Architectural Synthesis of
a Coarse-Grained Run-Time-Reconfigurable
Accelerator for DSP Applications

Dem Fachbereich 18 der
Technischen Universitat Darmstadt
zur Erlangung der Wiirde eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

M.Sc. Eng.
Abdulfattah Mohammad Obeid
geboren am 13. Marz 1971

Referent: Prof. Dr. Dr. h. c. mult. Manfred Glesner
Korreferent: Prof. Dr.-Ing. Andreas Koch
Tag der Einreichung;: 01.11.2005

Tag der miindlichen Priifung: 13.02.2006

D17

Darmstadter Dissertationen

Dedicated to my families from me,
as a grandson,
a son,
a husband
and a father...

Acknowledgments

All praise be to ALLAH the almighty creator, the most merciful, the supreme in knowledge,
wisdom and power, to Whom my whole life is dedicated. Him I prase for His guidance and
His care that brought me all the way through my life and I praise Him too for He has blessed
me throughout my work for this Thesis. To Him I extend my prayers to forgive me for all my
sins and shortcomings — that I all admit—, to grant me blessings, thankfulness and to shape me
the way He likes a humble slave and a worshiper to be. I would like to thank both My parents
for all their care, prayers and support. Their sincere prayers warmth I have felt for all my life.
I also thank them for their care, advice and dedication that they have raised me with. Their
guidance and advice were always very helpful and appreciable. I pray for them to be blessed
and for my self to make them proud.

I would also like to thank my advisor Prof. Dr. Dr. h.c. Mult. Manfred Glesner for his expe-
rienced advising during my stay in Germany and work in his institute: the MES. As I worked
in his institute, I have benefitted from him not only scientifically, but also, I have learned a lot
from him on the personal level. The friendly working atmosphere in MES that all of us col-
leagues treasure is a reflection of his rare qualities, personality and care. Thanks also to Prof.
Dr.-Ing. Andreas Koch for his fruitful discussion, and to Prof. Dr.-Ing. Jiirgen Stenzel, Prof.
Dr.-Ing. Peter Mutschler and Prof. Dr.-Ing. Alex Gerschman for their participation in my oral
examination. Many thanks to all my colleagues in MES. In specific I thank Dr.-Ing. Alberto
Garcia Ortiz for the fruitful discussion in digital design issues, Dipl.-Ing. Tudor Murgan for
the many fruitful discussions, Dr. Leandro Soares Indrusiak for his useful advice throughout
the writing of this thesis. Special thanks are due to Dipl.-Ing. Heiko Hinkelmann for his re-
version and correction of the German summaries and also to Dipl.-Ing. Massoud Momeni and
Dipl.-Ing. Oliver Softke. Thanks to Dr. Gilles Sassatelli for the many discussions on the area of
RC.

Surely, many thanks are due to CERI of KACST that have financed my studies abroad. In par-
ticular I like to thank Prof. Dr. Fayez Alhargan, Dr. Rumaih Alrumaih and Dr. Mohammad
Alkanhal for their support. Many thanks also to Mr. Saud Albattal and Mr. Ibrahim Almuneef
for their continuous help. Thanks are due as well to the Saudi Arabian Cultural Bureau in
Germany for their constant help and support and especially to Dr. Ahmed Ashi and Dr. Oth-
man Omar. Thanks also to my friends: Eng. Wael Eddali, Dipl.-Ing. Omar Ben Maajouz, Mr.
Mohammad El Haddad and Dipl.-Ing. Naseem Mujahed for helping me in proof reading the
thesis and in the German language translation of the abstract and conclusions.

Last but by no means least, a whole lot of thanks to my wife who took a lot of hardships and
was giving always her very best for me to successfully finish my studies. Many thanks also
to my children: Mohammad Yousuf, Nuha and Doha for their patients for having a such busy
father. I pray for them to be blessed and successful. Wa Alhamdu li ALLAH Rabbi Alalameen...

— Vil —

Kurzfassung

Die Vorteile und Moglichkeiten Rekonfigurierbaren Rechnens haben zu einer grofsen
Anzahl an Forschungsarbeiten in diesem Bereich gefiihrt. Sowohl die Kosten der
Rekonfiguration als auch spezifische Herausforderungen im Bereich des Rekonfig-
urierbaren Rechnens waren die Hauptgriinde dafiir, dass bisher keine optimalen
Losungen gefunden wurden.

Aufgrund der Flexibilitdt rekonfigurierbaren Rechnens gibt es eine grofse Anzahl an
neuen Entwurfsparametern, wie z.B. dynamische Rekonfiguration, partielle Rekonfig-
uration, Kontextmanagement und HW /SW Probleme.

Abhidngig von den Zielanwendungen und ihren Nebenbedingungen kénnen ver-
schiedene Entwurfsentscheidungen getroffen werden, um die rekonfigurierbare
Losung zu optimieren.

In dieser Dissertation wird HPad, eine effiziente grobkornige dynamisch rekonfigurier-
bare Losung fiir DSP Anwedungen, prédsentiert. Die HPad Architektur wurde von
veroffentlichten VLSI Architekturen fiir vielfdltige DSP Anwendungen mafsgeblich
beeinflusst.

Basierend auf den Charakteristiken dieser DSP Algorithmen und ihren entsprechen-
den Architekturen wurde das HPad als heterogene und grobkornige dynamisch rekon-
tigurierbare Losung gewédhlt. Das HPad besitzt sowohl partielle als auch dynamis-
che Rekonfigurationsfdhigkeiten. Zudem wurde die Datenpfadarchitektur des HPads
auf eine Art und Weise entworfen, die eine effiziente Realisierung der untersuchten
DSP Anwendungen ermdglicht. Durch den Gebrauch lokaler Rekonfigurations-
Schnittstellen wird das Problem der dynamischen Rekonfiguration partitioniert und
effizient gelost.

Das HPad wurde mit VHDL Code auf RTL Ebene modelliert und synthetisiert. Die
Parametrisierung des Codes ist vorteilhaft, da sie eine einfache und schnelle Gener-
ierung neuer Entwiirfe durch Anpassung der entsprechenden Konstanten und Rekom-
pilierung gestattet. Das Modell besteht aus mehreren tausend Kodezeilen. Die Ab-
bildung und die Verdrahtung verschiedener Pipeline- Architekturen von DSP Algo-
rithmen wurde untersucht, um die Eignung und Validitdt des HPads fiir den beab-
sichtigten Anwendungsbereich zu demonstrieren.

—ix =

Abstract

Given all its merits and potential, Reconfigurable Computing has attracted lots of re-
search work. Reconfiguration costs as well as new Reconfigurable Computing specific
challenges have so far been the main obstacles hindering reaching optimal reconfig-
urable computing solutions.

Because of the flexibility offered by Reconfigurable Computing many new design pa-
rameters that were previously unknown now exist. Dynamic reconfiguration, partial
reconfiguration, context management and HW /SW issues are among these.

Depending on the target set of applications, different design decisions can be made
in order to optimize the reconfigurable solution according to the target application
constraints.

In this thesis the HPad, an efficient coarse-grained dynamically reconfigurable solu-
tion targeted for DSP computation, is proposed. The HPad architecture was greatly
influenced by reported VLSI architectures of a variety of DSP algorithms.

Based on observations of the characteristics of these DSP algorithms and their archi-
tectures the HPad was chosen to be a heterogeneous and dynamically reconfigurable
coarse grained solution. The HPad features partial, dynamic, and background recon-
tiguration capabilities. In addition, the HPad data path architecture is tailored to effi-
ciently realize the studied DSP applications. Through the use of local reconfiguration
interface sockets around each processing element, the dynamic reconfiguration prob-
lem is partitioned and efficiently solved.

The HPad was modeled and synthesized with a parameterizable VHDL code written
at the RTL level. Parameterizing the code was beneficial since it permitted generation
of new designs simply by changing a few constants and recompiling. The model con-
sisted of several thousand lines of code. Mapping and routing of several pipelined
architectures of DSP algorithms were examined to demonstrate the suitability and va-
lidity of the HPad to the proposed scope of applications.

—xXi—

Table of Contents

1 Introduction

1.1

1.2
1.3
1.4
1.5

2.1

2.2

2.3

24

Current Challenges
1.1.1 Time-to-Market o
1.1.2 Computational Solutions Paradigms
1.1.3 Integration DensityGap
1.1.4 Computational Flexibility and Cost Tradeoff
Configurable Computing Potential
Problem Statement L oo oL
Thesis Contributions
Thesis Organization
2 Evolution of Reconfigurable Computing
FPGA Evolution
2.1.1 Configuration Technologies
Reconfigurable Architectures Classifications
221 Granularity o
222 Heterogeneity o oo oo oo
2.2.3 Reconfiguration Features
224 Coupling.
FPGA Architecture Examples
231 XILINXFPGAs e
232 Actel FPGAs. e
233 AlteraFPGAs
Coarse-Grained Reconfigurable Arrays
241 TheKressArray
242 MATRIX
243 RAW . . . e
244 MorphoSys
245 PACTXPP

O 0 NI O = W W NN M-

xiv TABLE OF CONTENTS

25 ConcludingRemarkso Lo L 42

3 Study of Common DSP Algorithms and Their Architectures 45

3.1 Finite Impulse Response Filter 47

3.1.1 FIR Filter Architectures 48

3.2 Discrete Fourier Transform 53

3.2.1 FastFourier Transform 54

3.2.2 Fast Fourier Transform Architectures 58

3.3 Discrete Cosine Transform 64

3.3.1 Reported pipelined DCT Implementations 66

3.4 ViterbiDecoding o L. 69

3.4.1 Convolutional Coding 69

3.4.2 The Viterbi Algorithm 69

3.4.3 Proposed Parallel-Architecture Viterbi Decoder 71

3.44 Viterbi decoding using the R-2SDF architecture 76

3.5 Proposed Specialized Reconfigurable Architectures 78

3.5.1 The Proposed Reconfigurable Size MDCT Processor 78

3.5.1.1 SynthesisResults 81

3.5.2 A Reconfigurable FIR Filter Realization 82

3.5.2.1 Reconfigurable Single-Cycle FIR Filter Processor 85

3.5.2.2 Reconfigurable Multi-Cycle FIR Filter Processor 85

3.5.3 The Proposed R2MDF Architecture 87

3.5.3.1 Parallelizing the butterflies 88

3.5.3.2 Quantitativeanalysis 90

3.5.3.3 The trellis table realization 91

3.5.34 Synthesisresults 0L 93

3.5.3.5 Performanceanalysis 93

3.5.4 Reconfigurable R2°MDF FFT Processors 94

3.5.4.1 Single Cycle R22MDF Architecture 95

3.54.2 Multi Cycle R22MDF Architecture 97

3543 SynthesisResults 97

3.6 ConcludingRemarks 99

4 Problem Definition: What Features a Reconfigurable DSP Processor Should

Posses 101
4.1 Observations and Extraction of Primary Architectural Features of the

Previewed DSP Architectures 102

4.2 The Relation Between Key Reconfiguration Parameters to the Target
DSP Applications L 104

TABLE OF CONTENTS XV

421 Fine-Grain vs. Coarse Grain Reconfigurable Solutions 104

422 Timinglssues 105

423 Routing L 105

424 RIRIssues oL 106

4.2.5 Partial Reconfigurability 106

426 Programming e 106

4.3 Suitability of Studied Reconfigurable Architectures to DSP Applications 107

43.1 Reviewed FG FPGA Architectures 107

43.2 Reviewed CGRC Architectures 107

44 Problem Solving Methodology 109
4.5 Architectural and Reconfiguration Parameters Observed in the Design

of the Proposed CGRC Solution 111

4.6 ConcludingRemarks L. 114

5 The HPad 117

51 General Organization 118

51.1 Integration Provisions 119

5.1.2 Target Computational Paradigm 120

5.1.3 The HPad Data Path Array Architecture 120

514 Reconfiguration Techniques 121

52 The HPad DPA Architecture 123

52.1 Arithmetic Processing Elements 123

5.2.2 Memory Manipulation Processing Element 126

52.3 DataSharingBuses L. 127

52.4 Reconfiguration Interface Sockets 129

52.4.1 Arithmetic Precessing ElementsRIS 131

5242 Memory Manipulation Processing Element RIS 132

5243 DSBsRIS 134

53 Reconfigurable FIFOs 134

5.4 The HPad Control Architecture 136

54.1 OperationControl 137

54.2 ReconfigurationControl 137

5.5 The HPad Reconfiguration Mechanisms 141

5.6 The HPad Routing Topology 143

57 SynthesisResults 0 . 145

5.8 Area Efficiency Analysis o o L L 146

5.8.1 Block wise Area Efficiency 146

5.8.2 Overall Area Efficiency 147

59 Scalability o 147

Xvi TABLE OF CONTENTS

510 ConcludingRemarks 151

6 Implementation Examples and Validation 153
6.1 BasicOperations 154
6.1.1 Larger Vector Operations 154

6.1.2 ComplexOperations 154

6.1.3 FIFO Realizations v i i o s 155

6.14 Butterfly Operations 156

6.14.1 Dynamic Butterfly with FIFO of size 2 Configuration . . 156

6.2 FIR Filter Realizations o i it e 160
6.2.1 TDFFIR Filter Mapping 160

6.22 DFFIRFilterMapping 161

6.3 FFT Realization s e 163
6.4 DCT Realizations o o o i i i e s e s s s s s 165
6.5 Viterbi Decoding Realization 166
6.6 ConcludingRemarks 168

7 Conclusions 171
A Reconfigurable Interface Sockets: General 179
B The GALPE RIS Unit 183
C The MeMPE RIS Unit 185
D The DSB RIS Unit 187
References 195
List of Publications 197

Supervised Theses 199

List of Tables

3.1

3.2
3.3

34

3.5

4.1

51
52

53

Al

A2

B.1
B.2

C1

Timing and Speed reports for the RE and the 1, 3, 6 LBL decoders syn-

thesized using a 0.25pum technology., 75
SynthesisResults 81
Synthesis results of various implementations of the FIR filter (using

UMC 0.25 gm libraries) e e 87
Timing and area reports for different realizations of a K = 7 Viterbi

decoder’s ACS unit. synthesized using a 0.25um technology. 94
Normal and Simple Control FFT Comparison (UMC 0.25 pm) 98

The main advantages and disadvantages of the reconfigurable architec-
tures studied in Chapter? from fast DSP algorithms processing perspec-

Current HPad parameters. 145

Area and Propagation delay reports for the HPad synthesized using a
0.25umtechnology. 145

Area and Propagation delay reports for the experimental PEs used to
find the minimum theoretical area for area efficiency analysis synthe-
sized using a 0.25um technology., 146

RTR control instruction. The selected control bit is obtained according
to the address specified by the ExtSel field of the current context word. . 180

Context words loading instruction description. 181
GALPE RIS context words description. 184
GALPE instructionset.o L 184
MeMPE RIS context words description. 186

— XVii —

Xviii

LIST OF TABLES

C.2 MeMPE instruction set

D.1 DSB RIS context words description. 188

List of Figures

1.1
1.2

1.3

1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
2.13
2.14
2.15
2.16

Expected time in market and time to market [55] 2
Computational efficiency gap between Silicon and programmable Pro-

€essors [O5] L e e 4
The integration density gap between memories and several computa-

tional solutions [7] e 5
FPGA reconfiguration hardware overhead[17] 6
History of dominant computational paradigms shifts [61,7] 7
The SRAM reconfiguration technology [15] 13
The EPROM programming technology [13] 14
The PLICE Anti Fuse structure [13] 15
The ViaLink Anti Fuse structure [13] 15
Partial reconfigurability cases [15] 18
Tight, functional and loose coupling classes [15] 19
General architecture of XILINX XC2000 FPGAs[13] 20
The XC2000 CLB structure [13] 20
General structure of the Virtexd CLB[101] 21
Architecture of SLICEM of the Virtex4 CLB 22
Architecture of SLICEL of the Virtex4 CLB. 23
A simplified illustration for the Virtex4 XtremeDSP architecture [101] . . 24
Routing architecture of the Actl FPGA[13] 25
The ActILMI3] o e e e e e 26
General architecture of the Axcelerator FPGA [3] 27
Structure of Actel’s Axcelerator C-Cell [3] 28

— XiX —

XX LIST OF FIGURES
2.17 Structure of Actel’s Axcelerator R-Cell [3] 29
218 Altera’'sEMPLAB[13] e 30
2.19 Altera’s EMP Macrocell [13] 31
2.20 The expander product term of ALTERAEMP [4] 32
2.21 StratixIL ALM [4] o o e e e 33
2.22 StratixIl DSP block [4] 34
2.23 The general architecture of the KressArray rDPU [34] 35
2.24 Inter-routing of a KressArray of 9rDPUs [34] 35
2.25 Structure of MATRIXBFU [62] 36
2.26 Interconnect topology of MATRIX[62] 36
2.27 The architecture of RAW tiles [97] 37
2.28 RAW routing architecture [90] o L. 37
2.29 Overview of the MorphoSys architecture [60] 38
2.30 Structure of the MorphoSys Reconfigurable Cell [S1] 38
2.31 Intra-quadrant routing between the MorphoSys Reconfigurable Cells [81] 39
2.32 Inter-quadrant routing of MorphoSys [56] 39
2.33 Hierarchical structure of an XPP device of four PAs[69] 40
2.34 Structureofa4d x 5PA[70] e 41
2.35 Structure and routing of the ALU-PAE[70] 41
2.36 Structure and routing of the ALU-PAE[69] 42
3.1 The adder tree architecture 49
3.2 The direct form implementation of the FIR filter 49
3.3 SFG of the direct form FIR filter 50
3.4 SFG of the transposed direct form FIR filter 50
3.5 The transposed direct form implementation of the FIR filter 50
3.6 The linear phase transposed direct form implementation of the FIR filter 51
3.7 The cascade FIR filter realization 51
3.8 The Polyphase FIR filter structure 52
3.9 The FIR filter cascaded lattice structure 53
3.10 Simplified Basic butterfly SFG for the DITFFT 55
3.11 The decimation-in-time FFTSFG 56

LIST OF FIGURES xxi
3.12 The basic butterfly SFG of the decimation-in-frequency FFT 58
3.13 The decimation-in-frequency FFTSFG 59
3.14 The R2SDF implementation of the DIFFFT SFG 60
3.15 The Dynamic Butterfly component of the R2SDF architecture 60
3.16 The R22SDFSFG[40] oo i e e 62
3.17 Basic butterflies of the R22SDFFFT[40] 63
3.18 The R2SDF FFT processor structure [40] 63
3.19 The FFT R2MDC architecture [79] 64
3.20 Operation of the dynamic switches of the RZMDC architecture [79] 64
3.21 The R22MDC architecture [85] v i it i 64
3.22 DCT-Type-Il SFG Type A adopted by [87] 67
3.23 DCT-Type-Il SEG Type Badoptedin [87] 67
3.24 R2SDF butterfly unit proposed by [87] 68
3.25 The R2SDF processing of the DCT II (a) for the type-A SFG and b) pro-

cesses for the type B SFG shown in Figures 3.22 and 3.23) as in [87] 68
3.26 Anexample K = 3,r = 1/2, generating polynomials 75, 55 convolutional

encoder. 70
3.27 The decoding process in trellis diagram of a K = 3,7 = 1/2 with gener-

ator polynomials of 7g, 53 convolutional encoder. 70
3.28 The TB architecture. 72
3.29 The proposed ACSwunit. 73
3.30 The proposed RE Viterbi decoder architecture. 73
3.31 The proposed best path selection architecture. 74
3.32 RE decoder without a majority counter 76
3.33 The proposed RE decoder with a majority counter 77
3.34 The proposed 3LBLTBdecoder 78
3.35 The proposed TB decoders with different LBLs. 79
3.36 Trellis diagram of a K = 4 Viterbi decoder with in-place replacement . . 79
3.37 The R2SDF ACS Architecture of a K = 4 Viterbi decoder 80
3.38 The SFGof the 128 point DCT 81
3.39 The Dynamic butterfly architecture 82
3.40 Theirregularity 8SFG 82

Xxii LIST OF FIGURES
3.41 Theirregularity 8block 83
3.42 Theirregularity 1I6SFG 83
3.43 The block diagram of the reconfigurable IMDCT accelerator 84
3.44 A fully pipelined transposed form FIR filter structure. 84
3.45 The reconfigurable TDF FIR filter datapath. 85
3.46 Block diagram of the Single-Cycle reconfigurable FIR filter. 86
3.47 Block diagram of the Multi-Cycle reconfigurable FIR filter. 87
3.48 The Controller of the Multi-Cycle reconfigurable FIR filter of Figure 3.47 88
3.49 The proposed R-2MDF ACS unit for a K = 4 Viterbi decoder paral-

lelizedonce (I =2) 89
3.50 Possible levels of parallelization for a K = 5 Viterbi decoder 89
3.51 The proposed R-2MDF ACS unit for a K = 4 Viterbi decoder paral-

lelized twice (I =3) e 91
3.52 The complete R-2MDF based Viterbi decoder architecture 92
3.53 1 output per cycle configuration (I =1) 95
3.54 2 outputs per cycle configuration (I =2) 95
3.55 4 outputs per cycle configuration (I =3) 96
3.56 The smaller data path/multi-cycle reconfigurable datapath 96
3.57 Small Data path reconfigurable FFT operation controller 97
3.58 Small Data path Reconfigurable FFT Processor 98
4.1 General architecture of a comprehensive computational SoC solution. . . 111
51 A simplified structure of the HPad. 119
5.2 A simplified structure of the HPad DPA, here the current implementa-

tion size of 8§ x 8arrayisshown.00 122
5.3 A simplified block digram of the GALPEunit. 125
5.4 The vector functionality of the MeMPE units 126
5.5 The bit functionality of the MeMPE units 127
5.6 structureoftheDSB. L. 128
5.7 Configuration contexts updatinginthe HPad. 130
5.8 Routing of operands to the GALPE and MeMPE units. 132
5.9 Context selection in RIS of the GALPE and MeMPE units. 133

LIST OF FIGURES xxiii

5.10
511

512
5.13
5.14
515
5.16

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Al

A2

B.1

C1

D.1

The general architecture of the reconfigurable FIFO. 135
General Architecture of the Operation Control wunit (with

CellsPerRow = 8).« o i i it ittt i e e e et e e e 138
The HPad’s reconfiguration controller. 139

The state transition digram of the of the HPad Reconfiguration Controller.140
A simplified illustration showing the routing topology of the HPad DPA. 144

Global v.s segmented bus structures. 148
Scalabilityof the HPad. 150
The dynamic butterfly operation. 157
The dynamic butterfly operation. 157
Contxt words of the GALPE A unit of Figure 6.2. 158
Contxt words of the GALPE B unit of Figure 6.2. 159
Contxt words of the MeMPE unit of Figure 6.2. 160
Mapping of the TDF form FIR filter on the HPad DPA. 161
Mapping of the DF form FIR filter on the HPad DPA. 162
R2SDF 16 pt FFT implementationonthe HPad. 163
R2SDF DCT structure of [67] implemented on the HPad. 166
Mapping and routing of a K = 3 Viterbi decoder on the HPad. Shaded

DSBs represent their bit transfer.o o 0L 167

A block digram depicting the context switching mechanism in the RIS

unitsof theHPad. L 0oL 180
Different fields in the RTR portion of the context words. 181
Different Fields in the GALPE configuration context. 183
Different Fields in the MeMPE configuration context. 185

Different Fields in the DSB configuration context. 187

Glossary

Hp

ALU
ACS
ASIC

BMU

CG
CGRC
CS

DCT
DF FIR
DPA
DIF FFT
DIT FFT
DSB
DSp
DTFT

EPROM
EEPROM

FFT
FG
FGRC
FIFO
FIR
FPGA

Micro Processor

Arithmetic Logic Unit
Add Compare Select
Application Specific Integrated Circuit

Branch Metric Unit

Coarse Grain
Coarse Grain RC
Current State

Discrete Cosine Transform
Direct Form FIR

Data-Path Array

Decimation In Frequency FFT
Decimation In Time FFT

Data Share Bus

Digital Signal Processing
Discrete Time Fourier Transform

Electrically Programmable ROM
Electrically Erasable Programmable ROM

Fast Fourier Transform

Fine Grain

Fine Grain RC

First In First Out

Finite Impulse Response

Field Programmable Gate Array

— XXV —

XXVi GLOSSARY
GALPE Gross ALU PE

HPad Heterogeneous Pad

HW HardWare

LBL Look Back Levels

LUT Look Up Table

LSB Least Significant Bit

MAC Multiply-ACcumulate

MeMPE Memory Manipulation PE

MPGA Mask Programmable Gate Array

MSB Most Significant Bit

NRE Costs Non Recurring Engineering Costs
OFDM Orthogonal Frequency Division Multiplexing
PE Processing Element

PS Previous State

R2SDF Radix 2? Single Delay Feedback
R2*MDC Radix 2? Multi-Path Delay Commutator
R2MDC Radix 2 Multi-Path Delay Commutator
R2MDF Radix 2 Multi Delay Feedback

R2SDF Radix 2 Single Delay Feedback

RAM Random Access Memory

RC Reconfigurable Computing

RE Rgister Exchange

RIS Reconfiguration Interface Socket

ROM Read Only Memory

RTL Rigester Transfer Level

RTR Run Time Reconfigurable

SEG Signal Flow Graph

SoC System on a Chip

SRAM Static RAM

SW SoftWare

TB Trace Back

TDF FIR Transposed Direct Form FIR

™ Trellis Window

GLOSSARY

XXVii

VHSIC
VHDL
VLIW
VLSI

Very High Speed Integrated Circuits
VHSIC Hardware Description Language
Very Long Instruction Word

Very Large Scale Inegration

Xxviii GLOSSARY

Chapter 1

Introduction

Contents

1.1 CurrentChallenges.
1.1.1 Time-to-Market
1.1.2 Computational Solutions Paradigms
1.1.3 Integration DensityGap
1.1.4 Computational Flexibility and Cost Tradeoff
1.2 Configurable Computing Potential
1.3 ProblemStatement 00000,
1.4 Thesis Contributions.

© 0 3 & b= W W NN DN

1.5 Thesis Organization

Nowadays, the consumer electronics market is growing with a variety of new prod-
ucts emerging every day. This constant increase of electronic products is maintained
by the rapid advancements in process technology. New applications that were previ-
ously out of reach are now offered to consumers for affordable prices. In the realm
of such a dynamic market many challenges are now rising. The increase of develop-
ment and fabrication costs, higher demands of speed and computational power, the
need for various standards support and lower power consumption considerations es-
pecially for mobile systems necessitate finding new flexible yet efficient and practical
solutions that facilitate the realization of digital systems capable of meeting todays and
tomorrows market demands.

1=

2 CHAPTER 1. INTRODUCTION

A
5 poooeoodomoooe e CRRECTEEE |
| | | |
| | | |
4 _______ L, L - - - - — L |
| | | |
Time—in—markel : :
I I e S e e il !
< |
;j |
|
e e T |
|
|
RN it AT :
: Tlme—to—plarket : :
0 | 1 1 »
70s 80s 90s 00s
Decades

Figure 1.1: Expected time in market and time to market [55]

1.1 Current Challenges

The continuous growth of digital devices complexities, the constant increase in their
clock frequencies and thus their power consumption and the highly competitive mar-
ket bring about many design challenges. In the following we touch on the most impor-
tant of them.

1.1.1 Time-to-Market

As fresh and advanced products are injected in the market every day the expected life
time of many electronic devices is shortened and they turn obsolete at an increasing
rate. Meanwhile, developing newer and more sophisticated products require consid-
erably more design efforts as well as increasing verification and testing times. As a re-
sult, the expected time-in-market is steadily decreased as the the needed time-to-market
increases as shown in Fig. 1.1 [55]. Such disturbing characteristics makes it difficult
to introduce new successful products to the fiercely competing electronics market and
emphasizes the importance of time-to-market reduction to reduce the dominance of
Non Recurring Engineering (NRE) Costs. As shown in Fig. 1.1 the Time-to-market
grew less than the expected Time-in-market in the middle of the last decade and the
development period now approaches two years.

1.1. CURRENT CHALLENGES 3

1.1.2 Computational Solutions Paradigms

With the constant demand on faster digital mobile systems the power consumption
issue gains more importance especially when more functionality is sought and thus
more processing power and extra peripherals are added on board. Different computa-
tional paradigms result in different power consumption per computational task char-
acteristics. Application Specific Integrated Circuits (ASICs) for example may consume
more power per cycle as compered to the functional units in a normal Micro Processor
(up) but while doing much more operations per cycle and thus finishing the assigned
computations in considerably less amount of time. Consequently, only the measure
of power consumption in Watts will not suffice in reflecting the total amount of en-
ergy typically needed under the considered computational paradigm for a given task.
Rather, computational efficiency in Mega Operations Per Second Per Watts (MOPS per
Watts) can be used to give a better understanding of the power consumption needs.

The pp’s consumes more power per task because of the auxiliary operations carried
out to execute a single instruction and also because of the additional power consumed
by the up control resources. In the ;p domain a task is supplied to the pp in the form
of a sequence of instructions. A up goes through instruction-fetch, instruction-decode,
instruction-execute and write-back cycles for each instruction to be computed. The
above and other tasks (other than the instruction execute) obviously result in consid-
erable overhead time and power consumption overhead costs. These overhead costs
are the price of the high flexibility and versatility that the ;p computational paradigm
possesses.

On the other hand, a typical ASIC designed to efficiently solve a specific problem exe-
cutes many operations per cycle with minimal control and overhead costs. This results
in ASICs computational efficiencies two to three orders of magnitude higher than those
of up as illustrated in Fig. 1.2 [55]. Moreover, the speed of operation of ASICs is clearly
far more superior than that of pps, but unfortunately, at the expense of very low com-
putational flexibility.

1.1.3 Integration Density Gap

In addition, because of the big amount of control circuitry (which result in irregular
layouts) the hardware density gap between regular structures such as memories (that
feature regular layouts) and those of ups is growing wider and wider as the process
technology is advancing over the years. Fig. 1.3 [7] shows the integration densities
of memories and pps. This integration density gap, as shown in Figure 1.3, is already
several orders of magnitude and is still expected to grow.

4 CHAPTER 1. INTRODUCTION

Computational efficiency

108 [MOPS/W]
5 _—
10 — A
Intrinsic Computational effeciency :
s |
10 !
|
| &ap
10° !
|
v
10’
//\
10" Programmable Processor
/
10° .
2 1 0.5 0.25 0.13 0.07

—— Feature size [um]

Figure 1.2: Computational efficiency gap between Silicon and programmable Proces-
sors [55]

1.1.4 Computational Flexibility and Cost Tradeoff

Between the two above computational paradigm extremes with the up trading com-
putational efficiency for flexibility and ASICs trading computational efficiency and
performance for flexibility there is clearly a design space gap that can be occupied
by another computational paradigm: Reconfigurable Computing (RC) . By dedicating
more general purpose hardware resources that can be interconnected and configured
to realize different functions RC solutions aim at finding an optimal balance between
pure software and pure hardware approaches by developing hardware structures that
can be reconfigured to carryout different tasks at different points of time.

RC solutions can be classified according to their granularity as fine and coarse grain
architectures. By having bit-level operations resources as the basic building tiles, Fine
Grain RC (FGRC) solutions enjoy greater flexibility and can realize a wide spectrum of
applications ranging from control-dominant to complicated Digital Signal Processing
(DSP) applications. This flexibility comes naturally at the price of additional hardware
costs which are directly reflected on performance and power consumption. Today
many successful Field Programmable Gate Arrays FPGAs which are good examples
of FGRC solutions are available in the market.

FPGAs that have more regular structures have better integration densities than pips but

1.1. CURRENT CHALLENGES 5

101‘2Ltransistors /chip

109

year

.

y »
1990 2000 2010

10°

Figure 1.3: The integration density gap between memories and several computational
solutions [7]

are still lower than those of memories because of the high fine grain reconfigurability
overhead. Fig. 1.3 [7] depicts the integration densities of memories, yps, and FPGAs
that lie in the space between the two former.

Although very flexible, FPGAs’ fine granularity makes them slower than ASICs and
therefore not suitable for all applications that require high speeds of operation. More-
over, the reconfiguration costs (in terms of power, area and time) become higher
because of the time required for reconfiguration and the size of reconfiguration bit
stream. This makes dynamic switching between tasks —which is an important advan-
tage of reconfigurable solutions— impractical. It was reported in [7], [93], [92] and
[17] that only 0.5% — 1% is used for computational logic (See Fig. 1.4 [17]). In [17]
it states that about 90% of a typical FPGA area is consumed by interconnect resources
which leaves only 10% of the area to reconfigurable logic. Out of the configurable logic
roughly 10% is used as active logic yielding to only some 1% utilization of the total
area although 10 times better performance as the normal jp.

This notable disadvantages in area inefficiency, power, area and time costs needed
for reconfiguration dictates finding more efficient reconfigurable solutions that exhibit
lower reconfiguration costs along with better area efficiency. In this context Coarse
Grained Reconfigurable Computing (CGRC) solutions emerged as intermediate solu-
tions optimized for vector computations and consisting of vector rather than bit pro-
cessing based processing building blocks hence saving important costs. Moreover,

6 CHAPTER 1. INTRODUCTION

Active Configuration
Logic —.. l«—— Memory

Figure 1.4: FPGA reconfiguration hardware overhead[17]

since CGRC solutions are more dense and require a smaller amount of reconfigura-
tion resources, they are expected to have better integration densities than FPGAs and
thus should lie in the area between FPGAs and memory densities in Fig. 1.3 [7].

1.2 Configurable Computing Potential

From the above discussion we can see that there are clear opportunities in the design
space between ASICs and pps and a lot of on chip real estate value that can be added.
These clear opportunities can be exploited by RC solutions.

In [61] Tsugio Makimoto makes insight analysis based on his careful observation of
the evolution of the semiconductor industry and its applications. As shown in Fig. 1.5
[61] Makimoto detected computational paradigms transitions based on the technology
available in the market and how they interact with applications demands. Both the
types of applications and the computational trends change as each is developed over
time.

In the late 1950 discrete components were the mainstream trend of the industry. Using
these discrete components customers built many devices which lead to the demand of
newer solutions that can realize more advanced products. As the process technology
improved, in the late 1960s, new specialized products that could efficiently realize cus-
tomized products were produced and led the trend for about a decade. As explained
in [7] this is the first wave that is characterized by fixed algorithms and resources.
Then the pp that enjoys flexibility and ability to realize a wide variety of applications
customized by programming led the trend. However, because of its performance lim-
itations ASICs that assist the computations of the ;p were produced to accelerate the
system speed of operation. This wave is characterized by variable algorithm (software)
and fixed resources (;p & ASICs). RC is thus the last remaining wave that is expected

1.3. PROBLEM STATEMENT 7

standardized £ 2 the future?
4 S S
5 5
standard % /memory, 7/ recon-
transistors, & micro- o /[figurable
nand, nor.. \ 1gg7 % _ [processor 2, [dynamically year
1957 (TTL), 1997 5 "
1\ for TV, clock, . %0, U
25 % Loy,
, 1\ calculator, % J,O% SINEY
L . 1 etc. "OQO 7 01'72/,1
customized 1 <% ¢
1

| ; accelerators :

I . I o » .
: application of outsourcing: j paradigm shift:; crisis symptom: ; paradigm shift:
1 transistor and 1 systemvendorto 1 hardwareto 1 limitations of the 1 procedural to
I integrated circuit. 1 component vendor 1 software migration | microprocessor 1 structural migration
1 ¥ E 1 1

paradigm: new paradigm: new paradigm:
algorithm: fixed algorithm: variable algorithm: variable
resources: fixed resources: fixed resources: variable

Figure 1.5: History of dominant computational paradigms shifts [61, 7]

to dominate the next computational paradigm where both the algorithm and resources
are variable as advocated in [27].

Moreover, as process technology improves, the gate sizes approach physical limits and
so developing more advanced RC architectures may be cheaper than designing classi-
cal solutions on smaller feature size technology.

1.3 Problem Statement

Clearly, each computational paradigm is best suited for a given range of tasks. Irreg-
ular tasks and those with complicated control flow are best solved by pps when the
speed of operation is not critical. When very efficient realizations in terms of both
performance and power consumption are intended, ASICs are the most appropriate
especially when flexibility is not an important issue. For tasks that require good perfor-
mance, power consumption and flexibility RC solutions present the best suited. When
irregular structures and control flow dominated applications and no dynamic recon-
tiguration is needed FGRC solutions are convenient but when more efficiency and dy-
namic reconfiguration is sought CGRC solutions is well fitted. Hence, a System on a
Chip (SoC) encompassing up(s), ASIC(s), FPGA(s) and CGRC solution(s) is expected to
be both powerful and versatile a system for general purpose computing.

As Our choice of RC solutions change according to the type of task, the choice of CGRC
solution will also change depending on the family of tasks it is intended to solve. In

8 CHAPTER 1. INTRODUCTION

[34] it is noted that different design choices can be made according to the target set of
applications.

Many of CGRC solutions proposed in the literature or produced in the market today
do not efficiently solve all types of computational problems. They can not efficiently
realize well studied DSP algorithms and their well crafted architectures. Although
most of them have some kind of dynamic reconfiguration capabilities, the dynamic
configuration style does not in most cases fit nicely with DSP algorithms” architectures.

Withal, in some common DSP applications bit manipulation operations which is not
supported by most proposed CGRC solutions are required.

As our goal was to reach an efficient CGRC solution for DSP applications and based
on the aforementioned observations we decided that a pragmatic methodology to go
about the design task is to study several DSP algorithms and their reported implemen-
tations extracting common and essential features to be considered when designing our
proposed CGRC architecture.

Our design of the proposed CGRC solution took into consideration that it should be
feasible and easy to be coupled in the future with a yp or a more complete SoC compu-
tational solution as mentioned above.

1.4 Thesis Contributions

In this work several DSP algorithms architectures were realized and in some cases
improved. Likewise, reconfigurable and modular architectures for FIR filters, FFTs,
DCTs and Viterbi decoders were studied and realized.

Based on our findings, a CGRC architecture for DSP applications was developed. The
proposed CGRC solution computational paradigm is based on a library computational
model in order for it to be easily integrated with a pp in a loosely coupled fashion.

The proposed CGRC solution (the HPad) was described in a Register Transfer Level
(RTL) parameterizable VHDL model. Only by changing a few parameters in the VHDL
package new copies of the design could be synthesized and simulated with no extra
design efforts. This is a very useful feature that enabled experimentations with dif-
ferent design parameters. The synthesisable HPad model and all needed peripherals
consisted of several thousand lines of VHDL code.

The HPad architecture can be categorized as coarse grained although it possesses lim-
ited bit manipulation capabilities but with only minimal overhead and therefore can
be also categorized as mixed-grained. Furthermore, the proposed HPad can be cate-
gorized as heterogeneous. The heterogeneity of the HPad architecture allows efficient
realizations of a good range of DSP algorithms. The HPad is also multi context dynam-
ically reconfigurable with partial reconfigurability capability.

1.5. THESIS ORGANIZATION 9

1.5 Thesis Organization

The remainder of this thesis is organized as follows: the next Chapter introduces RC
technology by highlighting the main features of chosen examples of both FPGA and
CGRC solutions available in the market or in the literature. This is followed by a gen-
eral discussion of the previewed architectures and their different features and our ob-
servation of their development trends.

Chapter 3 then discusses FIR, FFT, DCT and the Viterbi algorithms their theory, their
reported implementations and some of our contributions in the course of our study of
their architectures. Afterwards is a discussion of the extracted features that are needed
in a CGRC solution in order for it to efficiently realize such algorithms.

In Chapter 4 the features of the required CGRC architecture are studied and discussed
in the light of the studied CGRC architectures in Chapter 2 and the DSP architectural
requirements found in Chapter 3. The advantages and disadvantages and the degree
of suitability of these architectures to the studied DSP implementations are pointed
out. Thereupon, the goals of our work are stated leading the way for the design of our
proposed solution.

The architecture and description of our proposed HPad is then discussed in Chapter 5.
There, the general architecture is introduced and its different basic building blocks are
described as well. Then proposed dynamic and partial reconfigurability mechanisms
are discussed. Reconfiguration and multi context control and external peripherals are
also described.

This leads to illustration examples of several DSP algorithms mapping on the HPad in
Chapter 6. Finally the thesis is concluded in Chapter 7.

Chapter 2

Evolution of Reconfigurable Computing

Contents
21 FPGAEvolution 12
21.1 Configuration Technologies 12
2.2 Reconfigurable Architectures Classifications 16
221 Granularity Lo Lo 16
222 Heterogeneity oo 16
2.2.3 Reconfiguration Features 17
224 Coupling 18
2.3 FPGA Architecture Examples 19
231 XILINXFPGAs 19
232 ActelFPGAs 22
233 AlteraFPGAs 25
2.4 Coarse-Grained Reconfigurable Arrays 27
241 TheKressArray e 29
242 MATRIX 31
243 RAW .. e 33
244 MorphoSys 36
245 PACTXPP 40
25 ConcludingRemarks., 42

~11-

12 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

System’s versatility and flexibility features have always inspired scientists and en-
gineers. In the area of digital computing, finding flexible platforms that can support
the realization of a variety of digital systems has attracted the attention of design engi-
neers since the early days of the digital age. It all started with the mask programmable
ROM and evolved to the current state of the art multi-million gate FPGAs and complex
Coarse Grained arrays capable of several billion of operations per second. In this chap-
ter we introduce —in brief- the evolution of reconfigurable devices showing examples
of their their main features and architecture and we also touch on some of the possible
areas of improvements.

In the first section we discuss the the evolution of fine-grained FPGAs beginning by
introducing different configuration techniques. Later in Section 2.3 we show some of
the main features and architectures of some of the popular FPGA devices in the market
today. Thereafter, section 4.2.2 introduces some of the main achievements in the area
of Coarse-Grained Reconfigurable arrays, their structures and how they aim to solve
data flow applications.

2.1 FPGA Evolution

Based on the fact that every logic function can be expressed as a sum of products, ROM
presented a solution that can realize the truth table of a given function by having the
input lines specify the addresses and the output lines delivering the stored bits cor-
responding to those inputs. This solution denoted PROM (Programmable Read Only
Memory) laid the first stone in a new area of computing: Programmable Logic or later
known as Configurable Computing. In the early days, configuring the PROM was fi-
nalized during the fabrication phase through masking. Later the EPROM Electrically
Programmable ROM) and EEPROM (Electrically Erasable Programmable ROM) tech-
nologies emerged allowing users to directly customize the popular ROM devices and,
more importantly, paving the way, along with other configuration technologies, for the
era of Reconfigurable Computing. The remainder of this section introduces the main
programming technologies and the main features of various FPGA architectures are
presented.

2.1.1 Configuration Technologies

The proper organization of hardware resources along with the ability to change its con-
figuration are the two main tools that make configurable computing possible. Config-
uration technologies started in the very beginning by putting the configuration infor-
mation on the masks allowing the configuration of ROMs or s Masked Programmable
Gate Arrays (MPGA) at fabrication time, reducing by that to some extent the NRE cost
and time to market. The appearance of several hardware programming technologies

2.1. FPGA EVOLUTION 13

READ or WRITE Routing E Routing
—1 Resource #1 Resource #2
DATA

Figure 2.1: The SRAM reconfiguration technology [15]

OUT,
ol

i

[

InNri

uncovered the wide range of possibilities that could be exploited by configurable com-
puting.

Configuration of hard ware is achieved by changing the inputs and internal connec-
tivity of its different components. The configuring elements should have a very high
OFF resistance, a low ON resistance and a low parasitic capacitance. Moreover, for
efficient and feasible realizations, these reconfiguration resources should consume as
small area as possible and should be easy to fabricate. There are three main configura-
tion technologies: Static RAM (SRAM), EPROM, EEPROM and Anti fuse.

e SRAM

The SRAM configures the internal connections by controlling pass transistors or
transmission gates. An SRAM cell connected to the input of a pass transistor
can switch it on or off according to the stored bit in the SRAM cell (see Figure
2.1). In practice, a combination of SRAM cells and multiplexors is used as Figure
2.1. Such a system is volatile since the SRAM cells will loose its stored data at
power down which means that a system having an SRAM configurable device
on board must also have some sort of permanent storage device on board to load
the configuration from say an EPROM or a hard disk.

The two main disadvantages of the SRAM configuration technique are the large
area required for the SRAM cells and the the need of on board permanent stor-
age to carry the configuration information. On the other hand, reconfigurability
(which is relatively fast) makes is attractive for special applications such as test-
ing and prototyping. Moreover, fabrication is easy since it is carried out com-
pletely in a standard CMOS process.

e EPROM & EEPROM
The EPROM configuration technology is similar to those used in EPROM memo-
ries. The idea is a modified MOS transistor with an additional “floating” gate not
connected to any wire (Figure 2.2) . By passing a high current through the tran-
sistor, some charges will be trapped in the floating gate causing the transistor to
be permanently switched OFF. as such, the EEPROM acts now as a configura-
tion resource. By shining ultraviolet light on the EPROM transistor the electrons

14

CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

+5V

pull-up
resistor

bit line

select gate

—{ ‘ l: EPROM transistor

f

floating gate
R gnd

word line

Figure 2.2: The EPROM programming technology [13]

trapped in the floating gate gain enough energy to tunnel and escape from the
floating gate.

The EEPROM technology is similar to that of the EPROM except that configu-
ration can be electrically erased of course at the expense of extra chip area. The
main disadvantage of of the EPROM technology is the slow reconfiguration time
which make it not suited for dynamic reconfiguration. Another disadvantage of
the EPROM technique is the need of multiple voltage sources for configurations
that are otherwise not required.

In both the EEPROM and EPROM techniques the configurable transistors can be
used to pull up or down the inputs of logic blocks as depicted in Figure 2.2 which,
in tern, results in extra power consumption. The main advantages of the EPROM
and EEPROM configuration technologies is that they are reprogrammable and
there is no need for extra on board memory resources since the techniques are
non-volatile.

Anti Fuse

A very interesting configuration approach is the Anti Fuse technology. Here the
Anti Fuse which have a very high impedance acting like an open circuit can be
permanently switched to a permanent low resistance state acting as a permanent
connection. There are two main Anti Fuse techniques: The PLICE introduced
by XILINX and the ViaLink introduced by QuickLogic. The PLICE as shown in
Figure 2.3 is composed of a top layer made of poly Silicon, a middle layer which
is an Oxygen-Nitrogen-Oxygen dielectric and an n+ doped Silicon forming the
bottom layer. A high voltage applied through the Anti Fuse terminals causes it
to breakdown forming a permanent connection between the poly Silicon and the
n+ diffusion.

The ViaLink Anti Fuse consists of a top and bottom metal layers separated by a

2.1. FPGA EVOLUTION 15

Cross Section Structure

metal 2 wire

oxide Polv—Si
\ dielectric Oi‘ /

n+ diffusion
A 7/ 33 anti—fuse

4

n+ diffusion \

/V
Poly-Si %

metal 1 wire

Figure 2.3: The PLICE Anti Fuse structure [13]

metal 1 3

Figure 2.4: The ViaLink Anti Fuse structure [13]

poly amorphous Silicon of an unprogrammed resistance in the gigaohm range
and altered to low resistance forming a permanent connection between the two
metal layers after applying a high voltage across the amorphous Silicon termi-
nals. Figure 2.4 shows the structure of the ViaLink anti fuse.

Although both Anti Fuse configuration technologies require less chip area than
both the SRAM and EPROM technologies, their main disadvantages is that they
require extra high voltage transistors needed to deal with the configurations high
voltages and currents and also they need 3 more mask layers than the standard
CMOS process.

16 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

2.2 Reconfigurable Architectures Classifications

A variety of reconfigurable architectures can be found today in the market or in liter-
ature. It is therefore beneficial to classify them according to various characteristics in
order to have a better understanding of their different features and capabilities.

Reconfigurable architectures can be classified according to the smallest granularity,
the type of reconfiguration supported and how the reconfigurable block is attached
to the on board microprocessor (if any). In the following we introduce briefly these
classifications.

2.2.1 Granularity

Reconfigurable architectures are generally composed of an array of processing ele-
ments. These processing elements can be as small as a 3-input 1-output Look Up
Table (LUT) or as big as a 16-bit Arithmetic Logic Unit (ALU) . The term granularity
refers to the size of the operands and output of the processing elements. In the case
of the 3-input LUT the reconfigurable architecture is classified as a very fine-grained
architecture and the 16-bit ALU can be classified as a very coarse-grained architecture .
Fine-grain architectures can realize a very wide range of designs but they suffer from
expensive routing and reconfiguration resources and thus the net area efficiency of de-
signs realized on them is usually low. Coarse-grained architectures on the other hand
can efficiently realize data flow designs but are not suitable for designs that involve
control or irregular and fine-grained operations.

Most FPGAs in the market such as XILINX, Actel and Altera FPGAs are classified as
fine-grained architectures. Examples of course-grained architectures include Elixent,
PACT, MATRIX, KressArray and RAW where the former two are examples of products
available in the market and the others are still research projects in different universities.

2.2.2 Heterogeneity

Most configurable devices use a single processing element as the main building block.
An other approach is to use different types of processing elements instead of only one.
The idea is to gain more processing power and flexibility yet maintaining a small area
requirements. This way the smaller processing elements can be used distributing data
processing over the array rather than having only one type big processing element that
have a lot of processing power.

An example use of that is to use functional units that implement functions that are ex-
pensive or impractical to realize using other processing elements such as multipliers
[101] and [15]. An other example is embedding storage resources to enable more ef-
ficient realizations for applications that need memory for storage. This may in many

2.2. RECONFIGURABLE ARCHITECTURES CLASSIFICATIONS 17

cases increase the area efficiency of the reconfigurable device since forming registers
from basic logic blocks or using the flip flop in the logic block my result in inefficient
mapping of some special architectures.

Moreover, some FPGA vendors provide on chip microprocessors to assist the designer
to partition the most control dominated parts of his design in the ip for example in the
Virtex-II pro platform. [101].

2.2.3 Reconfiguration Features

The configuration technology, the number of reconfigurations and the speed of recon-
figurability are properties that classify reconfigurable architectures.

According to the configuration technology configurable devices can be classified into
volatile and non-volatile. Non volatile device are one-time-programmable and therefore
can not be referred to as reconfigurable. Although non-volatile devices do not enjoy re-
programming capabilities, they posses better area efficiency and power consumption
characteristics. Examples of non-volatile devices are produced by Actel and Quick-
Logic both use their own Anti-fuse configuration technology as was discussed in this
Section 2.1.

Volatile devices can be further classified according to Statically and Dynamically recon-
figurable . Statically reconfigurable devices are those that need relatively long time
—usually in the order of milliseconds or more which may cause unacceptable delays
when run-time-reconfiguration is required— to reconfigure. Most of reconfigurable de-
vices in the market now are statically reconfigurable. Dynamically reconfigurable (also
referred to as Run Time Reconfigurable (RTR)) devices can be reconfigured in consid-
erably shorter amount of time. Currently all RTR devices are based on SRAM reconfig-
uration technology since EEPROM devices need fairly long time for reconfiguration.

RTR devices are classified according to their reconfiguration resources and method
of reconfiguration. A Single-Context device is a device that is fully configured with
a single stream of configuration bits. These configuration bits are referred to as the
Configuration-Context. When a new design or configuration is to be assigned a new
context is swapped into the reconfigurable device. Clearly the time required to swap in
and out the contexts may make it difficult for such a device to operate under strict RTR
conditions unless an efficient reconfiguration mechanism is implemented. To speed
up the reconfiguration time several techniques such as configuration compression and
configuration caching can be used [15].

Multi-Context devices have memory resources that can hold more than one configura-
tion allowing the reconfigurable device to quickly switch between them. In this context
the reconfigurable device can be viewed as a multiplexed set of single context recon-
figurable devices.

18 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

Single Context
Incoming configuration - -
Logic & / Logic & / Multi-Context
Routing Routing -
Logic & Logic &
\ Routing Routing

Incoming configuration

(after reconfiguration)

Partially Reconfigurable

Logic & Logic &
Incoming configuration Routing Routing
\ﬂ ﬂ

(after reconfiguration)

N

(after reconfiguration)

Figure 2.5: Partial reconfigurability cases [15]

RTR devices can be also classified as Partially Reconfigurable when portions of the re-
configurable device can be reconfigured without interfering with the operation of the
rest of the device. This may be helpful in reducing or virtually eliminating the time
of reconfiguration. Figure 2.5 illustrates single, multi context and partial methods of
reconfiguration.

2.24 Coupling

A reconfigurable device can be used as a stand-alone unit or it may be —in many cases—
coupled with a pup. Different levels of couplings are possible each with its own advan-
tages and drawbacks. A very tightly coupled reconfigurable device can be integrated
with the up as deep as a functional unit or a coprocessor. In such a case an advantage is
that the normal programming scheme can be still used with the addition of extra spe-
cial instructions for the reconfigurable functional unit. A drawback may be the need
to modify the pp to attach the reconfigurable functional unit. Also such a coupling
scheme may not be suitable for very heavy computations that require many cycles of
operation since the up may be waiting for the conclusion of computation. An interme-
diate solution between the stand-alone and the tightly-coupled coupling schemes is the
loosely-coupled coprocessor scheme. The loosely-coupled processing unit can be coupled
through the memory bus and in that case referred to as an attached processing unit or
can be connected to the system through I/O ports as an external processing unit. As
shown in Figure 2.6 in a coprocessor coupling scheme the ;p issues an instruction to
the reconfigurable device either passing to it data or telling it where to find it and then
the reconfigurable device works independently with no need of pp’s control until it
finishes and writes the result.

2.3. FPGA ARCHITECTURE EXAMPLES 19

Workstation
e s - Standalone Processine Unit
: Coprocessor Attached Processing Unit : £
11T TIIT TI11
111 | |
=g .| : :
5[cpu |d
h d 11T TIIT TI11
u O Memory H /0 u u
= FU| | g Caches Interface u u
= u u
mimininininl

...

Figure 2.6: Tight, functional and loose coupling classes [15]

2.3 FPGA Architecture Examples

FPGA manufacturers have adopted different architecture techniques for their FPGA
aiming at higher efficiencies and suitability for various designs. In the following the
architectures of three main FPGA manufacturers representing different architecture
and technology strategies are presented.

2.3.1 XILINX FPGAs

In 1985 XILINX [101] produced the first FPGA. Based on a symmetrical array architec-
ture as simplified in Figure 2.7, and SRAM configuration technology, XILINX FPGAs
was well received by consumers.

e XC2000 Series

The XILINX XC2000 FPGA [13] series was the first produced by XILINX. The
XC2000 — now extinct — was composed of several Configurable Logic Blocks
(CLBs) interconnected via an interconnection matrix to form at the end a square
matrix. The CLBs were based on an Look Up Table (LUT) and a register and a
few multiplexors permitting the realization on any four input boolean function or
two functions of three variables. The CLB has 2 outputs which can both be com-
binational or one of them can be registered. Figure 2.8 shows the architecture of
the XC2000 CLB.

The outputs of each CLB had a direct connection with 3 of its neighbors: the top,
the bottom and left neighbors. For medium range connectivity, additional gen-
eral purpose wiring resources spanning only one CLBs were provided. Longer

20 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

Configurable
Logic
OO OO OO OO Block

1/0 Block
—

00

ollgllagllollc

0o
[]
[]
[]
[]
00

00
[]
[]
[]
[]
00

< Horizontal

Routing
[]
O] D D D D O Channel
Vertiqal
Routing oo oo oo oo
Channel

Figure 2.7: General architecture of XILINX XC2000 FPGAs [13]

™ 3 X
4) ! Outputs
N |

1) ; Y

Look—up
Table

Inputs

o Qw >

Note:

| :D» = User—programmed
] | Multiplexor

,,,,,,,,,,,,,,,,,,,,,,,,,

Clock

Figure 2.8: The XC2000 CLB structure [13]

connections were made possible by connecting more than one general purpose
wiring resource together through a switch matrix. Long lines connections span-
ning the complete FPGA were also provided for very long connections. All mul-
tiplexors, interconnection resources configurations as well as the inputs of the
truth tables were configured by SRAM cells that are volatile and loose their con-
tents at power down, a feature making XILINX FPGAs perfect for prototyping
and use in research and academia.

e Virtex4 Series
Nearly a couple of decades later, Xilinx’s Virtex4 series [101] was produced by

2.3. FPGA ARCHITECTURE EXAMPLES 21

SLICEM | SLICEL
(Logic or Distributed RAM or Shift Register) | (Logic Only)

SHIFTIN ' cout
\
SLICE (3)
= SR
! | i !
\ \
SLICE (1)
A —

‘ COouT I [Interconnect
Switch | | T I ¥ \ to Neighbors
Matrix } : CIN \
ﬁ SLICE (2) L
‘ X0Y1 < | i >
\ l T | \
| | |
SLICE (0) . 1
< Txove = s
| | |
________ ——— e
SHIFTOUT CIN I 1g070_5_01_071504

Figure 2.9: General structure of the Virtex4 CLB [101]

XILINX. The column based architecture with bigger and more complicated CLBs
shows an evolved design strategy still based on LUTs. Now each CLB is com-
posed of four slices as depicted in Figure 2.9 with support of more logic functions
with two truth tables of four inputs per slice with the outputs also optionally reg-
istered. A new added feature that was not available in older FPGAs from XILINX
is the Variable-Input LUT Architecture where more functions can be supported
by connecting more than one slice with dedicated multiplexors supporting up to
32 input logic functions . Two types of slices are available in the CLB: the SLICEM
shown in Figure 2.10 and SLICEL in Figure 2.11. Both SLICEM and SLICEL are
the same with exception that SLICEM has added features shift features facilitat-
ing the implementation of distributed RAM or shift registers.

Additionally, the Virtex4 has block RAM designed to be configured in different
depths and widths and can also support FIFO implementations. The XtremeDSP
slices contain a dedicated 18 x 18 bit multiplier an adder and an accumulator
along with truncation and saturation capabilities. The XtremeDSP block is de-
signed to efficiently implement high-speed DSP applications. Some of the Vir-
tex4 versions have even PowerPC processor and Transceiver blocks cores. More-
over, XILINX also provides soft IP (Intellectual Property) cores of some popular
applications designed to efficiently suite the Virtex4 architecture. A simplified
illustration of the XtremeDSP block is given in Figure 2.12.

22

CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

To/From Slice on Top

SHIETIN cout
courusen To Fabric
IS pveuseo e
YBMUX
e]
From ﬁ(f& U BvouTusED svour
Fabric B BYINVOUTUSED
L’D’—D BYINVOUT
FXING
= 1 FXUsED
FXINA —id
=
N, YMUXUSED —_—
0DUAL_PORT ld
OSHFT REG
N YUSED v
[=x vB d
LY)
G3 N owr YMLX
Se ORAM
Gl A2 RO Y D g Qf—— > YQ
= o Ly & OLATCH
. D '+ MCts DYMUX
o Tt
[—oJg-wezusen Qinm
L WG1USED ws o OSRHIGH
™ o
e 2 Josmow |
aTDIG
= ALTDIG
Bvé f
DIG_ Wy BY
-
—! Gz
[FRoD |
T
[——
GAND T NDIGUSED .
0w} b
cvos
BY
= et b
BYINV
e REVUSED
e | XEMUX
SLICEWE? SLICEWE1USED P oUSED
= Bercemese v e D = s
KWSE
WSGEN
F5MUX
1
N FSUSED
SHIFTIN L, d =
D
77%D7 FXOR D D > XMUX
BX | XORF XUSED
o b R FXIUX D .
Fi MUX pf)
F3 :: owt >xu§l
Fe oRAM L xv0
F1 A2 pRom | e D g Q xa
Al e E LaTcH
WE 4USED [DXMUX
>R wrausen wFa o
>R wreusep WF2 OO
R wrusep W OSRHIGH
OsALOW
CouAL PORT SR_REV FFX
OsHFT_REG |F
f—w]ox
2
o
=, 1
. 1] ey
0|
cvor BXCIN
BX
= >
BX B Yoy
. CcE
ES e
CEE Foemy
oLk
CLK {j > RESET TYPE
LK B
S P ety Osmo
sm o OASYNG
= > D
D
SRE Psamny SRFFMUX -SYNC_ATTR
SHIFTOUTUSED i
swoor TO/From Slice on Bottom

UG070_5_02_071504

Figure 2.10: Architecture of SLICEM of the Virtex4 CLB

2.3.2 Actel FPGAs

Actel was one of the first companies to produce Anti Fuse FPGA. The Anti Fuse tech-
nology, although non-reconfigurable, enjoins better performance because of the better
electrical characteristics of the Anti Fuse elements in contrast to the SRAM or EPROM
alternatives. Anti Fuse FPGA thus represent a suitable solution furnishing reduced

2.3. FPGA ARCHITECTURE EXAMPLES

23

cout

-couTusED

S

» v
Seusen
o Bxing N
-
| o ®
= B GYMUX FXUSED
E
GXOR) Ymux
-XORG -YMUXUSED
5
. » v
e —T] [| 3
= M -
L
= fie v 1 . va
—- A1 — BY— ELatcH
o
Shiow
o
— &
o
—
b
o
Do N
ave -REVUSED!
£ X8
oo
D 1
1 -FSUSED
5
.
» 5
i XMUX
S & XUSED
» «
L ™ XB_ -DXMUX
DZ A3 o
= s] o X are xa
amm
B
Boniow
\ Fex
x
— o
=
=
&
=)
. «
= i
=
=)
-CLKINV RESET TYPE_
SR SR oswe
=
=

oIN

SYNC_ATTR

1ug070_5_03_071504

Figure 2.11: Architecture of SLICEL of the Virtex4 CLB

NRE costs, time to market and lower production costs for small volume numbers.

e Actl Series
Actl series |

] — Actel’s first production — was a row based architecture (shown

in Figure 2.13) with relatively small and simple Logic Modules (LMs) consisting
as shown in Figure 2.14 of three multiplexors capable of realizing a total of 702
logic functions of two up to four input variables. Half the inputs of each LM
had access to wiring resources above and the other half had access to the wiring

segments below.

The output of each LM was also connected to wiring segments both above and be-

24

CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

OPMODE
Controls
Behavior

|

C o
ZerO—| \\
OPMODE, CARRYINSEL, CIN,

PCIN T 7
¢ and SUBTRACT Control Behavior
P /

UG073_c1_04_070904

Figure 2.12: A simplified illustration for the Virtex4 XtremeDSP architecture [101]

low the LM. Wiring segments which were metal interconnects of different lengths
were connected via programmable Anti Fuses and could also form longer seg-
ments by connecting more than one of them together. For inter row connectivity,
a number vertical wiring tracks were also available for each column.

Axcelerator Series

Recent Actel FPGAs include Anti Fuse and EEPROM versions. The more ad-
vanced LM and the introduced RAM/FIFO blocks are notable. For the Axcelera-
tor series [3], programmability is based on the metal to metal Anti Fuse technol-
ogy. The Axcelerator’s architecture is based on a Sea of Modules topology where
the interconnection resources are fabricated on an overlaying layer on top of the
logic modules. The chip (as shown in Figure 2.15) is divided into a symmetrical
array of Core Tiles which are assembled from several RAM/FIFO blocks and an
array of SuperClusters. A SuperCluster is composed of two Clusters that include
three LM cells and several input and output buffers. There are two types of LM:
the C-Cell shown in Figure 2.16 which is multiplexor-based structures in the Su-
perCluster permitting the implementation of over 4,000 logic functions of up to
five inputs. The R-Cell as shown in Figure 2.17 is a register- based cell which can
have various control configurations. Actel claims that this configuration of the
SuperCluster permits efficient implementations of various logic functions and
carry logic arithmetic with the ability to and register the outputs all at minimum
interconnect delays.

The RAM/FIFO can be structured into different RAM widths and lengths con-
figurations or as asynchronous FIFOs with no use of other LMs. The FIFO

2.3. FPGA ARCHITECTURE EXAMPLES 25

LM LM LM LM LM (vertical tracks not shown)

Input segment

\/
A

Output segment

________________ I I N A O I Vertical Track

Wiring segment 44\ L Anti—fuse

——————————————— IDIIDINI-——---—--——-———-—-<; Clock Track

LM LM LM LM LM

Figure 2.13: Routing architecture of the Actl FPGA [13]

configurations allow different read and write data widths and can provide
FULL/ALMOST-FULL and EMPTY/ALMOST-EMPTY flags. In addition, all
control and counter resources needed for SRAM of FIFO implementations are
included in the RAM/FIFO blocks.

Internal wiring resources are available in different hierarchies: DirectConnects
which are relatively fast connect a C-Cell with an R-Cell. FastConnects connect
different cells within a SuperCluster and also vertically to the SuperCluster below
it. CarryConnects are used to rout carry logic between adjacent SuperClusters.
In the Core Tile level vertical and horizontal tracks span the Core Tile and there
are also Horizontal and vertical tracks spanning the entire length and width of
the device.

2.3.3 Altera FPGAs

e EMP Series
The EMP series [13] — Altera’s first FPGAs — were constructed as hierarchal
groupings of Programmable Logic Devices (PLDs). The basic configurable
PLD - named Logic Array Blocks (LABs) — were connected together through
Programmable Interconnect Array (PIAs) as shown in Figure2.18. Each LAB was

26

CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

A0 Al SA S1

BO B1 SB SO

Figure 2.14: The Actl LM [13]

made up from an array of Macrocells was interconnected with an expander prod-
uct array. The Macrocell (illustrated in Figure 2.19) consisted of a flipflop and
three wide input and gates whose inputs can be chosen from any signal of the
PIA, any of the Macrocells in the array or any of the Expander array outputs.

As depicted in Figure 2.20 the Expander product term element is composed of a
number of product terms that can be produced as in the Macrocell from any of the
Expander array outputs, Macrocell array outputs or the PIA interconnects. The
PIA is assembled of long wiring segments passing by every LAB thus providing
full connectivity between LABs.

Stratix II Series

The Stratix IT devices [4] are Altera’s latest FPGA product. It is assembled of an
array of LABs interleaved with DSP and memory blocks. Each LAB consists of
eight Adaptive Logic Module (ALM) that are have access to local interconnects
for minimal local delays. ALMs as illustrated in Figure 2.21 are composed of
several LUTs and a couple of adders with carry signal connections and a couple
of registers allowing for optional registering of data. Several operation modes
are defined for ALMs for logic and arithmetic operations. There is also a control
logic block that provide configurable control signals such as clocks and resets to
each ALM.

The RAM blocks can be configured into different RAM or FIFO modes with the
ability to use the closely interconnected ALMs to generate some of the needed
control signals. The DSP blocks shown in Figure 2.22 can perform a variety of
multiply and add operations of different vector sizes. The outputs can also be

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS 27

Y/ Glo0=ER-HlE

4k RAMC| SC [SC_| sC_| sc f S&Z| sC_|Ro| sc | s sc | sc | sc | sc

RAM/ [rame| sc | sc [sc | e A sc 7| sc_| sc sc_| sc [sc
FIFO RAMC| sC SC SC SJ SC SC SC SC SC SC

Ak [RAme] sc | sc | sc | sc [sc s Jofsc |sc|sc|sc]sc|sc

RAM/ [sawe] sc [5c [sc 5 [5c [[sc Tsc [| [s
FIFQ [Rawel sc | sc [sc [sc Jsc |sc JrofscTsc[sc Isc|sc]sc

4k Ramc| sc | sc [sc Jsc [sc | sc [ro] sc ['sc [sc [sc]sc]sc

RAM/ [Rame| sc | sc [sc [sc [sc | sc [ro] sc | sc | sc | sc | sc | sc
FIFQ [Rauel sc] sc | sc | sc [sc [sc Jan]sc]sc]sc]sc]sc|sc

Chip Layout

E Ramc| sc | sc [sc J'sc ['sc | sc [ro] sc | sc [sc | sc [sc]sc

1/0O Structure

See Figure 7

Figure 2.15: General architecture of the Axcelerator FPGA [3]

rounded or saturated as desired with the aid of several round/saturate blocks.

The interconnections network contains horizontal and vertical wiring resources
of different lengths. Several lengths of interconnects connecting the elements of
each LAB together, or interconnection tracks connecting labs and other neigh-
boring blocks including other LABs, DSP or memory blocks, interconnection
tracks spanning four LABs or interconnection tracks spanning the entire device
are available in a flexible interconnection scheme.

2.4 Coarse-Grained Reconfigurable Arrays

Fine-grained FPGAs although provide great flexibility and considerable speedups
when used with a pp still suffers from a number of drawbacks when compered with
CGRC solutions. These drawbacks can be lumped up in the large consumption of area,
power and time needed for reconfiguration. While CGRC solutions do not exhibit the
same flexibility as in FGRC solutions they enjoy the following advantages compered
to their FGRC solutions counterparts:

28 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

D1 D3 BO B1 CFN Fdl

o

:
d 0
N \V4
e ’
) 1 01
1
SUNN|
=D
\
0
1
Y VY
DO D2 DB A0 Al FCO Y

Figure 2.16: Structure of Actel’s Axcelerator C-Cell [3]

e Orders of magnitude less amount of reconfiguration data is needed.

e Considerably less amount of control needed for the routing signals since vectors
are routed rather than bits.

e The area efficiency is much higher than that of FGRC solutions since efficient
processing elements are used as the basic building blocks.

e The architecture of CGRC solutions can be optimized for efficient implementa-
tions of data flow structures.

e Mapping and routing should be easier since coarse grained algorithms can be
more easily mapped on the CGRC solution where processing elements represent
mathematical operators.

Both FGRC and CGRC solutions have their usages. FGRC solutions are very effective
in prototyping and low volume production of digital systems. As a matter of fact that
capability of FGRC solution has been main reason for the competitive stand point that
commercial FPGA manufacturers hold in the dynamic electronics market today. It has
also given researchers in the industry and academia a good opportunity to design,
experiment with architectures and prototype many systems a matter that must have

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS 29

CKP

DIN(user signals) > j
DCIN \/

HCLKA/B/C/D —»
CLKE/F/GIH —>

Internal Logic —

Y

CLR —» v
GCLR —»DO

CKS — =\ /
PSET ————»
GPSET —>DO

S1
SO

Figure 2.17: Structure of Actel’s Axcelerator R-Cell [3]

had a positive impact on the quality of products we see in the market now. FGRC
solutions can also be a good candidate for replacing many pieces of on-board glue
logic with the more efficient FPGAs.

CGRC solutions on the other hand although not yet mature are good candidates to
replace ASICs and help in the shift to the RTR paradigm by the use of dynamic recon-
figuration techniques.

In the following a brief introduction to some of the CGRC solutions reported in the
literature or available in the market will be introduced showing their general organi-
zation, their Processing Elements (PE) architectures, their interconnect structures and
their reconfiguration characteristics.

2.4.1 The KressArray

e General Organization:
The KressArray [36, 34, 37, 43] is a dynamically reconfigurable regular array of
32-bit reconfigurable Data-Path Units (1DPUs). The operation of rDPUs is data
driven. The KressArray went through several phases of development. Below we
touch on the most important features of the KressArray-III.

e Processing Elements Architecture:
The rDPU is the basic processing element of the KressArray. Each processing

30

CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

Array of

Macrocells

Array

L

L Expander
—> Product Term

=

Figure 2.18: Altera’s EMP LAB [13]

element is capable of all the basic integer C language operators support where
simple operations are carried out directly and more expensive ones such as mul-
tiplication and division are carried out in a microprogrammed sequence style.
rDPUs can also be used for routing data through them. An rDPU (see Figure 2.23
[34]) consists of an ALU, a register file and a number of multiplexors facilitating
full connectivity. The register file can be used to store constants, intermediate
results or frequently used inputs. The operations of the rDPU is data driven and
is carried out independently of the rest of the array.

Interconnect Structure:

There are three levels of interconnects in the KressArray. In the bottom most level
data is transferred between rDPUs to propagate and process intermediate results.
Connection by abutment between rDPUs simplifies routing and is more suited to
coarse grained applications. Global busses facilitate long distance connectivity
between rDPUs and/or the higher level input/output busses. The input/output
busses are interfaced with the internal global busses through switches. This style
of hierarchical bus routing allows input data transferred to and from rDPUs not
located at the edge of the array. Figure 2.24 [34] illustrates a 9-rDPU Array struc-
ture. Several sub arrays similar to the one shown in Figure 2.24 can be intercon-
nected to form larger arrays. To reduce the number of input/output pins, serial
mode connections are provided between local interconnects between sub-arrays.
This serial connectivity is transparent to the programmer [37].

Reconfiguration:
The KressArray architecture is data driven allowing each rDPU to execute a given

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS 31

LAB system clock

set state
[< "Q
= ’

array clock

reset

u VAVEVIVIVIRVAY

Programmable LAB LAB o R M) ”ll”
Interconnect ~ Expander Macrocell Note: . acroce
Array signals Product Terms feedbacks x = programmable EPROM switch

Figure 2.19: Altera’s EMP Macrocell [13]

instruction on its operands as they are ready. This implies dynamic and partial
reconfigurability. The KressArray is also a multi-context reconfigurable architec-
ture. Each rDPU has a configuration memory (context) storing the operation and
routing information. The configuration memory holds four layers of configura-
tions. This implies that the register file has to be implemented in four layers as
well. Switching between configurations provides very fast reconfiguration capa-

bility.

24.2 MATRIX

o General Organization:
MATRIX [62, 62, 17] is an array of 8-bit Basic Functional Units (BFUs) intercon-
nected via 3 levels of hierarchical interconnection resources. The MATRIX archi-
tecture allows it to operate in several modes of operation.

e Processing Elements Architecture:
The BFU is the basic building block of the KressArray. As shown in Figure 2.25
the BFU consists of the following components:

- An 8-bit ALU that is capable of several arithmetic and logic operations in
one cycle and a multiply operation in two cycles. Wider word operations
can be implemented by cascading several BFUs making use of the dedicated
carry logic lines.

32 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

To LAB Macrocell Array and
LIAB Expander Product Terms

[

L

[

L/

[

L/

[

L/

Expander Product Terms

Programmable LAB LAB
Interconnect ~ Expander Macrocell Note:)
Array signals Product Terms feedbacks x = programmable EPROM switch

Figure 2.20: The expander product term of ALTERA EMP [4]

— A 256x8-bit Memory that can be used as a single port 256x1-byte memory or
a two port 128x1-byte register file. This memory can be used to store micro
instructions or data.

— Control Logic which serves mainly the function of generating a control bit
by detecting a pattern condition such as a zero, negative, etc. result from the
ALU. The generated bit is used to choose between contexts.

Each BFU can be configured as (1) a context storage unit, (2) a Data Memory unit,
(3) ALU and Register file combination or (4) an independent ALU.

e Interconnect Structure:
There are three levels of interconnects in the MATRIX architecture. Nearest
neighbor connections, length four bypass connection as depicted in Figure 2.26
and (not shown in Figure 2.26) four global lines per row /column.

e Reconfiguration:
The basic BFUs can be viewed as primitive ups. At every cycle the program
counter is incremented and the new program count is produced. At a config-
uration switch condition, the bit produced from the BFU controller is used to
switch between a previously defined or stored instruction address or keep the
new incremented program count. Each BFU generates its own switch conditions.

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS 33

carry_in

shared_arith_in

dataf0 —— L

reg_chain_in

| To general or

local routing
adder0 D Q To general or
datae0 — > local routing
dataa ——— reg0
datab ——— Combinational
datac —— Logic
datad —— adderi D Q > To general or
local routing
datael ———
—| reg1
dataft ———
> To genera] or
local routing
\/
carry_out
shared_arith_out reg_chain_out

Figure 2.21: StratixII ALM [4]

Therefore MATRIX can be classified as dynamically and partially reconfigurable
device with multi context support.

243 RAW

o General Organization:

The RAW machine [90, 97] is an array of 16 identical programmable tiles. Each
tile contains a MIPS style 1p with instruction memory and other peripherals. The
tiles are interconnected using four routing networks. The RAW machine is de-
signed to achieve very high speeds by tailoring the size of the tiles to the time
delay needed for the electrical signal to tavel through them. The RAW machine
is considered by its developers as a up with its proposed scalable instruction set
architecture that can describe parallelism of the implemented application.

e Processing Elements Architecture:

As shown in Figure 2.27 each tile is composed of

— One static communication router,

- Two dynamic communication routers,

— An eight-stage in-order single issue MIPS-style processor,
— A 32-Kbyte Data cache and

34 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

Optional Serial Shift
Register Inputs from

Previous DSP Block |

Adder Output Block Output
PRN Muttiplier Block Selection
D Q Multizlexe/
ENA PRN
CLRN Q1.15 > a)] i
Round/ Optional Stage Configurable
Saturate — ENA as Accumulator or Dynamic
From the row PRN CLRN Adder'//Subiractur
interface block D Q 7
—ENA =
CLRN
Adder/ Q1.15 >
ASubtractor/ Round/
ccumulator
1 Saturate
It
PRN
D Q4
B A PRN
CLRN Q1.15 b a o
? Round/
Saturate — ENA
PRN CLRN
D QM
—] Summation
— ENA = Block
CLRN
Adder = »0 a
ENA
|
CLRN
PRN
D Q4
] PRN
—ENA D Q >
CLRN Q1.15
7 SZ‘:S:‘;; _{ena Summation Stage
PRN CLRN for Adding Four
D Q 7 Multipliers Together
— ENA
CLRN —> Addor
er/ L
Subtractor/ F?(:u:‘:/
Accumulator Saturate
PRN
D Qr
] PRN
— ENA D Q >
CLRN Q1.15
Optional Serial Shift Hound Tena —
Register Outputs to AN CLRN |J__ Optional Pipline
Next DSP Block D Qe Register Stage
in the Column _
—ena Optional Input Register
CLRN Stage with Parallel Input or
? | Shift Register Configuration
,—H
to MultiTrack
Interconnect

-
i %
vy

Figure 2.22: StratixII DSP block [4]

— A 96-Kbyte Instruction cache.
Each tile has input and output registers to achieve maximum pipelining speedup.
e [nterconnect Structure:

As pointed above, tiles are interconnected through static and dynamic networks.
The routing provide full duplex connections to only four nearest neighbors. All

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS 35

global data bus north data interconnect

RF1

east 22 Wy west
data data

inter- inter-
con- o con-

nect @

P nect

gl sy

S1 S2
south data interconnect

Figure 2.23: The general architecture of the KressArray rDPU [34]

Bus A Bus B local interconnect

4 4

o 0%.0*
0%.0%.0"
O¥.0%.0"

Figure 2.24: Inter-routing of a KressArray of 9 rDPUs [34]

wires are registered at the inputs and outputs of the tile to achieve high clock
rates. Static routing is specified at compile time while dynamic routing is deter-
mined at run time. At the edge of the array the high number of input/output
wires is reduced by multiplexing so that full duplex connections to any of the
tiles located at the side of the array is possible as shown in Figure 2.28.

e Reconfiguration:
The RAW machine can be considered as multi context since contexts are fed to
the machine as instructions. RAW is also partially configurable since each tile
operation is independent from the others and can have its own program running,.
Also, different tiles can be cascaded to achieve higher throughputs. Dynamic
reconfiguration is facilitated through programming and dynamic switching.

36 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

Level-2, Level-3
Network

Network Network

Switch 1 (N1) Switch 2 (N2)
Network Drivers
mg IW
Port 1 (FP1) L3 Control Porti(FPZ)

Network Lines — Lines A — Network Lines

Network Port A
d 10g I0MPN

(L1,L2,L3) - (L1,L2,L3)
Address/ A B Address/ E
7| DataA | ~ | DataB [~ =
BFU 2
Core 2
ALU Memory Z
Function —= Fa Fm [<— Function =
(Fa) Out I (Fm) i
T~< ~ CamryIn Carry Out
S~o Level-1 Network
Network Drivers S~o
~<_
~<
Level-1 Network =~<

Figure 2.25: Structure of MATRIX BFU [62]

I [

Figure 2.26: Interconnect topology of MATRIX [67]

244 MorphoSys

o General Organization:
The MorphoSys [56, 82, 81, 60, 57] (shown in Figure 2.29) is a tightly coupled ar-
ray of Reconfigurable Cells with a TinyRISC pp. The Reconfigurable Cells array is
composed of four 4 x 4 quadrants. The TinyRISC processor is responsible of gen-
eral purpose operations as well as controlling the operation of the Reconfigurable
Cells array. The frame buffer provides two sets of data that the Reconfigurable Cells
array can access simultaneously.

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS 37

=QEQECEC)

=0.=0.=0.=@ N
a o\ |
=C)

DMER

|
:(}{%G:
=0.=0. =8

Figure 2.27: The architecture of RAW tiles [97]

Raw 1/O ports

7.5 Gbps channels

(14 total)
Multiplexing of

|
networks down 4/—|\
onto pins via £ £

logical channels

[om |
Iﬂm
[om |
=

High-speed
input device

= %& <~z
to-digital converter

Wide-word analog-
I N
| | |
Raw
I I chipset

Figure 2.28: RAW routing architecture [90]

&

DRAM

o |
DRAM

e Processing Elements Architecture:
The Reconfigurable Cells (shown in Figure 2.30) is a pp like block with a register
tile, input multiplexors, a context register an ALU/mult unit and a shifter. The
Reconfigurable Cells is thus capable of MAC and other basic arithmetic and logic
operations. The input multiplexors choose operands from the the ports of the
Reconfigurable Cells or from the register file.

e [nterconnect Structure:
As depicted in Figures 2.31 and 2.32 the Reconfigurable Cells interconnect topology
is of 3 levels: in the first level each Reconfigurable Cells connects to its four nearest

38

CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

M1 chip
Instruction < Tiny_RISC || RC array
/Data —> Core I O
Cache Processor EEEEEEE%:
i v | O O
Frame Buffer EEEEEEE%:
Main | Y I 2 | I o [
1 1
(External) | Columns | | Rows -I-
RAM) < —; DMA P 4 Context 4
Controller Memory

Figure 2.29: Overview of the MorphoSys architecture [60]

16 bit data
RO - R3

C I'Mm T B xa -

o gl ,L| R|C|VE| HH ubp L 1
S| L :
2 | | R
%_} o | - MUX_A ™\ MUX_B
3 x\ o d____1 64
5 2 12

16 Constant 16

gl Tt
= T > ALU+MULT
g g Ol—|N|™
z - ——— Jos———»|T|X|T|E
=
‘§_’ - »surr/ s Tt 11
U L 28 Register| File

T(;S:m g T HE¢16T° V%l() IG*TO other I-KCS 16
Figure 2.30: Structure of the MorphoSys Reconfigurable Cell [51]

neighbors, in the second level complete quadrant row and column connections is
provided and in the third inter-quadrant connectivity is implemented.

Reconfiguration:

To increase context efficiency, contexts can be broadcasted on columns or rows
with the Reconfigurable Cells sharing the same column or row share the contexts
and thus performing the same function forming a Single Instruction Multiple
Data (SIMD) topology over the column or row. There are 16 context words per
column and row that can be chosen from according to the control signals pro-
vided by the TinyRISC processor. Dynamic reconfiguration is achieved by updat-
ing the contexts of the Reconfigurable Cells. This can be done in the background

39

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS

i.j.-

[Re] RS PlRe) PlRC]

w

B
Tl

v

12

R

it
i

v

.

1

1

|3

1

1
<+

1

1

1

1|

1

1

1

i'i
(ReJ TP

H

ii
)|

u

*
W
T3RC]TP
AT\
RC|T
W

W

RSP

T
(RO (RO (R

A
W

v

[Re)Plre) PlRe) PlRE)
Gy G GG

-
I
1
I
NTi
I
I
:
1
1=

1

| (@2l {R (R =S {e) =2
|| e || e
N EEiEEnEEEEiEEEE
T i i [e R S i
AR R P E PR)
D i e = N W o =
! +ﬁ+wﬂ+wﬂ+wﬂ4ﬂﬁﬁﬁ+w@ﬂﬂ
nl ||||| Lln |||||| _w:laﬁl

]

Figure 2.31: Intra-quadrant routing between the MorphoSys Reconfigurable Cells |

v

v

v

x

x

£

]

Figure 2.32: Inter-quadrant routing of MorphoSys [

as the Reconfigurable Cells are running allowing thus RTR. Here again since rows

and columns hold a number of context words that are selected from and since

they can be reconfigured independently the MorphoSys architecture can be con-

sidered multi context and partially reconfigurable.

40

CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

PA = = PA
-__-‘—T'-f O = = = /’;}’ ——{r O —
|| '__L__ : "_é"\ 1] II
(o) || @
Ny S
| scMm
4 @D | | f
=T R S -
PA = = PA
-:'——':-[\ﬂj/}—— = = ——{Lﬂ)]«:——:-

Figure 2.33: Hierarchical structure of an XPP device of four PAs [69]

2.4.5 PACT XPP

o General Organization:

PACT XPP (eXtreme Processing Platform) [70, 69, 6, 71] is a composition of
Processing Arrays (PAs) each composed of Processing Array Elements (PAE) and
a Configuration Manager (CM). As shown in Figure 2.33, a Supervising CM
(S§CM) manages individual CMs. The complete I/O interfaces are available at
the edges of the XPP device. The XPP is a data-driven architecture with partial
and dynamic configuration support.

Processing Elements Architecture

Figure 2.34 shows the architecture of a PA. Two types of PAE are used: an ALU-
PAE 2.35 and a RAM-PAE 2.36. Both the ALU-PAE and the RAM-PAE are com-
posed of three sub-blocks and each block contains an ALU. The FREG and BREG
blocks are mainly used to connect the corresponding PAE forwards or backwards
to the top or bottom interconnect resources. The ALUs of the FREG and BREG
are used for routing and control of data and can also be used for arithmetic oper-
ations. The ALU sub-block in the ALU-PAE features also a multiplier and other
specific DSP operations. The RAM sub-block can be configured as a dual port
512x16-bit RAM or as a FIFO.

Processing in the XPP is event and data driven. A data packet and an event
packet are sent simultaneously. The processing of the appropriate PAE is stalled
until all operands to be consumed are ready. The PAE is also stalled if the desti-
nation inputs are busy.

2.4. COARSE-GRAINED RECONFIGURABLE ARRAYS 41

R’AM—PAES A’LU~PAES I/O-Elements
- ¥ v
] —— e
B (7| (7| (7| (7| |7 (.
— I e
A0 e e s s s g

Figure 2.34: Structure of a 4 x 5 PA [70]

16-Bit Data-
Connect

8
. 0.0.0.0.0 . 0.0 0 . 0.0.0.0.0
99990 G000 SEEND 00000

Register Register DF-Register
vV v VoV A R
FREG ALU BREG
L 28 2R v v i
DF-Register [DF-Register [Register]
2R 2R \ N i

Figure 2.35: Structure and routing of the ALU-PAE [70]

e [nterconnect Structure:
As illustrated in Figures 2.35 and 2.36, connectivity is mainly via segmented hor-
izontal 16-bit interconnects. As mentioned above, FREG an BREG assist in trans-
ferring data vertically in the PA.

e Reconfiguration:
PACT XPP is partially and dynamically reconfigurable. The CM sends recon-
tiguration data addressed to the individual PAE. This data travels through the
array until it reaches its destination. Once configured the PAE changes its state
to “configured”. The CM can hold multiple configurations making the XPP thus

42 CHAPTER 2. EVOLUTION OF RECONFIGURABLE COMPUTING

16-Bit Data-
Connect

8
e 6.0 0.0 0 () 0. 0 e 60000
I B, I = TP]

Register Register DF-Rtgisier
vy 22 Fr 3
FREG RAM 512x16 BREG
vV v v + 4
DF-Register DF-Register [Register]
\ A/ v ==

Figure 2.36: Structure and routing of the ALU-PAE [69]

multi-context. New contexts can be loaded in the background at run time to save
context fetching time. Moreover, complete configurations could be switched be-
tween in only a small number of cycles. Because of the event packet driven op-
eration of the XPP no loss of data is expected to occur with dynamic configura-
tion. In addition, special hardware protocols are implemented to ensure immu-
nity against dead-locks in case of overlapping partial configurations.

2.5 Concluding Remarks

In this Chapter, a short introduction on reconfigurable technologies was presented. To
give a more comprehensive idea about reconfigurable computing features and archi-
tectures, a collection of FGRC and CGRC solutions was introduced.

Although RC possesses many attractive features and potential, they are not suited
for all types of applications. The more flexible the computational solution is, the less
power efficient and fast it is per computational task.

Since better efficiencies and more flexibility is still demanded, the set of RC solutions
is now polarized to two major subsets: CGRC and FGRC solutions. As a matter of fact,
within each of the aforementioned subsets, architectures are still evolving to better
their flexibilities and efficiencies.

Some very interesting observations could be deduced after studying the introduced old
and new FGRC solutions in Section 2.3: the move towards coarse-granularity and het-
erogeneity yet with maintenance of more or less the same degree of flexibility. XILINX,
Actel and ALTERA new FPGAs have now larger basic logic blocks capable of more FG
functionality. They all have also dedicated configurable RAM blocks i.e. heterogeneity.

2.5. CONCLUDING REMARKS 43

Moreover, both XILINX and ALTERA new FPGAs exhibit DSP blocks implementing in
high efficiency multiplication and accumulations operations.

A similar observation was made when studying the CGRC solutions: the CGRC ar-
chitecture should relate to the target application. The SIMD based applications have
inspired the design of the MorphoSys for example. In [36] the authors noted that the
sought application field should reflect on the design of the CGRC architecture.

