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Kurzfassung

In dieser Doktorarbeit wird das Problem von Detektion und Kassi zierung der Unter-
wasserminen auf Sonarbildern betrachtet. Die automatisetErkennung und automatis-
che Klassi zierung (automatic detection and automatic clasi cation, ADAC) wird auf
Bilder angewandt, die mit Hilfe des synthetischen Apertur-Sars (SAS) entstanden
sind. Das ADAC-System besteht aus vier Bereichen: Detektiaminenahnlicher Ob-
jekte, Bildsegmentierung, Extraktion der Merkmale und Klasi zierung der Minen.
Diese Doktorarbeit konzentriert sich auf die letzten drei Breiche.

Bei der Detektion minenahnlicher Objekte (mine-like objet, MLO) wird die Template-
Matching-Technik auf die Sonarbilder angewandt. Diese Teoik basiert auf der A-
priori-Kenntnis der Minenformen. Damit sind die Bereiche mh den MLO festgelegt.
Diese Bereiche werden Bereiche von Interesse genannt @egiof interest, ROI). Die
ROI werden von den Sonarbildern extrahiert und an die zwei ligenden Module, d.h.
Bildsegmentierung und Extraktion der Merkmale, ubermitelt.

Bei der Bildsegmentierung wird eine modi zierte Erwartungmaximierung zur Segmen-
tierung der Bilder vorgeschlagen. Zwecks Klassi zierunged MLO-Formen werden die
Sonarbilder in Objekt, Objektschatten und Hintergrund aufgteilt. Ein allgemeines
Mischmodell wird far die statistische Auswertung der Bildéten eingesetzt. Au erdem
wird eine Clusterung der Bildpunkte im Rahmen der Dempste&hafer-Theorie (DST)
verwendet, um die rumliche Abhangigkeit zwischen den Bilpunkten zu bensacksichti-
gen. Folglich werden die Ster ecke im Hintergrundbereich bseitigt. Optimale Kon-
gurationen fur diesen Ansatz werden mit Hilfe quantitativer numerischer Studien
ermittelt.

Die extrahierten Merkmale werden an das Klassizierungsnool weitergegeben.
Benacksichtigt werden vor allem geometrische und TextuMerkmale. In der Liter-
atur werden zahlreiche Merkmale vorgeschlagen, die die @kfform und die Textur
beschreiben kennen.

Aufgrund des Fluches der Dimensionalifat ist die Merkmalsaswahl unerlasslich fur

die Entwicklung eines ADAC-Systems. Eine anspruchsvolleltér-Methode zur Selek-
tierung optimaler Merkmale far die Objektklassi kation wird entwickelt. Diese Filter-

Methode benutzt ein neuartiges Gatema zur Beurteilung de Relevanz von Merk-
malen. Das Gutema ist eine Kombination aus gegenseitigdnformationen, dem modi-
zierten Relief-Gewicht und der Shannon-Entropie. Die augewahlten Merkmale zeigen
eine hehere Generalisierbarkeit auf. Im Vergleich zu anden Methoden fahren die nach
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der hier vorgeschlagenen Methode ausgesuchten Merkmaleemer sehr guten Klas-
si zierungsgate, und die Performance-Abweichung bei Vemndung unterschiedlicher
Klassi katoren nimmt ab.

Bei der Minen-Klassi zierung wird die Voraussage der TypeMinemahnlicher Objekte
betrachtet. Ein Kombinationsschema auf Grundlage der DST wd vorgeschlagen, das
die einander erganzenden Informationen unterschiedlieh Klassi katoren nutzt. Die
Ergebnisse einzelner Klassi katoren werden mit Hilfe des ®vickelten Schemas kom-
biniert. Die resultierende Klassi kationsgenauigkeit isheher als die von jedem einzel-
nen Klassi kator.

Alle erwahnten Methoden werden anhand der SAS-Bilder evakiit. Abschlie end wird
ein Fazit gezogen und einige Anregungen fur zukanftige Arliten werden gegeben.



Abstract

In this PhD thesis, the problem of underwater mine detectiomnd classi cation using
synthetic aperture sonar (SAS) imagery is considered. The tamatic detection and
automatic classi cation (ADAC) system is applied to images btained by SAS systems.
The ADAC system contains four steps, namely mine-like obje¢MLO) detection, im-
age segmentation, feature extraction, and mine type clagstion. This thesis focuses
on the last three steps.

In the mine-like object detection step, a template-matchig technique based on tha

priori knowledge of mine shapes is applied to scan the sonar imagknythe detection

of MLOs. Regions containing MLOs are called regions of inest (ROI). They are

extracted and forwarded to the subsequent steps, i.e. imagegmentation and feature
extraction.

In the image segmentation step, a modi ed expectation-maxiization (EM) approach
is proposed. For the sake of acquiring the shape informatiofithe MLO in the ROI, the
SAS images are segmented into highlights, shadows, and backods. A generalized
mixture model is adopted to approximate the statistics of th image data. In addition,
a Dempster-Shafer theory-based clustering technique isedglsto consider the spatial
correlation between pixels so that the clutters in backgrowd regions can be removed.
Optimal parameter settings for the proposed EM approach afeund with the help of
guantitative numerical studies.

In the feature extraction step, features are extracted andiWwbe used as the inputs
for the mine type classi cation step. Both the geometricaldatures and the texture
features are applied. However, there are numerous featura®mosed to describe the
object shape and the texture in the literature.

Due to the curse of dimensionality, it is indispensable to dihe feature selection during
the design of an ADAC system. A sophisticated lter method is dveloped to choose
optimal features for the classication purpose. This Iter method utilizes a novel
feature relevance measure that is a combination of the mutuaformation, the modi ed
Relief weight, and the Shannon entropy. The selected featg demonstrate a higher
generalizability. Compared with other Iter methods, the fatures selected by our
method can lead to superior classi cation accuracy, and tireperformance variation
over di erent classi ers is decreased.

In the mine type classi cation step, the prediction of the types of MLO is considered. In
order to take advantage of the complementary information aong di erent classi ers,
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a classi er combination scheme is developed in the framewoof the Dempster-Shafer
theory. The outputs of individual classi ers are combined ecording to this classi-
er combination scheme. The resulting classi cation accucy is better than those of
individual classi ers.

All of the proposed methods are evaluated using SAS data. Fihalconclusions are
drawn, and some suggestions about future works are proposeiwell.
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Chapter 1

Motivation and Introduction

The basic process of noticing an object and recognizing whais happens frequently
in our daily life. The ease with which we deal with these issaebelies the astound-
ingly complex processing in our brains. Over the past tens ofillions of years, a
highly sophisticated neural and cognitive system has eveld for us to tackle such
issues. Nowadays, thanks to the rapid development of highfimance computers,
automatic target recognition (ATR) [1] becomes possiblet has numerous civilian and
military applications, such as face recognition [2, 3], mexhl application [4] and target
recognition using radar signals [5{14].

This thesis deals with ATR in the underwater application usig sonar imagery. Com-
pared with the imagery acquired by digital cameras or radarystems, the imagery
obtained by a sonar system is usually of lower quality. Thisan be attributed to the
complexity of the underwater environment, such as strong extion from seabeds, low
cleanliness, inhomogeneity in the density of water. The stng re ection of seabeds
makes the detection of objects that are close to the seabedyaeli cult. The inho-
mogeneity in the density of water can impair the transmissioof the acoustic wave or
even deviates the transmission from a straight path. The aimf this thesis is to design
an advanced automatic system for the hunting of underwater imes.

1.1 Motivation

Due to the low quality of sonar imagery and the high varietiesf di erent objects in
the sonar imagery, the task of underwater target (in our casenderwater mine) recog-
nition has been undertaken by experienced human operator¥Vith the expeditious
development of autonomous underwater vehicles (AUVs) and thechnological matu-
rity of synthetic aperture sonar (SAS) systems [15] mountednathem, in the last two
decades a huge volume of high quality sonar images have regdiprocessing. There-
fore, the adoption of ATR in the underwater application is nbonly desirable but also
indispensable, cf. [16{20]. An illustration of the ATR procdure is depicted in Fig. 1.1.
In general, the ATR problem can be divided into two parts, namaly detection and
classi cation.
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Figure 1.1. Automatic target recognition. From left to right 1. The input data. 2.
The detection of a target. 3. The target classi cation, i.ewhether the detected object
iS a mine or a rock.

Related works reported in the literature are mostly conceraited on traditional non-
synthetic aperture sonar (NAS) systems [15]. Owing to the highost of sea trials,
the availability of real data has been constrained. Some auirs even evaluated their
approaches with the data collected from laboratory experiemts. These kinds of exper-
iments are usually carried out in a large water tank, e.g. [L7Moreover, since the SAS
systems are strategically related to military applicationonly a few authors in the SAS
research eld are willing to publish their studies. The welknown automatic detection
and automatic classi cation (ADAC) system is adopted in thisthesis. Among those
published studies, most of them elaborate only the detail§ one or two nodes in the
ADAC system.

Hence, we are motivated to present a complete overview of the AD system, and its
application to the SAS data, which was collected by ATLAS Elekbnik Bremen GmbH
during several sea trials. The ADAC system is going to be degmed in detail as well
as the contributions.

1.2 Introduction

A complete ADAC system contains four steps as shown in Fig. 1.2nine-like object
(MLO) detection, image segmentation, feature extractionrad mine type classi cation.
A range of techniques [20{23] has been developed for the pose of target detection in
the literature and they can be applied to the rst step of MLO cetection. If su cient
amounts of target examples are available, techniques suchsapervised detection, tem-
plate matching [20,21] and matched lIters [22] can be applie The success of template
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Figure 1.2. The illustration of the ADAC system. The contribdions of this thesis
are focused on image segmentation, feature selection anchentype classi cation. The
feature selection is an indispensable step during the desigf an ADAC system and
(a) it controls the feature extraction step to extract usefufeatures. The output of the
system is the type of the MLO, i.e. (b) a cylinder mine, (c) a wuncated cone mine or
(d) a rock.

matching and matched Iters depends on the similarity of theraining data to the test
data. Furthermore, Coiraset al. [23] proposed a supervised target detection by training
on augmented reality data. The limited availability of realtarget samples is overcome
by generating more samples that are created by augmented lisasimulation [24]. Af-
ter the MLO detection, those regions possibly containing MQs are found, and they
are called the regions of interest (ROI). The ROI are extraedd and forwarded to the
subsequent steps, i.e. the image segmentation and the featextraction. Techniques
like [18, 25] are employed in the step of image segmentation $egment the images
of the ROI into highlights, shadows and backgrounds. The segntation results are
utilized for geometrical feature extraction. The goal of th feature extraction step is to
prepare the inputs for the mine type classi cation step. Inddition to the segmentation
results, the images of the ROI are also taken into consideran for the extraction of
texture features. A considerable amount of features have dxeproposed for the object
recognition in the literature [26{32]. Due to thecurse of dimensionality[33] shown
in Fig. 1.3, the feature selection is necessary during the sign of the ADAC system.
Its result is used to guide the feature extraction so that oglthose useful features are
extracted. With a number of appropriate features, the MLOs &n be represented as
points in the feature space in such a manner that the neighbiog MLOs belong to
the same classes and those of di erent classes are far awaynfreach other. Finally,
learning machines [34{36] are trained to classify those MLlLnto di erent types, e.g.
cylinder mines, truncated cone mines and rocks. For the saké achieving a stable
performance, an ensemble learning scheme is adopted. A nembf learning machines
are trained and the nal classi cation result is obtained bycombining the outputs of
those trained learning machines.
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Figure 1.3. The curse of dimensionality. After the maximum pat, the increase of
feature number leads to a degradation of classi cation penfmance rather than im-
provement.

1.3 State of the Art

Our contributions to the design of a reliable ADAC system inviwes research in image
segmentation, feature extraction, feature selection andine type classi cation.

Numerous techniques have been developed for the purpose ohge segmentation.
Thresholding, e.g. [37{42], is a simple technique to dividenages into di erent seg-

ments. Basically, a number of rigid thresholds should be sethe membership of pixels
belonging to di erent classes depends on the comparison veen the pixel intensities
and the thresholds. Some authors have proposed to adapt thettsng of thresholds to

local characteristics. Due to the high level noise in the sanimagery, the results are
not satisfactory. The shape information of MLOs can be distted. More complicated

techniques such as [43{48] have attained success in therbteire for a wide range of
applications. They are able to provide satisfactory resudtwith the data of high SNR,

for instance the photos taken by digital cameras or satelétimagery. However, only a
few publications, e.g. [6,49], have referred to the applitan to SAS imagery.

The extraction of features has already been extensively dissed in the literature,
cf. [26{32,50{53]. Most of them are not speci cally desigmnkefor the underwater tar-
gets. Among those for the underwater applications, many auths focused their feature
extraction on the shadows. This is because the highlightseaftess discriminable than
the shadows in the imagery acquired by NAS systems.

For feature selection, the methods such as dimensionalitgduction [54,55] and feature
subset selection [56{59] have been developed to reduce thmehsionality of feature
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space. Firstly, the dimensionality reduction techniquese.g. [54, 55], are vulnerable
to the data scaling. Secondly, a method belonging to the caery of feature subset
selection requires evaluation metrics to assess the gooskef features. Mostly, either
the classi cation accuracy obtained by a classi er (i.e. vapper method) or a relevance
measure (i.e. lter method) is utilized as the evaluation meeics. The wrapper methods

can be computationally intensive and the associated selexts are classi er dependent.
As for the Iter methods, many relevance measures have beeropiosed in the literature.

However, many of them do not precisely evaluate the redundan@among features.

Moreover, it is often the case that the most relevant featuseselected according to
certain relevance measures do not necessarily always pdevithe best classi cation

performance over various classi ers. Hence, it would be nesary to select asuitable

classi er to match the features obtained according to a ceain relevance measure.
Unfortunately, this kind of correlation between relevance emasures and classi ers is
unknown.

As for the classi ers, researchers have kept on developingwnéearning machines, e.g.
[60{62], or improving the existing learning algorithms, cf[63,64]. Most of them claimed
in their works that their proposals are superior to the othes. However, theNo Free
Lunch Theorem [65] has already stated that there are no general optimal d&si ers.
Individual classi ers could attain the success to a certaidegree in speci ¢ applications.
Furthermore, it has also been observed that the sets of objgsenisclassi ed by di erent
classi ers would not necessarily overlap. Hence, there argtensive studies dedicated
to the topic of ensemble learning [66{85] in the last three dades.

1.4 Contributions

EM approach assisted by DST : An approach called E-DS-M is developed for
sonar imagery segmentation, in which an intermediate step-$tep) between the
E- and M-steps of the expectation-maximization (EM) algothm is introduced.
In the I-step, a Dempster-Shafer theory based clustering carried out so that
the spatial correlation between neighboring pixels is codered. The likelihood
function given by Sanjay-Gopalet al. [46] is employed and the Gaussian mixture
is substituted by a generalized mixture model (Pearson sysh). As far as we
know, it is the rst time that the Pearson system is applied toSAS imagery for
the image segmentation purpose. The adaption of Dempsten&er theory based
clustering to the I-step is derived in detail and this approeh provides us with
reliable segmentation results with fewer EM iteration step
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A summary of features used for underwater applications . All of the fea-
tures considered by us for the underwater object recognitichave been reviewed
and documented in this thesis. We have employed not only theegmetrical fea-
tures of the shadows but also of the highlights. In additiona number of novel
geometrical features are proposed. The correlation betwekighlights and shad-
ows is also taken into account. The texture features of the R@re also included
in the feature set due to the fact that the deployment of objds on the seabed
can change its texture characteristics.

Sophisticated Iter method for feature selection : We choose the mutual
information (Ml), the modi ed Relief weight (mRW) that is ro oted in the Relief
algorithm [86] and the Shannon information entropy to com®e a new feature
relevance measure, namely the composite relevance meag@BM). Since the
avoidance ofunder tting and over tting [87] is of great importance, the Shannon
information entropy is adopted to control the complexity offeature selections.
The CRM is capable of providing a comprehensive evaluatiori the feature rel-
evance.

Dempster-Shafer theory assisted ensemble learning in SAS im agery:

A reliable classi er combination scheme based on Dempst8hafer theory is de-
veloped. Due to the fact that the training process of learngn algorithms is
not always optimal, the acquired classi cation results mayontain uncertainty.

This uncertainty can be elegantly modeled bygnorance in the framework of
Dempster-Shafer theory. A basic belief assignment (BBA) ig@posed to convert
the outputs of classi ers to belief values.

1.5 Publications

The following publications have been produced during the ped of PhD candidacy.

Internationally Refereed Journal Articles

T. Fei, D. Kraus and A.M. Zoubir \Contributions to Automatic Ta rget Recogni-
tion Systems For Underwater Mine Classi cation”,IEEE Transactions on Geo-
science and Remote Sensing 2Qccepted.

T. Fei and D. Kraus \Dempster-Shafer Theory Supported EM Appoach For
Sonar Image Segmentation"Transactions on Systems, Signals & DevicdSSN
1861-5252), Vol. 9, No. 3, pp.1-43, 2014.
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Internationally Refereed Conference Papers

T. Fei, A.F. Tchinda, B. Lehmann and D. Kraus, \On Sonar Image FPocessing
Techniques for Anomaly Detection in Underwater Constructiosi', the 8th Euro-
pean Conference on Synthetic Aperture RadaAachen, Germany, Jun. 2010.

T. Fei and D. Kraus, \An Expectation-Maximization Approach Asdgsted by
Dempster Shafer Theory and its Application to Sonar Image Segntation”,
IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICA®22012) Kyoto,
Japan, Mar. 2012.

T. Fei and D. Kraus, \An Evidence Theory Supported Expectatio-Maximization
Approach for Sonar Image Segmentation'lEEE International Multi-Conference
on Systems, Signal& Devices (SSD) Chemnitz, Germany, Mar. 2012.

T. Fei, D. Kraus and P. Berkel \A New Idea On Feature Selection Ad Its Appli-
cation To The Underwater Object Recognition”,the 11th European Conference
on Underwater Acoustics Edinburgh, U.K., Jul. 2012.

T. Fei, D. Kraus and A. M. Zoubir \A Novel Feature Selection Apprach Applied
To Underwater Object Classi cation”, European Signal Processing Conference
Bucharest, Romania, Aug. 2012.

T. Fei, D. Kraus and Abdelhak M. Zoubir \A Hybrid Relevance Measire for
Feature Selection and Its Application to Underwater Objects Bcognition”, IEEE
International Conference on Image Processing (ICIPDrlando, USA, Sep. 2012.

T. Fei, D. Kraus and I. Aleksi \An Expectation-Maximization Approach Ap-
plied to Underwater Target Detection”, ICOURS'12 - International Conference
on Underwater Remote Sensindrest, France, Oct. 2012.

T. Fei, D. Kraus and P. Berkel \A New Idea On Feature Selection Ad Its
Application To The Underwater Object Recognition", Proceedings of Meetings
on Acoustics (POMA), Vol. 17, pp. 70071-70078, Jan. 2013.

1.6 Thesis Overview

The thesis outline is as follows. Chapter 2 describes the ESEM algorithm for sonar
imagery segmentation. The generalized mixture model usirige Pearson system is
presented. After a brief introduction to the Dempster-Shafetheory, the derivation of
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adapting Dempster-Shafer theory based clustering technig to the intermediate step
between the E- and M-steps of expectation-maximization algthm is detailed.

Chapter 3 provides a summary of the features used by us for thmderwater object

recognition. The extraction of features is explained and #ir characteristics are an-
alyzed. In addition to those in the literature, we have propsed several geometrical
features that are suitable to our application and their motrations are also elaborated.

In Chapter 4, a sophisticated Iter method for feature seld®n is developed. The
derivation and motivation of a composite relevance measurs comprehensively ex-
plained. In order to avoid the NP-hard problem during the seah for optimal features,
a heuristic scheme called sequential forward search is alodor our Iter method.

An ensemble learning with the assistance of Dempster-Shatéeory is presented in
Chapter 5. We have novelly devised a basic belief assignméntconvert the outputs
of classi ers to belief values. All of the information acquid from di erent classi ers
is fused by Dempster's rule.

Conclusions are drawn in Chapter 6 and an outlook for future avk is suggested as
well.



Chapter 2

Sonar Imagery Segmentation

This chapter deals with MLOs detection as shown in Fig. 1.2. dlowing the MLO
detection step, it is the second step along the process chainthe ADAC system. The
accuracy of the segmentation in this step has a great in ueron the performance of
follow-on steps. Therefore, a reliable method is required this step to extract the
highlights and shadows which could be created by MLOs.

The image segmentation refers to the procedure of groupingage pixels into several
classes. Those pixels belonging to the same homogeneougnsgare assigned the
same labels so that the sonar images will be divided into seakregions, i.e. highlights,
shadows and backgrounds. There is a segmentation examgigsilrated in Fig. 2.1. The

(@) (b)

Figure 2.1. An example of image segmentation. (a): SAS imagentaining a cylinder
mine. (b): The segmentation result of the image on the left@&e. The labels for the
background pixels are depicted in green, the shadow labetshlue and the highlight
labels in red.

image contains a cylinder mine. The highlights, shadows amdckgrounds are depicted
in red, blue and green, respectively. Apparently, other thathe largest shadow created
by the cylinder mine, there are several clutters around thedundary of the image.
They could be created by image noise or some natural objectsi¢h as rocks).
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In the literature, there are numerous segmentation techniggs. Due to the high level
noise in the sonar imagery, simple techniques, such as threkling [37, 39, 39,41] and
k-means [88], might distort the shape information of MLOs, whh is very important
for mine type classi cation. Alternatively, the energy basd active contour, e.g. [43,89],
is another popular approach for image segmentation. Howeyexccording to our in-
vestigations, it is not optimal for the application in sonarimages. Moreover, statistics
based approaches [48, 90, 91] have employed maximanposteriori probability esti-
mation to ful Il the task of image segmentation. The poster probability function
usually contains two parts to describe the conditional pradbility of the image pixel
intensities given the class labels of pixels and the spatiebrrelation between the labels
of neighboring pixels. A Markov random eld (MRF) approach § mostly involved [92]
in the posterior probability function to cope with the spatial dependency between pixel
labels through the implementation of a Gibbs distribution.The setting of parameters
adopted in Gibbs distributions for controlling the relatimship between neighboring
pixels is still open. Usually, they are set according to the prrience gathered from
speci ¢ applications. Mignotte et al. in [48] have used a least squares technique to
estimate the parameters. This estimation requires the hisgggramming of neighborhood
con gurations, which is a time-consuming process. Besiddbe conditional probabil-
ity of image pixel intensities is typically modeled by Gausan, gamma and Weibull
distributions, which are often not adequate to approximatehe statistics of the data
obtained from real measurements.

The EM algorithm [93] has been acting as a popular image segntegion approach for
a long time, cf. [44,47]. In order to consider the spatial calation between neighboring
pixels, Zhanget al. [44] substitute the pixel class probability provided by tle M-step
of the previous iteration with an MRF based estimate. LaterBoccignoneet al. [47]
construct by inserting an anisotropic di usion step [94] beveen each E- and M-step
the so-called di used expectation-maximization (DEM) sceme. With the assistance of
the a priori knowledge that neighboring pixels are likely to be assignedth the same
labels, neighboring pixels should have similar probabiigs in the mixture distribution
model. An anisotropic denoising lter is applied to probabity levels so that the outliers
with respect to their neighborhood are excluded, while theeal edges of the image are
still preserved. The application of such a denoising lterri DEM is not able to reliably
exclude all of the noisy clusters in sonar images due to thectahat the variation of
pixel intensities is high even for neighboring pixels. It islso possible to enlarge the
object region because of the blur e ect of denoising lters.

Most recently, the DST has been applied to the image segmetitan [95{97]. In [95{97]
the segmentation of color images is considered, which candieided into image com-
ponents of R, G and B. These three image components are used#srmation sources.
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The belief structures in [95,96] are composed based on thewsption of Gaussian dis-
tribution. The mean and variance of the Gaussian distributin are estimated with the
help of a simple thresholding technique [98] for each clasdowever, this estimation
of the Gaussian distribution's parameters is not optimal foimages with low signal-to-
noise ratios. Besides, the fuzzy C-Mean algorithm is used the segmentation of RGB
images in [97]. The fuzzy membership is taken as basic bebskignment. Since the
fuzzy membership can be interpreted rather as a particuladgusibility function in the
Dempster-Shafer evidence theory [99], it is improper to takthe fuzzy membership as
basic belief assignment.

Figure 2.2. There is a generalized I-step inserted betweemet E- and M-step of the
EM algorithm.

In this chapter, the macro-structure of DEM is employed andt$ di usion step is
generalized to an intermediate step (I-step) as presented Fig. 2.2. The likelihood
function of Sanjay-Gopalet al. is chosen. The correlation between pixels which are
spatially far away from each other is decoupled. Furthermer the classical Gaussian
mixture is replaced by a generalized mixture model, whosemponents are chosen
from a Pearson system [100]. There is a set of eight types o$tdbution in a Pearson
system. The components of the mixture model are no longer téed to be of the
same distribution type. Therefore, the generalized mixt@ model is more exible to
approximate the statistics of sonar data. In addition, we aply the Dempster-Shafer
theory based clustering technique in an I-step. The neight®of a pixel are considered
as pieces of evidence that support the hypotheses regardthg class label of this pixel.

This chapter is organized as follows. In Sec. 2.1 the image aeb is introduced. The
maximum likelihood estimation, the Pearson system and EM gbrithm are presented
in Sec. 2.2. The spatial dependency among pixels is explalne Sec. 2.3. The proposed
segmentation method using the Dempster-Shafer theory baselustering technique is
given in Sec. 2.4. Finally, numerical studies are carried busing SAS images in Sec. 2.5.
The results of our approach are compared to those in the litgure. In order to make
the analysis more convincing, a quantitative assessmentngde with the assistance of
the evaluation measure for image segmentation. Conclusgoare drawn in Sec. 2.6.



12 Chapter 2: Sonar Imagery Segmentation

2.1 Image Model

Since noise is inevitable in the real world, the image is copted by noise, and we call
it observation. Let u; be the intensity of thei-th pixel in the observation,

up = U + j; (2.2)

whereu; 2 U denotes the intensity of pixel in the unknown noise-free image, and is

additive noise andU is the set of all possible states afi. Let L be a set of labels with
jLj = M,. Given the observation, our task of image segmentation is &ssign to each
u; a membership label; 2 L. In our application, the L contains three states which
denote shadow, background and highlight, respectively = f1;2;3g. Since the noise-
free image is de nitive and the noise added to pixels is unaetated, the observation,
fu;ig, is conditionally independent given the |;g. The spatial correlation among pixels
is re ected in the dependency among their labels.

2.2 Maximum Likelihood Estimation

For notational convenience, we denote noisy image/obsetimn as a vector u
(ul;:::;ui;:::;uNu)T, where N, is the number of pixels in the image,i 2|
f1;2;:::;;Nyg. Analogously, the corresponding labels are represented by

(EPR INU)T. The conditional distribution of u; givenl; is
p(uijli = j) = fu(uij ); (2.2)
wherej 2 L, fy is an arbitrary probability density function, and ; is the parameter re-
quired for the distribution whenl; = j. Anindicator vector ri = (ri.1; :iFij ;i Fim, )T 2
feq; ey, g for M| = jLj is de ned, and we have the probability
p(li =) = p(ri = &); (2.3)
= i (2.4)
. . . . P : .
where i; is a mixing coe cient with O ij L ;2 i =1and e isa unitvector
whosej -th component is 1. Then, Equation (2.2) can be written as
p(uijrij =1) = fu(uij ;); (2.5)
which can also be formalized in the form as follows:
Wi

p(ujri) = fu(uj ;)™ : (2.6)

j=1
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The joint distribution of r; and u; is given by p(ri)p(u;jri) with

Wi
Fij .
p(ri) = i (2.7)
j=1
and the marginal distribution of u; is obtained by summing the joint distribution over
all the possible states of;,

X _
p(ri = e)p(uijri = g)
j=1

pdl

p(u;)

ij fu(uij ) (2.8)
j=1
The distribution of u; is presented by Equation (2.8), and it is usually called digbution
mixture model. In this thesis, we allow thefy to be chosen from a Pearson system
F = fFy;:::; Fgg. The choice of the distribution type out ofF is going to be detailed
in the next subsection.

2.2.1 Pearson System

Let U be a real random variable whose distribution can be modeled la Pearson
system. The probability density functionf (u) satisfying the di erential equation [100],

1d a+u _
f du ap+ a,u+ a,u?’

(2.9)

belongs subject to the setting of the parameters;ag;a; and a, to one of the eight
possible distribution types of a Pearson system. The solatis of Equation 2.9 depend
on the roots of the characteristic equation

ap+ au+ a,u? =0: (2.10)

The details about Equation (2.9) are stated as follows.

1. The Type | distribution ( F;) corresponds to the case that both roots of Equation
2
(2.10) are real, and of opposite signs, i.€-—5°% > 0 and % < 0fora, 60. The
2
density function can be given as

(
1 (ub)?t Y w2t .
f(u)= B(1,2) (b byir2 71 fOI’UZ[bl,bz];

0; otherwise

(2.11)
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with

S
a a  4daga,
= — 05 ———;
by 2a, a2 ’
s___ -
a a  4daga,
= L4op L%
b, 2a, a2 ’

+
1 = _arh b +1;
a( b)

at b
5 = ——
a(by )
and B( 1; ) is beta function. This distribution is also calledBeta distribution
of the rst kind.

1;

. The Type Il distribution (F,) is a particular case ofF; with ; = 5, and the

density function is as follows:

(
1 (u b)) o ouw . )
fuy= B8C) mop = foru2 bl (2.12)
0) otherwise
with
atb 1
az(lp %)

_ e & daay

b = a 05 2 ——"= z

s 2

_ = @& dagay,

bz - a+05 lT

2

. The Type Il distribution ( F3) corresponds to the case, = 0 (and a; 6 0). In

this case, the density function is

( 1 s 2 e o f
f(uy= (2 1 € ford s (2.13)
0; otherwise
with

1 = ag;
1

2 = = o a +1;
a aq

- %
3 ar

and denotes the gamma function. This distribution is also ermed asgamma
distribution.
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4. The Type IV distribution (F,4) refers to the case in which Equation (2.10) does
not have real roots, i.e.a? 4apa, < 0.
a ' a
f(u=N; 1+ au+ ,)? (1=22) exp p;azarctan —2(u+ )
12 1

R (2.14)
with the factor N; such that  f (u)du=1 and
_ af
1 = @ E,
_ G
2 - 232.

Unfortunately, there is no common statistical distributionwhose density func-
tion has a form as the one in Equation (2.14). Woodward proped a simple
mathematical form to approximate this distribution [101] & follows:

| 1
: 3 =

~ ~

u? u
exp 4arctan o ; (2.15)

&

where

b = 2( 3 1),
23, (1 3) .
daga, @
s __— °
o = ®(b 1);
P+ Z
a

b

R
with the factor N; such that

~ fapp(U)du = 1 [102],

( 3 ((s+is=2) 2
“a( 3 05) ( 3) '

where thei in this equation denotes the imaginary unit.

N.= p (2.16)

5. The Type V distribution ( Fs) corresponds to the case whera? = 4aya,. The
associated distribution density function is

8
< 1 a1 2 1 2 . a
—— u+ 2 exp —=— ; foru A
fu=, T2 & 702 ST 2 (2.7)

0) otherwise
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with
_ &
1 - a za?lz’
5 = a_12 1

This distribution is also termed asinverse gamma distribution

. The Type VI distribution (Fg) corresponds to the case in which the roots of

Equation (2.10) are real and of the same sign, i. ! :""0""2 Oand 2 > 0. The
2
associated distribution density function is

C
(u 3)1 1t .
f(uy= B(ua@ (2 oz oru s, (2.18)
0; otherwise
with
1 P
a 5o a a; dapay
1= P t1
a  4daa,
1
= — 1
2 2
1 q —— —
3 = — & a daa ;
28,
s~
a’ a
4 = %"aoz fora, 6 0:
a

This distribution is also calledBeta distribution of the second kind

. The Type VII distribution (F;) is the case in whicha; = a =0;a, > 0, and

a, > 0. The corresponding density function is given as [103]

I
it 1

2
fuy= N, =2 1+ 2 : (2.19)
21 2
where
— 1 .
1 - 5a21
2 = 2 18y;
1 21 1
N2 = 2

B(05 ; 05)(2 )¢

. . _ Rl u s 1
with B( 3, 4)— 0 mdu.
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8. The Type VIII distribution (Fg) is the case wherea; = a, = 0. Thus the
associated density function is

u 2
f(u)= p%e At (2.20)
with = aand 2= a,. Obviously, it is the Gaussian distribution

As summarized above, the determination of the distributionyipe is dependent on the
values of the parameters; ag; a; and a,. However, they are usually unknowra priori.
Johnsonet al. demonstrated that it is possible to express;ag; a; and a, in terms of
central moments as follows [45]:
P
(s2+3) s12 _

&7 105, 12, 18 (2.21)

s 3s)  (9+3) so+ 25, 3 6),

= 2.22
) (s2 + 3)p S 2 210(82252 1235;1 168) | )
G = 105, 125, 18 : (2.23)
a = 102;2 1332;1 618; (2.24)
where and | are given by

= E[U]; (2.25)
n = E[U )"];forn=2;3; and 4 (2.26)

and the s; and s, are de ned as
S = E 32 (2.27)
S = 2“)2: (2.28)

Hence, the classi cation of the distribution type, which washased on the setting of
a;ap; a; and ap, can be done via the moments. The advantage of this conversis that
in practical applications the central moments can be estinbed from the data. Based
on the moments, the rule can be reformulated as follows,

2 Fy; for < 0O;
2F, fors;=0ands,< 3
2 Fs; for 2s, 3s; 6=0;

forO< < 1;
2 Fs; for =1; (2.29)
2 Fe; for > 1;

2F; fors;=0and s, > 3
2 Fg fors;=0and s, =3;

S VRARN - AN 0O

— —h —h —h —h —h —h —h
N
T
N
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where is de ned as
_ S1(s2 + 3) 2 .
~ 4(ds, 3s1)(2s; 351)(2s, 35, 6)

(2.30)

2.2.2 Expectation-Maximization Algorithm

In this subsection, the observation is considered as statally independent, the joint
conditional density of the observations can be formed as

_ Yo X _
p(uj )= i fu(uii ) (2.31)
i=1 j=1
where = I;:u; I,,l . The EM algorithm [93] is a powerful method to maximize

the likelihood in Equation (2.31). It requires the speci céion of complete dataz =
ut;ri;anrg, " in contrast to the incomplete data/observationu. Moreover, we
de ne the parameter vectors ; = ( i1 im, T = s [,u and =
T Ton deriving an EM algorithm, the conditional density function for the
complete dataz is required. With the help of Equation (2.6) and Equation (27), we
have the conditional pdf of complete data
. Yo Wi _ .
p(zj )= i fo(uij ) 7 (2.32)
i=1 j=1

wherefy belongs to some type of distribution out of the seF . The EM algorithm
iterates itself between an E-step where a conditional exgation is computed and an
M-step where the estimates of parameters (i.e. and ) are updated by maximizing

this conditional expectation. The E-step is de ned as
h i

Q j® = EInpz )i Yu=u; (2.33)
" #
Xu X
= E rig In g +Infy(uj ;) j “YU=u ; (2349
i=1 j=1

whereU = (Uy;::;; Uy, )" and ) denotes the parameters obtained in thi-th itera-
tion. In order to compute the expectation in Equation (2.34) the distribution of rj;

is of interest to us. Similar as derived in Appendix C of [46], evhave
[

priy=1 © = E ryj ©; (2.35)
Wty uj @ 26
= p : ; :
mlzl i(;'fn)fu ui) Srlf)
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For notation convenience, Ietwi(;}‘) =p ry =1 © . Inthe M-step, the & should
be updated with

) =argmaxQ j © : (2.37)
P
For pixel i, conditioned on }\":'1 ij =1, a Lagrange multiplier A is introduced
|
X ‘ h i I '
= owl g fuu @) +A Ty 1 (2.38)
j=1 j=1

Through @?T =0forj =1;:;M, we get

w
—_+A=0; j=1;:0M, (2.39)
i5j
P
— ; :

Solving Equations (2.39) and (2.40), we get the update of; ,

(k+1) (K).

i5j = Wi
k : k
= i(;j)fu - j() : (2.41)
- Pw « Co '
S STV R
and the mean and the central moments are updated as follows,
P Nu U (k+1)
(k+1) _ i=1 ¥l i .
i = PN we (2.42)
i=1 i
Py i
_ i=1 UWi;"
Nu 5, (K) 7
i=1 Wi
u (k#1) " (k+1)
(k+1)  _ i=1 '_" j ] f Al d
A = PN orn=2;3and 4 (2.43)
P i=1 0
(ke1) " (K)
_ izt Ui Wi~
- P N (k) 1
i=1 Wij

where ; and ,; are the mean value and then-th central moment of the pixels be-
longing to classj, respectively. With the results in Equations (2.42) and (43), s;, S»
and can be obtained. Accordingly, the distribution types of ;, and their associated
parameters can be determined as described in Sec. 2.2.1 fo¥ hext EM iteration.

There are two examples of segmentation results with mixtum@odels shown in Fig. 2.3.
The segmentation result obtained by Gaussian mixture is psented in sub gure (c) and
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the one corresponding to generalized mixture is in sub gur@). Compared with the
generalized mixture model, Gaussian mixture provides a sagntation result whose
background region is more heavily eroded by clutters. Moreer, the pdf estimates
illustrated in sub gure (b) demonstrate that the generalizd mixture can better ap-
proximate the statistics of an SAS image.

0.14

— histogram of image data
— pdf estimate of generalized mixture model
pdf estimate of Gaussian mixture model

0.12

R A

0 50 100 150 200 250 300

@) (b)

(©) (d)

Figure 2.3. An example to illustrate the comparison betweenegmentation results
obtained by the EM with generalized mixture model and the EM wh Gaussian mixture
model. (a): A sonar image containing a truncated cone mineb). The pdf estimates
obtained by the EM with Gaussian mixture model and the EM withgeneralized mixture
model. (c): The segmentation result obtained by the EM with @ussian mixture model.
(d): The segmentation result obtained by the EM with genera&ed mixture model.

However, it is obvious that both of the segmentation resultshewn in Fig. 2.3 are

not satisfactory. They are \dirty". In a segmentation resut, the object region (i.e.

highlight or shadow) should be smooth and connected. Ideglthere should be as few
pixels as possible in the background region which are clasdias highlights or shadows
due to the image noise. In order to ful ll this requirement, he correlation between
neighboring pixels should be considered.

2.3 Spatial Dependency among Pixels

For the sake of \clean" segmentation results, the spatial celation among pixels has
to be taken into account in this section. The labeling of piXei is in uenced by the
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states of its neighbors. The Markov random eld has been witleemployed to model

this relation. Most recently, the Dempster-Shafer theorysi also applied to remove the
clutters in the segmentation results. We assume that a pixelepends on its neighbors
in such a manner thatthe neighboring pixels with similar intensities are likelyo have

identical labelsor a pixel is probably to be assigned to the group which contathe

majority of it neighbors In view of this manner, the clustering techniques relyingro

Markov random eld and Dempster-Shafer theory are derivedat model the spatial

correlation among pixels in the following two subsections.

2.3.1 Markov Random Field

Let N ; be the neighborhood of pixei such that for its j-th neighbor ;; we have
ij 2Njandi2 N . This pair of fi; ; gis known as a clique [104]. In this thesis,
the second order neighborhood is employed as shown in Figd.2.0n the left side,
the second order neighborhood containing eight neighbossillustrated. On the right
side, the eight associated cliques within the neighborhoddl; are presented. In most
cases, the cliques are classi ed into four di erent types agepicted on the right side of
Fig. 2.4.

Figure 2.4. The second order neighborhood of pixelN ;, and the associated cliques.
(a): The second order neighborhood,;1;:::; g2 N . (c): The four kinds of cliques.
From left to right and from top to bottom, their relationships are specied by 1; »; 3
and 4, respectively.

The Hammersley-Cli ord theorem [105] reveals that there is ane-to-one correspon-
dence between MRF and Gibbs random eld, which is de ned by t Gibbs distribution.
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Hence,a priori probability p is able to be conveniently modeled as follows:
1.
p(li)= =e " (2.44)
Z
whereZ is a normalization constant and (l;) is an energy function

(h)=s;L)" ; (2.45)

.

whereL; = | . denotes the con guration of neighborhoodN ;, =
(15 20 3 4)7 and S (li;L;) is given by

S(i;Li) = Sl )+ Szl o);SUisl )+ SUisl ) (2.46)
S(li;l i;l)+ S(li;l i;5);S(|i;| i;3)+ S(li;l i:7) T;
with .ol g 2Ny,

whereS =1 kronecker» aNd  kronecker 1S the Kronecker delta function. Then, the
spatial correlation can be determined by the Gibbs distribion in Equation (2.44).
It is usually chosen by a MAP estimator as the prior in posterioprobability density
function, which is detailed in the following.

In the Bayesian theorem [106], one can combine the prior imfoation with the likeli-
hood to obtain a posterior probability,

Likelihood Prior

Posterior = .
Evidence

(2.47)

where in our application the conditional probability p(ujl) is the likelihood and the
spatial dependency speci ed in terms of Gibbs distribution (1) is the prior. Then for
a given observation (i.e. a sonar image), we have

pi()p(ujl) .

pllju) = PR (2.48)

where p(ujl) = _Q p(uijli), p(l) = Q pi(li) and the Evidenceis a normalization factor

i=1 1=1
to ensure that the total probability is 1. Hence, it is usuallyexpressed as follows:

p(lju) /' exp(E (u;l; ) (2.49)

where E(u;l; ) is the posterior energy. There is an isotropic model [91] which the
E(u;l; ) has the same for all cliques in the neighborhood, i.e.

X XX
Esotropic (U; I; ) = In p(uijli) + (1 Kronecker(li l )) ; (2-50)
i=1 i=1 2N
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where the has to be seta priori based on empirical knowledge. Moreover, Reed
al. [18] proposed an anisotropic model,

u

X
Eanisotropic (U3 1; ) = Inp(ujl)+ S iL)T (2.51)
i=1 i=1
where 1;::: 4 could be di erent. The last two terms of their energy functim is omitted
since there is no prior knowledge available in our applicath about the object orien-
tation and object size. For a given neighborhood con guradn L, the ratio of the
probabilities of pixeli being labeled withj and j°can be calculated as

ol = JiL)
In i =390)

For each possible neighborhood con guration, the term on #left side of Equa-
tion (2.52) can be approximated by using a simple histograming as follows:

=(S(hi=jL) s@E=ji%)" : (2.52)

p(li = jjL) _ #fi%21 :lio=jLpo=Lg
p(li =j9L)  #fi°21 :ljo=j%Lo=Lg’

(2.53)

where # denotes the number of elements in the set. This creat@n over-determined
set of equations for the four unknowns, i.e. ;; 2; 3 and 4. It can be solved by a
least squares technique.

2.3.2 Dempster-Shafer Theory Based Clustering

2.3.2.1 Basics about Dempster-Shafer Theory

In 1967, Arthur P. Dempster proposed a new concept of upper arower probabili-
ties [107]. His work remained hidden in the statistics litetare until Glenn Shafer,
one of Dempster's students, brought the material to a wideruaglience in his doctoral
dissertation [108]. Although it has been more than forty yearsince then, the Dempster-
Shafer theory is still not as familiar as the fuzzy logic to ngi engineers. Hence, it is
worth providing some basics about the Dempster-Shafer thgobefore going into the
details about our modeling of ensemble learning. The DempstShafer theory (DST)
is a mathematical theory of evidence. It allows one to comlenthe information from
di erent pieces of evidence and arrive at a degree of beliehish takes into account
all the available evidence. In DST, the set containing all th hypotheses is callethe
frame of discernment In this chapter, the pixels can be labeled by the elements pof
the setL = f1;2;39. Therefore, the setL is the frame of discernment. The function
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b:2- 1 [0;1] describing this belief portion assignment and satisfyinthe following
conditions:

b(;) 0; (2.54)
b( ) 1: (2.55)

L

X

is called basic belief assignment (BBA). The quantityp( ) can be understood as a
measure for the belief portion assigned to the hypothesisahthe correct answer is in
. However, no further information about the distribution of this amount of belief
portion to the subsets of can be inferred. In other words, théb( ) does not make
any additional claim about the hypothesis that the correct aswer lies in a subset of
. Every 2 2" that satises b( ) > 0 is called afocal element of the BBA. Based
on the BBA, the belief function is de ned by

X
Bel( )= b( 9: (2.56)

0

The quantity Bel( ) represents the total belief committed to the hypothesis . It
can easily be veri ed [63] that theBel( ) and the Bel( ) with = Ln do not
necessarily add up to 1. It is a major di erence from probabtly theory. Moreover,
another quantity PI( ) =1 Bel( ) called plausibility is de ned to describe the
extent to which one fails to doubt in

X
PI( )= ] b( 9: (2.57)

0" 60

Hence, the probability of hypothesis is bounded byBel and PI, Bel( ) P( )
PI( );8 L.

Dempster's rule is a mathematical operation used to combirtevo BBAs induced by
di erent pieces of evidencep; and b,,

=]
T _ b b
o o ) i o= DI D D) 258)
1 L= b )ba( 2)
where ; 1; , 2 2. Since Dempster's rule is commutative and associative, the

BBAs of diverse evidence can be combined sequentially in angamgement. The
decision-making of DST is still open. There exists an inteaV of probabilities bounded
by Bel and PIl. Consequently, simple hypotheses can no longer be rankeaading
to their probabilities. Over the last thirty years, many prgoosals have been made
to conquer this uncertainty on probabilities. In this chaper, we use the well-known
pignistic probability [109] proposed by P. Smets, which haseen veri ed by P. Smets
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and R. Kennes in [110] as a convenient and justi ed mechanisior converting a BBA
into a probability, T
X

BetP( )= b( ‘)j . ﬁ: (2.59)
0\ P9

If the readers are interested in DST, more information can beund in [111].

2.3.2.2 Dempster-Shafer Theory Based Clustering

In the framework of DST, we model the neighbors as pieces ofdance. They provide
support to the hypotheses that the pixel of interest (e.g. gel i in the case given in
Fig. 2.5) belongs to the same classes of these neighbors. Asicted in Figure 2.5, it is

Figure 2.5. (a): The neighborhood con guration of pixel, L ;. (b): The evidence pool.

a second order neighborhood of the pixel of interest, i.e.xpii. All of its neighbors are
labeled, and can be used as evidence. The amount of suppordypded by a neighbor

to the hypothesis that pixeli is assigned with the same label as pixelrelies on the
di erence betweenu; and the average of all theujo with l;,o0 = | . Hence, the variation
caused by the noise contained in the observation of the nelgrs can be minimized.
Obviously, a small di erence in the pixel intensities shoul indicate a great amount of
support.

We model the support provided by the neighbors as follows. # neighbor 2 N ;
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belongs to class 2 L, its BBA is given as

8
< #v; if =fl g;
b( )= 1 #v; if =L; (2.60)

0; otherwise

where the# andv are determined by

g o= L v ) (2.61)
max oy, exp( 1juo )
ju 1]

vV = exp 2 ; (2.62)

where | and | are the mean value and standard deviation of class ; is the median
of the pixel intensity of N j, and ;; , are positive constants. Thes denotes the total
belief portion which is able to be provided by the pixel 2 N ;, and the # evaluates
the quality of the evidence. This quality evaluation is baskon the assumption that
the information supplied by an outlier should be less plausie. The manner of how
# and v react to the parameters ; and , is qualitatively presented in Fig. 2.6.
The parameter ; in Equation (2.61) manipulates the tolerance against ou#rs. If it

1 1 1
\ ! = =0
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Figure 2.6. The illustration of function exp( X).

approaches in nity, only those pixels whose intensity is igntical to the median are
taken into account. In contrast, when ; equals zero, all the pixels are considered to
be of the same quality. The parameter, in Equation (2.62) controls the total belief
portion assignment. When it is increased, the assignment mmore sensitive to the
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distance betweeru; and | . The choice of ;; , will be justi ed in Sec. 2.5. Moreover,
sincev is distance dependent, it is necessary to normalize all thésthnce measures
into the same scale by dividing the measures by as in Equation (2.62).

Dempster's rule considers all the possible combinations elements out of the power

set 2. When the number of elements in the sdt increases, the time consumed for the
BBA combination grows exponentially. There is an e ective ambination scheme for

the simple BBA derived from Dempster's rule by Denoeurt al. in [63]. It considers

only those elements which are focals of the combining BBAs:

bO(flg) 2 b(L)
10 | _

brotar (F19) = ; (2.63)
Q K
b®O(L)
brotar (L) = IZLT; (2.64)
whereb() is given by y
b (flg) = 1 @ b (flg); (2.65)
2N |
Y |
bO(L) = (1 b (flg); (2.66)
2N!

whereN| N is the set of neighbors ifN ; belonging to the clasd 2 L, b is the
BBA associated with the neighbor and K is the normalizing factor:

X Y Y
K= bU2%(L)+@ jLj) bOL): (2.67)

12L 1% 2L

After the information combination, there should be a nal detion made on the com-
bined BBA by, . We choose the most well known pignistic probability [109pf the
sake of decision-making. Due to the fact that focals dk., are either elements ot
or L itself, the results obtained from the pignistic level are ientical to those from the
BBA function. Thus, the decision-making for pixeli is given by

li = arg max b ;i (19); (2.68)

where by ;i IS the combined BBA associated with pixei.

2.4 EM Algorithm Assisted with Dempster-Shafer
Theory Based Clustering

In the previous sections, the generalized mixture model thassumes the independence
among pixels, EM algorithm and the Dempster-Shafer theorydsed clustering are
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presented. They have to be combined in the way illustrated ifigure 2.2. The idea
is that before the output of E-step {w;;j1 i Ny;] 2 Lg) is forwarded to M-
step, it should be processed by the I-step (Dempster-Shafttieory based clustering)
to incorporate the neighborhood information. The input of he M-step is substituted
by fwi;j1 i Ny;j2Lg,

1 =7
o I|; 6]
For unsupervised methods, the initialization is of great imortance. Since the gamma
mixture has been widely adopted in the processing of radarlfd] and sonar imagery
[25,49] to approximate the statistics of non-negative datave initialize the model with
gamma mixture. Hence, the proposed method called E-DS-M cae Bummarized as
follows,

Wi = (269)

Step 1. The gamma mixture model is chosen for the initialization andts pa-
rameters are estimated as in [113]

(0}
(k)

n
Step 2. Run E-step with the help of Equation (2.35), and obtain w;;

n o n o
Step 3. Perform a hard decision on Wi(;:-() , then get Ii(k)
Step 4. Determine the BBA as shown in Equations (2.60), (2.61) and (@2)

Step 5. Combine the BBAs with the assistance of Equations (2.63), @),
(2.65), (2.66) and (2.67)
n o
Step 6. Determine thel; and w by Equation (2.68) and Equation (2.69),

i
respectively

n o

Step 7. Forward the w(;’ to the M-step, substitute thew};’ with w{;’ in Equa-

tions (2.42) and (2.43), and estimate the central moments efch class,
$D and ™ with n =2;3 and 4 using Equations (2.42) and (2.43)

n;J

Step 8. Determine the types offy in Equation (2.32) with the help of Equa-
tions (2.27), (2.28), (2.30) and (2.29)

Step 9. Go back toStep 2 until the results converge or the number of maximum
iteration steps is reached

The comparison of EM and E-DS-M is represented in Figure 2.Th sub gure (b), the
estimated pdfs are illustrated. It is apparent that the inclision of spatial correlation
among pixels does not increase the accuracy of the pdf esttioa. However, it improves
the segmentation results by removing most of the clutters ithe background region.
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—histogram of image data
— pdf estimate of generalized mixture
pdf estimate of E-DS-M
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Figure 2.7. The comparison between segmentation resultstaimed by the EM with

generalized mixture model and the E-DS-M. (a): The SAS imagemtaining a trun-

cated cone mine. (b): The pdf estimates obtained by the EM witgeneralized mixture
model and the E-DS-M. (c): The segmentation result providedy the EM with gen-
eralized mixture model. (d): The segmentation result prodied by the E-DS-M.

2.5 The Numerical Studies of E-DS-M

Numerical tests are carried out on both real SAS data and synttie data. The ripple-
like sediment is a great challenge for sonar image segmeimat Owing to the high
cost of sea trials, the availability of real sonar data is limted. We have only the SAS
data that is obtained from sea trails launched on at sedimes. Thus, we simulate
the SAS data with ripple-like sediment to verify the reliabiity of E-DS-M. It is found
in our study that E-DS-M can provide almost perfect results o ripple-like sediments.
The performance gain against the methods in the literaturean be easily observed.
Therefore, there is no necessity to use additional measurfes the evaluation of the
results obtained from synthetic data. In contrast, due to tlke complexity of real SAS
images, a quantitative measure dedicated to image segmeida is required for the
performance evaluation.

We choose the MAP estimator which adopts an isotropic model rfameighborhood
(MAP-1SO) given by Equation (2.50), the MAP estimator proposd by Reedet al.
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(MAP-Reed) using the energy function in Equation (2.51) and BEM [47] for compar-
ison. The maximization problem of the two posterior probalities of MAP-ISO and
MAP-Reed is solved by the ICM algorithm.

2.5.1 Evaluation Measure for Image Segmentation

We employ in this chapter the variation of information (VI) [114] to evaluate the
segmentation results.

Let S denote a segmentation of the image, and it divides tH2 = fuy; u,; :::; uy, g into
groupsSi; Sy; :ii; Sy, such that

\ M
S

S; Sk=; and i =D; (2.70)

j=1
wherej 6 k. The number of pixels can also be given ad, = jDj and the pixel
number in S; is Ny; = jS;j. Let another segmentation beS® and it segments the
image into S%; S%; :::;S%0; :::; S% o with group size ofN (.. The number of pixels in
the intersection ofS; and Sjoo is denoted asN;; o,

\
Nu;jj°= Sj Sjoo . (271)

VI measures the di erence between two segmentations in terntd the information
entropy,

v (S;SY = H(S)+ H(SY 21(S;SY:; (2.72)
whereH (S) and | (S; S9 are de ned as
XN .
H(S) = Nuj log, N”"; (2.73)
i N N,
W )MP N o Ny ©
1(S;89 = - log, i (2.74)
u) uij
j=1je=1 M Nu Nu_

It is shown in Figure 2.8 that the VI provides us the measure oniskimilarity between
two segmentationsS and S° If they are identical, the entropiesH (S) and H (S9 will
totally overlap with each other. The mutual information | (S; S9 equals toH (S). In
this case, v (S;S% = 0. We substitute the result of S with the ground truth. Let
S% denote the segmentation result obtained by di erent segméation methods. Con-
sequently, if the segmentation method works ideally, we havhe evaluation measure
lvi =0.
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Figure 2.8. The illustration of VI.

There are examples of di erent segmentation results in Fi@.9. The rst one on the top

left of this gure is the ground truth. The VI of the following 15 segmentation results
are computed against this ground truth, and their values ardepicted in Fig. 2.10. The
segmentation result 5 in Fig. 2.9 is identical to the groundruth. Thus, its VI is 0.

groundtruth, radius = 100 1. radius = 60 2. radius = 70 3. radius = 80
4. radius = 90 5. radius = 100 6. radius = 110 7. radius = 120
8. radius = 130 9. radius = 140 10. radius = 150 11. radius = 160
12. radius = 170 13. radius = 180 14. radius = 190 15. radius = 200

Figure 2.9. An example of the comparison among di erent segmtation results. The
one on the top left of the gure is ground truth. We calculate he VI of the following

segmentation results against this ground truth.
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14

0 1 2 3 4 5 6 7 8
Image ID

Figure 2.10. The VI associated with the segmentation results Fig. 2.9.

2.5.2 Experiments on Real SAS Images

There are eight real SAS images containing MLOs presented ingF2.11. Their corre-
sponding ground truths are given in Fig. 2.12. Their dimenshs are 100 100 pixels.

In order to visualize the impact of ; and ,, we vary them to reveal how the E-DS-M
reacts to the tuning of parameters. We compute the,, of all the test images in
Fig. 2.11 and present the averages of, over the eight images in Fig. 2.13.

Obviously, although the variation of , in (2.62) has some in uence on the performance
of image segmentation, it is neither signi cant nor de nite In contrast, the perfor-
mance of image segmentation is highly dependent on the segiof ; in (2.61). As ;
grows, more neighbors are recognized as outliers and theipport to the corresponding
hypotheses is suppressed. The consequence is that the Usefiormation embodied
in the neighbors could be ignored and the segmentation retsulof the E-DS-M are
impaired. There is signi cant performance degradation atcnd ; = 0:2. According to
the results in Fig. 2.13, the E-DS-M has a satisfying perforamce when ; is around
0:1. We nd that the optimal parameter setting in this testis ; =0:1 and , =1:4.

An example to illustrate the impact of ; is shown in Fig. 2.14. It is an example of
Image 7. For simplicity, the parameter , is set to 1. It can be observed that the
increasing of ; introduces much clutter in the background.
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@) (b) (© (d)

(e) ) (@) (h)

Figure 2.11. The SAS images used for the evaluation of imaggmsentation methods.
Sub gures (a) (b) denote test image 1 to test image 8.

@ (b) © (d)

(e) ® (@ ()

Figure 2.12. Ground truths of the images in Fig. 2.11. Sub ges (a) (b) denote the
ground truth of test image 1 to test image 8.
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Figure 2.13. The averages of the,, over the eight test images in Fig. 2.11.

°1=0:1 °1=0:3 °1=0:5 °1=0:7 °1=0:9

Figure 2.14. An example to illustrate the impact of ; on the segmentation results. »
is set to 1.
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Finally, we visualize the comparison of segmentation ressilin Fig. 2.15. The optimal
parameter setting for E-DS-M obtained in the numerical tests applied, i.e. ; =0:1
and , =1:4. Itis apparent in Fig. 2.15 that the results given by E-DS-Mcan provide
more precise segmentation results with less mislabeled gl than other methods.

2.5.3 Experiments on Synthetic Images

The performance of E-DS-M on SAS images with ripple-like sedénts is studied in
this subsection. There is a synthetic image whose dimenssoare 300 300 pixels, and
it contains cylinder mines. The object region and backgrouhare initially synthesized
separately. According to our empirical study, the gamma digbution can be used to
approximate the statistics of the pixel intensities of higlghts and shadows in SAS im-
ages. The mean values and standard deviations of the gammatdbutions chosen for
objects are highight = 120; nighiighe = 10, and  shadow = 10; nhighiigne = 5, respectively.
The ripple sediment is simulated as given in [115]. This sirfated sediment is slightly
corrupted by speckle noise. Finally, we superimpose the el region and sediment as
follows

Usyn = 0:8Uobject + 0 :2Uripple (2.75)

Hence, the object regions in the resulting images are only apgimately gamma dis-
tributed, since it also contains part of the sediment statiscs.

The same parameter setting of ; and , as in Fig. 2.15 is applied to the test on
synthetic images. The results are shown in Fig. 2.16. Comjag the results of E-DS-M

with those of MAP-ISO, DEM and MAP-Reed, it can be observed thaE-DS-M can

suppress the in uence of a ripple-like sediment very well. e segmentation result is
almost identical to the ground truth. Thus, it is veri ed that E-DS-M is also reliable
when objects are lying on ripple-like sediments.

2.5.4 Computational Cost

The computational cost of the segmentation methods, i.e. MAFSO, MAP-Reed,
DEM and E-DS-M, should also be studied. The SAS image snapsbatith di erent
sizes have been employed. Only squared snapshots of the SA&geny are considered.
The test image for the evaluation of computational cost is gécted in Fig. 2.17. Its
original size is 1000 1000 pixels. We resize it into images with di erent side lengs.
Three of them are presented as examples in Fig. 2.17. A compuequipped with an
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(@) (b) © (@) ()

Figure 2.15. Examples of the segmentation results. Columm)(presents the sonar
imagery, in column (b) up to column (e) there are segmentatioresults obtained by
the methods E-DS-M, MAP-ISO, DEM and MAP-Reed, respectively.
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@) (b) (©)

(d) (e) ®

Figure 2.16. The numerical test on synthetic image: (a) syhetic image with ripple-
like sediment, (b) ground truth, (c) (d) provide the segmentation results given by
E-DS-M, MAP-ISO, DEM and MAP-Reed, respectively.

Intel(R) Xeon(R) 2.93GHz processor is employed. The prograrmase written in Matlab.
All the four methods are iterative. Hence, the computationalitne depends on their
iteration numbers. The maximum iteration number of individual methods is set to
200. The di usion iteration of DEM is set to 50, which is an empical value obtained
in our study so that DEM can provide a good segmentation regulAlthough the time
required for every iteration in E-DS-M is high, it is still ane cient approach since it
requires fewer iterations, i.e. usually fewer than 50 itetians. In contrast, MAP-1ISO
and MAP-Reed often need more than 100 iterations before thers@rgence is reached.

As demonstrated in Fig. 2.18, the image sizes have a great ingpan the computational
cost. For snapshots of smaller side lengths, the di erencenang methods is little. The
E-DS-M sometimes could require even longer processing tithan the others when the
image is smaller than 240 240 pixels. This can be attributed to the fact that all the
four methods require only a few iterations for images with sail sizes before reaching
convergence. The adoption of E-DS-M is then not very pro tale. With the increasing
of the image size, the advantage of choosing E-DS-M can beated. There are several
locations on the curves of MAP-Reed and E-DS-M where the contational cost is no
longer increasing functions of the image size. This can bepéined as follows. The
time required for the neighborhood con guration histograming in MAP-Reed and
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@ (b)

© ©)

Figure 2.17. The test images used for the study of computatial cost. The original
image is on the top left. There are three examples of the restzimages in the following.
(a): side length = 1000 pixels. (b): side length = 720 pixels(c): side length = 420
pixels. (d): side length = 120 pixels.
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Figure 2.18. The processing time of the image snapshots wititreasing size.
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the combination of BBAs in E-DS-M using Equations (2.63)(2.67) is not a strictly
increasing function of the image size. One depends on how mat erent cases of
the neighborhood con gurations exist in the image, and thetber is correlated to the
complexity of the neighborhood con guration.

2.6 Conclusions

In this chapter, an expectation-maximization approach formage segmentation is con-
sidered. This approach is utilized to obtain the shape infaration of mine-like objects.
The segmentation results are sent to the subsequent step eafure extraction for the
extraction of geometrical features.

A generalized mixture model is employed in this expectatiemaximization approach, in
which the Pearson system is taken into account. Consequentihe generalized mixture
model can better approximate the statistics of synthetic agrture sonar imagery than
those conventional models, e.g. Gaussian mixture model. Maover, the Dempster-
Shafer theory has been incorporated to describe the corriben between neighboring
pixels. A belief structure based on the pixel intensities lsabeen proposed to quantify
the dependency between pixels. We developed an iterativepapach called E-DS-M
for image segmentation by introducing the Dempster-Shafelustering between each
E- and M-step. The proposed approach has been applied to thgnthetic aperture

sonar images.

Compared with the methods in the literature, the proposed goach can considerably
enhance the quality of the segmentation results. The quatditive analysis of the
segmentation results shows that the E-DS-M can provide segntation results with

higher accuracy and it also demonstrates another fact that-BS-M is only sensitive
to the setting of one parameter. Therefore, it is reasonabl® reduce the number
of parameters involved in the Dempster-Shafer theory basedustering to one. The
optimal setting for parameters is obtained in numerical tés. Besides, the study of
computational cost demonstrates that E-DS-M is very e cie with the increasing of

image size.
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Chapter 3

Feature Extraction in Sonar Imagery

This chapter handles the feature extraction. It takes the iages of the ROI and the
segmentation results obtained in the step of image segmetida as its input to extract
the texture features as well as the geometrical features. &textraction of features can
be divided into two di erent phases, thesystem design phasand object classi cation
phase During the system design phase, a large number of featurdst are probably
useful for the classi cation of underwater objects are exticted. Due to the curse of
dimensionality (cf. Fig. 1.3), only a small part of the featves are considered in the
phase of object classi cation. The choice of relevant feats, i.e. feature selection,
is executed in the system design phase and its results are dise guide the feature
extraction in the object classi cation phase so that only tlese relevant features will be
extracted. We will introduce all the features considered ithe system design phase in
this chapter.

The results of MLO detection provide a database withM pieces of MLOs. Ev-
ery MLO can be represented by a vector, e.g. the vector ai-th MLO is (™ =

(zmsss amo il No;m)T. The element ., forl n Noandl m M isthe
m-th realization of the random variableX,. The random variableX, is usually referred
as a feature. Let the set of all features b® = X 1;::1; X, ii1; Xng 9, @nd obviously we
have No = jOj features.

The features used for object classi cation have been intemsly studied in the literature,
such as geometrical features in [50] and the features dedezhto NAS imagery in
[51{53]. Since the presence of the object shadow is much moediable than that
of the highlight in the imagery obtained by the NAS systems, feare extraction was
mainly focused on object shadows. However, this phenomenstess remarkable for the
modern SAS systems. Moreover, the object highlights providee direct information
about the object shape. Thus, it is unreasonable to excludadgm in our application.

When a feature is very classi cation relevant, its realizabns should adopt very di erent
values for those objects belonging to di erent classes. Gghwise, it is considered as
insigni cant. However, recent research has demonstrated ah even the combination
of several individually insigni cant features is possiblyable to create a very relevant
feature set [116]. An example is shown in Fig. 3.1. There aredweaturesX; and
X,. Individually considered, neither is able to help us to dighguish the class 1 from
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Figure 3.1. Combination of two featuresX; and X5) that are individually insigni cant.
FeaturesX; and X, are presented along the and y-axis, respectively. On the 2D plan
constructed by these two features, the objects belonging tli erent classes can be
easily distinguished.

the class 2, cf. thex-axis and they-axis. There are major overlaps between objects
of di erent classes. It is impossible to separate them intonto classes with respect to
either feature X, or feature X,. However, objects belonging to di erent classes can
be easily distinguished while jointly considering featuseX; and X,. Unfortunately,
the knowledge about this kind of feature combination that ca dramatically improve
the distinguishing ability of the features is usually unavidable a priori. Hence, it is
practical to build a feature set with many features. In this bapter, we employ the
geometrical features from [50] and invariant moments in [Z1to describe the shape of
the MLOs. They are applied to both the highlights and the shaolws. Furthermore, we
propose several novel features for our applications. Thextare features in [118,119]
are included as well, since the deployment of the object ondlseabed can alter the
characteristics of the seabed textures.

From the segmentation results, both object regions and olgecontours are available.
Therefore, geometrical features are divided into two subgups: object region features
and contour features. Straightforwardly, this chapter carbe organized into three sec-
tions. In Secs. 3.1 and 3.2, the object region features andtaur features are explained.
The texture features of the ROI are listed in Sec. 3.3.
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3.1 Object Region Features

The classi cation of underwater objects based on their geatries has been considered
in the literature for a long time. Natural objects can have arlbrary shapes. Their
shapes are mostly much more complex than those of man-madgealts that are usually
of square, circular, spherical forms and so on. Moreover gtlsize of man-made objects,
e.g. underwater mines, lies within a certain interval. Theywvould not be arbitrarily
large or small due to the cost of production and transportatin.

The length of the major and minor axes, i.elmajor and Iminor With lminor < | major, the
area of the region A) and the extent (Extent) have been widely used as region faaes.
The features, likelnajor, Iminor @nd A, provide the information about the object size.
The Extent of a shape is given as follows:

Extent = i; (3.1)
ABX

whereAgy is the area of the bounding rectangle that is the smallest remgle enclosing
the object region [120]. The Extent reaches its maximum (i.eExtent = 1) for a
rectangular object. When the object is an ideal circle, it agls to ;. With the
increasing of the dissimilarity to the rectangle, the Extetdecreases itself. The principal
axes of a given region are de ned as the two line segments thetoss each other
orthogonally in the centroid of the region and represent thdirections with zero cross-
correlation [121]. The covariance matrix of a given regioms given by

N .
1 Waion . . T
M = Xi X Xi X (3.2)
Nregion i=1 Yi y i Yy
- cmyx cmy,
. . . . 1 P Nre ion
where ( ;y ) is the centroid of the region with x = —— 7" x5y =

N region

m iN:rfg"’” yi and Negion IS the number of pixels in the object region. The lengths

of the principal axes, i.e.lminor and Imajor, are equal to the two eigenvalues of the co-
variance matrix CM . So far another popular object region feature called ecceioity
(Ecc) can be calculated:

Ecc = Imajor : (3.3)

where Ecc 1. It reaches the minimum value for the shape such as squareaircle
and the Ecc tends to in nity as the shape approaches a straighne. Furthermore, we
include the relationship between the highlight and the shawv regions as features, i.e.
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area ratio (Raea) and axis ratio (Rais)- The area ratio and axis ratio are de ned as

A

Rarea = Ashad; (3.4)
high

Rais = |Imin0r,shad; (3.5)
minor,high

where Agnag and Apign are the areas of the shadow and the highlight, respectively,
and Iminorshad @nd Iminornigh are the lengths of minor principal axes of the shadow and
the highlight, respectively. In Fig. 3.2, two examples of t& principal axes of object

(@) (b)

Figure 3.2. The principal axes of example objects. (a): Thegmentation of a cylinder
mine. (b): The segmentation of a truncated cone mine. THeg,or IS depicted in yellow
and the |major is in green.

regions are presented. Along the direction of the insonifygnwave, the shadows are
located behind the highlights. The major axis and minor axigre depicted in green
and yellow, respectively. On the left side there is a segmation of a cylinder mine
and the one of a truncated cone mine is placed on the right siddhe geometry of
a shadow is correlated to the geometry of its highlight, whitt represents the shape
of the object. As shown in the gure, the width of the shadow alag the direction
that is orthogonal to the insonifying direction is dependenon the geometry of the
object, i.e. for a cylinder mine it is correlated to the lendt of the cylinder and for a
truncated cone mine it depends on the diameter of the truncatl cone. Accordingly,
the shadow of a cylinder mine is probably much greater than éone of a truncated
cone mine. Consequently, the area ratio of a cylinder mineahld be greater than the
one of a truncated cone mine. Besides, thgor Of a cylinder highlight is limited by the
diameter of the cylinder mine and it is mostly much shorter thn any of the principal
axes of its shadow. In contrast, the,,,,, Of the truncated cone's shadow is dependent
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on the diameter of the truncated cone. Although the highlighof a truncated cone is
not strictly circular due to the projection, its principal axes still have similar lengths as
the diameter of the truncated cone mine. Therefore, the axigtio of a cylinder mine
should be greater than the one of a truncated cone mine. Theafare values of the
objects in our database are illustrated in Fig. 3.3.

50 T+ :
! ! ! + cylinder mine 4
: : : ‘ run ne min

/T S — SR WS- QF,!,‘?@F?,@EQ? ,,,,, S|

R B e e 1

Figure 3.3. Feature values of the objects in our databasBgres and Rayis.

Recently, Tanget al. [122] introduced a ring projection functionf jng (r):
z 2
fring(r) = up(r; )d; (3.6)
0

whereuy(r; ) is a binary valued function in polar coordinates,

1, if point (r; ) locates in the object region

0; otherwise (3.7)

up(r; )=

Analogously, we propose a similar projection, the radius pjection function f 5gius( ):

' max

fradius( ): o Ub(r; )dr; (38)

wherer nhax is the maximum radius length in the image. In order to make thé&ansfor-
mation scale-invariant, the normalized ring and radius priection, f ing (r) and f ragius ( ),
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are taken into account for further computation:
fring (r)
mrzale ing (19

fradius( )
m%IXfradius( (D

1:ring(r) (3-9)

fragius( ) = (3.10)

There are examples of ring and radius projection of a stripfmed object shown in

150 f;”"g (r?

‘f radius (“)‘
100

50

50 160 150
()
f:Lradius ( ll)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 50 100 150 0 5‘0 160 150

(@) (d) (e)

Figure 3.4. The ring and radius projections. (a): An object, i): ring projection,
(c): radius projection, (d): normalized ring projection ad (e): normalized radius
projection.

Fig. 3.4. Its ring projection has one peak while its radius pjection has two peaks. In
contrast, the ideal circular region has a linear increasinginction with the slope of 2
as its ring projection and its radius projection is a constan8 2 [0;2 ].

In discrete case, the normalized ring and radius projectioare sampled with Ning
and N qgius points, respectively. The discrete sequences of ring anddinas projection
are geometrical descriptors. Their dimensions are usuatpmpressed by methods like
wavelet transformation and PCA, which are out of the scope ofhis thesis. Thus,
we extract some features based on the statistical properief the values off ing (r)
and fagius( ): ring projection skewness "(ing), ring projection condensity (Deming),
radius projection mean value (,agius) and radius projection skewness"faqius). They
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are de ned as follows:

1 Nring . . 3
. _ Ning  N=1 frmg(rn) ring ) (3 11)
ring 5 .
1 N'ing £ (r ) _ o 15
Ning  N=1 ring\I'n ring
I’(ing
Den.. = 1 fo 0:5. 3.12
€Ning = N ing(n) Iy (3.12)
rng 11
1 NXdius
radius — N fradius ( n); (3.13)
radius | _q
1 N radi . 3
" i _ N radius n:ral'us frad|us ( n) radius . (3 14)
radius - 151 .
1 N radius f . ( ) . 2
N radius n=1 radius\ n radius

where ipg = ﬁ P ?;‘;9 fiing (rn) is the mean value of the normalized ring projection.
As discussed above, the di erence in geometries is conveyedtie projection functions,
and accordingly the statistical properties such as skewrseand mean value are distinct.
These distinctions can be clearly observed in Fig. 3.5. Due the di culty of displaying
4D space, we combine three out of the four features to creat® $eature spaces. It is
obvious that the cylinder can be easily di erentiated from he truncated cone with the

help of ring and radius projection features.

‘ 2 '
! /a; P e Sy ! ___| o cylinder mine | )
1 ! ! ;‘x | o cylinder mine N N 1 * truncated cone mine [+ !
IR I RS qﬁ/ * truncated cone mine | = IR ! '
- P X AN = v
08y 47 3 %o ~ |
S0.6 1
=
So.4
4
0.2
0
-2

Denring

0.8

Den,; 0 .
rng 1 ! radius

Figure 3.5. Feature values of the object highlights in our dabase. (a): The combi-
nation of "ing, D€Ning and ragius- (0): The combination of Dening; radius aNd " radius -

In addition, the well-known rotation invariant moments given by Hu [117] are consid-
ered. The image moments are invariant under translation, emges in scale, and also



48 Chapter 3: Feature Extraction in Sonar Imagery

rotation. They consist of six absolute orthogonal invariats:

G = 20+ o2 (3.15)
Gz = ( ~2;0 7);2)2 +4 Af;l (3-16)
G = (30 3—~1;2)2 +(3 21 3;3)2 (3.17)
G = (3ot ~1;2)2 +( 21t Ab'ﬁ)z i (3.18)
G = (30 33a(G0* T2 (ot 2)? 3(%at va)’ + (3.19)

|

(3~2;1 Ab;3)h( ~2;1 + 7);3) 3(-«2;1 + ~1;2)2 . (~2;1 + B;3)2

|

G = ( 2.0 7);2) (ﬂé;o + ~l;2)2 (~2;1 + 7);3)2 + (3.20)

1130+ 12)(21+ 03)s

and one skew orthogonal invariant,
h i

G = 321 3ot 12 h(~3;o+ 522 3%t )2 (3.21)
|

(~3;o 3-1;2)(3;1'*' -6;3) 3(3;0"‘ .1;2)2 (~2;1+ 7);3)2 ;

where 75; is the (i + j)-th order central moments of a given region [120].

3.2 Contour Features

The object contour refers to a closed curve denoting the bodary between object
region and background region. There are two examples de@dtin Fig. 3.6. In discrete
case the contour is approximated byNconour line segments, and there aréN oniour
points/vertices on the contour. Letd.n(n) be the centroid distance,

q
deen(N) = (X5 xL)2+(y:  xbH)Z (3.22)

where the centroid &-;y") of the contour is de ned as [50]

1 Ncob@ur 1
xt o= 6_A Xh+xh+l Xlﬁyll:wl Xh+1er1 ; (323)
n=0
L — 1 Meeur 1 L L Ly,L L L .
y - a yn+yn+1 Xnyn+1 Xn+1yn ’ (324)
n=0

-0 P Neontour  1gy,Ly,L L L Leylby i _
whereA =055 5 (XpYrs1  XpsaYn) and (Xg;yg) is the n-th vertex on the
contour L.
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50! |50
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Figure 3.6. Two examples of object contours. (a) and (c): O&g¢t segmentations.
The pixels inside the object region are depicted in white. Thred curves are object
contours. (b) and (d): The object contours in left gures areexclusively depicted in

gray.

Evidently, objects with larger sizes are inclined to have fger contours. The perimeter
of the contour (Pon) is taken into consideration as a contour feature. Another &ure
called compactness (Comp) is given as

Pcon .

Comp = A

(3.25)

where A is the area within the contour. The Comp achieves its minimunfor a circle
and approaches in nity as the region tends to a straight line Furthermore, features
such as circularity ratio (R¢.; and Re.2),

A
Roy = 3.26
G = A (3.26)
A
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whereA. is the area of the circle having the same length as the perineef the contour,
circle variance Rya),

Ry = -2 (3.28)
d

where 4 and 4 are the mean and standard deviation of the centroid distancd.e,
and solidity (Sol) of the contour in [50]

A
Sol= —— ; (3.29)
Aconvex hull

where Aconvex hul 1S the area of the convex hull [121] (cf. Fig. 3.7), are alsocluded in
our feature setO.

100}
150}

200}

0 50 100 150 200 250

(@)

100}
1503

200}

250f

-50

(c)

Figure 3.7. Convex hulls of objects. (a) and (c): Object segntations. (b) and (c):
Object contours (in blue) and their convex hulls (in red). (b denotes the contour of
object 1, and (d) is the contour of object 2.

The measures characterizing the smoothness of object can®can be used as features
to describe objects such as the case depicted in Fig. 3.7. Dweproduction cost, a
man-made object is most likely to have common shapes, e.gcl@s and squares. The
case of natural objects is probably much more complicated.h&ir shapes are expected
to be arbitrary. As in the case of object 2 in Fig. 3.7, becausé the frequent transition
between concave and convex shapes, the convex hull can haafyproximate the shape
of this contour. We propose the roughnesd/j of the contour, degree of curving (DoC)
and absolute curvature mean value (nean) as contour features.
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The roughness V) is de ned as

V = l; (3.30)

I:)convex hull

where Peon and Peonvex hut @re the perimeters of object contour and convex hull, re-
spectively. The straight line is the shortest way between wvpoints. Therefore, the
Pconvex nhul Of Object 2 is much shorter than itsP.,,. The roughness approaches in nity
when the object contour becomes unlimited rough. Thi¥ can also achieve a large
value when the shape is smooth but concave, e.g. a crescent.wkleer, there is a
limitation for the feature value in this case. It cannot be dbitrarily large. Taking the
case in Fig. 3.7 as an example, the¢ of object 1 equals to 21 and the one of object
21is 142. The ean is de ned as

1 N
= jon; (3.31)

N
contour |4

mean

where ,, is the contour curvature atn-th vertex,

— XALYnL leanL . 3 32
n— L L 1.5 ( . )
(Xo )2+ (¥n)?
wherex,", y," are the rst order derivatives, andxy", .- are the second order deriva-
tives. If an object contour is smooth, there could only be aviepoints with large value
of j ,j on it. The value of ean Will be small. The DoC quantifying the curving of a

contour is a weighted average of the absolute curvature vals,

N - -

Eontour d J J

DoC= —=t = 00
Pcon

(3.33)

where d, is the length of n-th line segment on the contour. The DoC describes the

| [ VT e | DOC |

Object 1 | 121 | Q0099| 05075
Object 2 | 142 | 00197 | 06140

Table 3.1. Feature values of the contours depicted in Fig. 3.

curving of the complete contour. The curvature values are vwghted by the curve
lengths so that only those curves that are mostly highly cued can possess a great
value of DoC, e.g. the DoC of object 2 is greater than the one object 1. The
feature values of the samples in Fig. 3.7 are summarized inbla 3.1. Furthermore,
the feature values extracted from the objects in our databasare presented in Fig. 3.8.
The di erence between cylinder mines, truncated cone minesd rocks can be clearly
characterized by the combination of these three features.
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0.8 o
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Figure 3.8. Feature values of the object highlights in our dabase,V, mnean and DoC.

The Fourier descriptor is also widely adopted to specify thebject's geometry. Let

N I)(T 1

i 2k
Deen(Nper) = deen(k)e I Noer MToFT ; (3.34)
k=0
l NIXT 1
with deen(k) = deen(k) N deen(K9)
DFT KO=0

be the magnitude of the Fourier coe cients of the centroid dstance function. We
implement anNpgr -point discrete Fourier transform (DFT). There are exampls of the
Fourier descriptor depicted in Fig. 3.9. On the left there is strip formed region, and
the right one is approximately circular. For clarity, the drect current (DC) component
is removed. Both of them condense their energy in the low fregncy region. Since the
circular form in the top right of Fig. 3.9 loses most of its errgy while removing the DC
component, itsDep, is less signi cant than that of the strip form. Similar as thecase
discussed with ring and radius projection, the sequence Dfe, will not be used as a
shape descriptor. We propose instead two features charateng the di erence in the
statistical properties of D¢, i.e. low frequency density %r) and Fourier coe cient
skewness "(ort ).

1 ) (13
%r = S D cen(NpFr ); (3.35)
LF Nprr =1
" _ ND:LFT E;FFTT =1 (Dcen(nDFT) cen)3 . 336
DFT — . Py , 15’ (3.36)
N pET nDDFFTT =1 (Dcen(nDFT) cen)
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(@) (b)

—Centroid distance of strip form {— D n of strip form
—Centroid distance of circular form ! cen(NpFT) P

{— Dcen(npgT) of circular form

777777777777777777777777777777777777777777777777777

20 40 60 80 100 120 140 0 100 200 300 400 500 600

k
(c) (d)

Figure 3.9. (a) and (b): Object segmentations, (c): centrdidistances and (d): the
magnitude of their Fourier coe cients.

where cen = ﬁ ,T;:TT -1 Dcen(Nper ), and N < N per denotes the low frequency
boundary index. As already discussed, th&g of the strip is greater than that of a
circle. Hence, it is a proper feature to distinguish a cylindefrom a truncated cone.
Moreover, the histogram ofD e, oOf a strip is inclined to have a longer tail due to the
signi cant components in the low frequency band as shown irhé bottom right of
Fig. 3.9. This di erence can be captured by prr . The feature values extracted from

the cylinder mines and truncated cone mines are depicted ing- 3.10.

All of the above-mentioned geometrical features are summaed in Table 3.2. Except
the Raea and Ruis, the geometrical features are applied to both the highlightand the
shadows. Therefore, we have a total of 56 geometrical feagarin the feature se®.

3.3 Texture Features

The texture refers to the repeating patterns of the local vaation of pixel intensities.
It has been applied to the problems of remote sensing to cldgsadar imagery into
di erent regions, e.g. forests, lakes and residential distts. In underwater acoustics,
there are di erent types of seabed, e.g. the at bottom and pple-like bottom as shown
in Fig. 3.11. They are able to be distinguished by texture féares.
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Figure 3.10. Feature values of the object highlights in ouradabase,%r and "prr .

Feature

Description

Imajor
Iminor
Extent
A

G

ring
Den'ing
ring
" radius
Rarea
Raxis
Pcon
Comp
Ecc
I:zc;l’ I:\)c;z
Rva
Sol
DoC
mean
\%
%r

DFT

length of the major axis of a given region
length of the minor axis of a given region

extent of a given region
area of a given region

the seven Hu's invariant moments for = 1;::::7

ring projection skewness

ring projection condensity
radius projection mean value
radius projection skewness
area ratio

axis ratio

perimeter of a given contour
compactness of a given contour
eccentricity of a given region
circularity ratios of a given contour
circle variance

solidity of a given contour
degree of curving

absolute curvature mean value of a given contour

roughness of a given contour
low frequency density
Fourier coe cient skewness

Table 3.2. Summary of the geometrical features.
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@ (b)

Figure 3.11. Two types of seabed in the sonar imagery, (a): tdottom and (b):
ripple-like bottom.

Furthermore, our study nds that the presence of MLOs can chage the texture char-
acteristics of the seabed. This change is dependent on theéyof MLO, for instance a
cylinder has a heavier impact than a truncated cone becauge shadow covers a larger
area. Hence, the texture is applicable to the MLO classi cabin. In this thesis, the
co-occurrence matrix (COOC) and gray level run length matxi (GLRL), which have
recently been recognized as standard features for texturkagsi cation, are employed
by us.

The COOC matrix is de ned over an image to be the distributiorof co-occurring values
at a given o set. In this chapter, let matrix & denote the 2D image with the dimension
of Ny Ny, the pixel intensities ofu are integers, and letU be the set of all possible
states of pixel intensities int and Ng = jUj. Mathematically, a co-occurrence matrix
B is de ned overu, parametrized by an o set (dx; dy),

B(i;jjdk;dy) = # f((ng;ny);(nxoe;nyo)) 2 (Lx  Ly)  (Lx Ly)j (3.37)
N Nxo= dy;Ny  Nyo= dy;er(Nyg;Ny) = s t(Nko; Nyo) = G;

wherelLy, = 1,215, Nyg; Ly = £1,2;::5;Nyg, and i;j 2 U, # denotes the number of
elements in the set. Its dimension is dily Ng. The o set (dy; dy) controls pixel pairs
in four spatial con gurations: 0 (d, = 0;dy 6 0), 45 (dy = dy), 90 (dy = 0;d, 6 0)

and 135(dx = dy), which are also illustrated in Fig. 3.12. Hence, th® does not only
depend on the distance between pairs of pixels but also theglative spatial positions.
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Figure 3.12. Spatial con gurations of the pixel pairs: Pixis 1 and 5 construct O pairs
with pixel ; pixels 2 and 6 construct 135pairs with pixel ; pixels 3 and 7 construct
90 pairs with pixel ; and pixels 4 and 8 construct 45pairs with pixel

There are many features de ned over COOC in the literature [i8,123]. According to
our studies in the sonar imagery, 12 features out of them arbasen. We de ne

Bij) = pBUD . (3.38)
x 12U i2uB(@))
Bi(i) = B(i;] ); (3.39)
%U
Bi(j) = B(i;j); (3.40)
i2uU
(3.41)

and the features are given as follows:

Angular second moment (ASD)

X X
ASD = B(i;j )% (3.42)
i2U j2u
Inertia X X
Inertia = (i j)?B(j); (3.43)

i2U j2U
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Correlation P B (i
. (@ i R
Correlation = —i2v_120WBEI) & ¥ (3.44)

Bi Bj

where g,; g;; g, and g, are the means and standard deviations &; and Bj,

respectively,
Entropy X X
Entropy = B(i;j )log, B(i;j ); (3.45)
i2U j2U
Shade X X
Shade = (i+j &  8)%B(i)); (3.46)
i2U j2u

Inverse Di erence Moment (IDM)
X X

1 .
IDM = o mB(I,] ); (3.47)
i2U j2U
Promenance
X X
Promenance = (i+i &  8)BGI); (3.48)
i2U j2u
Sum Average (SA) X
SA= iBi+j n; (3.49)
i2U
where X X
Bi.j(i) = B(i;]); (3.50)
i2U j2U and
i+j=i
wherei 2 U = fi + jji;j 2 Ug;
Sum Entropy (SE) X
SE = Bi+j(i)|ng Bi+j(i) (3.51)
i2U
Sum Variance (SV) X
SV= (i SE)’Bi(i) (3.52)
i2U
Di erence Variance (DV)
. X X . .
Bi j() = B(i;j); (3.53)
i2U jgu_anq
I
DV = variance of B; ;(j); (3.54)
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Figure 3.13. The con guration of spatial directions intt. There are gray level runs in
four directions: 0;45;90 and 135.

Di erence Entropy (DE)
X
DE = Bi j(i)10g;Bi ;()); (3.55)

i20
wherej 2 O =fji jj;ji;j 2 Ug:

A gray level run is de ned over the images to be a set of consecutive, collinear pixels
having the same gray value (i.e. pixel intensity). The lengt of the run length is
the number of pixels in the run [124]. The matrix elementuy ;ny) of the GLRL
matrix (H) speci es the number of times thata contains a run of lengthny, in the
given direction, consisting of pixels having gray valuay foruy 2 U andny 2 Ny.
Ny = Ny j is the number of di erent run lengths that are taken into accant. There
are four kinds of gray level runs with di erent spatial diretions as shown in Fig. 3.13.
Galloway proposed ve features over GLRL,

Short runs emphasis
P P H (un ;ny )

2
RFy = p2p 2 D (3.56)
Uy 2U  ny 2Ny (Un s Ny )

Long runs emphasis
P P

RFZZ PIH 2U p]H 2NH
uy 2U Ny 2Ny H(UH;nH)

H (uq; Ny )nﬁ

: (3.57)
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Gray level nonuniformity

P P . >
RF; = P12y p 2N ARCGELLY ; (3.58)
uy 2U Ny 2Ny H(uH’nH)
Run length nonuniformity
P . >
RF, = a2t p w 2ol (Ueily) (3.59)
uy 2U Ny 2Ny H(UH;nH)
Run percentage P
RFg= 2t ui2uH (Uniia), (3.60)

The implementation of texture features requires the disctigation of pixel intensities.

How the discretization is realized is important for the textwe features. For instance,
how many intervals are taken into account or whether nonlirae transform is demanded
to emphasize the information of low intensity value pixelsln order to study the e ect

of discretization on the texture features, we adopt the falwing transforms in this
thesis:

& = round i ; (3.61)
int

& = round umn® (3.62)

= round (log (1 + U)) ; (3.63)

where \round" is the operation of rounding the value to the narest integer,u is the
element of the arrayu (i.e. the observation in Section 2.2)u+s the element of the
integer valued imaget, and int is a positive integer. The one in Equation (3.61)
is a discretization with linear transform and another two dicretization schemes with
typical nonlinear transforms are given by Equations (3.62and (3.63).

In Fig. 3.14, Fig. 3.15 and Fig. 3.16 there are examples to denstrate the e ect of
the discretization with di erent transforms. The linear transform has little impact
on the illustration of the image structures, cf. Fig. 3.14. A contrast, the nonlinear
transform in Fig. 3.15 and Fig. 3.16 can emphasize some paafisthe image structures
depending on their parameter settings. In order to evaluatéhe in uences of the
discretization schemes with di erent parameters, a quartttive analysis to assess the
resulting features is carried out on the basis of our databas We choose the Mi
(cf. Equation (4.1) in Chapter 4) of individual features forthis assessment. A great
value of MI indicates a high relevance of the associated fae¢. One discretization
scheme with a certain parameter setting can provide us withgroup of texture features.
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Figure 3.14. Linear discretization with di erent int as shavn in Equation (3.61).
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Figure 3.15. Nonlinear discretization with di erent power ndices as shown in Equa-
tion (3.62).

We calculate the Mls of individual features, as well as the avage of these Mls, in this
group. In Fig. 3.17, we depict the curves denoting the averag of the Mls corresponding
to the discretization schemes with di erent parameter sethgs.
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Figure 3.17. The MI averages of the texture features obtaiddy the discretization as-
sociated with di erent parameters. (a): The discretizatiom using Equation (3.61). (b):
The discretization using Equation (3.62). (c): The discretation using Equation (3.63).
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The linear discretization is not able to improve the featurextraction. In contrast, the
nonlinear transform can improve the texture feature extraen, but not always. The
best performance is obtained when the discretization adapthe nonlinear discretiza-
tion in Equation (3.62) with index = 0:5. Hence, images are discretized according to
Equation (3.62) with index = 0:5 before being forwarded to texture feature calculation.

3.4 Conclusions

This chapter deals with the feature extraction. The featurg involved in the design of
our automatic detection and automatic classi cation syste have been introduced as
well as their characteristics.

Even when the features are the key factors that have signi aain uence on the classi-
cation performance, few authors are willing to make the e a to describe the details
about how their features are extracted as well as their assaied motivations since it
seems to be trivial. For the sake of clarity and completengssae have gone through
all of the features involved in the feature set in this chapte Three types of features
are considered, namely object region features, contour fiees and texture features.
Besides the geometrical features that can be found in theditature, we proposed sev-
eral new geometrical features that are suitable to our apphtion. Their extraction
methods, motivations and performances are described.

The discretization of the pixel intensity has a great in uerwe on the texture features
since the contrast of the image could be changed by using @nt nonlinear transfor-
mation. This in uence is quantitatively studied. In our application, the best one is
the discretization scheme with nonlinear transform.
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Chapter 4

Feature Selection Using a Novel Relevance
Measure

A novel feature selection scheme is considered in this chaptAs mentioned in Chap-
ter 3, the feature selection is conducted during the systenesign phase (cf. Fig. 1.2).
Its results are used to guide the feature extraction in objéclassi cation phase to ex-
tract those relevant features. They are designated to prepathe inputs of the fourth

step along the ADAC processing chain collaboratively. Withat the knowledge about
the relevant features for our application, the feature exaction is designed to include
as many features as possible in the system design phase. Tiep ®f feature selection
deals with the removing of unwanted features from the séd so that the danger of
encountering the curse of dimensionality (cf. Fig. 1.3 in Gipter 1) can be avoided.

Figure 4.1. The Iter method for feature selection. There a No features as input
on the left side, whereX, with 1 n Ng denotes then-th feature. We chooseN °©
useful features out of the total number ofNg.

A widely adopted feature selection method that chooses theast relevant features out
of the feature set is called the Iter method [56] as shown ini§. 4.1. Rather than
taking the classi cation performance associated with spec classi ers as the selection
criterion (i.e. wrapper methods), the Iter method adopts afeature relevance measure
to quantify the dependency of features on the types of objext Mutual information
(MI) has been widely applied as a relevance measure [125].spige its ability to catch
arbitrary correlations between the features and the objediypes, not all of the cap-
tured information can be interpreted by classi ers, i.e. irreality, an arbitrary function
cannot always be perfectly approximated by a learning macte. Bellet al. in [126] pro-
posed a Ml-based relevance measure to evaluate the addiabilassi cation-relevant
information contributed by a candidate feature. Their relgance measure implicitly in-
corporated the idea of joint entropy minimization. It discaded the information which
is irrelevant for classi cation regarding the training dat. Features selected according
to the relevance measure in [126] could be able to separatgeals of di erent classes in
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training data perfectly. However, the generalization to tddata could encounter prob-
lems due to the dissimilarity between training data and testlata which often occurs
in practice. For instance, if a set of test data is dissimilato training data because of
the higher noise level in the test data, the features seledt@according to the relevance
measure proposed by Bekt al. might not be adequate for this set of test data. Ac-
cordingly, the performance of classi cation could degradeBrown et al. [127] reviewed
three Iter methods [128{130]. The relevance measures ofdbke three methods consist
of two parts. One is the MI measuring the classi cation-relant information provided
by a candidate feature, and the other is a redundancy part quéfying the duplicate
information between this candidate feature and the featusethat are already selected.
The relevance measures are constructed by extracting thedtendancy part from the
MI. The three methods are di erent in the way how they determme the redundancy
part. In [128] and [130], rstly, the amounts of duplicate iformation (ADI) between
the candidate feature and each already selected feature weromputed and summed
up. Then, Battiti et al. in [128] derived the redundancy part by multiplying the sum
of ADI with a prede ned factor, and Penget al. in [130] built their redundancy part
by dividing the sum of ADI by the number of selected features.nl[127], the dier-
ence between these two redundancy parts was reviewed ancenpreted. On the one
hand, through a prede ned factor, Battiti et al. implicitly quanti ed their belief in the
assumption that features are pairwise class-conditionglindependent. On the other
hand, the redundancy part of Penget al. inferred that a stronger belief was put in
the assumption that features are pairwise independent asdtsize of selected features
grows. Kwaket al. [129] improved the method in [128] by exploiting the additinal
assumption that the information is uniformly distributed in the calculation of ADI.
However, the assumptions made in [128{130] do not generallplth in applications.
Moreover, one has to manually set how many features to choagken employing these
three methods. Alternatively, Kira et al. in [86] proposed a distance-based relevance
measure, i.e. Relief weight. It was used to describe the emteof the distinction
among di erent classes. As the Relief weight increases, tleeis less overlap between
the classes. Accordingly, the features that have largest Reflweights are added to the
feature subset. The redundancy among features was not spediand the setting of
the threshold for those highest Relief weights was alsal-hoc

Regarding to the limitation of the methods mentioned aboveye propose a novel fea-
ture relevance measure called composite relevance measarthis chapter. It uses a
novel feature relevance measure called the composite ralese measure (CRM), which
combines the MI, Shannon entropy (SE) and the modi ed Reliefreight (MRW). Both
linear and nonlinear combinations are considered. The MI parvises the su ciency of
the selection. The consideration of SE in the CRM is cruciabtavoid both over tting
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and under tting. The Relief weight was originally proposedor binary-class problems
to evaluate individual features. It is extended to be not ogl applicable to multi-class
problems but also able to evaluate the relevance of the comhtions of individual fea-
tures, i.e. feature sets. The inclusion of mMRW helps in makgthe captured information
more manageable so that it can be learned by most of the classs.

The remainder of this chapter is organized as follows. Secl4eviews the MI and
conditional MI, and the mRW is presented in Sec. 4.2. The Ite method using a
novel feature relevance measure is introduced in Sec. 4. heThumerical studies of the
proposed Iter method are carried out in Sec. 4.4.

4.1 Information based Relevance Measure

Let S 2 O be a selection of features, wherBbs = |Sj is the cardinality of the set
S. Let vector (Sm) be a point in the spaceF induced by S for dim(F) = Ns. The
random variable (RV) C denotes the class index of the objects, ami™ 2 Cis its m-th

realization, whereC = fcy; ¢,; :i1; Gy, g contains all possible values of class indices.

The MI, which quanti es the information commonly found in two groups of RVs, e.g.
betweenC and S, is a suitable measure to specify the classi cation-relenainformation
contained inS. It is de ned as

I(S;C)= H(C) H(CjS); 4.1)
where the SE,H (C), and the conditional SE,H (CjS), are given as
X
H(C) = p(c) log p(c); (4.2)
c2C
X Z
H(CjS) = p(c; s)logp(g s)d s: (4.3)
cc F

Moreover, the conditional mutual information (CMI) yields the net information that
can be provided by the candidate featurX,o 2 O°= OnS whenS is known. TheOnS
denotes set subtraction o5 from O, and the CMI is de ned as

| (Xno; CjS)

H(CjS) H(CjfS;Xn0Q) (4.4)
I (fS; Xnog; C) 1(S;C):

When the quantity | (X,0; CjS) is large, it means that this candidate featureX. is still
a relevant feature, even when thé& is given. Thus, this measure is very useful when a
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Figure 4.2. An illustration of Ml and CMI. | (S; C) denotes the classi cation-relevant
information contained in S, and I (Xyo; CjS) is the additional classi cation-relevant
information contributed by Xno. Moreover, | (S; X,0C) is the redundant information
betweenX,,0 and S, which is classi cation irrelevant.

sequential forward procedure is applied. An illustration oMI and CMI is depicted in
Fig. 4.2.

In the introduction of this chapter, methods like MIFS [128] MIFS-U [129] and
MRMR [130] have been mentioned. The way they are used to assdéise contribu-
tion of candidate features is going to be detailed here.

MIFS: Mutual information based feature selection
The criterion of MIFS is given as

X
Imies (X)) = 1(Xk; C) | I (Xi; Xj); (4.5)
XjZS

in which the belief in the assumption of pairwise class-coitidnal independence

P( k]9 = p( jiop( «jo); (4.6)

where j; « are the realizations of featureX; and Xy, is quanti ed by the factor
{ 2 [0;1].

MRMR: Minimum redundancy maximum relevance feature selaon
The mMRMR selects the features according to the measure
1 X
Jmrmr (Xk) = 1 (Xi; C) iS I (Xi; Xj); 4.7)

X 2S
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in which the condition in Equation (4.6) is implicitly presumed to be valid and
the belief in the pairwise independence between features

P( ki )= P Wp( ;) (4.8)

is controlled by the size of selectio®. When Ns approaches in nity, the features
are believed to be totally pairwise independent.

MIFS-U: Mutual information variable selection under unifom information dis-
tribution

In addition to MIFS, it assumes that the information is distibuted uniformly
throughout the region of H(X;) for X; 2 S. It evaluates the contribution of
candidate features by using

1 (Xj;C)

X
Iwmirs-u (X)) = 1 (Xk; C) | W
j

Xj2S

(X X)) (4.9)

where the{ has a similar meaning as the one in Equation (4.5).

However, due to the limitation of their assumptions, they arenot adequate to pre-
cisely estimate the real contribution of the candidate feares. Moreover, what these
measures are dealing with are the individual features. As mamned in Chapter 3, the
combination of individually insigni cant features is possible to create a very relevant
feature set, cf. Fig. 3.1. In that gure, the Mis of the exampd featuresX, and X, are

I (X1;C) =0 and I (X5;C) = 0, respectively. After combining both of them, we have
I (fX 1; X50;C) = 1. This example indicates that the combination ofX; and X, can
provide more information together than by the sum of their pds, i.e. it is possible to
have the following inequality:

[ (fX 1;X20;C) >1 (X1;C) + 1 (X3; C): (4.10)
Although the measure of RELFSS [126]

| (f S; Xkg; C)

H (TS %0 @1

JreLrss (Xk) =
handles the combination of candidate feature and selectegbtures, it implicitly incor-
porates the empirical theorem ofminimization of joint entropy. This empirical theorem
is not necessarily valid for all practical applications, foinstance the underwater target
recognition, cf. the performance analysis in [131].
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4.2 The Modied Relief Weight

We proposed in [132] the novel distance measure
0

d (Sml); (sz) — dM (Sml); (sz) exp@

dM (Sml); (sz)

: A 4.12
distmax ' ( )

wheredy represents the Manhattan distance (MD) between the two indwectors, and
distmax is the maximum distance, which is given by
; — (m1). (m2) .
distmax ml;mrzr;%::;M ng s s : (4.13)
It is assumed that if an object has a relatively large distargcto its nearest neighbors, it
could be considered as an outlier. The distance informatiabtained from this object

is no longer plausible. Hence, we discount the distance in Eajion (4.12) by an MD
driven factor, and its curve is depicted in Fig. 4.3. The nowlecreasing curve shows that

20
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Figure 4.3. The curve of the proposed novel distance in Equan (4.12). The

distnhax = 20 in this case. The dashed line denotes a distance withoubé correction
du (Sml); gmz)

by exp

dist max

the dnrw Stops increasing itself whemly, approaches the maximum MD value digfax
(in the case shown in Fig. 4.3 distax = 20). According to the proposed distance, we
nd two neighbors in the neighborhood of {"; one is the nearest neighbor "™ in
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the same class of (", and the other is the nearest neighbor {"*™ out of the other

classes, which are di erent from the one of (Sm). Then, the mRW assigned to the set
Sis
1 X
W(S) = v w(m); (4.14)
m=1
wherew(m) is given by

wmy=d ; fMemeoog o W grme (4.15)

According to the discussion above, the proposed distancesanf outlier to its "™

and "™ will be close, since their MDs to the nearest neighbors aresk to distyax;
cf. Fig. 4.4. Due to this behavior, thew(m) of an outlier tends to zero. It means that
outliers have little in uence on the value ofW(S), i.e. their information is suppressed.
A huge mRW value indicates that the feature vectors for objés belonging to di erent
classes are well separated. Hence, when the mRW ®fs large, it means that the
features inS are relevant.

Figure 4.4. An example to illustrate the modi ed Relief weigts (mRW) using features

X1 and X,. The feature vector g“) for objectm is an outlier. The Manhattan distances
are depicted. The values ofly, and d are presented on the right side. It can be seen

(hit ;m) (mis;m)

that the di erence betweend {; ¢ andd ™; ¢ is much smaller

than the one betweerdy,  ™; ™ andq, ™, Msm

The values of di erent features can cover very di erent rangs because they can have
di erent physical meanings. Therefore, the mRWs obtainedrdm di erent feature sets
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cannot be compared fairly. A scaling of the features is reqad. We normalize the
features against their standard deviation before forwardg them to the mRW evalua-
tion. In addition, the mRW should be invariant concerning tre number of objectsM .

Therefore, the factorMi in Equation (4.14) is indispensable.

Figure 4.5. Objects are represented by feature vectors in elient feature spaces.

There are seven features i©, out of which three feature selections are built, namely
S = X 1;X50, S, = X 3;X4g and Sz = X 5; Xe; X7g9. The feature vectors depicted in

(@), (b) and (c) are induced by the setsS,, S, and S;, respectively.

There is an example presented in Fig. 4.5 to clarify the propees of the mRW. The set
O contains seven features and we build three feature seleasowith the features out of
O. For simplicity, they are set asS; = X 1; X0, S; = fX 3; X4g and Sz = X 5; Xg; X70.
As a result, we getW(S;) = 0:1989,W(S,) = 0:0957 andW(S3) = 0:3063. 1t is
observed that the extent of the overlap between classes ingFi4.5(b) is much greater
than that in Fig. 4.5(a). Accordingly, we have W(S;) < W (S;). However, while
consideringS; and Sz, we nd that although the extent of the overlap in Fig. 4.5(c)
is also greater than the one in Fig. 4.5(a), th&V(S3;) is still greater than the W (S,).
This could be attributed to the additional spatial dimensiom contributed by the third
feature of S3. Thus, it is unreasonable to compare the mRWSs obtained in spes of
di erent dimensionalities.

4.3 Maximum Composite Relevance Using a Se-
guential Forward Search Scheme

In general, the selection process of features can be denoésda function such that we
have

S=T(0); for S O; (4.16)
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where T is the function used to select features. According to the dafarocessing
inequality [133], we havel (T(O);C) 1(0;C), i.e. I(S;C) 1(0;C). Thereis a
possibility that the equality holds if C is independent ofO conditioned onS as follows,

| (0;CjS)=0: (4.17)

If a feature selectionS can ful Il the condition in Equation (4.17), it is denoted asa
su cient feature set (sFS). Obviously, if S = O, this feature selection is an sFS. The
chain rule of SE is
Xi
H (X 0 Xng 5 Xn @ = H Xoj X, 505 Xn, (4.18)
j=1

so that the H(S) is a non-decreasing function of the feature number i8. If there is
a feature X,, 2 O with H(X,jOnX,) = 0, this H(S) is able to achieve its saturation
beforeS = O. We apply the mutual information toolbox, which has been deloped
by Brown et al. according to the methods presented in [127], to our datalbagcf.
Sec. 4.4.1), and estimate théd (S) and | (S; C) of the selections with increasingNs.
The results are illustrated in Fig. 4.6. The redundancy beteen features is high enough
so that both H(S) and | (S; C) can reach their saturation befordNs reachegOj.

8 T T T T 2

Shannon entropy

Mutual information
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Figure 4.6. The curve of Ml and SE with increasing number of &ures according to
their sequence in the database, (a) Shannon entropy and (b)utoal information. No
operation is made to rank the features regarding their relamce. The sequence of the
features is subject to their extraction. Thex-axis is number of the features that are
taken into consideration.
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Bell et al. in [126] pointed out that an SFS may not be unique. Consequén an ex-
clusive consideration of Ml is inadequate. As described in&el.2, the mRW evaluates
the feature relevance in an alternative way, in which the relance is quanti ed by a
distance measure rather than the information entropy. Theansideration of the mRwW
could help us in choosing an optimab among the sFS's. However, the mRW provides
nothing about the data complexity, which is very important br avoiding under tting
and over tting. Thus, the inclusion of H (S) is also necessary. Fait al. in [131] demon-
strated that feature subsets with largetH (S) are more likely to provide better results.
The joint consideration of MI, SE and mRW in the CRM can be reated through either
the weighted arithmetic average {.) or the weighted geometric averagel() as follows:

Ja(S) 1 aw at) (SC)+ awW(S)+ anH(S); (4.19)
Jo(S) = I(S;C) sw  am)W(S) sw H(S) o ; (4.20)

where 0< a;W; a;H < 1;0< a;W+ a;H < landO< g;W; g;H < 1;0< g;W+ g;H <
1. A comprehensive assessment of the feature relevance & awailable with the help
of the CRMs in Equations (4.19) and (4.20). Nevertheless, theeis still a di culty in
monitoring whether there are su cient features selected ir§, since the CRM contains
the distance measure mRW that does not provide any informatn about the amount
of the classi cation-relevant information contained inS. Moreover, the discussion
in Sec. 4.2 has already shown that the comparison between mBVEssociated with
di erent Ns is unreasonable. A higher dimensional feature vector cancrease the
scale of the distance. In consequence, another measure wkiclg the consideration
of mMRW is required to form a stopping rule. It is called the suciency ofS. The
su ciency associated with the CRM is de ned by

G(S)=maxfl(O;C) I1(S;C);H(O) H(9)g: (4.21)

When there are enough features selected 8) the G(S) converges to zero. Evidently,
the S selected according to this su ciency is an sFS. So far, our sk of nding the
optimal features is converted to the maximization of the CRMsubject to the conver-
gence ofG(S) to zero. The complete search space is the set of all possixenbinations
of Ns features out ofN for1 Ns N leading to an NP-hard problem. The most
commonly adopted sequential forward search (SFS) schemecigsen to bypass this
di culty. In SFS, the 1(S;C) is xed for each iteration loop, and the CMI in Equa-
tion (4.4) depends only onl (f S; Xnog; C). Thus, the I (fX ,0; Sg) is calculated with the
help of the implementation provided by Brownet al. in [127]. The proposed feature
selection algorithm called maximum composite relevance asure using a sequential
forward search scheme (MCRM-SFS) is depicted in Fig. 4.7. @ MCRM-SFS employ-
ing the J,(S) is denoted as MCRM-SFSA and the one usindy(S) is MCRM-SFSG.



4.4 The Numerical Studies of MCRM-SFS 73

Figure 4.7. The ow chart of the MCRM-SFS. In the shadow block one chooses
either the left dashed path or the right dashed path. (a): Whe J, is chosen, it is
MCRM-SFSA. (b): When J, is chosen, it is MCRM-SFSG.

4.4 The Numerical Studies of MCRM-SFS

4.4.1 Database Description

The database for numerical tests is provided by ATLAS ELEKTRMIK GmbH Bre-
men. There are in totalM = 210 MLOs in this database, which includes 67 cylinder
mines, 118 truncated cone mines and 45 rocks; cf. Fig. 4.8. €lteature set contains the
geometrical features of the MLOs and the texture features ¢iie ROI as described in
Chapter 3. Considering both the highlights and the shadow#here are 56 geometrical
features (cf. Table 3.2). Moreover, we take the COOC matrixrel GLRL matrix to
describe the textures. Due to a lack o& priori knowledge about parameter settings
providing signi cant features, we allowed several settirggsimultaneously. The setting
of COOC depends on the o set between pixels, i.e. the absotuvalue ofd, and dy,
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@) (b) (©)

Figure 4.8. Examples of the objects in our database: (a) a ayler mine, (b) a trun-
cated cone mine and (c) a rock.

and their spatial relationship, i.e. 0;45;90 or 135 (cf. Fig. 3.12). All the four spa-
tial relationships are taken into account and the o sets arehosen as 12; 3;5 and 10.
Accordingly, there are 4 5 =20 COOC matrices with di erent settings, and each of
them can induce 12 features. Therefore, the number of COOC tna based features is
240. The GLRL matrix also relies on parameters such as the mmum considered run
length and the spatial directions. We consider the four spel directions in Fig. 3.13.
The maximum considered run length could be 180 and 50. Then, there are 34 = 12
GLRL matrices associated with di erent settings. Every GLR. matrix can induce ve
features. Thus, the number of the GLRL matrix based featuresquals 60. Finally,
there areNo = 356 features in the setO. All the features are normalized against their
standard deviation.

4.4.2 Classiers Applied in Tests

Four classi ers are implemented for the numerical assessmhei.e. PNN is the proba-
bilistic neural network [60], KNN is thek-nearest neighbor algorithm, and KNND [63]
is the KNN assisted by Dempster-Shafer evidence theory, SVM@mbtes the support
vector machine (SVM) [134] using a Gaussian kernel. Let set

E = fKNN, KNND, PNN, SVMG g (4.22)

be the set of the implemented classi ers. The features seted by MCRM-SFS are
fed to those classi ers. For the implementation of the SVMG, he toolbox created by
Canu et al. [135] is used. The width of the Gaussian kernel is set to 3, igh is an
empirically optimal setting for our database. Since the datis not perfectly separable,
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we set the margin penalty equal to a moderate value of 1000. As the KNN and the
KNND, the number of neighbors taken into consideration is an iportant parameter
for the classi cation. In our studies, it is found that satigactory results are mostly
achieved when seven neighbors are considered. In KNND, Euehba distances are
converted to belief values, which denote the support prowd to hypotheses regarding
the classi cation of objects. The KNND makes classi cation awording to the total
belief assigned to individual hypotheses as detailed in [63The PNN described by
Duda et al. in [65] is employed. It is a three-layer neural network, i.econsisting of the
input layer, the pattern layer and the category layer. Each mit of the input layer is
connected to all the units in the pattern layer. Each unit in he pattern layer, in turn,
is connected to one unit in the category layer. The free parater associated with the
nonlinear function involved in PNN is set to 4.

4.4.3 Numerical Tests

Let 2 =( aw; a;H)T denote the parameter setting vector associated with MCRM-
SFSA and let ¢ = ( gw; g;H)T denote the one corresponding to MCRM-SFSG. A
setting of , corresponds to a feature selection obtained by MCRM-SFSA @nsimi-
larly, a setting of 4 is associated with a feature selection given by MCRM-SFS( |
order to nd the optimal settings for MCRM-SFSA and MCRM-SFS5, we vary the
settings of 5 and ¢ to obtain multiple feature selections. A feature selectioout of
them is chosen, and feature vectors are calculated accomglito this feature selection.
Then, these feature vectors are used as inputs of the clagss in Equation (4.22). The
accuracy of the classi cation based on this feature seleati can be evaluated, and the
performance associated with the corresponding parametestting (i.e. , or ) can
be assessed as well. Hence, the search for optimal paramed¢tirsgs for MCRM-SFSA
and MCRM-SFSG becomes possible. Since the number of objeicishe database is
limited, a leave-one-out scheme is used in the numerical dias. Classi ers are trained
on a set that includesM 1 objects out of the database. The test set contains the
single remaining object, on which the classi cation test isarried out. In order to test
through all the objects in the database, this leave-one-ostheme is repeatet¥ times.
Thus, every object in the database has been used as the tesjemh once. Then, each
object has an associated classi cation result. Hence, commey these results with the
ground truth, the performance of the proposed lter method an be evaluated by con-
sidering the classi cation accuracy, which is quanti ed bythe empirical classi cation
rate

mcorrect
= ; 4.23
M 1 ( )
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where Mgrect 1S the number of objects whose classi cation results are cect with
regard to the ground truth. When classi ere2 E is used, the classi cation rates of the
MCRM-SFSA and the MCRM-SFSG are denoted as,e( a) and ge( ), respectively.
They are depicted in Fig. 4.9 and Fig. 4.10. The cases asstethwith ,w + an 1
and gw + 4n 1 are setto zeros in the gures.

*a,KNN B *a,KNND B
20 20
0.9 } 0.9
15 151.
> 085 3 0.85
o <
10 og .10 0.8
e [ L C I L
5 10 .aH 15 20 7 5 10 -aH 15 20 7
(@) (b)
' a,SVMG B " a,PNN -
20 20
0.9 0.9
15 15
# 0.85 0.85
M- 2
©
- 10 0g - 10 08
5 0.75 5 — | 0.75
L . L
5 10 .aH 15 20 7 5 10 -aH 15 20 7

(©) (d)

Figure 4.9. The .. a) for e2 E corresponding to the features selected by MCRM-
SFSA. The x- and y-axes denote the .4 and ,, respectively. (a) The results
obtained by KNN, (b) by KNND, (c) by SVMG, (d) by PNN.

Analyzing the results given in Fig. 4.9 and Fig. 4.10, three €&s are revealed. First of
all, the di erences of classi cation rates among di erent tassi ers are not signi cant.

Secondly, for the MCRM-SFSA, increasing the 5 can improve the classi cation
results, which indicates the importance of the modi ed reéf weight. Finally, for the

MCRM-SFSG, the classi cation results do not change signiantly as long as 4w > 0

is large enough.

For the comparison, the methods mentioned in the introduatin, i.e. RELFSS [126],
MRMR [130], MIFS [128] and MIFS-U [129], have been implemet as reference. The
classi cation rates using the features selected by RELFS$i@ mRMR are presented

in Table 4.1, and the classi cation rates corresponding to MS and MIFS-U are given

in Table 4.2 and Table 4.3, respectively. Apparently, the p&rmance of RELFSS is
worse than those of mMRMR, MIFS and MIFS-U.

The implementation of RELFSS does not need a manual setting the cardinality Ns.
In contrast, the manual setting of Ns is demanded for the methods mRMR, MIFS
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Figure 4.10. The 4¢( ) for €2 E corresponding to the features selected by MCRM-
SFSG. The x- and y-axes denote the 4y and 4w, respectively. (a) The results
obtained by KNN, (b) by KNND, (c) by SVMG, (d) by PNN.

Method | KNN | KNND | SVMG | PNN
RELFSS | 07952 | 08000 | 08571 | 08143
mRMR || 0:8667(5)| 08762(8)| 08810(9)| 08619(5)

Table 4.1. The classi cation rates of various classi ers Is®d on the selection methods
RELFSS and mRMR. For mRMR, the associated optimaNs-values are recorded in
brackets.

{ ] KNN [ KNND | SVMG | PNN

0 [ 0:8667(11) | 0:8762(11) | 0.8810(9) | 08619(9)
0.3 | 0:8667(7) | 0:8714(7) | 0:8857(14) | 0:8667(9)
05 | 0.8476(8) | 08714(11)| 08952(11)] 0:8810(5)
07 | 08381(7) | 08524(7) | 08714(12)| 08429(3)
1 | 08286(8) | 08286(8) | 08571(13)| 08524(10)

Table 4.2. The classi cation rates of various classi ers tsd on the selection method
MIFS. The associated optimalNs-values are recorded in brackets. The best results in
individual columns are highlighted in bold.
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{ ] KNN [ KNND | SVMG | PNN

0 [ 0:8667(11) | 0:8762(11) | 0.8810(9) | 08619(9)
0.3 | 0:8667(7) | 0:8714(7) | 08857(5) | 08714(16)
05 | 0.8476(8) | 08714(11)| 08714(3) | 08571(16)
0.7 | 0:8381(7) | 08524(7) | 0:8952(12) | 0:8762(5)
1 || 08286(8) | 08286(8) | 08762(8) | 08714(7)

Table 4.3. The classi cation rates of various classi ers tsd on the selection method
MIFS-U. The associated optimalNs-values are recorded in brackets. The best results
in individual columns are highlighted in bold.

and MIFS-U. The authors in [130] suggested probing with sewrpossible values of
Ns and employing the one with the best classi cation rate. It isfound in our study
that the cardinality Ns, which is greater than 20, can cause dramatic performance
degradation for the classi cation using our database. Thefore, we varyNs from
1 to 20. EachNs is associated with a feature selection, i.e. a candidate. dtare
vectors of objects are calculated based on this candidatendasubsequently used as
inputs of a classi er. Then, the classi cation rate correspnding to this candidate can
be evaluated. Hence, there are 20 classi cation rates assded with 20 candidates.
The candidate providing the highest classi cation rate is lwosen. This classi cation
rate is recorded in the tables and so is its associat®k in brackets; cf. the second
row of Table 4.1, as well as Table 4.2 and Table 4.3. Apparentlthe optimal Ns is
classi er-dependent. A xed global setting ofNg for all the four classi ers would be
impractical. As a consequence, these three methods are vempd-consuming. The
factor { required for the methods MIFS and MIFS-U, which has been menptied in
the introduction, can take values in [@1] and its in uence on the performance can be
observed in Table 4.2 and Table 4.3. The results in both taldedemonstrate another
fact that even the choice of an optimaf is classi er-dependent. Finally, it is obvious
that these classi cation rates in Table 4.1, Table 4.2 and Tae 4.3 corresponding to
the methods mMRMR, MIFS and MIFS-U are obtained in their best ases.

The feature selection methods RELFSS and mRMR do not depend additional pa-
rameters. When classi ere2 E is applied, their results in Table 4.1 are denoted as
RELFss:e aNd mrMR - The feature selection methods MIFS and MIFS-U are subjecbt
the setting of{ . Thus, their results are denoted asyirs«({ ), wmirs-u:e({ ) with e2 E,
and { 2 [0;1], respectively. A classi cation performance gain indit¢ar is de ned to
compare the MCRM-SFSA and MCRM-SFSG with the four referencemethods men-
tioned above. Taking the classi cation rates of classi ee 2 E into consideration, the
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classi cation performance gain indicator is given as folus:

e a) = sON( ael a) Pe); for MCRM-SFSA (4.24)
Qe g) = son( ge( g) Pe); for MCRM-SFSG
with Pe=Maxf Rrelrss.es mRMR:e; MIFS:e; MIFs-U:ed;

where wies.e and wies.u . denote the column-wise averages ofues o({ ), mirs-u e({ )

in Table 4.2 and Table 4.3, respectively. In Fig. 4.11, the,o( 5) wWith , 2 A =

f(aw: an)Ti0O < aw: an;0< aw + an < 1g of MCRM-SFSA are depicted.
The qye( o) corresponding to MCRM-SFSG with ¢ 2 G = f( qw; gn)'j0 <

gw; gH;0< gqw t+ gu < 1g are given in Fig. 4.12. The value of gere for dif-

ferent classi ers can be found in the third row of Table 4.4.

Figure 4.11. Thea,.e( a) Of various classi ers for the selections obtained by MCRM-
SFSA: (@) thiknn ( a)s (B) Gaiknnp (&), (C) Ghisvme (&) @and (d) Gapnn ( a)-

The u.e( a) = 1 indicates that the MCRM-SFSA can outperform the four reérence
methods when classi ereis applied. Jointly observing the performances correspoind
to MCRM-SFSA, t..e( a) =1 appears mainly in the region

A= ( aw; a;H)Tj0:35 aw 0850< 44 <02 : (4.25)

Similarly, gge( ¢) =1 means that MCRM-SFSG outperforms the four reference miet
ods. The case ofye( o) =1 appears seldom when g4 > 0:6. It occurs mainly in the
region

(4.26)
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Figure 4.12. Theg,( o) of various classi ers for the selections obtained by MCRM-
SFSG: (@) ggxnn ( g)s (B) Ggnno ( g), (€) Ggisvma ( g) @nd (d) dgenn (- g)-

Both regions express the fact that neither the mRW nor the SEheuld be overem-
phasized when assessing the relevance of the feature selast Comparingg,.e( a) in
Fig. 4.11 with gye( ¢) in Fig. 4.12, we nd that the MCRM-SFSG can outperform the
reference methods in more cases than the MCRM-SFSA.

Since the regions containing optimal ; and 4 settings are found, the following discus-

sion is constrained to the classi cation results that are dhined by using the features

selected with ; 2 A and 4 2 G. When classier e is employed, the average of
ae( a) Over A is denoted as ¢ and the average of ¢ 4) over G is denoted as
ge The aeand g are shown in the rst and second row of Table 4.4, respectivel

Furthermore, the standard deviations of ,.¢( 5) and E;e( g) over A and G are given

in the brackets of the rst two rows as well, i.e.S;.e = J%j " (ael a) a;e)z and
2A

r p é
Sgie = ,%J ( gel o) ge)?. The s,c and sy are measures describing the perfor-
2G

g

mance dispersion of MCRM-SFSA and MCRM-SFSG, while the pareeter settings,
l.e. aand 4, change overA and G, repsectively. Compared with thepe in the third
row of Table 4.4, although the MCRM-SFSA and MCRM-SFSG do natteadily provide
better results, they are more robust to parameter settingBesides, the MCRM-SFSA
and MCRM-SFSG are fast since there is no necessity to 9¢¢ manually.
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e | KNN [ KNND [ SVMG [ PNN |
~e || 0:8688 (00157)| 08788 (00176)| 08834 (00136)| 08788 (00189)
oo || 0:8752 (00151)| 08837 (00178)| 08833 (00160)| 08863 (00177)
Pe 0:8667 08762 08819 08676

Table 4.4. The ,cand 4. are given in the rst and second row, respectively, and the
Sxe and 55, Over A and G are given in the brackets. The best performance of reference
methods, pe, is recorded in the third row.

The feature selection's dependency on the classi ers shouhlso be studied. The
classi cation performances of features selected by MCRM-SA, MCRM-SFSG,
RELFSS, mRMR, MIFS and MIFS-U can be summarized by the meases .. g
RELFSS:e; mRMR:er MIFs:e @Nd wirs.u e respectively. We calculate the range of vari-
ation  of these measures over di erent classi ers, which describ¢he width of the
variation interval of the classi cation rates over classiers. A small value of indi-
cates that di erent classi ers can provide similar classication rates using the same
features selected by a certain method. In other words, thedeire selection's depen-
dency on classi ers is low. The of MCRM-SFSA and MCRM-SGSG are obtained by
rgzaEx ace rgilg ae and rer;aElx ge regig ge respectively; cf. Table 4.4. Similarly, the

of RELFSS, mRMR, MIFS and MIFS-U are obtained byeranax RELFSS:e rer;ilg RELFSS e

max e Mmin .o, Max e Mmin .« and max Ue Min U e
OF mR.MR e O mMRMR ;e OF MIFS ;e O MIFS ;e OF MIFS-U ;e O MIFS-U ;e

respectively.

The of di erent feature selection methods are presented in therst row of Table 4.5.

Apparently, the  of MCRM-SFSA and MCRM-SFSG are lower than those of the
reference methods. It means that they can provide the featirselections that are
suitable for a wider range of classi ers.

| Method | RELFSS| mRMR | MIFS | MIFS-U | MCRM-SFSA | MCRM-SFSG |

0:0619 | 00191 | 00285| 00324 0:0146 0:0111
E 0:8167 | 08714 | 08622| 08648 0:8775 0:8821

Table 4.5. The comparison of the feature selection's depearty on classi ers. The
dependency is expressed in terms of the range of the clasation rate variation over

the considered classi ers, . In the second row, g, the averaged classi cation rates
over classi ers are also presented for di erent feature saition methods.

Moreover, the average classi cation rates over classi ersg, are also given in the second
row of Table 4.5. The g of MCRI\QJ SFSA, N§:RM SFSS RELFSS, mIEMR MIFS

and MIFS-U are calculated by -1

d =
= .« and =
iEj e MIFS ;e iEj

jE] ae jEj e g;e jEj RELFSS ;e jEj mMRMR ;es

MIFS-U :e» respectively. The analysis of g in Table 4.5 might
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lead to the conclusion that the improvements provided by MCRI-SFSA and MCRM-
SFESG are not signi cant. However, with such a reasoning one wuld ignore the fact
that the performances for the reference methods, i.e. mMRMRIIFS and MIFS-U, are
obtained in their best cases. Considering their classi ciain rates in the second row of
Table 4.1, Table 4.2 and Table 4.3, the feature sets used fdagsi cation are optimal
with respect to the classi cation performance of each indigual classi er, and these
optimal feature sets associated with each individual class are usually di erent. In
contrast, the feature set obtained with MCRM-SFSA or MCRM-&SG for a certain
parameter setting (either , or 4) is equivalently utilized by all classi ers inE. This
feature set is not exclusively chosen based on the classtioa performance of a certain
classi er, and it can be suboptimal for some individual clas ers. From this point of
view, when MCRM-SFSA and MCRM-SFSG are applied, the perforamces presented
in the second row of Table 4.5 are not obtained with their optnal con gurations.
Hence, the comparison of ¢ only demonstrates that the performances of MCRM-
SFSA and MCRM-SFSG are, at least, not worse than the performaes of the reference
methods even for suboptimal settings.



4.5 Conclusions 83

4.5 Conclusions

In this chapter, we deal with the feature selection that take place in the system
design phase. The results of the feature selection would baved and utilized to
instruct the feature extraction in the object classi cation phase. A sophisticated lter
method using a novel feature relevance measure is proposed¢lect the most relevant
features out of the set that contains the features described Chapter 3. This feature
relevance measure, i.e. composite relevance measure, kaneously takes the mutual
information, the Shannon entropy and the modi ed Relief weght into consideration.
Both linear and nonlinear combinations of these measureseactonsidered. The mutual
information is used to supervise the su ciency of the selein. The consideration
of Shannon entropy in the composite relevance measure is on@ant to avoid both
over tting and under tting. The modi ed Relief weight is pr oposed to help nd an
optimal feature selection among multiple su cient featuresets. Since a complete search
of all the possible combinations of features leads to an NP+daproblem, a heuristic
method is adopted to construct the Iter methods MCRM-SFSA ad MCRM-SFSG.

The MCRM-SFS is applied to select the features for the classation of underwater
targets. The regions for optimal parameter settings in whitthe MCRM-SFS can
mostly outperform the reference methods are found. None ofehmutual information,
the modi ed Relief weight and the Shannon entropy can be ovemphasized in the
construction of the composite relevance measure. Moregvircan be concluded that
the nonlinear combination of Shannon entropy, mutual infonation and modi ed Relief
weight can better evaluate the feature relevance. Compareadth those methods in the
literature the MCRM-SFS is much faster since there is no reqement of a manual
setting of the number of selected features. In addition, thperformance variations of
the features selected by MCRM-SFS over di erent classi erare the lowest. In other
words, the MCRM-SFS is able to provide the features which arsuitable to a wide
range of classi ers. This advantage of the composite relewae measure can simplify
the design of an automatic detection and automatic classiation system to a great
extent, since it allows to decouple the optimal feature salton and optimal classi er
selection process in two consecutive steps.
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Chapter 5

Object Classi cation Using Ensemble
Learning

In this chapter, a reliable classi cation of MLO is elaboragd, i.e. the prediction about
the types of MLO. The features selected by the method introsed in Chapter 4 are
employed. It had been observed in many numerical studies thadividual classi ers,
e.g. [60,134,136{139], could be improved to a certain degreéelleret al. [137] have in-
corporated the fuzzy set theory into thek-nearest neighbor technique [136] to develop a
fuzzy k-nearest neighbor algorithm. Vertet al. [134] have improved the support vector
machine with their sophisticated kernels. As an improved vsion of the probabilistic
neural network given in [60], Streitet al. have proposed a generalized Fisher training
model in [138]. Instead of a Parzen probability density estiation [65], they used a
Gaussian mixture model to approximate the probability denty function. Thus, the
number of nodes in the pattern layer can be reduced. In addith, Zhang has summa-
rized some of the most important developments in neural nebsk classi cation research
in [139]. However, possibly none of them is perfect due to themplexity of underwater
targets displayed in sonar images. Furthermore, the sets péatterns misclassi ed by
di erent classi ers would not necessarily overlap. Thesebservations motivated the
recent interest in the topic of ensemble learning. The enseéta learning refers to those
approaches that learn a target function by training a numbenof individual classi ers
and fuse their outputs. The complementariness among the quits of di erent classi-
ers, which can be modeled as information sources, is able @ utilized to promote
the classi cation accuracy. The Dempster-Shafer theory lsabeen demonstrated to be
very useful to manage the uncertainty in the information oldined from diverse sources
in Chapter 2, and it is also adopted in this chapter to ful ll the joint consideration of
the classi cation results provided by di erent classi ers This adoption initiates a new
direction for the development of reliable ADAC systems devetl to target recognition
in SAS imagery.

Various classi er combination schemes have been devisedianhas been indicated that

some of them consistently outperform a single best classi,ee.g. [66{68, 74]. There
are two very popular structures for the design of ensemblealming schemes, namely
the multistage topologyand the parallel topology The multistage topology [75{80] has
gained great attention for a long time due to its e ciency, whereby objects are classi ed
by simple classiers using small sets of simple features irobination with reject

options on individual stages. The parallel topology, e.g69{71, 73, 81{85], depicted
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in Fig. 5.1 is also widely applied in ensemble learning becauof its robustness. In
this thesis, we adopt this topology. This approach appliedotthe fusion of classi ers
depends on the outputs of classi ers. Generally speakind)e output information that

Figure 5.1. An ensemble learning scheme using the paralleptdogy.

various classi ers supply can be divided into three level3(]:

1. The abstract level : A classier only provides a unique indext 2 C.

2. The rank level : A classier arranges all the class indices belonging 6 in a
gueue with the index at the top being the rst choice.

3. The measurement level : A classi er assigns each index i€ a con dence value
to denote the degree of support to the hypothesis that an olgehas the class
index.

The abstract level and the rank level do not provide the amourof support behind the
hypothesis that a MLO could be assigned with a certain clagsdex. When only outputs
on the abstract level or rank level are available, a majorityote, e.g. [81{84], can be
adopted to fuse these outputs. When the classi ers providesults on the measurement
levels, an average or some other linear combination schenfi¢he con dence values has
been proposed [69{71]. Recently, more sophisticated tedimmes, such as Dempster-
Shafer theory (DST) techniques [70,73,85,140,141], havscabeen widely used. An
important issue related to DST techniques is how to set the & belief assignment
(BBA). Zhang et al. [85] and Xuet al. [70] used empirical knowledge to assign belief
portions, and Rogova [73] suggested the distance betwees tieference vector and the
object vector to be the basis for BBA. However, the choice of afegence vector is
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not an easy task since the cluster of one class is not necegamique in the feature
space. In particular, Mignotte et al. [140] and Fawcettet al. [141] applied the DST
to object classi cation in sonar imagery. Mignotteet al. derived their BBA from a
confusion matrix. Fawcettet al. introduced three kinds of speci cations for BBA. Two
of them required empirical knowledge, which may limit the exnt of their applications.
Although the third BBA speci cation was nonempirical, the oldained BBA was very
intricate, and it could make the combination of BBAs computaibnally expensive.

In this chapter, an ensemble learning scheme using DST is posed for mine type
classi cation. In the derivation of BBA, the following two parts are considered. One is
the support to the hypotheses provided by classi ers and thether one is the measure
guantifying the reliability of the classi ers themselves.The rst part (object part) is
usually unequal for di erent test objects and the second onglassi er part) is xed for
each classi er. Hence, the belief assigned to the hypothesgsthe BBA is the product
of the object part and the classi er part. To our best knowlede, it is the rst time
that DST is applied in SAS imagery.

This chapter is organized as follows. Sec. 5.1 describes mple nontrainable com-
biners as well as the combiner using the DST technique progasby Xu et al. The
proposed model of multiclassi er combination in the framewark of DST is presented in
Sec. 5.2. The classi cation results can be found in Sec. 5.3.

5.1 Review of Classier Combination Approaches
Using Parallel Topology

5.1.1 Simple Nontrainable Combiners

As already de ned in the previous chapterC = fcy; :::6y.g contains all the class labels,
and a classi er is denoted bye 2 E, whereE is the set of all the implemented classi ers
(base classi ers). For a test object, leye(c,) be the support provided by classi ereto
the hypothesis that this test object is assigned with labed, 2 C. The class labek, of
a test object is given by

c = arg maxf(c,); (5.1)
cn2C

wheref is a combination function. The combination functionf can be chosen in many
di erent forms. The most popular choices are:
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Average rule:

1 X
flc)) = —=  YelGn): (5.2)
JE] QF
Maximum rule:
f(Gn) = max ye(cn): (5.3)
Median rule:
f(ch) = megiEan Ye(Cn): (5.4)
Product rule: Y
flcn) = YelCn): (5.5)
eE

The above-mentioned schemes are called nontrainable condys, because other than
the training of individual base classi ers there are no ex&r parameters that need to be
trained. The ensemble is ready for operation as soon as thesbalassi ers are trained.
Hence, due to their simplicity the nontrainable combiners hee been widely used for a
long time.

5.1.2 Combination of Classi ers Using the Method of Xu et
al.

The DST adopted in this chapter has been introduced in Chapte2.3.2. The com-
bination method proposed by Xuet al. in [70] works on the abstract level of the
classi gr output. In their framework, given a test object, t can be classi ed to class
c 2 C fCjectd, Where the Gejec: denotes that the classi er has no idea from which
class the test object comes. Accordingly, there is a perform@e measure that quanti-
es the fraction of the object being classi ed t0Ggject, 1.€. rejection rate. According
to their de nition, the substitution rate denotes the fraction of the falsely classi ed
objects, and we have + rq+ r, = 1. Their approach works in the circumstance that
the identi cation rate ( ), substitution rate (rs) and rejection rate () of individual
classi ers are available.

When classi ere2 E provides a prediction that an object belongs to class, 2 C, the
BBA is given as 8
< by )= ; for
be( )= rs; for
be( )= ry; for

fcng;
Cnfc,g; (5.6)
fCrejectg:
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When classi er e classi es the object as clas§ejec:, the BBA of Xu et al. has only one
focal, be(fCreject) = 1. This formalism of BBA considers only the classi er partwhich
provides the overall performance information of individuaclassi ers. The information
speci cally correlated to individual objects is overseen.

5.2 A Novel Proposal for the Classi er Combina-
tion in DST

5.2.1 The Construction of Basic Belief Assignment

In order to derive our ensemble learning in the framework of &, the classi cation
result of an individual classi er is viewed as a piece of evddce. Subsequently, a BBA
is induced from this piece of evidence. The BBA proposed inighpaper is constructed
of two parts, i.e. the object part and the classi er part. Theobject part, which is
a non-empirical part, gives the information about how muchupport a classi er can
provide to a certain hypothesis out of the seC. The classi er part, which depends on
empirical knowledge, quanti es the quality of the judgmengiven by a classi er. Hence,
the support provided by the object part should be discountelly the classi er part. Let
E be the set of all the implemented classi ers. Obviously, thhe are Mg = jEj BBAS
induced from the classi cation results of the implementedlassi ers. The classi er part
and object part associated with classi ere 2 E are denoted asx and o, respectively.
Therefore, the BBA induced from the result of classi eris given as follows:

8
> O p); for = fchg

O 57)
0 otherwise

where G, 0. are the classi er part and oBiect part corresponding to claser erespec-
tively, c,2C,0 cof( ) 2l1landO ..2cPe(fcng) 1. In our application, there
are four kinds of classi ers adopted and they were alreadyatl ed in Equation (4.22).

Now, based on the empirical results obtained for each classie 2 E, the classi er part

and object part are speci ed as follows.

The classi er part, ¢, requires the knowledge of the classi er's performance gaid
from the experimental observations. Intuitively without any a priori knowledge about
the performance of individual classiers, thec, of all classiers is set equally, e.qg.
.= 1;8e2 E. When prior knowledge about the classi er's performance msvailable, it
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enables a more reasonable setting of the classi er part. Thietails about the setting
will be given in Sec. 5.3.

The object part, o, reveals the support assigned by classi exto the hypotheses out
of C, whereo( ) species the support dedicated to hypothesis . The construction
of 0. is described as follows.

KNN : The oxny depends on the number of training objects of di erent classe
in the neighborhood, e.g. the support associated with class 2 C is W

wheremyyy denotes the number of all training objects in the neighbortom of a
test object and my(f ¢,g) is the number of training objects in this neighborhood

belonging to clas<,.

KNND : The oxneo depends on the belief value generated by KNND. The
KNND models the neighboring training objects as evidence anambines their
BBAs by Dempster's rule to make the classi cation of a test olgjct. Accordingly,
the support associated with hypothesi$c,g depends orb,(f ¢,Q); ¢, 2 C, where
b, is the combined BBA obtained by combining the BBAs of nearesteaighbors.

SVMG : The osymg depends on the distance of the test object to the dis-
crimination surface in the feature spaced,(fc,g);c, 2 C. The one-against-all
scheme [142] is adopted. The distana®(f c,g) to the discrimination surface
that divides the feature space into class, and non-class, describes the support
provided to the hypothesisfc,g. A large distance indicates a great amount of
support for the hypothesisf ¢, g.

PNN : The opyy depends on the posterior probability provided by PNN, e.g.
the support associated with hypothesi§c,g is po(f c,Q); ¢, 2 C.

Hence, the object part can be summarized as follows:

8
m:](fcng); for e= KNN ;
Egglé\‘fcng) . f = KNND :
(f ) 2Cbo(f cnOQ)’ or e= ! ( )
Oe Cng = “n® (do(f n )) _ . 58
% Dexixp(doc(f?:nog)) for e=SVMG;
cn02C
" po(fch); for e=PNN;

wheremyyn denotes the number of the training objects in the neighborloal of a test
object for KNN, and my(f c,g) is the number of training samples in the neighborhood
belonging to classc, 2 C. As for the case of SVMG, there is a possibility that the
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distance measure for a certain hypothesis is negative, cfigF5.2. When the discrim-
ination surface divides the training data into class, and non-classc,, the negative
distance means that the test object and training objects behging to the classc, do
not locate on the same side of the discrimination surface. Hewer, the support to a
hypothesis cannot be negative. Hence, it is transformed by axponential function, cf.
Equation (5.8). When the distanced,(f c,g) approaches negative in nity, the support
to the hypothesis that this test object can be classi ed to @ssc, becomes zero, as
illustrated in Fig. 5.3.

Figure 5.2. An illustration of object part for SVM. The training data is divided into
three classesg;; ¢;; ¢ 2 C. The green star represents a test object. Each line denotes
a discrimination surface and divides the training data intelassc, and non-class, for

¢, 2 C. In (a), although the test object has the longest distance tthe red line, this
distance is negative. The associated hypothesis has theseaupport. In (b), all the
three distances are negative. In this case, the hypothesisriesponding to the least
absolute distance has the greatest support.

P

It can be easily proven that 0s(f chg) = 1. If the prediction of classi er eis 100%
ch2C

credible, thec is set to 1. In this case, we can nd thatos(C) = 0. Otherwise, we have

C. < 1. Accordingly, be(C) > 0, wherebs(C) > 0 describes the degree to which one can
not discriminate the hypothesis out of the seC.

5.2.2 The Application of Dempster's Rule and the Decision
Rule

In Section 2.3.2, Dempster's rule is adopted to combine theBB\s obtained from the
neighboring pixels. An e ective combination scheme which wsaderived by Denoeuyet
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Figure 5.3. The exponential of distancel,. It makes sure that the support is non-
negative. When thed, approaches negative in nity, the support becomes zero.

al. [63] is implemented in order to alleviate the computationolad involved in combining
BBAs. However, it is designated to the simple BBA in Equation (50). The BBA
(cf. Equation (5.7)) applied to the ensemble learning in tlsi chapter is not a simple
BBA. However, it is still the case that most of the elements in th power set 2 are not
focals of this BBA. Hence, Dempster's rule can be simpli ed aslfows. LetE]! E
be the n-th subset that satis es JE'j = m with 1 n M and M = 'V'mE , and

accordingly letE' = EnE]' denote its complementary set. The combined BBA) , is
given as

Ul ) ; for  =f
% b0 (C)+ b0 (fcig)’ = T&g
cj2C

= bI?D(C) . _
b ( ) E Y (C)+ _ZCbO (fCi g) ) f0r - C (5_9)
-0 | otherwise
whereb® is de ned as
8 !
Pe P Q Q
be( ) beO(C) ; for = fcng
0 - yl n=l E} 2Em
b ( )_ E rb- be(C); for =C (510)
eE
Y otherwise

The nal decision on object classi cation can be obtained bynaximizing the pignistic
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probability, i.e. X _ T
ffeg .

c:argrcr:% b () i (5.11)

Since the focal elements db are also either singletongsc,g C or C itself, Equa-
tion (5.11) can be simpli ed to

c=argmaxb (fc,g): (5.12)
cn2C
The complete classi er combination process can be summaaikzas follows, cf. Fig. 5.4.

1. Take the features provided by the step of feature extracin, which is guided by
the results obtained with MCRM-SFS.

2. Run the classi cation by using the classi ers inE and save their outputs.

3. Construct four BBAs (be) using the outputs of classi ers inE according to Equa-
tion (5.7) and Equation (5.8).

4. Fuse the BBAs using Equation (5.9) and Equation (5.10) to d&in the bensemple-

5. Classify the test object according to the rule given in Eation (5.12).

Figure 5.4. The illustration of the proposed ensemble ledany scheme.

5.3 The Numerical Studies of Ensemble Learning

In this section, the database described in Chapter 4.4.3 isilized to study the ability of
ensemble learning in improving the classi cation resultsWe use the features provided
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by the methods MCRM-SFSA and MCRM-SFSG. Rather than using amndividual
classi er in E, the classi cation in this subsection is made by ensembledming. Given

a parameter setting, either 5 or 4, features are selected and they are used for all
the four classi ers in E. We obtain the nal classi cation of test objects based on tle
combination of the results of these four classi ers. The cdsmation scheme is either the
one proposed in Sec. 5.2, or some other classi er combinatischeme in the literature
for the sake of comparison, cf. Sec. 5.1. The leave-one-odheame is also adopted
and repeatedM times, so that all the M objects in the database have the associated
classi cation results obtained by ensemble learning. Thefore, the performance of the
ensemble learning schemes can also be evaluated by considehe classi cation rate in
(4.23). The classi cation rate is denoted asa.en( a) When MCRM-SFSA is employed
to select features for the ensemble learning, and accordy@s g.en( ¢) When MCRM-
SFSG is used. The ensemble learning performance gain intlicdas de ned as follows

Qaen( a) = SIN  aen( a) MaX ae( o) ; for MCRM-SFSA,  (5.13)

Qgen( g) = sON  gen( o) rg%x gel g) ; for MCRM-SFSG.

The choice ofc, requiresa priori knowledge of the classi er's performance. In Sec. 4.4
the performances of individual classi ers are presented. &\choose the average of
the ..e( a) Over A as the classier part, when MCRM-SFSA is applied for feature

selection, 8
3 0:8183 for e= KNN;

_ 0:8243 for e= KNND ;

Ge™ 5 0:8462 for e= SVMG;
" 0:8134 for e=PNN:

When MCRM-SFSG s utilized for feature selection, the avege of the ge( o) over
G is used,

(5.14)

g 0:8568 for e= KNN ;
_ 0:866Q for e= KNND ;
“e™ 3 0:8752 for e= SYMG;
" 0:8609 fore=PNN:
We denote the case thaa priori knowledge of the classi ers is known aé1. Moreover,
we also choose, equal for all the four classi ers to test the stability of ourmethod when
no a priori knowledge is available, and this case is denoted B&. The quantities Qa.en
and Qq.n Of the proposed ensemble learning scheme are shown in Fi§.&nd Fig. 5.6,
respectively. The ensemble learning performance gain indtor equal to 1 indicates the
fact that the ensemble learning can improve the classi cain rates regarding individual
classiers. The results shown in Fig. 5.5 and Fig. 5.6 demdnate that except for
several settings, in both cases, i.e. farl and T2, the proposed scheme improves the

(5.15)
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° aw 00 ° aH ° aw 00

Figure 5.5. TheQa.en( a) Obtained by the proposed ensemble learning scheme. Fea-
tures are selected by MCRM-SFSA. The region without grids cagsponds to the set-
tings aw + an 1. (8) The c,c chooses the setting 1 in (5.14), (b) the ¢,.c chooses
the setting T2 with ;. =1 8e2 E.

Figure 5.6. TheQq.en( ¢) Obtained by the proposed ensemble learning scheme. Fea-
tures are selected by MCRM-SFSG. The region without grids o@sponds to the set-
tings qw+* gn 1. (&) The g chooses the setting 1 in (5.15), (b) the ¢ye chooses
the setting T2 with ¢ge =1 8e2 E.

classi cation results provided by the classi ers inE. In other words, the ensemble
learning scheme proposed in Sec. 5.2 is generally able to ioye the classi cation
performance of individual classi ers. Obviously, the propsed scheme works better in
caseT 1. In reality, the classi er part is probably unknown a priori, and it has to be
estimated. Therefore, the resulting classi cation perfenance could fall between those
of T1andT2.

Furthermore, quantitative analysis of the ensemble leamng is presented. Since the op-
timal settings for , and  are available, in the following discussion ensemble leangi
schemes use the features selected corresponding to the peter vectors , 2 A and

g 2 G. The averages of the gen( a) and gen( ) Over A and G are considered.
When the MCRM-SFSA is used for feature selection, the averaglassi cation rate
over A is denoted as 4en. Similarly, when the MCRM-SFSG is used for feature se-
lection, the average classi cation rate ovelG is written as gen. The aen @nd gen
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obtained by di erent ensemble learning schemes are recoddm the second up to sev-
enth row of Table 5.1, and the standard deviationsr Ofaen( a) @and gen( g) OvVer A

- - . I-
and G are given in the brackets as well, i.essen = & (aen( a)  aen)? and
r o a2A
— 1
Spen = G ( gen( o) g;en)z-
2G

g

Observing Table 5.1, the second row records the results ofetlproposed ensemble
learning scheme which is operated in cadel. In rows three to seven of Table 5.1, the
performance corresponding to ensemble learning using ®ylsuch as average, median,
maximum, product criterion [143] and the DST combination ofXu et al. [70], are
depicted. The comparison between the proposed ensembleméagy scheme and those
schemes in the literature shows that the proposed ensembdaining scheme operated
in caseT1 has the best performance. Considering tigge, and sy.en in the brackets, the
performance dispersions of the proposed ensemble learnsicheme are also marginal,
while , and 4 change overA and G, respectively. The results in the rst row of
Table 5.1 represent the best average classi cation rates igh can be o ered by an
individual classi er out of E, i.e. rgaéx ae and TZ%X ge- Comparing the results in the
rst row with those in the second row, we nd that the proposedensemble learning
scheme can provide a signi cant performance gain.

Method Description | A | G
The best classi cation rate over various classi ers \ 8834 \ 08863
0:9063 | 0:9147
(0:0055) | (Q0049)
0:8704 08915
(0:0165)| (Q0154)

Proposed ensemble learning scheme with  T1

Ensemble learning using the average rule

Ensemble learning using the maximum :0955 | 07433
rule of classi er combination (00110)| (Q0104)
Ensemble learning using the median 8789 | 08944
rule of classi er combination (00143)| (Q0132)

0.8796 | 08925
(0:0210) | (Q0185)
0.8825 | 08976
(0:0089) | (Q0077)

Product rule of classi er combination

Ensemble learning scheme of Xet al.

Table 5.1. The comparison of classi cation rates. The rst ow presents the best
average classi cation rates o ered by a single classier awf E, i.e. rgeéx ae and

rgzaEx ge The quantities .., and e Of di erent classi er combination schemes are

recorded in the second up to the seventh row, and the&ge, and S;.en Over A and G are
also presented in the brackets.

Besides, withouta priori knowledge, the classier part is set equally for di erent
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MCRM-SFSA Cae=1 [ Ce=08|Ce=06|Ce=0:4|Ce=0:2
0:8861 08883 08886 08882 08879

aen (0:0039) | (00038) | (00035) | (0:0036) | (C:0034)

MCRM-SFSG Ce=1 | Ge=08|Ce=0:6|ce=0:4]| ge=0:2
0:9095 09093 09093 09095 09101

g.en (0:0028) | (Q0027) | (0:0028) | (€0026) | (Q0030)

Table 5.2. The quantities aen, gen Of the proposed ensemble learning scheme with

classi er parts set asT2 are presented, and theis,en, Syen are given in the brackets

as well.

classiers. The aen, gen Of the proposed ensemble learning scheme operated in case

T2 are recorded in Table 5.2, and the associategkn, Syen are also given in the brackets.
In the case ofT 2, it is observed that changing the values of the classi er p& has little
in uence on the performance of the proposed ensemble leargischeme. Although the
performance is poorer than that obtained with the settingsfccaseT 1, it is still better
than the standard combination methods recorded in rows theeto six of Table 5.1.
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5.4 Conclusions

In this chapter, a reliable ensemble learning scheme in theamework of Dempster-
Shafer theory is developed to ful ll the task of object clasgation. This approach
utilizes the outputs of individual classi ers as the infornation sources. A reasonable
belief structure considering both classi er part and objecpart has been proposed.
The classi er part containing the empirical knowledge abdua classi er's performance
can correct the support provided by this classier to a certm hypothesis, i.e. the
object part. Dempster's rule has been chosen to combine th&RBs induced by various
classi ers. However, this kind of pairwise combination is me-consuming. In order to
accelerate the combination process, a modi ed combinatianle is derived. It is faster
and can combine all the BBAs at once.

The proposed ensemble learning scheme is applied to the Istep of the ADAC system,
i.e. the classication of underwater objects. The results fothe numerical studies
demonstrate two facts about this approach. Firstly, the prposed ensemble learning
scheme draws a performance gain compared with the resultsidlividual classi ers.
Secondly, it also provides better classi cation rates thathose reference schemes using
parallel topology in the literature. Moreover, the compasgon between the settings
of T1 and T2 shows that the incorporation of correcta priori knowledge about the
classi er's performance is advantageous. However, it is alproven that the proposed
ensemble learning scheme with a blind setting of classi erapt is able to stably o er
satisfying classi cation results. This characteristic wdens the range of its application.



99

Chapter 6

Conclusions and Future Work

In this thesis, the problem of underwater mine classicatio in synthetic aperture
sonar imagery has been considered. The automatic detectiand automatic classi -
cation system is adopted to solve this problem. A modi ed exgrtation-maximization
approach is applied to the image segmentation in regions aoiterest and the spatial
correlation between pixels is tackled with Dempster-Shaféheory based clustering. In
object classi cation, two issues have been mentioned, i.a.choice of optimal features
out of the complete feature set and a suitable ensemble learg scheme that combines
the outputs of individual classi ers using parallel topolgy. The focuses have been set
on making advances in the step of feature selection and impgnog the performance of
the ensemble learning scheme.

The summary and main conclusions of the methods proposed g thesis are provided
in Section 6.1. The Section 6.2 presents an outlook for pddsifuture works associated
with the proposed methods.

6.1 Conclusions

6.1.1 The Dempster-Shafer Theory Supported EM Approach
for Sonar Imagery Segmentation

In the area of image segmentation, an expectation-maximizan approach assisted
with Dempster-Shafer theory based clustering is developedt provides reliable im-

age segmentation results so that an extraction of geometicfeatures with fewer er-
rors in synthetic aperture sonar imagery becomes possibl&/e extend the general-
ized expectation-maximization approach of Delignoat al. by substituting its mixture

model with the one proposed by Sanjay-Gopait al. In addition, the Peason system is
also incorporated, and the mixture model is no longer consiinted to, for instance, the
Gaussian mixture or the gamma mixture. The selection of optial distribution types

for individual classes can be automatically determined. Ehresulting model is more
exible in approximating the statistics of the sonar imagey. Furthermore, a Dempster-
Shafer theory based clustering technique is incorporated remove the clutters. We
have proposed a belief structure to catch the information prvided by the evidence in
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the neighborhood. This belief structure considers not onlhe amount of the belief
that the evidence can provide, but also the quality of the edence. The implausible
information existing in the neighborhood is not considered

The proposed algorithm remarkably reduces the clutters irhe background region of the
sonar images, while preserving the shape of the objects. lddition, an improvement

in the e ciency of this expectation-maximization approachbecomes notable with the
increasing of image size.

6.1.2 The Filter Method for Feature Selection Using a Novel
Relevance Measure

In feature selection, the problem of selecting optimal feates is considered. A novel
feature relevance measure is proposed, which is a combioatof the Shannon entropy,
the mutual information and the modi ed Relief weight. In order to suppress the in-
uence of outliers, the modi ed Relief weight adopts a distace measure with active
rejection. In contrast to the original Relief weight, this nodi ed Relief weight is not

only applicable to individual features but also feature set Both arithmetic average
and geometric average of these three measures are studiegrtitfermore, another mea-
sure called su ciency is developed to supervise the su ciery of the feature selection
and serves as a stopping criterion of the selection process.

The results of the numerical studies indicate three pointsFirst of all, the proposed
Iter method can signi cantly accelerate the selection praess since the searching of
optimal cardinality of the feature selection is no longer piired. Secondly, the selected
features have a wider generalizability over di erent clasers. Finally, the performance
of the selected features is superior to that of the featurebtained by the methods in
the literature.

6.1.3 Classi er Combination in the Framework of Dempster-
Shafer Theory

In combination, we introduced a Dempster-Shafer theory bad ensemble learning
scheme. It works on the measurement level to combine the infwation provided by
individual classi ers. Compared with the methods using Depster-Shafer theory based
techniques in the literature, it includes not only the classer part but also the object
part in the design of basic belief assignment.
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The proposed classi er combination scheme allows a perfaante gain over the classi -
cation results of individual classi ers, and it signi canly enhances the reliability of the
ensemble learning even when the prior knowledge about thassi ers' performance is
unknown, i.e. the classi er parts for di erent classi ers ae set equal.

6.2 Future Work

6.2.1 Image Segmentation

Pre ltering. A lot of work has been done in the area of pre ltering images to
reduce noise. In the last twenty years, methods like di usio based smoothing
Iter [144], wavelets lter [145], bilateral Iter [146], non-local means Iter [147]
and block-matching and 3D lIter [148] have been proposed tmprove the image
quality. More speci cally, the approaches in [149{152] havbeen applied to sonar
imagery. The main challenge in underwater mine detection dnclassi cation is
raised by the high amount of noise in the sonar imagery. Thua,joint pre ltering
and segmentation scheme could help to improve the nal regssl

Initialization of EM approach. The problem of optimal initialization associ-
ated with the unsupervised segmentation is still open. Theckeme proposed by
Fandoset al in [113] has provided a satisfactory result in our applicath. How-

ever, the generalization to other applications should begiied and a generally
optimal initialization scheme would be required.

6.2.2 Feature Selection

Sophisticated search scheme. In the MCRM-SFSA and MCRM-SFSG, the
heuristic scheme of sequential forward search is adoptedchase of its e ciency.

In the last thirty years, many modi cations have been discused in the litera-

ture, e.g. sequential backward search, Plus-L minus-R sehr[153], bidirectional
search and oating search [154]. They have achieved suc@sss; some speci c
applications. However, in general cases none of them can qudee optimal solu-
tions. The combination of a composite relevance measure wilternative search
scheme may help to improve the selection results.
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Optimization of parameter settings. The generalizability of the optimal pa-
rameter settings of the composite relevance measure to atlagplications should
be further studied. Some optimization criteria, e.g. [155¢ould be applied to the
search for optimal parameter settings for various applicains.

6.2.3 Classi er Combination

Online processing. The proposed combination scheme is only semi-online,
and it does not incorporate any information about the realitne performance
of individual classi ers. The knowledge associated with # classi er part is
obtained by previous applications, and this knowledge calibe improper for the
current application. Taking the current performance of ind/idual classi ers as
feedback may be helpful to rectify the classi er part in reatime, and the nal
classi cation accuracy of the ensemble learning scheme twbbe improved.

Alternative combination rules in Dempster-Shafer Theory. Although
Dempster's rule used to combine the BBAs is very popular and dely applied,
Zadeh [156] has gured out that Dempster's rule can provideocinter-intuitive
decisions for an inappropriate design of BBA. Accordingly, nmy other combina-
tion rules have been proposed after that, e.g. Yager's ruleq7], Zhang's rule [158]
and the cautious rule [159]. They have been applied and anaéd in a wide range
of applications. Feiet al. [49] have applied the cautious rule to the segmentation
of SAS imagery. According to their analysis, the cautious ruls in certain cir-
cumstances superior to Dempster's rule. Hence, the introdian of alternative
combination rules may provide a promising perspective fohé Dempster-Shafer
theory based ensemble learning scheme.
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List of Abbreviations

ADAC

ADI

ATR

AUV

BBA

CMI

COOC

CRM

DC

DEM

DoC

DST

EM

E-DS-M

GLRL

ICM

KNN

KNND

MAP

MCRM-SFS

MCRM-SFSA

MCRM-SFSG

Automatic Detection and Automatic Classi cation
Amount of Duplicate Information
Automatic Target Recognition
Autonomous Underwater Vehicle
Basic Belief Assignment
Conditional Mutual Information
co-occurrence matrix

Composite Relevance Measure
Direct Current

Di used Expectation-Maximization
Degree of Curving
Dempster-Shafer Theory
Expectation Maximization algorithm

Expectation Maximization algorithm with Dempster-Shafer
clustering as intermediate step

Gray Level Run Length matrix

Iterated Conditional Mode

k-Nearest Neighbor algorithm

k-Nearest Neighbor algorithm assisted by Dempster-Shafer thry
Maximum A Posteriori

Maximum Composite Relevance Measure using a Sequential
Forward Search

MCRM-SFS employingJa

MCRM-SFS employingJq
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MD Manhattan Distance

Mi Mutual Information

MIFS Mutual Information based Feature Selection

MIFS-U Mutual Information based Feature Selection under Uniform

information distribution

MLO Mine-Like Object

MRF Markov Random Field

mMRMR minimum Redundancy Maximum Relevance feature selection
mRW modi ed Relief Weight

NAS Non-synthetic Aperture Sonar

PCA Principal Component Analysis

PNN Probabilistic Neural Network

RELFSS Feature Subset Selection based on Relevance

ROI Regions of Interest

SAS Synthetic Aperture Sonar

SE Shannon Entropy

SFS Sequential Forward Search

SVMG Supported Vector Machine using a Gaussian kernel

VI Variation of Information
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a, g

X > >

ASD

o T

D

W W T

{m)

Ce

C

C
Comp
Correlation
d

O

Oe

DE
Dening
DoC
DV

e

E

Ecc
Entropy
Extent

f

f ring ; f radius

f ring ; f radius
Fi

the four parameters controlling the shape of

the distribution in Pearson system, =0;1;2

the area of the region of interest

the region of optimal parameters associated with,

the complete parameter space associated wifhy

the angular second moment

the basic belief assignment (BBA) in image segmentation
the BBA associated with classi ere in ensemble learning
the combined BBA in ensemble learning

co-occurrence matrix

the normalized version oB

the m-th realization of C

the classi er part of classi ere

the random variable denoting the class index

the set containing all the possible values of class indices
the compactness of a given contour

the feature Correlation obtained by co-occurrence matrix
the distance measure proposed in the feature spd€e

the Manhattan distance

the object part associated with classi ere

the feature di erence entropy obtained by co-occurrencmatrix
ring projection condensity

degree of curving

the feature Di erence Variance obtained by co-occurremcmatrix
an element of sete

the set of classi ers applied in this thesis

the eccentricity of a given region

the feature Entropy obtained by co-occurrence matrix
The feature Extent of a given region

a classi er combination function

the ring and radius projection function

the normalized ring and radius projection function

the i-th distribution type in Pearson system
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F the set of distributions contained in Pearson system

F the feature space induced by

G the seven Hu's invariant moments for = 1;:::;7

G the su ciency associated CRM

G the region of optimal parameters associated with

G the complete parameter space associated wifly

H the Shannon entropy

H the GLRL matrix

IR the Rand index

I the mutual information

lvi the variation of information

I the set of pixel indices

Inertia the feature Inertia obtained by co-occurrence matrix

Ja the CRM with weighted arithmetic average in the method MCRMSFSA
Jg the CRM with weighted geometric average in the method MCRM{SSG
JMIES the relevance measure in the method MIFS

JMIFS-U the relevance measure in the method MIFS-U

JmRMR the relevance measure in the method mRMR

JRELFSS the relevance measure in the method RELFSS

K the normalizing factor involved in Dempster's rule

l; the label ofi-th pixel involved in image segmentation
Iminor s Imajor ~ the lengths of principal axes
L; the vector containing the labels of pixels il ;
L 1.) the set of all the possible states of the pixel labels
2.) the frame of discernment of hypotheses about pixel lalsel
| the label image

M the number of detected objects in the database
Ny the run length

Meorrect the number of correctly identi ed objects

M the cardinality of L

Ng the cardinality of setU

Ny the cardinality of Ny

No the cardinality of setO

Ny the number of pixels in the image

Nsg the cardinality of setS
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I:)COH
Promenance
Gh.es Ggie
Qa;en; Qg;en

ri

RF3
RF4
RFs
Sl

Sy
Sajer
Syier
Sasens
Syens
SA
SE
Shade
Sol

SV

the side lengths of matrixe
the cardinality of setS;
the neighborhood ofi-th pixel
the set of di erent run lengths
the complete set of features
the perimeter of a given contour
the featurd® romenanceobtained by co-occurrence matrix
the classi cation performance gain indicator for classiee
the ensemble learning performance gain indicator
the indicator vector of pixeli
the j -th element of the indicator vectori
the substitution rate and rejection rate
the area ratio
the axis ratio
the circularity ratios
the circle variance
the feature short runs emphasis obtained biy
the feature long runs emphasis obtained b
the feature gray level nonuniformity obtained byH
the feature run length nonuniformity obtained byH
the feature run percentage obtained by
the square of the skewness
the kurtosis
the standard deviation of ,.¢( ,) over A
the standard deviation of 4¢( ¢) over G
the standard deviation of ,.en( a) Over A
the standard deviation of 4.en( ¢) over G
the feature sum average obtained by co-occurrence matrix
the feature sum entropy obtained by co-occurrence matrix
the featureéShadeobtained by co-occurrence matrix
the solidity of a given contour
a segmentation of image
the feature sum variance obtained by co-occurrence matri
the set of the selected features (the feature selectionk.i.a subset 0O
j -th group of image pixels
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List Of Symbols

[1]

ring

n )

radius
Kronecker
a;W; a;H
g;W; o:H

a g

mean

1y 2

(m)

the function used to select features

the intensity of the i-th pixel in the observed image
the integer pixel intensity value after transformation
an element out of setU

the 2D image of dimension oN, N,

the array version of observed image

the intensity of the i-th pixel in the unknown noise-free image
the set of all possible states af

the set of all possible states of the pixel values i
the support of pixel

the roughness of a given contour

the probability of r;; equalsto 1

the distance di erence associated with an individual objec
in mMRW calculation

the modi ed Relief weight

the centroid of a region

the n-th feature

the output support of classi ere

the complete data

the parameter controlling the cliquesj =1;:::;4

the additive noise ini-th pixel

the ring projection skewness

the radius projection skewness

the Kronecker delta function

the parameters involved inJ,

the parameters involved inJg

the parameter vectors associated witld, and

Jg, respectively

the absolute curvature mean value of a given contour
the parameter specifying the belief in the assumption of
pairwise class-conditional independence

the parameters associated witl¥ and v , respectively
the mixing coe cient involved in the mixture model
the identi cation rate

the feature vector ofm-th object



109

(m)
S

nym

%r

DFT

ring

n;j

the m-th point in the subspace induced bys
the n-th element of feature vector (M
the vector containing all the mixing coe cients
in the mixture model
the parameters required for the distribution wherl; = j
the parameter vector containing the parameters of
all the component distributions in the mixture model
the parameter vector containing all
the parameters involved in the mixture model
the energy function
the low frequency density
the Fourier coe cient skewness
the quality of pixel
the mean value of the pixel intensities associated withth class
the median of the pixel intensities inN ;
the radius projection mean value
the n-th central moment ofj -th class
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