctly and efficiently, this contentious streaming
of data is to be sustained. To keep the HPad data path array running at the maximum
pace, flexible FIFOs are used at the input and output ends of the HPad data path pro-
cessing array. The FIFOs are to be charged and discharged with data in a fashion that
keeps the HPad running at the maximum possible speed. In case a read or write con-
flict still occurs, the control unit should intervene and put the operation of the HPad
on hold until this conflict is resolved in order to ensure the validity of the produced
outputs.

5.1.2 Target Computational Paradigm

The HPad is to operate in a library-based computational paradigm computing for com-
plete DSP algorithms. In such a paradigm, the user calls, say, an FFT operation to be
operated on a specified region of data. This function call triggers the HPad. The HPad
configuration controller retrieves the appropriate configuration from the configuration
ROM, loads it in the HPad array and begins computations.

This computational paradigm simplifies to a great extent the compilation problem,
leaving the difficult task of algorithm synthesis to the hardware designer as have been
discussed in Chapter 4. In addition, the up and other on board peripherals are very
much let free to perform their own required tasks.

5.1.3 The HPad Data Path Array Architecture

The core of HPad is its data path dynamically reconfigurable Data Path Array (DPA).
The HPad array consists of three main elements:

o Arithmetic-Logic Processing Elements,

5.1. GENERAL ORGANIZATION 121

e Memory Manipulation Processing Elements ,and

e Data Sharing Bus Elements.

As Figure 5.2 illustrates, the HPad array is organized with rows of memory and arith-
metic units processing elements placed interchangeably. Data sharing bus elements
are placed horizontally between rows and vertically between columns allowing thus
for long distance data routing both vertically and horizontally. Section 5.2.3 describes
the data sharing bus elements in more details.

The arithmetic-logic processing elements take care of arithmetic and logic operations.
They read tow vector operands and a carry in bit and produce a vector in addition to
a single bit outputs. several of these arithmetic-logic units can be interconnected to
form arithmetic units of bigger vector size inputs and outputs. In Section 5.2.1 a more
detailed discussion about the arithmetic-logic processing elements is given.

Memory manipulation elements serve the purpose of local storage as well as and FIFO
operations. Several f the memory processing elements can be interconnected to form
various sized FIFOs. Section 5.2.2 provides more details about the memory processing
elements.

All of the above elements are interconnected and interfaced through the reconfigura-
tion sockets. Each reconfiguration socket encompasses an element and manages its
reconfiguration and connectivity with other components of the HPad array.

5.1.4 Reconfiguration Techniques

The reconfiguration problem was tackled at two levels of abstractions fronts: global
and local. Globally, the supported configurations are stored in the configuration ROM
that supply the proper contexts to each of the reconfiguration interface sockets. Locally,
reconfiguration interface sockets mange multiple context words and switch between
them also according to global or local events. Global events can be generated from
the reconfiguration controller or from time stamps. Local events are produced either
depending on the processing element results or can be also chosen according to passed
bits. In Section 5.4 a more detailed discussion about the reconfiguration techniques is
provided.

The idea of the use of reconfiguration sockets has fortunately facilitated multi-context
support, dynamic reconfiguration (RTR), partial reconfigurability and background
loading of contexts as follows:

e Multi Context Support: Reconfiguration interface sockets are supplied with multi-
ple reconﬁguration context registers to store more than one context.

e RTR Reconfiguration: RTR is permitted with the aid of the special switching facil-
ities of the reconfiguration sockets as is described in Section 5.2.

—_

22

CHAPTER 5. THE HPAD

Data Share Busses

2]
—
N
®
o
—
oo
X
oo
QO
=]
- .
js%)
<
—
9]
»n
=
:
)

GALPE MeMPE Reconfiguration

Inferfac7$oc\kefs
o) | (=7 [| = | (=m0 | (=) | Lo
ESlESIEIIESN SIES
=) =) | =) |= | = | (=) | [=) | ==
=) ||)|) /[}J >
(=) || (=) |(==) | (=) | (==)/| (=) | (=)
=) ||| | 3T))
(=) | (=) =) (=) | (=) | (=) | =D
EINIE SNE Sls SpiE SapE =S
(=) | (=) |(=) | =) | (=) | (=) | (=)
ESIE SIE = = = =S
(=) | (=) |(=) | (=) | (=) | (=) | (=)
EINE SRE Se SpiE SpEE =S
(=) || (== | (=) | (=) | (=) || (=) | (=)
)| 50|36) |))
(=) | (=) (=) | (=) | (=) | (=) | (=D
ESNE DE = apE s s o
Figure 5.2: A simplified structure of the HPad DPA, here the current implementation

e Partial Reconfigurability: In addition, since the contexts containing the operation
and routing information of each element is provided to it locally through its re-
configuration interface socket, individual sockets can select arbitrarily any of the
contexts stored locally in it and thus provides partial configuration capabilities.

e Background Reconfigurability: Since multi contexts is supported, an obsolete con-
text can be updated in the background while processing continues with another
active context.

5.2. THE HPAD DPA ARCHITECTURE 123

5.2 The HPad DPA Architecture

The DPA architecture of the HPad is its core processing resource. The HPad DPA
shown in Figure 5.2 is arranged as a square array with the number of processing el-
ements of the same type is the same column and row wise. The HPad data path array
is designed to ensure high speed of operation for high computational power demand-
ing DSP algorithms. To serve this purpose, the HPad data path array encompasses
two types of processing elements arithmetic-logic processing elements and memory
manipulation processing elements. The routing and interconnectivity of the process-
ing elements was influenced by the studied architectures in Chapter 3. For extra rout-
ing flexibility, horizontal and vertical data sharing buses allow for long distance and
teedback data routing.

The VHDL description of the HPad DPA was written with parameterization consid-
erations. A package containing the most important parameters as constants forms the
parameters of the HPad DPA. The VHDL code of the HPad array is carefully written
to avoid conflicts in compilation and results as these constants in the package are mod-
ified in order to obtain a new array with different parameters. The most important of
these parameters are:

The number of processing elements per row,

The data vector size,

The number of vector storage positions in the memory processing elements,

The input size of the reconfigurable FIFOs,

The output size of the reconfigurable FIFOs, and

o The instruction word sizes of each of the elements.

In the following, more details about the various types of elements composing the HPad
DPA is described. The description of each element’s reconfiguration interface socket is
described as well.

5.2.1 Arithmetic Processing Elements

The arithmetic-logic elements are obviously the most important type of building el-
ements composing the HPad DPA. The following main points were observed when
designing this ALU-like unit:

e It should support all the arithmetic and logic operations encountered in the
course of our study DSP algorithms architectures.

124 CHAPTER 5. THE HPAD

e It should also support limited bit operations namely:

- carry,
- comparison flag (needed for the Viterbi decoding ACS unit)
— zero flag, and

negative flag.
e It should allow optional registering of outputs.
e Formation of larger vector size operation should be possible.

e Multiplication and producing a standard vector size output should be allowed.

In addition, re usage of computed results is also permitted to add extra flexibility and
to allow for MAC like instructions.

Asis the case with all ALU units, the arithmetic logic units of the HPad operates on two
vector operands and produces one vector result. For a regular and usable structure of
the HPad DPA architecture, the operands and products vector sizes should be constant
throughout the array. Therefore, the output data range should be assumed to remain
representable within the input operands data width.

Now since multiplication operation on a pair of N — bit vectors result in a 2V — bit
vector result. The selection of the N — bit final processing element’s result out of the
complete 2N — bit product is an issue to be resolved. In case both operands were
integers, the most significant N — bits are selected. However, this is not always the
case. In the FFT operation, for example, all the coefficients are fractions less than one
which means that the selection of the most significant N — bits will result in huge
truncation error. In the DCT operation, the coefficients are also small numbers but can
exceed one. Multipliers used in the architectures presented in Chapter 3 were attached
to truncation units that select the best N — bits of the product depending on the typical
values of its operands. Truncation and selection of the output vector range is therefore
essential and was implemented with multiplication. To aid in the selection of the final
result bits a multiplexor of logs N select bits is utilized for full range selection of the
final result.

The area required by multipliers is obviously much larger than that of adders. In the
studied architectures in Chapter 3 the ratio of multipliers to adders ranges between
4 : 6 in the FFT implementations and rises to 1 : 1 in most of the the FIR implementa-
tions. To save in area, several types of the arithmetic units were developed. The first
version, the Arithmetic-Logic Processing Element (ALPE) possessed no multiplication
capabilities, instead it possessed simpler add/subtract, ACS and other logic opera-
tions. The second version the Multiplication capable ALPE, (MALPE) has multiply
and Multiply Accumulate (MAC) capabilities but in the other hand has less logic sup-
port operations than that of the ALPE. A third version is the Gross ALPE (GALPE that
possesses all the ALPE and MALPE capabilities.

5.2. THE HPAD DPA ARCHITECTURE 125

Several topologies of the HPad were tested for their efficiencies and suitability for the
implementation of some of the DSP algorithms. The GALPE based DPA was found to
have the highest area efficiency for the studied DSP algorithms. Detailed instruction
word organization and description of the GALPE is provided in Appendix B.

A simplified illustration of the GALPE unit is given in Figure 5.3. The input operands
are fed to the GALPE unit where they are operated on according to the given instruc-
tion. The truncation information is also provided by the instruction. The results (vec-
tor and bit) are produced. Operation result flags (zero_flag and neg_flag) are generated
afterwards. The Bit-out provides either the carry out or, in case of a comparison op-
eration, an indicator bit pointing to biggest operand (by being set to ‘0" when the X
operand is larger and 1" if the Y operand is larger). The final results are then option-
ally registered and delivered as outputs of the GALPE block.

Bit=in

VectorSize

Left Operand Logic
_— Unit VectorSize
VectorSize

Right Operand Truncation Result
2x VectorSize esu
VectorSize
ﬁ

VectorSize
Operation
Flags
Generation

VectorSize

VectorSize

— Bit-out
L ZerofFlag
— NegativeFlag

Figure 5.3: A simplified block digram of the GALPE unit.

126 CHAPTER 5. THE HPAD

° ° °
° o o000 R
° ° °

Vector Input

—— Vector Output

Figure 5.4: The vector functionality of the MeMPE units

5.2.2 Memory Manipulation Processing Element

The Memory Manipulation Processing Element (MeMPE) serves the following main
purposes:

e to act like local memory for coefficient or data storage,
e to be configured as FIFOs for data synchronization, and

e to perform several fine-grained functions that require bit-level access.

The later fine-grained operations include bit shift, storage and update and most in-
terestingly the Viterbi decoders TB decoding function. The number of vector storage
positions of the MeMPE block is kept generic. The operations of the MeMPE include
complete memory content transfer to neighboring MeMPE elements, vector shifting
and loading, bit shifting and loading and the Viterbi decoder TB operation. In addi-
tion, each vector or bit can be accessed for input or output.

The vector functionality of the MeMPE is illustrated in Figure 5.4. A vector can be
loaded in either of the array positions. It can be also shifted left in the array. In addition,
complete array of vectors can be updated. Any of the vectors can be selected as output
as well. This configuration allows the MeMPE units to be used as RAM as is discussed
above or as register file in the vicinity of the GALPE elements placed in an interleaving
manner as depicted in Figure 5.2 above.

5.2. THE HPAD DPA ARCHITECTURE 127

oy = 8o

/7 { A N /
, L FF " //
p v Bit Output
\
l, ! //
1

Figure 5.5: The bit functionality of the MeMPE units

A simplified illustration of the bit operations is shown in Figure 5.5. As shown in the
Figure, bit load and bit shift operations are allowed . Each of the vector storage loca-
tions is composed of several single bit registers. Each of the registers input is selected
from the adjacent more significant bit or from outside. The enable signal of the single
bit registers are used to enable or disable the registers which facilitates the update of
either one bit or more of the stored data.

The inputs of the MeMPE unit include bit address and vector address. In the current
implementation of the HPad two vectors of data registers are incorporated in each
MeMPE unit. This number of vectors is thought to be adequate for the targeted DSP
applications. This assumption is validated later in Chapter 6 where several DSP algo-
rithms were implemented using the HPad with this parameter. This particular param-
eter and others are listed in Table 5.1 later in this Chapter. The instruction set of the
MeMPE unit is provided in Appendix C.

5.2.3 Data Sharing Buses

The Data Sharing Bus (DSB) main function is the provision of long range data routing.
Two versions of the data sharing bus were developed: a long range bus covering the

128 CHAPTER 5. THE HPAD

From Side 1 GALPEs

From Side 1 MeMPEs5
From Parallel DSBs

From External Inputs

— Bit & Vector Outputs

From Intersecting DSBs
From Side 0 MeMPEs

From Side 0 GALPEs

Figure 5.6: structure of the DSB

complete DPA and a short range one spanning only a few processing elements. As the
length of the long range bus is parameterizable by the number of element per row in
the HPad DPA, the span of the short range data sharing bus is parameterizable as well.
As will be shown in Chapter 6, the long range DSB sufficed for the target applications.

The number of elements per row in the current implementation of the HPad is 8. This
parameter and others fixed for the current implementation of the HPad are listed in
Table 5.1 shown later with the synthesis results in Section 5.7.

The same architecture of the DSB is used to form the horizontal and vertical buses
as shown in Figure. The buses select its single vector output from the outputs of the
GALPE, MeMPE units along both of its sides and the intersecting buses outputs. The
data sharing bus is capable also of routing a single bit in a similar manner. Dynamic re-
configuration of the DSBs is also possible through their reconfiguration interface sock-
ets. DSBs can be interconnected to each other and can also broadcast external inputs.

Figure 5.6 depicts the structure of the DSB. More information about the instruction set
(addressing information) of the DSB is given in Appendix D.

5.2. THE HPAD DPA ARCHITECTURE 129

5.2.4 Reconfiguration Interface Sockets

The Reconfiguration Interface Sockets (RIS)of the various building elements of the
HPad are the key elements facilitating RTR, partial configuration and local context
storage. The RIS of each of the building element of the HPad implements not only the
reconfiguration of the function of the hosted processing element, but moreover, it is
responsible of the input data routing to the hosted processing element.

Each reconfiguration interface host dispenses of one vector and one bit output to the
rest of the HPad data path processing array. This simplifies the routing problem being
solved now at only the input side of the RIS. This topology also permits sharing the
output of any element by one or more other elements: GALPEs, MeMPEs and DSBs.

Each RIS is supplied with a number of data operands (depending on its type and the
type of the element it hosts), control event flags from the event flag generator, several
signals form the Configuration controller, and global signals such as the reset and clock
signals. The signals coming from the Configuration Controller include configuration
control signals and configuration contexts.

Each RIS in principle can carry several context registers. In the current implementation
of the HPad two contexts registers per elements is used. This and other parameters of
the current realization of the HPad are listed in Table 5.1. The aforementioned couple
of context word registers can carry either two configurations of separate static imple-
mentations algorithms (i.e. where no RTR operations are required), or the configura-
tion information of an RTR implementation of a given algorithm.

The management of contexts loading and updating in the RIS is illustrated in Figure
5.7. The configuration shown in Figure 5.7 facilitate fast loading of the HPad DPA
with contexts. The RIS can keep both of the current context vectors, update one of
them or shifts new contexts in both context registers as depicted in Figure 5.7. As
shown in Figure 5.7 new contexts can be shifted through the upper context registers in
each row of RIS units, shifted through the lower context registers in each row of RIS
units, or shifted upper to lower in each RIS to the upper of the next RIS in the same
row and so on in a zig-zag pattern. The above functions are determined by a two-bit
instruction explained in Appendix A. More on configuration contexts management
and configuration loading topology is given in Section 5.4.2.

Each RIS selects the proper context dynamically according to the seven most signifi-
cant bits of the context vector as shown in Figure 5.9. The control bit deciding on the
configuration number is selected from one of the following signals:

e signal provided by the reconfiguration controller,
e selected input bit,

e negative flag,

130 CHAPTER 5. THE HPAD

Vertical DSB contexts e e

Horizontal DSB contexts

Top Row MeMPE contexts
E——

Top Row GALPE contexts
—

&=
===

= =

*’[%J = J = J
—(E - (EHE)

Bottom Row MeMPE contexts EEEEE]W E==== (E==—= W
—

—
—
Bottom Row GALPE contexts [- w [> w > a
—_— —J —— — >
| I— J | e— - ~

/
/
’

Figure 5.7: Configuration contexts updating in the HPad.

e zero flag or

e one of the 2 x ElementsPer Row bits generated by the operation controller

For static configurations, the 3 MSBs of the context vector should be 000 forcing thus
the number of the selected context to come directly from the configuration controller.
Alternatively, the selected control bit can be passed from a previous processing ele-

5.2. THE HPAD DPA ARCHITECTURE 131

ment or even form the same encompassed processing element (MeMPE or GALPE).
Additionally, control bits generated externally by the operation controller from time
stamps can be selected by setting the MSB of the context to 1 and the individual bit
address is stored in the logy FlementsPer Row + 1 bits at the left of the 3 MSBs of the
reconfiguration context vector.

The above discussion described the common features of the RIS of the different build-
ing elements of the HPad DPA. Of course, each building element of the HPad DPA
resides in a different type of reconfiguration RIS designed for it specifically. In the
HPad data path array we have three different types of RIS: one for GALPE units, one
for MeMPE units and one one for the DSBs. The main features of these RIS are given
below.

5.2.4.1 Arithmetic Precessing Elements RIS

The GALPE RIS manages the routing and reconfiguration of the input signal to the
GALPE unit. The GALPE RIS selects both operands for the GALPE unit from 16 neigh-
boring PEs.

The different routing possibilities of a GALPE unit within a RIS is shown in Figure
5.8. As discussed in Chapter 4 the HPad architecture is oriented towards efficient re-
alizations of DSP algorithms data paths. Therefore, connections allowing data to flow
from one side of the HPad DPA to the other are implemented. Four connections to the
nearest neighbor GALPE RIS of the adjacent left column, from the same row, one row
above, tow rows above and one row below. For efficient implementations of struc-
tures involving coefficients stored in local memories or FIFOs for data management,
local access to MeMPE units are made available in a similar manner. Furthermore, for
more efficient realizations of butterfly—like structures, connections of the above and
below GALPE and MeMPE are implemented. For long range connections, access of
data share buses above and below the GALPE RIS is also supported.

AlI RIS can switch between two of the contexts as discussed above. The context vector
is organized as depicted in Figure 5.9. As mentioned above, the MSB 7 bits are used for
defining the RTR switching scheme. The next 4 bits are used to define the address of the
tirst operand and the following 4 bits are used to define the second operand’s address.
To reduce the context size the bit in operand to the GALPE unit is assumed to have
the same address as the first operand. The next 4 bits are used to define the truncated
portion of the result in case of a multiply operation. Finally, the least significant 6 bits
contain the instruction passed to the GALPE unit.

The output of the GALPE unit is passed though the GALPE RIS to the rest of HPad
DPA.

132 CHAPTER 5. THE HPAD

PE 2 rows above
GALPE outputs from / PE1rows above \
the previous column

PE in the same row

PE 1 rows below

PE 2 rows above
MeMPE Outputs from / PE 1 rows above \
the previous column

PE in the same row e N

PE 1 rows below

GALPE/MeMPE

Above horizontal bus

Below horizontal bus q)
Bus Outputs _ :

Previous vertical bus

Next vertical bus

Above GALPE
Below GALPE
Above MeMPE

Below MeMPE

Top/Bottom PEs

Figure 5.8: Routing of operands to the GALPE and MeMPE units.

5.2.4.2 Memory Manipulation Processing Element RIS

The MeMPE RIS also manages the routing and reconfiguration of the MeMPE units. In
contrast to the GALPE RIS, the MeMPE manages only one vector and one bit input to
the encompassed MeMPE unit.

The MeMPE RIS units also route an array of vectors to and from the MeMPE units to
the neighboring MeMPE RIS units of the same row at the right and left of it. This is to
facilitate the transfer the complete stored values in the MeMPE units through the array.
Such a capability might be needed for some applications such as the TB operation of
the Viterbi decoding algorithm. Although the transfer of the complete array of data of
the MeMPE units may seem a bit expensive, practical sizes of the MeMPE units are not
expected to exceed 4 data vector registers, or 8 at the most. As a matter of fact and as
has been mentioned above, the current implementation of the HPad has MeMPE units

5.2. THE HPAD DPA ARCHITECTURE 133

2 0

Data In PE _| Data Out
Selected Context

o
5 Context Reg. 0
®
a.
5 Context Reg. 1 I
m
<
o
=3
»

Time Stamp Signals

Context No. from

the Reconf Controller

- J

Figure 5.9: Context selection in RIS of the GALPE and MeMPE units.

of only 2 data vector registers. This size of the MeMPE units seems to be sufficient as
is validated later in Chapter 6.

In addition, the routing of the MeMPE RIS unit is similar to that of the GALPE RIS unit
shown in Figure 5.8 . This scheme permits feasible implementations of the studied
architectures of Chapter 3 including local storage of constants, access of several con-
stants periodically, formation of larger ROMs and FIFOs by cascading of several of the
MeMPE RIS units. All this is possible along with local access of operands from and to
neighboring units.

The organization of the context vector of the MeMPE RIS units is shown in Figure 5.9.
The 7 MSBs are used to define the RTR switching scheme. The next eight (4 and 4) bits
are used to store the output and input bit addresses and respectively. Similarly, the fol-
lowing two (1 and 1) bits are used to specify the output vector addresses respectively.
Here again the selection address of the input vector and bit are assumed to be the same
to reduce the reconfiguration area overheads. The selection address of the input vec-
tor (and bit) is specified by the following 4 bits. The least significant 4 bits holds the
instruction of the encompassed MeMPE.

The MeMPE RIS passes the output bit and vector (in addition to the complete array) to
the rest of the HPad DPA. Other control inputs such as the time stamp vector is used
to manage the RTR switching of contexts similar to all other RIS.

134 CHAPTER 5. THE HPAD

5.2.4.3 DSBs RIS

The DSB RIS manages the routing of the DSB. This routing can also be changed dy-
namically at run time.

The organization of the DSB RIS context vector is slightly different than that of the
GALPE and MeMPE RIS.

Next to the 7 bits needed for RTR configuration, a single bit is used to specify if the
input is sampled directly from the input of the HPad DPA. The next bit is used to
specify the top or bottom inputs of the DSP are selected. The following 3 bits are used
to select the input bit address of the DSB which can be different from the address of the
input vector specified by the least significant 3 bits.

5.3 Reconfigurable FIFOs

For a loosely coupled reconfigurable coprocessor design of the HPad (which is thought
to be more general and versatile) input and output FIFOs are needed for the following
two main reasons:

1. to maintain a continuous flow of data to the HPad data path array:
In a complete SoC computational solution it is unrealistic to assume that all com-
putational blocks have dedicated access to the memory or source of data. We
therefore assume a shared memory organization of the SoC. As depicted in Fig-
ure 4.1, the memory is accessed by the HPad through a data bus. At his stage the
type of data bus is not yet defined since the other components of the SoC are not
decided on.

As a matter of fact, we aim at designing a system independent reconfigurable
coprocessor solution which is more versatile and helps us to concentrate on the
general computational problems of the targeted HPad. A FIFO stores as much
input data when the bus access to the memory is granted to make it available
to the HPad data path array continuously. This is important since the HPad is
designed to implement pipelined DSP algorithms architectures which assumes
continuous data input stream.

The same above discussion also applies for the output data flow. Therefore an
output FIFO is also required to manage the outputs.

2. to adapt the size of the HPad data path area to the size of the memory buses:
After reducing the sizes if the inputs and outputs of the HPad data path array to
a manageable number of 16 (8 inputs and S8outputs) as discussed in Section 5.6,
we need to consider interfacing it with the memory bus that is not necessarily of
the same size as the HPad DPA. Hence, the utilization of sage of FIFOs accepting
and delivering data vectors of different sizes can solve this problem.

5.3. RECONFIGURABLE FIFOS

135

Since a couple of FIFO units are needed (one for output and one for input) and since
the type and size of the data bus is not defined, we decided to design a reconfigurable
In/Out FIFO whose size of the input and output vectors is configurable. The general
architecture of the reconfigurable FIFO is shown in Figure 5.10.

Data In
(0.. 7 Vectors)

Input Vector Size
Output Vector Size

Input Valid
Output Valid
Start Address

End Address

“‘.“H

AN

Control

Logic

00“ H

Data Out
(0.. 7 Vectors)

Conlflict (full/empty)

Start Address

J/

Figure 5.10: The general architecture of the reconfigurable FIFO.

As shown in Figure 5.10, the inputs of the reconfigurable FIFO is composed of an array
of CellsPer Row ' input vectors and a similar sized array of output vectors. These input
and output arrays of vectors can be considered as input and output vectors of larger
sizes. Through the use of multiplexors, the FIFO’s memory registers % can be updated
(or read) by the input (or output) vectors.

!this value is generic and can be parameterized in the VHDL model’s constants package.
2which is also parameterizable.

136 CHAPTER 5. THE HPAD

The needed input and size of the FIFO (depending on the device it is attached to either
at the input and output sides) can be configured ° to range from an array of size one
vector to an array of Cells Per Row vectors (maximum size). The input and output array
sizes are independent and are configured through the reconfigurable FIFO InputSize
and OutputSize inputs respectively.

The problem of updating the proper memory range given the variable sizes of the input
is solved by enabling according to the InputSize vector only the appropriate number of
registers in the portion of the memory the current inputs are directed to discarding thus
the dangling inputs that are not needed. In addition, the memory address increment is
adjusted according to the InputSize vector as well. The proper outputs are read from
the FIFO memory also by adjusting the output address increment according to the
OutputSize vector and neglecting the uninteresting vectors from the output array of
the reconfigurable FIFO.

The reconfigurable FIFO control unit orchestrates the operation of the FIFO enabling
constant flow of data in to and out of the reconfigurable FIFO as long as no empty-
memory conflict occurs while a read out request is asserted or full-memory conflict
occurs while a write in request is asserted. The reconfigurable FIFO memory address-
ing is managed in a circular manner allowing reading and writing to loop from the
end to the beginning of the memory when applicable. The reconfigurable FIFO control
unit also controls the read and write address generation counters. Two conflict flags:
FIFO gy and FI1FOp,; are also generated by the reconfigurable FIFO control unit.

5.4 The HPad Control Architecture

The reconfiguration control architecture of the HPad is the tool enabling the usage of
the dynamic reconfiguration features embedded in the HPad DPA discussed above.
The HPad control facilities manages both the internal operations of the HPad RTR
coprocessor as well as overall operation management including external communi-
cations management. The control tasks of the HPad involve the management of the
following tasks:

1. RTR operations

2. Background loading of contexts

3. Tasks processing management

4. Operation management of the HPad components

5. Generation and usage of time stamps signals

*Note that configuration takes place in run time, while parameterization is fixed at compile time.

5.4. THE HPAD CONTROL ARCHITECTURE 137

Items 1, 2, 3 and 4 are carried out in the Reconfiguration Controller discussed in Sec-
tion 5.4.2. While the generation of the timing stamps is carried out by the Operation
Controller of Section 5.4.1.

5.4.1 Operation Control

The Operation Controller is basically a sequencer responsible for generating time se-
quences. Throughout this thesis we denote the generated sequences “time-stamp sig-
nals” since they are mainly used to synchronize the operation of DPA and to aid in the
scheduling of the RTR events. The Operation Controller generates 2 x CellsPer Row
time stamp bits. Half of the generated bits (CellsPer Row) are generated directly by a
serial counter counting the clock input. These time stamps are essential for the opera-
tion of a wide variety of architectures such as the R2SDF, R2?SDF and R2MDC of the
FFT and other similar algorithms to name a few.

The other half of the generated time-stamp signals are generated via CellsPerRow
LUTs in order to generate functions of time stamps for some irregular structures such
as some pipelined architectures for the DCT algorithm. The address of the LUTs are
the count bits generating thus signals that are functions of time. These function of time
signals were not needed for the examples listed in Chapter 6 but they are likely to be
needed in applications that involve events at time points that are not a power of 2.

The block digram of the Operation Controller is shown in Figure 5.11. At reconfigura-
tion time the CellsPer Row LUTs are loaded with the specific time functions. In case of
operation conflicts, the counting process is frozen to ensure the integrity and correct-
ness of the generated time-stamp signals relative to the operation progress of the HPad
COPTOCessor.

5.4.2 Reconfiguration Control

The heart of the HPad coprocessor control is the reconfiguration controller. The recon-
tiguration controller manages the reconfiguration and operation of the HPad copro-
cessor including triggering of its operation, freezing the operation, and accepting new
tasks to be processed in the HPad coprocessor.

As illustrated in Figure 5.12, the Reconfiguration Controller inputs the task number
which is a pre-defined task number stored in the reconfiguration ROM, the amount o
data to be processed and the start and end addresses for both reading and writing in
the external memory of the assumed SoC solution.

To keep track of the configuration and /or operation progress a couple of counters are
needed. The read and write from and to the outside world conflict flags are passed
from the input/output FIFOs. At an occurrence of a conflict the Reconfiguration Con-
troller generates the appropriate signals putting the operation of the HPad coprocessor

138 CHAPTER 5. THE HPAD

Reset
Enable

Clock 8-bit Serial Counter
Start Count

Stop Count N

Input Time—

Stamp Functions

—— 16~bit Signal
\%//_/J Generated from Time-Stamps

8 Generated Signals

Figure 5.11: General Architecture of the Operation Control unit (with CellsPer Row =
8).

on hold until the conflict is resolved. The input and output data address are supplied
to the input and output FIFOs.

The Reconfiguration Controller also takes care of the book keeping of needed and ob-
solete contexts in the HPad DPA and thus if it can or not load in new configurations
and also whether loading of these configuration can be carried out in the background
while the HPad is still performing a current operation.

Taking all the above considerations in account, 8 different states of the HPad coproces-

sor are defined. These states and their transitions are depicted in the state digram in
Figure 5.13.

The state diagram of 5.13 shows the following states:

e the idle ("NOP”) state,

the Conf iguration (“Cfg”) state,

the Sample New Task (“SNT”) state,

the “Run” state,

the Freeze while possibly Configuring (“FzC”) state,

the Sample neXt Task (“SXT”) state,

5.4. THE HPAD CONTROL ARCHITECTURE 139

4 N
Read Start Address
Read End Address
Read Start Address
C Ontrol Write Start Address
Read End Address
LOglC Write End Address
Write Start Address
HPad Busy
Write End Address
Freeze Operation
Configuration No.

Active Context No.

Input FIFO Conflict (empty)

Output FIFO Conflict (full) RIS Command

Operation Count
Instruction

Reconfiguration Count

G J

Figure 5.12: The HPad’s reconfiguration controller.

e the Run while ReConfiguring Partially (“RCP”) state, and

o the Freeze while possibly Partially Configuring (“FzP”) state.

The transition conditions between the above states is summarized in the following:

The HPad reconfigurable processor starts with the NOP state. At the event of a new
task request, the Reconfigurable Controller switches to the SNT state. After storing the
new task information: the task name, the number of data points to be operated on and
the read and write beginning and end addresses in the external SoC memory the HPad
coprocessor switches to the Cfg state.

In the Cfg state the appropriate contexts are loaded form the Reconfiguration ROM in
the HPad DPA. If a static configuration is to be loaded, only one of the two context
registers in each RIS should be updated whilst both context registers should be loaded
when an RTR configuration is to be configured. According to the type of configura-
tion i.e. static or dynamic, the Reconfiguration Controller asserts the appropriate RIS

140 CHAPTER 5. THE HPAD

S)

Figure 5.13: The state transition digram of the of the HPad Reconfiguration Controller.

configuration instruction and sustains the Cfg state until the contexts are loaded in the
proper positions.

Subsequent to the reconfiguration of the HPad DPA the HPad is switched to the Run
state unless there is a read or write conflict. In case of a conflict the HPad coprocessor
switches from the Cfg state to the FzC. In the FzC state the reconfiguration of the HPad
DPA continues but it does not transit to the Run state unless the read /write conflict is
resolved. The FzC is also visited directly from the SNT state, the Cfg state and the Run
state in case of a read /write conflict.

In the Run state, the configured task is executed until the number of data points to
be operated on is reached. A special counter keeps track of the data consumption
progress. Obviously, at a conflict event, the data consumption progress counter is put
on hold so long as the conflict situation is sustained.

When the required amount of data is processed the HPad coprocessor transits back
to the NOP state. The Reconfiguration Controller remembers the type of loaded con-
figuration whether complete for RTR architectures implementations, or partial for static
architectures implementations. The reconfiguration controller remembers as well as
the execution progress of the stored contexts. In case of vacancy in the context regis-
ters, the HPad coprocessor can accept a new task. While in the Run state, and at the

5.5. THE HPAD RECONFIGURATION MECHANISMS 141

event of a new task request, if there is vacancy for a new task, * the HPad coprocessor
shifts to theSXT state.

The SXT state can be directly visited from the FzC state if a new task request is placed.
From the SXT state the HPad coprocessor transits to the RCP state where the opera-
tion of the current task continues as the loading of the new tasks contexts takes place.
Again, in case of a read/write conflict, the HPad switches from theSXT state to the
FzP where the partial configuration is carried out while the current task execution is
frozen.

When the read /write conflict is resolved the HPad coprocessor turns to the RCP state.

After the the partial configuration is concluded the HPad coprocessor returns to the
Run state.

When the current task computations are accomplished, the HPad switches back to th
NOP state. The HPad coprocessor remains in the NOP state unless either there is a new
task request or if the second reconfigured task is yet to be attained to. If the second task
is yet to be undertaken the HPad controller updates the current context number and
switches directly to the Run state and so on.

5.5 The HPad Reconfiguration Mechanisms

In this Section the reconfiguration mechanisms of the HPad are summarized. The
HPad has three modes of reconfigurations:

1. Complete HPad reconfiquration:
This type of reconfiguration is the slowest. Implementations involving RTR op-
erations reconfiguration in the HPad are always of this type because they require
the usage of contexts stored in both the context registers in each RIS. Therefore,
this type of configurations always takes place in the foreground and can not take
place in the background. Conceptually, by adding more context registers imple-
mentations involving RTR operations can be also carried out in the background.
However, because of the additional overhead in the sizes of the RIS and recon-
figuration control we choose to live with this complete reconfiguration latency
if we managed to keep it in an acceptable range. The HPad DPA was therefore
organized and interconnected to minimize the latency caused by reconfiguration.

The RIS are cascaded one after the other in row basis i.e. each RIS context input
comes from the left adjacent RIS and the left most RIS of each row get their con-
figurations directly from the reconfiguration control unit. The reconfiguration
control unit passes the proper contexts from the reconfiguration contexts ROM.

“both configurations should be static

142 CHAPTER 5. THE HPAD

The above topology guarantees low latencies for loading the complete HPad
data path processing array with new configurations. In this case, both context
registers need to be updated and thus the latency is doubled to Latencyp,, =
2 x CellsPer Row (cycles).

The above reconfiguration technique is offers a fast reconfiguration scheme con-
sidering, for example, an 8 by 8 HPad array that is good enough for a 16 point FFT
as will be shown in Chapter 6. Here, only 16 cycles are needed to fully configure
the RTR R2SDF architecture.

2. Background reconfiguration:
Background reconfiguration can take place in the HPad when both the current
and next configurations are static with no RTR requirements. Obviously, due
to the organization discussed above, the reconfiguration latency of background
reconfiguration (and static implementation reconfiguration) is expected to be
shorter than that of the complete reconfiguration.

In case of static configurations, only one context register per RIS needs to be up-
dated. As the new contexts are shifted from one RIS to the other the total latency
will thus be Latencysi,, = CellsPer Row (cycles).

The above topology is offers again fairly short background reconfiguration la-
tency considering, for example, an 8 by 8 HPad array that is good enough for a
32-tap FIR filter. For the FIR filter which needs a static configuration only 8 cycles
are required to carryout loading of the reconfiguration contexts which can take
place in the background while an other static task is being executed.

3. RTR:
When an RTR implementation is loaded in the HPad DPA, RTR operations is trig-
gered at the occurrence of the selected reconfiguration event. The reconfiguration
happen in only one cycle since the RIS selects between the context registers.

Complete reconfiguration is managed by the reconfiguration control unit. The compu-
tation of the HPad DPA is frozen until loading of contexts in the HPad DPA is com-
pleted. Background reconfiguration is also managed by the reconfiguration control
unit. The computation of the HPad DPA continues during the loading of contexts in
the HPad DPA operation.

In contrast to complete and background reconfigurations, RTR involves no loading
of reconfiguration contexts. The decision of RTR action is taken locally at each RIS
without the intervention of neither the reconfiguration control unit nor the operation
control unit. The operation controller, however, makes time stamps and other timing
signals available to the RIS units to aid them in deciding on the context registers to
choose. In case of the static implementations, RTR is disabled by setting the MSBs of
the contexts to 00 and in this case the number of active context register is supplied by
the reconfiguration control unit.

5.6. THE HPAD ROUTING TOPOLOGY 143

5.6 The HPad Routing Topology

In this Section the routing topology of the HPad DPA is summarized. One of the targets
of the organization of the HPad routing topology is to tailor it to fit common DSP algo-
rithms’ architectures while simplifying the routing effort as much as possible. This was
achieved by recognizing that most of the needed routing will be between neighboring
elements in a data flow manner i.e. with the data flowing mostly in one direction. This
obviously reduces the number of inputs to each processing element which reduces in
tern the reconfiguration overheads (area, power consumption and size of the reconfig-
uration contexts).

As mentioned above, each processing element has direct access to the processing ele-
ments of the neighboring cells at its left provided they are in the range from two rows
above to one row below. Each processing element can also sample data from the four
buses surrounding it (above and bottom horizontal and left and right vertical DSBs).

To support butterfly connections and efficient usage of both types of processing ele-
ments connections of the top and bottom processing elements are made available. This
was proven beneficial in some of our experimentations.

In addition to unifying the direction of connections from the column on the left to that
at its right and so forth, feedback provisions have also to be made. For this both hor-
izontal and vertical buses are provided. These buses save also the purpose of broad-
casting data or passing them to far away parts of the HPad DPA.

An external inputs per row is available for use. Any of the cells of the HPad can have
access to an arbitrary external input through buses (that have access to the external
input coinciding with its number) provided that the needed buses are available.

Moreover, to maximize the usability of the HPad DPA, feedbacks from the end of the
array can be selected at the right side of the array by choosing between them and the
external inputs. Connections to the above and bottom rows are also made circular in
case the connected cell is close to the top edge or at the bottom edge of the HPad DPA.
Figure 5.14 summarizes the routing possibilities of the HPad DPA.

An important problem to be solved is finding a feasible solution how to make use of
the grand processing power of the HPad DPA. Consider the current implemented size
of the HPad DPA of 8 x 8 which is suitable for implementations algorithms of realistic
sizes as is discussed in Chapter 6. The number of elements of such an array is 8 x8 = 64
GALPE units, and also 8 x 8 = 64 MeMPE units, as well as 8 horizontal buses and 8
vertical buses. This makes up a total of 144 elements each with an output ° that may
be needed to be picked as an HPad output. Obviously, this number is not realistic for
practical usage in a dynamically reconfigurable system. Therefore, sampling outputs
of the HPad array is restricted to the outputs of GALPE and MeMPE units of the last

Seach of the outputs is composed of a vector and a single bit outputs

144 CHAPTER 5. THE HPAD

°
||l e®

y—

External input

Ll

H

ViV

External input

¥iw
L

!

External input

Misi
Y

;m N!

pRellE &
=
e

—

Figure 5.14: A simplified illustration showing the routing topology of the HPad DPA.

column in the HPad DPA as well as all the horizontal and vertical buses which adds
up to 4 x 8 = 32 outputs.

Now after having selected 32 outputs from the HPad array, further reduction of the
output size is achieved by selecting 1 output out of 4 thus having now only 8 outputs
from the HPad DPA. This number of outputs is not only practical but moreover, allows
scaling the size of the HPad coprocessor by cascading several of the HPad DPAs since
the number of inputs and the number outputs of the HPad DPA are the in this case
same.

5.7. SYNTHESIS RESULTS 145

5.7 Synthesis Results

As was mentioned in Section 5.2 the HPad VHDL model was written in a parameter-
izable manner allowing the generation of different designs by simply changing a few
constants in the constants package.

The current implementation of the HPad, however, has its parameters set set according
to Table 5.1 below:

Table 5.1: Current HPad parameters.

Parameter Value
Array width 8
Data vector size (bits) 16
Size of vector storage in the MeMPE units 2
Number of context word registers in each RIS unit 2
Reconfigurable FIFOs input size (bits) Array width x Data vector size
Reconfigurable FIFOs output size (bits) Array width x Data vector size

The HPad was designed in RTL level VHDL code. Over 6500 lines of code was written
for the HPad. The HPad VHDL RTL model was synthesized using the UMC 0.25pm
technology with Synopsys Design Analyzer. Table 5.2 below summarizes these syn-
thesis area and timing results. No timing or area constraints were set at synthesis time
i. e. the following results are relaxed.

Table 5.2: Area and Propagation delay reports for the HPad synthesized using a 0.25m
technology.

| Block name | Area (mm?) | Timing (ns) |

GALPE 0.074 12.97
GALPE RIS 0.116 25.14
MeMPE 0.030 1.78
MeMPE RIS 0.062 7.23
DSB 0.050 2.41
DSB RIS 0.064 1.04
HPAD DPA 12.531 ====
OpController 0.040 2.04
ReconfController 0.048 5.04
ReconfFIFO 0.899 7.96
RTR_HPadTop 14.543 ====

146 CHAPTER 5. THE HPAD

The timing results for the HPad DPA and the top RTR_HPadTop are not defined be-
cause they depend on the clocking option of the GALPE units and the routing as well.

5.8 Area Efficiency Analysis

5.8.1 Block wise Area Efficiency

Since all PEs in the HPad DPA are surrounded by RIS blocks which mange reconfigu-
ration and routing, the area efficiency of each processing element can be expressed by:

Areapp

s area = ——2 5 100. 5.1
e Areaprg X ®.1)

Nevertheless, the above measure of area efficiency is not really expressive. This is be-
cause each PE has additional resource enabling it to perform several functions. To have
a better measure of PE area efficiency we synthesized an experimental PE performing
all the possible operations of the actual PEs in parallel. The ratio between the area of
this experimental PE and that of the actual PE can express the effective area efficiency
since it compares between two elements of the same processing power indicating thus
the multiple functional flexibility penalty effect. The experimental PE is obviously not
usable since the address of the useful output is not known at fabrication time and thus
can not be routed.

Table 5.3 shows the synthesis results of the experimental arithmetic/logic and the
memory manipulations processing elements.

Table 5.3: Area and Propagation delay reports for the experimental PEs used to find
the minimum theoretical area for area efficiency analysis synthesized using a 0.25pm
technology.

| Block name | Area (mm?) | Timing (ns) |
Arithmetic/logic unit 0.071 ===
Memory unit 0.814 0.29

The effective area efficiency can then be computed by:

EffNonReconfAreapy
A’/’GCLR]S

NPE_Eff.area = x 100. (52)

From the Equation 5.2 and Tables 5.3 and 5.2 above we compute the effective area
efficiency of the GALPE unit to be 7garre £ffarea = Nonkecon/PE o 1()) = 61.37% while

. . . _ AreagaLPE.RIS
the naive measure of Equation 5.1 gives an area efficiency measure of 63.55%.

5.9. SCALABILITY 147

The experimental memory manipulation units were chosen to be only memory pro-
viding thus an absolute reference for us to the minimum storage area of the same type
provided by the technology. Accordingly, applying Equation 5.2 for the MeMPE units
we compute NaenpE Effarea = 13.13% while Equation 5.1 results in an area efficency
of 47.61%.

5.8.2 Overall Area Efficiency

As was discussed above, the HPad coprocessor consists of the HPad DPA, the con-
trollers, the input/output FIFOs and the reconfiguration ROM. Obviously, all compu-
tations take place in the HPad DPA. Hence the ratio between the area of the HPad DPA
and the rest of the HPad coprocessor can be considered as a measure of the area effi-
ciency of the RTR HPad coprocessor solution. From here the data path to system area
efficiency is given by

Are
7)Sys_area = m x 100. (53)

Areagys

The HPad DPA on the other hand is not purely a data path unit, but as a matter of
fact it possesses a number of routing and reconfiguration resources. The DSBs present
reconfigurable routing resources and all types of RIS units present both reconfiguration
and routing resources. The net effective HPad area efficiency is therefore given by:

Ef fectivePE_Areapg
Areappaq

TINetDPA_area = x 100. (54)

From Equation 5.4 above we get: nnetppaarea = 40.26% and from Equation 5.3 which
is an optimistic figure we get Nppa_area = 52.63%.°

Furthermore the finally configured HPad coprocessor does not utilize 100% of the dif-
ferent processing elements of the HPad not to mention complete computational power
of the processing elements. From here we can compute the actual application area
efficiency according to:

NOUsedPEs
NApp-area = N X 1NNetDPA_area X 100. (55)
OPE_total

5.9 Scalability

The HPad DPA can be scaled to form larger or smaller array by scaling the DSBs. As
will be shown in Chapter 6 an HPad of size 8 x 8 is a realistic size suitable for common

®These efficiency figures do not take into account the FIFOs and context ROM areas, since their sizes
are arbitrary and are platform dependant.

148 CHAPTER 5. THE HPAD

DSP algorithms sizes. It will also be shown that the use of single global horizontal and
vertical DSBs spanning the whole HPad-DPA suffices for the implementation of the
studied algorithms.

From an architectural point of view (not considering wire delays), the use of global
DSBs is better to using segmented DSBs for the following reasons:

1. Global DSBs are less expensive in terms of area:
As shown in the simplified illustration of the segmented DSB implementation
in Figure 5.15, a segmented DSB needs a pair of additional inputs to be able to
transfer data from DSBs at both sides. In that case the number of multiplexers
needed is given by

SegDSByryzny = 3 X Segmentsy,

3
= 5 X ernputw ernputs = 25 41 6...

propagation delay = f(InputsNo)

Inputs

propagation delay = f(log(InputsNo)) w w

Figure 5.15: Global v.s segmented bus structures.

5.9. SCALABILITY 149

while the number of multiplexers of the global DSB is given by GlobD.S Bjyun: =
N7 npus — 1. The number of multiplexers of the segmented DSB in terms of that
of the global DSB is therefore,

SGgDSB]\/[uri = g(GlObDSB]Wuer + 1),
which is clearly larger than that of the global DSB.

2. Global DSBs offers shorter propagation delay times:
The global DSB propagation delay is:

GlObDSBPropDel - MuxDelay [10g2 (ernputs)—l .

The maximum segmented DSB, however, propagation delay is:

SegDSBpropper = 2 X MU pejqy X Stagesn,
Nr[nputs

9)
- MuxDelay X Nr[nputs

=2 X MuxDelay X Nr[npuls = 2,4,

This delay is proportional to the array size and thus is ill flavored and inappro-
priate for usage. Moreover, the resultant delay is considerable larger than that of
the global DSB.

3. Registering the outputs of the segmented DSBs may also lead undesirable results:
As we discussed in Chapter 4 registering might result in undesirable delays that
might break timing loops. Additionally, pipelining segmented DSBs will cause
unsuitable and irregular latencies in data transfers which may be problematic
when synchronizing data.

The obvious disadvantage of using global DSBs is that the DSB spanning the complete
length or width of the HPad is exhausted when used for only one data transfer. This
problem can be solved by using additional DSBs per row or column. However, as
will be discussed in Chapter 6 investing in one DSB per row and one per column was
adequate for the studied algorithms. According to the above discussion, we chose the
Global bus configuration for the HPad DPA”

Due to having the same number of inputs and outputs of the HPad data path array,
several HPad DPA units can be cascaded by connecting the outputs of preceding HPad
DPA nits to the succeeding ones. Clearly, the size of the configuration memory needed
to configure the larger structure is proportional to the number of HPad DPA units used.

"The above discussion does not take into account the propagation line delays that are non linear and
also function of the fabrication technology.

150 CHAPTER 5. THE HPAD

This increase in the configuration memory size may likewise result in also reconfigu-
ration times proportional to the number of HPad DPA units. Reconfiguration control
may turn be more complicated too because of the need of management of longer re-
configurations.

To work around this problem we split the reconfiguration memory with each portion
attached to its corresponding HPad DPA as suggested in Figure 5.16. This way, the
the increase in the HPad coprocessor is linear with the number of HPad DPAs imple-
mented®, both controllers of the HPad coprocessor are intact and so is the case with
input and output FIFOs.

Reconfiguration

Controller

g cee Gzt
FIFO FIFO
—
E—
Context Context Context
Library Library Library
0.0

0. N— 0. N-

Operation

Time-Stamp

Generation

Figure 5.16: Scalability of the HPad.

The only disadvantage of this scaling approach is that it can result in longer but not
wider reconfigurable data path processing arrays. This is because installing additional
HPad data path array rows will result in the need of using In (or Out) FIFOs of wider
outputs (or inputs) which is not scalable. However, because of the pipelined nature of
most DSP algorithms implementations the number of the HPad data path processing
array rows is thought to have minimal or no effect especially considering the availabil-
ity of row data sharing buses which can help in transferring input data to any of the
HPad DPA units.

8the reconfiguration memory sizes is reduced since now they are addressed independently

5.10. CONCLUDING REMARKS 151

510 Concluding Remarks

A practical CGRC solution is to be operated within in a SoC containing other pro-
cessing subsystems such as ups, ASICs and FG FPGAs. We assume a library based
computational paradigm where a ROM library storing various configurations charges
the proposed CGRC HPad solution with new contexts. This ROM library can be at fab-
rication time realized as any type of non volatile memory: EPROM, EEPROM, FLASH
etc. The HPad is also assumed to receive and deliver data through a shared data bus.
Therefore, the HPad feature integrated reconfigurable FIFOs and control data paths.
In this context, the HPad control can turn the complete HPad computational units to a
freeze mode upon the occurrence of an input/output conflict. In addition, the HPad is
capable of RTR operation as well partial and background reconfiguration. The HPad is
composed of a DPA, a couple of Reconfigurable FIFOs for input and output, a Recon-
figuration Controller and an Operation Controller.

The DPA is a heterogeneous array of different types of PEs. The PEs are of two types:
GALPE for arithmetic and logic operations, MeMPE for memory manipulation oper-
ations such as RAM/FIFOs. Most routing in the HPad is local between PEs although
long distance routing can be achieved through the global DSB elements. To support
implementation of structures that include feedback loops optional registering of the
PEs outputs is provided.

Both the function and routing of each PE are possible to change dynamically at run
time. Partial and run-time well as multi-context reconfiguration are supported by the
HPad. This is facilitated by RIS units encompassing each of the aforementioned ele-
ments of the DPA.

The reconfigurable FIFOs can be configured with a range of input and output data
sizes. This enables them to adapt to different data bus widths as well the delivery (or
consumption) of data from the HPad DPA (depending on the implemented algorithm).
In case of input/output conflict, the reconfigurable FIFOs generate flags that are read
by the Reconfiguration Controller which manages the HPad accordingly.

The Reconfiguration Controller provides the essential interfacing control of the HPad
with the external world. The HPad only needs bus availability information to operate,
minimizing thus the effort of integrating the HPad with the rest of the SoC. the Recon-
tiguration Controller also manages full and partial reconfiguration of the HPad. To do
that the Reconfiguration Controller takes care of the book keeping of fresh and obso-
lete configuration contexts. In a case of a vacant space in the configuration contexts
registers, background recognition can take place while the HPad DPA is crunching
numbers for the current active context. To tag a context fresh or obsolete, the Recogni-
tion Controller also keeps track of the progress of computation.

The Operation Controller generates time stamp signals to aid in RTR of the HPad DPA.
The Operation Controller is based on a counter and LUTs to generate time stamps
and time stamp functions. These signals as well as locally generated event flags are

152 CHAPTER 5. THE HPAD

managed within each RIS unit of the HPad DPA according to the active context to
carry out a predefined RTR action.

Chapter 6

Implementation Examples and
Validation

Contents
6.1 BasicOperationst enninne.. 154
6.1.1 Larger Vector Operations 154
6.1.2 ComplexOperations 154
6.1.3 FIFORealizations 155
6.1.4 Butterfly Operations 156
6.2 FIR Filter Realizations 160
6.2.1 TDFFIR Filter Mapping 160
6.2.2 DFFIRFilter Mapping 161
6.3 FFTRealization 163
6.4 DCTRealizations i, 165
6.5 Viterbi Decoding Realization. 166
6.6 ConcludingRemarks. 168

In the early Chapters of this thesis, general knowledge about reconfigurable com-
puting and several DSP algorithms architectures were presented. This led us to the
extraction of needed features of the targeted RTR architecture in Chapter 4. In the

previous Chapter the architecture of the proposed RTR HPad was presented.

In this Chapter, we analytically demonstrate how can several of the discussed DSP
algorithms’ architectures be realized: mapped, routed and operated on the HPad. In
The first section we discuss the mapping possibilities of some the basic blocks such as
larger vector operations, basic complex operations, FIFO and butterfly realizations that

- 153 -

154 CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

are important for complete algorithm implementations. The later sections describe the
realizations of FIR, FFT, DCT and Viterbi decoder. This Chapter is finally concluded in
Section 6.6.

6.1 Basic Operations

The very basic arithmetic and logic operations supported by the HPad were already in-
cluded in the instructions of the GALPE and MeMPE units. The realization, however,
of more complex functions used repetitively in various DSP algorithms” architectures
are constructed by utilization of several of the HPad coprocessor components. In this
Section we demonstrate how some of the basic functions or MacroFunctions can be real-
ized by the HPad. Some of these MacroFunctions such as larger vector sizes operations
and complex operations involve usage and routing of more than one of the HPad DPA
path array units together. Some such as the Dynamic Butterfly operation involve the
usage of several of the Pad data path array units along with some of the operation
control resources to facilitate RTR operations. Throughout this Section we will discuss
the implementations of larger vector operations, complex operations, FIFO and ROM
realization and the Dynamic Butterfly operations.

6.1.1 Larger Vector Operations

Almost all logic functions of larger vectors can be constructed by simply dividing the
large input vector (or vectors) to two or more standard size vectors and carrying out
the logic operations on them. However, this will not suffice for some logic operations
such as shift and rotate operations. In that case, the bit-in and bit-out of the processing
elements should be inter-routed such as the proper results are achieved. Such an im-
plementation is within reach given the routing resources of the HPad DPA. Easier and
more efficient implementation is a straight-forward task when utilizing MeMPE units.
Recall that the MeMPE units can shift a bit recursively within its vector array.

The addition operation of larger-sized vectors can be obviously implemented by
routing the carry out (bit-out) signal from the GALPE unit operating on the Least-
Significant (LS) portion of the input vectors to the carry in (bit-in) GALPE unit pro-
cessing for the Most-Significant (MS) portion of the input vectors.

6.1.2 Complex Operations

Complex addition and multiplication operations can also be easily implemented on
the HPad DPA.

6.1. BASIC OPERATIONS 155

The addition/subtraction operation can be constructed by using two lines routing the
real and imaginary addition/subtraction separately.

The complex multiplication, however, is a little bit more complicated. The complex
multiplication operation is given by the following well known formula:

(Ar + jA) (B, + B;) = (A;B, — A;By) + j(A:B, + A, By) 6.1)

The implementation of Equation 6.1 can be directly realized as shown in Many of the
Figures later in this Chapter. Again here we find that the routing resources and the
GALPE units organization suffice and can efficiently realize the complex multiplication
operation given by Equation 6.1.

6.1.3 FIFO Realizations

The MeMPE units are designed to efficiently implement ROMs and FIFOs that are
common parts of the architectures of various DSP algorithms. ROMs can be used to
statically store constants such as the FIR filter factors. In such a case the proper constant
is stored in a MeMPE unit oriented in the vicinity of the GALPE unit needing to use
this factor. In that case, the MeMPE unit is configured such that it selects from its array
of registers the stored vector and thus only one vector register of the MeMPE array of
registers is used.

An other possibility is to use one or more MeMPE units to store several constants
for some pipeline architectures such that one of them is used at each clock cycle. In
such a configuration, a number of MeMPE units can be used to store these constants
and the proper vector is passed to the output at the correct instant of time. Possible
implementations for such a scheme are shown in several of the Figures of the FFT,
DCT and Viterbi decoder mapping examples below.

A configuration good for storing 4 constants is used in the FFT implementation dis-
cussed below. To dynamically select the proper input to the GALPE unit, the GALPE
unit changes its input from MeMPE unit 1 to MeMPE unit 2 every other cycle, while
both of the MeMPE units change their output between both the stored vectors every
cycles. An other possibility illustrated in the Figures of FFT, DCT implementations in
Sections 6.4 and 6.4 There, several MeMPE units are interconnected such as the vectors
are rotating between them by shifting-in vectors from one MeMPE unit to the other and
at the end routing the last vector to be shifted in the first unit again. The GALPE unit
samples as input the routed vector from the bus. By this configuration large rotating
output ROMs can be constructed.

Configuration of FIFOs is very much similar to ROMs. FIFOs of depths ranging from
one vector to several can be constructed by shifting in the inputs from one side of the
configured FIFO unit and the out put can be read from the other end.

156 CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

6.1.4 Butterfly Operations

Butterfly structure present the basic component in architectures of many of the studied
DSP algorithms. The butterfly operation can be either dynamic or static. Static butter-
fly structures are mostly used in parallel implementations. The routing topology of the
HPad DPA permits direct butterfly routing of data placed 4 rows apart with no need
for DSB usage.

Dynamic butterfly structure, however, are not very trivial to implement because of the
run-time switching between direct passing of data to or carrying out the butterfly oper-
ation as described previously in Chapter 3. The implementation of dynamic butterfly
operation require the observation of the following considerations:

e Control of the dynamic switching,
e The availability of routing lines for the inputs and

e The availability of routing lines for the outputs

Each configured dynamic butterfly unit has one output rather than two and is closely
coupled to a FIFOs unit to schedule the operation of the streaming data as shown in
Figure 3.15. The availability of local FIFOs for “juggling” of input and output data is
essential to the dynamic butterfly operation. This is clearly an advantage of having
MeMPE units placed in the vicinity of GALPE units making them easily usable as
FIFOs.

The configuration of dynamic butterfly units with 1, 2, 4 and 8 FIFO units depths are
shown in Figure 6.8 within the FFT implementation. As shown in the Figure, no DSB
are needed to realize the dynamic butterfly units for FIFO sizes less than or equal to
4, while DSB are needed to realize larger butterfly structures. Dynamic switching be-
tween inputs is triggered by the time-stamp flags asserted by the operation control
unit.

6.1.4.1 Dynamic Butterfly with FIFO of size 2 Configuration

To demonstrate how a dynamic butterfly can be realized in the HPad, consider the
following brief example: Consider a simple dynamic butterfly with a FIFO of 2 data
vectors depth. The basic operation of the butterfly is shown in Figure 6.1.

According to the control, the input data vector is either shifted in the FIFO wile the
oldest stored data in the FIFO is passed to the output, or with the aid of two PEs (with
PE A performs the + operation and PE B performs the — operation), the input data
is operated on with the oldest of the stored value in the FIFO while the output of the
bottom PE is shifted in the FIFO and the top PE is produced as output.

6.1. BASIC OPERATIONS 157

When control =1’ When control =0’

W

V%
/O

Figure 6.1: The dynamic butterfly operation.

As such the implementation of such a structure on the HPad’s DPA can be imple-
mented as shown in Figure 6.2. Here, as illustrated in Figure 6.2 the FIFO is imple-
mented using the MeMPE unit and the two PEs are the GALPEs. The MeMPE unit
is chosen to be the one between the GALPE units to be accessible by both the GALPE
units as the HPad’s DPA routing facilities dictate. A multiplexor indicates the chosen
routing according to the control signal coming from the operational controller. The
top GALPE unit in Figure 6.2 function toggles also between the function of the PE A
operation and data transfer operation.

M\

s 3

GALPE 1

MeMPE 2

GALPE 2

Ji i

(%

Figure 6.2: The dynamic butterfly operation.

When the selected time stamp (control) signal is 0, the input is directed to the FIFO’s
input and the output of the FIFO is transfered to the output of the dynamic butterfly.
The GALPE A unit —which passes the output of the dynamic butterfly- is at this stage
only transferring the output of the MeMPE unit (FIFO). At the other half of the oper-

158 CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

ation cycle the selected time stamp signal from the Operational controller will change
forcing the GALPE A unit to operate as an adder and produce the output of the dy-
namic butterfly. Meanwhile, the MeMPE unit (FIFO) selects now the its input from the
bottom GALPE unit that is acts as a subtracter operating on the FIFO output and the
external butterfly input.

GALPE (A) RIS Configuration Contexts

Top Context Word Register

(selected at X2+l time stamps)[lllOOOl 0111j0101 111G 00000 11111]

Bottom Context Word Register

(selected at X2 time stamps) [1110001 0111{0101 11190 00000 lOOOO]

7 4 4 4 5 5
RTR Info In Bit Right Op.Left op.Truncatlon GALPE
Address Address Address Info. Instructic

Figure 6.3: Contxt words of the GALPE A unit of Figure 6.2.

In Figures 6.3, 6.4 and 6.5 the corresponding contexts of both the GALPE units as well
as the MeMPE units are shown. The top and bottom contexts are selected alternatively
according to the selected time stamp signal.

Note from Figure 6.3 that all 7 MSBs of the 6 contexts are the same indicating that
they are subject to the same RTR conditions. The MSB of these 7 bits is one to choose
synchronous RTR operation with the aid of the Operational Controller’s time stamp
signals. The 2 bits on its left do not matter in that case, they are chosen to be ones. The
4 LSBs of the RTR info. 7 bits are set to 0001 to select the time stamp signal number 1
being toggled every two cycles. This is the proper trigger to be used with the 2 vectors
deep dynamic butterfly.

As shown in Figure 6.2 the routing of the GALPE A unit remains the same even in
both cycles of its operation, however, its function changes. Therefore, GALPE A’s con-
text word are the same except for the GALPE A’s instruction which occupy the 5 LSB
position of the context word. The MSB of these 5 instruction word indicates whether
the output needs to be register or not. Here we choose to register the output setting
this bit to 1 for both cases to be consistent and correct. In the first cycle of operation,
the GALPE A unit task is only to transfer its X input out and thus the corresponding
instruction is chosen according to Table B.2 to be 1111 as is depicted in Figure 6.3. The
second cycle of operation, the GALPE A unit performs act as an adder with 0000 as its
instruction.

The input routing addresses of the GALPE A unit are also shown in Figure 6.3. There

6.1. BASIC OPERATIONS 159

the X operand addresses are selected to be 0101 since in that case, the input comes
from the adjacent GALPE unit on the left. The Y input address is set to 1110 to select
the butterfly connection as to the MeMPE unit below.

GALPE (B) RIS Configuration Contexts

Top Context Word Register

(selected at X2+1 time stamps) 131130001 0111/011Q0 1100{00000 QOOOl

(1 T

Bottom Context Word Register

(selected at X2 time stamps) :IJ:.:I_:I:_OOO:I_ 0111{011Q 1100{ 00000 QOOOl

7 4 4 4 5 5
RTR Info In Bit Right Op.Left op.Truncatlon GALPE
Address Address Address Info. Instruction

Figure 6.4: Contxt words of the GALPE B unit of Figure 6.2.

The GALPE B unit operation remains to be the same and therefore, its context words
are the same. the addresses of the operands show that the butterfly connection to the
above MeMPE unit is selected as the X input and hence the X operand address field is
loaded with 1100. The Y input is routed to the GALPE unit from the adjacent column,
one row above is selected by setting the corresponding field to 0110

No truncation is needed in this particular configuration for both GALPE A and GALPE
B units since only simple addition/subtraction operations are performed. Hence, the
truncation bit fields are set to 0000 as shown in Figure 6.4.

The MeMPE unit in Figure 6.2 is carrying out the job of a FIFO in both cycles of oper-
ation and therefore the 4 LSBs holding the instruction are set to 0010. This instruction
indicates that the MeMPE unit is to shift the input data vector in. The shift in operation
takes place from the indicated memory address to the least significant vector stored in
the MeMPE unit that id delivered as an output. For a 2 vector deep FIFO the corre-
sponding vector memory address is 1 (remember that the current implementation of
the HPad incorporates MeMPE units of 2 vector positions).

The input vector routing changes in each cycle of operation. In the first cycle of op-
eration, the output from the GALPE unit from the column on the left one row above
is selected with 0110 in the corresponding filed as shown in the Figure. The second
context word holds 1111 to rout the output of the GALPE B unit.

160 CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

MeMPE RIS Configuration Contexts

(selected at X2+1 time stamps)

Top Context Word Register [lllOOOl 11111111111110110110 OO:I_O]

Bottom Context Word Register

(selected at X2 time stamps) [1110001 lllllll llll C]_ llll OO]_O]

7 11 4 4
et et
RTR Info Vit. o/p Bit i/p Big , | Input MeMPE
Info. Address Address | \Routing Instruct

- | N
' ~
- | ~
~ N
- f ~

- . ~
Output Vec. Input Vec.
Address Address

Figure 6.5: Contxt words of the MeMPE unit of Figure 6.2.

6.2 FIR Filter Realizations

FIR filter structures, as was shown in Chapter 3, are very regular. Mapping of these FIR
structures on the HPad DPA is therefore very efficient. Both the DF and TDF structures
of the FIR filter have the “tap” as the basic building block that is replicated many times
according to the size of the target FIR filter. Each tap consists of an adder, a multiplier
and a storage element holding the filter coefficient. The former two items can be im-
plemented in the HPad by the GALPE units and the lated can be implemented by a
MeMPE unit.

6.2.1 TDF FIR Filter Mapping

Mapping of the TDF form FIR filter is shown in Figure 6.6. As depicted in Figure
6.6 DSBs are used to “broadcast” the streaming input to each tap. Taps are mapped
by using two GALPE units aligned one on top of the other. The top one is used for
multiplication with a MeMPE unit serving as a ROM to hold the coefficient. Two rows
of the HPad DPA are needed thus to implement ElementsPer Row taps in the square
configuration of the HPad DPA.

Here the “butterfly” connections are utilized to realize the connection between the mul-
tiplier and adder of each tap. Butterfly connections are also utilized to deliver the
output of the local MeMPE units (storing coefficients) to the multiplier GALPE units.
The input vector is made available locally to each tap by the DSB as mentioned above.

6.2. FIR FILTER REALIZATIONS

161

= |

=

L

P,

]

(=)

(==)

((==)

£

c0

(Tﬁm\]

(=

=)

&5,

===
o |

(WJ]

& | &5,

(=)

cl

Ne0e

(== ||| (==)| || (==)||(==) ||| (=)| (==)|| (==)|| (=)

o | EP P P i - T et~
(=) | (= | (=) || (=) (= || =) | (&= || (=
(==)| || (=) | (==))|| (C==)|| (==)|| (==)|| (=) (=)

| TP T | TP o | o ™

Figure 6.6: Mapping of the TDF form FIR filter on the HPad DPA.

Routing between taps is implemented by adjacent GALPE to GALPE connections. The
output data at the end of the “double row” of the HPad DPA forming a portion of the FIR
filter is rolled to the next double row using this useful routing facility of the HPad DPA.
Pipelining of the TDF FIR filter is implemented by choosing the optional registering
feature of the outputs of the GALPE units.

This configuration of the TDF FIR filter results in utilizing 100% of the GALPE units,
56% of the DSBs units and 50% of the MeMPE units providing thus very high utiliza-
tion of the HPad DPA and realizing a 32-tap FIR filter.

6.2.2 DF FIR Filter Mapping

Mapping of the DF FIR filter is illustrated in Figure 6.7. Here again two of the GALPE
units oriented on top of each other along with a couple of local MeMPE units are used
to implement each tap. One GALPE unit is configured as a multiplier and the other is
configured as an adder while one of the MeMPE units is used as a ROM storing the tap

162

CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

coefficient and the other is used to delay the input data to be delivered to each tap as

input at the correct instant.

— s | = | | &= | &= &=
| & | = e | e [o e la - -

ca4

U

e)

==

S

o=

—(EEEEEI)—-‘—

-G=0 {-T=>]

(==)

Oufr

= | &= | &&= &= 6| &=y Gy &=y
& | & | | | & | &

» —-EEE D= = D D =D =D @
|) | (| =) | == = =
T mmmmm%

= —-CEED - D - =+ D =D = D «
= e | | e | (= = &=

)
=)
T

==

Figure 6.7: Mapping of the DF form FIR filter on the HPad DPA.

c5

Butterfly connections provide here a valuable resource enabling connecting the multi-
pliers to both top and bottom MeMPE cells in order to access coefficients and delayed
inputs. The same type of connections are also used to pass products from the GALPE
multiplier units to the bottom adders. Direct connections are also used here to con-
nect between the adders input and outputs. Routing of partial results from left side
of the HPad DPA to the right side of it is also implemented here in a similar manner
to the rolling of data implementation discussed above in the TDF example. Pipelining
is implemented by both the registering of output option of the GALPE units as well a
retiming of the input data delays using both of the MeMPE units registers shifting data
in them for two cycles.

The above DF FIR filter configuration uses 100% of the GALPE units, 100% of the
MeMPE units and no bussed are needed. This presents again a very high area effi-
ciency for this configuration.

6.3. FFT REALIZATION 163

6.3 FFT Realization

Mapping of FFT processors on the HPad DPA is obviously more complicated than that
of FIR filters for the reasons discussed previously in this thesis. Butterfly connections
combined with complex operations result in mapping and routing challenges given
the limited routing resources of the HPad DPA (or any other reconfigurable array)
since the complete pipelined algorithm is to be implemented and not only small parts
of the algorithm -say the butterfly operation while the rest implemented by software-
as been implemented in some systems.

In the following we show how the HPad can be used to realize both the data path along
with the RTR requirements of the R2SDF implementation of a 16 pt. FFT. Considering
the current size of the HPad DPA, the 32 pt. FFT is almost impossible to implement
because it needs almost 100% of the HPad DPA resources (GALPE, MeMPE and DSB
units).

Figure 6.8 illustrates mapping of a 16 pt. FFT on the HPad DPA. The configuration of
Figure 6.8 show the implementation of the R2SDF architecture for a DIF FFT algorithm.

Real

Output

] | C==) (=) || C=) | (=) | (=)
c0 Liﬁ}% [J /L-\ Real
(

(=) N =

cl

X
!

=
El

=)
J

|
|

]
¥

&
C

[=====)

(=)

[=====]

Xii
=)
_‘(=
ol lea

Y

TR T

&=
—
| E—
o
=
=

Tmaginary
Output

[

(=)

¥

£

=

r\‘x N
iy

i
0

Hil

Figure 6.8: R2SDF 16 pt FFT implementation on the HPad.

N

164 CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

The real and imaginary inputs of the 16 pt. FFT are passed to the inputs at the left side
of the HPad DPA. The first stage dynamic butterflies are implemented as discussed in
previously Section 6.1.4 using a vertical DSB, 4 MeMPE units and a couple of GALPE
units for computations. The DSB switches between passing in newly received infor-
mation data or partial results produced by the butterfly GALPEs to the FIFOs formed
by the MeMPE units. Both real and imaginary dynamic butterflies are mapped to the
tirst column of the HPad DPA utilizing both buses at the right and left of that column
one DSB for each dynamic butterfly.

After the real and imaginary dynamic butterflies follows the complex multiplication
operation realized by 6 GALPE units. The inputs of the complex multiplier are the
real and imaginary outputs produced by both the preceding dynamic butterflies and
the twiddle factors stored in ROM cells rotating their inputs to provide the complex
multipliers with the proper inputs at each instant. Two of these ROMs (for the real and
imaginary parts of the twiddle factors) are realized by MeMPE cells interconnected in
vertical and horizontal topologies. A horizontal and a vertical DSBs are used for long
transfers of the twiddle factors being rotated in the ROMs. The complex multipliers
produce real and imaginary results to be consumed by the next stage in the realized
R2SDF architecture.

Succeeding the complex multipliers come the two 4-vector deep dynamic butterflies
processing the real and imaginary products produced by the complex multiplier. In
this case of 4-vector deep butterflies no DSB are needed to realize the FIFOs, rather,
a couple of MeMPE units are routed vertically together utilizing the butterfly con-
nections facilities to realize the complete dynamic butterfly including also a couple of
GALPE units located in the same cell positions of the MeMPE units. This locality max-
imizes thus the utilization of local interconnection possibilities provided in the HPad
DPA.

Subsequent to the 4-vector deep dynamic butterflies complex multiplier is mapped.
For this multiplier stage only 4 twiddle factors are needed. Here again they are imple-
mented by four MeMPE units (two MeMPE units for real parts of the twiddle factors
and two for the imaginary). Both real and imaginary ROMs are implemented by verti-
cally interconnecting MEMPE units without the need of additional DSB elements.

Next come two of the 2-vector deep dynamic butterflies each using a couple of GALPE
units and a single MeMPE unit located between them. At this point the end side of the
HPad DPA is approached with only one free column is left at the right which is not
enough for the complex multiplier. We then transmit the real and imaginary result of
the butterfly units vertically to the top rows of the HPad DPA.

On top of both the 2-vector deep dynamic butterflies the multiplier stage is placed
making use of the butterfly results made available by the vertical buses at the right
and left sides of the dynamic butterflies. the real and imaginary twiddle factors stored
in MeMPE units in the column left of the complex multiplier stage. The complex mul-
tiplier implemented in two columns: one for multipliers and the second for adders

6.4. DCT REALIZATIONS 165

producing the real and imaginary products at the end side of the HPad DPA. These
products are rolled back to the left side of the HPad DPA.

The rolled data are sampled and transferred by the two GALPE units at the top right
side of the HPad DPA. Two 1-vector deep dynamic butterflies are implemented in two
adjacent columns because of the occupancy of MeMPE and GALPE units with the early
R2SDF stages. GALPE units are used to transfer and delay data to ensure the preser-
vation of timing integrity.

Later the last multiplier stage is implemented with several local MeMPE units used
to pass twiddle factors to the multipliers. The final results are passed to the output
through two horizontal DSBs.

RTR operations of the dynamic butterfly units are implemented by having both the
storage and processing stages of the butterflies written in the RIS of the various build-
ing elements of the HPad DPA. This is indicated by multiplexers in Figure 6.8. The
select lines of these multiplexers are provided by the OpControl unit time stamp flags
as discussed in the previous Chapter.

The FFT realization on the HPad discussed above shows efficient usage of all types of
routing resources, processing elements and DSBs as well as RTR with the aid of the
OpControl unit.

6.4 DCT Realizations

DCT implementations exhibit a higher degree of irregularity in comparison to the FFT.
However this disadvantage is minimized because of the only real operations of the
DCT and its typical smaller sizes in common applications. A typical DCT size is the
8—point DCT discussed in [38, 47, 87, 67, 88, 66]. In this section we discuss the mapping

and routing of one of the DCT architectures proposed in the references above on the
HPad.

A simple structure of the DCT is the R2SDF architecture shown in [57]. The top part
of Figure 6.9 shows the implementation of the R2SDF DCT architecture on the HPad.
While inverse DCT implementation on the HPad is illustrated in the bottom part of
Figure 6.9.

Both realizations use the same concepts discussed in Section except here an additional
GALPE is used to select and pipeline the output of each dynamic butterfly since a lot
of resources are available in the HPad DPA since the 8 — point DCT does not require a
lot of resources.

A new simple element implementing the irregularities of the DCT SFG. These are re-
alized with MeMPE units implementing delays and GALPE units for addition. The
last stage of both the DCT and IDCT R2SDF structures involve selection between 3 sig-
nals. This is implemented by using two GALPE units for selection since the current

166 CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

T | = ||) | O] O i |
e s R B e ()| ()| BB
e . =)\ | (=) 1= 2 oo
| @S 5 %

w C=) oo/ = | (=) | (=) =
ot ||l) |3 |G (=)

C=) || = | = | =D

) | (2 | ()| (&2 (3]

& (=) | (=) |2 =D = .
~ e | -

=g 2 am o= (=) ||| (=) || e’

E -l i

= = = |[f=./f&= = E
i

=) | &) | (& |EiEEl) | (2

Ce=)) || (=) | (=) | C= || Co) || Cmmm)
)| | (2] B (

) Ja

Figure 6.9: R2SDF DCT structure of [87] implemented on the HPad.

HPad implementation has only two fields of contexts in each RIS. As shown in Figures
Figure 3.25 a) and b) real multipliers interleave the aforementioned elements. GALPE
units are used for multiplication and interconnected MeMPE units are used for rotating
multiplication factors.

6.5 Viterbi Decoding Realization

The realization of the Viterbi decoder may be the most difficult one because of the
high amount of irregularities in its SFG and the involvement of bit operations as has
been pointed out earlier in this work. One of the most difficult problems in the Viterbi
decoder implementation is its irregularly spaced butterfly operations sizes. This was
remedied by the in-place replacement approach introduced in Chapter 3. In the fol-
lowing we present the implementation of a small Viterbi decoder for a K = 3ie. 4
state convolutional encoder. To illustrate how can even such applications be realized
by the HPad we choose to implement an R2SDF Viterbi decoder with a RE trellis win-
dow decoding as proposed in [105]. The mapping and routing of this architecture is

6.5. VITERBI DECODING REALIZATION 167

depicted in Figure 6.10

| =) | (=D (my\ﬁlj/"(EJ C=)f C=)
- TEl| ()| (> ([()| ()] ()
C=0| | =D HISE=S - e >
e |) | D N o
= = 1 P —— ——
n (> =))| ())
(=) (= | zZ=Z(= |(= | (=) | == | (=)
s3] [0 [ea] [E5] (&) |[e] (=] [E25
(= |[[=)\]| == |(= | (=) | =)} (=)
=) ﬁ;@ e |)| 3)
(=) =/ |'am® O | (=)\| (= | = | (=
@?im}mﬁﬁi@%ﬁw () [
Ce=)\ [|[= | =] =) | G o= | G=) ||| =D
@iﬂﬂ R | 654 |) m—h%
C=) |\C= /=) | (= (=) | (=) = =
Al | = |5 et |)| o
\ /

c0

cl

Figure 6.10: Mapping and routing of a K = 3 Viterbi decoder on the HPad. Shaded
DSBs represent their bit transfer.

As was mentioned in Chapter 3 Viterbi decoders consist of three main blocks: branch
metric computations, path metric computations (or ACS) and trellis window decoding.

The branch metrics can be produced by the use of 5 GALPE units in the first column
of the HPad DPA producing all possible branch metrics. The dynamic ACS butterfly
units consist of 6 GALPE units, four of them for adding branch metrics and two for
comparing. Additionally, a number of MeMPE units are used to implement FIFOs of
the appropriate sizes.

The problem with the R2SDF ACS units is that they do not only need path metrics
as inputs, but moreover, they need to read the branch metrics corresponding to the
current path metrics processed at each point of time. To achieve this the outputs of

168 CHAPTER 6. IMPLEMENTATION EXAMPLES AND VALIDATION

the branch metrics units are passed through horizontal buses through the HPad DPA.
The two appropriate branch metrics are then passed to the ACS units through the two
intersecting vertical buses at both sides of the GALPE units performing the addition
operation. These vertical buses dynamically select the appropriate branch metrics and
pass them to the ACS units according to the time stamp flags producer by the OpCon-
troller unit.

An interesting point to mention is that the vertical cylindrical routing possibilities
proved useful because it helped realize the second dynamic butterfly that needed one
more GALPE unit after reaching the bottom side of the HPad DPA. A GALPE unit from
the top row is simply utilized without changing the usual dynamic butterfly routing
pattern. Subsequent to the second dynamic butterfly ACS unit, the output is rolled
back to the first ACS stage at the input side of the HPad DPA implementing thus the
big feedback loop of the R2SDF structure of the Viterbi decoder.

At the output of each dynamic butterfly stage the decision bits from the GALPE units
are transmitted through vertical DSBs. On the top side of the HPad DPA the RE struc-
ture a couple of the horizontal DSBs select both the decision bits to be used in the RE
operation.

In the RE operation, the produced decision bits are used to select the new trellis win-
dow bits either from the top or the bottom of the of the previous stage bits. Here each
MeMPE unit is used to store a single bit of the trellis window bits and produces them
to the next stage. The input of each MeMPE units is either the top or bottom previous
bit. In this case the selection of the input is run-time reconfigured according to the
corresponding decision passed on from the selected DSB.

6.6 Concluding Remarks

In this Chapter, the suitability of the HPad to DSP applications was validated. Archi-
tectures of several DSP algorithms were mapped and routed on the HPad. RTR capa-
bilities of the HPad showed also suitability of the HPad to the studied DSP algorithms
architectures.

Basic operations such as double-sized arithmetic is achievable using the HPad DPA PE
and routing capabilities.

As examples of complete algorithms, FIR filters, FFT processors, DCT processors and
Viterbi decoding were mapped and routed on the HPad. The above mentioned algo-
rithms present a good range of DSP applications showing thus the suitability of the
HPad to a wide range of DSP applications.

Regular architectures such as FIR filtering showed a high (approaching full) utiliza-
tion of the HPad DPA. Others that are less regular and with more complicated routing

6.6. CONCLUDING REMARKS 169

characteristics were also implemented but their utilization is expected to be lower be-
cause of their routing irregularities as well as the large variance in their basic functional
blocks sizes.

RTR operation was utilized in the mapped pipelined architectures of the FFT, DCT
and Viterbi decoding. The time stamp flags generated by the Operation Controller
was used in most applications. For Viterbi decoding local events (selected bits) were
used to trigger RTR activity in the trellis table decoding part of the algorithm.

In the above routing and mapping examples, all of the routing types of the HPad DPA
namely all left column connections, all butterfly connections and DSB signal broad-
casting were used. This shows once again the suitability of the routing topology of the
HPad DPA.

In general, in the above discussed mapping and routing examples, all of the proposed
HPad components were used as was intended in the HPad design.

Chapter 7

Conclusions

Reconfigurable Computing for all its flexibility and power presents a promising so-
lution not only closing the various design gaps, but moreover, for bringing about a
multitude of computational possibilities. Due to several challenges, the full capacity
of Reconfigurable Computing is yet to be achieved by the given solutions either in the
market or in the literature.

The challenges facing the development of Reconfigurable Computing fall mainly in
two categories: classical and self induced. Classical problems lie in the higher con-
sumption of area and power as well as slower operation as compared to finely crafted
ASICs. These problems are being remedied in research mainly by finding optimal
processing elements (or logic blocks) architectures that exhibit high functionality and
lower area and power consumption. As a result, reconfigurable solutions are being
polarized to fine-grained and coarse-grained solutions in order to best meet the target
applications. Within each category, further flavors and sub categories are found, again
each seeking more efficient solutions for the intended range of problems. From the
technological side efforts are made for finding reconfiguration devices of smaller size
with lower cost and power consumption. In this context, several programming tech-
nologies such as SRAM, EEPROM and Anti fuse were introduced and are constantly
being improved.

As a matter of fact, while observing the evolution of reconfigurable architectures, one
can see how the designers’ experience and the market demand factors reshaped the
newest reconfigurable computing products. It is notable that there is a trend to use
coarse grained blocks even in state of the art fine grained FPGAs seeking thus more
efficient realizations of potential applications. Additionally, in fine grained solutions,
bigger logic blocks are being introduced.

On the other hand, the self induced design challenges result from the very nature of
reconfigurable computing: reconfigurability & computation!. From a computational
point of view having a very powerful array of processors capable of very high through-
puts may not be useful at all if there is no feasible way to use it. Software support and

-171 -

172 CHAPTER 7. CONCLUSIONS

integration along with other system issues present true bottlenecks. From the recon-
tiguration point of view new concepts such as RTR operation, partial reconfigurability
and speed of reconfiguration are among the new concepts that were not previously
known. Finding efficient design schemes addressing the above mentioned concepts
have triggered quite an amount of research.

The goal of this thesis is to design a reconfigurable device capable of efficiently real-
izing a family of DSP applications by emulating ASIC architectures. By that we seek
to reach comparable performance to ASICs yet permitting flexibility and reduction of
NRE costs. A pragmatic methodology to engage such a design task is to study different
DSP applications and their implemented VLSI architectures. Hence, architectural fea-
tures to be supported in the target reconfigurable platform are extracted. It is worthy
of stressing that VLSI DSP architectures are do always directly represent the original
DSP algorithm, but on the contrary, the design of high speed DSP algorithms struc-
tures involve in many cases craftsmanship and design skills as well as comprehensive
understanding of the DSP algorithm at hand. We, therefore, assume a library based
computational paradigm where predefined configurations are stored in a ROM and
loaded when needed.

After studying a number of the reported architectures of popular DSP algorithms that
were selected to cover a wide range of DSP applications, we drew a number of con-
clusions. These conclusions can summarized in the following design requirements are
needed for the target reconfigurable solution: heterogeneity, coarse grain with some
fine grain features and RTR capabilities.

The proposed HPad takes its name from Heterogeneity and that its resemblance to the
writing Pad that when used to solve a problem, it is written into line by line; and so
is the HPad configured. The HPad could be categorized as a loosely coupled attached
processing or an accelerator unit that can be attached to a system with minimal inte-
gration efforts.

In the HPad, RTR operations are tackled from three angles: globally, locally and from
the context point of view. Globally when the RTR operation is permitted, and at a rela-
tive operation time point, each of the HPad processing elements can locally and through
Reconfigurable Interface Sockets decide on switching to another predefined configu-
ration (an other locally stored context). Each processing element can also switch to
another configuration according to a local flag or a received bit. The context register
include a 7 — bit field summarizing the RTR conditions. The above imply multi context
as well as dynamic and partial reconfigurability.

To support the aforementioned requirements, the HPad is organized in the following
blocks: the HPad Data Path Array (DPA), the Reconfiguration Controller, the Oper-
ation Controller and the Reconfigurable IN/OUT FIFOs. All the above sub systems
operation are orchestrated by the Reconfigurable Controller.

The Operation Controller is a sequencer that generates global time stamp flags that
may be needed to schedule RTR actions. The FIFOs help maintaining contentious

173

streaming of data in and out the HPad DPA. However, at a read or write conflict event,
the Reconfigurable controller freezes the operation of the system to ensure data integrity
and the correctness of results. The Reconfiguration Controller also manages full and
partial reconfiguration of the HPad.

The net area efficiency in terms of the effective processing area data path to the to-
tal area exceeds 40% which is more than one order of magnitude better than its fine
grained FPGA counter parts. Furthermore, several architectures of DSP applications
were routed and mapped on the HPad. The presented mapping and routing examples
show good utilization of the HPad PEs, routing resources and RTR features.

For future work, integration of the HPad with several ups and testing its operation
within the pp system running other applications as well can help in further tuning
its architectural features. In addition, other applications such as block error correc-
tion, data compression and encryption and the suitability of the HPad architecture to
their realization can be studied. The above mentioned studies may result in further
improvements of the HPad architecture and may point out more issues that were not
previously brought into attention by the studied DSP applications.

Zusammenfassung

Rekonfigurierbares Rechnen stellt durch seine hohe Flexibilitdt und Leistungsfdhigkeit
nicht nur eine vielversprechende Losung zur Schlieffung verschiedener Design Gaps
dar, sondern bietet auflerdem eine Vielzahl von Berechnungsmoglichkeiten. Die
volle Kapazitédt rekonfigurierbaren Rechnens wurde bisher aufgrund verschiedenster
Herausforderungen jedoch noch nicht voll ausgeschopft, weder von auf dem Markt
befindlichen Losungen noch von solchen aus der Literatur.

Die Herausforderungen angesichts der Entwicklung rekonfigurierbarer Systeme fallen
hauptsachlich in zwei Kategorien: klassische und spezifische Probleme. Klassis-
che Probleme sind der hohere Flichen- und Leistungsverbrauch sowie langsamere
Rechengeschwindigkeiten verglichen mit optimierten ASICs. Diese Probleme werden
in der Forschung vor allem durch die Entwicklung von optimalen Architekturen fiir
Rechenelemente (oder Logikblocke) angegangen, welche hohe Funktionalitdt sowie
niedrigen Flachen- und Energieverbrauch aufweisen. Dies hat eine Polarisierung
rekonfigurierbare Systeme in grob- und feingranulare Architekturen zur Folge, um das
System moglichst gut an die Anforderungen der Zielapplikation anzupassen. Inner-
halb jeder Kategorie kénnen weitere Nuancen und Unterkategorien gefunden werden,
die ihrerseits auf eine noch effizientere Losung der betrachteten Probleme abzielen.
Von der technologischen Seite bemiiht man sich, immer kleinere, kostengiinstigere und
energiesparendere rekonfigurierbare Architekturen zu finden. In diesem Zusammen-
hang wurden verschiedene Rekonfigurationstechnologien eingefiihrt, die beispiel-
sweise auf SRAM, EEPROM oder Anti-fuse basieren und laufend verbessert werden.

Beobachtet man die Entwicklung rekonfigurierbarer Architektur, kann man tatséchlich
feststellen, wie die Erfahrung der Designer und die Anforderungen des Marktes
die neusten Produkte rekonfigurierbarer Rechensysteme gewandelt haben. Es ist
bemerkenswert, dass es einen Trend zum Einsatz grobgranularerer Architekturen
gibt, selbst bei aktuellen feingranularen FPGAs, wodurch eine noch effizientere Re-
alisierung potentieller Anwendungen angestrebt wird. AufSerdem werden auch in fe-
ingranularen Architekturen grofiere Logikblocke eingefiihrt.

Andererseits ergeben sich spezifische Designherausforderungen gerade aus dem
rekonfigurierbaren Rechnen selbst: Rekonfiguration & Rechnen! Von Seiten der
Berechnung her hat ein Array aus sehr leistungsstarken Prozessoren wenig Nutzen,
wenn deren Rechenleistung nicht in geeigneter Weise verwendet werden kann.

-175 -

176 ZUSAMMENFASSUNG

Die Softwareunterstiitzung und Integration mit anderen Systemkomponenten sind
entscheidende Problembereiche. Von Seiten der Rekonfiguration sind neue Konzepte
wie Rekonfigurationsgeschwindigkeit, dynamische und partielle Rekonfiguration
aufgetaucht, die vorher unbekannt waren. Effiziente Losungen fiir diese Konzepte
zu finden hat eine Vielzahl von dokumentierten Forschungsaktivitdten ausgelost.

Das Ziel dieser Doktorarbeit ist, eine rekonfigurierbare Architektur zu entwickeln, die
die Fahigkeit zur effizienten Realisierung einer Reihe von DSP Anwendungen besitzt.
Dabei wird eine mit ASICs vergleichbare Performanz angestrebt, wiahrend gleichzeitig
Flexibilitit und eine Reduzierung der Entwicklungsfixkosten gewdhrleistet werden
soll. Eine pragmatische Methodik zur Losung solch einer Entwurfsaufgabe ist, ver-
schiedene DSP Anwendungen und deren VLSI-Implementierungen zu untersuchen.
Dadurch kénnen Architektureigenschaften fiir die rekonfigurierbare Zielplattform ex-
trahiert werden. Es muss betont werden, dass VLSI Architekturen fiir DSP Anwen-
dungen nicht immer direkt aus dem eigentlichen DSP Algorithmus ersichtlich sind,
sondern dass hdufig viel Entwurfserfahrung und umfassendes Verstandnis der DSP
Algorithmen erforderlich sind, um geeignete Strukturen fiir Hochgeschwindigkeits-
DSP-Anwendungen zu entwerfen. Daher wird angenommen, dass fiir alle Berechnun-
gen eine Bibliothek mit vordefinierten Konfigurationen zugrunde liegt, die in einem
ROM gespeichert sind und bei Bedarf geladen werden konnen.

Aus der Untersuchung verschiedener Architekturen von géangigen DSP Algorithmen,
die ein weites Spektrum an DSP Anwendungen abdecken, wurden verschiedene
Schliisse gezogen. Zusammengefasst kann gesagt werden, dass eine effiziente rekon-
figurierbare Systemlosung heterogen, grobgranular und dynamisch rekonfigurierbare
sein sollte.

Das vorgeschlagene HPad trdgt seinen Namen aufgrund seiner Heterogenitdt sowie
seiner Ahnlichkeit mit einem Schreibblock (engl.: pad) in dem Sinne, dass es ebenfalls
zur Problemlésung benutzt wird und zeilenweise beschrieben bzw. konfiguriert wird.
Das HPad kann als lose gekoppelte Beschleunigereinheit klassifiziert werden, deren
Integration in ein System nur minimalen Aufwands bedarf.

Dynamische Rekonfiguration wird im HPad aus drei Richtung angegangen: global,
lokal und kontextabhdngig. Wenn dynamische Rekonfiguration global gestattet ist,
kann jedes Rechenelement des HPad zu vorgegebenen Zeitpunkten lokal und mithilfe
einer fest definierten Rekonfigurationsschnittstelle entscheiden, ob zu einer anderen
vordefinierten Konfiguration (einem anderen lokal gespeicherten Kontext) gewechselt
werden soll. Jedes Element kann aufserdem abhédngig von einem lokalen Flag oder
einem empfangenen Bit Kontextwechsel durchfiihren. Ein Kontextregister beinhaltet
dazu ein Feld von 7 Bit, in denen die Bedingungen fiir einen Kontextwechsel zusam-
mengefasst sind. Die vorgestellte Losung setzt eine Multi-Kontext-Architektur sowie
dynamische und partielle Rekonfiguration voraus.

Zur Realisierung dieser Funktionalitit ist das HPad in folgende Komponenten
gegliedert: Das HPad DPA, eine Rekonfigurationssteuerung, eine Ablaufsteuerung

ZUSAMMENFASSUNG 177

sowie rekonfigurierbare FIFOs an den Ein- und Ausgédngen. Die Rekonfigurationss-
teuerung sorgt hierbei fiir das reibungslose Zusammenspiel dieser Subsysteme.

Die Ablaufsteuerung dient zur Generierung globaler Zeitmarker, die zur zeitlichen
Ablaufplanung der dynamischen Rekonfiguration genutzt werden kénnen. Die FIFOs
sorgen fiir einen so konstant wie moglich gehaltenen Datenstrom zum HPad DPA. Tritt
dennoch ein Schreib- oder Lesekonflikt auf, so friert die Rekonfigurationssteuerung die
Verarbeitung im System zeitweilig ein, um die Datenintegritdt und die Richtigkeit der
Ergebnisse zu gewdhrleisten. Die Rekonfigurationssteuerung kontrolliert aufSerdem
die vollstindige oder partielle Rekonfiguration des HPad.

Die Flacheneffizienz, ausgedriickt durch das Verhéltnis von effektiv zur Datenverar-
beitung genutzten Fldche zur Gesamtfldche, iibersteigt 40% und ist somit um eine
Grofienordnung besser als feingranulare FPGAs. Ferner wurden mehrere Architek-
turen von DSP Anwendungen auf das HPad abgebildet. Die prasentierten Beispiele
zeigen eine gute Ausnutzung der Rechenelemente, der Verbindungsressourcen und
der Rekonfigurationsmechanismen des HPad.

Fiir die Zukunft kénnen die Integration des HPad mit mehreren Mikroprozes-
soren sowie Funktionstests in einem Mikroprozessorsystem zusammen mit anderen
laufenden Anwendungen dabei helfen, die Architektureigenschaften des HPad weiter
zu verfeinern. Zudem konnen weitere Anwendungen wie Blockverfahren zur
Fehlerkorrektur, Datenkompression und Verschliisselung sowie deren Eignung zur
Realisierung auf dem HPad untersucht werden. Dies kdnnte zu einer weiteren
Verbesserung des HPad fithren sowie weitere Aspekte aufzeigen, die in den bisher
untersuchten Anwendungen nicht in Erscheinung getreten sind.

Appendix A

Reconfigurable Interface Sockets:
General

In this appendix the common features of all types of the RIS blocks of the HPad DPA
are presented.

A RIS block encompasses either a PE or DSB. The RIS functions as an adaptor passing
the appropriate context to the PE and routing the required signals to it. This is achieved
by selecting the proper context word holding routing information, instruction and RTR
configuration information.

In addition to the data inputs, RIS blocks input External control signals from the op-
erational controller, control signals from the reconfiguration controller (including the
reconfiguration instruction discussed below) and receive and pass context vectors.

As shown in Figure A.1, each RIS unit holds a couple of context words in its context
registers. The selection of the context word is either determined by the reconfigura-
tion controller unit for static configuration or by a local or a global event chosen by
the RTR_Info field of the current context word. Table A.1 below summarize the RTR
reconfiguration possibilities.

The seven most significant bits of the context word determine the RTR action. The
layout of these bits are shown in Figure A.2 and described in the Tables below.

Loading of context words is controlled by the SocConf signal according to Table A.2.
The SocConf signal specifies the target context register address and the reconfiguration
loading operation of the RIS.

-179 -

180 APPENDIX A RECONFIGURABLE INTERFACE SOCKETS: GENERAL

~

: R

Data In PE _| Data Qut
Selected Context

=
5 Context Reg. 0
5 \
)
§ Context Reg. 1 I
tr
<
(¢}
=3
»

Time Stamp Signals

Context No. from

the Reconf Controller

(&)

Figure A.1: A block digram depicting the context switching mechanism in the RIS units
of the HPad.

Table A.1: RTR control instruction. The selected control bit is obtained according to the
address specified by the ExtSel field of the current context word.

RTR control instruction | No. of selected context word

000 Control signal from the reconfiguration controller

001 Selected input bit to the PE

010 Negative flag produced by the PE

011 Zero flag produced by the PE

1XX Selected external control bit from the operation controller

181

RTR Info.

7

<

A |
-1, 2 « 4 N

AN

== =< =]

Loc./Ext. Local Event Time Stamp
Flag Flag Address Flag Address
Selection

Figure A.2: Different fields in the RTR portion of the context words.

Table A.2: Context words loading instruction description.

SocConf value

Action

00

01

10

11

Control signal from the reconfiguration controller

Keep old contexts (default)

Load configuration to the top context register shifting the old value
to the next RIS.

Load configuration to the bottom context register shifting the old
value to the next RIS.

Shift in the new configuration to the top context register through the
bottom one shifting the old value to the next RIS.

Appendix B

The GALPE RIS Unit

In this appendix the GALPE RIS structure, its instructions as well as its stored context
words are described. Within this description, the instruction set of the GALPE is also
provided.

The GALPE RIS context word is 29 bits wide. Figures 5.9 and 5.8 show the most in-
teresting functions of the GALPE RIS unit. The most significant 7 are used for RTR
purposes and the rest are described in Table B.1 and its general structure is shown in
Figure B.1.

GALPE RIS Configuration Context

RTR Info InBit RightOp. LeftOp. 1TUNtON GALPE

Address Address Address Info. Instruction

Figure B.1: Different Fields in the GALPE configuration context.

The 6-bit GALPE instructions are described in Table B.2 below.

—-183 -

184

APPENDIX B THE GALPE RIS UNIT

Table B.1: GALPE RIS context words description.

bits range description
28-22 RTR info (see Appendix A)
21-18 Bit inputs address

17-14 Right vector operand address
13-10 Left vector operand address
10-6 Truncation address

5-0 GALPE instruction

Table B.2: GALPE instruction set.

bits description
range
5-5 Clocked result?
4-4 Reuse previous clocked result?
3-0 Instructions:
0000 Z=X+Y
0001 Z=X-Y
0010 Z=-X
0011 Z=XANDY

0100 Z=XORY
0101 Z=XXORY
0110 Z=NOTX

0111 Z =Min(X, Y), co=0if X, 1 otherwise suitable for the Viterbi
ACS operation

1000 Z =SRA X

1001 Z=SLAX

1010 Z =ROR

1011 Z =ROL

1100 Z=X*Y

1101 Z=X*Y+Z(t1)

default Z =Xm

Appendix C

The MeMPE RIS Unit

In this appendix the MeMPE RIS structure, its instructions as well as its stored con-
text words are described. The description of the MeMPE instructions is also listed.

The MeMPE RIS context word is 28 bits wide. Figures 5.9 and 5.8 show the most in-
teresting functions of the GALPE RIS unit. Similar to the GALPE RIS and DSB RIS the
most significant 7 bits are used for RTR purposes and the rest are described in Table
C.1 and the context word’s general structure is shown in Figure C.1.

MeMPE RIS Configuration Context

RTR Info Vit. T.B. Output Bit Input Bit |
Info. Address Address

I
I
e I
I
I
I

\ Input MeMPE
\Routing Instruction
N

Ve
7
~
e

N
N
N
N

éutput Vector Input Vector
Address Address

Figure C.1: Different Fields in the MeMPE configuration context.

The 4-bit MeMPE instructions are described in Table C.2 below. In addition to storage
of data the MeMPE unit can perform other useful applications such as shifting and
rotating as listed below.

- 185 -

186 APPENDIX C THE MEMPE RIS UNIT

Table C.1: MeMPE RIS context words description.
bits range | description

21-27 RTR info (see Appendix A)

18-20 | Viterbi trace back update signal

14-17 Memory bit output address

10-13 Memory input bit address

9 Memory vector output address
8 Memory vector input address
4-7 External input vector routing address

0-3 MeMPE instruction

Table C.2: MeMPE instruction set.

Instruction Description

0000 NOP (default)

0001 Load Vector

0010 Shift in Vector

0011 Shift Bitln left in all vectors

0100 Shif bit left throgu the complete memory with Bitln at the
most left

0101 Shift BitIn left in only one vector

0110 Load BitIn left in only one vector

0111 Load BitIn left in all vectors

1000 Shift in the complete memory

1001 RoR Vector

1010 RoL Vector

1011 RoR Bit recursively in the complete memory

1100 RoL Bit recursively in the complete memory

1101 RoR Bit in the selected vector

1110 RoL Bit in the selected vector

Appendix D

The DSB RIS Unit

In this appendix the DSB RIS structure, its instructions as well as its stored context
words are described. In the following the both the DSB and its RIS configuration are
discussed.

Unlike the MeMPE and GALPE units the DSB does not perform any application rather
than routing. The DSB RIS function is, therefore, management of the context words,
their storage and their selection while the routing is naturally taken care of in the DSB
itself.

The selection of the active context is slightly different than that of the GALPE and
MeMPE RIS discussed in Appendix A. Here, the context number will be determined by
the selected bit by the DSB if the 3 MSBs of the current context are 011 and for the other
0X X cases the control signal from the reconfiguration controller is selected. Similar
to the description in Appendix A the RTR decision bit is selected by the addressed
generated bits from the operational control when the MSB of the current context is 1.

DSB RIS Configuration Context

7 6
’< >‘< =< =
RTR Info Input Bit Input Vector
Address Address

Figure D.1: Different Fields in the DSB configuration context.

-187 -

188 APPENDIX D THE DSB RIS UNIT

Figure D.1 depicts the DSB’s configuration context fields. Detailed listing of the differ-
ent fields of the DSB context is given in Table D.1. The DSB RIS context word is 19 bits
wide. Similar to the GALPE RIS and DSB RIS the most significant 7 bits are used for

RTR purposes.

Table D.1: DSB RIS context words description.

bits range description
18-12 RTR info (see Appendix A)
11-6 Bit address
5-0 Vector address.

No instructions are passed to the DSB since its only function is routing.

References

[1]
[2]
3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

http:/ /www.vorbis.org.

http:/ /www.xiph.org.

Actel. Axcelerator Family FPGAs. Technical Report v2.5, Actel, May 2005.
ALTERA. Stratix II Device Handbook. Technical Report SII5V1-3.0, ALTERA, 2005.

L. Azuara and P. Kiatisevi. Design of an Audio Player as System-on-a-Chip. Master’s
thesis, University of Stuttgart, 2002.

V. Baumgarte, G. Ehlers, F. May, A. Nueckel, M. Vorbach, and M. Weinhardt. PACT XPP
- A Self-Reconfigurable Data Processing Architecture. Journal of Supercomputing archive,
26(2):167 — 184, September 2003.

J. Becker, R. Hartenstein, M. Herz, and U. Nageldinger. Parallelization in co-compilation
for configurable accelerators-a host/accelerator partitioning compilation method. In
Proceedings of the Asia and South Pacific Design Automation Conference ASP-DAC "98., 1998.

A. Berkeman, V. Owall, and M. Torkelson. A low logic depth complex multiplier using
distributed arithmetic. IEEE Journal of Solid-State Circuits, 35:656 — 659, 2000.

M. Biver, H. Kaeslin, and C. Tommansini. In-Place Updating of Path Metrics in Viterbi
Decoders. IEEE Jornal of Solid State Circuits, 33(3):473-482, March 1989.

K. Bondalapati. Modeling and Mpping for Dynamically Reconfigurable Hybrid Architectures.
PhD thesis, University of Southern California, August 2001.

V. Bondalapati, K.; Prasanna. Reconfigurable computing systems. Proceedings of the IEEE,
90:1201 - 1217, 2002.

E. Boulton and L. Gonzalez. Trace Back Techniques Adapted to The Surviving Memory
Management in the M Algorithm. In Proceedings of the 2000 international Conference on
Acostics, Speech and Signal processing (ICASSP2000), pages 3366-3369, 2000.

S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field Programmable Gate Arrays.
Kluwer Academic Publishers, 1992.

B. L. Bullough. Analysis of Field-Programmable Gate Array Implementations of Con-
stant Coefficient Finite Impulse Responce Filters. Master’s thesis, Birgham Young Uni-
versity, August 2002.

K. Compton and S. Hack. Reconfigurable Computing: A Survey of Systems and Soft-
ware. ACM Computing Surveys, 34(2):171-210, June 2002.

—189 -

190 REFERENCES

[16] J. W. Cooley and]. W. Tukey. An algorithm for Machine Calculation of Complex Fourier
Siries. Math. Computaion, 19:297-301, 1965.

[17] A. DeHon. Reconfigurable Architectures for General Purpouse Computing. Technical
Report Report no. ARTI 1586, MIT Al Lab, 1996.

[18] C. Deltoso, C. Johanblang, M. Cand, and P. Senn. Fast Prototyping Based on Generic and
Synthesizable VHDL Models a Case Study: Punctured Viterbi Decoders. In IEEE Seventh
International Conference on Rapid System Prototyping, pages 158-163, 1996.

[19] T.]J. Ding, J. V. McCanny, and Y. Hu. Synthesisable FFT Cores. In IEEE Workshop on Signal
Processing Systems, pages 351-363, 1997.

[20] C.Ebeling, D. Cronquist, and P. Franklin. Configurable computing: the catalyst for high-
performance architectures. In Proceedings., IEEE Application-Specific Systems, Architectures
and Processors, 1997.

[21] A. El-Khashab and J. Swartzlander, E.E. A modular pipelined implementation of large
fast Fourier transform. In Signals, Systems and Computers, 2002.

[22] R. H. et al. A Datapath Synthesis System for the Reconfigurable Datapath Architecture.
In Design Automation Conference, ASP-DAC’95, 1995.

[23] G. Feygin, P. G. Gulak, and P. Chow. Generalized cascade Viterbi decoder-a locally con-
nected multiprocessor with linear speed-up. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 1097-1100, 1991.

[24] V. George and]. Hui Zhang andRabaey. The design of a low energy FPGA. In Interna-
tional Symposium on Low Power Electronics and Design, pages 188 — 193, 1999.

[25] V. S. Gierenz, O. Weiss, T. G. Noll, I. Carew,]. Ashley, and R. Karabed. A 550 Mb/s
Radix 4 Bit-level Pipelined 16-State 0.25 mu/m CMOS Viterbi Decoder. In IEEE In-
ternational Conference on Applications-Specific Systems, Architectures and Processors, pages
195-201, 2000.

[26] L.Gonzalez and E. Boulton. Simplified Path metric Update in the M Algorithm for VLSI
Implementation. In Proceedings of the 2000 international Conference on Acostics, Speech and
Signal processing (ICASSP2000), pages 3366—-3369, 2000.

[27] R. Hartenstein. Wozu Noch Mikrochips? ITpress Verlag, 1994.

[28] R. Hartenstein. The microprocessor is no longer general purpose: why future reconfig-
urable platforms will win. In Second Annual IEEE International Conference on Innovative
Systems in Silicon, 1997.

[29] R. Hartenstein. A Decade of Reconfigurable Computing: a Visionary Retrospective. In
Design, Automation and Test in Europe, pages 642 — 649, 2001.

[30] R.Hartenstein. Coarse grain reconfigurable architectures. In Asia and South Pacific Design
Automation Conference (ASP-DAC), 2001.

[31] R. Hartenstein. Trends in reconfigurable logic and reconfigurable computing. In Inter-
national Conference on Electronics, Circuits and Systems, 2002.

REFERENCES 191

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

R. Hartenstein,]. Becker, M. Herz, and U. Nageldinger. A novel sequencer hardware for
application specific computing. In IEEE International Conference on Application-Specific
Systems, Architectures and Processors, pages 392 — 401, 1997.

R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinge. Using the KressArray for
Configurable Computing. In Conference on Configurable Computing: Technology and Appli-
cations, 1998.

R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger. Using the KressArray for
Configurable Computing. In Proceedings of SPIE Conference on Configurable Compting:
Technology and Applications, volume 3526, Nov. 1998.

R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger. KressArray Xplorer: a New
CAD Environment to Optimize Reconfigurable Datapath Array Architectures. In Asia
and South Pacific Design Automation Conference, pages 163 — 168, 2000.

R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger. KressArray Xplorer: a new
CAD environment to optimize reconfigurable datapath array architectures. In Proceed-
ings of the Asia and South Pacific Design Automation Conference (ASP-DAC), 2000.

R. Hartenstein and R. Kress. A datapath synthesis system for the reconfigurable datap-
ath architecture. In IFIP International Conference on Hardware Description Languages, 1995.

S.-F. Hasio, W.-R. Shiue, and]J.-M. Tsing. A Cost Effcient Fully-Pipelined Architecture
for DCT/IDCT. IEEE Transactions on Consumer Electronics, 45(3):515-525, August 1999.

S. Haykan. Communication Systems. Wiley, 1994.

S. He and M. Torkelson. A new approach to pipeline FFT processor. In The 10th Interna-
tional Parallel Processing Symposium, pages 766 —770, 1996.

S. He and M. Torkelson. Design and Implementation of a 1024-point Pipeline FFT Pro-
cessor. In IEEE Custom Integrated Circuits Conference, pages 131 —134, 1998. MyPhDFFT4.

S. He and M. Torkelson. Designing pipeline FFT processor for OFDM (de)modulation.
In URSI International Symposium on Signals, Systems, and Electronics, 1998.

M. Herz. High Performance Memory Communication Architectures for Coarse-grained Recon-
figurable Computing Systems. PhD thesis, Universitaet Kaiserslautern, 2001.

M. Herz, T. Hoffmann, U. Nageldinger, and C. Schreiber. Interfacing the MoM-PDA
to an Internet-based development system. In Annual Hawaii International Conference on
System Sciences, 1999.

S.-F. Hsiao, W.-R. Shiue, and].-M. Tseng. A cost-efficient and fully-pipelinable architec-
ture for DCT/IDCT. In IEEE Transactions on Consumer Electronics, pages 515-525, 1999.

S.-F. Hsiao, W.-R. Shiue, and J.-M. Tseng. Design and implementation of a novel linear-
array DCT/IDCT processor with complexity of order log2N. In IEE proceedings Vision,
Image and Signal Processing, pages 400—408, 2000.

S.-F. Hsiao, W.-R. Shiue, and].-M. Tseng. Design and implementation of a novel linear-
array DCT/IDCT processor with complexity of order log2N. IEE Proceedings- Vision,
Image and Signal Processing, 147:400 — 408, 2000.

192 REFERENCES

[48] Z. Huang, S. Malik, N. Moreano, and G. Araujo. The design of dynamically reconfig-
urable datapath coprocessors. ACM Transactions on Embedded Computing Systems (TECS),
3(2):361-384, May 2004.

[49] L.]Jia, Y. Gao, J. Isoaho, and H. Tenhunen. Design of A Super-Pipelined Viterbi Decoder.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pages
1133-1136, 1999.

[50] H.Kalte, D. Langen, E. Vonnahme, A. Brinkmann, and U. Ruckert. Dynamically recon-
figurable system-on-programmable-chip. In Euromicro Workshop on Parallel, Distributed
and Network-based Processing, 2002.

[51] I. Kang and A. W. Jr. Low Power Viterbi Decoder for CDMA Mobile Terminals. IEEE
Jornal of Solid State Circuits, 24(4):1158-1160, August 1989.

[52] P. Kelly and P. Chau. A Flexible Constraint Length, Folfable Viterbi Decoder. In IEEE
Global Telecommunications Conference Including a Communications Theory Mini-Conference,
volume 1, pages 631-635, 1993.

[53] J. I. L. Jia, Y. Gao and H. Tenhunen. A New VLSI Oriented FFT Algorithm and Imple-
mentation. In Proceedings of the Eleventh Annual IEEE International ASIC Conference, pages
337 -341, 1998.

[54] B.P.Lathi. Modern Digital and Analog Communication Systems. Holt, Rinehart and Witson,
second edition edition.

[55] K. Leijten-Nowak. Template-Based Embedded Reconfigurable Computing. PhD thesis, Tech-
nische Universiteit Eindhoven, 2004.

[56] G.Lu. Modling, Implementation and Scalability of the MorphoSys Dynamically Reconfigurable
Computing Architecture. PhD thesis, University of California, Irvine, 2000.

[57] G. Lu, H. Singh, M.-H. Lee, N. Bagherzadeh, F. Kurdahi, E. Filho, and V. Castro-Alves.
The MorphoSys Dynamically Reconfigurable System-on-Chip. In Proceedings of the First
NASA/DoD Workshop on Evolvable Hardware, pages 152 — 160, July 1999.

[58] T. A. M. Hasan and]. Thompson. Scheme for reducing coefficient memory in FFT pro-
cessor. In Electronic Letters, volume 38, pages 163 —164, Feb 2002.

[59] T. A. M. Hasan and J. Thompson. A delay spread based low power reconfigurable FFT
processor architecture for wireless receiver. In Proceedings of the IEEE International Sym-
posium on System-on-Chip, pages 135 —138, 2003.

[60] R. Maestre, M. Fernandez, R. Hermida, Bagherzadeh, F. Kurdahi, and H. Sing. A Frame-
work for Reconfigurable Computing: Task Sheduling and Context Management. IEEE
Transactions on Very Large Scale Integration Systems, 9(6):858-873, 2001.

[61] D. Manners and T. Makimoto. Living with the Chip. Chapmann & Hall, 1995.

[62] E. Mirsky and A. DeHon. MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resource. In . IEEE Symposium on
FPGAs for Custom Computing Machines, pages 17-19, April 1996.

[63] E. A. Mirsky. Coarse-Grain Reconfigurable Computing. Master’s thesis, Massachusetts
Institute of Technology, May 1996.

REFERENCES 193

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

S. Mujtaba. An Area-Efficient Architecture of the Viterbi Decoder for Reverese Link IS-
95 (CDMA) Interface. In The Forth International Conference on Signal Processing, pages
525-528, 1998.

S. Mujtaba. An area Efficient VLSI architecture of the Viterbi Decoder for reverse link
IS-95 CDMA. In IEEE Forth International Conference on Signal Processing, volume 1, pages
525-528, 1998.

J. Nikara. Application-Specific Parallel Structures for Discrete Cosine Transform and Variable
Lenght Decoding. PhD thesis, Tempre University of Technology, 2004.

J. Nikara, J. Takala, D. Akopian, and J. Saarinen. Pipeline Architecture for DCT/IDCT. In
IEEE International Symposium on Circuits and Systems (ISCAS 2001), pages 902-905, 2001.
MyPhDDCT4.

M. Nivioja,]J. Isoaho, and L. V. Design and implementation of Viterbi Decoder with
FPGA. Jornal of VLSI Signal Processing, 21:5-14, 1999.

PACT. The XPP White Paper. Technical Report 2.1.1, PACT, March 2002.

PACT. Smart Media Processing with XPP. Technical Report ver.1, PACT, April 2003.
rev.]l.

PACT. Reconfiguration on XPP-IIb Cores. Technical Report ver.1.0.1, PACT, March 2005.

J. Palicot and C. Ronald. FFT: a basic function for a reconfigurable receiver. In IEEE 10
th International Conference on Telecommunications, pages 898 -902, 2003.

P. Pandita and S. K. Roy. Design and Implementation of a Viterbi decoder Using FPGAs.
In IEEE Twelvth International Conference on VLSI Design, pages 611-614, 1999.

K. K. Parhi. VLSI Digital Signal Processing Systems, Design and Implementation. WILEY
Interscience, 1999.

L. Perez. Architectures VLSI pour le Codage Conjoint Source-Canal en Trellis. PhD thesis,
Ecole Nationale Superieure des Telecommunications, 2000.

J. Rabaey. Reconfigurable processing: the solution to low-power programmable DSP. In
IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 275 — 278,
April 1997.

J. Rabaey. Hybrid reconfigurable processors-the road to low-power consumption. In
Eleventh International Conference on VLSI Design, pages 300 — 303, Jan. 1998.

J. Rabaey, A. Abnous, Y. Ichikawa, K. Seno, and M. Wan. Heterogeneous reconfigurable
systems. In EEE Workshop on Signal Processing Systems, pages 24 — 34, Nov. 1997.

L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice-
Hall, 1975. DSP book with the FFT pipelined architectures.

B. Radunovic. An overview of advances in reconfigurable computing systems. In Pro-
ceedings of the 32nd Annual Hawaii International Conference on System Sciences, pages 1-10,
Jan. 1999.

H. Sing, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and F. Chaves. MorphoSys: An
Integrated Reconfigurable System for Data-Parallel and Computation-lintensive Appli-
cations. IEEE Transactions on Computers, 49(5):456—481, 2000.

194 REFERENCES

[82] H.Singh. Reconfigurable Architectures for Multimedia and Data-Parallel Application Domains.
PhD thesis, University of California, Irvine, 2000.

[83] S.Sriam, R. Tessier, D. Goeckel, and W. Burleson. A Dynamically Reconfigurable Adap-
tive Viterbi Decoder. In Tenth ACM International Symposium on Field Programmable Gate
Arrays, pages 227-236, 2002.

[84] S. Sridharan and L. Carley. A 110 MHz 350 mW 0.6 pm CMOS 16-State Generalized
Target Viterbi Drcoder. IEEE Jornal of Solid State Circuits, 35(3):362-370, March 2000.

[85] R. Storn. Radix-2 FFT-pipeline architecture with reduced noise-to-signal ratio. IEE
Proceedings- Vision, Image and Signal Processing, 141:81 — 86, 1994.

[86] J. Takala, D. Akopian, J. Astola, and J. Saarinen. Constant Geometry Algortim for discrete
Cosine Transform. IEEE Transactions on Signal Processing, 48(6):1840-1843, June 2000.

[87] J. Takala, J. Nikara, D. Akopian, J. Astola, and J. Saarinen. Pipeline architecture for 8X8
discrete cosine transform. In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP '00), pages 3303-3306, 2000. MyPhDDCTS3.

[88] J. Takala,]. Nikara, and K. Punkka. Pipeline Architecture for Two Dimentional Discrete
Cosine Transform and Its Inverse. In IEEE International Conference on Electronics, Circuits
and Systems (ISCAS 2002), pages 947-950, 2002. MyPhDDCTS5.

[89] E. Tau, I. Eslick, D. Chen,]J. Brown, and A. DeHon. A First Generation DPGA Imple-
mentation. In n Proceedings of the Third Canadian Workshop on Field- ProgrammableDevices,
page 1384143, May 1995.

[90] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. John-
son,].-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. The Raw microprocessor: a computational fabric for
software circuits and general-purpose programs. IEE Micro, 22:25 — 35, 2002.

[91] R. Tessier and W. Burleson. Reconfigurable Computing for Digital Signal Processing: A
Survey. Journal of VLSI Signal Processing, Kluer Academic Publishers, 28:7-27, 2001.

[92] N. Tredennick. Technology and Buisness: Forces Driving Microprocessor Evolution.
volume 83,12, Dec 1995.

[93] N. Tredennick. The Case of Reconfigurable Computing. Microprocessor Report 10, 10,
Aug 1996.

[94] T. K. Truong, M. Sih, I. Reed, and E. H. Satorius. A VLSI Design for A Trace-Back Viterbi
Decoder. IEEE Jornal of Solid State Circuits, 35(3):362-370, March 2000.

[95] C. Tsui, R. Cheng, and C. Ling. Low Power ACS Unit Design for the Viterbi Decoder.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pages
1137-1140, 1999.

[96] A.]. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, IT-13:260-269, April 1967.

[97] E.Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,
R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring it All to Software: RAW
Machines. IEEE Computer, 30(9):86 — 93, Sept 1997.

REFERENCES 195

[98] M. Wan, Y. Ichikawa, D. Lidsky, and J. Rabaey. An energy conscious methodology for
early design exploration of heterogeneous DSPs. In Proceedings of the IEEE, Custom Inte-
grated Circuits Conference, pages 111 — 117, May 1998.

[99] M. Wan, H. Zhang, M. Benes, and]J. Rabaey. A low-power reconfigurable data-flow
driven DSP system. In IEEE Workshop on Signal Processing Systems, pages 191 — 200, Oct.
1999.

[100] W. Weng and W. Yang. The CPLD Implementation of Viterbi Algorithm in Grand Al-
liance ATCS System. IEEE Transactions on Industrial Electronics, 48(5):898-903, October
2001.

[101] XILINX. Virtex-4 User Guide. Technical Report UG070 (v1.3), XILINX, April 2005.

List of Publications

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

M. Glesner, H. Hinkelmann, T. Hollstein, L. Indrusiak, T. Murgan, A. M. Obeid,
M. Petrov, T. Pionteck, and P. Zipf. Reconfigurable Embedded Systems: An Application-
Oriented Prespective on Architectures and Design Techniques. In Embedded Computer
Systems: Architectures, Modeling and Simulation, 5th International Workshop, SAMOS 2005,
volume 3553, pages 12-21. Springer, July 2005.

T. Murgan, A. M. Obeid, A. Guntoro, P. Zipf, M. Glesner, and U. Heinkel. Design and
Implementation of a Multi-Core Architecture for Overhead Processing in Optical Trans-
port Networks. In Reconfigurable Communication-centric SoCs (ReCoSoC) Workshop, June
2005.

A. Obeid, T. Murgan, A. Taadou, and M. Glesner. HW /SW Design and Realization of a
Size-Reconfigurable DCT Accelerator. In 12th IEEE International Conference on Electronics,
Circuits and Systems, 2005.

A. M. Obeid, A. Garcia, and M. Glesner. A Constraint Length and Throughput Parame-
terizable Architecture for Viterbi Decoders. In The 16th International Conference on Micro-
electronics (ICM 04), 2004.

A. M. Obeid, A. Garcia, R. Ludewig, and M. Glesner. Prototyping of A High Perfor-
mance Generic Viterbi Decoder. In IEEE 13th International Conference on Rapid System
Prototyping, pages 42-47, 2002.

A. M. Obeid, A. Garcia, M. Petrov, and M. Glesner. A Multi-Path High Speed Viterbi
Decoder. In 10th IEEE International Conference on Electronics, Circuits and Systems, 2003.

A. M. Obeid, A. G. Ortiz, and M. Glesner. A Parameterizable Constraint Length
and Throughput Architecture for Viterbi Decoders. Elsvier Microelectronics Journal, (ac-
cepted).

M. Petrov, T. Murgan, A. Obeid, C. Chitu, P. Zipf,]. Brakensiek, and M. Glesner. Dynamic

Power Optimization of the Trace-Back Process for the Viterbi Algorithm. In Proceedings
of the IEEE International Symposium on Circuits and Systems (ISCAS), 2004.

M. Petrov, A. Obeid, T. Murgan, and et al. An Adaptive Trace-Back Solution for State-
Parallel Viterbi Decoders. In 12th IFIP International Conference on Very Large Scale Integra-
tion, 2003.

-197 -

Supervised Theses

[111] S. Azzam. Synthese ausgewaehlter DSP-Algorithmen auf einer hybriden grob-
granularen rekonfigurierbaren Architektur. Bachelorarbeit, Darmstadt Univer-
sity of Technology, Aug. 2005.

[112] M. Barzan. Architecture and Design for FIR Filter and FFT Accelerators. Master
thesis, Darmstadt University of Technology, Jul. 2004.

[113] H. Chokr. Entwicklung einer rekonfigurierbaren Pipeline-architektur FFT/DCT.
Bachelorarbeit, Darmstadt University of Technology, 11 2004.

[114] L. Gercek. Realization and Verification of a Low-Power Viterbi Decoder. Diplo-
marbeit, Darmstadt University of Technology, Oct. 2005.

[115] R. Hartmann. FPGA-Prototyping von Komponenten eines HiperLAN/2 Emp-
faengers. Studienarbeit, Darmstadt University of Technology, May 2002.

[116] W.Li. Development of an Embedded Coprocessor for Compact Flash Interfacing.
Diplomarbeit, Darmstadt University of Technology, 2005.

[117] Y. Li. Entwicklung und Implementierung Eines M algorithm Viterbi Decoder.
Studienarbeit, Darmstadt University of Technology, Feb. 2005.

[118] A.Taadou. Hardware/Software Codesigh eines Ogg Vorbis Players. Diplomar-
beit, Darmstadt University of Technology, March 2005.

[119] P. Vajravelu. Development and Optimization of a Leon-based DSP Accelerator.
Masterarbeit, Darmstadt University of Technology, Oct. 2005.

-199 -

-201-

202 SUPERVISED THESES

Lebenslauf

Zur Person:

Geburtsdatum: 13.03.1971

Geburtsort: Riad, Saudi Arabien

Ausbildung:

1988 bis 1994 Gymnasium “Jesus Maria” und “Hermanos Maristas”

Abschluf3: Abitur

1994 bis 1996 Studium der Nachrichtentechnik an der Polytechnis-
chen Universitdt Valencia (Vertiefungsrichtung Elek-
trotechnik)

1994 Abschlufs: B. S. in Electrical Engineering

1994 bis 1996 Wissenschaftlicher Mitarbeiter am Electronics and
Computers Research Institute der King Abdulaziz
City for Science and Technology in Riad, Saudi
Arabient

1996 bis 1999 Masterstudium der Elektrotechnik am Michigan State
University in East Lansing, MI, USA
1999 Abschlufs: M. S. in Electrical Engineering

1999 bis 2000 Wissenschaftlicher Mitarbeiter am Electronics and
Computers Research Institute der King Abdulaziz
City for Science and Technology in Riad, Saudi
Arabient

seit 01.09.2000 Doktorand am FG Mikroelektronische Systeme der
Technischen Universitdt Darmstadt

Beruflicher

Werdegang;:

1994 bis 1996 & Wissenschaftlicher Mitarbeiter am Electronics and

1999 bis 2000 Computers Research Institute der King Abdulaziz
City for Science and Technology in Riad, Saudi
Arabient

seit 01.09.2000 Wissenschaftlicher Mitarbeiter am FG Mikroelektron-
ische Systeme der Technischen Universitdt Darmstadt

