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Summary  

Aim of this study was to identify major regulatory mechanisms for wolf spider populations. 

Field and laboratory experiments focussed on the importance of prey availability 

(autochthonous & allochthonous), food quality and habitat heterogeneity on performance of 

individual wolf spiders or whole populations and on intra- (cannibalism) and interspecific 

(intraguild predation) relationships in wolf spiders. 

 

Wolf spider populations on xeric grasslands near Darmstadt (Germany) are increased on 

grazed sites as compared to sites without sheep grazing. Since potential prey was also more 

abundant on grazed sites, I hypothesised that spiders were bottom-up controlled. Therefore, 

alternative prey (Drosophila melanogaster; Diptera) was added to fenced plots on grazed and 

non-grazed sites in the field and spider as well as prey densities (detritivores & herbivores) 

were compared to plots without prey addition. In order to document integration of 

D. melanogaster into the arthropod food web, stable isotopes in the most abundant animals 

were analysed. 

Even though D. melanogaster was integrated into the diet of most predators as documented 

by stable isotope analysis, neither spiders nor ground beetles increased in densities when 

provided with additional alternative prey. Similarly, densities of potential prey, such as 

Collembola and Auchenorrhyncha, were not affected by prey addition, indicating that prey 

populations were not effectively controlled by predator populations. Stable isotope analysis 

documented the dependence of Lycosidae and Carabidae on prey from the detritivore food. 

Collembola were strongly increased on grazed sites, presumably being responsible for 

increased wolf spider densities indicating that wolf spider populations were bottom-up 

controlled. Probably, the amount of alternative prey added was not sufficient to significantly 

affect predator and prey densities in addition to the beneficial effect of grazing. 

 

The importance of allochthonous resources in food webs has been documented and spider 

populations are often sustained by prey from the detritivore food web (see above). In coastal 

ecosystems, predators often benefit from allochthonous input from the marine ecosystem. 

Kelp and sea grass deposition is common on sandy beaches on the east coast of Tasmania 

(Australia) providing marine input for cursorial predators on the beach and foredunes. I 

hypothesised that the terrestrial predators benefit from these allochthonous resources. 

Animals from the beach and the foredune were collected and most abundant taxa were 

selected for stable isotope analysis in order to trace the importance of marine subsidies in 
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animal diet. This is possible, because stable isotope ratios in algae differ strongly from those 

in terrestrial plants that determine the baseline of the terrestrial food web.  

According to activity abundance of animals, arthropods could be separated into the beach and 

the foredune community that hardly overlapped. Stable isotope analysis documented that kelp 

deposits were used by amphipods and isopods that were the most abundant animals on the 

beach. Despite of their high abundance, only few predators, such as Tetralycosa oraria 

(Lycosidae), Cafius 2 (Staphylinidae) and Tuoba laticeps (Geophilomorpha) preyed on these 

isopods and amphipods. Stable isotope analyses revealed feeding niches of predators and 

documented that the marine subsidies were not incorporated into the foredune food web. 

Thus, the availability of allochthonous resources is not necessarily important for arthropod 

food webs in the vicinity of ecosystem borders. However, some predators specialize on prey 

depending on marine allochthonous resources. 

 

Dietary mixing and food quality have become major issues in foraging theory. Both prey 

availability and prey quality play an important role in growth and reproduction of generalist 

predators. In general, food mixing is beneficial for predators, since it may optimise nutrient 

uptake and dilute toxins. The springtail Folsomia candida has been used in many laboratory 

experiments and was proven toxic for various predators. In contrast, Drosophila melanogaster 

and Heteromurus nitidus (Collembola) are considered to be intermediate to high quality prey. 

Performance and reproduction of female Pardosa lugubris (Lycosidae) fed with prey of 

different quality were investigated. Spiders were fed either a single diet of D. melanogaster, 

H. nitidus or F. candida, or a mixed diet of D. melanogaster and H. nitidus, or of D. 

melanogaster and F. candida.  

Feeding on high quality prey (D. melanogaster only, H. nitidus only and both combined) 

resulted in similar growth and reproduction of female P. lugubris as well as in similar 

offspring number, size and survival. There was no positive effect of mixing high quality prey. 

In contrast, feeding on toxic prey (F. candida) in single and mixed diet was detrimental and 

none of the females survived. P. lugubris did not develop acquired aversion against 

F. candida and offering high quality prey (D. melanogaster) mixed with F. candida did not 

improve survival.  

Nutrient flow from females into offspring during egg production was investigated using stable 

isotope analysis. D. melanogaster was enriched in 13C and this allowed tracing the carbon 

flow from prey into females and into their offspring. Furthermore, both D. melanogaster and 

H. nitidus were enriched in 15N compared to female spiders so that nitrogen flow from prey 
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into offspring could be followed. The enrichment in 13C and 15N differed strongly between 

juveniles and their mothers. The analyses suggest that adult females invested dietary nutrients 

almost exclusively into egg production. 

 

Mortality of juvenile Pardosa palustris (Lycosidae) is high on xeric grasslands near 

Darmstadt likely resulting from predation by conspecifics (cannibalism) or other predators 

(intraguild predation). Cannibalism is common among spiders and likely is a major mortality 

factor for juvenile wolf spiders in the field. Potential driving factors for intraspecific predation 

in P. palustris were investigated conducting two laboratory experiments to evaluate the role 

of availability of alternative prey, habitat structure and spider density for cannibalism between 

and within developmental stages. 

Availability of alternative insect prey strongly reduced cannibalism between adult spiders and 

juveniles as well as among juveniles. For juvenile spiders habitat complexity reduced 

predation by adult females, whereas cannibalism among second instar spiderlings was not 

affected by habitat structure suggesting that complex habitat structure only provides shelter 

from cannibalism by large conspecifics. High density of juvenile spiders increased 

cannibalism only when alternative prey was available, suggesting that alternative prey 

increased aggression and interference at higher density. High mortality and low growth of 

spiders in treatments without alternative prey likely resulted from starvation indicating that 

intraspecific prey is of low food quality and does not allow spider development.  

Intraguild predation is also common among generalist predators and an important issue for 

food web theory. Juveniles of Alopecosa cuneata (Lycosidae) are likely to be successful 

intraguild predators of the smaller P. palustris, adding to juvenile mortality on xeric 

grasslands near Darmstadt. Intraguild predation of third instar A. cuneata on second instar 

P. palustris was investigated in a laboratory experiment manipulating availability of 

alternative prey and microhabitat complexity.  

Both, the presence of alternative prey and complex microhabitat structure reduced mortality 

of juvenile P. palustris during the first week. During the second week, mortality increased in 

complex structure without alternative prey presumably due to enhanced activity of starving 

P. palustris and cannibalism among second instar juveniles. Stable isotope analysis 

documented predation of A. cuneata on P. palustris and predation on alternative prey by both 

juveniles. Thus, using stable isotope analysis intraguild predation among arthropod predators 

was documented for the first time under semi-natural conditions in the laboratory. In 

conclusion, intraguild predation can be an important mortality factor for juvenile wolf spiders 
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in the field, if resources are limited and shelter by a complex structured microhabitat is 

missing.  

Since shelter is abundant on xeric grasslands near Darmstadt, intraguild predation by 

A. cuneata can be excluded as an important mortality factor for juvenile P. palustris in the 

field suggesting that rather cannibalism and/or intraguild predation by other spider species of 

similar size cause substantial mortality in P. palustris.  

 

Results of this study document the importance of prey availability, food quality and habitat 

heterogeneity for wolf spider populations. Cannibalism and intraguild predation among wolf 

spiders depended on the availability of alternative prey and microhabitat structure and may be 

major factors regulating spider populations. When juveniles hatch in close proximity, 

cannibalism and intraguild predation can contribute to population regulation by imposing 

greater per capita mortality at high densities. Furthermore, cannibalism and intraguild 

predation increase population synchrony by exerting size-specific mortality on smaller 

individuals throughout development. 
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Zusammenfassung  

Ziel dieser Arbeit war es, Regulationsmechanismen von Populationen von Wolfspinnen 

herauszuarbeiten. Experimente im Freiland und Labor fokussierten auf Beuteverfügbarkeit 

(autochthon und allochthon), Nahrungsqualität und Habitatheterogenität als wichtigste 

Faktoren für einzelne Spinnen oder Populationen und deren Einfluss auf intra- 

(Kannibalismus) und interspezifische Beziehungen (Intragilde-Prädation) von Wolfspinnen. 

 

Populationen von Wolfspinnen auf Sandtrockenrasen bei Darmstadt (Deutschland) weisen auf 

beweideten Flächen größere Dichten auf, als auf Flächen ohne Schafbeweidung. Da 

potenzielle Beute auf den beweideten Flächen ebenfalls höhere Dichten erreicht, wurde die 

Hypothese abgeleitet, dass Spinnen bottom-up kontrolliert sind. Um dies zu untersuchen, 

wurde im Freiland auf abgegrenzten beweideten und nicht beweideten Flächen alternative 

Beute (Drosophila melanogaster; Diptera) ausgebracht. Abundanzen von Spinnen und deren 

potenzieller Beute (Detritivore und Herbivore) wurden zwischen Flächen mit und ohne 

Beutezugabe verglichen. Um die Integration von D. melanogaster in das Arthropoden-

Nahrungsnetz nachzuweisen, wurden die stabilen Isotope der häufigsten Konsumenten 

analysiert. 

D. melanogaster war Bestandteil in der Nahrung der meisten Prädatoren, wie die Analyse der 

stabilen Isotope belegte. Allerdings wurden weder Spinnen- noch Laufkäferdichten durch die 

Zugabe alternativer Beute erhöht. Auch die Dichten ihrer potenziellen Beute (Collembolen 

und Zikaden) wurden durch Zugabe alternativer Beute nicht beeinflusst. Dies weist darauf 

hin, dass die Beutepopulationen nicht von den Räuberpopulationen kontrolliert wurden. Die 

Analyse der stabilen Isotope zeigte, dass Spinnen und Laufkäfer sich vorwiegend aus dem 

Zersetzersystem ernähren. Da sowohl Springschwänze als auch Spinnen auf den beweideten 

Flächen am häufigsten waren, liegt der Schluss nahe, das Wolfspinnen bottom-up kontrolliert 

sind und in ihrer Dichten auf die erhöhte Verfügbarkeit von Beute aus dem Zersetzersystem 

auf den beweideten Flächen reagiert haben. Womöglich reichte die Menge der zugegebenen 

alternativen Beute nicht aus, um die Dichten der Räuber darüber hinaus signifikant zu 

beeinflussen. 

 

Neben autochthonen spielen allochthone Ressourcen eine zentrale Rolle in Nahrungsnetzen. 

Wolfspinnenpopulationen hängen häufig vom Zersetzersystem ab (siehe oben), aber auch 

andere allochthone Ressourcen können von Bedeutung sein. Ökosysteme an Küsten erhalten 

oft einen hohen Eintrag an Ressourcen aus dem marinen Ökosystem, wovon terrestrische 



Zusammenfassung  7 

 

Prädatoren profitieren. Tang und Seegras werden häufig an Sandstränden der Ostküste 

Tasmaniens angespült und liefern die Nahrungsgrundlage für Beute von vaganten Räubern 

auf dem Strand und den Vordünen. Ich untersuchte die Hypothese, dass terrestrische 

Arthropoden von diesem Ressourcenangebot profitieren. Tiere vom Strand und der Vordüne 

wurden gefangen und die häufigsten Taxa wurden zur Analyse der stabilen Isotope 

ausgewählt, um den Anteil der marinen Ressource an der Nahrung der Tiere zu untersuchen. 

Anhand der Aktivitätsdichten der Arthropoden konnten zwei in sich geschlossene 

Lebensgemeinschaften auf dem Strand und auf der Vordüne abgebildet werden; nur wenige 

Arten kamen sowohl auf dem Strand, als auch auf der Vordüne vor. Die Analyse stabiler 

Isotope zeigte, dass die häufigsten Arten, Amphipoden und Isopoden, den angeschwemmten 

Tang als Nahrungsressource nutzten. Allerdings existierten nur wenige Räuber, wie 

Tetralycosa oraria (Lycosidae), Cafius 2 (Staphylinidae) und Tuoba laticeps 

(Geophilomorpha), die diese Arthropoden erbeuteten. Die Analyse der stabilen Isotope 

verdeutlichte Nahrungspräferenzen dieser Räuber und zeigte insgesamt, dass der Eintrag 

mariner Ressourcen auf dem Strand für das Nahrungsnetz der Vordüne keine Rolle spielt. So 

beeinflusst die Verfügbarkeit von allochthonen Ressourcen nicht zwangsläufig Nahrungsnetze 

an der Grenze zweier Ökosysteme. 

 

Nahrungsqualität und Mischkost sind entscheidend für Theorien über Nahrungswahl und           

-suche. Sowohl Beuteverfügbarkeit als auch Qualität der Beute spielen eine große Rolle für 

das Wachstum und die Reproduktion von generalistischen Prädatoren. Im Allgemeinen wirkt 

sich das Mischen verschiedener Beute positiv auf Räuber aus, da die Aufnahme von  

Nährstoffen optimiert wird und es zur Verdünnung von Toxinen kommt. Der Collembole 

Folsomia candida wird in vielen Labor-Experimenten als Beute eingesetzt und hat sich dabei 

als toxisch für verschiedene Räuber erwiesen. Im Gegensatz dazu sind Drosophila 

melanogaster und Heteromurus nitidus (Collembola) Beute von mittlerer bis hoher Qualität. 

Überleben und Reproduktion von Weibchen der Wolfspinne Pardosa lugubris (Lycosidae) 

bei Fütterung mit Beute verschiedener Qualität wurde im Labor untersucht. Den Spinnen 

wurde entweder Einzelkost von D. melanogaster, H. nitidus bzw. F. candida, oder Mischkost 

von D. melanogaster und H. nitidus, bzw. von D. melanogaster und F. candida angeboten.  

Wachstum und Reproduktion (Anzahl und Größe der Juvenilen) sowie Überleben der 

Juvenilen waren bei Spinnen, die hoch qualitative Beute fraßen (Einzelkost D. melanogaster 

bzw. H. nitidus und deren Mischkost), einheitlich. Folglich gab es keinen positiven Effekt der 

Mischkost bei hoch qualitativer Beute. Toxische Beute (F. candida) führte in Einzel- und 
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Mischkost letztendlich zum Tod der Spinnen. P. lugubris entwickelte keine Aversion gegen 

F. candida und auch das Anbieten von zusätzlicher hoch qualitativer Beute in der Mischkost 

verbesserte das Überleben der Spinnen nicht.  

Der Nährstofffluss von Weibchen zu den Nachkommen während der Eiproduktion wurde mit 

Hilfe von stabilen Isotopen untersucht. D. melanogaster war 13C angereichert, was das 

Verfolgen des Kohlenstoffflusses aus der Beute in die Weibchen und deren Nachkommen 

ermöglichte. Außerdem waren sowohl D. melanogaster als auch H. nitidus 15N angereichert  

im Vergleich zu den Weibchen, so dass der Stickstofffluss von der Beute in die Nachkommen 

ebenfalls verfolgt werden konnte. Die Anreicherung von 13C und 15N unterschied sich 

deutlich zwischen Juvenilen und Müttern. Die Analysen deuten darauf hin, dass adulte 

Weibchen Nährstoffe aus der aufgenommenen Nahrung fast ausschließlich in die Produktion 

von Eiern investieren. 

 

Die Mortalität von juvenilen Pardosa palustris (Lycosidae) auf Sandtrockenrasen bei 

Darmstadt ist hoch und wird wahrscheinlich von Prädation von Artgenossen (Kannibalismus) 

oder anderen Räubern (Intragilde-Prädation) verursacht. Kannibalismus ist ein häufiges 

Phänomen bei Spinnen und wahrscheinlich ein bedeutender Mortalitätsfaktor für juvenile 

Wolfspinnen im Freiland. Faktoren, die das Auftreten von Kannibalismus beeinflussen, 

wurden in zwei Labor-Experimenten untersucht. Dabei wurde die Auswirkung von 

Beuteverfügbarkeit, Habitatstruktur und Spinnendichte auf Kannibalismus zwischen 

Juvenilen bzw. zwischen juvenilen und adulten Spinnen überprüft. 

Die Verfügbarkeit von alternativer Beute verringerte Kannibalismus zwischen adulten und 

juvenilen Spinnen sowie zwischen Juvenilen deutlich. Komplexe Habitatstruktur reduzierte 

lediglich Prädation von adulten an juvenilen Spinnen; Kannibalismus zwischen Juvenilen 

blieb aber von der Struktur des Habitats unbeeinflusst. Diese Ergebnisse deuten darauf hin, 

dass komplexe Habitatstruktur nur gegenüber deutlich größeren Prädatoren als Refugium 

dient. Die hohe Dichte juveniler Spinnen erhöhte Kannibalismus nur, wenn alternative Beute 

verfügbar war, was nahe legt, dass alternative Beute Aggression und Interferenz bei hohen 

Dichten bedingt. Insgesamt beruhten die hohe Mortalität und das geringe Wachstum von 

Spinnen in Behandlungen ohne alternative Beute wahrscheinlich auf Verhungern der Tiere, 

was darauf hindeutet, dass intraspezifische Beute lediglich von geringer Nahrungsqualität ist 

und eine Entwicklung der Spinnen nicht zulässt. 
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Intragilde-Prädation ist ebenfalls häufig bei generalistischen Prädatoren und wichtig für 

Theorien über Nahrungsnetze. Juvenile Alopecosa cuneata (Lycosidae) sind wahrscheinlich 

erfolgreiche Intragilde-Prädatoren von den kleineren P. palustris und tragen somit zur 

Mortalität dieser Juvenilen im Freiland bei. Deshalb wurde Intragilde-Prädation von juvenilen 

A. cuneata (3. Entwicklungsstadium) an juvenilen P. palustris (2. Stadium) im Labor 

untersucht, wobei die Verfügbarkeit alternativer Beute und Habitatstruktur manipuliert 

wurden. 

Sowohl die Verfügbarkeit alternativer Beute als auch die komplexe Habitatstruktur 

verringerten die Mortalität juveniler P. palustris während der ersten Woche. Während der 

zweiten Woche stieg die Mortalität in der komplexen Struktur ohne alternative Beute an. 

Vermutlich ist dies auf erhöhte Aktivität der hungernden Tiere und Kannibalismus zwischen 

den juvenilen P. palustris zurückzuführen. Die Analyse stabiler Isotope belegte Prädation von 

A. cuneata an P. palustris und die Prädation beider Spinnen an alternativer Beute. So konnte 

mit Hilfe der Analyse stabiler Isotope Intragilde-Prädation zum ersten Mal unter 

naturähnlichen Verhältnissen im Labor dokumentiert werden. Aus diesen Ergebnissen folgt, 

dass Intragilde-Prädation ein wichtiger Mortalitätsfaktor für juvenile Spinnen im Freiland sein 

kann, wenn Ressourcen limitiert sind und Refugien fehlen. Allerdings ist die 

Vegetationsstruktur auf den Sandtrockenrasen bei Darmstadt sehr komplex und liefert somit 

vermutlich ausreichend Refugialraum. Deshalb kann Intragilde-Prädation von A. cuneata an 

P. palustris als wichtiger Mortalitätsfaktor ausgeschlossen werden. Wichtiger sind 

wahrscheinlich Kannibalismus und/ oder Intragilde-Prädation von anderen Spinnenarten von 

vergleichbarer Größe. 

 

Die Ergebnisse dieser Arbeit belegen die Bedeutung von Beuteverfügbarkeit, 

Nahrungsqualität und Habitatstruktur für Populationen von Wolfspinnen. Kannibalismus und 

Intragilde-Prädation zwischen Wolfspinnen hingen von der Verfügbarkeit alternativer Beute 

und Habitatkomplexität ab; sie sind zentrale Faktoren für die Regulation von 

Spinnenpopulationen. Wenn juvenile Wolfspinnen in enger räumlicher Nähe schlüpfen, 

können sowohl Kannibalismus als auch Intragilde-Prädation zur Regulation der Populationen 

beitragen, da bei hohen Dichten die Mortalität erhöht ist. Außerdem wird durch 

Kannibalismus und Intragilde-Prädation eine Synchronität der Population erreicht, da beide 

Prozesse eine größen-spezifische Mortalität verursachen, wobei vor allem kleinere Individuen 

betroffen sind. 
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I Introduction 

I.1 Ecology of Spiders 

Spiders compromise over 34,000 species (FOELIX 1996) and are among the most abundant 

macroinvertebrate predators in terrestrial ecosystems, which is why they are proposed to be 

model organisms for predators (WISE 1993). Most spiders live a solitary life, but intriguing 

details about socially living spiders such as Agelena consociata (Agelenidae) and spiders of 

the genus Stegodyphys (Eresidae) have been documented (RIECHERT et al. 1986; SALOMON et 

al. 2005). Spiders show different types of brood care ranging from the mere choice of 

oviposition sites to very sophisticated female behavior. Many females hide their eggsacs 

under stones (Gnaphosidae) or make camouflaged eggsacs suspended in vegetation (Agroeca, 

Clubionidae) and many females guard their eggsacs until hatching (e.g. Pisauridae) 

(BRISTOWE 1958). Wolf spiders (Lycosidae) attach their eggsacs to their spinnerets and 

actively choose sites with favourable microclimatic conditions for egg development. When 

eggs have developed into second instar spiderlings, females open the eggsac and juveniles are 

carried on the female’s opisthosoma for a couple of days until spiderlings finally disperse 

(BRISTOWE 1958). Theridion notatum (Theridiidae) and some spiders of the genus 

Stegodyphus (Eresidae) feed hatched juveniles by regurgitating pre-digested food 

(FOELIX 1996) and matriphagy by juvenile Amaurobius (Amaurobiidae) is an extreme form of 

brood care found in spiders (BRISTOWE 1958). 

Spiders are largely regarded as generalist invertebrate predators with limited dietary 

specialisation (WISE 1993) and only few spiders are known to prey on vertebrates (frogs: 

FORMANOWICZ et al. 1981; skinks: RUBBO et al. 2001; salamanders: RUBBO et al. 2003). The 

specialisation found in bolas spiders in South America that attract male moths mimicking 

moth pheromones (WISE 1993) is a famous exception to that rule. Yet, several studies 

document that spiders in general might be choosier concerning prey than assumed: Some 

spiders develop a search image for a specific prey type (JACKSON &  LI 2004) and show the 

highest growth efficiency when fed their preferred prey (LI &  JACKSON 1997), indicating 

adaptation to a certain prey type. Additionally, some spiders even feed on nectaries, 

supplementing their diet with a plant derived nitrogen source (TAYLOR &  FOSTER 1996; 

RUHREN &  HANDEL 1999; JACKSON et al. 2001). Furthermore, spiders can forage selectively 

for protein and lipids to redress specific nutritional imbalances (MAYNTZ et al. 2005).  

Several types of foraging exist in spiders and the most obvious distinction is between web-

builders and cursorial spiders hunting without a web (UETZ 1992; WISE 1993; NYFFELER et al. 

1994). While web-builders rely almost exclusively on insects as prey, cursorial spiders 
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additionally include other spiders into their diet (NYFFELER 1999). However, cursorial spiders 

also differ strongly in their foraging mode, as some employ a sit-and-wait strategy (e.g. most 

Thomisidae), while others actively hunt down their prey (e.g. most Salticidae) (WISE 1993). 

Wolf spiders are visually orienting predators that detect their prey by movement and 

vibrations (UETZ 1992; SAMU 1993; PERSONS &  UETZ 1998) ranging from sit-and-wait 

predators that ambush prey (Lycosidae: Hogna helluo) to more active predators that hunt 

down their prey (Lycosidae: Pardosa milvina) (MARSHALL et al. 2002). Diptera, Hemiptera, 

Collembola, and Araneae represent the major groups in wolf spider diet (NYFFELER &  

BENZ 1988).  

Most spiders use silk and/or venom to immobilize their prey and digest their prey extra 

intestinally (FOELIX 1996), which is why gut dissection of spiders cannot reveal the identity of 

the prey they were feeding on. Wolf spiders additionally masticate their prey (NYFFELER &  

BENZ 1988), so that remaining prey material is not recognizable. Consequently, data on prey 

of wolf spiders in the field is very limited and mostly relies on direct observation 

(EDGAR 1969; HALLANDER 1970; NYFFELER &  BENZ 1988). Stable isotope analysis proved 

powerful in determining the trophic position of animals (PETERSON &  FRY 1987; POST 2002), 

but the detection of direct feeding links in generalist predators is highly exceptional. Only 

recently matters seem to improve due to the progress in DNA based molecular gut analysis 

(SYMONDSON 2002; AGUSTI et al. 2003), that directly assesses the consumption of specific 

prey organisms in the field. Detailed knowledge about prey preference and diet breadth of 

spiders is crucial for the interpretation of diversity and density of spiders as well as for 

understanding the impact of spiders on prey populations and for determining their role in food 

webs.  
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I.2 Generalist Predators & Biological Control 

For a long time it has been a matter of debate whether natural ecosystems are predominately 

top-down (e.g. HAIRSTON et al. 1960) or bottom-up controlled (e.g. WHITE 1978). In top-

down controlled systems, predator populations limit herbivore populations and lessen the 

impact of herbivores on plants, while in bottom-up controlled systems, resource availability 

limits herbivore populations and thereby also predator populations. Over the last decade both 

theories have been integrated into food web theory realizing that both mechanisms can act 

simultaneously (POLIS &  WINEMILLER 1996; CHASE 1996; MORAN &  SCHEIDLER 2002). 

Consequently, predator-prey relationships are important ecosystem processes, while not only 

the act of predation itself is important for predator-prey interactions. Already the risk of 

predation (e.g. predator presence) affects behaviour and performance of prey organisms due 

to changes in habitat use, activity, foraging behaviour and group dynamics (SIH 1980; LIMA &  

DILL 1990; ABRAMS &  SCHMITZ 1997; HEITHAUS 2001; RELYEA 2003). Chemical cues of 

wolf spiders decrease herbivory of beetle pests (HLIVKO &  RYPSTRA 2003) documenting that 

predators don’ t even have to be present to affect prey organisms. Since animals in natural 

ecosystems face more than one predator (SIH et al. 1998; SOKOL-HESSNER &  SCHMITZ 2002) 

prey organisms have to take complex behavioral decisions evaluating the importance of each 

risk (SIH 1992; KRUPA &  SIH 1998). Largely, species within the same trophic level in a food 

web have been assigned to one feeding guild studying the impact of predators on prey 

populations. However, animals within one feeding guild may exert species specific different 

direct and indirect effects (e.g. trait- or density-mediated) on species of lower trophic levels 

(SCHMITZ &  SUTTLE 2001; SCHMITZ et al. 2004) emphasizing that investigations of predator-

prey relationships need to be resolved to species level. 

Generalist predators receive more and more attention in biological control as natural enemies 

of crop pests (SYMONDSON et al. 2002). Increasing concern about contaminated food due to 

the broad use of pesticides in agriculture led to the development of organic farming and the 

use of natural enemies in pest control. Natural enemies may increase plant productivity and/or 

decrease plant damage by herbivores via trophic cascades. If predators limit densities of 

herbivores, plants indirectly benefit from predator presence (Fig. 2.1).  
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Fig. 2.1:  Trophic cascade including three functional levels. Indirect interactions are 

indicated with hatched arrows. -: negative impact; +: positive impact. 

Theoretically, biocontrol agents should be rather specialized on the target species (e.g. 

parasitoids) with short generation times to cause substantial mortality of the pest species 

within a short time (DEBACH &  ROSEN 1991). Generalist predators, in contrast, have rather 

long generation times and do not achieve tight dynamical linkage with any single pest species 

due to prey switching (DEBACH &  ROSEN 1991; ROSENHEIM et al. 1995). Consequently, the 

use of generalist feeders, like spiders and ground beetles, remained neglected for a long time 

despite of their high abundances in agricultural fields and natural ecosystems. Yet, they may 

indeed control herbivore populations in agricultural (RIECHERT &  BISHOP 1990; CARTER &  

RYPSTRA 1995; LANG et al. 1999; SNYDER &  WISE 2001; LANG 2003) and natural systems 

(FAGAN &  HURD 1994; MORAN et al. 1996; SCHMITZ et al. 2000; HALAJ &  WISE 2001; 

DENNO et al. 2003).  

Wolf spiders are important generalist predators in both agricultural and natural systems that 

are known to limit the abundance of herbivores and detritivores (RIECHERT &  BISHOP 1990; 

SNYDER &  WISE 1999; CHEN &  WISE 1999; WISE 2004) thereby influencing plant 

performance and decomposition processes (KAJAK 1995). Furthermore, an assembly of 

predators may control herbivore populations even better than a single species (LOSEY &  

DENNO 1998; RIECHERT et al. 1999; CARDINALE et al. 2003; SNYDER &  IVES 2003).  

However, the model of three trophic levels including generalist predators does not apply 

exclusively (POLIS et al. 2000; SCHMITZ et al. 2000), since positive top-down effects on 

herbivore pests may be restricted by intraguild predation (IGP) and cannibalism (ROSENHEIM 

et al 1993; SNYDER &  IVES 2001; SNYDER &  WISE 2001; DENNO et al. 2004; PRASAD &  

SNYDER 2004), and the effects of alternative prey on biocontrol are controversial (SETTLE et 

al. 1996; HARMON &  ANDOW 2004; MADSEN et al. 2004; KOSS &  SNYDER 2005).  
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Foraging behavior and ecology of both the predator and the prey are the major keys to 

understand the occurrence of trophic cascades (ROSENHEIM &  CORBETT 2003; ROSENHEIM et 

al. 2004). If for example the herbivore is rather sedentary, its populations are unlikely to be 

controlled by predators with a sit-and-wait foraging mode. Rather, these predators may prey 

on the actively hunting intermediate predators, which could control herbivore populations. 

In conclusion, generalist predators including wolf spiders play an important role in food webs 

(SCHEU 2001) and are promising agents for biological control (NYFFELER &  BENZ 1987; 

GREENSTONE 1999; HODGE 1999; RIECHERT 1999), if foraging behavior and relation to other 

species in higher/lower trophic levels are considered. Consequently, phenology and factors 

influencing population size and structure of these predators need to be understood in detail. 
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I.3 Phenology & Regulatory Mechanisms of Spider Populations 

Populations of spiders, and animals in general, are affected by abiotic (e.g. humidity, 

temperature, habitat structure) and biotic factors (e.g. resource availability and quality, 

competition/ interference) resulting in species specific distribution and phenology of animals. 

Temperature is one of the most important abiotic factors for spiders (DONDALE &  BINNS 

1977) influencing reproduction, juvenile survival and development, and determining body 

size of adults (LI &  JACKSON 1996; LI 1998; THORBEK et al. 2003). Spiders are very sensitive 

to desiccation (FOELIX 1996; DEVITO &  FORMANOWICZ 2003) and web-site selection can 

depend on humidity, too (GILLESPIE 1987; SAMU et al. 1996).  

Since microclimate is often closely related to microhabitat (BOSSENBROEK et al. 1977b; 

WORKMAN 1978; CADY 1984), density and diversity of spiders is also related to habitat 

structure (UETZ 1991; BALFOUR &  RYPSTRA 1998; MARSHALL &  RYPSTRA 1999; WAGNER et 

al. 2003). Vegetation structure is important for web-building (reviewed in RIECHERT &  

GILLESPIE 1986), sexual signalling (UETZ &  STRATTON 1982; KOTIAHO et al. 2000), 

oviposition (DUFFEY 1962) and overwintering (BOESSENBROEK et al. 1977a; BAYRAM &  LUFF 

1993). Furthermore, spiders find refuge from predators in spatially complex habitats 

(GUNNARSSON 1996); however, habitat selection in general is also affected by additional 

biotic and abiotic factors (HAMPTON 2004). Spiders and their ability to control herbivores in 

arable fields benefit from the selection of appropriate farming practices, such as organic 

farming, intercropped polycultures and mulching due to the diversification of the habitat 

(FEBER et al. 1998; RYPSTRA et al. 1999; SAMU et al. 1999). Despite its apparent importance, 

effects of microhabitat structure on strong biotic interactions, such as cannibalism and IGP 

among spiders, have been largely neglected.  

The availability of autochthonous and allochthonous resources is a major biotic regulatory 

factor influencing performance of individual spiders and spider populations. Starvation is 

proposed to be common for spiders in the field (reviewed in WISE 1993) and spiders have 

evolved several behavioral and physiological adaptations to deal with long periods of food 

shortage (ANDERSON 1974; COLLATZ &  MOMMSEN 1975; NAKAMURA 1987). Emigration rate 

and web-replacement strongly depend on resource availability and patch quality (SHEAR 

1986; WEYMAN &  JEPSON 1994; WAGNER &  WISE 1997; SCHMALHOFER 2001), as hunger 

may enhance locomotory activity of spiders (WALKER et al. 1999; KREITER &  WISE 2001). 

Predator foraging and microhabitat selection also respond to changes in prey behaviour and 

morphology (LIMA 2002). Wolf spiders assess patch quality and patch residence primarily on 

present sensory (visual) information delivered by prey organisms (PERSONS &  UETZ 1998), 



Introduction  16 

 

even though also chemical cues left behind from prey seem to be important (PERSONS &  

RYPSTRA 2000; HOEFLER et al. 2002). Furthermore, resource availability during juvenile 

development affects body size at maturity (UETZ 1992), mating success (UETZ et al. 2002; 

MOYA-LARAÑO et al. 2003a), and foraging behavior of adults (MOYA-LARAÑO et al. 2003b). 

Reproduction in spiders is also coupled with prey availability (KESSLER 1971; KREITER &  

WISE 2001) and quality (BILDE &  TOFT 2001), allowing a numerical response to prey 

abundance, which is important in biological control of crop pests, if spiders are given a “head 

start”  through alternative or allochthonous resources (GUO et al. 1995; SETTLE et al. 1996). 

Apart from resource availability also prey quality is important for predators since many 

phytophagous insects accumulate toxins affecting predator performance (KEITH &  BROWN 

1984; PARADISE &  STAMP 1990; STROHMEYER et al. 1998), and thus prey organisms differ 

strongly in their quality for predators. 

Finally, spiders are not only predators, but also prey (HURD &  EISENBERG 1990; WISE &  

CHEN 1999; LANG 2003) and nitrogen deprivation at higher trophic levels may favour 

intraguild predation (DENNO &  FAGAN 2003). Spiders represent 24 % of the prey of Pardosa 

lugubris (EDGAR 1969), 34 % and 38 % of the prey of P. chelata and P. pullata, respectively 

(HALLANDER 1970). Accordingly, spiders exhibit different types of anti-predator behaviour as 

they may emigrate from patches with high predator load (MORAN et al. 1996; BALDRIDGE &  

MORAN 2001), reduce activity and foraging in response to the presence of a top predator 

(PERSONS et al. 2001; OKUYAMA 2002; LEHMANN et al. 2004; WILDER &  RYPSTRA 2004), or 

change temporal and spatial use of the habitat (BALDRIDGE &  MORAN 2001). Interestingly, 

chemical cues from predators may even influence the incubation time of spider eggs (LI &  

JACKSON 2005). Consequently, cannibalism and IGP may be important population structuring 

factors in the field (WISE, in review), reducing competition and/or providing additional food 

resources.  

The following field and laboratory experiments focus on the question how resource 

availability (CHAPTERS I.3.2, I.3.3; I.3.5 &  I.3.6), food quality (CHAPTER I.3.4), cannibalism 

(CHAPTER I.3.5), IGP (CHAPTER I.3.6), and microhabitat structure affect (CHAPTERS I.3.5 & 

I.3.6) spider populations and/or individuals.  
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I.3.1 Phenology 

Investigating the influence of sheep grazing and the invasion of the Bermuda grass (Cynodon 

dactylon; Poaceae) on predatory arthropods on sand dry grasslands near Darmstadt, the spider 

community was analysed (RICKERS 2002). Wolf spiders were the most abundant cursorial 

predators and comprised ten different species. The most abundant species, Alopecosa cuneata 

and Pardosa palustris, reached densities of four and six adults per square meter, respectively, 

during May, when densities were highest (RICKERS 2002). I was interested to know whether 

development and reproduction time of these wolf spiders differed in the field to get an idea 

about how these two species coexist. Therefore, spiders were sampled monthly with pitfall 

traps in order to gain data on the phenology of both spider species. Detailed phenological data 

is essential for the interpretation of population density and dispersal in the field and 

invaluable for the design of field and laboratory experiments dealing with the regulation of 

spider populations. 



Introduction  18 

 

I.3.2 Prey Availability 

One of the major issues in food web ecology is whether natural ecosystems are predominately 

top-down (e.g. HAIRSTON et al. 1960) or bottom-up controlled (e.g. WHITE 1978). Eventually, 

both theories have been integrated into food web theory as both mechanisms may act 

simultaneously (POLIS &  WINEMILLER 1996; CHASE 1996; MORAN &  SCHEIDLER 2002). The 

importance of top-down control via trophic cascades in the field is investigated by 

manipulating predator density (HURD &  EISENBERG 1990; HALAJ &  WISE 2001; DENNO et al. 

2002; PREISSER 2003), prey density (MORAN &  HURD 1997; MIYASHITA et al. 2003), abiotic 

conditions (CHASE 1996; BOYER et al. 2003) or a combination of these factors (OVADIA &  

SCHMITZ 2004).  

Spiders and ground beetles often encounter periods of food shortage in the field (Araneae: 

reviewed in WISE 1993; Carabidae: JULIANO 1986; BILDE &  TOFT 1998) and reproduction of 

spiders and beetles is strongly depending on resource availability and quality (BILDE &  

TOFT 1994; BILDE et al. 2000; KREITER &  WISE 2001; MAYNTZ et al. 2003; CHAPTER I.3.4). 

Furthermore, cannibalism (WAGNER &  WISE 1996; CHAPTER I.3.5) and intraguild predation 

(MEYHÖFER &  HINDAYAMA 2000; CHAPTER I.3.6) decrease in presence of alternative prey. 

Consequently, top-down or bottom-up control of communities with high abundances of 

spiders and ground beetles may be investigated with prey addition experiments, since 

alternative prey may relax predation pressure within the guild of predators and on prey 

populations. 

Predatory arthropods, such as wolf spiders (Lycosidae) and ground beetles (Carabidae) on 

grasslands near Darmstadt benefit from sheep grazing (RICKERS 2002). In general, effects of 

grazing on arthropods are controversial. Trampling and enhanced exposure to natural enemies 

due to grazing may increase mortality of arthropods (EAST &  POTTINGER 1975, 1983). 

Grazing also alters plant diversity and vegetation structure affecting insect herbivore 

populations (MORRIS 1967; HUNTLY 1991; TSCHARNTKE &  GREILER 1995; KRUESS &  

TSCHARNTKE 2002). Consequently, availability of insect prey may be reduced due to grazing, 

affecting predator populations (DENNIS et al. 1998). In general, densities of spiders and 

ground beetles are often negatively affected by grazing (GIBSON et al. 1992; RUSHTON &  

EYRE 1992; DENNIS et al. 1997; GARDNER et al. 1997; DENNIS et al. 2001), since habitat 

structure creates optimal microclimatic and foraging conditions for spiders and beetles 

(UETZ 1991; WEEKS & HOLTZER 2000; BROSE 2003). However, the impact of grazing on 

arthropods differs between grazers and grazing intensity (DENNIS et al. 1998; MORRIS 2000) 
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and certain species may even benefit from extensive grazing (EAST &  POTTINGER 1983; 

TSCHARNTKE &  GREILER 1995; KRUESS &  TSCHARNTKE 2002). 

Potential prey for generalist predators, such as Collembola and insect herbivores, is more 

abundant on grazed sites of the above mentioned grasslands (RICKERS 2002; WALLUS 2002). 

Since both, wolf spiders and ground beetles reached higher densities on grazed sites, I 

hypothesised that populations of spiders and beetles were bottom-up controlled. To test this 

hypothesis, I established fenced plots with and without prey addition in the field. Vestigal 

winged mutants of Drosophila melanogaster (Diptera) that are of intermediate to high quality 

for spiders and beetles (BILDE et al. 2000; MAYNTZ &  TOFT 2001), were used as additional 

prey. Arthropods were sampled twice to evaluate reproduction and development of wolf 

spiders. In order to detect changes in food web structure stable isotope signatures of predators 

and prey were analysed. Stable nitrogen (15N/14N) and carbon (13C/12C) ratios reflect trophic 

position and food resource of animals due to differential fractionation processes in consumers 

(PETERSON &  FRY 1987; POST 2002; MCCUTCHAN et al. 2003). 
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I.3.3 Allochthonous Resources 

Resource availability is regarded as one of the major factors affecting animal abundance and 

distribution (WHITE 1978; HUNTER &  PRICE 1992; see CHAPTER I.3.2) and the transfer of 

energy between ecosystems is an important feature of food webs (POLIS &  WINEMILLER 1996; 

POLIS et al. 1997a; STAPP et al. 1999) influencing food web stability (HUXEL &  

MCCANN 1998; HUXEL et al. 2002). Cross-habitat transport of allochthonous resources has 

been documented crucial for vertebrates (ROSE &  POLIS 1998; MARKWELL &  DAUGHERTY 

2002; CARLTON &  HODDER 2003; STAPP &  POLIS 2003a), arthropods (POLIS &  HURD 1995; 

HENSCHEL et al. 2001; BASTOW et al. 2002) and plants (ANDERSON &  POLIS 1999). The 

relative importance of allochthonous input depends on the extent of the productivity of the 

focal community (POLIS &  HURD 1996 a,b; POLIS et al. 1997b; NAKANO &  MURAKAMI 2001) 

and its distance from the source of allochthonous resources (POLIS &  HURD 1996b, HENSCHEL 

et al. 2001; MURAKAMI &  NAKANO 2002; STAPP &  POLIS 2003b).  

Sandy beaches represent the functional link between sea and land, where nutrients are 

transferred in both directions (SCAPINI 2003). Algae and carrion are washed ashore providing 

resources for the terrestrial ecosystem (MARSDEN 1991; POLIS &  HURD 1995, 1996a; 

ANDERSON &  POLIS 1999). Since sandy beaches generally lack higher plants, i.e. in situ 

primary production (MCLACHLAN 1990), macro-consumers depend on the input of marine 

angiosperms and macroalgae (MARSDEN 1991; POLIS &  HURD 1995; ADIN &  RIERA 2003). 

Sandy beaches have been differentiated into two to three separate zones, according to the 

distribution of animals that form discrete communities (DAHL 1952; SALVAT 1964; BROWN 

1983). MCLACHLAN &  BROWN (1990) suggest that there is a general trend on sandy beaches 

for insects to become less abundant downshore, while crustaceans become less abundant 

upshore where the dunes begin that often back sandy beaches. Beaches and dunes form the 

“ littoral active zone“ , a system that is linked by sand exchange via wave-action and wind 

(MCLACHLAN &  BROWN 1990). Consequently, animals from the terrestrial food web and from 

the marine food web overlap in the transitional zone of the beach fostering energy transfer 

between both food webs.  

A mixture of kelp and sea grass is periodically washed ashore at Marion Bay, a beach at the 

south-east coast of Tasmania (Australia) (personal observation). I hypothesised that the 

allochthonous input of energy resources on the beach via wrack deposition propagates 

through the arthropod community onto the adjacent dunes. Stable isotope analysis has proven 

a powerful tool to investigate allochthonous input into terrestrial (BASTOW et al. 2002; STAPP 

&  POLIS 2003a, b; BARRETT et al. 2005) and marine ecosystems (RUESINK et al. 2003) and 
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was therefore applied to document the importance of kelp deposits for arthropods along a 

transect from the shoreline to the foredune at Marion Bay. Animals were collected at 5 

stations from the shoreline across the foredune to obtain specimen for stable isotope analysis 

and to determine activity-densities along the transect. 
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I.3.4 Food Quality 

Generalist predators play an important role in food webs as they forage on a broad variety of 

prey types on different trophic levels (SCHEU 2001). Even though a generalist mode of 

feeding bears the dilemma that taking decisions slows down speed of hunting and reduces 

attention to danger (BERNAYS 1999), it may optimise nutrient uptake (i.e. amino and fatty 

acids) and dilute toxins (GREENSTONE 1979; SLANSKY &  RODRIGUEZ 1987). Over the last 

decades more attention has been drawn to dietary mixing in generalist feeders (TOFT 1999; 

SINGER &  BERNAYS 2003). In general, food mixing was demonstrated to be beneficial for 

consumers (UETZ et al. 1992; WALLIN et al. 1992; BERNAYS et al. 1994; ACHARYA et al. 

2004) and even positive effects of mixing high- and low-quality prey have been documented 

(TOFT 1995; EVANS et al. 1999; SCHEU &  FOLGER 2004; SCHEU &  SIMMERLING 2004). 

Nevertheless, predators should evolve mechanisms to recognize and exclude unfavourable 

prey from their diet. Even though avoidance of unpalatable prey is regularly reported 

(PARADISE &  STAMP 1993; BILDE &  TOFT 1994; MAYNTZ &  TOFT 2000), several studies 

document that invertebrate predators do not necessarily acquire food aversion (TOFT 2000; 

FISKER &  TOFT 2004; STAMP &  MEYERHOFER 2004).  

In this study I focus on the effect of different prey quality on performance and reproduction of 

Pardosa lugubris, a wolf spider that is common in forests throughout Europe. Female 

P. lugubris produce two eggsacs per year and increase feeding rates prior to eggsac 

production (EDGAR 1971). It is widely accepted that resource availability influences offspring 

number in spiders (KESSLER 1971; HEAD 1995). However, only little is known on the effect of 

food quality on offspring numbers, size and fitness, and how females invest energy into their 

offspring. To investigate energy flow in gravid females I employed stable isotope analysis of 
13C/12C and 15N/14N. This method is widely used in food web studies to detect and describe 

trophic relationships and metabolic pathways (e.g. PETERSON &  FRY 1987). The fruit fly 

Drosophila melanogaster (Diptera: Drosophilidae) has been used in numerous feeding 

experiments with spiders and is regarded as prey of intermediate quality (MIYASHITA 1968; 

TOFT 1999; MAYNTZ &  TOFT 2001). D. melanogaster cultures in our study were reared on 

resources enriched in 13C in order to trace carbon flow from prey into females and 

consequently into offspring. Furthermore, two springtail species (Collembola) were selected 

as prey that are known to differ strongly in food quality for lycosid spiders: Folsomia candida 

(Isotomidae) which is toxic for juvenile Schizocosa (TOFT AND WISE 1999a), P. lugubris 

(OELBERMANN &  SCHEU 2002a), and P. prativaga (FISKER &  TOFT 2004) and Heteromurus 

nitidus (Entomobryidae) which is high quality prey for juvenile P. lugubris (OELBERMANN &  
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SCHEU 2002a). Diptera and Collembola form a substantial part of the diet of forest dwelling 

wolf spiders (EDGAR 1969; CHEN &  WISE 1999). Single diets (D. melanogaster; H. nitidus; 

F. candida) as well as two mixed diets (D. melanogaster + H. nitidus; D. melanogaster + 

F. candida) were established in the laboratory. 

I hypothesised that fecundity of female wolf spiders and offspring fitness (number, size, 

weight, survival) differ with diet quality and that females are able to compensate negative 

effects of F. candida when fed a mixed diet with beneficial prey. Also, I hypothesised that 

females use most of the nutrients ingested directly for egg production.  
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I.3.5 Cannibalism 

Cannibalism is common in generalist arthropod predators, and this is particularly true for 

spiders (RIECHERT &  LOCKLEY 1984; WISE 1993). Above all sexual cannibalism has been 

studied (e.g. ELGAR 1992), but several authors stress the importance of cannibalism that is not 

related to reproduction (e.g. RIECHERT &  LOCKLEY 1984). For wolf spiders of the genera 

Schizocosa (WAGNER &  WISE 1996) and Pardosa (EDGAR 1969; HALLANDER 1970; 

YEARGAN 1975) intraspecific predation has been suggested to be an important mortality factor 

in the field.  

Cannibalism is prevalent when food resources are limited and reduces competition for these 

resources (DONG &  POLIS 1992; WAGNER &  WISE 1996, 1997; SAMU et al. 1999). 

Accordingly, starvation can enhance cannibalism (POLIS 1981 for a review; WAGNER &  WISE 

1996, 1997; SAMU et al. 1999). Consequently, cannibalistic interactions depend on the 

availability of food resources and therefore the nutritional condition of predators.  

Habitat structure is an important factor for both the distribution of spider populations and the 

foraging behaviour of individual spiders (UETZ 1991) and appears to affect the intensity of 

cannibalism (EDGAR 1969). Complex habitat structure may reduce interference due to lower 

encounter rates (CROWLEY et al. 1987; THOMPSON 1987; CONVEY 1988). HALLANDER (1970) 

suggested that microhabitat selection reduces cannibalism in lycosid spiders since different 

stages use different habitats. While WAGNER &  WISE (1996) could not prove that habitat 

complexity reduced rates of cannibalism, they confirmed density-dependence of cannibalism 

in laboratory studies.  

Density-dependent cannibalism has also been shown for other taxa (POLIS 1988), and field 

studies indicate that cannibalism among lycosid spiderlings is density-dependent and 

enhanced at high densities (ORAZE &  GRIGARICK 1989; WISE &  WAGNER 1992).  

The foraging behaviour of female lycosid spiders during reproduction has been investigated in 

detail (VLJIM &  RICHTER 1966; HIGASHI &  ROVNER 1975; MORING &  STEWART 1992; 

WAGNER 1995). However, little is known on cannibalistic interactions between females and 

juveniles after dispersal of spiderlings and on cannibalism between juvenile stages.  

Adult females of P. palustris produce on average 30 ± 7 (n = 104) spiderlings during the first 

reproduction period on xeric grasslands in southern Germany, yet, only 6 individuals per m² 

reach adulthood suggesting high mortality of spiderlings. I was interested to know whether or 

not cannibalism could be a significant factor contributing to the mortality observed in the 

field. Therefore, I set up two laboratory experiments to evaluate factors influencing 

cannibalism between and among developmental stages of P. palustris. I expected decreased 
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spider mortality with availability of alternative prey and complex habitat structure, and 

increased mortality at high density of individuals. Thus, in a first experiment I investigated, if 

cannibalism between juveniles of the same developmental stage is affected by starvation, 

habitat structure and/or density. In a second experiment I tested whether starved females that 

had previously produced offspring prey upon second instar juveniles. Since females were not 

related to juveniles and off-spring dispersal had taken place four weeks previously, I expected 

high rates of filial cannibalism even if alternative prey was present. 
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I.3.6 Intra Guild Predation (IGP) 

Intraguild predation (IGP) is common in food webs and predatory species often coexist in 

stable natural communities (POLIS &  MCCORMICK 1986; ARIM &  MARQUET 2004) despite of 

theoretically destabilising effects of strong IGP on communities due to species exclusion 

(HOLT &  POLIS 1997; MCCANN &  HASTINGS 1997; MCCANN et al. 1998). Age-/stage-

restricted predation, interactions with other species, and spatial heterogeneity are promising 

mechanisms favouring the coexistence of predator species (HOLT &  POLIS 1997). The 

vulnerability to predation can change during development of animals due to size-refugia 

(CHASE 1999) which is why IGP is often restricted to particular ages or stages (EBENMAN &  

PEARSON 1988; WISSINGER 1992). Since IGP systems are part of complex food webs, the 

tritrophic cascades are linked to other species, fostering the existence of IG prey populations 

through alternative resources (HOLT &  POLIS 1997). Cannibalism being a special case of IGP 

is strongly reduced when alternative prey is available (DONG &  POLIS 1992; WAGNER &  

WISE 1996, 1997; CHAPTER I.3.5). Accordingly, IGP decreases in presence of alternative prey 

(HODGE 1999; CHEN &  WISe 1999; MEYHÖFER &  HINDAYAMA 2000). Furthermore, IG prey 

escapes predation in spatial refuges counteracting species exclusion (DIEHL 1993; FINKE &  

DENNO 2002; LEWIS &  EBY 2002; LANGELLOTTO &  DENNO 2004). In general, IGP is strongly 

asymmetric and determined by relative body-size of IG predator and IG prey (SNYDER &  

HURD 1995; LUCAS et al. 1998; WOODWARD &  HILDREW 2002; BALFOUR et al. 2003). 

Consequently, smaller individuals of wolf spiders are more sensitive to starvation 

(TANAKA 1992; WALKER et al. 2003) and more vulnerable to predation (TANAKA 1992). 

Alopecosa cuneata (Clerck) and Pardosa palustris (L.) are common wolf spiders on 

grasslands differing strongly in size, with female A. cuneata being almost twice the size of 

P. palustris (ROBERTS 1995). Both species reach abundances of four (A. cuneata) to six 

(P. palustris) adults per square meter and belong to the most common cursorial predators on 

xeric grasslands near Darmstadt (S. Rickers, unpublished data). In July, third instar A. cuneata 

co-occur with second instar P. palustris and mortality of juvenile wolf spiders is high in the 

field (CHAPTER IV.1). I focussed on IGP as important mortality factor and hypothesised that 

the larger instars of A. cuneata prey on the smaller P. palustris when alternative prey is rare 

and habitat structure serving as shelter is limited. Therefore, I established four treatments in 

the laboratory manipulating prey availability (with, without Drosophila melanogaster) and 

microhabitat structure (simple, complex). Each one individual of A. cuneata was placed 

together with six juveniles of P. palustris. In order to compare weight gain without intraguild 

prey and/ or alternative prey, four more treatments without P. palustris were established. 
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Finally, D. melanogaster provided during the experiment was enriched in the heavier carbon 

isotope to document differential predation of A. cuneata on P. palustris and alternative prey, 

using stable isotope analysis. 
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II Materials and Methods 

II.1 Phenology 

The study site ‘Ehemaliger August-Euler-Flugplatz’  is located west of Darmstadt in Hesse, 

Germany (49°51’  N; 8°35’  E). Pleistocene sand deposits are abundant between the rivers 

Rhine and Main and formed the geological bases for the soils at the study site. In 1993 the site 

was declared nature reserve to protect the endangered inland sand dune plant community. Key 

species include Armeria maritima ssp. elongata Bonnier (Plumbaginaceae), Koeleria 

macrantha Schult. (Poaceae), Potentilla argentea L. (Rosaceae) and Trifolium arvense L. 

(Fabaceae). Since 1997 the site is managed by sheep grazing to counteract colonization by 

neophytic plants and to prevent regrowth of shrubs and trees (for more details see 

RICKERS 2002). 

From May 2001 until April 2002 spiders were sampled monthly with pitfall traps that 

operated for two weeks. Sampling ceased during winter (November – February) due to the 

low temperatures and accordingly low activity of animals. Pitfall traps were installed within 

fenced plots of 5 m² to gain semi-quantitative data. Detailed data on wolf spider density 

during summer (May – August) is documented elsewhere (RICKERS 2002) and presentation of 

data is restricted to phenology of the two most abundant wolf spiders Pardosa palustris and 

Alopecosa cuneata. Since the instar stage of field captured spiderlings cannot be determined 

accurately, juveniles were ascribed either to second instar juveniles that were caught with 

their mothers (Juv. II) or to a collection of spiderlings from the third instar on (Juv. III/+). 
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II.2 Prey Availability 

Sampling 

Field sites were located in the nature reserve “Ehemaliger August-Euler-Flugplatz”  close to 

Darmstadt, Hesse (49°51’  N; 8°35’  E). The plant community is endangered by the invasion of 

Cynodon dactylon (Poaceae) that reaches up to 60 % of ground cover (for further details see 

CHAPTER II.1). To counteract succession and further dispersal of this neophyte, the nature 

reserve is managed by extensive sheep grazing. The study was conducted on three grazed 

sites and on three permanent field sites that had been excluded from grazing 5 years 

previously. In April 2002, four circular plots of 5 m² were fenced within each of the grazed 

and ungrazed sites and ascribed either to the prey addition treatment or the control. Fences 

made of PVC were 40 cm high and dug ca. 5 cm into the soil to prevent immigration and 

emigration of cursorial animals. In each plot of the prey addition treatment vestigal winged 

D. melanogaster (ca. 5,000 individuals) (b.t.b.e Insektenzucht GmbH, Schnürpflingen, 

Germany) was added every two weeks. After 6 weeks (early June) half of the plots were 

sampled and the remaining plots were sampled 10 weeks later (mid August) with five pitfall-

traps per plot. Traps contained an oversaturated saltwater solution and were operated for four 

weeks within each plot. Selected arthropods (Araneae; Carabidae, Heteroptera, 

Auchenorrhyncha, Collembola) were determined to species level whenever possible and 

counted. Animals were stored in oversaturated saltwater solution at -10°C until they were 

processed for stable isotope analysis. 

 

Stable Isotope Analysis 

Whenever possible, three replicates of each species per treatment were selected and dried at 

60°C for 6 days. Either homogenized animal tissue or whole animals (240 - 1300 µg) were 

weighed into tin capsules, which had been cleaned with acetone previously. Capsules were 

closed and analysed in a system consisting of an elemental analyser (NA 1500, Carlo Erba, 

Milan) coupled with a mass spectrometer (MAT 251, Finnigan; REINEKING et al. 1993). 

Acetanilide (C8H9NO: C 71.1 %; H 6.7 %; N 10.4 %; O 11.8 %; Merck, Darmstadt) was used 

for internal calibration. The ratio between 13C and 12C was expressed relative to that in Pee 

Dee Belemnite and that between 15N and 14N relative to that in air. Ratios [‰] were calculated 

according to the following formula (PETERSON &  FRY 1987): 

 � X = (Rsample – R standard)/(Rstandard) x 1000 with X representing the heavier isotope (15N or 
13C), and R the ratio between the heavy and the light isotope (15N/14N respectively 13C/12C).  
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Statistical Analysis 

Repeated measures ANOVA were used to calculate differences of animal densities and 

occurrence of eggsacs in P. palustris between treatments (with/without grazing; with/without 

prey addition) and between June and August. To calculate differences in clutch size of 

Pardosa palustris in June GLM (general linear model) was applied. Since densities of the first 

replicate differed from replicates two and three, a block was included in the analysis to extract 

variation due to the block design. Stable isotope signatures (� 13C, �  15N) of single species 

were analysed using repeated measures ANOVA or repeated GLM, if cell size was not equal. 

Regression of number of juvenile Auchenorrhyncha and juvenile Araneae in June was 

performed in Statistica 6.0 (Stat Soft). Outliers in numbers of juvenile Auchenorrhyncha at 

the second sampling were determined after ROUSSEEUW et al. (1999) and excluded from the 

multiple regression analysis. All other statistical analyses were calculated using SAS 8.02 

(SAS Institute Inc., Cary, USA). 
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II.3 Allochthonous Resources 

Experimental set-up 

The study was carried out at Marion Bay (147°52© S, 42°49© E) on the south east coast of 

Tasmania (Australia). At the end of December 2004, each five pitfall traps were established 

along 6 transects that were set 75 m apart (Fig. 3.1). The first trap (a) was installed well above 

the high tide mark to prevent flooding of the traps. The second trap (b) was established half 

way from the first trap to the base of the foredune, where the third trap (c) was installed. The 

fourth trap (d) was installed right on top of the foredune and the last trap (e) was installed on 

even ground behind the top.  
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Fig. 3.1:  Sketch of the foredune profile including a transect across the foredune at 

Marion Bay with the locations of the pitfall traps (a-e). 

The traps consisted of plastic drinking cups (Ø 7.5 cm) and contained an oversaturated 

saltwater solution. All traps were sheltered with a 10 x 10 cm square of plywood on wire 

supports to prevent spill over from rain and sand. Traps were operated for 9 days and checked 

every two to three days. Lost traps as well as those filled with sand were exchanged, while 

traps buried with sand were emptied into a hand sieve to retrieve animals. At the end of the 

sampling, plant biomass of the most abundant herbs, grasses and shrubs on the foredune were 

collected. Additionally, samples of kelp and sea grass that had been washed ashore were 

taken. Arthropods were counted and determined to species level whenever possible 

(amphipod nomenclature after an unpublished key of A.A.M. RICHARDSON) and 

morphospecies were established for unidentified taxa. Animals were stored in oversaturated 

saltwater at -10°C until they were processed for stable isotope analysis.  
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Stable isotope analysis 

Only the most abundant taxa were selected for stable isotope analysis. Animals and plants 

were dried at 60°C for 6 days and either whole animals or mechanically homogenized animal 

(22 – 1030 µg) and plant tissue (1950 – 3010 µg) were weighed into tin capsules. Samples 

were analysed as described in CHAPTER II.2. The proportion of carbon from kelp and sea grass 

in animal tissue was calculated using a two source mixing model (NEWMAN GEARING 1991): 

F = (� 13Canimal – � 13Cforedune vegetation )/(�
13Ckelp/ sea grass – � 13Cforedune vegetation) x 100 

with F the percentages of carbon derived from kelp and sea grass, � 13Canimal the carbon isotope 

ratio of animals, � 13Cfordune vegetation the average carbon isotope ratio of the foredune vegetation, 

and � 13Ckelp/ sea grass the carbon isotope ratio of kelp and sea grass.  

Contribution of prey to predator diet was examined in IsoSource (PHILIPPS &  GREGG 2003) 

and feasible solutions for linear mixing models containing multiple sources were calculated. 

Source increment was set to 1 % and mass balance tolerance was set to ± 0.1 %. Trophic level 

fractionation in carbon (� 13C = 0 ‰) and nitrogen (� 15N = 3.4 ‰) was adopted from 

PETERSON &  FRY (1987). Stable isotope signatures of amphipods and isopods were chosen as 

sources for predators (T. oraria, T. laticeps, Cafius 2 and Scatophagidae 1). For the antlion, 

mass balance tolerance was set to ± 0.5 % and the ants Myrmecinae and Iridomymex were 

additionally included as food sources, while Talorchestia 2 and A. bipleura were excluded 

from the analysis due to strong enrichment in 15N and 13C, respectively, as compared to the 

� 15N and � 13C signature of the antlion. The calculated 1-99th percentile range was used as an 

indicator for the importance of a food source in predator diet. 

 

Statistical analysis 

Differences in stable isotope signatures (� 15N, � 13C) among plant species were calculated in a 

one-way ANOVA (analysis of variance) in Statistica 6.0 (StatSoft). In order to investigate the 

distribution of animals along the transect, mean log-transformed abundance of animals was 

analysed in a DCA (detrended correspondence analysis) that was performed in Canoco 4.0 

(TER BRAAK &  SMILAUER 1998). Only taxa with more than four individuals were included in 

the analysis. 
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II.4 Food Quality 

Experimental procedures 

At the end of May 2004, a total of 103 female P. lugubris were collected from the 

Kranichsteiner Forest, a deciduous forest, near Darmstadt, Germany. Only females that 

carried eggsacs were selected and all females were weighed in the laboratory. Spiders were 

kept separately in covered plastic containers (Ø 6.5 cm x 4.5 cm) in a climate controlled 

greenhouse at constant temperature of 21°C. Plastic containers contained a small amount of 

moss that was collected in the field, frozen for 48 h at -20°C and dried at 60°C for 48 h to 

exclude possible prey. After four days of starvation, 15 females were ascribed to each of 5 

different feeding treatments (Table 4.1). Three females were frozen to obtain the initial stable 

isotope signature. Weight of gravid females ranged between 34.70 and 64.40 mg and 

averaged 46.93 ± 5.22 mg; it did not differ between treatments (F4,71 = 0.17, p = 0.9541).  

Cultures of vestigal winged mutants of the fruit fly Drosophila melanogaster (b.t.b.e 

Insektenzucht GmbH, Schnürpflingen, Germany) were established in the laboratory on an 

agar-sugarcane-maize-semolina medium (agar: Acros Organics Geel, Belgium; sugarcane & 

maize-semolina: Alnatura GmbH, Bickenbach, Germany) to obtain cultures with a distinct C4 

isotopic signature (� 13C = -12.36 ± 0.36 ‰). Both Collembola species were reared on 

brewer’s yeast (Heirler Cenovis GmbH, Radolfzell, Germany) to obtain a distinct C3 isotopic 

signature (� 13C = -22.06 ± 0.27‰). Females were maintained on three single-species and two 

mixed-species diets (Table 4.1) spanning from very low to high quality in the following order: 

single diet F. candida (F) < mixed diet D. melanogaster + F. candida (DF) < single diet 

D. melanogaster (D) < single diet H. nitidus (H) < mixed diet D. melanogaster + H. nitidus  

(DH). Prey biomass was kept constant between the different treatments in order to compare 

prey quality. 
 

Table 4.1:  Expected food quality, prey species and culture medium of the different 
diets in the feeding experiment with female Pardosa lugubris. 

 diet 
 code prey 

average 
fresh weight 

[mg] 
culture medium 

no. of prey 
items per 2 

days 

expected 
quality 

 D Drosophila melanogaster  0.57 ± 0.09 agar-sugarcane-
maize-semolina 

5 intermediate 

 H Heteromurus nitidus 0.12 ± 0.02 brewer’s yeast 24 high 

 F Folsomia candida 0.16 ± 0.03 brewer’s yeast 17 lowest 

 DH D. melanogaster + H. nitidus see above see above 2 D + 13 H highest 
 DF D. melanogaster + F. candida see above see above 2 D + 9 H low 
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Moss was moistened daily and survival of spiders was checked analogously. The amount of 

prey fed daily resembled ca. 5 % of the females’  body weight and remained constant during 

the experiment (Table 4.1); yet, they were not fed again as long as more than half of the prey 

previously introduced was still alive. EDGAR (1970) proposed an average of 14 % of the body 

weight as daily average of food for females in the field, but as spiders experience optimal 

temperature and humidity conditions in the laboratory and interference is excluded, I 

restricted the amount of prey to ensure a sufficient period of egg production. When fed 10 % 

of body weight per day in the laboratory females of P. palustris produced subsequent eggsacs 

already 5 days after spiderling dispersal (personal observation). This period of feeding is 

probably too short to detect a change in stable isotope composition, as a period of three weeks 

was needed to establish the 13/12C ratio of the diet in juveniles of P. lugubris (OELBERMANN &  

SCHEU 2002b). Feeding ceased at hatching of the second eggsac to prevent juveniles from 

feeding. Directly after spiderling dispersal, females were frozen at -80 °C for at least 24 h and 

width of prosoma was determined. Spiders were then stored in oversaturated NaCl solution 

until they were processed for stable isotope analyses.  

Juveniles of the first and second eggsac were counted and 10 spiderlings of each eggsac were 

randomly selected for stable isotope measurements, determination of prosoma width, and dry 

weight. Furthermore, survival of remaining spiderlings of the second eggsac was examined. 

Directly after dispersal, spiderlings were kept separately in covered transparent plastic 

containers (Ø 3.5 cm x 2.5 cm) without food. Moistened moss was provided to ensure 

sufficient humidity and survival was checked daily. Finally, also starved spiderlings were 

selected for stable isotope analysis. 

 

Stable isotope analysis 

Springtails, fruit flies and spiders were dried at 60 °C for 6 days. Dry weight of all females 

and of a maximum of 10 juveniles per eggsac was measured. From each feeding treatment, 

three females and their juveniles (1st eggsac, 2nd eggsac, 2nd eggsac starved) were chosen for 

stable isotope analysis. Either homogenized animal tissue or whole animals (280 - 1000 µg) 

were weighed into tin capsules, which had been cleaned with acetone previously. Samples 

were analysed as described in CHAPTER II.2.  

The proportion of carbon from Drosophila melanogaster in animal tissue was calculated 

using a two source mixing model (NEWMAN GEARING 1991):  

F = (� 13CP. lugubris – � 13CP. lugubris initial)/(�
13CD. melanogaster – � 13CP. lugubris initial) x 100 
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with F the percentages of carbon derived from D. melanogaster, � 13CP. lugubris the carbon 

isotope ratio of P. lugubris after feeding on 13C enriched D. melanogaster, � 13CP. lugubris initial 

the carbon isotope ratio of P. lugubris before the experiment and � 13CD.  melanogaster the carbon 

isotope ratio of D. melanogaster. The calculation was not corrected for trophic level 

fractionation of 13C, since fractionation in P. lugubris is negligible (OELBERMANN &  

SCHEU 2002b). 

 

Statistical analyses 

Data on time until production of the second eggsac, carrying periods of the eggsacs and 

survival of juveniles were analysed by GLM (general linear model). For differences in weight 

before the experiment and dry weight of females at the end of the experiment ANOVA 

(analysis of variance) was applied. ANOVA was used to analyse C:N ratios, � 13C and � 15N of 

females and juveniles (1st eggsacs). Also, ANOVA was used to analyse differences in C:N 

ratio and isotopic enrichment of juveniles (2nd eggsacs) and their mothers. Repeated measures 

GLM was used to analyse number, dry weight, and prosoma width of juveniles from the first 

and the second eggsac. To analyse the effect of starvation on C:N ratio, � 13C and � 15N of 

juveniles (2nd eggsacs) repeated measures GLM was applied, too. Outliers in number and 

survival of juveniles, as well as time until production of the second eggsac, were determined 

after ROUSSEEUW et al. (1999) and excluded from statistical analysis. Regressions of body 

size of females and offspring number as well as average offspring size were performed in 

Statistica 6.0 (Stat Soft). All other statistical analyses were calculated using SAS 8.02 (SAS 

Institute Inc., Cary, USA).  
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II.5 Cannibalism 

P. palustris (L.) is common on grasslands of northern Europe (BAYRAM 1996). Adult females 

were collected from xeric grasslands in May and June 2003 at the “Ehemaliger August-Euler-

Flugplatz”  (for further details on the field site see CHAPTER II.1). Spiders were kept separately 

in covered plastic containers (Ø 6.5 cm x 4.5 cm). The experiments were carried out in a 

climate-controlled green house at natural light conditions and constant temperature of 23°C. 

Plastic containers were filled with Hypnum cupressiforme (L.), a moss that covers large areas 

of the ground at the study site. Plants were collected in the field, frozen for 48 h at -20°C and 

dried at 60°C for 48 h to exclude possible prey. Females were fed four living individuals of 

the dipteran Drosophila melanogaster (curly; b.t.b.e Insektenzucht GmbH, Schnürpflingen, 

Germany) each day. Moss in the plastic containers was moistened daily. Spiders were either 

carrying eggsacs when captured or produced eggsacs during captivity. After two to three 

weeks spiderlings hatched and left their mothers three to four days later. Dispersing juveniles 

of the same eggsac were kept in a moistened plastic container (Ø 8.5 cm x 4.5 cm) for 10 to 

17 days without adding prey before the experiments started. Spiderlings in these containers 

easily cannibalised each other (personal observation), and only the biggest spiderlings, being 

the most successful cannibals, were selected for the experiments.  

The experiments were set up in transparent plastic containers (Ø 8.5 cm x 4.5 cm) which were 

filled with either 0.3 g (simple habitat structure treatment) or 1.0 g (complex habitat structure 

treatment) of moss (H. cupressiforme). The amount of moss resembled that of microsites with 

low and high cover of moss in the field. In May 2004 nine gravid females of P. palustris were 

collected to determine the average survival of starving second instar juveniles. Females were 

maintained at the same conditions as the year before until the eggsacs hatched. After 

dispersal, between 5 and 12 spiderlings of each eggsac (n = 86) were kept separately in small 

plastic containers (Ø 3.3 cm x 1.2 cm) containing a small amount of moistened moss. 

Containers were checked daily for sufficient humidity and survival of spiderlings.  

 

Cannibalism among second instar juveniles  

The influence of habitat structure, density and alternative prey availability on cannibalistic 

interactions between second instar spiderlings of P. palustris was investigated in a three 

factorial design resulting in 8 treatments. Factors were ‘density’  (low, high), ‘alternative prey’  

(with, without) and ‘habitat structure’  (simple, complex; see above); ten replicates were set up 

in each treatment. Five (low density) or 15 (high density) spiderlings were placed per 

container and 15 individuals of the collembolan Heteromurus nitidus (Tempelton) taken from 
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laboratory cultures were added every third day in the alternative prey treatments. Prey was 

added in excess to exclude resource competition. Spiderlings having hatched from different 

eggsacs were randomly distributed among treatments; initial weight (± SD) of second instar 

juveniles was 0.32 ± 0.07 mg. Spiderlings were counted every third day for 18 days. Per 

capita mortality was determined and spiderlings surviving until the end of the experiment 

were weighed.  

 

Cannibalism between adult females and juveniles  

The influence of availability of alternative prey and habitat structure on the cannibalistic 

interactions between female P. palustris and second instar spiderlings was investigated in a 

two factorial design with the factors ‘habitat structure’  (simple, complex) and ‘alternative 

prey’  (with, without). Habitat structure treatments were set up as above with ten replicates per 

treatment. Eight spiderlings were placed together with one adult female which was introduced 

12 hours later to allow spiderlings to accommodate to the new environment. Second instar 

juveniles were randomly distributed among treatments; average weight (± SD) of spiderlings 

was 0.33 ± 0.05 mg. In order to control for possible kin-recognition, the spiderlings added to a 

certain container were neither related to each other nor to the females. Since the foraging 

behaviour of virgin lycosid spiders may differ strongly from those that reproduced previously 

(ANTHONY 2003), only females that had successfully produced offspring were used in the 

experiment. Females were starved for 30 days and only very active individuals were used in 

the experiment as evaluated by observing agility and behaviour during capture of 

D. melanogaster the day before the experiment. This long period of starvation was necessary 

to keep females from producing subsequent offspring and to ensure homogenous predation 

rates. At the beginning of the experiment average weight (± SD) of females used was 

18.17 ± 2.12 mg and did not differ between treatments (F3,36 < 0.0001, p = 1.000).  

In treatments with alternative prey, four individuals of D. melanogaster were added as prey 

for adult spiders daily and once before females were placed together with spiderlings. The 

amount of alternative prey represented 14 % of the females’  body weight and is the amount 

that spiders feed on in the field (EDGAR 1971). Due to their small size second instar 

spiderlings of P. palustris were not able to prey on D. melanogaster.  

Starting at day three, juveniles were counted every other day for 11 days and the per capita 

mortality of spiderlings was calculated. In the treatment with complex habitat structure 

without additional prey 50 %, of the females were dead after 7 days. Therefore, the statistical 

analysis of the mortality of juveniles was restricted to data of days 3 and 5.  
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Statistical analysis 

Data on per capita mortality of juveniles were analysed by repeated measures ANOVA 

(analysis of variance). Differences in weight of juveniles (log-transformed data) between 

treatments at the end of the experiment were analysed using GLM (general linear model). 

Repeated measures ANOVA was used to analyse whether effects of habitat structure and 

alternative prey on mortality of spiderlings changed with time. Differences between initial 

and final weight of females (log-transformed data) were compared between treatments using 

GLM. To calculate differences of female mortality between treatments G-tests of 

independence with Williams’  correction were used (SOKAL &  ROHLF 2001). Homogeneity of 

variances were inspected using the Levene test implemented in Statistica 6.0 (StatSoft). All 

other statistical analyses were calculated using SAS 8.02 (SAS Institute Inc., Cary, USA).  
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II.6 IGP 

The experiment was carried out in a climate controlled green house at natural light conditions 

and constant temperature of 21°C. Adult females were collected from xeric grasslands in May 

and June 2004 at the “Ehemaliger August-Euler-Flugplatz”  close to Darmstadt, Hesse 

(49°51’  N, 8°35’  E) (for further details on the field site see CHAPTER II.1). Spiders were kept 

separately in covered plastic containers (Ø 6.5 cm x 4.5 cm) that were filled with Hypnum 

cupressiforme (L.), a moss that covers large areas of the ground at the study site 

(RICKERS 2002). Plants were collected in the field, frozen at -20°C for 48 h and dried at 60°C 

for another 48 h to exclude possible prey. Females of A. cuneata weighed 55.78 ± 21.57 mg 

and those of P. palustris 23.83 ± 7.68 mg.  Spiders either carried eggsacs or produced eggsacs 

during captivity. According to their body size, females of A. cuneata were fed 10 living 

individuals of the dipteran Drosophila melanogaster (curly; b.t.b.e Insektenzucht GmbH, 

Schnürpflingen, Germany) daily, while for P. palustris only 5 fruit flies per day were 

provided. Moss in plastic containers was moistened daily to ensure sufficient humidity. After 

production of eggsacs, females of A. cuneata retreated to a web burrow and stopped feeding, 

while females of P. palustris actively exposed the eggsacs to the light and continued feeding. 

The eggsacs of A. cuneata hatched after 20.00 ± 2.79 (n = 10) days, while eggsacs of 

P. palustris hatched already after 18.13 ± 1.69 (n = 31) days. A. cuneata produced 40.80 ± 

13.48 juveniles, while eggsacs of P. palustris contained only 33.28 ± 10.10 spiderlings. 

Subsequent to dispersal from their mothers after three to four days, spiderlings were kept 

separately in small transparent plastic containers (Ø 3.5 cm x 2.5 cm). Juveniles of A. cuneata 

were fed fruit flies D. melanogaster and the springtail Heteromurus nitidus (laboratory 

culture) ad libitum until they reached the third instar. Since second instar juveniles of 

P. palustris were too small to prey on fruit flies, they were fed only H. nitidus ad libitum to 

exclude starvation and to minimize cannibalism during the experiment. All spiderlings were 

weighed shortly before the experiment started: weight of A. cuneata ranged from 0.92 to 

2.02 mg and weight of P. palustris ranged from 0.35 to 0.80 mg.  

Intraguild predation was investigated in a two factorial design including four treatments. 

Factors were availability of alternative prey (without, with D. melanogaster) and habitat 

structure (simple, complex). Each one specimen of A. cuneata was grouped together with 6 

juveniles of P. palustris. Neither weight of A. cuneata (F7,72 = 0.01, p = 1.000) nor average 

weight of P. palustris per container (F3,36 < 0.01, p = 1.000) differed between treatments. 

Furthermore, each 6 P. palustris were virtually of the same size (standard deviation: 0.00-

0.02 mg). Juveniles of A. cuneata were on average 2.53 ± 0.02 times heavier than the selected 



Materials and Methods  40 

 

juveniles of P. palustris to exclude differential predation probability due to different size 

ratios of predator and prey. To ensure uniform predation rates, juvenile A. cuneata were 

starved for four days before the experiment started. In treatments with alternative prey a 

constant prey level of three individuals of D. melanogaster was established, resembling prey 

in excess. Plastic containers (Ø 6.5 cm x 4.5 cm) contained either 0.1 g (simple habitat 

structure) or 0.3 g (complex habitat structure) of moss (H. cupressiforme; see above). The 

amount of moss resembled that of microsites with low and high cover of moss in the field. 

Since I could not exclude predation on D. melanogaster or conspecifics by juvenile 

P. palustris during the experiment, I established four more treatments without P. palustris in 

order to compare weight gain and isotopic signature of A. cuneata with and without IGP prey. 

Thus, the experiment was designed orthogonally and consisted of three factors (alternative 

prey, habitat structure and IGP) including 8 treatments. Each treatment was replicated 10 

times and survival of spiderlings and fruit flies was checked every other day; missing fruit 

flies were replaced accordingly. After two weeks all juveniles of P. palustris in the treatment 

without alternative prey at simple habitat structure had died and the experiment ended: 

surviving spiders were frozen at -80°C for 24 h, weighed and dried for stable isotope analysis. 

Since an average of three weeks is needed to detect changes in isotopic composition in 

juvenile spiders (OELBERMANN &  SCHEU 2002b), drastic differences in carbon stable isotope 

ratio of IG prey and alternative prey are necessary to allow earlier detection. Consequently, 

D. melanogaster used during the experiment was reared on an agar-sugarcane-maize-semolina 

medium with D-glucose-1-13C (Campro Scientific GmbH, Berlin, Germany) that was highly 

enriched in 13C (min. 99 atom%). The calculated proportion of 13C was 1.275 atom%, 

representing an enrichment of 188 ‰ as compared to the isotopic signature of 

D. melanogaster raised on a C3 resource (1.087 atom%).  

 

Stable isotope analysis 

Animals (spiders, fruit flies, springtails) were dried at 60°C for 6 days. At least three 

measurements per treatment were done. For P. palustris two sets of samples were generated 

to document possible differences in feeding during the experiment; the heaviest juveniles per 

treatment were selected and analysed separately, while the lightest juveniles per treatment had 

to be combined to ensure sufficient biomass for stable isotope measurements. Thus, whole 

animals (9 – 1200 µg) were weighed into tin capsules, which had been cleaned with acetone 

previously. Samples were analysed as described in CHAPTER II.2.  
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Statistical analyses 

Data on survival of P. palustris was analysed using repeated measures GLM (general linear 

model). For differences in weight of A. cuneata and P. palustris GLM was applied. GLM was 

also used to detect differences in C:N ratio, � 13C and � 15N of spiderlings. In order to explain 

high standard deviations in � 13C ratios of P. palustris, single measurements of 13C were 

correlated to final biomass of juveniles. Regressions were performed in Statistica 6.0 (Stat 

Soft). All other statistical analyses were calculated using SAS 8.02 (SAS Institute Inc., Cary, 

USA). To calculate differences in mortality of A. cuneata between treatments G-tests of 

independence with Williams’ correction were used (SOKAL &  ROHLF 2001). 
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III Results 

III.1 Phenology 

With 6 adults per square meter in May P. palustris was the most abundant wolf spider of the 

grasslands at the ‘Ehemaliger August-Euler-Flugplatz’ . Subadult individuals occurred only in 

April and moulted to adult animals in May when mating occurred immediately (Fig. 1.1a). 

First eggsacs occurred in June and could be found as long as July. Analogously, females 

carrying second instar juveniles were captured in June and July, while males were captured 

only from May until June. Older instars of P. palustris occurred from August until the end of 

the season and were caught after the winter in March of the next year until they moulted to 

subadult spiders in April. 

With four adults per square meter A. cuneata was the second most abundant wolf spider. 

Subadult spiders occurred already in March and moulted to adult spiders in April when 

mating took place (Fig. 1.1b). While males occurred only from April until June, females were 

captured from April until July carrying second instar juveniles from June until July. In July 

also older instars of A. cuneata occurred and were captured until September. In September 

some of the older instars already moulted into subadult spiders, which were also caught after 

the winter in March of the next year. At the end of March subadults mature and the life cycle 

is completed. Interestingly, females carrying eggsacs were not caught in the pitfall traps; 

considering occurrence of juveniles, A. cuneata most likely carried eggsacs in May and June. 
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Fig. 1.1:  Occurrences of different life stages of Pardosa palustris (a) and Alopecosa 

cuneata (b) during the season ’01 – ‘02. (Juv. II: second instar juveniles; 
Juv. III/+: third instar and older juveniles). Assumed occurrence of eggsacs 
in A. cuneata is indicated by a broken bar. 
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III.2 Prey Availability 

Abundances 

Detritivores: Density of Collembola changed during the season (Table 2.1) decreasing from 

104 Ind./m² in June to 37 Ind./m² in August. The density of Collembola was affected by 

grazing while the effect of grazing tended to change with time (Table 2.1, Fig. 2.1a; for a 

detailed list of arthropod abundances see Appendix I). In June, densities of springtails were 

strongly increased on grazed sites (F1,7 = 11.50, p = 0.0116), while in August densities did not 

differ significantly between grazed and non-grazed sites (F1,7 = 3.18, p = 0.1178).  

While densities of Lepidocyrtus cyaneus (Entomobryidae) were not affected by grazing 

(Between Subjects Effect: F1,7 = 2.08, p = 0.1925) or prey addition (Between Subjects Effect: 

F1,7 = 0.22, p = 0.6506), Entomobrya nivalis (Entomobryidae) and Isotoma viridis 

(Isotomidae) tended to be more abundant on grazed sites (Between Subjects Effect: E. nivalis: 

F1,7 = 5.09, p = 0.0586; I. viridis: F1,7 = 5.13, p = 0.0579). 
 

Table 2.1:  Repeated measures ANOVA table of F-values on the effect of grazing, prey 
addition and time on densities of detritivores (Collembola) and herbivores 
(Auchenorrhyncha, juvenile Auchenorrhyncha and Heteroptera) of a xeric 
grassland; block refers to the two different areas the experiment was 
established in (randomized complete block design). 

      Collembola   Auchenorrh.   juv. Auchenorrh.   Heteroptera 
    DF F P   F P   F P   F P 

block 1,7 1.31 0.2906  0.05 0.8284  0.01 0.9383  7.85 0.0265 
grazing 1,7 20.91 0.0026  0.67 0.4387  1.54 0.2546  2.60 0.1506 
prey addition 1,7 0.05 0.8255  0.77 0.4099  0.61 0.4617  0.04 0.8496 

between 
subjects 
effects 

grazing*prey 
addition 1,7 0.01 0.9078  0.03 0.8728  0.04 0.8451  0.02 0.8893 

time 1,7 23.23 0.0019  106.06 <0.0001  117.50 <0.0001  15.29 0.0058 
time*grazing 1,7 5.12 0.0582  0.34 0.5807  0.33 0.5848  1.57 0.2498 
time*prey 
addition 1,7 0.96 0.3599  22.64 0.0021  13.02 0.0086  0.55 0.4808 

time*grazing 
*prey addition 1,7 0.12 0.7391  5.84 0.0463  7.56 0.0285  0.69 0.4342 

within 
subjects 
effects 

time*block 1,7 1.53 0.2563   0.33 0.5810   0.63 0.4519   15.77 0.0054 
 

Herbivores: The density of the most abundant Auchenorrhyncha (Anaceratagallia cf. ribauti, 

Artianus interstitialis, Doratura stylata, Jassargus obtusivalvis, and juvenile 

Auchenorrhyncha) strongly decreased from 30 Ind./m² in June to 10 Ind./m² in August 

(Table 2.1). Additionally, the effect of prey addition changed with time, as did the effect of 

grazing and prey addition (Table 2.1, Fig. 2.1b), which was reflected in densities of juvenile 

Auchenorrhyncha (Table 2.1). In June, prey addition caused an increase in density of 

Auchenorrhyncha, whereas in August the density of juvenile Auchenorrhyncha decreased on 

sites with prey addition and/or when grazing was abandoned.  
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Densities of A. ribauti (Within Subjects Effect: F1,7 = 19.57, p = 0.0031) and juvenile 

Auchenorrhyncha (Table 2.1) decreased most strongly from June to August and density of 

juvenile Auchenorrhyncha in August tended to be negatively correlated with density of 

juvenile spiders (R² = 0.3244; F1,9 = 4.32, p = 0.0674). 

The density of Heteroptera also decreased significantly from June (6 Ind./m²) to August 

(4 Ind./m²) (Table 2.1). But densities were neither affected by grazing nor by prey addition 

(Table 2.1). 
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Fig. 2.1:  Over all density of Collembola (a) and Auchenorrhyncha (b) as affected by 

grazing and prey addition in June (T1) and August (T2). Bars of each date 
sharing the same letter indicate that densities are not significantly different. 
Asterisks indicate significant differences between sampling dates. For 
further statistical analyses of interactions see text. 

 

Predators: The overall density of spiders tended to be increased on grazed sites (Table 2.2). 

The effect was based on the densities of the two most abundant wolf spiders (Lycosidae) 

Alopecosa cuneata and Pardosa palustris (Table 2.2) and resulted from a strong increase in 

abundances on grazed sites in June (F1,7 = 16.90, p = 0.0045) (Fig. 2.2a). Furthermore, the 

number of eggsacs of P. palustris significantly decreased from June to August, but was 

significantly increased on grazed sites (Table 2.2, Fig. 2.2b). The effect of grazing on the 

number of egg sacs changed with time (Table 2.2); the positive effect of grazing only 

occurred in June (F1,7 = 16.57, p = 0.0047). Clutch size of P. palustris in June was neither 

affected by prey addition (F1,21 = 1.95, p = 0.1771) nor by grazing (F1,21 = 3.34, p = 0.0817).  
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The overall density of Carabidae was neither affected by grazing nor by prey addition 

(Table 2.2). 
 

Table 2.2:  Repeated measures ANOVA table of F-values on the effect of grazing, prey 
addition and time on densities of predators (Araneae, Lycosidae: Pardosa 
palustris and Alopecosa cuneata, female P. palustris carrying eggsacs; 
Carabidae) of a xeric grassland; block refers to the two different areas the 
experiment was established in (randomized complete block design). 

      Araneae   Lycosidae*   eggsacs**   Carabidae 
    DF F P   F P   F P   F P 

block 1,7 7.69 0.0275  6.30 0.04  6.52 0.0379  9.36 0.0183 
grazing 1,7 4.90 0.0624  5.87 0.046  16.36 0.0049  0.82 0.3946 
prey addition 1,7 0.28 0.6136  0.08 0.787  0.75 0.4148  0.03 0.8660 

between 
subjects 
effects 

grazing*prey 
addition 1,7 0.17 0.6900  0.05 0.835  0.08 0.7810  0.02 0.8902 

time 1,7 0.36 0.5683  3.82 0.092  17.32 0.0042  1.20 0.3099 
time*grazing 1,7 0.28 0.6160  0.74 0.419  13.69 0.0077  2.05 0.1956 
time*prey 
addition 1,7 0.31 0.5976  0.02 0.897  1.81 0.2204  0.16 0.7020 

time*grazing*prey 
addition 1,7 0.50 0.5026  0.93 0.366  1.81 0.2204  3.43 0.1063 

within 
subjects 
effects 

time*block 1,7 0.70 0.4307   3.25 0.115   3.18 0.1176   0.03 0.8730 

*: densities of Pardosa palustris and Alopecosa cuneata 

**: female P. palustris carrying eggsacs 
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Fig. 2.2:  Density of Alopecosa cuneata and Pardosa palustris (a) and density of 

female P. palustris carrying eggsacs (b) as affected by grazing and prey 
addition in June (T1) and August (T2). Bars of each date sharing the same 
letter indicate that densities are not significantly different. Asterisks 
indicate significant differences between sampling dates. For further 
statistical analyses of interactions see text. 
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Stable isotopes 

Detritivores: E. nivalis was significantly depleted in 13C on grazed sites and � 13C ratios 

decreased from the first to the second sampling (Table 2.3, Fig. 2.3a). Both, grazing and prey 

addition affected � 15N ratios of E. nivalis (Table 2.3, Fig. 2.4a). In June, E. nivalis was 

significantly enriched in 15N by 0.81 ‰ on grazed sites (F1,7 = 9.49, p = 0.0178), while in 

August it was significantly enriched in 15N by 0.94 ‰ on sites with prey addition (F1,7 = 9.35, 

p = 0.0184). 

In general, grazing decreased � 13C ratios of I. viridis, while prey addition did not affect � 13C 

ratios (Table 2.3, Fig. 2.3b). I. viridis was significantly enriched in 15N on grazed sites and 

also significantly enriched on sites with prey addition (Table 2.3, Fig. 2.4b). 

 

Table 2.3:  Repeated measures ANOVA table of F-values on the effect of grazing, 
prey addition and time on � 13C and � 15N ratios of Collembola 
(Entomobrya nivalis and Isotoma viridis) of a xeric grassland. 

    Entomobrya nivalis   Isotoma viridis 
  � 13C   � 15N  � 13C   � 15N 
    DF F P   DF F P   DF F P   DF F P 

grazing 1,6 36.78 0.0009  1,7 17.21 0.0043  1,6 11.98 0.0134  1,6 45.66 0.0005 
prey 
addition 1,6 0.24 0.6424  1,7 16.75 0.0046  1,6 3.05 0.1315  1,6 15.63 0.0075 

between 
subjects 
effects 

grazing*prey 
addition 1,6 3.38 0.1157  1,7 0.26 0.6276  1,6 2.21 0.1877  1,6 0.96 0.3651 

time 1,6 6.08 0.0488  1,7 1.44 0.2697  1,6 0.55 0.4869  1,6 2.90 0.1393 
time*grazing 1,6 0.00 0.9492  1,7 0.37 0.5639  1,6 0.26 0.6271  1,6 0.03 0.8784 
time*prey 
addition 1,6 0.03 0.8662  1,7 1.88 0.2130  1,6 1.00 0.3549  1,6 1.16 0.3236 

within 
subjects 
effects 

time*grazing
*prey 
addition 

1,6 0.03 0.8673   1,7 0.54 0.4865   1,6 1.55 0.2600   1,6 0.28 0.6143 

 

Grazing decreased � 13C ratios of L. cyaneus and � 13C ratios increased from the first to the 

second sampling (Table 2.4, Fig. 2.3c). Furthermore, the effect of grazing grew stronger from 

June to August (Table 2.4). Neither grazing nor prey addition affected � 15N ratios of 

L. cyaneus, but � 15N ratios increased from the first to the second sampling (Table 2.4, 

Fig. 2.4c).  
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Table 2.4:  Repeated measures ANOVA table of F-values on the effect of grazing, 
prey addition and time on � 13C and � 15N ratios of Lepidocyrtus cyaneus 
(Collembola) of a xeric grassland. 

    Lepidocyrtus cyaneus 
  � 13C   � 15N 
    DF F P   DF F P 

grazing 1,8 113.39 <0.0001  1,8 2.23 0.1740 
prey addition 1,8 0.13 0.7267  1,8 2.90 0.1269 

between 
subjects 
effects grazing*prey addition 1,8 0.49 0.5051  1,8 0.31 0.5920 

time 1,8 62.64 <0.0001  1,8 9.74 0.0142 
time*grazing 1,8 8.04 0.0219  1,8 0.22 0.6532 
time*prey addition 1,8 0.32 0.5870  1,8 1.72 0.2265 

within 
subjects 
effects 

time*grazing*prey addition 1,8 0.67 0.4354   1,8 1.32 0.2831 
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Fig. 2.3:  � 13C ratios (±±±± SD) of detritivores (Collembola) as affected by grazing 
(circles: without grazing; squares: with grazing) and prey addition in June 
(T1) and August (T2). � 13C ratio of the culture medium is indicated by a 
horizontal line. (a) Entomobrya nivalis, (b) Isotoma viridis, (c) Lepidocyrtus 
cyaneus 
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Fig. 2.4:  � 15N ratios (±±±± SD) of detritivores (Collembola) as affected by grazing 
(circles: without grazing; squares: with grazing) and prey addition in June 
(T1) and August (T2). (a) Entomobrya nivalis, (b) Isotoma viridis, (c) 
Lepidocyrtus cyaneus 

 

Herbivores: � 13C ratios of A. ribauti in June were neither affected by grazing (F1,6 = 0.26; 

p = 0.6270) nor by prey addition (F1,6 = 0.62; p = 0.4603) and averaged -25.78 ± 0.96 ‰. 

Similarly, � 15N ratios of A. ribauti in June were neither affected by grazing (F1,6 = 0.03; 

p = 0.8761) nor by prey addition (F1,6 = 0.38; p = 0.5624) averaging -1.06 ± 0.52 ‰.  

Juvenile leafhoppers were depleted in 13C on grazed sites, but � 13C ratios were not affected by 

prey addition (Table 2.5, Fig. 2.5a). � 15N ratios of juvenile leafhoppers were neither  affected 

by grazing nor prey addition (Table 2.5) with the � 15N ratio averaging -3.96 ± 1.12 ‰. 

� 13C ratios of J. obtusivalvis were neither affected by grazing nor by prey addition (Table 2.5, 

Fig. 2.5b). In contrast, J. obtusivalvis tended to be enriched in 15N on grazed sites (Table 2.5); 

on grazed sites average � 15N ratio was -3.73 ± 0.46 ‰ and on sites without grazing -3.37 ± 

0.46 ‰. Prey addition did not affect � 15N ratios (Table 2.5). 
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Table 2.5:  Repeated measures ANOVA table of F-values on the effect of grazing, 
prey addition and time on � 13C and � 15N ratios of Auchenorrhyncha 
(juvenile Auchenorrhyncha and Jassargus obtusivalvis) of a xeric 
grassland. 

    juvenile Auchenorrhyncha   Jassargus obtusivalvis 
  � 13C  � 15N  � 13C  � 15N 
    DF F P   DF F P   DF F P   DF F P 

grazing 1,4 15.87 0.0164  1,4 1.75 0.2565  1,4 0.04 0.8579  1,7 5.37 0.0535 
prey 
addition 1,4 1.57 0.2779  1,4 0.00 0.9857  1,4 2.87 0.1655  1,7 0.00 0.9566 

between 
subjects 
effects 

grazing*prey 
addition 1,4 0.00 0.9577  1,4 1.21 0.3323  1,4 0.01 0.9169  1,7 0.37 0.5646 

time 1,4 2.51 0.1882  1,4 1.86 0.2444  1,4 6.17 0.0679  1,7 0.63 0.4551 
time*grazing 1,4 0.39 0.5332  1,4 2.58 0.1837  1,4 0.02 0.8981  1,7 0.33 0.5859 
time*prey 
addition 1,4 0.07 0.5681  1,4 0.55 0.4999  1,4 0.96 0.3836  1,7 0.03 0.8714 

within 
subjects 
effects 

time*grazing
*prey 
addition 

1,4 0.03 0.8112   1,4 0.01 0.9337   1,4 1.43 0.2973   1,7 0.27 0.6194 

 

� 13C ratios of D. stylata were not affected by grazing or prey addition (Table 2.6) with an 

average � 13C ratio of -24.49 ± 0.74 ‰. Also, neither grazing nor prey addition affected � 15N 

ratios of D. stylata with an average � 15N ratio of -4.09 ± 0.80 ‰ (Table 2.6).  

In June, A. interstitialis was significantly increased in 13C by 8.50 ‰ on sites without grazing 

(F1,5 = 138.31, p < 0.0001), while in August � 13C ratios were neither affected by grazing 

(F1,5 = 0.26, p = 0.6295) nor by prey addition (F1,5 = 1.93, p = 0.2238) (Fig. 2.5c). In August, 

neither grazing (F1,6 = 0.69, p = 0.4388) nor prey addition (F1,6 = 0.75, p = 0.4203) affected 

� 15N ratios averaging -3.63 ± 0.46 ‰. 

In general, grazing tended to increase � 13C ratios of N. tipularius (Table 2.6); N. tipularius 

was significantly enriched in 13C by 1.15 ‰ on grazed sites in June (F1,6 = 8.20, p = 0.0287) 

(Fig. 2.5d). In contrast, neither grazing nor prey addition affected � 15N ratios of N. tipularius 

with an average � 15N ratio of -2.46 ± 1.25 ‰ (Table 2.6). 
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Table 2.6:  Repeated measures ANOVA table of F-values on the effect of grazing, 
prey addition and time on � 13C and � 15N ratios of Doratura stylata 
(Auchenorrhyncha) and Neides tipularius (Heteroptera) of a xeric 
grassland. 

    Doratura stylata   Neides tipularius 
  � 13C  � 15N  � 13C  � 15N 
    DF F P   DF F P   DF F P   DF F P 

grazing 1,7 2.55 0.1542  1,6 0.29 0.6101  1,6 5.21 0.0625  1,7 0.20 0.6697 
prey 
addition 1,7 1.77 0.2253  1,6 0.25 0.6330  1,6 0.41 0.5479  1,7 1.96 0.2044 

between 
subjects 
effects 

grazing*prey 
addition 1,7 0.64 0.4511  1,6 0.00 0.9579  1,6 3.06 0.1308  1,7 0.22 0.6520 

time 1,7 0.06 0.8151  1,6 0.00 0.9686  1,6 0.62 0.4621  1,7 1.06 0.3372 
time*grazing 1,7 0.14 0.7175  1,6 0.09 0.7761  1,6 1.61 0.2508  1,7 0.00 0.9599 
time*prey 
addition 1,7 0.45 0.5243  1,6 0.53 0.4921  1,6 0.11 0.7556  1,7 0.03 0.8760 

within 
subjects 
effects 

time*grazing
*prey 
addition 

1,7 0.26 0.6259   1,6 0.08 0.7860   1,6 1.52 0.2643   1,7 2.18 0.1832 
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Fig. 2.5:  � 13C ratios (±±±± SD) of herbivores (Auchenorrhyncha & Heteroptera) as 
affected by grazing (circles: without grazing; squares: with grazing) and 
prey addition in June (T1) and August (T2). (a) juvenile Auchenorrhyncha, 
(b) Jassargus obtusivalvis, (c) Artianus interstitialis, (d) Neides tipularius 
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Predators: � 13C ratios of female P. palustris were neither affected by grazing nor prey 

addition and ratios did not differ between the first and the second sampling (Table 2.7, 

Fig. 2.6a). However, in June, prey addition increased � 13C ratios of female P. palustris on 

grazed sites, whereas in August � 13C ratios of females were similar on grazed and non-grazed 

sites (Table 2.7). Both grazing and prey addition affected � 15N ratios of female P. palustris 

(Fig. 2.7a); females on grazed sites were significantly enriched in 15N and tended to be 

enriched in 15N in presence of D. melanogaster (Table 2.7). Interestingly, eggsacs were 

strongly enriched in 13C (Fig. 2.6b) by 1.85 ‰ (F1,18 = 93.86, p < 0.0001) and 15N (Fig. 2.7b) 

by 1.83 ‰ (F1,18 = 32.52, p < 0.0001) compared to females. � 13C ratios of second instar 

juveniles of P. palustris on grazed sites were not affected by prey addition (F1,4 = 6.08, 

p = 0.0904) (Fig. 2.6c), but juveniles were significantly enriched in 15N when 

D. melanogaster was added (F1,4 = 100.23, p = 0.0021) (Fig. 2.7c). Later instars of 

P. palustris were significantly depleted in 13C by 0.66 ‰ on grazed sites (F1,7 = 5.66, 

p = 0.0489) (Fig. 2.6d), resulting from the pronounced difference when alternative prey was 

present (grazing x prey interaction; F1,7 = 6.23, p = 0.0413). Furthermore, later instars were 

significantly enriched in 15N on grazed sites by 1.38 ‰ (F1,6 = 21.38, p = 0.0036) and 

enriched by 0.79 ‰ when D. melanogaster was present (F1,6 = 8.39, p = 0.0275) (Fig. 2.7d). 

The enrichment tended to be more pronounced on grazed sites when prey was added 

(F1,6 = 5.59, p = 0.0560). 

 

Table 2.7:  Repeated measures ANOVA table of F-values on the effect of grazing, 
prey addition and time on � 13C and � 15N ratios of Lycosidae (Pardosa 
palustris and Alopecosa cuneata) of a xeric grassland. 

    Pardosa palustris   Alopecosa cuneata 
  � 13C  � 15N  � 13C  � 15N 
    DF F P   DF F P   DF F P   DF F P 

grazing 1,6 0.41 0.5449  1,6 11.19 0.0155  1,4 0.61 0.4779  1,4 0.56 0.4945 
prey 
addition 1,6 0.18 0.6846  1,6 5.47 0.0579  1,4 0.92 0.3928  1,4 19.04 0.0120 

between 
subjects 
effects 

grazing*prey 
addition 1,6 0.00 0.9962  1,6 1.66 0.2453  1,4 0.05 0.8393  1,4 2.56 0.1851 

time 1,6 0.52 0.4983  1,6 3.47 0.1118  1,4 1.11 0.3515  1,4 0.97 0.3803 
time*grazing 1,6 0.22 0.6560  1,6 1.70 0.2404  1,4 0.08 0.7854  1,4 0.14 0.7231 
time*prey 
addition 1,6 0.00 0.9619  1,6 1.53 0.2629  1,4 2.80 0.1695  1,4 0.94 0.3380 

within 
subjects 
effects 

time*grazing
*prey 
addition 

1,6 7.18 0.0365   1,6 0.20 0.6667   1,4 2.45 0.1925   1,4 0.08 0.7855 
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Female A. cuneata were significantly enriched in 13C compared to female P. palustris 

(F1,43 = 39.90, p < 0.0001), but did not differ in 15N from female P. palustris (F1,41 = 0.07, 

p = 0.7977). Furthermore, � 13C ratios of female A. cuneata were neither affected by grazing 

nor by addition of D. melanogaster and did not differ between the first and the second 

sampling (Table 2.7, Fig. 2.6e). In contrast, prey addition affected � 15N ratios of females, 

resulting in an increase in 15N (Table 2.7, Fig. 2.7e). Second instar juveniles of A. cuneata 

were enriched in 13C when D. melanogaster was added (F1,6 = 6.69, p = 0.0415) (Fig. 2.6f), 

while grazing affected neither � 13C (F1,6 = 2.43, p = 0.1701) nor � 15N ratios of second instar 

juveniles (F1,4 = 1.91, p = 0.2390) (Fig. 2.7f). In contrast, second instar juveniles were 

significantly enriched in 15N by 0.45 ‰ when prey was added (F1,4 = 10.70, p = 0.0308), and 

the enrichment tended to be more pronounced on grazed sites (grazing x prey interaction; 

F1,4 = 6.82, p = 0.0593) (Fig. 2.7f). � 13C ratios of later instars of A. cuneata did not differ 

between grazed and ungrazed sites (F1,8 = 1.20, p = 0.3046) or sites with and without 

additional prey (F1,8 = 0.97, p = 0.3532) (Fig. 2.6g). However, later instars on grazed sites and 

on sites with alternative prey were enriched in 15N by 0.87 ‰ (F1,8 = 16.70, p = 0.0035) and 

by 0.67 ‰ (F1,8 = 11.87, p = 0.0088), respectively (Fig. 2.7g). 

� 13C ratios of C. cinctus were significantly reduced on grazed sites and the effect of prey 

addition on � 13C ratios changed with time (Table 2.8, Fig. 2.6h). While C. cinctus was 

significantly depleted in 13C by 1.68 ‰ on sites with additional prey in June (F1,2 = 31.13, 

p = 0.0307), � 13C ratios in August were not affected by prey addition (F1,2 = 0.20, p = 0.7007). 

C. cinctus tended to be enriched in 15N when additional prey was provided (Table 2.8) 

reflecting an enrichment of 1.94 ‰ in June (F1,2 = 18.97, p = 0.0489) (Fig. 2.7h). 

 

Table 2.8:  Repeated measures ANOVA table of F-values on the effect of grazing, 
prey addition and time on � 13C and � 15N ratios of Carabidae (Calathus 
cinctus and Trechus obtusus) of a xeric grassland. 

    Calathus cinctus   Trechus obtusus 
  � 13C  � 15N  � 13C  � 15N 
    DF F P   DF F P   DF F P   DF F P 

grazing 1,2 24.11 0.0391  1,2 3.47 0.2036  1,2 2.03 0.2903  1,4 5.45 0.0799 
prey 
addition 1,2 8.75 0.0978  1,2 15.65 0.0583  1,2 2.36 0.2642  1,4 0.01 0.9461 

between 
subjects 
effects 

grazing*prey 
addition 

1,2 0.93 0.4370  1,2 0.73 0.4829  1,2 0.11 0.7740  1,4 1.12 0.3505 

time 1,2 1.59 0.3342  1,2 0.01 0.9143  1,2 3.82 0.1897  1,4 2.21 0.2115 
time*grazing 1,2 0.44 0.5755  1,2 0.77 0.4718  1,2 0.21 0.6944  1,4 1.30 0.3185 
time*prey 
addition 1,2 27.18 0.0349  1,2 0.87 0.4498  1,2 16.37 0.0560  1,4 0.23 0.6539 

within 
subjects 
effects 

time*grazing
*prey 
addition 

1,2 0.41 0.5871   1,2 5.06 0.1533   1,2 0.16 0.7296   1,4 2.48 0.1907 
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In general, � 13C ratios of T. obtusus were neither affected by grazing nor by prey addition 

(Table 2.8), even though at the first sampling T. obtusus was significantly depleted in 13C by 

0.52 ‰ and 1.17 ‰ on grazed sites (F1,2 = 22.53, p = 0.0416) and on sites with additional 

prey (F1,2 = 143.08, p = 0.0069), respectively (Fig. 2.6i). Thus, the effect of additional prey 

tended to change with time (Table 2.8), as T. obtusus was depleted in 13C on sites with prey 

addition in June, but � 13C ratios were not affected by prey addition in August (F1,2 = 0.61, 

p = 0.5154). Finally, T. obtusus tended to be enriched in 15N on grazed sites (Table 2.8), due 

to a significant enrichment in 15N by 1.28 ‰ on grazed sites in August (F1,4 = 9.92, 

p = 0.0345) (Fig. 2.7i). 
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Fig. 2.6:  � 13C ratios (±±±± SD) of predators as affected by grazing (circles: without 
grazing; squares: with grazing) and prey addition in June (T1) and August 
(T2). � 13C ratio of Drosophila melanogaster is indicated by a horizontal line. 
Pardosa palustris: (a) females, (b) egg sacs, (c) second instar juveniles, (d) 
third/ later instar juveniles; Alopecosa cuneata: (e) females, (f) second 
instar juveniles, (g) third/ later instar juveniles; Calathus cinctus (h); 
Trechus obtusus (i) 
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Fig. 2.7:  � 15N ratios (±±±± SD) of predators as affected by grazing (circles: without 
grazing; squares: with grazing) and prey addition in June (T1) and August 
(T2). � 15N ratio of Drosophila melanogaster is indicated by a horizontal line.  
Pardosa palustris: (a) females, (b) eggsacs, (c) second instar juveniles, (d) 
third/ later instar juveniles; Alopecosa cuneata: (e) females, (f) second 
instar juveniles, (g) third/ later instar juveniles; Calathus cinctus (h); 
Trechus obtusus (i) 
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III.3 Allochthonous Resources 

Vegetation 

The most abundant grass on the foredune and dominating plant was Ammophila arenaria 

(Poaceae), which is native to Europe and was introduced all over the world in order to 

stabilise sand (Zitat). Carpobrotus rossii (Aizoaceae), Acaena novae-zelandiae (Rosaceae) 

and Lupinus arboreus (Fabaceae) were the most abundant herbs. Macrocystis spec. (kelp; 

Lessoniaceae) was periodically washed ashore together with Zostera spec. (sea grass; 

Zosteraceae) and deposition was heaviest around the traps in-between the shoreline and the 

base of the foredune (personal observation). Plants differed strongly in � 15N (F9,20 = 21.96, 

p < 0.0001) and � 13C (F9,20 = 30.86, p < 0.0001), while the mixture of kelp and sea grass 

differed significantly from other plants (Fig. 3.1). The mixture of kelp and sea grass was 

enriched in 15N by 7.02 ‰ and enriched in 13C by 11.30 ‰, as compared to the foredune 

vegetation. 

8

-6

-4

-2

0

2

4

6

-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10

Kelp/sea grassR. candolleana

A. arenaria

I. nodosa

P. esculentum
A. sophorae

C. rossii

3: L. gladiatum

2: A. novae-
    zelandiae

1
1: L. arboreus

N
 [

‰
]

dd dd
15

C [‰]13dddd

22

3

 

Fig. 3.1:  � 13C and � 15N signatures (±±±± SD) of plants collected on the beach and 
foredune at Marion Bay: Acacia sophorae (Mimosaceae); Acaena novae-
zelandiae (Rosaceae); Ammophila arenaria (Poaceae); Carpobrotus rossii 
(Aizoaceae); Isolepis nodosa, Lepodosperma gladiatum (Cyperaceae); 
Lupinus arboreus (Fabaceae); Pteridium esculentum (Dennstaedtiaceae); 
Rhagodia candolleana (Chenopodiaceae). 

 

Animals 

A total of 4213 arthropods were collected within 9 days. Most important arthropods belonged 

to Crustacea (e.g. amphipods and isopods) and Insecta (e.g. beetles and flies) (Fig. 3.2; for 

detailed data on arthropod abundances see Appendix II). 
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Fig. 3.2:  Abundance distribution of arthropod groups from pitfall trap catches on the 

beach and foredune at Marion Bay. 

Species were not equally distributed on the shore and foredune and were separated into the 

beach community (a-c) and the foredune community (d-e) along a gradient at the first axis 

(Eigenvalue 0.70; Fig. 3.3). Actaecia thompsoni (Isopoda) and the talitrid amphipods 

Talorchestia 2 (5-dentate sandhopper), T. marmota (5-dentate sandhopper) and Orchestia 

spec. as well as juvenile Amphipoda were most abundant on the shoreline (a, b), while the 

talitrid amphipod Talorchestia 1 (4-dentate sandhopper “ longhorn” ) and Porcellio scaber 

(Isopoda) were found on the foredune (d, e). Most beetles were found on the foredune (d, e) 

with the exception of Cafius 2 (Staphylinidae), Phycosecis littoralis (Phycosecidae) and 

Halticinae 1 (Chrysomelidae). Similarly, most flies were trapped on the foredune (d, e) with 

the exception of some species of Brachycera (Scatophagidae 1, B4, B9, B11, and B28). 

Polydesmidae (Diplopoda), ants and the scorpion Cercophonius squama (Bothuridae) were 

restricted to the foredune (d, e). Tetralycosa oraria (Lycosidae) was the most abundant spider 

with a restricted occurrence on the beach (a-c) similar to Tuoba laticeps, the only chilopod 

caught. Generally, the foredune community included more species, than the beach community 

and only few species such as the fly Brachycera 29 and the weevils Timareta 6 and 

Mandalotus 8, occurred in both communities. 
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Fig. 3.3:  Ordination of arthropods (log-transformed mean activity abundance data) 
and sampling sites along a transect (a-e) across the beach and foredune at 
Marion Bay. B: Brachycera (Diptera); F: Formicidae (Hymenoptera); 
Coleoptera (Curculionidae): M: Mandalotus; T: Timareta; P: Polydesmidae 
(Diplopoda). For description of the sampling sites see CHAPTER II.3; for 
complete species names see Appendix II. 

Stable carbon and nitrogen ratios differed between the beach and the foredune communities. 

Within the beach community � 15N signatures of animals ranged from 5.44 ‰ (T. marmota; 

Amphipoda) to 12.76 ‰ (T. oraria � ; Araneae) (Fig. 3.4a). � 13C signatures ranged from         

-21.83 ‰ (P. littoralis; Coleoptera) to -12.79 ‰ (Actaecia bipleura; Isopoda) (Fig. 3.4a). 

Therefore, the proportion of carbon derived from kelp and sea grass varied between 32.01 % 

(P. littoralis) and 111.83 % (A. bipleura) (Table 3.1).  

 

Table 3.1: Proportion of carbon (±±±± SD) derived from kelp and sea grass in arthropods 
from the beach at Marion Bay as calculated by a two-source mixing model 
(see text). For complete species names see Appendix II. 

Taxon 
carbon derived 
from kelp/ sea 

grass [%] 
    Taxon 

carbon derived 
from kelp/ sea 

grass [%] 

P. littoralis 32.01 ± 5.46    juvenile amphipods 76.62 ± 3.97 
Myrmeleonidae 35.10 ± 5.10    Orchestia spec. 80.06 ± 5.91 
Scatophagidae 1   53.46 ± 20.71    Cafius 2   84.53 ± 3.19 
A. thompsoni  57.10 ± 12.41    T. marmota  87.55 ± 2.87 
Talorchestia 2 69.93 ± 2.73    T. laticeps 93.06 
T. oraria �  70.59 ± 7.95    A. bipleura 111.84 ± 4.53 
T. oraria �  75.38 ± 6.74      
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In contrast, � 15N signatures of animals from the foredune community ranged from -3.76 ‰ 

(Polydesmidae 1; Diplopoda) to 8.78 ‰ (Mecynotarsus spec.; Coleoptera) (Fig. 3.4b). � 13C 

signatures ranged from -25.50 ‰ (Entomobryidae; Collembola) to -21.24 ‰ (Polydesmidae 

1; Diplopoda) (Fig. 3.4b) with proportions of carbon derived from kelp ranging from 0.00 % 

to a maximum of 37.14 % (Table 3.2).  

 

Table 3.2: Proportion of carbon (±±±± SD) derived from kelp and sea grass in arthropods 
from the foredune at Marion Bay as calculated by a two-source mixing 
model (see text). For complete species names see Appendix II. 

Taxon 
carbon derived 
from kelp/ sea 

grass [%] 
    Taxon 

carbon derived 
from kelp/ sea 

grass [%] 

Entomobryidae -0.49 ± 2.36    Heteronyx spec. 12.89 ± 1.87 
Timareta 6 5.37 ± 7.22    Mecynotarsus spec. 15.73 ± 6.59 
E. canescens 6.44 ± 2.67    Myrmecinae 16.05 ± 9.26 
C. costasco 7.68 ± 3.35    H. minor 16.28 ± 0.81 
Mandalotus 9 8.54 ± 6.17    Iridomymex spec. 17.30 ± 5.54 
Trombidiidae 8.56 ± 2.94    Cryptorhynchinae 1 20.22 ± 9.25 
C. squama   9.95 ± 1.41    Talorchestia 1 27.01 ± 10.29 
C. australasiae 12.35 ± 12.37    Polydesmidae 1 37.14 ± 8.99 

 

In order to keep the data comprehensible, I focus on general stable isotope patterns and on the 

importance of the marine subsidies. Consequently, only the most important feeding links 

depending on allochthonous resources are described in detail below. 

 

Beach Community 

Most amphipods (juveniles, T. marmota and Orchestia spec.) and A. bipleura (Isopoda) 

hardly differed in � 15N signature from kelp and sea grass, while Scatophagidae 1 (Diptera) as 

well as the wolf spiders (male and female T. oraria) were enriched in 15N by 5.10 - 6.47 ‰ 

compared to kelp and sea grass. Interestingly, the isopod A. thompsoni and the amphipod 

Talorchestia 2 were enriched in 15N by 2.65 and 3.34 ‰, respectively, compared to the 

signature of kelp and sea grass, and differed in stable isotope signatures from those of other 

amphipod and isopod species. � 15N signatures of female and male T. oraria differed by 2.79 

and 3.14 ‰, respectively, from those in Talorchestia 2, while � 13C signatures differed by only 

0.62 and 0.07 ‰, respectively, from those in the talitrid amphipod. Major food source of 

T. oraria was Talorchestia 2 (1-99th percentile: 69 – 88 %) and other amphipods and isopods 

contributed only little to the diet of the wolf spiders. In contrast to wolf spiders, T. laticeps 



Results  60 

 

(Chilopoda) was enriched in 15N by 2.98 ± 0.26 ‰ as compared to the average � 15N signature 

of juvenile amphipods, Orchestia spec. and A. bipleura that I considered to be the most 

probable prey. Furthermore, � 13C signature of the chilopod was increased by only 0.4 ‰ as 

compared to the average signature of the three crustacean groups in focus                    

(� 13C = -15.32 ± 2.20 ‰). Interestingly, A. bipleura and T. marmota appeared to constitute 

the majority of the diet of T. laticeps (1-99th percentile: 32 – 42 % and 22 – 51 %, 

respectively), and the other potential food sources contributing only little to its diet. Cafius 2 

was enriched in 15N by 3.61 ± 0.25 ‰ and depleted in 13C by 0.56 ± 2.20 ‰, as compared to 

the average signature of juvenile amphipods, Orchestia spec. and A. bipleura. The latter 

appeared to contribute most to the diet of Cafius (1-99th percentile: 14 – 32 %), followed by 

the beachflea Orchestia and juvenile amphipods (0 – 57 % and 0 – 62 %, respectively).  

Interestingly, antlions were slightly depleted in 15N by 0.56 ‰ and strongly depleted in 13C by 

2.49 ‰ as compared to A. thompsoni, the prey with most similar stable isotope signature. In 

contrast, antlions were enriched in 15N by 2.04 and 3.14 ‰, as well as enriched in 13C by 2.01 

and 2.51 ‰, as compared to the ants Iridomymex spec. and Myrmecinae from the foredune, 

respectively. Myrmecinae and T. marmota appeared to constitute the majority of the diet of 

antlions (1-99th percentile: 58 – 78 % and 11 – 30 %, respectively) and Iridomymex 

represented only a minor part of the diet (0 – 14 %), while the other amphipods and isopods 

were virtually not included in the diet of antlions. P. littoralis and Brachycera 1 were enriched 

in 15N by 4.86 and 5.10 ‰, respectively compared to kelp. Furthermore, P. littoralis was 

strongly depleted in 13C by 7.69 ‰, while Scatophagidae 1 was only depleted by 3.95 ‰. The 

latter seemed to feed predominately on A. thompsoni (1-99th percentile: 63 – 74 %) and to a 

minor part on T. marmota (8 – 26 %), while the other amphipods and isopods contributed 

only little to its diet. 

 

Foredune Community 

In contrast to the beach community animals from the foredune rather aggregated according to 

� 13C ratios. Heteronyx spec. (Coleoptera), Cryptorhynchinae 1 (Coleoptera) and Talorchestia 

1 (Amphipoda) were on average enriched in 15N by 1.76 ‰ compared to plants on the 

foredune. In contrast, some beetles (Mecynotarsus spec., Edylius canescens, Conoderus 

australasiae) the ants (Iridomymex spec. & Myrmecinae spec.), Cercophonius squama 

(Scorpionida) and Trombidiidae (Acari) were enriched in 15N by 5.98 - 8.78 ‰ compared to 

plants from the foredune. Interestingly, Polydesmidae 1 (Diplopoda) was depleted in 15N by 

3.02 ‰ compared to plants. 
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Fig. 3.4:  � 13C and � 15N signatures (±±±± SD) of animals from the beach (a) and the 
foredune (b) at Marion Bay. � 15N and � 13C signatures of kelp/sea grass and 
vegetation on the foredune are indicated by vertical and horizontal lines. 
For complete species names see Appendix II. 
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III.4 Food Quality 

Female performance and offspring production 

An average of 43.54 ± 8.22 spiderlings hatched from the first eggsacs (n = 76) that left their 

mothers 3.08 ± 1.14 days later. The number of juveniles was only slightly positively 

correlated to prosoma width of females (r² = 0.062, F1,79 = 5.21, p = 0.025), but there was a 

strong positive correlation between the weight of gravid females and the number of juveniles 

(r² = 0.163, F1,79 = 15.43, p = 0.00018; Fig. 4.1).  
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Fig. 4.1:  Correlation of biomass of gravid females of Pardosa lugubris and number of 

juveniles in the first eggsac. 

 

There was no correlation between weight of gravid females and mean dry weight of juveniles 

(r² = 0.022, F1,34 = 0.76, p = 0.389) or clutch size and mean juvenile weight per eggsac 

(r² = 0.015, F1,34 = 0.50, p = 0.482). Only females fed diets without F. candida produced a 

second eggsac on average 12.03 ± 4.02 days later (n = 41), while time until production 

differed between feeding treatments (F2,33 = 3.73, p = 0.0347). Females fed a diet containing 

D. melanogaster (D; DH) produced eggsacs earlier than those fed H. nitidus (H) (Fig. 4.2).  
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Fig. 4.2:  Time until production (±±±± SD) of the second eggsac as affected by different 
diets; D: single diet Drosophila melanogaster; H: single diet Heteromurus 
nitidus; DH: mixed diet of D. melanogaster and H. nitidus. 

Females carried the eggsacs for 23.24 ± 1.65 days until they were opened for hatching of 

juveniles and there was no difference between the diet treatments in the duration eggsacs were 

carried (F2,39 = 0.06, p = 0.943). Between 9 and 23 spiderlings hatched from the second 

eggsacs. Spiderling number differed significantly between the first and the second eggsacs 

(Within Subjects Effect: F1,27 = 206.74, p < 0.0001 ), but did not differ between diets 

(Between Subjects Effect: F2,27 = 1.97, p = 0.159). In the second eggsac juvenile number 

(18.71 ± 7.62) dropped to less than half the number in the first eggsac (43.54 ± 8.22). Width 

of prosoma of juveniles did not differ between feeding treatments (Between Subjects Effect: 

F2,15 = 0.83, p = 0.454), but differed slightly between the first and the second eggsac (Within 

Subjects Effect: F1,15 = 4.84, p = 0.044). Prosoma width of juveniles declined from 0.72 ± 

0.02 mm in the first to 0.71 ± 0.03 mm in the second eggsac. Average dry weight of juveniles 

also differed between the first and the second eggsacs (Within Subjects Effect: F2,28 = 30.81, 

p < 0.0001): Juveniles of the first eggsac weighed on average 0.172  ± 0.033 mg, while those 

of the second eggsac weighed only 0.125 ± 0.045 mg. After starvation the weight of juveniles 

dropped to 0.108 ± 0.022 mg, but this difference was not significant (F1,14 = 0.67, p = 0.426). 

Furthermore, the weight of juveniles did not differ between diets (Between Subject Effect: 

F2,14 = 0.27, p = 0.770). Survival of juveniles of the second eggsac ranged between 5 and 11 

days and did not differ between diets either (F2,28 = 1.48, p = 0.244). Yet, survival of adults 

differed strongly between feeding treatments (Fig. 4.3): Females fed diets without F. candida 

(D; H; DH) survived until the end of the experiment, while females in treatments with 

F. candida (F; DF) had died after 61 days. Survival of females fed F. candida only (F) and a 
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mixed of D. melanogaster and F. candida (DF) did not differ between treatments 

(F1,28 = 1.49, p = 0.232).  
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Fig. 4.3:  Survival of female Pardosa lugubris fed different diets; D: single diet 

Drosophila melanogaster; H: single diet Heteromurus nitidus; F: single diet 
Folsomia candida; DH: mixed diet of D. melanogaster and H. nitidus; DF: 
mixed diet of D. melanogaster and F. candida. 

Dry weight of females at the end of the experiment differed strongly between diets 

(F4,70 = 12.75, p < 0.0001). Females fed diets containing F. candida were less heavy 

compared to the other feeding treatments, with females fed D. melanogaster only (D) being 

the heaviest (Fig. 4.4). 
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Fig. 4.4:  Dry weight (±±±± SD) of female Pardosa lugubris fed different diets. (For legend 
see Fig. 4.3) 
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C:N ratio and stable isotopes 

The carbon-to-nitrogen (C:N) ratio of females differed significantly between treatments 

(F5,12 = 4.39, p = 0.0167). In females fed D. melanogaster only (D) it was highest, whereas in 

those fed F. candida only (F) and a mixed diet of D. melanogaster and H. nitidus (DH) it was 

lowest (Fig. 4.5). The C:N ratio of juveniles of the first eggsac did not differ between diet 

treatments (F4,9 = 0.30, p = 0.8684). Differences in C:N ratios calculated between females and 

juveniles of the second eggsac did not differ between feeding treatments either (F2,6 = 3.41, 

p = 0.1025). In contrast, starved juveniles of the second eggsac had significantly lower C:N 

ratios compared to those that had just dispersed from their mothers (Within Subjects Effect: 

F1,6 = 45.99, p = 0.0005) (Fig. 4.5), while C:N ratios did not differ between feeding treatments 

(Between Subjects Effect: F1,6 = 0.46, p = 0.6536).  
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Fig. 4.5:  C:N ratios (±±±± SD) of female Pardosa lugubris and juvenile wolf spiders of the 
first (F1) and the second eggsac (F2), as well as starved juveniles of the 
second eggsac (F2*) as affected by different diets. (For legend see Fig. 4.3) 

� 13C ratios of females fed in the laboratory differed strongly between feeding treatments  

(F5,12 = 25.28; p < 0.0001). While � 13C signatures of females kept on C3 diet (H; F) and on a 

mixed diet of D. melanogaster and F. candida (DF) did not differ significantly from the initial 

signature, females fed D. melanogaster only (D) and a mixed diet of D. melanogaster and 

H. nitidus (DH) were enriched in 13C by 7.31 and 2.52 ‰, respectively (Fig. 4.6). Feeding 

treatments also affected � 15N ratios of females (F5,12 = 6.85, p = 0.003). Females fed a mixed 

diet of D. melanogaster and F. candida (DF) were significantly depleted in 15N by 2.32 ‰ 

compared to the initial signature, while females of other feeding treatments did not differ 

from the initial signature (Fig. 4.7).  
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Fig. 4.6:  � 13C ratios (±±±±SD) of female Pardosa lugubris and juvenile wolf spiders of the 
first (F1) and the second eggsac (F2), as well as starved juveniles of the 
second eggsac (F2*) as affected by different diets. � 13C ratios of prey are 
indicated by horizontal lines. (For legend see Fig. 4.3) 

In general, females were enriched in 13C and 15N as compared to their first offspring (1st 

eggsacs; Fig. 4.6 & 4.7) and stable isotope signatures of these juveniles did not differ between 

diets (� 13C: F4,9 = 0.99, p = 0.4581; � 15N: F4,9 = 1.12, p = 0.4050). In contrast, enrichment in 
13C of juveniles of the second eggsacs differed between feeding treatments (F2,6 = 9.48, 

p = 0.139). Juveniles of females fed D. melanogaster only (D) and a mixed diet 

D. melanogaster and H. nitidus (DH) were similarly enriched in 13C by 2.65 ‰ and 2.47 ‰, 

respectively, while juveniles of females fed H. nitidus only (H) were slightly depleted by 

0.97 ‰ (Fig. 4.6).  
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Fig. 4.7:  � 15N ratios (±±±±SD) of female Pardosa lugubris and juvenile wolf spiders of the 
first (F1) and the second eggsac (F2), as well as starved juveniles of the 
second eggsac (F2*) as affected by different diets. � 15N ratios of prey are 
indicated by horizontal lines. (For legend see Fig. 4.3) 
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Juveniles of the second eggsacs were generally enriched in 15N and the enrichment did not 

differ between treatments (F2,6 = 2.70, p = 0.146), even though it was somewhat more 

pronounced in diets containing H. nitidus (Fig. 4.7). Starvation affected � 13C ratios of second 

instar juveniles (2nd eggsacs) differently (starvation x food interaction: F2,6 = 5.82, p = 0.039). 

Starved juveniles of females fed D. melanogaster only (D) were slightly depleted in 13C, 

while those of females fed diets containing H. nitidus (H; DH) were slightly enriched in 13C 

(Fig. 4.6). � 15N ratios were also affected by starvation (F1,6 = 14.91, p = 0.008); starved 

juveniles were uniformly enriched in 15N compared to those that had just left their mother 

(Fig. 4.7).  
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III.5 Cannibalism 

Cannibalism among second instar juveniles 

Per capita mortality rate of juvenile spiders increased with time (F5,68 = 200.14, p < 0.0001; 

Fig. 5.1). Presence of alternative prey strongly decreased per capita mortality (F1,72 = 282.33, 

p < 0.0001); the effect increased during the first 12 days and then remained constant (time x 

prey interaction; F5,68 = 38.69, p < 0.0001). After 18 days per capita mortality of juveniles in 

treatments without alternative prey reached 95 %, while in treatments with alternative prey it 

was only 46 %. At higher density the mortality was significantly increased (F1,72 = 6.77, 

p = 0.0113), but this tended to be more pronounced in treatments with alternative prey 

(alternative prey x density interaction; F1,72 = 3.34, p = 0.0717; Fig. 5.1).  
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Fig. 5.1:  Cumulative per capita mortality of juvenile spiders (±±±± SD) as affected by 
habitat structure (simple, complex), density (low, high) and prey availability 
(without, with Heteromurus nitidus) during 18 days. 

Presence of alternative prey resulted in a significantly increased body weight of spiderlings at 

the end of the experiment (F1,52 = 86.56, p < 0.0001; Fig. 5.2). However, the increase tended 

to be more pronounced at low density and complex habitat structure (habitat structure x 

density x alternative prey interaction; F1,52 = 3.64, p = 0.0619). At low density without 

alternative prey, spiderlings in complex habitat structure were almost twice as heavy as those 

in simple habitat structure, while at high density without alternative prey weights were similar 

regardless of habitat structure. 
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Fig. 5.2:  Weight of juvenile spiders (+ SD) as affected by habitat structure (simple, 

complex), density (low, high) and prey availability (without, with 
Heteromurus nitidus) after 18 days. 

 

Cannibalism between females and juveniles 

Mortality of spiderlings was high after the first three days and ranged between 60 % (simple 

habitat structure with alternative prey) and 90 % (simple habitat structure without alternative 

prey) (Fig. 5.3). After 11 days only 4 out of 320 spiderlings had survived. Generally, 

mortality of spiderlings increased significantly from day 3 to day 5 (F1,36 = 46.10, p < 0.0001; 

Fig. 5.3). Only in the simple habitat structure treatment the absence of alternative prey 

significantly increased mortality of juvenile spiders (habitat structure x alternative prey 

interaction; F1,36 = 12.22, p = 0.0013).  
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Fig. 5.3:  Cumulative per capita mortality of juvenile spiders (+ SD) in presence of one 

adult female as affected by habitat structure and alternative prey 
(Drosophila melanogaster) after 3 and 5 days. 
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At the end of the experiment (after 11 days) mortality of females in treatments without 

alternative prey ranged between 60 and 70 %. In the alternative prey treatments all females 

survived with some even producing eggsacs. Without alternative prey, mortality of females 

increased during the experiment, but females died earlier in the complex habitat structure 

treatment: after 7 days 50 % of females had died in the complex habitat structure, while in the 

simple habitat structure all females were still alive (G1,20 = 7.78, p < 0.05). After 9 days 60 % 

of females in the complex habitat structure had died, while in the simple habitat structure only 

10 % were dead (G1,20 = 5.30, p < 0.05). At the end of the experiment (after 11 days) 

mortality was similar in simple and complex habitat structure treatments without alternative 

prey.  

Generally, alternative prey caused an increase in biomass of females (F1,23 = 34.52, 

p < 0.0001) (Fig. 5.4). However, the differences in weight were more pronounced in the 

complex habitat structure due to the decline in body weight in the complex structure treatment 

without alternative prey (significant alternative prey x habitat structure interaction; 

F1,23 = 16.93, p = 0.0004).  
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Fig. 5.4:  Differences in weight of female spiders before and at the end of the 

experiment (±±±± SD) as affected by habitat structure (simple, complex) and 
availability of alternative prey (without, with Drosophila melanogaster). 
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III.6 IGP 

Mortality of P. palustris increased during the experiment (Table 6.1; Fig. 6.1), it was highest 

at simple habitat structure without alternative prey. Generally, mortality of second instar 

P. palustris was affected by the availability of alternative prey as well as the interaction of 

alternative prey and habitat structure (Table 6.1).  

 

Table 6.1: Within and between subjects effects of a repeated measures GLM; influence 
of habitat structure (simple; complex) and alternative prey (absence; 
presence) on mortality of P. palustris. 

  treatment Df 
model 

Df 
error 

F  p 

structure 1 35 0.07 0.7889 
alternative prey 1 35 23.58 < 0.0001 

between 
subjects 
effects structure*alternative prey 1 35 4.96 0.0352 

time 6 210 102.16   < 0.0001 
time*structure 6 210 0.67 0.6766 
time*alternative prey 6 210 11.47   < 0.0001 

within 
subjects 
effects 

time*structure*alternative prey 6 210 0.70 0.6475 
 

The effect of alternative prey changed with time: during the first 6 days, absence of 

alternative prey increased mortality of P. palustris only at simple habitat structure (prey x 

habitat structure interaction), while after 8 days, mortality increased also at complex habitat 

structure without alternative prey (Table 6.1; Fig. 6.1).  
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Fig. 6.1:  Cumulative mortality (±±±± SD) of juvenile Pardosa palustris as affected by 
habitat structure (S1: simple structure; S2: complex structure) and 
availability of alternative prey during two weeks. Asterisks indicate 
significant differences between time intervals. For further statistics of 
interactions see text. 
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After 10 days, mortality of juvenile P. palustris increased strongly when alternative prey was 

missing (Fig. 6.1). In treatments with IGP and alternative prey all individuals of A. cuneata 

survived until the end of the experiment. Without prey, A. cuneata started to die after 10 days 

and mortality was pronounced in simple habitat structure (G1,20 = 6.97, p < 0.01) (Fig. 6.2).  
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Fig. 6.2:  Cumulative mortality of starving juvenile Alopecosa cuneata as affected by 

habitat structure (S1: simple structure; S2: complex structure). Asterisks 
indicate significant differences between treatments.  

 

Bodyweight of A. cuneata also differed between treatments (F7,69 = 60.31, p < 0.0001; 

Fig. 6.3). In treatments with IGP and in those with alternative prey weight gain of spiders was 

significantly increased from 1.12 mg to 2.02 mg (F1,69 = 50.70, p < 0.0001) and from 0.39 mg 

to 2.69 mg (F1,69 = 357.27, p < 0.0001), respectively. In treatments with alternative prey the 

increase in body weight was more pronounced at complex habitat structure (habitat structure 

x alternative prey interaction; F1,69 = 8.88, p = 0.0040) and also when both alternative prey 

and IGP were available (habitat structure x prey x IGP interaction; F1,69 = 4.58, p = 0.0359).  
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Fig. 6.3:  Weight differences (±±±± SD) of juvenile Alopecosa cuneata as affected by IGP, 
alternative prey (-P: without prey; +P: with prey) and habitat structure (S1: 
simple structure; S2: complex structure). 

Even though juvenile P. palustris seemed to gain weight in treatments with alternative prey, 

changes in body weight of individual spiderlings within treatments were very high, resulting 

in high standard deviations in simple habitat structure with alternative prey (0.23 ±0.43 mg) 

and in complex structure with alternative prey (0.22 ± 0.25 mg). Consequently, differences 

between treatments were not significant (F2,19 = 0.80, p = 0.4634).  

 

C:N ratio and stable isotopes 

The C:N ratio of juvenile A. cuneata was significantly increased when alternative prey was 

available (F1,44 = 59.34, p < 0.0001) (Fig. 6.4). Furthermore, the C:N ratio of juvenile 

P. palustris was significantly increased at complex habitat structure without alternative prey 

as compared to complex habitat structure with alternative prey (F2,19 = 4.14, p = 0.0267) 

(Fig. 6.4).   
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Fig. 6.4:  C:N ratio (±±±± SD) of juvenile Alopecosa cuneata and Pardosa palustris as 
affected by IGP and/or alternative prey (-P: without prey; +P: with prey). 
Initial C:N ratios of A. cuneata, P. palustris and their prey Drosophila 
melanogaster are indicated by horizontal lines. 

� 13C ratios of A. cuneata varied with the availability of intraguild prey (P. palustris) and 

alternative prey (D. melanogaster) (Fig. 6.5a). While feeding on juvenile P. palustris resulted 

only in slightly higher � 13C ratios (� 13C = 0.06 ‰; F1,44 = 21.32, p < 0.0001), feeding on 

alternative prey resulted in strongly increased � 13C ratios (� 13C = 98.14 ‰; F1,44 = 2526.90, 

p < 0.0001) and the increase was most pronounced without intraguild prey (F1,44 = 24.12, 

p < 0.0001). Feeding on intraguild prey (P. palustris) and alternative prey (D. melanogaster) 

affected � 15N ratios of A. cuneata differently (Fig. 6.5b). While spiderlings feeding on 

D. melanogaster were slightly depleted in 15N (� 15N = -0.85 ‰; F1,44 = 5.82, p = 0.0201) 

spiderlings feeding on P. palustris were enriched (� 15N = 0.63 ‰; F1,44 = 11.45, p = 0.0015) 

and the increase was most pronounced without alternative prey (F1,44 = 6.15, p = 0.0170). 

� 15N ratios of P. palustris did not differ between treatments (F2,19 = 1.93, p = 0.1713) 

(Fig. 6.5b). In contrast, � 13C ratios of P. palustris were significantly increased in treatments 

with alternative prey (F2,19 = 5.95, p = 0.0098) and differed strongly within these treatments 

resulting in pronounced standard deviations (Fig. 6.5a). � 13C ratios were positively correlated 

with the body weight of juvenile P. palustris at the end of the experiment at simple habitat 

structure with alternative prey (r² = 0.72, F1,4 = 10.41, p = 0.0320) (Fig. 6.6), but not at 

complex habitat structure with alternative prey (r² = 0.20, F1,4 = 1.02, p = 0.3702). Habitat 

structure did not affect C:N ratios or stable isotope signatures of A. cuneata and P. palustris 

(Fig. 6.4 & 6.5). 
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Fig. 6.5:  � 13C ratio (±±±± SD) (a) and � 15N ratio (±±±± SD) (b) of juvenile Alopecosa cuneata 
and Pardosa palustris as affected by IGP, alternative prey (-P: without prey; 
+P: with prey) and habitat structure (S1: simple structure; S2: complex 
structure). � 15N ratio of Drosophila melanogaster is indicated by a 
horizontal line. 

 

y = 43.434x + 4.0548
R2 = 0.7225

0
10
20
30
40
50
60
70
80
90

0.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0
freshweight [mg]

C
 [

‰
]

dd dd
13

 

Fig. 6.6:  Correlation between weight of juvenile Pardosa palustris and � 13C ratio at 
simple habitat structure with alternative prey. 

 

 



Discussion  76 

 

IV Discussion 

IV.1 Phenology 

I refrained from presenting data on activity density of juveniles, since the interpretation of 

pitfall trap catches of individuals with limited walking distances in complex habitat structure 

should be handled with great care (MELBOURNE 1999; HOLLAND &  SMITH 1999; STANDEN 

2000). Consequently, probability of catches with pitfall traps of small spiders in a very 

heterogeneous habitat, such as the grasslands of the former airfield, presumably is very low. 

Both wolf spider species seem to be univoltin and complete their development within one 

year. Furthermore, in both spiders male individuals die shortly after mating and consequently 

disappear in June. Nevertheless, phenologies differ strongly between P. palustris and 

A. cuneata. The bigger spider A. cuneata overwinters predominately as subadult spiders and 

they mature already in April, which is why A. cuneata reproduces somewhat earlier than the 

smaller wolf spider. As in P. palustris juvenile stages overwinter and those mature not before 

May, reproduction is somewhat delayed. Probably, the bigger A. cuneata is a superior 

competitor limiting prey availability for the smaller spider resulting in prolonged 

development of P. palustris. 

The fact, that female A. cuneata carrying eggsacs could not be captured with pitfall traps is 

not surprising, since Alopecosa retreats to a web burrow after eggsac production and reduces 

activity (ROBERTS 1995; CHAPTER II.6). Yet, female A. cuneata leave their burrow from time 

to time to expose the eggsac to the sun and was observed occasionally during the field season 

2003 and 2005. Interestingly, during the prey addition experiment 2002 (CHAPTER III.2) 

female P. palustris with eggsacs were captured in August, suggesting the production of 

second eggsacs in the field. P. palustris is known to produce second eggsacs in grasslands, 

probably depending on resource availability and abiotic conditions (BAYRAM 2000).  

Reliable data on the occurrence of second eggsacs and accurate estimates for juvenile density 

in the field can only be derived from more time intensive methods such as mark and recapture 

studies and hand searching in the field. Nevertheless, using monthly pitfall trap catches during 

one field season yielded an overview of the life cycle of both P. palustris and A. cuneata and 

revealed clear differences between both coexisting species. The knowledge of the time of 

mating and reproduction was crucial for field and laboratory experiments that included 

A. cuneata and/or P. palustris.  
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IV.2 Prey Availability 

Effects of prey addition 

Detritivores: Abundances of Collembola were not affected by prey addition, indicating that 

either Collembola were not top-down controlled, or prey addition did not relax predation 

pressure. Despite the absence of effects on detritivore abundance, stable isotope signatures of 

Collembola changed in the prey addition treatment, i.e. E. nivalis and I. viridis were enriched 

in 15N. The fruit flies were cultivated on a medium rich in 15N (� 15N = 3.08 ‰) and the culture 

medium containing pupae and larvae of D. melanogaster was added to the plots together with 

adult flies to increase fruit fly density. Presumably, both Collembola species used the culture 

medium as a food resource. In contrast, as indicated by � 15N ratios L. cyaneus did not feed on 

this alternative resource. Collembola predominantly graze on fungi, but also ingest detritus, 

algae and in part even higher plants and other animals (MOORE et al. 1987; CHEN et al. 1995). 

Based on its 15N signature, SCHEU &  FALCA (2000) classified Lepidocyrtus spec. as secondary 

decomposer. For L. cyaneus very similar nitrogen isotope ratios were measured in this study 

confirming the earlier classification. Lower � 15N values of I. viridis and E. nivalis indicate 

that they directly feed on detritus and therefore function as primary decomposers.  

 

Herbivores: In general, densities and stable isotope signatures of herbivores were not affected 

by the presence of D. melanogaster. Yet, significant changes in the effect of prey addition on 

densities of juvenile Auchenorrhyncha between June and August occurred that depended on 

grazing. In June, juvenile leafhoppers were most abundant on sites with prey addition, 

indicating reduced predation pressure when alternative prey was available for predators. In 

August however, densities of juveniles declined strongly in all treatments except for the 

grazed treatment without additional prey. From June to August densities of juvenile 

Auchenorrhyncha decline since most species reproduce early in the summer (WALLUS 2002). 

In August, most of the vegetation has dried out and especially on the non-grazed sites, where 

the neophytic grass C. dactylon is most abundant, resource availability for Auchenorrhyncha 

is presumably low. The pronounced decline on grazed sites with additional prey suggests that 

predation pressure strongly increased from June to August especially when D. melanogaster 

was added. In August, juvenile spiders may have preyed on juvenile Auchenorrhyncha as 

indicated by the nearly significant negative correlation between the density of juvenile 

Auchenorrhyncha and juvenile spiders. However, density of spiderlings was not significantly 

increased on sites with additional prey.  
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Predators: Neither the density nor the fecundity of wolf spiders was affected by the addition 

of prey, which is in contrast to other studies (SPILLER 1992; CHEN &  WISE 1999; KREITER &  

WISE 2001). However, the addition of D. melanogaster significantly affected stable isotope 

signatures of predators proving that they were preying on D. melanogaster. Female 

P. palustris incorporated little nitrogen from D. melanogaster, but second instar juveniles 

were significantly enriched in 15N. Females invest most of the ingested nutrients into egg 

production (CHAPTER IV.4), suggesting that females substantially fed on D. melanogaster that 

was rich in 15N and transferred most of the ingested nitrogen into their offspring. Later instars 

of P. palustris were also enriched in 15N in the prey addition treatment, documenting 

predation of the spiderlings on D. melanogaster. However, the enrichment in 15N only 

occurred on grazed sites, indicating that spider predation on D. melanogaster was restricted to 

grazed sites. This is supported by a strong decrease in 13C in older juveniles on grazed sites 

with prey addition, with the � 13C signature approaching that of D. melanogaster. Even if 

alternative prey was provided, older spiderlings on non-grazed sites obviously preyed 

predominately on indigenous prey such as L. cyaneus, resulting in a similar � 13C signature to 

that of the springtail (� 13C = 0.36 ‰), but the low difference in � 15N signature 

(� 15N = 1.19 ‰) suggests that additional prey with lower � 15N signatures was consumed, too. 

Female A. cuneata also incorporated nitrogen from D. melanogaster, which was most obvious 

in August. In June however, second instar juveniles of A. cuneata were slightly enriched in 
15N and 13C on sites with additional prey reflecting the consumption of D. melanogaster (with 

increased � 15N signature) by female A. cuneata during egg production. The enrichment in 15N 

of second instar juveniles was lower compared to second instar juveniles of P. palustris, and 

juvenile A. cuenata were enriched in 13C instead of depleted, suggesting that female 

A. cuneata fed predominately on indigenous prey (with higher � 13C signature) during egg 

production. A. cuneata reproduces somewhat earlier than P. palustris (CHAPTER IV.1), which 

is why compared to P. palustris, A. cuneata had less time to prey on D. melanogaster before 

eggsac production. The enrichment in 15N of second instar juveniles of A. cuneata tended to 

be more pronounced on grazed sites, indicating enhanced success of females on grazed sites 

capturing D. melanogaster. Later instars of A. cuneata were also enriched in 15N, suggesting 

that D. melanogaster was included into their diet. Summarizing, both adult and juvenile 

spiders of P. palustris and A. cuneata fed on D. melanogaster that was added as alternative 

prey. Nitrogen isotope signatures of female P. palustris as well as nitrogen and carbon isotope 

signatures of later instars of P. palustris document that capturing D. melanogaster on grazed 

sites significantly exceeded that on non-grazed sites. Since litter is accumulating on sites 
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without sheep grazing (MCINTOSH et al. 1997; XI &  WITTIG 2004), habitat structure is 

increased, providing shelter for D. melanogaster from predation by wolf spiders. 

Ground beetle abundance did not react to prey addition, even though positive effects of 

additional prey on densities of Carabidae are known (HALAJ &  WISE 2002). Presumably, prey 

addition started too late to increase survival of beetle larvae. Therefore, beneficial effects of 

prey addition could have been detected in the next generation only. However, changes in 

stable isotope composition documented that C. cinctus included D. melanogaster into its diet 

in June, resulting in an increase in � 15N and a decrease in � 13C signatures. In August, 

D. melanogaster did not contribute to its diet, as indicated by similar stable isotope signatures 

in plots with and without additional prey. In June, T. obtusus was significantly depleted in 13C 

and seemed enriched in 15N when additional prey was provided, suggesting predation on 

D. melanogaster.  

The fact that D. melanogaster was integrated into the diet of the predators suggests that 

Collembola populations of the studied grassland were not top-down controlled, since 

Collembola densities were not increased by prey addition. This is in contrast to a study in a 

forest ecosystem, where densities of springtails were controlled by generalist predators 

(WISE 2004).  

 

Effects of grazing 

Detritivores: In June, densities of the primary decomposers E. nivalis and I. viridis were 

strongly increased on grazed sites, corroborating findings from FERGUSON &  JOLY (2002). 

Grazing is known to change the abundance of soil biota including Collembola (BARDGETT et 

al. 1993; BARDGETT et al. 1998; DOMBOS 2001), since litter quality and habitat characteristics 

change due to grazing (SEMMARTIN et al. 2004). Food quality of C4 plants is generally low 

due to a high content of cellulose and a low content of nitrogen (CASWELL et al. 1973; 

HADDAD et al. 2001). Since abandonment of grazing increased the density of the C4 grass 

C. dactylon and negative effects of C. dactylon on springtail densities have been observed 

(RICKERS 2002), resource availability for Collembola presumably was higher on grazed sites. 

Density of the secondary decomposer L. cyaneus was not affected by grazing, but springtails 

were strongly enriched in 13C on sites without grazing in August. This indicates that 

L. cyaneus used fungi growing on litter of C. dactylon as a resource on the non-grazed sites in 

August where the grass was most abundant. This suggests that feeding on fungi secondary 

decomposers are able to exploit food resources that are unpalatable for primary decomposers. 

Both E. nivalis and L. cyaneus were not enriched in 13C in August, and generally depleted on 
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grazed sites confirming avoidance of litter of C. dactylon. Furthermore, E. nivalis and 

I. viridis were enriched in 15N on grazed sites. Legumes benefit from sheep grazing on the 

studied grassland resulting in higher abundance compared to non-grazed sites (STORM &  

BERGMANN 2004). Consequently, primary decomposers, such as E. nivalis and I. viridis, were 

enriched in 15N on grazed sites, since the � 15N signature of legumes approaches that in air due 

to their symbiosis with nitrogen-fixers (PETERSON &  FRY 1987; HANDLEY &  SCRIMGEOUR 

1997).  

 

Herbivores: Grazing generally did not affect densities of herbivores. This is in contrast to 

studies that document negative impacts of grazing on phytophagous insects (HUNTLY 1991; 

KRUESS &  TSCHARNTKE 2002; NICKEL &  HILDEBRANDT 2003). Furthermore, stable isotope 

signatures in A. ribauti and D. stylata were not affected by grazing indicating similar 

availability of resources on both the grazed and the non-grazed sites. A. ribauti is known to 

feed on Plantago (Plantaginaceae) and legumes (BIEDERMANN &  NIEDRINGHAUS 2004). Since 

densities of P. lanceolata were very low at the study sites (personal observation), A. ribauti 

likely predominately fed on legumes, which is confirmed by stable isotope signatures;  � 15N 

signature of A. ribauti was higher than that of other phytophagous insects and close to that of 

legumes. D. stylata is known to feed on Festuca ovina (Poaceae) (BIEDERMANN &  

NIEDRINGHAUS 2004), a grass that reaches between 2 – 15 % of ground cover at the study site 

(RICKERS 2002). Since stable isotope signatures of D. stylata were similar to those of F. ovina 

(WALLUS 2002), it is likely that D. stylata infact predominately fed on F. ovina.  

In contrast to A. ribauti and D. stylata, grazing significantly affected stable isotope signatures 

of juvenile leafhoppers and N. tipularius, which were depleted in 13C on grazed sites. Juvenile 

leafhoppers and N. tipularius obviously predominately fed on C3 grasses and ingested less 

carbon from C. dactylon on grazed sites. N. tipularius is a typical species of xeric grasslands 

feeding on grasses, Artemisia (Asteraceae) and Geranium (Geraniaceae) (SAUER 1996). The 

most abundant leafhopper J. obtusivalvis tended to be enriched in 15N on grazed sites. Since 

J. obtusivalvis feeds on Bromus erectus and Brachypodium pinnatum (BIEDERMANN &  

NIEDRINGHAUS 2004) and species of the genus Jassargus in general are rather specialised on 

grasses (BIEDERMANN &  NIEDRINGHAUS 2004), feeding on legumes (with high � 15N 

signature) is unlikely. Grazing affects plant productivity and nutrient content (MOORE &  

CLEMENTS 1984; SEASTEDT 1985; HOLLAND et al. 1992) and J. obtusivalvis may have fed on 

grasses that became enriched in 15N due to grazing.  � 13C signatures in A. interstitialis were 

strongly decreased in grazed plots. Without grazing, A. interstitialis obviously predominately 
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fed on C. dactylon in June approaching the signature of the C4 grass. On grazed sites, 

A. interstitialis switched to feeding on C3 grasses presumably due to the lower biomass of 

C. dactylon. A. interstitialis is known to feed on tall grasses, such as Festuca and Elymus 

repens (BIEDERMANN &  NIEDRINGHAUS 2004). The dietary switch to C. dactylon on non-

grazed sites is surprising since E. repens reached similar abundance to C. dactylon at these 

sites two years before (RICKERS 2002), but probably densities of C. dactylon have increased 

in 2002. In August, however, A. interstitialis also switched to a C3 plant diet on non-grazed 

sites, presumably, because C. dactylon dried in early August.  

 

Predators: Abundances of ground beetles were generally not affected by grazing. This is in 

contrast to the observed negative impact of grazing on beetle communities at other sites 

(DENNIS et al. 1997; GARDNER et al. 1997). Obviously, beetle species of the studied xeric 

grassland are adapted to disturbance, such as grazing by sheep. However, grazing affected 

stable isotope signature of beetles; C. cinctus was depleted in 13C indicating that its prey fed 

on C. dactylon to some extent. � 15N and � 13C signatures of T. obtusus suggest predation on 

Collembola by T. obtusus. Collembola are an important prey for Carabidae 

(HENGEVELD 1980; POLLET &  DESENDER 1987) and the most abundant springtail L. cyaneus 

is known to be of high food quality for the ground beetle Bembidion lampros (BILDE et 

al. 2000).  

Wolf spider populations benefited from grazing resulting in enhanced eggsac production of 

P. palustris and enhanced densities of A. cuneata and P. palustris on grazed sites. This is in 

contrast to studies that document negative effects of grazing on spider communities due to 

impoverished vegetation structure and lower height of plants (GIBSON et al. 1992; DENNIS et 

al. 2001). As the grassland is grazed only moderately on a rotational basis, beneficial effects 

of grazing and abundant prey from the detritus food web may override potential negative 

direct (e.g. trampling) and indirect effects (e.g. reduction of the herbivore community) of 

grazing. Furthermore, both A. cuneata and P. palustris often occur on open grasslands 

(ROBERTS 1995) and ambush predators known to be more abundant in patchier vegetation 

caused by moderate grazing (DENNIS et al. 2001). Consequently, wolf spiders are probably 

adapted to heterogeneous habitats created by grazing that also provide beneficial 

microclimatic conditions for egg development.  

In P. palustris, females as well as later instars were enriched in 15N on grazed sites and later 

instars were additionally depleted in 13C on grazed sites. Presumably, Collembola represented 

a major food resource for P. palustris showing the same pattern of enrichment in 15N and 



Discussion  82 

 

depletion in 13C on grazed sites. Low 15N signatures of second instar juveniles on grazed sites 

without prey addition also indicate that female P. palustris predominately fed on Collembola 

during egg production. In contrast to P. palustris, female A. cuneata fed little on Collembola 

as indicated by dissimilar stable isotope signatures. Also, stable isotope signatures of second 

instar juveniles of A. cuneata were not affected by grazing. The size range of prey consumed 

by spiders depends on spider size (NENTWIG &  WISSEL 1986) with larger spiders preying on 

larger prey. Since insect herbivores represent larger prey compared to Collembola, herbivores 

presumably become more important prey for adult A. cuneata than detritivores. In contrast, 

later instars of A. cuneata were enriched in 15N on grazed sites, suggesting that Collembola 

formed a substantial part in their diet, and this is supported by � 13C signature on grazed sites 

without alternative prey. This is in line with other studies documenting that spider populations 

are subsidized by the detrital food web (TURNBULL 1966; CHEN &  WISE 1999; AGUSTI et 

al. 2003) and stressing the importance of Collembola for juvenile spiders (MCNABB et al. 

2001). Furthermore, an increase in detritivore densities may foster biological control of 

herbivorous insects by spiders (SETTLE et al. 1996; WISE et al. 1999; WISE et al. in review), 

but this was not the case on the studied xeric grassland site. Probably, detritivores and 

herbivores were rather limited by density independent factors such as precipitation (LENSING 

et al. 2005) that was unusually high on the xeric grasslands in 2002 (personal observation).  

NEILSON et al. (2002) documented an enrichment of 15N in beetles and spiders due to grazing 

and suggested that belowground food chains were longer on grazed sites. Unfortunately, 

neither stable isotope data of the most common plants, nor of microfauna or potential prey of 

ground beetles and spiders were presented. Thus, essential data on the food web is missing. 

My study clearly demonstrated that effects of grazing strongly depend on plant composition 

that account for the enrichment in 15N, since legumes (rich in 15N) were more abundant on 

grazed sites. In conclusion, inferring changes in chain length of belowground food webs from 

changes in 15N of aboveground generalist predators is impossible if important data on the food 

web components are neglected. 
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IV.3 Allochthonous Resources 

As expected, arthropods reflected the gradient from the shoreline to the foredune with 

decreasing number of crustaceans and increasing number of insect species and density. This is 

in line with other studies (DAHL 1952; MCLACHLAN 1990; HAYNES &  QUINN 1995; 

RICHARDSON et al. 1999). Animals formed discrete communities on the beach and the 

foredune and only few taxa were part in both communities. 

 

Beach Community 

Amphipods were most abundant in the traps closest to the shoreline, with only the exception 

of the sandhopper Talorchestia 1 that was found at the top of the foredune. In general, 

crustaceans dominated the food web in numbers, and species specific diet of amphipod and 

isopod taxa could be documented by stable isotope analysis. Talorchestia 2 forages for small 

particulate matter, such as diatoms, on the sand during night (JOHNSTON et al. 2005). 

Presumably, diatoms at Marion Bay were enriched in 15N and depleted in 13C compared to 

kelp resulting in increased � 15N signatures and decreased � 13C signatures of Talorchestia 2. 

Similarly, A. thompsoni was enriched in 15N and depleted in 13C as compared to kelp, 

suggesting that the isopod fed on diatoms, too. In contrast, Talorchestia marmota is known to 

burrow beneath the kelp patches, emerging at night to feed on wrack (JOHNSTON et al. 2005). 

Feeding directly on kelp is documented by a high proportion of carbon derived from kelp. 

Similarly, the amphipod Orchestia spec. and the isopod A. bipleura depend on kelp as major 

resource as reflected in high proportions of carbon derived from kelp. Since juvenile 

amphipods could not be identified to species level, a mixture of individuals was analysed and 

consequently produced a mixture of the stable isotope signatures of adults (T. marmota & 

Talorchestia 2). In general, kelp feeders had similar � 15N signatures compared to their diet, 

only T. marmota was slightly depleted in 15N. Most crustaceans excrete ammonia (NH3) and 

lack the biosynthetic processes of most terrestrial animals during which the lighter nitrogen 

isotope (14N) is preferentially metabolised and finally excreted (FANTLE et al. 1999; 

VANDERKLIFT &  PONSARD 2003). In addition, detritivores show only little fractionation of 15N 

(VANDERKLIFT &  PONSARD 2003) explaining the lack of fractionation in kelp feeding 

amphipods and isopods. This, however, is in contrast to a study on Talitrus saltator 

(Ampipoda, Talitridae) where trophic fractionation in 15N of 3.4 ‰ was assumed to document 

feeding on stranded algae (ADIN &  RIERA 2003). ADIN &  RIERA (2003) sampled plants after 

recent deposition. However, the nutritional value of algae changes during decomposition 

(BUCHSBAUM et al. 1991) and signatures of decaying plants become enriched in 15N compared 
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to fresh plant material (HANDLEY &  SCRIMGEOUR 1997). Presumably, algae become enriched 

in � 15N during decomposition and T. saltator feeding on decaying plant material is similarly 

enriched in 15N contradicting a trophic level fractionation of 3.4 ‰. In general, amphipods are 

regarded as the major agent in wrack degradation followed by bacteria, while other herbivores 

and detritivores at the drift line play only a minor part (GRIFFITHS et al. 1983; COLOMBINI et 

al. 2000). Stable isotope analyses in this study support the importance of amphipods (e.g. T.  

marmota and Orchestia spec.) as kelp feeders, but also show that isopods (e.g. A. bipleura) 

may be equally important, being smaller than the amphipods, but more abundant. 

Most important terrestrial predators on the beach were T. oraria (Lycosidae) and Cafius 2 

(Staphylinidae). The large wolf spider is a common predator on beaches of Australia 

(FRAMENAU et al. in press) and similarly beetles of the genus Cafius are commonly found in 

the littoral zone of sandy beaches (CHELAZZI et al. 1983; COLOMBINI et al. 1998, 2000). 

T. laticeps (Geophilomorpha) is the only centipede known for Tasmanian beaches and can be 

found under stones and in seaweed wrack at, or just below the high tide mark 

(MESIBOV 2004). Predators on the beach (T. laticeps, Cafius 2 and T. oraria) were enriched 

between 3.6 and 6.47 ‰ compared to the baseline of kelp. This is in line with a trophic level 

fractionation of 2.3 – 3.4 ‰ postulated in other food web studies (PETERSON &  FRY 1987; 

POST 2002; MCCUTCHAN et al. 2003) and suggests that predators comprise two trophic levels 

at Marion Bay with T. oraria being the top predator. However, calculations in IsoSource 

revealed that T. oraria predominately fed on Talorchestia 2 with a high � 15N signature 

documenting that T. oraria is also a first order predator. Furthermore, analyses documented 

that T. laticeps predominately fed on a mixture of T. marmota and A. bipleura. Thus, 

Orchestia and juvenile amphipods seem to be not important as prey for T. laticeps. Finally, 

Cafius 2 seemed to prey predominately on A. bipleura, which was unexpected, since stable 

carbon isotope signatures were dissimilar. For antlions, analysis in IsoSource suggested that 

both animals from the terrestrial food web (e.g. Myrmecinae) and the marine food web (e.g. 

T. marmota) belonged to their diet. Mass tolerance had to be increased to ± 0.5 % for antlions 

to produce feasible solutions suggesting that not all potential sources have been identified. 

Probably, other ants also contributed to antlion diet. Finally, high � 15N signatures of 

P. littoralis (Coleoptera) and Scatophagidae 1 (Diptera) indicate that these species 

predominately fed on decaying animal tissue and faeces, respectively, while P. littoralis was 

more strongly linked to the terrestrial food web than Scatophagidae 1 as documented by low 

proportions of carbon derived from kelp and sea grass in P. littoralis. Both larvae and adult 

Phycosecis are known to feed on carrion (BEUTEL &  POLLOCK 2000). Presumably, the beetles 
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fed on bird carcasses that were frequently encountered on the beach (personal observation), 

where P. littoralis reached high abundance.  

Since I used an average carbon isotope signature of various plant species to calculate 

proportions of carbon derived from kelp, obtained data can be regarded as rough estimates for 

the importance of kelp in the diet of animals, only. In general, crustaceans as well as most 

predators and coprophages had high proportions of carbon derived from kelp indicating a 

close link to the allochthonous resource. P. littoralis (Coleoptera) and Myrmeleonidae had 

distinctly lower proportions of carbon from kelp suggesting that they were linked to both, the 

foredune and the beach food web.  

Expectations about feeding preferences of predators derived from a preliminary look at stable 

isotope data were not uniformly supported by analysis in IsoSource. Thus, presented data 

emphasize the importance of comprehensive data on potential prey organisms and the need 

for detailed analyses of stable isotope data with mixing models as soon as more than one 

potential source is concerned.  Both, detailed data and thorough analysis were crucial for the 

interpretation of stable isotope data and feeding links. 

 

Foredune Community 

Insects dominated the foredune community and only the amphipod Talorchestia 1 occurred 

exclusively on the foredune. This species is regularly found among strandline vegetation and 

suggested to feed on decaying plant material (RICHARDSON et al. 1999). A proportion of 

27.01 % of carbon was calculated to derive from kelp in this species, which is surprising since 

the amphipod is restricted to the foredune. Consequently, carbon also must have derived from 

feeding on plant litter being enriched in 13C as compared to the average of the dune 

vegetation. In general, data on proportions of carbon in animals on the foredune derived from 

kelp presumably overestimated the contribution of kelp to carbon in animals, since average 

carbon isotope signatures of various plant species from the foredune were used for 

calculations. � 13C signatures of plants on the foredune span over a range of 3.53 �  units and 

therefore calculations rather reflect the dependence of animals on plants with less negative 

� 13C signatures other than kelp. For example Polydesmidae 1 (Diplopoda) had a calculated 

proportion of carbon from kelp of 37.14 %. But negative � 15N signatures clearly document 

that the diplopods cannot depend on kelp (with high � 15N signature) as a resource. Diplopoda 

are detritivores feeding on fungi and litter (MESIBOV 2004). Unfortunately, only fresh plant 

material was sampled and thus I can only speculate that Polydesmidae fed on a mixture of 

decaying litter including I. nodosa and C. rossii, plants with the most similar stable isotope 
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signatures. However, Diplopoda still seem to be depleted in 15N as compared to litter, which 

is in line with findings from a German forest (SCHEU &  FALCA 2000), but mechanisms 

resulting in strong depletion in 15N in diplopods are poorly understood.  

According to � 15N signatures, the predator assemblage on the foredune consisted of the 

scorpion Cercophonius squama, velvet mites (Trombidiidae), ants (Iridomymex spec. and 

Myrmecinae spec.), and the beetle Conoderus australasiae (Elateridae). C. squama is the only 

scorpion found on Tasmania and a very common species on mainland Australia (MARGULES 

et al. 1994). Elaterid larvae are well known pests on plant roots and adult beetles are 

omnivorous or predaceous (HARDE &  SEVERA 1988), which is supported by high � 15N 

signatures in C. australasiae. Both dark beetles (Tenebrionidae) Cellibe costasco and Edylius 

canescens fed on decaying material, while C. costasco presumably rather depended on plant 

and E. canescens rather on animal derived material as indicated by � 15N signatures. 

Anthicidae are known to live on detritus mostly feeding on dead beetles (HARDE &  

SEVERA 1988), which is supported by high � 15N signatures.  

Since fractionation in detritivores and nitrogen limited herbivores is controversial 

(MCCUTCHAN et al. 2003; VANDERKLIFT &  PONSARD 2003), feeding links of detritivores and 

herbivores on the foredune were impossible to assess with regard to the availability of 

multiple plant resources. However, two groups of detritivores and herbivores could be 

distinguished. The first group contains animals (Heteronyx spec., Cryptorhynchinae 1 and 

Talorchestia 1) that were only little enriched in 15N from the average � 15N signature of plants, 

while the second group, including springtails (Entomobryidae), weevils (Mandalotus 9 & 

Timareta 6) and an elaterid (H. minor), was  somewhat more enriched in 15N. Diet of animals 

in the first group likely contains C. rossii (Aizoaceae), L. arboreus (Fabaceae), P. esculentum 

(Dennstaedtiaceae) and A. novae-zelandiae (Rosaceae), plants with an average � 15N signature 

of -1.67 ‰. For animals in the second group, A. arenaria (Poaceae), I. nodosa (Cyperaceae) 

and R. candolleana (Chenopodiaceae) with an average � 15N of 1.12 ‰ were likely more 

important. 

In general, stable isotopes document that that the community on the foredune was rather 

isolated from the beach community and lacked allochthonous input from the beach. This is in 

contrast to other studies that documented the importance of allochthonous resources for 

terrestrial arthropods (POLIS &  HURD 1995; HENSCHEL et al. 2001; BASTOW et al. 2002). 
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IV.4 Food Quality 

Relation of female size to juvenile and clutch size 

Several studies documented that clutch size in spiders increases with female biomass 

(KESSLER 1973; MARSHALL &  GITTLEMAN 1994; BROWN et al. 2003) and that clutch size 

reflects food availability of females (BRICEÑO 1987; WALKER et al. 2003). Our results support 

these findings in P. lugubris as biomass of females and clutch size of the first eggsac were 

closely correlated. In contrast, correlation between female prosoma width and offspring 

number was weak, indicating that prosoma width is a measure for resource availability during 

growth and development of the females (MIYASHITA 1968), while total biomass of 

reproducing females is a measure for the resource availability during reproduction. There was 

no correlation between female biomass and spiderling biomass or clutch size and average 

spiderling biomass, indicating that spiderling biomass is rather constant and additional 

resources are invested in clutch size instead of egg size. This is in contrast to the theory of a 

size-number trade-off, i.e. the larger the eggs, the fewer eggs per eggsac (SMITH &  FRETWELL 

1974; SIMPSON 1995; BROWN et al. 2003). IIDA (2003) argues that the small within clutch 

variance is a tactic developed by females to reduce sibling cannibalism; our finding of small 

variance in width of juvenile prosoma supports this conclusion. Compared to the first clutch 

the number of juveniles in subsequent clutches is commonly reduced in lycosid spiders 

(EDGAR 1971; KESSLER 1973; BROWN et al. 2003).  

 

Effects of high food quality on females 

Females thrived on diets containing D. melanogaster and/or H. nitidus and uniformly 

reproduced. For juveniles of P. lugubris, D. melanogaster is only of medium food quality, 

since it does not allow development to the adult stage (OELBERMANN &  SCHEU 2002a). Yet, 

for adult females it was of high food quality, even higher than H. nitidus, as indicated by 

greater biomass and the fact that females produced eggsacs three days earlier than those fed 

H. nitidus only. Since the concentration of nitrogen in D. melanogaster was lower than that in 

H. nitidus, this indicates that food quality is not solely determined by nitrogen availability. 

Interestingly, there was no beneficial effect of the mixed diet of H. nitidus and 

D. melanogaster on female biomass and reproduction. This is in contrast to the finding of 

OELBERMANN &  SCHEU (2002a), where a mixed diet of D. melanogaster and H. nitidus 

resulted in enhanced rates of development and survival of juvenile P. lugubris. Obviously, 

juveniles represent a more sensitive life stage with more specific nutritional demands than 

adult spiders.  
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During more than two months of feeding of female P. lugubris on 13C enriched 

D. melanogaster in single and mixed diet with H. nitidus they incorporated the fruit fly 

carbon leading to an enrichment of 13C in the single diet by 6.55 ‰ and in the mixed diet by 

2.52 ‰. In the single diet this was equivalent to a replacement of 51 % of the body carbon of 

the females which was lower than expected. Low carbon incorporation might have resulted 

from the artificial diet of the prey. The importance of the preys’  food resources for predators 

has been documented (MAYNTZ &  TOFT 2001) and elemental composition influences the 

incorporation of dietary nitrogen and carbon isotopic signatures (PHILLIPS &  KOCH 2002; 

PEARSON et al. 2003; HAUBERT et al. in press). Fruit flies in our study have been raised on a 

medium with a high content of carbohydrates and a low content of proteins resulting in a high 

tissue content of carbon (54 %) and a low content of nitrogen (10 %). Insect herbivores and 

fish fed nutrient-rich diets had a higher lipid content than those fed nutrient-poor diets 

(SLANSKY &  WHEELER 1992; GAYE-SIESSEGGER et al. 2004) and during de novo fatty acid 

synthesis the lighter isotope is preferentially incorporated (DENIRO & EPSTEIN 1977). 

Furthermore, even compounds derived directly from the diet may exhibit significantly 

different � 13C ratios when compared to the precursor compounds in the diet (CHAMBERLAIN et 

al. 2004). Probably, females invested the surplus of carbohydrates in synthesis of new fatty 

acids that were less enriched in 13C. Surprisingly, females were not strongly enriched in 15N, 

in spite of the high � 15N ratios of their diet. Theoretically, females should have reached higher 

� 15N ratios compared to the initial signature and to their diet (POST 2002; VANDERKLIFT &  

PONSARD 2003). Potentially, nitrogen anabolic metabolism was negligible in females after 

they reproduced resulting in only slight changes in 15N signatures. 

  

Effects of low food quality on females 

Feeding on F. candida proved to be detrimental for adult females: none of them produced a 

second eggsac and feeding on F. candida was finally lethal. Low-quality food is known to 

affect reproduction in arthropod predators (BILDE &  TOFT 1994, 2001; MAYNTZ et al. 2003), 

classifying F. candida as very low-quality or even toxic prey. Negative effects of the 

springtail are also reflected in the final dry weight of the females, as the biomass of females in 

treatments with F. candida was lower than in the other feeding treatments. Females grew 

thinner and lethargic shortly before they died (personal observation) and low biomass of 

females resulted from a disproportionately high loss of carbon compared to nitrogen as 

indicated by lower C:N ratios. Thus, the decline in the C:N ratio of females fed Collembola 

was caused  by different mechanisms: when females preyed on H. nitidus, they incorporated 
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nitrogen from their prey, while females fed F. candida predominately lost carbon, both 

resulting in lower C:N ratios. Interestingly, the body weight of females fed a mixed diet of 

D. melanogaster and F. candida were only slightly heavier than those fed F. candida only. 

Analogously, the C:N ratio differed only slightly between females fed F. candida in single 

and mixed diet, indicating that the loss of carbon of females was similar in both treatments. In 

addition, females fed a mixed diet of D. melanogaster and F. candida were not enriched in 
13C at all, indicating that females were not able to incorporate carbon from D. melanogaster in 

presence of F. candida. This supports the finding that females were not able to compensate 

the negative effects of F. candida on their metabolism. Furthermore, females fed F. candida 

were depleted in 15N.  

Biomass, C:N ratio and nitrogen stable isotopes documented that females fed a diet containing 

F. candida were catabolising their own body tissue. Starvation usually results in an 

enrichment of 15N (OELBERMANN &  SCHEU 2002b; VANDERKLIFT &  PONSARD 2003) due to 

preferential excretion of the lighter stable nitrogen isotope (14N), as also documented for the 

starved juveniles in our study. Depletion in 15N of females presumably resulted from using up 

a major part of their body proteins with the remaining tissue consisting mainly of the 

exoskeleton, which is depleted in 15N compared to other body tissues (BUNN et al. 1995). I 

suggest that the detrimental effect of F. candida is caused by toxins liberated during 

digesiton, since both F. candida and D. melanogaster were regularly preyed upon until 

females finally died. This is in line with FISKER &  TOFT (2004) who documented increased 

feeding rates of juveniles on D. melanogaster in presence of F. candida, without a gain in 

biomass or enhanced survival of spiders. Thus, P. lugubris appears to be unable to recognize 

and avoid feeding on the unpalatable prey (F. candida). Interestingly, juveniles of Schizocosa 

spec. that were fed D. melanogaster with some F. candida showed induced resistance and 

were able to cope with the toxicity of the prey (TOFT &  WISE 1999b). Due to continuous 

exposure to F. candida in our study, female P. lugubris were probably not able to recover 

from intoxication and did not have the chance to develop resistance. Furthermore, in the 

studies of TOFT &  WISE (1999b) and FISKER &  TOFT (2004) the negative impact of F. candida 

was pronounced in small juveniles, whereas in larger juveniles it was reduced. This is in stark 

contrast to our results; even mature females suffered irreparable damages from feeding on 

F. candida in our experiment.  
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Effects of food quality on juveniles 

Offspring clutch size, juvenile weight, and juvenile survival did not differ between the high 

quality food treatments (D; H; DH). Since clutch size and juvenile weight are known to be 

sensitive to food quality (BILDE &  TOFT 1994, 2001; MAYNTZ et al. 2003), this suggests that 

D. melanogaster and H. nitidus were of similar food quality.  

Generally, starvation of juveniles from the second eggsac resulted in an enrichment in 15N 

(see above) and a disproportionate loss of carbon compared to nitrogen as indicated by the 

increase in C:N ratio. During starvation 12C was preferentially respired, since both juveniles 

of females fed H. nitidus and juveniles of females fed a mixture of D. melanogaster and 

H. nitidus were somewhat enriched in 13C. This is in accordance with earlier results 

(OELBERMANN &  SCHEU 2002b), but interestingly, the effect did not occur in juveniles of 

females fed 13C labelled D. melanogaster only.  

Apart from starved juveniles, C:N ratios differed neither between juveniles of the first and the 

second eggsac, nor between the feeding treatments. In contrast, stable isotope composition 

differed between diets. Compared to their mothers, juveniles from the first eggsac, which was 

produced in the field, were slightly depleted in 13C and strongly depleted in 15N. Similar 

results have been found previously (OELBERMANN &  SCHEU 2002b; CHAPTER IV.2). In 

contrast, all juveniles from the second eggsac produced on diets in the laboratory were 

uniformly enriched in 15N compared to their mothers. Only juveniles from females fed a diet 

containing D. melanogaster were also enriched in 13C compared to their mothers. Even 

though � 13C signatures of females fed D. melanogaster only and a mixed diet of 

D. melanogaster and H. nitidus differed strongly, juveniles were similarly enriched compared 

to their mothers. This indicates that females invested a similar amount of carbon from 

D. melanogaster into their offspring irrespective of the presence of alternative prey 

(H. nitidus). Both isotopic ratios (13C/12C and 15N/14N) of juveniles approached those of their 

mother’s diet (and not their mother’s tissue), suggesting that ingested nutrients were rooted 

predominately into offspring production. The metabolism of females for maintenance and for 

egg production obviously differs strongly in turnover rates and fractionation, as documented 

by the differential enrichment in 13C and 15N of adults and juveniles. 
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IV.5 Cannibalism 

Intraspecific predation strongly depends on size differences between cannibal and victim 

(POLIS 1988; SAMU et al. 1999; BUDDLE et al. 2003; IIDA 2003). However, results of the 

present study suggest that even individuals of similar size are likely to prey on each other. 

Overall, high mortality of spiderlings in both experiments was presumably caused by 

cannibalism among juveniles as I can exclude starvation as a mortality factor early in the 

experiments. Without food spiderlings of P. palustris survived 9.86 (± 2.28) days; similar or 

even longer survival periods have been documented for Schizocosa ocreata (WAGNER &  WISE 

1996), P. milvina (WALKER et al. 1999) and P. lugubris (OELBERMANN &  SCHEU 2002a). 

Since only successful cannibals were used for the experiments, mortality due to starvation 

was not important during the first week in both experiments. Later on, however, starvation 

and lack of high quality food likely contributed to mortality of spiderlings in treatments 

without alternative prey. Yet, absolute mortality rates are to be interpreted cautiously due to 

the preselection of successful cannibals. Results may be biased towards detecting a high 

incidence of cannibalism. Eggsacs of P. palustris contain up to 60 spiderlings resulting in a 

high density of spiderlings at dispersal and consequently in high encounter rates. Furthermore, 

the density of insect prey that is suitable for juvenile P. palustris (e.g. Collembola) is low at 

the studied xeric grassland site during summer (CHAPTER IV.2). Thus, preselection of 

cannibals as done in this study likely resembles natural conditions.  

 

Availability of alternative prey 

Mortality of spiderlings was strongly reduced when alternative prey was present, which is 

consistent with previous findings (WAGNER &  WISE 1996; SAMU et al. 1999). Biomass of 

spiderlings in the experiment on cannibalism among juveniles showed a threefold increase in 

treatments with the collembolan H. nitidus during 18 days. The epigeic springtail has been 

documented to be a high-quality food for lycosid spiders (OELBERMANN &  SCHEU 2002a).  

Adult spiders did not prey on juveniles when alternative prey (D. melanogaster) was present, 

resulting in lower mortality of juvenile spiders in the simple habitat structure treatment. This 

is also reflected in the weight differences of the females. Even though prey was more 

accessible due to the lack of refuge in the treatment with simple habitat structure, females 

gained similar weight in treatments with simple and complex habitat structure with alternative 

prey. 
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Microhabitat structure 

Cannibalism among juvenile spiderlings was not affected by habitat structure. Yet, at low 

spider density without alternative prey, biomass of spiderlings increased in complex habitat 

structure. This indicates that, given complex habitat structure, interference was reduced 

saving energy resources of spiderlings due to reduced metabolic activity. Interestingly, this 

did not occur at higher density. Presumably, the positive effect of habitat complexity 

decreases with density of spiderlings, whereas intensity of interference increases.  

In contrast to cannibalism among juveniles, habitat structure affected mortality due to filial 

cannibalism. Females preyed on juveniles only in the simple habitat structure treatments 

without alternative prey, thereby increasing mortality of spiderlings. In the complex habitat 

structure treatments mortality was low with and without D. melanogaster, suggesting that 

even without alternative prey females did not prey on spiderlings. Obviously, the complex 

structure created refuges for spiderlings. Consequently, females in the complex habitat 

structure treatment without alternative prey died early from starvation and loss of biomass 

was pronounced. Even though adult mortality was similar in treatments without alternative 

prey by the end of the experiment, females in the simple structure treatment survived 

significantly longer than those in the complex structure treatment. Obviously, feeding on 

spiderlings only delayed female mortality, suggesting that spiderlings were of low food 

quality, and/or little was extracted, which is consistent with earlier studies (TOFT &  WISE 

1999b; OELBERMANN &  SCHEU 2002a). 

 

Density-dependence and wasteful killing 

At higher density, per capita mortality rate of spiderlings was increased when alternative prey 

(H. nitidus) was available, suggesting higher activity and interference at higher density. 

Superfluous feeding (CONOVER 1966) by predators when prey is abundant was demonstrated 

for spiders (RIECHERT &  MAUPIN 1998) and proposed as an indicator of aggression (MAUPIN 

&  RIECHERT 2001). SAMU &  BÍRÓ (1993) also documented wasteful killing for P. hortensis at 

high prey densities. Furthermore, cannibalism among second-instar Hogna helluo also 

increased in presence of alternative prey (ROBERTS et al. 2003). Presumably, in our 

experiment spiderlings increased the rate of attack when prey (H. nitidus and conspecifics) 

was abundant, which is also supported by the fact that juvenile P. palustris gained less weight 

at high compared to low density.  
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Kin-recognition? 

Results of the present study document that even severely starved females prey little on 

conspecific spiderlings, rather they prefer to feed on alternative prey. True kin-recognition 

was documented for S. ocreata, but was restricted to two hours after demounting of juveniles 

from their mothers (ANTHONY 2003). Female P. palustris seem to avoid cannibalism for a 

longer period of time and the avoidance appears not to be restricted to close kin since in our 

experiment only non-kin juveniles were used. Filial relationships in P. palustris need further 

investigation. 
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IV.6 IGP 

Effects of alternative and intraguild prey 

In general, survival of P. palustris was enhanced, when alternative prey was available. This is 

in line with earlier findings that IGP is reduced when prey is abundant (LUCAS et al. 1998, 

CHEN &  WISE 1999, MEYHÖFER &  HINDAYAMA 2000). Feeding on D. melanogaster only, the 

biomass of A. cuneata increased almost threefold in biomass. As indicated by the enrichment 

in 13C spiderlings incorporated a substantial amount of carbon form their prey. Presumably, 

due to the high C:N ratio of D. melanogaster, the C:N ratios of A. cuneata also increased. The 

enrichment in 13C was less pronounced when intraguild prey was available. Either consuming 

both fruit flies and spiderlings led to a lower increase in 13C due to additional ingestion of 

spiderlings with a lower � 13C ratio, or P. palustris captured some of the fruit flies lowering 

the number of fruit flies available to A. cuneata. Indeed, � 13C ratios of juvenile P. palustris 

suggest that most of the surviving individuals had preyed on D. melanogaster. This 

conclusion is supported by the pronounced weight gain of P. palustris when alternative prey 

was available. Furthermore, the strong correlation between � 13C signatures and final weight of 

juvenile P. palustris at simple habitat structure with alternative prey indicates that juvenile 

growth mainly resulted from predation on D. melanogaster. In contrast, � 13C signatures and 

the final weight of P. palustris were not related at simple structure with alternative prey 

suggesting a higher frequency of cannibalism since spiders gained similar weight as compared 

to those in complex structure.  

Feeding on juvenile P. palustris instead of D. melanogaster resulted in lower C:N ratios and 

lower increase in biomass of A. cuneata due to lower C:N ratios of juvenile P. palustris. 

Furthermore, feeding on P. palustris caused an increase in � 15N and this was more 

pronounced when alternative prey was missing suggesting that predation of A. cuneata on 

P. palustris was reduced in presence of alternative prey. Initially, A. cuneata were enriched by 

0.90 ‰ compared to P. palustris increasing to 1.50 ‰ at the end of the experiment. IGP 

results in increased � 15N ratios due to the consumption of prey on the same trophic level 

(HOBSON &  WELCH 1995; PONSARD &  ARDITI 2000; MCNABB et al. 2001). Fractionation was 

1.41 ‰ at complex habitat structure and 1.75 ‰ at simple habitat structure, indicating 

increased predation on P. palustris at simple habitat structure (see below). Interestingly, 

juvenile A. cuneata were depleted in 15N when feeding on D. melanogaster. Initially, 

juveniles of A. cuneata were enriched in 15N by 1.07 ‰ and 4.30 ‰ compared to H. nitidus 

and D. melanogaster, respectively. The initial stable isotope signature reflected the feeding of 

A. cuneata on H. nitidus with a high � 15N signature of 7.47 ‰ prior to the start of the 
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experiment. Feeding on D. melanogaster (� 15N = 6.25 ‰) resulted in lower � 15N signatures 

(� 15N = 1.80 ‰) of A. cuneata approaching the trophic level fractionation of 2.54 - 3.4 ‰, 

which has been postulated in many food web studies (POST 2002; VANDERKLIFT &  PONSARD 

2003). P. palustris fed H. nitidus only were only slightly enriched in 15N (� 15N =0.17 ‰) at 

the beginning of the experiment suggesting that only a small fraction of body nitrogen of 

P. palustris was replaced during feeding on H. nitidus for almost two weeks before the 

experiment. This is in line with trophic level fractionation of ca. 3 ‰ of juvenile P. lugubris 

after 11 weeks of feeding (OELBERMANN &  SCHEU 2002b). The � 15N signature of P. palustris 

only slightly increased when fed both D. melanogaster and conspecifics suggesting that the 

enrichment in 15N due to cannibalism was levelled out by feeding on D. melanogaster 

depleted in 15N.  

Overall, feeding on a mixed diet of D. melanogaster and P. palustris resulted in a higher gain 

of biomass in A. cuneata at complex habitat structure. Beneficial effects of dietary mixing on 

growth and survival of generalist feeders is a common phenomenon (WALLIN et al. 1992; 

BERNAYS 1994; ACHARYA et al. 2004; SCHEU &  FOLGER 2004) that has been documented for 

spiders (UETZ et al. 1992; TOFT 1999; OELBERMANN &  SCHEU 2002a). Furthermore, spiders 

can increase their nitrogen intake and performance when supplementing their diet with IG 

prey (MATSUMURA et al. 2004). Yet, it remains unclear why this did not occur at simple 

habitat structure. 

 

Effects of habitat structure 

During the first week, mortality of juvenile P. palustris was only high at simple habitat 

structure without alternative prey. This indicates that both, alternative prey and complex 

habitat structure served as refuge for the smaller spiderlings of P. palustris. The latter is 

supported by the lower gain in biomass of A. cuneata in complex habitat structure without 

alternative prey and less enrichment in 15N in this treatment. Habitat heterogeneity is known 

to lessen the strength of predator-prey interactions (DIEHL 1993; MARSHALL &  

RYPSTRA 1999; LEWIS &  EBY 2002) and this likely was the case in our study. The finding that 

starving juveniles of A. cuneata experienced higher mortality in simple habitat structure is 

enigmatic, since loss in biomass and changes in stable isotope ratios of A. cuneata were 

similar regardless of habitat structure, suggesting similar activity of starving spiders.  
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The positive effect of complex habitat structure on survival of P. palustris only was evident 

during the first week; later mortality increased strongly in complex habitat structure without 

alternative prey. After one week of starvation cannibalism among P. palustris likely increased 

in treatments without alternative prey. Cannibalism is prevalent when food resources are 

limited and reduces competition for these resources (WAGNER &  WISE 1996, 1997; SAMU et 

al. 1999). Starvation enhances cannibalism in juvenile P. palustris and complex habitat 

structure does not serve as shelter for juveniles of similar size (CHAPTER IV.5). Weight 

differences and high variability of � 15N ratios of P. palustris at complex habitat structure 

without alternative prey also reflected starvation and/or cannibalism among P. palustris: some 

spiders lost weight due to starvation, while others were able to only slightly gain in weight 

due to cannibalism, since in wolf spiders conspecifics are known to be of poor food quality 

(TOFT &  WISE 1999, OELBERMANN &  SCHEU 2002a). Highly variable � 15N ratios of juvenile 

P. palustris add to this conclusion: some juveniles were slightly enriched in 15N due to the 

consumption of conspecifics, while on the other hand starving P. palustris were depleted in 
15N similar to A. cuneata. This finding is surprising since starvation usually results in an 

enrichment of 15N in juvenile wolf spiders (OELBERMANN &  SCHEU 2002b; CHAPTER IV.4) 

due to preferential excretion of the lighter stable nitrogen isotope (VANDERKLIFT &  

PONSARD 2003). Depletion in 15N of juveniles presumably resulted from using up a major part 

of their body proteins with the remaining tissue consisting mainly of the exoskeleton, which is 

depleted in 15N compared to other body tissues (BUNN et al. 1995). Finally, starvation may 

enhance activity and searching behaviour of wolf spiders (WALKER et al. 1999) increasing the 

likelihood for predation by A. cuneata during the second week. 
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V General Discussion & Prospects  

Wolf spiders are important generalist predators in both agricultural and natural systems 

affecting prey populations (RIECHERT &  BISHOP 1990; SNYDER &  WISE 1999; CHEN &  

WISE 1999; WISE 2004) and ecosystem processes (KAJAK 1995; LAWRENCE &  WISE 2004). In 

order to maximize the success of wolf spiders as biocontrol agents, factors increasing spider 

density in the field have to be identified. Consequently, mechanisms regulating wolf spider 

populations need to be understood in detail. Presented studies focussed on resource 

availability (autochthonous and allochthonous), cannibalism, IGP and microhabitat structure 

as key factors influencing wolf spider populations. 

 

Prey Availability &  Allochthonous Resources 

Prey availability is one of the major determinants of animal abundance and distribution 

(WHITE 1978; HUNTER &  PRICE 1992). Spiders often encounter periods of food shortage in 

the field (reviewed in WISE 1993) and reproduction in spiders is coupled with prey 

availability (KESSLER 1971; KREITER &  WISE 2001) and quality (BILDE &  TOFT 2001). While 

female Pardosa lugubris benefited from high quality prey, toxic prey, even if provided in a 

mixed diet with high quality prey, prevented reproduction and eventually caused death of 

spiders (CHAPTER IV.4; see below).  

Furthermore, cannibalism (WAGNER &  WISE 1996, 1997) and intraguild predation 

(HODGE 1999; CHEN &  WISe 1999) are reduced in presence of alternative prey. Accordingly, 

juvenile Pardosa palustris benefited from the availability of alternative prey by reducing 

cannibalism among juveniles and between females and juveniles (CHAPTER IV.5), as well as 

reducing predation from juvenile Alopecosa cuneata (CHAPTER IV.6) (see below). 

Despite the fact that prey availability increases reproduction and decreases strong biotic 

interactions, such as cannibalism and IGP, prey addition on xeric grasslands near Darmstadt 

did not result in an increase in the density of predators (CHAPTER IV.2). Presumably, the 

amount of prey added was not sufficient to significantly influence arthropod densities in 

addition to the strong positive effect of the sheep grazing management. Positive effects of 

grazing on spider abundance likely resulted from the increased availability of detritivore prey 

on grazed sites, suggesting that spider populations were indeed bottom-up controlled 

(CHAPTER IV.2).  

Apart from autochthonous resources, animal communities also benefit from the input of 

allochthonous resources (POLIS &  HURD 1995; HENSCHEL et al. 2001; BASTOW et al. 2002) 

fostering ecosystem stability (HUXEL &  MCCANN 1998; HUXEL et al. 2002). Substantial 



General Discussion & Prospects  98 

 

amounts of kelp and sea grass are deposited on a sandy beach in south east Australia, 

resulting in high densities of kelp feeding amphipods and isopods (CHAPTER IV.3). In spite of 

this high amount of available prey on the beach, only one wolf spider Tetralycosa oraria 

(Araneae, Lycosidae) used this prey as resource; densities of other spiders in general were 

negligible. Rove beetles such as Cafius 2 were also important predators of amphipods and 

isopods, even if of much smaller size than the large wolf spider. Predators feeding on 

amphipods and isopods were restricted to the beach and seemed to be specialized on certain 

amphipods and isopods as suggested by stable isotope signatures. Consequently, the marine 

input remained limited to the food web directly on the beach and did not subsidize the 

terrestrial food web on the foredune. On the contrary, stable isotopes indicated that some 

animals on the beach were also sustained from the terrestrial system (e.g. Myrmeleonidae and 

Phycosecis littoralis (Coleoptera)). Thus, the availability of allochthonous resources is not 

necessarily important for arthropod food webs in the vicinity of ecosystem borders. Since the 

relative importance of allochthonous input depends on the extent of the productivity of the 

focal community (POLIS &  HURD 1996 a,b; POLIS et al. 1997b; NAKANO &  MURAKAMI 2001), 

productivity of the foredune community should be investigated; presumably, the foredune 

community is independent of allochthonous input due to abundant autochthonous resources.  

 

Food Quality 

Strong differences in prey quality for predators have been documented (TOFT 1999; SINGER &  

BERNAYS 2003) and dietary mixing fosters toxin dilution and nutritional balance 

(GREENSTONE 1979; SLANSKY &  RODRIGUEZ 1987). Consequently, dietary mixing is 

beneficial for consumers (UETZ et al. 1992; BERNAYS 1994; ACHARYA et al. 2004) and even 

positive effects of mixing high- and low-quality prey have been documented (TOFT 1995; 

SCHEU &  FOLGER 2004; SCHEU &  SIMMERLING 2004). High prey quality results in enhanced 

survival and development of juvenile Pardosa lugubris (OELBERMANN &  SCHEU 2002a) and 

resulted in shorter egg development in second eggsacs of P. lugubris (CHAPTER IV.4). 

However, prey mixing was not beneficial for P. lugubris, particularly if toxic prey was 

included in the diet (CHAPTER IV.4), which is in line with other studies (TOFT &  WISE 

1999a,b; OELBERMANN &  SCHEU 2000a). The springtail Folsomia candida proved toxic for 

female P. lugubris, causing irreparable physiological damage in spiders that was finally 

lethal, even if high quality alternative prey, such as Drosophila melanogaster, was provided 

(CHAPTER IV.4). Avoidance of unpalatable prey and acquired aversion are documented for 

spiders (VASCONCELLOS-NETO &  LEWISOHN 1984; TOFT 1997; STROHMEYER et al. 1998), but 
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P. lugubris neither ceased feeding on F. candida despite its negative physiological effects, nor 

selected the beneficial prey (D. melanogaster) (CHAPTER IV.4). Since prey availability is the 

major limiting factor for the diet of spiders (RIECHERT &  LOCKLEY 1984; SLANSKY &  

RODRIGUEZ 1987; WISE 1993) and the encounter of prey is unpredictable in the field, spiders 

probably cannot afford not to catch and feed on prey, even if it is unpalatable or toxic. If 

encounters with unpalatable or toxic prey are rare in the field, physiological effects of the 

ingestion might be limited. Only if toxic prey is abundant, acquired aversion results in 

increased fitness of the predators. Unfortunately, there is virtually no study on the food 

quality of prey for spiders in the field. Given the high amount of detailed laboratory studies 

on food quality, information on the abundance of toxic prey in the field and its interaction 

with spiders in situ are crucial. Without such data one can only speculate about the ecological 

significance of the intriguing results from laboratory studies due to their artificiality, i.e. use 

of laboratory bred prey organisms. Folsomia quadrioculata is closely related to F. candida 

and a common springtail in forests in Europe (HOPKIN 1997). Consequently, it is a promising 

candidate for food quality studies with forest dwelling wolf spiders, such as Pardosa lugubris, 

that may reveal if toxicity of F. candida is species or genus specific. 

Furthermore, future studies should examine effects of food quality on the production of the 

first eggsac in wolf spiders, since the first eggsac plays a major role in their reproduction 

(EDGAR 1971) and correlation between female fecundity (offspring number, size and survival) 

and quantity and/or quality of resources ingested by females after the winter might be even 

stronger.  

 

Cannibalism, IGP and Impor tance of Habitat Structure 

On xeric grasslands in near Darmstadt (Germany), mortality of juvenile Pardosa palustris is 

substantial, resulting in low numbers of adult spiders in the following spring despite of high 

fecundity of females in the field (personal observation). Cannibalism (CHAPTER IV.5) and 

intraguild predation (IGP; CHAPTER IV.6) were suggested to be major causes for juvenile 

mortality. Since starvation of spiders is common in the field (WISE 1993) cannibalism and 

IGP may reduce mortality from starvation for short periods of time; however, non-conspecific 

prey is essential for long-term survival of spiders and development of spiderlings (TOFT &  

WISE 1999; OELBERMANN &  SCHEU 2002a; CHAPTER IV.5). Cannibalism is density dependent 

(POLIS 1981; WISE &  WAGNER 1992) and enhanced when resources are limited (WAGNER &  

WISE 1996, 1997; SAMU et al. 1999). Eggsacs of P. palustris contain up to 60 spiderlings 

resulting in a high density of spiderlings at dispersal and consequently in high encounter rates 
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of conspecifics. Interestingly, cannibalism between juveniles was only density-dependent 

when alternative prey was available (CHAPTER IV.5), supporting findings for juvenile 

S. ocreata and P. milvina of higher interference at higher density (WAGNER &  WISE 1996; 

BUDDLE et al. 2003). Furthermore, the density of insect prey that is suitable for juvenile 

P. palustris (e.g. Collembola) is low at the studied xeric grassland site during summer 

(CHAPTER III.2) increasing the likelihood for cannibalism and IGP (HODGE 1999; CHEN &  

WISe 1999; MEYHÖFER &  HINDAYAMA 2000; CHAPTER IV.5 &  IV.6). Consequently, 

conspecifics and juveniles of other spider species abundant at the study site, such as 

Xerolycosa miniata (Lycosidae) and Zelotes sp. (Gnaphosidae) (Appendix I) may form a 

substantial part of the prey of juvenile P. palustris.  

However, P. palustris is not only predator, but also prey for other spiders likely adding to 

mortality of P. palustris in the field.  Alopecosa cuneata, being almost twice as large as 

P. palustris, reaches similar densities as P. palustris on grasslands near Darmstadt 

(CHAPTER IV.1). Third instar A. cuneata easily preyed on the smaller P. palustris in the 

laboratory, especially when alternative prey was missing (CHAPTER IV.6), and might therefore 

be an important mortality factor in the field, when availability of prey is low (see above).  

Animals escape predation in spatial refuges (DIEHL 1993; FINKE &  DENNO 2002; LEWIS &  

EBY 2002; LANGELLOTTO &  DENNO 2004), since complex habitat structure may reduce 

interference due to lower encounter rates (CROWLEY et al. 1987; THOMPSON 1987; 

CONVEY 1988). Therefore, I hypothesised that cannibalism and IGP are reduced in complex 

habitat structure as compared to simple habitat structure. Habitat structure indeed provided 

shelter for second instar juvenile P. palustris from predation by female P. palustris 

(CHAPTER IV.5) and third instar A. cuneata (CHAPTER IV.6). However, cannibalism among 

second instar juveniles was not affected by habitat structure (CHAPTER IV.5). Consequently, 

the complex structured moss layer only served as shelter if size differences were pronounced 

(CHAPTER IV.5 &  IV.6). 

Cover of moss reaches often 100 % at xeric grasslands near Darmstadt (RICKERS 2002) 

providing spatial refugia that reduce predation on small juveniles by larger predators. Thus, 

juvenile P. palustris benefited from delayed eggsac production of their mothers 

(CHAPTER IV.1) as compared to A. cuneata that favours a strong size difference between 

juveniles of A. cuneata and P. palustris. In conclusion, I exclude IGP by A. cuneata as an 

important mortality factor for juvenile P. palustris in the field and suggest that rather 

cannibalism and/or IGP by other spider species of similar size reproducing simultaneously 

cause substantial mortality in P. palustris. Manipulations of conspecific and heterospecific 
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spider densities in the field are necessary to clarify the importance of cannibalism and IGP in 

the field.  

 

Stable Isotope Analysis 

The analysis of natural variations in stable isotope signatures allows investigating food 

resources of organisms (PETERSON &  FRY 1987; OSTROM et al. 1997; MAGNUSSON et al. 

1999). Animal 13C signatures are similar to their diet, since 13C is little fractionated in food 

chains (DENIRO &  EPSTEIN 1978; PETERSON &  FRY 1987; WADA et al. 1991; POST 2002). 

Therefore, carbon isotope ratios indicate on what sources animals lived, if 13C signatures of 

food resources differ (VANDER ZANDEN &  RASMUSSEN 1999; MAGNUSSON et al. 1999; 

PONSARD &  ARDITI 2000). For example C3 plants are strongly depleted in 13C, since 

RUBISCO, the CO2 fixing enzyme, discriminates against the 13C isotope and causes the lower 
13C/12C ratio (GANNES et al. 1998). C4 and CAM  (Crassulacean Acid Metabolism) plants, in 

contrast, are less depleted in 13C, because of their CO2 fixing enzyme (PEP carboxylase) that 

discriminates 13C less than RUBISCO (GANNES et al. 1998). A similar enrichment can be 

detected in algae, which is why the allochthonous input of algae into terrestrial ecosystems 

can be investigated using 13C signatures (GANNES et al. 1998; BASTOW et al. 2002; STAPP &  

POLIS 2003a, b). 

Nitrogen isotope ratios may be used to analyse the trophic structure of animal communities. 

Due to the preferential excretion of 14N, animals are enriched in 15N compared to their diet 

(PETERSON &  FRY 1987; ADAMS &  STERNER 2000). The enrichment per trophic level is 

assumed to be rather constant allowing tracing the trophic level of consumers (DENIRO &  

EPSTEIN 1981; WADA et al. 1991; POST 2002).  

Finally, metabolic processes and tissue-specific fractionation have been investigated using 

stable isotope analysis (DENIRO &  EPSTEIN 1977; TIESZEN et al. 1983; GANNES et al. 1998; 

SCHMIDT et al. 2004). 

 

Food web structure: Stable isotope analysis documented that the most common predators on 

xeric grasslands near Darmstadt relied on the detrital food web (CHAPTER IV.2) which is in 

line with other ecosystems (CHEN &  WISE 1999; MCNABB et al. 2001; AGUSTI et al. 2003). In 

addition, stable isotope signatures documented that sheep grazing did not change the structure 

of the food web on xeric grasslands near Darmstadt (CHAPTER IV.2), which is in contrast to 

the study of NEILSON et al. (2002). On the contrary, stable isotope analysis revealed changes 
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in vegetation structure that propagated into stable isotope signatures of the studied trophic 

guilds (CHAPTER IV.2). 

For sandy beaches in Tasmania, stable isotope analyses documented that marine subsidies on 

the beach were not important for the terrestrial arthropod community on the foredune 

(CHAPTER IV.3). 

 

Prey choice: Differences in prey choice were detected in the most abundant predators of xeric 

grasslands in Germany (CHAPTER IV.2) and on a sandy beach of Tasmania (CHAPTER IV.3). 

While female Pardosa palustris on xeric grasslands near Darmstadt presumably 

predominately fed on Collembola, adult females of the bigger A. cuneata were not linked to 

the detrital food web (CHAPTER IV.2), however, juveniles of both wolf spiders were 

predominately feeding on Collembola. Thus, stable isotope analysis documented that the 

larger wolf spider (A. cuneata) switches from prey of the detritivore food web to herbivore 

prey from the grazing food web during ontogenesis.  

Similarly, stable isotope analysis produced detailed data on the beach and the foredune food 

web (e.g. trophic position and resource of animals) in Tasmania (CHAPTER IV.3). Different 

feeding niches could be documented for Tetralycosa oraria (Lycosidae) and Cafius 2 

(Staphylinidae) using IsoSource, a software package for calculating the contribution of 

different sources to animal diet. Even though spiders are widely regarded as generalist 

predators (WISE 1993), stable isotope analysis documented that T. oraria was rather 

specialized on Orchestia spec. and other abundant prey, such as other amphipods and isopods, 

were not important for wolf spider nutrition.  

 

Biotic interaction: Stable isotope analyses successfully documented IGP on juvenile Pardosa 

palustris by third instar Alopecosa cuneata (CHAPTER IV.6). Furthermore, stable carbon and 

nitrogen isotopes provided intriguing information about predation among juvenile 

P. palustris, proving very helpful in interpreting survival and biomass data (CHAPTER IV.6). 

 

Metabolism: Using stable isotope analysis I documented for the first time that female wolf 

spiders increase feeding rates prior to eggsac production in order to gain nutrients for egg 

production and that they direct dietary carbon and nitrogen into their offspring 

(CHAPTER IV.4). Furthermore, carbon isotope data revealed that Folsomia candida 

(Collembola) exerted post-ingestive physiological effects on female Pardosa lugubris, as 

Drosophila melanogaster (Diptera) was killed and consumed by P. lugubris in the mixed diet 
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treatment (F. candida + D. melanogaster), but carbon derived from D. melanogaster could 

not be incorporated in spider tissue (CHAPTER IV.4). 

Summarizing, stable isotope analysis proved a powerful tool to investigate natural food webs 

(CHAPTER IV.2 &  IV.3) as well as biotic interactions (CHAPTER IV.6) and physiological 

processes of spiders in laboratory experiments (CHAPTER IV.4). Furthermore, results of this 

study emphasize the importance of comprehensive data on food web components and the 

necessity for detailed analyses using stable isotope mixing models (e.g. IsoSource) for 

understanding ecosystem processes.  

Despite of the successful application of stable isotope analysis, limitations of this method 

have to be considered. Trophic level fractionation is still discussed controversially 

(MCCUTCHAN et al. 2003; VANDERKLIFT &  POSNDARD 2003; SCHMIDT et al. 2004) and 

mixing models have to be chosen with care (PHILLIPS 2001; PHILLIPS &  GREGG 2001; 

PHILLIPS &  KOCH 2002; ROBBINS et al. 2002). Therefore, stable isotope data from the field 

have to be interpreted with caution. Further laboratory experiments are needed to understand 

fractionation processes in detail and to answer the questions that arise when dealing with 

stable isotope data both from the laboratory and from the field. For example, the issue of the 

effects of starvation on stable isotope ratios in animals has to be investigated further. Many 

studies document enrichment in 15N due to starvation, arguing that body-own protein is 

metabolised and the lighter isotope, 14N, is preferentially excreted (GANNES et al. 1998; 

OELBERMANN &  SCHEU 2002b; VANDERKLIFT &  PONSARD 2003). However, results of this 

study also document depletion in 15N in some starving spiders (CHAPTER IV.4 &  IV.6), 

indicating the occurrence of further physiological effects.  

In conclusion, stable isotope analyses can provide intriguing information about food web 

processes and trophic structure; however, the ability to detect direct feeding links using this 

method is rather limited. Recently, DNA based molecular gut analysis has been successfully 

applied for the detection of prey in predators (SYMONDSON 2002; AGUSTI et al. 2003). This 

technique seems extremely useful for predators, such as wolf spiders, that digest prey extra-

intestinally thereby masticating the prey organism. Once suitable gene regions have been 

identified and the half-life of genetic material in the gut of the spiders is determined, DNA 

based gut analysis can precisely assess diet choice of spiders in the field.  
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Appendix II:  Activity density (±±±± SD) of arthropods on a transect across a sandy beach 
and foredune at Marion Bay (Tasmania) in December 2004. 

 Taxon Transect a Transect b Transect c Transect d Transect e 
Amphipoda Talorchestia marmota 7.7 ± 7.8 6.7 ± 6.4 19.0 ± 6.2 0.0 ± 0.0 0.0 ± 0.0 
 Talorchestia 1 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 1.8 ± 2.0 0.0 ± 0.0 
 Talorchestia 2 79.0 ± 94.4 33.2 ± 28.1 24.2 + 24.9 0.0 ± 0.0 0.0 ± 0.0 
 Orchestia spec. 7.2 ± 7.1 1.0 ± 2.0 0.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 
 juvenile Amphipods 4.5 ± 6.1 3.0 ± 3.0 2.5 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 
Isopoda Actaecia thompsoni 44.3 ± 34.6 39.0 ± 40.0 9.5 ± 8.8 0.0 ± 0.0 0.0 ± 0.0 
 Actaecia bipleura 43.8 ± 51.7 75.5 ± 109.9 27.7 ± 36.5 4.0 ± 5.8 2.5 ± 6.1 
  Porcellio scaber 0.0 ± 0.0 0.2 ± 0.4 0.5 ± 0.8 0.8 ± 1.6 4.3 ± 4.6 
Chilopoda Tuoba laticeps 0.0 ± 0.0 0.2 ± 0.4 0.3 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 
Diplopoda Polydesmidae 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.2 ± 3.2 
 Polydesmidae 2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.8 ± 2.0 
 Polydesmidae 3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 
  Polydesmidae 4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 3.0 ± 3.0 
Scorpionida Cercophonius squama 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 1.2 ± 1.2 
Diptera Scatophagidae 1 0.0 ±  0.0 3.0 ± 2.2 4.7 ± 5.6 0.0 ±  0.0 0.0 ±  0.0 
 Brachycera 2 0.0 ±  0.0 0.2 ± 0.4 0.2 ± 0.4 0.0 ±  0.0 0.0 ±  0.0 
 Brachycera 3 0.0 ±  0.0 0.0 ±  0.0 3.5 ± 7.1 1.0 ± 0.9 0.0 ±  0.0 
 Brachycera 4 0.3 ± 0.8 1.5 ± 1.9 7.0 ± 6.2 2.0 ± 2.3 0.2 ± 0.4 
 Brachycera 8 0.0 ±  0.0 0.0 ±  0.0 0.0 ± 0.0 0.7 ± 1.2 0.0 ±  0.0 
 Brachycera 9 0.2 ± 0.8 0.8 ± 1.6 1.5 ± 1.8 0.5 ± 0.8 0.0 ±  0.0 
 Brachycera 11 0.0 ±  0.0 0.3 ± 0.5 0.2 ± 0.4 0.0 ±  0.0 0.0 ±  0.0 
 Brachycera 12 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 
 Brachycera 13 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 
 Brachycera 17 0.0 ±  0.0 0.2 ± 0.4 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 
 Brachycera 18 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.3 ± 0.8 
 Brachycera 23 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 
 Brachycera 26 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.5 ± 0.8 0.5 ± 1.2 
 Brachycera 27 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 0.5 ± 1.2 
 Brachycera 28 0.0 ±  0.0 0.5 ± 1.2 0.0 ±  0.0 0.3 ± 0.8 0.0 ±  0.0 
 Brachycera 29 0.5 ± 0.8 0.5 ± 0.5 14.3 ± 18.3 15.8 ± 20.6 0.0 ±  0.0 
 Brachycera 35 0.0 ±  0.0 0.0 ±  0.0 0.5 ± 1.2 0.0 ±  0.0 0.0 ±  0.0 
 Brachycera 40 0.2 ± 0.4 0.0 ±  0.0 0.2 ± 0.4 0.0 ±  0.0 22.7 ± 51.7 
 Brachycera 41 0.2 ± 0.4 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 
 Brachycera 44 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 0.0 ±  0.0 0.0 ±  0.0 
 Nematocera 3 0.0 ±  0.0 0.0 ±  0.0 0.7 ± 1.2 0.3 ± 0.5 0.0 ±  0.0 
  Nematocera 6 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 0.0 ±  0.0 
Hymenoptera Iridomymex spec. 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 0.8 ± 1.6 2.0 ± 3.5 
 Myrmecia spec. 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 0.0 ±  0.0 
 Myrmecinae 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 1.5 ± 2.3 6.7 ± 10.9 
 Formicidae 13 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 1.8 ± 4.5 
 Formicidae 14 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 1.2 ± 2.9 
 Formicidae 15 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.2 ± 0.4 0.0 ±  0.0 
  Formicidae 19 0.0 ±  0.0 0.0 ±  0.0 0.0 ±  0.0 0.3 ± 0.8 0.3 ± 0.8 
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Appendix II:  Continued. Activity density (±±±± SD) of spiders on a transect across a 
sandy beach and foredune at Marion Bay (Tasmania) in December 2004. 

Family Taxon Transect a Transect b Transect c Transect d Transect e 
Lycosidae T. oraria �  0.0 ± 0.0 0.2 ± 0.4 0.3 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 
 T. oraria �  0.3 ±  0.5 2.5 ± 2.5 1.3 ± 1.5 0.2 ± 0.4 0.0 ± 0.0 
 A. victoriensis �  0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 
  juv. Lycosidae 0.0 ± 0.0 0.8 ± 1.3 0.2 ± 0.4 0.5 ± 0.8 0.5 ± 0.5 
Gnaphosidae Gnaphosidae 1 �  0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 
 Gnaphosidae 2 �  0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 
 Gnaphosidae 3  0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 
 Gnaphosidae 4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.8 0.2 ± 0.4 
  juv. Gnaphosidae 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 0.7 ± 1.0 0.7 ± 1.6 
Clubionidae Clubionidae 1 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 
Salticidae Salticidae 1 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 
 Salticidae 2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 
  Theridiidae 2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 
Linyphiidae Linyphiidae 1 0.2 ± 0.4 0.2 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 
Thomisidae Thomisidae 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 
Corinnidae Supunna picta 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.5 ± 0.8 
Nicodamidae Nicodamidae 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 
Zoridae Zoridae 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 
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