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Kurzfassung

Die Vorteile und Moglichkeiten Rekonfigurierbaren Rechnens haben zu einer grofsen
Anzahl an Forschungsarbeiten in diesem Bereich gefiihrt. Sowohl die Kosten der
Rekonfiguration als auch spezifische Herausforderungen im Bereich des Rekonfig-
urierbaren Rechnens waren die Hauptgriinde dafiir, dass bisher keine optimalen
Losungen gefunden wurden.

Aufgrund der Flexibilitdt rekonfigurierbaren Rechnens gibt es eine grofse Anzahl an
neuen Entwurfsparametern, wie z.B. dynamische Rekonfiguration, partielle Rekonfig-
uration, Kontextmanagement und HW /SW Probleme.

Abhidngig von den Zielanwendungen und ihren Nebenbedingungen kénnen ver-
schiedene Entwurfsentscheidungen getroffen werden, um die rekonfigurierbare
Losung zu optimieren.

In dieser Dissertation wird HPad, eine effiziente grobkornige dynamisch rekonfigurier-
bare Losung fiir DSP Anwedungen, prédsentiert. Die HPad Architektur wurde von
veroffentlichten VLSI Architekturen fiir vielfdltige DSP Anwendungen mafsgeblich
beeinflusst.

Basierend auf den Charakteristiken dieser DSP Algorithmen und ihren entsprechen-
den Architekturen wurde das HPad als heterogene und grobkornige dynamisch rekon-
tigurierbare Losung gewédhlt. Das HPad besitzt sowohl partielle als auch dynamis-
che Rekonfigurationsfdhigkeiten. Zudem wurde die Datenpfadarchitektur des HPads
auf eine Art und Weise entworfen, die eine effiziente Realisierung der untersuchten
DSP Anwendungen ermdglicht. Durch den Gebrauch lokaler Rekonfigurations-
Schnittstellen wird das Problem der dynamischen Rekonfiguration partitioniert und
effizient gelost.

Das HPad wurde mit VHDL Code auf RTL Ebene modelliert und synthetisiert. Die
Parametrisierung des Codes ist vorteilhaft, da sie eine einfache und schnelle Gener-
ierung neuer Entwiirfe durch Anpassung der entsprechenden Konstanten und Rekom-
pilierung gestattet. Das Modell besteht aus mehreren tausend Kodezeilen. Die Ab-
bildung und die Verdrahtung verschiedener Pipeline- Architekturen von DSP Algo-
rithmen wurde untersucht, um die Eignung und Validitdt des HPads fiir den beab-
sichtigten Anwendungsbereich zu demonstrieren.
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Abstract

Given all its merits and potential, Reconfigurable Computing has attracted lots of re-
search work. Reconfiguration costs as well as new Reconfigurable Computing specific
challenges have so far been the main obstacles hindering reaching optimal reconfig-
urable computing solutions.

Because of the flexibility offered by Reconfigurable Computing many new design pa-
rameters that were previously unknown now exist. Dynamic reconfiguration, partial
reconfiguration, context management and HW /SW issues are among these.

Depending on the target set of applications, different design decisions can be made
in order to optimize the reconfigurable solution according to the target application
constraints.

In this thesis the HPad, an efficient coarse-grained dynamically reconfigurable solu-
tion targeted for DSP computation, is proposed. The HPad architecture was greatly
influenced by reported VLSI architectures of a variety of DSP algorithms.

Based on observations of the characteristics of these DSP algorithms and their archi-
tectures the HPad was chosen to be a heterogeneous and dynamically reconfigurable
coarse grained solution. The HPad features partial, dynamic, and background recon-
tiguration capabilities. In addition, the HPad data path architecture is tailored to effi-
ciently realize the studied DSP applications. Through the use of local reconfiguration
interface sockets around each processing element, the dynamic reconfiguration prob-
lem is partitioned and efficiently solved.

The HPad was modeled and synthesized with a parameterizable VHDL code written
at the RTL level. Parameterizing the code was beneficial since it permitted generation
of new designs simply by changing a few constants and recompiling. The model con-
sisted of several thousand lines of code. Mapping and routing of several pipelined
architectures of DSP algorithms were examined to demonstrate the suitability and va-
lidity of the HPad to the proposed scope of applications.
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Nowadays, the consumer electronics market is growing with a variety of new prod-
ucts emerging every day. This constant increase of electronic products is maintained
by the rapid advancements in process technology. New applications that were previ-
ously out of reach are now offered to consumers for affordable prices. In the realm
of such a dynamic market many challenges are now rising. The increase of develop-
ment and fabrication costs, higher demands of speed and computational power, the
need for various standards support and lower power consumption considerations es-
pecially for mobile systems necessitate finding new flexible yet efficient and practical
solutions that facilitate the realization of digital systems capable of meeting todays and
tomorrows market demands.
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Figure 1.1: Expected time in market and time to market [55]

1.1 Current Challenges

The continuous growth of digital devices complexities, the constant increase in their
clock frequencies and thus their power consumption and the highly competitive mar-
ket bring about many design challenges. In the following we touch on the most impor-
tant of them.

1.1.1 Time-to-Market

As fresh and advanced products are injected in the market every day the expected life
time of many electronic devices is shortened and they turn obsolete at an increasing
rate. Meanwhile, developing newer and more sophisticated products require consid-
erably more design efforts as well as increasing verification and testing times. As a re-
sult, the expected time-in-market is steadily decreased as the the needed time-to-market
increases as shown in Fig. 1.1 [55]. Such disturbing characteristics makes it difficult
to introduce new successful products to the fiercely competing electronics market and
emphasizes the importance of time-to-market reduction to reduce the dominance of
Non Recurring Engineering (NRE) Costs. As shown in Fig. 1.1 the Time-to-market
grew less than the expected Time-in-market in the middle of the last decade and the
development period now approaches two years.
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1.1.2 Computational Solutions Paradigms

With the constant demand on faster digital mobile systems the power consumption
issue gains more importance especially when more functionality is sought and thus
more processing power and extra peripherals are added on board. Different computa-
tional paradigms result in different power consumption per computational task char-
acteristics. Application Specific Integrated Circuits (ASICs) for example may consume
more power per cycle as compered to the functional units in a normal Micro Processor
(up) but while doing much more operations per cycle and thus finishing the assigned
computations in considerably less amount of time. Consequently, only the measure
of power consumption in Watts will not suffice in reflecting the total amount of en-
ergy typically needed under the considered computational paradigm for a given task.
Rather, computational efficiency in Mega Operations Per Second Per Watts (MOPS per
Watts) can be used to give a better understanding of the power consumption needs.

The pp’s consumes more power per task because of the auxiliary operations carried
out to execute a single instruction and also because of the additional power consumed
by the up control resources. In the ;p domain a task is supplied to the pp in the form
of a sequence of instructions. A up goes through instruction-fetch, instruction-decode,
instruction-execute and write-back cycles for each instruction to be computed. The
above and other tasks (other than the instruction execute) obviously result in consid-
erable overhead time and power consumption overhead costs. These overhead costs
are the price of the high flexibility and versatility that the ;p computational paradigm
possesses.

On the other hand, a typical ASIC designed to efficiently solve a specific problem exe-
cutes many operations per cycle with minimal control and overhead costs. This results
in ASICs computational efficiencies two to three orders of magnitude higher than those
of up as illustrated in Fig. 1.2 [55]. Moreover, the speed of operation of ASICs is clearly
far more superior than that of pps, but unfortunately, at the expense of very low com-
putational flexibility.

1.1.3 Integration Density Gap

In addition, because of the big amount of control circuitry (which result in irregular
layouts) the hardware density gap between regular structures such as memories (that
feature regular layouts) and those of ups is growing wider and wider as the process
technology is advancing over the years. Fig. 1.3 [7] shows the integration densities
of memories and pps. This integration density gap, as shown in Figure 1.3, is already
several orders of magnitude and is still expected to grow.
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1.1.4 Computational Flexibility and Cost Tradeoff

Between the two above computational paradigm extremes with the up trading com-
putational efficiency for flexibility and ASICs trading computational efficiency and
performance for flexibility there is clearly a design space gap that can be occupied
by another computational paradigm: Reconfigurable Computing (RC) . By dedicating
more general purpose hardware resources that can be interconnected and configured
to realize different functions RC solutions aim at finding an optimal balance between
pure software and pure hardware approaches by developing hardware structures that
can be reconfigured to carryout different tasks at different points of time.

RC solutions can be classified according to their granularity as fine and coarse grain
architectures. By having bit-level operations resources as the basic building tiles, Fine
Grain RC (FGRC) solutions enjoy greater flexibility and can realize a wide spectrum of
applications ranging from control-dominant to complicated Digital Signal Processing
(DSP) applications. This flexibility comes naturally at the price of additional hardware
costs which are directly reflected on performance and power consumption. Today
many successful Field Programmable Gate Arrays FPGAs which are good examples
of FGRC solutions are available in the market.

FPGAs that have more regular structures have better integration densities than pips but
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are still lower than those of memories because of the high fine grain reconfigurability
overhead. Fig. 1.3 [7] depicts the integration densities of memories, yps, and FPGAs
that lie in the space between the two former.

Although very flexible, FPGAs’ fine granularity makes them slower than ASICs and
therefore not suitable for all applications that require high speeds of operation. More-
over, the reconfiguration costs (in terms of power, area and time) become higher
because of the time required for reconfiguration and the size of reconfiguration bit
stream. This makes dynamic switching between tasks —which is an important advan-
tage of reconfigurable solutions— impractical. It was reported in [7], [93], [92] and
[17] that only 0.5% — 1% is used for computational logic (See Fig. 1.4 [17]). In [17]
it states that about 90% of a typical FPGA area is consumed by interconnect resources
which leaves only 10% of the area to reconfigurable logic. Out of the configurable logic
roughly 10% is used as active logic yielding to only some 1% utilization of the total
area although 10 times better performance as the normal jp.

This notable disadvantages in area inefficiency, power, area and time costs needed
for reconfiguration dictates finding more efficient reconfigurable solutions that exhibit
lower reconfiguration costs along with better area efficiency. In this context Coarse
Grained Reconfigurable Computing (CGRC) solutions emerged as intermediate solu-
tions optimized for vector computations and consisting of vector rather than bit pro-
cessing based processing building blocks hence saving important costs. Moreover,
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since CGRC solutions are more dense and require a smaller amount of reconfigura-
tion resources, they are expected to have better integration densities than FPGAs and
thus should lie in the area between FPGAs and memory densities in Fig. 1.3 [7].

1.2 Configurable Computing Potential

From the above discussion we can see that there are clear opportunities in the design
space between ASICs and pps and a lot of on chip real estate value that can be added.
These clear opportunities can be exploited by RC solutions.

In [61] Tsugio Makimoto makes insight analysis based on his careful observation of
the evolution of the semiconductor industry and its applications. As shown in Fig. 1.5
[61] Makimoto detected computational paradigms transitions based on the technology
available in the market and how they interact with applications demands. Both the
types of applications and the computational trends change as each is developed over
time.

In the late 1950 discrete components were the mainstream trend of the industry. Using
these discrete components customers built many devices which lead to the demand of
newer solutions that can realize more advanced products. As the process technology
improved, in the late 1960s, new specialized products that could efficiently realize cus-
tomized products were produced and led the trend for about a decade. As explained
in [7] this is the first wave that is characterized by fixed algorithms and resources.
Then the pp that enjoys flexibility and ability to realize a wide variety of applications
customized by programming led the trend. However, because of its performance lim-
itations ASICs that assist the computations of the ;p were produced to accelerate the
system speed of operation. This wave is characterized by variable algorithm (software)
and fixed resources (;p & ASICs). RC is thus the last remaining wave that is expected
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to dominate the next computational paradigm where both the algorithm and resources
are variable as advocated in [27].

Moreover, as process technology improves, the gate sizes approach physical limits and
so developing more advanced RC architectures may be cheaper than designing classi-
cal solutions on smaller feature size technology.

1.3 Problem Statement

Clearly, each computational paradigm is best suited for a given range of tasks. Irreg-
ular tasks and those with complicated control flow are best solved by pps when the
speed of operation is not critical. When very efficient realizations in terms of both
performance and power consumption are intended, ASICs are the most appropriate
especially when flexibility is not an important issue. For tasks that require good perfor-
mance, power consumption and flexibility RC solutions present the best suited. When
irregular structures and control flow dominated applications and no dynamic recon-
tiguration is needed FGRC solutions are convenient but when more efficiency and dy-
namic reconfiguration is sought CGRC solutions is well fitted. Hence, a System on a
Chip (SoC) encompassing up(s), ASIC(s), FPGA(s) and CGRC solution(s) is expected to
be both powerful and versatile a system for general purpose computing.

As Our choice of RC solutions change according to the type of task, the choice of CGRC
solution will also change depending on the family of tasks it is intended to solve. In
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[34] it is noted that different design choices can be made according to the target set of
applications.

Many of CGRC solutions proposed in the literature or produced in the market today
do not efficiently solve all types of computational problems. They can not efficiently
realize well studied DSP algorithms and their well crafted architectures. Although
most of them have some kind of dynamic reconfiguration capabilities, the dynamic
configuration style does not in most cases fit nicely with DSP algorithms” architectures.

Withal, in some common DSP applications bit manipulation operations which is not
supported by most proposed CGRC solutions are required.

As our goal was to reach an efficient CGRC solution for DSP applications and based
on the aforementioned observations we decided that a pragmatic methodology to go
about the design task is to study several DSP algorithms and their reported implemen-
tations extracting common and essential features to be considered when designing our
proposed CGRC architecture.

Our design of the proposed CGRC solution took into consideration that it should be
feasible and easy to be coupled in the future with a yp or a more complete SoC compu-
tational solution as mentioned above.

1.4 Thesis Contributions

In this work several DSP algorithms architectures were realized and in some cases
improved. Likewise, reconfigurable and modular architectures for FIR filters, FFTs,
DCTs and Viterbi decoders were studied and realized.

Based on our findings, a CGRC architecture for DSP applications was developed. The
proposed CGRC solution computational paradigm is based on a library computational
model in order for it to be easily integrated with a pp in a loosely coupled fashion.

The proposed CGRC solution (the HPad) was described in a Register Transfer Level
(RTL) parameterizable VHDL model. Only by changing a few parameters in the VHDL
package new copies of the design could be synthesized and simulated with no extra
design efforts. This is a very useful feature that enabled experimentations with dif-
ferent design parameters. The synthesisable HPad model and all needed peripherals
consisted of several thousand lines of VHDL code.

The HPad architecture can be categorized as coarse grained although it possesses lim-
ited bit manipulation capabilities but with only minimal overhead and therefore can
be also categorized as mixed-grained. Furthermore, the proposed HPad can be cate-
gorized as heterogeneous. The heterogeneity of the HPad architecture allows efficient
realizations of a good range of DSP algorithms. The HPad is also multi context dynam-
ically reconfigurable with partial reconfigurability capability.
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1.5 Thesis Organization

The remainder of this thesis is organized as follows: the next Chapter introduces RC
technology by highlighting the main features of chosen examples of both FPGA and
CGRC solutions available in the market or in the literature. This is followed by a gen-
eral discussion of the previewed architectures and their different features and our ob-
servation of their development trends.

Chapter 3 then discusses FIR, FFT, DCT and the Viterbi algorithms their theory, their
reported implementations and some of our contributions in the course of our study of
their architectures. Afterwards is a discussion of the extracted features that are needed
in a CGRC solution in order for it to efficiently realize such algorithms.

In Chapter 4 the features of the required CGRC architecture are studied and discussed
in the light of the studied CGRC architectures in Chapter 2 and the DSP architectural
requirements found in Chapter 3. The advantages and disadvantages and the degree
of suitability of these architectures to the studied DSP implementations are pointed
out. Thereupon, the goals of our work are stated leading the way for the design of our
proposed solution.

The architecture and description of our proposed HPad is then discussed in Chapter 5.
There, the general architecture is introduced and its different basic building blocks are
described as well. Then proposed dynamic and partial reconfigurability mechanisms
are discussed. Reconfiguration and multi context control and external peripherals are
also described.

This leads to illustration examples of several DSP algorithms mapping on the HPad in
Chapter 6. Finally the thesis is concluded in Chapter 7.
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System’s versatility and flexibility features have always inspired scientists and en-
gineers. In the area of digital computing, finding flexible platforms that can support
the realization of a variety of digital systems has attracted the attention of design engi-
neers since the early days of the digital age. It all started with the mask programmable
ROM and evolved to the current state of the art multi-million gate FPGAs and complex
Coarse Grained arrays capable of several billion of operations per second. In this chap-
ter we introduce —in brief- the evolution of reconfigurable devices showing examples
of their their main features and architecture and we also touch on some of the possible
areas of improvements.

In the first section we discuss the the evolution of fine-grained FPGAs beginning by
introducing different configuration techniques. Later in Section 2.3 we show some of
the main features and architectures of some of the popular FPGA devices in the market
today. Thereafter, section 4.2.2 introduces some of the main achievements in the area
of Coarse-Grained Reconfigurable arrays, their structures and how they aim to solve
data flow applications.

2.1 FPGA Evolution

Based on the fact that every logic function can be expressed as a sum of products, ROM
presented a solution that can realize the truth table of a given function by having the
input lines specify the addresses and the output lines delivering the stored bits cor-
responding to those inputs. This solution denoted PROM (Programmable Read Only
Memory) laid the first stone in a new area of computing: Programmable Logic or later
known as Configurable Computing. In the early days, configuring the PROM was fi-
nalized during the fabrication phase through masking. Later the EPROM Electrically
Programmable ROM) and EEPROM (Electrically Erasable Programmable ROM) tech-
nologies emerged allowing users to directly customize the popular ROM devices and,
more importantly, paving the way, along with other configuration technologies, for the
era of Reconfigurable Computing. The remainder of this section introduces the main
programming technologies and the main features of various FPGA architectures are
presented.

2.1.1 Configuration Technologies

The proper organization of hardware resources along with the ability to change its con-
figuration are the two main tools that make configurable computing possible. Config-
uration technologies started in the very beginning by putting the configuration infor-
mation on the masks allowing the configuration of ROMs or s Masked Programmable
Gate Arrays (MPGA) at fabrication time, reducing by that to some extent the NRE cost
and time to market. The appearance of several hardware programming technologies
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uncovered the wide range of possibilities that could be exploited by configurable com-
puting.

Configuration of hard ware is achieved by changing the inputs and internal connec-
tivity of its different components. The configuring elements should have a very high
OFF resistance, a low ON resistance and a low parasitic capacitance. Moreover, for
efficient and feasible realizations, these reconfiguration resources should consume as
small area as possible and should be easy to fabricate. There are three main configura-
tion technologies: Static RAM (SRAM), EPROM, EEPROM and Anti fuse.

e SRAM

The SRAM configures the internal connections by controlling pass transistors or
transmission gates. An SRAM cell connected to the input of a pass transistor
can switch it on or off according to the stored bit in the SRAM cell (see Figure
2.1). In practice, a combination of SRAM cells and multiplexors is used as Figure
2.1. Such a system is volatile since the SRAM cells will loose its stored data at
power down which means that a system having an SRAM configurable device
on board must also have some sort of permanent storage device on board to load
the configuration from say an EPROM or a hard disk.

The two main disadvantages of the SRAM configuration technique are the large
area required for the SRAM cells and the the need of on board permanent stor-
age to carry the configuration information. On the other hand, reconfigurability
(which is relatively fast) makes is attractive for special applications such as test-
ing and prototyping. Moreover, fabrication is easy since it is carried out com-
pletely in a standard CMOS process.

e EPROM & EEPROM
The EPROM configuration technology is similar to those used in EPROM memo-
ries. The idea is a modified MOS transistor with an additional “floating” gate not
connected to any wire (Figure 2.2) . By passing a high current through the tran-
sistor, some charges will be trapped in the floating gate causing the transistor to
be permanently switched OFF. as such, the EEPROM acts now as a configura-
tion resource. By shining ultraviolet light on the EPROM transistor the electrons
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Figure 2.2: The EPROM programming technology [13]

trapped in the floating gate gain enough energy to tunnel and escape from the
floating gate.

The EEPROM technology is similar to that of the EPROM except that configu-
ration can be electrically erased of course at the expense of extra chip area. The
main disadvantage of of the EPROM technology is the slow reconfiguration time
which make it not suited for dynamic reconfiguration. Another disadvantage of
the EPROM technique is the need of multiple voltage sources for configurations
that are otherwise not required.

In both the EEPROM and EPROM techniques the configurable transistors can be
used to pull up or down the inputs of logic blocks as depicted in Figure 2.2 which,
in tern, results in extra power consumption. The main advantages of the EPROM
and EEPROM configuration technologies is that they are reprogrammable and
there is no need for extra on board memory resources since the techniques are
non-volatile.

Anti Fuse

A very interesting configuration approach is the Anti Fuse technology. Here the
Anti Fuse which have a very high impedance acting like an open circuit can be
permanently switched to a permanent low resistance state acting as a permanent
connection. There are two main Anti Fuse techniques: The PLICE introduced
by XILINX and the ViaLink introduced by QuickLogic. The PLICE as shown in
Figure 2.3 is composed of a top layer made of poly Silicon, a middle layer which
is an Oxygen-Nitrogen-Oxygen dielectric and an n+ doped Silicon forming the
bottom layer. A high voltage applied through the Anti Fuse terminals causes it
to breakdown forming a permanent connection between the poly Silicon and the
n+ diffusion.

The ViaLink Anti Fuse consists of a top and bottom metal layers separated by a
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poly amorphous Silicon of an unprogrammed resistance in the gigaohm range
and altered to low resistance forming a permanent connection between the two
metal layers after applying a high voltage across the amorphous Silicon termi-
nals. Figure 2.4 shows the structure of the ViaLink anti fuse.

Although both Anti Fuse configuration technologies require less chip area than
both the SRAM and EPROM technologies, their main disadvantages is that they
require extra high voltage transistors needed to deal with the configurations high
voltages and currents and also they need 3 more mask layers than the standard
CMOS process.
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2.2 Reconfigurable Architectures Classifications

A variety of reconfigurable architectures can be found today in the market or in liter-
ature. It is therefore beneficial to classify them according to various characteristics in
order to have a better understanding of their different features and capabilities.

Reconfigurable architectures can be classified according to the smallest granularity,
the type of reconfiguration supported and how the reconfigurable block is attached
to the on board microprocessor (if any). In the following we introduce briefly these
classifications.

2.2.1 Granularity

Reconfigurable architectures are generally composed of an array of processing ele-
ments. These processing elements can be as small as a 3-input 1-output Look Up
Table (LUT) or as big as a 16-bit Arithmetic Logic Unit (ALU) . The term granularity
refers to the size of the operands and output of the processing elements. In the case
of the 3-input LUT the reconfigurable architecture is classified as a very fine-grained
architecture and the 16-bit ALU can be classified as a very coarse-grained architecture .
Fine-grain architectures can realize a very wide range of designs but they suffer from
expensive routing and reconfiguration resources and thus the net area efficiency of de-
signs realized on them is usually low. Coarse-grained architectures on the other hand
can efficiently realize data flow designs but are not suitable for designs that involve
control or irregular and fine-grained operations.

Most FPGAs in the market such as XILINX, Actel and Altera FPGAs are classified as
fine-grained architectures. Examples of course-grained architectures include Elixent,
PACT, MATRIX, KressArray and RAW where the former two are examples of products
available in the market and the others are still research projects in different universities.

2.2.2 Heterogeneity

Most configurable devices use a single processing element as the main building block.
An other approach is to use different types of processing elements instead of only one.
The idea is to gain more processing power and flexibility yet maintaining a small area
requirements. This way the smaller processing elements can be used distributing data
processing over the array rather than having only one type big processing element that
have a lot of processing power.

An example use of that is to use functional units that implement functions that are ex-
pensive or impractical to realize using other processing elements such as multipliers
[101] and [15]. An other example is embedding storage resources to enable more ef-
ficient realizations for applications that need memory for storage. This may in many
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cases increase the area efficiency of the reconfigurable device since forming registers
from basic logic blocks or using the flip flop in the logic block my result in inefficient
mapping of some special architectures.

Moreover, some FPGA vendors provide on chip microprocessors to assist the designer
to partition the most control dominated parts of his design in the ip for example in the
Virtex-II pro platform. [101].

2.2.3 Reconfiguration Features

The configuration technology, the number of reconfigurations and the speed of recon-
figurability are properties that classify reconfigurable architectures.

According to the configuration technology configurable devices can be classified into
volatile and non-volatile. Non volatile device are one-time-programmable and therefore
can not be referred to as reconfigurable. Although non-volatile devices do not enjoy re-
programming capabilities, they posses better area efficiency and power consumption
characteristics. Examples of non-volatile devices are produced by Actel and Quick-
Logic both use their own Anti-fuse configuration technology as was discussed in this
Section 2.1.

Volatile devices can be further classified according to Statically and Dynamically recon-
figurable . Statically reconfigurable devices are those that need relatively long time
—usually in the order of milliseconds or more which may cause unacceptable delays
when run-time-reconfiguration is required— to reconfigure. Most of reconfigurable de-
vices in the market now are statically reconfigurable. Dynamically reconfigurable (also
referred to as Run Time Reconfigurable (RTR)) devices can be reconfigured in consid-
erably shorter amount of time. Currently all RTR devices are based on SRAM reconfig-
uration technology since EEPROM devices need fairly long time for reconfiguration.

RTR devices are classified according to their reconfiguration resources and method
of reconfiguration. A Single-Context device is a device that is fully configured with
a single stream of configuration bits. These configuration bits are referred to as the
Configuration-Context. When a new design or configuration is to be assigned a new
context is swapped into the reconfigurable device. Clearly the time required to swap in
and out the contexts may make it difficult for such a device to operate under strict RTR
conditions unless an efficient reconfiguration mechanism is implemented. To speed
up the reconfiguration time several techniques such as configuration compression and
configuration caching can be used [15].

Multi-Context devices have memory resources that can hold more than one configura-
tion allowing the reconfigurable device to quickly switch between them. In this context
the reconfigurable device can be viewed as a multiplexed set of single context recon-
figurable devices.
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RTR devices can be also classified as Partially Reconfigurable when portions of the re-
configurable device can be reconfigured without interfering with the operation of the
rest of the device. This may be helpful in reducing or virtually eliminating the time
of reconfiguration. Figure 2.5 illustrates single, multi context and partial methods of
reconfiguration.

2.24 Coupling

A reconfigurable device can be used as a stand-alone unit or it may be —in many cases—
coupled with a pup. Different levels of couplings are possible each with its own advan-
tages and drawbacks. A very tightly coupled reconfigurable device can be integrated
with the up as deep as a functional unit or a coprocessor. In such a case an advantage is
that the normal programming scheme can be still used with the addition of extra spe-
cial instructions for the reconfigurable functional unit. A drawback may be the need
to modify the pp to attach the reconfigurable functional unit. Also such a coupling
scheme may not be suitable for very heavy computations that require many cycles of
operation since the up may be waiting for the conclusion of computation. An interme-
diate solution between the stand-alone and the tightly-coupled coupling schemes is the
loosely-coupled coprocessor scheme. The loosely-coupled processing unit can be coupled
through the memory bus and in that case referred to as an attached processing unit or
can be connected to the system through I/O ports as an external processing unit. As
shown in Figure 2.6 in a coprocessor coupling scheme the ;p issues an instruction to
the reconfigurable device either passing to it data or telling it where to find it and then
the reconfigurable device works independently with no need of pp’s control until it
finishes and writes the result.
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Figure 2.6: Tight, functional and loose coupling classes [15]

2.3 FPGA Architecture Examples

FPGA manufacturers have adopted different architecture techniques for their FPGA
aiming at higher efficiencies and suitability for various designs. In the following the
architectures of three main FPGA manufacturers representing different architecture
and technology strategies are presented.

2.3.1 XILINX FPGAs

In 1985 XILINX [101] produced the first FPGA. Based on a symmetrical array architec-
ture as simplified in Figure 2.7, and SRAM configuration technology, XILINX FPGAs
was well received by consumers.

e XC2000 Series

The XILINX XC2000 FPGA [13] series was the first produced by XILINX. The
XC2000 — now extinct — was composed of several Configurable Logic Blocks
(CLBs) interconnected via an interconnection matrix to form at the end a square
matrix. The CLBs were based on an Look Up Table (LUT) and a register and a
few multiplexors permitting the realization on any four input boolean function or
two functions of three variables. The CLB has 2 outputs which can both be com-
binational or one of them can be registered. Figure 2.8 shows the architecture of
the XC2000 CLB.

The outputs of each CLB had a direct connection with 3 of its neighbors: the top,
the bottom and left neighbors. For medium range connectivity, additional gen-
eral purpose wiring resources spanning only one CLBs were provided. Longer
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connections were made possible by connecting more than one general purpose
wiring resource together through a switch matrix. Long lines connections span-
ning the complete FPGA were also provided for very long connections. All mul-
tiplexors, interconnection resources configurations as well as the inputs of the
truth tables were configured by SRAM cells that are volatile and loose their con-
tents at power down, a feature making XILINX FPGAs perfect for prototyping
and use in research and academia.

e Virtex4 Series
Nearly a couple of decades later, Xilinx’s Virtex4 series [101] was produced by
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Figure 2.9: General structure of the Virtex4 CLB [101]

XILINX. The column based architecture with bigger and more complicated CLBs
shows an evolved design strategy still based on LUTs. Now each CLB is com-
posed of four slices as depicted in Figure 2.9 with support of more logic functions
with two truth tables of four inputs per slice with the outputs also optionally reg-
istered. A new added feature that was not available in older FPGAs from XILINX
is the Variable-Input LUT Architecture where more functions can be supported
by connecting more than one slice with dedicated multiplexors supporting up to
32 input logic functions . Two types of slices are available in the CLB: the SLICEM
shown in Figure 2.10 and SLICEL in Figure 2.11. Both SLICEM and SLICEL are
the same with exception that SLICEM has added features shift features facilitat-
ing the implementation of distributed RAM or shift registers.

Additionally, the Virtex4 has block RAM designed to be configured in different
depths and widths and can also support FIFO implementations. The XtremeDSP
slices contain a dedicated 18 x 18 bit multiplier an adder and an accumulator
along with truncation and saturation capabilities. The XtremeDSP block is de-
signed to efficiently implement high-speed DSP applications. Some of the Vir-
tex4 versions have even PowerPC processor and Transceiver blocks cores. More-
over, XILINX also provides soft IP (Intellectual Property) cores of some popular
applications designed to efficiently suite the Virtex4 architecture. A simplified
illustration of the XtremeDSP block is given in Figure 2.12.
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Figure 2.10: Architecture of SLICEM of the Virtex4 CLB

2.3.2 Actel FPGAs

Actel was one of the first companies to produce Anti Fuse FPGA. The Anti Fuse tech-
nology, although non-reconfigurable, enjoins better performance because of the better
electrical characteristics of the Anti Fuse elements in contrast to the SRAM or EPROM
alternatives. Anti Fuse FPGA thus represent a suitable solution furnishing reduced
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Figure 2.11: Architecture of SLICEL of the Virtex4 CLB

NRE costs, time to market and lower production costs for small volume numbers.

e Actl Series
Actl series |

] — Actel’s first production — was a row based architecture (shown

in Figure 2.13) with relatively small and simple Logic Modules (LMs) consisting
as shown in Figure 2.14 of three multiplexors capable of realizing a total of 702
logic functions of two up to four input variables. Half the inputs of each LM
had access to wiring resources above and the other half had access to the wiring

segments below.

The output of each LM was also connected to wiring segments both above and be-
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Figure 2.12: A simplified illustration for the Virtex4 XtremeDSP architecture [101]

low the LM. Wiring segments which were metal interconnects of different lengths
were connected via programmable Anti Fuses and could also form longer seg-
ments by connecting more than one of them together. For inter row connectivity,
a number vertical wiring tracks were also available for each column.

Axcelerator Series

Recent Actel FPGAs include Anti Fuse and EEPROM versions. The more ad-
vanced LM and the introduced RAM/FIFO blocks are notable. For the Axcelera-
tor series [3], programmability is based on the metal to metal Anti Fuse technol-
ogy. The Axcelerator’s architecture is based on a Sea of Modules topology where
the interconnection resources are fabricated on an overlaying layer on top of the
logic modules. The chip (as shown in Figure 2.15) is divided into a symmetrical
array of Core Tiles which are assembled from several RAM/FIFO blocks and an
array of SuperClusters. A SuperCluster is composed of two Clusters that include
three LM cells and several input and output buffers. There are two types of LM:
the C-Cell shown in Figure 2.16 which is multiplexor-based structures in the Su-
perCluster permitting the implementation of over 4,000 logic functions of up to
five inputs. The R-Cell as shown in Figure 2.17 is a register- based cell which can
have various control configurations. Actel claims that this configuration of the
SuperCluster permits efficient implementations of various logic functions and
carry logic arithmetic with the ability to and register the outputs all at minimum
interconnect delays.

The RAM/FIFO can be structured into different RAM widths and lengths con-
figurations or as asynchronous FIFOs with no use of other LMs. The FIFO
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configurations allow different read and write data widths and can provide
FULL/ALMOST-FULL and EMPTY/ALMOST-EMPTY flags. In addition, all
control and counter resources needed for SRAM of FIFO implementations are
included in the RAM/FIFO blocks.

Internal wiring resources are available in different hierarchies: DirectConnects
which are relatively fast connect a C-Cell with an R-Cell. FastConnects connect
different cells within a SuperCluster and also vertically to the SuperCluster below
it. CarryConnects are used to rout carry logic between adjacent SuperClusters.
In the Core Tile level vertical and horizontal tracks span the Core Tile and there
are also Horizontal and vertical tracks spanning the entire length and width of
the device.

2.3.3 Altera FPGAs

e EMP Series
The EMP series [13] — Altera’s first FPGAs — were constructed as hierarchal
groupings of Programmable Logic Devices (PLDs). The basic configurable
PLD - named Logic Array Blocks (LABs) — were connected together through
Programmable Interconnect Array (PIAs) as shown in Figure2.18. Each LAB was
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made up from an array of Macrocells was interconnected with an expander prod-
uct array. The Macrocell (illustrated in Figure 2.19) consisted of a flipflop and
three wide input and gates whose inputs can be chosen from any signal of the
PIA, any of the Macrocells in the array or any of the Expander array outputs.

As depicted in Figure 2.20 the Expander product term element is composed of a
number of product terms that can be produced as in the Macrocell from any of the
Expander array outputs, Macrocell array outputs or the PIA interconnects. The
PIA is assembled of long wiring segments passing by every LAB thus providing
full connectivity between LABs.

Stratix II Series

The Stratix IT devices [4] are Altera’s latest FPGA product. It is assembled of an
array of LABs interleaved with DSP and memory blocks. Each LAB consists of
eight Adaptive Logic Module (ALM) that are have access to local interconnects
for minimal local delays. ALMs as illustrated in Figure 2.21 are composed of
several LUTs and a couple of adders with carry signal connections and a couple
of registers allowing for optional registering of data. Several operation modes
are defined for ALMs for logic and arithmetic operations. There is also a control
logic block that provide configurable control signals such as clocks and resets to
each ALM.

The RAM blocks can be configured into different RAM or FIFO modes with the
ability to use the closely interconnected ALMs to generate some of the needed
control signals. The DSP blocks shown in Figure 2.22 can perform a variety of
multiply and add operations of different vector sizes. The outputs can also be
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Figure 2.15: General architecture of the Axcelerator FPGA [3]

rounded or saturated as desired with the aid of several round/saturate blocks.

The interconnections network contains horizontal and vertical wiring resources
of different lengths. Several lengths of interconnects connecting the elements of
each LAB together, or interconnection tracks connecting labs and other neigh-
boring blocks including other LABs, DSP or memory blocks, interconnection
tracks spanning four LABs or interconnection tracks spanning the entire device
are available in a flexible interconnection scheme.

2.4 Coarse-Grained Reconfigurable Arrays

Fine-grained FPGAs although provide great flexibility and considerable speedups
when used with a pp still suffers from a number of drawbacks when compered with
CGRC solutions. These drawbacks can be lumped up in the large consumption of area,
power and time needed for reconfiguration. While CGRC solutions do not exhibit the
same flexibility as in FGRC solutions they enjoy the following advantages compered
to their FGRC solutions counterparts:
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e Orders of magnitude less amount of reconfiguration data is needed.

e Considerably less amount of control needed for the routing signals since vectors
are routed rather than bits.

e The area efficiency is much higher than that of FGRC solutions since efficient
processing elements are used as the basic building blocks.

e The architecture of CGRC solutions can be optimized for efficient implementa-
tions of data flow structures.

e Mapping and routing should be easier since coarse grained algorithms can be
more easily mapped on the CGRC solution where processing elements represent
mathematical operators.

Both FGRC and CGRC solutions have their usages. FGRC solutions are very effective
in prototyping and low volume production of digital systems. As a matter of fact that
capability of FGRC solution has been main reason for the competitive stand point that
commercial FPGA manufacturers hold in the dynamic electronics market today. It has
also given researchers in the industry and academia a good opportunity to design,
experiment with architectures and prototype many systems a matter that must have
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had a positive impact on the quality of products we see in the market now. FGRC
solutions can also be a good candidate for replacing many pieces of on-board glue
logic with the more efficient FPGAs.

CGRC solutions on the other hand although not yet mature are good candidates to
replace ASICs and help in the shift to the RTR paradigm by the use of dynamic recon-
figuration techniques.

In the following a brief introduction to some of the CGRC solutions reported in the
literature or available in the market will be introduced showing their general organi-
zation, their Processing Elements (PE) architectures, their interconnect structures and
their reconfiguration characteristics.

2.4.1 The KressArray

e General Organization:
The KressArray [36, 34, 37, 43] is a dynamically reconfigurable regular array of
32-bit reconfigurable Data-Path Units (1DPUs). The operation of rDPUs is data
driven. The KressArray went through several phases of development. Below we
touch on the most important features of the KressArray-III.

e Processing Elements Architecture:
The rDPU is the basic processing element of the KressArray. Each processing
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element is capable of all the basic integer C language operators support where
simple operations are carried out directly and more expensive ones such as mul-
tiplication and division are carried out in a microprogrammed sequence style.
rDPUs can also be used for routing data through them. An rDPU (see Figure 2.23
[34]) consists of an ALU, a register file and a number of multiplexors facilitating
full connectivity. The register file can be used to store constants, intermediate
results or frequently used inputs. The operations of the rDPU is data driven and
is carried out independently of the rest of the array.

Interconnect Structure:

There are three levels of interconnects in the KressArray. In the bottom most level
data is transferred between rDPUs to propagate and process intermediate results.
Connection by abutment between rDPUs simplifies routing and is more suited to
coarse grained applications. Global busses facilitate long distance connectivity
between rDPUs and/or the higher level input/output busses. The input/output
busses are interfaced with the internal global busses through switches. This style
of hierarchical bus routing allows input data transferred to and from rDPUs not
located at the edge of the array. Figure 2.24 [34] illustrates a 9-rDPU Array struc-
ture. Several sub arrays similar to the one shown in Figure 2.24 can be intercon-
nected to form larger arrays. To reduce the number of input/output pins, serial
mode connections are provided between local interconnects between sub-arrays.
This serial connectivity is transparent to the programmer [37].

Reconfiguration:
The KressArray architecture is data driven allowing each rDPU to execute a given
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instruction on its operands as they are ready. This implies dynamic and partial
reconfigurability. The KressArray is also a multi-context reconfigurable architec-
ture. Each rDPU has a configuration memory (context) storing the operation and
routing information. The configuration memory holds four layers of configura-
tions. This implies that the register file has to be implemented in four layers as
well. Switching between configurations provides very fast reconfiguration capa-

bility.

24.2 MATRIX

o General Organization:
MATRIX [62, 62, 17] is an array of 8-bit Basic Functional Units (BFUs) intercon-
nected via 3 levels of hierarchical interconnection resources. The MATRIX archi-
tecture allows it to operate in several modes of operation.

e Processing Elements Architecture:
The BFU is the basic building block of the KressArray. As shown in Figure 2.25
the BFU consists of the following components:

- An 8-bit ALU that is capable of several arithmetic and logic operations in
one cycle and a multiply operation in two cycles. Wider word operations
can be implemented by cascading several BFUs making use of the dedicated
carry logic lines.
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— A 256x8-bit Memory that can be used as a single port 256x1-byte memory or
a two port 128x1-byte register file. This memory can be used to store micro
instructions or data.

— Control Logic which serves mainly the function of generating a control bit
by detecting a pattern condition such as a zero, negative, etc. result from the
ALU. The generated bit is used to choose between contexts.

Each BFU can be configured as (1) a context storage unit, (2) a Data Memory unit,
(3) ALU and Register file combination or (4) an independent ALU.

e Interconnect Structure:
There are three levels of interconnects in the MATRIX architecture. Nearest
neighbor connections, length four bypass connection as depicted in Figure 2.26
and (not shown in Figure 2.26) four global lines per row /column.

e Reconfiguration:
The basic BFUs can be viewed as primitive ups. At every cycle the program
counter is incremented and the new program count is produced. At a config-
uration switch condition, the bit produced from the BFU controller is used to
switch between a previously defined or stored instruction address or keep the
new incremented program count. Each BFU generates its own switch conditions.
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Therefore MATRIX can be classified as dynamically and partially reconfigurable
device with multi context support.

243 RAW

o General Organization:

The RAW machine [90, 97] is an array of 16 identical programmable tiles. Each
tile contains a MIPS style 1p with instruction memory and other peripherals. The
tiles are interconnected using four routing networks. The RAW machine is de-
signed to achieve very high speeds by tailoring the size of the tiles to the time
delay needed for the electrical signal to tavel through them. The RAW machine
is considered by its developers as a up with its proposed scalable instruction set
architecture that can describe parallelism of the implemented application.

e Processing Elements Architecture:

As shown in Figure 2.27 each tile is composed of

— One static communication router,

- Two dynamic communication routers,

— An eight-stage in-order single issue MIPS-style processor,
— A 32-Kbyte Data cache and
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Figure 2.22: StratixII DSP block [4]

— A 96-Kbyte Instruction cache.
Each tile has input and output registers to achieve maximum pipelining speedup.
e [nterconnect Structure:

As pointed above, tiles are interconnected through static and dynamic networks.
The routing provide full duplex connections to only four nearest neighbors. All
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Figure 2.23: The general architecture of the KressArray rDPU [34]
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Figure 2.24: Inter-routing of a KressArray of 9 rDPUs [34]

wires are registered at the inputs and outputs of the tile to achieve high clock
rates. Static routing is specified at compile time while dynamic routing is deter-
mined at run time. At the edge of the array the high number of input/output
wires is reduced by multiplexing so that full duplex connections to any of the
tiles located at the side of the array is possible as shown in Figure 2.28.

e Reconfiguration:
The RAW machine can be considered as multi context since contexts are fed to
the machine as instructions. RAW is also partially configurable since each tile
operation is independent from the others and can have its own program running,.
Also, different tiles can be cascaded to achieve higher throughputs. Dynamic
reconfiguration is facilitated through programming and dynamic switching.
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Figure 2.25: Structure of MATRIX BFU [62]

I [

Figure 2.26: Interconnect topology of MATRIX [67]

244 MorphoSys

o General Organization:
The MorphoSys [56, 82, 81, 60, 57] (shown in Figure 2.29) is a tightly coupled ar-
ray of Reconfigurable Cells with a TinyRISC pp. The Reconfigurable Cells array is
composed of four 4 x 4 quadrants. The TinyRISC processor is responsible of gen-
eral purpose operations as well as controlling the operation of the Reconfigurable
Cells array. The frame buffer provides two sets of data that the Reconfigurable Cells
array can access simultaneously.
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Figure 2.28: RAW routing architecture [90]
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e Processing Elements Architecture:
The Reconfigurable Cells (shown in Figure 2.30) is a pp like block with a register
tile, input multiplexors, a context register an ALU/mult unit and a shifter. The
Reconfigurable Cells is thus capable of MAC and other basic arithmetic and logic
operations. The input multiplexors choose operands from the the ports of the
Reconfigurable Cells or from the register file.

e [nterconnect Structure:
As depicted in Figures 2.31 and 2.32 the Reconfigurable Cells interconnect topology
is of 3 levels: in the first level each Reconfigurable Cells connects to its four nearest
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Figure 2.29: Overview of the MorphoSys architecture [60]

16 bit data
RO - R3

C I'Mm T B xa -

o gl ,L| R|C|VE| HH ubp L 1
S| L :
2 | | R
%_} o | - MUX_A ™\  MUX_B
3 x\ o d____1 64
5 2 12

16  Constant 16

gl Tt
= T > ALU+MULT
g g Ol—|N|™
z - ——— Jos———»|T|X|T|E
=
‘§_’ - »surr/ s Tt 11
U L 28 Register| File

T(;S:m g T HE¢16T° V%l() IG*TO other I-KCS 16
Figure 2.30: Structure of the MorphoSys Reconfigurable Cell [51]

neighbors, in the second level complete quadrant row and column connections is
provided and in the third inter-quadrant connectivity is implemented.

Reconfiguration:

To increase context efficiency, contexts can be broadcasted on columns or rows
with the Reconfigurable Cells sharing the same column or row share the contexts
and thus performing the same function forming a Single Instruction Multiple
Data (SIMD) topology over the column or row. There are 16 context words per
column and row that can be chosen from according to the control signals pro-
vided by the TinyRISC processor. Dynamic reconfiguration is achieved by updat-
ing the contexts of the Reconfigurable Cells. This can be done in the background
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Figure 2.32: Inter-quadrant routing of MorphoSys [

as the Reconfigurable Cells are running allowing thus RTR. Here again since rows

and columns hold a number of context words that are selected from and since

they can be reconfigured independently the MorphoSys architecture can be con-

sidered multi context and partially reconfigurable.
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Figure 2.33: Hierarchical structure of an XPP device of four PAs [69]

2.4.5 PACT XPP

o General Organization:

PACT XPP (eXtreme Processing Platform) [70, 69, 6, 71] is a composition of
Processing Arrays (PAs) each composed of Processing Array Elements (PAE) and
a Configuration Manager (CM). As shown in Figure 2.33, a Supervising CM
(S§CM) manages individual CMs. The complete I/O interfaces are available at
the edges of the XPP device. The XPP is a data-driven architecture with partial
and dynamic configuration support.

Processing Elements Architecture

Figure 2.34 shows the architecture of a PA. Two types of PAE are used: an ALU-
PAE 2.35 and a RAM-PAE 2.36. Both the ALU-PAE and the RAM-PAE are com-
posed of three sub-blocks and each block contains an ALU. The FREG and BREG
blocks are mainly used to connect the corresponding PAE forwards or backwards
to the top or bottom interconnect resources. The ALUs of the FREG and BREG
are used for routing and control of data and can also be used for arithmetic oper-
ations. The ALU sub-block in the ALU-PAE features also a multiplier and other
specific DSP operations. The RAM sub-block can be configured as a dual port
512x16-bit RAM or as a FIFO.

Processing in the XPP is event and data driven. A data packet and an event
packet are sent simultaneously. The processing of the appropriate PAE is stalled
until all operands to be consumed are ready. The PAE is also stalled if the desti-
nation inputs are busy.
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Figure 2.34: Structure of a 4 x 5 PA [70]
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Figure 2.35: Structure and routing of the ALU-PAE [70]

e [nterconnect Structure:
As illustrated in Figures 2.35 and 2.36, connectivity is mainly via segmented hor-
izontal 16-bit interconnects. As mentioned above, FREG an BREG assist in trans-
ferring data vertically in the PA.

e Reconfiguration:
PACT XPP is partially and dynamically reconfigurable. The CM sends recon-
tiguration data addressed to the individual PAE. This data travels through the
array until it reaches its destination. Once configured the PAE changes its state
to “configured”. The CM can hold multiple configurations making the XPP thus
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Figure 2.36: Structure and routing of the ALU-PAE [69]

multi-context. New contexts can be loaded in the background at run time to save
context fetching time. Moreover, complete configurations could be switched be-
tween in only a small number of cycles. Because of the event packet driven op-
eration of the XPP no loss of data is expected to occur with dynamic configura-
tion. In addition, special hardware protocols are implemented to ensure immu-
nity against dead-locks in case of overlapping partial configurations.

2.5 Concluding Remarks

In this Chapter, a short introduction on reconfigurable technologies was presented. To
give a more comprehensive idea about reconfigurable computing features and archi-
tectures, a collection of FGRC and CGRC solutions was introduced.

Although RC possesses many attractive features and potential, they are not suited
for all types of applications. The more flexible the computational solution is, the less
power efficient and fast it is per computational task.

Since better efficiencies and more flexibility is still demanded, the set of RC solutions
is now polarized to two major subsets: CGRC and FGRC solutions. As a matter of fact,
within each of the aforementioned subsets, architectures are still evolving to better
their flexibilities and efficiencies.

Some very interesting observations could be deduced after studying the introduced old
and new FGRC solutions in Section 2.3: the move towards coarse-granularity and het-
erogeneity yet with maintenance of more or less the same degree of flexibility. XILINX,
Actel and ALTERA new FPGAs have now larger basic logic blocks capable of more FG
functionality. They all have also dedicated configurable RAM blocks i.e. heterogeneity.
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Moreover, both XILINX and ALTERA new FPGAs exhibit DSP blocks implementing in
high efficiency multiplication and accumulations operations.

A similar observation was made when studying the CGRC solutions: the CGRC ar-
chitecture should relate to the target application. The SIMD based applications have
inspired the design of the MorphoSys for example. In [36] the authors noted that the
sought application field should reflect on the design of the CGRC architecture.






