
 

 

 

  

 

Hybrid Molecular Dynamics–Finite 

Element Simulations of Polystyrene–Silica 

Nanocomposites 
Dissertation 
Shengyuan Liu 
Darmstadt, 2017 – D 17 

 

 
 



 

 

 

 

Hybrid Molecular Dynamics–Finite Element 

Simulations of Polystyrene–Silica Nanocomposites 

 

 

genehmigte 

Dissertation 

 

vorgelegt von 

Shengyuan Liu, M.Eng. of Materials Chemical Engineering 

aus Hengyang, V.R. China 

 

Referent: Prof. Dr. Florian Müller-Plathe 

Korreferent: Prof. Dr. Michael C. Böhm 

Tag der Einreichung: 15.12.2016 

Tag der mündlichen Prüfung: 30.01.2017 

 

Darmstadt 2017 

D 17 

Vom Fachbereich Chemie 

der Technischen Universität Darmstadt 

 

zur Erlangung des akademischen Grades eines 

Doktor rerum naturalium (Dr. rer. nat.) 



 

 

 

 

DEDICATION 

 

 

 

 

To everyone who supports me, 

and to my almae matres where I was ever educated. 

 

       

 
 

 

 

 

            Shengyuan Liu 



 

 

 
The present Ph.D. work is completed under the supervision of Prof. Florian Müller-Plathe and 

Prof. Michael C. Böhm. Chapters 2, 3 and 4 of the thesis are based on the following three 

publications. Specifically, the analytical tool of the uncertainty quantification method (Section 

2.4) was developed by the research group of Prof. Jens Lang (Department of Mathematics, 

Technical University Darmstadt). The Finite Element code of the applied hybrid simulation 

method was developed by the research group of Prof. Paul Steinmann (Chair of Applied 

Mechanics, University of Erlangen-Nuremberg).  

 

[1] S.Y. Liu, A. Gerisch, M. Rahimi, J. Lang, M.C. Böhm, F. Müller-Plathe, J. Chem. Phys., 142 

(2015) 104105. 

[2] S.Y. Liu

[3] 

, M.C. Böhm, F. Müller-Plathe, Mater. Res. Express, 3 (2016) 105301. 

S.Y. Liu, S. Pfaller, M. Rahimi, G. Possart, P. Steinmann, M.C. Böhm, F. Müller-Plathe, 

Comput. Mater. Sci., 129 (2017) 1.  

 

Additionally, S.Y. Liu has also contributed to other two publications during the Ph.D. study. 

 

[4] F. Leroy, S.Y. Liu, J.G. Zhang, J Phys. Chem. Part C, 119 (2015) 28470. 

[5] D. Davydov, E. Voyiatzis, G. Chatzigeorgiou, S.Y. Liu

 

, P. Steinmann, M.C. Böhm, F. 

Müller-Plathe, Soft Materials, 12.sup1 (2014) S142-S151. 

 

 

 



 

1 

Summary 

 
Polymer nanocomposites are manufactured by blending a fraction of nanoparticles into a 

polymer matrix. A high surface-to-volume ratio of the added nanoparticles leads to a large 

interphase area in polymer nanocomposites. Structural and dynamic properties of polymer chains 

in the interphase differ from the bulk behavior because of the polymer-nanoparticle interaction. 

As a matter of fact, the interphase dimension has a significant influence on the mechanical 

properties of polymer nanocomposites. The mechanical behavior of polymer nanocomposites 

during a deformation process is fundamentally associated to changes of the structural 

characteristics of the polymer chains. Investigations of interphase properties and the mechanical 

deformation behavior of polymer nanocomposites are helpful to design better materials for 

industrical applications. Nevertheless, from experimental investigations it is often difficult to 

understand correlations between microscopic polymer properties and the macroscopic 

mechanical behavior of nanocomposites, as changes of structural polymer properties during 

deformation take place at a molecular scale.  

 

Computer simulations have intrinsic advantages to analyze scientific problems of polymer 

nanocomposites from a microscopic perspective. In collaboration with the group of Prof. Paul 

Steinmann, our group has developed recently a hybrid molecular dynamics-finite element (MD-

FE) method to simulate mechanical deformations of neat polystyrene and polystyrene 

nanocomposites containing bare silica nanoparticles. In the adopted hybrid framework, an inner 

particle region that captures microscopic quanties of interest is coupled to a surrounding elastic 

continuum region that allows the application of external loads to deform the studied materials. A 

dissipative particle dynamics (DPD) shell separates the inner particle domain from the 

continuum domain. The convergence properties of the hybrid simulation method have been 

investigated by recent project contributors (Mohammad Rahimi and Sebastian Pfaller) in 

simulations of a model polystyrene system. The main aim of the present Ph.D. work is the 

application of our hybrid MD-FE method to investigate interfacial structures and the mechanical 

deformation behavior of polymer nanocomposites blended with silica nanoparticles.  
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The present Ph.D. thesis starts with a background introduction to different hybrid simulation 

methods and with a description of interphase properties as well as with a description of the 

mechanical deformation of polymer nanocomposites. Specifically, the introduction is mainly 

divided into the following sections: (i) review on coupling strategies of computer simulation 

methods at different time and length scales; (ii) description of the used hybrid MD-FE 

framework and its applications in the fields of hydromechanics and structural mechanics; (iii) 

uncertainty quantification (UQ) investigations of input parameters of the hybrid simulation 

model; (iv) analysis of the interfacial structure and mechanical deformation behavior of polymer 

nanocomposites.  

 

In the hybrid model, a large number of anchor points (e.g. several thousand) have to be 

introduced into the so-called handshaking domain to achieve an exchange of simulation 

information (i.e. forces and displacements) between the MD and FE region. Input parameters 

related to the anchor points mainly include the force constant between the anchor points and the 

polymer beads, the distribution and number of the anchor points as well as the thickness of the 

handshaking domain. Prior to further applications of the hybrid method to polymer 

nanocomposites, a reasonable combination of the input parameters of the hybrid model has to be 

determined. For this purpose, in the second chapter of the thesis, the UQ method is used to 

analyze quantitatively the influence of these input parameters on the robustness of the hybrid 

method. The UQ analyses have turned out that the hybrid model without the FE domain is robust 

when the thickness of the surrounding DPD domain and the inner core of the MD domain are 

both large enough. The MD simulations in the hybrid scheme with the input parameters set in the 

safe range can reproduce accurately the results of the reference MD calculations for the same 

system using traditional periodic boundary conditions. 

 

The influence of the interphase area between the polymer matrix and the nanoparticles on global 

and local properties of polymer chains in nanocomposites has not been investigated 

quantitatively up to now. In the third chapter, coarse-grained MD simulations have been 

performed to investigate structural and dynamic properties of polymer chains in polystyrene 

nanocomposites containing a fraction of silica nanoparticles of different geometrical shapes (i.e. 

sphere, cube and regular tetrahedron). The structural properties of polymer chains are described 
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in terms of the chain dimension (i.e. end-to-end distance and radius of gyration) and the chain 

orientation as a function of the distance from the nanoparticle center of mass. Additionally, the 

dynamic properties of polymer chains are monitored by the center of mass diffusion of the chains, 

the decorrelation of chain end-to-end vectors and the escape behavior of polymer chains from the 

interphase. In addition, possible correlations between the interphase area and mechanical 

properties of polymer nanocomposites have been investigated, too. The observed results have 

demonstrated that as an universal factor, the interphase area of nanocomposites influences almost 

linearly the global chain geometry, chain dynamics as well as the overall elastic properties. 

Nevertheless, the local chain geometry and dynamics in the interphase region which refers 

approximately to one chain radius of gyration differ from their global behavior. 

 

In the fourth chapter, both standard MD and hybrid MD-FE simulations are applied to 

investigate the deformation behavior of polystyrene nanocomposites containing silica 

nanoparticles as a function of the silica mass fraction, particle size and grafting density. In the 

hybrid framework, the outer continuum domain solved by the FE method allows external load 

steps to deform the inner particle domain in which MD simulations are performed to capture 

structural polymer properties. Material properties of polymer nanocomposites such as the 

Young’s modulus and Poisson’s ratio are identified from standard MD simulations. They are 

then used as material parameters in the hybrid MD-FE simulations. Interfacial properties of 

polymer nanocomposites are analyzed in terms of the structure and dynamics of the polymer 

chains. The deformation of individual polymer chains upon elongation is also investigated by a 

simple geometrical transformation model which assumes that all atoms in the material translate 

affinely with the deformation of the entire sample. Our simulations have demonstrated that the 

fraction of high-modulus fillers and their total interfacial area contribute to a general stiffening of 

the polymer nanocomposites. Smaller nanoparticles have a stronger influence on nanocomposite 

properties compared with larger ones. The addition of nanoparticles restricts the polymer 

mobility, so that the polymer conformations deviate more from affine translations than in neat 

polystyrene. 

 



 

4 

Last but not least, the main conclusions obtained by the present Ph.D. work as well as an outlook 

to applications of the hybrid MD-FE method in polymer nanocomposites are summarized in the 

fifth chapter. 
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Zusammenfassung 
 

Polymer-Nanokomposite werden durch das Mischen einer bestimmten Menge an Nanoteichen 

und einer Polymermatrix hergestellt. Durch ein großes Verhältnis zwischen der Nanoteichen-

Oberfläche und dem System-Volumen führt die Zugabe von Nanoteichen zu einer großen 

Interphase in Nanokompositen. Die strukturellen und dynamischen Eigenschaften der 

Polymermatrix in der Interphase unterscheiden sich aufgrund der Wechselwirkungen zwischen 

dem Polymer und den Nanoteilchen stark vom Polymerverhalten im Bulk. Die Größe der 

Interphase zwischen Polymermatrix und Nanoteilchen hat einen starken Einfluss auf die 

mechanischen Eigenschaften von Polymer-Nanokompositen. Das mechanische Verhalten dieser 

Systeme wird deutlich von strukturellen Änderungen der Polymerketten während einer Dehnung 

beeinflusst. Deshalb sind Untersuchungen der Interphase und des mechanischen Verhaltens bei 

Dehnungen von Polymer-Nanokompositen für die Herstellung von Verbindungen mit 

verbesserten Eigenschaften für industrielle Anwendungen nützlich. Allein auf Basis 

experimenteller Untersuchungen ist es schwierig, funktionelle Zusammenhänge zwischen 

mikroskopischen Polymereigenschaften und dem makroskopischen mechanischen Verhalten 

dieser Systeme zu verstehen, da sich strukturelle Änderungen des Polymeres während einer 

Dehnung in einer molekularen Skala abspielen. 

 

Computersimulationen haben nun den großen Vorteil, dass sie eine Analyse von Polymer-

Nanokompositen aus einer mikroskopischen Perspektive zulassen. Durch eine Zusammenarbeit 

mit der Gruppe von Prof. Paul Steinmann gelang uns die Entwicklung einer Molekulardynamik-

Finite Element (MD-FE) Hybrid-Methode, um Dehnungen von Polystyrol oder Polystyrol-

Nanokompositen angereichert mit Silica-Nanoteilchen zu simulieren. In dieser Hybrid-Methode 

wird ein inneres Teilchengebiet, in dem die interessierenden Eigenschaften berechnet werden, an 

ein umgebendes Kontinuum gekoppelt, das im Rahmen einer elastischen Näherung beschrieben 

wird. Mit diesem Ansatz werden dann externe Störungen der Systeme durchgeführt und die 

Materialeigenschaften berechnet. Ein Bereich, in dem die Bewegung der Teilchen im Rahmen 

einer dissipativen Dynamik (DPD) beschrieben wird, trennt die innere Teilchen-Region vom 

umgebenden Kontinuum. Das Konvergenz-Verhalten der entwickelten Hybrid-Methode wurde 

in Arbeiten ehemaliger Mitarbeiter (Mohammad Rahimi und Sebastian Pfaller) in Simulationen 



 

6 

von einem Polystyrol-Modellsystem untersucht. Ziel der vorliegenden Doktorarbeit ist die 

Anwendung dieser MD-FE-Hybrid-Methode, um Grenzflächen-Strukturen sowie die 

mechanischen Eigenschaften von Polymer-Nanokompositen mit Silika-Teilchen bei einer 

Deformation zu untersuchen. 

 

Die vorliegende Arbeit gibt zunächst einen Überblick über Hybrid-Simulationen, über die 

Eigenschaften der Interphase und über das Deformations-Verhalten von Polymer-

Nanokompositen. Diese Einleitung ist in folgende Abschnitte aufgeteilt: (i) Beschreibung von 

Kopplungs-Strategien bei Simulationsmethoden in verschiedenen Zeit- und Längenskalen. (ii) 

Anwendung des MD-FE Verfahrens in der Hydromechanik sowie der strukturellen Mechanik. 

(iii) Parameter-Analyse des MD-FE Modells durch die Quantifizierung von Unsicherheiten (i.e. 

Uncertainty Quantification, UQ). (iv) Studium von Grenzflächen-Strukturen und dem Verhalten 

von Polymer-Nanokompositen bei einer mechanischen Deformation. 

 

Unser Hybrid-Modell erfordert die Einführung einer bestimmten Anzahl von Ankerpunkten im 

MD-FE-Kopplungsbereich zum Austausch von Informationen (i.e. Kräften und Auslenkungen) 

zwischen den getrennten MD und FE Gebieten während einer Simulation. Eingabe-Parameter, 

die den Ankerpunkten zugeordnet sind, umfassen die Kraftkonstanten zwischen den 

Ankerpunkten und Polymer-Teilchen, die Verteilung und Anzahl der Ankerpunkte sowie die 

Dicke des MD-FE-Kopplungsgebietes. Vor weiteren Anwendungen der Hybrid-Methode auf 

Polymer-Nanokomposite ist es notwendig, sinnvolle Kombinationen der erwähnten Eingabe-

Parameter zu bestimmen. Zu diesem Zweck wird im zweiten Kapital dieser Doktorarbeit die UQ-

Methode beschrieben, um quantitativ den Einfluss von Eingabe-Parametern auf die Qualität der 

Hybrid-Ergebnisse zu untersuchen. UQ Analysen haben gezeigt, das unser Hybrid-Modell unter 

Nichtberücksichtigung des FE Gebietes stabil ist, wenn die Dicke der umgebenden DPD Region 

und des inneren MD Bereichs größ genug ist. Rechnungen mit dem MD Baustein unseres 

Hybrid-Verführens liefern Ergebnisse, die denen entsprechen, die mit konventionellen MD 

Simulationen unter periodischen Randbedingungen erhalten werden, wenn Eingabe-Parameter in 

einem „sicheren Bereich“ verwendet werden.  
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Der Einfluss der Interphase, i.e. der Grenzfläche zwischen den Nanoteichen und der 

Polymermaterix, auf globale und lokale Eigenschaften von Nanokompositen wurde bisher nicht 

quantitativ untersucht. Im dritten Kapitel werden vergröberte, i.e. coarse grained (CG), 

Simulationen beschrieben, in denen strukturelle und dynamische Eigenschaften von Polymer-

Ketten in Polymer-Nanokompositen mit Silica-Nanoteilchen verschiedener Geometrien (z.B. 

Kugeln, Würfel, Tetraeder) untersucht werden. Strukturelle Charakteristiken der Polymer-Ketten 

werden sowohl durch Längenparameter (Kettenenden-Vektor, Gyrationsradius) als auch durch 

einen Orientierungsparameter als Funktion des Abstands zwischen der Oberfläche eines 

Nanoteilchen und dem Polymer-Massenschwerpunkt beschrieben. Das dynamische Verhalten 

der Polymer-Ketten wird auf Basis des Diffusionskoeffizienten des Massenschwerpunkts von 

Polymer-Ketten, der Dekorrelation des Kettenenden-Vektors und der Zeit für das Verlassen der 

Interphase beschrieben. Zusätzlich werden mögliche Abhängigkeiten zwischen der Größe der 

Interphase und den mechanischen Eigenschaften von Polymer-Nanokompositen untersucht. Die 

erhaltenen Resultate haben gezeigt, daß die Größe der Interphase in Nanokompositen als 

universeller Parameter betrachtet werden kann, der linear die globale Geometrie der Ketten, ihre 

Dynamik und ihre elastischen Eigenschaften bestimmt. Die lokale Geometrie der Ketten in der 

Interphase sowie ihre Dynamik in diesem Bereich unterscheidet sich jedoch von dem globale 

Verhalten. Die Ausdehnung der Interphase entspricht in etwa dem Polymer-Gyrationsradius. 

 

Im vierten Kapitel werden sowohl reine MD-Rechnungen als auch MD-FE Hybrid-Simulationen 

beschrieben, die sich mit dem Deformations-Verhalten von Polystyrol-Nanokompositen mit 

Silica-Nanoteilchen als Funktion der Silica-Konzentration, der Größe der Nanoteilchen und der 

Oberflächen-Beladung beschäftigen. Der Finite-Element-Bereich in der Hybrid-Methode erlaubt 

eine einfache Beschreibung externer Deformationen, die zu einer Änderung der Polymerstruktur 

im inneren Kern der Simulationszelle führen. Material-Parameter der Nanokomposite wie das 

Elastizitätsmodul oder die Poisson-Zahl werden auf Basis von Standard-MD-Simulationen 

berechnet und dienen dann als Eingabeparameter in den Hybrid-Simulationen. Die 

Grenzflächeneigenschaften der Polymer-Nanokomposite werden auf Basis struktureller und 

dynamischer Eigenschaften der Polymer-Ketten analysiert. Die Deformation einzelner Polymer-

Ketten während einer Dehnung wird auch durch ein einfaches geometrisches Modell untersucht. 

Dieses Verfahren nimmt an, dass die Translation der Teilchen affin mit der Deformation der 



 

8 

gesamten Probe verläuft. Unsere Simulationen haben gezeigt, daß die Füllmaterialien mit ihrem 

hohen Elastizitätsmodul und ihrem Grenzflächen zu einer Versteifung von Polymer-

Nanokompositen führen. Kleinere Nanoteichen haben einen stärkeren Einfluss auf die 

Eigenschaften von Nanomaterialien als größe Teichen. Die Zugabe von Nanoteichen limitiert die 

Mobilität der Polymer-Ketten. Dadurch lassen sich Polymer-Konformationen schlechter auf 

Basis einer affinen Translation als in reinem Polystyrol. 

 

Schließlich werden die wichtigsten Schlussfolgerungen der vorliegenden Doktorarbeit sowie ein 

Ausblick auf Anwendungen von Hybrid-Simulationen an Polymer-Nanokompositen in Kapitel 

fünf präsentiert. 
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1. Introduction 
 

Polymer nanocomposites1 are prepared by mixing a fraction of nanoparticles into a polymer 

matrix. In recent decades they have been extensively used in different industrical fields. In 

general, polymer nanocomposites are consisted of three different phases, namely the polymer 

matrix, the nanoparticles and the interphase2,3. A high surface-to-volume ratio of the 

nanoparticles leads to a large interphase area of nanocomposites. Due to the polymer-

nanoparticle interaction, the properties of polymer chains in the interphase of nanocomposites 

differ from those in the bulk. The addition of the nanoparticles (and hence the generation of an 

interphase) changes the properties of polymer nanocomposites. For instance, the characteristics4 

of nanoparticles (i.e. curvature, grafting state and dispersion) have a significant influence on 

structural and dynamic properties of polymer chains. Additionally, the presence of the interphase 

improves the mechanical strength of nanocomposites and suppresses the formation of crazes and 

cavitations in nanocomposites at large strains5. It is of practical and theoretical relevance to 

investigate correlations between the interphase and the mechanical properties of polymer 

nanocomposites. Experimental techniques are often not helpful to investigate properly molecular 

details of the interphase. Computer simulation methods at different scales have been widely 

applied to address different problems in the nanocomposite systems. Hybrid particle-continuum 

simulation methods6 have intrinsic advantages to investigate relations between the interphase 

structure and the macroscopic deformation behavior of nanocomposites. By collaboration with 

the group of Prof. Paul Steinmann, a hybrid molecular dynamics-finite element (MD-FE) 

method7 has been developed by our former colleague (Mohhamad Rahimi) to simulate the 

deformation behavior of neat polymers and nanocomposites containing a single nanoparticle. In 

the present thesis, this hybrid method is further applied to investigate the microscopic interphase 

structure and the macroscopic deformation behavior of nanocomposites under external loads. 

 

1.1 Hybrid molecular dynamics-finite element methods 

 

1.1.1 Basic principles of hybrid molecular dynamics-finite element methods  

In the past decades computer simulations have become a powerful technique to address scientific 

problems at different time and length scales8–10. The computational capacity of supercomputers 
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has obtained a tremendous development, whereas the difference between intended simulation 

accuracy and computational efficiency still restricts their applicability11. Finite element (FE)12–19 

methods solve macroscale problems by discretizing the studied systems as meshing units on a 

basis of continuum mechanics, so that they offer a high computational efficiency. Due to a 

continuum approximation, FE simulations do not allow accurate predictions of molecular 

properties of the studied system20. In molecular dynamics (MD) simulations21–23, an atom or a 

bead coarse-grained from a sub-group (e.g. monomer of polymer chains) is typically treated as 

the smallest simulation unit. The MD method has been used widely to investigate nanoscale 

(1~100 nm) problems of different systems such as interfacial structures24,4,25,26, nanoparticle 

assemblies27–30 and biomacromolecular foldings31–33.  

 

To overcome the tradeoff between accuracy and efficiency, the coupling of two simulation 

methods at different scales, namely coupled MD-FE simulations, opens an access to complicated 

systems. A central question in the hybrid schemes17,34,35 is how to simulate accurately a spatial 

region of interest (e.g. liquid-solid and solid-solid interphases36–38) embedded in a region with a 

coarser description where molecular details can be neglected. A hybrid MD-FE method provides 

a high resolution for simulations of macroscale problems (e.g. fluid flow and material 

deformation12–15,18,26,39,40) at an affordable computational cost. These hybrid simultion methods 

have shown their robustness and advantages in investigations of different systems41,22,6,42 (e.g. 

nanocomposites, nanoclusters and nanofluids). More details on the aforementioned hybrid 

frameworks are introduced in the following sections. 

 

As a numerical methodology, the FE method has been develeped originally to solve partial 

differential equations43 in the context of mechanical problems. Its main purpose is to simplify the 

considered problems by treating a whole spatial domain as a combination of several smaller 

correlated sub-domains44. Without consideration of molecular details, a continuum description of 

the studied systems is an efficient way to address many macroscale problems related to 

hydrodynamic15 and structural45,46 mechanics. In the continuum mechanics scheme16,17,47, 

simulation objects are simplified to a continuous body that comprises a certain number of 

infinitesimal elements without molecular structural details. Specifically, each infinitesimal 

element in the continuous body obeys constitutive rules of the simulation object as a whole body, 
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namely conservation of mass, momentum and energy flux. In an FE approximation, continuum 

mechanics problems are solved by partial differential equations that govern the respective 

macroscale phenomena. According to the physical state of the simulated systems, continuum 

mechanics is commonly divided into fluid and solid continuum mechanics46,48. The former 

analyzes the flow behavior of liquids. The latter mainly investigates macroscale properties of 

solid materials, e.g. dislocations, grain boundaries42 and elastic–plastic deformations46. As 

mentioned above, the MD method provides a high simulation accurary as molecular details are 

considered. A coupling of the FE and MD simulation methods allows us to investigate accurately 

macroscale problems (e.g. material deformation) at an affordable computational cost. The 

present Ph.D. work mainly focuses on the application of the hybrid MD-FE method to polymer 

nanocomposites under a spatial deformation. The following sections are scheduled to introduce 

coupled molecular-macroscale (i.e. MD-FE) simulation methods as well as their applications in 

the fields of hydrodynamic and structural mechanics. 

 

1.1.2 Different applications of hybrid molecular dynamics–finite element methods 

Because of a large reduction in the degrees of freedom of the simulated systems, continuum-

based simulations have a higher efficiency than particle-based simulations. Nevertheless, 

continuum mechanics cannot simulate precisely a heterogenous system where inhomogeneous 

features and molecular properties of interest influence the system properties. As an example, the 

flow dynamics of liquids in microchannels (i.e. flows in blood vessels15) is affected largely by 

the intermolecular interaction between the fluid and solid wall. Therefore, the intermolecular 

interaction has to be described reasonably at a molecular resolution. To my knowledge, 

pioneering work in the coupled MD-FE simulation of complex fluid flows has been contributed 

by O’Connell et al.40. In their simulations, the microchannel flow system is decomposed into a 

particle region, a hybrid solution interphase (HSI) region and a continuum region. The particle 

and HIS regions are both studied by an atomistic MD simulation that probes the influence of 

structural molecular factors in the vicinity of the solid wall on the hydrodynamics in the 

microchannels. The continuum region is described by a finite volume discretization on the basis 

of the Navier-Stokes equation12. The continuity of the mass and momentum flux in the HSI 

region is achieved by exchanging velocity and other thermodynamic parameters between the 

particle and continuum region. This hybrid method has been also applied by others (e.g. Bugel et 
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al.6, Yen et al.12, Cui et al.48 and Werder et al.15) to investigate hydrodynamic problems in 

different multiphase systems.  

 

In addition to fluid mechanics, the structural mechanics of solid materials is another field in 

which the hybrid particle-continuum method is applied widely. Macroscopic mechanical 

properties of multiphase solid materials (e.g. iron-carbon alloys49, fiber-reinforced ceramics50 

and polymer nanocomposites51) are often determined by their microscopic structure in the so-

called interphase between the matrix and the reinforcement phase. Conventional FE methods, 

such as the representative volume element41 (RVE) technique, decompose a material into a 

certain number of continuous elements that share overall properties of the material. In particular, 

these FE methods cannot describe the influence of the reinforcement phase on certain material 

properties. Similar to hydrodynamical coupling schemes, hybrid structural mechanics 

simulations have been applied to investigate material mechanics problems. They couple a 

particle-based MD region of local molecular details to a continuum-based FE surrounding that is 

able to reproduce the macroscale deformation behavior of the whole sample. Nevertheless, it 

should be mentioned that a central problem of these hybrid particle-continuum schemes is, how 

to transfer system information between the particle and continuum region.  

 

1.1.3 Coupling strategies of hybrid molecular dynamics–finite element methods 

According to the different ways to transfer information, hybrid structural mechanics methods are 

typically divided into two categories, namely sequential11,13,39,52,53 and concurrent45,46,54 coupling 

schemes. In the sequential coupling scheme, the MD and FE simulations are not performed 

simultaneously. Material properties and model parameters derived from the MD simulation are 

transferred into the subsequent FE computation at a lower resolution in an off-line way. The 

macroscopic behavior and microscopic structure of materials cannot be captured concurrently by 

an individual simulation in the sequential coupling framework. The RVE method39,53 is a widely 

used technique to reproduce approximately mean constitutive properties of heterogeneous 

nanocomposite materials in FE simulations. A RVE is generally defined as the smallest unit 

volume that reflects statistical averages of material properties. Yang et al.14 have developed a 

hybrid micromechanics model for multiscale constitutive simulations of silica/nylon-6 

nanocomposites. In their work, interfacial structures between nylon-6 and silica are analyzed 
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qualitatively by the RVE model. Additionally, by using an equivalent-continuum method based 

on the RVE approximation, Odegard et al.39 have predicted successfully the influence of the 

nanotube length, orientation and concentration on mechanical and other properties of 

polymer/nanotube composites. 

  

In the concurrent coupling scheme, a bridging boundary47 or handshaking region is introduced 

between the particle and continuum region. It contributes to a seamless coupling of potential 

energies by allowing an information transter between both sub-regions at different scales in an 

online way. The overall potential energy in the handshaking region is formulated as a 

combination of the particle- and continuum-based energy. Their contribution to the total energy 

depends on chosen numerical rules to evaluate the weighting function. It is worth mentioning 

that these weighting factors have to be chosen according to details of the specific simulation 

system. The coupling simulation converges only when the total energy arrives at a global 

minimum value46. The seamless energy combination and the online information exchange 

between the particle and continuum region enable concurrent coupling methods to capture 

simultaneously macromechanics and microstructures of materials. The concurrent coupling 

method has been used widely to investigate the mechanical deformation behavior49 of solid 

crystalline materials such as fracture, dislocation and crack propagation. Due to the perfect 

periodicity of solid crystalline materials, it is simple to create meshing structures for the 

continuum and handshaking region in hybrid simulations. To achieve a seamless coupling of the 

MD and FE region, the position of each FE node in the overlap region is generated by a simple 

projection of a MD atom to a FE node in a one-to-one relation. Therefore, the displacement of 

the FE node in the overlap region coincides with the displacement of a MD atom under an 

application of a scaling procedure when performing the hybrid MD-FE computation55.  

 

However, the hybrid MD-FE method is still rarely applied to simulate amorphous polymer 

materials. This is caused by difficulties of discretizing the overlap region to generate the FE 

mesh structures for amorphous, non-periodic materials such as polymers or polymer 

nanocomposites56. The Arlequin-based method developed by Ben Dhia et al.35 is a feasible 

technique to perform simulations of amorphous polymer materials. In the Arlequin framework, 

the overlap region in a hybrid model is merely constructed according to a purely particle-based 
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description; it does not require a crystalline description. By collaboration with the group of Prof. 

Steinmann at Erlangen-Nuremberg University, our group has developed recently a new hybrid 

MD-FE method7,57 based on the Arlequin algorithm. The hybrid framework requires the 

definition of three different regions, namely the inner MD, the outer FE and the intermediate 

dissipative particle dynamics (DPD) region. More technical details on the hybrid method are 

described in Sections 2 and 4. In contrast to the exsiting hybrid frameworks, our hybrid MD-FE 

simulations are performed in a staggered way. This means that the particle-based MD region 

cannot feel the continuum-based FE region when performing FE computations and vice versa. 

Additionally, it is worth noticing that a large number of anchor points (e.g. several thousand) are 

introduced into the MD-FE overlapping region of the hybrid simulation space for the following 

purposes: (i) the transfer of information (i.e. forces and displacements) between the MD and FE 

region; (ii) they serve as a thermal bath and reduce the probability that polymer beads can leave 

from the particle region. The robustness of the hybrid method without consideration of the FE 

part on variations of input parameters related to the anchor points has been analyzed by an 

uncertainty quantification in simulations of a polystyrene model system58.  

 

1.1.4 Further analysis of the used hybrid molecular dynamics–finite element method 

Computer simulations aim to gain insight into the behavior or properties of a system being 

modeled59. This goal can be fulfilled by reproducing physical and chemical phenomena of the 

studied system with a set of input parameters60. However, the input parameters in many 

systems61,62 are often uncertain. Reasonable combinations of them for these systems are often not 

accessible directly by a physical law, as the response of system properties to variations of the 

input parameters is not always explicitly known63,64. As an example, coarse-grained force fields 

used in MD simulations often exhibit a poor transferability between various thermodynamic 

conditions65 such as temperature and pressure. Quite generally, these force field models are able 

to reproduce quantities of interest (QoI) of the studied system within a certain range of 

thermodynamic conditions, but fail at other ranges. In this sense, the accuracy of the QoI of the 

simulated system is sensitive to the thermodynamic conditions. To make simulation results more 

reliable, it is of theoretical and practical relevance to investigate the sensitivity of the QoI or their 

robustness as a function of uncertainties in the input parameters.  
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As a statistical analysis technique, uncertainty quantification (UQ)66,67 has been used widely to 

locate uncertainties in the system response and to characterize correlations between the 

calculated QoI and the chosen input parameters. For instance, based on a random sampling (i.e. 

Monte Carlo method) of a chosen parameter space, Rouhi et al.68,69 have demonstrated by UQ 

analyses that uncertainties from geometrical and mechanical properties of carbon nanofibers 

influence largely the calculated elastic properties of thermostat polymer materials. In addition, 

Jocobson et al.65 have employed a generalized polynomial chaos (gPC) technique to reconstruct 

the analytical surface of system properties of coarse-grained water models as a function of the 

input parameters. The UQ analyses have indicated that the overall transferability of the coarse-

grained water model depends on the targeted output property of the water model. The workflow 

of the UQ scheme can be summarized as follows: 

 

(i) Define the conditions of a UQ study by selecting input parameters (i.e. temperature, 

cutoff of non-bonded interactions, timestep) and quantities of interest (QoI) of a given 

model (i.e. MD simulation); 

(ii) Define a range of the input parameters and a parameter sampling method (i.e. random 

sampling method and stochastic collocation method); 

(iii) Generate a set of the input parameters in a given parameter range according to the 

parameter sampling method and calculate the corresponding value of the QoI of the 

given model. 

(iv)  Identify statistic features (i.e. mean value and standard deviation) of the QoI in the 

given parameter range based on the results from (iii); 

(v) Analyze the sensitivity of the QoI to a variation of the input parameters and determine 

the uncertainty sources of the studied model. 

 

In the hybrid MD-FE framework, the impact of several anchor-point-related input parameters on 

the robustness of the hybrid MD-FE model still has not been analyzed systematically. The 

relation between input parameters and system properties cannot be interpreted by an explicit 

physical law. These input parameters mainly include the force constant between anchor points 

and polymer beads, the number and distribution of anchor points and the thickness of the DPD 

region. As a matter of fact, they have to be chosen reasonably prior to production runs of the 
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hybrid simulations. It is therefore necessary to further investigate quantitatively the influence of 

these input parameters on the performance of the hybrid model. In the present thesis, an 

investigation of the robustness of the hybrid method as a function of variations of these input 

parameters by the UQ method is scheduled as the first mission. The algorithm details of the UQ 

analysis on the hybrid model are described in Section 2.  

 

1.2 Interfacial structure and mechanical deformation of polymer nanocomposites 

 
1.2.1 Microscopic properties of polymer chains in the interphase of nanocomposites 

Polymer materials such as polystyrene70, polyethylene71 and polyurethane72 have been widely 

employed as a result of their excellent properties2, e.g. light-weight, high ductility and good 

processability. Compared with conventional metallic and inorganic nonmetallic materials, the 

low mechanical strength of neat polymer materials restricts the range of their industrial 

application3,73. Mechanical properties of polymer materials are typically improved by composite 

manufacturing processes in which a low-modulus polymer matrix is blended with a fraction of 

high-modulus nanofillers (e.g. silica nanoparticles2,74–78, carbon nanotubes79–83, layered 

clay1,84,85). The mechanical strength of polymer nanocomposites is largely determined by the 

presense of an interphase structure86. The interaction between the polymer matrix and the 

nanoparticles influences the properties of the polymer chains around the nanoparticles87,88. 

Therefore, the local behavior of the polymer chains in the interphase differs from the one in the 

bulk. Investigations of local inhomogeneities in the polymer properties as a function of a 

separation from the nanoparticle surface allow us to understand details of the interfacial 

structures of polymer nanocomposites. 

 

It is often difficult to obtain molecular details of the interphase by experimental methods. 

Molecular simulation techniques have intrinsic advantages in investigations of interfacial 

properties of polymer nanocomposites from a microscopic perspective. By performing either 

atomistic or coarse-grained MD simulations, our former group members (i.e. Ndoro et al.24,89, 

Ghanbari et al.90–92 and Voyiatzis et al.93) have investigated structural and dynamic properties of 

the polymer chains near to the nanoparticle surface in nanocomposite systems containing a single 

nanoparticle. According to their simulations, polymer chains in the interphase expand their 
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dimension (i.e. chain end-to-end distance) relative to the bulk and orientate tangentially to the 

spherical nanoparticle surface94–96. Additionally, the dynamics (i.e. chain center of mass 

diffusion coefficient) of polymer chains in the interphase is hindered by interfacial adsorption 

effects97–99. It has also been found that both the curvature and grafting state of nanoparticles have 

a significant influence on interfacial chain properties in nanocomposites100. The global and 

interfacial chain properties101 are also influenced by other nanoparticle properties102,103 such as 

the mass fraction and the geometrical shape of nanoparticles. As the second aim of the present 

thesis, the influence of the chosen nanoparticle properties (and hence of the interphase area) on 

the global and local behavior of the polymer chains is investigated by performing coarse-grained 

MD simulations of polystyrene nanocomposite systems containing silica nanoparticles of 

different geometrical shapes.  

 

1.2.2 Mechanical deformation of polymer nanocomposites under external loads 

Experimental investigations104–108 have found that the mechanical properties of polymer 

nanocomposites are improved by an increasing concentration and grafting density of 

nanoparticles or by reducing the nanoparticle size at a constant nanoparticle concentration. It is 

of theoretical and practical relevance to investigate from a microscopic perspective, how the 

mechanical improvement of polymer nanocomposites correlates with nanoparticle 

characteristics50–52 (i.e. nanoparticle concentration, size, grafting state). Quite generally, the 

presence of nanoparticles with a massive surface-to-volume ratio leads to a large interphase area 

between the polymer matrix and the nanofillers109,110. The spatial profiles of structural and 

dynamic properties of polymer chains in the interphase54,57 reflect molecular details of interfacial 

structures. The interphase111,112 has generally a thickness of a few nanometers, and has a 

significant influence on the mechanical deformation behavior of polymer nanocomposites. It is 

commonly considered as an interaction zone113,114 that leads to an increase in the effective 

interaction region of the nanoparticles. Liang et al.115 and Rafiee et al.116 have found that the 

formation and propagation of crazes in polymer nanocomposites at a large strain can be 

attenuated due to the presence of an interphase region. This can be explained by the fact that a 

fraction of the polymer chains is strongly adsorbed by the nanoparticle surface117. In addition, 

Zhang et al.118 have suggested that nanoparticles can act as physical cross-linkers in 

nanocomposites. The “bridge network” structure119 formed by wrapping long polymer chains 
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around neighbouring nanoparticles can improve efficiently the mechanical properties of polymer 

nanocomposites. 

 

Understanding the mechanical deformation behavior of polymer materials under an external load 

is helpful to design improved polymer materials94. Stress-strain relations obtained by 

experimental measurements2 have shown that the deformation of polymer materials can lead to 

two different phases, namely an elastic120 and a plastic one121,122. In the former phase which 

exists for small strains, the deformation-induced stress increases almost linearly with the strain. 

Subsequently, the deformed material reaches a yield point123,124 from which the linear increase of 

the stress with the strain is terminated. Beyond the yield point, the stress extends to a plateau 

where a plastic deformation takes place at larger strains. The deformation behavior of polymer 

materials is fundamentally connected to the changes of chain structures and conformations as 

response to the external load125,126. As reported by Hossain et al.127, Li et al.128 and Shang et al.129, 

an applied external load leads to an expansion and a gradual orientation of polymer chains along 

the applied stress. In the elastic phase the mechanical work is mostly stored as non-bonded and 

bonded energies130,131, while it is partially dissipated as thermal energy in the plastic phase. 

Specifically, elastic and plastic deformations are both accompanied by chain elongations (i.e. 

angle bending and bond stretching) and mutual chain slips. 

 

1.2.3 Computer simulations of the deformation behavior of polymer nanocomposites  

Mechanical deformations of semi-crystalline polymer materials132–136 have been studied 

extensively by various experimental methods. In general, correlations between morphology and 

micromechanical deformation processes in semicrystalline polymer systems can be analyzed by 

electron microscopy and X-ray diffraction using in-situ tensile techniques137–140. However, 

possible relations between changes in the chain structure and the mechanical behavior of 

amorphous polymer glasses under external loads still have not been understood at a molecular 

level as the complexity of their microstructures causes numerous challenges for experimental 

measurements127. Computer simulation methods at different scales have been applied to 

investigate mechanical deformation processes of amorphous polymer materials. For instance, 

Chui et al.141 have performed Monte Carlo simulations to investigate stress-strain relations of 

amorphous polymeric networks constructed by a three-dimensional polybead model. They have 
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found that the stress-strain behavior of amorphous polymer systems depends on the temperature, 

pressure and applied strain142,143. Ogura et al.144 have found in MD simulations of a model 

amorphous polymer that large deformation processes cover three different steps, namely 

intrachian bond breaking, void formation and further development of cavities. Additionally, 

Dupaix et al.145 have developed a macroscale constitutive model to simulate the mechanical 

deformation of amorphous polymers. They have concluded that the primary mechanism for 

strain hardening of amorphous polymers corresponds to molecular orientation and 

alignment146,147. It should be mentioned that hybrid particle-continuum simulations of polymer 

nanocomposites are still rarely reported in the literature. 

 

1.3 Description of the tasks set in the present dissertation 

 

Several scientific questions related to the microscopic structure and macroscopic deformation 

behavior of polymer nanocomposites have still not been addressed properly from a microscopic 

perspective. How much of the chain reorientation in amorphous polymer glasses can be merely 

related to an affine transformation148 of the whole material? Relative to neat polymers, to which 

extend are the microscopic conformational changes of polymer chains during a tensile 

deformation influenced by the presence of nanoparticles149,150? How much can the addition of 

nanoparticles influence the global and interfacial properties of polymer chains as well as 

macroscopic mechanical properties of polymer nanocomposites151-154? To answer these questions, 

the aforementioned hybrid MD-FE method has been applied in the present work to simulate 

uniaxial deformations of polystyrene nanocomposites containing a certain fraction of silica 

nanoparticles. As shown by the observed results, the hybrid method allows us to capture 

qualitatively possible correlations between molecular structures and macroscale properties of 

nanocomposites at an affordable computational cost. In the hybrid MD-FE framework7,57, the 

continuum domain solved by the FE method serves as an elastically responding surrounding to 

deform the inner particle domain in which polymer structural properties in nanocomposites are 

analyzed. The considered polymer nanocomposite systems91 are generated by mixing a certain 

amount of silica nanoparticles into a polystyrene matrix. The influence of the nanoparticle 

properties (i.e. mass fraction, size and grafting state) on the mechanical macroscale behavior of 

polymer nanocomposites is investigated by both standard periodic MD and hybrid MD-FE 
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simulations. More details on the deformation simulations of polystyrene–silica nanocomposites 

are given in the following sections. 

 

The remaining chapters of the present thesis are structured as follows. In the second chapter, the 

influence of variations of the input parameters on the results of the hybrid MD-FE simulation 

method is analyzed systematically using an uncertainty quantification method. Subsequently, the 

role of the interfacial area for the structure and dynamics of polymer nanocomposites is 

investigated by molecular dynamics simulations of polystyrene with silica nanoparticles of 

different shapes. In the fourth chapter, hybrid MD-FE simulations are performed to investigate 

the uniaxial deformation behavior of polystyrene/silica nanocomposites. Finally, the conclusions 

obtained in the present thesis and an outlook of the hybrid simulations are summarized in the 

fifth chapter. 
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2. Robustness of Hybrid Molecular Dynamics–Finite Element Method 

for Amorphous Polystyrene Analyzed by Uncertainty Quantification 

 

 

2.1 Abstract 

  

Key parameters of a recently developed coarse-grained hybrid molecular dynamics-finite 

element (MD-FE) approach have been analyzed in the framework of uncertainty quantification 

(UQ). We have employed a polystyrene sample for the case study. The new hybrid approach 

contains several parameters which cannot be determined on the basis of simple physical 

arguments. Among others, this includes so-called anchor points as information transmitters 

between the particle-based MD domain and the surrounding FE continuum, the force constant 

between polymer beads and anchor points, the number of anchor points and the relative sizes of 

the MD core domain and the surrounding dissipative particle dynamics (DPD) domain. Polymer 

properties such as density, radius of gyration, end-to-end distance and radial distribution 

functions are calculated as a function of the above model parameters. The influence of these 

input parameters on the resulting polymer properties is studied by UQ. Our analysis shows that 

the hybrid method is highly robust. The variation of polymer properties of interest as a function 

of the input parameters is weak. 
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2.2 Introduction 

 

Multiscale simulations of soft matter systems have recently received increasing attention. Some 

multiscale simulation techniques, mainly in the framework of either particle-based models (e.g. 

molecular dynamics (MD) 1, Monte Carlo (MC) 2 and dissipative particle dynamics (DPD) 3 

methods) or continuum models (e.g. finite element (FE) approach 4, 5), have been employed to 

study macroscopic and microscopic (molecular) properties of soft matter systems. Quite 

generally, particle-based models are of higher resolution than field-based models as they 

consider explicitly the chemical and physical details of the studied systems. However, it is often 

impossible to employ particle-based models alone to treat some macroscale problems in soft 

matter systems due to the unaffordable computational cost. Unfortunately, one of the most often 

used field-based models, i.e. the finite element method, does not provide a resolution to study 

microscopic properties of soft matter. These could be local inhomogeneities such as interphases 

around filler particles in nanocomposites. One essentially unsolved problem in multiscale 

simulations is how to investigate macroscopic soft matter processes and properties, but under a 

high resolution. The coupling of a particle-based description of a smaller domain of interest with 

a much larger surrounding field-based continuum region is a suitable technique to combine the 

accuracy in the domain of interest with an efficient treatment of the remaining system. To date, 

some particle-field coupling techniques have been developed for hybrid simulations. Belytschko 

and Xiao 6 proposed an approach to couple a particle and continuum model based on a bridging 

domain framework, in which the particle and continuum domains overlap; the total energy was 

derived as a combination from both overlapping domains. The so-called bridging coupling 

method had been adopted by Khare et al. 7, Zhang et al. 8, Davydov et al. 9 and Xu et al. 10 to 

investigate the mechanical behavior of crystalline materials. In addition, an Arlequin method 11, 

12, similar to the bridging domain framework, was developed by Ben Dhia and co-workers to 

blend atomistic and continuum energies in hybrid simulations. The Arlequin method has been 

applied to simulate soft materials such as polymers 13, 14 because it does not require a lattice 

structure in the particle domain. Despite these recent advances, applications of particle-

continuum hybrid models to simulate polymer nanocomposites are rare. 
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Recently some of the present authors have developed a hybrid molecular dynamics-finite 

element (MD-FE) model 15, 16 to investigate interfacial and mechanical properties of polymer 

nanocomposites. A fundamental element of the MD-FE model is the coupling of a central 

particle domain to a surrounding continuum using the Arlequin approach. The particle domain is 

further divided into a MD core, where molecular properties can be analyzed, and a dissipative 

particle dynamics (DPD) shell, which provides both the stochastic boundary conditions for the 

MD core and the hand-shake with the continuum domain. The continuum domain is described by 

a FE model. The equations of motion in the MD and FE domain are based on Newtonian 

mechanics and continuum mechanics, respectively. The hand-shake between particle and 

continuum domain is handled by a number of points, so-called anchor points 17, predefined in the 

boundary, where the DPD region and the finite element region overlap. Polymer beads in the 

boundary region are tethered harmonically to these anchor points via a spring with a properly 

chosen force constant. The transfer of forces and displacements between the MD and FE domain 

is achieved via a staggered coupling formalism which displaces anchor point positions in the 

boundary domain under external load. More specifically, the displacement field computed in the 

FE domain dictates displacements of anchor points within the boundary domain after each FE 

iteration step. In the intervening MD steps, the anchor points provide a constant external 

potential for the particle region. In the present MD-FE implementation coarse-grained (CG) MD 

simulations 18, 19 are performed in the MD and boundary region until equilibration using 

stochastic boundary conditions 17, 20, 21. During the MD simulation, the forces on the anchor 

points are accumulated. Their time-averages define surface tractions as additional boundary 

conditions for the next FE step, which eventually gives rise to displacements of the anchor points 

which are resubmitted to the MD domain. The developed algorithm defines a staggered MD-FE 

iteration framework which is executed until convergence standards are satisfied. More details on 

the iteration procedure in our hybrid MD-FE simulation scheme can be found elsewhere 16.  

 

The applicability of the hybrid MD-FE framework has been demonstrated for simple model 

systems (pure polystyrene (PS) as well as PS filled with a single silica nanoparticle; both systems 

were described in CG resolution) 16, 17, 22. An upcoming application will be the use of MD-FE 

coupling models to study polymer composite systems filled with a large number of nanoparticles. 

To this end, the influence of the many input parameters of the staggered hybrid MD-FE model 
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on the results of the calculations still has to be quantified. Candidates for parameters, which 

influence the robustness of the method, include the force constant between polymer beads and 

anchor points, the number of anchor points in the boundary domain, their distribution and the 

relative dimensions of the MD and boundary domains. In the present work, the influence of these 

technical parameters of the coupling model on the simulation results is studied using uncertainty 

quantification (UQ) 23, 24. Some material properties of the studied system (quantities of interest, 

QoI) are considered as a function of those input parameters. As a powerful analysis tool, UQ has 

been adopted also recently to study the effect of key parameters on QoI of simulation systems 25-

27. Structural properties (mass density, end-to-end distance, radius of gyration, radial distribution 

function (RDF)) as well as one dynamic property (diffusion coefficient) of the polymer chains 

are analyzed in this work. As the input parameters concern primarily the particle domain, the 

hybrid simulation framework is considered without the FE part here; see one of our recent 

studies 17. Moreover, a pure PS system without nanoparticles is taken as simulation example in 

this work.  
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2.3 Simulation methods and computational details 

 

All MD simulations in the present work are done with our program IBIsCO 28, both under non-

periodic, stochastic boundary conditions 17 (SBC MD simulations, which do not include the FE 

part) and under standard periodic boundary conditions (PBC MD simulations). Both methods 

have been employed to simulate soft matter systems. In this contribution, we mainly discuss the 

SBC MD simulation model because it is the most important and most time-consuming part of the 

fullly hybrid MD-FE simulations described above 15, 16. For simplicity, only the basic framework 

of SBC MD simulations is presented summarily here. The particle domain of the SBC MD 

simulation model contains three spatial sections, denoted as the MD, DPD and boundary domain. 

The MD domain is the core of the particle domain. Here, the analysis of molecular properties is 

done; the movement of the particles is governed by pure Newtonian mechanics; and this part 

should behave as if it were surrounded by more MD particles, rather than, boundary and 

continuum domains with their contraptions to facilitate the coupling. The boundary region is the 

outermost shell of the particle domain. It spatially overlaps with the innermost layer of the 

continuum domain: in this region, there are both particles and finite elements. Coupling between 

particles and finite elements is implemented via the anchor points which transmit the forces 

between both levels of description. The anchor points are located exclusively in the boundary 

region. A second purpose of the anchor points is to prevent polymer molecules from leaving the 

particle region. While the MD simulation is running in the particle domain, it is surrounded by 

vacuum; were it not for the anchor points, the molecules would start to evaporate. Thirdly, by 

acting as a confining external potential, the anchor points provide an effective “wall” on the 

particle domain and define the internal pressure. Because of their different actions, the anchor 

points play a very important role in SBC MD as well as in hybrid MD-FE simulations. This is 

the reason why modifications in the QoI as a function of anchor-point density and distribution 

should be understood quantitatively. Their number is a direct input parameter. Their distribution 

depends besides its functional form (we use both uniform and exponential profiles) chiefly on the 

thickness of the boundary region. We have, however, established previously 17 that it has a large 

enough safe range. Therefore, the thickness of the boundary region in this work is always chosen 

as 1.5 nm. Equally, the force constant k between selected polymer beads and their anchor points 
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should be neither too large nor too small. A strong spring may constitute an unphysical 

perturbation of the particle domain into the MD core region. On the other hand, if the force 

constant is too small, too many polymer beads might leave the particle domain. Then the shape 

of the particle domain might change in an uncontrollable way. Thus both the pressure and the 

density in the particle domain might be wrong. This force constant is, therefore, another 

parameter whose influence on the QoI must be known. The third particle region in the present 

MD-FE approach is the so-called DPD region. It includes the boundary region, but can reach 

further into the particle domain if necessary. The particle motion follows the stochastic DPD 3 

equation of motion, rather than the Newtonian equation of motion in the core. It serves as a 

thermal bath which keeps the temperature of the particle region at the desired value. Moreover, it 

pretends to the MD core that there are more particles outside the particle domain by mimicking 

random collisions with outside particles. The extension of the DPD region also has the potential 

to influence the QoI. If too thin, it fails to provide adequate randomness at the boundary. If too 

thick, it interferes with the dynamics in the MD core. Therefore, the width of the DPD region 

(the boundary domain and the DPD extension), is an important input parameter, too, and its 

influence is investigated here. 

 

In this technical study, a coarse-grained model of atactic polystyrene (PS) was used as example. 

The tabulated coarse-grained potential is taken from our previous work 29-32. The potential has 

been determined by Iterative Boltzmann Inversion 33, 34 at a temperature of 590 K and a pressure 

of 1 bar. The repeating units in atactic PS chains have two conformations, R and S. In our 

coarse-grained model they are represented by two different beads. Results from standard PBC 

MD simulations were employed as reference to allow a comparison with the results from the 

SBC MD. The PBC box contains 3000 chains of 20 monomers. The simulation box is 

equilibrated at 590 K and 1 bar in the isothermal-isobaric (NPT) ensemble for 10 ns using the 

Nosé-Hoover method to control temperature and pressure with coupling times of 1.0 ps and 5.0 

ps, respectively. The non-bonded cut-off radius was set to 1.5 nm. The velocity-Verlet 

integration approach was employed with a time step of 0.01 ps. After this stage, the system was 

cooled from 590 K to 300 K at a rate of 10 K/ns. After this procedure the system had a size of 

21.39×21.39×21.39 nm3 and a density of 1063 ± 3.26 kg/m3 at 1 bar. With the cooled structures 
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we performed PBC MD simulations of 4 ns from which the properties of the polymer were 

estimated for comparison with SBC MD simulations.  

 

The initial structure for the SBC MD simulations is the final structure of a PBC MD calculation. 

In removing the periodic boundary conditions, all polymer chains which extend out of the 

simulation box are cut and the outside polymer fragments are shifted back into the simulation 

cell (the particle region in the language of MD-FE hybrid methods) using periodic boundary 

conditions. Most of the shortened fragments are located in the boundary domain (thickness 

Lboundary = 1.5 nm) of the simulation box. About 80 percent of all polymer chains keep their 

original length of 20 monomers (Figure 2.1); and nearly all (98.12 %) polymer chains in the core  
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Figure 2.1 The distribution of PS chain lengths in the simulation box after shifting all beads 

outside the box back to the simulation box. The original PS chains are 20 beads long. 

 

MD domain (17.39×17.39×17.39 nm3) are uncut; here the thickness of DPD domain is 2.0 nm. 

The SBC MD calculations are carried out with the same general settings as the PBC MD 

calculations, except for the following differences: The temperature is maintained at 300 ± 2.7 K 

Cut chains  

Back transfer 
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by the thermostat in the DPD domain (thickness 1.0 nm) with a friction constant of 2.32 N/m. 

The anchor atoms are distributed randomly in the boundary region. There are between 2625 and 

11078 of them (see below). In all cases, there are at least 1.27 anchor points per polymer 

fragment in the boundary region, to reduce the escape of chains and to maintain the pressure in 

the MD region at 1 ± 0.054 bar. 
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2.4 Uncertainty quantification analysis methodology 

 

Uncertain input parameters are those, whose value cannot be determined precisely a priori, yet 

the simulation outcome, in particular the quantities of interest (QoI), of a model may depend on 

their actual values. Examples of uncertain input parameters arise from physical limitations of the 

studied model (e.g. fluctuations of temperature around a target temperature) or also from 

algorithmic requirements (e.g. the choice of the MD timestep). The quantitative statistical 

analysis of the impact of uncertainty in input parameters on QoI of a given model, a 

methodology termed Uncertainty Quantification (UQ), is of high significance for the application 

of simulation techniques. In this work, we employ UQ to compute in particular estimates of the 

mean and the variance of different QoI when uncertain input parameters exhaust their stochastic 

space, i.e. vary over their parameter range according to a suitable distribution. In fact the 

selection of this distribution corresponds to model the uncertainty in the parameter under 

investigation. In the present study all uncertain input parameters are scalars and represented by a 

random variable with a uniform distribution over a particular interval. Furthermore, while having 

different uncertain input parameters, we consider only a single one of these as uncertain at a time 

and keep all others at fixed basic values. Table 2.1 summarizes the uncertain parameters with 

their ranges as well as model parameters that have been fixed to their basic values. These basic 

values were set to the safe values for the model according to the recent work 17. As described 

earlier, the QoI considered in this work include mass density, end-to-end distance, and radius of 

gyration of the PS chains for both the entire simulation box and the inner MD box. Note that the 

more general investigation of the combined effect of all uncertain input parameters at once on 

QoI of the model is subject of ongoing work. 

 

Uncertain input parameter 
Force constant k 

(N/m) 
Number of anchor points N 

DPD domain size LDPD 

(nm) 

Parameter range 3.0 < k < 150.0  2625 < N < 11078 1.5 < LDPD < 10.0 

Predefined fixed parameters N = 8775, LDPD = 5.0 k = 2.32, LDPD = 5.0 k = 2.32, N = 8775 
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Table 2.1 Uncertain input parameters and parameter ranges in the uncertainty quantification 

analysis (second row). Other input parameters (bottom row) are fixed when one was chosen as 

the uncertain input parameter. The number of anchor points is controlled by a comparison 

between a random number r (0≤ r <1) and the anchor point distribution density. 

 

The goal of the UQ analysis applied to our hybrid simulation model is to provide quantitative 

information of the effect of uncertain algorithmic parameters on model robustness and thus 

contributes to understand the hybrid simulation model more systematically. We remark here that 

the diffusion coefficient and the radial distribution function of PS are QoI of the model but 

calculated and analyzed without using the UQ methodology. For simplicity they will be analyzed 

directly in terms of the natural fluctuations of the QoI.  

 

In the remainder of this section we give a brief account of the main ingredients of our UQ 

approach, for more details we refer the reader to the literature 23, 24. Figure 2.2 illustrates briefly 

the basic workflow of UQ analysis for the hybrid MD-FE model.  
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Figure 2.2 The figure illustrates the workflow of uncertainty quantification analysis for hybrid 

MD-FE approach. Note that the FE continuum is the outermost region of hybrid MD-FE model 

but it is not included in the SBC MD simulations of the present study. 

The main advantage of our scheme over an ad-hoc exploration of the stochastic space associated 

with parameter uncertainty is that we proceed in a systematic and cost-efficient manner and 

provide results which are accurate up to a user-specified tolerance. We proceed in two phases. In 

Phase I we construct a global polynomial q(p) which maps parameter values p from the uncertain 

parameter range to approximate values of the QoI of the model, i.e. q(p) ≈  QoI(p). The 

polynomial q is constructed using a collocation technique, that is: (i) a number of collocation 

points pj in the uncertain parameter range are chosen and each of which corresponds to a 

particular choice of the uncertain parameters, (ii) for each collocation point pj, the model is 

simulated with uncertain parameters set to pj and the corresponding QoI(pj) is derived, and (iii) 

the unique polynomial q of suitable degree is determined such that q(pj) = QoI(pj) holds for all 

collocation points pj. Clearly the appropriate number and position of the collocation points in (i) 

determines the accuracy with which q(p) approximates QoI(p) at non-collocation points. In our 

UQ scheme we select appropriate collocation points to ensure that for all possible uncertain 

parameter values p we have: 

 

|𝑞𝑞(𝑝𝑝) − 𝑄𝑄𝑄𝑄𝑄𝑄(𝑝𝑝)| ≤ 𝑇𝑇𝑇𝑇𝑇𝑇.       (2.1) 

 

We set the user-specified tolerance to TOL = 10-7 in all UQ computations of this study. However, 

also observe that the number of collocation points determines the computational effort required 

in (ii), that is how many expensive simulations of our hybrid simulation model need to be 

performed, and thus should be chosen as small as possible. How both of these aims, i.e. 

approximation accuracy and computational efficiency, can be reached simultaneously by 

iterative improvement will be discussed below. The constructed polynomial q(p) is evaluated 

cheaply for any particular parameter value p. It is now used as a surrogate of our hybrid 

simulation model in Phase II, where we compute approximations of statistical quantities of the 

QoI as the uncertain input parameters vary according to their distribution. Thus we avoid the 

expensive simulation of the model in this phase. In particular in this work we compute 
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approximations µ and σ2 to the expected value E[QoI] and the variance V[QoI] of the QoI, 

respectively, that is                                                

      𝐸𝐸[𝑄𝑄𝑄𝑄𝑄𝑄]  ≈  �𝑞𝑞(𝑝𝑝)
𝑏𝑏

𝑎𝑎

𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑,          (2.2) 

      𝑉𝑉[𝑄𝑄𝑄𝑄𝑄𝑄]  ≈ 𝜎𝜎2  ∶= �𝑓𝑓(𝑝𝑝)
𝑏𝑏

𝑎𝑎

(𝑞𝑞(𝑝𝑝) − 𝜇𝜇)2𝑑𝑑𝑑𝑑.          (2.3) 

 

Here the integral boundaries are the finite values (a and b) according to the interval of the 

uniform distribution of the uncertain input parameter under investigation and f denotes the 

density function of that distribution. Observe that by ensuring tolerance TOL in the construction 

of polynomial q implies that, for instance, also µ is an approximation of E[QoI] with the same 

accuracy, i.e. 

 

|𝜇𝜇 − 𝐸𝐸[𝑄𝑄𝑄𝑄𝑄𝑄]| = �� �𝑞𝑞(𝑝𝑝) −𝑄𝑄𝑄𝑄𝑄𝑄(𝑝𝑝)�𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
� ≤ � |𝑞𝑞(𝑝𝑝) − 𝑄𝑄𝑄𝑄𝑄𝑄(𝑝𝑝)|𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇,

𝑏𝑏

𝑎𝑎
   (2.4) 

 

where we have used that the integral over the non-negative density function equals one. Note that 

the intervals for uncertain input parameters, for example [3.0, 150.0] (N/m) for force constant, 

were set to make sure that the SBC MD simulations can be performed safely.  

 

We now finally address, on a more technical basis, the choice of the collocation points pj and the 

construction of the polynomial q(p) in Phase I and relate this to the objectives of our 

computational UQ scheme. We iteratively add new pj to the set of collocation points until the 

corresponding polynomial q satisfies the accuracy requirement. That means that we construct a 

sequence of increasingly finer, nested grids, each covering the uncertain parameter space and for 

each grid a corresponding polynomial q. Thanks to the nested nature of the grids, we reuse the 

expensive QoI computation of earlier collocation points. Furthermore, the pj are taken from a 

sparse grid if there is more than one uncertain parameter in order to avoid dimensionality 

problems associated with full, multi-dimensional grids. The result is typically a small number of 



 

42 

required runs of the hybrid simulation model in Phase I. In addition, for improved approximation 

accuracy and consequently an efficient scheme, the pj are the zeros of special polynomials and 

distributed not equally spaced but denser towards the boundary of the parameter space. The 

sequence of nested grids allows that the sequence of corresponding polynomials q can be written 

with a hierarchical basis representation. The latter has advantages when computing the new 

polynomial q after adding new collocation points and provides the error indicator employed to 

stop the iteration. Complete details can be found in ref. 23. 
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2.5 Results and discussions  

2.5.1 Force constant for the interaction between anchor points and polymer beads 

 

The migration of polymer beads from the inner MD domain to the boundary region and beyond 

will increase when the harmonic interaction between polymer beads and anchor points is weak. 

This can be monitored by the mass density in the MD core region. When the force constant is 

very small (0.001 N/m)  the mass density of PS in the core MD domain drops from 1060 ± 6.17 

kg/m3 to 1000 ± 4.62 kg/ m3  in a simulation of 4 ns (Figure 2.3 (a)). This demonstrates that the 

mass density of PS in the MD domain is not stable when the force constant is too small. 

However, the mass density of PS in the central MD region remains constant when a force 

constant of at least 2.32 N/m and an exponential profile of the anchor points are adopted (Figure 

2.3 (b)). In our recent hybrid simulation this value has been adopted as standard 15, 16. It is quite 

important to understand how a variation of the force constant influences properties of PS chains. 

The range of force constants listed in Table 2.1 was analyzed by UQ. Note that the 

computational procedure starts at 3.00 N/m, i.e. above the safe value of 2.32 N/m. Fifteen force 

constant values were chosen at regular intervals. For each value the properties of PS in the MD 

core region were determined:  

 

Neither the mass density (Figure 2.4 (a)), nor the squared end-to-end distance (Figure 2.4 (b)) 

and the squared radius of gyration (Figure 2.4 (c)) of the PS chains depend sizably on the value 

of the force constant (SBC simulation). The values for the entire simulation box differ from the 

MD core (lower mass density due to a small amount of escaping polymer; lower squared radius 

of gyration and squared end-to-end distance due to the presence of cut chains, see Section 2.3). 

However, they are more or less independent from the value of the force constant. The standard 

deviations of these three QoI obtained from UQ analysis (Table 2.2, below) are 0.761 kg/m3 for 

the mass density, 0.0409 nm2 for the squared end-to-end distance and 0.0034 nm2 for the squared 

radius of gyration, respectively. These standard deviations are quite small compared with the 

corresponding average values. Our UQ results demonstrate quantitatively that the effect of 

changing the anchor point - polymer bead force constant on QoI can be ignored, once it is above 

the threshold of 2.32 N/m.  
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Figure 2.3 Mass density of PS in the inner MD domain as a function of the simulation time under 

different conditions of (a) force constant k = 0.001 N/m, number of anchor points N = 8775 and 

DPD domain size LDPD = 5.0 nm; (b) force constant k = 2.32 N/m, number of anchor points N = 

3126 and DPD domain size LDPD = 5.0 nm for an exponential and random distribution of the 

anchor points; (c) force constant k = 2.32 N/m, number of anchor points N = 2243 and DPD 

domain size LDPD = 5.0 nm. 
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Figure 2.4 Mass density (a), squared end-to-end distance (b) and squared radius of gyration (c) 

of PS chains in the entire simulation box (blue) and in the core MD domain (red) as a function of 

force constant between polymer beads and anchor points. Note that the error bars are in most 

cases smaller than the symbols.
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  Force Constant Number of anchor points DPD domain size 

  
Mass 

density 

(kg/m3) 

Squared 

end-to-

end 

distance 

(nm2) 

Squared 

radius of 

gyration 

(nm2) 

Mass 

density 

(kg/m3) 

Squared 

end-to-

end 

distance 

(nm2) 

Squared 

radius of 

gyration 

(nm2) 

Mass 

density 

(kg/m3) 

Squared  

end-to-

end 

distance 

(nm2) 

Squared 

radius of 

gyration 

(nm2) 

MD 

box 

Mean 

value 
1064.248 6.248 0.981 1065.508 6.321 0.984 1063.753 6.296 0.983 

Standard 

deviation 
0.761 0.0409 0.0034 0.5837 0.0668 0.0059 8.9369 0.2667 0.0219 

Entire 

box 

Mean 

value 
1051.033 4.268 0.687 1045.757 4.363 0.699 1044.916 4.281 0.688 

Standard 

deviation 
1.291 0.0171 0.0013 2.0886 0.0401 0.0066 0.3639 0.0167 0.0012 

 

Table 2.2 Mean values and standard deviations for different quantities of interest in simulations 

under a change of the force constant, the number of anchor points and the DPD domain size. 

The values of standard deviation are calculated using uncertainty quantification method. The 

mean values of different quantities of interest are listed for comparison with the standard 

deviations. 

 

The radial distribution functions of PS chains for the entire box for two different force constants 

(k = 2.32 and 9.31 N/m) were also calculated (Figure 2.5 (a)). These two radial distribution 

function curves are nearly identical. The relative deviations of the radial distribution functions 

from the reference curves for different values of the force constant are quite small (Figure 2.6 

(a)). This shows again that a variation of the force constant does not have a prominent influence 

on the structure of PS in SBC MD simulations. The values of the mean square displacement of 

the PS chains were fitted linearly to obtain their diffusion coefficients. Note that the diffusion 

coefficient of the PS chains in the MD domain fluctuates slightly (Figure 2.7 (a)) when running 

simulations with different force constants. In analogy to static structural properties, changes in 

the force constant do not have a big influence on the diffusion coefficient of the PS chains both 

in the MD domain and the entire box (SBC MD simulations).  
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Figure 2.5 Comparison of non-bonded radial distribution functions for polystyrene chains as a 

function of different input parameters (a) force constant, (b) number of anchor points and (c) 

DPD domain size. 
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Figure 2.6 Relative deviation of the radial distribution function as a function of (a) force 

constant, (b) the number of anchor points and (c) the DPD domain size. Relative deviations (RD) 

were calculated with the formula  𝑅𝑅𝑅𝑅 =  1
𝑀𝑀
∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑥𝑥)−𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(0)

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(0)
)2𝑀𝑀

𝑖𝑖=1 . Here, M is the number of 

discrete points in the RDF curves, RDF (x) is calculated via changing input parameters x (x = k, 

N or LDPD) and RDF(0) is the standard value of the RDF when k, N and LDPD are 2.32 N/m, 8775 

and 2.0 nm, respectively . 
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2.5.2 Anchor point distribution in the dissipative-particle-dynamics domain 

 

Two different distributions of anchor points (a random profile with an exponential decay towards 

the inner MD domain and a uniform random distribution without preferential direction) have 

been employed in our simulations. For a detailed description of our strategy to generate a profile 

with an exponential decay we refer to our previous article 17. As polymer beads are tethered to 

the space fixed anchor points in the boundary region, their escape into the surrounding “vacuum” 

is increasingly hindered with increasing anchor point density. For an identical number of anchor 

points in both distributions, the exponential shape is superior to the random profile. This is 

evident when analyzing the PS mass density for both distributions as a function of the simulation 

time (Figure 2.3 (b)). In addition to the spatial distribution of the anchor points, their total 

number also exerts an influence on the migration of polymer beads from the boundary domain 

into the surrounding vacuum. With an increasing number of anchor points, more polymer beads 

are fixed, and the polymer is better confined in the particle domain. For a too small number of 

anchor points (2243), the mass density of the PS in the MD domain decreases from 1060 ± 4.37 

kg/m3 to 1030 ± 5.89 kg/ m3 (Figure 2.3 (c)). In contrast, the density in the MD domain remains 

constant, when the number of anchor points is at least 2800. From that number of anchor points 

onward, the QoI, including mass density, squared end-to-end distance and squared radius of 

gyration, remain more or less constant (Figure 2.8) up to the upper end of the investigated range 

of 11500 anchor points. The standard deviations for these three QoI are very small (Table 2.2) in 

comparison to their average values. To sum up, as long as the number of anchor points does not 

fall below the limit of 2800, any value can be used without affecting the structural properties of 

the PS chains. In addition, the splitting between the radial distribution functions of the PS chains 

in the entire simulation box for two numbers of anchor points (N = 4916 and 8775) is quite small 

(Figure 2.5 (b)). The same is of course observed for the relative deviation of the radial 

distribution functions for different numbers of anchor points (Figure 2.6 (b)). Similar to the 

structural properties of the polymer, a variation in the number of anchor points does not have a 

big influence on the studied dynamic property, the diffusion coefficient, of the PS chains in the 

MD domain. This is shown in Figure 2.7 (b). However, note that the diffusion coefficient of the 

PS chains in the entire simulation box decreases as the number of anchor points increases. The 

reason has been touched already above, i.e. anchor points confine the movement of polymer 
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beads in the boundary domain. In contrast, they do not influence the movement of PS chains in 

the MD domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Diffusion coefficient of PS as a function of (a) the force constant, (b) the number of 

anchor points and (c) the DPD domain size. 
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Figure 2.8 Mass density (a), squared end-to-end distance (b) and squared radius of gyration (c) 

of PS chains in the entire simulation box (blue) and the core MD domain (red) as a function of 

the number of anchor points. 
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2.5.3 Size of dissipative-particle-dynamics domain  

 

The size of the entire cubic particle simulation region has been fixed at (21.39 nm)3 during all 

computations. The length of each dimension of the core MD domain size is therefore LMD = 

21.39 nm − 2LDPD. Also this parameter has a range of practical usefulness: If LMD is smaller than 

a critical limit, i.e. when the end-to-end distance of PS chains becomes larger than the core 

domain size, it cannot map the PS structure under SBCs correctly. On the other hand, the core 

MD domain also should not cover too much of the entire box size, as otherwise the DPD domain 

will be too small to mimic the randomness brought about by collisions with particles, which in 

reality would exist outside the particle domain. It has been observed that for surrounding DPD 

domain thicknesses between 2.0 ~ 8.0 nm, and corresponding MD core dimensions between 

17.39 nm and 5.39 nm, the mass density (Figure 2.9 (a)), the squared end-to-end distance (Figure 

2.9 (b)) and the squared radius of gyration (Figure 2.9 (c)) of PS are constant and have small 

error bars. The standard deviations from UQ analysis reflect that the variation of mass density, 

squared end-to-end distance, squared radius of gyration, diffusion coefficient and radial 

distribution function of PS were calculated under both SBC and PBC.  

 

2.5.4 Comparison with molecular dynamics simulation under periodic boundary condition 

 

The recent work in our group has demonstrated that the SBC MD simulation under a standard 

force constant 2.32 N/m can reproduce the structural properties of polymer chains in the PBC 

MD simulations very well 17, i.e. end-to-end distance and radius of gyration. To verify further the 

validity of our non-periodic, stochastic boundary conditions in different ranges of input 

parameters, we performed the SBC MD simulations with a stronger force constant (9.309 N/m), 

a denser anchor point profile (8775 anchor points distributed in the DPD domain of 2.0 nm 

thickness) in this work. Mass density, squared end-to-end distance, squared radius of gyration, 

diffusion coefficient and radial distribution function of PS were calculated under both SBC and 

PBC. Table 2.3 and Figure 2.10 demonstrate that the SBC MD simulation reproduces the 

polymer properties of PBC MD simulation very well. It was also observed that both the static 

and the kinetic properties (i.e. diffusion coefficient) of PS chains evaluated from SBC MD  
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Figure 2.9 Mass density (a), squared end-to-end distance (b) and squared radius of gyration (c) 

of PS chains in the entire simulation box (blue) and the core MD domain (red) as a function of 

the DPD domain size. Note that the squared end-to-end distance for DPD size parameters larger 

than 6.5 nm are no longer of sufficient accuracy. 
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Condition 
Mass density 

(kg/m3) 

Squared end-to-end 

distance 

 (nm2) 

Squared radius of gyration 

(nm2) 

Diffusion coefficient 

(m2/s) 

PBC 1047.401±0.271 6.145±0.189 0.981±0.016 (9.112±0.166)×10-10 

SBC 1064.538±3.321 6.223±0.195 0.979±0.015 (8.923±0.402)×10-10 

 

Table 2.3 Comparison of properties of PS chains at 300 K estimated by PBC and SBC molecular 

dynamics simulations. The original PS chains contain 20 beads in case of the PBC simulations. 

The PBC and the SBC simulations are performed under identical conditions except the chosen 

boundary condition. The SBC values are obtained only from the core region. For all quantities 

we have given the standard deviation. For the static quantities (mass density, squared end-to-end 

distance, squared radius of gyration), the standard deviations were based on the statistical 

fluctuation at different simulation times for three different parallel simulations. For the dynamics 

quantity (diffusion coefficient), the standard deviation was based on the standard errors of linear 

fitting for three different parallel simulations. 
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Figure 2.10 Non-bonded radial distribution function for polystyrene chains estimated in the 

periodic boundary condition (PBC) and stochastic boundary condition (SBC) model. 
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simulations present a good agreement with PBC MD simulations. Thus the SBC MD approach 

can be classified as a simulation tool robust with respect to the choice of its input parameters 

used to control the nonperiodic, stochastic boundary conditions. This makes it a robust 

component of the recently developed hybrid MD-FE framework15, 16. 
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2.6 Summary and conclusions 

 

Molecular dynamics simulations using nonperiodic, stochastic boundary conditions (SBC) are 

essential ingredients in hybrid particle-continuum coupling schemes for the structural mechanics 

of materials. Our implementation has several crucial input parameters which define these 

boundary conditions and which cannot be determined simply by physical considerations. They 

cover the number and distribution of anchor points, which affect the coupling to the finite-

element part of the hybrid calculations, the thickness of the surrounding DPD region, where they 

are located, and the force constant between them and selected polymer beads. We have used the 

technique of uncertainty quantification to establish their influence on selected simulation results 

or quantities of interest (QoI) and thus to define safe ranges for these parameters, to be used in 

future work. As QoI, we choose mass density, squared end-to-end distance and squared radius of 

gyration, the center-of-mass tracer diffusion coefficient of the polymer chains, and the radial 

distribution function between nonbonded monomers. The validation has been done using an 

established coarse-grained model of polystyrene (one bead per chemical repeat unit) at 300 K.  

 

It turns out that, provided the thickness of the surrounding DPD domain and the inner core of the 

MD domain are both large enough, the SBC method is surprisingly robust with respect to its 

parameters. All parameter ranges have a limit, below which their choices are unsafe. Above this 

limit there is usually quite a wide range of values which are safe to use. Here, the calculated QoI 

are independent of the precise value of the SBC input parameters. Moreover, SBC simulations 

with their parameters set in the safe range also reproduce the results of reference MD 

calculations for the same system using traditional periodic boundary conditions. In summary, we 

can conclude the molecular dynamics under SBC is a method which is robust in a technical sense 

and accurate when compared to established simulation protocols. This method is safe to use the 

particle domain in horizontal hybrid schemes, which couple detailed molecular dynamics of the 

region of interest to a finite element description of the surroundings. 
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3. Role of Interfacial Area for Structure and Dynamics in Polymer 

Nanocomposites: Molecular Dynamics Simulations of Polystyrene with 

Silica Nanoparticles of Different Geometries 

 

 

 

 
 

 



 

60 

3.1 Abstract 
  
Polystyrene nanocomposites containing a fraction of silica nanoparticles of different geometries 

(sphere, cube and regular tetrahedron) have been simulated using a molecular dynamics method 

at a coarse-grained scale. Structural and dynamic properties of the polymer chains in the 

presence of the nanoparticles have been analyzed in terms of the nanoparticle mass fraction and 

geometrical shape. It has been found that the dimension of the polymer chains in the interphase 

expands due to the polymer-nanoparticle interaction. Their global dimension (averaged over the 

whole sample), however, shrinks as a function of the total surface area of the nanoparticles. The 

conformational changes of polymer chains in the interphase are monitored by a chain orientation 

parameter. The profiles of the chain dimension and orientation as a function of their distance 

from the nanoparticle center of mass show that the interphase thickness is roughly equal to the 

radius of gyration of the polymer chains. Moreover, the dynamic behavior of the polymer chains 

in nanocomposites is analyzed by the center of mass diffusion coefficient, the relaxation time of 

the chain end-to-end vector and the characteristic escape time of the polymer chains from the 

interphase. Compared with neat polymers, both the global and local chain dynamics in 

nanocomposites is hindered with an increasing nanoparticle mass fraction and with an increasing 

surface area. The local chain dynamics in the interphase is stronger affected by the surface area 

of the nanoparticles than the global one. Specifically, the global diffusion coefficient of polymer 

chains is almost linearly reduced with the total surface area of the nanoparticles, whereas the 

global relaxation time of the chain end-to-end vector is almost linearly increased with it. Their 

interphase relaxation time increases superlinearly with the surface area of an individual 

nanoparticle. Additionally, the characteristic escape time of polymer chains from the interphase 

is largely influenced by the geometrical shape of the nanoparticle. Due to their larger surface 

area, tetrahedral nanoparticles impede the global and local chain dynamics more efficiently than 

cubic nanoparticles, followed by spherical nanoparticles. Uniaxial tensile tests show that both the 

Young’s modulus and yield strength of polymer nanocomposites increase monotonically with 

their total interphase area. Our simulations demonstrate that polymer structural and dynamic 

properties are both largely influenced by a common parameter, i.e. the interphase area which has 

a fundamental influence on the mechanical properties of polymer nanocomposites.  
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3.2 Introduction 
 

Polymer nanocomposites1–3 are typical heterogeneous materials that contain a polymer matrix 

and a fraction of nanofillers, e.g. spherical silica4,5, fibrous carbon6,7 and layered clay8,9. Polymer 

nanocomposites surpass the properties of neat polymers and show good thermal10–12 and 

electrical conductivities13,14  as well as high mechanical strength2,5,7. Their mechanical properties 

are attributed to their interfacial region in which the chain behavior differ from the bulk1. An 

increase in the interphase area between the matrix and the nanofiller is coupled to a strengthened 

modification of the mechanical properties of polymer nanocomposites15. As we know, the 

macroscopic properties of polymer nanocomposites are largely influenced by the molecular 

structure and conformation of the matrix chains. The properties of polymer chains, in turn, are 

affected by the presence of nanoparticles16–18. Both the nanoparticle mass fraction and their 

geometrical shape (and hence their surface area) are the factors commonly considered to improve 

the properties of polymer nanocomposites in industrial applications1–4,9,18. It is thus of theoretical 

and practical relevance to understand the possible correlations between both the local as well as 

global behavior of polymer chains and the observed nanoparticle characteristics.  

 

Experimental techniques have been employed to investigate the changes of structural and 

dynamic properties of polymer chains in nanocomposites. For instance, the global dimension of 

polymer chains in nanocomposites (i.e. chain radius of gyration) has been analyzed by scattering 

experiments19–25. The nanofiller-induced perturbations of global chain dimensions in 

nanocomposites depend on the relative ratio of the chain radius of gyration and the nanoparticle 

size. In general, polymer chains expand if they are much larger than the nanoparticles21,22. In 

contrast, they are reduced if the chain dimension is roughly equal to or smaller than the 

nanoparticle size. From small angle neutron scattering of poly(dimethyl siloxane)/polysilicate 

nanocomposites, Nakatani et al.25 have found that the chain dimension reduces in the presence of 

nanoparticles for short chains which have approximately the same size as the nanofiller and 

increases for longer chains. Similar conclusions have been also reported by other researchers in 

polystyrene/polysilicate22 and polystyrene/carbon nanotube19,24 nanocomposites. Additionally, 

simulation studies have been performed to investigate the impact of nanoparticles on the global 

chain dimension in different nanocompsites systems. By applying a self-consistent polymer 
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reference interaction side model26 to simulate a polymer melt containing nanoparticles, 

Frischknecht et al.27 have found that the matrix chains swell with the nanoparticle concentration 

if the nanoparticle radii are smaller than the chain radii of gyration. Erguney et al.28,29 have 

employed a Monte Carlo (MC) method to simulate a nanocomposite defined by polyethylene 

chains and nanoparticles formed from the self cross-linking of the same chains. They have found 

that the chain dimension increases relative to the chain in the pure melt when the matrix chains 

are larger than the nanoparticles and reduces when the matrix chains are smaller. It is worth 

mentioning that some investigations30–32 have shown that the overall chain configuration is only 

weakly influenced by the nanoparticle concentration and size.  

 

Due to the polymer-nanoparticle interaction the motion of the matrix chains in nanocomposites is 

impeded in comparison to the underlying neat polymer33–35. The global suppression of the 

dynamics36–42 has been investigated experimentally and theoretically by tracer diffusion and 

structural relaxation of the polymer chains in nanocomposites. As an example, a reduction of the 

diffusion coefficients of the matrix chains in nanocomposites relative to the neat polymers have 

been reported by Hu et al.37 in dynamic secondary ion mass spectrometry (DSIMS) experiments 

of poly(methyl methacrylate)/organosilicate nanocomposites. By performing molecular 

dynamics (MD) simulations with the Kremer-Grest nanocomposite model43,44, Desai et al.38 have 

found that the center of mass diffusion coefficient of the matrix chains in nanocomposites 

decreases with increasing nanoparticle concentration when the polymer-nanoparticle interaction 

is attractive, whereas it increases when the interaction is repulsive. Similar phenomena have been 

also observed by Gao et al.34 and Liu et al.35 in MD simulations of a model polymer-nanoplate 

and a polymer-nanosphere nanocomposite. Moreover, Oh and Green39 have concluded from 

broadband dielectric spectroscopy experiments that the overall relaxation dynamics of the matrix 

chains in athermal mixtures of polystyrene and polystyrene-grafted golden nanoparticles is 

influenced by the nanoparticle concentration. Similar conclusions have been also obtained by 

Chanmal et al.36 and Mijović et al.40 in poly(vinylidene fluoride)/BaTiO3 and 

polyisoprene/silicate nanocomposites. Smith et al.41 and Starr et al.45 have found from MD 

simulations that the overall relaxation dynamics of the matrix chains is largely affected by the 

polymer-nanoparticle interaction. In general, the overall polymer relaxation in nanocomposites 

for attractive interactions is slower than for repulsive ones. The global chain dynamics in 
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nanocomposites has been also investigated in terms of macroscopic properties such as the melt 

viscosity46 or the glass transition temperature47.  

 

The global changes of the chain structure and dynamics in nanocomposites are mainly attributed 

to the local perturbations of the chain properties in the vicinity of nanoparticles18. The polymer 

chains in this region exhibit a local expansion or contraction as well as a preferred orientation 

relative to unperturbed chains17,48. The interfacial adsorption at attractive nanoparticles implies 

that the chains in the interphase move slower than the bulk ones2,49. Experimental methods have 

intrinsic difficulties to investigate quantitatively the local chain behavior, as local perturbations 

of chains take place at a molecular scale. MD and MC simulation techniques have been used 

successfully to study such local changes of polymer properties. Using atomistic MD simulations, 

Ndoro et al.50,51, Eslami et al.52, Barbier et al.53 and Capaldi et al.54 have investigated the 

interphase chain structure and dynamics in polystyrene/silica, polyamide-66/carbon nanotube, 

poly(ethylene oxide) oligomer/silica and polyethylene/polysilsesquioxane nanocomposites. 

Local layer structures and a reduction of the chain dynamics in the interphase have been 

observed in these nanocomposite systems. It can be summarized from the observed results that 

the local chain properties in the interphase are affected by nanoparticle properties such as the 

polymer-surface interaction, curvature and grafting state. Similar results have been reported by 

Ghanbari et al.55,56, Chao et al.57,58, Starr et al.42,45 and Vogiatzis et al.59–61 using either MC or 

coarse-grained MD simulations. It should be mentioned that the aforementioned simulations 

mainly concentrate on the influence of the nanoparticles on the local structure and dynamics of 

the polymer chains in the interphase versus bulk.  

 

The size of nanoparticles is often of the order of magnitude of the matrix chain. The high 

surface-to-volume ratio of nanoparticles leads to a considerable increase of the surface area of 

nanocomposites. The amount of the surface area is thought to have a crucial role in the 

mechanical enhancement of nanocomposites2,48,49. An increasing nanoparticle mass fraction or 

an increasing surface area per nanoparticle produces a larger interphase area. Note that the 

interphase area depends on the geometrical shape of the nanoparticle and thus is changed when 

having a transition from a nanosphere to a nanoplate1,4,18. Xia et al.62 and Luo et al.63 have 

observed an increase of the elastic modulus with the exfoliation degree of the clay nanofillers in 
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polyurethane/clay and epoxy/clay nanocomposites, respectively. Mortazavi et al.64 and Saber-

Samandari et al.65 have demonstrated by finite element simulations that mechanical 

reinforcement effects of cylindrical nanoparticles with low aspect ratios are stronger than that of 

spherical ones. To our best knowledge, possible correlations between polymer properties and the 

interphase area of nanocomposites are still far from a systematic understanding. In this 

contribution, polystyrene nanocomposites containing a fraction of silica nanoparticles of 

different shapes (sphere, cube and regular tetrahedron) are simulated by using a coarse-grained 

MD method. It is worth mentioning that (i) the studied particle shapes are intentionally taken to 

be extremes, in order to highlight the limiting behavior that can be expected as one plays with 

particle geometry; (ii) the present study allows to compare the influence of different particle 

geometries and to analyze quantitatively the influence of the interphase area without concomitant 

change of the nanoparticle concentration (more particles of the same type) or size (more particles 

of smaller size, but same geometry). Specifically, both structural (i.e. chain dimension and 

orientation) and dynamic properties (i.e. center of mass diffusion coefficient, decorrelation of the 

chain end-to-end vector and chain escape behavior from the interphase) of the polymer chains 

are calculated as a function of the nanoparticle mass fraction and geometrical shape. We aim to 

understand at a molecular scale the influence of the nanoparticles on both global and local 

properties of the polymer chains in nanocomposites. Furthermore, we analyze the correlation 

between the interphase area and mechanical improvements of nanocomposites.  
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3.3 Simulation systems and computational details 
 
3.3.1 Polystyrene blended with silica nanoparticles of different geometrical shapes 

Polymer nanocomposites are generated by blending a fraction of silica nanoparticles of different 

geometrical shapes (sphere, cube and regular tetrahedron) into a polystyrene matrix. For 

simplicity the term “regular tetrahedron” is shortened as “tetrahedron” in the following sections. 

All considered nanocomposite systems are described by a coarse-grained model. It has been 

developed by Qian et al.66 for simulations of atactic polystyrene using the Iterative Boltzmann 

Inversion (IBI)67 method. The model has been also applied to investigate other polystyrene-

containing systems33,55,56,68,69. In the adopted mapping scheme, each polystyrene monomer is 

treated as one bead that is placed at the center of mass of the respective atomistic monomer. To 

describe reasonably the chirality of the atactic polystyrene chains, two different beads (Figure 

3.1) are used to represent R and S repeat units. Both types of beads are identical except for their 

chirality. The structure of the coarse-grained silica nanoparticles is constructed according to the 

workflow of Ghanbari et al.55,56,70. Each SiO2 formula unit in an atomistic silica crystal is 

grouped into a silica bead located at the position of the silicon atom. The total mass of the 

atomistic silica crystal is uniformly distributed to the silica beads. After removing all oxygen 

atoms from the atomistic silica crystal (Figure 3.1a), the coordinates of the remaining silicon 

atoms are taken as centers of the silica beads in the coarse-grained structures (Figure 3.1b). 

 

Subsequently, the configuration of silica nanoparticles in the chosen geometrical shape is 

constructed by cutting the coarse-grained silica structure according to the associated geometrical 

rules. The center of mass of the silica crystal is taken to be the origin of the Cartesian system, 

and the coordinates of the i-th silica bead are labelled as 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  and 𝑧𝑧𝑖𝑖 , respectively. All silica 

beads whose coordinates satisfy the geometrical condition (i), i.e. 𝑥𝑥𝑖𝑖2 +  𝑦𝑦𝑖𝑖2 +  𝑧𝑧𝑖𝑖2 ≤ 𝑟𝑟2 , 

constitute a spherical nanoparticle with a radius of r. The geometrical conditions to obtain a 

cubic and tetrahedral nanoparticle are expressed by the inequality conditions (ii) and (iii). Here, 

𝐿𝐿𝑐𝑐  and 𝐿𝐿𝑡𝑡  refer to the side length of the cubic and tetrahedral nanoparticles. 
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Fig. 3.1 Schematic graph of polystyrene nanocomposites blended with silica nanoparticles in 

different geometrical shapes. The structural details of three different kinds of nanoparticles are 

listed in Table 3.1. Note that the size of the nanoparticles outside the simulation box is scaled by 

a factor of 2.5 relative to the associated one inside the box.  
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The structural information of the nanoparticles in spherical, cubic and tetrahedral shapes is given 

in Table 3.1. To treat the interaction between the polymer and the nanoparticle physically 

reliable, silica beads are divided into two different sets, namely core and surface beads (Figure 

3.1). The inner beads are chemically bonded to four nearest neighboring beads. The outer ones 

have less than four chemical bonds. Each individual nanoparticle in the three different shapes 

contains the same number of beads, whereas the ratio of the surface to core beads differs (Table 
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3.1). It should be mentioned that the surface beads have the same molar mass as the core beads, 

but have a stronger interaction with the polymer compared to the core beads56.  

 

Table 3.1 Structural information of coarse-grained silica nanoparticles in different geometrical 

shapes used in the MD simulations. For an explanation of surface and core silica beads see 

Section 3.3.1. Here, Rc and Ri are the radii of a circumscribed and inscribed sphere of 

nanoparticles. L is the cubic or tetrahedral side length. The surface area A of an individual 

nanoparticle is calculated by an ideal sphere, cube and tetrahedron, i.e. using r, 𝐿𝐿𝑐𝑐  and 𝐿𝐿𝑡𝑡  of the 

conditions (i)-(iii), see text. The labels S, C and T refer to sphere, cube and regular tetrahedron.  

 

Type of 
nanoparticle  

Geometric 
shape of 

nanoparticle 

Number 
of surface 

beads  

Number 
of core 
beads  

Radius of 
circumscribed 

sphere 
Rc/(nm) 

Radius of 
inscribed sphere 

Ri/(nm) 

Side length 
L/(nm) 

Surface area 
A/(nm2) 

1 S 141 222 1.50 1.50 - 28.2 
2 C 170 193 2.20 1.27 2.52 38.1 
3 T 192 171 3.18 1.06 5.18 46.7 

 

The initial configurations of the nanocomposite systems are generated by the following 

procedure. In the first step, the centers of mass of the silica nanoparticles are distributed 

randomly in the simulation box. Subsequently, the polystyrene chains grow gradually bead-by-

bead in the remaining space of the simulation box. The chiral type of each polystyrene bead is 

randomly chosen. During the generation of a new polystyrene chain, possible overlaps with the 

existing polystyrene and silica beads are prevented by using a self-avoiding random walk 

procedure71.  

 

3.3.2 Computational details of molecular dynamics simulations 

The composition details of the nanocomposite systems are listed in Table 3.2. Note that their 

initial mass densities prepared by the procedures in Section 3.3.1 are roughly 30% smaller than 

the respective equilibrium values to reduce possible overlaps between different molecules. The 

initial structures differ strongly from the equilibrium one. Prior to the production runs they are 
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equilibrated by the following procedure. At first, the initial configurations of all nanocomposite 

systems are simulated in the NVT ensemble for 10 ns at 590 K. The simulation ensemble is then 

switched to NPT for a further relaxation of 50 ns at the same temperature and standard 

atmospheric pressure (1 bar). After the relaxation in the NPT ensemble, all nanocomposite 

systems reach a stable density (Table 3.2). 

 

Table 3.2 Composition of the nanocomposite systems containing nanoparticles of different 

shapes used in MD simulations. The silica beads comprise the surface and core beads, cf. Table 

3.1. We have employed one monomer of the polystyrene chains, i.e. one bead, to define the length 

unit of the polymer. The mass of each polystyrene and silica bead in the coarse-grained system is 

0.104 kg/mol and 0.0639 kg/mol, respectively. 

 

System 

Number of 
polymer 
chains 

Nps  

Length of 
polymer 
chains  
/(bead) 

Number of 
nanoparticles 

Nnp 

Number of  
silica 
beads 

Geometry of 
nanoparticles 

Mass fraction of 
nanoparticles/(%) 

Mass density after 
equilibrium/(g/cm3) 

1 600 25 7 363 S 9.42 0.99 
2 600 25 14 363 S 17.2 1.06 
3 600 25 7 363 C 9.42 1.01 
4 600 25 14 363 C 17.2 1.09 
5 600 25 7 363 T 9.42 1.02 
6 600 25 14 363 T 17.2 1.11 
7 600 25 0 0 - 0 0.93 

 

The MD production runs are performed at a temperature of 590 K and at standard atmospheric 

pressure under NPT conditions. Periodic boundary conditions are employed in all Cartesian 

directions. The Berendsen algorithm is applied in all directions to control the system pressure 

(coupling time 5 ps) and temperature (coupling time 0.2 ps). All calculated structural and 

dynamic properties of the polymer chains in all nanocomposite systems are averaged over 15 

different initial configurations. Every production run requires 7.5 ns; properties are calculated 

every 10 ps. 
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After the melt simulations, all considered systems are cooled down from 590 K to 100 K at a rate 

of 5 K ns-1. Note that the glass transition temperature of pure polystyrene in our coarse-grained 

model is roughly 170 K67. Subsequently, uniaxial tensile deformations are applied to all 

considered systems by MD simulations under 𝑁𝑁𝑁𝑁𝑃𝑃⊥𝑇𝑇  conditions at the same temperature. 

Specifically, the length of the simulation box is elongated with a constant rate in the y direction, 

while the box lengths in the two perpendicular directions are coupled to a pressure bath by the 

Berendsen algorithm during the uniaxial elongation. The relation between the strain ε and the 

simulation time t is expressed as 𝜀𝜀(𝑡𝑡) =  𝑣𝑣𝑣𝑣
𝑙𝑙0

 × 100%, where 𝑙𝑙0  and 𝑣𝑣  refer to the initial box 

length in the tensile direction and the deformation rate (i.e. 15 nm ns-1). Young’s moduli of all 

systems are determined in the elastic region (𝜀𝜀 ≤ 3% ) of the obtained stress-strain curves.  

 

3.4 Results and discussion 
 

3.4.1 Structural properties of polymer chains in nanocomposites 

Chain dimensions in the presence of nanoparticles. The squared end-to-end distances 𝑅𝑅𝑒𝑒2 

(Figures 3.2 (a) and (b)) and squared radii of gyration 𝑅𝑅𝑔𝑔2 (Figures 3.2 (c) and (d)) of polymer 

chains are calculated as a function of the distance d of their center of mass from the nearest 

nanoparticles’ center of mass at nanoparticle mass fractions ω = 9.42% or 17.2%. The 𝑅𝑅𝑒𝑒2 and 𝑅𝑅𝑔𝑔2 

are both obtained by averaging over all nanoparticles and time frames. The polymer chains are 

sorted into 80 spherical bins of the same thickness of 0.1 nm concentrically arranged around the 

centers of mass of the nanoparticles. It should be mentioned that the centers of mass of all 

polymer chains lie outside the inscribed spheres of the nanoparticles.  

 

At larger distances, i.e. 𝑑𝑑 > 3.2  nm, the 𝑅𝑅𝑒𝑒2  of the polymer chains in all considered 

nanocomposites start to approach a plateau. The 𝑅𝑅𝑒𝑒2 for the nanocomposites containing the cubic 

or tetrahedral nanoparticles approach a common plateau value more slowly than samples with 

spherical nanoparticles. This indicates that the influence of cubic and tetrahedral nanoparticles 

on the dimension of the polymer chains is longer ranged than that of spherical nanoparticles. The 

reason is that the radius of the circumscribed sphere of a cubic or tetrahedral nanoparticle is 
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larger than the radius of a spherical nanoparticle (Table 3.1). Below a distance of 2.5 nm, the 𝑅𝑅𝑒𝑒2 

increase as the polymer chains move closer to the nanoparticle surface. This demonstrates that 

polymer chains at close distances are forced to stretch by the interaction with nanoparticle 

surfaces. In Figures 3.2 (a) and (b) we can see that the stretching of polymer chains in the 

interphase of the nanocomposites blended with tetrahedral nanoparticles is weaker than in the 

ones blended with cubic or spherical nanoparticles. At an intermediate distance of 2.5 to 3.2 nm 

all curves have a minimum. This distance range corresponds to roughly the radius of the 

(spherical) nanoparticle (1.5 nm) plus one 𝑅𝑅𝑔𝑔  of the unperturbed polymer chains (1.16 nm). The 

compression at a distance to the surface of about one or two 𝑅𝑅𝑔𝑔  is a known effect51,56, as is the 

expansion at very short distances mentioned above: As the first few beads of the polymer coil 

feel the presence of the nanoparticle surface, the coil is compressed in the directions of the 

surface normal. Those chains which approach even closer, have to expand tangential to the 

surface. This expansion overcompensates the compression in the normal direction. As a result, 

𝑅𝑅𝑒𝑒  first decreases and then increases as the chains approach the nanoparticle.  
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Fig. 3.2 Squared end-to-end distance 𝑅𝑅𝑒𝑒2 (a and b) and squared radius of gyration 𝑅𝑅𝑔𝑔2 (c and d) 

of polymer chains in nanocomposite systems blended with nanoparticles of different geometrical 

shapes and different mass fraction ω as a function of the distance 𝑑𝑑 from the nanoparticle center 

of mass. The horizontal lines refer to 𝑅𝑅𝑒𝑒2  or 𝑅𝑅𝑔𝑔2  of polymer chains in neat polystyrene. The 

vertical lines at selected data points represent the error bars. In all other figures they have the 

same meaning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Squared end-to-end distance 𝑅𝑅𝑒𝑒2 and squared radius of gyration 𝑅𝑅𝑔𝑔2 averaged over all 

chains in nanocomposites containing nanoparticles of different geometrical shapes and mass 

ratios ω as a function of total nanoparticle surface area Atotal. The solid lines represent linear fits: 

(a) 𝑅𝑅𝑒𝑒2 = −9.19 × 10-4 Atotal + 8.42 (in nm2); (b) 𝑅𝑅𝑔𝑔2 = −1.51 × 10-4 Atotal + 1.37 (in nm2). 

 

According to Figures 3.2 (a) and (b), a significant influence of the nanoparticle mass fraction on 

the profiles of the 𝑅𝑅𝑒𝑒2 with the distance 𝑑𝑑 cannot be observed, indicating that the phenomenon is 

local. The profiles of the 𝑅𝑅𝑔𝑔2 and 𝑅𝑅𝑒𝑒2 (Figures 3.2 (c) and (d)) as a function of the distance 𝑑𝑑 are 
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similar. The overall averages of 𝑅𝑅𝑒𝑒2 and 𝑅𝑅𝑔𝑔2  as a function of the total surface area Atotal of the 

nanoparticles are presented in Figures 3.3 (a) and (b). Both are almost linearly reduced with the 

total surface area Atotal of the nanoparticles. The fits can be extrapolated to zero interphase 

estimates of 𝑅𝑅𝑒𝑒2 (8.42 nm2) and 𝑅𝑅𝑔𝑔2 (1.37 nm2). They are close to the calculated values for neat 

polystyrene of 8.41 and 1.35 nm2. Our simulations show that the addition of nanoparticles leads  

0 100 200 300 400 500 600 700
2

4

6

8

10

12

 

 

 pure polystyrene
 ω = 9.42%, sphere  
 ω = 9.42%, cube   
 ω = 9.42%, tetrahedron 
 ω = 17.2%, sphere 
 ω = 17.2%, cube 
 ω = 17.2%, tetrahedron 

R2 e/R
2 g

Surface area Atotal/(nm2)
 

Fig. 3.4 Ratio 𝑅𝑅𝑒𝑒
2

𝑅𝑅𝑔𝑔2
 of the squared end-to-end distance and squared radius of gyration of polymer 

chains as a function of the total surface area Atotal of nanoparticles. The solid line refers to a 

model with 𝑅𝑅𝑒𝑒
2

𝑅𝑅𝑔𝑔2
 ≈ 6.2 deviating slightly from an ideal polymer chain. 

 

to an overall shrinking of the polymer chains. At moderate distances it overcompensates the 

expansion of the chains which are in immediate contact with the nanoparticles. Our findings are 

consistent with experimental and theoretical investigations17,25,27–29 also reporting a reduction of 

the global polymer dimension in nanocomposites. This is caused by the strong excluded volume 

effect of the nanoparticles when the dimension of the polymer coils is comparable to or smaller 

than the nanoparticles size. As shown in Figure 3.4, the ratio 𝑅𝑅𝑒𝑒
2

𝑅𝑅𝑔𝑔2
 for all nanocomposite systems is 

approximately equal to the one (≈ 6.2) of pure polystyrene. This reflects that the polymer coils 

in the presence of nanoparticles still keep their slight deviation from an ideal chain behavior as 

observed for the neat polymer. 
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Chain orientation in the interphase. The orientation parameter of the chain end-to-end vector 

relative to the radial direction of the nanoparticles is defined by the second-order Legendre 

polynomial, 

< 𝑃𝑃2 > =  
3
2

 < cos2 𝛽𝛽 >  −  
1
2

        (3.1) 

where 𝛽𝛽 refers to the angle between the chain end-to-end vector 𝑹𝑹��⃗ 𝑒𝑒  and the vector 𝚾𝚾��⃗  pointing 

from the nanoparticle center of mass to the midpoint of the vector 𝑹𝑹��⃗ 𝑒𝑒 . The bracket < ⋯ >  

denotes averaging over polymer chains, nanoparticles and frames. Note that < 𝑃𝑃2 >  is nearly 

zero if the polymer chains are randomly orientated; < 𝑃𝑃2 > is −0.5 if all 𝑹𝑹��⃗ 𝑒𝑒  are perpendicular to 

their associated 𝚾𝚾��⃗ . Figure 3.5 presents the profiles of < 𝑃𝑃2 > of the polymer chains as a function 

of their distance 𝑑𝑑 from the nanoparticle’s center of mass. Specifically, < 𝑃𝑃2 > is roughly zero at  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Orientation parameter < 𝑃𝑃2 > of polymer chains in nanocomposite systems blended 

with nanoparticles of different geometrical shapes as a function of the distance 𝑑𝑑  from the 

nanoparticle center of mass and the nanoparticle mass fraction.  
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larger distances (i.e. 𝑑𝑑 > 4 nm). This means that the polymer chains have a random orientation, 

when they are far from the nanoparticles. In their vicinity (2 nm < 𝑑𝑑 < 3.2 nm), < 𝑃𝑃2 > is less 

than zero. It is gradually reduced with decreasing distance 𝑑𝑑. This demonstrates that under the 

influence of polymer-nanoparticle interactions, the chain end-to-end vectors prefer to align 

perpendicularly to the radial directions of the nanoparticles. The reason has been given in 

Section 3.4.1. According to the profiles of chain dimensions (Figure 3.2) and orientations (Figure 

3.5) as a function of their distance from the nanoparticle, the interphase thickness is roughly 

equal to one 𝑅𝑅𝑔𝑔 . This phenomenon has been also reported in other experimental and simulation 

investigations17,45,51,56,72. As shown in Figure 3.5 (a), the reduction of < 𝑃𝑃2 >  is stronger in 

nanocomposites with spherical nanoparticles than in the cubic case, followed by tetrahedral 

nanoparticles. The differences between the < 𝑃𝑃2 >  profiles of different nanocomposites are 

smaller when the nanoparticle mass fraction 𝜔𝜔  is 17.2%. Additionally, a small region with 

parallel chain orientation occurs at distances 3 𝑛𝑛𝑛𝑛 < 𝑑𝑑 < 4 𝑛𝑛𝑛𝑛. This has been also observed in 

atomistic MD simulations of polyethylene/polyhedral oligomeric silsesquioxane nano-

composites54. It is not yet clear whether this behavior reflects only a statistic artifact. 

 

3.4.2 Dynamic properties of polymer chains and nanoparticles 

Center of mass mean square displacement and diffusion coefficient of polymer chains and 

nanoparticles. Figure 3.6 (a) shows the center of mass mean square displacement (MSD) of the 

polymer chains in pure polystyrene and nanocomposites with nanoparticles of different 

geometrical shapes and mass fractions (ω = 9.42% and 17.2%). The center of mass MSD of the 

polymer chains in pure polystyrene is expectedly larger than in the presence of nanoparticles. For 

each type of nanoparticles, the center of mass MSD of polymer chains in nanocomposites is 

reduced with increasing nanoparticle mass fraction when the nanoparticles are in the same shape. 

Any enhancement of the interfacial adsorption hinders the motion of polymer chains. 

Concomitant with the polymer MSD, also the MSD of the nanoparticles themselves is reduced in 

the same ordering (Figure 3.6 (b)).  
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To quantify the global dynamical behavior of the studied composites, we determine the center of 

mass diffusion coefficients of polymer chains (Dps) and nanoparticles (Dnp) on the basis of center 

of mass MSDs. Figure 3.7 (a) presents Dps as a function of the total surface area Atotal of the 

nanoparticles with different geometrical structures. Atotal = 0 refers to the pure polystyrene 

system (red symbol, Figure 3.7 (a)). The reduction of the center of mass Dps with Atotal 

approximately follows a linear relation: Dps(Atotal) = −5.91 × 105 Atotal + 9.06 × 10-10 (in m2 s-1). 

Similar linear relations for the polymer dynamics as a function of the nanoparticle surface area 

have been also observed in other experimental and simulation investigations. As an example, the 

atomistic MD simulations of Capaldi et al.54 have demonstrated that the diffusion coefficient of 

the polyethylene chains at 500 K is almost linearly reduced with the total surface area of 

polyhedral oligomeric silsesquioxane nanoparticles. Additionally, the viscosity experiments of 

Hyun et al.73 have shown that the zero shear viscosity of a poly(ethylene oxide) melt at 393 K is 

almost linearly increased with the total surface area of organoclay nanoparticles. In additional  
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Fig. 3.6 Center of mass mean square displacement (MSD) of polymer chains (a) and 

nanoparticles of different geometrical shapes (b) as a function of time t. For selected data points 

error bars have been given. 

 

simulations, we have found that Dps have almost the same value for identical nanoparticle surface 

areas independent of their geometrical shape. For instance, the center-of-mass Dps in a system 

containing 7 spherical nanoparticles (Dps = 7.78 ×10-10 m2 s-1, Atotal = 197 nm2) is roughly equal 

to the one in a system with 5 cubic nanoparticles (Dps = 7.79 ×10-10 m2 s-1, Atotal = 193 nm2) and 

the one in a system with 4 tetrahedral nanoparticles (Dps = 7.81 ×10-10 m2 s-1, Atotal = 187 nm2). 

These findings indicate at a molecular scale that the global polymer dynamics is not influenced 

by geometrical details of the nanoparticles but only by their total surface area. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 (a) Diffusion coefficient Dps of polymer chains as a function of the total surface area 

Atotal and (b) diffusion coefficient Dnp of nanoparticles as a function of surface area A of an 

individual nanoparticle. Note that the zero surface area (red symbol) represents the pure 

polystyrene system. The solid line refers to the linear fit: Dps(Atotal) = −5.91 × 105 Atotal + 9.06 × 

10-10 (in m2 s-1). Error bars are not visible due to their small values. 

 

For systems with identical mass fractions (i.e. ω = 9.42% or 17.2%), the Dps value in samples 

with tetrahedral nanoparticles is smaller than in systems of cubic nanoparticles, followed by 
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spherical nanoparticles. Specifically, the center of mass Dps in systems with tetrahedral, cubic 

and spherical nanoparticles is reduced by 24.1% (1.67 ×10-10 m2 s-1), 21.3% (1.56 ×10-10 m2 s-1) 

and 17.8% (1.37 ×10-10 m2 s-1), when the nanoparticle mass fraction ω increases from 9.42% to 

17.2%. These results indicate that tetrahedral nanoparticles slow down the global chain dynamics 

more strongly than cubic nanoparticles, followed by spherical nanoparticles, when the 

nanoparticle mass fraction is constant. In general, both the interfacial adsorption and excluded 

volume effects suppress the motion of polymer chains more efficiently for a nanoparticle with a 

larger surface area than for a nanoparticle with a smaller surface area, when the nanoparticle 

masses are identical (6.39 ×104 amu). The surface area of the tetrahedral nanoparticle (AT = 46.7 

nm2, Table 3.1) is 1.21 and 1.66 times as large as the surface area of the cubic (AC = 38.1 nm2) 

and spherical (AS = 28.2 nm2) nanoparticle. This explains in a simple way that tetrahedral 

nanoparticles reduce the global diffusion of polymer chains more efficiently than those with 

smaller specific surface areas (i.e. cubic and spherical).  

 

Similar to the Dps, the diffusion coefficients of the nanoparticles Dnp in Figure 3.7 (b) also 

become smaller with increasing nanoparticle mass fraction for the nanoparticles of the same 

shape. Additionally, the Dnp in the systems with nanoparticles of different shape, but the same 

mass fraction, rank as: sphere > cube > tetrahedron. This is attributed to differences in both the 

excluded volume and the frictional resistance. Both factors are mainly controlled by the surface 

area of the nanoparticles and the diffusion of the polymer chains (Figure 3.7 (a)). It is worth 

mentioning that Dnp of spherical nanoparticles at mass fraction ω = 17.2% (1.23 ×10-10 m2 s-1) is 

even larger than that (1.01 ×10-10 m2 s-1) of cubic nanoparticles at ω = 9.42%. This shows that 

Dnp is influenced not only by internal features (i.e. geometrical shape) but also by global 

properties (i.e. nanoparticle mass fraction). The comparison of Figures 3.7 (a) and (b) verifies 

that in a given system polymer chains diffuse by about a factor of 5 to 25 faster than the 

nanoparticles. This is due to the fact that the mass of the nanoparticles is almost 9 times the mass 

of the polymer coils, even though the dimension of the polymer coils (i.e. radii of gyration) is 

similar to the nanoparticle size.  
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Chain end-to-end vector relaxation times. The decorrelation of the end-to-end vector of polymer 

chains74 with time is another descriptor of the overall chain dynamics. The time auto-correlation 

function 𝐶𝐶(𝑡𝑡) of the chain end-to-end vector is given by, 

𝐶𝐶(𝑡𝑡) =  
〈𝑹𝑹𝒆𝒆����⃗ (𝑡𝑡)𝑹𝑹𝒆𝒆����⃗ (0)〉
〈𝑹𝑹𝒆𝒆����⃗ (0)𝑹𝑹𝒆𝒆����⃗ (0)〉

          (2) 

where 𝑹𝑹𝒆𝒆����⃗ (𝑡𝑡) denotes the chain end-to-end vectors at time t and the bracket 〈… 〉 symbolizes the 

average over all polymer chains as well as over all time origins. Figure 3.8 (a) presents the decay 

of 𝐶𝐶(𝑡𝑡) as a function of time 𝑡𝑡 in pure polystyrene and in different nanocomposite systems at a 

nanoparticle mass fraction ω = 9.42%. The decay of 𝐶𝐶(𝑡𝑡) in pure polystyrene is faster than in 

the nanocomposite systems. The same tendency is also observed at a higher nanoparticle mass 

fraction ω = 17.2% in Figure 3.8 (b). This shows that the addition of nanoparticles slows down 

the decorrelation of the chain end-to-end vector with time.  

 

To analyze quantitatively the decorrelation of the chain end-to-end vector with time, the 𝐶𝐶(𝑡𝑡) 

curves in Figures 3.8 (a) and (b) are fitted to a modified stretched exponential (Kohlrausch-

Williams-Watts) function, 

𝐶𝐶(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝑡𝑡
𝑎𝑎
�
𝑏𝑏
�        (3)  

where the fitting parameters a and b are derived from a nonlinear least squares optimization75. 

The relaxation time 𝜏𝜏𝑒𝑒𝑒𝑒  of the chain end-to-end vector is calculated as the analytic time integral 

of the modified stretched exponential function, 

𝜏𝜏𝑒𝑒𝑒𝑒 =  � 𝑒𝑒𝑒𝑒𝑒𝑒(−(
𝑡𝑡
𝑎𝑎

)𝑏𝑏)
∞

0
 𝑑𝑑𝑑𝑑 =  

𝑎𝑎
𝑏𝑏
𝛤𝛤 �

1
𝑏𝑏
�        (4) 

where 𝛤𝛤(1
𝑏𝑏

) is Euler’s Gamma function76. The parameters a, b and the corresponding 𝜏𝜏𝑒𝑒𝑒𝑒  for all 

systems are listed in Table 3.3. As shown in Figure 3.9 (a), the global 𝜏𝜏𝑒𝑒𝑒𝑒  (averaged over all 

chains, regardless of their positions) increases almost linearly with the total surface area Atotal of 

the nanoparticles (i.e. 𝜏𝜏𝑒𝑒𝑒𝑒 (Atotal) = 6.23 × 105 Atotal + 4.43 × 10-10 (in s)). Kutvonen et al.77 have 

demonstrated by MD simulations that the relaxation time of the polymer end-to-end vector 

increases almost linearly with the total interphase area in a nanocomposite. As another example, 

Kalfus et al.78 have also found by dynamic-mechanical thermal measurements that the relaxation 
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time of storage moduli of poly(vinyl acetate) nanocomposites exhibits a linear increase with the 

surface area of hydroxyapatite nanoparticles. In additional simulations, we have also found that 

the global 𝜏𝜏𝑒𝑒𝑒𝑒  have almost the same value when the total surface area Atotal of the nanoparticles 

coincides. For instance, the global 𝜏𝜏𝑒𝑒𝑒𝑒  in a system with 14 spherical nanoparticles (0.67 ns, Atotal 

= 394 nm2) is identical to the one in a system with 10 cubic nanoparticles (Atotal = 387 nm2) and 

to the one with 8 tetrahedral nanoparticles (Atotal = 374 nm2). When the nanoparticle mass 

fraction is identical (i.e. ω = 9.42% or 17.2%), the global 𝜏𝜏𝑒𝑒𝑒𝑒  in the system blended with 

tetrahedral nanoparticles is larger than the one with cubic nanoparticles, followed by spherical 

nanoparticles. For the systems containing tetrahedral, cubic and spherical nanoparticles, the 

global 𝜏𝜏𝑒𝑒𝑒𝑒  increases by 37.3% (0.24 ns), 31.4% (0.19 ns) and 20.2% (0.11 ns), when the 

nanoparticle mass fraction ω increases from 9.42% to 17.2%. These findings emphasize again 

that the influence of the nanoparticle geometry and mass fraction on the global chain relaxation 

can be mapped to a single parameter, namely the surface area.  
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Fig. 3.8 Time auto-correlation function 𝐶𝐶(𝑡𝑡) of the end-to-end vector of all polymer chains (a 

and b) and of polymer chains in the interphase (c and d) as a function of time t. The red symbols 

representing the pure polystyrene system are used as a reference. Both insets in Figures 3.8 (a) 

and (b) are used to show clearly the deviation of 𝐶𝐶(𝑡𝑡) between different systems. The data of the 

time auto-correlation function 𝐶𝐶(𝑡𝑡)  are fitted with a stretched exponential function: 𝐶𝐶(𝑡𝑡) =

𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑡𝑡
𝑎𝑎

)𝑏𝑏). The fitting parameters a and b are listed in Table 3.3.  

 

Table 3.3 Parameters a and b are obtained from a stretched exponential fitting of the time auto-

correlation function 𝐶𝐶(𝑡𝑡). The relaxation time 𝜏𝜏𝑒𝑒𝑒𝑒  is defined as the analytic time integral of the 

fitting function. All simulated systems are defined in Table 3.2. The terms “global” and “local” 

represent the relaxation of all chains and those in the interphase, respectively. 

 

System 
a/(ns)   b  𝜏𝜏𝑒𝑒𝑒𝑒 /(ns) 

global local  global local  global local 

sphere, ω = 9.42% 0.52 0.64  0.87 0.88  0.56 0.68 

sphere, ω = 17. 2% 0.56 0.94  0.87 0.79  0.60 1.07 

cube, ω = 9.42% 0.58 1.48  0.84 0.76  0.64 1.75 

cube, ω = 17.2% 0.60 0.79  0.83 0.82  0.67 0.87 

tetrahedron, ω = 9.42% 0.68 1.23  0.77 0.79  0.79 1.41 

tetrahedron, ω = 17.2% 0.75 1.79  0.77 0.75  0.87 2.13 

pure polymer, ω = 0 0.45       0.92       0.47  

 

 

 

 

 

 

 

 

 
0 100 200 300 400 500 600 700

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 
 pure polystyrene
 ω = 9.42%, sphere  
 ω = 9.42%, cube   
 ω = 9.42%, tetrahedron 
 ω = 17.2%, sphere 
 ω = 17.2%, cube 
 ω = 17.2%, tetrahedron 
 linear fit

Re
la

xa
tio

n 
tim

e 
τ ee

/(1
0-9

 s
)

Surface area Atotal/(10-18 m2)

(a)

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

 

 

 pure polystyrene
 ω = 9.42%, sphere  
 ω = 9.42%, cube   
 ω = 9.42%, tetrahedron 
 ω = 17.2%, sphere 
 ω = 17.2%, cube 
 ω = 17.2%, tetrahedron 

Re
la

xa
tio

n 
tim

e 
τ ee

/(1
0-9

 s
)

Surface area A/(10-18 m2)

(b)



 

81 

Fig. 3.9 (a) Global relaxation time 𝜏𝜏𝑒𝑒𝑒𝑒  of the end-to-end vector of polymer chains as a function 

of the total surface area Atotal of nanoparticles and (b) local relaxation time 𝜏𝜏𝑒𝑒𝑒𝑒  of the end-to-end 

vector of polymer chains in the interphase as a function of the surface area A of an individual 

nanoparticle. “Global” and “local” have the same meaning as in Table 3.3. The red symbol 

representing the pure polystyrene system is used as a reference. The solid line denotes a linear 

fit: 𝜏𝜏𝑒𝑒𝑒𝑒 (Atotal) = 6.23 × 105 Atotal + 4.43 × 10-10 (in s).  

 

The suppression of the overall dynamics of polymer chains is fundamentally related to the 

reduction of the local mobility in the interphase. Probing the local decorrelation of the chain end-

to-end vector in the vicinity of nanoparticles enables us to understand the details of the reduction 

of the global chain mobility. For this purpose, we calculated the local 𝐶𝐶(𝑡𝑡) of the end-to-end 

vector of polymer chains whose centers of mass stay for 4 ns within a distance of 3.18 nm (i.e. 

radius of the circumscribed sphere of the tetrahedral nanoparticle) from the nanoparticle center 

of mass. We are aware that using this geometrical criterion to locate the interphase includes, for 

the different nanoparticles, different distributions of “interphase” chains, due to the different 

shapes of the nanoparticles. We use it anyway for lack of a better suitable definition. For the 

calculation of the local 𝐶𝐶(𝑡𝑡), the average is taken over all nanoparticles, all polymer chains in 

their vicinity as well as over all time origins. Note that polymer chains are excluded from the 

remaining average once their centers of mass cross the spherical boundary. This means that the 

local 𝐶𝐶(𝑡𝑡) for each polymer chain is only calculated up to the time its center of mass spends in 

the interphase thus defined. The local 𝐶𝐶(𝑡𝑡)  (Figures 3.8 (c) and (d)) decay by a stretched 

exponential relation with time 𝑡𝑡, as for the global relaxation. The deviations of the 𝐶𝐶(𝑡𝑡) curves 

between nanocomposites and pure polystyrene are much larger than for the overall dynamics 

(Figures 3.8 (a) and (b)). This is because the analysis is now focused on the chains in the 

immediate vicinity to the nanoparticles, which experience the largest hindrance to their 

movements. The 𝐶𝐶(𝑡𝑡) curves for the interphase chains in Figures 3.8 (c) and (d) are also fitted 

with the stretched exponential function. As shown in Table 3.3, the local 𝜏𝜏𝑒𝑒𝑒𝑒  of polymer chains 

in the nanocomposite interphase is about 2~4 times the 𝜏𝜏𝑒𝑒𝑒𝑒  in the pure polystyrene. Similar 

phenomena have been also observed by Ndoro et al.50 in atomistic MD simulations of 

polystyrene/silica nanocomposites. In their simulations, the interphase 𝜏𝜏𝑒𝑒𝑒𝑒  in the studied 

nanocomposites is roughly 2 or 3.5 times greater than the 𝜏𝜏𝑒𝑒𝑒𝑒  in the neat polymer, when the 
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nanoparticle surface area A is 28.2 nm2 (radius R = 1.5 nm) and 49.6 nm2 (R = 2 nm). When 

comparing the global and local 𝜏𝜏𝑒𝑒𝑒𝑒  in Table 3.3, one realizes that all local 𝜏𝜏𝑒𝑒𝑒𝑒  are larger than the 

associated global ones. Specifically, the local 𝜏𝜏𝑒𝑒𝑒𝑒  in the systems blended with tetrahedral, cubic 

and spherical nanoparticles at the same mass fraction (ω = 9.42 or 17.2%) exceeds the global 

value by a factor of about 2.5, 1.8 and 1.3. This confirms that local relaxations of chain end-to-

end vectors are affected more significantly by the presence of the nanoparticles than the global 

ones. The local 𝜏𝜏𝑒𝑒𝑒𝑒  of the chain end-to-end vectors increases with the nanoparticle mass fraction 

when the nanoparticle shape is identical. As for the overall relaxation, also the local chain 

relaxation slows down with the total surface area. We note that (i) the slowing down is stronger 

than the overall relaxation. (ii) it increases monotonically (Figure 3.9 (b)) but not linearly, and 

(iii) increasing the nanoparticle mass fraction leads to a small but visible slowing down for the 

nanoparticles of a given shape. The latter happens in spite of our analyses concentrating on the 

environment around individual particles. We have, at present, no explanation. We can only 

surmise that at a higher nanoparticle concentration more polymer chains come under the direct or 

indirect influence of two neighboring nanoparticles at the same time.  

 

Escape of polymer chains from the interphase and characteristic escape time. Polymer chains in 

the interphase (i.e. center of mass within 3.18 nm of the nearest nanoparticle center) can 

exchange positions with chains further away from the nanoparticles due to their diffusion 

denoted here as escape. The polymer chains in the interphase would exhibit different escape 

behavior if the specific surface areas of the nanoparticles differ. To monitor the escape behavior 

of the polymer chains from the interphase, we define a normalized escape function 𝛺𝛺(𝑡𝑡), 

𝛺𝛺(𝑡𝑡) =  〈 
𝑁𝑁𝑝𝑝𝑝𝑝𝑏𝑏 (𝑡𝑡)
𝑁𝑁𝑝𝑝𝑝𝑝𝑏𝑏 (0)

 〉         (5) 

where 𝑁𝑁𝑝𝑝𝑝𝑝𝑏𝑏 (𝑡𝑡) is the total number of polymer chains whose centers of mass still stay inside the 

spherical boundary defined in Section 3.4.2 at time 𝑡𝑡. If a certain number of chains are found in 

the interphase at time 𝑡𝑡 = 0, then 𝛺𝛺(𝑡𝑡) is the fraction of these chains, which have remained in 

the interphase uninterruptedly until a time 𝑡𝑡 later. Note that the bracket 〈… 〉 denotes the average 

over all nanoparticles. Figure 3.10 shows the decay of the normalized escape function 𝛺𝛺(𝑡𝑡) with 

time 𝑡𝑡. It decays very fast by at least 30% within the first nanosecond. This means that a fraction 
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of the labeled chains leaves the interphase in a short time. The reason is that the polymer chains 

at the boundary of the interphase region are still capable of diffusing effectively. From time 

𝑡𝑡 = 3 ns onwards, the decay of 𝛺𝛺(𝑡𝑡) becomes gradually slower, as the remaining labeled chains 

not only have to diffuse a longer distance but also diffuse slower than the ones at the boundary 

due to stronger interfacial adsorptions. Similar to the time auto-correlation function 𝐶𝐶(𝑡𝑡) of the 

 

 

 

 

  

 

 

 

Fig. 3.10 Normalized escape function 𝛺𝛺(𝑡𝑡) of polymer chains in the interphase versus time t. The 

decay of 𝛺𝛺(𝑡𝑡) is fitted by a stretched exponential function (see Table 3.4): 𝐶𝐶(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑡𝑡
𝑎𝑎

)𝑏𝑏).  

 

Table 3.4 Parameters a and b are obtained from a stretched exponential fitting of the normalized 

escape function 𝛺𝛺(𝑡𝑡). Characteristic escape time 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒  of polymer chains in the interphase is 

defined as the analytic time integral of the modified stretched exponential function. 

 

System a/(ns)  b 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 /(ns) 

sphere, ω = 9.42% 1.29 0.51 2.51 

sphere, ω = 17. 2% 2.90 0.57 4.72 

cube, ω = 9.42% 5.39 0.51 10.3 

cube, ω = 17.2% 2.11 0.51 4.03 

tetrahedron, ω = 9.42% 4.02 0.49 8.38 

tetrahedron, ω = 17.2% 6.32 0.51 12.2 
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chain end-to-end vector, the normalized escape function also can be expressed by a stretched 

exponential decay function. All fitting parameters we have derived are listed in Table 3.4. To 

quantify the escape behavior of polymer chains in the interphase, a characteristic escaping time 

𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒  is defined as the analytic time integral of the associated fitting function. The characteristic 

escape time 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒  in Table 3.4 is about 4 ~ 6 times larger than the associated local relaxation time 

𝜏𝜏𝑒𝑒𝑒𝑒  in Table 3.3. Note that 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒  depends on the definition of the boundary of the interphase. 

Moreover, the characteristic escape times 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒  show that polymer systems with spherical 

nanoparticles have the largest mobility followed by cubic and tetrahedral nanoparticles. This 

holds at both nanoparticle mass fractions. 

 

3.4.3 Relation between mechanical properties of nanocomposites and the interphase area 

  

Figure 3.11 (a) presents the stress-strain curves for all considered systems at 100 K, in which the 

stress first increases almost linearly with the strain (up to 𝜀𝜀 = 3%) and then yield takes place at 

about 5~6% strain before reaching a plateau. It can be observed that (i) an increase of the 

nanoparticle mass fraction for a given geometry or (ii) an increase of the nanoparticle surface 

area for a given mass fraction enhances the yield strength of the nanocomposites. Similar 

phenomena have been found by other experimental and simulation investigations16,18,48,49. 

Young’s moduli E of all systems are calculated from the slope of the stress-strain curves in the 

linear region (up to 𝜀𝜀 = 3%). It should be mentioned that the glass transition temperature of the 

nanocomposites identified from our simulations and other experiments79 is roughly 170 K and 

373 K, respectively. The Young’s modulus of the nanocomposites obtained by our simulations is 

about 4~5 smaller than the associated experimental value80,81 (3000~3500 MPa). The smaller 

Young’s modulus relative to the experiment value is due to the application of a coarse-grained 

potential which is softer than an atomistic potential. Nevertheless, the investigations of Rahimi et 

al.67 have demonstrated that the adopted coarse-grained potential can capture qualitatively the 

interfacial properties and the mechanical behavior of polystyrene/silica nanocomposites.  

 

As shown in Figure 3.11 (b), the Young’s modulus E of all nanocomposites is higher than in the 

neat polymer. It increases monotonically with increasing overall surface area Atotal of the 
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nanoparticles. When the nanoparticle mass fraction is constant, the nanocomposites containing 

tetrahedral nanoparticles have a larger Young’s modulus than the ones containing nanoparticles 

of a smaller surface area (i.e. cubic or tetrahedral). This indicates that the total surface area of the 

nanoparticles has a significant impact on the modification of mechanical properties of 

nanocomposites, as clarified by other investigations80,82–84. Specifically, in our simulations an 

about 20% improvement of Young’s modulus is found at an interphase area/volume ratio of 

about 0.08 nm2/nm3. This finding is comparable to the experimental result of Dorigato et al.85 

that the Young’s modulus of polyethylene/silica nanocomposites is enhanced by about 25% 

when the interphase area/volume ratio is about 0.05 nm2/nm3. Kaur et al.86 and Kalfus et al.87 

have also observed from thermomechanical measurements a 20%~30% increase of elastic 

moduli of poly(ε-capro-lactone)/hydroxylapatite and poly(vinyl-acetate)/hydroxyapatite 

nanocomposites, when the interphase area/volume ratio is about 0.06 nm2/nm3. Additionally, 

based on a continuum model, Odegard et al.88 and Boutaleb et al.89 have found that the elastic 

moduli of polyimide/silica and polyethylene/silica nanocomposites are enhanced by about 30% 

at an interphase area/volume ratio of about 0.03 nm2/nm3. It has been shown in Sections 3.4.1 

and 3.4.2 that a higher fraction of interphase chains is strongly adsorbed by the nanoparticle 

surface if the nanoparticle mass fraction or the specific surface area is enlarged. Recall that in 

our model the polymer-nanoparticle interaction is attractive. This explains at a microscopic level 

that the mechanical enhancement in polymer nanocomposites is determined both by the 

nanoparticle mass fraction and their geometrical shape. They are fundamentally related to a 

common factor, i.e. the interphase area.  
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Fig. 3.11 (a) Stress-strain curves of pure polystyrene and different nanocomposite systems; (b) 

Young’s modulus E of pure polystyrene and different nanocomposite systems as a function of the 

total surface area Atotal of the nanoparticles.  

 
3.5 Summary and conclusions 
 

Coarse-grained molecular dynamics simulations have been performed to investigate structural 

and dynamic properties of polymer chains in polystyrene nanocomposites containing a fraction 

of silica nanoparticles of different geometries (sphere, cube and regular tetrahedron). Polymer 

structural properties that are calculated as a function of their distance from the nanoparticle 

center of mass are the end-to-end distance and radius of gyration of the polymer chains. It has 

been found that both increase locally in the intermediate vicinity of the nanoparticles, contract at 

distances corresponding to few chain radii of gyration (𝑅𝑅𝑔𝑔), and almost converge to the averaged 

overall value at larger separations from the nanoparticle. Averaged over the whole sample, the 

global chain dimension is reduced with increasing total surface area of the nanoparticles. 

Moreover, the nanoparticle geometry has a significant impact on the local dimension of the 

polymer chains in the interphase. The matrix chains are aligned parallel to the surface tangent, 

when they are at close distances (≤  𝑅𝑅𝑔𝑔 ). Further away, they prefer random orientations. 

According to the profiles of the chain dimension and orientation as a function of their distance 

from the nanoparticle, the interphase thickness approximately equals one 𝑅𝑅𝑔𝑔 . 

 

The global and interphase chain dynamics is monitored by the center of mass diffusion 

coefficient, the relaxation time of the chain end-to-end-vector, and the time a chain uses to 

escape from the interphase. For all mobility parameters we find that both the nanoparticle mass 

fraction and geometrical shape influence largely the dynamic properties of the polymer chains. 

Specifically, the global chain center-of-mass diffusion coefficient decreases almost linearly with 

the total surface area of the nanoparticles, whereas the global relaxation time of the chain end-to-

end vectors increases almost linearly with it. Both trends indicate that a larger surface area of 

nanoparticles leads to a stronger reduction of the polymer mobility. Due to their larger surface 

area, tetrahedral nanoparticles hinder the global chain dynamics stronger than cubic 
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nanoparticles, followed by spherical nanoparticles, when the nanoparticle mass fraction is 

constant.  

 

Excluded volume effects and interfacial adsorption make the relaxation of the polymer chains in 

the interphase much slower than for the whole sample. In contrast to the global relaxation time, 

the relaxation time of the interphase chains increases superlinearly with the surface area of the 

individual nanoparticles. We find the same ordering of the interphase mobility as for the other 

chain dynamical parameters, namely tetrahedral < cubic < spherical. The same is also found for 

the characteristic time a polymer chain needs to escape from an interphase around a nanoparticle 

into the bulk. In the present work the boundary between the interphase and the bulk is arbitrarily 

but consistently drawn. 

 

To probe the relation between overall mechanical properties of nanocomposites and nanoparticle 

charactersictics, uniaxial tensile deformations are applied for all systems below the glass 

transition temperature. Yield strengths of the nanocomposites are enhanced with increasing 

nanoparticle mass fraction for a given geometrical shape or increasing surface area of an 

individual nanoparticle for a given mass fraction by changing their shapes. The Young’s 

modulus of the nanocomposites increases monotonically with the total interphase area. The 

universal parameter “interphase area”, which is a function of nanoparticle mass fraction and 

geometry, plays a critical role in the mechanical enhancement of polymer nanocomposites. 

Specifically, modifications of mechanical properties due to the addition of tetrahedral 

nanoparticles are stronger than for the ones with a smaller surface area (i.e. cubic and spherical 

structure) when the nanoparticle mass fraction is constant.  

 

Finally, we want to point out that as a common factor, the interphase area influences almost 

linearly the global chain geometry (𝑅𝑅𝑒𝑒2 and 𝑅𝑅𝑔𝑔2), dynamics (Dps, 𝜏𝜏𝑒𝑒𝑒𝑒  and 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 ) as well as the bulk 

elastic properties. Nevertheless, the local chain geometry and dynamics is different in the 

interphase region (≤ 𝑅𝑅𝑔𝑔  from the nanoparticle surface), and their dependence on the interphase 

area can be nonlinear. There are probably local effects playing a role, which are different for the 

different nanoparticle shapes and concentrations. Contaminant with other experimental 
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investigations (i.e. Kaur et al.86 and Kalfus et al.87), our simulations reflect faithfully at molecular 

scales the correlation between the interphase area and mechanical enhancements of 

nanocomposites. It should be emphasized that the conclusions about the interphase area being the 

dominating factor apply to the particular nanoparticle shape, size and concentration range studied 

here. They should be revaluated if the system compositions differ sizeably from the one studied 

in the present work. 
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4. Uniaxial Deformation of Polystyrene–Silica Nanocomposites Studied 

by Hybrid Molecular Dynamics–Finite Element Simulations 
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4.1 Abstract 

 

This contribution investigates, based on molecular dynamics (MD), the mechanical deformation 

behavior of polystyrene-silica nanocomposites and focuses on the influence of micromechanical 

properties as e.g. filler particle size and filler mass fraction. With regard to simulations of 

macroscopic problems with system sizes not capable by pure MD approaches, our investigations 

are complemented by hybrid molecular dynamics – finite element (MD-FE) simulations. Our 

simulations show that an increasing total interfacial area between the nanoparticles and the 

polymer matrix stiffens the nanocomposite. As expected, small nanoparticles have more 

significant impact on the macroscopic mechanical properties of nanocomposites than large ones. 

We show that, for the same mass fraction of nanoparticles, the Young’s modulus increases by 

about 4 to 5% when the nanoparticle diameter is decreased from 5 to 2 nm. Furthermore, we find 

that: (i) the end-to-end distances of free polymer chains in the vicinity of nanoparticles are larger 

than in the bulk; (ii) the addition of nanoparticles slows down the global dynamics of free 

polymer chains; and (iii) the interphase thickness of nanocomposites is about 1 to 1.5 nm. 

Beyond that, we study structural properties at the microscale under uniaxial tension and find that 

the presence of nanoparticles hinders the orientation of free polymer chains under deformation. 

This hindrance is more pronounced for small nanoparticles and high mass fractions. Polymer 

structural descriptors as the chain end-to-end vector and a molecular anisotropy parameter 

largely change in line with the geometrical transformation of the whole sample. 
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4.2 Introduction 
 

Polymer nanocomposites1-3 are produced by blending a matrix polymer with nanoparticles (e.g. 

spherical silica4-6, carbon nanotubes7-9 and delaminated clay10-13). In the past decades they have 

been applied extensively in different industries. However, it is still a challenge to understand the 

improvement of mechanical and other properties by nanoparticle inclusion at a molecular level. 

Due to their large surface, nanoparticles contact efficiently with polymer chains in 

nanocomposites. The interphase between the polymer matrix and the nanoparticles has a 

significant influence on the mechanical properties of nanocomposite materials. For instance, an 

interphase can hinder effectively the formation and propagation of fatigue cracks in 

nanocomposite materials4. This has been attributed to the fact that a strong interphase reduces the 

internal stress of polymer nanocomposites during a deformation process.  

 

Experimental investigations14-16 have demonstrated that an increase of the nanoparticle 

concentration leads to an increase of elastic moduli. However, above a certain threshold 

nanoparticle aggregation leads to a reduction of the contact area between the polymer matrix and 

the nanoparticles15. A good dispersion of the nanoparticles17,18 in the polymer matrix attenuates 

effectively local stress concentrations. In addition, the influence of the nanoparticle size on the 

mechanical properties has been investigated by experimental methods. For polypropylene–
CaCO3 nanocomposites, Mishra et al.19 have observed that the Young’s modulus of composites 

with smaller nanoparticles is greater than the one of composites with larger nanoparticles. In 

other contributions20-22, similar results have been obtained for polyamide-6–silica thermoplastics, 

polysiloxane–silica coatings and epoxy–silica resins. A reduction of the nanoparticle size at a 

constant concentration causes an increase of the interphase area, which consequently enhances 

the overall surface energy between polymer chains and nanoparticles21. The grafting of 

nanoparticle surfaces by polymer chains is another way to modify the interaction between the 

polymer and the nanoparticles. Rong et al.21,22 applied either ungrafted or polymer-grafted (i.e. 

polymethylmethacrylate or polystyrene) silica nanoparticles. They have found that grafted 

nanoparticles disperse better in the composites. In accordance with Rong et al., Bikiaris et al.23 

have also observed that isotactic polypropylene nanocomposites containing surface modified 

silica nanoparticles have improved mechanical properties such as the Young’s modulus. 
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Simulation studies have been applied widely to investigate the mechanical and other properties 

of polymer nanocomposites. Papakonstantopoulos et al.24,25 have employed a Monte Carlo (MC) 

approach to study the influence of the polymer-nanoparticle interactions on the mechanical 

properties of nanocomposites. They found that the average shear and Young’s moduli of 

nanocomposites filled with inert or attractive nanoparticles were larger than those of the pure 

polymer. Raos et al.26 have performed dissipative particle dynamics (DPD) simulations to 

examine polymer networks mixed with spherical particles at a volume fraction of 20%. Their 

results indicated that the polymer-particle interaction is a significant factor influencing the 

dynamic shear modulus of filler-cross-linked polymer networks27-29. Ndoro et al.30,31 have 

demonstrated by atomistic molecular dynamics (MD) simulations that the size and the grafting 

density of silica nanoparticles have an influence on the interphase structure of nanocomposites. 

Due to the polymer-nanoparticle interaction, the properties of polymer chains in the interphase 

differ from those of the bulk. Ghanbari et al.32,33 and Rahimi et al.34 also formulated similar 

conclusions by coarse-grained MD simulations of polymer–silica nanocomposites.  

 

In contrast to particle-based methods, continuum-based approaches (i.e. micromechanics35 and 

the finite element (FE) method36) tackle macroscopic problems by applying continuous meshing 

units. Fornes et al.37 have adopted a micromechanically based model to simulate a nylon-6–
layered-clay system. They concluded that the exfoliated clay contributed to a mechanical 

reinforcement of nylon-6. The reinforcement, however, decreased when the number of clay 

platelets per stack grew. By using a three-dimensional FE approach, Mortazavi and coworkers38 

have evaluated the influence of the interphase on the elastic modulus of nanocomposites 

containing either unidirectionally or randomly oriented particles. They demonstrated that the 

interphase effects for spherical nanofillers were stronger than for the anisometric nanofillers.  

 

While particle-based methods address appropriately molecular and mesoscopic structures of soft 

materials, their computational cost is prohibitive when facing macroscopic problems. 

Continuum-based methods allow a macroscopic modeling of soft materials, frequently relying on 

finite element meshes for numerical solution. Thereby, microstructural resolution like in terms of 
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particles and their interactions is not longer captured. Hybrid particle-continuum methods have 

been developed to overcome their intrinsic drawbacks: a small particle domain with a high 

resolution for analyzing quantities of interest is coupled to an extended surrounding continuum 

that makes macroscale simulations computationally affordable. They may be categorized into 

sequential and concurrent couplings39-42. Sequential coupling43 provides a bridging solution in 

which hierarchical methods are coupled by passing material parameters (e.g. elastic moduli) 

derived from one scale in an off-line way to another scale. Yang et al.44 developed such a 

combined framework based on MD, FE and micromechanics. In their approach, the bulk 

modulus of nanocomposites calculated by an atomistic MD simulation was used to parameterize 

the FE model. The results reflected qualitatively the influence of the nanoparticle size on the 

mechanical properties of nanocomposites. Concurrent coupling combines simulation methods at 

different scales in an on-line way45. A bridging domain method has been developed by Xiao and 

Belytschko46 to couple the continuum with molecular models. Their investigations have 

indicated that such a bridging domain approach can reduce the spurious wave reflections at the 

interphase region. Zhang et al.47, Khare et al.48 and Davydov et al.49 have demonstrated that the 

bridging domain method addresses appropriately deformation problems of crystalline materials. 

Ben Dhia et al50,51 have proposed the Arlequin method in which the energies of the particle and 

continuum domains are coupled. Both the bridging domain and the Arlequin method do not 

require a lattice description in the particle domain. Therefore, they have been applied by some 

researchers (i.e. Bauman et al.52 and Chamoin et al.53) to simulate soft materials such as 

polymers.  

 

Different to the aforementioned methods, some of us54,55 have developed a hybrid MD-FE 

framework based on the Arlequin approach. A large number of so-called anchor points are 

introduced in this scheme to communicate information (i.e. forces and displacements) between 

the MD and FE computations when performing the staggered iteration cycles. Details of the 

present MD-FE coupling54-56 are explained in Section 4.2. Recently the hybrid method has been 

employed to simulate pure polystyrene and polystyrene nanocomposites containing a single 

ungrafted silica nanoparticle [55]. In the present contribution, this method is applied to 

investigate the influence of the mass fraction, size and grafting density of nanoparticles on the 

mechanical properties of polystyrene–silica nanocomposites in a coarse-grained resolution. At 
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first, standard periodic MD simulations without coupling to the FE domain are performed to 

identify the effective mechanical parameters (i.e. Young’s modulus and Poisson’s ratio) of 

polystyrene–silica nanocomposites. In addition, the influence of nanoparticle inclusion on 

structural and dynamic properties of polymer chains is also investigated. Subsequently, the 

considered nanocomposite systems are elongated at a constant deformation step size by the 

hybrid MD-FE method. The changes of the mean normal stress with the strain are monitored, too. 

Furthermore, a geometrical transformation model is proposed to analyze the changes of 

structural polymer properties at a glassy state during a uniaxial elongation. These results allow us 

to understand from a molecular perspective the improvements in the mechanical properties by 

nanofiller inclusion as well as the changes of polymer properties as a function of the applied 

deformation. 

 

4.3 Simulation method and computational details 
 
4.3.1 Hybrid molecular dynamics-finite element method 

The hybrid simulation space consists of three regions, i.e. the outer FE, the inner MD and the 

intermediate dissipative particle dynamics (DPD) region (Figure 4.1). The FE region allows an 

application of an external load to deform the entire box during the hybrid simulation. The 

particles in the MD region move under classical Newtonian mechanics. The interactions between 

the beads in the MD region are described by a coarse-grained force field57 developed by 

Ghanbari et al.33. In our recent simulations34,54,55,58, the applicability of the adopted force field 

has been investigated either with the help of qualitative scaling relations (Young’s modulus) or 

quantitative property predictions (e.g. Poisson ratio and the interphase thickness). It should be 

mentioned that the Young’s modulus derived from the present MD simulations is somewhat 

lower than the experimental number. This is reasonable, as the coarse-grained potential is softer 

than the atomistic one. More details will be given later. The MD computations in the hybrid 

framework are non-periodic and employ stochastic boundary conditions. Particles in the DPD 

region share the coarse-grained force field with the MD region. This means that the interactions 

between particles in the DPD region also contain the conservative forces as between  
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Fig. 4.1 Spatial decomposition in the employed hybrid MD-FE simulation model. The outer, 

middle and kernel region refer to the FE, DPD and MD domain of the hybrid simulation space. 

The sizes of the FE, DPD and MD domain are denoted as LFE, LDPD and LMD. 

 

Table 4.1 Structural details of coarse-grained polystyrene chains and silica nanoparticles. Note 

that the grafting density of silica nanoparticles is defined as the ratio between the number of the 

grafted polymer chains on the nanoparticle surface and the entire surface area of the 

nanoparticle. For an explanation of the bead types see Figure 4.2. Here lPS, ∅, and ρ  are the 

polymer chain length, nanoparticle diameter and nanoparticle grafting density. 

Bead 
type Bead mass/(kg/mol) 

Polystyrene chain 

 

Ungrafted silica 
nanoparticle 

 

Grafted silica nanoparticle 

lPS = 20 (beads) ∅ = 5 
(nm) 

∅ = 2 
(nm) 

∅ = 5 (nm),  
ρ = 0.25 

(chains/nm2) 

∅ = 5 (nm),  
ρ = 0.60 

(chains/nm2) 

∅ = 5 (nm),  
ρ = 0.95 

(chains/nm2) 

S 0.104 
20 

0 0  
30 30 30 

R 0.104 0 0  

SF 0.0639 0 447 57  447 447 447 

CR 0.0639 0 1273 44  1273 1273 1273 

L1 0.0541 0 0 0  2 2 2 

L2 0.0582 0 0 0  2 2 2 

 

 Hybrid Molecular 

 Dynamics-Finite Element 

 Simulation Model 
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particles in the MD region, augmented by the pairwise interactions from DPD. Additionally, 

there are a number of virtual particles, called anchor points, in the DPD region. They attenuate 

the escape probability of polymer beads from the DPD region to the FE “vacuum”. To this end, a 

large number of polymer beads in the DPD region are tethered to the anchor points by a 

harmonic interaction. The anchor points pass the changes of their positions and the average 

forces acting on them between the particle and continuum region during the hybrid simulation. 

The selection criteria for the number of virtual anchor points as well as their distribution in the 

overlapping domain have been quantified in detail in our recent publications54,56. For a first 

analysis of the stability of our coupling scheme, see ref. 55. Nevertheless, we have to point out 

that the spatial anchor point distribution is a compromise between the MD domain (exponential 

increase of the anchor point density towards the outer MD boundary) and the FE domain 

(uniform distribution in the overlapping region). First investigations to overcome this issue, e.g. 

by choosing the weighting factor for the mixing of the MD and FE contribution to this region in 

a more sophisticated way, are carried out in the two groups. To sum up, the observed results 

indicate that the system properties in the inner MD domain are almost not influenced by 

variations in the number and distribution of the anchor points when their number is chosen in a 

reasonable range. 

 

The hybrid MD-FE method couples the continuum-based FE region to the particle-based MD 

region based on the Arlequin method50,52. The iterative MD-FE computation in the hybrid 

simulations is performed in a staggered way55,58. The external shape of the MD region is 

designed to be static when carrying out the FE step and vice versa. The macroscale continuum 

and the microscale particle region feel each other only by the forces and the displacements of 

anchor points. Both the MD and the DPD region (including anchor points) are defined prior to 

each hybrid run. After the MD step, the time-averaged forces on the anchor points exerted by 

polymer beads are transmitted to the FE run as required computational input59,60. After the 

completion of an FE step, the updated anchor point positions from the previous FE computation 

are passed to the next MD run where they play the role of a static external potential. The 

staggered MD-FE loops end when the predefined number of load steps has been performed. Our 

uncertainty quantification (UQ) analysis56 has demonstrated that non-periodic MD simulations 

with parameters in a safe range reproduce the results of a standard periodic MD simulation of the 
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same system. Guided by the UQ results, we have chosen the material parameters for ten different 

systems (i.e. pure polystyrene, ungrafted and grafted polystyrene–silica mixtures) as summarized 

in Tables 4.1, 4.2 and 4.3.  

 

Table 4.2 Components of the considered systems in the hybrid MD-FE simulations. The 

structural details of the coarse-grained polystyrene chains and silica nanoparticles used in the 

hybrid MD-FE simulations are given in Table 4.1. The number of the polystyrene chains in all 

systems is 3000. 

System 
Silica nanoparticle number 

Nsilica 
Silica nanoparticle diameter 

∅/(nm) 
Grafting density 
ρ/(chains/nm2) 

Nanoparticle mass fraction 
ω/(%) 

1 2 5 0 3.403 

2 5 5 0 8.094 

3 8 5 0 12.350 

4 34 2 0 3.400 

5 85 2 0 8.081 

6 136 2 0 12.340 

7 1 5 0.25 1.731 

8 1 5 0.60 1.731 

9 1 5 0.95 1.730 

10 0 0 0 0 

Table 4.3 Material parameters of polymer nanocomposite systems that are studied by hybrid 

MD-FE simulations. Two mechanical parameters (Young’s modulus and Poisson’s ratio) for the 

different polymer nanocomposite systems have been identified from standard periodic MD 

computations. Here, the step size Δε is the increase of the strain (1%) applied in each load step 

of the hybrid MD-FE simulations. The force constant k between polymer beads and anchor 

points is 1400 kJ mol-1 nm-2. The thickness of the DPD domain LDPD is 2.0 nm.  

System Young’s modulus E/(MPa) Poisson’s ratio ν Number of anchor point N 

1 876±21.6 0.3±3.7×10-3 9047 

2 989±17.3 0.3±4.9×10-3 9010 

3 1167±35.4 0.3±4.1×10-3 9009 

4 917±12.6 0.3±2.1×10-3 9051 

5 1032±11.8 0.3±3.8×10-3 9141 

6 1223±38.2 0.3±2.7×10-3 9313 

7 869±25.3 0.3±3.5×10-3 9016 

8 903±16.5 0.3±5.6×10-3 9022 

9 968±14.9 0.3±4.3×10-3 9094 

10 815±12.7 0.3±6.5×10-3 9035 
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The anchor-point-related parameters k, N and LDPD denote the force constant between an anchor 

point and a polymer bead, the number of anchor points and the thickness of the DPD domain, 

respectively. More details on the parameters of the FE part can be found in ref. 55.  

 

4.3.2 Details on the coarse-grained nanocomposite systems 

The initial configurations for the inner MD region are prepared as required by the non-periodic 

MD simulations. Each repeat unit in the polystyrene chains is treated as one bead located at its 

center of mass32,33. Two different bead types (R and S) are defined to account for the chirality of 

the chains. The atomistic coordinates of the silica nanoparticles are generated from a lattice of 

crystalline silica by removing all atoms beyond the predefined nanoparticle radius. Then the 

coarse-grained beads were placed at the positions of the silicon atoms. To describe the polymer-

nanoparticle interaction reasonably, we use different silica beads for the surface (SF) and the 

core (CR). Note that the surface beads have the dominant contribution to the attractive 

interaction with the polystyrene beads. In the grafted systems, polystyrene chains are attached to 

the silica surfaces with a linker segment (−[H2C(H(C2H3)C)]3(CH3)2Si−). The linker segment in 

the coarse-grained system is formed by two different beads defined by the –CH2CHCHCH2− 

group (L1 bead) and the −(CH3)2Si group (L2 bead). To generate the initial configurations of the 

nanocomposites (Figure 4.2), silica nanoparticles are initially placed randomly in the simulation 

space; then the polymer chains grow gradually bead-by-bead. The initial structures are 

equilibrated for 10 ns using a standard periodic MD simulation at 590 K. Afterwards the 

equilibrated structures are cooled down from 590 K to 100 K at a rate of 10 K ns-1. The glass 

transition temperature Tg for our coarse-grained model is 170 K34.  
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Fig. 4.2 Coarse-grained polystyrene–silica nanocomposite systems with and without grafted 

polymer chains. ∅ and 𝜌𝜌 are the diameter and grafting density of the nanoparticles, respectively. 

 

To adopt non-periodic boundary conditions for the hybrid MD-FE simulation, all polymer 

segments outside the simulation box are then cut and shifted back into it. Note that more than 

98.5% of the fragmented beads are from the DPD domain. This means that the chain cutting 

procedure has a negligibly small influence on the inner MD domain. The particle domain 

(MD+DPD) has the dimension (21 nm × 21 nm × 21 nm). The thickness of the DPD domain is 2 

nm. With the final structures after the standard periodic MD simulation, the number and position 

of anchor points are chosen. The FE region is defined as a mesh structure with an appropriate 

size (30 nm × 30 nm × 30 nm). The effective material properties, i.e. Young’s modulus and 

Possion’s ratio, have been identified from standard periodic MD simulations by applying 

uniaxial deformations at 100 K under 𝑁𝑁𝑁𝑁𝑃𝑃⊥𝑇𝑇 conditions. Here the MD box is elongated with a 

constant rate in the y-direction. In addition, the box lengths in the two perpendicular directions 

are coupled to a pressure bath (1 bar) by the Berendsen method. The relation between the strain ε 

and the time t follows the equation: 𝜀𝜀(𝑡𝑡) =  𝜇𝜇𝜇𝜇
𝐿𝐿0

 × 100%. Here, µ and L0 denote the deformation 

rate and the initial box length in the selected elongation direction. The Young’s modulus is 

calculated within the elastic deformation region (up to 3% strain). MD Simulations have 

demonstrated that the deformation rate (i.e. 1.5 ~ 45 nm ns-1) has only a small influence on the 

Young’s modulus34. For instance, for deformation rates of 1.5, 15 and 45 nm ns-1 at 100 K, the 

Young’s modulus of pure polystyrene is 823 ± 27.1, 815 ± 12.7 and 819 ± 36.6 MPa, 

Coarse-grained Polystyrene−Silica Nanocomposites 
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respectively. For the present deformation simulations we have chosen an elongation rate µ of 15 

nm ns-1. It should be mentioned that the strain rate used in the present work to simulate the 

uniaxial deformation of nanocomposites is similar to the ones used in other investigations61. It is 

computationally demanding to use a very low strain rate for MD deformation simulations, 

because they require an expensive computational effort for large systems. 

 

4.3.3 Geometrical transformation model  

A geometrical transformation model is proposed to analyze changes of structural properties of 

free polymer chains under an external load. This model allows differentiating changes in the 

polymer structure, which are merely affine to the system deformation, from those, which follow 

from additional relaxation processes. The components (i.e. 𝑅𝑅𝑒𝑒𝑒𝑒 , 𝑅𝑅𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑒𝑒𝑒𝑒 ) of the end-to-end 

distance 𝑅𝑅𝑒𝑒  of free polymer chains in the three Cartesian directions change by the same ratio as 

the respective system dimensions (i.e. 𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦  and 𝐿𝐿𝑧𝑧 ) during the deformation. 𝛽𝛽  denotes the 

angle between the end-to-end vector of a polymer chain and the deformation direction (i.e. y-

axis); θ  denotes the angle between the perpendicular direction (i.e. x-axis) and the projection of 

the end-to-end vector of polymer chains in the xz-plane after deformation. Note that the symbols 

with a subscript “0” refer to the corresponding variables before deformation. On the basis of the 

proposed model, Equations (4.1), (4.2), and (4.3) are obtained, 

 

1 + 𝜀𝜀𝑥𝑥𝑥𝑥 =
𝐿𝐿𝑥𝑥
𝐿𝐿𝑥𝑥0

=
𝑅𝑅𝑒𝑒𝑒𝑒
𝑅𝑅𝑒𝑒𝑒𝑒0

=  
𝑅𝑅𝑒𝑒 sinβ cosθ

𝑅𝑅𝑒𝑒0 sin𝛽𝛽0 cosθ0
                        (4.1) 

1 + 𝜀𝜀𝑦𝑦𝑦𝑦 =
𝐿𝐿𝑦𝑦
𝐿𝐿𝑦𝑦0

=
𝑅𝑅𝑒𝑒𝑒𝑒
𝑅𝑅𝑒𝑒𝑒𝑒0

=  
𝑅𝑅𝑒𝑒 cos𝛽𝛽
𝑅𝑅𝑒𝑒0 cos𝛽𝛽0

                                   (4.2) 

1 + 𝜀𝜀𝑧𝑧𝑧𝑧 =
𝐿𝐿𝑧𝑧
𝐿𝐿𝑧𝑧0

=
𝑅𝑅𝑒𝑒𝑒𝑒
𝑅𝑅𝑒𝑒𝑒𝑒0

=  
𝑅𝑅𝑒𝑒 sin𝛽𝛽 sinθ
𝑅𝑅𝑒𝑒0 sin𝛽𝛽0 sinθ0

                         (4.3) 

 

where 𝜀𝜀𝑥𝑥𝑥𝑥 , 𝜀𝜀𝑦𝑦𝑦𝑦  and 𝜀𝜀𝑧𝑧𝑧𝑧  are the strain in the x-, y- and z-directions. Note that here we have 

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑧𝑧𝑧𝑧 =  −𝜈𝜈𝜀𝜀𝑦𝑦𝑦𝑦  (𝜈𝜈  is the Poisson’s ratio of the considered material). Thus, the squared 



 

105 

projections ( 𝑅𝑅𝑒𝑒𝑒𝑒2 , 𝑅𝑅𝑒𝑒𝑒𝑒2  and 𝑅𝑅𝑒𝑒𝑒𝑒2 ) of 𝑅𝑅𝑒𝑒  of polymer chains correlate with the strain in the respective 

directions as given by Equations (4.4), (4.5), and (4.6).  

 

𝑅𝑅𝑒𝑒𝑒𝑒2 = 𝑅𝑅𝑒𝑒𝑥𝑥0
2 [1 − 𝜈𝜈𝜀𝜀𝑦𝑦𝑦𝑦 ]2       (4.4) 

𝑅𝑅𝑒𝑒𝑒𝑒2 = 𝑅𝑅𝑒𝑒𝑒𝑒0
2 [1 + 𝜀𝜀𝑦𝑦𝑦𝑦 ]2          (4.5) 

𝑅𝑅𝑒𝑒𝑒𝑒2 = 𝑅𝑅𝑒𝑒𝑒𝑒0
2 [1 − 𝜈𝜈𝜀𝜀𝑦𝑦𝑦𝑦 ]2        (4.6) 

Additionally, 𝛽𝛽 can be expressed as in Equation (4.7) by solving Equations (4.1), (4.2), and (4.3).  

 

𝛽𝛽 = tan−1 �
1 − 𝜈𝜈𝜀𝜀𝑦𝑦𝑦𝑦
1 + 𝜀𝜀𝑦𝑦𝑦𝑦

tan𝛽𝛽0�            (4.7) 

To characterize the orientation change of free polymer chains during the deformation, the chain 

orientation has been defined by the second-order Legendre polynomial  

 

< 𝑃𝑃2 > =  3
2

 < cos2 𝛽𝛽 >  −  1
2
 .         (4.8) 

 
4.4 Results and discussion 
 
4.4.1 Parameter identification from periodic MD simulations 

The stress-strain curves for all systems (Figure 4.3) are characterized by an elastic deformation 

region, in which the stress increases linearly with the strain. Yield occurs at about 5% strain. The 

elastic region is followed by a stress plateau. Additionally it can be observed that (i) an increase 

of the nanoparticle mass fraction or (ii) an increase of the grafting density on the nanoparticle 

surfaces, as well as (iii) a decrease of the nanoparticle size at a constant mass fraction enhances 

the yield strength of the materials. The Young’s modulus has been calculated from the slope of 

the stress-strain curves in the linear region (up to 3% strain). It increases with the nanoparticle 

mass fraction (Fig 4.4 (a)) and the grafting density (Fig 4.4 (c)) on the nanoparticle surface, as 

well as with a decreasing nanoparticle size at the same mass fraction (Fig 4.4 (a)). The Young’s  
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Fig. 4.3 Stress-strain curves for the polystyrene–silica nanocomposite systems from periodic MD 

simulations. The simulation temperature is 100 K (Tg =  170 K). The load is applied in y-

direction. (a) ∅ = 5 nm, ungrafted; (b) ∅ = 2 nm, ungrafted; (c) 𝜔𝜔 = 1.73%, ∅ = 5 nm and 

grafted. 

 

modulus of silica nanoparticles (𝐸𝐸𝑁𝑁𝑁𝑁 = 3832 ± 43 MPa) has been calculated by deforming a 

coarse-grained silica crystal at 100 K. A linear relation62 between the mass fraction of the 

nanoparticles and the Young’s modulus of the nanocomposites is not obtained in our simulations. 

This seems to be no surprise since the complex interactions between the polymer matrix and the 

nanoparticles might cause effects that cannot be captured by such a simple mixing rule. As 

shown in Figure 4.4 (a), the Young’s modulus 𝐸𝐸𝑁𝑁𝑁𝑁  of the nanocomposites can be expressed 

approximately as a quadratic function of the nanoparticle mass fraction 𝜔𝜔 , i.e. 𝐸𝐸𝑁𝑁𝑁𝑁(𝜔𝜔) =

𝑝𝑝1𝜔𝜔2 + 𝑝𝑝2𝜔𝜔 + 𝑝𝑝3. A quadratic relation between the Young’s modulus of nanocomposites and 

the nanofiller content has been observed by other researchers63,64. Also note that smaller particles 

(nanoparticle diameter ∅ = 2 nm) at the same mass fraction lead to a higher E value than larger 

particles (∅ = 5 nm), most likely due to their larger interphase region. Smaller nanoparticles 
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produce a Young’s modulus that is about 4 to 5% higher than in samples with larger 

nanoparticles (constant nanoparticle mass fraction assumed). An increasing interphase area leads 

to an increasing interaction between the matrix and the nanofiller, so that a higher fraction of 

polymer chains in nanocomposites is strongly adsorbed by the nanoparticle surface. This 

explains that macroscopic mechanical properties of polymer nanocomposites are largely 

determined by the microscopic interphase structure65-67. As an example, Odegard et al.68 have 

demonstrated by an effective interphase model that the mechanical strength of polyimide–silica 

nanocomposites is improved when increasing the interphase area. Although extended mixing 

rules are research areas on their own, influence factors such as e.g. grafting densities which are 

discussed in this work, are difficult to consider by such approaches. This enhances the need of 

more accurate, particle-based considerations at a level of atoms and molecules. 

 

Fig. 4.4 Young’s modulus 𝐸𝐸𝑁𝑁𝑁𝑁  of polymer nanocomposites versus (a, b) nanoparticle mass 

fraction 𝜔𝜔 and (c) grafting density 𝜌𝜌. The black and blue lines in Figures 4.4 (a) and 4.4 (b) 

represent quadratic fits (𝐸𝐸𝑁𝑁𝑁𝑁 = 𝑝𝑝1𝜔𝜔2 + 𝑝𝑝2𝜔𝜔 + 𝑝𝑝3 ). (a) standard MD simulation, ∅ = 5 nm: 

𝑝𝑝1 = 1.46 MPa, 𝑝𝑝2 = 10.1 MPa, 𝑝𝑝3 = 818 MPa; ∅ = 2 nm: 𝑝𝑝1 = 1.01 MPa, 𝑝𝑝2 = 19.7 MPa, 
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𝑝𝑝3 = 822  MPa. (b) hybrid MD-FE simulation, ∅ =  5 nm: 𝑝𝑝1 = 1.31  MPa, 𝑝𝑝2 = 8.64  MPa, 

𝑝𝑝3 = 751 MPa; ∅ = 2 nm: 𝑝𝑝1 = 0.98 MPa, 𝑝𝑝2 = 16.0 MPa, 𝑝𝑝3 = 754 MPa. 

 

Fig. 4.5 Poisson’s ratio 𝜐𝜐  of all simulated systems as a function of uniaxial strain 𝜀𝜀 . The 

simulation temperature is 100 K. The load is applied in the y-direction. The two dashed lines 

stand for the maximum and minimum calculated value of the Poisson’s ratio. (a) ∅ = 5 nm, 

ungrafted; (b) ∅ = 2 nm, ungrafted; (c) 𝜔𝜔 = 1.73%, ∅ = 5 nm and grafted. 

 

The Poisson’s ratio of all simulated nanocomposites has been also calculated by MD simulations 

under periodic boundary conditions at 100 K (Figure 4.5). The Poisson’s ratio depends neither on 

the mass fraction of the nanoparticles nor on their grafting density. Up to 10% strain, the 

Poisson’s ratio fluctuates around 0.3. This value is close to the Poisson’s ratio calculated from a 

united-atom model61 (0.33 ± 0.02) and observed by an experimental measurement69 (0.32 ~ 0.33). 

Young’s moduli and Poisson’s ratios obtained by MD simulations under periodic boundary 

conditions are introduced as material parameters in the FE model of the hybrid computations 

under external loads (Table 4.3). 

  

4.4.2 Influence of nanoparticles on microscopic structural and dynamic properties of polymer 

chains as derived by periodic MD simulations 
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Squared end-to-end distances of the free polymer chains are calculated as a function of the 

distance of their center of mass from the nanoparticle surface. For this purpose, the nanoparticles 

are considered as spheres with a known diameter (∅ =  2 or 5 nm). The space around the 

nanoparticles (surface separation between 0 and 3 nm) is divided into 10 spherical shells with a 

thickness of 0.3 nm. The free polymer chains are allocated to a shell according to their center-of-

mass positions. The squared end-to-end distances are averaged over all free polymer chains and 

nanoparticles in the nanocomposites. As shown in Figure 4.6, at larger distances from the 

nanoparticle surface (i.e. 2 ~ 3 nm), the squared end-to-end distances of the polymer chains in all 

systems have a plateau that is close to the squared end-to-end distance (6.26 nm2) of the pure 

polymer. The nanoparticles do not influence significantly the structural properties of the bulk 

polymer chains beyond a distance of about 1.1 nm. The reason is that the interaction between 

polymer chains and nanoparticles decays gradually to a negligible value when the separation 

from their surface is enlarged.  

 

Fig. 4.6 Squared end-to-end distance 𝑅𝑅𝑒𝑒2  of polymer chains in the considered nanocomposite 

systems as a function of the distance from the nanoparticle surface. The dashed line refers to 𝑅𝑅𝑒𝑒2 

in the pure polystyrene system. 

 

However, at closer separations, the end-to-end distances for all systems increase above the bulk 

value. This expansion of polymer chains near nanoparticles, which are larger than their radius of 

gyration, has been observed before in atomistic30 and coarse-grained simulations32,33. For the 

same reason, the squared end-to-end distances of free polymer chains in the interphase of bigger 
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nanoparticles (~ 15 nm2) are larger than those with smaller nanoparticles (~ 12 nm2). In the 

neighborhood of the nanoparticles (e.g. limited to 1.1 nm from the surface), when the first few 

monomer units of a polymer approach the nanoparticle surface, the polymer chain is compressed 

in the direction of the surface normal. Those chains located even closer to the nanoparticles, have 

to swell tangential to the surface. This expansion in the tangential direction overcompensates the 

compression in the normal direction. Consequently, the chain end-to-end distance first decreases 

and then increases as the chains approach the nanoparticles. From the profile of the squared end-

to-end distances of free polymer chains, it can be concluded that the thickness of the interphase 

between the polymer matrix and the nanofiller is roughly 1 ~ 1.5 nm.  

 

To characterize the distribution of the nanoparticles in the polymer matrix, the radial distribution 

function of their centers of mass is calculated as an example (Figure 4.S1 (a), ∅ =  2 and 

𝜔𝜔 = 3.4%). The shape of the normalized radial distribution function is characteristic for short-

range order via a dense packing (excluded volume) and a lack of long-range order. The positions 

of the first (~ 3.3 nm) and second peaks (~ 4.1 nm) indicate that close nanoparticles are separated 

by 2 or 3 polystyrene beads, pointing to a stronger polymer adsorption onto the particle surfaces. 

The structural properties of free polymer chains within the interphase regions differ from the 

behavior of the bulk polymer due to the interaction with the nanoparticles. Figure 4.S1 (b) 

displays the radial distribution function of polymer beads (i.e. number density of polymer 

monomers) around the nanoparticles versus the distance from the nanoparticle surfaces (∅ = 2 

and 𝜔𝜔 = 3.4%). The radial distribution function curve shows a layered structure of the polymer 

beads in the vicinity of the nanoparticles. This has been also observed in other experimental and 

simulation investigations33,70. The structural behavior of nanoparticles lead to a peak at the 

distance of about 1 nm where the number density of polymer beads is roughly 1.2 times the bulk 

value. This indicates that compared with the bulk, a denser packing of the polymer chains is 

formed in the interphase region due to the polymer-nanoparticle interaction as well as due to 

excluded volume effects. 

 

Figure 4.S2 shows the center-of-mass mean square displacement (MSD) of the polymer chains 

and the nanoparticles at 590 K in the ungrafted systems for different nanoparticle mass fractions. 
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We observe that the center-of-mass MSDs of the polymer chains and the nanoparticles are 

reduced with an increase of the nanoparticle mass fraction (at constant nanoparticle size). These 

diagrams also indicate that the MSDs of the polymer chains are slightly larger in the presence of 

larger nanoparticles (at same nanoparticle mass fraction). The diffusion coefficient D derived 

from the center-of-mass MSDs describes the global dynamics of polymer chains and 

nanoparticles. The diffusion coefficient of the free polymer chains Dps (Figure 4.7 (a)) and the 

nanoparticles Dnp (Figure 4.7 (b)) is reduced almost linearly with an increasing nanoparticle mass 

fraction (at constant nanoparticle size). A similar linear relation has been observed by Capaldi et 

al.71 in atomistic MD simulations of polyethylene–silsesquioxanes composites. Larger 

nanoparticles  

 

Fig. 4.7 Diffusion coefficient of the polymer (𝐷𝐷𝑝𝑝𝑝𝑝 ) and the nanoparticle (𝐷𝐷𝑛𝑛𝑛𝑛 ) versus 

nanoparticle mass fraction 𝜔𝜔 and grafting density 𝜌𝜌. The simulation temperature is 590 K. The 

error bars of the diffusion coefficients are not visible in the figures due to their very small values. 

 

diffuse slower than smaller ones. The factor between 0.28 and 0.30 at different nanoparticle 

concentrations is in line with a simple Stokes-Einstein estimate of 2.5. Correspondingly, the 
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slope of the 2 nm particles equals three times that of the 5 nm particles. In contrast, the reduction 

of the diffusion coefficient of free polymer chains as a function of the nanoparticle mass fraction 

is steeper in the systems with smaller nanoparticles (slope = -2.0 × 10-11 m2 s-1) than for larger 

nanoparticles (slope = -1.1 × 10-11 m2 s-1). This demonstrates that smaller nanoparticles suppress 

the mobility of free polymer chains more efficiently than larger nanoparticles when their mass 

fraction is identical. 

 

Furthermore, the dynamics of the free polymer chains in the vicinity of nanoparticles is slower 

than that of the polymer chains in the pure polymer. To verify this we have calculated the 

diffusion coefficient of free polymer chains within the sub-shell region (0 ~ 1 nm from the 

nanoparticle surface) in the systems with large (∅ = 5 nm, 𝜔𝜔 = 3.4%) and small nanoparticles 

(∅ = 2 nm, 𝜔𝜔 = 3.4%). They amount to 0.97 ± 0.002 nm2 × 10-9 m2 s-1 and 1.13 ± 0.001 × 10-9 

m2 s-1, respectively. Both values are smaller than the diffusion coefficient (1.37 ± 0.002 × 10-9 m2 

s-1) in the pure polymer. This demonstrates that the nanoparticles slow down the dynamics of the 

free polymer chains in the interphase region. We can conclude that the interaction of the polymer 

chains with the nanoparticles influences not only their structure (e.g. end-to-end distance, Figure 

4.6) but also their dynamics in the interphase. The same observations have been reported by 

other researchers using either atomistic31 or coarse-grained72-76 MD simulations. Increasing the 

nanoparticle mass fraction or blending with smaller nanoparticles at the same nanoparticle mass 

fraction produces a larger interface area. Note that the nanoparticles in all systems do not touch 

each other. For instance, the interphase area (~ 1708 nm2) in the systems containing smaller 

nanoparticles (∅ = 2 nm, 𝜔𝜔 = 12.34%) is almost three times as large as that (~ 628 nm2) in the 

systems containing larger nanoparticles (∅ = 5 nm, 𝜔𝜔 = 12.35%). The role of the interface area 

is also emphasized by comparing the systems with ∅ = 5 nm, 𝜔𝜔 = 12.35% and  ∅ = 2 nm, 𝜔𝜔 = 

3.4%. Both have total interface areas of similar order of magnitude and thus also a similar 

polymer diffusion coefficient (1.20 × 10-9 and 1.18 × 10-9 m2 s-1, respectively), cf. Fig. 4.7 (a).  

 

The center-of-mass MSDs of the free and grafted polymer chains as well as of the nanoparticles 

in the grafted systems are presented in Figure 4.S3. The diffusion coefficients of free chains and 

nanoparticles are shown in Figures 4.7 (c) and 4.7 (d). It can be concluded that an increase of the 



 

113 

grafting density of the nanoparticles hinders the global dynamics of the free and grafted chains as 

well as of the nanoparticles. We assume that grafting more polymer chains onto the nanoparticles 

causes an increase of geometric hindrance effects between the free chains and nanoparticles as 

well as an increase of the congestion of the grafted chains. 

 

4.4.3 Hybrid MD-FE simulations 

Prerequisites of hybrid MD-FE simulations. Pre-equilibrium runs have to be performed first at T 

= 100 K to relax the inner MD region. In this relaxation step, the Young’s modulus in the FE 

region of all simulated systems is set to a very low value (i.e. E = 0.1 MPa), while the Poisson’s 

ratio is set to zero. The diagonal elements of the stress tensor in the MD domain are calculated 

by collecting the components of the average forces on the anchor points that are perpendicular to 

the surface of the MD box. After the relaxation in 500 combined MD-FE iterations (total MD 

simulation time of 125 ns), all three diagonal elements of the stress tensor converge from their 

initial values (~ 6.3 kPa) to nearly zero, demonstrating that the systems have been equilibrated. 

In this step the density of the inner MD domain has been reduced by only about 0.12%. The size 

of the MD domain remains roughly constant during the relaxation. The equilibrated 

configurations are then used to start the hybrid simulation. Moreover, we find that the 

deviations of the mean normal stresses55 in each load step converge roughly to zero in about 80 

MD-FE iterations. Thus we have employed 80 MD-FE iterations for each load step (increase of 

the strain by 1%) in the hybrid simulation.  

 

Uniaxial tension. In Figure 4.8 (a), 𝜎𝜎�𝑦𝑦𝑦𝑦  denotes the mean normal stress in the deformation 

direction and is displayed as a function of the number of MD-FE iterations for different 

nanoparticle mass fractions with a constant diameter of 5 nm. At each load level, 𝜎𝜎�𝑦𝑦𝑦𝑦  increases 

with increasing nanoparticle mass fraction. The same qualitative behavior is obtained for smaller 

particles of 2 nm diameter and for a higher grafting density, cf. Figure 4.8 (b) and 4.8 (c): again, 

high nanoparticle mass fractions and grafting densities generate larger mean stresses. The 

agreement between hybrid MD-FE and standard MD simulations follows from the fact that the 

Young’s modulus required in the FE region is taken from MD. As displayed in Figure 4.4 (b), 

the stiffness of a nanocomposite increases with an increasing mass content of the nanoparticles. 
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Fig. 4.8 Mean normal stresses 𝜎𝜎�𝑦𝑦𝑦𝑦  of polystyrene–silica nanocomposites with different silica 

concentrations as a function of the number of MD-FE iterations. The nanocomposite systems are 

elongated along the y direction. The step size Δε is 1% for each load step and the final strain is 

7%, which requires in total 560 MD-FE iterations (80 iterations for each load step). (a) ∅ = 5 

nm, ungrafted; (b) ∅ = 2 nm, ungrafted; (c) ∅ = 5 nm, grafted. 

 

Similar to standard MD simulations we compute the Young's modulus of the nanocomposites by 

the hybrid MD-FE formalism. The data are derived via the mean normal stress at 3% strain. 

Additionally, we investigate the relation between the Young’s modulus and the nanoparticle 

mass fraction, cf. Figure 4.4 (b). Within both simulation methods we obtain the similar 

qualitative behavior. This is valid for the influence of the nanoparticle radius and the 

nanoparticle mass fraction. Both sets of data are consistent with experimental investigations62,77-

80; they only differ in the absolute values of the Young's moduli which are shifted to lower values 

in the hybrid case. This is most likely due to certain computational approximations in the 

coupling scheme (i.e. chain cutting procedure described in Section 4.2) which causes a decreased 
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stiffness in the overlapping region between the MD and FE domains. The described issue is an 

additional subject of ongoing investigations. To deal with it, we currently investigate strategies 

how the hybrid simulations may be realized without cutting chains or how the finite elements 

may be chosen properly such that all anchor points are surely contained in the finite elements of 

the overlapping region. Additionally, as a possible remedial strategy, simulations with an 

enlarged overlapping region would increase the stability of the coupling approach. Under these 

conditions the ratio of cut chains becomes smaller, which leads to an attenuated influence on the 

stiffness of the considered nanocomposites. Nevertheless, even at lower absolute values, our 

coupling scheme is able to reproduce qualitatively the impact of the nanoparticles at different 

mass fractions and diameters. Thus, we are convinced that the observed trends enable us already 

at the current state to treat larger systems which are barely accessible by pure MD approaches. 

 

Structural properties of polymer chains during the uniaxial deformation. Figure 4.9 presents the 

MD-FE based chain orientation parameter < 𝑃𝑃2 > averaged over all free chains as a function of 

the strain. It is nearly zero before deformation and increases almost linearly with the strain. Thus 

it can be concluded that free polymer chains adjust their conformations from a random 

orientation to align gradually with the deformation direction under an external load. The < 𝑃𝑃2 > 

values in Figure 4.9 have been fitted to straight lines. The polymer orientation toward the 

elongation direction becomes weaker with an increasing nanoparticle mass fraction. The 

presence of nanoparticles hinders the rotation of the polymer chains probably by adsorbing parts 

of them. Comparing Figures 4.9 (a) and (b), smaller nanoparticles hinder the orientation 

adjustment of free polymer chains during the deformation more efficiently than larger 

nanoparticles when the nanoparticle mass fraction is identical. The observation emphasizes again 

the role of the interface area. Figure 4.9 (c) shows the rather small influence of surface grafting 

on the chain orientation. In particular, the slopes of the < 𝑃𝑃2 > curves are only slightly affected.  

 

How much of the polymer reorientation follows merely from an affine deformation of the sample, 

and how much is owed to the molecular relaxation processes? To clarify this point, we introduce 

the ratio 𝛹𝛹 which measures the deviation between chain orientation parameters (see Figure 4.10), 

i.e. 𝛹𝛹 =  <𝑃𝑃2>ℎ  − <𝑃𝑃2>0
<𝑃𝑃2>𝑔𝑔  − <𝑃𝑃2>0

. < 𝑃𝑃2 >ℎ  and < 𝑃𝑃2 >𝑔𝑔  represent the orientation parameter of free 
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polymer chains as determined by the hybrid MD-FE simulations and the geometrical 

transformation model, respectively;  < 𝑃𝑃2 >0 denotes the orientation parameter of free polymer 

chains before deformation. For pure polystyrene the ratio 𝛹𝛹 amounts to nearly 1.0 throughout the 

deformation process. This demonstrates little relaxation of polymer chains, as expected for a 

polymer glass. In the nanocomposite systems, the ratios 𝛹𝛹 are smaller than 1.0, which means that 

the polymer chains in the hybrid system change their orientation less than those of a pure 

polymer matrix. This effect becomes even stronger with increasing nanoparticle mass fraction as 

well as with increasing grafting density. Both dependencies are reasonable since interfacial 

adsorption restricts the orientation adjustment of a fraction of polymer chains in the 

nanocomposite such that they cannot fully follow the overall deformation. 

 

Figure 4.11 presents the squared average of the projection of the end-to-end distance 𝑅𝑅𝑒𝑒  of free 

polymer chains 𝑅𝑅∥2 = 〈𝑅𝑅𝑒𝑒𝑒𝑒 〉2  in the tensile direction (solid symbols) and the mean of the 

associated quantities 𝑅𝑅⊥2 = 1
2

(〈𝑅𝑅𝑒𝑒𝑒𝑒 〉2 + 〈𝑅𝑅𝑒𝑒𝑒𝑒 〉2)  in perpendicular direction (hollow symbols). 

Note that the bracket 〈… 〉 denotes the average over all free polymer chains in the MD domain. 

𝑅𝑅∥2  increases with the strain for all nanoparticle mass fractions and grafting densities. The 

opposite tendency is observed in the perpendicular direction. In other words, the polymer chains 

in the materials elongate in the tensile direction and shrink in the perpendicular direction during 

the uniaxial stretching. The fact that the data sets do not share the same values at zero elongation 

is due to the small system size which might lead to an excess of chain orientation in the same 

direction. Nevertheless, we have also found that 𝑅𝑅∥2  increases, depending on the strain, to 

approximately 15% to 20% higher values than the associated quantity 𝑅𝑅⊥2  in the perpendicular 

direction. The geometrical model, which describes the behavior of an ideal, undisturbed system, 

would render approximately 5% to 10% higher values in the perpendicular direction for the same 

strain applied in the nanocomposite systems. This shows that the presence of nanoparticles has 

an impact on the structural properties of the polymer chains which cannot be captured by simple 

models. 
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Fig. 4.9 Chain orientation parameter < 𝑃𝑃2 > of free polymer chains in the considered systems 

versus the strain 𝜀𝜀𝑦𝑦𝑦𝑦  during hybrid MD-FE simulations. (a) ∅ = 5 nm, ungrafted; (b) ∅ = 2 nm, 

ungrafted; (c) 𝜔𝜔 = 1.73%, ∅ = 5 nm and grafted. Also shown are linear fits to the data points. 
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Fig. 4.10 Ratio of the orientation parameter deviation 𝛹𝛹 =  <𝑃𝑃2>ℎ  − <𝑃𝑃2>0
<𝑃𝑃2>𝑔𝑔  − <𝑃𝑃2>0

  of free polymer chains 

in the considered systems versus the strain 𝜀𝜀𝑦𝑦𝑦𝑦 . < 𝑃𝑃2 >ℎ  and < 𝑃𝑃2 >𝑔𝑔  are derived by hybrid 

MD-FE simulations and the geometrical transformation method, respectively. (a) ∅ = 5 nm, 

ungrafted; (b) ∅ = 2 nm, ungrafted; (c) 𝜔𝜔 = 1.73%, ∅ = 5 nm and grafted. 
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Fig. 4.11 Squared average of the projection of the end-to-end distance of free polymer chains in 

tensile direction ( 𝑅𝑅∥2 , solid symbols) and the mean of the associated quantities in the 

perpendicular direction (𝑅𝑅⊥2 , hollow symbols) versus the strain 𝜀𝜀𝑦𝑦𝑦𝑦 . (a) ∅ = 5 nm, ungrafted; (b) 

∅ = 2 nm, ungrafted; (c) 𝜔𝜔 = 1.73%, ∅ = 5 nm and grafted. 
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Fig. 4.12 Anisotropy parameter 𝛤𝛤 = < 2𝑅𝑅𝑒𝑒𝑒𝑒2

𝑅𝑅𝑒𝑒𝑒𝑒2 +𝑅𝑅𝑒𝑒𝑒𝑒2
> identified from the hybrid MD-FE simulations 

(𝛤𝛤ℎ , hollow symbols) and from the geometrical transformation model (𝛤𝛤𝑔𝑔 , solid lines) as a 

function of the strain 𝜀𝜀𝑦𝑦𝑦𝑦  during deformation. (a) ∅ = 5 nm, ungrafted; (b) ∅ = 2 nm, ungrafted; 

(c) 𝜔𝜔 = 1.73%, ∅ = 5 nm and grafted. 
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An anisotropy parameter 𝛤𝛤 = < 2𝑅𝑅𝑒𝑒𝑒𝑒2

𝑅𝑅𝑒𝑒𝑒𝑒2 +𝑅𝑅𝑒𝑒𝑒𝑒2
>  is employed to quantify the relation between the 

squared projection of the end-to-end distance in the tensile direction and the averaged squared 

projection in the perpendicular direction. The bracket < ⋯ > denotes that 𝛤𝛤 is the average over 

all free polymer chains in the MD domain. It has to be mentioned that 𝛤𝛤  captures the 

deformation-induced molecular anisotropy and provides deeper insight into the molecular 

configuration under a tensile loading. In an undeformed amorphous system 𝛤𝛤 = 1 holds, whereas 

for uniaxial tension one expects increasing 𝛤𝛤 with increasing strain. In Figure 4.12, a comparison 

is given between the anisotropy parameter obtained from the hybrid system 𝛤𝛤ℎ (hollow symbols) 

and from the geometrical transformation model 𝛤𝛤g (solid lines). Both quantities behave as 

expected and render almost the same dependency on the applied strain. This indicates that the 

polymer chains mostly follow the macroscopic deformation. In contrast to the quantities 

discussed in Figure 4.10, the anisotropy parameter seems not to be as sensitive to the presence of 

nanoparticles. Due to the small system size and the limited statistical quality, the anisotropy 

parameters 𝛤𝛤ℎ and 𝛤𝛤g are only approximately 1.0 when the strain is zero. This inherent molecular 

anisotropy persists at elongations and causes the ordinate offsets of the curves, see the discussion 

above. 

 

4.5 Conclusions 
 

In this contribution, both standard periodic molecular dynamics (MD) and hybrid molecular 

dynamics–finite element (MD-FE) methods have been applied to simulate the uniaxial 

deformation of polystyrene nanocomposites containing up to 136 silica nanoparticles. 

Mechanical properties (Young’s modulus and Poisson’s ratio) have been calculated by the 

standard MD simulations under periodic boundary conditions and then used as material 

parameters of the hybrid MD-FE simulations. It has been found that the Young’s moduli of 

polymer nanocomposites follow approximately a quadratic relation with the nanoparticle mass 

fraction. The hybrid simulations give similar results, with slightly lower overall moduli due to a 

technical feature of the method. Both pure MD and hybrid MD-FE simulations demonstrate that 

an increase of the nanoparticle mass fraction, a reduction of the particle size or a grafting 

polymer chains on nanoparticle surfaces enhances the yield strengths and Young’s moduli of 
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nanocomposites. This indicates that both the fraction of high-modulus fillers and their total 

interfacial area contribute to a general stiffening of polymer nanocomposites. Specifically, 

smaller nanoparticles have a more significant impact on the mechanical properties of 

nanocomposites than larger ones, when the nanoparticle mass fraction is constant.  

 

The structural and dynamic properties of polymer chains in nanocomposites below and above the 

glass transition temperature have been calculated, too. The squared end-to-end distances of free 

polymer chains are larger in the vicinity of nanoparticles than in the polymer bulk due to the 

polymer-nanoparticle interaction. Larger nanoparticles have a stronger influence on the squared 

end-to-end distances of polymer chains in their neighborhood than smaller nanoparticles, as the 

interaction of larger nanoparticles with polymer chains is stronger when polymer chains are 

located at the same distance from nanoparticle surfaces. In addition, the mobility of polymer 

chains and nanoparticles in the melt are reduced with an increase of the nanoparticle mass 

fraction, a reduction of the nanoparticle size or an increase of the grafting density of polymer 

chains on the nanoparticle surface. As we have found that smaller nanoparticles slow down the 

dynamics of polymer chains more efficiently than larger nanoparticles at the same mass fraction, 

we regard the interphase area as the most influential parameter for global dynamics. From the 

profiles of the structural and dynamic properties of free polymer chains measured relative to the 

distance from the nanoparticle surface, we conclude that the interphase thickness is roughly 1 ~ 

1.5 nm.  

 

Furthermore, the changes of the molecular structure of free polymer chains with the strain have 

been investigated by hybrid MD-FE simulations. We have found that the alignment parameter of 

free polymer chains in nanocomposites increases almost linearly with the strain during the 

deformation. The addition of the nanoparticles hinders the alignment of polymer chains in the 

deformation process to some extend. Also here, smaller nanoparticles are more efficient than 

larger nanoparticles. The grafting state of nanoparticle surfaces has a much smaller effect at a 

low nanoparticle mass fraction. In addition, monitoring of individual components of the chain 

end-to-end vectors (parallel and perpendicular to the elongation direction) and the resulting 

anisotropy parameters exposed almost the same chain behavior upon elongation.  
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The deformations of individual polymer chains upon elongation have been analyzed in terms of a 

simple geometrical transformation model which assumes that all atoms in the material translate 

affinely with the deformation of the whole system. The analysis shows that most of the observed 

molecular changes in the linear deformation region can be explained simply by an affine 

translation, as is expected for a polymer glass. The addition of nanoparticles, however, restricts 

the polymer mobility, so that the polymer conformations deviate more from affine translations 

than in neat polystyrene.  

 

As an outlook, the hybrid method can be used to perform additional loading-unloading tests. 

They allow us to analyze the changes in the polymer structure during deformation cycles. 

Additionally, the deformation mechanism of polymer nanocomposites at larger strains (i.e. chain 

slid, plastic flow and cavity formation) will be accessible by the hybrid method with some 

necessary extensions. Both research directions are in progress. 
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Supporting Information 

 

 

 
Fig.4.S1 (a) Radial distribution function of the mass center of nanoparticles in the 

nanocomposite system. (b) Radial distribution function of polystyrene beads (i.e. number density 

of polymer monomers) around the nanoparticles versus the distance from the nanoparticle 

surface. ∅ = 2 nm, 𝜔𝜔 = 3.4%. 
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Fig. 4.S2 Center-of-mass mean square displacements (MSDs) of polymer chains and 

nanoparticles versus the simulation time t in ungrafted nanocomposite systems (∅ = 5 or 2 nm). 

The simulation temperature is 590 K. 
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Fig. 4.S3 Center-of-mass mean square displacements (MSDs) of polymer chains and 

nanoparticles versus the simulation time t in grafted nanocomposite systems (∅ = 5 nm). The 

simulation temperature is 590 K. The mass fraction of the nanoparticles 𝜔𝜔 amounts to 1.73%.  

 

 



 

131 

5. Concluding Remarks and Outlook 
 

Polymer nanocomposites are typical heterogenous materials that contain a polymer matrix and a 

certain fraction of nanoparticles1–3. Due to a high surface-to-volume ratio of nanoparticles, a 

large interphase area between the polymer and the nanoparticles is formed. Mechanical 

enhancement of polymer nanocomposites relative to the neat polymer is fundamentally attributed 

to the presence of the interphase4. Understanding structural details of the interphase and their 

correlation with the mechanical properties of polymer nanocomposites at a molecular scale is 

helpful to design improved materials in a bottom-to-up way. Polymer nanocomposites have been 

investigated extensively in the past decades. Nevertheless, there are still several questions that 

cannot be addressed properly by experimental mothods5. Some unsolved problems are as follows: 

(i) what are the microscopic details of the interfacial structure of polymer nanocomposites and 

why does the interfacial structure largely influence the mechanical properties of polymer 

nanocomposites? (ii) how is the global and interfacial chain behavior of polymer nanocomposites 

influenced by nanoparticle characteristics (mass fraction, size, geometry and grafting state)? (iii) 

how is the structure of polymer chains in nanocomposites changed under an external load, and to 

what extend are the structural properties of the polymer chains influenced by the presence of 

nanoparticles during a deformation process? To answer these questions, different simulation 

techniques6 such as standard MD and hybrid MD-FE methods have been used to investigate the 

interphase structure and mechanical behavior of polystyrene nanocomposites containing a certain 

amount of silica nanoparticles. 

 

The simulation space of the hybrid MD-FE method contains a particle-based region in which 

molecular details are analyzed and a continuum-based region where external load steps are 

applied to deform the material. To exchange the information between the MD and FE region, a 

large number of anchor points (e.g. several thousand) are introduced into the DPD shell which is 

located between the MD and FE region. Anchor-point-related key parameters include the force 

constant between the anchor points and the polymer beads, the number of anchor points and the 

thickness of the DPD shell. The influence of variations of these input parameters on the polymer 

properties is still not known explicitly. Nevertheless, reasonable values of these input parameters 

have to be chosen for physically realistic runs of the hybrid MD-FE deformation simulations. An 
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uncertainty quantification (UQ) method7 has been used to analyze systematically the influence of 

different parameter combinations on the quantities of interest (QoI) of a model polystyrene. The 

studied polymer properties include the mass density, chain dimension, radial distribution 

function and diffusion coefficient. Simulation results have shown that the variations of the 

polymer properties as a function of the input parameters are small when the thickness of the DPD 

shell and the MD region are chosen large enough. This indicates that the hybrid method is robust 

provided that the input parameters are chosen within a reasonable range. 

 

Following extensive related investigations of our former colleagues (i.e. Tinashe V.M. Ndoro8,9, 

Azadeh Ghanbari10,11 and Evangelos Voyiatzis12), the influence of the interphase area of 

nanocomposites on global and local properties of polymer chains has been further investigated 

quantitatively. It has been found that structural and dynamic properties of polymer chains in the 

interphase differ from the ones in the bulk. Nanoparticle characteristics such as the size, mass 

fraction, grafting state and geometrical shape influence the global and local properties of 

polymer chains in nanocomposites13. Compared with polymer chains in neat polystyrene, the 

global dimension (averaged over all chains) of polymer chains in nanocomposites is reduced 

with an increase of the nanoparticle mass fraction when the nanoparticle size is comparable to 

the gyration radii of the polymer chains in a coiled configuration. However, the local dimension 

of polymer chains in the interphase increases with a decrease of their distance from the 

nanoparticle center of mass due to polymer-nanoparticle interactions. Specifically, the polymer 

chains in the vicinity of large nanoparticles experience a stronger expansion in their local 

dimensions than in the vicinity of small nanoparticles. In addition, the polymer chains in the 

interphase are perpendicularly orientated to the radial directions of the nanoparticles, whereas the 

polymer chains far from the nanoparticles are randomly orientated. The molecular anisotropy of 

the polymer chains in the interphase becomes stronger when they are closer to the nanoparticles. 

The layering arrangement of polymer chains in the vicinity of nanoparticles confines to some 

extend the chain orientation during a deformation process. 

 

Furthermore, both the global and local dynamic behavior of polymer chains such as molecular 

diffusion and chain relaxation are suppressed by the presence of either grafted or ungrafted 

nanoparticles due to interfacial adsorption effects. The global center of mass diffusion coefficient 
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of polymer chains is reduced almost linearly with an increase of the total surface area of the 

nanoparticles, whereas the relaxation time of the chain end-to-end vector exhibits the opposite 

tendency. The local dynamics of polymer chains in the interphase is suppressed stronger than the 

global dynamics. Specifically, the relaxation time of the chain end-to-end vector in the 

interphase increases monotonically with an increase of the surface area of an individual 

nanoparticle. The suppression of the chain dynamics by tetrahedral nanoparticles is stronger than 

in the case of cubic nanoparticles, followed by spherical nanoparticles (constant nanoparticle 

mass fraction assumed). According to the profiles of the structural and dynamic properties of 

polymer chains as a function of the distance from the nanoparticle center of mass14, the 

interphase thickness is in general equal to about one radius of gyration (1~1.5 nm) of the 

polymer in coil.  

 

Mechanical properties such as Young’s modulus and Poisson’s ratio are derived by standard MD 

simulations. The observed results have demonstrated that both the Young’s moduli and yield 

stresses of polymer nanocomposites increase with (i) an increase of the nanoparticle mass 

fraction or (ii) with an increase of the grafting density on the nanoparticle surfaces, as well as (iii) 

with a decrease of the nanoparticle size at a constant mass fraction. The Poission’s ratio of 

polystyrene nanocomposites is more or less unaffected by the addition of nanoparticles. They 

have the same Possion’s ratio (~0.3) as the neat polystyrene. In addition, the Young’s moduli of 

polymer nanocomposites are more or less quadratically correlated with the nanoparticle mass 

fraction. This has been also indicated by hybrid simulations of deformations. The obtained 

Young’s moduli and Poisson’s ratios are then used as material parameters in the hybrid 

deformation simulations. It can be concluded that the mechanical enhancement of 

nanocomposites is mainly contributed to the total surface area of the nanoparticles. 

 

The convergence behavior of the mean normal stress is examined prior to productive hybrid 

simulations. The mean normal stress derived from the hybrid simulation is increased linearly 

with the applied strain. As in agreement with standard MD simulations, the mean normal stresses 

of polymer nanocomposites for identical strain levels are also increased with an increase of the 

nanoparticle mass fraction, with a reduction of the nanoparticle size at the same mass fraction or 

when grafting the polymer chains on nanoparticle surfaces. In the hybrid simulations, the 
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orientation parameter of polymer chains is enlarged almost linearly with the applied strain. In 

contrast to neat polystyrene, the presence of nanoparticles hinders the rotation of polymer 

conformations along the deformation direction. The hindrance effect of smaller nanoparticles is 

stronger than the one of larger nanoparticles. In addition, the global dimension of free polymer 

chains swells in the deformation direction, while it shrinks in the perpendicular direction. The 

molecular anisotropy of free polymer chains becomes increasingly larger upon the elongation. 

Changes of polymer structural properties under an external load are also analyzed by a simple 

geometrical transformation model. All atoms of the studied materials in the model are assumed 

to move affinely as the deformation of the whole system. The quantitative analyses have 

indicated that the changes of chain structures can be described predominantly by a simple affine 

translation, as expected for a polymer glass. 

 

As summarized above, correlations between macroscopic mechanical properties of polymer 

nanocomposites and their microscopic interfacial structures have been investigated 

systematically by standard MD and hybrid MD-FE simulations. The present work has 

demonstrated that the MD-FE hybrid framework is a promising method for deformation 

simulations of different polymer materials. It can be used for future investigations of the 

mechanical deformations of other crystalline or semicrystalline polymer materials15. However, 

many challenging problems in the deformation behavior of polymer nanocomposites still have to 

be solved. For instance, up to now it is at a molecular level not clearly known, how the presence 

of nanoparticles influence the changes in the structure and dynamics of polymer chains during a 

plastic deformation. It has been shown that the addition of nanoparticles often leads to a higher 

modulus, but to a shorter elongation at break. This phenomenon cannot be explained simply by 

experimental methods. To address these problems, further efforts in the direction of multiscale 

simulations are needed. 

 

Additionally, the post-yield deformation behavior of polymer nanocomposites is more 

complicated than the elastic deformation at small strains. Beyond the yield point, the 

deformation-induced stress is not increased linearly with the applied strain. Subsequently, for 

larger strains, the stress stays at a plateau where the slip motion and plastic flow of the polymer 

chains are awakened. The stress-hardening in association with bond stretching ultimately takes 
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place beyond a long stress plateau. The crazes and cavities extend gradually to a macro size. The 

fractures of polymer nanocomposites are often observed in this final phase16,17. The molecular 

mechanism of the craze formation and material fracture has still not been explained by 

systematic investigations at a microscopic level18,19. Furthermore, other scientific topics20–24 such 

as loading-unloading tests, the rate dependence of the stress-strain behavior and energetic 

conversion of the mechanical work during the deformation process also can be investigated by 

the hybrid MD-FE method. 
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