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Kurzfassung

In dieser Doktorarbeit wird das Problem von Detektion und Klassi�zierung der Unter-
wasserminen auf Sonarbildern betrachtet. Die automatische Erkennung und automatis-
che Klassi�zierung (automatic detection and automatic classi�cation, ADAC) wird auf
Bilder angewandt, die mit Hilfe des synthetischen Apertur-Sonars (SAS) entstanden
sind. Das ADAC-System besteht aus vier Bereichen: Detektionminen•ahnlicher Ob-
jekte, Bildsegmentierung, Extraktion der Merkmale und Klassi�zierung der Minen.
Diese Doktorarbeit konzentriert sich auf die letzten drei Bereiche.

Bei der Detektion minen•ahnlicher Objekte (mine-like object, MLO) wird die Template-
Matching-Technik auf die Sonarbilder angewandt. Diese Technik basiert auf der A-
priori-Kenntnis der Minenformen. Damit sind die Bereiche mit den MLO festgelegt.
Diese Bereiche werden Bereiche von Interesse genannt (regions of interest, ROI). Die
ROI werden von den Sonarbildern extrahiert und an die zwei folgenden Module, d.h.
Bildsegmentierung und Extraktion der Merkmale, •ubermittelt.

Bei der Bildsegmentierung wird eine modi�zierte Erwartungsmaximierung zur Segmen-
tierung der Bilder vorgeschlagen. Zwecks Klassi�zierung der MLO-Formen werden die
Sonarbilder in Objekt, Objektschatten und Hintergrund aufgeteilt. Ein allgemeines
Mischmodell wird f•ur die statistische Auswertung der Bilddaten eingesetzt. Au�erdem
wird eine Clusterung der Bildpunkte im Rahmen der Dempster-Shafer-Theorie (DST)
verwendet, um die r•aumliche Abh•angigkeit zwischen den Bildpunkten zu ber•ucksichti-
gen. Folglich werden die St•orecke im Hintergrundbereich beseitigt. Optimale Kon-
�gurationen f•ur diesen Ansatz werden mit Hilfe quantitativer numerischer Studien
ermittelt.

Die extrahierten Merkmale werden an das Klassi�zierungsmodul weitergegeben.
Ber•ucksichtigt werden vor allem geometrische und Textur-Merkmale. In der Liter-
atur werden zahlreiche Merkmale vorgeschlagen, die die Objektform und die Textur
beschreiben k•onnen.

Aufgrund des Fluches der Dimensionalit•at ist die Merkmalsauswahl unerl•asslich f•ur
die Entwicklung eines ADAC-Systems. Eine anspruchsvolle Filter-Methode zur Selek-
tierung optimaler Merkmale f•ur die Objektklassi�kation wird entwickelt. Diese Filter-
Methode benutzt ein neuartiges G•utema� zur Beurteilung der Relevanz von Merk-
malen. Das G•utema� ist eine Kombination aus gegenseitigenInformationen, dem modi-
�zierten Relief-Gewicht und der Shannon-Entropie. Die ausgew•ahlten Merkmale zeigen
eine h•ohere Generalisierbarkeit auf. Im Vergleich zu anderen Methoden f•uhren die nach
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der hier vorgeschlagenen Methode ausgesuchten Merkmale zueiner sehr guten Klas-
si�zierungsg•ute, und die Performance-Abweichung bei Verwendung unterschiedlicher
Klassi�katoren nimmt ab.

Bei der Minen-Klassi�zierung wird die Voraussage der TypenMinen•ahnlicher Objekte
betrachtet. Ein Kombinationsschema auf Grundlage der DST wird vorgeschlagen, das
die einander erg•anzenden Informationen unterschiedlicher Klassi�katoren nutzt. Die
Ergebnisse einzelner Klassi�katoren werden mit Hilfe des entwickelten Schemas kom-
biniert. Die resultierende Klassi�kationsgenauigkeit ist h•oher als die von jedem einzel-
nen Klassi�kator.

Alle erw•ahnten Methoden werden anhand der SAS-Bilder evaluiert. Abschlie�end wird
ein Fazit gezogen und einige Anregungen f•ur zuk•unftige Arbeiten werden gegeben.
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Abstract

In this PhD thesis, the problem of underwater mine detectionand classi�cation using
synthetic aperture sonar (SAS) imagery is considered. The automatic detection and
automatic classi�cation (ADAC) system is applied to images obtained by SAS systems.
The ADAC system contains four steps, namely mine-like object(MLO) detection, im-
age segmentation, feature extraction, and mine type classi�cation. This thesis focuses
on the last three steps.

In the mine-like object detection step, a template-matching technique based on thea
priori knowledge of mine shapes is applied to scan the sonar imageryfor the detection
of MLOs. Regions containing MLOs are called regions of interest (ROI). They are
extracted and forwarded to the subsequent steps, i.e. imagesegmentation and feature
extraction.

In the image segmentation step, a modi�ed expectation-maximization (EM) approach
is proposed. For the sake of acquiring the shape informationof the MLO in the ROI, the
SAS images are segmented into highlights, shadows, and backgrounds. A generalized
mixture model is adopted to approximate the statistics of the image data. In addition,
a Dempster-Shafer theory-based clustering technique is used to consider the spatial
correlation between pixels so that the clutters in background regions can be removed.
Optimal parameter settings for the proposed EM approach arefound with the help of
quantitative numerical studies.

In the feature extraction step, features are extracted and will be used as the inputs
for the mine type classi�cation step. Both the geometrical features and the texture
features are applied. However, there are numerous features proposed to describe the
object shape and the texture in the literature.

Due to the curse of dimensionality, it is indispensable to dothe feature selection during
the design of an ADAC system. A sophisticated �lter method is developed to choose
optimal features for the classi�cation purpose. This �lter method utilizes a novel
feature relevance measure that is a combination of the mutual information, the modi�ed
Relief weight, and the Shannon entropy. The selected features demonstrate a higher
generalizability. Compared with other �lter methods, the features selected by our
method can lead to superior classi�cation accuracy, and their performance variation
over di�erent classi�ers is decreased.

In the mine type classi�cation step, the prediction of the types of MLO is considered. In
order to take advantage of the complementary information among di�erent classi�ers,
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a classi�er combination scheme is developed in the framework of the Dempster-Shafer
theory. The outputs of individual classi�ers are combined according to this classi-
�er combination scheme. The resulting classi�cation accuracy is better than those of
individual classi�ers.

All of the proposed methods are evaluated using SAS data. Finally, conclusions are
drawn, and some suggestions about future works are proposedas well.
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Chapter 1

Motivation and Introduction

The basic process of noticing an object and recognizing whatit is happens frequently
in our daily life. The ease with which we deal with these issues belies the astound-
ingly complex processing in our brains. Over the past tens ofmillions of years, a
highly sophisticated neural and cognitive system has evolved for us to tackle such
issues. Nowadays, thanks to the rapid development of high-performance computers,
automatic target recognition (ATR) [1] becomes possible. It has numerous civilian and
military applications, such as face recognition [2,3], medical application [4] and target
recognition using radar signals [5{14].

This thesis deals with ATR in the underwater application using sonar imagery. Com-
pared with the imagery acquired by digital cameras or radar systems, the imagery
obtained by a sonar system is usually of lower quality. This can be attributed to the
complexity of the underwater environment, such as strong reection from seabeds, low
cleanliness, inhomogeneity in the density of water. The strong reection of seabeds
makes the detection of objects that are close to the seabed very di�cult. The inho-
mogeneity in the density of water can impair the transmission of the acoustic wave or
even deviates the transmission from a straight path. The aimof this thesis is to design
an advanced automatic system for the hunting of underwater mines.

1.1 Motivation

Due to the low quality of sonar imagery and the high varietiesof di�erent objects in
the sonar imagery, the task of underwater target (in our caseunderwater mine) recog-
nition has been undertaken by experienced human operators.With the expeditious
development of autonomous underwater vehicles (AUVs) and thetechnological matu-
rity of synthetic aperture sonar (SAS) systems [15] mounted on them, in the last two
decades a huge volume of high quality sonar images have required processing. There-
fore, the adoption of ATR in the underwater application is not only desirable but also
indispensable, cf. [16{20]. An illustration of the ATR procedure is depicted in Fig. 1.1.
In general, the ATR problem can be divided into two parts, namely detection and
classi�cation.
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Figure 1.1. Automatic target recognition. From left to right: 1. The input data. 2.
The detection of a target. 3. The target classi�cation, i.e.whether the detected object
is a mine or a rock.

Related works reported in the literature are mostly concentrated on traditional non-
synthetic aperture sonar (NAS) systems [15]. Owing to the highcost of sea trials,
the availability of real data has been constrained. Some authors even evaluated their
approaches with the data collected from laboratory experiments. These kinds of exper-
iments are usually carried out in a large water tank, e.g. [17]. Moreover, since the SAS
systems are strategically related to military application, only a few authors in the SAS
research �eld are willing to publish their studies. The well-known automatic detection
and automatic classi�cation (ADAC) system is adopted in thisthesis. Among those
published studies, most of them elaborate only the details of one or two nodes in the
ADAC system.

Hence, we are motivated to present a complete overview of the ADAC system, and its
application to the SAS data, which was collected by ATLAS Elektronik Bremen GmbH
during several sea trials. The ADAC system is going to be described in detail as well
as the contributions.

1.2 Introduction

A complete ADAC system contains four steps as shown in Fig. 1.2: mine-like object
(MLO) detection, image segmentation, feature extraction and mine type classi�cation.
A range of techniques [20{23] has been developed for the purpose of target detection in
the literature and they can be applied to the �rst step of MLO detection. If su�cient
amounts of target examples are available, techniques such as supervised detection, tem-
plate matching [20,21] and matched �lters [22] can be applied. The success of template
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Figure 1.2. The illustration of the ADAC system. The contributions of this thesis
are focused on image segmentation, feature selection and mine type classi�cation. The
feature selection is an indispensable step during the design of an ADAC system and
(a) it controls the feature extraction step to extract useful features. The output of the
system is the type of the MLO, i.e. (b) a cylinder mine, (c) a truncated cone mine or
(d) a rock.

matching and matched �lters depends on the similarity of thetraining data to the test
data. Furthermore, Coiraset al. [23] proposed a supervised target detection by training
on augmented reality data. The limited availability of realtarget samples is overcome
by generating more samples that are created by augmented reality simulation [24]. Af-
ter the MLO detection, those regions possibly containing MLOs are found, and they
are called the regions of interest (ROI). The ROI are extracted and forwarded to the
subsequent steps, i.e. the image segmentation and the feature extraction. Techniques
like [18, 25] are employed in the step of image segmentation to segment the images
of the ROI into highlights, shadows and backgrounds. The segmentation results are
utilized for geometrical feature extraction. The goal of the feature extraction step is to
prepare the inputs for the mine type classi�cation step. In addition to the segmentation
results, the images of the ROI are also taken into consideration for the extraction of
texture features. A considerable amount of features have been proposed for the object
recognition in the literature [26{32]. Due to thecurse of dimensionality [33] shown
in Fig. 1.3, the feature selection is necessary during the design of the ADAC system.
Its result is used to guide the feature extraction so that only those useful features are
extracted. With a number of appropriate features, the MLOs can be represented as
points in the feature space in such a manner that the neighboring MLOs belong to
the same classes and those of di�erent classes are far away from each other. Finally,
learning machines [34{36] are trained to classify those MLOs into di�erent types, e.g.
cylinder mines, truncated cone mines and rocks. For the sakeof achieving a stable
performance, an ensemble learning scheme is adopted. A number of learning machines
are trained and the �nal classi�cation result is obtained bycombining the outputs of
those trained learning machines.
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Figure 1.3. The curse of dimensionality. After the maximum point, the increase of
feature number leads to a degradation of classi�cation performance rather than im-
provement.

1.3 State of the Art

Our contributions to the design of a reliable ADAC system involves research in image
segmentation, feature extraction, feature selection and mine type classi�cation.

Numerous techniques have been developed for the purpose of image segmentation.
Thresholding, e.g. [37{42], is a simple technique to divideimages into di�erent seg-
ments. Basically, a number of rigid thresholds should be set. The membership of pixels
belonging to di�erent classes depends on the comparison between the pixel intensities
and the thresholds. Some authors have proposed to adapt the setting of thresholds to
local characteristics. Due to the high level noise in the sonar imagery, the results are
not satisfactory. The shape information of MLOs can be distorted. More complicated
techniques such as [43{48] have attained success in the literature for a wide range of
applications. They are able to provide satisfactory results with the data of high SNR,
for instance the photos taken by digital cameras or satellite imagery. However, only a
few publications, e.g. [6,49], have referred to the application to SAS imagery.

The extraction of features has already been extensively discussed in the literature,
cf. [26{32, 50{53]. Most of them are not speci�cally designed for the underwater tar-
gets. Among those for the underwater applications, many authors focused their feature
extraction on the shadows. This is because the highlights are less discriminable than
the shadows in the imagery acquired by NAS systems.

For feature selection, the methods such as dimensionality reduction [54,55] and feature
subset selection [56{59] have been developed to reduce the dimensionality of feature



1.4 Contributions 5

space. Firstly, the dimensionality reduction techniques,e.g. [54, 55], are vulnerable
to the data scaling. Secondly, a method belonging to the category of feature subset
selection requires evaluation metrics to assess the goodness of features. Mostly, either
the classi�cation accuracy obtained by a classi�er (i.e. wrapper method) or a relevance
measure (i.e. �lter method) is utilized as the evaluation metrics. The wrapper methods
can be computationally intensive and the associated selections are classi�er dependent.
As for the �lter methods, many relevance measures have been proposed in the literature.
However, many of them do not precisely evaluate the redundancy among features.
Moreover, it is often the case that the most relevant features selected according to
certain relevance measures do not necessarily always provide the best classi�cation
performance over various classi�ers. Hence, it would be necessary to select asuitable
classi�er to match the features obtained according to a certain relevance measure.
Unfortunately, this kind of correlation between relevance measures and classi�ers is
unknown.

As for the classi�ers, researchers have kept on developing new learning machines, e.g.
[60{62], or improving the existing learning algorithms, cf. [63,64]. Most of them claimed
in their works that their proposals are superior to the others. However, theNo Free
Lunch Theorem [65] has already stated that there are no general optimal classi�ers.
Individual classi�ers could attain the success to a certaindegree in speci�c applications.
Furthermore, it has also been observed that the sets of objects misclassi�ed by di�erent
classi�ers would not necessarily overlap. Hence, there are extensive studies dedicated
to the topic of ensemble learning [66{85] in the last three decades.

1.4 Contributions

� EM approach assisted by DST : An approach called E-DS-M is developed for
sonar imagery segmentation, in which an intermediate step (I-step) between the
E- and M-steps of the expectation-maximization (EM) algorithm is introduced.
In the I-step, a Dempster-Shafer theory based clustering iscarried out so that
the spatial correlation between neighboring pixels is considered. The likelihood
function given by Sanjay-Gopalet al. [46] is employed and the Gaussian mixture
is substituted by a generalized mixture model (Pearson system). As far as we
know, it is the �rst time that the Pearson system is applied toSAS imagery for
the image segmentation purpose. The adaption of Dempster-Shafer theory based
clustering to the I-step is derived in detail and this approach provides us with
reliable segmentation results with fewer EM iteration steps.
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� A summary of features used for underwater applications : All of the fea-
tures considered by us for the underwater object recognition have been reviewed
and documented in this thesis. We have employed not only the geometrical fea-
tures of the shadows but also of the highlights. In addition,a number of novel
geometrical features are proposed. The correlation between highlights and shad-
ows is also taken into account. The texture features of the ROI are also included
in the feature set due to the fact that the deployment of objects on the seabed
can change its texture characteristics.

� Sophisticated �lter method for feature selection : We choose the mutual
information (MI), the modi�ed Relief weight (mRW) that is ro oted in the Relief
algorithm [86] and the Shannon information entropy to compose a new feature
relevance measure, namely the composite relevance measure(CRM). Since the
avoidance ofunder�tting and over�tting [87] is of great importance, the Shannon
information entropy is adopted to control the complexity offeature selections.
The CRM is capable of providing a comprehensive evaluation of the feature rel-
evance.

� Dempster-Shafer theory assisted ensemble learning in SAS im agery :
A reliable classi�er combination scheme based on Dempster-Shafer theory is de-
veloped. Due to the fact that the training process of learning algorithms is
not always optimal, the acquired classi�cation results maycontain uncertainty.
This uncertainty can be elegantly modeled byignorance in the framework of
Dempster-Shafer theory. A basic belief assignment (BBA) is proposed to convert
the outputs of classi�ers to belief values.

1.5 Publications

The following publications have been produced during the period of PhD candidacy.

Internationally Refereed Journal Articles

� T. Fei, D. Kraus and A.M. Zoubir \Contributions to Automatic Ta rget Recogni-
tion Systems For Underwater Mine Classi�cation",IEEE Transactions on Geo-
science and Remote Sensing 2014, Accepted.

� T. Fei and D. Kraus \Dempster-Shafer Theory Supported EM Approach For
Sonar Image Segmentation",Transactions on Systems, Signals & Devices(SSN
1861-5252), Vol. 9, No. 3, pp.1-43, 2014.
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Internationally Refereed Conference Papers

� T. Fei, A.F. Tchinda, B. Lehmann and D. Kraus, \On Sonar Image Processing
Techniques for Anomaly Detection in Underwater Constructions", the 8th Euro-
pean Conference on Synthetic Aperture Radar, Aachen, Germany, Jun. 2010.

� T. Fei and D. Kraus, \An Expectation-Maximization Approach Assisted by
Dempster Shafer Theory and its Application to Sonar Image Segmentation",
IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP 2012), Kyoto,
Japan, Mar. 2012.

� T. Fei and D. Kraus, \An Evidence Theory Supported Expectation-Maximization
Approach for Sonar Image Segmentation",IEEE International Multi-Conference
on Systems, Signals& Devices (SSD), Chemnitz, Germany, Mar. 2012.

� T. Fei, D. Kraus and P. Berkel \A New Idea On Feature Selection And Its Appli-
cation To The Underwater Object Recognition",the 11th European Conference
on Underwater Acoustics, Edinburgh, U.K., Jul. 2012.

� T. Fei, D. Kraus and A. M. Zoubir \A Novel Feature Selection Approach Applied
To Underwater Object Classi�cation", European Signal Processing Conference,
Bucharest, Romania, Aug. 2012.

� T. Fei, D. Kraus and Abdelhak M. Zoubir \A Hybrid Relevance Measure for
Feature Selection and Its Application to Underwater Objects Recognition", IEEE
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1.6 Thesis Overview

The thesis outline is as follows. Chapter 2 describes the E-DS-M algorithm for sonar
imagery segmentation. The generalized mixture model usingthe Pearson system is
presented. After a brief introduction to the Dempster-Shafer theory, the derivation of



8 Chapter 1: Motivation and Introduction

adapting Dempster-Shafer theory based clustering technique to the intermediate step
between the E- and M-steps of expectation-maximization algorithm is detailed.

Chapter 3 provides a summary of the features used by us for theunderwater object
recognition. The extraction of features is explained and their characteristics are an-
alyzed. In addition to those in the literature, we have proposed several geometrical
features that are suitable to our application and their motivations are also elaborated.

In Chapter 4, a sophisticated �lter method for feature selection is developed. The
derivation and motivation of a composite relevance measureis comprehensively ex-
plained. In order to avoid the NP-hard problem during the search for optimal features,
a heuristic scheme called sequential forward search is chosen for our �lter method.

An ensemble learning with the assistance of Dempster-Shafertheory is presented in
Chapter 5. We have novelly devised a basic belief assignmentto convert the outputs
of classi�ers to belief values. All of the information acquired from di�erent classi�ers
is fused by Dempster's rule.

Conclusions are drawn in Chapter 6 and an outlook for future work is suggested as
well.
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Chapter 2

Sonar Imagery Segmentation

This chapter deals with MLOs detection as shown in Fig. 1.2. Following the MLO
detection step, it is the second step along the process chainof the ADAC system. The
accuracy of the segmentation in this step has a great inuence on the performance of
follow-on steps. Therefore, a reliable method is required in this step to extract the
highlights and shadows which could be created by MLOs.

The image segmentation refers to the procedure of grouping image pixels into several
classes. Those pixels belonging to the same homogeneous regions are assigned the
same labels so that the sonar images will be divided into several regions, i.e. highlights,
shadows and backgrounds. There is a segmentation example illustrated in Fig. 2.1. The

(a) (b)

Figure 2.1. An example of image segmentation. (a): SAS image containing a cylinder
mine. (b): The segmentation result of the image on the left side. The labels for the
background pixels are depicted in green, the shadow labels in blue and the highlight
labels in red.

image contains a cylinder mine. The highlights, shadows andbackgrounds are depicted
in red, blue and green, respectively. Apparently, other thanthe largest shadow created
by the cylinder mine, there are several clutters around the boundary of the image.
They could be created by image noise or some natural objects (such as rocks).
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In the literature, there are numerous segmentation techniques. Due to the high level
noise in the sonar imagery, simple techniques, such as thresholding [37,39,39,41] and
k-means [88], might distort the shape information of MLOs, which is very important
for mine type classi�cation. Alternatively, the energy based active contour, e.g. [43,89],
is another popular approach for image segmentation. However, according to our in-
vestigations, it is not optimal for the application in sonarimages. Moreover, statistics
based approaches [48, 90, 91] have employed maximuma posteriori probability esti-
mation to ful�ll the task of image segmentation. The posterior probability function
usually contains two parts to describe the conditional probability of the image pixel
intensities given the class labels of pixels and the spatialcorrelation between the labels
of neighboring pixels. A Markov random �eld (MRF) approach is mostly involved [92]
in the posterior probability function to cope with the spatial dependency between pixel
labels through the implementation of a Gibbs distribution.The setting of parameters
adopted in Gibbs distributions for controlling the relationship between neighboring
pixels is still open. Usually, they are set according to the experience gathered from
speci�c applications. Mignotte et al. in [48] have used a least squares technique to
estimate the parameters. This estimation requires the histogramming of neighborhood
con�gurations, which is a time-consuming process. Besides, the conditional probabil-
ity of image pixel intensities is typically modeled by Gaussian, gamma and Weibull
distributions, which are often not adequate to approximatethe statistics of the data
obtained from real measurements.

The EM algorithm [93] has been acting as a popular image segmentation approach for
a long time, cf. [44,47]. In order to consider the spatial correlation between neighboring
pixels, Zhanget al. [44] substitute the pixel class probability provided by the M-step
of the previous iteration with an MRF based estimate. Later,Boccignoneet al. [47]
construct by inserting an anisotropic di�usion step [94] between each E- and M-step
the so-called di�used expectation-maximization (DEM) scheme. With the assistance of
the a priori knowledge that neighboring pixels are likely to be assignedwith the same
labels, neighboring pixels should have similar probabilities in the mixture distribution
model. An anisotropic denoising �lter is applied to probability levels so that the outliers
with respect to their neighborhood are excluded, while the real edges of the image are
still preserved. The application of such a denoising �lter in DEM is not able to reliably
exclude all of the noisy clusters in sonar images due to the fact that the variation of
pixel intensities is high even for neighboring pixels. It isalso possible to enlarge the
object region because of the blur e�ect of denoising �lters.

Most recently, the DST has been applied to the image segmentation [95{97]. In [95{97]
the segmentation of color images is considered, which can bedivided into image com-
ponents of R, G and B. These three image components are used asinformation sources.
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The belief structures in [95,96] are composed based on the assumption of Gaussian dis-
tribution. The mean and variance of the Gaussian distribution are estimated with the
help of a simple thresholding technique [98] for each class.However, this estimation
of the Gaussian distribution's parameters is not optimal for images with low signal-to-
noise ratios. Besides, the fuzzy C-Mean algorithm is used for the segmentation of RGB
images in [97]. The fuzzy membership is taken as basic beliefassignment. Since the
fuzzy membership can be interpreted rather as a particular plausibility function in the
Dempster-Shafer evidence theory [99], it is improper to take the fuzzy membership as
basic belief assignment.

Figure 2.2. There is a generalized I-step inserted between the E- and M-step of the
EM algorithm.

In this chapter, the macro-structure of DEM is employed and its di�usion step is
generalized to an intermediate step (I-step) as presented in Fig. 2.2. The likelihood
function of Sanjay-Gopalet al. is chosen. The correlation between pixels which are
spatially far away from each other is decoupled. Furthermore, the classical Gaussian
mixture is replaced by a generalized mixture model, whose components are chosen
from a Pearson system [100]. There is a set of eight types of distribution in a Pearson
system. The components of the mixture model are no longer required to be of the
same distribution type. Therefore, the generalized mixture model is more exible to
approximate the statistics of sonar data. In addition, we apply the Dempster-Shafer
theory based clustering technique in an I-step. The neighbors of a pixel are considered
as pieces of evidence that support the hypotheses regardingthe class label of this pixel.

This chapter is organized as follows. In Sec. 2.1 the image model is introduced. The
maximum likelihood estimation, the Pearson system and EM algorithm are presented
in Sec. 2.2. The spatial dependency among pixels is explained in Sec. 2.3. The proposed
segmentation method using the Dempster-Shafer theory based clustering technique is
given in Sec. 2.4. Finally, numerical studies are carried out using SAS images in Sec. 2.5.
The results of our approach are compared to those in the literature. In order to make
the analysis more convincing, a quantitative assessment ismade with the assistance of
the evaluation measure for image segmentation. Conclusions are drawn in Sec. 2.6.
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2.1 Image Model

Since noise is inevitable in the real world, the image is corrupted by noise, and we call
it observation. Let ui be the intensity of the i -th pixel in the observation,

ui = ui + � i ; (2.1)

whereui 2 U denotes the intensity of pixeli in the unknown noise-free image, and� i is
additive noise andU is the set of all possible states ofui . Let L be a set of labels with
jL j = M l . Given the observation, our task of image segmentation is toassign to each
ui a membership labell i 2 L . In our application, the L contains three states which
denote shadow, background and highlight, respectivelyL = f 1; 2; 3g. Since the noise-
free image is de�nitive and the noise added to pixels is uncorrelated, the observation,
f ui g, is conditionally independent given thef l i g. The spatial correlation among pixels
is reected in the dependency among their labels.

2.2 Maximum Likelihood Estimation

For notational convenience, we denote noisy image/observation as a vector u =
(u1; :::; ui ; :::; uNu )T , where Nu is the number of pixels in the image, i 2 I =
f 1; 2; :::; Nug. Analogously, the corresponding labels are represented byl =
(l1; :::; li ; :::; lNu )T . The conditional distribution of ui given l i is

p(ui jl i = j ) = f U (ui j j ); (2.2)

wherej 2 L , f U is an arbitrary probability density function, and  j is the parameter re-
quired for the distribution when l i = j . An indicator vector r i = ( r i; 1; :::r i;j ; :::; r i;M l )

T 2
f e1; :::; eM l g for M l = jL j is de�ned, and we have the probability

p(l i = j ) = p(r i = ej ); (2.3)

= � i;j ; (2.4)

where� i;j is a mixing coe�cient with 0 � � i;j � 1;
P M l

j =1 � i;j = 1 and ej is a unit vector
whosej -th component is 1. Then, Equation (2.2) can be written as

p(ui jr i;j = 1) = f U (ui j j ); (2.5)

which can also be formalized in the form as follows:

p(ui jr i ) =
M lY

j =1

f U (ui j j )
r i;j : (2.6)
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The joint distribution of r i and ui is given byp(r i )p(ui jr i ) with

p(r i ) =
M lY

j =1

� r i;j
i;j ; (2.7)

and the marginal distribution of ui is obtained by summing the joint distribution over
all the possible states ofr i ,

p(ui ) =
M lX

j =1

p(r i = ej )p(ui jr i = ej )

=
M lX

j =1

� i;j f U (ui j j ): (2.8)

The distribution of ui is presented by Equation (2.8), and it is usually called distribution
mixture model. In this thesis, we allow thef U to be chosen from a Pearson system
F = f F1; :::; F8g. The choice of the distribution type out ofF is going to be detailed
in the next subsection.

2.2.1 Pearson System

Let U be a real random variable whose distribution can be modeled by a Pearson
system. The probability density functionf (u) satisfying the di�erential equation [100],

1
f

df
du

= �
a + u

a0 + a1u + a2u2
; (2.9)

belongs subject to the setting of the parametersa;a0; a1 and a2 to one of the eight
possible distribution types of a Pearson system. The solutions of Equation 2.9 depend
on the roots of the characteristic equation

a0 + a1u + a2u2 = 0: (2.10)

The details about Equation (2.9) are stated as follows.

1. The Type I distribution ( F1) corresponds to the case that both roots of Equation
(2.10) are real, and of opposite signs, i.e.a

2
1 � 4a0a2

a2
2

> 0 and a0
a2

< 0 for a2 6= 0. The
density function can be given as

f (u) =

(
1

B (� 1 ;� 2 )
(u� b1 ) � 1 � 1 (b2 � u) � 2 � 1

(b2 � b1 ) � 1+ � 2 � 1 ; for u 2 [b1; b2]
0; otherwise

; (2.11)
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with

b1 = �
a1

2a2
� 0:5

s
a2

1 � 4a0a2

a2
2

;

b2 = �
a1

2a2
+ 0:5

s
a2

1 � 4a0a2

a2
2

;

� 1 =
a + b1

a2(b2 � b1)
+ 1;

� 2 = �
a + b2

a2(b2 � b1)
+ 1;

and B(� 1; � 2) is beta function. This distribution is also calledBeta distribution
of the �rst kind .

2. The Type II distribution ( F2) is a particular case ofF1 with � 1 = � 2, and the
density function is as follows:

f (u) =

(
1

B (�;� )
(u� b1 ) � � 1 (b2 � u) � � 1

(b2 � b1 )2� � 1 ; for u 2 [b1; b2]
0; otherwise

; (2.12)

with

� =
a + b1

a2(b2 � b1)
+ 1;

b1 = � a � 0:5

s
a2

1 � 4a0a2

a2
2

;

b2 = � a + 0:5

s
a2

1 � 4a0a2

a2
2

:

3. The Type III distribution ( F3) corresponds to the casea2 = 0 (and a1 6= 0). In
this case, the density function is

f (u) =

(
1

� 1 �( � 2 )

�
u� � 3

� 1

� � 2 � 1
e� (u� � 3 )=� 1 ; for u � � 3

0; otherwise
; (2.13)

with

� 1 = a1;

� 2 =
1
a1

�
a0

a1
� a

�
+ 1;

� 3 = �
a0

a1

and � denotes the gamma function. This distribution is also termed asgamma
distribution.
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4. The Type IV distribution ( F4) refers to the case in which Equation (2.10) does
not have real roots, i.e.a2

1 � 4a0a2 < 0.

f (u) = N1
�
� 1 + a2(u + � 2)2

� � (1=2a2 )
exp

�
�

a � � 2p
� 1a2

arctan
� r

a2

� 1
(u + � 2)

��
;

(2.14)
with the factor N1 such that

R
R f (u)du = 1 and

� 1 = a0 �
a2

1

4a2
;

� 2 =
a1

2a2
:

Unfortunately, there is no common statistical distribution whose density func-
tion has a form as the one in Equation (2.14). Woodward proposed a simple
mathematical form to approximate this distribution [101] as follows:

f app(u) = ~N1

 

1 +
u2 � ~�

~a2

! � � 3

exp

 

� � 4 arctan

 
u � ~�

~a

!!

; (2.15)

where

� 3 =
1

2a2
;

~b = 2( � 3 � 1);

� 4 =
2a1(1 � � 3)

p
4a0a2 � a2

1

;

~a =

s
~b2(~b� 1)
~b2 + � 2

4

;

~� =
~a� 4

~b

with the factor ~N1 such that
R

R f app(u)du = 1 [102],

~N1 =
�( � 3)

p
� ~a�( � 3 � 0:5)






�( � 3 + i� 4=2)
�( � 3)






2

; (2.16)

where thei in this equation denotes the imaginary unit.

5. The Type V distribution ( F5) corresponds to the case wherea2
1 = 4a0a2. The

associated distribution density function is

f (u) =

8
<

:

� 1
�( � 2 )

�
� 1

�
u + a1

2a2

�� � � 2 � 1
exp

�
� 2

� 1

�
u+ a1

2a2

�

�
; for u � � a1

2a2

0; otherwise
; (2.17)
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with

� 1 =
a2

a � a1
2a2

;

� 2 =
1
a2

� 1:

This distribution is also termed asinverse gamma distribution.

6. The Type VI distribution ( F6) corresponds to the case in which the roots of
Equation (2.10) are real and of the same sign, i.e.a

2
1 � 4a0a2

a2
2

� 0 and a0
a2

> 0. The
associated distribution density function is

f (u) =

(
� � 2

4
B (� 1 ;� 2 )

(u� � 3 ) � 1 � 1

(u� (� 3 � � 4 )) � 1+ � 2 ; for u � � 3

0; otherwise
; (2.18)

with

� 1 = �
a � 1

2a2

�
a1 �

p
a2

1 � 4a0a2

�

p
a2

1 � 4a0a2

+ 1;

� 2 =
1
a2

� 1

� 3 = �
1

2a2

�
a1 �

q
a2

1 � 4a0a2

�
;

� 4 =

s
a2

1 � 4a0a2

a2
2

for a2 6= 0:

This distribution is also calledBeta distribution of the second kind.

7. The Type VII distribution ( F7) is the case in whicha1 = a = 0; a0 > 0, and
a2 > 0. The corresponding density function is given as [103]

f (u) = N2

 
� 2

2

2� 1

 

1 +
�

u
� 2

� 2
!! � � 1

; (2.19)

where

� 1 =
1

2a2
;

� 2 =
p

2� 1a0;

N2 =
1

B (0:5; � 1 � 0:5)
� 2� 1 � 1

2

(2� 1)� 1
;

with B (� 3; � 4) =
R1

0
u � 3 � 1

(1+ u) ( � 3+ � 4 ) du.



2.2 Maximum Likelihood Estimation 17

8. The Type VIII distribution ( F8) is the case wherea1 = a2 = 0. Thus the
associated density function is

f (u) =
1

p
2�� 2

e� ( u � � ) 2

2� 2 ; (2.20)

with � = � a and � 2 = a0. Obviously, it is the Gaussian distribution.

As summarized above, the determination of the distribution type is dependent on the
values of the parametersa;a0; a1 and a2. However, they are usually unknowna priori .
Johnsonet al. demonstrated that it is possible to expressa;a0; a1 and a2 in terms of
central moments as follows [45]:

a =
(s2 + 3)

p
s1� 2

10s2 � 12s1 � 18
� �; (2.21)

a0 =
� 2(4s2 � 3s1) � � (s2 + 3)

p
s1� 2 + � 2(2s2 � 3s1 � 6)

10s2 � 12s1 � 18
; (2.22)

a1 =
(s2 + 3)

p
s1� 2 � 2� (2s2 � 3s1 � 6)

10s2 � 12s1 � 18
; (2.23)

a2 =
2s2 � 3s1 � 6

10s2 � 12s1 � 18
; (2.24)

where� and � n are given by

� = E [U] ; (2.25)

� n = E [(U � � )n ] ; for n = 2; 3; and 4; (2.26)

and the s1 and s2 are de�ned as

s1 =
(� 3)2

(� 2)3
; (2.27)

s2 =
� 4

(� 2)2
: (2.28)

Hence, the classi�cation of the distribution type, which wasbased on the setting of
a;a0; a1 and a2, can be done via the moments. The advantage of this conversion is that
in practical applications the central moments can be estimated from the data. Based
on the moments, the rule can be reformulated as follows,

8
>>>>>>>>>><

>>>>>>>>>>:

f 2 F1; for � < 0;
f 2 F2; for s1 = 0 and s2 < 3;
f 2 F3; for 2s2 � 3s1 � 6 = 0;
f 2 F4; for 0 < � < 1;
f 2 F5; for � = 1;
f 2 F6; for � > 1;
f 2 F7; for s1 = 0 and s2 > 3;
f 2 F8; for s1 = 0 and s2 = 3;

(2.29)
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where� is de�ned as

� =
s1(s2 + 3) 2

4(4s2 � 3s1)(2s2 � 3s1)(2s2 � 3s1 � 6)
: (2.30)

2.2.2 Expectation-Maximization Algorithm

In this subsection, the observation is considered as statistically independent, the joint
conditional density of the observations can be formed as

p(uj	 ) =
NuY

i =1

M lX

j =1

� i;j f U (ui j j ); (2.31)

where	 =
�
 T

1 ; :::;  T
M l

� T
. The EM algorithm [93] is a powerful method to maximize

the likelihood in Equation (2.31). It requires the speci�cation of complete dataz =
�
uT ; r T

1 ; :::; r T
Nu

� T
in contrast to the incomplete data/observation u. Moreover, we

de�ne the parameter vectors� i = ( � i; 1; :::; � i;M l )
T , � =

�
� T

1 ; :::; � T
Nu

� T
and � =

�
� T ; 	 T

� T
. In deriving an EM algorithm, the conditional density function for the

complete dataz is required. With the help of Equation (2.6) and Equation (2.7), we
have the conditional pdf of complete data

p(zj� ) =
NuY

i =1

M lY

j =1

�
� i;j f U (ui j j )

� r i;j ; (2.32)

where f U belongs to some type of distribution out of the setF . The EM algorithm
iterates itself between an E-step where a conditional expectation is computed and an
M-step where the estimates of parameters (i.e.� and 	 ) are updated by maximizing
this conditional expectation. The E-step is de�ned as

Q
�

� j� (k)
�

= E
h
ln (p(zj� )) j� (k) ; U = u

i
; (2.33)

= E

"
NuX

i =1

M lX

j =1

r i;j
�
ln � i;j + ln f U (ui j j )

�
j� (k) ; U = u

#

; (2.34)

whereU = ( U1; :::; UNu )T and � (k) denotes the parameters obtained in thek-th itera-
tion. In order to compute the expectation in Equation (2.34), the distribution of r i;j

is of interest to us. Similar as derived in Appendix C of [46], we have

p
�

r i;j = 1j� (k)
�

= E
h
r i;j j� (k)

i
; (2.35)

=
� (k)

i;j f U

�
ui j 

(k)
j

�

P M l
m=1 � (k)

i;m f U

�
ui j 

(k)
m

� : (2.36)
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For notation convenience, letw(k)
i;j = p

�
r i;j = 1j� (k)

�
. In the M-step, the � (k) should

be updated with
� (k+1) = arg max

�
Q

�
� j� (k)

�
: (2.37)

For pixel i , conditioned on
P M l

j =1 � i;j = 1, a Lagrange multiplier A is introduced

� =
M lX

j =1

w(k)
i;j

h
ln � i;j + f U (ui j 

(k))
i

+ A

 
M lX

j =1

� i;j � 1

!

: (2.38)

Through @�
@�i;j

= 0 for j = 1; ::; M l we get

w(k)
i;j

� i;j
+ A = 0; j = 1; :::; M l (2.39)

P M l
j =1 w(k)

i;j

A
= � 1: (2.40)

Solving Equations (2.39) and (2.40), we get the update of� i;j ,

� (k+1)
i;j = w(k)

i;j ;

=
� (k)

i;j f U

�
ui j 

(k)
j

�

P M l
m=1 � (k)

i;m f U

�
ui j 

(k)
m

� ; (2.41)

and the mean and the central moments are updated as follows,

� (k+1)
j =

P Nu
i =1 ui �

(k+1)
i;j

P Nu
i =1 � (k+1)

i;j

; (2.42)

=

P Nu
i =1 ui w

(k)
i;j

P Nu
i =1 w(k)

i;j

;

� (k+1)
n;j =

P N
i =1

�
ui � � (k+1)

j

� n
� (k+1)

i;j
P N

i =1 � (k+1)
i;j

for n = 2; 3 and 4; (2.43)

=

P N
i =1

�
ui � � (k+1)

j

� n
w(k)

i;j
P N

i =1 w(k)
i;j

;

where � j and � n;j are the mean value and then-th central moment of the pixels be-
longing to classj , respectively. With the results in Equations (2.42) and (2.43), s1, s2

and � can be obtained. Accordingly, the distribution types off U and their associated
parameters can be determined as described in Sec. 2.2.1 for the next EM iteration.

There are two examples of segmentation results with mixturemodels shown in Fig. 2.3.
The segmentation result obtained by Gaussian mixture is presented in sub�gure (c) and
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the one corresponding to generalized mixture is in sub�gure(d). Compared with the
generalized mixture model, Gaussian mixture provides a segmentation result whose
background region is more heavily eroded by clutters. Moreover, the pdf estimates
illustrated in sub�gure (b) demonstrate that the generalized mixture can better ap-
proximate the statistics of an SAS image.

(a)
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0.14

(b)

 

 

(c) (d)

histogram of image data
pdf estimate of generalized mixture model
pdf estimate of Gaussian mixture model

Figure 2.3. An example to illustrate the comparison between segmentation results
obtained by the EM with generalized mixture model and the EM with Gaussian mixture
model. (a): A sonar image containing a truncated cone mine. (b): The pdf estimates
obtained by the EM with Gaussian mixture model and the EM withgeneralized mixture
model. (c): The segmentation result obtained by the EM with Gaussian mixture model.
(d): The segmentation result obtained by the EM with generalized mixture model.

However, it is obvious that both of the segmentation results shown in Fig. 2.3 are
not satisfactory. They are \dirty". In a segmentation result, the object region (i.e.
highlight or shadow) should be smooth and connected. Ideally, there should be as few
pixels as possible in the background region which are classi�ed as highlights or shadows
due to the image noise. In order to ful�ll this requirement, the correlation between
neighboring pixels should be considered.

2.3 Spatial Dependency among Pixels

For the sake of \clean" segmentation results, the spatial correlation among pixels has
to be taken into account in this section. The labeling of pixel i is inuenced by the
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states of its neighbors. The Markov random �eld has been widely employed to model
this relation. Most recently, the Dempster-Shafer theory is also applied to remove the
clutters in the segmentation results. We assume that a pixeldepends on its neighbors
in such a manner thatthe neighboring pixels with similar intensities are likelyto have
identical labels or a pixel is probably to be assigned to the group which containsthe
majority of it neighbors. In view of this manner, the clustering techniques relying on
Markov random �eld and Dempster-Shafer theory are derived to model the spatial
correlation among pixels in the following two subsections.

2.3.1 Markov Random Field

Let N i be the neighborhood of pixeli such that for its j -th neighbor � i;j we have
� i;j 2 N i and i 2 N � i;j . This pair of f i; � i;j g is known as a clique [104]. In this thesis,
the second order neighborhood is employed as shown in Fig. 2.4. On the left side,
the second order neighborhood containing eight neighbors is illustrated. On the right
side, the eight associated cliques within the neighborhoodN i are presented. In most
cases, the cliques are classi�ed into four di�erent types asdepicted on the right side of
Fig. 2.4.

Figure 2.4. The second order neighborhood of pixeli , N i , and the associated cliques.
(a): The second order neighborhood,� i; 1; :::; � i; 8 2 N i . (c): The four kinds of cliques.
From left to right and from top to bottom, their relationships are speci�ed by� 1; � 2; � 3

and � 4, respectively.

The Hammersley-Cli�ord theorem [105] reveals that there is aone-to-one correspon-
dence between MRF and Gibbs random �eld, which is de�ned by the Gibbs distribution.
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Hence,a priori probability pl is able to be conveniently modeled as follows:

pl (l i ) =
1
Z

e� �( l i ) ; (2.44)

whereZ is a normalization constant and �( l i ) is an energy function

�( l i ) = S (l i ; L i )T � ; (2.45)

where L i =
�
l � i; 1 ; :::; l� i; 8

� T
denotes the con�guration of neighborhoodN i , � =

(� 1; � 2; � 3; � 4)T and S (l i ; L i ) is given by

S (l i ; L i ) =
�
S (l i ; l � i; 2 ) + S (l i ; l � i; 6 ); S (l i ; l � i; 4 ) + S (l i ; l � i; 8 ); (2.46)

S (l i ; l � i; 1 ) + S (l i ; l � i; 5 ); S (l i ; l � i; 3 ) + S (l i ; l � i; 7 )
� T

;

with l � i; 1 ; :::; l� i; 8 2 N i ;

where S = 1 � � Kronecker , and � Kronecker is the Kronecker delta function. Then, the
spatial correlation can be determined by the Gibbs distribution in Equation (2.44).
It is usually chosen by a MAP estimator as the prior in posterior probability density
function, which is detailed in the following.

In the Bayesian theorem [106], one can combine the prior information with the likeli-
hood to obtain a posterior probability,

Posterior =
Likelihood � Prior

Evidence
; (2.47)

where in our application the conditional probability p(ujl) is the likelihood and the
spatial dependency speci�ed in terms of Gibbs distributionpl (l) is the prior. Then for
a given observation (i.e. a sonar image), we have

p(l ju) =
pl (l)p(ujl)

p(u)
; (2.48)

wherep(ujl) =
NuQ

i =1
p(ui jl i ), p(l) =

NuQ

i = i
pl (l i ) and the Evidence is a normalization factor

to ensure that the total probability is 1. Hence, it is usuallyexpressed as follows:

p(l ju) / exp (�E (u; l ; � )) ; (2.49)

whereE(u; l ; � ) is the posterior energy. There is an isotropic model [91] inwhich the
E(u; l ; � ) has the same� for all cliques in the neighborhood, i.e.

Eisotropic (u; l ; � ) = �
NuX

i =1

ln p(ui jl i ) +
NuX

i =1

X

� 2 N i

� (1 � � Kronecker (l i � l � )) ; (2.50)
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where the� has to be seta priori based on empirical knowledge. Moreover, Reedet
al. [18] proposed an anisotropic model,

Eanisotropic (u; l ; � ) = �
NuX

i =1

ln p(ui jl i ) +
NuX

i =1

S (l i ; L i )T � ; (2.51)

where� 1; :::� 4 could be di�erent. The last two terms of their energy function is omitted
since there is no prior knowledge available in our application about the object orien-
tation and object size. For a given neighborhood con�guration L , the ratio of the
probabilities of pixel i being labeled withj and j 0 can be calculated as

ln
p(l i = j jL )
p(l i = j 0jL )

= ( S (l i = j; L ) � S (l i = j 0; L ))T � : (2.52)

For each possible neighborhood con�guration, the term on the left side of Equa-
tion (2.52) can be approximated by using a simple histogramming as follows:

p(l i = j jL )
p(l i = j 0jL )

=
# f i 0 2 I : l i 0 = j; L i 0 = L g
# f i 0 2 I : l i 0 = j 0; L i 0 = L g

; (2.53)

where # denotes the number of elements in the set. This creates an over-determined
set of equations for the four unknowns, i.e.� 1; � 2; � 3 and � 4. It can be solved by a
least squares technique.

2.3.2 Dempster-Shafer Theory Based Clustering

2.3.2.1 Basics about Dempster-Shafer Theory

In 1967, Arthur P. Dempster proposed a new concept of upper andlower probabili-
ties [107]. His work remained hidden in the statistics literature until Glenn Shafer,
one of Dempster's students, brought the material to a wider audience in his doctoral
dissertation [108]. Although it has been more than forty years since then, the Dempster-
Shafer theory is still not as familiar as the fuzzy logic to most engineers. Hence, it is
worth providing some basics about the Dempster-Shafer theory before going into the
details about our modeling of ensemble learning. The Dempster-Shafer theory (DST)
is a mathematical theory of evidence. It allows one to combine the information from
di�erent pieces of evidence and arrive at a degree of belief which takes into account
all the available evidence. In DST, the set containing all the hypotheses is calledthe
frame of discernment. In this chapter, the pixels can be labeled by the elements out of
the set L = f 1; 2; 3g. Therefore, the setL is the frame of discernment. The function
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b : 2L ! [0; 1] describing this belief portion assignment and satisfying the following
conditions:

b(; ) = 0 ; (2.54)
X

� � L

b(� ) = 1 ; (2.55)

is called basic belief assignment (BBA). The quantityb(� ) can be understood as a
measure for the belief portion assigned to the hypothesis that the correct answer is in
� . However, no further information about the distribution of this amount of belief
portion to the subsets of� can be inferred. In other words, theb(� ) does not make
any additional claim about the hypothesis that the correct answer lies in a subset of
� . Every � 2 2L that satis�es b(� ) > 0 is called afocal element of the BBA. Based
on the BBA, the belief function is de�ned by

Bel(� ) =
X

� 0� �

b(� 0): (2.56)

The quantity Bel(� ) represents the total belief committed to the hypothesis� . It
can easily be veri�ed [63] that theBel(� ) and the Bel( �� ) with �� = L n� do not
necessarily add up to 1. It is a major di�erence from probability theory. Moreover,
another quantity P l(� ) = 1 � Bel( �� ) called plausibility is de�ned to describe the
extent to which one fails to doubt in� ,

P l(� ) =
X

� 0T
� 6=0

b(� 0): (2.57)

Hence, the probability of hypothesis� is bounded byBel and P l, Bel(� ) � P(� ) �
P l(� ); 8� � L .

Dempster's rule is a mathematical operation used to combinetwo BBAs induced by
di�erent pieces of evidence,b1 and b2,

b1� 2(� ) =

P
� 1

T
� 2= � b1(� 1)b1(� 2)

1 �
P

� 1
T

� 2= ; b1(� 1)b1(� 2)
; (2.58)

where � ; � 1; � 2 2 2L . Since Dempster's rule is commutative and associative, the
BBAs of diverse evidence can be combined sequentially in any arrangement. The
decision-making of DST is still open. There exists an interval of probabilities bounded
by Bel and P l. Consequently, simple hypotheses can no longer be ranked according
to their probabilities. Over the last thirty years, many proposals have been made
to conquer this uncertainty on probabilities. In this chapter, we use the well-known
pignistic probability [109] proposed by P. Smets, which hasbeen veri�ed by P. Smets
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and R. Kennes in [110] as a convenient and justi�ed mechanismfor converting a BBA
into a probability,

BetP (� ) =
X

� 0� L

b(� 0)
j�

T
� 0j

j� 0j
: (2.59)

If the readers are interested in DST, more information can befound in [111].

2.3.2.2 Dempster-Shafer Theory Based Clustering

In the framework of DST, we model the neighbors as pieces of evidence. They provide
support to the hypotheses that the pixel of interest (e.g. pixel i in the case given in
Fig. 2.5) belongs to the same classes of these neighbors. As depicted in Figure 2.5, it is

Figure 2.5. (a): The neighborhood con�guration of pixeli , L i . (b): The evidence pool.

a second order neighborhood of the pixel of interest, i.e. pixel i . All of its neighbors are
labeled, and can be used as evidence. The amount of support provided by a neighbor
� to the hypothesis that pixel i is assigned with the same label as pixel� relies on the
di�erence betweenui and the average of all theui 0 with l i 0 = l � . Hence, the variation
caused by the noise contained in the observation of the neighbors can be minimized.
Obviously, a small di�erence in the pixel intensities should indicate a great amount of
support.

We model the support provided by the neighbors as follows. Ifa neighbor � 2 N i
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belongs to classl � 2 L , its BBA is given as

b(� ) =

8
<

:

#� v� ; if � = f l � g;
1 � #� v� ; if � = L ;
0; otherwise;

(2.60)

where the#� and v� are determined by

#� =
exp(�  1ju� � � i j)

max� 02 N i exp(�  1ju� 0 � � i j)
; (2.61)

v� = exp
�

�  2
jui � � l � j

� l �

�
; (2.62)

where� l � and � l � are the mean value and standard deviation of classl � , � i is the median
of the pixel intensity of N i , and  1;  2 are positive constants. Thev� denotes the total
belief portion which is able to be provided by the pixel� 2 N i , and the #� evaluates
the quality of the evidence. This quality evaluation is based on the assumption that
the information supplied by an outlier should be less plausible. The manner of how
#� and v� react to the parameters 1 and  2 is qualitatively presented in Fig. 2.6.
The parameter  1 in Equation (2.61) manipulates the tolerance against outliers. If it
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Figure 2.6. The illustration of function exp(�  � x).

approaches in�nity, only those pixels whose intensity is identical to the median are
taken into account. In contrast, when 1 equals zero, all the pixels are considered to
be of the same quality. The parameter 2 in Equation (2.62) controls the total belief
portion assignment. When it is increased, the assignment ismore sensitive to the
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distance betweenui and � l � . The choice of 1;  2 will be justi�ed in Sec. 2.5. Moreover,
sincev� is distance dependent, it is necessary to normalize all the distance measures
into the same scale by dividing the measures by� l � as in Equation (2.62).

Dempster's rule considers all the possible combinations ofelements out of the power
set 2L . When the number of elements in the setL increases, the time consumed for the
BBA combination grows exponentially. There is an e�ective combination scheme for
the simple BBA derived from Dempster's rule by Denoeuxet al. in [63]. It considers
only those elements which are focals of the combining BBAs:

btotal (f lg) =

b(l )(f lg)
Q

l06= l
b(l0)(L )

K
; (2.63)

btotal (L ) =

Q

l2 L
b(l )(L )

K
; (2.64)

whereb(l ) is given by

b(l )(f lg) = 1 �
Y

� 2 N l
i

(1 � b� (f lg)) ; (2.65)

b(l )(L ) =
Y

� 2 N l
i

(1 � b� (f lg)) ; (2.66)

where N l
i � N i is the set of neighbors inN i belonging to the classl 2 L , b� is the

BBA associated with the neighbor� and K is the normalizing factor:

K =
X

l2 L

Y

l06= l

b(l0)(L ) + (1 � j L j)
Y

l2 L

b(l )(L ): (2.67)

After the information combination, there should be a �nal decision made on the com-
bined BBA btotal . We choose the most well known pignistic probability [109] for the
sake of decision-making. Due to the fact that focals ofbtotal are either elements ofL
or L itself, the results obtained from the pignistic level are identical to those from the
BBA function. Thus, the decision-making for pixeli is given by

l i = arg max
l2 L

btotal ;i (f lg); (2.68)

wherebtotal ;i is the combined BBA associated with pixeli .

2.4 EM Algorithm Assisted with Dempster-Shafer
Theory Based Clustering

In the previous sections, the generalized mixture model that assumes the independence
among pixels, EM algorithm and the Dempster-Shafer theory based clustering are



28 Chapter 2: Sonar Imagery Segmentation

presented. They have to be combined in the way illustrated inFigure 2.2. The idea
is that before the output of E-step (f wi;j j1 � i � Nu; j 2 L g) is forwarded to M-
step, it should be processed by the I-step (Dempster-Shafertheory based clustering)
to incorporate the neighborhood information. The input of the M-step is substituted
by f �wi;j j1 � i � Nu; j 2 L g,

�wi;j =
�

1; l i = j;
0; l i 6= j:

(2.69)

For unsupervised methods, the initialization is of great importance. Since the gamma
mixture has been widely adopted in the processing of radar [112] and sonar imagery
[25,49] to approximate the statistics of non-negative data, we initialize the model with
gamma mixture. Hence, the proposed method called E-DS-M can be summarized as
follows,

Step 1. The gamma mixture model is chosen for the initialization andits pa-
rameters are estimated as in [113]

Step 2. Run E-step with the help of Equation (2.35), and obtain
n

w(k)
i;j

o

Step 3. Perform a hard decision on
n

w(k)
i;j

o
, then get

n
l (k)
i

o

Step 4. Determine the BBA as shown in Equations (2.60), (2.61) and (2.62)

Step 5. Combine the BBAs with the assistance of Equations (2.63), (2.64),
(2.65), (2.66) and (2.67)

Step 6. Determine the l i and
n

�w(k)
i;j

o
by Equation (2.68) and Equation (2.69),

respectively

Step 7. Forward the
n

�w(k)
i;j

o
to the M-step, substitute thew(k)

i;j with �w(k)
i;j in Equa-

tions (2.42) and (2.43), and estimate the central moments ofeach class,
� (k+1)

j and � (k+1)
n;j with n = 2; 3 and 4 using Equations (2.42) and (2.43)

Step 8. Determine the types off U in Equation (2.32) with the help of Equa-
tions (2.27), (2.28), (2.30) and (2.29)

Step 9. Go back toStep 2 until the results converge or the number of maximum
iteration steps is reached

The comparison of EM and E-DS-M is represented in Figure 2.7.In sub�gure (b), the
estimated pdfs are illustrated. It is apparent that the inclusion of spatial correlation
among pixels does not increase the accuracy of the pdf estimation. However, it improves
the segmentation results by removing most of the clutters inthe background region.



2.5 The Numerical Studies of E-DS-M 29
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Figure 2.7. The comparison between segmentation results obtained by the EM with
generalized mixture model and the E-DS-M. (a): The SAS image containing a trun-
cated cone mine. (b): The pdf estimates obtained by the EM with generalized mixture
model and the E-DS-M. (c): The segmentation result providedby the EM with gen-
eralized mixture model. (d): The segmentation result provided by the E-DS-M.

2.5 The Numerical Studies of E-DS-M

Numerical tests are carried out on both real SAS data and synthetic data. The ripple-
like sediment is a great challenge for sonar image segmentation. Owing to the high
cost of sea trials, the availability of real sonar data is limited. We have only the SAS
data that is obtained from sea trails launched on at sediments. Thus, we simulate
the SAS data with ripple-like sediment to verify the reliability of E-DS-M. It is found
in our study that E-DS-M can provide almost perfect results on ripple-like sediments.
The performance gain against the methods in the literature can be easily observed.
Therefore, there is no necessity to use additional measuresfor the evaluation of the
results obtained from synthetic data. In contrast, due to the complexity of real SAS
images, a quantitative measure dedicated to image segmentation is required for the
performance evaluation.

We choose the MAP estimator which adopts an isotropic model for neighborhood
(MAP-ISO) given by Equation (2.50), the MAP estimator proposed by Reed et al.
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(MAP-Reed) using the energy function in Equation (2.51) and DEM [47] for compar-
ison. The maximization problem of the two posterior probabilities of MAP-ISO and
MAP-Reed is solved by the ICM algorithm.

2.5.1 Evaluation Measure for Image Segmentation

We employ in this chapter the variation of information (VI) [114] to evaluate the
segmentation results.

Let S denote a segmentation of the image, and it divides theD = f u1; u2; :::; uNu g into
groupsS1; S2; :::;SM l such that

S j

\
S k = ; and

M l[

j =1

S j = D ; (2.70)

where j 6= k. The number of pixels can also be given asNu = jD j and the pixel
number in S j is Nu;j = jS j j. Let another segmentation beS0 and it segments the
image into S0

1; S0
2; :::;S0

j 0; :::;S0
M 0

l
with group size ofN 0

u;j 0. The number of pixels in
the intersection ofS j and S0

j 0 is denoted asNu;jj 0,

Nu;jj 0 =


 S j

\
S0

j 0



 : (2.71)

VI measures the di�erence between two segmentations in termsof the information
entropy,

I VI (S; S0) = H (S) + H (S0) � 2I (S; S0); (2.72)

whereH (S) and I (S; S0) are de�ned as

H (S) = �
M lX

j =1

Nu;j

Nu
log2

Nu;j

Nu
; (2.73)

I (S; S0) =
M lX

j =1

M 0
lX

j 0=1

Nu;jj 0

Nu
log2

Nu;jj 0

Nu

Nu;j

Nu

Nu;j 0

Nu

: (2.74)

It is shown in Figure 2.8 that the VI provides us the measure on dissimilarity between
two segmentationsS and S0. If they are identical, the entropiesH (S) and H (S0) will
totally overlap with each other. The mutual information I (S; S0) equals toH (S). In
this case,I VI (S; S0) = 0. We substitute the result of S with the ground truth. Let
S0 denote the segmentation result obtained by di�erent segmentation methods. Con-
sequently, if the segmentation method works ideally, we have the evaluation measure
I VI = 0.
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Figure 2.8. The illustration of VI.

There are examples of di�erent segmentation results in Fig.2.9. The �rst one on the top
left of this �gure is the ground truth. The VI of the following 15 segmentation results
are computed against this ground truth, and their values aredepicted in Fig. 2.10. The
segmentation result 5 in Fig. 2.9 is identical to the ground truth. Thus, its VI is 0.

groundtruth, radius = 100 1. radius = 60 2. radius = 70 3. radius = 80

4. radius = 90 5. radius = 100 6. radius = 110 7. radius = 120

8. radius = 130 9. radius = 140 10. radius = 150 11. radius = 160

12. radius = 170 13. radius = 180 14. radius = 190 15. radius = 200

Figure 2.9. An example of the comparison among di�erent segmentation results. The
one on the top left of the �gure is ground truth. We calculate the VI of the following
segmentation results against this ground truth.
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Figure 2.10. The VI associated with the segmentation resultsin Fig. 2.9.

2.5.2 Experiments on Real SAS Images

There are eight real SAS images containing MLOs presented in Fig. 2.11. Their corre-
sponding ground truths are given in Fig. 2.12. Their dimensions are 100� 100 pixels.

In order to visualize the impact of 1 and  2, we vary them to reveal how the E-DS-M
reacts to the tuning of parameters. We compute theI VI of all the test images in
Fig. 2.11 and present the averages ofI VI over the eight images in Fig. 2.13.

Obviously, although the variation of 2 in (2.62) has some inuence on the performance
of image segmentation, it is neither signi�cant nor de�nite. In contrast, the perfor-
mance of image segmentation is highly dependent on the setting of  1 in (2.61). As  1

grows, more neighbors are recognized as outliers and their support to the corresponding
hypotheses is suppressed. The consequence is that the useful information embodied
in the neighbors could be ignored and the segmentation results of the E-DS-M are
impaired. There is signi�cant performance degradation around  1 = 0:2. According to
the results in Fig. 2.13, the E-DS-M has a satisfying performance when 1 is around
0:1. We �nd that the optimal parameter setting in this test is  1 = 0:1 and  2 = 1:4.

An example to illustrate the impact of  1 is shown in Fig. 2.14. It is an example of
Image 7. For simplicity, the parameter 2 is set to 1. It can be observed that the
increasing of 1 introduces much clutter in the background.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.11. The SAS images used for the evaluation of image segmentation methods.
Sub�gures (a)� (b) denote test image 1 to test image 8.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.12. Ground truths of the images in Fig. 2.11. Sub�gures (a)� (b) denote the
ground truth of test image 1 to test image 8.
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Figure 2.13. The averages of theI VI over the eight test images in Fig. 2.11.

° 1 = 0 :1 ° 1 = 0 :3 ° 1 = 0 :5 ° 1 = 0 :7 ° 1 = 0 :9

° 1 = 1 ° 1 = 1 :5 ° 1 = 2 ° 1 = 2 :5 ° 1 = 3

Figure 2.14. An example to illustrate the impact of 1 on the segmentation results. 2

is set to 1.
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Finally, we visualize the comparison of segmentation results in Fig. 2.15. The optimal
parameter setting for E-DS-M obtained in the numerical testis applied, i.e.  1 = 0:1
and  2 = 1:4. It is apparent in Fig. 2.15 that the results given by E-DS-Mcan provide
more precise segmentation results with less mislabeled pixels than other methods.

2.5.3 Experiments on Synthetic Images

The performance of E-DS-M on SAS images with ripple-like sediments is studied in
this subsection. There is a synthetic image whose dimensions are 300� 300 pixels, and
it contains cylinder mines. The object region and background are initially synthesized
separately. According to our empirical study, the gamma distribution can be used to
approximate the statistics of the pixel intensities of highlights and shadows in SAS im-
ages. The mean values and standard deviations of the gamma distributions chosen for
objects are� highlight = 120; � highlight = 10, and � shadow = 10; � highlight = 5, respectively.
The ripple sediment is simulated as given in [115]. This simulated sediment is slightly
corrupted by speckle noise. Finally, we superimpose the object region and sediment as
follows

usyn = 0:8uobject + 0:2uripple : (2.75)

Hence, the object regions in the resulting images are only approximately gamma dis-
tributed, since it also contains part of the sediment statistics.

The same parameter setting of 1 and  2 as in Fig. 2.15 is applied to the test on
synthetic images. The results are shown in Fig. 2.16. Comparing the results of E-DS-M
with those of MAP-ISO, DEM and MAP-Reed, it can be observed thatE-DS-M can
suppress the inuence of a ripple-like sediment very well. The segmentation result is
almost identical to the ground truth. Thus, it is veri�ed tha t E-DS-M is also reliable
when objects are lying on ripple-like sediments.

2.5.4 Computational Cost

The computational cost of the segmentation methods, i.e. MAP-ISO, MAP-Reed,
DEM and E-DS-M, should also be studied. The SAS image snapshots with di�erent
sizes have been employed. Only squared snapshots of the SAS imagery are considered.
The test image for the evaluation of computational cost is depicted in Fig. 2.17. Its
original size is 1000� 1000 pixels. We resize it into images with di�erent side lengths.
Three of them are presented as examples in Fig. 2.17. A computer equipped with an
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(a) (b) (c) (d) (e)

Figure 2.15. Examples of the segmentation results. Column (a) presents the sonar
imagery, in column (b) up to column (e) there are segmentation results obtained by
the methods E-DS-M, MAP-ISO, DEM and MAP-Reed, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 2.16. The numerical test on synthetic image: (a) synthetic image with ripple-
like sediment, (b) ground truth, (c)� (d) provide the segmentation results given by
E-DS-M, MAP-ISO, DEM and MAP-Reed, respectively.

Intel(R) Xeon(R) 2.93GHz processor is employed. The programsare written in Matlab.
All the four methods are iterative. Hence, the computational time depends on their
iteration numbers. The maximum iteration number of individual methods is set to
200. The di�usion iteration of DEM is set to 50, which is an empirical value obtained
in our study so that DEM can provide a good segmentation result. Although the time
required for every iteration in E-DS-M is high, it is still ane�cient approach since it
requires fewer iterations, i.e. usually fewer than 50 iterations. In contrast, MAP-ISO
and MAP-Reed often need more than 100 iterations before the convergence is reached.

As demonstrated in Fig. 2.18, the image sizes have a great impact on the computational
cost. For snapshots of smaller side lengths, the di�erence among methods is little. The
E-DS-M sometimes could require even longer processing timethan the others when the
image is smaller than 240� 240 pixels. This can be attributed to the fact that all the
four methods require only a few iterations for images with small sizes before reaching
convergence. The adoption of E-DS-M is then not very pro�table. With the increasing
of the image size, the advantage of choosing E-DS-M can be observed. There are several
locations on the curves of MAP-Reed and E-DS-M where the computational cost is no
longer increasing functions of the image size. This can be explained as follows. The
time required for the neighborhood con�guration histogramming in MAP-Reed and
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(a) (b)

(c) (d)

Figure 2.17. The test images used for the study of computational cost. The original
image is on the top left. There are three examples of the resized images in the following.
(a): side length = 1000 pixels. (b): side length = 720 pixels.(c): side length = 420
pixels. (d): side length = 120 pixels.
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Figure 2.18. The processing time of the image snapshots withincreasing size.
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the combination of BBAs in E-DS-M using Equations (2.63)� (2.67) is not a strictly
increasing function of the image size. One depends on how many di�erent cases of
the neighborhood con�gurations exist in the image, and the other is correlated to the
complexity of the neighborhood con�guration.

2.6 Conclusions

In this chapter, an expectation-maximization approach forimage segmentation is con-
sidered. This approach is utilized to obtain the shape information of mine-like objects.
The segmentation results are sent to the subsequent step of feature extraction for the
extraction of geometrical features.

A generalized mixture model is employed in this expectation-maximization approach, in
which the Pearson system is taken into account. Consequently, the generalized mixture
model can better approximate the statistics of synthetic aperture sonar imagery than
those conventional models, e.g. Gaussian mixture model. Moreover, the Dempster-
Shafer theory has been incorporated to describe the correlation between neighboring
pixels. A belief structure based on the pixel intensities has been proposed to quantify
the dependency between pixels. We developed an iterative approach called E-DS-M
for image segmentation by introducing the Dempster-Shaferclustering between each
E- and M-step. The proposed approach has been applied to the synthetic aperture
sonar images.

Compared with the methods in the literature, the proposed approach can considerably
enhance the quality of the segmentation results. The quantitative analysis of the
segmentation results shows that the E-DS-M can provide segmentation results with
higher accuracy and it also demonstrates another fact that E-DS-M is only sensitive
to the setting of one parameter. Therefore, it is reasonableto reduce the number
of parameters involved in the Dempster-Shafer theory basedclustering to one. The
optimal setting for parameters is obtained in numerical tests. Besides, the study of
computational cost demonstrates that E-DS-M is very e�cient with the increasing of
image size.





41

Chapter 3

Feature Extraction in Sonar Imagery

This chapter handles the feature extraction. It takes the images of the ROI and the
segmentation results obtained in the step of image segmentation as its input to extract
the texture features as well as the geometrical features. The extraction of features can
be divided into two di�erent phases, thesystem design phaseand object classi�cation
phase. During the system design phase, a large number of features that are probably
useful for the classi�cation of underwater objects are extracted. Due to the curse of
dimensionality (cf. Fig. 1.3), only a small part of the features are considered in the
phase of object classi�cation. The choice of relevant features, i.e. feature selection,
is executed in the system design phase and its results are used to guide the feature
extraction in the object classi�cation phase so that only those relevant features will be
extracted. We will introduce all the features considered inthe system design phase in
this chapter.

The results of MLO detection provide a database withM pieces of MLOs. Ev-
ery MLO can be represented by a vector, e.g. the vector ofm-th MLO is � (m) =
(� 1;m ; :::; � n;m ; :::; � NO ;m )T . The element� m;n for 1 � n � NO and 1 � m � M is the
m-th realization of the random variableXn . The random variableXn is usually referred
as a feature. Let the set of all features beO = fX 1; :::;Xn ; :::;XNO g, and obviously we
have NO = jOj features.

The features used for object classi�cation have been intensively studied in the literature,
such as geometrical features in [50] and the features dedicated to NAS imagery in
[51{53]. Since the presence of the object shadow is much morereliable than that
of the highlight in the imagery obtained by the NAS systems, feature extraction was
mainly focused on object shadows. However, this phenomenon is less remarkable for the
modern SAS systems. Moreover, the object highlights providethe direct information
about the object shape. Thus, it is unreasonable to exclude them in our application.

When a feature is very classi�cation relevant, its realizations should adopt very di�erent
values for those objects belonging to di�erent classes. Otherwise, it is considered as
insigni�cant. However, recent research has demonstrated that even the combination
of several individually insigni�cant features is possiblyable to create a very relevant
feature set [116]. An example is shown in Fig. 3.1. There are two featuresX1 and
X2. Individually considered, neither is able to help us to distinguish the class 1 from
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Figure 3.1. Combination of two features (X1 and X2) that are individually insigni�cant.
FeaturesX1 and X2 are presented along thex and y-axis, respectively. On the 2D plan
constructed by these two features, the objects belonging todi�erent classes can be
easily distinguished.

the class 2, cf. thex-axis and they-axis. There are major overlaps between objects
of di�erent classes. It is impossible to separate them into two classes with respect to
either feature X1 or feature X2. However, objects belonging to di�erent classes can
be easily distinguished while jointly considering features X1 and X2. Unfortunately,
the knowledge about this kind of feature combination that can dramatically improve
the distinguishing ability of the features is usually unavailable a priori . Hence, it is
practical to build a feature set with many features. In this chapter, we employ the
geometrical features from [50] and invariant moments in [117] to describe the shape of
the MLOs. They are applied to both the highlights and the shadows. Furthermore, we
propose several novel features for our applications. The texture features in [118, 119]
are included as well, since the deployment of the object on the seabed can alter the
characteristics of the seabed textures.

From the segmentation results, both object regions and object contours are available.
Therefore, geometrical features are divided into two subgroups: object region features
and contour features. Straightforwardly, this chapter canbe organized into three sec-
tions. In Secs. 3.1 and 3.2, the object region features and contour features are explained.
The texture features of the ROI are listed in Sec. 3.3.
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3.1 Object Region Features

The classi�cation of underwater objects based on their geometries has been considered
in the literature for a long time. Natural objects can have arbitrary shapes. Their
shapes are mostly much more complex than those of man-made objects that are usually
of square, circular, spherical forms and so on. Moreover, the size of man-made objects,
e.g. underwater mines, lies within a certain interval. Theywould not be arbitrarily
large or small due to the cost of production and transportation.

The length of the major and minor axes, i.e.lmajor and lminor with lminor < l major , the
area of the region (A) and the extent (Extent) have been widely used as region features.
The features, likelmajor , lminor and A, provide the information about the object size.
The Extent of a shape is given as follows:

Extent =
A

ABX
; (3.1)

whereABX is the area of the bounding rectangle that is the smallest rectangle enclosing
the object region [120]. The Extent reaches its maximum (i.e. Extent = 1) for a
rectangular object. When the object is an ideal circle, it equals to �

4 . With the
increasing of the dissimilarity to the rectangle, the Extent decreases itself. The principal
axes of a given region are de�ned as the two line segments thatcross each other
orthogonally in the centroid of the region and represent thedirections with zero cross-
correlation [121]. The covariance matrix of a given region is given by

CM =
1

Nregion

N regionX

i =1

�
x i � x �

yi � y�

� �
x i � x �

yi � y�

� T

(3.2)

=
�

cmxx cmxy

cmyx cmyy

�
;

where (x � ; y� ) is the centroid of the region with x � = 1
N region

P N region
i =1 x i ; y� =

1
N region

P N region
i =1 yi and Nregion is the number of pixels in the object region. The lengths

of the principal axes, i.e. lminor and lmajor , are equal to the two eigenvalues of the co-
variance matrix CM . So far another popular object region feature called eccentricity
(Ecc) can be calculated:

Ecc =
lmajor

lminor
; (3.3)

where Ecc� 1. It reaches the minimum value for the shape such as square orcircle
and the Ecc tends to in�nity as the shape approaches a straight line. Furthermore, we
include the relationship between the highlight and the shadow regions as features, i.e.
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area ratio (Rarea) and axis ratio (Raxis). The area ratio and axis ratio are de�ned as

Rarea =
Ashad

Ahigh
; (3.4)

Raxis =
lminor,shad

lminor,high
; (3.5)

where Ashad and Ahigh are the areas of the shadow and the highlight, respectively,
and lminor,shad and lminor,high are the lengths of minor principal axes of the shadow and
the highlight, respectively. In Fig. 3.2, two examples of the principal axes of object

(b)(a)

Figure 3.2. The principal axes of example objects. (a): The segmentation of a cylinder
mine. (b): The segmentation of a truncated cone mine. Thelminor is depicted in yellow
and the lmajor is in green.

regions are presented. Along the direction of the insonifying wave, the shadows are
located behind the highlights. The major axis and minor axisare depicted in green
and yellow, respectively. On the left side there is a segmentation of a cylinder mine
and the one of a truncated cone mine is placed on the right side. The geometry of
a shadow is correlated to the geometry of its highlight, which represents the shape
of the object. As shown in the �gure, the width of the shadow along the direction
that is orthogonal to the insonifying direction is dependent on the geometry of the
object, i.e. for a cylinder mine it is correlated to the length of the cylinder and for a
truncated cone mine it depends on the diameter of the truncated cone. Accordingly,
the shadow of a cylinder mine is probably much greater than the one of a truncated
cone mine. Consequently, the area ratio of a cylinder mine should be greater than the
one of a truncated cone mine. Besides, thelminor of a cylinder highlight is limited by the
diameter of the cylinder mine and it is mostly much shorter than any of the principal
axes of its shadow. In contrast, thelminor of the truncated cone's shadow is dependent
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on the diameter of the truncated cone. Although the highlightof a truncated cone is
not strictly circular due to the projection, its principal axes still have similar lengths as
the diameter of the truncated cone mine. Therefore, the axisratio of a cylinder mine
should be greater than the one of a truncated cone mine. The feature values of the
objects in our database are illustrated in Fig. 3.3.
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Figure 3.3. Feature values of the objects in our database,Rarea and Raxis.

Recently, Tanget al. [122] introduced a ring projection functionf ring (r ):

f ring (r ) =
Z 2�

0
ub(r; � )d�; (3.6)

whereub(r; � ) is a binary valued function in polar coordinates,

ub(r; � ) =
�

1; if point ( r; � ) locates in the object region
0; otherwise:

(3.7)

Analogously, we propose a similar projection, the radius projection function f radius (� ):

f radius (� ) =
Z r max

0
ub(r; � )dr; (3.8)

wherermax is the maximum radius length in the image. In order to make thetransfor-
mation scale-invariant, the normalized ring and radius projection, �f ring (r ) and �f radius (� ),
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are taken into account for further computation:

�f ring (r ) =
f ring (r )

max
r 0

f ring (r 0)
; (3.9)

�f radius (� ) =
f radius (� )

max
� 0

f radius (� 0)
: (3.10)

There are examples of ring and radius projection of a strip-formed object shown in
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Figure 3.4. The ring and radius projections. (a): An object, (b): ring projection,
(c): radius projection, (d): normalized ring projection and (e): normalized radius
projection.

Fig. 3.4. Its ring projection has one peak while its radius projection has two peaks. In
contrast, the ideal circular region has a linear increasingfunction with the slope of 2�
as its ring projection and its radius projection is a constant, 8� 2 [0; 2� ].

In discrete case, the normalized ring and radius projectionare sampled with Nring

and Nradius points, respectively. The discrete sequences of ring and radius projection
are geometrical descriptors. Their dimensions are usuallycompressed by methods like
wavelet transformation and PCA, which are out of the scope of this thesis. Thus,
we extract some features based on the statistical properties of the values of �f ring (r )
and �f radius (� ): ring projection skewness (" ring ), ring projection condensity (Denring ),
radius projection mean value (� radius ) and radius projection skewness (" radius ). They
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are de�ned as follows:

" ring =
1

N ring

P N ring
n=1

� �f ring (rn ) � � ring
� 3

�
1

N ring

P N ring
n=1

� �f ring (rn ) � � ring
� 2

� 1:5 ; (3.11)

Denring =
1

Nring

N ringX

n=1

�f ring (rn ) � r 0:5
n ; (3.12)

� radius =
1

Nradius

N radiusX

n=1

�f radius (� n ); (3.13)

" radius =
1

N radius

P N radius
n=1

� �f radius (� n ) � � radius
� 3

�
1

N radius

P N radius
n=1

� �f radius (� n ) � � radius
� 2

� 1:5 ; (3.14)

where� ring = 1
N ring

P N ring
n=1

�f ring (rn ) is the mean value of the normalized ring projection.
As discussed above, the di�erence in geometries is conveyed to the projection functions,
and accordingly the statistical properties such as skewness and mean value are distinct.
These distinctions can be clearly observed in Fig. 3.5. Due to the di�culty of displaying
4D space, we combine three out of the four features to create 3D feature spaces. It is
obvious that the cylinder can be easily di�erentiated from the truncated cone with the
help of ring and radius projection features.
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Figure 3.5. Feature values of the object highlights in our database. (a): The combi-
nation of " ring , Denring and � radius . (b): The combination of Denring ; � radius and " radius .

In addition, the well-known rotation invariant moments given by Hu [117] are consid-
ered. The image moments are invariant under translation, changes in scale, and also
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rotation. They consist of six absolute orthogonal invariants:

G1 = ~� 2;0 + ~� 0;2 (3.15)

G2 = ( ~� 2;0 � ~� 0;2)2 + 4 ~� 2
1;1 (3.16)

G3 = ( ~� 3;0 � 3~� 1;2)2 + (3 ~� 2;1 � ~� 0;3)2 (3.17)

G4 = ( ~� 3;0 + ~� 1;2)2 + ( ~� 2;1 + ~� 0;3)2 (3.18)

G5 = ( ~� 3;0 � 3~� 1;2)( ~� 3;0 + ~� 1;2)
h
(~� 3;0 + ~� 1;2)2 � 3(~� 2;1 + ~� 0;3)2

i
+ (3.19)

(3~� 2;1 � ~� 0;3)( ~� 2;1 + ~� 0;3)
h
3(~� 2;1 + ~� 1;2)2 � ( ~� 2;1 + ~� 0;3)2

i

G6 = ( ~� 2;0 � ~� 0;2)
h
(~� 3;0 + ~� 1;2)2 � ( ~� 2;1 + ~� 0;3)2

i
+ (3.20)

4~� 1;1(~� 3;0 + ~� 1;2)( ~� 2;1 + ~� 0;3);

and one skew orthogonal invariant,

G7 = (3 ~� 2;1 � ~� 0;3)( ~� 3;0 + ~� 1;2)
h
(~� 3;0 + ~� 1;2)2 � 3(~� 2;1 + ~� 0;3)2

i
� (3.21)

(~� 3;0 � 3~� 1;2)( ~� 2;1 + ~� 0;3)
h
3(~� 3;0 + ~� 1;2)2 � ( ~� 2;1 + ~� 0;3)2

i
;

where ~� i;j is the (i + j )-th order central moments of a given region [120].

3.2 Contour Features

The object contour refers to a closed curve denoting the boundary between object
region and background region. There are two examples depicted in Fig. 3.6. In discrete
case the contour is approximated byNcontour line segments, and there areNcontour

points/vertices on the contour. Letdcen(n) be the centroid distance,

dcen(n) =
q

(xL
n � xL

� )2 + ( yL
n � xL

� )2; (3.22)

where the centroid (xL
� ; yL

� ) of the contour is de�ned as [50]

xL
� =

1
6A

N contour � 1X

n=0

�
xL

n + xL
n+1

� �
xL

nyL
n+1 � xL

n+1 yL
n

�
; (3.23)

yL
� =

1
6A

N contour � 1X

n=0

�
yL

n + yL
n+1

� �
xL

nyL
n+1 � xL

n+1 yL
n

�
; (3.24)

where A = 0:5
�
�
�
P N contour � 1

n=0 (xL
nyL

n+1 � xL
n+1 yL

n )
�
�
� and (xL

n ; yL
n ) is the n-th vertex on the

contour L.
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Figure 3.6. Two examples of object contours. (a) and (c): Object segmentations.
The pixels inside the object region are depicted in white. The red curves are object
contours. (b) and (d): The object contours in left �gures areexclusively depicted in
gray.

Evidently, objects with larger sizes are inclined to have longer contours. The perimeter
of the contour (Pcon) is taken into consideration as a contour feature. Another feature
called compactness (Comp) is given as

Comp =
Pcon

A
; (3.25)

whereA is the area within the contour. The Comp achieves its minimumfor a circle
and approaches in�nity as the region tends to a straight line. Furthermore, features
such as circularity ratio (Rc;1 and Rc;2),

Rc;1 =
A
Ac

; (3.26)

Rc;2 =
A

P2
con

; (3.27)
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whereAc is the area of the circle having the same length as the perimeter of the contour,
circle variance (Rva),

Rva =
� d

� d
(3.28)

where � d and � d are the mean and standard deviation of the centroid distancedcen,
and solidity (Sol) of the contour in [50]

Sol =
A

Aconvex hull
; (3.29)

whereAconvex hull is the area of the convex hull [121] (cf. Fig. 3.7), are also included in
our feature setO.
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Figure 3.7. Convex hulls of objects. (a) and (c): Object segmentations. (b) and (c):
Object contours (in blue) and their convex hulls (in red). (b) denotes the contour of
object 1, and (d) is the contour of object 2.

The measures characterizing the smoothness of object contours can be used as features
to describe objects such as the case depicted in Fig. 3.7. Dueto production cost, a
man-made object is most likely to have common shapes, e.g. circles and squares. The
case of natural objects is probably much more complicated. Their shapes are expected
to be arbitrary. As in the case of object 2 in Fig. 3.7, because of the frequent transition
between concave and convex shapes, the convex hull can hardly approximate the shape
of this contour. We propose the roughness (V) of the contour, degree of curving (DoC)
and absolute curvature mean value (� mean) as contour features.
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The roughness (V) is de�ned as

V =
Pcon

Pconvex hull
; (3.30)

where Pcon and Pconvex hull are the perimeters of object contour and convex hull, re-
spectively. The straight line is the shortest way between two points. Therefore, the
Pconvex hull of object 2 is much shorter than itsPcon. The roughness approaches in�nity
when the object contour becomes unlimited rough. ThisV can also achieve a large
value when the shape is smooth but concave, e.g. a crescent. However, there is a
limitation for the feature value in this case. It cannot be arbitrarily large. Taking the
case in Fig. 3.7 as an example, theV of object 1 equals to 1:21 and the one of object
2 is 1:42. The � mean is de�ned as

� mean =
1

Ncontour

N contourX

n=1

j� n j; (3.31)

where� n is the contour curvature atn-th vertex,

� n =
_xn

L •yn
L � _yn

L •xn
L

�
( _xn

L )2 + ( _yn
L )2

� 1:5 ; (3.32)

where _xn
L , _yn

L are the �rst order derivatives, and •xn
L , •yn

L are the second order deriva-
tives. If an object contour is smooth, there could only be a few points with large value
of j� n j on it. The value of � mean will be small. The DoC quantifying the curving of a
contour is a weighted average of the absolute curvature values,

DoC =
P N contour

n=1 dn j� n j
Pcon

; (3.33)

where dn is the length of n-th line segment on the contour. The DoC describes the

V � mean DoC
Object 1 1:21 0:0099 0:5075
Object 2 1:42 0:0197 0:6140

Table 3.1. Feature values of the contours depicted in Fig. 3.7.

curving of the complete contour. The curvature values are weighted by the curve
lengths so that only those curves that are mostly highly curved can possess a great
value of DoC, e.g. the DoC of object 2 is greater than the one ofobject 1. The
feature values of the samples in Fig. 3.7 are summarized in Table 3.1. Furthermore,
the feature values extracted from the objects in our database are presented in Fig. 3.8.
The di�erence between cylinder mines, truncated cone minesand rocks can be clearly
characterized by the combination of these three features.
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Figure 3.8. Feature values of the object highlights in our database,V, � mean and DoC.

The Fourier descriptor is also widely adopted to specify theobject's geometry. Let

Dcen(nDFT ) =

�
�
�
�
�

NDFT � 1X

k=0

~dcen(k)e� j 2�k
N DFT

nDFT

�
�
�
�
�
; (3.34)

with ~dcen(k) = dcen(k) �
1

NDFT

NDFT � 1X

k0=0

dcen(k0)

be the magnitude of the Fourier coe�cients of the centroid distance function. We
implement anNDFT -point discrete Fourier transform (DFT). There are examples of the
Fourier descriptor depicted in Fig. 3.9. On the left there isa strip formed region, and
the right one is approximately circular. For clarity, the direct current (DC) component
is removed. Both of them condense their energy in the low frequency region. Since the
circular form in the top right of Fig. 3.9 loses most of its energy while removing the DC
component, itsDcen is less signi�cant than that of the strip form. Similar as thecase
discussed with ring and radius projection, the sequence ofDcen will not be used as a
shape descriptor. We propose instead two features characterizing the di�erence in the
statistical properties of Dcen, i.e. low frequency density (%LF ) and Fourier coe�cient
skewness ("DFT ).

%LF =
1

NLF

NLFX

nDFT =1

Dcen(nDFT ); (3.35)

"DFT =
1

NDFT

P NDFT
nDFT =1 (Dcen(nDFT ) � � cen)

3

�
1

NDFT

P NDFT
nDFT =1 (Dcen(nDFT ) � � cen)

2
� 1:5 ; (3.36)
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Figure 3.9. (a) and (b): Object segmentations, (c): centroid distances and (d): the
magnitude of their Fourier coe�cients.

where � cen = 1
NDFT

P NDFT
nDFT =1 Dcen(nDFT ), and NLF < N DFT denotes the low frequency

boundary index. As already discussed, the%LF of the strip is greater than that of a
circle. Hence, it is a proper feature to distinguish a cylinder from a truncated cone.
Moreover, the histogram ofDcen of a strip is inclined to have a longer tail due to the
signi�cant components in the low frequency band as shown in the bottom right of
Fig. 3.9. This di�erence can be captured by"DFT . The feature values extracted from
the cylinder mines and truncated cone mines are depicted in Fig. 3.10.

All of the above-mentioned geometrical features are summarized in Table 3.2. Except
the Rarea and Raxis, the geometrical features are applied to both the highlights and the
shadows. Therefore, we have a total of 56 geometrical features in the feature setO.

3.3 Texture Features

The texture refers to the repeating patterns of the local variation of pixel intensities.
It has been applied to the problems of remote sensing to classify radar imagery into
di�erent regions, e.g. forests, lakes and residential districts. In underwater acoustics,
there are di�erent types of seabed, e.g. the at bottom and ripple-like bottom as shown
in Fig. 3.11. They are able to be distinguished by texture features.



54 Chapter 3: Feature Extraction in Sonar Imagery

1 1.5 2 2.5 3 3.5
2.5

3

3.5

4

4.5

5

5.5

%LF

" D
F

T

 

 

cylinder mine
truncated cone mine

Figure 3.10. Feature values of the object highlights in our database,%LF and "DFT .

Feature Description
lmajor length of the major axis of a given region
lminor length of the minor axis of a given region

Extent extent of a given region
A area of a given region
Gi the seven Hu's invariant moments fori = 1; :::; 7

" ring ring projection skewness
Denring ring projection condensity

� ring radius projection mean value
" radius radius projection skewness
Rarea area ratio
Raxis axis ratio
Pcon perimeter of a given contour

Comp compactness of a given contour
Ecc eccentricity of a given region

Rc;1, Rc;2 circularity ratios of a given contour
Rva circle variance
Sol solidity of a given contour

DoC degree of curving
� mean absolute curvature mean value of a given contour

V roughness of a given contour
%LF low frequency density

"DFT Fourier coe�cient skewness

Table 3.2. Summary of the geometrical features.
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Figure 3.11. Two types of seabed in the sonar imagery, (a): at bottom and (b):
ripple-like bottom.

Furthermore, our study �nds that the presence of MLOs can change the texture char-
acteristics of the seabed. This change is dependent on the type of MLO, for instance a
cylinder has a heavier impact than a truncated cone because its shadow covers a larger
area. Hence, the texture is applicable to the MLO classi�cation. In this thesis, the
co-occurrence matrix (COOC) and gray level run length matrix (GLRL), which have
recently been recognized as standard features for texture classi�cation, are employed
by us.

The COOC matrix is de�ned over an image to be the distributionof co-occurring values
at a given o�set. In this chapter, let matrix ~u denote the 2D image with the dimension
of Nx � Ny, the pixel intensities of ~u are integers, and letU be the set of all possible
states of pixel intensities in~u and Ng = jUj. Mathematically, a co-occurrence matrix
B is de�ned over ~u, parametrized by an o�set (dx ; dy),

B(i; j jdx ; dy) = # f ((nx ; ny); (nx0; ny0) ) 2 (L x � L y) � (L x � L y)j (3.37)

nx � nx0 = dx ; ny � ny0 = dy; ~u(nx ; ny) = i; ~u(nx0; ny0) = j g;

where L x = f 1; 2; :::; Nxg; L y = f 1; 2; :::; Nyg, and i; j 2 U, # denotes the number of
elements in the set. Its dimension is ofNg � Ng. The o�set (dx ; dy) controls pixel pairs
in four spatial con�gurations: 0� (dy = 0; dx 6= 0), 45� (dy = � dx ), 90� (dx = 0; dy 6= 0)
and 135� (dx = dy), which are also illustrated in Fig. 3.12. Hence, theB does not only
depend on the distance between pairs of pixels but also theirrelative spatial positions.
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Figure 3.12. Spatial con�gurations of the pixel pairs: Pixels 1 and 5 construct 0� pairs
with pixel � ; pixels 2 and 6 construct 135� pairs with pixel � ; pixels 3 and 7 construct
90� pairs with pixel � ; and pixels 4 and 8 construct 45� pairs with pixel � .

There are many features de�ned over COOC in the literature [118,123]. According to
our studies in the sonar imagery, 12 features out of them are chosen. We de�ne

�B(i; j ) =
B(i; j )

P
i 2 U

P
j 2 U B(i; j )

; (3.38)

�B i (i ) =
X

j 2 U

�B(i; j ); (3.39)

�B j (j ) =
X

i 2 U

�B(i; j ); (3.40)

(3.41)

and the features are given as follows:

� Angular second moment (ASD)

ASD =
X

i 2 U

X

j 2 U

�B(i; j )2; (3.42)

� Inertia
Inertia =

X

i 2 U

X

j 2 U

(i � j )2 �B(i; j ); (3.43)
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� Correlation

Correlation =

P
i 2 U

P
j 2 U(ij ) �B(i; j ) � � �B i

� �B j

� �B i
� �B i

; (3.44)

where� �B i
; � �B j

; � �B i
and � �B j

are the means and standard deviations of�B i and �B j ,
respectively,

� Entropy
Entropy = �

X

i 2 U

X

j 2 U

�B(i; j ) log2
�B(i; j ); (3.45)

� Shade
Shade =

X

i 2 U

X

j 2 U

(i + j � � �B i
� � �B j

)3 �B(i; j ); (3.46)

� Inverse Di�erence Moment (IDM)

IDM =
X

i 2 U

X

j 2 U

1
1 + ( i � j )2

�B(i; j ); (3.47)

� Promenance

Promenance =
X

i 2 U

X

j 2 U

(i + j � � �B i
� � �B j

)4 �B(i; j ); (3.48)

� Sum Average (SA)
SA =

X

i2 �U

i �B i + j (i); (3.49)

where
�B i + j (i) =

X

i 2 U

X

j 2 U and
i + j = i

�B(i; j ); (3.50)

wherei 2 �U = f i + j ji; j 2 Ug;

� Sum Entropy (SE)
SE = �

X

i2 �U

�B i + j (i) log2
�B i + j (i) (3.51)

� Sum Variance (SV)
SV =

X

i2 �U

(i � SE)2 �B i + j (i) (3.52)

� Di�erence Variance (DV)

�B i � j (j) =
X

i 2 U

X

j 2 U and
ji � j j= j

�B(i; j ); (3.53)

DV = variance of �B i � j (j); (3.54)
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Figure 3.13. The con�guration of spatial directions in~u. There are gray level runs in
four directions: 0� ; 45� ; 90� and 135� .

� Di�erence Entropy (DE)

DE = �
X

j2 Û

�B i � j (j) log2
�B i � j (j); (3.55)

wherej 2 Û = fj i � j j; ji; j 2 Ug:

A gray level run is de�ned over the image~u to be a set of consecutive, collinear pixels
having the same gray value (i.e. pixel intensity). The length of the run length is
the number of pixels in the run [124]. The matrix element (uH ; nH ) of the GLRL
matrix ( H ) speci�es the number of times that~u contains a run of lengthnH , in the
given direction, consisting of pixels having gray valueuH for uH 2 U and nH 2 NH .
NH = jNH j is the number of di�erent run lengths that are taken into account. There
are four kinds of gray level runs with di�erent spatial directions as shown in Fig. 3.13.
Galloway proposed �ve features over GLRL,

� Short runs emphasis

RF1 =

P
uH 2 U

P
nH 2 NH

H (uH ;nH )
n2

HP
uH 2 U

P
nH 2 NH

H (uH ; nH )
; (3.56)

� Long runs emphasis

RF2 =

P
uH 2 U

P
nH 2 NH

H (uH ; nH )n2
HP

uH 2 U

P
nH 2 NH

H (uH ; nH )
; (3.57)
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� Gray level nonuniformity

RF3 =

P
uH 2 U

� P
nH 2 NH

H (uH ; nH )
� 2

P
uH 2 U

P
nH 2 NH

H (uH ; nH )
; (3.58)

� Run length nonuniformity

RF4 =

P
nH 2 NH

� P
uH 2 U H (uH ; nH )

� 2

P
uH 2 U

P
nH 2 NH

H (uH ; nH )
; (3.59)

� Run percentage

RF5 =

P
nH 2 NH

P
uH 2 U H (uH ; nH )

NxNy
: (3.60)

The implementation of texture features requires the discretization of pixel intensities.
How the discretization is realized is important for the texture features. For instance,
how many intervals are taken into account or whether nonlinear transform is demanded
to emphasize the information of low intensity value pixels.In order to study the e�ect
of discretization on the texture features, we adopt the following transforms in this
thesis:

~u = round
� u

int

�
; (3.61)

~u = round
�
uindex

�
; (3.62)

~u = round (logbase(1 + u)) ; (3.63)

where \round" is the operation of rounding the value to the nearest integer,u is the
element of the arrayu (i.e. the observation in Section 2.2), ~u is the element of the
integer valued image~u, and int is a positive integer. The one in Equation (3.61)
is a discretization with linear transform and another two discretization schemes with
typical nonlinear transforms are given by Equations (3.62)and (3.63).

In Fig. 3.14, Fig. 3.15 and Fig. 3.16 there are examples to demonstrate the e�ect of
the discretization with di�erent transforms. The linear transform has little impact
on the illustration of the image structures, cf. Fig. 3.14. In contrast, the nonlinear
transform in Fig. 3.15 and Fig. 3.16 can emphasize some partsof the image structures
depending on their parameter settings. In order to evaluatethe inuences of the
discretization schemes with di�erent parameters, a quantitative analysis to assess the
resulting features is carried out on the basis of our database. We choose the MI
(cf. Equation (4.1) in Chapter 4) of individual features forthis assessment. A great
value of MI indicates a high relevance of the associated feature. One discretization
scheme with a certain parameter setting can provide us with agroup of texture features.
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Figure 3.14. Linear discretization with di�erent int as shown in Equation (3.61).
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Figure 3.15. Nonlinear discretization with di�erent power indices as shown in Equa-
tion (3.62).

We calculate the MIs of individual features, as well as the average of these MIs, in this
group. In Fig. 3.17, we depict the curves denoting the averages of the MIs corresponding
to the discretization schemes with di�erent parameter settings.
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Figure 3.16. Nonlinear discretization with di�erent logarithm bases as shown in Equa-
tion (3.63).
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Figure 3.17. The MI averages of the texture features obtained by the discretization as-
sociated with di�erent parameters. (a): The discretization using Equation (3.61). (b):
The discretization using Equation (3.62). (c): The discretization using Equation (3.63).
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The linear discretization is not able to improve the featureextraction. In contrast, the
nonlinear transform can improve the texture feature extraction, but not always. The
best performance is obtained when the discretization adopts the nonlinear discretiza-
tion in Equation (3.62) with index = 0:5. Hence, images are discretized according to
Equation (3.62) with index = 0:5 before being forwarded to texture feature calculation.

3.4 Conclusions

This chapter deals with the feature extraction. The features involved in the design of
our automatic detection and automatic classi�cation system have been introduced as
well as their characteristics.

Even when the features are the key factors that have signi�cant inuence on the classi-
�cation performance, few authors are willing to make the e�ort to describe the details
about how their features are extracted as well as their associated motivations since it
seems to be trivial. For the sake of clarity and completeness, we have gone through
all of the features involved in the feature set in this chapter. Three types of features
are considered, namely object region features, contour features and texture features.
Besides the geometrical features that can be found in the literature, we proposed sev-
eral new geometrical features that are suitable to our application. Their extraction
methods, motivations and performances are described.

The discretization of the pixel intensity has a great inuence on the texture features
since the contrast of the image could be changed by using certain nonlinear transfor-
mation. This inuence is quantitatively studied. In our application, the best one is
the discretization scheme with nonlinear transform.
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Chapter 4

Feature Selection Using a Novel Relevance
Measure

A novel feature selection scheme is considered in this chapter. As mentioned in Chap-
ter 3, the feature selection is conducted during the system design phase (cf. Fig. 1.2).
Its results are used to guide the feature extraction in object classi�cation phase to ex-
tract those relevant features. They are designated to prepare the inputs of the fourth
step along the ADAC processing chain collaboratively. Without the knowledge about
the relevant features for our application, the feature extraction is designed to include
as many features as possible in the system design phase. The step of feature selection
deals with the removing of unwanted features from the setO so that the danger of
encountering the curse of dimensionality (cf. Fig. 1.3 in Chapter 1) can be avoided.

Figure 4.1. The �lter method for feature selection. There are NO features as input
on the left side, whereXn with 1 � n � NO denotes then-th feature. We chooseN 0

useful features out of the total number ofNO.

A widely adopted feature selection method that chooses the most relevant features out
of the feature set is called the �lter method [56] as shown in Fig. 4.1. Rather than
taking the classi�cation performance associated with speci�c classi�ers as the selection
criterion (i.e. wrapper methods), the �lter method adopts afeature relevance measure
to quantify the dependency of features on the types of objects. Mutual information
(MI) has been widely applied as a relevance measure [125]. Despite its ability to catch
arbitrary correlations between the features and the objecttypes, not all of the cap-
tured information can be interpreted by classi�ers, i.e. inreality, an arbitrary function
cannot always be perfectly approximated by a learning machine. Bellet al. in [126] pro-
posed a MI-based relevance measure to evaluate the additional classi�cation-relevant
information contributed by a candidate feature. Their relevance measure implicitly in-
corporated the idea of joint entropy minimization. It discarded the information which
is irrelevant for classi�cation regarding the training data. Features selected according
to the relevance measure in [126] could be able to separate objects of di�erent classes in



64 Chapter 4: Feature Selection Using a Novel Relevance Measure

training data perfectly. However, the generalization to test data could encounter prob-
lems due to the dissimilarity between training data and testdata which often occurs
in practice. For instance, if a set of test data is dissimilarto training data because of
the higher noise level in the test data, the features selected according to the relevance
measure proposed by Bellet al. might not be adequate for this set of test data. Ac-
cordingly, the performance of classi�cation could degrade. Brown et al. [127] reviewed
three �lter methods [128{130]. The relevance measures of these three methods consist
of two parts. One is the MI measuring the classi�cation-relevant information provided
by a candidate feature, and the other is a redundancy part quantifying the duplicate
information between this candidate feature and the features that are already selected.
The relevance measures are constructed by extracting the redundancy part from the
MI. The three methods are di�erent in the way how they determine the redundancy
part. In [128] and [130], �rstly, the amounts of duplicate information (ADI) between
the candidate feature and each already selected feature were computed and summed
up. Then, Battiti et al. in [128] derived the redundancy part by multiplying the sum
of ADI with a prede�ned factor, and Penget al. in [130] built their redundancy part
by dividing the sum of ADI by the number of selected features. In [127], the di�er-
ence between these two redundancy parts was reviewed and interpreted. On the one
hand, through a prede�ned factor, Battiti et al. implicitly quanti�ed their belief in the
assumption that features are pairwise class-conditionally independent. On the other
hand, the redundancy part of Penget al. inferred that a stronger belief was put in
the assumption that features are pairwise independent as the size of selected features
grows. Kwak et al. [129] improved the method in [128] by exploiting the additional
assumption that the information is uniformly distributed in the calculation of ADI.
However, the assumptions made in [128{130] do not generally hold in applications.
Moreover, one has to manually set how many features to choosewhen employing these
three methods. Alternatively, Kira et al. in [86] proposed a distance-based relevance
measure, i.e. Relief weight. It was used to describe the extent of the distinction
among di�erent classes. As the Relief weight increases, there is less overlap between
the classes. Accordingly, the features that have largest Relief weights are added to the
feature subset. The redundancy among features was not speci�ed and the setting of
the threshold for those highest Relief weights was alsoad-hoc.

Regarding to the limitation of the methods mentioned above,we propose a novel fea-
ture relevance measure called composite relevance measurein this chapter. It uses a
novel feature relevance measure called the composite relevance measure (CRM), which
combines the MI, Shannon entropy (SE) and the modi�ed Reliefweight (mRW). Both
linear and nonlinear combinations are considered. The MI supervises the su�ciency of
the selection. The consideration of SE in the CRM is crucial to avoid both over�tting
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and under�tting. The Relief weight was originally proposedfor binary-class problems
to evaluate individual features. It is extended to be not only applicable to multi-class
problems but also able to evaluate the relevance of the combinations of individual fea-
tures, i.e. feature sets. The inclusion of mRW helps in making the captured information
more manageable so that it can be learned by most of the classi�ers.

The remainder of this chapter is organized as follows. Sec. 4.1 reviews the MI and
conditional MI, and the mRW is presented in Sec. 4.2. The �lter method using a
novel feature relevance measure is introduced in Sec. 4.3. The numerical studies of the
proposed �lter method are carried out in Sec. 4.4.

4.1 Information based Relevance Measure

Let S 2 O be a selection of features, whereNS = jSj is the cardinality of the set
S. Let vector � (m)

S be a point in the spaceF induced by S for dim(F) = NS. The
random variable (RV) C denotes the class index of the objects, andc(m) 2 C is its m-th
realization, whereC = f c1; c2; :::; cN c g contains all possible values of class indices.

The MI, which quanti�es the information commonly found in two groups of RVs, e.g.
betweenC and S, is a suitable measure to specify the classi�cation-relevant information
contained in S. It is de�ned as

I (S; C) = H (C) � H (CjS); (4.1)

where the SE,H (C), and the conditional SE,H (CjS), are given as

H (C) = �
X

c2 C

p(c) log p(c); (4.2)

H (CjS) = �
X

c2 C

Z

F
p(c;� S) log p(cj� S)d� S: (4.3)

Moreover, the conditional mutual information (CMI) yields the net information that
can be provided by the candidate featureXn0 2 O0 = OnS whenS is known. TheOnS
denotes set subtraction ofS from O, and the CMI is de�ned as

I (Xn0; CjS) = H (CjS) � H (Cjf S; Xn0g) (4.4)

= I (f S; Xn0g; C) � I (S; C):

When the quantity I (Xn0; CjS) is large, it means that this candidate featureXn0 is still
a relevant feature, even when theS is given. Thus, this measure is very useful when a
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Figure 4.2. An illustration of MI and CMI. I (S; C) denotes the classi�cation-relevant
information contained in S, and I (Xn0; CjS) is the additional classi�cation-relevant
information contributed by Xn0. Moreover, I (S; Xn0jC) is the redundant information
betweenXn0 and S, which is classi�cation irrelevant.

sequential forward procedure is applied. An illustration ofMI and CMI is depicted in
Fig. 4.2.

In the introduction of this chapter, methods like MIFS [128], MIFS-U [129] and
mRMR [130] have been mentioned. The way they are used to assess the contribu-
tion of candidate features is going to be detailed here.

� MIFS: Mutual information based feature selection
The criterion of MIFS is given as

JMIFS (Xk) = I (Xk ; C) � {
X

X j 2 S

I (Xk ; X j ); (4.5)

in which the belief in the assumption of pairwise class-conditional independence

p(� k ; � j jc) = p(� j jc)p(� k jc); (4.6)

where� j ; � k are the realizations of featureX j and Xk , is quanti�ed by the factor
{ 2 [0; 1].

� mRMR: Minimum redundancy maximum relevance feature selection
The mRMR selects the features according to the measure

JmRMR (Xk) = I (Xk ; C) �
1

jSj

X

X j 2 S

I (Xk ; X j ); (4.7)
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in which the condition in Equation (4.6) is implicitly presumed to be valid and
the belief in the pairwise independence between features

p(� k ; � j ) = p(� k)p(� j ) (4.8)

is controlled by the size of selectionS. When NS approaches in�nity, the features
are believed to be totally pairwise independent.

� MIFS-U: Mutual information variable selection under uniform information dis-
tribution
In addition to MIFS, it assumes that the information is distributed uniformly
throughout the region of H (X j ) for X j 2 S. It evaluates the contribution of
candidate features by using

JMIFS-U (Xk) = I (Xk ; C) � {
X

X j 2 S

I (X j ; C)
H (X j )

I (Xk ; X j ); (4.9)

where the{ has a similar meaning as the one in Equation (4.5).

However, due to the limitation of their assumptions, they arenot adequate to pre-
cisely estimate the real contribution of the candidate features. Moreover, what these
measures are dealing with are the individual features. As mentioned in Chapter 3, the
combination of individually insigni�cant features is possible to create a very relevant
feature set, cf. Fig. 3.1. In that �gure, the MIs of the example featuresX1 and X2 are
I (X1; C) = 0 and I (X2; C) = 0, respectively. After combining both of them, we have
I (fX 1; X2g; C) = 1. This example indicates that the combination ofX1 and X2 can
provide more information together than by the sum of their parts, i.e. it is possible to
have the following inequality:

I (fX 1; X2g; C) > I (X1; C) + I (X2; C): (4.10)

Although the measure of RELFSS [126]

JRELFSS (Xk) =
I (f S; Xkg; C)
H (f S; Xkg)

(4.11)

handles the combination of candidate feature and selected features, it implicitly incor-
porates the empirical theorem ofminimization of joint entropy. This empirical theorem
is not necessarily valid for all practical applications, for instance the underwater target
recognition, cf. the performance analysis in [131].
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4.2 The Modi�ed Relief Weight

We proposed in [132] the novel distance measure

d
�

� (m1 )
S ; � (m2 )

S

�
= dM

�
� (m1 )

S ; � (m2 )
S

�
exp

0

@�
dM

�
� (m1 )

S ; � (m2 )
S

�

distmax

1

A ; (4.12)

wheredM represents the Manhattan distance (MD) between the two input vectors, and
distmax is the maximum distance, which is given by

distmax = max
m1 ;m 22f 1;:::;M g

dM

�
� (m1 )

S ; � (m2 )
S

�
: (4.13)

It is assumed that if an object has a relatively large distance to its nearest neighbors, it
could be considered as an outlier. The distance informationobtained from this object
is no longer plausible. Hence, we discount the distance in Equation (4.12) by an MD
driven factor, and its curve is depicted in Fig. 4.3. The non-decreasing curve shows that
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Figure 4.3. The curve of the proposed novel distance in Equation (4.12). The
distmax = 20 in this case. The dashed line denotes a distance without the correction

by exp
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dist max
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.

the dmRW stops increasing itself whendM approaches the maximum MD value distmax

(in the case shown in Fig. 4.3 distmax = 20). According to the proposed distance, we
�nd two neighbors in the neighborhood of� (m)

S ; one is the nearest neighbor� (hit ;m)
S in
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the same class of� (m)
S , and the other is the nearest neighbor� (mis ;m)

S out of the other
classes, which are di�erent from the one of� (m)

S . Then, the mRW assigned to the set
S is

W(S) =
1

M

MX

m=1

w(m); (4.14)

wherew(m) is given by

w(m) = d
�

� (m)
S ; � (mis ;m)

S

�
� d

�
� (m)

S ; � (hit ;m)
S

�
: (4.15)

According to the discussion above, the proposed distances ofan outlier to its � (mis ;m)
S

and � (hit ;m)
S will be close, since their MDs to the nearest neighbors are close to distmax ;

cf. Fig. 4.4. Due to this behavior, thew(m) of an outlier tends to zero. It means that
outliers have little inuence on the value ofW(S), i.e. their information is suppressed.
A huge mRW value indicates that the feature vectors for objects belonging to di�erent
classes are well separated. Hence, when the mRW ofS is large, it means that the
features inS are relevant.

Figure 4.4. An example to illustrate the modi�ed Relief weights (mRW) using features
X1 andX2. The feature vector� (m)

S for object m is an outlier. The Manhattan distances
are depicted. The values ofdM and d are presented on the right side. It can be seen
that the di�erence between d

�
� (m)

S ; � (hit ;m)
S

�
and d

�
� (m)

S ; � (mis ;m)
S

�
is much smaller

than the one betweendM

�
� (m)

S ; � (hit ;m)
S

�
and dM

�
� (m)

S ; � (mis ;m)
S

�
.

The values of di�erent features can cover very di�erent ranges because they can have
di�erent physical meanings. Therefore, the mRWs obtained from di�erent feature sets
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cannot be compared fairly. A scaling of the features is required. We normalize the
features against their standard deviation before forwarding them to the mRW evalua-
tion. In addition, the mRW should be invariant concerning the number of objects,M .
Therefore, the factor 1

M in Equation (4.14) is indispensable.

Figure 4.5. Objects are represented by feature vectors in di�erent feature spaces.
There are seven features inO, out of which three feature selections are built, namely
S1 = fX 1; X2g, S2 = fX 3; X4g and S3 = fX 5; X6; X7g. The feature vectors depicted in
(a), (b) and (c) are induced by the setsS1, S2 and S3, respectively.

There is an example presented in Fig. 4.5 to clarify the properties of the mRW. The set
O contains seven features and we build three feature selections with the features out of
O. For simplicity, they are set asS1 = fX 1; X2g, S2 = fX 3; X4g and S3 = fX 5; X6; X7g.
As a result, we getW(S1) = 0 :1989, W(S2) = 0 :0957 andW(S3) = 0 :3063. It is
observed that the extent of the overlap between classes in Fig. 4.5(b) is much greater
than that in Fig. 4.5(a). Accordingly, we haveW(S2) < W (S1). However, while
consideringS1 and S3, we �nd that although the extent of the overlap in Fig. 4.5(c)
is also greater than the one in Fig. 4.5(a), theW(S3) is still greater than the W(S1).
This could be attributed to the additional spatial dimension contributed by the third
feature of S3. Thus, it is unreasonable to compare the mRWs obtained in spaces of
di�erent dimensionalities.

4.3 Maximum Composite Relevance Using a Se-
quential Forward Search Scheme

In general, the selection process of features can be denotedas a function such that we
have

S = T (O); for S � O; (4.16)
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where T is the function used to select features. According to the data-processing
inequality [133], we haveI (T (O); C) � I (O; C), i.e. I (S; C) � I (O; C). There is a
possibility that the equality holds if C is independent ofO conditioned onS as follows,

I (O; CjS) = 0 : (4.17)

If a feature selectionS can ful�ll the condition in Equation (4.17), it is denoted asa
su�cient feature set (sFS). Obviously, if S = O, this feature selection is an sFS. The
chain rule of SE is

H (fX n1 ; Xn2 ; :::;Xn i g) =
iX

j =1

H
�
Xn j j

�
Xn j � 1 ; :::;Xn1

	�
; (4.18)

so that the H (S) is a non-decreasing function of the feature number inS. If there is
a feature Xn 2 O with H (Xn jOnXn ) = 0, this H (S) is able to achieve its saturation
beforeS = O. We apply the mutual information toolbox, which has been developed
by Brown et al. according to the methods presented in [127], to our database (cf.
Sec. 4.4.1), and estimate theH (S) and I (S; C) of the selections with increasingNS.
The results are illustrated in Fig. 4.6. The redundancy between features is high enough
so that both H (S) and I (S; C) can reach their saturation beforeNS reachesjOj.
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Figure 4.6. The curve of MI and SE with increasing number of features according to
their sequence in the database, (a) Shannon entropy and (b) mutual information. No
operation is made to rank the features regarding their relevance. The sequence of the
features is subject to their extraction. Thex-axis is number of the features that are
taken into consideration.
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Bell et al. in [126] pointed out that an sFS may not be unique. Consequently, an ex-
clusive consideration of MI is inadequate. As described in Sec. 4.2, the mRW evaluates
the feature relevance in an alternative way, in which the relevance is quanti�ed by a
distance measure rather than the information entropy. The consideration of the mRW
could help us in choosing an optimalS among the sFS's. However, the mRW provides
nothing about the data complexity, which is very important for avoiding under�tting
and over�tting. Thus, the inclusion of H (S) is also necessary. Feiet al. in [131] demon-
strated that feature subsets with largerH (S) are more likely to provide better results.
The joint consideration of MI, SE and mRW in the CRM can be realized through either
the weighted arithmetic average (Ja) or the weighted geometric average (Jg) as follows:

Ja(S) = (1 �  a;W �  a;H )I (S; C) +  a;W W(S) +  a;H H (S); (4.19)

Jg(S) = I (S; C)(1�  g;W �  g;H )W(S) g;W H (S) g;H ; (4.20)

where 0<  a;W ;  a;H < 1; 0 <  a;W +  a;H < 1 and 0<  g;W ;  g;H < 1; 0 <  g;W +  g;H <
1. A comprehensive assessment of the feature relevance is now available with the help
of the CRMs in Equations (4.19) and (4.20). Nevertheless, there is still a di�culty in
monitoring whether there are su�cient features selected inS, since the CRM contains
the distance measure mRW that does not provide any information about the amount
of the classi�cation-relevant information contained inS. Moreover, the discussion
in Sec. 4.2 has already shown that the comparison between mRWs associated with
di�erent NS is unreasonable. A higher dimensional feature vector can increase the
scale of the distance. In consequence, another measure excluding the consideration
of mRW is required to form a stopping rule. It is called the su�ciency of S. The
su�ciency associated with the CRM is de�ned by

G(S) = max f I (O; C) � I (S; C); H (O) � H (S)g: (4.21)

When there are enough features selected inS, the G(S) converges to zero. Evidently,
the S selected according to this su�ciency is an sFS. So far, our task of �nding the
optimal features is converted to the maximization of the CRMsubject to the conver-
gence ofG(S) to zero. The complete search space is the set of all possiblecombinations
of NS features out ofN for 1 � NS � N leading to an NP-hard problem. The most
commonly adopted sequential forward search (SFS) scheme ischosen to bypass this
di�culty. In SFS, the I (S; C) is �xed for each iteration loop, and the CMI in Equa-
tion (4.4) depends only onI (f S; Xn0g; C). Thus, the I (fX n0; Sg) is calculated with the
help of the implementation provided by Brownet al. in [127]. The proposed feature
selection algorithm called maximum composite relevance measure using a sequential
forward search scheme (MCRM-SFS) is depicted in Fig. 4.7. The MCRM-SFS employ-
ing the Ja(S) is denoted as MCRM-SFSA and the one usingJg(S) is MCRM-SFSG.
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Figure 4.7. The ow chart of the MCRM-SFS. In the shadow block, one chooses
either the left dashed path or the right dashed path. (a): When Ja is chosen, it is
MCRM-SFSA. (b): When Ja is chosen, it is MCRM-SFSG.

4.4 The Numerical Studies of MCRM-SFS

4.4.1 Database Description

The database for numerical tests is provided by ATLAS ELEKTRONIK GmbH Bre-
men. There are in totalM = 210 MLOs in this database, which includes 67 cylinder
mines, 118 truncated cone mines and 45 rocks; cf. Fig. 4.8. The feature set contains the
geometrical features of the MLOs and the texture features ofthe ROI as described in
Chapter 3. Considering both the highlights and the shadows,there are 56 geometrical
features (cf. Table 3.2). Moreover, we take the COOC matrix and GLRL matrix to
describe the textures. Due to a lack ofa priori knowledge about parameter settings
providing signi�cant features, we allowed several settings simultaneously. The setting
of COOC depends on the o�set between pixels, i.e. the absolute value ofdx and dy,
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(a) (b) (c)

Figure 4.8. Examples of the objects in our database: (a) a cylinder mine, (b) a trun-
cated cone mine and (c) a rock.

and their spatial relationship, i.e. 0� ; 45� ; 90� or 135� (cf. Fig. 3.12). All the four spa-
tial relationships are taken into account and the o�sets arechosen as 1; 2; 3; 5 and 10.
Accordingly, there are 4� 5 = 20 COOC matrices with di�erent settings, and each of
them can induce 12 features. Therefore, the number of COOC matrix based features is
240. The GLRL matrix also relies on parameters such as the maximum considered run
length and the spatial directions. We consider the four spatial directions in Fig. 3.13.
The maximum considered run length could be 10; 30 and 50. Then, there are 3� 4 = 12
GLRL matrices associated with di�erent settings. Every GLRL matrix can induce �ve
features. Thus, the number of the GLRL matrix based featuresequals 60. Finally,
there areNO = 356 features in the setO. All the features are normalized against their
standard deviation.

4.4.2 Classi�ers Applied in Tests

Four classi�ers are implemented for the numerical assessment, i.e. PNN is the proba-
bilistic neural network [60], KNN is thek-nearest neighbor algorithm, and KNND [63]
is the KNN assisted by Dempster-Shafer evidence theory, SVMG denotes the support
vector machine (SVM) [134] using a Gaussian kernel. Let set

E = f KNN, KNND, PNN, SVMG g (4.22)

be the set of the implemented classi�ers. The features selected by MCRM-SFS are
fed to those classi�ers. For the implementation of the SVMG, the toolbox created by
Canu et al. [135] is used. The width of the Gaussian kernel is set to 3, which is an
empirically optimal setting for our database. Since the data is not perfectly separable,
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we set the margin penalty equal to a moderate value of 1000. As for the KNN and the
KNND, the number of neighbors taken into consideration is an important parameter
for the classi�cation. In our studies, it is found that satisfactory results are mostly
achieved when seven neighbors are considered. In KNND, Euclidean distances are
converted to belief values, which denote the support provided to hypotheses regarding
the classi�cation of objects. The KNND makes classi�cation according to the total
belief assigned to individual hypotheses as detailed in [63]. The PNN described by
Duda et al. in [65] is employed. It is a three-layer neural network, i.e. consisting of the
input layer, the pattern layer and the category layer. Each unit of the input layer is
connected to all the units in the pattern layer. Each unit in the pattern layer, in turn,
is connected to one unit in the category layer. The free parameter associated with the
nonlinear function involved in PNN is set to 0:4.

4.4.3 Numerical Tests

Let � a = (  a;W ;  a;H )T denote the parameter setting vector associated with MCRM-
SFSA and let � g = (  g;W ;  g;H )T denote the one corresponding to MCRM-SFSG. A
setting of � a corresponds to a feature selection obtained by MCRM-SFSA and, simi-
larly, a setting of � g is associated with a feature selection given by MCRM-SFSG. In
order to �nd the optimal settings for MCRM-SFSA and MCRM-SFSG, we vary the
settings of � a and � g to obtain multiple feature selections. A feature selectionout of
them is chosen, and feature vectors are calculated according to this feature selection.
Then, these feature vectors are used as inputs of the classi�ers in Equation (4.22). The
accuracy of the classi�cation based on this feature selection can be evaluated, and the
performance associated with the corresponding parameter setting (i.e. � a or � g) can
be assessed as well. Hence, the search for optimal parameter settings for MCRM-SFSA
and MCRM-SFSG becomes possible. Since the number of objectsin the database is
limited, a leave-one-out scheme is used in the numerical studies. Classi�ers are trained
on a set that includesM � 1 objects out of the database. The test set contains the
single remaining object, on which the classi�cation test iscarried out. In order to test
through all the objects in the database, this leave-one-outscheme is repeatedM times.
Thus, every object in the database has been used as the test object once. Then, each
object has an associated classi�cation result. Hence, comparing these results with the
ground truth, the performance of the proposed �lter method can be evaluated by con-
sidering the classi�cation accuracy, which is quanti�ed bythe empirical classi�cation
rate

� =
mcorrect

M
; (4.23)
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where mcorrect is the number of objects whose classi�cation results are correct with
regard to the ground truth. When classi�ere2 E is used, the classi�cation rates of the
MCRM-SFSA and the MCRM-SFSG are denoted as� a;e(� a) and � g;e(� g), respectively.
They are depicted in Fig. 4.9 and Fig. 4.10. The cases associated with  a;W +  a;H � 1
and  g;W +  g;H � 1 are set to zeros in the �gures.
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Figure 4.9. The� a;e(� a) for e2 E corresponding to the features selected by MCRM-
SFSA. The x- and y-axes denote the a;H and  a;W , respectively. (a) The results
obtained by KNN, (b) by KNND, (c) by SVMG, (d) by PNN.

Analyzing the results given in Fig. 4.9 and Fig. 4.10, three facts are revealed. First of
all, the di�erences of classi�cation rates among di�erent classi�ers are not signi�cant.
Secondly, for the MCRM-SFSA, increasing the a;W can improve the classi�cation
results, which indicates the importance of the modi�ed relief weight. Finally, for the
MCRM-SFSG, the classi�cation results do not change signi�cantly as long as g;W > 0
is large enough.

For the comparison, the methods mentioned in the introduction, i.e. RELFSS [126],
mRMR [130], MIFS [128] and MIFS-U [129], have been implemented as reference. The
classi�cation rates using the features selected by RELFSS and mRMR are presented
in Table 4.1, and the classi�cation rates corresponding to MIFS and MIFS-U are given
in Table 4.2 and Table 4.3, respectively. Apparently, the performance of RELFSS is
worse than those of mRMR, MIFS and MIFS-U.

The implementation of RELFSS does not need a manual setting of the cardinality NS.
In contrast, the manual setting of NS is demanded for the methods mRMR, MIFS
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Figure 4.10. The� g;e(� g) for e2 E corresponding to the features selected by MCRM-
SFSG. The x- and y-axes denote the g;H and  g;W , respectively. (a) The results
obtained by KNN, (b) by KNND, (c) by SVMG, (d) by PNN.

Method KNN KNND SVMG PNN
RELFSS 0:7952 0:8000 0:8571 0:8143
mRMR 0:8667(5) 0:8762(8) 0:8810(9) 0:8619(5)

Table 4.1. The classi�cation rates of various classi�ers based on the selection methods
RELFSS and mRMR. For mRMR, the associated optimalNS-values are recorded in
brackets.

{ KNN KNND SVMG PNN
0 0:8667(11) 0:8762(11) 0:8810(9) 0:8619(9)

0:3 0:8667(7) 0:8714(7) 0:8857(14) 0:8667(9)
0:5 0:8476(8) 0:8714(11) 0:8952(11) 0:8810(5)
0:7 0:8381(7) 0:8524(7) 0:8714(12) 0:8429(3)
1 0:8286(8) 0:8286(8) 0:8571(13) 0:8524(10)

Table 4.2. The classi�cation rates of various classi�ers based on the selection method
MIFS. The associated optimalNS-values are recorded in brackets. The best results in
individual columns are highlighted in bold.
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{ KNN KNND SVMG PNN
0 0:8667(11) 0:8762(11) 0:8810(9) 0:8619(9)

0:3 0:8667(7) 0:8714(7) 0:8857(5) 0:8714(16)
0:5 0:8476(8) 0:8714(11) 0:8714(3) 0:8571(16)
0:7 0:8381(7) 0:8524(7) 0:8952(12) 0:8762(5)
1 0:8286(8) 0:8286(8) 0:8762(8) 0:8714(7)

Table 4.3. The classi�cation rates of various classi�ers based on the selection method
MIFS-U. The associated optimalNS-values are recorded in brackets. The best results
in individual columns are highlighted in bold.

and MIFS-U. The authors in [130] suggested probing with several possible values of
NS and employing the one with the best classi�cation rate. It isfound in our study
that the cardinality NS, which is greater than 20, can cause dramatic performance
degradation for the classi�cation using our database. Therefore, we varyNS from
1 to 20. EachNS is associated with a feature selection, i.e. a candidate. Feature
vectors of objects are calculated based on this candidate, and subsequently used as
inputs of a classi�er. Then, the classi�cation rate corresponding to this candidate can
be evaluated. Hence, there are 20 classi�cation rates associated with 20 candidates.
The candidate providing the highest classi�cation rate is chosen. This classi�cation
rate is recorded in the tables and so is its associatedNS in brackets; cf. the second
row of Table 4.1, as well as Table 4.2 and Table 4.3. Apparently, the optimal NS is
classi�er-dependent. A �xed global setting ofNS for all the four classi�ers would be
impractical. As a consequence, these three methods are very time-consuming. The
factor { required for the methods MIFS and MIFS-U, which has been mentioned in
the introduction, can take values in [0; 1] and its inuence on the performance can be
observed in Table 4.2 and Table 4.3. The results in both tables demonstrate another
fact that even the choice of an optimal{ is classi�er-dependent. Finally, it is obvious
that these classi�cation rates in Table 4.1, Table 4.2 and Table 4.3 corresponding to
the methods mRMR, MIFS and MIFS-U are obtained in their best cases.

The feature selection methods RELFSS and mRMR do not depend on additional pa-
rameters. When classi�ere2 E is applied, their results in Table 4.1 are denoted as
� RELFSS ;e and � mRMR ;e. The feature selection methods MIFS and MIFS-U are subject to
the setting of { . Thus, their results are denoted as� MIFS ;e({ ), � MIFS-U ;e({ ) with e2 E,
and { 2 [0; 1], respectively. A classi�cation performance gain indicator is de�ned to
compare the MCRM-SFSA and MCRM-SFSG with the four referencemethods men-
tioned above. Taking the classi�cation rates of classi�ere 2 E into consideration, the
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classi�cation performance gain indicator is given as follows:

qa;e(� a) = sgn (� a;e(� a) � pe) ; for MCRM-SFSA (4.24)

qg;e(� g) = sgn (� g;e(� g) � pe) ; for MCRM-SFSG

with pe = max f � RELFSS ;e; � mRMR ;e; �� MIFS ;e; �� MIFS-U ;eg;

where �� MIFS ;e and �� MIFS-U ;e denote the column-wise averages of� MIFS ;e({ ), � MIFS-U ;e({ )
in Table 4.2 and Table 4.3, respectively. In Fig. 4.11, theqa;e(� a) with � a 2 ~A =
f ( a;W ;  a;H )T j0 <  a;W ;  a;H ; 0 <  a;W +  a;H < 1g of MCRM-SFSA are depicted.
The qg;e(� g) corresponding to MCRM-SFSG with � g 2 ~G = f ( g;W ;  g;H )T j0 <
 g;W ;  g;H ; 0 <  g;W +  g;H < 1g are given in Fig. 4.12. The value of� Ref;e for dif-
ferent classi�ers can be found in the third row of Table 4.4.
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Figure 4.11. Theqa;e(� a) of various classi�ers for the selections obtained by MCRM-
SFSA: (a) qa;KNN (� a), (b) qa;KNND (� a), (c) qa;SVMG (� a) and (d) qa;PNN (� a).

The qa;e (� a) = 1 indicates that the MCRM-SFSA can outperform the four reference
methods when classi�ere is applied. Jointly observing the performances corresponding
to MCRM-SFSA, qa;e (� a) = 1 appears mainly in the region

A =
�

( a;W ;  a;H )T j0:35 �  a;W � 0:85; 0 <  a;H < 0:2
	

: (4.25)

Similarly, qg;e (� g) = 1 means that MCRM-SFSG outperforms the four reference meth-
ods. The case ofqg;e (� g) = 1 appears seldom when g;H > 0:6. It occurs mainly in the
region

G =
�

( g;W ;  g;H )T j0:85 �  g;W +  g;H � 0:95; 0 <  g;H � 0:6; 0 <  g;W � 0:7
	

:
(4.26)
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Figure 4.12. Theqa;e(� g) of various classi�ers for the selections obtained by MCRM-
SFSG: (a)qg;KNN (� g), (b) qg;KNND (� g), (c) qg;SVMG (� g) and (d) qg;PNN (� g).

Both regions express the fact that neither the mRW nor the SE should be overem-
phasized when assessing the relevance of the feature selections. Comparingqa;e(� a) in
Fig. 4.11 with qg;e(� g) in Fig. 4.12, we �nd that the MCRM-SFSG can outperform the
reference methods in more cases than the MCRM-SFSA.

Since the regions containing optimal� a and � g settings are found, the following discus-
sion is constrained to the classi�cation results that are obtained by using the features
selected with � a 2 A and � g 2 G. When classi�er e is employed, the average of
� a;e(� a) over A is denoted as �� a;e, and the average of� g;e(� g) over G is denoted as
�� g;e. The �� a;e and �� g;e are shown in the �rst and second row of Table 4.4, respectively.
Furthermore, the standard deviations of� a;e(� a) and � g;e(� g) over A and G are given

in the brackets of the �rst two rows as well, i.e.sa;e =
r

1
jAj

P

� a 2 A
(� a;e(� a) � �� a;e)

2 and

sg;e =
r

1
jGj

P

� g 2 G
(� g;e(� g) � �� g;e)2. The sa;e and sg;e are measures describing the perfor-

mance dispersion of MCRM-SFSA and MCRM-SFSG, while the parameter settings,
i.e. � a and � g, change overA and G, repsectively. Compared with thepe in the third
row of Table 4.4, although the MCRM-SFSA and MCRM-SFSG do notsteadily provide
better results, they are more robust to parameter settings.Besides, the MCRM-SFSA
and MCRM-SFSG are fast since there is no necessity to setNS manually.
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e KNN KNND SVMG PNN
�� a;e 0:8688 (0:0157) 0:8788 (0:0176) 0:8834 (0:0136) 0:8788 (0:0189)
�� g;e 0:8752 (0:0151) 0:8837 (0:0178) 0:8833 (0:0160) 0:8863 (0:0177)
pe 0:8667 0:8762 0:8819 0:8676

Table 4.4. The �� a;e and �� g;e are given in the �rst and second row, respectively, and the
sa;e and sg;e over A and G are given in the brackets. The best performance of reference
methods,pe, is recorded in the third row.

The feature selection's dependency on the classi�ers should also be studied. The
classi�cation performances of features selected by MCRM-SFSA, MCRM-SFSG,
RELFSS, mRMR, MIFS and MIFS-U can be summarized by the measures �� a;e, �� g;e,
� RELFSS ;e; � mRMR ;e, �� MIFS ;e and �� MIFS-U ;e, respectively. We calculate the range of vari-
ation � � of these measures over di�erent classi�ers, which describes the width of the
variation interval of the classi�cation rates over classi�ers. A small value of� � indi-
cates that di�erent classi�ers can provide similar classi�cation rates using the same
features selected by a certain method. In other words, the feature selection's depen-
dency on classi�ers is low. The� � of MCRM-SFSA and MCRM-SGSG are obtained by
max
e2 E

�� a;e � min
e2 E

�� a;e and max
e2 E

�� g;e � min
e2 E

�� g;e, respectively; cf. Table 4.4. Similarly, the� �

of RELFSS, mRMR, MIFS and MIFS-U are obtained by max
e2 E

� RELFSS ;e� min
e2 E

� RELFSS ;e,

max
e2 E

� mRMR ;e � min
e2 E

� mRMR ;e, max
e2 E

�� MIFS ;e � min
e2 E

�� MIFS ;e and max
e2 E

�� MIFS-U ;e � min
e2 E

�� MIFS-U ;e,

respectively.

The � � of di�erent feature selection methods are presented in the �rst row of Table 4.5.
Apparently, the � � of MCRM-SFSA and MCRM-SFSG are lower than those of the
reference methods. It means that they can provide the feature selections that are
suitable for a wider range of classi�ers.

Method RELFSS mRMR MIFS MIFS-U MCRM-SFSA MCRM-SFSG
� � 0:0619 0:0191 0:0285 0:0324 0:0146 0:0111

� E 0:8167 0:8714 0:8622 0:8648 0:8775 0:8821

Table 4.5. The comparison of the feature selection's dependency on classi�ers. The
dependency is expressed in terms of the range of the classi�cation rate variation over
the considered classi�ers,� � . In the second row,� E, the averaged classi�cation rates
over classi�ers are also presented for di�erent feature selection methods.

Moreover, the average classi�cation rates over classi�ers, � E, are also given in the second
row of Table 4.5. The� E of MCRM-SFSA, MCRM-SFSG, RELFSS, mRMR, MIFS
and MIFS-U are calculated by 1

jEj

P

e2 E
�� a;e, 1

jEj

P

e2 E
�� g;e, 1

jEj

P

e2 E
� RELFSS ;e, 1

jEj

P

e2 E
� mRMR ;e,

1
jEj

P

e2 E
�� MIFS ;e and 1

jEj

P

e2 E
�� MIFS-U ;e, respectively. The analysis of� E in Table 4.5 might
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lead to the conclusion that the improvements provided by MCRM-SFSA and MCRM-
SFSG are not signi�cant. However, with such a reasoning one would ignore the fact
that the performances for the reference methods, i.e. mRMR,MIFS and MIFS-U, are
obtained in their best cases. Considering their classi�cation rates in the second row of
Table 4.1, Table 4.2 and Table 4.3, the feature sets used for classi�cation are optimal
with respect to the classi�cation performance of each individual classi�er, and these
optimal feature sets associated with each individual classi�er are usually di�erent. In
contrast, the feature set obtained with MCRM-SFSA or MCRM-SFSG for a certain
parameter setting (either� a or � g) is equivalently utilized by all classi�ers in E. This
feature set is not exclusively chosen based on the classi�cation performance of a certain
classi�er, and it can be suboptimal for some individual classi�ers. From this point of
view, when MCRM-SFSA and MCRM-SFSG are applied, the performances presented
in the second row of Table 4.5 are not obtained with their optimal con�gurations.
Hence, the comparison of� E only demonstrates that the performances of MCRM-
SFSA and MCRM-SFSG are, at least, not worse than the performances of the reference
methods even for suboptimal settings.



4.5 Conclusions 83

4.5 Conclusions

In this chapter, we deal with the feature selection that takes place in the system
design phase. The results of the feature selection would be saved and utilized to
instruct the feature extraction in the object classi�cation phase. A sophisticated �lter
method using a novel feature relevance measure is proposed to select the most relevant
features out of the set that contains the features describedin Chapter 3. This feature
relevance measure, i.e. composite relevance measure, simultaneously takes the mutual
information, the Shannon entropy and the modi�ed Relief weight into consideration.
Both linear and nonlinear combinations of these measures are considered. The mutual
information is used to supervise the su�ciency of the selection. The consideration
of Shannon entropy in the composite relevance measure is important to avoid both
over�tting and under�tting. The modi�ed Relief weight is pr oposed to help �nd an
optimal feature selection among multiple su�cient featuresets. Since a complete search
of all the possible combinations of features leads to an NP-hard problem, a heuristic
method is adopted to construct the �lter methods MCRM-SFSA and MCRM-SFSG.

The MCRM-SFS is applied to select the features for the classi�cation of underwater
targets. The regions for optimal parameter settings in which the MCRM-SFS can
mostly outperform the reference methods are found. None of the mutual information,
the modi�ed Relief weight and the Shannon entropy can be overemphasized in the
construction of the composite relevance measure. Moreover, it can be concluded that
the nonlinear combination of Shannon entropy, mutual information and modi�ed Relief
weight can better evaluate the feature relevance. Comparedwith those methods in the
literature the MCRM-SFS is much faster since there is no requirement of a manual
setting of the number of selected features. In addition, theperformance variations of
the features selected by MCRM-SFS over di�erent classi�ersare the lowest. In other
words, the MCRM-SFS is able to provide the features which aresuitable to a wide
range of classi�ers. This advantage of the composite relevance measure can simplify
the design of an automatic detection and automatic classi�cation system to a great
extent, since it allows to decouple the optimal feature selection and optimal classi�er
selection process in two consecutive steps.
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Chapter 5

Object Classi�cation Using Ensemble
Learning

In this chapter, a reliable classi�cation of MLO is elaborated, i.e. the prediction about
the types of MLO. The features selected by the method introduced in Chapter 4 are
employed. It had been observed in many numerical studies that individual classi�ers,
e.g. [60,134,136{139], could be improved to a certain degree. Kelleret al. [137] have in-
corporated the fuzzy set theory into thek-nearest neighbor technique [136] to develop a
fuzzy k-nearest neighbor algorithm. Vertet al. [134] have improved the support vector
machine with their sophisticated kernels. As an improved version of the probabilistic
neural network given in [60], Streitet al. have proposed a generalized Fisher training
model in [138]. Instead of a Parzen probability density estimation [65], they used a
Gaussian mixture model to approximate the probability density function. Thus, the
number of nodes in the pattern layer can be reduced. In addition, Zhang has summa-
rized some of the most important developments in neural network classi�cation research
in [139]. However, possibly none of them is perfect due to the complexity of underwater
targets displayed in sonar images. Furthermore, the sets ofpatterns misclassi�ed by
di�erent classi�ers would not necessarily overlap. These observations motivated the
recent interest in the topic of ensemble learning. The ensemble learning refers to those
approaches that learn a target function by training a numberof individual classi�ers
and fuse their outputs. The complementariness among the outputs of di�erent classi-
�ers, which can be modeled as information sources, is able tobe utilized to promote
the classi�cation accuracy. The Dempster-Shafer theory has been demonstrated to be
very useful to manage the uncertainty in the information obtained from diverse sources
in Chapter 2, and it is also adopted in this chapter to ful�ll the joint consideration of
the classi�cation results provided by di�erent classi�ers. This adoption initiates a new
direction for the development of reliable ADAC systems devoted to target recognition
in SAS imagery.

Various classi�er combination schemes have been devised and it has been indicated that
some of them consistently outperform a single best classi�er, e.g. [66{68, 74]. There
are two very popular structures for the design of ensemble learning schemes, namely
the multistage topologyand the parallel topology. The multistage topology [75{80] has
gained great attention for a long time due to its e�ciency, whereby objects are classi�ed
by simple classi�ers using small sets of simple features in combination with reject
options on individual stages. The parallel topology, e.g. [69{71, 73, 81{85], depicted
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in Fig. 5.1 is also widely applied in ensemble learning because of its robustness. In
this thesis, we adopt this topology. This approach applied to the fusion of classi�ers
depends on the outputs of classi�ers. Generally speaking, the output information that

Figure 5.1. An ensemble learning scheme using the parallel topology.

various classi�ers supply can be divided into three levels [70]:

1. The abstract level : A classi�er only provides a unique indexc 2 C.

2. The rank level : A classi�er arranges all the class indices belonging toC in a
queue with the index at the top being the �rst choice.

3. The measurement level : A classi�er assigns each index inC a con�dence value
to denote the degree of support to the hypothesis that an object has the class
index.

The abstract level and the rank level do not provide the amount of support behind the
hypothesis that a MLO could be assigned with a certain class index. When only outputs
on the abstract level or rank level are available, a majorityvote, e.g. [81{84], can be
adopted to fuse these outputs. When the classi�ers provide results on the measurement
levels, an average or some other linear combination scheme of the con�dence values has
been proposed [69{71]. Recently, more sophisticated techniques, such as Dempster-
Shafer theory (DST) techniques [70, 73, 85, 140, 141], have also been widely used. An
important issue related to DST techniques is how to set the basic belief assignment
(BBA). Zhang et al. [85] and Xu et al. [70] used empirical knowledge to assign belief
portions, and Rogova [73] suggested the distance between the reference vector and the
object vector to be the basis for BBA. However, the choice of a reference vector is
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not an easy task since the cluster of one class is not necessarily unique in the feature
space. In particular, Mignotte et al. [140] and Fawcettet al. [141] applied the DST
to object classi�cation in sonar imagery. Mignotteet al. derived their BBA from a
confusion matrix. Fawcettet al. introduced three kinds of speci�cations for BBA. Two
of them required empirical knowledge, which may limit the extent of their applications.
Although the third BBA speci�cation was nonempirical, the obtained BBA was very
intricate, and it could make the combination of BBAs computationally expensive.

In this chapter, an ensemble learning scheme using DST is proposed for mine type
classi�cation. In the derivation of BBA, the following two parts are considered. One is
the support to the hypotheses provided by classi�ers and theother one is the measure
quantifying the reliability of the classi�ers themselves.The �rst part (object part) is
usually unequal for di�erent test objects and the second one(classi�er part) is �xed for
each classi�er. Hence, the belief assigned to the hypothesesby the BBA is the product
of the object part and the classi�er part. To our best knowledge, it is the �rst time
that DST is applied in SAS imagery.

This chapter is organized as follows. Sec. 5.1 describes thesimple nontrainable com-
biners as well as the combiner using the DST technique proposed by Xu et al. The
proposed model of multiclassi�er combination in the framework of DST is presented in
Sec. 5.2. The classi�cation results can be found in Sec. 5.3.

5.1 Review of Classi�er Combination Approaches
Using Parallel Topology

5.1.1 Simple Nontrainable Combiners

As already de�ned in the previous chapter,C = f c1; :::cN c g contains all the class labels,
and a classi�er is denoted bye2 E, whereE is the set of all the implemented classi�ers
(base classi�ers). For a test object, letye(cn ) be the support provided by classi�ere to
the hypothesis that this test object is assigned with labelcn 2 C. The class labelcn of
a test object is given by

c = arg max
cn 2 C

f(cn ); (5.1)

wheref is a combination function. The combination functionf can be chosen in many
di�erent forms. The most popular choices are:
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� Average rule:

f(cn ) =
1

jEj

X

e2 E

ye(cn ): (5.2)

� Maximum rule:
f(cn ) = max

e2 E
ye(cn ): (5.3)

� Median rule:
f(cn ) = median

e2 E
ye(cn ): (5.4)

� Product rule:
f(cn ) =

Y

e2 E

ye(cn ): (5.5)

The above-mentioned schemes are called nontrainable combiners, because other than
the training of individual base classi�ers there are no extra parameters that need to be
trained. The ensemble is ready for operation as soon as the base classi�ers are trained.
Hence, due to their simplicity the nontrainable combiners have been widely used for a
long time.

5.1.2 Combination of Classi�ers Using the Method of Xu et
al .

The DST adopted in this chapter has been introduced in Chapter 2.3.2. The com-
bination method proposed by Xuet al. in [70] works on the abstract level of the
classi�er output. In their framework, given a test object, it can be classi�ed to class
c 2 C

S
fCreject g, where the Creject denotes that the classi�er has no idea from which

class the test object comes. Accordingly, there is a performance measure that quanti-
�es the fraction of the object being classi�ed toCreject , i.e. rejection rate. According
to their de�nition, the substitution rate denotes the fraction of the falsely classi�ed
objects, and we have� + rs + rr = 1. Their approach works in the circumstance that
the identi�cation rate ( � ), substitution rate (rs) and rejection rate (rr ) of individual
classi�ers are available.

When classi�er e2 E provides a prediction that an object belongs to classcn 2 C, the
BBA is given as 8

<

:

be(
 ) = �; for 
 = f cng;
be(
 ) = rs; for 
 = Cnf cng;
be(
 ) = rr ; for 
 = fCreject g:

(5.6)
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When classi�er eclassi�es the object as classCreject , the BBA of Xu et al. has only one
focal, be(fCreject g) = 1. This formalism of BBA considers only the classi�er partwhich
provides the overall performance information of individual classi�ers. The information
speci�cally correlated to individual objects is overseen.

5.2 A Novel Proposal for the Classi�er Combina-
tion in DST

5.2.1 The Construction of Basic Belief Assignment

In order to derive our ensemble learning in the framework of DST, the classi�cation
result of an individual classi�er is viewed as a piece of evidence. Subsequently, a BBA
is induced from this piece of evidence. The BBA proposed in this paper is constructed
of two parts, i.e. the object part and the classi�er part. Theobject part, which is
a non-empirical part, gives the information about how much support a classi�er can
provide to a certain hypothesis out of the setC. The classi�er part, which depends on
empirical knowledge, quanti�es the quality of the judgmentgiven by a classi�er. Hence,
the support provided by the object part should be discountedby the classi�er part. Let
E be the set of all the implemented classi�ers. Obviously, there are ME = jEj BBAs
induced from the classi�cation results of the implemented classi�ers. The classi�er part
and object part associated with classi�ere 2 E are denoted asce and oe, respectively.
Therefore, the BBA induced from the result of classi�ere is given as follows:

be(
 ) =

8
><

>:

ceoe(
 ); for 
 = f cng
1 �

P

cn 2 C
be(f cng); for 
 = C

0; otherwise

(5.7)

wherece; oe are the classi�er part and object part corresponding to classi�er e respec-
tively, cn 2 C, 0 � ceoe(
 ) � 1 and 0�

P
cn 2 C be(f cng) � 1. In our application, there

are four kinds of classi�ers adopted and they were already clari�ed in Equation (4.22).
Now, based on the empirical results obtained for each classi�er e2 E, the classi�er part
and object part are speci�ed as follows.

The classi�er part, ce, requires the knowledge of the classi�er's performance gained
from the experimental observations. Intuitively without any a priori knowledge about
the performance of individual classi�ers, thece of all classi�ers is set equally, e.g.
ce = 1; 8e2 E. When prior knowledge about the classi�er's performance isavailable, it
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enables a more reasonable setting of the classi�er part. Thedetails about the setting
will be given in Sec. 5.3.

The object part, oe, reveals the support assigned by classi�ere to the hypotheses out
of C, whereoe(
 ) speci�es the support dedicated to hypothesis
 . The construction
of oe is described as follows.

� KNN : The oKNN depends on the number of training objects of di�erent classes
in the neighborhood, e.g. the support associated with classcn 2 C is mo(f cn g)

mKNN
,

wheremKNN denotes the number of all training objects in the neighborhood of a
test object andmo(f cng) is the number of training objects in this neighborhood
belonging to classcn .

� KNND : The oKNND depends on the belief value generated by KNND. The
KNND models the neighboring training objects as evidence and combines their
BBAs by Dempster's rule to make the classi�cation of a test object. Accordingly,
the support associated with hypothesisf cng depends onbo(f cng); cn 2 C, where
bo is the combined BBA obtained by combining the BBAs of nearest neighbors.

� SVMG : The oSVMG depends on the distance of the test object to the dis-
crimination surface in the feature space,do(f cng); cn 2 C. The one-against-all
scheme [142] is adopted. The distancedo(f cng) to the discrimination surface
that divides the feature space into classcn and non-classcn describes the support
provided to the hypothesisf cng. A large distance indicates a great amount of
support for the hypothesisf cng.

� PNN : The oPNN depends on the posterior probability provided by PNN, e.g.
the support associated with hypothesisf cng is po(f cng); cn 2 C.

Hence, the object part can be summarized as follows:

oe(f cng) =

8
>>>>>><

>>>>>>:

mo(f cn g)
mKNN

; for e= KNN ;
bo(f cn g)P

cn 02 C
bo(f cn 0g) ; for e= KNND ;

exp(do(f cn g))P

cn 02 C
exp(do(f cn 0g)) for e= SVMG ;

po(f cng); for e= PNN ;

(5.8)

wheremKNN denotes the number of the training objects in the neighborhood of a test
object for KNN, and mo(f cng) is the number of training samples in the neighborhood
belonging to classcn 2 C. As for the case of SVMG, there is a possibility that the
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distance measure for a certain hypothesis is negative, cf. Fig. 5.2. When the discrim-
ination surface divides the training data into classcn and non-classcn , the negative
distance means that the test object and training objects belonging to the classcn do
not locate on the same side of the discrimination surface. However, the support to a
hypothesis cannot be negative. Hence, it is transformed by anexponential function, cf.
Equation (5.8). When the distancedo(f cng) approaches negative in�nity, the support
to the hypothesis that this test object can be classi�ed to classcn becomes zero, as
illustrated in Fig. 5.3.

Figure 5.2. An illustration of object part for SVM. The training data is divided into
three classes,c1; c2; c3 2 C. The green star represents a test object. Each line denotes
a discrimination surface and divides the training data intoclasscn and non-classcn for
cn 2 C. In (a), although the test object has the longest distance tothe red line, this
distance is negative. The associated hypothesis has the least support. In (b), all the
three distances are negative. In this case, the hypothesis corresponding to the least
absolute distance has the greatest support.

It can be easily proven that
P

cn 2 C
oe(f cng) = 1. If the prediction of classi�er e is 100%

credible, thece is set to 1. In this case, we can �nd thatbe(C) = 0. Otherwise, we have
ce < 1. Accordingly, be(C) > 0, wherebe(C) > 0 describes the degree to which one can
not discriminate the hypothesis out of the setC.

5.2.2 The Application of Dempster's Rule and the Decision
Rule

In Section 2.3.2, Dempster's rule is adopted to combine the BBAs obtained from the
neighboring pixels. An e�ective combination scheme which was derived by Denoeuxet
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Figure 5.3. The exponential of distancedo. It makes sure that the support is non-
negative. When thedo approaches negative in�nity, the support becomes zero.

al. [63] is implemented in order to alleviate the computation load involved in combining
BBAs. However, it is designated to the simple BBA in Equation (2.60). The BBA
(cf. Equation (5.7)) applied to the ensemble learning in this chapter is not a simple
BBA. However, it is still the case that most of the elements in the power set 2C are not
focals of this BBA. Hence, Dempster's rule can be simpli�ed as follows. Let Em

n � E
be the n-th subset that satis�es jEm

n j = m with 1 � n � M and M =
� M E

m

�
, and

accordingly let �Em
n = EnEm

n denote its complementary set. The combined BBA,b� , is
given as

b� (
 ) =

8
>>>><

>>>>:

b0
� (
 )

b0
� (C)+

P

ci 2 C
b0

� (f ci g) ; for 
 = f cng

b0
� (C)

b0
� (C)+

P

ci 2 C
b0

� (f ci g) ; for 
 = C

0; otherwise

(5.9)

whereb0
� is de�ned as

b0
� (� ) =

8
>>>><

>>>>:

M EP

m=1

MP

n=1

 
Q

e2 Em
n

be(� )
Q

e02 �Em
n

be0(C)

!

; for � = f cng
Q

e2 E
be(C); for � = C

0; otherwise

(5.10)

The �nal decision on object classi�cation can be obtained bymaximizing the pignistic
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probability, i.e.

c = arg max
cn 2 C

X

� � C

b� (� )
jf cng

T
� j

j� j
: (5.11)

Since the focal elements ofb� are also either singletonsf cng � C or C itself, Equa-
tion (5.11) can be simpli�ed to

c = arg max
cn 2 C

b� (f cng): (5.12)

The complete classi�er combination process can be summarized as follows, cf. Fig. 5.4.

1. Take the features provided by the step of feature extraction, which is guided by
the results obtained with MCRM-SFS.

2. Run the classi�cation by using the classi�ers inE and save their outputs.

3. Construct four BBAs (be) using the outputs of classi�ers inE according to Equa-
tion (5.7) and Equation (5.8).

4. Fuse the BBAs using Equation (5.9) and Equation (5.10) to obtain the bensemble.

5. Classify the test object according to the rule given in Equation (5.12).

Figure 5.4. The illustration of the proposed ensemble learning scheme.

5.3 The Numerical Studies of Ensemble Learning

In this section, the database described in Chapter 4.4.3 is utilized to study the ability of
ensemble learning in improving the classi�cation results.We use the features provided
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by the methods MCRM-SFSA and MCRM-SFSG. Rather than using anindividual
classi�er in E, the classi�cation in this subsection is made by ensemble learning. Given
a parameter setting, either� a or � g, features are selected and they are used for all
the four classi�ers in E. We obtain the �nal classi�cation of test objects based on the
combination of the results of these four classi�ers. The combination scheme is either the
one proposed in Sec. 5.2, or some other classi�er combination scheme in the literature
for the sake of comparison, cf. Sec. 5.1. The leave-one-out scheme is also adopted
and repeatedM times, so that all the M objects in the database have the associated
classi�cation results obtained by ensemble learning. Therefore, the performance of the
ensemble learning schemes can also be evaluated by considering the classi�cation rate in
(4.23). The classi�cation rate is denoted as� a;en(� a) when MCRM-SFSA is employed
to select features for the ensemble learning, and accordingly as � g;en(� g) when MCRM-
SFSG is used. The ensemble learning performance gain indicator is de�ned as follows

Qa;en(� a) = sgn
�

� a;en(� a) � max
e2 E

� a;e(� a)
�

; for MCRM-SFSA, (5.13)

Qg;en(� g) = sgn
�

� g;en(� g) � max
e2 E

� g;e(� g)
�

; for MCRM-SFSG.

The choice ofce requiresa priori knowledge of the classi�er's performance. In Sec. 4.4
the performances of individual classi�ers are presented. We choose the average of
the � a;e (� a) over ~A as the classi�er part, when MCRM-SFSA is applied for feature
selection,

ca;e =

8
>><

>>:

0:8183; for e= KNN ;
0:8243; for e= KNND ;
0:8462; for e= SVMG ;
0:8134; for e= PNN :

(5.14)

When MCRM-SFSG is utilized for feature selection, the average of the� g;e (� g) over
~G is used,

cg;e =

8
>><

>>:

0:8568; for e= KNN ;
0:8660; for e= KNND ;
0:8752; for e= SVMG ;
0:8609; for e= PNN :

(5.15)

We denote the case thata priori knowledge of the classi�ers is known asT1. Moreover,
we also choosece equal for all the four classi�ers to test the stability of ourmethod when
no a priori knowledge is available, and this case is denoted asT2. The quantitiesQa;en

and Qg;en of the proposed ensemble learning scheme are shown in Fig. 5.5 and Fig. 5.6,
respectively. The ensemble learning performance gain indicator equal to 1 indicates the
fact that the ensemble learning can improve the classi�cation rates regarding individual
classi�ers. The results shown in Fig. 5.5 and Fig. 5.6 demonstrate that except for
several settings, in both cases, i.e. forT1 and T2, the proposed scheme improves the
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Figure 5.5. TheQa;en (� a) obtained by the proposed ensemble learning scheme. Fea-
tures are selected by MCRM-SFSA. The region without grids corresponds to the set-
tings  a;W +  a;H � 1. (a) The ca;e chooses the settingT1 in (5.14), (b) the ca;e chooses
the setting T2 with ca;e = 1 8e2 E.
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Figure 5.6. TheQg;en (� g) obtained by the proposed ensemble learning scheme. Fea-
tures are selected by MCRM-SFSG. The region without grids corresponds to the set-
tings  g;W +  g;H � 1. (a) The cg;e chooses the settingT1 in (5.15), (b) the cg;e chooses
the setting T2 with cg;e = 1 8e2 E.

classi�cation results provided by the classi�ers inE. In other words, the ensemble
learning scheme proposed in Sec. 5.2 is generally able to improve the classi�cation
performance of individual classi�ers. Obviously, the proposed scheme works better in
caseT1. In reality, the classi�er part is probably unknown a priori , and it has to be
estimated. Therefore, the resulting classi�cation performance could fall between those
of T1 and T2.

Furthermore, quantitative analysis of the ensemble learning is presented. Since the op-
timal settings for � a and � g are available, in the following discussion ensemble learning
schemes use the features selected corresponding to the parameter vectors� a 2 A and
� g 2 G. The averages of the� a;en(� a) and � g;en(� g) over A and G are considered.
When the MCRM-SFSA is used for feature selection, the average classi�cation rate
over A is denoted as �� a;en. Similarly, when the MCRM-SFSG is used for feature se-
lection, the average classi�cation rate overG is written as �� g;en. The �� a;en and �� g;en
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obtained by di�erent ensemble learning schemes are recorded in the second up to sev-
enth row of Table 5.1, and the standard deviations of� a;en(� a) and � g;en(� g) over A

and G are given in the brackets as well, i.e.sa;en =
r

1
jAj

P

� a 2 A
(� a;en(� a) � �� a;en)2 and

sg;en =
r

1
jGj

P

� g 2 G
(� g;en(� g) � �� g;en)2.

Observing Table 5.1, the second row records the results of the proposed ensemble
learning scheme which is operated in caseT1. In rows three to seven of Table 5.1, the
performance corresponding to ensemble learning using rules, such as average, median,
maximum, product criterion [143] and the DST combination ofXu et al. [70], are
depicted. The comparison between the proposed ensemble learning scheme and those
schemes in the literature shows that the proposed ensemble learning scheme operated
in caseT1 has the best performance. Considering thesa;en and sg;en in the brackets, the
performance dispersions of the proposed ensemble learningscheme are also marginal,
while � a and � g change overA and G, respectively. The results in the �rst row of
Table 5.1 represent the best average classi�cation rates which can be o�ered by an
individual classi�er out of E, i.e. max

e2 E
�� a;e and max

e2 E
�� g;e. Comparing the results in the

�rst row with those in the second row, we �nd that the proposedensemble learning
scheme can provide a signi�cant performance gain.

Method Description A G
The best classi�cation rate over various classi�ers 0:8834 0:8863

Proposed ensemble learning scheme with T1
0:9063 0:9147
(0:0055) (0:0049)

Ensemble learning using the average rule
0:8704 0:8915

(0:0165) (0:0154)
Ensemble learning using the maximum 0:7955 0:7433

rule of classi�er combination (0:0110) (0:0104)
Ensemble learning using the median 0:8789 0:8944

rule of classi�er combination (0:0143) (0:0132)

Product rule of classi�er combination
0:8796 0:8925

(0:0210) (0:0185)

Ensemble learning scheme of Xuet al.
0:8825 0:8976

(0:0089) (0:0077)

Table 5.1. The comparison of classi�cation rates. The �rst row presents the best
average classi�cation rates o�ered by a single classi�er out of E, i.e. max

e2 E
�� a;e and

max
e2 E

�� g;e. The quantities �� a;en and �� g;en of di�erent classi�er combination schemes are

recorded in the second up to the seventh row, and thesa;en and sg;en over A and G are
also presented in the brackets.

Besides, without a priori knowledge, the classi�er part is set equally for di�erent
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MCRM-SFSA ca;e = 1 ca;e = 0:8 ca;e = 0:6 ca;e = 0:4 ca;e = 0:2

�� a;en
0:8861 0:8883 0:8886 0:8882 0:8879

(0:0039) (0:0038) (0:0035) (0:0036) (0:0034)
MCRM-SFSG cg;e = 1 cg;e = 0:8 cg;e = 0:6 cg;e = 0:4 cg;e = 0:2

�� g;en
0:9095 0:9093 0:9093 0:9095 0:9101

(0:0028) (0:0027) (0:0028) (0:0026) (0:0030)

Table 5.2. The quantities �� a;en, �� g;en of the proposed ensemble learning scheme with
classi�er parts set asT2 are presented, and theirsa;en, sg;en are given in the brackets
as well.

classi�ers. The �� a;en, �� g;en of the proposed ensemble learning scheme operated in case
T2 are recorded in Table 5.2, and the associatedsa;en, sg;en are also given in the brackets.
In the case ofT2, it is observed that changing the values of the classi�er parts has little
inuence on the performance of the proposed ensemble learning scheme. Although the
performance is poorer than that obtained with the settings of caseT1, it is still better
than the standard combination methods recorded in rows three to six of Table 5.1.
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5.4 Conclusions

In this chapter, a reliable ensemble learning scheme in the framework of Dempster-
Shafer theory is developed to ful�ll the task of object classi�cation. This approach
utilizes the outputs of individual classi�ers as the information sources. A reasonable
belief structure considering both classi�er part and object part has been proposed.
The classi�er part containing the empirical knowledge about a classi�er's performance
can correct the support provided by this classi�er to a certain hypothesis, i.e. the
object part. Dempster's rule has been chosen to combine the BBAs induced by various
classi�ers. However, this kind of pairwise combination is time-consuming. In order to
accelerate the combination process, a modi�ed combinationrule is derived. It is faster
and can combine all the BBAs at once.

The proposed ensemble learning scheme is applied to the laststep of the ADAC system,
i.e. the classi�cation of underwater objects. The results of the numerical studies
demonstrate two facts about this approach. Firstly, the proposed ensemble learning
scheme draws a performance gain compared with the results ofindividual classi�ers.
Secondly, it also provides better classi�cation rates thanthose reference schemes using
parallel topology in the literature. Moreover, the comparison between the settings
of T1 and T2 shows that the incorporation of correcta priori knowledge about the
classi�er's performance is advantageous. However, it is also proven that the proposed
ensemble learning scheme with a blind setting of classi�er part is able to stably o�er
satisfying classi�cation results. This characteristic widens the range of its application.
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Chapter 6

Conclusions and Future Work

In this thesis, the problem of underwater mine classi�cation in synthetic aperture
sonar imagery has been considered. The automatic detectionand automatic classi�-
cation system is adopted to solve this problem. A modi�ed expectation-maximization
approach is applied to the image segmentation in regions of interest and the spatial
correlation between pixels is tackled with Dempster-Shafer theory based clustering. In
object classi�cation, two issues have been mentioned, i.e.a choice of optimal features
out of the complete feature set and a suitable ensemble learning scheme that combines
the outputs of individual classi�ers using parallel topology. The focuses have been set
on making advances in the step of feature selection and improving the performance of
the ensemble learning scheme.

The summary and main conclusions of the methods proposed in this thesis are provided
in Section 6.1. The Section 6.2 presents an outlook for possible future works associated
with the proposed methods.

6.1 Conclusions

6.1.1 The Dempster-Shafer Theory Supported EM Approach
for Sonar Imagery Segmentation

In the area of image segmentation, an expectation-maximization approach assisted
with Dempster-Shafer theory based clustering is developed. It provides reliable im-
age segmentation results so that an extraction of geometrical features with fewer er-
rors in synthetic aperture sonar imagery becomes possible.We extend the general-
ized expectation-maximization approach of Delignonet al. by substituting its mixture
model with the one proposed by Sanjay-Gopalet al. In addition, the Peason system is
also incorporated, and the mixture model is no longer constrainted to, for instance, the
Gaussian mixture or the gamma mixture. The selection of optimal distribution types
for individual classes can be automatically determined. The resulting model is more
exible in approximating the statistics of the sonar imagery. Furthermore, a Dempster-
Shafer theory based clustering technique is incorporated to remove the clutters. We
have proposed a belief structure to catch the information provided by the evidence in
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the neighborhood. This belief structure considers not onlythe amount of the belief
that the evidence can provide, but also the quality of the evidence. The implausible
information existing in the neighborhood is not considered.

The proposed algorithm remarkably reduces the clutters in the background region of the
sonar images, while preserving the shape of the objects. In addition, an improvement
in the e�ciency of this expectation-maximization approachbecomes notable with the
increasing of image size.

6.1.2 The Filter Method for Feature Selection Using a Novel
Relevance Measure

In feature selection, the problem of selecting optimal features is considered. A novel
feature relevance measure is proposed, which is a combination of the Shannon entropy,
the mutual information and the modi�ed Relief weight. In order to suppress the in-
uence of outliers, the modi�ed Relief weight adopts a distance measure with active
rejection. In contrast to the original Relief weight, this modi�ed Relief weight is not
only applicable to individual features but also feature sets. Both arithmetic average
and geometric average of these three measures are studied. Furthermore, another mea-
sure called su�ciency is developed to supervise the su�ciency of the feature selection
and serves as a stopping criterion of the selection process.

The results of the numerical studies indicate three points.First of all, the proposed
�lter method can signi�cantly accelerate the selection process since the searching of
optimal cardinality of the feature selection is no longer required. Secondly, the selected
features have a wider generalizability over di�erent classi�ers. Finally, the performance
of the selected features is superior to that of the features obtained by the methods in
the literature.

6.1.3 Classi�er Combination in the Framework of Dempster-
Shafer Theory

In combination, we introduced a Dempster-Shafer theory based ensemble learning
scheme. It works on the measurement level to combine the information provided by
individual classi�ers. Compared with the methods using Dempster-Shafer theory based
techniques in the literature, it includes not only the classi�er part but also the object
part in the design of basic belief assignment.
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The proposed classi�er combination scheme allows a performance gain over the classi�-
cation results of individual classi�ers, and it signi�cantly enhances the reliability of the
ensemble learning even when the prior knowledge about the classi�ers' performance is
unknown, i.e. the classi�er parts for di�erent classi�ers are set equal.

6.2 Future Work

6.2.1 Image Segmentation

� Pre�ltering. A lot of work has been done in the area of pre�ltering images to
reduce noise. In the last twenty years, methods like di�usion based smoothing
�lter [144], wavelets �lter [145], bilateral �lter [146], n on-local means �lter [147]
and block-matching and 3D �lter [148] have been proposed to improve the image
quality. More speci�cally, the approaches in [149{152] have been applied to sonar
imagery. The main challenge in underwater mine detection and classi�cation is
raised by the high amount of noise in the sonar imagery. Thus,a joint pre�ltering
and segmentation scheme could help to improve the �nal results.

� Initialization of EM approach. The problem of optimal initialization associ-
ated with the unsupervised segmentation is still open. The scheme proposed by
Fandoset al in [113] has provided a satisfactory result in our application. How-
ever, the generalization to other applications should be studied and a generally
optimal initialization scheme would be required.

6.2.2 Feature Selection

� Sophisticated search scheme. In the MCRM-SFSA and MCRM-SFSG, the
heuristic scheme of sequential forward search is adopted because of its e�ciency.
In the last thirty years, many modi�cations have been discussed in the litera-
ture, e.g. sequential backward search, Plus-L minus-R search [153], bidirectional
search and oating search [154]. They have achieved successes in some speci�c
applications. However, in general cases none of them can guarantee optimal solu-
tions. The combination of a composite relevance measure with alternative search
scheme may help to improve the selection results.
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� Optimization of parameter settings. The generalizability of the optimal pa-
rameter settings of the composite relevance measure to other applications should
be further studied. Some optimization criteria, e.g. [155], could be applied to the
search for optimal parameter settings for various applications.

6.2.3 Classi�er Combination

� Online processing. The proposed combination scheme is only semi-online,
and it does not incorporate any information about the real-time performance
of individual classi�ers. The knowledge associated with the classi�er part is
obtained by previous applications, and this knowledge could be improper for the
current application. Taking the current performance of individual classi�ers as
feedback may be helpful to rectify the classi�er part in real-time, and the �nal
classi�cation accuracy of the ensemble learning scheme could be improved.

� Alternative combination rules in Dempster-Shafer Theory. Although
Dempster's rule used to combine the BBAs is very popular and widely applied,
Zadeh [156] has �gured out that Dempster's rule can provide counter-intuitive
decisions for an inappropriate design of BBA. Accordingly, many other combina-
tion rules have been proposed after that, e.g. Yager's rule [157], Zhang's rule [158]
and the cautious rule [159]. They have been applied and analyzed in a wide range
of applications. Feiet al. [49] have applied the cautious rule to the segmentation
of SAS imagery. According to their analysis, the cautious ruleis in certain cir-
cumstances superior to Dempster's rule. Hence, the introduction of alternative
combination rules may provide a promising perspective for the Dempster-Shafer
theory based ensemble learning scheme.
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List of Abbreviations

ADAC Automatic Detection and Automatic Classi�cation

ADI Amount of Duplicate Information

ATR Automatic Target Recognition

AUV Autonomous Underwater Vehicle

BBA Basic Belief Assignment

CMI Conditional Mutual Information

COOC co-occurrence matrix

CRM Composite Relevance Measure

DC Direct Current

DEM Di�used Expectation-Maximization

DoC Degree of Curving

DST Dempster-Shafer Theory

EM Expectation Maximization algorithm

E-DS-M Expectation Maximization algorithm with Dempster-Shafer
clustering as intermediate step

GLRL Gray Level Run Length matrix

ICM Iterated Conditional Mode

KNN k-Nearest Neighbor algorithm

KNND k-Nearest Neighbor algorithm assisted by Dempster-Shafer theory

MAP Maximum A Posteriori

MCRM-SFS Maximum Composite Relevance Measure using a Sequential
Forward Search

MCRM-SFSA MCRM-SFS employingJa

MCRM-SFSG MCRM-SFS employingJg
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MD Manhattan Distance

MI Mutual Information

MIFS Mutual Information based Feature Selection

MIFS-U Mutual Information based Feature Selection under Uniform
information distribution

MLO Mine-Like Object

MRF Markov Random Field

mRMR minimum Redundancy Maximum Relevance feature selection

mRW modi�ed Relief Weight

NAS Non-synthetic Aperture Sonar

PCA Principal Component Analysis

PNN Probabilistic Neural Network

RELFSS Feature Subset Selection based on Relevance

ROI Regions of Interest

SAS Synthetic Aperture Sonar

SE Shannon Entropy

SFS Sequential Forward Search

SVMG Supported Vector Machine using a Gaussian kernel

VI Variation of Information



105

List of Symbols

a, ai the four parameters controlling the shape of

the distribution in Pearson system,i = 0; 1; 2

A the area of the region of interest

A the region of optimal parameters associated withJa

~A the complete parameter space associated withJa

ASD the angular second moment

b the basic belief assignment (BBA) in image segmentation

be the BBA associated with classi�ere in ensemble learning

b� the combined BBA in ensemble learning

B co-occurrence matrix
�B the normalized version ofB

c(m) the m-th realization of C

ce the classi�er part of classi�er e

C the random variable denoting the class index

C the set containing all the possible values of class indices

Comp the compactness of a given contour

Correlation the featureCorrelation obtained by co-occurrence matrix

d the distance measure proposed in the feature spaceF

dM the Manhattan distance

oe the object part associated with classi�ere

DE the feature di�erence entropy obtained by co-occurrencematrix

Denring ring projection condensity

DoC degree of curving

DV the feature Di�erence Variance obtained by co-occurrence matrix

e an element of setE

E the set of classi�ers applied in this thesis

Ecc the eccentricity of a given region

Entropy the feature Entropy obtained by co-occurrence matrix

Extent The feature Extent of a given region

f a classi�er combination function

f ring ; f radius the ring and radius projection function
�f ring ; �f radius the normalized ring and radius projection function

Fi the i -th distribution type in Pearson system
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F the set of distributions contained in Pearson system

F the feature space induced byS

Gi the seven Hu's invariant moments fori = 1; :::; 7

G the su�ciency associated CRM

G the region of optimal parameters associated withJg

~G the complete parameter space associated withJg

H the Shannon entropy

H the GLRL matrix

iR the Rand index

I the mutual information

I VI the variation of information

I the set of pixel indices

Inertia the feature Inertia obtained by co-occurrence matrix

Ja the CRM with weighted arithmetic average in the method MCRM-SFSA

Jg the CRM with weighted geometric average in the method MCRM-SFSG

JMIFS the relevance measure in the method MIFS

JMIFS-U the relevance measure in the method MIFS-U

JmRMR the relevance measure in the method mRMR

JRELFSS the relevance measure in the method RELFSS

K the normalizing factor involved in Dempster's rule

l i the label of i -th pixel involved in image segmentation

lminor ; lmajor the lengths of principal axes

L i the vector containing the labels of pixels inN i

L 1.) the set of all the possible states of the pixel labels

2.) the frame of discernment of hypotheses about pixel labels

l the label image

M the number of detected objects in the database

nH the run length

mcorrect the number of correctly identi�ed objects

M l the cardinality of L

Ng the cardinality of set U

NH the cardinality of NH

NO the cardinality of set O

Nu the number of pixels in the image

NS the cardinality of set S
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Nx ; Ny the side lengths of matrix~u

Nu;j the cardinality of set S j

N i the neighborhood ofi -th pixel

NH the set of di�erent run lengths

O the complete set of features

Pcon the perimeter of a given contour

Promenance the featureP romenanceobtained by co-occurrence matrix

qa;e; qg;e the classi�cation performance gain indicator for classi�er e

Qa;en; Qg;en the ensemble learning performance gain indicator

r i the indicator vector of pixel i

r i;j the j -th element of the indicator vectori

rs; rr the substitution rate and rejection rate

Rarea the area ratio

Raxis the axis ratio

Rc;1, Rc;2 the circularity ratios

Rva the circle variance

RF1 the feature short runs emphasis obtained byH

RF2 the feature long runs emphasis obtained byH

RF3 the feature gray level nonuniformity obtained byH

RF4 the feature run length nonuniformity obtained byH

RF5 the feature run percentage obtained byH

s1 the square of the skewness

s2 the kurtosis

sa;e; the standard deviation of� a;e(� a) over A

sg;e; the standard deviation of� g;e(� g) over G

sa;en; the standard deviation of� a;en(� a) over A

sg;en; the standard deviation of� g;en(� g) over G

SA the feature sum average obtained by co-occurrence matrix

SE the feature sum entropy obtained by co-occurrence matrix

Shade the featureShadeobtained by co-occurrence matrix

Sol the solidity of a given contour

S a segmentation of image

SV the feature sum variance obtained by co-occurrence matrix

S the set of the selected features (the feature selection), i.e. a subset ofO

S j j -th group of image pixels



108 List Of Symbols

T the function used to select features

ui the intensity of the i -th pixel in the observed image

~u the integer pixel intensity value after transformation

uH an element out of setU

~u the 2D image of dimension ofNx � Ny

u the array version of observed image

ui the intensity of the i -th pixel in the unknown noise-free image

U the set of all possible states ofui

U the set of all possible states of the pixel values in~u

v� the support of pixel �

V the roughness of a given contour

wi;j the probability of r i;j equals to 1

w the distance di�erence associated with an individual object

in mRW calculation

W the modi�ed Relief weight

(x � ; y� ) the centroid of a region

Xn the n-th feature

ye the output support of classi�er e

z the complete data

� i the parameter controlling the cliques,i = 1; :::; 4

� i the additive noise ini -th pixel

" ring the ring projection skewness

" radius the radius projection skewness

� Kronecker the Kronecker delta function

 a;W ;  a;H the parameters involved inJa

 g;W ;  g;H the parameters involved inJg

� a; � g the parameter vectors associated withJa and

Jg, respectively

� mean the absolute curvature mean value of a given contour

{ the parameter specifying the belief in the assumption of

pairwise class-conditional independence

 1;  2 the parameters associated with#� and v� , respectively

� i;j the mixing coe�cient involved in the mixture model

� the identi�cation rate

� (m) the feature vector ofm-th object
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� (m)
S the m-th point in the subspace induced byS

� n;m the n-th element of feature vector� (m)

� the vector containing all the mixing coe�cients

in the mixture model

 j the parameters required for the distribution whenl i = j

	 the parameter vector containing the parameters of

all the component distributions in the mixture model

� the parameter vector containing all

the parameters involved in the mixture model

� the energy function

%LF the low frequency density

"DFT the Fourier coe�cient skewness

#� the quality of pixel �

� j the mean value of the pixel intensities associated withj -th class

� i the median of the pixel intensities inN i

� ring the radius projection mean value

� n;j the n-th central moment of j -th class
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