6 Anhang

A. Röntgenstrukturanalyse von *trans*-Di-[μ -(2-dimethylphosphanyl-1-bis(4-methoxyphenyl)ethanolato-[O,P])methylnickel(II)] <u>12</u>

Diffraktometer:	Siemens PW100
	Mo-Kα-Strahlung
	Graphitmonochromator
Wellenlänge Mo-Kα:	71.07 pm
Temperatur:	293(2) K
Gitterkonstanten:	25 ausgesuchte Reflexe
Zahl der Reflexe:	6759
	(-18 < h < 18)
	(-12 < k < 12)
	(-15 < l < 15)
Zahl der unabhängigen Reflexe:	1746
Daten/Parameterzahl/Restraints:	1746/217/6
Goodness of Fit:	1.015
R-Werte für I > 2s(I):	0.0539
wR ₁	0.1023
R-Werte für alle Daten	0.1221
wR _{All}	0.1347

Tabelle 6.2 Kristallographische Daten

monoklin
C2 ₁ /c (Nr. 15)
a = 193.600(4) pm
b = 125.0100(2) pm
c = 163. 1000(3) pm
$\beta = 105.4030(1)$ °
3761.521(10) pm ³
4
1.361 g/cm ³

Atom	Wyck.	x	V	7
C1	8f	0.0560(5)	0.1760(9)	0.0815(6)
H16A	8f	0.00790	0.17810	0.04430
H16B	8f	0.07800	0.10830	0.07570
H16C	8f	0.08440	0.23260	0.06690
C^2	8f	0.1800(5)	0.2218(8)	0.3503(5)
H2	8f	0 22460	0 18940	0.38350
H17B	8f	0.18520	0 29890	0.35530
C3	8f	0.2214(5)	0.2644(9)	0.1937(7)
H18A	8f	0.27110	0.24700	0.22050
H18B	8f	0.21290	0.33840	0.20360
H18C	8 <i>f</i>	0.21140	0.25180	0.13360
C4	8f	0.2033(5)	0.0511(8)	0.2326(6)
H19A	8f	0.25510	0.05640	0.25280
H19B	8f	0 19040	0.02600	0 17490
H19C	8f	0.18570	0.00170	0.26760
C5	8 <i>f</i>	0.1139(5)	0.2446(9)	0.4660(7)
C6	8f	0 1173(4)	0.1932(9)	0.5433(7)
H1	8f	0.12380	0.11940	0.54740
C7	8f	0.1110(5)	0.2511(11)	0.6145(7)
H5	8f	0.11400	0.21590	0.66550
C8	8f	0.0986(6)	0.21270 0.4117(9)	0.5346(8)
H4	8f	0.09280	0.48550	0.53110
C9	8f	0.1003(5)	0.3611(12)	0.6092(8)
C10	8f	0.1054(5)	0.3547(10)	0.4635(8)
H3	8f	0.10410	0.39130	0.41360
C11	8f	0.0745(7)	0.5192(11)	0.6787(7)
H14A	8f	0.07190	0.54340	0.73360
H14B	8 <i>f</i>	0.02820	0.52850	0.63840
H14C	8 <i>f</i>	0.11040	0.55990	0.66090
C12	8 <i>f</i>	0.1876(6)	0.0171(10)	0.4457(6)
H11	8 <i>f</i>	0.22570	0.06140	0.47320
C13	8 <i>f</i>	0.1957(6)	-0.0908(12)	0.4542(6)
H12	8 <i>f</i>	0.23890	-0.11920	0.48740
C14	8 <i>f</i>	0.1400(8)	-0.1585(10)	0.4138(8)
C15	8 <i>f</i>	0.0755(6)	-0.1169(11)	0.3657(7)
H13	8f	0.03760	-0.16170	0.33860
C16	8 <i>f</i>	0.0682(6)	-0.0053(10)	0.3586(6)
H9	8 <i>f</i>	0.02440	0.02300	0.32690
C17	8f	0.1230(6)	0.0638(9)	0.3962(6)
C18	8f	0.1163(5)	0.1852(9)	0.3847(6)
C19	8f	0.0991(7)	-0.3385(9)	0.3887(8)
H15A	8f	0.11560	-0.41050	0.40240
H15B	8f	0.08630	-0.32910	0.32810
H15C	8f	0.05750	-0.32510	0.40950
P1	8f	0.16305(14)	0.1820(2)	0.23737(17)
01	8f	0.0526(3)	0.2117(5)	0.3186(4)
O2	8f	0.1550(4)	-0.2662(7)	0.4270(5)
03	8f	0.0938(4)	0.4091(7)	0.6833(5)
Ni1	8f	0.05162(7)	0.19397(11)	0.19747(8)

Tabelle 6.3Atomkoordinaten

Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	U23
C1	0.057(8)	0.117(10)	0.052(7)	0.003(7)	0.013(6)	-0.001(8)
C2	0.036(7)	0.064(8)	0.052(7)	0.004(6)	0.009(5)	-0.006(6)
C3	0.075(9)	0.081(9)	0.090(9)	-0.020(7)	0.041(8)	-0.002(7)
C4	0.065(8)	0.076(9)	0.087(9)	0.024(7)	0.017(7)	-0.001(7)
C5	0.052(8)	0.049(9)	0.030(8)	0.001(6)	-0.002(6)	0.000(6)
C6	0.058(8)	0.052(7)	0.051(8)	0.008(6)	-0.001(6)	-0.012(8)
C7	0.056(8)	0.057(9)	0.053(9)	0.005(6)	0.001(6)	0.017(7)
C8	0.088(10)	0.052(8)	0.057(9)	0.003(7)	0.016(7)	-0.009(8)
C9	0.044(8)	0.085(12)	0.036(9)	-0.006(7)	-0.006(6)	-0.003(8)
C10	0.069(9)	0.053(9)	0.063(9)	-0.007(7)	0.011(7)	0.009(7)
C11	0.123(13)	0.096(12)	0.092(11)	0.002(10)	0.040(9)	-0.027(9)
C12	0.049(9)	0.067(10)	0.054(8)	-0.002(7)	-0.001(6)	0.013(7)
C13	0.061(9)	0.077(10)	0.054(8)	0.020(9)	0.012(7)	0.011(8)
C14	0.086(11)	0.043(9)	0.065(9)	0.002(8)	0.035(8)	-0.005(7)
C15	0.058(9)	0.084(11)	0.050(8)	0.001(8)	-0.002(7)	0.009(7)
C16	0.057(9)	0.060(9)	0.061(8)	0.004(8)	0.019(7)	0.006(7)
C17	0.042(8)	0.058(9)	0.050(7)	-0.010(7)	0.012(6)	-0.001(7)
C18	0.032(7)	0.059(8)	0.042(7)	-0.004(6)	-0.009(6)	0.006(6)
C19	0.123(13)	0.06(1)	0.095(11)	-0.002(9)	0.018(9)	0.007(8)
P1	0.044(2)	0.064(2)	0.0555(19)	-0.0030(17)	0.0138(15)	0.0023(17)
01	0.034(4)	0.061(5)	0.041(4)	-0.004(4)	0.015(3)	-0.004(4)
O2	0.088(7)	0.056(6)	0.088(6)	0.007(5)	0.024(5)	0.009(5)
O3	0.105(7)	0.083(7)	0.057(6)	0.004(5)	0.016(5)	-0.016(5)
Ni1	0.0441(9)	0.0597(9)	0.0443(8)	-0.0002(8)	0.0103(6)	-0.0018(9)

Tabelle 6.4 Aniso	rope Auslenkungsparameter (Å ²)
-------------------	---

Geometrische Parameter

Bindungsabstände (Å)

C1—Ni1	1.928(9)	C12—C13	$\begin{array}{c} 1.361(13)\\ 1.410(13)\\ 1.383(14)\\ 1.377(14)\\ 1.382(12)\\ 1.403(14)\\ 1.371(13)\\ 1.531(13)\\ 1.436(10)\\ 1.412(11)\\ 2.222(2)\end{array}$
C2—C18	1.540(12)	C12—C17	
C2—P1	1.852(9)	C13—C14	
C3—P1	1.80(1)	C14—C15	
C4—P1	1.820(9)	C14—O2	
C5—C10	1.385(12)	C15—C16	
C5—C6	1.402(13)	C16—C17	
C5—C18	1.531(13)	C17—C18	
C6—C7	1.401(13)	C18—O1	
C7—C9	1.389(13)	C19—O2	
C7—C9	1.389(13)	C19—O2	1.412(11)
C8—C9	1.363(13)	P1—Ni1	2.063(3)
C8—C10	1.396(13)	O1—Ni1 ⁱ	1.953(6)
C9—O3	1.384(12)	O1—Ni1	1.984(6)
C11—O3	1.422(13)	Ni1—O1 ⁱ	1.953(6)

Tabelle 6.5 Geometrische Parameter (Fortsetzung)

Bindungswinkel (°)

C18—C2—P1	109.6(6)
C10—C5—C6	117.3(10)
C10—C5—C18	119.1(11)
C6—C5—C18	123.5(10)
C7—C6—C5	121.0(11)
C9—C7—C6	120.2(11)
C9—C8—C10	121.2(11)
C8—C9—O3	126.2(13)
C8—C9—C7	118.9(12)
O3—C9—C7	114.8(12)
C5—C10—C8	121.3(11)
C13—C12—C17	121.8(11)
C12-C13-C14	120.3(11)
C15—C14—O2	125.0(13)
C15—C14—C13	120.1(11)
O2-C14-C13	114.9(13)
C14—C15—C16	118.5(11)
C17—C16—C15	122.8(10)
C16—C17—C12	116.4(10)
C16—C17—C18	122.8(10)
C12—C17—C18	120.8(10)
O1—C18—C17	110.3(8)

O1—C18—C5	108.8(8)
C17—C18—C5	113.3(8)
O1—C18—C2	104.8(7)
C17—C18—C2	107.0(9)
C5—C18—C2	112.4(8)
C3—P1—C4	100.6(5)
C3—P1—C2	106.1(5)
C4—P1—C2	108.7(5)
C3—P1—Ni1	122.1(4)
C4—P1—Ni1	117.8(4)
C2—P1—Ni1	100.8(3)
C18—O1—Ni1 ⁱ	135.1(6)
C18—O1—Ni1	120.2(5)
Ni1 ⁱ —O1—Ni1	96.6(2)
C14—O2—C19	117.0(9)
C9—O3—C11	117.1(10)
C1—Ni1—O1 ⁱ	101.0(3)
C1—Ni1—O1	177.1(3)
01 ⁱ —Ni1—O1	82.0(3)
C1—Ni1—P1	89.4(3)
O1 ⁱ —Ni1—P1	169.5(2)
01—Ni1—P1	87.62(18)
	· · /

Symmetry codes: (i) -x, y, 0.5-z.

Tabelle 6.6 Datensammlung	
Diffraktometer:	Siemens PW100
	Mo-K α -Strahlung
	Graphitmonochromator
Wellenlänge Mo-Ka:	71.07 pm
Temperatur:	293(2) K
Gitterkonstanten:	25 ausgesuchte Reflexe
Zahl der Reflexe:	8015
	(-1 < h < 15)
	(-16 < k < 1)
	(-17 < < 17)
Zahl der unabhängigen Reflexe:	4328
Daten/Parameterzahl:	3196/322
Goodness of Fit:	1.032
R-Werte für I > 2s(I):	0.050
wR ₁	0.1203
R-Werte für alle Daten	0.073
wR _{All}	0.1365

B. Röntgenstrukturanalyse von *cis*-Bis(2-Dimethylphosphanyl-1bis(4-methoxyphenyl)ethanolato-[O,P])nickel(II) <u>18</u>

Tabelle 6.7 Kristallographisch Daten

Kristallklasse:	monoklin
Raumgruppe:	P2 ₁ /c (Nr. 14)
Gitterkonstanten:	a = 140.610(16) pm
	b = 152.004(15) pm
	c = 162.74(3) pm
	β = 107.63(1) °
VEZ:	3724.85(10) Å ³
Z:	4
röntgenographische Dichte:	1.265 g/cm ³

C26

4e

0.2148(2)

0.8279(2)

0.7386(2)

Atom Wyck. Х Z C1 -0.1932(3)1.0420(3) 0.4770(3) 4eH1A 4e-0.25950 1.06660 0.45330 H1B 4e-0.168501.02440 0.42990 C24e-0.1950(3)0.9626(3)0.5362(3)C3 4e0.1890(3)1.0743(3)0.7667(3)H3A 4e0.22970 1.08040 0.72840 H₃B 4e0.22580 1.09790 0.82270 C44e0.1628(3) 0.9761(3) 0.7749(3)C5 4e0.1081(4)1.2400(3) 0.6950(3)H5A 4e0.04940 1.27530 0.67220 H5B 4e0.14200 1.23370 0.65220 H5C 4e1.26790 0.74520 0.15170 C6 4e0.0209(4)1.1559(4)0.8115(3)H6A 4e-0.001101.10220 0.83080 H6B 4e-0.03460 1.19540 0.79150 H6C 4e0.07120 1.18260 0.85840 C7 4e-0.0554(4)1.1835(3)0.4776(3)H7A 4e-0.01200 1.14610 0.45750 H7B 4e-0.017801.23190 0.50930 H7C 4e-0.10760 1.20560 0.42910 C8 4e-0.1862(4)1.2016(3) 0.5799(3)4eH8A 1.17390 -0.21870 0.61720 H8B 4e-0.235601.22450 0.53000 H8C 4e-0.144901.24880 0.61020 C9 4e0.59648(17)-0.2589(2)0.9833(2)4eC10 -0.2189(2)0.9636(2)0.68356(18)H10 4e-0.156000.93800 0.70380 0.74035(16) C11 4e-0.2728(3)0.9821(3)H11 4e-0.24600 0.96890 0.79860 C12 4e-0.3667(3)1.0204(3)0.7101(3)H12 4e-0.402701.03290 0.74810 -0.4068(2)C13 4e1.0402(3)0.6230(3)4eH13 -0.46960 1.06580 0.60270 4eC14 -0.3529(2)1.0216(2)0.56618(19)H14 4e-0.37970 1.03480 0.50790 C15 4e-0.2406(2)0.88005(17)0.48360(18)C16 4e-0.2051(2)0.7982(2)0.51733(17)H16 4e-0.15420 0.79440 0.56930 C17 4e-0.2459(3)0.72201(16) 0.4734(2)H17 4e-0.22220 0.49600 0.66720 4eC18 -0.3221(3)0.7277(2)0.3957(2)H18 4e-0.34930 0.67680 0.36630 C19 4e-0.3575(2)0.8096(2)0.36200(17) 4eH19 -0.40840 0.81340 0.31000 C20 4e-0.3167(2)0.88575(19)0.40594(19)H20 4e-0.340400.94050 0.38340 C21 4e0.2434(2)0.76123(19)0.91426(18)C22 4e0.3406(2)0.94092(18)0.7703(2)H22 4e0.35970 0.99870 0.78540 C23 4e0.40918(19) 0.8812(3) 0.7568(2)H23 4e0.47420 0.89900 0.76280 C24 4e0.3806(3)0.7948(2)0.7342(2)H24 4e0.42650 0.75480 0.72510 C25 4e0.2834(3)0.76815(17)0.7251(2)H25 4e0.26420 0.71030 0.71000

Tabelle 6.8 Atomkoordinaten

Atom	Wyck.	х	y z	
H26	4 <i>e</i>	0.14970	0.81000	0.73260
C27	4e	0.1560(2)	0.9590(2)	0.86666(14)
C28	4e	0.06539(19)	0.9340(2)	0.8774(2)
H28	4e	0.00920	0.92820	0.82960
C29	4e	0.0588(2)	0.9176(2)	0.9595(3)
H29	4e	-0.00180	0.90090	0.96670
C30	4e	0.1428(3)	0.9263(2)	1.03094(18)
H30	4e	0.13840	0.91540	1.08590
C31	4e	0.2334(3)	0.9513(2)	1.02023(15)
H31	4e	0.28960	0.95720	1.06800
C32	4e	0.23997(19)	0.9677(2)	0.93809(19)
H32	4e	0.30060	0.98440	0.93090
Ni1	4e	-0.01510(4)	1.03704(3)	0.64041(3)
O1	4e	-0.0964(2)	0.94419(17)	0.58336(18)
O2	4 <i>e</i>	0.0714(2)	0.95615(19)	0.71204(19)
P1	4 <i>e</i>	-0.10941(9)	1.12139(7)	0.54660(7)
P2	4 <i>e</i>	0.07262(9)	1.13226(8)	0.72383(8)
C50	4 <i>e</i>	0.5257(6)	0.6920(7)	0.5795(5)
C51	4 <i>e</i>	0.5306(7)	0.6424(5)	0.6334(5)
H51A	4e	0.57960	0.66180	0.68520
H51B	4e	0.54950	0.58600	0.61690
H51C	4e	0.46680	0.63780	0.64320
O52	4e	0.5675(9)	0.7829(7)	0.6001(7)
C53	4e	0.4719(8)	0.6725(11)	0.4935(7)
H53A	4e	0.48320	0.71760	0.45630
H53B	4 <i>e</i>	0.40190	0.66950	0.48770
H53C	4 <i>e</i>	0.49360	0.61690	0.47770

Tabelle 6.8 Atomkoordinaten (Fortsetzung)

Tabelle 6	6.9	Anisotrope Auslenkungsparameter (in Å ²)					
Atom	<i>U</i> 11	U22	U33	<i>U</i> 12	<i>U</i> 13	U23	
C1	0.041(3)	0.050(3)	0.038(2)	0.005(2)	0.006(2)	-0.001(2)	
C2	0.047(3)	0.036(2)	0.038(2)	-0.002(2)	0.012(2)	-0.001(2)	
C3	0.053(3)	0.045(3)	0.041(3)	-0.005(2)	0.006(2)	0.003(2)	
C4	0.042(3)	0.035(3)	0.045(3)	-0.002(2)	0.007(2)	0.003(2)	
C5	0.078(4)	0.035(3)	0.076(4)	-0.009(3)	0.007(3)	0.003(3)	
C6	0.085(4)	0.058(3)	0.057(3)	0.008(3)	0.019(3)	-0.011(3)	
C7	0.068(3)	0.039(3)	0.055(3)	-0.001(2)	0.025(3)	0.004(2)	
C8	0.063(3)	0.058(3)	0.063(3)	0.015(3)	0.023(3)	-0.002(3)	
C9	0.048(3)	0.041(3)	0.043(3)	-0.008(2)	0.016(2)	-0.007(2)	
C10	0.079(4)	0.065(3)	0.046(3)	-0.008(3)	0.027(3)	-0.003(3)	
C11	0.121(6)	0.098(5)	0.062(4)	-0.031(5)	0.046(4)	-0.016(4)	
C12	0.117(6)	0.098(5)	0.106(5)	-0.038(5)	0.081(5)	-0.040(4)	
C13	0.068(4)	0.084(4)	0.133(6)	-0.003(3)	0.056(4)	-0.024(4)	
C14	0.053(3)	0.065(4)	0.073(4)	0.000(3)	0.026(3)	-0.002(3)	
C15	0.041(3)	0.049(3)	0.042(3)	-0.004(2)	0.015(2)	-0.005(2)	
C16	0.063(3)	0.053(3)	0.057(3)	-0.009(3)	0.010(3)	-0.003(3)	
C17	0.083(4)	0.055(4)	0.083(4)	-0.013(3)	0.023(3)	-0.014(3)	
C18	0.071(4)	0.081(5)	0.084(4)	-0.030(4)	0.025(3)	-0.043(4)	
C19	0.057(3)	0.084(4)	0.062(3)	-0.017(3)	0.005(3)	-0.019(3)	
C20	0.051(3)	0.060(3)	0.052(3)	-0.005(3)	0.011(3)	-0.008(3)	
C21	0.050(3)	0.046(3)	0.030(2)	0.004(2)	0.008(2)	0.006(2)	
C22	0.051(3)	0.058(3)	0.064(3)	0.009(3)	0.009(3)	0.004(3)	
C23	0.056(4)	0.091(5)	0.089(4)	0.011(4)	0.025(3)	0.011(4)	
C24	0.083(5)	0.096(5)	0.073(4)	0.036(4)	0.029(3)	0.007(4)	
C25	0.085(4)	0.061(4)	0.068(4)	0.013(3)	0.022(3)	-0.002(3)	
C26	0.063(3)	0.047(3)	0.055(3)	0.003(3)	0.023(3)	0.002(2)	
C27	0.054(3)	0.034(2)	0.047(3)	0.004(2)	0.015(2)	-0.002(2)	
C28	0.066(3)	0.040(3)	0.069(3)	0.003(3)	0.027(3)	0.003(2)	
C29	0.088(4)	0.042(3)	0.094(4)	-0.002(3)	0.055(4)	0.001(3)	
C30	0.122(6)	0.064(4)	0.065(4)	0.009(4)	0.049(4)	0.001(3)	
C31	0.095(5)	0.086(4)	0.043(3)	0.011(4)	0.013(3)	-0.004(3)	
C32	0.064(3)	0.065(3)	0.046(3)	-0.001(3)	0.017(3)	-0.006(3)	
Ni1	0.0421(4)	0.0330(3)	0.0367(3)	0.0005(3)	0.0088(2)	-0.0016(2)	
01	0.0372(17)	0.0339(17)	0.0464(17)	0.0033(14)	0.0030(14)	-0.0032(13)	
O2	0.0455(19)	0.0365(18)	0.0539(19)	-0.0020(15)	-0.0035(16)	0.0007(15)	
P1	0.0467(7)	0.0352(7)	0.0400(7)	0.0042(5)	0.0132(6)	0.0000(5)	
P2	0.0530(8)	0.0326(7)	0.0446(7)	-0.0016(6)	0.0083(6)	-0.0015(5)	
C50	0.100(6)	0.123(7)	0.090(5)	-0.004(5)	0.034(5)	-0.007(5)	
C51	0.201(10)	0.083(5)	0.090(6)	0.030(6)	0.013(6)	0.025(5)	
O52	0.358(14)	0.223(10)	0.359(14)	-0.082(10)	0.232(12)	-0.063(10)	
C53	0.176(11)	0.54(3)	0.122(8)	-0.186(15)	0.043(8)	-0.050(13)	

abelle 6.9	Anisotrope	Auslenkungsparameter ((in Å	λ^2)	
	7 11301000	/ usion wingsparameter ((1117	`)	

Tabelle 6.10	Geome	trische Paramete	er (Å, °)
C1—C2	1.548(6)	C17—C18	1.390
C1—P1	1.823(4)	C18—C19	1.390
C2—O1	1.396(5)	C19—C20	1.390
C2-C15	1.545(5)	C21—C22	1.390
С2—С9	1.550(5)	C21—C26	1.390
C3—C4	1.553(6)	C22—C23	1.390
C3—P2	1.802(5)	C23—C24	1.390
C4—O2	1.412(5)	C24—C25	1.390
C4—C21	1.540(5)	C25—C26	1.390
C4—C27	1.547(5)	C27—C28	1.390
C5—P2	1.814(5)	C27—C32	1.390
C6—P2	1.823(5)	C28—C29	1.390
C7—P1	1.802(4)	C29—C30	1.390
C8—P1	1.817(5)	C30—C31	1.390
C9-C10	1.390	C31—C32	1.390
C9-C14	1.390	Ni1—O2	1.868(3)
C10-C11	1.390	Ni1-01	1.876(3)
C11—C12	1.390	Ni1—P2	2.109(1)
C12—C13	1.390	Ni1—P1	2.123(1)
C13—C14	1.390	C50-C51	1.142(9)
C15—C16	1.390	C50—C53	1.407(11)
C15—C20	1.390	C50—O52	1.499(11)
<u>C16—C17</u>	1.390		
C2-C1-P1	105.0(3)	C25—C24—C23	120.00
O1—C2—C15	108.5(3)	C26—C25—C24	120.00
O1—C2—C1	107.3(3)	C25—C26—C21	120.00
C15-C2-C1	111.8(3)	C28—C27—C32	120.00
O1—C2—C9	111.3(3)	C28—C27—C4	119.6(3)
C15—C2—C9	107.1(3)	C32—C27—C4	120.4(3)
C1—C2—C9	110.9(3)	C27—C28—C29	120.00
C4—C3—P2	106.9(3)	C30—C29—C28	120.00
O2—C4—C21	108.2(3)	C29—C30—C31	120.00
O2—C4—C27	110.8(3)	C30—C31—C32	120.00
C21—C4—C27	107.5(3)	C31—C32—C27	120.00
O2—C4—C3	109.4(3)	O2—Ni1—O1	89.86(12)
C21—C4—C3	111.7(3)	O2—Ni1—P2	84.65(9)
C27—C4—C3	109.2(3)	O1—Ni1—P2	170.19(10)
C10-C9-C14	120.00	O2—Ni1—P1	173.16(10)
C10—C9—C2	117.9(3)	01—Ni1—P1	86.80(9)
C14—C9—C2	122.1(3)	P2—Ni1—P1	99.48(5)
C11—C10—C9	120.00	C2—O1—Ni1	118.5(2)
C10—C11—C12	120.00	C4—O2—Ni1	126.0(2)
C11—C12—C13	120.00	C7—P1—C8	103.6(2)
C14—C13—C12	120.00	C7—P1—C1	106.0(2)
C13—C14—C9	120.00	C8—P1—C1	107.4(2)
C16—C15—C20	120.00	C7—P1—Ni1	118.37(17)
C16—C15—C2	118.0(2)	C8—P1—Ni1	119.28(17)
C20—C15—C2	122.0(2)	C1—P1—Ni1	101.08(14)
C17—C16—C15	120.00	C3—P2—C5	104.6(2)
C18—C17—C16	120.00	C3—P2—C6	108.9(2)
C17—C18—C19	120.00	C5—P2—C6	103.3(3)
C20—C19—C18	120.00	C3—P2—Ni1	101.50(15)
C19—C20—C15	120.00	C5—P2—Ni1	127.30(18)
C22—C21—C26	120.00	C6—P2—Nil	110.20(19)
C22—C21—C4	123.3(3)	C51—C50—C53	120.9(11)
C26—C21—C4	116.7(3)	C51—C50—O52	120.5(9)
C21—C22—C23	120.00	C53—C50—O52	118.3(11)
C24—C23—C22	120.00		

C. Röntgenstrukturanalyse von *cis*-Bis(4,6-di-*tert.*-butyl-2-(isopropylphenylphosphanyl)phenolato-[O,P])nickel(II) <u>24</u>

Siemens PW100
Mo-Kα-Strahlung
Graphitmonochromator
71.07 pm
293(2) K
25 ausgesuchte Reflexe
10204
(-17 < h < 5)
(-20 < k < 18)
(-0 < l < 21)
10030
10028/898
1.048
0.1033
0.2439

Tabelle 6.11	Datensammlung
	Dutensummung

Tabelle 6.12Kristallographische Daten

Kristallklasse:	triklin
Raumgruppe:	P-1 (Nr. 2)
Gitterkonstanten:	a = 157.90(4) pm
	b = 186.86(6) pm
	c = 203.85(5) pm
	$\alpha = 109.68(2)$ °
	β = 107.63(1) °
	γ = 114.15(2) °
VEZ:	4994(2) Å ³
Z:	4
röntgenographische Dichte:	1.024 g/cm ³

Atom	Wyck.	Occ.	х	У	Z	U
Ni1	2i		0.7746(2)	0.15696(12)	0.52848(10)	
P1	2i		0.7040(3)	0.0587(2)	0.4206(2)	
P2	2i		0.7453(3)	0.2594(3)	0.5253(2)	
01	2i		0.8161(7)	0.0829(6)	0.5455(5)	
O2	2 <i>i</i>		0.8386(8)	0.2299(6)	0.6265(5)	
C1	2 <i>i</i>		0.7329(11)	-0.0221(9)	0.4281(8)	
C2	2i		0.6971(12)	-0.1058(10)	0.3752(8)	
H2	2i		0.6561(12)	-0.1229(10)	0.3313(8)	0.0690
C3	2 <i>i</i>		0.7223(14)	-0.1607(10)	0.3883(10)	
C4	2i		0.7838(13)	-0.1334(11)	0.4567(10)	
H4	2 <i>i</i>		0.8009(13)	-0.1720(11)	0.4658(10)	0.0620
C5	2 <i>i</i>		0.8191(12)	-0.0512(11)	0.5103(8)	
C6	2i		0.7907(12)	0.0058(10)	0.4964(9)	
C7	2i		0.8863(14)	-0.0219(12)	0.5838(9)	
C8	2i		0.9801(13)	0.0605(12)	0.6019(9)	
H8A	2i		1.0139(13)	0.0507(12)	0.5656(9)	0.1190
H8B	2i		1.0194(13)	0.0763(12)	0.6480(9)	0.1190
H8C	2i		0.9655(13)	0.1061(12)	0.6035(9)	0.1190
C9	2i		0.8331(14)	-0.0053(11)	0.6422(8)	
H9A	2 <i>i</i>		0.7744(14)	-0.0566(11)	0.6313(8)	0.1200
H9B	2i		0.8187(14)	0.0403(11)	0.6436(8)	0.1200
H9C	2i		0.8728(14)	0.0106(11)	0.6882(8)	0.1200
C10	2 <i>i</i>		0.9137(17)	-0.0915(14)	0.5858(10)	
H10A	2i		0.8564(17)	-0.1440(14)	0.5746(10)	0.1680
H10B	2i		0.9521(17)	-0.0730(14)	0.633(1)	0.1680
H10C	2 <i>i</i>		0.9496(17)	-0.1009(14)	0.5509(10)	0.1680
C11	2i		0.6834(20)	-0.2572(12)	0.3330(11)	
C121	2i	0.5	0.767(3)	-0.2803(24)	0.3285(21)	0.077(12)
H12A	2i	0.5	0.7926(30)	-0.2768(24)	0.3746(21)	0.1150
H12B	2 <i>i</i>	0.5	0.8165(30)	-0.2408(24)	0.3155(21)	0.1150
H12C	2 <i>i</i>	0.5	0.7437(30)	-0.3377(24)	0.2928(21)	0.1150
C131	2 <i>i</i>	0.5	0.6608(49)	-0.2663(36)	0.2669(32)	0.153(24)
H13A	2 <i>i</i>	0.5	0.7127(49)	-0.2234(36)	0.2585(32)	0.2290
H13B	2 <i>i</i>	0.5	0.6041(49)	-0.2598(36)	0.2589(32)	0.2290
H13C	2 <i>i</i>	0.5	0.6489(49)	-0.3224(36)	0.2345(32)	0.2290
C141	2 <i>i</i>	0.5	0.6142(27)	-0.3169(22)	0.3613(19)	0.057(11)
H14A	2i	0.5	0.6426(27)	-0.3009(22)	0.4108(19)	0.0850
H14B	2 <i>i</i>	0.5	0.6006(27)	-0.3750(22)	0.3333(19)	0.0850
H14C	2i	0.5	0.5556(27)	-0.3126(22)	0.3577(19)	0.0850
C122	2 <i>i</i>	0.5	0.7745(28)	-0.2567(21)	0.2977(19)	0.059(10)
H12D	2 <i>i</i>	0.5	0.7898(28)	-0.2184(21)	0.2738(19)	0.0880
H12E	2i	0.5	0.7569(28)	-0.3137(21)	0.2635(19)	0.0880
H12F	2i	0.5	0.8294(28)	-0.2378(21)	0.3353(19)	0.0880
C132	2i	0.5	0.6011(24)	-0.2819(19)	0.2651(18)	0.042(9)
H13D	2i	0.5	0.6227(24)	-0.2380(19)	0.2469(18)	0.0630
H13E	2i	0.5	0.5436(24)	-0.2866(19)	0.2799(18)	0.0630
H13F	2i	0.5	0.5881(24)	-0.3358(19)	0.2278(18)	0.0630
C142	2i	0.5	0.6639(35)	-0.3177(28)	0.3690(23)	0.098(17)
H14D	2i	0.5	0.6405(35)	-0.3751(28)	0.3333(23)	0.1470
H14E	2i	0.5	0.6165(35)	-0.3152(28)	0.3951(23)	0.1470
H14F	2i	0.5	0.7221(35)	-0.3018(28)	0.4019(23)	0.1470
C15	2i		0.7508(11)	0.0877(10)	0.3491(8)	
H15	2i		0.7361(11)	0.1333(10)	0.3475(8)	0.0570
C16	2i		0.8604(13)	0.1252(11)	0.3681(9)	
H16A	2i		0.8874(13)	0.1709(11)	0.4154(9)	0.1190
H16B	2i		0.8852(13)	0.1471(11)	0.3336(9)	0.1190
H16C	2i		0.8773(13)	0.0810(11)	0.3671(9)	0.1190
C17	2 <i>i</i>		0.7063(13)	0.0133(11)	0.2721(8)	
H17A	2 <i>i</i>		0.6377(13)	-0.0100(11)	0.2605(8)	0.1200
H17B	2i		0.7231(13)	-0.0310(11)	0.2709(8)	0.1200
H17C	2 <i>i</i>		0.7308(13)	0.0351(11)	0.2375(8)	0.1200

Tabelle 6.13 Atomkoordinaten

Atomkoordinaten (Fortsetzung) Tabelle 6.13 C18 2i0.5739(11) 0.0105(9) 0.3911(8) C19 2i0.5190(12) -0.0519(10) 0.4138(9) H19 2i0.5489(12) -0.0705(10) 0.4408(9) C20 2iH20 2iC21 2i

H21	2 <i>i</i>		0.3067(12)	-0.0835(13)	0.3452(9)	0.0840
C22	21		0.4289(14)	0.0019(12)	0.3350(9)	
H22	2i		0.3993(14)	0.0207(12)	0.3080(9)	0.0800
C23	2i		0.5288(13)	0.0372(11)	0.3525(9)	
H23	2i		0.5648(13)	0.0795(11)	0.3376(9)	0.0710
C24	2i		0.7688(12)	0.3208(10)	0.6206(8)	
C25	2i		0.7412(11)	0.3837(9)	0.6543(9)	
H25	2i		0.7005(11)	0.3942(9)	0.6277(9)	0.0610
C26	2i		0.7761(13)	0.4299(10)	0.7286(9)	
C27	2i		0.8359(13)	0.4106(10)	0.7647(8)	
H27	2i		0.8604(13)	0.4432(10)	0.8142(8)	0.0580
C28	2i		0.8628(12)	0.3479(9)	0.7349(8)	
C29	2i		0.8232(13)	0.2963(10)	0.6584(8)	
C30	2i		0.9339(13)	0.3336(10)	0.7771(8)	
C31	2i		0.9758(13)	0.4003(11)	0.8565(8)	
H31A	2 <i>i</i>		1.0063(13)	0.4571(11)	0.8578(8)	0.1150
H31B	2 <i>i</i>		1.0220(13)	0.3905(11)	0.8807(8)	0.1150
H31C	2 <i>i</i>		0.9249(13)	0.3947(11)	0.8803(8)	0.1150
C32	2 <i>i</i>		0.8859(15)	0.2438(11)	0.7755(9)	
H32A	2i		0.9313(15)	0.2354(11)	0.8022(9)	0.1310
H32B	2 <i>i</i>		0.8633(15)	0.2021(11)	0.7264(9)	0.1310
H32C	2i		0.8326(15)	0.2370(11)	0.7267(9)	0.1310
C33	$\frac{2i}{2i}$		1.0213(13)	0.2376(11) 0.3446(11)	0.7436(9)	0.1210
H33A	2i		1.0213(13) 1.0518(13)	0.3440(11) 0.4013(11)	0.7430(9)	0 1160
H33R	21		0.0005(13)	0.4013(11) 0.3020(11)	0.7440(7)	0.1160
H22C	21		1.0664(12)	0.3029(11) 0.3264(11)	0.0947(9)	0.1160
C24	21		1.0004(13) 0.7412(15)	0.3304(11)	0.7710(9)	0.1100
C34 C251	21	0.42	0.7413(13)	0.4991(11)	0.7037(10)	0.10((05)
C351	21	0.43	0.8011(54)	0.5510(47)	0.8388(34)	0.120(25)
H35A	21	0.43	0.7943(54)	0.5159(47)	0.8647(34)	0.1880
H35B	21	0.43	0.7816(54)	0.5940(47)	0.8624(34)	0.1880
H35C	21	0.43	0.8670(54)	0.5796(47)	0.8379(34)	0.1880
C361	21	0.43	0.7526(60)	0.5511(40)	0.7303(30)	0.104(22)
H36A	21	0.43	0.8126(60)	0.5653(40)	0.7173(30)	0.1560
H36B	2i	0.43	0.7525(60)	0.6028(40)	0.7612(30)	0.1560
H36C	2i	0.43	0.7009(60)	0.5221(40)	0.6876(30)	0.1560
C352	2i	0.57	0.8350(24)	0.5845(21)	0.8175(19)	0.063(12)
H35D	2i	0.57	0.8789(24)	0.6030(21)	0.7897(19)	0.0940
H35E	2i	0.57	0.8651(24)	0.5735(21)	0.8532(19)	0.0940
H35F	2i	0.57	0.8177(24)	0.6285(21)	0.8408(19)	0.0940
C362	2i	0.57	0.6823(38)	0.5167(25)	0.7130(19)	0.075(14)
H36D	2i	0.57	0.7230(38)	0.5437(25)	0.6870(19)	0.1130
H36E	2 <i>i</i>	0.57	0.6584(38)	0.5539(25)	0.7402(19)	0.1130
H36F	2i	0.57	0.6294(38)	0.4634(25)	0.6797(19)	0.1130
C37	2i		0.6658(19)	0.4602(15)	0.7965(15)	
H37A	2i		0.6430(19)	0.5002(15)	0.8195(15)	0.2460
H37B	2i		0.6902(19)	0.4448(15)	0.8315(15)	0.2460
H37C	2 <i>i</i>		0.6140(19)	0.4096(15)	0.7592(15)	0.2460
C38	2i		0.8366(14)	0.3319(9)	0.4952(8)	
H38	2i		0.8267(14)	0.3026(9)	0.4431(8)	0.0670
C39	2 <i>i</i>		0.8346(13)	0.4175(9)	0.5108(9)	
H39A	2i		0.7727(13)	0.4065(9)	0.4871(9)	0.1090
H39B	2i		0.8831(13)	0.4516(9)	0.4931(9)	0.1090
H39C	 2i		0.8468(13)	0.4480(9)	0.5618(9)	0.1090
C40	_; 2i		0.9377(14)	0.3527(11)	0 5345(9)	5.1070
H40A	2i		0.9409(14)	0.3001(11)	0.5255(9)	0.1200
H40B	$\frac{2i}{2i}$		0.9490(14)	0.3833(11)	0.5854(9)	0.1200
11400	<i>∠ι</i>		0.7470(14)	0.0000(11)	0.000+(9)	0.1200

0.0930

Tabelle 6.13Atomkoordinaten (Fortsetzung)

H40C	2 <i>i</i>	0.9856(14)	0.3873(11)	0.5169(9)	0.1200
C41	2i	0.6336(12)	0.2459(9)	0.4820(8)	
C42	2i	0.5577(15)	0.2212(10)	0.5128(9)	
H42	2i	0.5680(15)	0.2149(10)	0.5557(9)	0.0850
C43	2i	0.4670(15)	0.2056(13)	0.4821(12)	
H43	2i	0.4177(15)	0.1893(13)	0.5044(12)	0.1170
C44	2i	0.4500(14)	0.2142(13)	0.4188(14)	
H44	2i	0.3897(14)	0.2049(13)	0.3979(14)	0.1390
C45	2i	0.5253(19)	0.2371(13)	0.387(1)	
H45	2i	0.5151(19)	0.2434(13)	0.3441(10)	0.1140
C46	2i	0.6152(15)	0.2508(11)	0.4169(9)	
H46	2i	0.6634(15)	0.2633(11)	0.3929(9)	0.0830
Ni2	2i	0.2865(2)	-0.23167(12)	-0.04247(10))
P3	2i	0.1913(3)	-0.1815(3)	-0.0023(2)	•
P4	2i	0.3981(3)	-0.1827(3)	0.0527(2)	
03	21	0.3901(3)	-0.2721(6)	-0.1337(5)	
04	2i	0.2031(0) 0.3498(10)	-0.2721(0)	-0.1337(3)	
C47	21	0.3498(10) 0.1204(11)	-0.2904(7)	-0.0902(0)	
C48	2i	0.1294(11) 0.0710(12)	-0.1870(9)	-0.0830(8)	
C40	21	0.0710(12)	-0.1310(9)	-0.0903(9)	0.0400
H48	21	0.0009(12)	-0.1127(9)	-0.0494(9)	0.0490
C49	21	0.0170(12)	-0.1/26(10)	-0.1579(9)	
C50	21	0.0291(12)	-0.2334(9)	-0.2162(8)	0.0400
H50	21	-0.0060(12)	-0.2490(9)	-0.2620(8)	0.0490
C51	21	0.0855(11)	-0.2710(9)	-0.2126(8)	
C52	21	0.1443(13)	-0.2412(10)	-0.1409(9)	
C53	21	0.0868(12)	-0.3389(10)	-0.2791(8)	
C54	21	0.1905(12)	-0.3039(10)	-0.2894(9)	0 4 0 4 0
H54A	2i	0.1932(12)	-0.3457(10)	-0.3311(9)	0.1060
H54B	2i	0.2347(12)	-0.2929(10)	-0.2476(9)	0.1060
H54C	2i	0.2075(12)	-0.2516(10)	-0.2958(9)	0.1060
C55	2i	0.0177(13)	-0.3596(10)	-0.3482(8)	
H55A	2i	0.0215(13)	-0.4027(10)	-0.3882(8)	0.0990
H55B	2i	0.0351(13)	-0.3086(10)	-0.3568(8)	0.0990
H55C	2i	-0.0468(13)	-0.3806(10)	-0.3429(8)	0.0990
C56	2i	0.0627(12)	-0.4221(9)	-0.2684(8)	
H56A	2i	0.0638(12)	-0.4641(9)	-0.3108(8)	0.0950
H56B	2i	-0.0001(12)	-0.4438(9)	-0.2600(8)	0.0950
H56C	2i	0.1093(12)	-0.4103(9)	-0.2277(8)	0.0950
C57	2i	-0.0492(16)	-0.1349(13)	-0.1709(9)	
C58	2i	-0.1500(15)	-0.2064(13)	-0.2024(13)	
H58A	2i	-0.1534(15)	-0.2490(13)	-0.2466(13)	0.2030
H58B	2i	-0.1924(15)	-0.1840(13)	-0.2118(13)	0.2030
H58C	2i	-0.1689(15)	-0.2321(13)	-0.1689(13)	0.2030
C59	2i	-0.0194(19)	-0.0863(16)	-0.2189(11)	
H59A	2i	0.0453(19)	-0.0410(16)	-0.1974(11)	0.2100
H59B	2i	-0.0616(19)	-0.0622(16)	-0.2240(11)	0.2100
H59C	2i	-0.0233(19)	-0.1251(16)	-0.2655(11)	0.2100
C60	2i	-0.0453(14)	-0.0684(12)	-0.1014(10)	0.2100
H60A	2i	0.0499(14)	-0.0221(12)	-0.0807(10)	0 1350
H60B	21	-0.0645(14)	-0.0221(12)	-0.0607(10)	0.1350
HOOD	21	-0.00+3(14)	-0.09+3(12)	-0.0001(10)	0.1350
C61	21	-0.0001(14)	-0.0403(12)	-0.1113(10)	0.1550
U61	21	0.0983(13)	-0.2338(10)	0.0248(9)	0.0740
C62	21 2;	0.1292(13) 0.0639(12)	-0.2309(10)	0.0709(9)	0.0740
U62 A	∠ <i>i</i> 2;	0.0038(13)	-0.3468(10)	-0.0303(9)	0 1 1 7 0
1102A	∠ <i>i</i> 2;	0.1182(13)	-0.5588(10)	-0.0303(9)	0.1170
	21	0.0299(13)	-0.35/2(10)	-0.0/58(9)	0.1170
H02C	21	0.0218(13)	-0.3884(10)	-0.0131(9)	0.1170
063	21	0.0161(5)	-0.2359(5)	0.0368(4)	0.1100
H03A	21	0.0406(5)	-0.1/7/(5)	0.0/13(4)	0.1120
H63B	21	-0.0265(5)	-0.2743(5)	0.0547(4)	0.1120
H63C	2i	-0.0183(5)	-0.2430(5)	-0.0080(4)	0.1120
C64	2i	0.2333(5)	-0.0730(5)	0.0684(4)	

Tabelle 6.13 Atomkoordinaten (Fortsetzung)

0.05	<u>.</u>		0.07(0)(5)	0.0041(5)	0.0404(4)	
C65	21		0.2760(5)	-0.0041(5)	0.0494(4)	
H65	2i		0.2798(5)	-0.0138(5)	0.0022(4)	0.0720
C66	2i		0.3130(5)	0.0795(5)	0.1011(4)	
H66	2i		0.3416(5)	0.1256(5)	0.0884(4)	0.1040
C67	2i		0.3074(5)	0.0941(5)	0.1717(4)	
H67	2i		0.3322(5)	0.1500(5)	0.2063(4)	0.1010
C68	2i		0.2647(5)	0.0251(5)	0.1907(4)	
H68	2i		0.2610(5)	0.0349(5)	0.2380(4)	0.0930
C69	2i		0.2277(5)	-0.0584(5)	0.1390(4)	0.0920
L60	21		0.2277(5)	-0.030+(5)	0.1570(4) 0.1517(4)	0.0600
C70	21		0.1991(3)	-0.1040(3)	0.1317(4)	0.0090
C70	21		0.4/4/(14)	-0.226(1)	0.0148(9)	
C/I	21		0.5649(15)	-0.2064(10)	0.04//(10)	
H71	2i		0.5907(15)	-0.1697(10)	0.0963(10)	0.0750
C72	2i		0.6188(14)	-0.2396(11)	0.0107(11)	
C73	2i		0.5758(15)	-0.2945(11)	-0.0612(11)	
H73	2i		0.6103(15)	-0.3194(11)	-0.0860(11)	0.0680
C74	2i		0.4895(15)	-0.3152(10)	-0.0984(10)	
C75	2i		0.4322(14)	-0.2779(11)	-0.0590(11)	
C76	2i		0.4428(16)	-0.3763(13)	-0.1795(10)	
C77	2i		0.5119(16)	-0.4112(14)	-0 2091(11)	
H77A	2i		0.5217(16)	-0.4428(14)	-0.1832(11)	0 2070
H77B	2;		0.5217(16)	-0.3640(14)	-0.2029(11)	0.2070
H77C	21		0.3724(10) 0.4845(16)	-0.3040(14)	-0.2029(11)	0.2070
П//С С79	21		0.4643(10)	-0.4463(14)	-0.2394(11)	0.2070
C/8	21		0.3408(10)	-0.4526(13)	-0.1896(11)	0 1050
H/8A	21		0.35/1(16)	-0.4837(13)	-0.1634(11)	0.1850
H/8B	21		0.3200(16)	-0.4900(13)	-0.2399(11)	0.1850
H78C	21		0.3031(16)	-0.4319(13)	-0.1719(11)	0.1850
C79	2i		0.4279(15)	-0.3262(13)	-0.2209(10)	
H79A	2i		0.4884(15)	-0.2787(13)	-0.2142(10)	0.1440
H79B	2i		0.3845(15)	-0.3050(13)	-0.2033(10)	0.1440
H79C	2i		0.4014(15)	-0.3633(13)	-0.2713(10)	0.1440
C80	2i		0.7209(16)	-0.2143(12)	0.0477(11)	
C811	2i	0.5	0.7950(24)	-0.1805(22)	0.0081(17)	0.084(12)
H81A	2 <i>i</i>	0.5	0.8574(24)	-0.1658(22)	0.0342(17)	0.1260
H81B	2i	0.5	0.7954(24)	-0.1305(22)	0.0044(17)	0.1260
H81C	2 <i>i</i>	0.5	0.7789(24)	-0.2241(22)	-0.0394(17)	0.1260
C821	2i	0.5	0.7624(27)	-0.148(2)	0.1274(14)	0.088(13)
H82A	2i	0.5	0.7184(27)	-0.1663(20)	0.1551(14)	0.1330
H82B	2i 2i	0.5	0.7718(27)	-0.0029(20)	0.1298(14)	0.1330
11020	2:	0.5	0.7710(27)	-0.0929(20)	0.1270(14) 0.1465(14)	0.1330
П02C	21	0.5	0.8228(27)	-0.1430(20)	0.1403(14)	0.1330
C851	21	0.5	0.7265(33)	-0.294(2)	0.0501(22)	0.127(18)
H83A	21	0.5	0.6811(33)	-0.3191(20)	0.0745(22)	0.1910
H83B	21	0.5	0.7901(33)	-0.2773(20)	0.0755(22)	0.1910
H83C	2i	0.5	0.7118(33)	-0.3353(20)	0.0018(22)	0.1910
C812	2i	0.5	0.7588(33)	-0.2673(26)	-0.0039(20)	0.133(19)
H81D	2i	0.5	0.8231(33)	-0.2516(26)	0.0191(20)	0.1990
H81E	2i	0.5	0.7588(33)	-0.2563(26)	-0.0467(20)	0.1990
H81F	2i	0.5	0.7183(33)	-0.3272(26)	-0.0167(20)	0.1990
C822	2i	0.5	0.7846(32)	-0.1187(18)	0.0622(23)	0.132(18)
H82D	2i	0.5	0.8495(32)	-0.1008(18)	0.0857(23)	0.1990
H82E	2i	0.5	0.7607(32)	-0.0838(18)	0.0926(23)	0.1990
H82F	2 <i>i</i>	0.5	0.7829(32)	-0.1126(18)	0.0173(23)	0.1990
C832	2 <i>i</i>	0.5	0.7326(31)	-0.2222(25)	0.1199(16)	0.104(15)
H83D	2i	0.5	0.7988(31)	-0.2049(25)	0.1392(16)	0.1560
H83E	2i	0.5	0.6939(31)	-0.2807(25)	0.1127(16)	0 1560
H83E	 2i	0.5	0.7124(31)	-0.1859(25)	0.1530(16)	0.1560
C84	$\frac{2i}{2i}$	0.5	0.7124(31) 0.3633(13)	-0.1039(23)	0.1271(0)	0.1500
U94	21 21		0.3033(13)	-0.210(1)	0.1271(7) 0.1496(0)	0.0750
C 95	∠ı 2;		0.3230(13)	-0.1909(10)	0.1400(9)	0.0730
COJ	∠ <i>i</i> 2;		0.2903(13)	-0.5152(11)	0.0901(11)	0.1260
позА	21		0.2400(13)	-0.3269(11)	0.0521(11)	0.1300
назв	21		0.2691(13)	-0.3352(11)	0.124/(11)	0.1360
H85C	21		0.3325(13)	-0.3441(11)	0.0702(11)	0.1360

Tabelle 6.13 Atomkoordinaten (Fortsetzung)

C86	2i		0.4458(5)	-0.1947(4)	0.1886(4)	
H86A	2i		0.4858(5)	-0.1336(4)	0.2103(4)	0.1200
H86B	2i		0.4833(5)	-0.2225(4)	0.1698(4)	0.1200
H86C	2i		0.4199(5)	-0.2136(4)	0.2242(4)	0.1200
C87	2i		0.4743(5)	-0.0659(4)	0.0970(4)	
C88	2i		0.5423(5)	-0.0277(4)	0.0639(4)	
H88	2i		0.5507(5)	-0.0615(4)	0.0222(4)	0.1010
C89	2i		0.5977(5)	0.0611(4)	0.0932(4)	
H89	2i		0.6432(5)	0.0866(4)	0.0711(4)	0.1290
C90	2i		0.5852(5)	0.1117(4)	0.1555(4)	
H90	2i		0.6223(5)	0.1710(4)	0.1751(4)	0.1150
C91	2i		0.5172(5)	0.0735(4)	0.1886(4)	
H91	2i		0.5088(5)	0.1073(4)	0.2303(4)	0.0880
C92	2i		0.4618(5)	-0.0153(4)	0.1593(4)	
H92	2i		0.4163(5)	-0.0408(4)	0.1814(4)	0.0800
C200	1 <i>e</i>		1/2	-1/2	0	0.290(29)
O100	2i	0.5	0.7616(52)	-0.3637(51)	0.5340(43)	0.323(37)
C104	2i	0.5	0.6951(55)	-0.3502(45)	0.5899(37)	0.216(30)
C103	2i	0.5	0.6868(54)	-0.4253(45)	0.5145(40)	0.219(34)
C102	2i	0.5	0.7893(47)	-0.4465(39)	0.4034(33)	0.189(26)
C101	2i	0.5	0.7843(41)	-0.3983(37)	0.4849(34)	0.143(21)

Tabelle 6.14

Anisotrope Auslenkungsparameter (in Å²)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ni1	0.044(2)	0.0417(13)	0.0354(12)	0.0181(12)	0.0096(13)	0.0101(10)
P1	0.038(3)	0.038(2)	0.040(3)	0.018(2)	0.004(3)	0.011(2)
P2	0.045(4)	0.044(3)	0.033(2)	0.017(3)	0.006(3)	0.014(2)
01	0.053(9)	0.033(6)	0.047(6)	0.019(6)	0.000(7)	0.009(5)
O2	0.061(9)	0.047(7)	0.033(6)	0.027(6)	0.009(7)	0.008(5)
C1	0.034(13)	0.033(9)	0.041(10)	0.022(9)	0.004(10)	0.011(8)
C2	0.068(16)	0.046(11)	0.044(11)	0.023(11)	0.000(11)	0.010(9)
C3	0.068(17)	0.039(11)	0.062(13)	0.016(11)	0.034(13)	0.019(10)
C4	0.063(16)	0.061(12)	0.066(13)	0.049(11)	0.030(13)	0.036(11)
C5	0.051(15)	0.051(11)	0.041(10)	0.032(11)	0.009(11)	0.020(9)
C6	0.033(13)	0.04(1)	0.044(11)	0.006(9)	0.007(10)	0.019(9)
C7	0.070(18)	0.079(14)	0.050(12)	0.052(13)	0.011(13)	0.027(11)
C8	0.055(16)	0.112(17)	0.073(14)	0.037(14)	0.005(13)	0.044(13)
C9	0.110(19)	0.101(15)	0.045(11)	0.054(14)	0.033(13)	0.038(11)
C10	0.146(26)	0.150(21)	0.074(15)	0.120(21)	0.003(17)	0.026(14)
C11	0.172(27)	0.074(14)	0.087(15)	0.096(17)	0.059(18)	0.054(13)
C15	0.042(13)	0.072(11)	0.052(11)	0.04(1)	0.030(11)	0.032(9)
C16	0.076(17)	0.085(14)	0.072(13)	0.035(13)	0.037(14)	0.026(11)
C17	0.086(17)	0.100(15)	0.038(10)	0.039(13)	0.021(12)	0.015(10)
C18	0.025(13)	0.051(11)	0.032(10)	-0.007(10)	0.001(10)	0.007(8)
C19	0.077(18)	0.107(16)	0.099(16)	0.054(14)	0.057(16)	0.077(14)
C20	0.039(17)	0.120(19)	0.203(28)	0.047(15)	0.058(20)	0.117(20)
C21	0.023(14)	0.105(17)	0.066(14)	0.029(13)	-0.003(13)	0.021(12)
C22	0.048(16)	0.085(15)	0.073(14)	0.043(13)	-0.009(15)	0.029(12)
C23	0.041(17)	0.081(14)	0.038(11)	0.023(12)	-0.007(13)	0.015(10)
C24	0.051(14)	0.045(10)	0.030(9)	0.018(10)	0.004(10)	0.005(8)
C25	0.051(14)	0.045(10)	0.056(12)	0.027(10)	0.007(11)	0.013(9)
C26	0.048(14)	0.053(11)	0.049(12)	0.026(10)	0.024(12)	0.016(10)
C27	0.054(15)	0.038(10)	0.032(10)	0.02(1)	-0.004(11)	-0.003(8)
C28	0.034(13)	0.044(10)	0.032(9)	0.021(9)	-0.002(10)	0.016(8)
C29	0.048(14)	0.04(1)	0.027(9)	0.009(10)	0.009(10)	0.016(9)
C30	0.046(14)	0.052(11)	0.023(9)	0.015(10)	0.004(10)	0.002(8)
C31	0.071(17)	0.083(14)	0.053(12)	0.037(13)	-0.011(12)	0.007(10)
C32	0.125(22)	0.068(13)	0.053(12)	0.033(14)	0.009(13)	0.026(10)
C33	0.070(17)	0.093(14)	0.071(13)	0.046(13)	0.008(14)	0.027(12)
C34	0.075(16)	0.050(11)	0.060(13)	0.016(11)	0.034(14)	0.003(10)

Tabelle	6.14	Anisotro	pe Ausler	nkungspa	rameter (i	n Ų)(Fortsetzung)
C37	0.188(30)	0.121(21)	0.273(35)	0.113(22)	0.155(30)	0.106(24)
C38	0.062(16)	0.045(11)	0.025(9)	0.008(10)	0.002(11)	0.000(8)
C39	0.068(16)	0.039(10)	0.090(14)	0.01(1)	0.015(13)	0.022(10)
C40	0.069(17)	0.083(14)	0.047(11)	0.000(13)	0.009(13)	0.026(10)
C41	0.050(15)	0.05(1)	0.038(10)	0.025(10)	0.007(12)	0.015(9)
C42	0.079(19)	0.085(15)	0.067(15)	0.055(16)	0.015(17)	0.032(12)
C43	0.112(27)	0.121(19)	0.077(17)	0.051(20)	0.041(19)	0.059(16)
C44	0.054(19)	0.092(18)	0.189(33)	0.034(15)	0.028(23)	0.044(20)
C45	0.126(27)	0.079(16)	0.072(15)	0.044(20)	-0.017(20)	0.037(13)
C46	0.085(21)	0.055(12)	0.041(12)	0.025(14)	-0.006(13)	0.005(10)
Ni2	0.038(2)	0.0435(13)	0.0385(13)	0.0203(12)	0.0096(13)	0.0116(10)
P3	0.040(3)	0.052(3)	0.038(3)	0.025(3)	0.013(3)	0.017(2)
P4	0.035(3)	0.045(3)	0.047(3)	0.021(2)	0.011(3)	0.017(2)
O3	0.049(9)	0.049(7)	0.029(6)	0.021(7)	0.010(7)	0.008(5)
O4	0.071(11)	0.057(7)	0.048(8)	0.042(8)	0.016(9)	0.004(6)
C47	0.038(12)	0.061(11)	0.033(9)	0.036(10)	0.014(10)	0.015(9)
C48	0.037(14)	0.046(10)	0.042(11)	0.025(10)	0.014(12)	0.015(9)
C49	0.027(13)	0.051(11)	0.046(11)	0.012(9)	0.009(12)	0.014(9)
C50	0.043(13)	0.055(11)	0.025(9)	0.022(10)	-0.004(10)	0.021(9)
C51	0.015(12)	0.044(10)	0.037(10)	0.017(9)	-0.001(10)	0.014(8)
C52	0.041(15)	0.047(11)	0.051(12)	0.023(10)	0.017(13)	0.025(10)
C53	0.048(14)	0.052(11)	0.034(10)	0.023(10)	0.018(11)	0.017(8)
C54	0.078(17)	0.075(13)	0.055(12)	0.037(12)	0.029(13)	0.018(10)
C55	0.064(17)	0.075(13)	0.046(11)	0.027(12)	0.004(12)	0.018(10)
C56	0.068(15)	0.059(12)	0.051(11)	0.030(11)	0.006(11)	0.011(9)
C57	0.086(19)	0.092(15)	0.039(11)	0.057(15)	0.012(13)	0.016(11)
C58	0.049(18)	0.090(17)	0.199(28)	0.031(15)	-0.011(20)	-0.006(18)
C59	0.219(33)	0.239(29)	0.125(20)	0.191(28)	0.094(22)	0.141(22)
C60	0.080(18)	0.111(16)	0.098(16)	0.065(15)	0.013(15)	0.040(14)
C61	0.074(16)	0.057(11)	0.066(12)	0.034(11)	0.031(13)	0.032(10)
C62	0.075(16)	0.065(12)	0.091(14)	0.017(12)	0.037(14)	0.045(12)
C63	0.044(14)	0.114(16)	0.067(13)	0.039(12)	0.023(13)	0.032(12)
C64	0.041(12)	0.063(11)	0.026(9)	0.033(10)	0.007(9)	0.006(8)
C65	0.061(15)	0.076(13)	0.065(12)	0.044(12)	0.030(12)	0.037(11)
C66	0.107(20)	0.061(13)	0.092(16)	0.048(14)	0.020(16)	0.021(12)
C67	0.089(19)	0.097(16)	0.051(12)	0.069(15)	-0.008(14)	-0.011(12)
C68	0.055(15)	0.123(18)	0.054(12)	0.052(14)	0.021(12)	0.021(13)
C69	0.043(13)	0.090(13)	0.031(10)	0.036(11)	0.006(10)	0.010(9)
C70	0.051(15)	0.048(11)	0.047(12)	0.024(11)	0.020(13)	0.012(9)
C71	0.056(16)	0.063(12)	0.061(13)	0.030(12)	0.011(14)	0.014(10)
C72	0.037(14)	0.059(12)	0.083(16)	0.024(11)	0.025(15)	0.030(11)
C73	0.068(17)	0.057(12)	0.071(15)	0.047(13)	0.035(15)	0.028(11)
C74	0.049(15)	0.047(11)	0.070(14)	0.034(12)	0.010(14)	0.015(10)
C75	0.045(15)	0.037(10)	0.087(17)	0.025(12)	0.020(16)	0.024(11)
C76	0.076(18)	0.070(14)	0.060(13)	0.046(14)	0.004(14)	0.008(11)
C77	0.161(26)	0.159(22)	0.109(19)	0.135(21)	0.042(20)	-0.005(17)
C78	0.101(22)	0.093(17)	0.108(18)	0.028(17)	0.004(18)	-0.006(15)
C79	0.093(20)	0.134(19)	0.069(14)	0.076(17)	0.016(15)	0.024(14)
C80	0.060(18)	0.081(15)	0.121(20)	0.032(14)	0.023(18)	0.029(14)
C84	0.074(16)	0.054(11)	0.070(12)	0.023(11)	0.043(13)	0.041(10)
C85	0.062(16)	0.087(15)	0.128(18)	0.020(13)	0.023(15)	0.067(14)
C86	0.067(18)	0.107(16)	0.068(13)	0.032(14)	-0.001(13)	0.051(12)
C87	0.058(13)	0.043(10)	0.05(1)	0.039(10)	0.011(11)	0.020(9)
C88	0.094(18)	0.050(12)	0.115(17)	0.024(12)	0.060(15)	0.045(12)
C89	0.093(18)	0.044(12)	0.183(23)	0.022(12)	0.077(18)	0.043(14)
C90	0.107(20)	0.053(12)	0.120(18)	0.043(13)	0.035(17)	0.017(13)
C91	0.072(17)	0.063(13)	0.055(12)	0.028(12)	0.002(13)	-0.002(10)
C92	0.067(16)	0.049(11)	0.065(12)	0.015(11)	0.020(12)	0.017(10)

Tabelle 6.15	Bindungsabstände (Å)		
Ni1—O1	1.869(10)	Ni2—P4	2.150(5)
Ni1—O2	1.89(1)	Ni2—P3	2.156(5)
Ni1—P1	2.157(4)	P3—C47	1.79(2)
Ni1—P2	2.166(5)	P3-C61	1.837(15)
P1C1	1.795(15)	P3-C64	1.844(8)
P1-C18	1.82(2)	P4C70	1.80(2)
P1-C15	1.828(14)	P4	1.837(8)
P2-C41	1.78(2)	P4	1.885(14)
P2C24	1.805(14)	O3—C52	1.30(2)
P2-C38	1.84(2)	O4—C75	1.29(2)
O1—C6	1.31(2)	C47—C48	1.36(2)
O2—C29	1.32(2)	C47—C52	1.38(2)
C1—C6	1.40(2)	C48—C49	1.40(2)
C1-C2	1.40(2)	C49—C50	1.43(2)
C2—C3	1.33(2)	C49—C57	1.53(2)
C3—C4	1.43(2)	C50-C51	1.35(2)
C3—C11	1.58(2)	C51—C52	1.45(2)
C4—C5	1.39(2)	C51—C53	1.52(2)
C5—C6	1.41(2)	C53—C56	1.54(2)
C5—C7	1.54(2)	C53—C55	1.53(2)
C7—C8	1.54(2)	C53—C54	1.56(2)
C7—C9	1.53(2)	C57—C58	1.50(2)
C7-C10	1.54(2)	C57 - C60	1.52(2)
C11—C131	1.30(6)	C57—C59	1.53(2)
C11 - C142	1.49(4)	C61—C63	1.51(2)
C11-C141	1 52(4)	C61—C62	1.51(2) 1.55(2)
C11 - C121	1 55(4)	C64—C65	1 390
C11 - C132	1.61(4)	C64—C69	1.390
C11 - C122	1.66(4)	C65—C66	1.390
C15—C16	1 53(2)	C66—C67	1 390
C15-C17	1 56(2)	C67—C68	1 390
C18 - C23	1 36(2)	C68—C69	1 390
C18-C19	1 39(2)	C70-C71	1.36(2)
C19-C20	1 39(2)	C70—C75	1.00(2)
C_{20} - C_{21}	1.38(2)	C71 - C72	1.38(2)
C_{21} C_{22}	1.37(2)	C72-C73	1.38(2)
C22-C23	1.39(2)	C72 - C80	1.53(3)
C24—C25	1.40(2)	C73—C74	1.33(2)
C24—C29	1.41(2)	C74—C75	1.49(2)
C25—C26	1.39(2)	C74—C76	1.55(2)
C26—C27	1.38(2)	C76—C79	1.53(2)
C26—C34	1.59(2)	C76—C78	1.54(3)
C27—C28	1.38(2)	C76—C77	1.55(2)
C28—C29	1.44(2)	C80—C811	1.52(2)
C28-C30	1.52(2)	C80-C812	1.53(2)
C30-C32	1.52(2)	C80—C832	1.53(2)
C30-C31	1.55(2)	C80-C831	1.54(2)
C30-C33	1.56(2)	C80—C821	1.55(2)
C34—C361	1.36(5)	C80—C822	1.55(2)
C34—C37	1.44(2)	C84—C86	1.53(2)
C34—C351	1.45(6)	C84—C85	1.54(2)
C34—C362	1.57(4)	C87—C88	1.390
C34—C352	1.59(4)	C87—C92	1.390
C38—C39	1.54(2)	C88—C89	1.390
C38—C40	1.55(2)	C89—C90	1.390
C41—C46	1.38(2)	C90—C91	1.390
C41—C42	1.38(2)	C91—C92	1.390
C42—C43	1.38(2)	O100-C101	1.17(6)
C43—C44	1.37(2)	O100-C103	1.17(6)
C44—C45	1.39(2)	O100-C104	1.64(9)
C45—C46	1.38(2)	C104—C103	1.65(6)
Ni2—O4	1.869(11)	C103—C101	1.65(10)
Ni2—O3	1.896(11)	C102-C101	1.63(6)

Tabelle 6.16Bindungswinkel (°)

01 N:1 02	95 0(5)	$O_4 = N_{12}^2 = D_2^2$	160.0(4)
01 - N11 - 02	85.0(5)	04— $1N12$ —P3	109.9(4)
OI—NII—PI	86.4(3)	O3—N12—P3	83.8(4)
O2—Ni1—P1	171.2(4)	P4—Ni2—P3	103.2(2)
O1—Ni1—P2	170.3(3)	C47—P3—C61	105.0(8)
Ω^2 —Ni1—P2	85 8(4)	C47—P3—C64	107 8(6)
D1 NG1 $D2$	1020(2)	C61 P3 $C64$	107.0(0) 106.4(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102.7(2)	$C_{1} = 15 - C_{1} + C_{2}$	100.4(0)
CI = PI = C18	107.4(8)	C47 - P3 - N12	101.2(5)
C1—P1—C15	109.0(7)	C61—P3—Ni2	111.4(6)
C18—P1—C15	106.6(7)	C64—P3—Ni2	123.5(3)
C1—P1—Ni1	99.7(5)	C70—P4—C87	105.6(6)
C18_P1_Ni1	118 1(5)	C70 - P4 - C84	109.0(8)
C_{15} D_{1} N_{1}	115.1(5)	C^{97} D4 C^{94}	105.0(0)
	113.4(3)	C_0/P_4 C_04	105.8(0)
C41—P2—C24	107.6(8)	C/0—P4—N12	100.5(7)
C41—P2—C38	105.0(8)	C87—P4—Ni2	117.3(3)
C24—P2—C38	104.8(7)	C84—P4—Ni2	117.7(6)
C41—P2—Ni1	125.5(5)	C52—O3—Ni2	120.5(11)
C24 $P2$ Ni1	00 0(7)	C75 O4 Ni2	120.0(11)
$C_2 = 12 = 101$	33.3(7)	$C_{13} - 04 - 102$	122.0(11)
C38—P2—N11	112.1(6)	L48 - L47 - L52	123.4(17)
C6—O1—Ni1	122.3(11)	C48—C47—P3	128.7(12)
C29—O2—Ni1	119.2(11)	C52—C47—P3	107.7(14)
C6-C1-C2	122.6(16)	C47—C48—C49	121.2(16)
C6-C1-P1	111.6(12)	C48 - C49 - C50	113 8(17)
$C_2 C_1 D_1$	125.5(14)	C_{48} C_{40} C_{57}	113.0(17) 124.6(15)
	123.3(14)	C40 - C49 - C37	124.0(13)
C3-C2-C1	119./(1/)	$C_{50} - C_{49} - C_{57}$	121.6(16)
C2—C3—C4	119.1(16)	C51—C50—C49	127.8(16)
C2-C3-C11	123.5(20)	C50—C51—C52	114.8(15)
C4—C3—C11	117.3(19)	C50-C51-C53	121.9(15)
$C_{5}-C_{4}-C_{3}$	122 1(17)	C52 - C51 - C53	123 2(16)
$C_1 = C_2 = C_1$	122.1(17)	$C_{32} = C_{31} = C_{33}$	123.2(10) 122.0(17)
C4 - C3 - C0	110.2(17)	03 - 032 - 047	123.0(17)
C4—C5—C7	121.9(17)	03-052-051	118.3(15)
C6—C5—C7	119.9(15)	C47—C52—C51	118.4(17)
01—C6—C1	119.8(17)	C51—C53—C56	110.6(12)
01-C6-C5	122.1(16)	C51—C53—C55	113.2(15)
C1 - C6 - C5	118 0(15)	C56 - C53 - C55	109 2(13)
C° C° C° C°	100.0(13)	C51 C52 C54	107.2(13)
	106.9(14)		107.9(12)
C8-C/-C10	107.5(17)	C56—C53—C54	107.8(15)
C9—C7—C10	108.3(15)	C55—C53—C54	108.0(13)
C8—C7—C5	112.5(15)	C58—C57—C60	108.7(17)
C9—C7—C5	108.2(15)	C58—C57—C59	111.4(20)
$C_{10} - C_{7} - C_{5}$	111 4(15)	C60 - C57 - C59	1041(17)
$C_{121} = C_{11} = C_{141}$	120.0(40)	C_{59} C_{57} C_{40}	104.1(17) 108.4(17)
$C_{131} = C_{11} = C_{141}$	120.9(40)	$C_{30} = C_{37} = C_{49}$	100.4(17)
C131 - C11 - C121	98.7(36)	$C_{60} - C_{57} - C_{49}$	111.5(16)
C141—C11—C121	105.4(23)	C59—C57—C49	112.7(16)
C131—C11—C3	111.4(30)	C63—C61—C62	112.2(14)
C142—C11—C3	112.8(22)	C63—C61—P3	114.5(11)
C141 - C11 - C3	1094(18)	C62—C61—P3	109(1)
C_{121} C_{11} C_{3}	1100(23)	C65 $C64$ $C69$	120.00
C121 - C11 - C122	110.0(23)	C(5 - C(4 - P))	120.00
C142—C11—C132	117.9(28)	C05—C04—P5	117.2(3)
C3—C11—C132	110.8(18)	C69—C64—P3	122.7(3)
C142—C11—C122	106.4(28)	C66—C65—C64	120.00
C3-C11-C122	104.1(19)	C65—C66—C67	120.00
C132—C11—C122	103.4(21)	C68—C67—C66	120.00
C_{16} C_{15} C_{17}	109.8(12)	C69 - C68 - C67	120.00
C16 C15 D1	1100(12)	C69 $C60$ $C64$	120.00
	110.0(12)		120.00
CI/-CIS-PI	115.0(11)	C/1 - C/0 - C/5	122.7(16)
C23—C18—C19	118.8(16)	C71—C70—P4	127.6(13)
C23-C18-P1	122.8(12)	C75—C70—P4	109.3(16)
C19-C18-P1	118.2(14)	C70—C71—C72	121.6(18)
C20-C19-C18	120.1(16)	C71 - C72 - C73	116 3(20)
C_{21} C_{20} C_{10}	121 5(15)	C71 $C72$ $C80$	120.8(10)
$C_{21} = C_{20} = C_{13}$	121.3(13)	$C_{11} - C_{12} - C_{00}$	120.0(17)
C22—C21—C20	117.5(16)	C/3-C/2-C80	122.9(17)
C21—C22—C23	121.4(16)	C74—C73—C72	126.3(17)
C18—C23—C22	120.7(16)	C73—C74—C75	117.5(18)

Tabelle 6.16Bindungswinkel (°)(Fortsetzung)

C25—C24—C29	123.6(15)	C73—C74—C76	125.5(17)
C25—C24—P2	128.2(16)	C75—C74—C76	117.0(19)
C29—C24—P2	108.2(12)	O4—C75—C70	121.7(16)
C26—C25—C24	118.5(17)	O4—C75—C74	122.8(19)
C27—C26—C25	117.5(15)	C70—C75—C74	115.5(19)
C27—C26—C34	125.1(16)	C79—C76—C78	110.2(20)
C25—C26—C34	117.4(19)	C79—C76—C77	109.0(18)
C28—C27—C26	126.5(16)	C78—C76—C77	108.7(17)
C27—C28—C29	116.7(17)	C79—C76—C74	109.3(15)
C27—C28—C30	123.7(15)	C78—C76—C74	111.0(17)
C29—C28—C30	119.5(14)	C77—C76—C74	108.6(18)
O2—C29—C24	122.8(14)	C811—C80—C72	113.7(21)
O2—C29—C28	120.6(17)	C72—C80—C812	109.1(23)
C24—C29—C28	116.6(15)	C72—C80—C832	115.3(23)
C32—C30—C28	110.2(14)	C812—C80—C832	110.0(21)
C32—C30—C31	109.2(14)	C811—C80—C831	104.8(19)
C28—C30—C31	112.1(14)	C72—C80—C831	109.8(23)
C32—C30—C33	109.3(15)	C811—C80—C821	105.9(18)
C28—C30—C33	109.9(14)	C72—C80—C821	117.5(21)
C31—C30—C33	106.1(15)	C831—C80—C821	103.9(19)
C361—C34—C37	132.1(38)	C72—C80—C822	107.5(24)
C361—C34—C351	108.1(35)	C812—C80—C822	107.2(18)
C37—C34—C351	86.9(37)	C832—C80—C822	107.5(19)
C37—C34—C362	98.0(23)	C86—C84—C85	112.1(13)
C37—C34—C352	118.6(21)	C86—C84—P4	116.7(10)
C362—C34—C352	111.3(22)	C85—C84—P4	106.0(11)
C361—C34—C26	110.6(26)	C88—C87—C92	120.00
C37—C34—C26	107.1(15)	C88—C87—P4	118.0(3)
C351—C34—C26	107.9(30)	C92—C87—P4	121.9(3)
C362—C34—C26	115.8(18)	C87—C88—C89	120.00
C352—C34—C26	106.4(18)	C90—C89—C88	120.00
C39—C38—C40	107.8(14)	C89—C90—C91	120.00
C39—C38—P2	113.9(12)	C92—C91—C90	120.00
C40—C38—P2	108.7(11)	C91—C92—C87	120.00
C46—C41—C42	117.6(17)	C101—O100—C103	89.4(79)
C46—C41—P2	124.6(15)	C101—O100—C104	158.8(84)
C42—C41—P2	117.6(14)	C103—O100—C104	69.4(48)
C41—C42—C43	122.3(16)	C103—C104—O100	41.9(28)
C44—C43—C42	120.0(17)	O100—C103—C104	68.7(57)
C43—C44—C45	117.9(20)	O100-C103-C101	45.1(41)
C46—C45—C44	122.0(16)	C104—C103—C101	113.8(55)
C41—C46—C45	120.1(16)	O100-C101-C102	163.2(74)
O4—Ni2—O3	87.5(5)	O100-C101-C103	45.5(41)
O4—Ni2—P4	85.9(4)	C102-C101-C103	125.0(56)
O3—Ni2—P4	171.4(3)		

Ich danke

für die Durchführung und Lösung der Röntgenstrukturanalyse von **24** Herrn Prof. Dr. H. J. Haupt und Herrn Dr. U. Flörke von der Universität/GH Paderborn

Herrn Dr. G. Cordier für die Bereitstellung von Meßzeit sowie die exzellente Einführung in die Methoden der Einkristalldiffraktometrie

Frau Prof. Dr. B. Eisenmann für hilfreiche Diskussionen und Tips

Frau J. Wendlig für die oft aufwendigen Protonen- undPhosphorresonanzmessungen bei tiefen Temperaturen sowie Herrn K.-O. Runzheimer und Frau K. Jungk für die Aufnahme weitere NMR-Spektren

Herrn Prof. Dr. J. Heinicke und Herrn Dr. M. He sowie Herrn Prof. Dr.G. Luft , Herrn Dr. A. Rau, Herrn Dipl.Ing. Th. Wieczorek und HerrnDipl.Ing. D. Walter f
ür die Durchf
ührung der Katalyseversuche

Frau D. Vogt für die Polymeranalytik

allen Mitarbeitern der Arbeitsgruppe Anorganische Chemie I der Technischen Universität Darmstadt für die gute Zusammenarbeit

Lebenslauf

Name: Geboren: Eltern:	<u>Olaf</u> Franz Hetche 21. November 1968 Offenbach am Main Werner Hetche (selbst. Fleischermeister) Rita Hetche, geb.Kaiser(Fleischereifachverkäuferin)
Familienstand:	ledig
Wehrdienst	10/1988 bis 12/1989, Entlassung im Dienstgrad eines Obergefreiten
Ausbildung	
1/1997-4/2000	Dissertation unter der Leitung von Prof. Dr. HF. Klein, Technische Universität Darmstadt Thema: [O,P]- und [N,P]-Chelatkomplexe des Nickels- Modellverbindungen für homogene Einkomponenten- Katalysatoren
10/1990-12/1996	Diplomstudiengang Chemie, Technische Universität Darmstadt Diplomarbeit unter der Leitung von Prof. Dr. HF. Klein, Technische Universität Darmstadt Thema: <i>Trimethylphosphan-Komplexe des nullwertigen</i> <i>Nickels mit akzeptorsubstituierten Olefinen</i>
7/1979-7/1988	Abitur, Leibniz-Schule Offenbach am Main
7/1975-6/1979	Mauerfeldschule Offenbach am Main

Berufserfahrung

3/1997-	Wissenschaftlicher Mitarbeiter im Fachbereich Anorganische Chemie, Technische Universität Darmstadt
	Betreuung von Grund- und Vertiefungspraktika
8/1996-12/1998	nebenberufliche Qualitätsanalytik in der Fa. LTS in Langen/Hessen
1993-1996	Werksstudent in der Produktion von pharmazeutischen Zwischenprodukten Fa. Clariant Offenbach (vormals Hoechst AG Offenbach)
1991-1993	Werksstudent Fa. ALSCO Dreieich
2/1990-9/1990	Service-Inkassomitarbeiter Fa. ALSCO Dreieich
Fremdsprachen	Englisch, Französisch (Schulkenntnisse), Latein
EDV-Kenntnisse:	MS-Office, ChemWin, STOE X-Step, Diamond, Novell, LINUX
Sachkenntnis:	Prüfung nach § 13 der Verordnung über gefährliche Stoffe für das Inverkehrbringen von giftigen und sehr giftigen Stoffen und Zubereitungen

Olaf Hetche In der Kirchtanne 27 64297 Darmstadt

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, daß ich meine Dissertation selbständig und nur mit den angegebenen Hilfsmitteln angefertigt habe.

Darmstadt, den 11.02.2000