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Zusammenfassung

Diese Arbeit leistet Beitrdge zu zwei unabhéngige Themen: (1) Beweisbar sichere
und effiziente Signaturverfahren und (2) die Analyse von Algorithmen zur Multi-
plikation ganzer Zahlen.

Es ist nach wie vor ungewiss, ob Quantenrechner gebaut werden kénnen, die
grofl genug sind, um kryptographisch relevante Probleme zu l6sen. Shor [Sho94]
stellte 1994 einen Quantenalgorithmus vor, der das Faktorisierungsproblem fiir
ganze Zahlen und das Diskrete-Logarithmen-Problem mit polynomiellen Aufwand
16st. Signaturverfahren wie RSA, DSA und ElGamal werden mit der Verfiigharkeit
von Quantenrechnern offensichtlich unsicher. Immerhin berichten Breyta et al. in
[VSST01] von einer erfolgreichen ITmplementierung dieses Algorithmus auf einem
Quantenregister bestehend aus siben Qubits.

In der vorgelegten Arbeit schlagen wir Signaturverfahren vor, die beweisbar
sicher und effizient sind. Die Sicherheit der beschreibenen Verfahren basiert auf
der Sicherheit der eingesetzten Hashfunktion und des pseudozufalligen Bitgener-
ators. Ferner untersuchen und vergleichen wir einige Multiplikationsmethoden.
Dieser Vergleich wurde dadurch motiviert, dass einige der am weitesten verbreit-
eten Signaturverfahren - RSA, DSA und ElGamal — die modularen Exponentiation
verwenden, was eine schnelle Multiplikation groler ganzer Zahlen erfordert. Un-
sere Untersuchung geht iiber das einfache asymptotische Verhalten der Verfahren
hinaus, weil wir die Multiplikationen und Additionen der zu Grunde liegenden

Maschinentypen einbeziehen.
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Abstract

This work contributes to two independent topics: (1) Provably secure and efficient
signature schemes and (2) the analysis of certain integer multiplication algorithms.

It is uncertain whether quantum computers are feasible that are powerful
enough to solve non-trivial problems. In 1994, Shor [Sho94] proposed a quan-
tum algorithm for solving both the integer factorization problem and the discrete
logarithm problem in polynomial time. This algorithm clearly renders signature
schemes like RSA, DSA or ElGamal completely insecure as soon as powerful quan-
tum computers come into existence.

In this thesis we propose signature schemes that are provably secure and effi-
cient. The security of the described schemes relies on the security of hash function
and the pseudorandom bit generator used. We also study and compare certain
integer multiplication algorithms. The motivation of this comparison is the use of
modular exponentiation — which, in turn, needs the multiplication of large inte-
gers — in often used signature schemes like RSA, DSA, and ElGamal. Our study
is more detailed than just the asymptotic behaviour, since we take multiplication

and addition of base-words into account.
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Introduction

Now a days the extended use of electronic media requires mechanisms which as-
sure that the certain electronic information comes from who is supposed to. The
legality of contracts and documents in general, requiring autograph signatures for
its validity could be transfered to electronic media with the appropriate elements.
An autograph signature can be stored in order to ratify any document where such
a signature appears. This cannot be the case in the electronic world, since an
electronic file can be copied as many times you want. Cryptography is a helpful
tool to reach the goal of digital signatures. In the 70’s cryptography of public key
or asymmetric was introduced. Since then some digital signature schemes have
appeared. Roughly speaking, a signature scheme allows to verify whether or not
a document has been digitally signed with a certain signing key. The connec-
tion between a signing key and a certain person stays out of the scope of this

dissertation.

Many of the signature schemes appearing in the literature are based on the
integer factorization problem (FP) or on the discrete logarithm problem (DLP).
In the middle 90’s a quantum algorithm was presented to solve the FP and DLP in
quantum polynomial time. The obvious consequence of the existence of quantum
computers is that those signature schemes like the world wide used RSA or like
ElGamal or like ECDSA would not be secure any more. At the moment of writing
this dissertation there not exist “big” quantum computers. Only some quantum
systems of seven qu-bits has been developed for implementing a harmless version
of the quantum factoring algorithm. Such an implementation is still far away for
being a threat to cryptography. At this point two questions appear: (1) Cryp-
tosystems based on FP or DLP can be still used during the develop of quantum
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systems into “big” quantum computers? (2) Can signature schemes be provided

which are efficient and secure though quantum computers?

Trying to answer the first question we could say that the bigger the keys of
such schemes are the more secure they are. Unfortunately, an increase of the key
length effects the efficiency of the scheme. Thus, an analysis of elements which
permit the efficient use of those cryptosystems is required. Regarding to question
two, there exist signature schemes based on hash functions and none quantum
algorithm for finding pre-image or collision in quantum polynomial time is known,
yet. Some disadvantages of those signature schemes are the limited number of
possible signatures and the number and size of their elements which result in a
less efficient scheme in compare with conventional schemes. Intuitively, a one-time
signature scheme is one that guarantees that it is secure if it is not used more than
once. A multi-time signature scheme is one that cannot be employed more than

certain number of times.

In the late 70’s Merkle proposed a signature scheme, although he did not give
any formal proof of its security. Basically, his scheme helps to transform a one-time
signature scheme into a multi-time one. The security of that scheme is based on
that of their both underlying hash function and one-time signature scheme. Since
there exist one-time signature schemes whose security is based on the security of
hash functions, the security of the Merkle signature scheme can rely only on the

security of the underlying hash functions.

Goldwasser, Micali and Rivest introduced concepts of types of attacks and
forgeries on signature schemes. Basically, a signature scheme is secure if it is
computationally difficult to produce a forgery. On the other hand, the security
of hash functions rely on properties like one-way-ness and collision resistance.
Intuitively, we can say that a function is one-way if the obtainment of a pre-
image of a given value is not computationally feasible. In a similar way we say
that a function is collision resistance if the obtainment of any couple of different
values which result in the same image is not computationally feasible. Formal
definitions of these concepts on families of functions are made in an asymptotical
and in a concrete way. We work with concrete definitions, where the computational

feasibility is measured as the advantage of any adversary modeled as a probabilistic
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algorithm in obtaining the required pre-image or the required collision within a

limited time of computation.

Outline

This work consists of two independent chapters.

In Chapter 1 we focus on signature schemes. The goal of that chapter is to pro-
vide provably secure and efficient signature schemes. The security of the analyzed
and the proposed schemes rely on the cryptographic properties of the underlying
hash functions and pseudorandom number generators. We give concrete security
of the proposed schemes. First we describe the Lamport-Diffie one-time signature
scheme and after that we provide an improvement to that scheme. We also give
a formal proof of the security of our proposal and show some experimental re-
sults concerning its efficiency. Then, we describe the original multi-time signature
scheme proposed by Merkle and provide a formal proof of its security. Finally we
propose some variants of the original Merkle signature scheme and provide for-
mal proofs of the security of each of them. We also give some estimates of their
efficiency. We review definitions of the cryptographic security of hash function,
pseudorandom generators and signature schemes which are concrete instead of
asymptotical. We avoid the Random Oracle Model.

Since exponential modular multiplications are required in ElGamal and RSA
alike cryptosystems and in those operations integer multiplications are involve, we
analyze in Chapter 2 some multiplication algorithms. The goal in that chapter is
to estimate which algorithm is faster for certain bit length. We take into account

multiplications and additions of “digits” of the integers to be multiplied.
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Chapter 1
Signature Schemes

In this Chapter we propose some improvements to the Lamport-Diffie one-time
signature scheme (LDots) and to the Merkle multi-time signature scheme. We also
provide a proof of their cryptographic security. Finally, we show some experimental

results about their efficiency.

1.1 Introduction

Conventional signature scheme such RSA and ECC are widely used all around the
world. The conventional signature schemes (css) do not have any restriction in the
number of signatures that can be created during the lifetime of the private and
public keys. These css are based on problems like the discrete logarithm problem
(DLP) or the integer factorization problem (FP).

In the middle of the eighties the concept of quantum computer was introduced.
Until the beginning of the nineties is when an advantage of quantum computers
on classical ones was presented. In the middle of the nineties Shor presented
a quantum algorithm for solving the FP and the DLP in polynomial time. A
quantum system of seven qu-bits was created around 2001 for implementing Shor’s
algorithm. That quantum system is far away to be a threat to RSA or ECDSA
alike cryptosystems. We do not know whether quantum computers which process
hundreds of qu-bits are physically possible or not. In any case our goal is to

provide efficient signature schemes whose security relies on their primitives like
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cryptographically secure hash functions and pseudorandom number generators.

Merkle proposed in [Mer90] a multi-time signature scheme. Roughly speaking,
his proposed scheme transforms any one-time signature scheme (ots) into a multi-
time one (mts). In his original work he employed the Lamport-Diffie one-time
signature scheme (L.Dots). He sketched the security of his proposal, but a formal

proof was not given.

Goldwasser, Micali and Rivest provided in [GMRS88| the notions of different
classes of attacks and forgeries. They also proposed a signature scheme which is not
(type of forgery) “existentially forgeable” under (type of attack) “adaptive chosen
message attack” if certain problem is difficult to solve. Intuitively, if factoring
integers is computationally difficult, then their proposed scheme is secure in the
sense that any efficient algorithm which produces forged signatures yields to an

efficient algorithm for factoring.

We consider the proposal of Merkle. We provide a formal proof of its security
under the GMR model. We develop improved versions of the original proposal,
provide proof of the security of each version and, finally, give some experimental

results about the efficiency of each version.

A hash function is employed in each proposed scheme. Such a function is
required to be collision resistant. Actually that assumption could be relaxed, since
the collision needed to forge any proposed scheme is quite particular. For the sake
of clarity, the underlying hash function will be required as collision resistant instead

of resistant to a particular type of collisions.

In Section 1.2 we review some definitions and fix notation for this Chapter. In
Section 1.3 we provide an improvement to the LDots, give a formal proof of its
security and discuss its efficiency. In Section 1.4 we review the original Merkle
signature scheme (oMss) and provide a formal proof of its security. In Section 1.5
we discuss the efficiency of the oMss. In Section 1.6 we present our improvements
to the oMss and discuss their security and efficiency. In Section 1.7 we show some
experimental results and compare them with analogous ones made with RSA.

Finally, in Section 1.9 we present pseudo code for the proposed schemes.
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1.2 Definitions and Notation

In this Section we review the definitions of hash functions, signature schemes,
pseudorandom bit generators and cryptographic security.

Hash functions have an important role in cryptography. For instance, they
are used in signature schemes, maybe either as a primitive of such scheme or as
an auxiliary function for signing messages of any length. Loosely speaking, and
ideal hash function H has as input a bit string of any length and as output a bit
string of fixed length, i. e., H : {0,1}* — {0,1}*, for some s € N. The output
value H(z) must be easy to compute for any z. H is one-way if a pre-image of
H(z) is not feasible to obtain with the only knowledge of H(z), of course. H is
collision resistant if a couple (z,y), where x # y, is difficult to find such that
H(z) = H(y). In practice we are restricted to inputs of finite bit length and have
limited computational resources.

Informally, we say that a scheme or a function or a family of functions has
(t,€)-property P if no Adversary A, modeled as a probabilistic algorithm which
runs within time ¢, succeeds with probability larger than € in breaking property
P. Here, we adopt the convention that the time-complexity is the total worst-case
execution time of A plus the size of its code, all measured in some fixed model of
computation.

We have adopted the definition of one-way and collision resistant functions
from [RS04].

Definition 1.1 Let’H = Kx{0,1}™ — {0, 1}* be a family of functions. H is (t,€)
one-way if VA which run within time t, the advantage Adv(A) of the adversary
A is

PriHg(M') = Hx(M)|M'" — A(K,Hx(M)); M €z {0,1}™; K €r K] <.
Here, A is an adversary modeled by a probabilistic algorithm.

Definition 1.2 Let H = K x {0,1}™ — {0,1}* be a family of functions. H is
(t,€) collision resistant if V.A which run within time t, the advantage Adv(A) of

the adversary A is
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Pri(Hx(M'y = Hg(M))N(M'"# M); (M,M') — A(K); K €gr K| <.
Here, A is an adversary modeled by a probabilistic algorithm.

Now we regard definitions concerning to signature schemes. Loosely speaking, a
signature scheme is given as a triple (Gen, Sig, Ver) of probabilistic polynomial-time
algorithms. Gen creates a signing key and a verifying key. Sig creates signatures of
messages with the private key. Ver verifies with the public key whether a signature
and a message are related through the corresponding private key. There are a
variety of types of signature forgeries and attacks on signature schemes. We focus
on the security of signature schemes against existential forgery under adaptive
chosen message attacks. Roughly speaking, a signature scheme is secure in this
sense if it is not computationally feasible to forge any signature of some message,
given the public key and access to a sign oracle. A one-time signature scheme is
a signature scheme which is guaranteed to be secure as long as the private key
of an instance is not used more than once. A pseudorandom bit generator is a
probabilistic polynomial-time algorithm whose output looks random.

Now we recall some definitions. Let M, Ks, Ky and § be the space of messages
to be signed, the space of signing keys, the space of verification keys and the space

of signed massages, respectively.

Definition 1.3 A signature scheme Sign is a triple, (Gen, Sig, Ver), of probabilistic

polynomial-time algorithms which satisfy the following conventions:

Key generation algorithm Gen. Given as input the security parameter 1° and
maybe some other information I, Gen outputs a pair (X,Y) € Ks x Ky. X
15 called the signing or private or secret key and Y 1is called the verification

or public key. s is the security parameter.

Signing algorithm Sig. Having as input (M, X) € M x Ks, Sig outputs an ele-
ment o € S which is called a signature (of the message M with the signing
key X ).

Verification algorithm Ver. Given as input (M,o0,Y) € M xS x Ky, Ver out-
puts an element in the set {true, false}. Ver(M,Sig(M, X),Y) = true V(X,Y)
obtained by Gen and all M € M.
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Goldwasser, Micali and Rivest formalized in [GMRS88| the concept of security.
They introduced notions like existential forgery and adaptive chosen message at-
tack.

Roughly speaking, an existential forgery is when an adversary obtain a message
M and a valid signature o of M, but the adversary does not have any control of
the obtained message. An adaptive chosen message attack is when the adversary
chooses the message to be signed. His selection can be made after he has seen
signed messages. In this sense we informally say that a signature scheme is secure
if forgeries of signatures are extreme difficult to obtain. We have adopted the

following definition.

Definition 1.4 ([BMSO03]) Let Sign = (Gen,Sig, Ver) be a signature scheme.
Sign is (1, €,n) existentially unforgeable under adaptive chosen message attacks, if
for any algorithm F = {Fi, Fa} running in time at most t its advantage AdvSigr

in forging a signature is
PrVer(F>(T), PK) = 1| (SK, PK) « Gen(1%); T « Fye55 (15 PK)] < e,

where Fy requests no more than n signatures from Sig and the message output by
Fo is different from the messages signed by Sig. The probability is taken over the
coin tosses of Gen, Sig, Fi and Fo. Here Fo(T) outputs a message/signature pair.

We take the definition of one-time signature scheme from [EGM90] and refor-

mulate it as follows.

Definition 1.5 Let Sign = (Gen, Sig, Ver) be a signature scheme. We say that
Sign is a (t,€) one-time signature scheme or ots scheme for short, if Sign is (t,€,1)

existentially unforgeable under adaptive chosen message attack.

If we want to save space for the private key in some specific signature scheme,
we need to re-compute the keys from a kind of seed. That is why a definition of a

deterministic key generation algorithm is needed.

Definition 1.6 Let Gen be a deterministic polynomial-time algorithm and let Sig,
Ver be two probabilistic polynomial-time algorithms. If Gen, Sig and Ver satisfy the

following conventions:
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1. Deterministic key generation algorithm Gen. On input the security
parameter 15, a seed € {0,1}* and maybe some other information I, Gen
outputs a pair (X,Y) € Ks x Ky. X, Y and s are called as in definition 1.3

on page 8 and seed is call the seed for the generation algorithm.

2. Signature scheme. Define the algorithm Genp as follow. Given as input 1°
and maybe some other information I, Genp chooses seed € {0,1}* at random
and calls Gen with input 1°, seed and maybe I. Then (Genp,Sig,Ver) forms

a signature scheme.
we call (Gen, Sig, Ver) a signature scheme with deterministic key generation.

With the previous notation, we call (Gen, Sig, Ver) a one-time signature scheme
with deterministic key generation if (Genp, Sig, Ver) is a one-time signature scheme.

In the rump session of Eurocrypt 97, Anderson introduced the idea of forward
security [And02]. The notion of a forward secure scheme is as follows. The use of
a public key is divided into periods during its lifetime. The public key remains the
same whereas the private key is changed when it passes from one period into the
following one. If the private key is compromised in a certain period, the signatures
which were made in previous periods remain secure, i. e. they cannot be forged.

Bellare and Miner [BM99] formalized these ideas and presented a forward secure
scheme based on the hardness of factoring.

Krawczyk [Kra00] suggested the idea of using Merkle’s certification tree where
the leaves are the period certificate information which includes the period’s public
key and period’s number but not a signature in order to make a conventional sig-
nature scheme a forward secure one. Maklin et al. [MMMO02] construct a forward-
secure signature scheme which is also based on a conventional signature scheme.

Bellare and Miner give in [BM99] the definition of a key-evolving signature
scheme which consists of four process (Gen, Upd, Sig, Ver), where Gen is the key
generation process, Upd is the update processes, Sig is the signature process and
Ver is the verification process. The Gen receives as input the security parameter,
the number of periods and maybe other information. The Upd process is called in

order to update the private key.



1.2. Definitions and Notation 11

Roughly speaking a key-evolving signature scheme is forward secure if any
adversary who obtains the private key in a certain period cannot succeed in forging
a signature of any of the previous periods. In this case, the adversary calls the

Upd process any time he wants.

Definition 1.7 (key-evolving signature scheme [BM99]) A key-evolving sig-
nature scheme KESign = (KEGen, KEUpd, KESig, KEVer) consists of four algo-
rithms. (KEGen, KESig, KEVer) forms a signature scheme with the following mod-

ifications:

Key generator algorithm KEGen takes in addition as input the total number
of periods T over which the scheme will operate. The returned keys PK and
SKy are called base public key and base secret key, respectively.

Signing algorithm KESig takes in addition the current period o. The returned

signature o must contain the value o.
Besides the

Secrete key update algorithm KEUpd takes as input the secret signing key of
the previous period SK,_1 to return the secret signing key of the current
period SK,.

The secrete key update algorithm is usually deterministic.

In case that it is not clear what period the signature o belongs to, we write
(v, 0) instead of o as an explicit representation of the period a when the signature
was made.

An advantage of a key evolving scheme is that the private key is changing during
the lifetime of the instance. If in a certain period the private key is compromised,
then from the current private key must not be computational feasible to reconstruct
the (part of the) private key of previous periods which permits to sign messages
of those periods. Roughly, this kind of security is called “forward security”. We
reformulate the definition given in [BM99.

Definition 1.8 Let KESign = (KEGen, KEUpd, KESig, KEVer) be a key-evolving
signature scheme. KESign is a (t,€,n) forward-secure signature scheme, if for any

probabilistic algorithm A = { A1, A3} running in time at most t its advantage
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Advﬁgén(A) = Pr[EzpForge(KESign, A) = 1] < ¢,

where Ay makes a total of at most n queries to the signing oracle across all the
stages and the probability is taken over the coin tosses of Gen, Sig, A1 and As,.
The experiment ExpForge is described in Table 1.1.

Table 1.1: Experiment for a forward secure signature scheme

Experiment ExpForge(KESign, {A;, A2})

(SKy, PK) « Gen(1°,T.1)
j <0
h «— A
Repeat
je—7j+1
SK; — Upd(SK;_1)
(d, h) — ACED (P R
Until (d = breakin) or (=T
If d # breakin and j = T then j «— T + 1
(M, (6,C)) — As(SIK;, h)
If Ver(M, (b,¢), PK) = true and 1 < b < j and M
was not queried of Sig(-, SK;) in period b then return 1

else return 0

We adopt the convention that a secret key in the period T'+1 is the null string,
where T is the number of periods for the signature scheme.

Now, our intention is to provide forward-secure multi-time signature schemes.
In contrast to a conventional signature scheme, a multi-time one has a limited
number of possible signatures. An advantage of multi-time schemes is that they
are much more efficient for signing or verifying than the conventional ones. In our
proposals, the verification algorithm requires only the use of a hash function and,
depending on the implementation of such hash function, a low cost of RAM. In our

proposals we use a modified version of key-evolving signature scheme: Each period
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consists of a certain number of signatures and the update algorithm is intrinsic to
the signing algorithm. In this case, we can simplify the definition of the advantage

of the adversary in definition 1.8.

Remark 1.1 With the notation of the definition 1.8 on page 11 the advantage
AdvﬁsEssﬁn can be simplified in our case. Recall that each period consists of a certain
number of signatures and the secret key update algorithm is intrinsic to the signing

algorithm. Thus

Advﬂsgén(/{) = Pr[Ver(M, (b,¢)) = true ‘ (SKo, PK) — Gen(1°, T, I);
(info,k) «— ASOSE)(PL);
(M, (b,¢)) « As(SKp, info)
and b < k] <,

where SK represents the evolving private key used to sign messages by the oracle
and S K}, represents the private key at the intrinsic period k due to the number of

created signatures.

We will make use of an auxiliary tool in order to reduce the size of the pri-
vate key and preserve the security of our proposed schemes. First, we recall the

definition of computational indistinguishability.

Definition 1.9 Let f : Dy — R and g : Dy — R be two functions. We say that f
and g are (t, €) computationally indistinguishable or simple (t, €) indistinguishable
if for every D distinguishing algorithm that given r € R return a bit, its advantage

in distinguishing between f(Up,) and g(Up,) within time t is
Pr(D(f(Un,)) = 1] = Pr{D(g(Un,)) = 1] < e

Here Uy is the uniform distribution on X. The probability is taken on the coin
tosses of D.

In case that a function A : R — R is the identity, we will simply write Ur
instead of h(Ug).
Next, we recall the definition of pseudorandom bit generator (prg) and the

definition introduced by Bellare and Yee in [BY03] concerning a forward-secure
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pseudorandom bit generator (fsprg). Roughly speaking, a pseudorandom bit gen-
erator g : {0,1} — {0, 1Y+ is cryptographically secure if g(Uy) and Uy are
computationally indistinguishable, where U, denote the uniform distribution on
{0, 1}.

We reformulate the definition given in [BY03].

Definition 1.10 Let g : {0,1} — {0.1}* be a function. We say that g is a
(t,¢) pseudorandom bit generator if g and Z;1p are (t,€) indistinguishable. Here
Ty is the identity function on {0, 1}+,

A stateful generator G = (G.key,G.next,b,n) consists of a pair of algorithms
and a pair of positive integers. G.key is a probabilistic algorithm which takes no
inputs and outputs a bit string called initial state. G.key is called the key gener-
ation algorithm and the initial state is also called seed. G.next is a deterministic
algorithm which given the current state, returns a pair of bit strings consisting of
an output block and the next state. G.next is called next step algorithm and the
output block is a b-bit string. The generator G may use up to n output blocks to
produce a sequence Outy, ..., Out, for 0 < n’ < n as follows: first St_; « G.key
and then (Out;, St;) « G.next(St; 1) for 0 < i <n'.

Definition 1.11 A stateful generator G = (G.key, G.next,b,n) is a (t, €) forward-
secure pseudorandom bit generator, if for any probabilistic algorithm A = { A1, A3}

running 1 time at most t
AdPI(t) =] Prigupl P () = 1] - Prigal? 0 4) = 1] < e

where ExpéSprg_J and ExpéSprg_O are described in Table 1.2 on the next page. The
probability is taken over the coins tosses of G.key, Ay and As,.

In Proposition 1.1 a construction of a forward-secure pseudorandom bit gener-

ator from a cryptographically secure one is shown.

Proposition 1.1 (Proven in [BYO03]) Let G : {0,1}* — {0,1}*%° be a (tprg, €prg)

pseudorandom bit generator, let n be an integer such that 2ne,., < 1. Define G =
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Table 1.2: Experiments for the forward secure pseudorandom bit generator

Experiment Expfg’sprg—l (A) Experiment Expgsprg—O(A)
St_y «— G.key St_y «— G.key
1 —1; h— A 1 —1; h— A
Repeat Repeat
1—1+1 1—1+1
(St;, Out;) «— G.next(St;_1) (St;, Out;) «— G.next(St;_1)
(d,h) — A1 (Out;, h) Out; — Uy
Until (d = guess) or (i=n-1) (d,h) «— A;(Out;, h)
g — As(St;, h) Until (d = guess) or (i=n-1)
Return g g — Ay(St;, h)
Return g

Here A is the null string and U, is the uniform distribution on the set

of bit strings of length b.

(G.key, G.next,b,n), where G.key outputs St €g {0,1}* and on input St, G.next
obtains X «— G(St) and outputs (St',Out), where X = St'|Out, St' € {0,1}*
and Out € {0,1}°. Then G is a (tysprg, €fsprg) forward secure pseudorandom bit

generator, where €fgyrg = 2N€pg and tyg = trsprg + O(n - (s +0)).

1.3 Improvement to the LDots

In this Section we recall the Lamport-Diffie one-time signature scheme (LDots).
We provide an improved version of LDots, prove its security and show some ex-
perimental results about its efficiency.

Let H : {0,1}* — {0,1}* be a hash function. Next we give the description of
the LDots suggested by Merkle in [Mer90]. This scheme has as security parameter
s, which is the length of the output of the underlying hash function. We can assume

that the hash function restricted to bit strings of size s is a one-way function.

Key generation algorithm Gen. Gen chooses z; € {0,1}* and computes y; =
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H(z;) for 0 <i < ¢, where s’ = s+ 1+ |log, s|. Gen outputs the pair (X,Y),
where X = (zg,...,29_1) and Y = (yo,...,ys—1). X is the secret key and

Y is the verification key.

Signature algorithm Sig. Given as input a message M € {0, 1}* and the secret
key X = (zg,...,xs), Sig computes M || Z =mg-...-mg_1, where Z is the
1+ |log, s |-bit representation of the number of zeros in the bit representation
of M. Sig outputs 7 = (x;,,...,2;, ), where 0 < iy <--- <iy < s andm; =1
iff j € {iy,...,ix}. 7 is the signature.

Verification algorithm Ver. Given as input the message M, a signature 7" =
(z1,...2) and a verification key Y = (yo,...,ys 1), Ver computes mq - ... -
mg_1 from M as in the signature process. Ver outputs true if [ = k and
yi, = H(z;) for j € {a|m;, = 1} and k is obtained as in the signature

process. Ver outputs false otherwise.

On the efficiency of LDots The sizes of the private and public key are equal
to ss’ = s? + s(1 + |log, s]) bits. The size of the signature is Is, where 1 <[ < s
which depends on the message to be signed. Let ¢;, and ¢,, be the time needed
in average to compute a hash value and an s-bit random string, respectively. The
time needed to generate a key pair is §'(t, + t,4). The time needed to sign a

message is [t;, where 1 <[ < s.

On the security of LDots Intuitively, if an adversary wants to forge a signature
with the only knowledge of the public key and maybe a signed message, then the
adversary must compute at least one pre-image of the function H for a randomly
chosen input. Suppose that M || Z = mg - ... mg, then if M = 0% then the
string Z, which is employed to count the number of zero bits in M, has at least a
non zero bit. Now, if the adversary obtains a message M’ with a forged signature
7 = (z0,...,2k), we deduce the following: We set mgy - ... -my «— M | Z and
my-...-ml, «— M || Z', where Z and Z' are the number of zero bits of M and M’,
respectively. We know that M # M’ therefore there exists 0 < j < s such that
m; # mj. If my =1 and m/, = 0, then the adversary should obtain =’ such that

y; = H(2') and give such 2z’ as part of the signature. If for 0 < j < s any time



1.3. Improvement to the LDots 17

that m; # m/ we have that m; = 0 and m/ = 1, then the number of zero bits in
M is lower than the one in M. Therefore Z > 7' regarded as integers represented
with 1+ |log, 5| bits. Thus there exists s < j < s such that m; = 1 and m = 0,
which implies that the adversary should obtain 2’ such that y; = H(2') in order

to give it as part of the signature.

Our improvement We reduce the size of the private and the public keys and
fix the length of the signature.

Let H be as before and set s” = [%-‘ If M is the message to be
signed, we represent M as quaternary digits (quits). Let Z, O and T be the quit
string representation of the number of zeros, ones and twos in the representation
of M as quits, respectively. We use the concatenation M| Z||O||T to construct
our signature in a similar way as it was previously presented. In Figure 1.1 this

construction is depicted.

Figure 1.1: Representation of the construction of the auxiliary string M ||Z]O||T
for signing a message M. Here [y = [log, s| and 0 < m; <4 for all 0 <i < s".

s I L Ls

My oo Mg = M 7 O T
Y H™ ()

Signature = (H™(z¢), ..., H™"-1(zg_1))

Next we describe our first improvement to the Lamport-Diffie one-time signa-
ture scheme. In this version the key pair is randomly generated. As before, the

security parameter s is the length of the output of the underlying hash function.

Scheme 1.12 Improved Lamport-Diffie one-time signature scheme with randomly

generated key pair (iLDots with random key).



18 Chapter 1. Signature Schemes

Key generation algorithm Gen. Gen chooses z; € {0,1}* at random for 0 <
i <", where s” = {%W Gen outputs Y = H(H?*(xy), ..., H*(zg_1))
as the verifying key and X = (zy, ...,z _1) as the private key.

Signature algorithm Sig. Given as input a message M and the private key X =
(20, ..., xse_1), Sig computes mg - ... -mg_; = M| Z||O||T as quits from M,
where Z, O and T are the bit string representation of zeros, ones and twos,
respectively, of the quits representation of M. Sig outputs the signature
T = (H™(z0),..., H"" 1 (x5 1)).

Verification algorithm Ver. Given as input a message M, a signature 7’ and a
public key Y, Ver computes M||Z||O||T =mg - ... - mg 1 as it is computed
in the signature process. Suppose that 7/ = (zg, ..., zs_1). Ver outputs true
if Y = H(H?> ™ (2),..., H>™"-1(z,_1)) and false in other case.

In this version the public and private keys are reduced to s bits and to ss” bits,

respectively. The signature is fixed to ss” bits. Note that

Now we give a version of the LDots with a deterministic key generation algo-
rithm. In this version the private key is reduced to s bits. As before, the security

parameter s is the length of the output of the underlying hash function.

Scheme 1.13 Improved Lamport-Diffie one-time signature scheme with deter-

ministic key generation algorithm (iLDots with pseudorandom key).

Deterministic key generation algorithm Gen. Given as input a seed g_; €
{0,1}*, Gen computes (g;, z;) « PRG(g;_1) for 0 < i < s”. Gen outputs g
as the private key and Y = H(H?(xy), ..., H*(xy_1)) as the verifying key.

Signature algorithm Sig. Sig remains the same as in Scheme 1.12 on the pre-

ceding page except that z; is computed from ¢ as in Gen for 0 <7 < §”.

Verification algorithm Ver. Ver remains the same as in Scheme 1.12 on the

previous page.
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1.3.1 Security

Next we give an intuitive idea of the security of the iDLots with random key. Then

we give a formal proof of the security of the provided improvements of the LDots.

Roughly speaking, if an adversary gives a forged signature with only the knowl-
edge of the public key and maybe a signed message, then the adversary should find
a pre-image or a collision of the underlying hash function. Recall that the private
key consists of random bit strings of size s. The message M to be signed has a
size of s bits and three counters are taken into account for the signature. Such
counters contain the number of zeros, ones and twos in the quit representation of
M. The signature consists of s” bit strings of size s. The adversary could try to use
a signed message to create a forgery, since he is able to modify the message. If the
quit m} of the new message M’ is lower that the corresponding quit m; of M for
some j, i. e., mj; < my, then the adversary needs to be able to obtain a pre-image
of H™i(x;) or a collision of H in order to give a forged signature. Recall that the

adversary knows z; = H™J(z;) and he must give 2} as part of the forged signature,
such that H37™i(z;) = H?’_m;'(z;) or H(...,H%(zj),...)=H(..., H3—m;.(2;)7 cl).
On the other hand, if m; > m; for all j such that m; # m/ in the quit repre-
sentation of M and M’, then at least one of the three counters related with M’
must be lower than the corresponding counter related with M, i.e. the number of
zeros, ones or twos in M is lower than the corresponding one in M’. Therefore
there must exist m; and m/} in the quit representation of such counter of M and
M, respectively, such that m/ < m;. Thus, as before, the adversary should be
able to obtain a pre-image of H™i(x;) or a collision of H in order to give a forged
signature.

Our goal is to prove that the existence of a forger of the iDLots with random
key implies the existence of an efficient algorithm for finding either a collision or a
pre-image of a random input for the underlying hash function H. As you can see
in the previous paragraph, the forger must obtain a pre-image of some hash value,
not necessary from a random input, i. e. such a hash value could be one of H?(x)
and H?(z) for some x €p {0,1}°. In this case we require that for a random =z,
H(z) and H?(z) be computationally indistinguishable and so are H(x) and H?(x).

In Proposition 1.2 we show that the Scheme 1.12 on page 17 is a one-time
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signature scheme. Its security is based on its underlying hash function H. In
Proposition 1.3 on page 23 we show that the Scheme 1.13 on page 18 is a one-time
signature scheme. This time, its security is based on its underlying hash function

H and its cryptographically secure pseudorandom bit generator prg.

Proposition 1.2 Let H : {0,1}* — {0,1}® be a (tow, €ow) one-way and a (te, €qr)
collision resistant hash function, such that (i) Hy and Hy are (ti, €;) indistin-
guishable, and Hy and Hs are (t;,, €;,) indistinguishable, where €;, < %min{em €ow |
(11) 245" max{€.r, €ow} < 1 and toy, ter, tin > t+ts +tg + 5Bty for some t, where tg
is the time needed to sign a message, t;, is the time needed to compute a hash value
and tg is the time needed to compute a pair of keys. Here H; : {0,1}* — {0,1}*
is a function defined as Hi(z) = H'(x) Vo € {0,1}* and 1 < i < 3. Let
Sign = (Gen, Sig, Ver) be the iLDots with random key as described in Scheme 1.12

on page 17, then Sign is a (t,€) one-time signature, where € = 245" max{€,uy, €cr }-

Proof

The idea of the proof is as follows. If Sign is not secure, then there exists a
forger F and with help of this forger we are able to construct an algorithm A for
computing either a pre-image of a given y or a collision of H. Thus, given y as
input, A computes a random instance of the iLDots including y in certain part
of that process. A obtains a public key Y and a large part off the corresponding
private key X. A calls the forger F with Y as input and uses X and y in case that F
asks to sign the only one allowed query. With high probability, F returns a forgery,
i. e. a message M’ and a forged signature 7’ such that Ver(M',7')Y) = true. 7'
is used by A in order to obtain with high probability either a pre-image of y or a
collision of H.

Now, if Sign is not a one-time signature scheme, i. e. if Sign is existentially
forgeable under a one adaptive chosen message attack, then we are able to provide
an algorithm A which efficiently finds either a collision of H or a pre-image of
H(z) for a randomly chosen € {0,1}*. Here H is the underlying hash function
of Sign.

Suppose that there exist a forger algorithm F = {F;, F>} such that

PrVer(Fo(T),Y) = true | (X,Y) «— Gen; T — Fo 8 (v)] > ¢
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A works as follows. Generating a random instance of the iLDots: Given
as input y = H(z) for some x € {0,1}*, A chooses 0 < iy < s” and 1 <m <3
at random. Then A sets y;, := H> ™(y), chooses z; €r {0,1}* and computes
y; = H3(x;) for i #ig and 0 < i < s”. The public key is Y = H(yo, ..., Ysr_1).

Obtainment of a forgery through the employment of F: A calls F in
order to obtain a forgery with probability of at least e. Let M’ and 7" be the
forgery. We write 7/ = (zq,...,25-1) and myy - ...-mL, ; = M'||Z'||O'||T", where
7', 0" and T are the counters of zeros, ones and twos regarded as quit strings.
At this point we make a distinction. What happens if F does not make a query?
In that case note that the cardinality of the set {j | m} = 0for 0 < j < s"}
is greater than or equal to 1, since Z' # 0 as the counter of zeros implies that
a quit in M’ must be zero. Thus the probability that mj = 0 is at least ﬁ
Finding a pre-image without a query from F: If H"(z;) = vy, then A
outputs H™'(z;,) as pre-image of y. Finding a collision without a query
from F: Otherwise, A computes = = H7"™(y), 2; = H’(z;,) for m < j < 3,
7 = woll -+ Jgsro and 25 = H0(zg) |+ [H3 ()| | HP ™9 (20-) and
finally computes zf = H(z/,) and 2 = H(z}). Recall that zf = z{ since 7’ is a
forgery and at this point we assume that =/, = y # H™(z;,) = z/.. Therefore,
there exists jo such that 2, # 2i and 2 = 21 Vj > jo and then A outputs (2, zj,)
as a collision. Thus, in case that F does not require any signature we have the
following. Set p = Prly = H™(z;,) |7« F|. If p > 3, then A succeeds in finding

_€
2577

time t,,. On the other hand, if p < %, then A succeeds in finding a collision of H

a pre-image H™ '(z;,) of y = H(x) with probability of at least > €o Within

with probability of at least 55 within time ¢,

Now, what happens if F does make a query? In that other case, we denote by
M the message to be signed and by mq - ... -mg _q the quits of the concatenation
of M|| Z||O||T, where Z,O and T are the counters of zeros, ones and twos regarded
as quit strings. The condition on M and M’ implies that M # M’, and so there

exists an ¢ such that m, # m].

Notice that there exists 0 < jo < s” such that 0 < m}o < mj, < 3. Indeed, if

m, < m, we are done. Else, first let us define the following sets By = {j | m; =
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k; m; in the quit representation of M} and B), = {j | m} = k; m in the quit
representation of M’} for 0 < k < 3. Note that the cardinality of By, B; and Bs
are the numbers represented by Z, O and T, respectively. Analogously we have
the relation between By, B and By with Z', 0" and 1". Thus, if m; < m/ for all
m; and m; in the quit representation of M and M’, respectively, we have that the
cardinality of B, is greater than the cardinality of B, where x = min{m; | m; <
m’; 0 < j < 5} In this case, the corresponding counter of B, and the one of B}
contain one each of them a quit m;, and m}o, respectively, such that m;, > mz-o as
affirmed. In this case, the probability that 7o = j, is at least ﬁ and the probability
that m = my, is 3.

If y were obtained from H,,(U;), where U is the uniform distribution on {0, 1}*,
then the adversary would have obtained a public key and a signature as described in
Scheme 1.12. In that case, the probability that ¢y = jo and m = m;, given a forgery
by F is at least 35, i. e. Prlip = jo and m;, = m | forgery < F; F makes one

351/ Y

query; y <« H,,(Uy); m «— {1,2,3}] > =5;. Recall that y is obtained from H;(U;)

W .
and not from H,,(Us), if m = 2,3. In this case we assure that the probability of ig =

_€_

38”
m | forgery « F; F makes one query; y < Hy(U;); m — {1,2,3}] >

Jo and m = my, given a forgery by F is at least :5 —3€,, 1. €. Prlip = jo and m;, =

€
35’7

To prove this assertion we will build a distinguisher D, of H; and H,,, employing

- 3€m-

F under the assumption that Prlio = jo and m;, = m| forgery « F; F makes
one query; y « Hy(Us); m « {1,2,3}] < 35 — 3¢, Herem' = 2, 3. Basically D,/
constructs a key as A does and uses F in order to obtain a forgery. If i = jo and
m; = m/, then D,,, returns 1. D, returns 0 otherwise. In this case we have that
Pr(D,,(H1(Uy)) = 1] = Prlip = jo and m;, = m'| forgery « F; F makes one
query; y «— Hy(Us); m =m'; m «— {1,2,3}] = Prlic = jo and m;, = m| forgery
— F; F makes one query; y < Hi(Us); m — {1,2,3}|Prim = m'] < 3(35% —€m),
within time ¢;,. On the other hand Pr[D,,/(H,,(Us)) = 1| = Prlioc = jo and m;, =
m' | forgery « F; F makes one query; y < H,(Us); m =m'; m — {1,2,3}] =
Prliy = jo and mj, = m| forgery « F; F makes one query; y < H,,(Us); m «—

{1.2,3}]Pr[m = m'] > 355, within time ¢;,. Therefore, we have that

Pr(D (Hy(Us)) = 1] — Pr[Dyy(Hp (Us)) = 1] > €in,

within time ¢;,. That contradicts that Hy and H,, are (t;,, €;,) computationally
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indistinguishable.

Now as before we obtain from F a forgery M’ and 7/ and we write 7/ =
20y ..y 25r—1) and my - ...-m’,_, = M'||Z'||O'||T", where Z’',O’ and T" are the
0 1

o
counters of zeros, ones and twos regarded as quit strings. Finding a pre-image:
If H™ ™o (zi,) =y, then A outputs Hmfmgofl(zio) as pre-image of y. Finding a
collision: Otherwise, A computes 2, = H/~"(y), 2} = H ™™o (2i,) form < j <3,
vy = yoll -+ lysr—y and 2y = H37"0(z) |-+« [|[H> "0 ()| - - [ H* =51 (20 1)
and finally computes xf = H(z))) and 2zl = H(z}). Recall that zf = 2{ since 7’ is a
forgery and at this point we assume that @/, =y # H™ ™0 (z,) = z.,. Therefore,

there exists jo such that 2 # 2/ and 2y = 2} Vj > jo and then A outputs (27 , 2} )

0’ “jo
as a collision. Thus in case that F does require a signature and m = 1 we have
the following. Set p = Prly = H™ ™ (z;,) ‘ 7/ — F|, if p > I, then A succeeds
in finding a pre-image H™ ™0™ "(z;,) of y = H(z) with probability of at least

_€_
65"

finding a collision of H with probability of at least

— ?’% > €4, within time t,,. On the other hand, if p < %, then A succeeds in

€
65"

Finally, let p = Pr|F does not require a signature |. Recall that F outputs a

— 36# > €. within time t,.

forgery with probability at least e. Therefore, if p > %, then A succeeds in finding a

pre-image or a collision with probability of at least -5 > max{é€,,, €.} Within time

7 =
t < min{t,y,, ter}. Now, in case that p < % and m = 1, then A succeeds in finding

€

a pre-image or a collision with probability of at least

- % Z max{ﬁoun 607’}
within time ¢ < min{t,y, te }-

0

Proposition 1.3 Let H : {0,1}* — {0,1}* be a (tow, €ow) one-way and a (ter, €qr)
collision resistant hash function and let PRG be a (tyrg, €prg) pseudorandom bit
generator, such that (i) 4s" max{12€., 12y, €prg} < 1, (i0) tow, ter > t +ts +
te + dty, (iii) tyy =t + tg + tv + O(2s5") for some t and (iv) Hy and Hy are
(tin, €in) indistinguishable, and Hy and Hs are (tin,€mn) indistinguishable, where
€in < %min{em €ow}. Here ty, is the time needed to compute an H wvalue, tg is the
time needed to compute a pair of keys, ts is the time needed to sign a message and
ty is the time needed to verify a signature. H; is defined as in Proposition 1.2,
where i = 1,2, 3. If Sign = (Gen, Sig, Ver) is as described in Scheme 1.13, then Sign

is a (t,€) one-time signature with deterministic generation key algorithm, where
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€ = 45" max{12¢,y, 12€.,, €pry }-

Proof

The idea of the proof is as follows. In Proposition 1.2 is shown that the iLDots
with random key is secure if the underlying hash function is secure, as well. If
the iLDots with pseudorandom key is existentially forgeable under a one adaptive
chosen message attack by a forger F, we are able to construct a distinguisher
for the forward-secure pseudorandom bit generator obtained from PRG. The
distinguisher A = {A;, A2} works as follows: A; collects all the s” values he is
allowed to receive. A; passes those values to A, and Ay generates from those
values a key pair (X,Y). A, gives the public key Y to the forger F and maybe
uses the private key X to sign the only one allowed query of F. If F returns a
forgery, A, returns 1, which means that with “high” probability the s” values were
obtained by the forward-secure pseudorandom bit generator, since it is supposed
that the iLDots with pseudorandom key is not secure. Otherwise, A5 returns 0,
which means that with “high” probability the s” values were obtained at random,
since it is proven that the iLDots with random key is secure.

Now, suppose that the signature scheme is not (¢, €) one-time. Using the no-
tation of definition 1.6 on page 9, there exists an algorithm F = {F;, F} such
that

PrVer(M, o', Pu) =1 ‘ (Pr, Pu) <« Gen;
T FET (Pu); (M.o') — FaT)] > e

within time .

Under the assumption that H is a (tow, €0w) one-way and a (., €.) collision re-
sistant hash function, we construct a distinguisher A for the (£ s,g. €f5prg) forward-
secure pseudorandom bit generator G = (G.key, G.next, s, s”) obtained from PRG,
where tfsprg = t+t,+ty, €fsprg = 28" €prg, and G is as in Proposition 1.1 on page 14.

We construct the distinguisher A = {A;, As} as follows: h is initialized as the
null string A. Given as input Out and h, A; updates h « h||Out and outputs
(not_guess, h). Generating a random instance of iLDots either with ran-

dom key or with pseudorandom key: Given as input St and h, A, obtains
Out; from h for 0 < i < s” and computes Y = H(H?*(Outy), ..., H*(Outg_1))
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as the verifying key and retains X = (Outy,...,Outy 1) as the secret key. Us-
ing F to try to obtain a forgery: A, calls F;(Y) and uses X for signing the
unique allowed query from Fj. A, uses the output 7' from F; as input for F; in
order to try to obtain a forgery (M, 7). Distinguishing the input between the
pseudorandom bit generator and the uniform distribution: If A, obtains

a forged signature, then outputs 1. In other case it outputs 0.
fsprg-0

Note that in Expg (A), Ay obtains a random instance of the iLDots with
random key and that in ExpéSprg_l(A), A, obtains a random instance of the

iLLDots with pseudorandom key.

Now, because the assumption of the existence of F, we have that

PriExpE e () = 1) >

within time £ ¢4,g.

Because of the assumption on H, we have that

Pr[ExpéSprg_O(A) =1] <3,

£
599

chosen message attacks as proven in Proposition 1.2 on page 20.

within time ¢4, since Sign is (¢, £, 1) existentially unforgeable under adaptive

Therefore,

Pr[Expgsmg'l(A) —1] - Pr[Expgsmg'O(A) = 1] > £ > 25"€png = €faprg

within time ¢5,,,, which contradicts Proposition 1.1 on page 14

1.3.2 Efficiency

Now we show the efficiency of these ots. Let h : {0,1}* — {0,1}* be a hash
function. In Table 1.3 on the following page we estimate the size of the signatures
and keys and the timing for the presented versions of the Lamport-Diffie ots. In
that Table ¢,4,%,,4,t, and ty are the times for computing a random number of s
bits, a pseudorandom number of s bits, a hash value whose input is s bits and

a hash value whose input is ss” bits, respectively. We set s’ = s+ 1 + |log, s,

" o__ ’754'3[10%2 SJ-‘
S = 5 |-
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Table 1.3: Comparison of the versions of the Lamport-Diffie ots scheme.

iDLots with
Merkle’s version random pseudorandom
key
Size
Private Key ss’ ss” s
Public Key ss’ s s
Signature js ss” ss”
Timing
Key Generation s'(trg + th) §"(trg + 3tn) | trg + 8" (tprg + 3t1)
Signing gty +ty Ity +ty §"(tprg + k) +tu
Verifying Jtn ks" +ty ks" +ty

Here 1 < j < s;t, <k <3t and s" <[ < 3s".

1.3.3 Experimental Results

Now we present a practical version of our proposal. We have implemented the
iLLDots with pseudorandom key as described in Scheme 1.13 on page 18. The
bit length of the keys and of the signature are shown in Table 1.4. The time
needed for the key generation, signature and verification algorithms are shown in
Table 1.5 on the next page. These computations were made on a Pentium IIT,
SuSE 9.3, at 1.1GHz. We have used the implementation of several hash functions
from OpenSSL [Ope] version 0.9.8. and the implementation of the pseudorandom
bit generator ISAAC from [ISA].

Table 1.4: Size of the private (Pr) and public (Pu) keys and of the signature of
the iL.Dots with pseudorandom key.

size
bit length s 160 | 224 | 256 | 384 | 512
Pu/Pr Key (in bytes) | 20 | 28 | 32 | 48 | 64
Signature (in Kb) 1.78 | 3.36 | 4.38 | 9.56 | 16.9
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Table 1.5: Time needed for elements of the iLDots with pseudorandom key.

ripemd 160 sha
160 160 224 256 384 | 512
time in milliseconds

one Hash computation 0.007 0.01 | 0.01 | 0.012 | 0.026 | 0.04
one PRG computation 0.028
Key Generation 2.26 218 | 4.79 | 4.14 | 27.3 | 32.1
Signature 2.54 2.23 | 3.89 | 4.17 | 26.9 | 32.6
Verification 0.24 0.223 ] 0.635 | 0.695 | 5.5 | 8.03

Let H be the underlying hash function and let s be the bit length of its output.
Now, suppose that the birthday-paradox attack is the best for finding a collision

or a pre-image of H. We know that the probability of success in that case is < %

through 22 H computations on random values. In Table 1.6 we show the security

of the iLDots with pseudorandom key, we have considered t,,q, = 27,

Table 1.6: Security of iLDots with pseudorandom key.

security
s 160 | 224 | 256 | 384 | 512
thash/ €hash 981 | 9l13 | 9129 | 9193 | 9257
tots/ €ots 968.9 | 91004 | 9116.2 | 9179.7 | 9243.3

tots—prg/eots—prg

267.9 299.4 2115.2

2178.7 2242.3

1.4 The Merkle Signature Scheme

Merkle presents in [Mer90| a multi-time signature scheme. In that work, he im-

proves the Lamport-Diffie one-time signature scheme [DH76|, whose security hinges

on that of the underlying hash function, and introduces his multi-time extension

based on a binary tree, which we will call Merkle tree henceforth. No formal proof
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of the security of the scheme has been given, although its properties are widely
known. See e.g. Micali [Mic0O0] who mentions without proof, that the crucial prop-
erty of Merkle trees is the difficulty of changing any node in the tree while keeping
the root unaltered, provided that the used hash function is collision resistant.

Actually, the Merkle signature scheme transforms any one-time signature scheme
into a multi-time one. The idea of the Merkle signature scheme is the following:
Assume that we want to be able to make at most 2V signatures. Key generation
works as follows: Generate 2% different key pairs of the one-time signature scheme.
Then create a binary tree whose leaves are the hash values of the verification keys,
and each parent is the hash value of the concatenation of its left and right chil-
dren. The public value is the root of the tree. All the one-time key pairs taken
together serve as the private key. The signature of k-th message to be signed is
the one-time signature made with the k-th private one-time key, followed by the
one-time verification key and N nodes from the Merkle tree which help to authen-
ticate the verification key against the public value. The werification consists of
two parts: First, authentication of the public one-time key with the auxiliary N
nodes against the public value and second, authentication of the message with the
public one-time key.

Even though a description of the Merkle signature scheme is given in [Mer90], in
this Section we give a formal description of the scheme for the sake of completeness.

The following notion will be needed for the description of the Merkle signature
scheme. Assume we are given a rooted full binary tree of depth N. Let us label
the leaves of the tree from 0 to 2V — 1. If L is the leaf of the tree with label i, we
call (Py, ..., Py) the i-labeled sibling path of L. Here P; is the sibling of the node
of the path from the root to L at depth j, for 1 < j < N. This is illustrated in
Figure 1.2 on the next page.

Now, let 1Sign = (1Gen, 1Sig, 1Ver) be a one-time signature scheme, and let
H : {0,1}" — {0,1}* be a hash function. In what follows we use as security

parameter of each scheme the size of the output of the hash function.
Scheme 1.14 Original Merkle signature scheme (0Mss).

Key generation algorithm Gen. Given N € IN as input, Gen calls 2V times
1Gen in order to obtain the key pairs (X;,Y;) for 0 < i < 2%. Then it
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Figure 1.2: FExample of an i-labeled sibling path for N = 3 which is depicted in
(0. The path of the leaf 7 is pictured in .

computes recursively the nodes of the tree: Ky,; = H(Y;) and K kg =
H(Kj+l,2kj;Kj+l,2kj+l) for 0 <1 < 2N, 0 <5< N and 0 < kj < 2,
Finally, it sets R = K.

The public key output by Gen is (N, R). The private key consists of all
one-time key pairs (X;,Y;) (in case the one-time verifying keys Y; can be
computed from the X, it is sufficient to store only the one-time signing keys
X; instead). The user must keep a counter which contains the number of

previously created signatures. In the beginning the counter is set to zero.

Signature algorithm Sig. Let i be the counter. Given as input a message M and
the secret key, Sig calls 1Sig(M, X;) in order to obtain the one-time signature
7 and computes (Py,..., P;), the i-labeled sibling path for the leaf H(Y;).

Finally, Sig outputs the signature o = (i, 7,Y;, Py, ..., P1), and then incre-

ments the counter 7 by one.

Verification algorithm Ver. Given as input a message M, a signature ¢’ and a
public key (N, R), Ver accepts the signature o’ unless 1Ver(M, 7', Y") = false
or Wy # R, where Wy = H(Y") and W;_, := H(l;,r;) for 0 < j < N. Here
o=, 7Y Py,...,P)and [; := Wj, r; :== P; in case that \_Q,V%JJ is even

or l; := Pj, rj := W, otherwise.
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1.5 Efficiency and security of the Merkle signa-

ture scheme

In this section we will show that assuming the existence of cryptographically se-
cure hash functions and cryptographically secure one-time signature schemes, the
Merkle signature scheme is not existentially forgeable under adaptive chosen mes-
sage attacks. To do this, we prove first that any alteration of any number of nodes
of a Merkle tree that keeps the root intact yields an efficient way to find collisions
for the underlying hash function. Then we show that any existential forgery of
signatures in the Merkle signature scheme leads to either an existential forgery
of signatures for the underlying one-time signature scheme or a collision for the

underlying hash function.

1.5.1 Security

Goldwasser et al. [GMR88] introduced the concepts of existentially forgeable and
adaptive chosen message attack. We adopt concepts from [BMS03, EGM90] and
[RS04] for existentially unforgeable under adaptive chosen message attack, one-
time signature schemes and collision-resistant functions respectively. The main
result of this section is Proposition 1.5 on the facing page. Lemma 1.4 proves an
important property of the Merkle trees when an i-labeled sibling path becomes an
i-labeled authentication path in a Merkle tree.

Here we give the notion of an authentication path. Let H : {0,1}™ — {0, 1}* be
a function, where m = % or m > 2s, let N € N and let L, Py,..., P, R € {0,1}".
Set 0 < i <2V, Let Wy := Land W;_; := H(l;,r;) for (0 <j < N) and [; := W,
rj = P; in case that L2N7—_JJ is even or l; := P;, r; := W; otherwise. If R = W,
we will say that (Py,...,P;) is an i-labeled authentication path of depth N for
the leaf L with respect to the root R. Here H(z,y) denotes H(z||y) if m = % and

H (x||y|[0™=2%) otherwise, where || is the concatenation of strings.

Lemma 1.4 Let H be a hash function, whose image is in {0,1}*. Let R € {0,1}*
and let N € N. Set 0 < i < 2V, Suppose that A = (Py,...,Py) is an i-labeled
authentication path of depth N for a leaf L and B = (Py, ..., P]) is an i-labeled
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authentication path of depth N for a leaf L', both of them with respect to the root
R. Then either A # B or L # L' implies an efficient computation of a collision
of H.

Proof

We define Wy := L and W,_; := H(l;,r;) for 0 < j < N, where [; = W; and
r; = P; in case | 55— ] is even and [; = P; and r; = W; otherwise. In an analogous
way we define W} for 0 < j < N.

If A# B, set k= mini<jen{j | P; # Pj}. We know that Wy = W = R, so
if there exists 0 < jo < k such that Wy, # Wi and W; = W for 0 < j < jo then
H(l,r) = Wjo1 = W, = H(l',r"), where | = Wjj,r = Pj,,l' = Wi ' = P}
in case |gx7] is even and [ = Pj,r = Wj,,I' = P} ,r" = W} otherwise. This
implies (I,7) # (I',r") although H(l,r) = H(I',r"). This means we have found
a collision of H. Thus we have that Wj;_y = W/_, and then H(l,r) = W)_; =
Wi_, = H(l',r"), where | = Wy,r = P, l'! = W/,7’ = P/ in case | z5—] is even
and | = Py, r = Wy, l' = P/, v’ = W] otherwise, which implies that (I,r) # (I',7")
although H(l,r) = H(I',r"). As before this means we have found a collision of H.

If A= B and L # L', then we can assume that Wy_; = Wix/_;. This can
be seen as follows: notice that Wy = W{, now if there is 1 < j, < N such that
W; = Wi for 0 < j < jo and Wj, # Wi, then we proceed in a similar way
as in the case A # B in order to find a collision for H. So H(l,r) = Wx_1 =
Wxi—y = H(l',r"), where | :== L,r := Py,l' := L',r’" :== P}, in case i is even or
l:= Py,r = L,l' := P}, := L otherwise, although (I,r) # (I', 7). O

Proposition 1.5 Security of the original Merkle signature scheme. Let
H be a (ter, €r) collision resistant hash function and let 1Sign = (1Gen, 1Sig, 1Ver)
be a (tis,€15) one-time signature scheme, such that €.. < % and tis,te > t+ (N +
Dty + 2Vts + tg + ty for some t and some N < |—logyeis|. Here t;, denotes
the time needed to compute a hash value, tg the time needed to compute a one-
time signature, ty the time needed to compute a one-time verification and tg the
time needed to generate a key pair for the Merkle signature scheme. Under this
assumptions, for € = 2max{e., 2N e} the oMss Sign = (Gen, Sig, Ver) is (t,¢,2V)

existentially unforgeable under adaptive chosen message attack.
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Proof

The idea of the proof is as follows. If the Merkle signature scheme is exis-
tentially forgeable under an adaptive chosen message attack, then there exists a
forger F. In this case we are able to construct an algorithm A which obtains ei-
ther a collision of H or a forgery of the underlying ots. Given as input a one-time
public key Pu and an oracle O;sjg to sign a message with the private key Pr corre-
sponding to Pu, the algorithm A generates a random instance of the oMss which
consists of a public key PK and almost a private key SK with the given oracle
O1sig. A uses the forger F to obtain with “high” probability a message and its
forged signature (M’ (i,7.,,,Y" Pk, ..., Pl)) « F5CSE)(PK). All the required
messages M; to be signed and their corresponding signatures o; are kept. Recall
that the forger must give a forged signature of a message which was not required
to be signed. A computes a genuine signature o; = (i, Tos, Y, Py, ..., P1)) for the
obtained message M;. If the number of queries is greater than ¢, then such mes-
sage was a query and its signature is already computed. Otherwise it must be kept
signing the message M’ until the signature number 7 is reached. A efficiently finds
a collision if (Y, Py,..., P{) # (Y, Py, ..., P1). Otherwise, with high probability
A outputs (M', 7),,) as a forgery of the underlying ots.

Now, suppose that the Merkle signature scheme can be existentially broken via
a 2% message attack within time ¢ and probability e. Then we prove that at least

one of the following holds:

e A collision can be found for the underlying hash function with probability

at least ¢, and within time ¢,.

e The underlying one-time signature scheme can be existentially broken with

probability at least ¢, and within time 4.

The assumption of the insecurity of the oMss implies the existence of a forger

F = {F1, F>} such that

Pr[Ver(M, o', PK) = 1| (SK, PK) — Gen(N); T « FyE-S5 ) (PR, (M, 0") —
fQ(T)] Z €

within time ¢.



1.5. Efficiency and security of the Merkle signature scheme 33

This forger will be used by the algorithm A = {A;, A2} we construct below.
A will receive as input a one-time public key Pu and an oracle Oss;g which signs a
message with the corresponding private key Pr. A will output either a forgery for

the underlying one-time signature or a collision of the underlying hash function.

Given as input a one-time public key Pu and its corresponding signing ora-
cle Oisig, A works as follows. Generating a random instance of the orig-
inal Merkle signature scheme: A; chooses 0 < iy < 2V at random and
sets Y;, « Pu. Now for 0 < i < 2V with ¢ # 4y, A; obtains (X;,Y;) «
1Gen. From all the H(Y;)’s as leaves of the Merkle tree, .A; obtains the Merkle
tree’s root R. In this case, an instance of the Merkle signature scheme is com-
puted. The public key is PK = (N, R). As secret key SK, A uses X; Vi #
19, Y; Vi # 1o in case that Y; cannot be obtained from X;, Y, and addition-
ally the oracle O;sj; which signs a message with the one-time private key cor-
responding to Y;,. Using F to obtain a forgery with high probability:
A, calls F; and obtains T « flsig("SK)(PK). A uses its SK to sign each
query of F; and keeps the queries with their corresponding signatures. A; out-
puts (T, k, (Mo, 0¢), ..., (My_1,0%-1), SK), where k is the number of queries made
by Fi, M; are the queries themselves and o; their corresponding signatures for
0 <j < k. Given as input (T, k, (Mo, 0¢), ..., (My_1,0%-1), SK), Ay calls F, with
T as input and obtains a pair (M, ¢’) with probability > € that is a forged signa-
ture o’ of a message M. If o/ = (i,7",Y', Py,..., P]) is a forged signature of the
message M, A, obtains the genuine signature of the message M; as follows: if i < k
the pair (M;, 0;) is already computed, otherwise Ay keeps calling Sig(M’, SK') un-
til the signature number ¢ is reached. Here o; = (i,7,Y;, Py,...,P;). Finding
efficiently a collision: A, sets A = (P},...,P]) and B = (Py,...,P;). Under
the assumption that o’ is a forged signature and o; is a genuine signature, we have
that A is an i-labeled authentication path for the leaf H(Y') and B is an i-labeled
authentication path for the leaf H(Y;), both of them with respect to the root R. If
Y'#Y, but HY') = H(Y;), then a collision is already found. If (Y’ A) # (V;, B)
then A outputs the collision which is found by Lemma 1.4 on page 30. Finding
a forgery for the underlying one-time signature scheme: Otherwise, A,

outputs (M, ') as a forgery for the underlying ots.
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Let p be the probability that (Y’, A) obtained by F and (Y, B) obtained by
the signature algorithm are different. We know that F produces a forgery with
probability > €. Thus, if p > % then A finds a collision of H within time ¢, with
probability at least § > ... Else with probability 2%,, the forged signature output
by F satisfies that i = ig. Hence, the attack by A on the one-time signature

scheme succeeds with probability at least %QLN > €1, within time 5. O

1.5.2 Efficiency

In Table 1.7 we show the size of the secret and public key as well as the size of the
signature. The notation is as follows: I, is the maximal size of a one-time signing
key, l,er is the maximal size of the corresponding one-time verification key, g, is
the maximal size of the corresponding one-time signature, [;,,; is the number of bits
needed to store the counter, and s is the bit size of the output of the underlying
hash function. In the third column we also show an example. We set [;,; = 32 bits

and consider the iLDots with pseudorandom key.

Table 1.7: Efficiency of the oMss (size)

Size
in bits s =160, N =18
Public key S+ Lint 24 bytes
Secret key 2N on ~ 56.8 Mb
Signature | lint + lsig + lyer + Ns ~ 2.15 Kb

The Merkle tree is not suitable for being stored and for this reason an efficient
way for computing authentication paths is required. Szydlo presented in [Szy03]
an efficient algorithm for such task. Only up to 3/N nodes must be stored and up to
N computations must be made. We take as worst case the computation of leaves
instead of only inner nodes in the Szydlo algorithm. Table 1.8 shows estimates of
the time needed for an instance of the oMss, where ti¢,t1g,t1v, ts, tr and t,, are

the times needed to generate a one-time key pair, to compute a one-time signature,
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to verify a one-time signature, to compute a hash value, to compute a Merkle tree’s

leaf and to generate a random bit string of size s, respectively.

Table 1.8: Efficiency of the oMss (time)

Time
Key generation | 2N (t16 + 2t), + t,4) — th
Verification tiv + Nty
Signature tis + Ntp

1.6 Two improved versions of the Merkle signa-

ture scheme

We develop two version of the Merkle signature scheme. One of them is forward
secure, while the other one has in addition a practically unlimited number of

possible signatures.

A forward secure version of the Merkle Signature Scheme. We modify the
original Merkle signature scheme in order to transform it into a forward se-
cure one. Note that if all the one-time signing keys are stored and each
one of them is deleted after its use, the resulting Merkle signature scheme
is forward secure, where each period consists of exactly one signature. In
this case, the private key of the Merkle signature scheme is as big as the
stored one-time signing keys. In our version, the size of the private key is re-
duced by employing a pseudorandom bit generator and a one-time signature
scheme with deterministic key-generation. Bellare and Yee have shown in
[BY03] how to construct a forward-secure pseudorandom bit generator from
a cryptographically secure pseudorandom bit generator. The use of that bit
generator enables us to prove that our new version of the Merkle signature

scheme becomes forward secure.
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Key generation process split through the signature process. In the orig-
inal Merkle signature scheme, the number of possible signatures is 2%V, where
N is the depth of the Merkle tree. The bigger the parameter N is, the slower
the key generation process becomes: during key generation 2¥*1 — 1 hash

values and 2% one-time key pairs have to be computed.

We present a version where part of the key generation takes place during
the use of the signature algorithm. This permits the use of sufficiently large
parameters to allow for a practically unlimited number of signatures while
keeping the cost of the initial key generation process low. The basic idea is
to use one “main” Merkle tree to authenticate the roots of a series of other
“secondary” trees. Only one of the secondary trees is kept at a time. During
the use of one secondary tree, the next one is generated, namely two nodes

at a time per signature.

1.6.1 First improved version of the Merkle Signature Scheme

We can save space for the private key in the Merkle signature scheme if we can
compute a specific one-time-signature key pair any time we need it, that is why we
need a deterministic key generation. This goal can be reached considering a cryp-
tographically secure pseudorandom bit generator. Recall that a pseudorandom bit
generator (prg) g : {0,1} — {0, 1}*" is cryptographically secure if g(U;) and Upyp
are computationally indistinguishable, where U, denotes the uniform distribution
on {0, 1}*. The basic idea of our first proposal is (i) to create “generators” for the
needed seeds of the ots with deterministic key generation through the prg, (i) to
keep some of the “generators” as auxiliary data in order to compute from them
the necessary seeds during the signing process and, finally, (7i7) to erase each seed
and its corresponding one-time-signature private key after it has been used to sign
a message.

The security parameter s relies on the size of the output of the underlying
hash function. We assume that 1Sign = (1Gen, 1Sig, 1Ver) is a one-time signature
scheme with deterministic key generation algorithm (e. g. the iLDots with pseudo-
random key) and that there exists PRG : {0,1}* — {0,1}* which is a (f,.4, €prg)

pseudorandom bit generator and u > 2s. In this version we take into account
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the algorithm presented by Szydlo in [Szy03|; which sequentially, but efficiently,
computes authentication paths in a Merkle tree. Because of Szydlo algorithm 3NV
nodes of the Merkle tree must be considered as auxiliary data for signing, where
N is the depth of the Merkle tree.

Scheme 1.15 First improved version of the Merkle signature scheme iMss.

Key generation algorithm Gen. Given as input N € IN, Gen chooses g_; €x
{0,1}* and obtains the key pair (X;,Y;) « 1Gen(seed;) for each 0 < i < 2V,
where (g;, seed;) < PRG(g;—1). Asin Scheme 1.14 on page 28, Gen computes

i, for 0 < j < Nand 0 <45 < 27.

Gen outputs the tree’s depth N and the tree’s root R as the public key. As

the private key would suffice g_;. However, to reduce the computation while

the corresponding Merkle tree, i.e. Kj

signing the g; and up to 3N nodes needed by the Szydlo algorithm must be
stored, where j = qQ% —1for0<g< 2%. The signer must keep a counter
in order to sign sequentially. At this point such counter must be initialized

to zero.

Signature algorithm Sig. Let i be the counter. Given as input the message M

1
obtains (g;, seed;) < PRG(g;_1). Then, it calls (X;,Y;) < 1Gen(s, seed;).

It computes the one-time signature of the message 7 < 1Sig(M, X;) and

and the private key, which contains g;_; and 9, for LLNJ <qg< 2%, Sig
- z

applies the Szydlo algorithm to compute (Py, ..., P;), the i-labeled sibling
path for the leaf H(Y;). Sig outputs the signature o = (¢,7,Y;, Py, ..., P)
and finally, Sig stores g;, deletes g;_1 and seed;, and after that increments

the counter 7 by one.

Verification algorithm Ver. This algorithm remains the same as in Scheme 1.14

on page 28.

Secret key update algorithm Upd. This algorithm is inherent to the signature
one. The private key is changed after each signature. A period consists of

only one signature instead of time.
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1.6.2 Security of iMss

Bellare and Yee define in [BY03] the concept of forward-secure pseudorandom bit
generator and give its construction from any pseudorandom bit generator. This
tool allows us to prove easily that iMss remains not only secure, but also forward
secure.

First we will prove in Proposition 1.6 that iMss is not existentially forgeable
under adaptive chosen message attacks. After that, we will prove in Proposition 1.8

on page 41 that iMss is also forward secure.

Proposition 1.6 Let H be a (., ¢€..) collision resistant hash function, let 1Sign be
a (t1s, €15) one-time signature scheme with deterministic key generation algorithm
and let PRG be a (tprg, €prg) pseudorandom bit generator, such that 2V 2e,,, < 1,
€or < 3o ter >+ (N4 1)t + 2N+ 1y, trs > t+ 2N+ 1y and tyy = t+1,+ 2Vt +
ty+O0(2N*s) for somet and some N < |—log, %], where ty, is the time needed to
compute a hash value, t, is the time needed to compute a one-time signature, t, s
the time needed to verify a Merkle signature and t, is the time needed to generate a
key pair for the Merkle signature scheme. If € = max{4e., 2" 2e;,, 2V 2¢,,,}, then
the iMss Sign is (t, ¢, 2") existentially unforgeable under adaptive chosen message

attacks.

Proof

The idea of the proof is as follows. We know that the oMss is secure as proven
in Proposition 1.5 and that prg is cryptographically secure by hypothesis. If the
iMss is not secure, then there exists a forger F for iMss. Using F, we can construct
a distinguisher A = {4;, A} for the prg, what would contradict the security of
the prg. Basically, A collects all the 2V permitted values. From such values, A
computes a Merkle key pair, which is a random instance of either oMss or iMss,
depending on how the values were generated. A calls F to try to obtain a forgery.
A returns 1, if F returns a forged signature within the permitted time. That is,
the success of F implies with “high” probability that the values come from the
pseudorandom bit generator, since the iMss is not secure. Otherwise, A returns
0. That is, the failure of F implies with “high” probability that the values were

randomly chosen, since the oMss is secure.
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Now, under the assumption that H is a (.., €4.) collision resistant hash func-
tion and that 1Sign is a (¢4, €15) one-time signature scheme, if the iMss can be
existentially broken via a 2V message attack within time ¢ with probability at
least €, we can construct a distinguisher A for the (fsprg, €fsprg) forward-secure
pseudorandom bit generator G = (G.key, G.next, s, 2") obtained from PRG. Here
trsprg = t+ 1y + 2Nt + Ly, €rprg = 2V T eprg, and G is as in Proposition 1.1 on
page 14.

Thus, suppose the existence of a forger F = {F;, F2} such that

Pr|Ver(M, o', PK) = 1| (SK, PK) «— Gen(N); T — Fys"95)(PK); (M, 0") —
Fo(T)] > €
within time ¢.

Using the notation of definition 1.11 on page 14 and table 1.2 on page 15, the
distinguisher A = {A4;, A>} is constructed as follows. Collection of all permit-
ted values: The parameter h is initialized as the null string A. Having as input
Out; and h, A; updates h « h||Out; and outputs (not_guess,h). Generation
of a random instance of either oMss or iMss: Given as input Sty,~v_; and h,
Aj obtains Out; from h for 0 < i < 2V and computes (X;,Y;) <+ 1Gen(Out;) Vi
and the Merkle tree’s nodes Kj,kj fromY; (0<j<N,0<k; < 2j). As secret key
SK, Ay retains all X;,Y; and the nodes Kj, needed by the Szydlo algorithm for
efficiently creating authentication paths. As public key PK, Ay outputs (NN, R),
where R is the Merkle tree’s root. A, deletes X; after its employment in 1Sig.
Use of F to try to obtain a forgery: A; calls F;(PK) and uses the secret
key SK to sign queries of F; as an oracle for F;. As uses the output 7" from
Fi as input for F, in order to obtain (M, ¢’). Distinction between random
and pseudorandom values: If (M, ¢’) is a forged signature, then A, outputs 1.
Otherwise A outputs 0.

Note that in EXpéSprg_O(.A), A, obtains a random instance of the iMss and in
EXpéSprg_l(A), Aj obtains a random instance of the oMss.

Because of the assumption of the insecurity of the iMss, we have

Pr[ExpéSprg_l(.A) =1]>e€

within time ¢ 4,4 On the other hand
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Pr[Expgsmg'O(A) —1]<

olo

within time ¢,,,, because of the assumption of A and 1Sign, which implies that the
oMss is (t, 5, 2NV existentially unforgeable under adaptive chosen message attacks
as proven in Proposition 1.5 on page 31.

Therefore,

PriExpiP 8 (4) = 1] - PriExpeP804) = 1] >

N+1
; > 2

€
) €prg = Efsprg

within time ¢ ¢,,.4, which contradicts Proposition 1.1 on page 14.

1.6.3 Forward security of the iMss

As described in Scheme 1.15, the secret key update process is intrinsic to the
signature one and cannot be called at any time. Each period consists of a certain
number of signatures instead of time. We will prove that the iMss is also forward
secure.

With the notation in Scheme 1.14 the oMss can be modified as follows.

Signature algorithm Sig. Having as input a message M, Sig uses (X;,Y;) in
order to obtain 7 « 1Sig(M, X;). It computes the i-labeled sibling path for the
leaf H(Y;), outputs (i,7,Y;, Py,..., P1), deletes X; and then increments i by one.

The Key generation algorithm Gen and the verification algorithm Ver
of the original Merkle signature scheme remain the same.

The private key at the period 7 is either

SK; = {Xj}icjcon or SK; = {(X},Y)) }icjcon.

Secret key update algorithm Upd is inherent to the signature algorithm.

This modified version is forward secure.

Lemma 1.7 With the hypothesis of Proposition 1.5 on page 31, this modified oMss
is (t,€,2N) forward secure, where the number of periods is 2V and each period

consists of only one signature.
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The proof of Lemma 1.7 on the preceding page is similar to the one of Propo-
sition 1.5 on page 31. Note that each instance of the underlying ots is chosen at
random and is independent of each one of the others. Thus, if certain one-time
private key is deleted after its use, then the knowledge of the other ones does
not give any information at all of the deleted one. Therefore, when an adversary
modeled by an algorithm A attempts to forge a signature, the knowledge of the
Merkle private key after k signatures does not give to A any information at all
of the one-time secret keys X; (0 < i < k). Recall that each period consists of
only one signature instead of time. A forged signature of a previous period of k
would result in an efficient computation of either a collision or a pre-image of the

underlying hash function as in the proof of Proposition 1.5.

Proposition 1.8 With the hypothesis of Proposition 1.6 on page 38. The iMss is

(t,3¢,2N) forward secure, with each period consisting of only one signature.

With the hypothesis of this proposition and by Lemma 1.7 on the facing page,
we have that the modified oMss is (¢, 2¢, 2"V) forward secure. We know that the prg
is cryptographically secure by hypothesis. If the iMss is not forward secure, we are
be able to construct a distinguisher A for the forward-secure pseudorandom bit
generator obtained from PRG, contradicting the assumption of the cryptographi-
cally security of the prg and Proposition 1.1 on page 14. The construction of A is
analogous to the one made in the proof of Proposition 1.6.

As in the proof of Proposition 1.6, basically, A collects all the 2V permitted
values. From such values, A computes a Merkle key pair, which is a random
instance of either the modified oMss or the iMss, depending on how the values
were generated. A calls F to try to obtain a forgery. A returns 1, if F returns a

forged signature within the permitted time. This fact means that

PriExpoPT8(4) = 1] > 3¢

within time ¢z, since the instance generated by A is an iMss one, which is not

(t,3¢,2N) forward secure. Otherwise, A returns 0. This fact means that

Pr[Expgsmg‘O(A) —1] < 2
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within time ¢,,,, since the instance generated by A is a modified-oMss one, which

is (t,2¢,2") forward secure. Therefore we have that

Pr[Expgsf’rg'l(A) —1] - Pr[Expgsmg'O(A) — 1] >e> 22,0 > €foprg

within time ¢ ¢,r4. This last inequality contradicts Proposition 1.1.

1.6.4 Efficiency of iMss

Recall that by Szydlo algorithm [Szy03] authentication paths can be efficiently
computed in time N and space less than 3V, where the unit of space is the size
of the nodes and the unit of computation is a hash function evaluation or leaf
value generation. These two different types of computation are treated the same
way by Szydlo. In our estimates we will consider as a unit of computation the
leaf value generation, whose computation time is bigger than the one of a hash
function evaluation.

In Table 1.9 we show the size of the secret and public key and the one of the
signature, too. The notation is as follows: [, is the maximal size of a one-time
signing key, [, is the maximal size of the corresponding one-time verification
key, I, is the maximal size of the corresponding one-time signature, l;,,; is the
number of bits needed to store the counter and s is the bit size of the output of

the underlying hash function. In this version, the secret key has been reduced.

Table 1.9: Efficiency of the iMss (size)

Size in bits
Public key S+ lint

Secret key | s (2[%1 + SN) + Lint
Signature | lint + lsig + lyer + Ns

In Table 1.10 we show estimates of the time needed for an instance of the iMss,
where t1¢,t1s, tiv, th, tr and £,,, are the times needed to generate a one-time key

pair, to compute a one-time signature, to verify a one-time signature, to compute
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a hash value, to compute a Merkle tree’s leaf and to generate a pseudorandom bit

string of size s, respectively.

Table 1.10: Efficiency of the iMss (time)

Time
Key generation | 2V (t1g + 2ty + tyrg) — th
Verification t1v + Nty
Signature tis+ N(tp + 2f%1tp7ng)

In our estimate we consider the following worst case: N leaves must be com-
puted by the Szydlo algorithm and the seed needed to compute each leaf must be
generated through 2l% ] calls to the prg.

1.6.5 Second improved version of the Merkle signature

scheme

We can reduce the time needed for the key generation and for the signature process.
The idea is to split the generation of the private key during the lifetime of the
instance. Recall that the Merkle signature scheme transforms an ots into a multi-
time one. Then, we can use an instance of the iMss for “certifying” public keys of
auxiliary instances. In this way, the size of the signature is increased, but the size
of the private key and the time needed to sign are reduced.

Let MSign = (MGen, MSig, MVer) be the iMss as described in Scheme 1.15 on
page 37. Next we describe our second version of the Merkle signature scheme.
The security parameter relies on the bit size of the underlying hash function. This

time, each period consists of up to 2V signatures instead of time.

Scheme 1.16 Second improved version of the Merkle signature scheme (iMss with

split key).

Key generation algorithm Gen. Having as input the parameter 2N, for 22V

possible signatures, Gen calls twice MGen(N) to compute two pairs of iMss
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private and public keys. Omne pair of them is the main key (SKy;, PKy)
and the other one is a secondary key (SKg,, PKg,). MGen computes (5 =
MSig(PKs,, SKy;) and outputs PK)y; as the public key and (SKjy, SKg,)

as the private key.

The signer must keep two counters. One of them counts the number of
generated signatures modulo 2V, which at this point must be initialized to
zero, and the other counts the number of signatures created by the main
private key minus one, which at this point must be initialized to zero. The
signer must also keep ({y, PKs,), which are the signature of the secondary

public key and the secondary public key itself.

Recall that the iMss public key is of the form PK = (N, R), where R is the
Merkle tree’s root. Thus, it suffices to sign R instead of PK.

Signature algorithm Sig. Let ¢ and j be the counters described in the previ-

ous Key generation algorithm. Given as input a message M and the se-
cret key (SKu,SKs,), Sig computes 7; < MSig(M, SKg;) and sets 0 =
(73, PKs;,(j). Sig increments 7 by one.

Recall that the iMss private key evolves after each signature.

If at this point 7 = 0 mod 2V, Sig calls MGen(N) to obtain another sec-
ondary key (SKs,,,, PKs,,,) then computes (j41 < MSig(PKs,,,, SKu).
Sig sets ¢ «+ 0 and increments j by one. Finally, Sig outputs the signature

o. The signer must know ({j, PKs,) at any time during the j + 1-th period.

Verification algorithm Ver. Having as input a message M and a signature o =

(1, PK’,(), Ver accepts the signature unless MVer(M, 7, PK') = false or
MVer(PK',(, PKy) = false.

Secret key update algorithm Upd. Given as input the secret key (S K, SKg;)

at the j + 1-th period, Upd calls MGen(N) to obtain another secondary key
(SKs,.,,, PKs,,,), then computes (j11 < MSig(PKs,,,,SKy). Upd sets
¢ «— 0 and increments j by one. Recall that the iMss private key evolves
after each signature. The signer must keep the new ((;, PKg;) and deletes

the old one.
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1.6.6 Security of the iMss with split key

This iMss with split key uses random and independent instances of the iMss. There
is a “main” instance and a “secondary” instance at a time. Intuitively, the iMss
with split key is not existentially forgeable under adaptive chosen message attacks,
since each instance of the underlying iMss it is also. In other words, a forgery of

the iMss with split key implies a forgery of an instance of the iMss.

Proposition 1.9 Let MSign be the iMss as described in Scheme 1.15 on page 37.
Let MSign be (L, €ms, 2V) forward secure, such that t,,s > t+2N (2Nt g, +tgen) and
2N*e,.o <1 for some t, where ty, is the time needed for MSig to sign a message
and tgyen, is the time needed for MGen to generate a key pair. Then the iMss with
split key Sign, as described in Scheme 1.16 on page 43, is (t, €, 22N) forward secure,

where € = 2N*1e,

Proof
The idea of the proof is as follows. If the iMss with split key can be broken
via a 22" message attack, then there exists a forger F which succeeds with “high”
probability in forging signatures. In that case we are able to construct an algo-
rithm A which breaks one of two given random instances of the iMss within time
tms and probability at least €,,s. Basically, having as input two public keys of
random instances of the iMss and their oracles to sign messages and to obtain the
corresponding private key, A constructs a random instance of the iMss with split
key from that input. A uses F to obtain a forgery of the iMss with split key with
“high” probability. Finally, A gives a forgery of one of the two given instances of
the iMss with “high” probability. That fact would contradict Proposition 1.8 on
page 41.
Now, if iMss with split key is not (¢, ¢, 22) forward secure, then there exists a
forger F = {F1, F»} such that

Pr[Ver(M,(l,0"), PK) = 1| (SKy, PK) «— Gen(N); T «—
FoECSKUd Py (M (1, 0')) — Fo(T, SKy) and 1 < k] > ¢

within time ¢.
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Let (N, R4) and (N, Rg) be the public keys of two random instances of the
iMss. Let Ox_sig be the oracle for signing messages with the private key corre-
sponding to the public key (N, Rx) and let Ox_sk be the oracle for obtaining the
private key corresponding to the public key (N, Rx), where X = A, B.

We construct an algorithm A = {A4;, A2} as follows.

Generation of a random instance of the iMss with split key: Having
as input (N, R4) and (N, Rp), A; chooses 0 < j, < 2V at random and sets
PKy < (N, Ra), the “main” public key, and PKs, « (N, Rp), the (jo + 1)-th
“secondary” public key. A; proceeds to generate an instance of the iMss with split
key. Let 7 be the counter of the signatures created by the “main” secret key, i. e.,
by the oracle Oa_sig, and let ¢ be the counter of the signatures created by the
secondary private key. If j # jo, the signatures are made by the instance of the

iMss created by A;. Otherwise, the signatures are created by Og_gjg.

Use of F to try to obtain a forgery: A; calls F(PK),) and signs queries
from F; using Oa_sig and Op_sjg. if necessary. If F; calls the secret key up-
date algorithm, 4; obtains the secondary key (SKji1, PKji1), computes (1 <
Op_sig(PK;4+1) and then increases j by one. If 7" is the output of Fy, A; outputs 7.
Giving as input 1, As obtains SKy; « Ox_sk. If 7 = jo, As calls SKSj — Op_sk.
Ay calls Fo(T, {SKy, SKsg,}). Since F is a forger of the iMss with split key, 5 out-
puts a message M and a forged signature (7;;, Pu’, (;) with probability at least € of
a previous period j' < j. In that case, we have that Ver(M, (7, Pu’, (;1), PKy) =
true implies MVer(M, 7/, Pu') = true A MVer(Pu', (., R) = true.

Obtainment of a forgery of iMss: If Pu’ # PKg,, A, outputs (Pu', ()
as a forgery of iMss with respect to the public key (N, R4). Otherwise, we have
that j' = jo with probability at least 35 and then A, outputs (M, 7y/) as a forgery
of iMss with respect to the public key (N, Rp).

Let p = Pr[Pu # PKs, | (M, (1, Pu',(jr)) < F]. We know that F succeeds
in forging a signature with probability at least e. Thus, if p > %, then A outputs

a forgery of iMss with respect to the public key (N, R4) with probability at least
$ > €ms. Otherwise, A outputs a forgery of iMss with respect to the public key
(N, Rp) with probability at least 55x > €. Being both cases within time t,,,,
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this contradicts the security of the iMss.

1.6.7 Efficiency of the iMss with split key

In Scheme 1.16 on page 43 the signature algorithm is not optimized yet. The
computation of the Merkle tree of the third instance can be constructed during
the creation of each signature by computing two nodes at a time. The computation
of the needed leaves by the Szydlo algorithm for the main Merkle tree can be made
through the signature process. In this way as a worst case we compute for the
main tree only an extra prg value and a leaf instead of N 2% prg values besides the
corresponding leaves. After 2V signatures 2¥+! — 1 nodes of the third tree would
have been created, that is the whole tree. The needed leaves needed by the main
tree would be also computed. In such a case the N nodes needed by the Szydlo
algorithm and the seeds needed for the third instance must be stored, besides the
nodes and seeds needed for the main and secondary instances and the (up to) N
nodes needed during the Merkle tree computation of that third instance. We take
the previous note in our estimates.

In case the secret key update algorithm is called, the construction of the the
third Merkle tree must be finished.

In Table 1.11 we show the size of the secret and public key and the one of the
signature, too. The notation is as follows: [,.. is the maximal size of a one-time
signing key, [, is the maximal size of the corresponding one-time verification
key, ls, is the maximal size of the corresponding one-time signature, l;,, is the
number of bits needed to store the counter and s is the bit size of the output
of the underlying hash function. Even though a signature and a public key of a
one-time signature scheme is not a secret value, we include this two elements in
the private key of iMss with split key as auxiliary values. That is because they
are needed in the signature algorithm and it is a waste of time to recompute them
each time a signature is created. The number of possible signatures is 2V and each

period consists of up to 2% signatures instead of time. We consider even values of
N.
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Table 1.11: Efficiency of the iMss with split key (size)

Size in bits
Public key S+ lint
Secret key | s (2[%%1 + 4N) + lsig + lyer + 2Ly
Signature 2(lint + lsig) + lyer + Ns

In Table 1.12 we show estimates of the time needed for an instance of the iMss
with split key, where ¢1q,t1s, tiv, th, {1 and 1., are the times needed to generate
a one-time key pair, to compute a one-time signature, to verify a one-time signa-
ture, to compute a hash value, to compute a Merkle tree’s leaf and to generate a

pseudorandom bit string of size s, respectively.

Table 1.12: Efficiency of the iMss with split key (time)

Time
. ﬂ+1
Key generation 22T (tig + 2ty + tyrg) — 2ty + tis
Verification 2ty + Nty
Signature otrg+ Ntr + 205 1e,,,) + 3ts + 2,y
N
Secret update | tys + 2% (tig + 2ty + tyrg) — by + Xt + 205 11,,,)

In our estimate we consider the following worst case: % leaves must be com-
puted for the secondary tree by the Szydlo algorithm and the seed needed to
compute each leaf must be generated through ol 41 calls to the pre.

1.7 Practical Results

Now a days there exist hash functions whose bit length of their output is 160, 224,
256, 384 and 512. We make some estimates of security of the iMss and iMss with
split key, we take into account the previous bit lengths. We also make estimates

of the size of the private key, public key and signature.
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First we begin with estimates of the length of keys and signature. The under-
lying one-time signature scheme is the iLLDots. In Table 1.13 we show the length
of the private key, the public key and the signature. The number of possible sig-
natures for iMss and iMss with split key is 2. The bit length of the output of
the underlying hash function is s. Auxiliary values for signing are included in the

estimates of the length of the private key.

Table 1.13: Length of keys and signatures.

iLDots iMss iMss with split key
Public key S
Private key s (2% + 3N)s + ling (2% + AN + " + 1)s + 203
Signature ss” Uit + 8(s" +1+ N) 2 + (28" +2+ N)

in | s+3|logs s]
Here s = [—2

Now we make estimates of the time needed to generate keys, to sign a message
and to verify a signature. The underlying one-time signature scheme is the iLLDots.
In Table 1.14 on the following page we show estimates for the needed time to
generate keys, to sign messages and to verify signatures. The time needed for
computing a hash value, a pseudorandom value, a random value, and a hash value

whose input has s”s bits are denoted by thash: tpre, trg, and tHash, respectively.

In Table 1.15 on the next page we show some estimates related to the security
of the proposed schemes. We suppose that the birthday attack is the best one in
finding either a pre-image or a collision of a hash function. Thus, if the output of
a hash values has bit length s, then an adversary succeeds with probability < %
through 22 hash computations. That is why we consider % = 2371 Now, we
set thaen = 21 in order to estimate the security of the proposed schemes. For the
security and forward security of iMss we have used N = 20, which permits upto 22
possible signatures. For the security of iMss with split key we have used N = 20,

which permits up to 20 possible signatures. We have taken into account the
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Table 1.14: Time for generating, signing and verifying.

iLLDots
Generation key tGK = trg + SI/(tprg -+ 3thash) -+ tHash

Signature tsig = " (tprg + 3lhasn)

Verification tver = 38" thash + Hash

iMss iMss with split key
Generation key | 2 (tpre + tax + 2V thasn) 2% (tpre + tok + Q%thash)
Signature N (2% trg + tax) + tsig | X(27 torg + tak) + tsig + 4tak
Verification tver + Ntnash 2tver + Nthash

311
Here s” = {—” L;g2 SJW

il.Dots with pseudorandom key as the underlying one-time signature scheme. The
notation is as follows: ots, iMss, iMss-fs and iMss-sk stand for one-time signature,
improved Merkle signature scheme (without forward security), improved Merkle
signature scheme which is forward secure, and improved Merkle signature scheme

with split key, respectively.

Table 1.15: Security of the surveyed schemes. Several sizes of the output of the

underlying hash function hash are considered.

security
bit length s | 160 | 224 | 256 | 384 | 512
thash/ €nash 981 | 9113 | 9129 | 9193 | 9257

tOts‘Prg/EOtS—prg 967.9 | 999.4 | 9115.2 | 91787 | 92423

N < 24 40 47 78 109
244.9 276.4 292.2 2154.7 2219.3

tiMss/EiMss

tiMSS—fS/EiMss—fs 242.9 274.4 290.2 2152.7 2217.3

tiMss—sk/EiMss-sk 220.9 252.4 268.2 2130.7 2195.3

Brassard et al. present in [BHTS88] a quantum algorithm for finding a collision

in arbitrary r-to-one function F' : X — Y, such an algorithm returns a collision
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after an expected number of ©(v/X) evaluations and uses space O(v/X). Under the
assumption that the considered hash functions are 2-to-1 and that the quantum
computing does not reduce the time of hash value computations, we show the
quantum security estimates in Table 1.16. In this case we consider Ziﬁ = 2371,
Now, we set thasn = 26 in order to estimate the quantum security of the proposed
schemes. For the security and forward security of iMss we have used N = 10, which
permits upto 2'° possible signatures. For the quantum security of iMss with split
key we have used N = 10, which permits up to 22 possible signatures. We have
taken into account the iLDots with pseudorandom key as the underlying one-time

signature scheme.

Table 1.16: Quantum security of the surveyed schemes.

security
bit length s | 160 | 224 | 256 | 384 | 512

thash/ehash 254'3 275'6 286'3 2129 2171-6
tt /6 " 241.2 262 272.5 2114.7 2156.9
N < 11 ] 21 | 26 | 46 67

28.2 49 59.5 101.7 143.9
tiMss/EiMss 2 2 2 2 2

26.2 47 57.5 99.7 141.9
tiMss-fs/EiMss-fs 2 2 2 2 2

14.2 35 45.5 87.7 129.9
tiMss—sk/eiMss—sk 2 2 2 2 2

1.8 An on-line/off-line signature scheme

Even et. al presented in [EGM90] an on-line/off-line signature scheme. Roughly
speaking, an on-line/off-line signature scheme has (I) a key pair divided into:
a home-key and a user-key, and (II) an “on-line” process for signing messages
with the user-key and an “off-line” process for pre-computing, with the home-key,
necessary values during the on-line process. Even et. al proposed in their work a
generic scheme using a conventional signature and a one-time signature schemes.

We replace these signature schemes by two (not necessary different) multi-time
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signature schemes. The off-line phase of our proposal consists of: (I) generating
an instance of the multi-time signature scheme as the user-key and (II) signing the
public user-key with the private home-key. The on-line phase consists of signing
with the private user-key. A signature of the proposed scheme consists of ({, Py, 7),
where ( is a signature made by the private user-key, P is the public user-key and
7 is the signature of P, with the private home-key. As a practical on-line/off-line
signature scheme we use private keys of instances of the iMss and of the iMss
with split key for the home-keys and user-keys, respectively. We also give some
estimates of the efficiency of the proposed practical version and compare them
with RSA.

1.8.1 Ouwur Proposal

Next we reformulate the definition of an on-line/off-line signature scheme given by
Even et. al in [EGM90]. The goal of this kind of schemes is to take advantage of
two signature schemes. The first scheme could be “slower” than the second one,
whereas the second one could have a much more restricted number of possible
signatures than the first one. The combination of this two schemes permits to sign
“quickly” (on-line phase) with the second scheme, while the “slow” computation
of a signature made by the first scheme can be done off-line. The first scheme
is used to validate the public key needed to verify signatures of messages. Other
advantage of this kind of scheme is that the private keys of the underlying schemes

do not have to be stored in the same medium.

Definition 1.17 Let consider two signature schemes HSign = (HGen, HSig, HVer)
and USign = (UGen,USig,UVer). An on-line/off-line signature scheme Sign is a
quadruple, (Gen, Offline, Sig, Ver), of probabilistic polynomial-time algorithms de-
fined as follows:

Key generation algorithm Gen. Having as input the security parameter 1° and
maybe some other information (I, L), Gen computes two pairs (Hg, Hp) «
HGen(1%,I) and (Us,Up) «— UGen(1%, ;). After that Gen computes T =
HSig(Up,Hs). Hs and Hp are called the secret and public home-key, re-

spectively. Us and Up are called the secret and public user-key, respectively.
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Finally, Gen outputs Hp as the public key of the scheme, (Hs,Us) as the

secret key of the scheme and (T,Up, Iy) as auxiliary data.

Off-line algorithm Offline (off-line phase). Given as input the private home-
key Hg and the auxiliary data I;, Offline computes a new pair of private and
public user-keys (Us,Up) «— UGen(1°, I;) and a new T = HSig(Up, Hs). The

old private user-key must be deleted.

Signing algorithm Sig (on-line phase). Having as input the private user-key
Us, the auziliary data (T,Up) and a message M, Sig obtains ¢ = USig(M,Us)

and outputs 0 = (¢,Up, T) as the signature of the message M.

Verification algorithm Ver. Given as input a message M, a signature o and
the public key Hp, Ver accepts the signature o if UNer(M, s, Up) = true and
HVer(Up, T, Hp) = true. Ver rejects it otherwise. Here o = (¢,Up, T).

Now, our goal is to provide from two multi-time signature schemes an on-
line/off-line signature scheme which is also forward secure. In this case, we require
one of them to be also forward secure. Let mt;Sign and mt,Sign be two multi-
time signature schemes. Assume that one of these schemes is forward secure and
each period of it consists of certain number of signatures instead of time, besides
that the update of the private key can be done through the signature process,
i. e. suppose that mt;Sign = (mt;Gen, mt;Sig, mt;Ver, mt;Upd) and mt,Sign =
(mtyGen, mt,Sig, mtyVer), and that m, is the number of possible signatures in each
period of mt;Sign, and if Upd is not called, then the private key of mt;Sign is
intrinsically updated in mt;Sig after m; signatures. If the number of possible
signatures of mt;Sign is M;, where ¢ = 1,2, then we will construct an on-line/off-

line signature scheme with the following properties.
e [t is forward secure.
e Its maximal number of signatures is M; M.
e [ts period consists up to Mym; signatures.

e The time needed for its signature algorithm is the one needed by mt,Sig.
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e The time needed for its off-line phase is the one needed by mt,Gen and

mt;Sig.

e The time needed for its update process is the one needed by mt,Gen, mt;Sig
and mt;Upd.

Next we present our proposal of an on-line/off-line and forward-secure signature

scheme.

Scheme 1.18 Let mt;Sign and mt,Sign be two multi-time signature schemes,
where mt;Sign = (mt;Gen, mt;Sig, mt;Ver, mt;Upd) is additionally forward-secure
and mtySign = (mtyGen, mt,Sig, mtoVer). An on-line/off-line and forward-secure
signature scheme is a quintuple Sign = (Gen, Offline, Sig, Ver, Upd) defined as fol-
lows.

The algorithms Offline, Sig and Ver remain the same as in Scheme 1.17 on
page 52. The algorithm Gen additionally outputs a counter i as auxiliary data to
indicate the number of previous periods. The number of periods relies intrinsically

on the number of possible signatures of mt,Sign.

Secret key update algorithm Upd. Given as input the counter ¢ and the pri-
vate key with its auxiliary data, Upd updates the private home-key by a call
to mt;Upd. At this point the counter ¢ should be already incremented by
one. Upd obtains a new pair of user-keys (Us,Up) < mtoGen(1°, 7). After
that Upd computes 7 < mt;Sig(Up, Hg). Finally, it outputs Hp, (Hs,Us)
and (7,Up, Iy).

1.8.2 Security

The security of the proposed scheme is based on that of the underlying multi-time

signature schemes.

Theorem 1.10 Let mt;Sign be a multi-time signature scheme which is (tq, €1, M)
forward secure and whose period consists of my signatures instead of time, where

my < My, i. e. there exists at least two periods. Let mtySign be a multi-time
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signature scheme which is (ta, €2, M) existentially unforgeable under adaptive cho-
sen message attacks. Let define ¢ = 2 (C_Ll) max {€,cea}, where ¢ = {%—[{‘ If
e < 1, the Scheme 1.18 on the facing page Sig is (t,e, M) forward secure, where
t1,ta > t 4+ Mi(tmtyGen + tmtysig) + Mtmtysig, M = M1 My and each period consists
of miM, signatures instead of time. Here tmi,Gen,tmt;sig 0Nd tmi,sig are the time

needed for mt;Gen, mt;Sig and mt,Sig, respectively.

Proof

The idea of the proof is as follows. If Sign is not forward-secure, then we are able
to construct an Algorithm A which breaks one of two instances of the underlying
schemes. The insecurity of Sign implies the existence of a forger F. Thus, given
as input a public key Hp of scheme mt;Sign, a public key Up of scheme mt,Sign
and the necessary oracles, A must compute an instance of Sign. Then, A calls F
with the public key Hp and signs queries from F with its created instance and
with help of the oracles. With “high” probability F outputs a forgery of Sign for
a period 7' previous to the period 7 when the private key was required. From that
forgery A outputs with “high” probability either a forgery of mt;Sign or one of
mt;Sign.

Now, suppose that Sign is not (t,e, M) forward secure. Then there exists a
probabilistic algorithm F = {F;, F»} which run within time ¢ and its advantage
is

Pr{Ver(M, (', 0), PK) = true | (SKo, PK) < Gen(1*, {Ty. Tu});
(info,i) — fISig(-,SK),Ofﬂine,Upd(PK);
(M, (i, 0)) — Fo(SK;,info)
and ' <] <e,

the adversary obtains the secret key at the (i 4 1)-th period and the forgery corre-
sponds to the (i + 1)-th period. F; makes no more than Ms queries to the signing
oracle in each period and a total of at most M queries to the signing oracle across all
the stages. The probability is taken over the coin tosses of Gen, Sig, Offline, Upd, F;
and F;.

We construct an algorithm A = {A;, A2} which breaks one of the two un-
derlying schemes. Given as input PK,,;, and PK,,, the public keys of mt;Sign

and mt,Sign, respectively, and the oracles One;sig; Omt;sigy Omtyupd and Ogg for
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signing with the private key corresponding to PK,,,, signing with the private key
corresponding to PK,,;,, updating the private key corresponding to PK,,;, and
obtaining the private key corresponding to PK,,,, respectively, (Generation of
a random instance of Sign) A; sets Hp « PK,,;, and chooses 0 < iy < c at ran-
dom, where ¢ = [ﬁ—[{‘ If ig = 0, Ay sets Up, «— PK,,,. Otherwise, A; computes
(Us,,Up,) «— mtaGen(1°,Ty). A; obtains 7 «— Oy, sig(Up,). Signature oracle of
A; for Fi: Let i be the counter of previous periods (0 < ¢ < ¢). Having as input
a message M, j), where 0 < j < M, A; computes ¢ «— mtySig(M; j),Us,) in case
that i # ip. Otherwise, A; computes ¢ < Omy;sig(Mi;)). A1 keeps M, j) and
returns (¢,Up,, 7) as the signature of the message. Off-line oracle of A, for Fi:
¢ is increased by one. If ¢ = g, A; sets Up, < PK,,,. Otherwise, A; computes
(Us,,Up,) « mtaGen(1°,Zy). A; obtains T «— Oy, sie(Up,). Ax deletes the old pri-
vate user-key, if any exists, and keeps the public user-key. Update oracle of A,
for Fi: A; calls mt;Upd. At this point the counter i should be already incremented
by one. As for the off-line oracle if i = ¢, A; sets Up, « PK,,;,. Otherwise, A;
computes (Us,,Up,) «— mtoGen(1°,Z;,). Ay obtains 7 «— Omy,sig(Up,). A deletes
the old private user-key, if any exists. Secret key obtainment oracle of A for
F: if i = 1y, then A outputs “failure” and stops trying to find a forgery. Otherwise
A; has already Us,, then obtains Hg < Ogg and finally, outputs (Hs,Us,) as the

secret key.

Use of F to obtain a forgery: Now, A; calls F,(Hp) and signs queries of F;
as described above. The off-line oracle must be called at most each M, signatures,
when the update oracle has not been called in the middle of those M, signatures.
The update oracle can be called at any time, but not more than ¢. A; obtains
(info,1), the output of F1. With probability at least of 1 — % we have that i # i,
then with that probability A obtains the private key (Hg,Us,). Given as input
(info, {M ) Yo<k<i,i. Hs,Us,;), Az calls Fr(info, (Hs,Us,)) in order to obtain a
forgery (M, (7', o)) of Sign with probability at least e. If (i’,0) is a forgery, then
(¢',0) has the form (¢,Up,, 7). Az outputs (Up,,T) as forgery of mt;Sign in case
of Up, # %, or outputs (M, ) as forgery of mt,Sign otherwise.

Success of A in forging a signature: Let P be the probability that Uy, #
Up,. Recall that the probability that F obtains the private key of Sign when it
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requires it is at least 1 — %, and the probability that F forges a signature given

the private key is at least €. So, if P > =, A outputs a forgery of mt;Sign with
probability > (1 — %)5 > ¢, within time t;. On the other hand, if P < %,
then the probability that ¢ = i is % Thus, A outputs a forgery of mt,Sign with
probability > (1 — %) 2£ > €9 within time ¢5. Any of the previous cases contradicts
the assumption of either the forward security of mt;Sign or the security of mt,Sign.

O

1.8.3 Efficiency

Next we show the size and the needed time of the elements of the proposed scheme
in terms of the elements of the underlying schemes.

In Table 1.17 we show the size of the elements of the proposed scheme. The
values ((SK;),((PK;) and £(Sig;) are the bit length of the private key, the public

key and the signature, respectively, of the signature scheme mt;Sign for ¢ = 1, 2.

Table 1.17: Efficiency of the proposed on-line/off-line scheme (size)

Size in bits
Public key ((PK,)
Secret home-key ((SKy)
Secret user-key ((SKy)
Auxiliary values U(PKy) + £(Sigy)
Signature ((Sige) + ((PK3) + £(Sigy)

In Table 1.18 on the following page we show the time needed by the algorithms
employed by the proposed scheme. The values tmtGen, tmt;sig a1 tme,ver are the times
needed by the key generation, signature and verification algorithms, respectively,
of the scheme mt;Sign, for ¢ = 1,2. The value t,ypd is the time needed by the
secret key update algorithm of mt;Sign.
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Table 1.18: Efficiency of the proposed on-line/off-line scheme (time)

Time
Key generation tmt;Gen + ImtoGen
Signature Lmt,Sig
Verification Lty Ver + tmtyVer
Off-line phase ImtyGen T+ TmtsSig
Update Lmt;Upd T tmtaGen 1 Lty Sig

1.8.4 A Practical Case

In this Section we present a practical case of the proposed on-line/off-line sig-
nature scheme. We use the iMss and the iMss with split key as mt;Sign and
mt,Sign, respectively. Since multi-time signature schemes are more efficient than
conventional ones for certain parameters and although the number of signatures
are limited, our proposal is quite efficient and, in practical sense, unlimited in the
number of possible signatures.

We will use the iMss as described in Scheme 1.15 on page 37, M;Sign =
(M;Gen, M;Sig, M;Ver, M;Upd), to manage the home-keys and the iMss with split
key as described in Scheme 1.16 on page 43, but without the secret key update
algorithm, M,Sign = (M,Gen, M,Sig, M,Ver), to manage the user-keys. In this case
we output as part of the public key the integer Ny which denote the depth of the
secondary tree. Thus the public key is (R, N1, N;), where R is the root of the
main Merkle tree, N7 and Ny are the depth of the main and secondary Merkle
tree, respectively. Besides, note that the update algorithm is not necessary for
the application of the iMss with split key. After certain number of signatures,
the secret key of an instance of the iMss with split key is updated through the
signature algorithm.

In Table 1.19 on the next page we present the size of the private and public
key and the size of a signature. In that table s is the length of the output of the

%, lint is the bit length of the counter, and

underlying hash function, s” =
N; indicates that by M;Sign can be created up to 2%i signatures, for 7 = 1,2. With

the proposed scheme can be created up to 2V signatures, where N = N; + Ns.
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Table 1.19: Size of the keys and signature

Size in bits

Public key

Secret home-key
Secret user-key

Auxiliary values

Signature

s+ 2lint
Ny
S Q[T—I + 3N1) + lint

< (2[%1“ AN, + 8" + 1) 43l

s(s" 4+ Ny + 1) + ling

$(38" 4+ 3+ Ny + Nyi) + 3ling

An advantage of this scheme is that the user-key and the home-key do not have

to be stored in the same place. Another advantage is also that the off-line phase

could be done either at the beginning or at the end of the day when the private

key is used. In this last case, if we use N; = 14 and Ny = 16, we are able to sign

up to 2'% times per day during 2'* days. In Table 1.20 we give two examples of

the proposed scheme with hash functions whose size of the output is 256 and 384.

The auxiliary values has been included into the private user-key, since those values

are part of the signature which is made by such private key.

Table 1.20: Size of the keys and signature

home-key user-key signature security

in Kb in Kb in Kb E
Ny | Ny | N | 256 384 256 384 256 384 | 256 | 384
14 | 16 | 30 | 4.66 | 6.98 | 12.27 | 33.96 | 14.17 | 30.25 | 294 | 2158
20 | 20 | 40 | 33.87 | 50.81 | 13.96 | 36.48 | 14.46 | 30.7 | 288 | 2152

1.9 Pseudocode for the proposed algorithms

From page 61 to page 69 we give a pseudo-code for the algorithms presented in

this chapter.
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The parameter N allows to create up to 2V signatures. The iMss with split
key is much more efficient than the oMss and iMss. During the key generation
algorithm 2% one-time key pairs and pseudorandom numbers must be computed
by iMss, while only 2% one-time key pairs and pseudorandom numbers plus a

one-time signature must be computed in iMss with split key.

During the signature algorithm a new key pair of the Merkle signature scheme
must be computed after 2V signed messages. In this case, a signature requires
the same time as a generation key every 2V signed messages. Such time can be
spread along the signature algorithm itself. Two nodes of the Merkle tree can be
computed right after each created signature as part of the signature process. We

describe it in Algorithm 1.5 on page 64, which is employed in Algorithm 1.2.

By Szydlo algorithm up to IV Merkle tree’s leaves are computed and are spread.
Therefore, we must have an efficient way to compute them. If 0 < p < N and
q = N — p, then we can store 29 PRG’s outputs in order to compute each Merkle
tree’s leaf with up to 27 calls to the PRG.

In Algorithm 1.8 on page 67 we set p = L%J The auxiliary values Authy are
needed in the Szydlo algorithm, that is why they are computed, too.

The Szydlo algorithm Szydlo method is used as a black box in Algorithm 1.9
on page 68 in order to compute the i-th sibling path of a Merkle tree’s leaf needed
to compute a Merkle signature in an efficient way. This method uses as input the
values Authy, which are computed in Algorithm 1.8 on page 67. The auxiliary
Keepy, and Needy, are updated during each use of Szydlo method, for 0 < k < N.
The Szydlo algorithm outputs the sibling paths sequentially. The values Keepy

and Need), can be initialized to the null string for i = 0.

In the Szydlo algorithm a leaf must be computed calling Leaf-Calc. In Al-
gorithm 1.6 on page 66 the value of leaf leaf is obtained from Pr = {y;_1} U

{Xizo—1} LfNJ <l<2a-

Therefore, the signature algorithm of the iMss with split key is equivalent
to two calls to the signature algorithm of the iMss with parameter % plus the
computation of two nodes of a Merkle tree. The verification algorithm of the iMss
with split key is equivalent to two calls to the verification algorithm of the iMss,

but with parameter %
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The Merkle verification algorithm is presented in Algorithm 1.10 on page 69.
The improved versions for the key generation, the signature and the verification
algorithms are presented in Algorithms 1.1, 1.2 on the following page and 1.3 on
page 63, respectively.

In all algorithms we assume that the underlying hash function H and the one-
time signature scheme 1Sign = (1Gen, 1Sig, 1Ver) are known by all parties. Recall
that the security parameter s is inherent to the length of the output of H.

The improved Merkle signature scheme with split key generation algorithm is
described by the algorithms 1.1, 1.2, 1.3 and 1.4.

Algorithm 1.1 iMskGenKey Generation Algorithm of the iMss with split
key: obtainment of a key pair and auxiliary values for signing efficiently

Input: N =2N’

Output: Private and public keys (Pr, Pu) and auxiliary values

Procedure:

(Pra, Pug, {Authak}to<k<n’) < iMGen(N');
(Prg, Pup, {Authp i }o<k<n’) < iIMGen(N');
X < XA4,0 / * XA, extracted from Pry * /
xc < {0,1}* /% chosen at random (xc,—1) * /
imod_ 2N «— 0;
i_div_2"'_plus_1 « 0;
je= N
FL «— true;
k_at_level « O
¢ — iMSig(Pup, Pra,idiv2V _plus_1, {Authyy, Keepa, NeedA,k}gzlal);
Pu = (N',Puy) / * the public key * /
Pr = (Pra, Prg) / * the private key * /
/%
Keep the auxiliary values
{Authx ,, Keepx i, Needx i fo<k<nN’ x=4B: ((; Pugp), N, i_mod_2VV" =0,
i_div_2N'_plus_1 = 1, j, FL and k_at_level
*/

return (Pr, Pu, and the auxiliary values);
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Note:

and 1.

The functions iMGen and iMSig are described in Algorithms 1.8 on page 67
9 on page 68, respectively.
End of Algorithm 1.1

Algorithm 1.2 iMskSig Signature Algorithm of the iMss with split key:
Computation of a signature. Obtainment of a sibling path by Szydlo method.

Input: Message M, the private key Pr = (Pra, Prg, and auxiliary values)

Output: Signature o = (7, Pug, () and actualization of the auxiliary values

Procedure:

/* N =2N"x/

T

— MSig(M, Prg,imod_ 2", {Authp i, Keepp i, NeedB,k}fcvzlal);

0 (7—7 PuBaC);
miMGen(N', Prc, Puc, xco, {Authe Y1, j, k at_level, stack, FL);
if (i_div_2N'_plus_1 <= i_mod_2"")

fi

NLCom(y, i_mod_2N' index, needed_index, needed_leaf values);

imod 2V «— imod 2N +1;

if (0 ==i_mod_2"" mod 2N")

fi

(Prp, Pug) < (Prc, Puc);

(Pre, Puc) < empty_key_pair;

xc < {0,1}* /% chosen at random x* /
je N

k_at_level «— 6;

stack «— empty_stack;

FL + true;

X Xy idiv2™ _plus_1’

index «— 0;

Obtain needed_index from Szydlo_method with {Autha i, Keepa j, NeedA’k}é\lal
needed_lea f_values < vector_of _null_bit_strings;

¢ « MSig(Pug, Pra,idiv 2" _plus_1, {Authx, Keepa, NeedA,k}fLal);

i_mod_2V «— 0;

return o;
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Note: The functions miMGen, iMSig and N LCom are described in Algorithms 1.5
on the following page, 1.9 on page 68 and 1.6 on page 66, respectively.
End of Algorithm 1.2

Algorithm 1.3 iMskVer Verification Algorithm of the iMss with split
key: Verification of the validity of a signature with respect to a message

Input: Message M, signature o = (7,Y, () and public key Pu

Output: true for a valid one. Otherwise false.

Procedure:

/* N =2N"x/

if (iMVer(M,7,(N',Y)) == false)
return false;

fi

if (iMVer(Y, ¢, Pu) == false)
return false;

fi

return true

Note: The function iMVer is described in Algorithm 1.10 on page 69.
End of Algorithm 1.3

Algorithm 1.4 iMskUpd Update Algorithm of the iMss with split key:
Actualization of the private key and auxiliary data needed for the next period.
Input: Private key (Pra, Prg) and auxiliary data.

Qutput: Private key for the following period and auxiliary data.

Procedure:

while (5 # 0) do
miMGen(N’, Pr¢, Puc, xc, {Authc’k}szlal,j, k_at_level, stack, F'L);
od
(Prg, Pup) < (Prc, Puc);
(Prc, Pug) < empty_key_pair;
xc < {0,1}* /* chosen at random * /



64 Chapter 1. Signature Schemes

j— N

k_at_level « 0

stack «— empty_stack;

FL — true;

X X diveN _plus_1’

index +— 0;

Obtain needed_index from Szydlo_method with {Autha i, Keepa . NeedA’k},ivzlal
needed_lea f values «— vector_of null_bit_strings;

¢ — MSig(Pugp, Pr4,idiv2V _plus_1, {Authaj, Keepa . NeedA,k};ICV:,EI);

i_mod 2V « 0;

return (Pry4, Prp) and the auxiliary data,;

End of Algorithm 1.4

In Algorithm 1.5 is computed two nodes of a third Merkle tree during each call.

This algorithm is an auxiliary one employed in Algorithm 1.2.

Algorithm 1.5 miMGen modified Key Generation Algorithm of the iMss:
Obtainment of a key pair and auxiliary values through computation of two nodes
of the Merkle tree by each call

Input: N =2N', (Prc, Puc), X, {Authcbo<k<n, j, k-at_level, stack and FL
Output: updated (Pre, Puc), X, {Authc i to<k<n, j. k-at level, stack and FL

Procedure:

int computed;
hash_value K,left, right,root;
computed «— 0;
while (0 < j) do
if (FL == true)
j e N’
if (0 ==k_at_level[N’] mod 2P)
update_Pr(x, Prc);
/ * {Xi2r—1}o<i<2a is being stored * /
fi
(x, seed) — PRG(x);
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(Pris, Puis) < 1Gen(seed);

K — H(Pus);

computed «— computed + 1;
push(stack, K, j, k_at_level[j]);
k_at_level[j] < k_at_level[j] + 1;

fi

if (computed == 2)
FL = not(two_at_same_level(stack));
return;

fi

while (two_at_same_level(stack)) do
pop(stack, right, j, right_at_level j);
pop(stack,left, j,left_at_level_j);
if (right_at_level[j] == 1)
Authg ni—j < right;
fi
J=J—L
K «— H(concat(left,right));
computed «— computed + 1;
push(stack, K, j, k_at_level[j]);
k_at_level[j] <« k_at_level[j] + 1;
if (computed == 2)
FL «— not(two_at_same_level(stack));
return;
fi
od
FL — true;
od
pop(stack, root, j, k_at_level[0]);
Puc «— (N, root);
Pre — ({xize—1}osi<20, {Authey b o b
return;

End of Algorithm 1.5

The auxiliary algorithms 1.6 and 1.7 compute a leaf of the Merkle tree in two
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different fashion.

In Algorithm 1.6 one seed at a time is computed. A certain leaf needed by
Szydlo method is computed after that the corresponding seed is reached. In this
way, the computation of the needed leaves for a signature of a main Merkle tree
is the iMss with split key is spread during the signature process.

In Algorithm 1.7 a leaf is computed at once. This process is needed by the

signature of the iMss.

Algorithm 1.6 NLCom computation of a needed leaf: Computation of the
needed leaf values in the Szydlo method, which will be used in the improved Merkle
Signature Algorithm

Input: x,leaf_index,index,needed index,needed_lea f values

Output: updated values for:y, index, needed_index, needed_leaf values

Procedure:

(X, seed) — PRG(x);

if (leaf_index == needed_index[index])
(X,Y) < 1Gen(seed);
needed_leaf values|index] — H(Y);
index «— index + 1;

fi

End of Algorithm 1.6

Algorithm 1.7 Computing a Merkle tree’s leaf: Leaf-Calc Algorithm

Input: N, private key Pr = {y;—1} U {Xlgp_l}HNJqu, index leaf and counter i
2

Output: the value of the leaf whose index is lea f

Procedure:

ke 5
if i < k2P
then
(G, seed) « PRG(Xkor-1);
k «— k2P,
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else
(G, seed) — PRG(xi-1);
k «— 1;
fi
for (count = k; count < leaf; count + +) do
(G, seed) — PRG(QG);
od
(Pricap, Pujeay) < 1Gen(seed);
L — H(Pujeaf);

return L;

End of Algorithm 1.7

The improved Merkle signature scheme (iMss) is described by the algorithms
1.8 to 1.10. Recall that the secret key update algorithm iMUpd is inherent to the
signature algorithm iMSig.

Algorithm 1.8 iMGen Key Generation Algorithm of the iMss: Obtain-
ment of the key pair and auxiliary values for signing efficiently

Input: N

Output: (Pr, Pu) and {Authgbo<k<n

Procedure:

int j, k_at_level[N_maz];
hash_value K;
x < {0,1}* /% x_1 at random x* /
k_at_level « 6;
J < N;
while (0 < j) do
J< N;
if (0 == k_at_level[N] mod 2P)
store(x);
/ * {xi2r—1}o<i<2a is being stored x* /
fi
(x. seed) — PRG(x);
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(Pris, Puis) < 1Gen(seed);
K «— H(Puys);
push(stack, K, j, k_at_level[j]);
k_at_level[j] « k_at_level[j] + 1;
while (two_at_same_level(stack)) do
right «— pop(stack);
left «— pop(stack);

if (k_at_level[j] ==1)
Authy_; < right.value;

fi

j—left.j—1;

K « H(concat(left.value, right.value));
push(stack, K, j, k_at_level[j]);
k_at_level[j] « k_at_level[j] + 1;
od
od
root <« pop(stack);
Pu «— (N, root.value);

Pr — ({xi2r—1}o<i<21)

End of Algorithm 1.8

Algorithm 1.9 iMSig Signature Algorithm of the iMss: Signature compu-
tation. Efficiently computation of a sibling path by Szydlo method

Input: Message M, private key Pr, counter i, and { Auty, Keepy, Needy }o<k<n
Output: Signature 7 = (4,75, Yis, Pny ..., P1)

Procedure:

Xi—1 < extract_from_private_key(Pr,1)

(xi, seed;) < PRG(xi-1)

(Pris, Puys) < 1Gen(s, seed;)

T15 < 1Sig(M, Prys)

(Pn, ..., P1) <« Szydlo_method({ Authy,, Keepy, Needy }o<i<n, Pr)
T« (i, 715, Puis, Py, ..., P1)

(Xit1, seedi+1) < PRG(x;)
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Delete x;—1 from Pr and include yx; in Pr

Increment 7 by one

End of Algorithm 1.9

Algorithm 1.10 iMVer Verification Algorithm of the iMss: Verification of
the validity of a signature with respect to a message

Input: Message M, signature 7 = (i, 75, Y, Py, ..., P1) and public key (N, R)
Qutput: true for a valid signature. Otherwise, false

Procedure:

hash_value W, left, right;
int j;
if (1Ver(15,Y) == false)
return false;
fi
W — H(Y);
for(j=N;0<yj;j——)do
if (LW%JJ mod 2 == 0)
then
left — W,
right « Pj;
else
left « Pj;
right «— W;
fi
W «— H(concat(left,right));
od
if (W # R)
return false;
fi

return true;

End of Algorithm 1.10
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Conclusion

We proved that the original Merkle signature scheme is existentially unforgeable
under adaptive chosen message attack. We also presented a forward-secure sig-
nature scheme from any cryptographically secure pseudorandom bit generator,
one-time signature scheme and hash function. As practical case we have used for
our estimates and measurements hash functions like RIPEMD160, SHA-224, SHA-
256, SHA-384 and SHA-512 [RFCa, FIPa, RFCb, FIPb, DBP96], and ISAAC as
pseudorandom bit generator [ISA]. We have employed our improved version of
the Lamport-Diffie one-time signature scheme as the underlying one-time signa-
ture scheme in our improvements to the Merkle multi-time signature scheme. We
have implemented our improved versions of the Lamport-Diffie one-time signature
scheme (with random key and with pseudorandom key) and have shown some ex-
perimental results of their efficiency and security. We have presented some schemes
based on the work of Merkle. We have shown some estimates of the length of the
keys and signature and we have proved their security. These schemes are also
secure in the quantum computing epoch provided that the best quantum collision
finder is the one proposed in [BHTSS|.



Chapter 2
Integer Multiplication

In this chapter we give an overview on some multiplication algorithms and esti-
mate depending on the bit length of the integers to be multiplied, which algorithm
is faster. We compare the number of multiplications of base words (MOB) to
be made by each multiplication algorithm taking also into account the number of
additions needed. We view a multiplication of two base words as a unit of compu-

tation and an addition of two base words as a fraction of a unit of computation.

2.1 Introduction

The RSA and ElGamal alike cryptosystems are widely employed for signing dig-
ital documents. The security of those type of schemes relies on the difficulty in
factoring big integers or in obtaining the discrete logarithmus. Shor presented in
[Sho94] a quantum algorithm for solving the integer factorization problem and the
discrete logarithm problem in polynomial time. In [VSST01, VSST00] Breyta et
al. reported their successful implementations of the Shor’s algorithm [Sho94] in
a quantum system of seven qu-bits and of the Grover’s algorithm [Gro96] in a
quantum system of three qu-bits. They were able to create some quantum envi-
ronments for factoring the integer 15 and for searching in a list of three elements.
Although these quantum environments are still too small to be a threat on RSA
and ElGamal alike cryptosystems, they could be a first step for the development

of bigger quantum environments.

71
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A question is raised: Could the RSA and ElGamal alike cryptosystems be still
used during the development of quantum computers? In other words; how big
should the bit length of the corresponding modulus be in order that the cryptosys-
tem remains secure, under the assumption of the existence of limited quantum
computers? Would the cryptosystem be still efficient with such a bit length of the
modulus?

Modular exponentiations are employed in the RSA and ElGamal alike cryp-
tosystem. Modular exponentiation involves modular multiplication and this last
operation can be done with integer multiplications avoiding division by the modu-
lus as presented by Montgomery in [Mon85]. Thus, if we want to compute modular
exponentiations fast, we can take advantage of fast integer multiplication algo-
rithms and apply an adequate one in order to speed up the RSA or ElGamal alike
cryptosystems. Karatsuba [AK63, Knu97] and Schéonhage [SS71], [SWV] provided
multiplication methods faster than the naive one, if the size of the two integers to

multiply is big enough.

2.2 RSA and limited Quantum Computers

The product of two prime numbers is used as part of the public key in the RSA
cryptosystem. Such a product is the modulus for the modular exponentiations
needed in the algorithms of the cryptosystem. If the factorization of the modulus
is known, then the private key can be efficiently computed. The security of the
RSA cryptosystem is based on the assumption that the computation of certain
types of roots is as difficult as computing the factorization of the modulus. The
fastest factoring “classical” algorithm is the general number field sieve with a sub-

1 2
1.9229(nn)3(Inlan)3) = Brent made in [Bre99] estimates of

exponential run-time O(e
when a number of certain bit length could be factored. If B is the bit size of
the RSA modulus and Y is the year when such number could be factored, then
Y = 13.24(Blog 2)% + 1928.6. According to this formula, we construct Table 2.1

on the facing page.

From the table we could infer the security in long term for each modulus size

against classical computers.
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Table 2.1: Factoring RSA modulus with classical computers

Bit size Year

768 2009.86
1024 2018.04
2048 2041.29
4096 2070.57

Lenstra and Verheul made in [LVO01] some key size recommendations for several
cryptosystems, in particular for RSA, in different years up to 2050. They suggested
not to use a 1028, 2054 and 4047 bit RSA key beyond 2002, 2023 and 2050,
respectively. If we compare those suggestions with Table 2.1, we can see that
messages ciphered with those kind of keys are secure for at least 15 years after

their last suggested year of use.

Shor presented a couple of quantum algorithms in [Sho94] for solving the integer
factoring and discrete logarithm problems in polynomial time. A consequence of
his result is that the RSA cryptosystem will not be secure in the time of quantum

computers any more.

We do not know if quantum computers can be built in such way that they can
manage a big enough number of qu-bits and quantum gates to factor a integer
of 212 bits, for instance. On the other hand, a 7-qu bit quantum environment
has been developed in [VSS*01] to implement the Shor’s factoring algorithm to
factorize N = 15 and also a 3-qu bit quantum system in [VSST00] to implement
the Grover’s search algorithm [Gro96]. These sort of quantum environment are
still harmless to be a threat to the RSA scheme.

In [Bea03] Beaurgard introduced a circuit for Shor’s algorithm which uses 2n+3

qu-bits and O(n?®log, n) elementary quantum gates to factor an n-bit integer.

Therefore, even though the quantum computer could be gradually improved,
the widely employed RSA cryptosystem will remain secure if an adequate size of
the modulus is used. A disadvantage of increasing the bit length of the modulus

is an increase in the consumption of time for encrypting and decrypting.
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In Table 2.2 we show the time needed to sign and verify a message. We have
used the cryptographic library OpenSSL [Ope| version 0.9.8. The experiments
were made on a Pentium ITI, SuSE 9.3 at 1.1 GHz. As we can see the application

of 2™ bit-length RSA keys is impractical with the current technology for n > 13.

Table 2.2: Timing for signing and verifying with RSA on a Pentium III, SuSE
9.3, at 1.1 GHz.

key bit length | Signature | Verification
512 3.0 ms 0.26 ms
1024 9.15 ms 0.45 ms
2048 58.41 ms 1.3 ms
4096 285.83 ms 4.42 ms
8192 1.9 sec 27.14 ms
16384 13.34 sec 68.72 ms
32768 1.81 min 0.238 sec
65536 14.20 min | 0.887 sec
131072 2.07 hrs 3.703 sec

2.3 Multiplication Algorithms

The RSA cryptosystem makes use of modular exponentiation for encrypting and
decrypting and intrinsically, multiplication of integers whose bit length is the one
of the RSA-modulus. In this section we describe briefly the multiplication algo-
rithms Karatsuba, Toom Cook and Schonhage in order to calculate the number of
multiplications of base words (MOB); in our estimates are included the additions
of base words, too. We consider each addition between two base words as ¢ multi-
plications between them, where 0 < ¢ < 1 should depend on the implementation.
We use Zimmermann'’s version of the Schonhage algorithm [Zim92]. In that version
a parameter k£ must be previously fixed and it has been experimentally chosen for

some sizes of the integers to be multiplied. Our goal is to find an adequate value
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of k in order to make least number of operations. As a result of this, we have that

starting from 27 bits Schénhage’s algorithm is the fastest.

2.3.1 Notation

Let vy € Z* and B = 2%°. A base word is an integer x such that 0 < o < B. For
z € 7ZF, the base-word length (or simply the length) of z is the number (5(z) of
base words needed to represent such z. In a similar way we define the bit length
l5(z) of z. We define (5(0) = ¢2(0) = 1 and for z € Z~ we define (5(z) := (p(—=2)
and (5(2) == la(—2).

Let s, = @y,—1 - - - a1a¢ be a bit string, which is not the null string. We think of
it as the integer a = Z;n:_ol a;27 and we say that its bit length is l5(s,) = m and
its base-word length is /5(s,) = [ 575 ]2". So, if we want to add two integers o =
Z;igl a;27 and 3 = Z;Ligl ;27 we can consider the bit strings s, = ay,—1 -+ @100
and sg = By_1- - 100, where m = max{ni,n.} and a; = 3; = 0 for ¢ > n; and
j > ne. In this way we can define the number of additions of base words for a
couple of integers of bit length m as addg(m) = [ ].

We take a multiplication of two base words as a unit of computation and denote
it by mult. We assume that an addition of two base words is equivalent to ¢ unit
of computation, where 0 < ¢ < 1 depends on the implementation. Therefore the
addition of two m-bit integers is equivalent to gaddg(m) multiplications of base
words.

If z,n, B € Z*, such that B > 1 and z = } 7% z;B7, then the value xB" =
> im0 x; BIT™ will be denoted by = <<p n, and will be called an n B-block right

shift. The symbol | represents the bitwise or.

2.3.2 Multiplication algorithms and MOB

First, we describe some multiplication algorithms. Then we calculate the number
of multiplications of base words needed for each one of them to multiply integers
of the same length. Finally, we compare those quantities with each other. In all
next subsections we assume B = 22 for a previously set vy € Z*. The bit length

of a base words is 2"0. We suppose that the two integers to be multiplied in each
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algorithm have the same length N.

2.3.3 Naive algorithm

The complexity of this algorithm is O(N?), where N is the length of the integers
to be multiplied. We give a description of it in Algorithm 2.1.

Algorithm 2.1 Naive algorithm: Na(a, [3)
Input: «,f € Z, s.t. {g(a) = p(5).
Output: v = af.

Procedure:

0 — ly(a)

if (¢ <2)
return a x (3

fi

0 [55]2"

Z/
B<—2

represent o = a1 B + ap and 8 = 5B + 0y

cg +— Na(aq, 1)

return v = ((c3 <<p 2)|c0) + ((c2a + 1) <<p 1)

End of Algorithm 2.1

Four multiplications must be made, one addition of integers of size ¢’ and one
addition of size 2¢' as well. We could write this as 4 mult and 1 addg(¢') and 1

addp(2¢'). Notice that one addition of integers of size ¢’ and one addition of size

BRI

20" is equivalent to
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additions of base words. Then we have that MOB(Na, {) is

r 4 o — Cr—i 4 r — i : Ci—j+1
4 MOB(Na,§+2 Z 5 )+ 3¢ (%(2 _1)+Z4 22_] ’

1=0

where 0 < ¢; < 1 Vi.

Result 2.1 If { = 2% where v > 0 is an integer, then ¢; = 0 Vi and
MOB(Na, l) = 4" + 3q(4” — 2").

2.3.4 Karatsuba algorithm

The complexity of this algorithm is O(N'823), where N is the length of the integers
to be multiplied. We give a description of it in Algorithm 2.2.

Algorithm 2.2 Karatsuba: Ka(a, [3)
Input: «,f € Z, s.t. {g(a) = (p(0).
Qutput: v = af.

Procedure:

0 — ly(a)
if (0 <2m)
return o x 3
fi
0 —[z5]2°
B3
represent @ = ay B + oy and 8 = 6B +
x — Ka(ay, B1)
y + Ka(ap — a1, B1 — (o)
z < Ka(ao, fo)

return v = ((z <<p 2)|2) + ((x +y + 2) <<p 1)

End of Algorithm 2.2
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Three multiplications must be made, two additions of integers of size 5, two
additions of integers of size €’ as well as one addition of size 2¢’. Note that two
additions of integers of size £, two additions of integers of size ¢ and one addition

of size 20" are equivalent to

o[ o[l [ -s ]+ (] o)

additions of base words. Therefore, we have that MOB(Ka, () is

r ¢ vo — Cr—i =2 - i ' Ci—j+1
3" MOB(Ka, . +2 P ) +10g (2% 23 Z )+ (),

1=0

where 0 < ¢; < 1Viand 0 < C,(¢) < 2L,

Result 2.2 [f { = 2% where v > 0 is an integer, then ¢; = 0 Vi, C.(£) =0 and
MOB(Ka, l) = 3" + 10q(3" — 2").

2.3.5 Toom-Cook algorithm

The complexity of this algorithm is O(N'83%) where N is the length of the integers
to be multiplied. We give its description in Algorithm 2.3.

Algorithm 2.3 Toom Cook: T3(a, [3)
Input: «,f € Z, s.t. lg(a) = p(0).
Output: v = af.

Procedure:

0 — ly(a)

if (¢ <2)
return a x

fi

U — (32%}

Z/
B<—3

32"
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represent a = as B2+ oy B + ap and 8 = 3.B%* + 3B + 3,
Y1 T3(z, )
tL — T3(ag + 201 + 4ag, Bo + 261 + 450)
ty «— T3(a + a1 + ag, B2 + 81 + Bo)
to «— T3(4das + 27 + g, 4062 + 2061 + Bo)
Yo < T3(aw, 5o)
Solve a linear system.
273 +4y2 +8m =11 — 167 — 74
Yst+ret+tm=ti—%— N
8v3 + 4ys + 271 = to — o — 167y
return v = ((((74 << 2)|72) << 2)|n0) + (((13 <<B 2)Im) <<p 1)

End of Algorithm 2.3

In the Toom-Cook algorithm represented in Algorithm 2.3, five multiplications

must be made, 12 additions of integers of size %, 6 additions of integers of size 2%

and one addition of integers of size 2¢' as well. If we define ¢; =t 1=y = 160,
co =t — 4 — 7 and c3 = ty — 1674 — 7o, then c; and c3 must be even since all
elements in the equation that must be solved are integers. Therefore, we can set

¢ = % and c3 = % and then express the solution for the linear system as

371 =1 — 6y + ¢
Yo = —c} + by —

33 = ¢} —6ca + c3

Note that bz = (x <<3 2) + x and 62 = ((r <<z 1) + ) <<z 1 and then we have

9 additions of numbers of size %m

Therefore, the solution of the linear system requires 9 more additions of integers
of size %
Note that 12 additions of integers of size %', 15 additions of integers of size %el

and one addition of integers of size 2¢' is equivalent to

A 20

< s 20! 4
12121 +15 |2 —| =4

L”‘ﬂ e L} ! [21 ° {3-2'/0}
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additions of base words. Thus we have that MOB(T3, /) is

r 14 v L Cr—_; 14 5 — 3" A i i Ci—j+1
5MOB(T3,§+2°Z o) +48¢ <2V0+1- - +Z5 23—]

=0

where 0 < ¢; < 1 Vi.

Result 2.3 If { = 201 where v > 0 is an integer, then { = 371°8322%0 qnd

MOB(T3,0) = 571832 + 24q(5V1°%32 — 2¥) + C'(),
where C(£) < 18¢5" %832,

2.3.6 Schonhage algorithm

The complexity of this algorithm is O(N log N loglog N). This algorithm takes
advantage of the Fast Fourier Transform (FFT) whose complexity is O(M log M),
where M is the number of elements to be transformed. The FFT is computed
in the ring R = Z/(2™ 4 1)Z, where m is a power of two and (, = 27 is a p-th
primitive root of unity in R if pqg = 2m.

The multiplication algorithm represented in Algorithm 2.4 on the next page is
a different version of the one described by Zimmermann in [Zim92]. We have added
to Zimmermann version the lines denoted by +++ and modified the lines denoted

by *x*. Because of the proposition 2.1, we use v > 5, which is not necessary an

v+1
2

previously fixed parameter k.

integer, and kK = L J, while in Zimmermann’s version there must be a certain
Proposition 2.1 shows for which value of k, the length of the integers to be

multiplied in a step inside the algorithm is minimal.

Proposition 2.1 Consider the function n(k) = (2”“_2”‘ + ”Q—tﬂ 25110 for real Kk
and fized real numbers v > 6 and vy. If 4 < k < v then n(k) has a minimum in

k=15+1

Proof
fer+1<kw<y, then 2v+1-2r < % and”“Q—*;3 <

an increasing function. Thus, n(x) > n(5 + 1) for

. Thus n(k) = 25t which is

+1<k<v.

IR N
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If 4 <k < %+1, then 2v77 > 2vF1=20 > % and thus n(k) > 250 = n(¥ 4 1)
for4 <k <2+ 1
|

Algorithm 2.4 Schonhage: Sch(a, [3)
Input: o, € Z/(2™ + 1)Z, where m = 2"0*",
Output: y=af € Z/(2" +1)Z

Procedure:

Choose
+++  if (v <6)
use an adequate multiplication algorithm as Karatsuba or Toom-Cook.
fi
Set
e 5]+
M «— 2%
*kk [

20 M

XKk | (%-‘ v \ [

n
d<—M

Represent
we = T, () and 8- L ()
Define
falj) = a;¢ly, mod (20 +1), f5(5) — B;¢3,, mod (2" + 1),
where (opr = 2% and 0 < j < M.
Compute direct FFT
FFTy(fa, k) mod (2% + 1) and FF Ty (fs, k) mod (2" + 1) for0 < k < M,

224 is a M-th primitive root of unit.

where
Multiply

H(k) <« Sch(FFTn(fas k), FFTy(f3,k)) mod (2" 4 1) for 0 < k < M.
Compute inverse FFT

h(j) < IFFTy(H,7) mod (2" +1)for0 < j < M,

where 224 is a primitive root of unit.

Compute
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% — (7)Y mod (2" +1).
oo (3> (1207 )
subtract 2" + 1 to it (considered as integers)
fi
Result
kokk oy = Zj\igl o (QQVOL)j mod (2™ + 1)

End of Algorithm 2.4

If lg(a) = lg(B) = 2 and we want the product af as integer (instead of
mod 2"°7), the value m = 207+ must be used. If v > 6, then in order to
compute MOB(Sch, 201" we require 2% multiplications of integers of bit length
n(k), two FFT of 2 elements of bit length 2¥"0~* as well as one FFT of 2
elements of bit length 2/ F10~~ ‘where k = |£] + 1. That is to say,

Result 2.4 If{ =2"% v > 6 is an integer and k = LgJ + 1, then
MOB(Sch, 201) = 2" MOB(Sch,n(k)) + qr2"*>.

2.3.7 Comparison amongst the multiplication algorithms

From the algorithms showed in Subsection 2.3.2 on page 75 we have the table 2.3.

Table 2.3: Comparison amongst the surveyed multiplication algorithms

Algorithm A MOB(A,2vt)

naive (Na) 22 + 3¢(22 — 2¥).
Karatsuba (Ka) 271823 4 10q (2v'823 — 2v).
Toom Cook (T3) 2vlosss 4 24q (21835 — 2v) + C; C' < 18¢2v 10835,
Schénhage (Sch) MOB(MA, 2"0) if v < 6, where MA is an
adequate multiplication algorithm. Otherwise
28 MOB(Sch, 250 (20 H1728 4 1)) 4+ gr2V T2,

Na
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As an example let us set vy = 5 and ¢ = 0.95, we have the following comparison
MOB(Ka,m) < MOB(Na,m) for 2! < m and MOB(T3,m) < MOB(Ka, m) for
215 < m. If the Karatsuba multiplication algorithm is used in the Schonhage
algorithm, then MOB(Sch,m) < MOB(T3,m) for m > 2'7.

In figures 2.1 on the following page, 2.2 on page 85, 2.3 on page 86 and 2.4 on
page 87 we show theoretical and practical behaviours of the surveyed algorithms
for multiplying integers of length 20*”. We have used the gmp library.

The gmp library makes uses of precomputed values of k. In table 2.4 we

compare the values chosen by gmp and our suggestions.

Table 2.4: Comparison of x with gmp implementations

on a Solaris at 500MHz (vy = 6)

gmp base word threshold | 432 | 864 | 1856 | 3328 | 9216 | 20480
gmp K 4 ) 6 7 8 9
our suggested k 5 ) 6 6 7 8

on a Pentium 4 at 2.40 GHz (vy = 5)

gmp base word threshold | 624 | 1568 | 2688 | 7680 | 18432 | 40960
gmp K 4 ) 6 7 8 9
our suggested K 5 6 6 7 8 8

on a Pentium IIT at 1.1 GHz (v = 5)

gmp base word threshold | 592 | 1440 | 2688 | 5632 | 14336 | 40960
gmp K 4 ) 6 7 8 9
our suggested K ) 6 6 7 7 8

2.4 Conclusion

We have shown that Sch needs no more multiplications of base words than Ka, or

T3 for integers whose bit length is greater than or equal to 2'7 and we have shown
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a recurrent formula for computing the number of multiplications of base words for
Sch. In figures 2.2, 2.3, and 2.4 is shown the graph of y = log, (MOB(alg, 2°9-5>¢)),
where alg is one of Naive, Karatsuba, Toom Cook or Schonhage algorithms and
0 < log_size < 25.

With Schonhage algorithm less multiplication of base words are made than
with Karatsuba or Toom Cook for integers whose bit length is greater than or
equal 2'7 and therefore for a modulus of such size. The modular multiplication
[Mon85] and the modular exponentiation [Gor88] would be faster if Schénhage
is used as multiplication algorithm, and so the RSA encryption or decryption as
well. Actually, the employment of integer multiplication in modular exponentiation
makes this result useful also in ElGamal encryption or signature scheme, since
modular exponentiation in that scheme is required.

In Figures 2.1 on page 84, 2.2 on page 85, 2.3 on page 86, 2.4 on the preceding
page the graph of y = log,(MOB(alg, 2!°9-°%¢)) is shown, where alg is one of the

naive, Karatsuba, Toom-Cook or Schonhage algorithms and 0 < log_size < 25.
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