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Abstract

Provable security is a fundamental concept of modern cryptography (see, e.g., Katz and Lindell;
Introduction to Modern Cryptography, Chapter 1, 2007). In order to argue about security, we first
require a precise and rigorous definition of what security means (e.g., a definition of secure encryption).
Such a security definition, in particular, contains a description of the capabilities of an adversary, i.e.,
a model of the adversary which tries to come as close to reality as possible. Given a security model,
the provable security approach is to provide a mathematical proof that a given construction achieves
the desired level of security. In other words, we prove that no (efficient) adversary can break the
security with “good probability” given that it behaves as defined within the security model. Typically,
proofs reduce the security of a construction to an unproven cryptographic hardness-assumption—we
show that the existence of an adversary violates an assumption—which, preferably, is as simple
as possible. Furthermore, any assumption needs to be stated precisely. Examples of cryptographic
hardness assumptions can be complexity-theoretic assumptions, such as, P # NP, the assumed
existence of objects, such as, one-way functions, or long standing open problems from number theory,
such as, factoring large integers or computing the discrete log in certain groups.

A widely used technique for the construction of cryptographic schemes is the so-called random
oracle methodology, introduced in 1993 by Bellare and Rogaway (CCS, 1993). As before, we start
with a precise model of security which is extended to include a uniformly random function which
may be evaluated by any party (including the construction and adversary). As a random function
has a huge, if not infinite description, parties cannot be given its code but, instead, are provided
with black-box access to an oracle which evaluates the function for them. This oracle is called the
random oracle. Then, as before, a mathematical proof is given that a construction is secure as per
definition relative to the random oracle. Finally, to implement the scheme in practice, the random
oracle is replaced by a cryptographic hash function (such as SHA-3).

No mathematical model can fully capture reality and, thus, cast in the framework of provable
security, we may consider a random oracle security model as being somewhat further away from
reality than a standard security model: in addition to the abstractions of the standard security model
it is assumed that adversaries do not make any use of the code of a hash function; it is assumed that
they do not even evaluate the hash function on their own but use an external device for the evaluation
(i.e., black-box access). Now, if we trust schemes that are designed according to the provable security
approach, should we then also trust schemes devised via the random oracle methodology?

This question has lead to a huge debate within the cryptographic community and has been
discussed for more than two decades. The discussion is fueled by results showing that the extension
of security models to include a random oracle may produce provably secure schemes that cannot be
securely implemented. In 1998, Canetti, Goldreich, and Halevi (STOC, 1998) showed that schemes

exist that are inherently insecure but which should be secure according to the random oracle

Xi



xii Abstract

methodology. In more detail, they present a public-key encryption scheme which an adversary can
trivially attack when given the code of the hash function that was used to replace the random oracle.
Note that this differs from, e.g., side-channel attacks: while here also the attack is successful because
it is outside the model, implementations can, potentially, protect against these attacks and, thus,
secure implementations may exist. With the scheme presented by Canetti et al., on the other hand,
there is, provably, no secure implementation although the scheme is secure in the random oracle
model.

Despite these negative results, many of the schemes that we trust on a daily basis—examples
include the standardized public-key encryption scheme RSA-OAEP as well as the standardized
signature schemes RSA-PSS and DSA'—only have proofs in the random oracle model. Similarly, for
many “advanced” cryptographic concepts, including IND-secure deterministic public-key encryption,
correlated-input secure hash functions, universal hardcore functions, and many others, we (so far)
only have constructions in the random oracle model. One reason for the success of random oracles
is that they allow to design very efficient and “natural” schemes. Furthermore, the power of random
oracles enables us to realize concepts which we would not know how to implement without random
oracles. A third, and very compelling argument in favor of the random oracle methodology is that
the “random oracle heuristic” seems to be a good one: no random oracle scheme which was not
designed to portrait inconsistencies of the random oracle model has been attacked due to the use of
random oracles. However, if a scheme is, indeed, secure, should we then not be able to understand
and pinpoint the underlying source of hardness?

In this thesis we study random oracles with the help of program obfuscation (in particular
indistinguishability obfuscation and point-function obfuscation). The study of obfuscation has a
long tradition in computer science, and specifically in cryptography, but only recent advancements
gave rise to the first candidate constructions of provably secure general-purpose indistinguishability
obfuscators (Garg et al.; FOCS, 2013). Intuitively, a program obfuscator takes as input a program
and produces a functionally equivalent but unintelligible program, i.e., the obfuscated program “hides
how it operates”. Conceptually, this is very close to one of the fundamental abstractions made within
the random oracle model where hash functions do not have an explicit and efficient description but
can be evaluated only via black-box access to the random oracle. While an obfuscated hash function
still has an explicit and efficient description, the description should hide the way the function works
and, thus, intuitively, should be of no help to any adversary.

Using obfuscation-based techniques we show how to instantiate the random oracle in various
cryptographic constructions. Amongst others, we obtain the first standard model (i.e., without ran-
dom oracles) candidate construction for a universal hardcore function with long output, a g-query
correlated-input secure hash function, and g-query IND-secure deterministic public-key encryption.
We obtain our positive results by instantiating various forms of universal computational extractors.
The universal computational extractor (UCE) framework was introduced by Bellare, Hoang, and
Keelveedhi (CRYPTO, 2013) to provide (very strong) standard-model notions of hash functions
that allow instantiating random oracles in a wide range of applications. Intriguingly, even though
obfuscation allows us to show how to replace random oracles in certain situations, it also allows us
to show limitations of the random oracle methodology as well as of UCEs. Using obfuscation-based

techniques, we prove that several concrete UCE assumptions (including all originally proposed as-

1We note that for the digital signature algorithm (DSA) no security proofs are known. DSA is, however, closely
related to ElGamal which has a proof of security in the random oracle model but none without random oracles.
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sumptions) cannot hold in case indistinguishability obfuscation exists. (We note that these negative
results inspired the weaker UCE notions that lay at the core of our positive constructions.) Assum-
ing the existence of indistinguishability obfuscation also allows us to extend the uninstantiability
techniques of Canetti et al. (STOC, 1998) and show that a large class of random-oracle transforma-
tions are not sound. This affects the Encrypt-with-Hash transformation (Bellare et al.; CRYPTO,
2007) to construct deterministic public-key encryption, as well as the widely used Fujisaki-Okamoto
transformation (Fujisaki, Okamoto; CRYPTO, 1999) which transforms weak public-key encryption
schemes into strong public-key encryption schemes.

An often repeated criticism of random-oracle uninstantiability results is that the schemes only
fail to be secure because they are designed to do so and, furthermore, their “artificial” design conflicts
“good cryptographic practice” (see, for example, Koblitz and Menezes; Journal of Cryptology, 2007).
Similar criticism can be voiced also for our counterexamples to the general applicability of the above
mentioned random-oracle transformations. While this does not refute the mathematical validity of
such uninstantiability results, we do, however, also present a very different counterexample to the
soundness of the random oracle methodology: we show that if indistinguishability obfuscation exists,
then a strong variant of point-function obfuscation (which can be similarly interpreted as a strong
form of symmetric encryption) cannot be achieved without the help of random oracles while at the
same time there are simple and elegant constructions in the random oracle model. We note that the

same holds also for our negative results for UCEs.

In summary, we develop techniques to work with obfuscation which allow us to show that the
existence of indistinguishability obfuscation implies that various random oracle techniques may lead
to insecure schemes. Our results suggest, once again, that we should be careful with random oracle
proofs and we hope that they spark further research to overcome the necessity to use random oracles
in the first place. Concerning the latter, we make first steps by proposing new and widely applicable
UCE notions together with standard-model candidate constructions showing that UCEs may, indeed,

be a viable alternative to the use of random oracles.






Zusammenfassung

Ein grundlegendes Prinzip moderner Kryptographie ist die sogenannte Beweisbare Sicherheit (siehe
z.B. Katz und Lindell; Introduction to Modern Cryptography, Kapitel 1, 2007). Um die Sicherheit
eines Verfahrens mathematisch zu zeigen wird zunéchst eine prézise mathematische Definition davon
benotigt, was Sicherheit bedeutet (z.B. eine Definition von sicherer Verschliisselung). Eine solche
Definition beinhaltet insbesondere eine Beschreibung der Fahigkeiten eines Angreifers, das heifit, ein
Angreifermodell, welches so genau wie mdoglich die realen Gegebenheiten abbilden sollte. Gegeben
eine Sicherheitsdefinition wird anschlieend bewiesen, dass ein bestimmtes Verfahren die Definition
erfiillt. Hierfiir zeigen wir typischerweise, dass die Existenz eines (effizienten) Angreifers eine oder
mehrere (meist unbewiesene) kryptographische Annahmen verletzt. Diese konnen beispielsweise aus
der Komplexititstheorie (z.B. P # NP) oder Zahlentheorie (z.B. Faktorisieren groer Zahlen oder
die Berechnung des diskreten Logarithmus in bestimmten Gruppen) stammen oder es kann die
Existenz kryptographischer Primitive gefordert werden (z.B. die Existenz von One-way Funktionen).
Verwendete Annahmen miissen ebenfalls prézise definiert und sollten méglichst einfach und allgemein
gehalten werden.

Eine weitverbreitete Methode fiir die Konstruktion von kryptographischen Primitiven ist die
1993 von Bellare und Rogaway eingefithrte Random-Oracle-Methodik (CCS, 1993). Wie zuvor ist der
Ausgangspunkt auch hier eine prézise Sicherheitsdefinition. Diese wird zudem um die Existenz einer
zufélligen Funktion erweitert, auf die jede Partei (insbesondere auch Konstruktion und Angreifer)
Zugriff haben. Da eine zufillige Funktion eine sehr grofie, wenn nicht sogar unendlich grofie Beschrei-
bung hat, kann diese den Parteien nicht direkt gegeben werden. Um die Funktion dennoch ausfiihren
zu konnen erhalten sie daher Black-Box-Zugriff auf ein Orakel, das die Funktion fiir sie ausfiihrt.
Dieses Orakel wird auch Random Oracle genannt. Anschlieflend wird wie zuvor ein mathematischer
Beweis gefiihrt, um die Sicherheit der Konstruktion relativ zu der Existenz eines Random Oracles zu
zeigen. Um eine solche Konstruktion in der Praxis verwenden zu kénnen wird das Random Oracle
fiir die Implementierung durch eine kryptographische Hashfunktion (z.B. SHA-3) instanziiert.

Ein mathematisches Modell kann die Realitdt niemals in Gédnze abbilden. Ein um ein Random
Oracle erweitertes Sicherheitsmodell kann daher als etwas weiter von der Realitét entfernt angesehen
werden: Neben den Abstraktionen eines Standard-Sicherheitsmodells wird zusétzlich angenommen,
dass Angreifer die Beschreibung der Hashfunktion ignorieren und diese nur tiber eine externe Instanz
(per Black-Box-Zugriff) auswerten. Wenn wir nun kryptographischen Verfahren vertrauen, die be-
weisbar sicher sind, sollten wir dann auch Verfahren vertrauen, die relativ zu einem Random Oracle
beweisbar sicher sind?

Uber die Einordnung von Random-Oracle-Verfahren wird seit iiber zwei Jahrzehnten in der
kryptographischen Gemeinschaft gestritten. So zeigen diverse Resultate, dass die Erweiterung von

Sicherheitsmodellen um Random Oracles problematische Konstruktionen zur Folge haben koénnen,
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xvi Zusammenfassung

Konstruktionen die zwar im Random-Oracle-Modell sicher, jedoch in der Praxis immer unsicher
sind, unabhéngig davon wie sie implementiert werden. Canetti, Goldreich und Halevi (STOC, 1998)
zeigen die Existenz von im Random-Oracle-Modell sicheren Public-key Verschliisselungsverfahren,
die jedoch trivial angreifbar sind sobald ein Angreifer Zugriff auf die Beschreibung der verwendeten
Hashfunktion erhélt. Ein solches Resultat ist insbesondere von z.B. Seitenkanalangriffen zu unter-
scheiden: Obwohl in beiden Fillen Angriffe erfolgreich sind, die durch das Sicherheitsmodell nicht
abgedeckt werden, kénnen Implementierungen potentiell gegen Seitenkanalangriffe gesichert werden;
sichere Implementierungen konnen existieren. Im Falle des Public-key Verfahrens von Canetti et
al. kann hingegen keine sichere Implementierung existieren obwohl das Verfahren im Random Oracle
Modell als sicher bewiesen ist.

Trotz negativer Resultate sind viele Verfahren die wir tagtéglich einsetzen nur im Random Oracle
Modell als sicher bewiesen. Beispiel hierfiir sind das standardisierte Verschlisselungsverfahren RSA-
OAEP sowie die standardisierten Signaturverfahren RSA-PSS und DSA? genannt. Dariiber hinaus
kennen wir fiir viele komplexeren kryptographischen Primitive lediglich Konstruktionen im Ran-
dom Oracle Modell. Beispiele hierfiir sind IND-sichere deterministische Public-key Verschliisselung,
Correlated-input sichere Hashfunktionen oder universelle Hardcorefunktionen.

Griinde fiir den Erfolg von Random Oracles sind vielfdltig. Zum einen sind Random-Oracle-
Verfahren haufig sehr effizient und “natiirlich”. Dariiber hinaus erméglichen Random Oracles die
Konstruktion starker kryptographischer Primitive, die wir ohne den Einsatz von Random Oracles
derzeit nicht konstruieren kénnen. Ein weiteres Argument fiir den Einsatz von Random Oracles
ist das die “Random-Oracle-Heuristik” zu funktionieren scheint: Kein Random Oracle Verfahren,
das nicht mit dem Ziel konstruiert worden ist Schwéchen des Random Oracle Modells aufzuzeigen
konnte bislang aufgrund der Nutzung von Random Oracles angegriffen werden. Aber sollten wir,
wenn ein Verfahren in der Tat sicher ist, nicht in der Lage sein den Grund der Sicherheit, bzw. das
zugrundeliegende schwere Problem zu identifizieren?

In dieser Dissertation untersuchen wir Random Oracles mit Hilfe von Code Obfuscation (ins-
besondere betrachten wir Indistinguishability Obfuscation sowie Point-function Obfuscation). Code
Obfuscation hat eine lange Tradition in der Informatik (insbesondere der Software Entwicklung)
wurde jedoch meist als Heuristik betrachtet. Ein wissenschaftlicher Durchbruch in kryptographischer
Obfuscation (einer beweisbar sicheren Form von Obfuscation) gelang erst kiirzlich Garg et al. (FOCS,
2013), die eine Konstruktion eines Indistinguishability Obfuscators vorschlagen. Ein Code Obfuscator
ist vereinfacht gesagt ein Programm, welches als Eingabe den Code eines Programms erwartet und
einen funktional dquivalenten, jedoch nicht mehr verstdndlichen, Programmecode erzeugt: Aus dem
obfuszierten Programmcode kann die Art und Weise, wie das Programm Berechnungen durchfiihrt
nicht mehr rekonstruiert werden. Konzeptionell ist dies d&hnlich zu den Abstraktionen des Random-
Oracle-Modells bei denen davon ausgegangen wird, dass kein Programmcode der Hashfunktion
existiert und diese nur mittels Black-Box-Zugriff auf das Random Oracle ausgewertet werden kann.
Bei einer obfuszierten Hashfunktion liegt zwar Code vor, jedoch versteckt die Beschreibung jegliche
Informationen tiber die Funktion und sollte daher einem Angreifer, so die Idee, nicht niitzlich sein.

In der vorliegenden Arbeit zeigen wir, wie mittels Obfuscation, Random Oracles in verschiede-

nen Konstruktionen ersetzt werden kénnen. Unter anderem geben wir die ersten Standardmodell-

2Der Digital Signature Algorithm (DSA) ist verwandt mit dem ElGamal Verfahren, welches lediglich einen Sicher-
heitsbeweis im Random Oracle Modell hat. Fir DSA ist hingegen selbst im Random Oracle Modell kein Sicherheits-
beweis bekannt.
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Konstruktionen (d.h. Konstruktionen ohne die Verwendung von Random Oracles) fiir universelle
Hardcorefunktionen mit langer Ausgabe, fiir g-query Correlated-input sichere Hashfunktionen sowie
fr g-query IND-sichere deterministische Verschliisselung an. Hierfiir zeigen wir, wie verschiedene
sogenannte Universal Computational Extractors mittels Obfuscation instanziiert werden kénnen. Das
Universal Computational Extractor (UCE) Framework wurde von Bellare, Hoang und Keelveedhi
(CRYPTO, 2013) vorgeschlagen, um ausreichend starke Eigenschaften von Hashfunktionen im Stan-
dardmodell abbilden zu kénnen, die es erlauben Random Oracles in unterschiedlichen Anwendungen
zu instanziieren. Obfuscation erlaubt hingegen nicht nur Random Oracles in verschiedenen Kontexten
zu ersetzen, sondern kann auch zur Auslotung der Grenzen von Random Oracles und UCEs ver-
wendet werden. So zeigen wir, dass verschiedene UCE-Annahmen (dies beinhaltet insbesondere alle
Originalannahmen von Bellare et al.) nicht haltbar sind, sollte Indistinguishability Obfuscation ex-
istieren. (Es sei angemerkt, dass diese negativen Resultate die schwécheren UCE Annahmen inspiriert
haben, welche die Basis unserer positiven Konstruktionen bilden.) Unter der Annahme, dass Indistin-
guishability Obfuscation existiert, konnen wir dariiber hinaus die Uninstanziierbarkeitsresultate von
Canetti et al. (STOC, 1998) erweitern: Wir zeigen, dass diverse Random-Oracle-Transformationen
uninstanziierbare Konstruktionen hervorbringen kénnen. Dies betrifft unter anderem die Encrypt-
with-Hash Transformation (Bellare et al.; CRYPTO, 2007) fir die Erzeugung deterministischer
Public-key Verschliisselungssysteme sowie die weitverbreitete Fujisaki-Okamoto Transformation (Fu-
jisaki, Okamoto; CRYPTO, 1999), die schwache Public-key Verschliisselungsverfahren in sehr starke
Verfahren transformiert.

Eine haufig vorgebrachte Kritik an Uninstanziierbarkeitsresultaten fiir Random Oracles ist, dass
die aufgezeigten Verfahren nur deswegen unsicher werden, da diese explizit so konstruiert worden sind
und dass dies nur deswegen moglich ist weil ihr “kiinstlicher Aufbau” “gute kryptographischer Praxis”
ignoriert (siehe z.B. Koblitz und Menezes; Journal of Cryptology, 2007). Diese Kritik kann ebenso
gegen unsere Gegenbeispiele fiir die allgemeine Anwendbarkeit der oben genannten Random-Oracle-
Transformationen vorgebracht werden. Obwohl dies die mathematische Giiltigkeit der Ergebnisse
nicht mindert, zeigen wir dennoch weitere Gegenbeispiele fiir die diese Kritik nicht gilt. Unter der
Annahme, dass Indistinguishability Obfuscation existiert zeigen wir, dass starke Varianten von
Point-function Obfuscation (diese konnen auch als starke symmetrische Verschliisselungsverfahren
angesehen werden) nicht existieren kénnen, obwohl im Random-Oracle-Modell effiziente und einfache

Konstruktionen existieren.

Zusammenfassung: Wir entwickeln Techniken zur Arbeit mit Obfsucation, die uns erlauben zu
zeigen, dass diverse Random-Oracle-Techniken zu unsicheren Verfahren fithren kénnen unter der
Annahme, dass Indistinguishability Obfuscation existiert. Unsere Ergebnisse legen nahe, Random-
Oracle-Beweisen mit einer gewissen Skepsis zu begegnen und dass die Forschung an Techniken zur
Uberwindung von Random Oracles ein lohnenswertes Unterfangen ist. In diesem Sinne zeigen wir
neue und schwichere UCE Definitionen auf (mit zugehoérigen Standardmodell-Konstruktionen), die

es erlauben Random Oracles in vielfaltigen Kontexten zu umgehen.






Short Contents

Abstract
Zusammenfassung
Short Contents

Contents

1  Introduction

2 Preliminaries

Part] An Introduction to the Random Oracle Model and Code Obfuscation
3 The Random Oracle Methodology

4 Random Oracles are Practical

5 General-Purpose Code Obfuscation

6 Point-Function Obfuscation

Part Il Random-Oracle Uninstantiability from Indistinguishability Obfuscation
7  General-Purpose Obfuscation vs. Point Obfuscation with Auxiliary Input

8 Uninstantiability of Encrypt-with-Hash and Fujisaki-Okamoto

Part Il Universal Computational Extractors
9 Universal Computational Extractors
10 UCEs for Computationally Unpredictable Sources

11 Constructing UCEs in the Standard Model

Xix

xi
XV
xix

xxi

13

25
27
45
67

115

135
137

153

177
179
217

235



XX Short Contents

12 Point Obfuscation is Necessary for UCE Security 255
13 On the Necessity of Padding in Indistinguishability Obfuscation 263
14 Beyond UCEs—A Direct Construction of D-PKEs 281
Conclusion 295
A Cryptographic and Complexity Theoretic Background 297

Bibliography 301



Contents

Abstract xi
Zusammenfassung XV
Short Contents xix
Contents xxi
1 Introduction 1
2 Preliminaries 13
2.1 Notation . . . . . . . . . e 13
2.2 Algorithms and Computational Models . . . . . . .. .. .. ... ... ... .... 15
2.2.1 Classes and Sequences of Algorithms and Distributions . . . . ... ... .. 16

2.2.2 Statistical and Computational Distance . . . . . .. .. ... ... ... ... 17

2.2.3 Function Families and Fundamental Cryptographic Objects . . . . . . . . .. 18

2.3 Game Based Security . . . . . . ... 20
2.3.1 A Game-Playing Framework . . . . . . .. ... ... ... ... ... 20

2.3.2 Game Hopping . . . . . . . . . 21

2.3.3 Multi-Stage Games . . . . . . . . ..o 22

Part] An Introduction to the Random Oracle Model and Code Obfuscation 25
3 The Random Oracle Methodology 27
3.1 Introduction . . . . . . . . . . . . e e 27
3.2 Standard Model Security . . . . . . . ... 28
3.3 The Random Oracle Methodology . . . . . ... .. ... .. .. . ... ..... 29
3.3.1 Instantiating the Random Oracle . . . . . . ... .. ... ... ... ..... 31

3.3.2 Observing and Programming Random Oracles . . . ... ... ... ... .. 32

3.3.3 Domain Separation for Random Oracles . . . . . ... ... ... ....... 32

3.3.4 Random-Oracle Schemes vs. Random-Oracle Transformations . . . . . . . .. 33

3.3.5 Keyed Random Oracles . . . . . ... ... .. ... ... .. ... 33

3.4 Random Oracles vs. Standard Model Security . . . . . .. .. .. ... ... .. ... 34
3.4.1 Uninstantiability . . . . . ... . ... o 35

XX1



xxii Contents

3.4.2 The Random Oracle Methodology, Revisited . . . . .. ... .. ... ... . 35
3.4.3 The Choice of Computational Model and the Type of Uninstantiability . .. 38
3.4.4 Random-Oracle Uninstantiability Results . . . . . . .. ... .. ... .... 41

3.5 The Random Oracle Methodology — A Controversy . . . . . . .. ... ... ..... 41
4 Random Oracles are Practical 45
4.1 Introduction . . . . . . . . .. L e 45
4.2 Correlated-Input Secure Hash Functions . . . . . .. ... ... ... ... ...... 46
4.2.1 CIH in the Random Oracle Model . . . . . .. ... ... ... ........ 49
4.2.2 Barriers in Cryptography . . . . . . . ... L oo 50
4.2.3 CIH in the Standard Model . . . . . . .. ... ... ... ... 51

4.3 A Universal Hardcore Function with Polynomial Output . . . . . .. ... ... ... 52
4.3.1 Hardcore Functions in the Random Oracle Model . . . . . .. ... ... ... 53
4.3.2 Hardcore Functions in the Standard Model . . . . . ... ... ... ..... 53
4.3.3 Public-key Encryption from any Trapdoor Function . .. ... .. ... ... 55

4.4 CCA-Secure Public-Key Encryption . . . . ... ... ... .. ... ... ...... 57
4.4.1 CCA-secure Public-key Encryption in the Random Oracle Model . . . . . . . 58
4.4.2 CCA-secure Public-key Encryption in the Standard Model . . . . . . . .. .. 59

4.5 Deterministic Public-Key Encryption . . . . . . . ... ... ... 0. 59
4.5.1 Deterministic Public-Key Encryption in the Random Oracle Model . . . . . . 61
4.5.2 Deterministic Public-key Encryption in the Standard Model . . . . . . . . .. 62

4.6 Point-Function Obfuscation . . . . . . .. . ... ... ... .. ... ... ... 64
4.6.1 Point-Function Obfuscation in the Random Oracle Model . . . . . . . .. .. 65
4.6.2 Point-Function Obfuscation in the Standard Model . . . . . . . ... ... .. 65

5 General-Purpose Code Obfuscation 67
5.1 Introduction . . . . . . . . . . . . e e 67
5.2 Defining Obfuscation . . . . . . . . . ... L 71
5.3 Virtual Black-Box Obfuscation . . . . . .. .. ... ... .. . 71
5.3.1 Average-Case Obfuscation . . . . . . .. ... ... .. ... ... ... 72
5.3.2 Impossibility of General VBB Obfuscation . . . . . . . ... ... ... ... .. 73

5.4 Virtual Grey-Box Obfuscation . . . . . . . . . . . .. ... 75
5.4.1 Virtual Grey-Box Obfuscation with Auxiliary Information . . . . . . . .. .. 76
5.4.2 VGB Obfuscation for Pseudorandom Functions . . . . . ... ... ... ... 76

5.5 Indistinguishability Obfuscation . . . . . . . . . . . . . ... ... .. .. ... ..., 7
5.5.1 Defining Indistinguishability Obfuscation . . . . . ... ... ... ... ... 78
5.5.2 10 from a Complexity Theoretic Perspective . . . . .. ... .. ... ... . 79
5.5.3 Indistinguishability Obfuscation vs. Virtual Grey-Box Obfuscation . . . . . . 82
5.5.4 Indistinguishability Obfuscation is Best-Possible Obfuscation . . . . . .. .. 83
5.5.5  Using Indistinguishability Obfuscation . . . . . . . ... ... .. ... ... .. 85

5.6 Differing-Inputs Obfuscation . . . . . . . . . . . . .. L 91
5.6.1 On the Plausibility of Differing-Inputs Obfuscation . . . . . . .. .. ... .. 91
5.6.2 On the Implausibility of Differing-Inputs Obfuscation . . . .. ... ... .. 92

5.7 The Choice of Computational Model . . . . . . . .. .. ... ... ... ....... 94

5.7.1 Obfuscation for Turing Machines . . . . . . . . .. ... ... ... .. .. 95



Contents

5.8 Candidate Indistinguishability Obfuscation Schemes . . . . . .. ... ... ... ..
5.8.1 How to Provably Obfuscate Low-Depth Circuits . . . . . ... ... ... ..
5.8.2 Bootstrapping Obfuscation using FHE . . . . .. .. ... ... ... ... ..
5.8.3 Indistinguishability Obfuscation for Turing Machines . . . . . . . .. ... ..

5.9 On the Plausibility of General-Purpose Obfuscation . . .. ... ... ... ... ..

Point-Function Obfuscation

6.1 Introduction . . . . . . . . . . e

6.2 An Introduction to Obfuscating Point Functions . . . . . . ... .. ... ... ...

6.3 Defining Point Obfuscation . . . . . . .. ... . .. L 0o
6.3.1 Composable Obfuscation . . . .. ... .. ... ... ... ... ...
6.3.2 Point Obfuscation in the Presence of Auxiliary Information . . . . . ... ..
6.3.3 Indistinguishable Point Obfuscation . . . . .. ... ... ... ... ... ..
6.3.4 Obfuscation for Point Functions with Multi-Bit Output . . . . ... ... ..
6.3.5 Average-Case Point Obfuscation . . . .. ... ... ... ... . .......

6.4 V(B|G)B Implies ATPO Implies One-Way Functions . . . . .. .. ... ... ....
6.4.1 V(G|B)B-(AI) Obfuscation Implies (AL)PO . . . . . ... ... ... .. ...
6.4.2 AIPO Implies One-Way Functions . . . . . .. ... .. ... ... ......

6.5 Constructions of Point-Function Obfuscation Schemes . . . . . .. ... .. ... ..
6.5.1 Candidate AIPOs for Computationally Hard-To-Invert Auxiliary Info .
6.5.2 Candidate AIPOs for Statistically Hard-To-Invert Auxiliary Information . . .

Part Il Random-Oracle Uninstantiability from Indistinguishability Obfuscation

7

General-Purpose Obfuscation vs. Point Obfuscation with Auxiliary Input
7.1 Introduction . . . . . . . . . L
7.2 10 Implies the Impossibility of MB-AIPO[S;‘LIZO] ....................
7.2.1 10 and MB-AIPO[SS\Y | are Mutually Exclusive . . . ... .. ... ... ..

mbpo
7.2.2  On Approximate Obfuscation . . . . . . . . . . ... ... ... ... .....
7.3 On Implications and Circumventions . . . . . . . . . .. . ... .. ... .....
7.3.1 Interpretation as a Random Oracle Uninstantiability Result . . . . . . . . ..
7.3.2  On Circumventing the Impossibility Result . . . . . ... .. ... ... ..

7.4 ATPO[S5;P] versus Virtual Grey-Box Obfuscation . . . .. ... .. ... ..

Uninstantiability of Encrypt-with-Hash and Fujisaki-Okamoto
8.1 Introduction . . . . . . . . . . . e
8.2 Uninstantiability of Encrypt-with-Hash . . . . . .. .. ... ... ... ... ....
8.2.1 Extension to Hedged PKEs . . . . . . . .. ... ... 0.
8.3 Beyond Encrypt-with-Hash . . . . .. ... ... . o oo
8.3.1 Generalizing the Attack . . . . . . . . ... o
8.3.2 Transformation for Strong IND . . . . . .. .. ... .. ... ... ...
8.4 The Fujisaki-Okamoto Transformation . . . . . . . .. ... .. ... ... ... ...
8.5 Careful with Conversion . . . . . . . . .. . .. . .
8.5.1 Hybrid and Double Encrypt-with-Hash . . . . . . ... ... . ... ... ..

xxiii

96
96
107
109
110

115
115
117
120
122
123
125
125
128
128
129
130
130
132
133

135

137
137
142
142
147
147
148
149
150



XXiv Contents

8.6 ROM Transformations for Symmetric Encryption . . . . . . .. ... ... ... ... 173
8.6.1 Message-Locked Encryption . . . . . . . .. ... . 173

8.7 Circumventing Uninstantiability . . . . . . .. . .. ... ... ... ... 176
Part Il Universal Computational Extractors 177
9 Universal Computational Extractors 179
9.1 Imtroduction . . . . . . . . . . e 179
9.1.1 Universal Computational Extractors . . . . .. .. ... .. ... ....... 181

9.1.2 UCE Assumptions . . . . . . . . . . . . i 182

9.1.3 Outline . . . . . 184

9.2 Defining Universal Computational Extractors . . . . . . . .. ... ... ... .... 185
9.2.1 Multi-Key UCEs . . . . . . . . o e 186

9.2.2 The Original Assumptions: UCE1 and UCE2 . . . .. ... ... ....... 186

9.3 Constructing UCEs in Idealized Models . . . . . . .. .. ... ... ... ...... 188
9.4 Using UCES . . . . . . . o e e 195
9.4.1 Universal Hardcore Functions from UCE . . . . . . ... ... .. ... ... .. 196

9.4.2 Deterministic Public-Key Encryption from UCE . . . ... ... ... .. .. 197

9.5 UCE] and Indistinguishability Obfuscation cannot Co-Exist . . . . . . . .. ... .. 201
9.5.1 Indistinguishability Obfuscation vs. UCE1 Without Detours . . . . . . . . .. 201

9.5.2  On the Number of Source Queries . . . . . ... ... ... ... ....... 203

9.6 UCE Assumptions . . . . . . . . . . . . . 203
9.6.1 Statistically Secure Sources . . . . ... ... Lo oo 204

9.6.2 Split and Bounded Parallel Sources . . . . . . . ... .. ... 0. 205

9.6.3 Bounded Queries, Runtime or Leakage . . . . . . .. ... ... ... ..... 209

9.6.4 Fine-Tuned Sources . . . . . . . . . . . . 209

9.6.5 Strongly Unpredictable Sources . . . . . . . . . . . ... ... ... 210

9.7 From Strong Unpredictability to (Plain) Unpredictability . . . . ... ... .. ... 212
9.7.1 Bitwise UCEs . . . . . . . . . 212

9.7.2 From Strong Unpredictability to (Plain) Unpredictability . . . ... ... .. 213

10 UCEs for Computationally Unpredictable Sources 217
10.1 Introduction . . . . . . . . L L 217
10.2 Bounded Parallel Sources . . . . . . . . .. 218
10.2.1 Randomized Encodings . . . . . . . ... ..o o 220

10.2.2 Composing Obfuscation with Randomized Encodings . . . . . . . .. ... .. 221

10.2.3 Splitting-Up and Parallelizing Source S Using Decomposable REs . . . . . . . 226

10.2.4 Specifying the Exact Size of S; . . . . . . . ... oo oo 229

10.3 Split-Source UCEs . . . . . . . . . . 230
10.4 Conclusion . . . . . . . L e 233

11 Constructing UCEs in the Standard Model 235
11.1 Introduction . . . . . . . . . oL 235

11.1.1 Constructing UCEs . . . . . . . . . .. e 238



Contents

11.1.2 Techniques . . . . . . . . . . . e
11.2 Constructing UCEs for Statistically Unpredictable Sources . . . . . . . .. .. .. ..
11.2.1 The Construction . . . . . . . . . . . . .
11.2.2 Construction 11.1 is UCE[S™'P N STY] Secure . . . . . . o v v oo v
11.3 Multi-Key UCEs . . . . . . . e e e
11.4 UCEs for Strongly Unpredictable Sources . . . . . .. .. ... ... ... ......
11.4.1 Construction 11.1 is UCE[S*%P N ST-auery] Secure . . . . . o oo oo vt o
11.4.2 Construction 11.1 is UCE[S¥S"P N STIUeY] Secure . . . . . . o v oo v vt

12 Point Obfuscation is Necessary for UCE Security
12.1 Introduction . . . . . . . . L
12.2 Point Obfuscation is Necessary for UCE Security . . . . . ... ... ... ... ...
12.3 Multi-Bit Output Point Obfuscation from UCE . . . . . . ... ... ... ... ...

13 On the Necessity of Padding in Indistinguishability Obfuscation
13.1 Introduction . . . . . . . ..
13.2 The Superfluous Padding Assumption . . . . . ... .. ... ... ... ... ...
13.3 On the Validity of the Superfluous Padding Assumption . . . . . ... ... ... ..
13.4 On SuPA for Indistinguishability Obfuscation . . . . . . .. ... ... ... ... ..
13.4.1 A Counter-Example for General SuPA due to [BCC*t14] . . . . ... .. ...
13.4.2 Holmgren’s Counter-Example for General SuPA . . . . . ... ... ... ...
13.4.3 On SuPA for Turing Machine Indistinguishability Obfuscators. . . . . . . ..
13.5 On the Plausibility of Restricted SuP Assumptions . . . . .. ... ... ... ....
13.5.1 A Restricted Class of SUuPA Samplers . . . .. ... ... ... ........
13.5.2 PRF Samplers . . . . . . . . ..
13.5.3 Statistically Unpredictable Samplers . . . . . . .. ... ... ... ... ...
13.5.4 Plausibility of SUP[S"»  NSPF] . . . . . ...

14 Beyond UCEs—A Direct Construction of D-PKEs
14.1 Introduction . . . . . . . ..o
14.2 Inserting Trapdoors into Obfuscated PRFs . . . . . . .. .. .. ... . .. ... ..
14.3 Constructing g-query Deterministic Public-Key Encryption . . . ... ... ... ..
14.4 The Role of Padding . . . . . . . . . . . .. L

Conclusion

A Cryptographic and Complexity Theoretic Background
A1 Cryptography . . . . . . . . e
A.2 Complexity Theory . . . . . . . . . . . e
A3 Assumptions . . ... e

Bibliography

XXV

239
242
242
243
249
250
251
254

255
255
257
260

263
263
267
269
270
271
273
274
276
277
277
277
278

281
281
282
284
292

295

297
297
298
300

301






CHAPTER

Introduction

The status of the random oracle model, thus, is as follows: it allows us to “prove” a whole lot of pracitcal [sic]
signature schemes secure [...], as well as a lot of encryption schemes and other things, but the meaning of
these proofs is uncertain (as opposed to proofs in the model without random oracles, which clearly imply that
the scheme cannot be broken without violating the security assumption). It continues to be used because
of its power, but it would be very nice if someone figured out how to prove these things without random
oracles to give us more assurance that these are really secure. I personally view it as a way to acknowledge
our failures: there are a lot of constructions that seem secure on some intuitive level, but we can’t prove
them secure in the standard model. So (hopefully until we have a realy [sic] proof of security) we prove the

[sic] secure in this funny fake model.

Leo Reyzin [Rey03]

In January 2007 the National Institute of Standards and Technology (NIST) announced the
development of new hash algorithms for a revision of the Federal Information Processing Standard
(FIPS) 1802, the Secure Hash Standard [NISTO7]. NIST decided that the new hash functions were
to be selected via a public competition (the SHA-3 competition) similar to a competition that was
started roughly ten years earlier and which led to the development of the Rijndael block cipher
which is nowadays known as AES. With their first announcement NIST formulated selection criteria
for candidate algorithms based on different factors ranging from security to licensing [NIST07]. Of

particular interest to us is one of the security criteria: NIST suggested to judge algorithms based on

“[tlhe extent to which the algorithm output is indistinguishable from a random oracle.”
[NISTOT]

Random oracles have a long tradition in the study of complexity theory and were made popular
in the context of cryptography with the highly celebrated work of Bellare and Rogaway who, in
1993, introduced the random oracle methodology [BR93]. In simple terms, a random oracle provides
black-box access to a random function that maps bit-strings to bit-strings. Usually, we here consider
functions from the space {0,1}* — {0,1}¢, that is, functions that take arbitrarily long bit-strings as
input and output a fixed-length bit-string. Having black-box access to a function can be thought of
as having access to a device that provides a query interface which allows to observe input-output
behavior but anything beyond remains hidden. The random oracle methodology as introduced by
Bellare and Rogaway [BR93] is a design paradigm for devising cryptographic constructions:



2 Chapter 1. Introduction

“We argue that the random oracle model [...] provides a bridge between cryptographic
theory and cryptographic practice. In the paradigm we suggest, a practical protocol P
is produced by first devising and proving correct a protocol P for the random oracle
model, and then replacing oracle accesses by the computation of an ‘appropriately chosen’
function h. This paradigm yields protocols much more efficient than standard ones while

retaining many of the advantages of provable security.”  Bellare and Rogaway [BR93]

The random oracle methodology found countless applications both in cryptographic theory and
practice. Random oracles are used regularly in security analyses (examples are [MSWO08, GMP108,
Willl, DFG*13, Dagl3]) and inspired various practical cryptographic constructions that we trust
on a daily basis and that have become standardized cryptographic schemes (e.g., [BR95, BR9G6,
RFC 3447, FIPS 186-4]). The huge success of the random oracle methodology is further exemplified
by the fact that “Random Oracles are Practical” [BR93|, the paper in which Bellare and Rogaway
introduced the random oracle methodology is one of the most cited papers in the field of modern
cryptography; according to Google Scholar it has been cited almost 4000 times as of August 2015.

When following the random oracle methodology we design a cryptographic scheme PRO relative
to a random oracle RO which means that when proving security for P we consider a world in which
every party has black-box access to the random oracle RO. Every party includes, in particular, the
scheme P itself as well as any adversary. Then, to implement the construction (for example, in
hard- or software) the random oracle is replaced by an appropriately chosen efficiently computable
function h which we call a standard-model function where the term standard model refers to a
world without random oracles and emphasizes that h is an effectively and efficiently computable
function. In practice, we usually choose h as a cryptographic hash function and it, thus, seems to
be a reasonable requirement for a new hash function, that is to become SHA-3 to produce output

that is essentially indistinguishable from a random oracle.

THE RANDOM ORACLE MODEL — A “FUNNY FAKE MODEL”

There is one caveat when using the random oracle model (ROM). In 1998, Canetti, Goldreich, and
Halevi ([CGH98]; CGH) showed that the random oracle methodology is unsound: it allows to prove
the security of schemes that are inherently insecure. To this end, CGH construct specially designed
encryption and signature schemes and prove that they are secure in the ROM. They then show that
there can be no efficient function h that can replace the random oracle in implementations of their
schemes, that is, whatever the choice of h, the resulting scheme will be insecure.

From a theoretical standpoint this result has severe consequences for the random oracle method-
ology. Indeed, one can go so far as to argue that proofs in the random oracle model are useless as
they do not provide any formal implications for the security of the scheme in practice. In other
words, a scheme that has a security proof in the random oracle model may, or may not be secure in
the real world. Goldreich puts it this way:

“The bottom-line: It should be clear that the Random Oracle Methodology is not sound;
that is, the mere fact that a scheme is secure in the Random Oracle Model cannot be

taken as evidence (or indication) to the security of (possible) implementations of this
scheme.” Oded Goldreich, [CGH9S]



Consequently, neither random oracles nor appropriate approximations do exist in the standard model
and one might expect this to be the end of the story, but far from it.

Despite the negative result of CGH, the random oracle methodology is still widely used both in
theory and practice and, indeed, we have several good reasons for doing so. Schemes designed based
on random oracles are often much more efficient and elegant than their counter-parts that try to
avoid using random oracles. Furthermore, for a large number of interesting primitives we do not have
any alternatives: all known constructions are in the random oracle model. In practice we often need
to make trade-offs between practicability (especially efficiency) and (provable) security and, thus,
using a scheme that has a security proof in the random oracle model is of course better than using one
without any proof whatsoever. Oded Goldreich puts it this way: “[The random oracle model] may be
useful as a test-bed (or as a sanity check). Indeed, if the scheme does not perform well on the test-bed
(resp., fails the sanity check) then it should be dumped.” [CGH98]. The best argument in favor of the
random oracle methodology is, however, very simple: it does (seem to) work in most interesting cases.
Constructions that we use in practice and that rely on the random oracle model have not been found
to contain weaknesses caused by the use of the random oracle methodology. On the other hand,
most of the counter-examples to the general applicability of the random oracle model make use of
contrived constructions that violate good cryptographic practice in order to highlight inconsistencies
of the ROM [KM15]. The counter-example presented by CGH [CGH9S] is a prototypical example.
On a high level, they construct a signature scheme that contains a backdoor: their signature scheme
returns the signing key if the to-be-signed message is equivalent to the program code of the hash
function that was used as replacement to the random oracle. Indeed, most counter-examples exhibit a
more or less severe violation of good cryptographic practice which is the main argument put forward
by Koblitz and Menezes [KM07, KM15] who strongly encourage the use of the methodology. They

write:

“Like [5], [4], and [18], the work by Goldwasser and Tauman seems to be another case
where leading experts dedicate considerable energy in an attempt to refute the validity of
the random oracle model, but can only come up with a contrived construction that has
no plausible connection with actual cryptographic practice. Our confidence in the random

oracle assumption is unshaken.”! [KMOT]

While random oracle schemes work well in practice the absence of standard model proofs should
make us suspicious. In particular, we will see that not all counter arguments to the random oracle
model are contrived. An intriguing example of what can go wrong when instantiating random oracles
in “natural random oracle constructions” was given by Halevi and Krawczyk [HK07]. They note
that the random oracle encryption scheme of Black et al. [BRS03] which is provably secure against
key-dependent message attacks in the random oracle model may not have this property for natural
instantiations of the random oracle. For example, if the random oracle is instantiated via the Davies—
Meyer construction [Win83] the resulting instantiation will not be secure against key-dependent
message attacks even if the underlying block-cipher is assumed to be ideal.

If we can only prove a scheme secure in the random oracle model we should ask ourselves whether
we are missing the right proof techniques or whether the absence of a standard model proof is simply

IHere, [5,4] refers to [BBP04] and its full version [BBP03], [18] refers to the work by Canetti et al. [CGH98] and
the mentioned work by Goldwasser and Tauman refers to [GKO03].
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a result of the obvious: we cannot prove the scheme secure because it is not. In one of his lecture
notes [Rey03] Leonid Reyzin gives an accurate description of this dilemma (also see the chapter
note): He calls the random oracle model a funny fake model attributing both the fact that it works
well in practice but that ideally we should be able to prove the security of schemes without the help
of random oracles, if they are, indeed, secure.

What is necessary is a better understanding of random oracle proofs and the properties of random
oracles that are used by our constructions. Once isolated we can then try to obtain such properties in
the standard model. Naturally, we will not succeed with all properties as we know, due to the result
of CGH, that properties exist that cannot be replicated in the standard model. But it is exactly
this discrepancy that we are interested in since any property that we rely upon in the random
oracle model, but which we cannot replicate in the standard model, is potentially dangerous. On
the other hand, properties that we can replicate in the standard model may allow us to ultimately
move beyond random oracles and provide standard model proofs of security for schemes that today

we can only assume to be secure.

UNIVERSAL COMPUTATIONAL EXTRACTORS

Several standard-model properties of random oracles have been suggested over the years. Canetti,
for instance, introduced oracle hashing schemes [Can97], which were later renamed perfectly (prob-
abilistic) one-way hash functions [CMRI8] and which capture that random oracle values “hide all
partial information on their input”. Boldyreva et al. [BCFW09] identify a rather different property
and note that random oracles are non-malleable meaning that given a random oracle value RO(m)
for some message m it should be difficult to find a value RO(m*) for a related message m*. In terms
of the random oracle methodology these attempts, however, only had limited success as, seemingly,
the identified properties were too specific (or too cumbersome to use) in order to tempt people to
design schemes directly in the standard model instead of the random oracle model.

With a recent work by Bellare, Hoang, and Keelveedhi ([BHK13:p]; BHK) this picture might
finally change. At Crypto 2013 and, thus, twenty years after the formal introduction of the random
oracle methodology, BHK introduced the idea of universal computational extractors, UCEs for short.
Universal computational extractors are defined as a framework to model strong properties of random
oracles in the standard model and with the explicit goal to be widely applicable. The fundamental
difference to earlier works was that BHK considered UCEs to be standard-model assumptions rather
than primitives that can be constructed from existing notions. This point of view allowed them to
formulate notions which were, similarly to random oracles, applicable in a wide range of applications
spanning all over cryptography. Indeed, in their original work BHK proposed two concrete UCE
notions called UCE1l and UCE2 and they showed that a UCE2-secure hash function could take the
place of a random oracle in more than ten highly interesting settings. BHK considered, amongst
others, deterministic public-key encryption, message-locked encryption, universal hardcore functions
with long outputs, point-function obfuscation, OAEP, symmetric encryption secure for key-dependent
messages and secure under related-key attack, proofs of storage as well as adaptively-secure garbled
circuits with short tokens. For many of these applications all previously known constructions were
in the random oracle model and, thus, based on UCEs they obtained the first standard-model

constructions of, for example, fully secure deterministic public-key encryption schemes.



With UCEs, Bellare, Hoang, and Keelveedhi focused on applicability rather than instantiability
and consequently the resulting UCE assumptions are very strong. In order to gain confidence in such
strong assumptions cryptanalytic validation as well as further study into the possibility of realizing
UCE notions under other assumptions is necessary. BHK do a first step in this direction employing
the random oracle methodology: they show that UCEs can be constructed in the ROM and explain
the interpretation of this result as follows:

“This at first may seem like a step backwards; wasn’t the purpose of UCE to avoid the
ROM? As explained in more depth in Section 2, it is a step forward because the security
we require from families of functions in implementations has moved from something
heuristic and vague, namely to ‘behave like a RO,’ to something well defined, namely to
be UCE-secure.” [BHK13:p]

As BHK explain, basing a scheme on a well defined notion such as a UCE has several advantages
over using the random oracle model, even if UCEs themselves can only be validated in the ROM. For
one thing a well defined notion allows to be cryptanalyzed: we can try to prove that a cryptographic
hash function, say a keyed version of SHA-3 or HMAC, does not meet UCE security. On the other
hand, it is meaningless to show that SHA-3 or any other hash function does not behave like a random
oracle since we know this to be the case. Besides this very practical reason, basing schemes on UCEs
rather than on random oracles also provides further insight into the scheme itself, namely, it allows
us to better understand what properties of the random oracle the scheme relies upon. As mentioned
UCE is a framework that allows for the formulation of different notions and BHK originally suggest
two specific notions UCE1 and UCE2. Thus, schemes that can be proven secure under the same
notion of UCE use similar properties of the random oracle. Finally, since we know that there are
schemes in the random oracle model that become insecure when instantiating the random oracle
with any standard-model hash function we may regard UCEs as an additional safe guard, the hope
being, that this is not the case with UCEs. In other words, if a standard-model hash function such
as SHA-3 or HMAC is indeed UCE secure then we can safely use these with schemes proven down to
UCEs: The proofs have the implication that we would like security proofs to have, namely, that any
successful attack (within the adversarial model) against the instantiated scheme must necessarily
violate a security assumption.

As of now, we are still far away from such a result. BHK have validated their UCE notions in the
random oracle model and suggest to use HMAC [BCK96, KBC97] in practice. For further research
efforts they suggest:

“ We believe that achieving UCE under other assumptions is an interesting and important
direction for future work. We suggest to begin by targeting restricted versions of UCE,
for example UCE1 for block sources. This we may hope to achieve under first-degree
assumptions. [...J. Full UCE security would, of course, require second-degree assump-
tions.”? [BHK13:p]

2Here, first-degree assumptions refer to “standard” cryptographic assumptions that are stated relative to one
global adversary. Examples include the existence of one-way functions or the existence of IND-CPA secure public-key
encryption. Second degree (or multi-stage) assumptions, on the other hand, refer to assumptions where the adversary
is split into multiple stages that do not share a common state. An example is IND-secure deterministic public-key
encryption [BBO07] or UCE.
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Furthermore, BHK suggest to also try to further validate the suggestion of using HMAC in place of

UCE-secure functions in practice:

“An interesting open question is whether the assumption that HMAC provides (say)
mUCEZ2-security [the strongest form of UCE suggested by BHK] can be validated in an ide-
alized model where one assumes the compression function is ideal. (If not, the suggestion
that it be used to instantiate UCE families in practice should be reconsidered.)” [BHK13:{]

We get back to the topic of UCEs and random oracles shortly but next move to a topic which,

at first glance, may seem rather unrelated.

CODE OBFUSCATION

The study of code obfuscation asks whether we can make programs “unintelligible” while keeping the
functionality intact. A successfully obfuscated program should, thus, only be as useful as a black box
that can be queried on inputs to receive outputs but everything else (in particular how an output
for an input is obtained) should remain completely hidden from the user.

While the idea of using code obfuscation for cryptographic purposes goes back well into the
70’s—the idea is usually attributed to Diffie and Hellman [DH76] who considered obfuscation as a
means of obtaining public-key encryption schemes—a formal study of code obfuscation was only
started in the late 90’s by Hada [Had00]. The study of code obfuscation found an early climax in 2001
with the seminal paper of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI01,
BGI*12] who provided an intuitive formalization of the above idea of black-box obfuscation and at
the same time showed that such obfuscators cannot exist in general, meaning that there are functions
that are inherently unobfuscatable. Following this negative result, the interest in general-purpose
obfuscation for cryptographic purposes drastically declined: the few results that were published
mostly concentrated on a small sub-field, namely, obfuscation of simple point functions®. This
changed drastically with the proposal of a candidate obfuscation scheme by Garg, Gentry, Halevi,
Raykova, Sahai and Waters [GGHT13b] in 2013.

Garg et al. present a candidate construction for a so-called indistinguishability obfuscator, a
notion that is weaker than the black-box notion shown to be generally impossible by Barak et al.
Indeed, the idea of an indistinguishability obfuscator was already formulated by Barak et al. in the
search for workarounds to their impossibility result but had never sparked much interest as it was

rather unclear whether indistinguishability obfuscation could be used in any meaningful way.

“Certainly, when we thought of it back then, we thought it was a useless definition.”

Amit Sahai, Simons Institute, 2015 Cryptography Boot Camp

The basic idea of an indistinguishability obfuscator is that an obfuscation of a circuit hides from which
specific functionally equivalent circuit the obfuscation was obtained. In more detail, if we consider
two circuits Cy and C; that are of the same size and compute the same function meaning that for

any = we have Cy(x) = C1(z) then no efficient algorithm can distinguish between obfuscations of Cy

3 A point function p. is zero everywhere except on the single point & on which it evaluates to one. Note that while
the result due to Barak et al. [BGIT12] rules out the existence of black-box obfuscators which work for all functions,
it could well be the case that black-box obfuscation for smaller classes of functions, such as point functions, exists.



and obfuscations of Cy with good probability (i.e., no efficient algorithm can do significantly better

than guessing). In other words, if iO is an indistinguishability obfuscator then the distributions
|O(CO) and IO(C1)

are computationally indistinguishable where the probability is over the randomness of the obfuscator.

Indeed, the security guarantee given by an indistinguishability obfuscator sounds rather vague
and it is not at all clear if such a primitive can be put to good use. Contrary to this intuition
Garg et al. [GGH*13b] showed how to build a functional encryption scheme for all circuits from
indistinguishability obfuscation. Functional encryption* is a very strong form of encryption that
allows to associate functions to decryption keys. If sk is a key with associated function f and c is a
ciphertext for plaintext message m then decryption of ¢ under key sk would yield the value f(m).
Earlier constructions of functional encryption schemes only allowed for limited functionalities and it
was unclear whether a functional encryption scheme could be realized for all functions.

Being able to build such a strong primitive from indistinguishability obfuscation, as well as
the candidate itself again sparked the interest of the cryptographic community in general-purpose
obfuscation and countless breakthrough results followed. According to Google Scholar and as of
August 2015 the candidate construction has been cited more than 250 times and a significant number
of these works showed that previously unachievable notions can be realized based on obfuscation.
Jumping ahead, indistinguishability obfuscation plays a crucial role also in this thesis and we discuss

our contribution next.

CONTRIBUTION OF THIS THESIS

We use obfuscation, and in particular indistinguishability obfuscation to study random oracle con-
structions. We show both positive and negative results. The thesis is structured into three parts and

we cover preliminaries and notation in Chapter 2.

Part I — Background Material

In order to lay the proper foundations we introduce both the random oracle model as well as
obfuscation in great detail in Part I of this thesis. In Chapters 3 and 4 we first introduce the random
oracle methodology and discuss the controversy behind random oracles in greater detail to then
present various random oracle constructions that we will again encounter in later parts of the thesis.
Chapter 5 provides a broad introduction to the field of general-purpose obfuscation focusing on
indistinguishability obfuscators. Following, in Chapter 6 we introduce the field of point-function
obfuscation. Point functions are amongst the simplest objects that we may want to obfuscate. A
point function p, for a value x is a function that evaluates to zero everywhere except on the single
point = on which it evaluates to one. A simple extension of point functions is a multi-bit output point
function p, ., for a value z and message m which, similarly, evaluates to zero everywhere except on
the single point  on which it evaluates to m. Obfuscations of such simple functions have interesting

applications, for example, in the domain of authentication. Furthermore, while we know that the

4Functional encryption started with work on attribute-based encryption schemes [SW05, GPSWO06] and has evolved
into a subfield of its own. For further reference see [BSW11, GGH113b, Weel4] and the references therein.
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strong form of black-box obfuscation cannot exist in general we do have constructions that achieve
black-box obfuscation for point functions [Can97, Wee05]. Obfuscation of point functions plays an

integral role for this thesis.

Part II — Random Oracle Uninstantiability

In Part II we begin our study of random oracle ambiguities, that is, we consider results of the form:
if indistinguishability obfuscation exists, then the random oracle in a given construction cannot be
securely instantiated. This means that for any standard-model hash function the construction will be
insecure if used with that particular hash function in place of the random oracle model. In Chapter 7
we present an intriguing version of such a random oracle uninstantiability result. We have remarked
earlier that most counter-arguments to the random oracle model are to some extent contrived and
violate good cryptographic practice. We believe that our result is very different in that it is neither
contrived nor does it violate any good cryptographic practice. The reason is that we do not present a
specific construction but instead show that an interesting notion that has simple constructions in the
random oracle model cannot be achieved by any standard-model construction. Note that this form of
result is very different from the result presented by CGH [CGH98]. CGH construct specific signature
and encryption schemes that are secure in the ROM but insecure if the random oracle is replaced
by any standard-model hash function. Such an uninstantiability result highlights that the random
oracle methodology as such is unsound but has no further implications for the existence of encryption
or signature schemes. In contrast, we consider an interesting (and strong) form of point-function
obfuscation—multi-bit output point obfuscation secure in the presence of computationally hard-to-
invert auxiliary information—that has a very elegant and simple construction in the random oracle
model [LPS04]. However, instead of showing that the random oracle in this particular construction
cannot be instantiated we give a much stronger result: We show that if indistinguishability obfuscation
exists then no standard-model construction whatsoever can achieve this notion of point-function
obfuscation.? In that way our result can be better compared to a random oracle uninstantiability
result by Nielsen who shows that the task of non-interactive, non-committing encryption is infeasible
in the standard model but achievable in the random oracle model [Nie02].

Besides giving further evidence that we should be careful with random oracle constructions our
result can also be interpreted in a rather different way. Our result is a one-out-of-two result that
considers whether two interesting (but very different) notions of obfuscation can both exist, the
answer being, we cannot have them both.® In that way, we can interpret the result as evidence that
very strong forms of point obfuscation do not exist, or if we choose to believe that it is more likely
that such forms of point obfuscation exist—after all, we do have constructions in the random oracle
model and, furthermore, obfuscating point functions seems much easier than obfuscating general
functions—that indistinguishability obfuscation does not exist. As in the last two years much research
effort went into better understanding indistinguishability obfuscation and several new constructions
have been presented (admittedly under very strong assumptions) the first interpretation seems the

more likely.

5Note that the result by CGH holds unconditionally (assuming that public-key encryption exists) while our result
is conditioned on the existence of indistinguishability obfuscation.

S0Of course, it could also be the case that we can have neither, that is, that both indistinguishability obfuscation
as well as this strong form of point obfuscation does not exist.



In the subsequent Chapter 8 we follow on the path of more traditional random oracle unin-
stantiability results and develop techniques that allow us to extend the result of CGH to various
random oracle transformations. Random oracle transformations provide blueprints to obtain “strong”
primitives in the random oracle model when starting from “weak” primitives in the standard model.
Two prominent examples are the Fujisaki-Okamoto transformation [FO99] to construct CCA secure
hybrid encryption schemes from IND-CPA secure schemes and the Encrypt-with-Hash transforma-
tion [BBOO07] to construct deterministic public-key encryption schemes from randomized public-key
encryption schemes. We show that a large classes of random oracle transformations, including
the two aforementioned ones, are not sound: there exist secure schemes that are transformed into
uninstantiable schemes. As with all our negative results, they are conditioned on the existence of

indistinguishability obfuscation.

Part IIT — Universal Computational Extractors

In the final part of the thesis we turn towards positive results and show how to use indistinguishability
obfuscation together with forms of point-function obfuscation to obtain standard-model constructions
for a large number of interesting primitives. This brings us back to universal computational extractors
which we introduce in great detail in Chapter 9.

Our first results for UCEs are negative. We show that, assuming indistinguishability obfusca-
tion exists, then the concrete UCE notions UCE1 and UCE2 as proposed by Bellare, Hoang, and
Keelveedhi ([BHK13:p]; BHK) cannot exist in the standard-model. On the positive side, we answer
one of the open questions of BHK concerning HMAC and show that assuming the compression
function used in HMAC is ideal (i.e., a fixed-input length random oracle) then HMAC achieves the
strongest form of UCE security.” This further validates the usage of HMAC in place of random
oracles in general and in place of UCEs in particular.

Being a framework rather than a single notion, a natural question to ask is whether weaker forms
of UCE security may bypass our negative result while at the same time being able to retain (some of)
the nice features and, in particular, the general applicability of the UCE1 and UCE2 notions proposed
by BHK. We propose two such restrictions called UCE with respect to statistically unpredictable
sources (short UCE[S®"P]) and UCE with respect to strongly computationally unpredictable sources
(short UCE[S%"P]). (We introduce both the naming and notation in detail in Chapter 9.) BHK
independently suggest the notion of UCE[S®P] as well as several additional notions which allows
them to show that all original applications can be salvaged. We show that some of these newly
suggested notions are similarly susceptible to our attacks based on indistinguishability obfuscation
and we present the extended attack in Chapter 10.

Finally, in Chapter 11 we turn to showing positive results for UCEs, which yield the first standard-
model candidate constructions for a variety of interesting applications. We show how to construct
g-query UCE[S®"P] as well as single-query UCE[S¥°"P] from indistinguishability obfuscation and
certain forms of point-function obfuscation. The query restriction considers a restricted form of
adversary that may see only a-priory bounded number of hash values. (In the UCE definition an
adversary is split into two stages where the first stage gets only oracle access to the hash function
and the query restriction applies to this first stage.) Here q denotes an arbitrary polynomial that

goes into the key generation algorithm. While ideally, we would like to obtain UCE security without

"We note that we present a more general result in [Mit14] and here extracted only the necessary steps to present
the result for UCEs and HMAC.
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such a query restriction we can show that for UCE[S5¢"P| the single-query restriction is essentially
optimal—a super-logarithmic number of queries would fall prey to an extension of our negative result.
Furthermore, even under such restrictions our UCE constructions yield the first standard-model
candidate constructions for a variety of interesting primitives. We obtain, amongst others, the first

standard-model constructions for
e a universal hardcore function with long output,®
e a g-query correlation-input secure hash function, as well as
e a g-query IND-secure deterministic public-key encryption scheme.

Indeed, our UCE constructions can instantiate the random oracle in most of the schemes which
have been proven secure under a UCE assumption either to obtain full security or to obtain g-query

security.

Interpretation. Current candidate constructions for indistinguishability obfuscation can only be
called efficient in complexity theoretic terms. That is, they are polynomial time schemes but they
are far from being practical. So how can we interpret our positive results? Security proofs in the
random oracle model provide a heuristic verification of security. Security proofs down to UCEs may
provide much more, given that the form of UCE can indeed be obtained in the standard model. We
view our constructions of UCEs as validation that this is possible, that is, our constructions validate
the UCE assumptions. While further study is, of course, needed, UCEs provide a viable alternative
to the random oracle methodology. For all practical purposes we suggest, following BHK, the use
of HMAC which may well achieve some strong form of UCE security; what it cannot achieve is to

behave like a random oracle.

The use of point-function obfuscation and padding. We mentioned, in passing, that our
constructions of UCE secure functions rely on indistinguishability obfuscation as well as different
forms of point-function obfuscation. In Chapter 12 we ask whether assuming the existence of such
point-function obfuscators is necessary for our intended goals. We show that this is, indeed, the case,
that is, we show that the UCE notions that we construct imply the existence of the point-function
obfuscation schemes that we assumed for the construction. An interesting question that we leave for
future work is whether also indistinguishability obfuscation is necessary for the existence of strong
UCE notions.

A second intricacy of our constructions that we have not yet talked about is that of padding. In
short, our constructions of UCE secure functions will consist of the indistinguishability obfuscation
of a pseudorandom function. That is, if F is a pseudorandom function with key k then we construct

a UCE secure function H as

H = i0(F(k, ).

8We note that both, the existence of a universal hard-core function (a hard-core function for any one-way function)
as well as the existence of hard-core functions with long outputs for any one-way function was a long-standing open
problem. While Bellare, Stepanovs, and Tessaro [BST14] recently showed how to construct hardcore functions with
long output for any one-way function (based on strong obfuscation assumptions) we provide the first construction of
a universal hardcore function with long output.
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In other words, our UCE function will be the obfuscation (with an indistinguishability obfuscator
iO) of the pseudorandom function with a hard-coded key k. However, in order for our proofs to
go through we need to first artificially increase the size of the pseudorandom function before we
obfuscate it. If we think of F as a Boolean circuit then this padding operation can be thought of as
the introduction of bogus gates (no-operation gates) which do not change the functionality but only
increase the size. One example would be to add pairs of NOT-gates to the first input wire. This,
somewhat strange operation is necessary for our proof strategy but, on the other hand, feels to be
an artifact of the proof rather than a true necessity.

In Chapter 13 we initiate a study of such padding operations in obfuscation-based techniques
and formulate a framework of assumptions called superfluous padding assumptions (SuPA) that
intuitively state that padding in certain situations is not really necessary. While it can be shown
that, in general, padding is indeed a necessary evil [Holl5, BCC*14], it might be that, for some
restricted cases, padding is indeed superfluous in which case also our earlier constructions would be
lifted from achieving g-query security to full security. Whether or not this is the case is an open
research question and we hope that with our work here we spark some interest in the cryptographic
community to further investigate the role of padding. Finally, and going in a similar direction, in the
final chapter of the thesis (Chapter 14) we present a direct construction of a g-query deterministic
public-key encryption scheme from indistinguishability obfuscation which has certain advantages
over the indirect constructions via UCEs. In particular, it seems that padding plays a much less
prominent role and that the construction, thus, provides an interesting case study for restricted

versions of SuP assumptions.

How 1O READ THIS THESIS

As highlighted in the previous section this thesis contains many results and not everybody may be
interested in all of them. I have tried to write the thesis such that the presentation of different results
is mostly self-contained. In Chapter 2, I present the general notation used within this work. I tried to
make the background material presented in Part I accessible also to non-experts in the field and hope
that Chapters 3, 5, and 6 can serve as surveys introducing the random oracle methodology, general-
purpose obfuscation and point-function obfuscation. The expert reader, on the other hand, can safely
skip most of the background material. I suggest to read the introduction of each chapter which I
close with pointers to the most important definitions for later results. Parts IT and III are mostly
self-contained, the exception being that the negative results for UCEs reuse ideas presented earlier
for random oracle uninstantiability results. Furthermore, also within Parts IT and III, individual
chapters should be intelligible on their own, the exceptions being that within Part III the first first
chapter (Chapter 9) introduces UCEs and, thus, forms the basis for all subsequent chapters. Of
course, even though individual parts should be intelligible on their own the thesis is ultimately meant

to be read cover to cover and I would like to wish you an enjoyable read.






CHAPTER 2

Preliminaries

“Begin at the beginning,” the King said, very gravely, “and go on till
you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

Summary. In this chapter we introduce the notation that we use throughout this thesis as well as
fundamental concepts. Readers that are familiar with basic cryptographic and complexity theoretic
concepts as well as the standard notation used in cryptographic papers can safely skip this section
as we introduce more specific concepts later when needed. (In addition, in Appendix A we present
definitions of concepts that we only encounter in passing.) We try to be self-contained and provide a
detailed build up of the concepts that we use and develop but, of course, we cannot replace a textbook
on cryptography. We refer the interested reader to [KLO07, Gol00, AB09] for further information on
cryptographic concepts and complexity theory.

Chapter content
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2.3 Game Based Security . . . . .. ... 20

2.1 NOTATION

If n € N is a natural number then we denote its unary representation by 1™ and by (n), its
binary representation using ¢ bits (for £ € N and n < 2%). We write [n] to represent the set
{1,2,...,n} and capture the (closed) real interval of all values between ¢ and j by [i,j], that is
[i,7] ;= {x € R:i <2 <j}. We denote the set of all bit-strings of length ¢ by {0,1}, the set of
all bit-strings of finite length by {0, 1}*, the length of € {0,1}* by |z|, the concatenation of two
strings z1, 22 € {0,1}* by 1|2, and the exclusive-or of two strings x1, 22 € {0,1}* that have the
same length by x; @ 3. The i-th bit of a string z is selected by x[i] and by x[i..j] = z[i]]| ... |«[]]
we denote the substring consisting of bit ¢ up to and including bit j of z. If z,y € {0,1}* are two
bit strings of the same length, then we denote their inner product over GF(2) by (z,y), that is,
(x,y) == @‘Zm:lla:[z] - y[i]. We write e to denote the empty string. A vector of strings x is written in
boldface, and x[i] denotes its i-th entry. The number of entries of x is denoted by |x|. For a finite set

13
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X, we denote the cardinality of X by |X| and the action of sampling 2 uniformly at random from
X by z+sX.

A real-valued function v : N — Ry is negligible if v(\) € A=“() and we denote the set of all
negligible functions by negl. Instead of saying that some function v is negligible we often misuse
notation and write

v(A) < negl(\)

which should be understood in asymptotic terms. That is, there exists A\g € N such that the inequality
holds for all A > Ay, or in other words v is negligible.

We call a function p : N — RO+ polynomial if p € A1) and we denote the set of all polynomials by
poly. We will frequently overload the notation and refer to poly or negl as an unspecified polynomial
(resp. negligible function) instead of explicitly referring to p € poly (or v € negl). We call a function
§ : N — R{ noticeable if there exists a polynomial poly such that for all large enough A € N function §
is bigger than the inverse of poly, that is, §(\) > —1

= poly(X)
if |1 — ~(A)| is negligible (which is used to characterize probabilities close to 1).

. We call a function v : N — R overwhelming

If E is an event then we denote by Pr[E] its probability and if X is a (discrete) random variable
then Pr[X = x] denotes the probability that X takes on value z. We denote the expectation of a
random variable X by E[X] and write X|E to say that variable X is conditioned on event E. When
not clear from context, we will specify the probability space explicitly by putting it in subscript, for
example, we write Pr, g[10)[7 = 5] to denote that the probability of = being 5 when x is chosen
uniformly at random from the set {1,2,...,10}. Alternatively, we may separate the probability space

by a colon from the statement and separate multiple steps by semicolons: we write
Pr [y =8 : x+s[10]; y<«s [233}}

to denote the probability that, if  is sampled uniformly from [10] and then y from [2z], the value y

takes value 8.

We write A, V, and — for the Boolean operations AND, OR, and NOT (negation). We use Boolean
operators both on binary strings (evaluated bit-wise)—for example, 001 V 010 = 011—as well as in
a logical sense, for example in probability statements. That is, =E denotes the negation of event E,
and by E A F we denote the event that both events E and F occur. Within probability statements
we write E, F as shorthand for E A F, that is, we may write Pr[E, F] instead of Pr[E A F]. We make
use of shorthand notation of quantifiers, that is, we use the existential quantifier denoted by 3 and
the universal quantifier denoted by V. Additionally, we write 3! to denote the uniqueness quantifier

(there is one and only one).

By log(z) we denote the logarithm of x to base 2. Finally, we denote by H, (X ) the min-entropy

of a random variable X, defined as

Ho (X):= in  log(1/Pr[X =
(X) pednin og(1/Pr[X = z])

where the probability is over X and Supp (X ) denotes the support of X, i.e., the set of realizations
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of X that have non-zero probability.

2.2 ALGORITHMS AND COMPUTATIONAL MODELS

Throughout the thesis we consider two models of computation: Turing machines and Boolean circuits.
Recall that a Turing machine can process inputs of arbitrary length whereas the input length of
a circuit is fixed. We denote the runtime of a Turing machine M on input = by timem(z) and its
description size by |[M|. Throughout, we assume that all Turing machines terminate on every input.
We denote the size of a circuit C' by |C| where we measure the size as the number of vertices (number
of (=, A, V)-gates plus number of input and output nodes) and we denote by the depth of the circuit
the maximal length of a path from an input gate to an output gate. A universal Turing machine UM
is a machine that takes two inputs ((M) , z), interprets (M) as the description of a Turing machine M
and returns M(x). We note that we often do not explicitly distinguish between a Turing machine M
and its description (M). That is we my write UM(M, 2) = M(x) to capture that the universal Turing
machine is run on a description of Turing machine M and input x and outputs M(z).

A universal circuit UC is defined analogously working on descriptions of circuits C' and inputs x.
Similarly as with Turing machines we often do not explicitly distinguish between the description (C')
of a circuit C and the circuit itself but rather overload notation and refer to C' as both the circuit and
its description. Note that the circuit model of computation is non-uniform capturing that circuits
can only process fixed length inputs. In contrast the Turing machine model is referred to as uniform
as a single Turing machine can process inputs of arbitrary length and thus a single Turing machine
M can compute a function f:{0,1}* — {0,1}* by which we mean that for all z € {0,1}* we have
that M(z) = f(z). For circuits, on the other hand, we say that a function f:{0,1}* —: {0,1}* can
be computed by a circuit family if there exists a sequence (C))aen of circuits such that for all A € N
and z € {0,1}* we have that f(z) = Cx(z). This restriction also applies to the universal circuit
UCy, which also only accepts inputs (C,x) of total length A. The universal Turing machine UM,
on the other hand, can process inputs of arbitrary length, and thus in particular Turing machine
descriptions of arbitrary length.

In order to simplify the presentation and abstract from the actual computational model we
sometimes use the term program to refer to either a Turing machine or a circuit. We may, therefore,
speak of a universal program UP, which denotes either a universal Turing machine UM or a universal
circuit UC, and evaluates a program P on some input z (keeping in mind that when UP is replaced
by a universal circuit that length restrictions apply). When defining programs, circuits or Turing
machines, we use the notation P[z](-) to emphasize that value z is hard-coded into P.

While we use the term program to denote a construction which could be implemented either by
a Turing machine or a circuit we often simply speak of an algorithm which we assume is always
implemented by a Turing machine.

If a Turing machine or circuit (or program) P gets access to one or more oracles Oy, ..., O, then
we denote this by writing the oracles in superscript P€1++On In case of oracle Turing machines
we assume that the Turing machine contains one extra tape per oracle on which the machine may
write a query and after going into a special state receives the answer to its query in one time step.
Similarly, oracle gates to circuits are modeled to be of unit size. Instead of saying oracle access, we

often also refer to this as black-box access.
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We employ an explicit security parameter to denote the input size of a problem. When specifying a
cryptographic scheme we usually describe the scheme’s parameters in terms of the security parameter
and we measure the security of schemes relative to the security parameter. For example, the key
size of an encryption scheme could be described by a polynomial in the security parameter. In this
thesis we denote the security parameter by A € N and give it implicitly to all algorithms in the unary
representation 1%, even if not explicitly stated.

We assume that all algorithms run for a bounded number of steps, that is, at some point they
halt and output a value (or the empty string £). Usually we allow algorithms to run for a specified
number of steps that are bounded by a polynomial in the algorithm’s input size and we call such
algorithms polynomial time algorithms. To make the runtime more explicit we measure the runtime
in terms of the security parameter and call an algorithm efficient or PT (short for polynomial time)
if it runs in time polynomial in the security parameter. By this we mean that there exists a Turing
machine M that implements the algorithm, polynomials p and q and a value Ay € N such that for
all A > )¢ and inputs = € {0,1}9%) it holds that

timem (17, ) < p(\).

Note that the input size for efficient algorithms will also always be bounded by a polynomial in
the security parameter; in the above example the input size was bounded by polynomial q while
the runtime was bound by polynomial p. If the algorithm is probabilistic which is usually the case
we speak of PPT (short for probabilistic polynomial time). Note that the security parameter is
implicitly given as input to all algorithms (if not explicitly stated). If we say that an algorithm runs
in unbounded time, then we assume that there is no time limit for the computation. However, we
still assume that it always halts and outputs a value eventually.

If we speak of an algorithm we assume the algorithm is randomized, unless stated otherwise.
In case the algorithm is modeled as a Turing machine then we assume that the machine has an
extra input tape (the randomness tape) that is freshly initialized with a uniformly random string on
each invocation of the algorithm. In case of a circuit, we assume the existence of extra input wires
supplying the necessary randomness. We often speak of the random coins of an algorithm referring
to the random bits that the algorithm uses for its computation. By y + A(z;r) we denote that y
was output by algorithm A on input z and randomness r. If A is randomized and no randomness is
specified, then we assume that A is run with freshly sampled uniform random coins and we write
y <s A(x). We often refer to algorithms, or tuples of algorithms, as adversaries.

An adversary is a tuple of stateful PPT algorithms. When an adversary A = (A, A2) consists
of two stages A; and As, these two stages are assumed to be distinct algorithms that do not share
any state or randomness, unless explicitly permitted to do so by a game. We discuss multi-stage

adversaries in detail in Section 2.3.3.

2.2.1 Classes and Sequences of Algorithms and Distributions

If we speak of a class (or an ensemble) C := {Cy}xen of circuits (or Turing machines, programs or
functions, respectively), denoted by a calligraphic letter such as C, we mean that for each security
parameter A € N each Cy contains a set of circuits:

CXZZZ{Ck}

seUy
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where Uy is usually of cardinality 2P°¥) for some polynomial poly. This allows us to capture, for
example, keyed functions fi : {0,1}* — {0,1}* for k € U,.

We speak of a sequence of circuits (C)xen (written in normal font) to denote a non-uniform
circuit, that is, one circuit for every security parameter A € N with input size \. We can capture
a sequence of circuits by a class C := {Cy}ren where we require |Uy| = 1. When we speak of a
non-uniform algorithm this can either be a (non-uniform) circuit or a Turing machine that for each
security parameter gets a (polynomial-size) advice (string of polynomial length depending only on
the length of the input).

Let D = (Dy)xen be a sequence of discrete probability distributions over {0,1}* with density
function sequence (fi)xen such that for all A € N we have that 3° 13- fa(z) = 1. We say that
D is samplable if there exists (possibly non-uniform) algorithm Sam such that for all A € N and
z € {0, 1}

Pr,c1o,135mn00 [Sam(l)‘;r) =z] = fi(z)

where Sam.rl : N — N is a function describing the number of random coins needed by algorithm Sam.
If Sam is PPT (and hence Sam.rl is polynomial) we call distribution D efficiently samplable. We often
say we run a distribution, or write o < D(1*), to denote that the corresponding sample algorithm
is invoked on fresh random coins. Finally, if X is a random variable that is distributed according
to distribution D then we write = <—s X () instead of x <—sD(\); that is  is chosen according to
distribution D. We write o <—s X (1*) (the security parameter is provided in unary) to indicate that
the underlying distribution is efficiently samplable and x <—s X (\) (the security parameter is provided

in binary) to indicate that the underlying distribution is not necessarily efficiently samplable.

2.2.2 Statistical and Computational Distance

The distance between random variables or distributions can be measured in statistical and compu-
tational terms. If X and Y are two random variables then we define the statistical distance between
X and Y as

Axy(A) = % Z [PriX(\) =z] = Pr[Y(\) = z]]|.
z€{0,1}*

Similarly we can define the statistical distance using algorithms that run in unbounded time as
Axy(N) = max [Pr[D(*, X (X)) = 1] = Pr[D(*, Y (A) =1]|

where the probability is over random variables X and Y as well as the random coins of distinguisher
D and where the maximum maxp is over all (possibly unbounded) algorithms.

Analogously, we define the computational distance between two random variables X and Y to
be the maximum distinguishing advantage of any PPT algorithm D (we usually refer to such an

algorithm D as a distinguisher):
Oxy(A) = max ’Pr [D(l)‘,X(lA)) =1]—Pr [D(1A7Y(1>‘) =1] ’

The probability is over random variables X and Y as well as the random coins of distinguisher D

and where the maximum is over all PPT algorithms.
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We say that two variables are statistically/computationally indistinguishable if the statistical/-
computational distance is negligible. We write X ~; Y (resp. X =, Y’) to denote that X and Y are

statistically (resp. computationally) indistinguishable.

2.2.3 Function Families and Fundamental Cryptographic Objects

In line with [BHK13:p, BST14] we consider the following formalization of (efficient) function families:
a function family F is a five tuple! of PPT algorithms (F.KGen, F.Eval, F.kl, F.il, F.ol). The algorithms
F.kl, F.il, and F.ol are deterministic and on input A define the key length, input length, and output
length, respectively. The probabilistic key generation algorithm F.KGen gets the security parameter 1*
as input and outputs a key fk € {0, 1}F'k'(’\). The deterministic evaluation algorithm F.Eval takes
as input the security parameter 1%, a key fk, as well as a message z € {0, 1}F'”(A) and generates a
function value F.Eval(1*,fk,z) € {0,1}7°'). In case we consider randomized function families we
model F.Eval also as a (probabilistic) PPT algorithm and denote by F.rl : N — N the function that on
input A outputs the number of random coins needed by F.Eval when run on security parameter 1*.

Note that a function family and a function ensemble are different formalizations of the same
object when one restricts function ensembles to consist of finite sets per security parameter and
identify each function in the set with an explicit key. To simplify notation we usually drop the security
parameter from invocations of F.Eval. That is, we write F.Eval(fk,z) instead of F.Eval(1*,fk,z) and

assume that security parameter 1 is implicit in key fk.

Remark. We go by the convention to provide the security parameter in binary to “length functions”
such as il,ol kl or rl. That is, we write il(\) instead of il(1*). This is not to mean that these functions

cannot be computed efficiently but rather that they are “ helper functions”.

One-wayness. A function family f := (f.KGen, f.Eval, f.kl, f.il, f.ol) of efficient algorithms is called
one-way (or one-way function, short OWF) if for any PPT adversary (i..e, algorithm) A the advantage
Adve™ (A) defined as

Adv?m()\) = P csf.KGen(2) [A(l)‘,fk,f.EvaI(fk,x)) € {z' : f.Bval(fk,2') = f.EvaI(fk,o:)}]
z «$ {0,111

is negligible. In other words, a function is one-way if it can be efficiently evaluated but that for a
uniformly random preimage it should be difficult to invert.

One-wayness is usually defined over the uniform distribution, that is, preimage x is chosen
uniformly at random. We can extend the definition and consider one-wayness for a specific distribution
D over the preimage space f.il(A) and say that f is one-way on D if for all PPT adversaries A we
have that

Adve's 4(A) := Prac csf.kGen(n) [.A(Y\fk,f.Eval(fk, x)) € {z : f.Eval(fk,2") = f.Eval(fk, z)}]
z +$D(1*)

is negligible. We note that if a distribution D is predictable, that is, there exists an efficient adversary
A such that
Pr, sp(12) [1' = A(lA)]

LFor more specific function families additional algorithms may exist.
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is non-negligible, then no function can be one-way for D. Jumping ahead, the notion of predictability

and unpredictability plays a central role in this thesis.

Pseudorandom functions and generators. We say that a function family F is pseudorandom
(or a pseudorandom function, short PRF) if for any PPT distinguisher D—we usually refer to a binary
adversary (i.e., an adversary with binary output) as a distinguisher if it is tasked with distinguishing

between two worlds—we have that
AdVEE () = ‘Pr [DF-E“'W')(F) - 1} —Pr {Df(‘)(l’\) - 1” < negl(\),

where we denote by AdvFF’fé the advantage of adversary D against F as a pseudorandom function.
The probability is over the random coins of D and additionally, in the first term over the random
choice of key fk € {0,1}7 ¥ and in the second over the random choice of a function f with domain
{0,137 and range {0, 1}/,

In contrast to pseudorandom functions, pseudorandom generators are usually not keyed. A
pseudorandom generator is a function family G := (G.Eval, G.il, G.ol) of PPT algorithms where G.Eval
on input the security parameter 1* and a string of length G.il(\) output a string of length G.ol(\).
We call G a secure pseudorandom generator if for any PPT distinguisher D we have that

AdVEE(A) == |Pry s 10,1300 [D(1Y, G.Eval(1?,5)) = 1] = Pr, (410130000 [D(1Y,y) = 1]

is negligible.

Hash functions. Due to their diversity, hash functions are a versatile object in cryptography. The
term hash function as such usually only describes a function of the form H : {0, 1}* — {0, 1}H-°!(})
that maps arbitrary bit-strings to bit-strings of a fixed length. Sometimes we also consider fixed input-
length (FIL) variants which take the form H : {0, 1}"1) — {0, 1}H-9/N) where usually H.il(\) >
H.ol()), that is, the function is compressing. In this work we will mostly consider keyed hash functions
(aka. hash function families), that is they take a (usually public) key as additional input: H :
{0’ 1}H.k|(>\) % {0’1}H.il(>\) — {0,1}H.ol()\).

We can now specify several security properties for hash functions. We can, for example, require
that a hash function is a pseudorandom function or one-way (the latter is sometimes also referred to
as preimage resistance in the context of hash functions). One commonly required security property
of hash functions is collision resistance. A function family H is called collision resistant if no efficient
adversary can find two inputs that map to the same image, that is, if for any PPT adversary A we

have that the following advantage
Advij 4(A) := Pr[H.Eval(hk,z) = H.Eval(hk,2) Az # 2’ : hk s H.KGen(1%); (z,2") < A(1*, hk)]

is negligible.

Notation. We go by the convention that f denotes a one-way function, F denotes a pseudorandom

function, G is used for pseudorandom generators and H for hash functions.
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IND-CPAD e (N)

(sk, pk) < PKE.KGen(1")
(st, mo, m1) <s.4:1 (1%, pk)
b+s{0,1}

¢ +$ PKE.Enc(pk, my)

b s A (17, st, ¢)

return (b= b A |mo| = |m1|)

Figure 2.1: A formalization of the IND-CPA security notion for a public-key encryption scheme via code-
based games. Note that the adversary A := (A, .A2) consists of two adversarial procedures that communicate
explicitly via the variable st (short for state). We say that a scheme PKE is IND-CPA secure if no efficient
adversary A can win in the above game with probability significantly better than guessing.

2.3 GAME BASED SECURITY

In this thesis we usually formalize security no