Laserspektroskopie an Nobelium (Z=102) in einer Puffergaszelle
Laserspektroskopie an Nobelium (Z=102) in einer Puffergaszelle
Die mit der Ordnungszahl Z in etwa quadratisch skalierenden relativistischen Effekte auf die inneren Elektronen der schwersten Elemente führen zu einer stärkeren Abschirmung des Kernpotentials und beeinflussen die atomaren Zustände der Valenzelektronen. Damit Aussagen über den Einfluss dieser relativistischen Effekte gemacht werden können, werden hochsensitive experimentelle Techniken zur Extraktion spektroskopischer Daten von schwersten, bisher nicht untersuchten Elementen benötigt. Eine solche Technik ist die sogenannte RAdiation detected Resonance Ionisation Spectroscopy (RADRIS) [1,2]. Im Rahmen dieser Arbeit wurden erstmals laserspektroskopische Untersuchungen an dem Element Nobelium (Z=102), für das bisher keinerlei atomare Spektren experimentell bekannt sind, durchgeführt. Zum Einsatz kam die RADRIS-Methode in einer gasgefüllten Puffergaszelle. Diese Methode wurde anhand systematischer Studien zur Verbesserung der Gesamteffizienz der Puffergaszelle weiterentwickelt.
Relativistic effects scaling with Z2 are responsible for changes in the atomic structure of the heaviest elements due to their growing influence on the inner electrons. Thus for studying relativistic effects, high-sensitive experimental techniques to extract atomic properties are needed. A recommended technique for this purpose is the so called RAdiation detected Resonance Ionisation Spectroscopy (RADRIS) [1,2]. During this work, laser spectroscopic studies on the element nobelium (Z=102) have been performed for the first time. The RADRIS technique was exploited using a buffergas filled stopping cell with the goal to increase the overall efficiency of this method.

