
Natural Language Processing:
Integration of Automatic and
Manual Analysis
Natürliche Sprachverarbeitung:
Integration automatischer und manueller Analyse
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Dipl.-Inform. Richard Eckart de Castilho aus Bensheim
2014 - Fachbereich Informatik — Darmstadt — D 17



Natural Language Processing:
Integration of Automatic and Manual Analysis
Natürliche Sprachverarbeitung:
Integration automatischer und manueller Analyse

Genehmigte Dissertation von Dipl.-Inform. Richard Eckart de Castilho aus Bensheim

1. Gutachten: Prof. Dr. Iryna Gurevych, Technische Universität Darmstadt
2. Gutachten: Prof. Dr. Andreas Henrich, Otto-Friedrich-Universität Bamberg
3. Gutachten: Prof. Christopher D. Manning, PhD., Stanford University

Tag der Einreichung: 16. Dezember 2013
Tag der Prüfung: 10. Februar 2014

Darmstadt — D 17

Produkte oder Dienstleistungen auf welche in diesem Dokument verwiesen wird können Handels-
marken oder eingetragene Handelsmarken der jeweiligen Rechteinhaber seine. Weder der Autor
noch der Verlag erheben Ansprüche darauf.

Products and services that are referred to in this work may be either trademarks and/or regis-
tered trademarks of their respective owners. The author and the publishers make no claim to these
trademarks.

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-41517
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/4151

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 3.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/3.0/de/



To my family.





Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 16. Dezember 2013

(Richard Eckart de Castilho)

i



Wissenschaftlicher Werdegang des Verfassers2

1998–2006 Studium der Informatik
Technische Universität Darmstadt

2006 Abschluss als Diplom-Informatiker
Diplomarbeit: A Framework For Storing, Managing and Querying Multi-Layer
Annotated Corpora
Technische Universität Darmstadt

2006-2008 Wissenschaftlicher Mitarbeiter am Institut für Sprach- und
Literaturwissenschaft
Technische Universität Darmstadt

seit 2009 Wissenschaftlicher Mitarbeiter am Ubiquitous Knowledge Processing Lab
Technische Universität Darmstadt

2 Gemäß § 20 Abs. 3 der Promotionsordnung der Technischen Universität Darmstadt.



Zusammenfassung

Es besteht ein aktueller Trend, natürliche Sprachverarbeitung zur Beantwortung von For-
schungsfragen aus dem Bereich der Geisteswissenschaften einzusetzen. Dies erfordert eine
Integration automatischer und manueller Analyseschritte, z.B. um zunächst eine Theorie zu
entwickeln, um diese Theorie dann anhand einer Korpusstudie zu überprüfen, um Trainingsda-
ten für ein maschinelles Lernverfahren zu generieren, um ein solches zur automatischen Analyse
einzusetzen oder um die Qualität der automatischen Analyse auszuwerten. Manuelle Analysen
werden meist von Linguisten, Philosophen und Forschern anderer geisteswissenschaftlichen Dis-
ziplinen durchgeführt. Automatische Analysen hingegen werden häufig von Forschern mit um-
fassenden Programmierkenntnissen durchgeführt, z.B. von Informatikern und zunehmend von
Computerlinguisten. Es ist wichtig diese unterschiedlichen Forschergruppen, deren Werkzeuge
und Daten näher zusammenzubringen, um in kürzerer Zeit und mit weniger Aufwand Ergeb-
nisse von höherer Qualität zu erzielen. Allerdings werden vielversprechende Kooperationen,
die sowohl manuelle als auch automatische Analyseschritte umfassen, z.B. die Analyse großer
Korpora, derzeit von vielerlei Problemen behindert:

• Es existiert keine umfassende Sammlung von interoperablen Softwarekomponenten zur auto-
matischen Textanalyse.

• Einen automatischen Analyseablauf aus solchen Komponenten zusammenzustellen gestaltet
sich zu schwierig.

• Werkzeuge zur automatischen Textanalyse, Textexploration, und zur Erstellung von Annota-
tionen sind nicht interoperabel.

• Die Portabilität von automatischen Analyseabläufen zwischen verschiedenen Computern ist
nicht gegeben.

• Arbeitsabläufe sind nicht einfach auf Clusterumgebungen zu übertragen.
• Es existieren keine angemessenen Werkzeuge zur selektiven Annotation innerhalb großer Kor-

pora.
• Bei der automatischen Analyse sind Annotationstypen vorgegeben, während bei der manuel-

len Analyse eine flexible Gestaltung der Annotationstypen erforderlich ist.
• Die Implementierung neuer Analysekomponenten ist zu aufwändig.
• Analysekomponenten und -abläufe können nicht leicht auf Fehler untersucht oder einer Re-

faktorisierung unterzogen werden.
• Analyseabläufe, deren Struktur sich anhand ihrer Parametrisierung dynamisch ändert, wer-

den nicht direkt unterstützt.
• Der Benutzer behält keine Kontrolle über automatische Analyseabläufe, wenn zu deren Nut-

zung fremdes Expertenwissen, undokumentiertes Wissen, oder externe Infrastrukturen, z.B.
Webservices, notwendig sind.

In Zusammenarbeit mit Wissenschaftlern aus den Geisteswissenschaften erarbeiten wir inno-
vative technische Lösungen und Entwürfe, welche die Verwendung automatischer Textanalyse
erleichtern und deren Integration in manuelle Analyseverfahren fördern. Dazu bearbeiten wir
vier Bereiche, in denen wir jeweils Grundlagen schaffen, um die oben genannten Probleme zu
adressieren:

• Wir verbessern die Benutzbarkeit automatischer Analysekomponenten und -abläufe, z.B.
durch einfachere Programmierschnittstellen und durch einen Selbstkonfigurationsmecha-
nismus für Analysekomponeten.

iii



• Wir adressieren die Reproduzierbarkeit von Analyseergebnissen durch Konzepte, welche
die Portabilität und Automatisierbarkeit von Analyseabläufen verbessern. Dadurch werden
unnötige manuelle Zwischenschritte in Analyseabläufen vermieden und der Austausch
von Abläufen und Ergebnissen zwischen Forschern erleichtert.

• Wir schaffen Flexibilität durch die Bereitstellung einer umfangreichen Sammlung inter-
operabler Analysekomponenten. Darüber hinaus untersuchen wir die Annotationstypen
unterschiedlicher Komponentensammlungen auf wiederkehrende Entwurfsmuster, die
Raum für Anpassungen im Rahmen manueller Analysen bieten.

• Wir schaffen Interaktivität im Umgang mit automatisch erstellten Analyseergebnissen, in-
dem wir die Suche über Korpusdaten direkt in einen mehrbenutzerfähigen Annotations-
prozess integrieren. Diesen neuartigen Ansatz der Annotation durch Suche, unterstützen
wir weiterhin durch ein neues webbasiertes Annotationswerkzeug.

Wir demonstrieren die Tragfähigkeit unserer Konzepte anhand von Beispielen, die prototy-
pisch für ganze Klassen von Forschungsproblemen stehen. Zudem haben wir alle vorgestellten
Konzepte in bestehende Open-Source-Projekte integriert, oder als neue Open-Source-Projekte
umgesetzt und veröffentlicht.



Abstract

There is a current trend to combine natural language analysis with research questions from the
humanities. This requires an integration of automatic analysis with manual analysis, e.g. to
develop a theory behind the analysis, to test the theory against a corpus, to generate training
data for automatic analysis based on machine learning algorithms, and to evaluate the quality
of the results from automatic analysis. Manual analysis is traditionally the domain of linguists,
philosophers, and researchers from other humanities disciplines, who are often not expert pro-
grammers. Automatic analysis, on the other hand, is traditionally done by expert programmers,
such as computer scientists and more recently computational linguists. It is important to bring
these communities, their tools, and data closer together, to produce analysis of a higher quality
with less effort. However, promising cooperations involving manual and automatic analysis,
e.g. for the purpose of analyzing a large corpus, are hindered by many problems:

• No comprehensive set of interoperable automatic analysis components is available.
• Assembling automatic analysis components into workflows is too complex.
• Automatic analysis tools, exploration tools, and annotation editors are not interoperable.
• Workflows are not portable between computers.
• Workflows are not easily deployable to a compute cluster.
• There are no adequate tools for the selective annotation of large corpora.
• In automatic analysis, annotation type systems are predefined, but manual annotation re-

quires customizability.
• Implementing new interoperable automatic analysis components is too complex.
• Workflows and components are not sufficiently debuggable and refactorable.
• Workflows that change dynamically via parametrization are not readily supported.
• The user has no control over workflows that rely on expert skills from a different domain,

undocumented knowledge, or third-party infrastructures, e.g. web services.

In cooperation with researchers from the humanities, we develop innovative technical solu-
tions and designs to facilitate the use of automatic analysis and to promote the integration of
manual and automatic analysis. To address these issues, we set foundations in four areas:

• Usability is improved by reducing the complexity of the APIs for building workflows and
creating custom components, improving the handling of resources required by such com-
ponents, and setting up auto-configuration mechanisms.

• Reproducibility is improved through a concept for self-contained, portable analysis com-
ponents and workflows combined with a declarative modeling approach for dynamic
parametrized workflows, that facilitates avoiding unnecessary auxiliary manual steps in
automatic workflows.

• Flexibility is achieved by providing an extensive collection of interoperable automatic anal-
ysis components. We also compare annotation type systems used by different automatic
analysis components to locate design patterns that allow for customization when used in
manual analysis tasks.

• Interactivity is achieved through a novel annotation-by-query process combining corpus
search with annotation in a multi-user scenario. The process is supported by a web-based
tool.

We demonstrate the adequacy of our concepts through examples which represent whole
classes of research problems. Additionally, we integrated all our concepts into existing open-
source projects, or we implemented and published them within new open-source projects.

v



vi Abstract



Acknowledgements

First and foremost, I would like to thank Prof. Dr. Iryna Gurevych for giving me the oppor-
tunity to conduct my research, for her valuable guidance, feedback, and advice. I would also
like to thank my secondary supervisors Prof. Dr. Andreas Henrich and Prof. Chris Manning for
taking the time to evaluate my thesis. Parts of this research were supported by the German Fed-
eral Ministry of Education and Research (BMBF) under the promotional reference 01UG1110D,
by the German Federal Ministry of Economy and Technology under the promotional reference
01MQ07012, and by the Hessian research excellence program "Landes-Offensive zur Entwick-
lung Wissenschaftlich-ökonomischer Exzellenz" (LOEWE) as part of the research center "Digital
Humanities".

I would like to thank my current and former colleagues at the Ubiquitous Knowledge Process-
ing Lab for countless discussions and for their support. Special thanks go to Dr. Torsten Zesch
and Dr. Judith Eckle-Kohler, who always generously offered me their time, advice, and at times
their critique. I would like to thank the DKPro Core crowd, in particular Nicolai Erbs, Pedro San-
tos, and all others at the UKP Lab and outside who used DKPro Core and who provided feedback
on it. I would like to thank the early adopters of DKPro Lab, in particular Benjamin Herbert,
Oliver Ferschke, and Johannes Daxenberger. Their feedback was essential to the success of the
project. Thanks also go to the LOEWE-NCC team, Erik-Lân Do Dinh, Dr. Sabine Bartsch, Pia
Weber, Dr. Janina Radó, and Prof. Dr. Gert Webelhuth, for the great collaboration and the
interesting and productive discussions. Finally, thanks go to the WebAnno team in particular to
Prof. Dr. Chris Biemann, Seid Muhie Yimam, and to the other CLARIN FAG-7 members.

Furthermore, I would like to extend my gratitude to the communities of uimaFIT, of the
Apache UIMA framework, and of the Stanford CoreNLP framework, in particular Philip Ogren,
Steven Bethard, Marshall Schor, and John Bauer. Without their good will and valuable feedback,
my work would not have been possible.

Additional thanks go to Peter Klügl and Dr. Katrin Tomanek for having me on the organization
teams of the 2nd and 3rd UIMA@GSCL workshops in 2009 and 2013.

As my way up to this point was long and twisted, I am grateful to these additional people who
helped me and prodded me at various steep passages and crossroads: Prof. Dr. Elke Teich, Dr.
Mônica Holtz, Dr. Georg Rehm, Prof. Dr. Christian Chiarcos, Prof. Nancy Ide, Anthony Levas,
and Paul Keyser.

Finally, I would like to thank my family and friends for their love and their support. This
endeavor would surely not have been possible without them!

vii



viii Abstract



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Publication record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 State of the art 11
2.1 Manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Annotation editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Linguistic search engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Automatic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Processing frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Usability 23
3.1 Resource selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1.1 Selecting a resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1.2 Resolving a resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1.3 Acquiring the resource . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1.4 Installing the resource . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2.1 Component-based selection . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2.2 Parameter-group-based selection . . . . . . . . . . . . . . . . . . . . . 33
3.1.2.3 Workflow-based selection with statically configured components . 33
3.1.2.4 Workflow-based selection with dynamically configured components 34
3.1.2.5 No dynamic selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Contribution: Dynamic resource selection and acquisition . . . . . . . . . . . 35
3.1.3.1 A coordinate system for resource selection . . . . . . . . . . . . . . 35
3.1.3.2 Resource selection and acquisition process . . . . . . . . . . . . . . . 37
3.1.3.3 Packaging resources for reuse . . . . . . . . . . . . . . . . . . . . . . 40

3.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Simplified API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2.1 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2.2 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2.3 Strategy pattern with internal instantiation . . . . . . . . . . . . . . 48
3.2.2.4 Strategy pattern with external instantiation . . . . . . . . . . . . . . 49
3.2.2.5 Support in processing frameworks . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Contribution: Improved support for configurable analysis component be-
havior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3.1 Injection of shared resources into analysis components . . . . . . . 52

ix



3.2.3.2 Injection of nested resources . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3.3 Injection of multi-valued shared resources . . . . . . . . . . . . . . . 54

3.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4.1 Scenario 1: Decompounding . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4.2 Scenario 2: Text classification . . . . . . . . . . . . . . . . . . . . . . 56

3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Reproducibility 59
4.1 Portable workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.1.1 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.1.2 Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.1.3 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.1.4 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.1.5 Workflow description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2.1 Approaches to reproducibility . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2.2 Support for reproducibility in processing frameworks . . . . . . . . 71

4.1.3 Contribution: An approach to self-contained portable workflows . . . . . . 76
4.1.3.1 Workflow definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Dynamic workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2.1 Control flow workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2.2 Data flow workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2.3 Grid computing and visual programming . . . . . . . . . . . . . . . . 84
4.2.2.4 Workflow history and evolution . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2.5 Workflow descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Contribution: Dynamic workflows for language analysis . . . . . . . . . . . . 85
4.2.3.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.3.2 Data dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.3.4 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.3.5 Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.4.1 Scenario 1: Information retrieval . . . . . . . . . . . . . . . . . . . . . 95
4.2.4.2 Scenario 2: Machine learning . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Flexibility 101
5.1 Annotation type systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.2.1 ClearTK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.2.2 cTAKES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.2.3 DKPro Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.2.4 JCoRe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.2.5 U-Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

x Contents



5.1.3 Contribution: An analysis of type system designs . . . . . . . . . . . . . . . . 107
5.1.3.1 Structural patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.3.2 Association patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.3.3 Label patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.3.4 Layer patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.4.1 Towards a common type system . . . . . . . . . . . . . . . . . . . . . 122
5.1.4.2 Manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Component collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.2.1 Single vendor collections . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.2.2 Special purpose collections . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2.3 Broad-coverage collections . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2.4 Machine learning toolkits . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.3 Contribution: A broad coverage collection of interoperable and inter-
changeable components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.3.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.3.3 Type system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.3.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2.3.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2.3.6 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.4.1 Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.4.2 Conceptual interoperability . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.4.3 Provenance and attribution . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Interactivity 151
6.1 Search and annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.2.1 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1.2.2 Linguistic search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.1.2.3 Multi-user annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.3 Contribution: An approach to the annotation of infrequent phenomena in
large corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.1.3.1 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.1.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.1.3.3 Setting up types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1.3.4 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.1.3.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1.4 Identification of non-canonical constructions . . . . . . . . . . . . . . . . . . . 169
6.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Conclusion 173

Glossary 180

List of Figures 181

Contents xi



List of Tables 183

Listings 185

Bibliography 187

xii Contents



1 Introduction

1.1 Motivation

There is a current trend to combine natural language analysis with research questions from the
humanities. This requires an integration of automatic analysis with manual analysis, e.g. to
develop a theory behind the analysis, to test the theory, to generate training data for automatic
analysis based on machine learning algorithms, or to evaluate the quality of automatic analysis
results. Manual analysis is traditionally the domain of linguists, philosophers, and researchers
from other humanities disciplines, who are often not expert programmers. Automatic analysis,
on the other hand, is traditionally done by expert programmers, such as computer scientists and
more recently computational linguists.

So far, this had the effect that many automatic analysis could not be used effectively by
non-expert programmers, due to the complexity of setting them up and combining them into
complex analysis workflows. Furthermore, communities doing manual and automatic analysis
have different requirements towards tools and often rely on different tool stacks, making it
difficult to set up a working environment which integrates automatic as well as manual analysis.

It is important to bring these communities, their tools, and their data closer together, to pro-
duce analysis of a higher quality with less effort. Consider the following scenario in which a
linguist, and a computer scientist decided to collaborate. It illustrates prototypically the inter-
action between manual and automatic analysis (Figure 1.1):

• The linguist is doing fundamental research, comparing the use of certain uncommon
grammatical constructions in different languages. To find a sufficient number of such
constructions in real-world text, he needs to examine a large corpus for each language,
larger than he can examine without any automated assistance.

• The linguist believes to have a basic idea of how to find the constructions he is looking for,
based on patterns over linguistic categories. If all of his corpora were already annotated
with these linguistic categories, he may be able to find what he is looking for more easily.
He manages to find several analysis tools that can annotate the desired categories, but
these 1 analysis tools are not interoperable. After investing a considerable amount of
time 2 building a makeshift script binding them together, he gets some analysis results
suitable for an initial exploration for a subset of his data, as a full processing was not
possible on his workstation. There is 3 no annotation editor into which he can read
his analysis results, so he starts using a spreadsheet to make some records.

Definition: analysis workflows – A set of analysis components that are applied to primary
data in a certain order to produce an analysis result.

Definition: analysis tools – A standalone software for language analysis, i.e. the software
is not integrated with a particular processing framework.

Definition: annotation editor – An application which allows conducting a manual analy-
sis of language data by inspecting and editing annotations over primary data, such as text.

1



Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Assmebling 
components 

into workflows 
is too complex.

No comprehensive  set 
of interoperable 

analysis components is 
available.

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Workflows are not 
 transferrable.

Workflows are not 
easily deployable to 

a cluster.

Automatic analysis 
tools, exploration and 
annotation tools are 
not interoperable.

Workflows and 
components are not 

debuggable and 
refactorable.

Workflows that change 
dynamically via 

parametrization are not 
readily supported.

Annotation 
categories are not 

customizable.

There is no tooling 
to selectively 

annotate large 
corpora.

Implementing 
custom 

components is 
too complex.

Initial exploration, annotation 
study, and definition of 

categories

1

2

3

4

5

8 9

10

6

7

The analysis 
components must 

be controllable.

11

Figure 1.1: Use case: a linguist and a computer scientist collaborate on analyzing a large corpus

• To get the complete corpora processed, the linguist sends his script to the operator of a
computing center. The operator is supposed to run the workflow on a compute cluster.
The linguist’s 4 script does not run on the cluster. The operator has to go through
various phone calls with the linguist to work out 5 what tools in which version and
with which resources the script uses. Eventually, the operator manages to install all of
these on the cluster, rewrites the script for the cluster, processes the data, and sends it
back to the linguist.

• The linguist imports the processed corpora into a linguistic search engine and starts look-
ing for his constructions. He expresses his intuition about his grammatical constructions
as query patterns. With some specialized queries, the linguist achieves an adequate pre-
cision identifying the constructions he is interested in. However, as he starts relaxing
the conditions in his queries, he starts getting many query results that are not the con-
structions he is looking for. Since 6 the search engine does not support categorizing
search results, he records those constructions he has found in his corpora and those that
were wrongly returned by the queries in a spreadsheet. At least with a spreadsheet he
is not 7 limited to an annotation structure prescribed by some tool. He sends this
spreadsheet and his script to the computer scientist, for her to train a classifier.

• The computer scientist goes through the same routine of phone calls to figure out which
tools and resources to install as the operator before. Then, she reimplements the makeshift
script in another programming language, because she needs to 8 integrate additional
analysis components of her own in a way that she can easily 9 debug the setup and
has short turn-around cycles for bug-fixing. She preprocesses the training data from
the spreadsheet, and uses another quickly written script to extract features to train the

Definition: resources – Many analysis tools require resources, such as statistical or prob-
abilistic models, dictionaries, word lists, etc.

2 1 Introduction



classifier. After several 10 modifications of the analysis workflow, a parametrization of
the components has been found that produces good results (the notebook page containing
the discarded parametrizations and results is lost soon after). She cannot send her train-
ing and classification workflows back to the linguist, as he does not have the necessary
development environment installed to run them (much less an idea of how to do that).

• The linguist has meanwhile produced additional training data. Instead of training a clas-
sifier using the training workflow from the computer scientist, he has to send his new data
to the computer scientist. He feels uncomfortable about this, because once the coopera-
tion is over, he cannot use the developed approach to train classifiers for new data, since
he has 11 no control over the analysis components used in the workflow. Meanwhile,
spreadsheets and classification results are exchanged in several iterations between the
linguist and the computer scientist, gradually improving the classifier performance.

• Eventually, it is decided that the classifier works well enough and that it needs to be
applied to the full corpora. The extended analysis workflow and the custom components
are sent to the computing center operator to analyze the full corpora on the cluster. This
time, the operator goes through several iterations with the computer scientist figuring out
how to integrate the custom components into the script he runs on the cluster. In the end,
the operator sends the processed and classified data back to the linguist.

• Now, finally, the linguist has enough data to conduct his research on the uncommon gram-
matical structures.

1.2 Requirements

It is the goal of the integration of manual and automatic analysis to build applications and
to define best practices which account for both modes of analysis, to make automatic analysis
available to a larger clientele and to bring the parallel worlds of data formats and tool chains
closer together. Existing work addresses particular aspects of an integrated scenario such as is
illustrated in Section 1.1, but none addresses it completely. The necessity to take into account
all requirements from the big picture (Figure 1.1 on page 2) makes it particularly difficult to
find viable solutions for such a scenario. There are multiple issues which need to be addressed
in order to integrate manual and automatic analysis:

1 No comprehensive set of interoperable automatic analysis components is available.
2 Assembling automatic analysis components into workflows is too complex.
3 Automatic analysis tools and annotation editors are not interoperable.
4 Workflows are not portable between computers.
5 Workflows are not easily deployable to a compute cluster.
6 There are no adequate tools for the selective annotation of large corpora.
7 In automatic analysis, annotation type systems are predefined, but manual annotation

requires customizability.
8 Implementing new interoperable automatic analysis components is too complex.

Definition: analysis components – A software tool for language analysis which has been
wrapped as a reusable component for a processing framework.

Definition: annotation type systems – A set of annotation types which often interact, e.g.
one type bears a feature whose value is an annotation of another type.

1.2 Requirements 3



9 Workflows and components are not sufficiently debuggable and refactorable.
10 Workflows that change dynamically via parametrization are not readily supported.

11 The user has no control over workflows that rely on expert skills from a different domain,
undocumented knowledge, or third-party infrastructures, e.g. web services.

As we examine the state-of-the-art in processing frameworks for natural language analysis,
we find these issues to be insufficiently addressed.

1.3 Contributions

In this section we briefly present our contributions to address the requirements. In cooperation
with researchers from the humanities, we developed innovative technical solutions and designs
to facilitate the use of automatic analysis and to promote the integration of manual and au-
tomatic analysis. We grouped our contributions into four areas, which serve as our guiding
principles: usability, reproducibility, flexibility, and interactivity. The black-circled numbers be-
hind each contribution refer back to the issues identified in the illustrative use case, which are
addressed by our proposed solutions.

Usability
Assembling automatic analysis workflows has to be convenient, for non-expert programmers,

such as the linguist, as well as for expert programmers, such as the computer scientist. Existing
software for automatic language analysis tends to be either very powerful and configurable,
making it attractive for the computer scientist, or easy to use, making it attractive for the
linguist. When embedded within tools with convenient graphical user interfaces, automatic
analysis is embraced by linguists and other non-expert programmers. The implementation of
analysis workflows or analysis components often requires a significant amount of boiler plate
code – simple APIs targeted towards non-expert programmers are rarely available. Therefore, a
way to facilitate the integration of automatic analysis workflows into the processes of humani-
ties researchers is to simplify their assembly and deployment of the workflows.

In addition, it is inconvenient to manually install additional analysis tools on the local system
before they can be used. Given a description of an analysis workflow, the processing framework
should automatically acquire and install the necessary analysis components and resources.

While analysis components should also be configurable, it should not be mandatory to explic-
itly provide a configuration. Analysis components should be usable out-of-the-box.

To improve the usability for non-expert programmers while retaining all flexibility for expert
programmers, we propose these measures:

1. An auto-configuration mechanism which allows an analysis component to automatically
determine the value of a configuration parameter depending on the context it is running
in and on the primary data it is processing. For an optimal effect, we combine this with a
standardized addressing and packaging scheme for resources, such as parser model files,

Definition: processing framework – A piece of software which enables the interoper-
ability of analysis components and facilitates their use. The framework defines a life cycle
for analysis components, means of configuring analysis components, as well as a common
data structure which all analysis components use to exchange data with each other. Beyond
this, a processing framework may offer many additional features, e.g. different workflow
strategies, the ability to scale the processing to large data and over multiple computers, a
serialization format for analyzed data, etc.

4 1 Introduction



allowing the automatic acquisition of the required resources from a repository. Through
overrides, the mechanism still allows full customization of the components. This way, it
is possible to eliminate the need for explicit configuration for many analysis components.
2 5 → Section 3.1

2. An improved API for analysis components and workflows with a particular focus on the
configuration of components. Processing frameworks allow the composition of compo-
nents into analysis workflows. For the components to be reusable effectively, they must
be configurable, so that they can be contextualized when a workflow is assembled for a
particular kind of analysis. We extended the ability of a processing framework to allow
the extraction of key behavioral aspects of the analysis component into a pluggable object,
thus making the component’s behavior customizable. 2 8 → Section 3.2

Reproducibility
Reliable, repeatable analysis workflows are essential for reproducible research, but manual

steps are inherently error prone and often badly documented. Automatic workflows tend to
be interspersed with unnecessary, auxiliary manual steps, because natural language processing
frameworks provide little or no out-of-the-box support for dynamic workflows. Also, while
some tools support the sharing of workflows, these are not self-contained, requiring the user
to manually ensure that all used components and resources are present in the correct versions.
In this case, it is necessary to remove the haphazard integration of manual intervention into
otherwise automatic analysis.

Researchers should be supported by tools as well as by best practice guidelines in creating
reproducible automatic workflows. When a workflow is applied to the same data, it should
reproducibly deliver the same results. When applied to similar data, it should reliably produce
similar results.

Research is an inherently repetitive process involving multiple iterations over the same prob-
lem or the same data to get reliable results. Tools to support reproducible experiments should
therefore also support flexible means of parameter variation.

A workflow setup should be self-describing and explicitly declare which specific versions of
analysis components, resources, and primary data it uses. These should be under the full con-
trol of the researcher, e.g. not restricted by certain licenses or hidden behind ephemeral web
services, which may change incompatibly or even disappear any time.

To facilitate fully automatic analysis workflows, this thesis provides:

3. An approach for reproducible analysis workflows based on components and resources,
packaged, versioned, discoverable, and distributable via a reliable infrastructure to enable
materializing them easily on a workstation or cluster system and to reuse already materi-
alized resources between workflow executions to reduce turn-around times. 4 5 11 →
Section 4.1

4. A declarative approach for modeling dynamic, parametrized workflows, allowing for
a clean decomposition of the experiment into the space of parameters to be explored, the

Definition: primary data – The data being subject to analysis, e.g. text documents. In an
annotated corpus, the primary data is only the text without any annotations.

Definition: repository – A repository is a central place used to archive and share the
components and resources used by an analysis workflow, their dependencies, and possibly
the workflow itself.

1.3 Contributions 5



analysis tasks to be performed for each parameter configuration, and the dependencies
between the tasks. 9 10 → Section 4.2

Flexibility
Each user has individual goals and requirements. Being able to flexibly configure and combine

analysis tools into workflows is key to gaining acceptance in a larger user community. For
manual analysis, customization is essential, particularly during early exploratory annotation
phases where annotation guidelines are constantly subject to change, so that there are no fixed
annotation types or tag sets. However, for automatic linguistic analysis components, annotation
types and tag sets are a part of the interface specification between the components and key to
enabling interoperability.

The data models used by analysis components for interoperability should be developed con-
scious of the flexibility required during phases of exploration and preliminary analysis. The
requirement for maximal flexibility as posed in particular by the preliminary analysis contra-
dicts the requirement for well-known types which allow automatic analysis components to
interoperate. For example, if the annotation type used to represent part-of-speech tags re-
stricts these to a certain tag set, a researcher working with an annotation editor which is using
that data model cannot define new tags during an exploratory phase without changing the data
model.

Analysis components should be flexibly combinable into analysis workflows. Components
performing the same kind of analysis but using different algorithms or implementations should
be usable interchangeably within such workflows. Therefore, it is important to make compre-
hensive collections of interchangeable and interoperable analysis components readily available.

Towards this, we take the following steps:

5. A systematic comparison of different annotation type systems that enable interop-
erability between automatic analysis components allows us to identify design patterns
that provide room for customization. This provides us with a better understanding of
how to balance customization against interoperability in an integrated scenario. 3 7 →
Section 5.1

6. A collection of analysis components has been considerably extended, unified, and refac-
tored for interoperability, and interchangeability. In our example scenario, this contributes
significantly to the ability of the non-expert programmer to flexibly combine components
into a custom analysis workflow. We discuss how interoperability and interchangeability
has been achieved and the decisions that have been taken in the process. 1 → Section 5.2

Interactivity
Manual and automatic analysis should interact with each other. The manual analysis of

large corpora is not feasible without automated assistance. Likewise, it is difficult to reach
high-quality annotations and to measure quality in terms of inter-annotator agreement, without
multiple annotators working collaboratively. It is necessary to define a process which integrates
automatic analysis and a collaborating team of human annotators to enable the analysis of large
corpora.

Definition: annotation types – A type to distinguish between different kinds of anno-
tations, bearing different attributes and semantics. For example, when an annotation
is realized as feature structure, the type defines which features can be used. A feature
structure of the type PartOfSpeech may provide a feature posTag.

6 1 Introduction



Automatic analysis can be used to support the exploration and manual analysis. For example,
a classifier can be trained using several examples of a particularly interesting grammatical con-
struction and could be used to locate those constructions in a large corpus. Such an approach
allows a user to locate potential occurrences of the construction, without having to manually
examine the entire data set.

The manual correction of automatically analyzed data can be used to improve the subse-
quently performed automatic analysis, either by retraining a model for an analysis component
or by passing the corrected annotations to analysis components being executed later in the
workflow.

The system should provide information about the quality of the analysis, for example by
reporting on the agreement between different users analyzing the same data. A system could try
to learn models from manually created or corrected annotations using different sets of features
and report to the user which features provide the highest precision or the highest accuracy.

Based on the above suggested use-case of annotating infrequent grammatical constructions
in large corpora, we propose a process integrating automatic and manual analysis and provide
a tool supporting it:

7. The annotation-by-query process combines the search in a corpus with annotation. A
large corpus is first automatically analyzed and annotated for relevant categories. Queries
over these annotations are then formulated based on a research hypothesis. The query
results are annotated as correct if they are true occurrences of a desired phenomenon,
and otherwise as wrong. Statistical evaluation of these annotations lets the researcher
improve the queries and the underlying hypothesis iteratively. The query-based approach
requires the introduction of new kinds of interaction between annotators in order to assure
annotators are not working on completely separate parts of the corpus and to maintain the
ability of calculating annotator agreement. At the same time, annotators remain isolated
from each other to avoid bias. The annotation-by-query process is further supplemented
by machine learning. Once some results have been marked, a classifier can be trained
on the pre-annotated data and the correct/wrong labels. When a query has many results,
the classifier can help the annotator to focus on results with a higher probability of being
correct. 6 → Section 6.1

1.4 Challenges

The challenge we had to face in developing our contributions was to balance the guiding prin-
ciples within each contribution. E.g. contributions towards reproducibility should not incur a
loss of usability. Below, we address pairs of guiding principles, which were particularly difficult
to balance.

Usability vs. reproducibility
The rigid and detailed control required to create a reproducible analysis workflow needs to be

mitigated through the use of mechanisms and infrastructures that allow enforcing this control
without much user effort. While such mechanisms and infrastructures exist, they have not been
embraced by current state-of-the-art processing frameworks such as GATE [51], Tesla [194]
or UIMA [83]. To address this, we propose an approach to building self-contained, portable
analysis workflows (Section 4.1) building on a public, reliable, controllable, and convenient
distribution infrastructure. To incorporate language resources, such as parser models, into this
approach, we define packaging conventions for deploying resources to this infrastructure (Sec-
tion 3.1). Finally, our collection of analysis components, DKPro Core (Section 5.2), has been
extended to provide such packaged models and it is provided via now via the distribution infras-
tructure. Hence, it is now possible to build portable analysis workflows using our components.

1.4 Challenges 7



Reproducibility vs. interactivity
Manually performed tasks are sources of uncertainties and mistakes, which inherently con-

flicts with the goal of reproducibility. In a manual analysis setup, a well-designed annotation
task structure, annotation guidelines, and a sufficiently large team of annotators can mitigate
such problems, but not remove them. In an automatic analysis setup, it is important that no
auxiliary or intermediate steps remain, which need to be performed manually.

However, there are often setups which could be done fully automatically, but certain steps are
not automatized because there is no convenient way to integrate them into the workflow mech-
anism of the processing framework being used. In our experience, these are often preprocessing
steps that need to be seldomly re-run, the reconfiguration of steps to re-run them with different
parameters, or steps aggregating results from runs with different parameters. Moreover, these
steps are often badly documented, if at all. For a truly reproducible setup, it is necessary to
eliminate such manual steps and integrate them into the automatically executable workflow.
To facilitate this, we designed a lightweight framework for parameter-sweeping experiments
([72], Section 4.2), which allows implementing complex analysis workflows independent of
any specific processing framework in a declarative manner with minimal overhead.

Flexibility vs. usability
The complexity caused by powerful configuration capabilities needs to be countered. We

suggest an auto-configuration mechanism (Section 3.1) that sets appropriate parameter values
depending on the analysis setup or on the data being processed. To the best of our knowledge,
such mechanisms are not yet available in current state-of-the-art language processing frame-
works. We integrated this mechanism into our collection of analysis components, DKPro Core
(Section 5.2), thereby improving its usability.

We also address the configuration of analysis components itself. It is often desirable to config-
ure analysis components with user-controlled custom strategies that have a significant influence
on the behavior of the component, e.g. to extract features for machine learning, matching, rank-
ing, or just to make certain processing aspects highly configurable. However, doing this is not
trivial, as the configuration capabilities of processing frameworks focus mainly on composing
analysis workflows from analysis components and not on the composition of arbitrary systems,
e.g. by restricting configuration parameters to certain data types.

We propose a generalization of the configuration capabilities to facilitate the use of custom
strategies (Section 3.2). Our approach operates on the level of a general purpose programming
language (e.g. Java or Groovy) instead of implementing a domain specific language like JAPE
(Java Annotation Patterns Engine) [52] or Ruta (Rule-based Text Annotation) [133]. Popular
general purpose languages enjoy extensive support from integrated development environments
with respect to debugging and refactoring, and we aim to benefit from this. However, we design
an API which mimics the convenience of a domain specific language and aims to be usable by
non-expert programmers.

Interactivity vs. flexibility
To provide interoperability between analysis components and to enable the flexibility of using

similar components interchangeably in a workflow, a well-defined model for the exchanged
data is required. However, this model also needs to provide degrees of freedom, so it can be
used during preliminary analysis while the analysis guidelines and categories are still subject
to frequent changes. We analyze several annotation type systems (Section 5.1) with respect to
their design and potential for customization to gain an understanding if and how an annotation
type system can be designed to support both, manual and automatic analysis tasks.

8 1 Introduction



1.5 Publication record

Parts of this thesis have been already been published at peer-reviewed conferences and work-
shops. Implementations of the concepts presented here have largely been published as new
open-source software projects or contributed to existing open-source projects.

We describe an approach to the dynamic selection and acquisition of resources required by
analysis components for the execution of an analysis workflow (Section 3.1). This approach has
been integrated into DKPro Core (see Section 5.2, [62]), our open-source collection of analysis
components for the Apache UIMA [10] framework.

We present an approach to configuring analysis components with parameters representing
complex objects, based on the strategy design pattern (Section 3.2). We integrated the ap-
proach into Apache uimaFIT [14], an open-source project providing a simplified API for the
Apache UIMA [10] framework.1 The approach is used by analysis components from the DKPro-
Core component collection (see Section 5.2, [62]), as well as by the DKPro Text Classification
framework (DKPro TC, [65]).

We describe an approach to portable, reproducible analysis workflows (Section 4.1). This
approach is used to provide an easy and convenient way for new users to experiment with
DKPro Core (Section 5.2). Additionally, it is used to provide scripts to convert corpora into the
data formats required by the CSniper annotation tool (see Section 6.1, [50; 75]).

We describe an approach to analysis workflows that change their structure based on their
parametrization, e.g. in a parameter sweeping experiment, which runs the same workflow
with many parameter combinations (Section 4.2). Initially, we developed this approach in the
context of an experiment on retrieving service descriptions using natural language queries and
semantic similarity [73] within the THESEUS TEXO project. Later, we presented it as a generic
solution for information retrieval experiments [72]. We made an implementation of our concept
available in the new open-source project DKPro Lab [63]. This implementation has since been
used by other members of the Ubiquitous Knowledge Processing Lab for a variety of different
tasks including the prediction of quality flaws in Wikipedia [85], automatically classifying edit
categories in Wikipedia revisions [56], age and gender author profiling in social media [87],
preposition and determiner correction [234], and textual entailment [236]. It is also used in
the open-source projects DKPro TC [65] and DKPro Spelling [64]. DKPro Spelling is a collection
of software components for spelling correction.

We analyze the annotation type systems from several analysis component collections based
on the Apache UIMA [10] framework (ClearTK [172], cTAKES [190], DKPro Core [Section 5.2],
JCoRe [109], and U-Compare [129]) to identify patterns underlying the design of annotation
type systems and analyze their relation to each other (Section 5.1). This analysis serves as a
preparatory study for a new extension of the open-source annotation editor WebAnno [232],
allowing for the definition of custom annotation types. It is also intended to serve as input for
future discussions on a common annotation type system with the communities of the respective
component collections.

1 Apache uimaFIT was initially created under the name uutuc and primarily maintained by Philip Ogren and
Steven Bethard in 2009. Some time later, I joined the team, contributing initial extensions to handle UIMA
shared resources. The project was then renamed to uimaFIT in 2010. In 2013, uimaFIT was donated to the
Apache Foundation as part of the Apache UIMA project. Its first release under the new Apache brand was
version 2.0.0 in August 2013. At the time of writing, I continue to maintain uimaFIT as a committer in the
Apache UIMA project.

Definition: analysis component collections – A set of analysis components which are
immediately interoperable without requiring any kind of data conversion.

1.5 Publication record 9



We describe extensions to the open-source DKPro Core2 component collection (Section 5.2,
[62]). DKPro Core is an essential foundation for most of the research being done at the Ubiq-
uitous Knowledge Processing Lab. It is also used externally, e.g. by the EXCITEMENT Open
Platform for textual entailment [78; 167], by Riedl and Biemann [185] in an experiment on
text segmentation with topic models, in the JoBimText project3 [125; 102], and by Strötgen
and Gertz [207] in experiments on temporal tagging. We have also presented DKPro Core as
part of a tutorial held in conjunction with the 3rd UIMA@GSCL workshop at the GSCL 2013
conference.4

We describe a process which integrates linguistic search and annotation over large corpora to
locate and annotate infrequent phenomena in large, pre-annotated corpora (Section 6.1). An
early version of this approach was presented at the Lingustic Processing Pipelines Workshop at
the GSCL 2009 [74]. The concept was further developed [75] in the context of the LOEWE
Research Center "Digital Humanities" to conduct a contrastive comparison of non-canonical
grammatical constructions between English and German [182]. It was implemented and pub-
lished in the open-source tool CSniper [50].

2 DKPro Core is an open-source software which was created in the context of the Darmstadt Knowledge Repository
(DKPro) - an initiative for creating reusable software components for language analysis at the Ubiquitous
Knowledge Processing Lab. I joined the group in 2009 as technical lead with the task of refactoring DKPro
and improving the maintainability of the code base. My first release in 2009 was a subset of DKPro Core
called DKPro UGD (User-generated discourse). The software was still relying on XML descriptors and was
difficult to use. Because of this usability problem, I switched the general strategy to building workflows
programmatically using uutuc (today Apache uimaFIT), joined the uutuc development team in 2009, and
joined the Apache UIMA development team in 2012. Additionally, the build process was completely migrated
to Apache Maven [180] to further streamline the development process. The next release was DKPro Core
1.1.0 in 2011. It was already based on the new programmatic approach. Since then, the set of components
in DKPro Core has steadily grown and the usability has been further improved with every new version. The
current version of DKPro Core is 1.5.0. Many of the improvements that I have contributed to DKPro Core over
the time are described in this thesis. The contributions discussed in this thesis were my own work, whereas
other changes, in particular some of the new components that were added to DKPro Core during the time,
were contributed by my colleagues at the UKP Lab.

3 According to a code search engine: http://code.ohloh.net/search?s=%22de.tudarmstadt.ukp.dkpro.
core%22 (Last accessed: 2013-12-11)

4 3rd UIMA@GSCL workshop: http://uima.apache.org/gscl13.html (Last accessed: 2013-12-15)

10 1 Introduction

http://code.ohloh.net/search?s=%22de.tudarmstadt.ukp.dkpro.core%22
http://code.ohloh.net/search?s=%22de.tudarmstadt.ukp.dkpro.core%22
http://uima.apache.org/gscl13.html


2 State of the art

In this chapter, we give a high-level introduction to the state of the art in automatic and manual
language analysis. In the following chapters, we provide additional state of the art sections
which focus in particular on those aspects relevant to the contribution in question. These addi-
tional sections may refer to further work which is specifically relevant to the contribution.

Linguistic analysis is the process of understanding a language sample from a linguistic per-
spective. Linguistics understands language as a complex system of communication, consisting
of several interacting sub-systems, such as:

• Morphology – The study of words, their composition from atomic semantic units
(morphemes) and their inflection for number, gender, case, tense, or other linguistic
categories. Compound words and derivations are studied under the heading of lexical
morphology.

• Syntax – The study of the composition of sentences from words and phrases. When
syntactic rules extend into the morphology of words, we speak of morphosyntax.

• Semantics – The study of meaning on any level from morphemes to words or sentences,
and even across sentence boundaries.

• Pragmatics – The study of what is meant to be accomplished through an act of commu-
nication. An advertisement, for example, aims to motivate a potential client to buy the
advertised product or idea.

Although it may not be immediately obvious to the average native speaker of a language,
these sub-systems are layered, largely one building up on the other. For example, it is difficult to
understand the pragmatics of an utterance unless the words used, their inflections, grammatical
relations, and semantics are understood. Hence, in any kind of linguistic analysis processes,
the lower layers are usually analyzed before the higher layers. This is particularly true for
systems that perform such an analysis automatically, as these, unlike humans, cannot rely on
non-explicit linguistic competence [47] which would allow them to skip the explicit analysis of
the lower layers.

The detailed analysis of language samples is essential in various disciplines such as linguistics,
philology, history, or philosophy. Written texts have been created throughout the centuries and
teach us knowledge about culture, science, and economy. Written letters, or today emails, or
social media are used to communicate with family, friends, and business partners.

With the ever increasing ubiquity of technical systems that humans work with, the desire to
communicate naturally with a computer or with a smart phone in human language is also grow-
ing. Modern smart phones can be controlled by speech and give turn-by-turn directions, e.g.
to the next pharmacy. Computers no longer only play chess, but beat their human opponents
even in knowledge games such as Jeopardy!1 [82]. Therefore, improving the capabilities of
computers to automatically analyze language becomes increasingly important.

For the purpose of this work, we assume that language samples exist in the form of written
text. Spoken language or transcribed speech pose research questions in their own right, which

1 In Jeopardy!, players are presented with a partial fact from a known domain and have to answer with the
missing part in form of a question. For example, in the domain of Celebrities: Q: He is an amphibian who
hosts a popular variety show. - A: Who is Kermit the Frog?. Jeopardy! is a registered trademark of Jeopardy
Productions Inc. in the United States, other countries, or both.

11



are not treated here. While some of the data models, tools, and applications discussed later
may also be applicable to audio or video recordings or even multi-modal documents, we focus
on their use for text documents.

2.1 Manual analysis

Technical devices with human language processing or generation capabilities would not have
been possible today without the legions of researchers that manually analyzed human language
for centuries. And still, language processing technology is far from being perfect and many hu-
man languages are still hardly understood or documented. Automatic analysis tools only can be
used meaningfully after a basic theory about a language has already been set up and sometimes
in order to develop such a theory, but they are hardly meaningful without any underlying theory
at all. Even then, the results produced by automatic analysis tools need to be manually reviewed
to determine their quality. Therefore, manual analysis is still the principal tool to improve our
understanding of language.

Manual analysis has often been done with pen and paper, but today it is increasingly being
supported by software. The analysis involves repeatedly marking a part of a text and assigning
linguistic information to it, for example marking all the words in a sentence and assigning a
part-of-speech tag to each one. This process is also called annotation and the markings in the
text are called annotations. In early stages of an analysis, categories may not have been properly
defined yet, so the linguist appreciates the freedom provided by a pen-and-paper approach,
like scribbling notes and free text comments, which would not be trivially processable by a
computer. Annotation software often requires the inventory of categories to be defined before
it can be used for annotation. This kind of software also usually only supports certain kinds
of annotations, e.g. marking spans of text and drawing arcs between such spans in contrast to
arbitrary scribbles, free form drawings, etc. Based on several iterations of preliminary analysis
and discussions with peers, eventually annotation guidelines are produced, which document
the categories, how they should be applied and how to deal with borderline cases.

Following the creation of annotation guidelines, larger bodies of text can be analyzed. While
the preliminary analysis and the creation of annotation guidelines are mainly driven by experts
(e.g. researchers or graduate students), at this stage, less skilled personnel (e.g. undergradu-
ate students) can be employed. The quality of the analysis produced can be measured via the
agreement between the different annotators. A low agreement may be countered by improving
the annotation guidelines. With respect to the precision of an automatic analysis, the inter-
annotator agreement can be seen as an upper limit – even a perfect computer cannot get cases
correct on which humans do not agree what correct actually is.

The preliminary analysis and the guideline-driven analysis are iterative processes, in which
the linguistic conceptualization and the annotation guidelines are continually revised and im-
proved.

2.1.1 Roles

Mostly following Dipper et al. [60], we distinguish four roles in a manual analysis task (refer to
Chapter 6 for a more detailed description):

• Explorer – This role performs preliminary exploration of the corpus data, either to gener-
ate linguistic hypotheses or to corroborate already existing hypotheses.

• Guideline author – This role defines the categories and the annotation guidelines to be
used. It requires expert domain skills, e.g. in the linguistic domain.

12 2 State of the art



• Annotator – The role performs manual analysis based on the annotation guidelines. Basic
domain skills are required to properly interpret the annotation guidelines.

• Curator – This role critically examines the annotations made by the annotators to resolve
cases where the annotators did not agree.

These roles are supported mainly by two kinds of annotation tools: annotation editors and
linguistic search engines.

2.1.2 Annotation editors

Annotation editors mainly support the annotator role. The basic functionalities an annotation
editor needs to support are: the loading of a text document, the ability to create annotations on
the text, and to save the annotated document.

Even in a single-user scenario, it is useful for the annotation editor to support the guideline
author role by allowing the definition of a controlled vocabulary used for annotation or even
to manage structured annotation guidelines within the tool. This becomes even more impor-
tant when multiple users plan to work collaboratively analyzing a corpus. At this point, an
annotation editor should also support a centralized data storage.

When multiple users are working together, there are two modes of operation:

• Collaborative analysis – In a collaborative scenario, all users operate on a shared set
of annotations. One user can make changes to the annotations created by another user
(cf. [204]). Explicit support for the curator role is not required in this scenario, because
effectively every user annotator is curating the results of any other annotator. There is no
aggregation of analysis results, as there is only a single set of annotations. For this reason,
there is no possibility to measure the quality of the annotation via inter-annotator agree-
ment. Hence, this approach appears to be suitable at most for preliminary exploratory
annotation studies or for interactively testing and developing annotation guidelines.

• Distributed analysis – In a distributed scenario, every user works on a separate set of
annotations. One user is usually not able to modify or even to see the annotations made by
other users. This avoids bias (cf. [232]) and makes it possible to measure inter-annotator
agreement. A tool may support the curator role and allow a certain user to revise and
manually merge analysis results into a final result. Alternatively, automatic strategies
can be used to aggregate all agreed-upon analysis results produced into a single final
result. Bayerl and Paul [16] mention a majority method by which agreement is declared
if a certain proportion of the users have produced an identical analysis result at a certain
decision point, and a consensus method by which agreement is declared only if all users
have produced an identical analysis result.

To facilitate annotation or to bootstrap the manual annotation process, some annotation ed-
itors include basic automatic preprocessing functionality. For example, the UAM Corpus Tool
[168] integrates a tokenizer to automatically create generic segment annotations which are
further classified by the annotator later. It also includes an autocoding feature which allows au-
tomatically creating annotations based on patterns over already existing annotations and text.

Definition: annotation tools – A general term for tools allowing users to create and
interact with annotations, such as annotation editors, annotation visualizers, or linguistic
search engines.

2.1 Manual analysis 13



Truly sophisticated automatic analysis is usually not found in an annotation editor. Rather, data
is preprocessed externally and later imported into the editor for exploration or correction.

Good annotation editors (e.g. [204; 168]) also offer the capability of searching over the
annotated text or sometimes even over the annotations. However, these search functions are
much less sophisticated than those offered by dedicated linguistic search engines (e.g. [77;
233; 187]), because the latter generally assume a static data set and thus have more options of
building efficient index structures.

2.1.3 Linguistic search engines

A linguistic search engine supports the explorer role. It provides a means of searching over large
annotated corpora using complex patterns over annotations as well as the text. There is a great
variety of these search engines available, each displaying specific strengths and weaknesses. We
describe three engines as representative examples.

IMS Open Corpus Workbench
IMS Open Corpus Workbench (CWB) [77] provides a powerful query language based on regu-

lar expressions over sequences of annotations. The engine represents annotated text documents
as a token stream to which the majority of features are attached, for example part-of-speech la-
bels or lemma information. Limited support is provided for structural annotations. While it is
convenient to search for all forms of "smoke" and "kill" occurring close to each other within certain
documents or only in headings, recursive structures like constituency parse trees are not well
supported. The engine is fast and can be used for large corpora. On a modern computer, a
corpus of 100 million words causes absolutely no performance problems. Internally, up to 2.1
billion tokens are supported in version 3.1.

TGrep2
TGrep2 [187] specializes on parse tree structures. It has special query operators related to

dominance and child-order. Thus, such queries as show me all noun-phrases nested arbitrarily
deep under a verb phrase can be easily performed, while they are difficult to impossible to realize
with the CWB. On the other hand, regular expression patterns over sequences of annotations,
which are easy to realize in the CWB, are difficult to impossible to realize with TGrep2. On a
modern computer, searching a parsed corpus of 100 million words is possible, but incurs some
waiting.

ANNIS
ANNIS [233] provides sophisticated support for different levels of annotations. For example,

part-of-speech tags, lemmata, constituency parse trees, dependency relations, anaphoric rela-
tions, etc. can all be stored and queried simultaneously with this engine. However, a corpus
of 100 million words is far beyond its capabilities. On a modern PC, around 500.000 tokens
should be considered an upper limit for the version 2.2.1.

Definition: features – A feature is a key/value pair used to annotate primary data. It is
usually part of a feature structure, but we also use the term for attributes of annotations
in general. A primitive feature has a simple value (e.g. a number or string), whereas a
complex feature takes a feature structure as its value. Features are typically typed.

14 2 State of the art



2.2 Automatic analysis

Manual analysis is an expensive process. When huge bodies of text need to be analyzed or when
language processing capabilities are to be integrated into devices, automatic analysis is the way
to go. Once a sufficiently large body of manually analyzed data is available, it can be used to
train statistical models using machine learning algorithms and to evaluate their results against
the manually created gold standard. Even for unsupervised machine learning algorithms, i.e.
algorithms not requiring any training data, evaluation against a manually created gold standard
is indispensable. In a research context, automatic analysis is often embedded into an experi-
mental setup which is iteratively repeated with different variations of analysis components or
their configurations to reach optimal results.

When doing manual analysis, annotation guidelines define how to locate the phenomena to
be annotated and which categories to use for classifying them. These guidelines are often main-
tained as simple text documents which can be understood by human annotators, but which are
not machine readable. For automatic analysis, the annotation type system plays a similar role.
It is a computer-processable, formal document describing the annotation types, their features
and tag sets. A typical annotation type system defines a type Token which carries a feature part-
of-speech that assumes a value such as noun. Annotation type systems are defined differently,
depending on the formalism used to represent the actual annotations, and often depending on
the specific analysis tool or processing framework they are written for. Sometimes, standard
formats like XML Schema [27] or the Web Ontology Language (OWL) [153] are used to define
an annotation type system .

When designing an annotation type system, certain aspects are usually underspecified, in
particular such aspects that are explicitly defined in annotation guidelines. Consider the part-
of-speech feature mentioned above. An annotation guideline should explicitly define which
part-of-speech tags exist and how they can be distinguished. This set of categories, or tag set,
constitutes the values which the part-of-speech feature may assume. Annotation type systems,
however, are often meant to be reusable in different contexts, e.g. for different languages or by
scientists of different schools, which categorize parts of speech differently or using a different
granularity. Hence, the annotation type system usually defines that the part-of-speech feature
exists on the Token, but not the values it may assume. If the formalism underlying the annota-
tion type system supports inheritance or some other form of extensibility, some designers may
introduce a specialization of the Token, e.g. a FooToken which accepts only part-of-speech tags
from a hypothetical foo tag set.

2.2.1 Roles

While manual analysis is mainly done by linguists or other experts from the humanities, persons
working on automatic analysis often have a background in computer science or, more recently,
computational linguistics. Following Ferrucci and Lally [83], but using more generic names, we
distinguish between three roles involved in the implementation of automatic analysis software:

• Analysis developer – This role specializes on the implementation of low-level algorithms
and their integration with processing frameworks (cf. Section 2.2.2). Theoretic expertise
on language is important for this role. The programming skills required for this role are
related to the implementation of algorithms that codify this expertise. This role is mostly
assumed by computational linguists or computer scientists.

• Workflow assembler – This role combines different analysis components to build an anal-
ysis workflow specialized for a particular task. This role should mainly be assumed by
domain experts, such as linguists.

2.2 Automatic analysis 15



Tagger

Parser

primary
data

merged
analysis

part-of-speech tags

constituents

Tagger

Parser

primary
data

merged
analysis

constituents

Figure 2.1: Running multiple tools on the same data, merging the output into a single model

Tagger Parser
primary

data
merged
analysis

part-of-speech tags

Figure 2.2: Running multiple tools on the same data, one tool building up on the output pro-
duced by another tool, merging the output into a single model

• Workflow deployer – This role integrates an analysis workflow and the resources re-
quired by it into an application or deploys an analysis engine on a compute cluster for
high-availability and high-performance processing. This role should mainly be assumed
by application programmers or technical staff.

Practically, however, a typical researcher who simply wants to use automatic analysis compo-
nents is often faced with significant hurdles and has to assume each of these roles in turn. While
ready-to-use analysis components exist, they can often not easily be combined into an analysis
workflow. In the role of an analysis developer, the researcher needs to implement additional
glue transforming data between incompatible analysis components. In the role of the workflow
assembler, different components then are assembled into a larger analysis workflow. Finally,
in the role of a workflow deployer, the analysis workflow is installed and executed to gather
experimental results. In summary, anybody who wants to employ automatic analysis software
requires a considerable set of technical skills – skills that linguists or other researchers from the
humanities should not be required to develop.

2.2.2 Processing frameworks

In this section, we introduce the concept of a processing framework. This is a piece of software
which allows creating interoperable analysis components and facilitates their use.

As the system of language consists of multiple sub-systems, such as syntax or morphology,
there are specialized tools and algorithms for these different sub-systems. Often, such tools
stand alone – they directly process an input document and produce an analysis result, e.g.
TreeTagger [192] can produce part-of-speech, lemma, and chunking analysis. The Stanford
Parser [131] can produce part-of-speech tags, syntactic constituents and dependency relations.
Both tools come with basic built-in preprocessing capabilities, such as a tokenizer and a sentence
boundary detector.

It is desirable to run more than one tool at a time, for example because they analyze differ-
ent linguistic categories (cf. Figure 2.1). One component can also benefit from the analysis
produced by another one. For example, we observed better results in some experiments when,
instead of using the Stanford Parser alone, we used TreeTagger to analyze the parts of speech
and then forwarded this information to the Stanford Parser to generate the constituency parse
tree (cf. Figure 2.2).

16 2 State of the art



primary
data

merged
analysis

Processing framework

Tagger Parser

Figure 2.3: Running multiple tools on the same data, integrated within a processing framework,
and merging the output into a single model

Most of these stand-alone analysis tools are not immediately interoperable. Each of them
consumes and produces different data formats, often even categories at different levels of gran-
ularity. Directing the output of one tool into the next one or even just producing an analysis file
with the results form different tools is not straightforward at all. So-called glue code needs to be
written to transform the data exchanged between the tools – time and time again. A processing
framework provides a common data model into which analysis results can be written and from
which they can be retrieved. Thus, it is not necessary to write glue code for the transformation
between arbitrary tool-specific data formats, but only a conversion to and from the common
data model (cf. Figure 2.3).

When a tool is integrated into such a framework, we no longer speak of it as a tool but rather
as an analysis component. The integration is realized by implementing a framework-specific
wrapper around the tool which takes care of the component’s life-cycle (initialization/configu-
ration, execution, destruction), as well as the transformation between the common data model
and the tool-specific data format. Once such a wrapper has been implemented, the tool can be
used with the framework and be run in combination with other tools in an analysis workflow.
Some frameworks offer additional features, such as parallel execution or workflow editors, of
which the implementer of the wrapper can be oblivious.

A processing framework can provide different levels of interoperability between analysis com-
ponents. On the lowest level, it provides set of data structures used to store the data to be
analyzed and the analysis results, which are used by all analysis components. On a higher level,
a framework may offer support for annotation type systems. Consider a part-of-speech tagger
component that produces an annotation of the type PartOfSpeech with a feature tag containing
the actual part-of-speech tag. A user would expect that a constituency parser component should
be able to interpret this annotation and use it while constructing a parse tree. Thus, annota-
tion types often become part of the interface specification between analysis components. In
component collections, all analysis components should adhere to a common annotation type
system. Unfortunately, this also means that components from different component collections
are often not interoperable on this level unless the components themselves permit configuring
which types they consume or produce.

On yet a higher level, the constituency parser not only needs to know about the PartOfSpeech
type, but also needs to be able to interpret the particular tag set produced by the tagger. Be-
cause of the great variety, it is extremely hard for a framework or component collection to
provide adequate interoperability at this level. Often, the task of configuring components to be
interoperable at this level is left to the user, who would choose, for example, models for the
part-of-speech tagger and the parser that were both trained on the same corpus.

The following frameworks have been chosen as general points of reference for the present
work, because the component-oriented approach is central to their architecture design. They
are not just a collection of algorithms for natural language processing, but explicitly define what
an analysis component is, how it interacts with other analysis components and how it can access

2.2 Automatic analysis 17



resources relevant to the analysis. Furthermore, they have all been used to integrate third-party
analysis tools from different sources:

• General Architecture for Text Engineering (GATE) [51]
• Text Engineering Software Laboratory (Tesla) [194]
• Unstructured Information Management Architecture (UIMA) [83]

We briefly introduce these frameworks, and their support for the user roles involved in manual
and automatic analysis is outlined. All the frameworks target in particular the analysis developer
role. Each provides an API for building and integrating new analysis components. Hence,
support for this role is only discussed if there are special provisions going beyond that.

GATE
The General Architecture for Text Engineering (GATE) is an instance of an abstract architec-

ture design that Cunningham [51] describes as a Software Architecture for Language Engineering
(SALE). For expert programmers, it provides a well-designed software architecture for process-
ing linguistic data. For non-expert programmers, it provides a graphical environment, the GATE
Developer, for building research-oriented analysis components and for combining them with
each other or with analysis components implemented by expert programmers. While the ar-
chitecture is general in design, the GATE Developer has a focus on information extraction. This
is mainly due to A Nearly-New Information Extraction System (ANNIE) [53], which is the core
component that GATE is probably best known for.

The main product, GATE Developer, supports in particular the following of the previously
introduced roles (Section 2.2.1) in these specific ways:

• Analysis developer – The JAPE language (Java Annotation Patterns Engine) [52], provides
a domain-specific language targeted at rule-based analysis tasks, in particular information
extraction tasks. In recent versions of GATE, Java can be used in the right-hand side
of JAPE rules, making the language much more powerful, but also requiring in-depth
knowledge of the interna of GATE.

• Workflow assembler – The GATE user interfaces allow conveniently assembling analysis
workflows from a set of analysis components that ship with GATE or that are installed
from public online repositories of GATE components. Workflows can be exported as GATE
application files which can be shared with other users. Additionally, workflows can be
exported as self-contained packages, including all required primary data and resources,
for deployment to the GATECloud service [209].

• Annotator – A built-in annotation editor allows manually analyzing texts. It is also pos-
sible to inspect, and optionally correct, the results of an automatic analysis workflow. As
a special feature, the annotation editor even allows making changes to the text. In most
language processing frameworks and annotation editors, the primary data is immutable.

• Explorer – The ANNotation In Context (ANNIC) [15] sub-system allows searching a corpus
using JAPE patterns. This supports the corpus explorer role and also provides a way to
quickly test JAPE patterns against real data before they are used in JAPE scripts.

At the time of writing, GATE has evolved to be an established and very successful family of
products with an active community, regular tutorials, and commercial users. The suite also
includes the full-text search engine Mímir [54], the online collaborative annotation and cura-
tion platform GATE Teamware [30], the GATECloud [209] service to deploy analysis services on
cloud computing infrastructures, and the minimal framework GATE Embedded allows integrat-
ing GATE analysis workflows into applications. These additional products also cater towards
the needs of the curator and analysis deployer roles.

18 2 State of the art



Tesla
The Text Engineering Software Laboratory (Tesla) [194] is a development environment for

language analysis based on the Eclipse platform [58]. Analysis components and workflows are
developed within the Tesla graphical user interface, but they are run on the separate Tesla
Server. Making intensive use of object-oriented capabilities and providing type-safe APIs was
of great importance to the Tesla developers. Another goal was to give non-programmers the
ability to visually assemble and run language analysis workflows and to reduce the complexity
of implementing analysis components for programmers.

Tesla has put great effort into the implementation of a graphical user interface. It provides
two majors modes of operation: the linguist perspective and the developer perspective. These
modes mainly support the following of the previously introduced roles (Section 2.2.1) in these
specific ways:

• Analysis developer – The developer perspective facilitates the creation of new compo-
nents and roles. Wizards are provided to generate an initial code skeleton and further
code generation facilities are provided to add code for accessing particular data types to
a component.

• Workflow assembler – In the linguist perspective, the user is presented with an overview
over the available components, corpora, and workflows. Components and corpora can
be dragged into a visual workflow editor. Inputs and outputs of the components can
easily be connected by drawing lines between components. When an experiment has run,
its results can be inspected. Tesla exports results to an XML format which can then be
processed using XSLT and transformed into input for several visualization modes, e.g.
highlighted text, bracketed text, and tabular data. While this is a very flexible approach,
the authors of Tesla concede that using XML as an intermediate format has drawbacks, in
particular the size of the intermediate XML data can easily exceed hundreds of megabytes
even on small corpora annotated for only a few linguistic categories.

• Workflow deployer – The Tesla server provides a shared repository of analysis components
and a means of deploying and running analysis workflows. However, the deployment of
new analysis components to the server is not seamlessly integrated into the graphical user
interface like many other functions of Tesla.

UIMA
The Unstructured Information Management Architecture (UIMA) was originally developed at

IBM and most prominently described by Ferrucci and Lally [83]. In 2006, the project was
donated to the Apache Foundation and remained in incubator status until it was promoted to
a top-level Apache project in 2010. The architecture design was also published as an OASIS
standard [84]. When mentioning UIMA from here on, the Apache UIMA [10] implementation
is the intended reference.

The motivation driving the development of UIMA was the integration of language analysis
developed at different IBM Research locations into a common framework and to encourage the
reuse of components. Thereby, the development of analysis applications was to be sped up and
the company to be positioned for a rapid increase of demand for language analysis services.

Support for scaling out analysis across a number of different computers, platforms, or to a
cluster is another defining feature of the framework. Platform-independent XML-based descrip-
tors for analysis workflows and analysis components are predominantly used in the framework
to facilitate the deployment and interoperability of UIMA workflows. For creating and editing of
these descriptors, UIMA provides plug-ins for the Eclipse integrated development environment.
UIMA provides several implementations of execution environments which make use of these

2.2 Automatic analysis 19



XML descriptors, e.g. the Collection Processing Manager [81] and Apache UIMA-AS [11]. It also
natively supports implementations of analysis components in Java and C++.

The UIMA framework was explicitly designed to support the efficient interaction of people
with different skills, such as researchers specializing in linguistic theory and language anal-
ysis, domain experts assembling specific analysis workflows for a particular application, and
programmers that integrate the analysis into an application or deploy it as a service. UIMA sup-
ports mainly the following of the previously introduced roles (Section 2.2.1) in these specific
ways:

• Annotator – The UIMA Annotation Editor is a plug-in for Eclipse which allows creating
annotations on text documents according to a configurable annotation type system. The
editor can also be used to inspect, and optionally correct, automatically created annota-
tions. An editor for annotation type systems is provided as a separate Eclipse plug-in.

• Analysis developer – UIMA Ruta (Rule-based Text Annotation) [133] targets the analysis
developer role. It provides a domain-specific language for rule-based language analysis,
including an Eclipse plug-in with special editor support and a debugger for the Ruta lan-
guage.

• Workflow assembler – UIMA provides an Eclipse plug-in for assembling analysis work-
flows. A workflow can itself be used as a reusable component within another workflow,
which allows building complex workflows. The form-based editor is powerful, but not easy
to use, as it requires quite detailed knowledge of the concepts of the UIMA framework.
Assembled workflows and required resources can be exported as a PEAR (Processsing En-
gine Archive) for distribution to other users. uimaFIT, in turn, focuses on the assembly
of analysis workflows in code or scripts, providing a greater flexibility with respect to
configuration.

• Workflow deployer – PEAR files can be installed and run by a workflow deployer in
different environments. For example, UIMA provides a simple wrapper exposing a PEAR
as a REST-based web service.2 UIMA-AS (Asynchronous Scaleout) [11] and UIMA-DUCC
(Distributed UIMA Cluster Computing) [217] allow scaling out UIMA workflows to different
machines.

uimaFIT / Apache uimaFIT
The strong focus on XML-based descriptors has led to the lack of a convenient API for pro-

grammatically and dynamically assembling UIMA workflows, as it is desirable when setting up
unit tests or implementing scientific experiments. This gap is filled by uimaFIT [171; 186; 14],
which provides convenient factory methods which significantly reduce the code necessary to set
up a workflow. uimaFIT targets the following of the previously introduced roles (Section 2.2.1)
in these specific ways:

• Analysis developer – uimaFIT provides a method to maintain analysis component meta-
data directly in the source code of the analysis components. Parameter values can be
comfortably injected into specially marked fields of the analysis component. Convenience

2 UIMA REST Service: http://uima.apache.org/sandbox.html#simple-server (Last accessed: 2013-05-22)

Definition: descriptors – The metadata of an item such as analysis component, analysis
workflow, resource, etc. which a processing framework requires to use the item. Sometimes
this is also called description, in particular in the context of UIMA.

20 2 State of the art

http://uima.apache.org/sandbox.html#simple-server


methods allow the type-safe access of analysis results. In summary, analysis components
using the uimaFIT facilities can be written with significantly less code than their plain
UIMA counterparts.

• Workflow assembler – The programmatic assembly of analysis workflows is a cumber-
some task and requires verbose code when using the UIMA API. The API provided by
uimaFIT wraps the original UIMA API and provides convenience methods that turn the
programmatic assembly of workflows into an almost trivial task. It builds on the ability
to maintain metadata, such as default parameter values, in the source code of the analy-
sis components. As such, the API greatly facilitates tasks which benefit from assembling
analysis workflows at runtime, such as the building of unit tests for analysis components
or parameter sweeping experiments which run an experimental setup in many configura-
tions, each of which may require a different workflow.

• Workflow deployer – The ability to programmatically assemble analysis workflows also
facilitates the integration of such workflows into applications. Likewise, wrappers which
allow running an analysis workflow on a compute cluster can be implemented more easily.

uimaFIT has been donated to the Apache Software Foundation in 2012 and was released as
Apache uimaFIT 2.0.0 in August 2013. It is now maintained as part of the Apache UIMA project.
When referring to uimaFIT from here on, it is the Apache uimaFIT [14] which is referred to.
In the context of the work leading up to this thesis, various contributions have been made
to uimaFIT and Apache uimaFIT including, but not limited to, those detailed in Section 3.2.
uimaFIT is also an essential asset used to facilitate the implementation and use of the DKPro
Core collection of analysis components for UIMA (Section 5.2).

2.2 Automatic analysis 21



22 2 State of the art



3 Usability

When talking about usability, the first question that needs to be asked is "What is usable by
whom?" We have previously introduced a scenario in which a linguist and a computer scientist
cooperate to analyze a large text corpus with a mixture of manual and automatic analysis proce-
dures. So in this case, the "what" are the automatic analysis procedures that the linguist wants
to use. The "who" are two groups of people, which the computer scientists and the linguist
represent in our scenario: expert programmers and non-expert programmers.

Expert programmers are comfortable working with complex frameworks and employing a
wide range of software libraries while writing code in a general-purpose programming lan-
guage, such as Java.

Experts of a non-computational domain are working on a problem in their domain and require
computational assistance. They are not familiar with the details of programming languages and
APIs, and they should not have to be. Over the long haul, these domain experts should be able
to employ automatic analysis tools without any particular programming expertise. Presently,
however, we assume that the domain expert is just a non-expert programmer and has some
basic programming knowledge, e.g. the ability to write simple scripts. This is not an unrealistic
assumption, as students of the, steadily more digital, humanities are increasingly educated in
the use of computer-based tools. Harnessing the power of current processing frameworks for
the automatic analysis of language, however, is not easily possible using simple scripts.

Given the wide variety of tools and data formats in the NLP domain, combining tools into a
processing chain and running it on data from different sources is not trivial. Typically, a solution
is either implemented haphazardly for a single purpose or it requires a significant amount of
boiler-plate code to build reusable wrappers for embedding analysis tools in a processing frame-
work. Even after these wrappers have been created, depending on the processing framework,
additional boilerplate may be required to assemble an analysis workflow. This seriously hinders
non-expert programmers in performing such tasks. Efforts need to be made to bring interop-
erable linguistic processing components to a level at which they can be used by programming
beginners or even non-programmers.

A better user interface
When aiming at usability, frequently one of the first steps is adding a graphical user interface

to a system. By means of that interface, the non-expert programmer creates some model of a
system configuration, which is stored in an intermediate representation, e.g. an XML file. At
some point, the user instructs the system to load the system configuration from the file, and to
run it. The system then does whatever it has been configured for.

While a graphical user interface is certainly helpful and attractive to the user, the ability
to describe the same system configuration in a concise textual description is equally helpful,
although less visually attractive. It is like comparing a poem to a picture. In our approach of
making automatic analysis useful to the non-expert programmer we prefer to provide a well
written poem rather than a colorful picture. A picture may be worth a thousand words, but
if one can tell a story in much less than a thousand words, why go through all the effort of
painting a picture?

Domain specific languages
Instead of encoding the system configuration in a configuration file, we prefer to employ a

domain specific language (DSL, cf. [19]). Such a language can make the system configuration
more concise and human readable than an XML configuration file, and also more flexible. A

23



DSL targets a very specific task using a focused vocabulary, and is therefore better suited for the
non-expert programmer than a general purpose language (GPL). There are two kinds of DSLs:

• External DSLs – An external DSL is a new language. It is completely independent from
the programming language used to program an application or library integrating the DSL.
It comes with its own syntax, requires a special parser, and interpreter.

• Internal DSLs – An internal DSL is implemented in terms of another programming lan-
guage, the host language. In effect, a program written in an internal DSL is in every aspect
like a program written in the host language, although, it may superficially appear to have
a completely different syntax, because the host language is used in unfamiliar ways. Some
language properties make a programming language particularly attractive for hosting an
internal DSL, e.g. dynamic typing, operator overloading, calling methods using an infix
notation (e.g. 1 add 2 instead of add(1, 2), etc.) Certain design patterns are also well-
suited for implementing an internal DSL, such as the builder pattern [96]. This pattern
is used to incrementally construct an object or a specification. The StringBuilder of
Java is a well known instance of this pattern. Strings are immutable objects in Java. In-
crementally building a complex String by concatenating its components can become very
inefficient, because every new concatenation operation creates completely new String and
allocates new memory. The StringBuilder is mutable. It maintains an internal buffer to
which data can be added by concatenation operations. Once all data has been added to the
builder, it can be transformed into a regular immutable String. This builder supports a flu-
ent-style API [89], meaning that most method calls on the builder return the builder itself.
This allows writing something like builder.append("Hello ").append(2).append("
you"), which is a very distinct style. It can be argued, that an internal DSL is nothing
more than an API. This is true. However, it is an API that allows the user to tell a do-
main story concisely using domain vocabulary and supporting this using distinct design
elements, such as the ones just mentioned (cf. [90]).

The benefit of an external DSL is, obviously, that its design can be fully adapted to the domain
at hand, while in an internal DSL, the syntax and concepts of the host language will always be
present and may pose a limiting factor for the design of the internal DSL. An internal DSL,
however, has the advantage of being able to benefit from the full tool chain of the host lan-
guage, including features of an integrated development environment, such as code completion,
refactoring, debugging, etc. at no additional cost.

Declarative programming
Another way to improve the usability of a system is allowing the user to tell the system what

to do instead of telling it how to do it. For example, when querying a database, we use an SQL
statement describing what kind of data to find by describing the properties of the data we are
interested in. The details of how to use database indexes to optimize the response time and
how to traverse the index structures to retrieve the data from the database files are left to the
database query engine.

We do not want to go the entire way and try setting up a system to which a user only describes
what result needs to be produced with the system assembling an adequate analysis workflow
to produce this result. In particular, if multiple analysis components are available which could
fill the same role, e.g. multiple parsers, we assume that the domain expert, i.e. the linguist,
in fact wants to choose which one is actually used. We want, however, that these analysis
components require little to no additional configuration. Yet, even though configuration should
not be mandatory, configuration should be possible.

We consider it an important aspect of declarative programming and of domain-specific lan-
guages, that a user can focus on those aspects of a system that need to be customized to reach

24 3 Usability



a specific goal. The user should be oblivious of other details of the system which do not need to
be customized. This is particularly important for the domain expert who is neither interested in
implementation details, nor, being a non-expert programmer, trained to understand them. It is
also convenient for the expert programmer, who can operate on a conveniently high level, but
also needs to be able to reach down into the deep implementation details, to implement new
functionality, to debug problems, and to optimize the system.

Declarative internal DSL for analysis workflow assembly
We consider a declarative internal DSL the sweet spot of usability for language analysis work-

flow assembly. A narrowly focused internal DSL allows non-expert programmers to concisely
state their domain problems. The expert programmer can easily embed analysis workflows in
applications or scientific experiments and can use the full tool chain of the host language.

To improve the declarative aspect of analysis workflow assembly, we reduce the need for
explicit configuration. An approach for automatically selecting and acquiring resources re-
quired by analysis components removes one of the main needs for explicit configuration and
is described in Section 3.1.

The uimaFIT library [186; 171] took a great step towards providing a Java-based internal DSL
for setting up UIMA analysis workflows. It provides the necessary vocabulary to conveniently
configure analysis components and set up an analysis workflow. Section 3.2 describes how we
extend this library to allow the extraction of key behavioral aspects from the component, and
thus making them better configurable and extensible. This opens up a completely new way
of designing analysis components and analysis workflows, aside from directing output of one
analysis component into the next one.

25



3.1 Resource selection

In this section, we present an approach to the dynamic selection and acquisition of resources
required by analysis components during the execution of an analysis workflow.

Our approach simplifies the assembly of analysis workflows, as a component can often be
added to a workflow without any further configuration by the user. It provides a just-in-time
selection of the resources that allows taking characteristics of the data being processed into
account. This is a step towards building analysis workflows declaratively, i.e. by specifying
what to do, e.g. run a part-of-speech tagger, but not how to do it, e.g. which model to use, where
and how to get it, etc. To enable this, we propose a best practice to package resources as portable
artifacts and to distribute them via repositories. This facilitates automatically deploying them
to a user’s computer, or to another system on which the workflow can be executed, such as a
compute cluster. We also suggest an approach packaging resources so that resource artifacts are
not specific to a particular processing framework but can be used by different frameworks.

These contributions address the following issues in our overall scenario (Figure 3.1):

2 Assembling automatic analysis components into workflows is too complex.
The automatic selection and acquisition of resources simplifies the assembly of analysis
workflows and facilitates this task in particular for non-expert programmers. Thus, it
reduces the skills necessary to successfully act in the workflow assembler role.

5 Workflows are not easily deployable to a compute cluster.
Packaging resources as artifacts that can be automatically retrieved from artifact repos-
itories reduces the manual effort necessary to set up the execution environment of a
workflow on a compute cluster system. It supports the workflow deployer role.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Workflows are not 
easily deployable to 

a cluster.

Initial exploration, annotation 
study, and definition of 

categories

5

Assembling 
components 

into workflows 
is too complex.

2

Figure 3.1: The automatic selection of resources facilitates the assembly of analysis workflows,
whereas the automatic acquisition facilitates deployment, e.g. on a compute cluster.

26 3 Usability



3.1.1 Motivation

An analysis component often requires a resource, such as a parser or part-of-speech tagger
model, a stopword list, etc. A parameter controls which particular resource a given analysis
component should use. However, manually locating, acquiring, and configuring every compo-
nent in a workflow with such a resource is tedious. Being able to produce results quickly with
minimal effort is an attractive property of automatic analysis tools. If setting up an analysis
workflow and configuring its analysis components is too complex, it becomes unattractive. A
framework for natural language processing should allow producing results with minimal or no
configuration at all. On the other hand, if configuration is not possible, it also makes a frame-
work unattractive. Likewise, it should be easy to create new analysis components, but the ease
should not restrict the power of the created components.

Configuration parameters are used to control the behavior of components and to adjust it to
a certain application scenario or experiment. In particular, a parameter can be used to make the
component use a specific resource, such as a statistical model, dictionary file, etc. Being able
to flexibly configure components is desirable. However, it is tedious and hurts usability when
every aspect of a component needs to be configured before the component can be used. There
are three approaches how to avoid this:

1. Sensible defaults – if a parameter is not explicitly set by the user, a default value is
assumed. This default should be the value that most users are expected to have set if
they had to. Consequently, it saves the work of explicitly setting this parameter for the
majority of the users. For example, it is a best practice nowadays to encode text files in the
UTF-8 encoding [231]. The Unicode standard [218] incorporates most written languages,
and the UTF-8 encoding is the most popular serialization of this standard. Any component
used to read text into an analysis workflow or to write text output should use this encoding
by default. It should only be necessary to explicitly configure a component with another
encoding in rare cases, for example when an older corpus encoded in a legacy ISO-8859-1
[119] variant is to be processed.

2. Optional parameters – an optional parameter does not have to be set. The component is
able to cope with this parameter being set to null or something equivalent. According to
this definition, a parameter with a default value is not necessarily optional. It depends on
the framework or component implementation if a default value should be assumed when
the parameter value is unset. If this is not the case, an error should be generated when a
non-optional parameter with a default value is explicitly unset.1

3. Automatic configuration – the value of a parameter is determined automatically from
the information available in the context of an analysis workflow, such as the data being
processed, analysis components in the workflow, or the system platform the workflow is
running on.

Types of parameters
We can separate the parameters of analysis components into two categories:

• Data-independent parameters – these parameters are fixed throughout the execution of
an analysis workflow. They are set up when a component is created or (re)initialized.

• Data-dependent parameters – these parameters may change during the execution of
an analysis workflow. For example, as the result of an auto-configuration mechanism, a
parameter may change depending on the language of a document being processed.

1 While setting up the DKPro Core component library (see Section 5.2), we found that practically all parameters
are not optional, that it is reasonable for a framework to assume the default value of a parameter is unset, and
that anything else confuses the users.

3.1 Resource selection 27



Whether a parameter is data-independent or data-dependent is either the decision of the author
of a component or may be prescribed by best practice guidelines for a component collection.
For example, one implementation of a parser component may require that the parser model
to be used is statically specified (e.g. to a model for a specific language), another implemen-
tation may be able to select an appropriate parser model depending on the language of the
document being processed (e.g. an English model for English documents, a German model
for German documents, etc.). A framework may provide explicit support for data-dependent
parameters, by providing a mechanism for specifying different parameter values depending on
certain properties of the processed data, for example the language.

Frequently, parameters in analysis components depend on the data being processed, in par-
ticular the language of the document. Sensible defaults for such parameters cannot be defined
unless parameter values can be defined based on the data being processed. The consequence is
that these parameters always need to be defined explicitly, which hurts usability.

Consider a parser component which needs to load a different model file depending on the
language of the document being processed. When a German document is being processed, a
model for German needs to be loaded, while a model for English is required to process English
texts.

Dynamic resource selection and acquisition
In this section, we discuss how to avoid the explicit configuration of analysis components by

dynamically selecting suitable versions of those resources that are required for processing and
acquiring them. We argue that, with respect to usability, dynamically selecting resources at the
run time of an analysis component is preferable to a selection ahead of time. Closely related
to the dynamic selection of resources is the problem of actually acquiring the resources and
making them available for use by the component. Investigating if and how current process-
ing frameworks support dynamic resource selection and the acquisition of those resources, we
find that these concepts are largely unsupported. Therefore, we present our new approach to
dynamic resource selection and acquisition.

Taking a look at parameters of analysis components, the kind of mandatory parameter en-
countered most frequently is the one to select a resource. Such resources may be model files
of some statistical tool (e.g. a statistical parser), dictionaries (e.g. stopword lists), or similar
resources. Removing the need for explicitly setting these parameters drastically cuts down the
manual effort that needs to be put into the creation of an analysis workflow, making the task
easier for a non-expert.

Even though, most of the time, there is little actual choice with respect to selecting a particular
resource, e.g. because there is only one such resource for the language to be analyzed, the user
generally has to explicitly specify this parameter and often even has to manually download
the resource and make it available to the analysis component. For the sake of usability, an
analysis component should select a default resource suitable to process the data at hand and
automatically use it, unless explicitly told otherwise.

Manually acquiring the resource, e.g. downloading it from a website, is a tedious exercise
at best. At worst, the user may be unable to locate a suitable resource, because such resources
are not always available from the same location as the analysis component or analysis tool
they were built for. After selecting which resource to use, the framework should try its best to
automatically acquire the resource.

To arrive at a fully configured component depending on one or more resources, several steps
need to be performed, as described below. The variation within the process boils down to
whether these steps need to be performed manually or automatically and to when they are
performed, ahead of time, before any data is seen, or just in time, when data is being processed
and its properties can be taken into account:

28 3 Usability



• Selecting a resource – to determine all properties that fully characterize a resource, so
that it can be uniquely identified.

• Resolving the resource – to determine the full logical or physical address. This can
happen by providing this information directly, deriving it from a template by filling in
placeholders, or searching in a repository.

• Acquiring the resource – to resolve the address and transfer the resource to the local
machine so it can be conveniently accessed. Such a transfer may include a download from
a remote location. This step is skipped if all access to the resource is done remotely, e.g. if
the resource is a web service, or if the resource is already available, for example because
it is bundled with the analysis component.

• Installing the resource – installing the resource so it can be used by an analysis compo-
nent. This may include extracting the resource from an archive to the file system, because
the analysis component may otherwise not be able to access it. It is possible that different
flavors of a resource are bundled, e.g. flavors for different operating systems. In such a
case, the resource location may only have to be fully resolved at the time it is installed or
accessed.

The following sections describe each of these steps in more detail.

3.1.1.1 Selecting a resource

The choice of resources that can be used with an analysis component is limited by several
restrictions.

The first major restriction is made by the analysis component itself. The choice of resources for
a particular analysis component is usually quite limited. Most of the time, resources are built for
one particular analysis tool or component and are not compatible with any other. Quite often, a
resource is even only compatible with one particular version of that component, because there
is no backward or forward compatibility. Consider a parser component written in Java. The
Java language provides a convenient way of serializing [174] an object graph from memory to
a file and at a later point of restoring that graph from the file. When a parser is trained on a
corpus, this mechanism makes it easy to persist the learned model to disk. The model becomes
a resource which can be distributed to other users so they can use the parser without having to
train it. This kind of serialization, however, is very sensitive to changes within the classes from
which the persisted objects have been instantiated. When fields have been added, (re)moved,
or renamed in a new version of the parser, the old models cannot be used with the new version.

The second major restriction is made by the language of the data being processed. A parser
model that has been trained on a German corpus cannot be used to parse English texts.

Of course there are many more restrictions that should be taken into account, in particular
regarding conceptual interoperability, but they are often simply ignored. In practice, most of
these restrictions tend to be minor, meaning that there is either no further choice, because only
one model per tool per language is provided, or because the models are largely technically in-
terchangeable, differing only in coverage, domain, or quality. Take tokenization as an example.
A tokenizer component may tokenize the word don’t in one of four variants: don’t, don - ’t, don
- ’ - t, do - n’t. If the model we choose for a parser has not been trained on the same variant
that the tokenizer produces, the analysis results are bound to be erroneous. This, of course,
continues with the tag sets consumed and produced by the different analysis components, and
applies in general to every aspect in which the components within an analysis workflow need
to be aligned with each other. As said before, given that there usually is not much choice, these

3.1 Resource selection 29



aspects tend to be ignored and errors introduced by such misalignment are taken into account
as unavoidable noise. In Section 5.2.4.2, we will discuss conceptual interoperability again in
more detail.

The choice for a particular resource may be made fully manually, e.g. making only a single
restriction, namely the exact location or identity of the resource, or by otherwise explicitly
specifying sufficient restrictions to uniquely identify one resource. The choice, however, can
also be made automatically, by taking into account information from the data being processed
and from the workflow context. By choosing which component is used in a workflow, the
user already made the first major restriction. By processing data in a particular language, the
user made the second major restriction. If and how further decisions are necessary needs to
be determined on a case-by-case basis. But with these two major restrictions in place, the
framework should already be able to select a default resource. It may not produce optimal
results for the user, but it should provide some results, thus helping the user to get to some
baseline results with minimal configuration effort, and in particular without having to explicitly
configure the analysis component to use a specific resource.

The selection of a resource can happen ahead of time, i.e., before any data is processed.
In such a case, an analysis component is restricted to using the pre-selected resource. If a
component is able to automatically determine that the resource is not suitable for processing
the data at hand, the most it can do is to report an error. If the selection of the resource
is deferred until data is actually being processed, the selection happens just in time. In this
case, information from the data being processed, e.g. the language, or possibly from previous
processing steps, e.g. tag set information, can be taken into account.

3.1.1.2 Resolving a resource

Once enough restrictions have been applied so that only a single possible resource remains, this
information may be used to derive a location from which the resource can be acquired.

Given the information an English model for the FooParser specialized on the medical domain,
a user may try looking on the homepage of the FooParser, not find anything, and may eventu-
ally find one homepage of the Bar Medical NLP project. An automatic process may try to use
similar information to fill in a location template, e.g. http://<toolHomePage>/models/<lan-
guage>/<domain>/model.zip in an attempt to find the model. As can be seen, it is helpful if
there is some fixed scheme by which a resource can be located. It is conceivable, that in future,
there may be online repositories of language resources in which such models could be searched
for by quite detailed criteria, but at the time this document is written, such repositories do not
exist yet.

Resources can be resolved ahead of time if either the resource selection is done ahead of
time as well, or if a set of resources is defined ahead of time from which the resource selection
mechanism may choose. The latter case would typically be combined with actually acquiring
the resource, e.g. to bundle resources with an experimental setup or application. Resolving the
resource just in time may allow using resources which have not been available at the time the
analysis workflow was initially assembled (or started).

3.1.1.3 Acquiring the resource

After the location of the resource has been determined, it is usually necessary to transfer it to the
machine on which the analysis workflow will be executed, in order for the analysis component
to access the resource. This requires, that the resource is portable and can be transferred. A
resource offered via a web service may not be portable. E.g. a web service may offer the

30 3 Usability



ability to query a data source, but not to fully download all data. The next time the service is
accessed, it may provide different data or not be available at all. This issue is discussed further
in Section 4.1.

Manual acquisition of a resource would typically involve downloading the resource with a
browser or copying it from some other location to the local machine. This may be necessary
if the resource is protected by some security mechanism which cannot easily be handled au-
tomatically, e.g. a single-sign-on system like Kerberos [165] or Shibboleth [160]. Automatic
acquisition may also not be possible due to legal reasons, as the user may be required to explic-
itly accept a license agreement before downloading a resource, which may not be possible in a
fully automated scenario, e.g. when automatically downloading resources to a compute clus-
ter. An automatic acquisition process may be as simple as downloading the resource from its
resolved location. However, as later discussed in more detail, a resource may depend on further
resources which need to be resolved and acquired. Hence, a dependency resolution mechanism
may be required for the automatic acquisition.

If acquisition is possible, that is, if the resource is portable, it is typically acquired immediately
after it has been resolved. Thus, if the resource is resolved ahead of time, it is also acquired
ahead of time, and likewise it is acquired just in time if the resolving is done just in time. Note
that acquiring a resource just in time may cause undesired delays in the execution of an analysis
workflow. Once a resource has been acquired, it should be cached for further use.

3.1.1.4 Installing the resource

Before eventually accessing the resource, additional steps may be necessary. For technical rea-
sons, an analysis component may not be able to use the resource in the form in which it is
distributed. E.g. a resource consisting of multiple files may be distributed as a ZIP archive,
but in order for the analysis component to use it, this archive needs to be extracted to the file
system. Some resources may not be immediately usable, even as a set of files. For example, a
database dump may need to be installed into a database service before it can be used. Binary
files may need to be marked as executable. Mind that resources need not necessarily be just
data. An analysis component may wrap a tool which can only be invoked as an executable
command and not directly via API calls. Thus, the binaries that constitute the wrapped tool
may actually be a resource to the analysis component that invokes them.

Parts of the resource selection may have been deferred to this stage. Consider that indeed
the binaries of a wrapped analysis tool are about to be installed. The acquired resource is an
archive containing binaries for different operating systems and hardware platforms. Depending
on what system or hardware the analysis workflow is being executed on, a different binary
needs to be installed.

There may again be legal reasons that a resource cannot be installed automatically, e.g. be-
cause the installation process requires accepting a license agreement. The automatic installation
may also be thwarted by technical issues, such as the need to install a database service before
restoring a database dump. In such cases, semi-automatic installation may be necessary, e.g.
requiring a manual installation of a suitable database service while automatically restoring the
dump. Otherwise, resources can often be installed fully automatically or may even be directly
usable in the originally acquired form.

Installing a resource ahead of time may either be necessary because it needs to be done, at
least partially, manually. If the resource has been a local one to begin with, e.g. if one particular
local file has been initially selected which can be used directly and requires no extraction or fur-
ther processing, this can also be considered an ahead of time install. A just-in-time installation
should be made to a temporary location and should be removed when the analysis workflow is
complete. In complex scenarios or when an analysis workflow is embedded within an applica-

3.1 Resource selection 31



Table 3.1: Resource selection (aot = ahead of time, jit = just in time)

Data-dependent selection mechanism Selection Resolving Acquisition Installation
GATE static workflow-based aot aot aot aot

ConditionalSerialController

Tesla none aot n/a n/a aot
UIMA - OpenNLP static workflow-based aot aot aot/jit n/a

CapabilityLanguageFlowController

UIMA - ClearTK none aot aot component component
specific specific

UIMA - DKPro Core component-based aot/jit aot/jit aot/jit aot/jit

tion, the temporary installation may be maintained until the scenario has been fully processed
or until the application is shut down.

3.1.2 State of the art

In this section, we examine the support for dynamic resource selection and acquisition in several
state-of-the-art processing frameworks, GATE [51], Tesla [194] or UIMA [83]. We find that
there is only limited support for workflows to react to characteristics of the data being processed.
If support is present, workflows can at most choose between statically configured scenarios.
Dynamically looking up applicable resources, acquiring, and using them is not supported by
any of the frameworks.

There are several variations on dynamically selecting resources regarding to what part of a
system is responsible for the task. This task may either be performed by the analysis component
itself or by the workflow controller responsible for the execution of the analysis workflow. The
workflow controller determines how data is routed between the analysis components in an
analysis workflow, in which order analysis components are invoked, or if they are skipped. The
latter case may require adding a component in multiple configurations to the workflow.

UIMA is a special case, as it does not come bundled with analysis components, as the other
two frameworks do. Therefore, we also consider analysis components from popular UIMA
component collections, ClearTK [172] and the UIMA components from Apache OpenNLP [9].
Table 3.1 provides a comparison of existing frameworks and the approach presented here, which
has been implemented in DKPro Core (Section 5.2).

3.1.2.1 Component-based selection

In a component-based dynamic resource selection scenario, an analysis component is added
once to an analysis workflow. When the component is invoked to process a document, it first
analyses the document and then decides which resource is suitable, based on explicitly set
configuration parameters and information found in the document. If the data being processed is
very heterogeneous, e.g. documents in many languages, the component may have to repeatedly
reload resources.

UIMA offers an abstraction layer for resources (cf. Section 3.2) and in particular for
parametrized data resources. Via this mechanism, an analysis component can request a re-
source, based on a set of parameters. These parameters are not further defined, but UIMA
suggests that the language may be a suitable parameter. However, we did not encounter any
UIMA components actually using this mechanism. In future work, we may consider encapsulat-
ing our resource resolving mechanism using such parametrized data resources.

32 3 Usability



3.1.2.2 Parameter-group-based selection

The UIMA framework allows organizing parameter values into named groups. A group name
can, for example, be a language code. This provides the possibility to use different parameter
values depending on the document being processed. Consider again the parser component.
When a German document is being processed, the component can use the model defined in
the "de" group. For an English document, it uses the one defined in the "en" group. Different
strategies can be used to resolve a parameter not found in the requested group. The simplest
case is to use the value of the parameter declared in a default group. Another strategy is aware
of language code semantics and can fall back from en-US (language/country) to en (language)
to default. Interestingly, there appear to exist no readily available UIMA components making
use of this concept.

3.1.2.3 Workflow-based selection with statically configured components

An analysis component may be added to an analysis workflow in multiple configurations, e.g.
once configured to use a resource for German and once for English. When the workflow is run,
the workflow execution engine examines the document to be processed and then decides which
analysis component it should be routed to. Based on the document language, it could decide
to route either to the component configured for German or to the one for English. However,
this requires that the workflow controller and the analysis components share a common con-
ceptualization of the information relevant to the routing of documents through the workflow,
which incurs a potentially undesired coupling between the engine and the components. Such
an approach also considerably increases the configuration effort, as configuration variants for
all foreseeable cases need to be added to the workflow descriptor. Unforeseen cases can, of
course, not be handled at all.

GATE
GATE offers the ability to implement a workflow-based scenario with statically configured

components using a conditional workflow.2 Analysis components within a workflow may be
executed or skipped, based on the properties of a document being processed. All resources are
selected ahead of time and each analysis component is configured to use a specific resource or
combination of resources. Resources are selected based on a fixed name or location. Unless re-
sorting to the scripting mechanisms that GATE offers, the configuration mechanism itself has no
concept of selecting a resource based on document properties. GATE tends to bundle resources
with its analysis components. Some components (e.g. the Apache OpenNLP [9] components)
are also able to load their resources from an URL, which permits a just-in-time installation be-
havior. In most cases, the analysis components of GATE ship with the resources they need, or,
at least, with an initial selection. In a few cases, the user needs to install resources manually,
e.g. the platform-specific binaries of external tools.

UIMA
While the UIMA framework has no immediate support for selecting a resource, it offers sup-

port for a workflow-based scenario. UIMA assumes that a set of fully specified analysis com-
ponents are present in a workflow. Each component may declare a set of capabilities which
indicate that they consume certain types of annotation and certain languages. The framework
provides a workflow controller3 which uses the capability information to route data through

2 GATE supports a workflow-based scenario using the ConditionalSerialController workflow controller.
3 UIMA supports a workflow-based scenario using the CapabilityLanguageFlowController controller.

3.1 Resource selection 33



the workflow. Based on this, workflows can be realized in which certain analysis engines are
used or skipped, based on the language of the document being processed and based on the
annotation types produced by previously run analysis engines.

OpenNLP
The OpenNLP UIMA components come with partially preconfigured component descriptors.

These descriptors already define a language capability, but the actual resources to be used
for annotation are not specified. This highlights a problem of the current version of UIMA’s
capabilities-based workflow. Capabilities are defined statically and cannot change depending on
the resources that a component is configured with. Assuming a user configures the OpenNLP’s
UIMA component for named entity recognition4 to use a model for Spanish, the user would also
need to change the language capability in the component descriptor form "en" to "es". Resources
can only be selected ahead of time by providing their location. The OpenNLP UIMA components
rely on the UIMA data resource mechanism (cf. Section 3.2), which supports loading a resource
from an URL. The resources are loaded automatically by UIMA at the time the analysis workflow
is initialized. They cannot react to changes in the data, e.g. to documents in different languages.
Since OpenNLP is able to load all resources from streams, no installation is required.

3.1.2.4 Workflow-based selection with dynamically configured components

Instead of initializing and instantiating all analysis components when an analysis workflow is
started, the workflow controller could defer this until the workflow is actually started and the
data being processed is known. In this case, the analysis component descriptors are templates
with placeholders, which are filled in by the workflow controller using information from the
document being processed, before instantiating the analysis component to process the data.
Again, this would require introducing a potentially undesired coupling between data, analysis
components and workflow. It may also be problematic to model cases where a component loads
multiple interdependent resources. In a component-based scenario, the component-specific
information which resources interact with each other and how, can easily be modeled within
the component itself. In a workflow-based scenario, an extra mechanism would need to be
introduced to communicate such interdependencies to the workflow controller.

We did not encounter this approach in any of the examined processing frameworks. However,
in Section 4.2, we contribute an approach for dynamically generating analysis workflows.

3.1.2.5 No dynamic selection

Tesla
Analysis workflows built with Tesla are meant to be able to run on a dedicated Tesla Server.

Since no resource acquisition mechanism is integrated in Tesla, this limits the choice to those re-
sources bundled with the analysis components deployed on the Tesla Server. Dynamic resource
selection is not implemented in Tesla, as neither the components support a corresponding mech-
anism, nor is a conditional workflow available.

ClearTK
ClearTK does not provide descriptors for its UIMA components. Instead, it relies heavily on

uimaFIT to programmatically generate descriptors, set parameters, and configure resources.
ClearTK components are configured ahead of time with resource locations. Although some
components also require or allow specifying the language as a parameter, this information is

4 OpenNLP’s UIMA component for named entity recognition is implemented in the NameFinder class.

34 3 Usability



not used to resolve the models. A workflow-based mechanism, e.g. via the capability-based
workflow controller, is not supported as the ClearTK components do not declare capabilities.
Since the capabilities can easily change depending on the resources a component is config-
ured with, a mechanism would be required by which uimaFIT could determine a component’s
capabilities based on its parametrization while generating the component descriptor. Such a
mechanism, however, is not available. Most resources are bundled with ClearTK components.
It depends on the individual components if they allow downloading a resource file from an URL
or if only locally available files are allowed. There is no particular sub-system in ClearTK which
takes care of acquiring remote resources, and UIMA’s data resource mechanism is also not used.
Likewise, there is no particular mechanism to install resources for ClearTK components. Some
components require that their resources are on the file system, others can directly access the
bundled resources. The way this is handled differs from component to component.

3.1.3 Contribution: Dynamic resource selection and acquisition

In an effort to remove the necessity of explicitly specifying which resources an analysis compo-
nent should use, we developed an approach for selecting, resolving, acquiring, and installing
resources automatically and dynamically depending on the data being processed. Analysis com-
ponents employing this mechanism provide a better usability for non-expert users, because the
main need for configuration has been removed and the components "just work." This section
introduces the approach and various conventions for addressing as well as for packaging the
resources and making them portable:

• A coordinate system for resource selection
• A resource selection and acquisition process
• A best practice for packaging resources

3.1.3.1 A coordinate system for resource selection

As mentioned before, typically a few pieces of information are critical to selecting the proper
resource. We shall call these the coordinate of a resource:

• Type – if the resource is specific to a tool, the type specifies the tool, e.g for the Stanford
CoreNLP [200] suite, there are resources for the parser, tagger, etc. Otherwise, if the
resource is generic and may be used by multiple tools, this coordinate indicates the kind
of resource (e.g. gazetteer, stopword list, ontology, etc.).

• Language – the language is important, as most resources are language-specific. In case
a resource is not language-specific, some well known value can be used here. ISO-639-2
[121] defines the language code und for undefined. For resource artifacts containing bina-
ries, this may just be left empty.

Definition: coordinate – A scheme for addressing data based on key-value pairs. Maven
employs GAV (group, artifact, version) coordinates to address artifacts. In this work, we
propose a base coordinate system consisting of type, language, variant, and version for
addressing resources needed by analysis components, e.g. models, dictionaries, etc. Addi-
tional coordinates like platform or tag set may be used to further qualify certain kinds of
resources, such as platform-specific binaries or annotation type mappings.

3.1 Resource selection 35



Table 3.2: Exemplary assignment of resource coordinates

Coordinates
Resource Type Language Variant Version
OpenNLP part-of-speech tagger model opennlp-model-postagger en maxent 1.5
OpenNLP part-of-speech tagger model opennlp-model-postagger en perceptron 1.5
CoreNLP parser model corenlp-model-parser en factored 1.3.5
CoreNLP parser model corenlp-model-parser en pcfg 1.3.5
CoreNLP named entity recognizer model corenlp-model-ner en all.3class.distsim.crf 1.3.5
CoreNLP named entity recognizer model corenlp-model-ner en conll.distsim.crf 1.3.5
CoreNLP named entity recognizer model corenlp-model-ner en muc.distsim.crf 1.3.5
TreeTagger part-of-speech tagger model treetagger-model-postagger en default 3.2
TreeTagger chunker model treetagger-model-chunker en default 3.2
TreeTagger binaries treetagger-bin – – 3.2
... ... ... ... ...

• Variant – there may be arbitrary additional information necessary to disambiguate a re-
source if multiple resources for the same tool and language are available, which we sum-
marize under the variant coordinate. For models of probabilistic analysis components,
the variant can encode the most important parameter values used to train a model. For
resources containing only language-independent binaries, this may be left empty if bina-
ries for all platforms are bundled together. Otherwise, this may be used to indicate the
platform (e.g. linux-x86_32, linux-x86_64, etc.).

• Version – each resource should have a version. A resource may be improved over time or
needs to change in order to function for newer versions of the associated tool.

Although, it is not quite correct, we assume that the language implicitly specifies additional
characteristics, such as the tag set (cf. Section 5.2.4.2), tokenization scheme, etc. In order for
a user to get results quickly and conveniently these coordinates suffice. In the present scheme,
any distinctions that need to be made beyond the type and the language, should be encoded in
the variant.

In practice, this set of coordinates has proven to provide considerable convenience to the users
of the DKPro Core component collection (Section 5.2). Table 3.2 illustrates resource coordinate
as they are being used in DKPro Core.

Default variant
If there exists more than one resource per type and language, then the variant is an additional

coordinate used to disambiguate a resource. As not to force the user to choose explicitly be-
tween variants, every component should consider one variant the default, which is used unless
anything else is explicitly specified.

Which variant of a resource is suitable can be completely independent of the data being
processed. Instead, variants of a resource typically provide a choice between quality, memory
requirements, and processing speed. For example, the Stanford CoreNLP parser can operate
with two kinds of models: a factored model [131] or a PCFG model [132]. While both models
are trained on the same data, the factored parser requires more memory and is slower than the
PCFG parser, but tends to produce better results. Thus, when quality is required, the factored
variant of the model is used, otherwise the pcfg variant (cf. Table 3.2).

The default variant should provide a good balance between quality, memory requirements,
and processing speed. It should also be based on the most commonly used data set or tag set
for the language. For example, for the English language, default variants should prefer the Penn
Treebank [146] part-of-speech tag set, syntactic categories from the Penn Treebank, and so on.

36 3 Usability



There may be a different variant for every language suitable for being taken as the default
variant. In order to avoid explicitly labeling one resource as the default variant, we employ
several techniques:

• Fixed default – in cases where variants are consistently available across languages, the
analysis component uses a hard-coded default variant. For example, the OpenNLP part-
of-speech tagger models consistently come in a maxent and a perceptron variant, so we
can choose one of them to be the default.

• Language-dependent default – in cases where for each language a different variant is
more suitable, we use a mapping assigning the default variant based on the language.
For known resources, this mapping is bundled with the analysis component. If a user has
custom resources or has a different preference for the default resources, this mapping may
be overwritten.

• Default redirect – both previous approaches assume that the default variants are known
when the analysis component is created. To permit a component in a just-in-time resolving
scenario to automatically support resources for new languages as they become available,
a proxy resource with a well known variant (e.g. default) can be introduced. Then, the
component resolves this default proxy resource, the resolving mechanism is redirected to
the actual resource.

3.1.3.2 Resource selection and acquisition process

Our process for selecting and acquiring a resource consists of four steps which are described in
this section:

• Resolving the resource artifact – Determining the artifact containing the resource based
on the artifact coordinates.

• Resource artifact acquisition – Fetching the artifact.
• Resolving the resource within the artifact – Determining the location of the resource

within the artifact.
• Resolving auxiliary resources – Determining any auxiliary resources which are required,

e.g. metadata describing the resource.

Resolving the resource artifact
The resource coordinates can be used to construct the information necessary to access a

resource. An example how an URL template making use of these coordinates may look like is
given in Figure 3.2.

http://repository.org/${type}/${language}/${version}/${variant}/resource.jar

Figure 3.2: URL template using resource coordinates

However, we do not rely on the resources to be available at a particular URL. Since there
are currently no repositories on which we can operate directly with resource coordinates, we
map the coordinates to create a new set of coordinates, so called GAV (group, artifact, version)
coordinates, as they are used by Apache Maven (or just Maven for short [156]).

Maven employs a declarative approach for building software. In particular, it allows declar-
ing dependencies on external libraries and allows automatically resolving such dependencies by
downloading them from a repository and making them available to the locally running build.

3.1 Resource selection 37



Table 3.3: Example mapping resource coordinates to Maven GAV coordinates
Coordinate Value Mapping
groupId de.tudarmstadt.ukp.dkpro.core

artifactId corenlp-model-parser-en-pcfg ${type}-${language}-${variant}

version 1.3.5 ${version}

The mechanism is not limited to software libraries, but can be used to resolve any kind of arti-
fact. Artifacts are identified by a groupId, broadly specifying the organization or project context,
the artifactId naming a particular artifact within the context, and a version. For example, the
UIMA core library has the GAV coordinates org.apache.uima : uimaj-core : 2.4.1. Maven is
supported by a global infrastructure service, the Maven Central Repository [149], to which ar-
tifacts, mainly Java libraries, can be uploaded. There are many public third-party repositories
which a user may opt to use. Finally, it is easy to host an own private or public repository
using one of the different Maven repository managers, like Apache Archiva [7] or commer-
cial alternatives. When a build is performed, Maven resolves the GAV coordinates against all
registered repositories and automatically downloads all required artifacts and their transitive
dependencies.

For the analysis tools integrated into the DKPro Core component collection (Section 5.2), we
have packaged a considerable number of resources for different tools and languages as Maven
artifacts and distribute them via a public Maven repository. DKPro Core also includes scripts
which automatically download the resources from their original providers and package them
according to the conventions outlined here and implemented in the DKPro Core component
collection. This way, a user can easily package all resources, in case this repository is not
available. The scripts can easily be updated when newer versions of the resources are released.

Resource artifact acquisition
If the artifact containing the desired resource should be automatically acquired, we can bene-

fit from the Maven infrastructure, by translating the resource coordinates into GAV coordinates
(see Table 3.3).

With this information, the resource artifact can be automatically acquired. This can either be
done ahead of time, e.g. by specifying the resource as a dependency in the Maven build infor-
mation for the project which embeds our analysis workflow, or the resource could be acquired
just in time, when a component actually needs the resource. The latter requires that the Maven
dependency resolution mechanism (or an alternative) be integrated into the component.

Resolving the resource within the artifact
After the resource artifact has been acquired, it is necessary to locate the actual resource

within the artifact. The acquired artifact is not the resource per-se. It is an archive that may
contain one or more resources and the corresponding metadata.

A second location is derived from the resource coordinates, this time to locate the resource
within the artifact. Note that we assume here that every artifact contains only a single specific
version of a resource. Hence, the version information is not used here (Table 3.3).

/de/tudarmstadt/ukp/dkpro/core/lib/${type}-${language}-${variant}.bin

/de/tudarmstadt/ukp/dkpro/core/lib/${type}-${language}-${variant}.properties

Figure 3.3: Template to locate a resource within a resource artifact

While the information like the language information is typically determined from the data
being processed, there is other, runtime-specific information which may be necessary to resolve

38 3 Usability



a resource. For example, knowledge about the system platform on which an analysis workflow
is running may be necessary to choose the correct binaries for that platform (e.g. linux-x86_32,
linux-x86_64, etc.).

/de/tudarmstadt/ukp/dkpro/core/bin/${type}/${platform}/

Figure 3.4: Template to locate binaries within a resource artifact using the system platform as
an additional coordinate

Resolving auxiliary resources
This time, additional, component-specific information may be taken into account. Consider

a part-of-speech tagger component which selects a tagging model for English. The compo-
nent employs a mapping to determine as which annotation type a particular part-of-speech
tag should be rendered. E.g. the annotation type system may include a PUNC annotation for
punctuation, while the selected part-of-speech tagger model produces a "." tag. The model
can declare which tag set it uses as metadata in a .properties file associated with the resource,
e.g. as pos.tagset=ptb.5 Thus, after selecting the model, the component can use the tag set
information as an additional hint to select the annotation type mapping.

/de/tudarmstadt/ukp/dkpro/core/lib/${language}-${pos.tagset}-pos.map

Figure 3.5: Template to locate an auxiliary resource (an annotation type mapping) using addi-
tional coordinate obtained from a primary resource (a part-of-speech tagger model)

Resource installation
In the best case, a resource can be accessed directly from the acquired artifact, without any

further steps. To unify the access to the resource within the artifact, we employ the Java class-
path mechanism. Similar to URLs, the classpath provides a uniform address space. To make
software libraries accessible by a Java application, the JAR files or file system folders containing
the compiled libraries are mapped into this address space. JAR files are basically ZIP archives
and may contain any kind of data including resources that may be used by analysis components.
Consider Maven is being used to build a software project embedding an analysis workflow. Any
resource artifacts added as dependencies to this project are automatically added to the class-
path. Since any data in the classpath can be accessed via an URL or as a stream, any component
supporting these modes of access can immediately use the resources stored in these artifacts
using classpath locations such as previously illustrated in Figures 3.3-3.5.

Should an analysis component not be able to load resources from the classpath, the resources
need to be extracted to a temporary location in the file system. This may be necessary if a
component wraps an external command-line analysis tool. If the resource is a single file within
the resource artifact, it can easily be copied to a temporary file. If the resource consists of
multiple files, a more sophisticated approach needs to be taken. As a best practice, all files
belonging to the resource should at least be within the same folder inside the resource artifact.
Mechanisms exist to recursively examine a folder in the classpath and extract it to the file
system.

Care should be taken that resources, just like class files, reside in unique folders within
the classpath. Thus, a fully qualified name starting with a name owned by the resource
provider, e.g. /de/tudarmstadt/ukp/dkpro/core/resource/..., should be used to avoid
conflicts. Further, no two resource artifacts should use the same prefix. Consider the two
resource artifacts english-resources and german-resources containing a parser model at

5 ptb is here short for Penn Treebank

3.1 Resource selection 39



/resources/parser.ser. When these two artifacts are mounted to the classpath, both, the
German parser.ser and the English parser.ser are mapped to the same address. It is ab-
solutely not trivial for an analysis component to deal with such a case and choose the correct
resource to use. Unfortunately, some of the few resources already distributed via Maven repos-
itories do not observe these best practices yet, which makes it problematic to use them, even
though it should be possible to integrate them easily into any framework via proxy artifacts.

Discussion of resource resolving and acquisition
While implementing this dynamic resource resolving and acquisition strategy, it became ob-

vious that determining which version of a resource is compatible with a specific version of an
analysis component is not trivial, in particular for a non-expert user. Tools and their resources
may have different release cycles. Additionally, analysis components wrapping particular tools
often have different release cycles than the tools they wrap.

To address this issue, we record the versions of all known compatible models in a metadata
file6 shipped with the analysis component. When a component tries to access a resource, it can
refer to this information to determine a compatible version. If no version is found, a component
could try to acquire the latest available version of the resource. However, since the latest version
is bound to change over time, the reproducibility of results is not guaranteed. Also, the latest
version may not be compatible with the present version of the analysis component.

As mentioned before, our approach relies on the Maven infrastructure. If Maven is actually
used as a build tool, resources may be added directly as dependencies to the project embed-
ding the analysis workflow. That way, Maven resolves and acquires all resources ahead of time.
However, this requires that the set of resources that will be required during the execution of
the workflow is known. If resources for German and English are added as Maven dependen-
cies, these are automatically installed ahead of time. If a component then processes Spanish
documents, it has either to try acquiring the resource just in time, or it has to produce an error
message. A scientist who desires full control over the experimental setup and the resources used
may want to prevent the component from doing automatic downloads at runtime and restrict
the resources to those specified as Maven dependencies.

3.1.3.3 Packaging resources for reuse

A resource may be completely stand-alone, possibly encoded in a widely-used standard format,
so that it can be used in many contexts, for example a dictionary, ontology, or other lexical
resource. More often, however, a resource originates from the context of a particular tool and
is specific to that particular tool implementation. For example, a model trained for a particular
implementation of a parser may be saved as a serialized representation of the classes used in
this implementation. Since this is a convenient strategy, it is used often. Such a serialized
model can typically not be used by a different parser implementation and sometimes not even
by a different version of the same parser.

A framework can use a resource more effectively, if it can make use of metadata about the
resources. A resource in its original context often bears little to no metadata about itself. For
example, it may not be possible to determine if a parser model has been trained on a German
or an English corpus, unless that information is explicitly stored in a metadata file which the
framework can access. Just as there are no readily usable resource repositories, there is like-
wise no agreed-upon standard to represent such metadata. Hence, processing frameworks or
component collections tend to define their own specific metadata formats, in which they are

6 In fact, we use the Maven project object model (POM) file to store this information in the form of so-called
dependency management information. This instructs Maven which version of an artifact to use without actually
declaring a dependency.

40 3 Usability



also free to add any non-standard information. We do acknowledge the existence of many
metadata schemes. Unlike efforts such as CMDI, we do not attempt to integrate these with
each other. However, we rather suggest an approach by which each framework may main-
tain resource metadata, but the bulk of resources may still be used by analysis components of
different frameworks.

Resource artifacts may be of significant size. Repeatedly packaging resources along with
framework specific metadata in framework specific artifacts and distributing these via a repos-
itory infrastructure such as Maven Central is extremely inefficient. Resources, as software li-
braries, should be packaged and provided in a way that makes them easily usable by any
framework or even by stand-alone tools. Framework-specific resource metadata should be
maintained separately from the resources. It should also be maintained separately from the
components that use the resources, because resources, tools, and the analysis components that
wrap them, may evolve at different speeds. So it is possible that one version of a resource may
be usable by several versions of an analysis component, e.g. if the version of the wrapped tool
remains the same.

Four tiers of artifacts
Currently, resources are seldom packaged and distributed separately from tools or analysis

components. Instead, they are included in the package of the processing framework or of an
analysis component. Even when they are packaged as separate distributable artifacts, there may
be other good reasons not to use these packages, such as the package granularity. Including all
upstream resources distributed with a tool into a single resource artifact may result in a huge
package. Consider a statistical parser for which models for various different languages exist,
each model easily reaches tens of megabytes in size, some reach even a gigabyte or more. A
user interested in processing one language only should not be forced to download the models
for other languages.

For the optimal reuse of resources, we propose a four-tiered approach to packaging resources:

• Upstream resource – unpackaged resource as it was originally provided by the creator.
The upstream resource may not be addressable or versioned in any way.

• Resource artifact – resource packaged in a way that it can be distributed via a repository.
In addition to any metadata required by the packaging and distribution mechanism itself,
the resource artifact should contain information about its creation, about the origin of the
resource, and about its license.

• Proxy artifact – framework-specific metadata for the resource. The proxy artifact refers
to the resource artifact.

• Component artifact – analysis component which can make use of the resource. The
component refers to the proxy artifact.

To realize this approach, we assume that an artifact bears a unique identifier and a version
so it can be addressed, e.g. by means of GAV coordinates. We further assume that it is possible
to declare that one artifact depends on another, such as the Maven dependency declaration and
resolving mechanism.

Figure 3.6 illustrates the relationship between a resource, its original tool context and analy-
sis components from different component collections. Consider a resource from the context of
the Baz tool. To make the resource available to analysis components based on the two process-
ing frameworks Foo and Bar, it is first packaged in a resource artifact. Any resource metadata
a framework may require is packaged in a separate artifact, a proxy artifact. The proxy arti-
fact declares a dependency on the resource artifact. Finally, an analysis component which can

3.1 Resource selection 41



Component artifact
Foo framework

version 1

Component descriptor

Resource proxy artifact
Foo framework

version 1

Resource descriptor

Reusable resource artifact
version 1

Component artifact
Bar framework

version 1

Component descriptor

Resource proxy artifact
Bar framework

version 1

Resource descriptor

Component artifact
Bar framework

version 2

Component descriptor

Resource

Baz tool
version 1

Foo framework Bar framework

Baz tool

Figure 3.6: A resource and its relations to the original tool and to analysis components from
different processing frameworks

use the resource is packaged in a component artifact. The component artifact declares a de-
pendency on the proxy artifact. To truly decouple the analysis component from the resource,
it is necessary, that the analysis component does not try to access the resource directly within
the resource artifact. Instead, it should use a pointer stored in the proxy artifact to resolve the
actual resource.

This four-tiered approach has several benefits:

• Reusability across frameworks – The resource artifact can be used by different process-
ing frameworks alike, assuming that each framework supports the packaging format and
possibly the logical identifiers and the distribution mechanism.

• Reusability within framework – The resource proxy artifact can be used by different
components within the same framework. As previously indicated, the proxy can also
be used to implement a redirection from a default variant proxy to the actual default
resource. Since multiple proxies can be set up for the same resource, the resource can
have the default variant coordinate in addition to its actual variant coordinate.

• Reusability across versions – The processing framework and its analysis components can
evolve independently from the resource. When the metadata required by the framework
changes or is extended, it is only necessary to create a new version of the resource proxy
artifact which contains the metadata. This is beneficial, because the resource proxy artifact
is typically very small while a resource artifact tends to be very large.

42 3 Usability



Decoupling resources from components
An analysis component should not declare a dependency on any resource. Such an explicit

dependency would entail that the resource is always acquired and potentially bundled with
an application, even though it may never be used, leading to unnecessarily large application
bundles. It should be left to the user or the automatic resource selection mechanism to de-
termine which resources an analysis component should use. A user who wants to select the
resources to be used by an analysis workflow ahead of time, can add dependencies on the re-
source proxy artifacts to the workflow. It is helpful, though, if an analysis component declares
with which resources it is compatible. Maven, for example, offers a dependency management
mechanism, which allows declaring which version of a particular artifact should be used if that
artifact should be added as a dependency. In that way, a component may declare its compatibil-
ity with certain proxy artifacts, with the metadata contained therein and, thus, indirectly with
the resources these proxies depend on.

It is even possible to operate altogether without any explicit references to the proxy. Assuming
the proxy artifacts use identifiers following a certain scheme, the analysis component could
construct a proxy identifier at the time that data is actually processed, based on the data that is
being processed. The component can then resolve this identifier and download the proxy and
resource artifacts from a repository at runtime. If a soft reference to compatible resources is
available in the component artifact, this can be used to choose a resource version, otherwise
the component may try to fall back to looking for a proxy artifact with the same version it has
itself, or try looking for the latest version of the resource.

Resources required for analysis components such as parser models or dictionaries can be
loaded from the Java class path. This allows packaging such models as JARs, publishing them
to artifact repositories and using them via Maven. Maven’s dependency resolution mechanism
can then be used to automatically download an artifact and all its dependencies.

It is not necessary to declare the required resources at build time. The framework incorporates
support for resolving resources at run time.

3.1.4 Example

As a proof of concept, we have implemented the dynamic resource selection and acqui-
sition approach described here for the DKPro Core component collection (Section 5.2).
Components that make use of this mechanism define a specialization of the abstract
ResourceObjectProviderBase class. For an illustration, we examine the implementation of
the DKPro Core wrapper for the part-of-speech tagger component from the Stanford CoreNLP
library. Listing 3.1 shows how the component configures the resource provider. First, a con-
figuration file for the language-dependent default variant coordinate is provided. Then, the
location of the resource proxy metadata for the part-of-speech model is configured. Finally, the
GAV coordinate template for the resource proxy is provided.

Listing 3.1: Default information for the resource provider used in the DKPro Core StanfordPosTagger component
1 setDefaultVariantsLocation(
2 "de/tudarmstadt/ukp/dkpro/core/stanfordnlp/lib/tagger−default−variants.map");
3

4 setDefault(LOCATION, "classpath:/de/tudarmstadt/ukp/dkpro/core/stanfordnlp/lib/" +
5 "tagger−${language}−${variant}.properties");
6

7 setDefault(GROUP_ID, "de.tudarmstadt.ukp.dkpro.core");
8 setDefault(ARTIFACT_ID,
9 "de.tudarmstadt.ukp.dkpro.core.stanfordnlp−model−tagger−${language}−${variant}");

The component offers several parameters to allow the user to override the language, variant,
or even the location of the model file, allowing to selectively or fully disable the automatic

3.1 Resource selection 43



selection mechanism. Listing 3.2 illustrates how these override parameters are passed on to the
resource provider.

Listing 3.2: Resource selection overrides in the DKPro Core StanfordPosTagger component
1 setOverride(LOCATION, modelLocation);
2 setOverride(LANGUAGE, language);
3 setOverride(VARIANT, variant);

The resource proxy metadata contains framework-specific information as well as a pointer to
the actual resource location. Listing 3.3 illustrates what this metadata can look like.

Listing 3.3: Resource selection overrides in the DKPro Core StanfordPosTagger component
1 generated=2013/05/08 00\:24
2 version=20130404.1
3 language=de
4 variant=fast
5 location=classpath\:/de/tudarmstadt/ukp/dkpro/core/stanfordnlp/lib/tagger−de−fast.tagger
6 pos.tagset=stts

The ResourceObjectProviderBase implements all functionality to monitor changes to any pa-
rameters that may affect the resolved location of the resource. Whenever any of these pa-
rameter changes, it resolves the resource location and passes it as an URL to the abstract
produceResource method. This method is implemented specifically for each component to
reload the resource. Listing 3.4 shows the implementation for the Stanford part-of-speech tag-
ger. Note, that a new part-of-speech tagger instance is created only when the resource URL
changes as a result of the new parameter values.

Listing 3.4: Resource access in the DKPro Core StanfordPosTagger component
1 MaxentTagger produceResource(URL aUrl) throws IOException {
2 return new MaxentTagger(aUrl.toString());
3 }

Whenever the component processes a new document, the resource provider is updated with
data-dependent parameters, such as the language. The component does not hold a reference
to the part-of-speech tagger. Whenever it requires one, it calls the getResource method. This
may trigger a reloading of the resource and the creation of a new part-of-speech tagger, if a
data-dependent parameter caused the resolved resource location to change. Listing 3.5 shows
how the part-of-speech tagger is acquired from the resource provider and used to tag the words
in a sentence.

Listing 3.5: Resource access in the DKPro Core StanfordPosTagger component
1 words = modelProvider.getResource().tagSentence(words);

The user feedback we got after integrating our approach into the DKPro Core component
collection (Section 5.2) was very positive, in particular because the system always chooses a
version of a resource compatible with the analysis component being used. Users manually
choosing incompatible versions of resources had been a frequent problem before.

3.1.5 Summary

In this section, we have motivated the need for the dynamic selection and acquisition of re-
sources and found that this concept is not supported by current processing frameworks. With
present frameworks, resources need to be selected and mostly acquired ahead of time, before
the analysis workflow is executed.

To address this, we have introduced a new approach to dynamically select and acquire re-
sources. Our approach implements a just-in-time selection, which allows taking characteristics

44 3 Usability



of the data being processed into account which are only available at runtime. With this ap-
proach, we removed the need for explicitly configuring analysis components the most frequent
mandatory parameters, the required resources. In most cases, components can be used in an
analysis workflow without any further configuration, which significantly simplifies the assembly
of the workflow, in particular for non-expert programmers. When desired, the default config-
uration may be overridden, e.g. to choose a different variant of a resource or to use a custom
local model instead of a model from a repository.

Our approach represents a step towards building analysis workflows declaratively, by speci-
fying what to do, e.g. run the OpenNLP part-of-speech tagger, but not how to do it, e.g. which
model to use, where and how to get it, etc. We expect this to facilitate the development of
declarative domain specific languages for the assembly of workflows, as well as interactive
tools for workflow assembly, and annotation tools which embed automatic analysis workflows.

An integral part of the approach is the consistent packaging of resources as resource artifacts
which can be distributed via artifact repositories. Packaged resources are portable, which allows
easily and automatically deploying them to a user’s computer, or to another system on which
the analysis workflow is executed, such as a compute cluster.

We have suggested a best practice for packaging resources in a way that is not specific to a
certain tool or processing framework. Instead, the resources can be reused, avoiding doubts
if two independent packagings of a resource are actually the same, and saving space in the
repositories.

As we notice that several parties have interest in or are starting with the distribution of
resources via Maven repositories, we hope that our guidelines will help to avoid redundant
packaging of resources, as we can already witness it. E.g. some models of the Stanford CoreNLP
[200] suite are already packaged and distributed multiple times and in different artifacts and
using different packaging strategies via Maven Central.7

Future work should provide a more refined set of coordinates and possibly an enhanced
repository which allows searching by these coordinates. For example, we currently assume
that the language implies additional characteristics, such as the tag set, tokenization scheme,
etc. While this is a viable assumption, as we discuss in Section 5.2, it is not valid in general.
However, for a user to get results quickly and conveniently, these coordinates suffice. In the
present scheme, any distinctions that need to be made beyond the type and the language,
should be encoded in the variant. Promising work that might lead to such a refined coordinate
set and associated repositories includes, for example, ISOcat [130], OLiA [43], the Component
Metadata Infrastructure (CMDI) [34] and the CLARIN Virtual Language Observatory [223].

Based on the positive experience we collected with our approach, we are planning to extend
it to support the dynamic acquisition of primary data, e.g. text corpora. E.g. in a research
group, corpora could be stored on a server and be conveniently addressed and used by the
researchers in their experiments. The NLTK framework [26] provides a convenient mechanism
for dynamically acquiring primary data, which might serve as a point of reference.

7 See e.g. edu.washington.cs.knowitall.stanford-corenlp model artifacts and the edu.stanford.nlp model arti-
facts, which can be found by searching for "stanford models" on http://search.maven.org (Last accessed:
2013-11-04)

3.1 Resource selection 45

http://search.maven.org


3.2 Simplified API

In this section, we present an approach to configuring analysis components with parameters
representing complex objects, based on the strategy design pattern. This allows extracting key
behavioral aspects of an analysis component into a pluggable object, thus making the compo-
nent’s behavior customizable and improving composability and separation of concerns.

We investigate if and how current processing frameworks support this design pattern - apart
from the analysis components themselves - and find that the support of complex objects as com-
ponent parameters is largely limited to specific kinds of objects, e.g. providing an abstraction
over linguistic resources, such as dictionaries. Then, we present an extension to the Apache
UIMA [10] framework which improves the support of the strategy pattern. Finally, we discuss
two use cases to illustrate the usefulness of this design for modeling analysis workflows.

These contributions address the following issues in our overall scenario (Figure 3.7):

2 Assembling automatic analysis components into workflows is too complex.
The behavior of analysis components can be configured via strategies. This allows a user
to customize the behavior of an analysis component without the need for programming.
It reduces the skills necessary to act in the workflow assembler role.

8 Implementing new interoperable automatic analysis components is too complex.
The ability to extract arbitrary behavioral aspects into strategies opens up a completely
new way to design analysis components. It can provide the analysis developer with a more
natural and convenient way to implement analysis components.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Assembling 
components 

into workflows 
is too complex.

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Implementing 
custom 

components is 
too complex.

Initial exploration, annotation 
study, and definition of 

categories

2

8

Figure 3.7: Issues addressed by our improved support for the strategy pattern in the
parametrization of analysis components

46 3 Usability



3.2.1 Motivation

Processing frameworks allow the composition of analysis components into analysis workflows.
For the analysis components to be reusable effectively, they must be configurable, so that they
can be contextualized when a workflow is assembled for a particular kind of analysis.

The concept of an analysis component itself is an instance of the strategy pattern [96]. This
pattern occurs if some context (e.g. an analysis workflow) can be customized via different strat-
egy implementations (e.g. a part-of-speech tagging component or a parser component) which
implement a strategy interface (e.g. analysis component) defining the interaction between the
context and the strategy implementations (Figure 3.8).

A good support for the strategy pattern by allowing analysis components to be configured
with complex objects which are configurable themselves, can provide a more declarative and
intuitive approach to the assembly of an analysis workflow. A set of strategies may already be
provided by an analysis component and be readily used by a non-expert programmer. More
skilled programmers may conveniently realize new strategies by implementing the task focused
strategy interfaces in own classes. Modifying the analysis component or inheriting from it
are not necessary to customize key behavioral aspects. Therefore, this approach improves the
usability aspect of automatic analysis components for both, the non-expert programmer and the
expert programmer.

Strategy
<<interface>>

Context

StrategyImplA StrategyImplB

Figure 3.8: Strategy pattern of software design

The ability to configure analysis components tends to be limited (Figure 3.9). E.g. a parame-
ter may only assume simple values or lists of such values, like strings, numbers, etc. In addition
to the parameters, an analysis component can only use its input data to control its behavior, i.e.
the primary data and the analysis results of previous components.

Beyond simple parameters, a processing framework may support some kind of resource ab-
straction, which tends to target in particular the abstraction of sources of data, such as dic-
tionaries, databases, index, etc. Hence, the strategy interfaces used for these resources tend
to define methods to interact with these resources, just as the strategy interfaces for analysis
components define methods to analyze the data. They are not meant to be used generically to
provide analysis components with arbitrary kinds of strategies.

There are, however, cases in which the ability to use the strategy pattern for the configuration
of analysis components is beneficial for a usable design.

3.2.2 State of the art

The ability to configure analysis components with complex objects to influence their behavior
is apparently useful and can provide an improved usability. We will briefly describe different

3.2 Simplified API 47



Analysis 
component

Parameter1 : String
Parameter2 : int
Parameter3 : boolean
Parameter4 : URL

Input Output

Figure 3.9: Basic structure of an analysis component

approaches to make the behavior of analysis components customizable, including the strategy
pattern. Then, we examine the state-of-the-art processing frameworks to determine if they
support any of them, which, and how. We observe that these frameworks offer surprisingly
little support to configure analysis components for different behaviors, and that even if there is
support within the framework, the strategy pattern is hardly used.

3.2.2.1 Mode selection

A set of well-known parameter values, each an identifier for a particular behavior, can be used
to configure an analysis component to behave in a certain way. Consider an analysis component
to calculate the average length of a word in a corpus with a parameter mode. We can set mode
to the value mean to calculate the average as the arithmetic mean, or e.g. to median. In any
case, the component only supports a certain predefined set of modes to calculate the average
word length.

3.2.2.2 Inheritance

An alternative approach would be the use of inheritance. For example, in a machine learning
scenario, the training component could be an abstract class. From this, the user could derive
a custom class which sets up the feature extractors as part of its initialization routine. This,
however, would require the user to actually program. Such an approach is currently being
taken by the ClearTK machine learning framework [172].

3.2.2.3 Strategy pattern with internal instantiation

The name of a class or a list of class names is passed to a component. All the classes are
expected to implement a certain interface, so that the analysis component may internally create
instances of these classes and invoke certain methods. Consider the component for calculating
the average word length again. This time, the parameter mode accepts the name of a class
implementing the following interface:

Listing 3.6: Interface for strategies of calculating the average word length of a list of words
1 interface AverageLengthFunction {
2 int averageLength(String... words);
3 }

The framework may already come with several implementations of this interface, e.g. Arith-
meticMean and Median. We can pass one of these or we can choose to implement our own
class, e.g. Maximum, which would return the length of the longest word in the corpus. In this
approach, there is no predefined set of behaviors. Any user can provide a custom behavior
creating a new class implementing the AverageFunction interface.

Just as analysis components can have parameters, it is sometimes necessary that individual
strategies also have parameters themselves. For example, a feature extraction strategy which

48 3 Usability



generates a feature from a sliding window of tokens may have a parameter to determine the
window size. However, in the present approach, there is no way to directly configure the
strategy with this parameter, because only the class name of the strategy is passed to the analysis
component, not a readily configured strategy instance.

For this reason, the approach is often combined with a concept that we call parameter for-
warding. Instead of setting the strategy parameters on each strategy individually, they are set
on the analysis component to which the strategy is passed. The component is then responsible
to forward the parameters to the strategy when it is instantiated internally by the component.

This approach requires special conventions to ensure that parameters reach the strategy that
they are meant for. ClearTK, for example, prefixes each parameter name with the class name of
the strategy to which the parameter should be forwarded. This convention does not work when
the same strategy is passed multiple times to an analysis components, but with different pa-
rameter settings, for example when we want to pass multiple sliding window feature extractors
with different window sizes to our machine learning component. More sophisticated naming
conventions are conceivable, but put an increasing burden onto the user to follow them.

3.2.2.4 Strategy pattern with external instantiation

Instead of leaving the responsibility to forward parameters to analysis components, the pro-
cessing framework itself may offer provisions to configure and instantiate strategies before they
are passed on to the analysis components. Thus, the strategy is instantiated externally by the
processing framework rather than internally by the analysis component.

All the processing frameworks we examine operate based on a component descriptor which
defines how an analysis component is instantiated, what the parameters are, what values they
have, etc. The frameworks need this information so they can create instances of components
based on this descriptor whenever and wherever necessary, e.g. on a compute cluster after
all required software libraries and resources have been automatically deployed to the cluster
nodes. Another reason to operate with component descriptors, instead of using regular code
to instantiate components, is the support of graphical tools for configuring components and
assembling workflows. It is pretty straightforward to implement such tools operating on a
declarative model of the component or workflow.

Thus, just as an analysis component is configured by a descriptor, a strategy also needs to be
configurable using its own descriptor, which includes all the parameter settings for the strategy.
In this way, we can also configure a strategy several times, using several descriptors, each with
its own set of parameters. This makes it easy to configure multiple sliding window feature
extractors with different window sizes on a machine learning component.

3.2.2.5 Support in processing frameworks

Next, we examine the processing frameworks to determine if and how they are addressing the
need for strategies.

GATE
GATE appears to be the most flexible of the examined processing frameworks when it comes

to the configuration of components. In addition to the usual simple values, any type of GATE
resource can be used as a parameter value and any class following the Java Bean conventions
can be used as such resources. According to these conventions, the bean class must provide
a no-argument constructor and provide getter and setter methods for any of its configurable
properties. Examining the source code of GATE, however, it appears that the capability of con-
figuring components with complex objects is used mostly for LanguageResources (LRs), which

3.2 Simplified API 49



represent documents, corpora or other sources of data. In some cases, enumeration types, rep-
resenting a fixed inventory of strategies, are used as parameters. In a few cases, class names are
used as parameters, e.g. to allow using custom operators in JAPE scripts. We did not find a case
where a complex object other than a data source was used as a configuration value. Possibly,
this is an effect of the way the graphical user interface of GATE is designed. It allows creating
and managing four types of resources: applications (analysis workflows), language resources
(data sources), processing resources (analysis components), and data stores (storage for analysis
results). Strategies such as the feature extractors, splitters or rankers from our example simply
do not fit into this user interface.

Tesla
Tesla appears to be the least flexible framework when it comes to the configuration of com-

ponents. It only supports the typical primitive Java types8 as well as lists of these. This is
interesting to note, since otherwise Tesla pays much attention to exploiting the object-oriented
features of the Java language. The limitation to these primitive types is slightly alleviated by the
fact that custom editors can be registered for each parameter. A String parameter representing
a file name may be editable in the user interface using a file chooser. If the parameter may
assume any of a predefined set of values, only these values are offered in the user interface. A
special enumeration data type is not used. A String parameter representing a class name may
be editable via a visual component allowing the selection of one of the implementations of a
certain interface.

In a situation where a component is configured with a strategy that itself needs to be con-
figured with parameters, Tesla components appear to simply declare additional parameters on
the component. For example, the Suffix Select component has two String parameters accepting
names of classes, selectAlgorithm and weightCalculatorClass. The component creates instances
of these two classes and then invokes a setter method on the algorithm instance to which it
passes the weight calculator instance. This is obviously not a generic solution. It would not be
possible to implement a new custom selection strategy which requires additional parameters.

UIMA
The UIMA framework is situated somewhere in between the previous two frameworks with

respect to the configuration of analysis components. Parameter values in UIMA are even more
restricted than in Tesla. Only a few primitive types (integer, boolean, float, and String) and
lists of these are natively supported. Via the uimaFIT API, many other simple value types (e.g.
File, URL, ...) are also supported. These are automatically coerced into a String representation
when passed into a component and transformed to the actual parameter type when the analysis
component is initialized. Additionally, UIMA has a concept of so-called shared resources. UIMA
provides several interfaces based on which shared resources can be implemented:

• DataResource – an interface for accessing data resources from an URL or stream. The
resource is created and initialized when the workflow is instantiated from its descriptor.

• ParameterizedDataResource – an interface for accessing data resources which require
runtime information, such as the language of the document being processed, and, thus,
cannot be fully initialized when the workflow is created.

• Resource – a generic interface which is implemented by most components in the UIMA
framework including analysis components. It allows creating custom resources9 which
are not specialized for data access, e.g. for implementing arbitrary strategies.

8 Primitive Java types: long, int, short, boolean, character, double, float, and String
9 Due to the way the descriptors for these resources have to be written, using the UIMA CustomResourceSpecifier

class, parameter can even be only of the type String – they cannot even be multi-valued.

50 3 Usability



The shared resources in UIMA are mostly used to implement different strategies of data ac-
cess. The ClearTK machine learning framework [172], which is based on UIMA, could make
use of external resources to model feature extraction strategies, but instead, a combination of
inheritance and parameter forwarding is used.

3.2.3 Contribution: Improved support for configurable analysis component behavior

In this section, we present an improved approach to support configurable analysis component
behavior based on external instantiation. Our approach allows the flexible combination of
strategies with analysis components in such a way, that each strategy can be individually con-
figured with parameters or other strategies. This allows a clear separation of concerns between
the strategies and the analysis components. Details of our concept are specific to the UIMA
framework, because we implemented our concept as part of the uimaFIT library. However,
the motivation for using strategies to configure component behavior is independent of the pro-
cessing frameworks, and none of the frameworks supports this approach sufficiently, as we
previously discussed in Section 3.2.2.

Our approach to the strategy pattern relies on the UIMA shared resource mechanism. In order
to avoid naming inconsistencies with the UIMA and uimaFIT libraries and code examples, we
use the term shared resource as a technical synonym for strategy in the rest of this section.

We implemented our concept as an extension to the uimaFIT library, which provides a more
usable API for the UIMA framework and fits in well with our idea of a domain specific language
for analysis workflow assembly. Adding our extensions to uimaFIT instead of adding them to the
core UIMA framework allowed us to publish our work and test our new concepts early without
creating a fork of the UIMA framework. The extensions were done in three phases:

• Injection of shared resources into analysis component – Adding support to uimaFIT
for handling shared resources, creating the typical Java annotations, and factory methods.

• Injection of nested resources – Adding the ability to configure shared resources with
other shared resources to create a nesting of resources required additional effort. The
concept of nested resources has so far not been supported by the UIMA framework. Nested
resources provide for the composability of strategies.

• Injection of multi-valued shared resources – Adding the concept of multi-valued shared
resources. UIMA supports multi-valued parameters, but shared resources are always ex-
pected to be singular. Having multi-valued shared resources, e.g. to configure multiple
feature extractors on a machine learning component, is an important feature. This concept
improves the composability of strategies.

In the following illustrative code examples, we do not use the original UIMA/uimaFIT class
and method names, which are slightly more verbose.10 Instead, we use aliases which are more
consistent with the names used elsewhere in this thesis. We also ignore the fact that it would
actually be necessary to inherit from specific UIMA/uimaFIT classes, and claim that just imple-
menting a certain interface would be sufficient to make a class a valid analysis component or
resource.11

10 Actual names in uimaFIT:
analysisComponent(...) 7→ createPrimitiveDescription(...);
resource(...) 7→ createExternalResourceDescription(...)

11 Instead of just implementing the Resource interface, it would be necessary to extend the uimaFIT
Resource_ImplBase class. Also, extending JCasAnnotation_ImplBase would be necessary instead of just
implementing AnalysisComponent.

3.2 Simplified API 51



To give an example of how uimaFIT works, we illustrate the parameter injection support.
uimaFIT allows annotating class fields with the @ConfigurationParameter annotation (List-
ing 3.7) and automatically injects parameter values into these fields when a component is ini-
tialized. When configuring a component within an analysis workflow, the component class
name is followed by a list of name/value pairs representing the configuration parameters and
their values (Listing 3.8). This saves considerable boiler-plate code, otherwise necessary to
manually extract a parameter value from the configuration context of the analysis component
and to set up a valid component descriptor.

Listing 3.7: Injection of a parameter into an analysis component – parameter declaration
1 class WordFilter implements AnalysisComponent {
2 @ConfigurationParameter
3 int minLength;
4 }

Listing 3.8: Injection of a parameter into an analysis component – setting the parameter
1 analysisComponent(WordFilter.class,
2 "minLength", 3);

3.2.3.1 Injection of shared resources into analysis components

The support for injecting shared resources into analysis components has been implemented such
that is appears very similar to the already existing support for parameter injection.

Listing 3.9: Injection of a shared resource into an analysis component – declaring the resource dependency
1 class Learner implements AnalysisComponent {
2 @ExternalResource
3 FeatureExtractor featureExtractor;
4 }

A new Java annotation @ExternalResource (Listing 3.9) has been added, which can be
used to annotate class fields and to allow uimaFIT injecting shared resources into these fields.
This injection is handled by a new helper method provided by ExternalResourceInitializer,
initialize(component, context), which operates as an adapter between the analysis com-
ponent’s configuration context and the component itself. The helper method is invoked during
the initialization of an analysis component.

Listing 3.10: Injection of a shared resource into an analysis component – setting the resource
1 analysisComponent(Learner.class,
2 "featureExtractor", resource(NGramFeatureExtractor.class, "nGramSize", 3));

The uimaFIT factory methods for the creation of analysis component descriptors have been
extended, so that shared resources can be configured similar to normal configuration param-
eters (Listing 3.10). It needs to be noted, though, that this convenient way of configuring an
analysis component with a shared resource is only possible if the analysis component has been
built using the uimaFIT annotations [12].

3.2.3.2 Injection of nested resources

The UIMA framework allows declaring that an analysis component requires some shared re-
sources, but it provides no means of declaring that a shared resource requires another shared
resource. Therefore, supporting the injection of shared resources into other shared resources
(nested resources) was more difficult to solve.

52 3 Usability



From the user’s perspective, it should be a natural extension of the shared resource support in
uimaFIT. Adding a field in a shared resource class and marking it with the @ExternalResource
annotation should be sufficient (Listing 3.11). Likewise, the assembly of an analysis workflow
containing a shared resource which is configured with another shared resource should work
without any additional effort (Listing 3.12).

Listing 3.11: Injection of a shared resource into another shared resource – declaration
1 class Learner implements AnalysisComponent {
2 @ExternalResource
3 FeatureExtractor featureExtractor;
4 }
5

6 class SimilarityFeatureExtractor implements Resource, FeatureExtractor {
7 @ExternalResource
8 SimilarityMeasure similarityMeasure;
9 }

10

11 class MySimilarityMeasure implements Resource, SimilarityMeasure {
12 }

Listing 3.12: Injection of a shared resource into another shared resource – injection
1 analysisComponent(Learner.class,
2 "featureExtractor", resource(SimilarityFeatureExtractor.class,
3 "similarityMeasure", resource(MySimiliarityMeasure.class)));

What appears simple from the user’s perspective, turned out to be rather difficult to imple-
ment, due to the way that the UIMA framework handles shared resources:

• Binding – The UIMA framework allows declaring that an analysis component requires
some shared resources. However, it provides no means of declaring that a shared resource
depends on another shared resource. In order to model this information, uimaFIT now
uses a customized version of the UIMA ExternalResourceDescription implementation,
which allows making such declarations. This information needs to be retained only while
interpreting the analysis workflow assembly, between the time that a shared resource
descriptor is created and the time that bindings between shared resource and analysis
components are generated. After the binding is complete, the information can be safely
discarded. Hence, further extensions or changes to the UIMA framework, e.g. of the XML
representation of analysis component descriptor or analysis workflows, were not required.
Nested resource bindings are registered on the component to which the resource is bound
transitively. To disambiguate the keys to which the resources are bound, keys for nested
resources are internally prefixed with the unique name of the resource. That way, keys
with the same name in the host component or any of the resources, are unique and do not
conflict.

• Initialization – Shared resources, with an exception of the parametrized data resources,
are initialized when an analysis workflow is instantiated. During this process, the initialize
lifecycle event is triggered immediately after the shared resource has been instantiated. At
this point, other shared resources may not have been instantiated yet and thus cannot be
fetched and injected into the annotated class fields. For this reason, uimaFIT introduces a
new after resources initialized lifecycle event for shared resources. This is triggered when
the ExternalResourceInitializer is used for the first time to inject shared resources
into an analysis component. At the time the analysis components are initialized, all pos-
sible shared resources have already been instantiated. The after resources initialized event
is guaranteed to be triggered all resources have been instantiated and before the work-
flow starts processing data. Eventually, it would probably be better to remove this extra

3.2 Simplified API 53



lifecyle event and defer the initialize event on shared resources until after all resources
have been instantiated. That, however, would have required invasive changes to the core
UIMA framework, which was to be avoided.

3.2.3.3 Injection of multi-valued shared resources

Some scenarios require that multiple strategies can be passed to a component. In the text
classification scenario, we want to pass multiple feature extractors to the learner component.
The UIMA framework does not allow the binding of more than one shared resource to a given
dependency key of a component.

From the perspective of a developer implementing a component, adding support for multi-
valued shared resources in a component or resource is natural, as the annotated field is changed
to an array or a Java collection type (Listing 3.13). From the perspective of the user of a compo-
nent, passing a multi-valued resource as a configuration parameter is likewise straightforward,
by passing an array or collection of resource descriptors (Listing 3.14).

Listing 3.13: Injection of a multi-valued shared resource into an analysis component
1 class Learner implements AnalysisComponent {
2 @ExternalResource
3 FeatureExtractor[] featureExtractor;
4 }

Listing 3.14: Injection of a multi-valued shared resource into an analysis component
1 analysisComponent(Learner.class,
2 "featureExtractor", list(
3 resource(AverageWordLengthFeatureExtractor.class)
4 resource(NGramFeatureExtractor.class, "nGramSize", 3)
5 resource(NGramFeatureExtractor.class, "nGramSize", 2)
6 resource(NGramFeatureExtractor.class, "nGramSize", 1));

This functionality was implemented leveraging the nested resources support of uimaFIT. A
new special-purpose resource called ResourceList was defined. This resource declares a single
configuration parameter, namely the number of resources in the list. Otherwise, it serves as
an anchor to which the individual resources in the list (the list elements) are bound. When-
ever a multi-valued shared resource with n values is passed, uimaFIT internally creates such a
ResourceList, dynamically generates n resource dependencies with the keys ELEMENT[0] to
ELEMENT[n-1] and binds the resources to these.

To properly initialize the class fields into which such multi-valued resources are injected, the
ExternalResourceInitializer was extended. It reads the size of the list from the ResourceList
resource and fetches all individual list elements, and adds them to a Java collection List with
which the field is initialized.

3.2.4 Examples

We employed the improved support for the strategy pattern in two use-cases: decompounding
of compound words and feature extraction in a workflow used to train a classifier. These are
illustrated in the following sections.

3.2.4.1 Scenario 1: Decompounding

Decompounding is the task of separating a compound word into smaller semantic units. For
example, the word Fließbandarbeit (assembly-line work) is a compound of the three words

54 3 Usability



fließen (run), Band (belt), and Arbeit (work). It is also a compound of the words Fließband
(assembly-line) and Arbeit or maybe fließen and Bandarbeit.

Workflow structure
There are two sub-tasks involved in decompounding. The first task is to reverse the com-

pounding step. Splitting is the identification of locations within the compound word, at which
the word may be split, preferable into those components that were originally joined to form the
compound. Obviously, the compound may not just be split at any location and should yield a
semantically plausible decomposition. The second task, ranking, is deciding the order in which
the splits should be made. For the word Fließbandarbeit, the correct splits and the splitting
order is ((Fließ|band)arbeit), while (Fließ(band|arbeit)) would be wrong.

There are different strategies for both tasks, for example:

• Splitting

– Left-to-right – Scanning a word from left to right, splitting off the prefix whenever
it corresponds to a word in a dictionary.

– Data-driven [136] – For each position within a word, the number of words in dic-
tionary is determined, that contain the result of a split operation at this position as a
prefix (wpre f i x) or suffix (wsu f f i x). A split is then made based on where the biggest
difference in the number of words is found (max |wpre f i x −wsu f f i x |).

• Ranking

– Compound probability [4] – A word is split into compounds such that the sum of
weights of each compound part is minimized. The weight is calculated based on the
frequency a compound part occurs as a separate word in a large corpus.

– Mutual information [4] – A word is split into compounds such that the mutual
information score is maximized. This score is calculated by looking at how often the
parts occur near each other in a large corpus.

A traditional analysis workflow for decompounding might follow the design depicted in Fig-
ure 3.10. The splitter component determines all possible splits for each word and generates
annotations on the document text for each of them. These annotations are then read by the
ranker component which assigns a rank to each split for each word and removes all but the
best-ranked split annotations. To vary the splitting and ranking strategies, different analysis
components are implemented, each using a specific splitting or ranking strategy.

... ...

Splitting
component

Dictionary : File

Ranking
component

FrequencyCounts : File

Figure 3.10: Traditional decompounding workflow using splitter and ranker components

This approach has several drawbacks.
First, the user wants to perform a single task, namely decompounding, but has to construct

a workflow in which this task is actually rendered as two tasks. This is not very intuitive for a
user who is mainly interested in a good result and not necessarily in the way how exactly this
result was achieved.

Second, a potentially very large amount of splitting information needs to be rendered as anno-
tations, so that the information can be passed on to the ranker. This appears unnecessary, since
the user in the end is mostly interested in only the best decompounding for each word. Hence,

3.2 Simplified API 55



the splitting information is only required in the communication between splitter and ranker. It
is convenient to use lightweight data objects instead of having to render this information as
data exchange objects of the processing framework. Finally, the splitting and ranking strategies,
again, may be configured with dictionaries or word frequency lists. We can easily imagine that
these again come in different formats, so that encapsulating them as shared resources with a
uniform API is useful to make them easily reusable by the splitting/ranking strategies or other
analysis components requiring such kinds of resources.

Using strategies as parameters
With a processing framework supporting the strategy pattern for the configuration of analysis

components, a different design can be used (Figure 3.11). A single decompounding component
is added to the analysis workflow. This component is then configured with a splitting and a
ranking strategy, both complex objects which are configured themselves. In the given example,
the splitting strategy is configured with a dictionary resource and the ranking strategy is config-
ured with a word frequency count resource. Both of these resources are again complex objects
which may come in different flavors, e.g. loading their data from files, from a database, or from
an online service.

Splitting strategy

Decompounding
component ......

Ranking strategy

Word frequency count 
resource

FrequencyCounts : File

Dictionary resource

Dictionary : File

Figure 3.11: Decompounding workflow using a single decompounding component, configured
with strategies for splitting and ranking

This approach to modeling different splitting and ranking strategies has been implemented
in the decompounding module of the DKPro Core component collection (Section 5.2).

3.2.4.2 Scenario 2: Text classification

Text classification is the task of training a classifier by learning characteristic features from a
body of data and applying this knowledge to characterize unseen data. An application of text
classification is, for example, learning how to separate spam mails from non-spam mails. We
examine the task up to the generation of the classifier. How to apply the classifier to unseen
data does not contribute any additional insights with regards to the design of the software
architecture.

Workflow structure
A traditional analysis workflow (Figure 3.12) for training a classifier may consist of a series

of feature extraction components, each reading results of some previously run preprocessing
analysis and rendering extracted features, such as average word length, part-of-speech n-grams,
etc., as annotations according to the standards of the processing framework.

56 3 Usability



...
Feature

extraction 
component

Training 
component

Feature
extraction 

component
... ...

Figure 3.12: Traditional training workflow using several feature extractor components, and a
training component

Again, a different design (Figure 3.13) can be used with a processing framework supporting
complex objects as component parameters. This scenario is different from decompounding, as
not a single, but a list of feature extraction strategies is passed to the training component.

Training component

Feature extraction strategy

Feature extraction strategy

....

Machine learning
algorithm

......

Figure 3.13: Training workflow with a training component that can be configured with a list of
feature extraction strategies and a learning algorithm

Using strategies as parameters
The benefits of the strategy-based design over the traditional design are again, that extracted

features need not be rendered as framework data objects. Instead, they can be directly passed
from the feature extractors to the machine learning algorithm within the training component.
Additionally, feature extractors can be easily parametrized individually. This promotes the de-
velopment of generic, configurable feature extractors which can easily be added to the training
component in different configurations (cf. 3.14). Such an approach to configuring a machine
learning component with feature extraction strategies has been implemented in the DKPro TC
[65] framework.

3.2.5 Summary

In this section, we have discussed that the strategy pattern is a useful means to provide users
with a new level of flexibility for the configuration of the behavior of analysis components
without requiring them to program. We found that existing processing frameworks offer only
limited support for strategies, e.g. to provide an abstraction over linguistic resources, such as
dictionaries. In particular behavioral strategies, as opposed to resource access strategies, are
not well supported.

We designed and implemented an extension to the uimaFIT library for the UIMA process-
ing framework, which facilitates the implementation of strategies based on the UIMA shared
resources API. The uimaFIT library was extended to support UIMA shared resources. Beyond
that, our extensions allow the strategies to be configured with strategies themselves and the

3.2 Simplified API 57



ability to pass multiple strategies of the same role to a component, e.g. multiple feature extrac-
tors to a machine learning component. The latter two concepts are currently not supported by
the UIMA framework itself. We integrated our extension into the official uimaFIT codebase.

In the DKPro Core component collection (Section 5.2), we apply our approach in the context
of decompounding. The DKPro TC [65] framework employs it to allow the user to flexibly con-
figure and compose feature extractors. Also, the ability to customize behavior can be improved,
e.g. by defining new lightweight behaviors as part of an analysis workflow, without the need to
implement a new analysis component from scratch.

In future work, we plan to extend our approach with a concept for default strategies. While
most processing frameworks offer the ability of defining default values for parameters, we did
not define a corresponding concept of defining default strategies as part of our current con-
tribution. Default values for parameters can typically be discovered by inspecting an analysis
component programmatically, e.g. by analyzing the metadata encoded in Java annotations.
Likewise, a solution for default strategies should allow the default strategy configuration to be
inspected. This allows automatically extracting information about the default strategy from the
analysis component and recording it in documentation or in component metadata, where it can
be used to discover components. Therefore, a trivial solution, in which a component internally
sets up and uses a default strategy unless another strategy has been explicitly configured, is not
sufficient. Such internal behavior of the component cannot be easily inspected from the outside.

58 3 Usability



4 Reproducibility

As it has been stated by many researchers, reproducibility is the hallmark of good science. Build-
ing on the work by others, commonly referred to as standing on the shoulders of giants is central
to science. Traditionally, scientific work is published in the form of conference papers or journal
articles, but these media are unable to capture the intricate details of the actual implementa-
tion of an experimental setup [206]. A growing reproducible research movement, as Drummond
[68] calls it, can be observed in various scientific domains, particularly in those relying on
computational simulations.

Drummond [68; 67] reviews several sources discussing the topic of reproducible research and
comes to the conclusion that this topic actually consists of three sub-topics:

• Reproducibility – the aim of reproducibility is to provide the ability to exactly repeat
an experiment at a different time, in a different environment or by a different person,
producing exactly the same results. Repeating an experiment exactly means, that neither
the experimental workflow nor the data is subject to variation. The goal is to provide
means of locating details in the experimental workflow which have significant impact –
positive or negative – on the results, but may not have been sufficiently explained along
with the published results.

• Statistical replicability – the aim of statistically replicating an experiment is to generalize
over a specific implementation of the experiment, the data set, or other resources involved
in the experiment. These may imply a strong and undesired bias on the experimental
results.

• Scientific replicability – this aims at the verification of the actual abstract hypothesis
underlying a series of potentially completely different experiments, approaching a phe-
nomenon from a variety of different angles.

We do not enter here into the controversy regarding the motivations underlying the growing
desire for reproducibility. The fact is that various approaches are taken towards improving the
reproducibility, from service infrastructures that allow maintaining and running experiments in
the cloud [116] to capturing the execution environment and result log of experiments [55].
While these approaches have certain merits, we chose to approach the problem from a different
angle, aiming to preempt the need of capturing the execution environment and allowing the
user to keep control over running an experiment and preserving it in a runnable state.

In Section 4.1, we discuss the portability of analysis workflows. In order to achieve repro-
ducibility, it is an essential prerequisite that a workflow functions and produces the same results
in different environments. Therefore, it is mandatory that the workflow is portable, meaning
that it can be moved from one environment to another, including all required software, primary
data, and other relevant resources. Instead of capturing the workflow environment, we sug-
gest that a workflow should inherently provide sufficient information to create its environment.
Based, among other techniques, on the automatic resource selection (Section 3.1) and on the
collection of analysis components (Section 5.2), we demonstrate how such portable workflows
can be implemented conveniently. We consider it most important to maintain usability while
striving for reproducibility, since there can be little hope for acceptance otherwise.

In Section 4.2, we discuss how to eliminate spurious manual interventions from automati-
zable workflows. Manual steps are an inherent source of error. Yet, analysis workflows tend
to contain steps which are performed manually, because the processing framework being used

59



does not allow conveniently automatizing these steps. We introduce a framework-independent
approach to building dynamic, data-flow oriented workflows, particularly targeted at facilitating
parameter sweeping experiments involving multiple interacting analysis workflows. Parameter
sweeping can be used to find the parametrization of an experiment producing the best re-
sults. In dynamic workflows, the assembly of the analysis workflow itself becomes subject to
parametrization. As such, dynamic workflows are well suited to build an aggregate experiment
setup, testing the statistical replicability of an experiment by varying essential parts, from the
data set to the implementation of analysis components.

60 4 Reproducibility



4.1 Portable workflows

In this section, we propose an approach to portable, reproducible analysis workflows. We dis-
cuss how analysis workflows can conveniently retrieve portable software from repositories and
what benefits and issues such an approach entails. We compare this to alternate approaches
that aim at facilitating reproducible research and how these approaches are supported by
current processing frameworks. We note that current processing frameworks allow building
analysis workflows and sharing them, but leave all responsibility of setting up the execution
environment to the user. To address this, we present an approach which encodes the high-level
logic of the experiment in a script containing sufficient information to provision the experiment
including its dependencies to an environment in which it can be run.

Our proposal addresses the following issues in our overall scenario (Figure 4.1):

4 Workflows are not portable between computers.
Our approach to analysis workflows based on portable software allows the workflows to
be easily exchanged between researchers and to reproduce each others results.

5 Workflows are not easily deployable to a compute cluster.
Portable analysis workflows which reference specific versions of components and re-
sources can be deployed to a compute cluster more easily.

11 The user has no control over workflows that rely on expert skills from a different
domain, undocumented knowledge, or third-party infrastructures, e.g. web services.
Portable analysis workflows put the users in control by allowing them to maintain usable
copies of all involved artifacts. They do not have to rely on third-party services or partners.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Workflows are not 
 portable.

Workflows are not 
easily deployable to 

a cluster.

Initial exploration, annotation 
study, and definition of 

categories

4

5

Workflows are not 
 portable.

4

Workflows are not 
 portable.

4

The analysis 
components must 

be controllable.

11

Figure 4.1: Applicability of portable workflows within the motivating scenario

4.1 Portable workflows 61



4.1.1 Motivation

Research results, as published in conference papers or journal articles, are unable to capture the
details of the actual implementation of an experimental setup [206]. Not at least for this reason,
there is a desire to provide researchers with a convenient way of rerunning an experiment
workflow and to reproduce the published results. But there are other motivations as well:

• Cooperation – As illustrated in our initial scenario, portable workflows are essential for
cooperating researchers, even before any results are published. The cooperation partners
need to be able to run the experiment and produce the same results independently of each
other, so that each partner can work on improving certain aspects of the experiment.

• Reuse – Workflows should remain usable by each partner after the cooperation comes
to an end. Our initial scenario highlights a cooperation between programming experts
and non-programming experts. In such a scenario, it is particularly important, that the
non-expert programmer can continue using the jointly built workflow without the assis-
tance and resources from the programming-expert partner. Portable workflows permit the
cooperation partners to preserve all data and software required by the workflow without
relying on partners or other third parties.

• Scaling – A simple workstation may only be sufficient to run an experiment on a limited
data set. In order to operate on more data, it may be necessary to run an experiment
on a powerful server or even a compute cluster, possibly running on a different hardware
architecture and operating system. Without a workflow relying on portable software and
data, this would hardly be manageable.

• Debugging – Debugging analysis components or an experiment workflow running on a
compute cluster is hardly trivial. On a cluster, an experiment is spread over multiple
machines and multiple processes, which makes it difficult for a debugger to monitor the
overall system state, to interrupt processes when a breakpoint is reached, and to step
through the program. The task is significantly easier on a local workstation, within an
integrated development environment. Thus, the ability to debug a component locally
and later run the same component with more data on a cluster is important to maintain
reasonable turnaround times during development and debugging.

However, there are issues which may cause a published experimental workflow to become
non-functional or which may prevent that an experimental workflow is published in its entirety,
i.e. including all required software, resources, and primary data:

• Legal issues – Among the many legal issues involved in the licensing of research results,
research software, and research data [205], we here pick redistributability as particularly
crucial to reproducibility. Portability is not only a technical issue, but also a legal issue. If
the license under which research software or data is published does not permit redistribu-
tion, such work or work building thereupon cannot be freely shared between cooperating
researchers and it cannot be distributed via an independent repository. Technical as well
as legal portability issues are repeatedly cited as motivations for building walled garden1

web-service-based infrastructures, for example in the proceedings of a recent workshop
on service-oriented architectures [115], at which members of two large infrastructure
projects of the digital humanities discussed solutions and impacts of such infrastructures.

1 The term walled garden refers to an ecosystem or platform in which users may participate, even provide
content or services, but the platform provider acts as a gatekeeper and has the power to lock users out (even
from their own previously supplied content) or to reject content or certain ways of using the system.

62 4 Reproducibility



• Workflow decay – Platforms, such as myExperiment [103], provide means of publish-
ing workflows and sharing them with the community. The workflow descriptions shared
there, however, are subject to decay, meaning that they cannot be used anymore as in-
tended after some time. Hettne et al. [114] conducted a survey of workflows published
on myExperiment and studied the causes for decay. They suggest, among other things,
that web services are one of the major reasons for workflow decay and suggest that relying
on portable (platform independent) code helps to prevent decay.

Trust and control
Gómez-Pérez et al. [104] suggest introducing a measure for the reliability of workflows, which

incorporates trust towards the workflow authors, but also towards the providers of web services
used by the workflow. While we do not build a formal method of measuring workflow quality
here, we suggest that, from the individual researcher’s point of view, control is better than trust.
Whenever trust in a volatile service or data provider can be replaced with portable software or
data, which can subsequently be preserved and controlled by the user, control can replace trust.
For this reason, processing and data, both have to be portable and, consequently, controllable.
The choice when to update a workflow to different data or different dependencies remains
largely with the user, and is not dictated by third parties, such as service providers.

When relying on trust cannot be avoided, we prefer to trust in wide-spread and largely
domain-independent service providers and technologies. For example, the Java programming
language and the Java Virtual Machine are widely used in commercial and non-commercial en-
vironments and are supported by a strong user and developer community. For the distribution
of software libraries, the Maven [180] repository technology has become the de-facto standard
and it is likewise used and supported by a strong community of commercial as well as non-
commercial users and developers. This community also supports the Maven Central Repository
[149], a federated infrastructure for the distribution of software libraries and resources. For this
reason, neither of the two technologies and associated infrastructures are likely to disappear or
fall into disrepair in the foreseeable future. They appear more trustworthy and reliable than
efforts undertaken by individual research communities.

Experimental workflows
We envision a portable workflow description that is minimal, but contains the top-level work-

flow logic, so one can easily understand what happens, as well as sufficient detail to provision
the runtime environment for the workflow. The provisioning of a portable workflow covers the
automatic deployment of all required analysis components, resources, and their dependencies
to the environment in which the workflow is to be executed. Only a bootstrapping mechanism
should need to be present in the environment, which can be used to trigger the provisioning
process.

Such a portable workflow is an alternative to processing infrastructures based on web ser-
vices. It promotes scaling out processing to compute clusters as the processing can be distributed
as desired across the cluster nodes. Unlike when using web services, the user is not restricted to
the computing resources offered by third parties. Relying on minimal, and themselves, portable
prerequisites, such as a Java Virtual Machine (JVM), provides a convenient and reliable means
of running an experimental setup at a later time or in a different environment.

4.1.1.1 Portability

The word portability is derived from the Latin word portare (v.) (to carry, to take). When we
talk about portable workflows, we mean taking a workflow and all associated software and data

4.1 Portable workflows 63



from one environment and running it in some other environment. This entails several technical
and legal aspects.

Technical aspects
With respect to software, the term portability is associated with different concepts (cf. [158]):

• Source portability – the portability of software is usually associated with a particular
hardware or software platform on which the software can be compiled from its sources
and where it can be run. We say, a software is portable to this platform.

• Binary portability – portable software, or stand-alone software, can easily be run from
an external storage device (e.g. an USB stick). It does not require special permissions
(e.g. an administrator account) and does not make any persistent modifications to the
environment it is run in (e.g. store information in the user’s profile).

• Byte-code portability – a software is portable across platforms if the same compiled bi-
nary can be run on different system platforms. An example are the universal binaries of
the Mac OS X operating system, which contain compiled code for the PowerPC architec-
ture and the x86 architecture. Another example is software which has been compiled to
byte-code, a hardware-independent binary representation which requires a runtime envi-
ronment such as a Java Virtual Machine. Such software runs on any system platform for
which the runtime environment is available.

For the purpose of portable workflows, byte-code-based software provides the most conve-
nient solution. The smaller the required runtime environment is, the less does the workflow
execution rely on system libraries and implementation details of the runtime environment, the
more logic is encoded in portable byte-code.

Unfortunately, not all software is byte-code-based. In that case, a workflow should at least
rely on binary-portable software. Such software should depend as little as possible on system
libraries. If the software requires additional libraries, these should be statically linked into the
executable file. If this is not possible, the libraries should at least be packaged together with the
executable file, so that they can be automatically provisioned to the execution environment and
the responsibility of installing them does not fall to the user (cf. [45]).

Software which cannot be packaged in a binary-portable manner and which needs to be
compiled for a specific system platform should be avoided. Such software cannot easily be
provisioned for a workflow to use it on different platforms.

In the present work, we extend the concept of portability to resources (i.e. data) as well. We
consider a resource to be portable when it can be fully copied from one environment to another.
If a text corpus can be queried using a web interface which only returns the top 100 results, the
corpus data is not portable. If the service, however, offers the ability to download a dump of
the complete corpus, it would be considered portable.

Some data may be considered not to be portable, because of its enormous size. E.g. the
Google Web 1T 5-gram Corpus [32] has a size of several gigabytes even in compressed form,
in which the data cannot be readily accessed. We accept that workflows relying on such large
resources are not portable, controllable, and reproducible in the way we intend them to be –
at least until hardware and network capacities have evolved to the point that the size can be
handled.

Legal aspects
A license that limits or prohibits redistribution is an impediment to reproducibility, because

it limits the portability. One may be technically able to provide a software or resource in a
portable way, but may not be allowed to do so (cf. Figure 4.2).

64 4 Reproducibility



The licensee has no right to give or sell the system to third

parties without written permission from the licenser.

Figure 4.2: Exemplary license clause limiting redistribution

Consider a tool with a license permitting the use in a research context, but prohibiting the
downloading of the tool from any other source than the author’s homepage. It would be pos-
sible to implement a portable analysis component wrapping this tool and distributing the tool
along with the component to save the users from having to manually download and install the
tool themselves. Due to the restrictive license, however, this is not allowed. While it is abso-
lutely understandable that a researcher may not want others to monetarize her work, not even
allowing her to redistribute the work free of charge appears to be an unnecessary impediment to
research. Therefore, to ensure reproducibility, tools and data should be provided under a license
which permits interested parties to repackage them and redistribute them without restriction.

The rights granted hereunder may be terminated at any time at

the discretion of the authors and owners. They are terminated

by the time of the eventual extinction of the FooBar Group.

Figure 4.3: Exemplary license termination clause

Likewise, uncontrollable license termination clauses are detrimental to reproducibility. Even
if a workflow may make use of a tool at the time of writing, decay is already built in as the license
may be terminated at any time, and possibly even at a determined time. Once published, the
license must not be revocable, except possibly in the case where the licensee undertakes an
aggressive action against the licensor. E.g. the Apache License 2.0 contains a patent retaliation
clause terminating the license to an individual or group instituting a patent ligitation process.

However, portability can mitigate such problems, because users can maintain private personal
or institutional archives, providing at least some in-house reproducibility.

4.1.1.2 Repositories

A repository is a central place used to share analysis components and resources used by an anal-
ysis workflow, their dependencies, and possibly the workflow itself. There is a defined protocol
by which these artifacts are published and how they can be accessed. A provisioning mechanism
which locates artifacts required by a particular experimental setup and installs them on the ma-
chine on which the analysis process is intended to be run can rely on this protocol. A repository
can be a simple static website that hosts the artifacts, or it can be a specialized repository server
software, which may offer additional features like searching over artifact metadata. Instead
of visiting such a repository, manually downloading and installing artifacts, users today expect
that a repository integrates with the tool they are using. For example, the add-on management
dialog of the Firefox2 browser directly accesses the Firefox plug-in repository and offers the user
to install a plug-in by simply clicking on it. This entails that a repository must be programmat-
ically accessible with reasonable ease, must provide metadata about the components it hosts,
and may provide metadata about itself.

Repositories help to ensure availability. To further improve availability, it helps when reposi-
tories are organized as a federation, providing redundancy at least for commonly used artifacts.
Figure 4.4 illustrates how such a federation can be structured. Such a system of federated
repositories can be found in the ecosystem and the community that developed around Maven

2 http://www.mozilla.org/firefox (Last accessed: 2013-11-12)

4.1 Portable workflows 65

http://www.mozilla.org/firefox


[180]. In the illustrated scenario, there are three main actors: the Foo Group, Team Bar, and
the community.

The central repository is one of the major hubs of the repository federation. A large user com-
munity publishes their own artifacts there. This repository is itself backed by a load-balancing
system and a set of mirrors to ensure availability and reliability. It is operated by a group of
people dedicated to its long-term existence, e.g. a company building a part of its business model
on the repository, or a well-respected non-profit organization.

The Foo Group operates two repositories, an internal one and a public one. The private
repository serves to exchange proprietary artifacts within the group. Additionally, it serves as a
caching proxy for all external artifacts used by the Foo Group. Any artifact ever used by the Foo
Group remains cached there. This protects the group against connectivity failures or external
repositories going out of business. For example, the Project X repository, hosted by a small
group of people with limited time and funding, may not be available for an extended period.
The public repository operated by the Foo Group hosts artifacts created by the group which they
want to share with early adopters or cooperation partners (e.g. Team Bar), but which, e.g. for
reasons of quality or licensing, are not distributed via the central repository. Additionally, it
hosts any dependencies of these artifacts, which are not available from the central repository.
The Foo Group publishes their high-quality artifacts to the central repository, to ensure optimal
access and availability.

Team Bar operates a single repository. There, they provide all their artifacts publicly. They do
not publish to the central repository, possibly because they want to retain the ability to withdraw
artifacts at some point – withdrawing artifacts from the central repository is only done in cases
of legal issues or similarly serious issues. Their repository also provides all dependencies of
their artifacts which are not available via the central repository. Team Bar cooperates with the
Foo Group and uses the Foo Group public repository to obtain artifacts from their partner. Team
Bar also obtains artifacts from the central repository. While the responsibility to keep copies
of artifacts is taken over by the private repository of the Foo Group, caching all artifacts from
external sources, in Team Bar, every team member is individually responsible to maintain copies
of any important artifacts.

This kind of system of interacting repositories and caches allows each stakeholder to maintain
the desired level of control over own artifacts or those of others. If one trusts a remote repos-
itory, it can be used directly. Otherwise, copies of the artifacts can easily, even automatically,
be made and kept in alternative repositories. The more interesting a particular artifact is to the
community at large, the more repositories are bound to contain a copy of it.

4.1.1.3 Artifacts

The unit by which software or resources are distributed via a repository is the artifact. An
artifact carries an identifier which can be used to identify the artifact across repositories. By
convention, if an artifact has the same identifier in different repositories, it must be the same
artifact. We borrow the term artifact from the terminology of Maven repositories. In other
contexts, the corresponding term might be different, e.g. digital object.

In the context of this work, we are interested mainly in three types of artifacts:

• Software – primarily analysis components that have been integrated to work with a nat-
ural language processing framework, but also any programming libraries or possibly exe-
cutables required by these components to run, including the processing framework itself.

• Resources – data that can be used by the analysis components, such as word lists
(gazetteers), trained statistical models, etc.

• Primary data – data to which the analysis components are applied.

66 4 Reproducibility



Central 
Repository

- Hosts artifacts provided by 
the community

Foo Group Public
Repository

- Hosts public artifacts from 
Foo Group
- Hosts dependencies not 
available via „Central“

Foo Group Private
Repository

- Caches external artifacts 
used by Foo Group
- Hosts internal artifacts

Project X
Repository

- Hosts public artifacts from 
Project X

Team Bar
Repository

- Hosts public artifacts from 
Team Bar
- Hosts all dependencies of 
Team Bar artifacts

Team Bar Foo Group

Community

publish/fetch private/
external artifacts

publish/fetch
public artifacts

publish 
high-quality artifacts

fetch comunity artifacts

fetch Team Bar
artifacts

fetch Foo Group
artifacts

fetch Project X
artifacts

publish/fetch
public artifacts

fetch community
artifacts

Figure 4.4: Federation of repositories

Depending on what kind of artifact is meant to be distributed via a repository, different
aspects need to be considered. These are discussed in more detail below.

Software
Analysis components are active software components to process data. When software is com-

piled from its source code to a binary form, the result is usually a very efficiently encoded, small
output. Binaries tend to grow large only because of embedded resources, usually images, but
in the case of analysis components usually because of bundled language resources. If resources
required by an analysis component, e.g. the model file for a parser, are packaged as separate
artifacts, the artifact containing the parser component itself can remain quite small (cf. Sec-
tion 3.1). When an analysis component is required for a workflow, it is efficient and quick to
fully download it from a repository and to store it on the local file system for further use.

Resources
Resources come in a variety of forms. They range in complexity from simple word list files,

used as stopword lists or gazetteers, over model files for parsers or taggers and file-based knowl-
edge sources like WordNet [157], to full-fledged SQL databases as used by the JWPL Wikipedia
API [235]. They range in size from dictionary files3 to huge resources like the Google Web 1T
5-gram Corpus4 [32].

Not all language resources may be easily distributable as artifacts via a repository. As already
mentioned in Section 3.1, additional steps may need to be taken after acquiring a resource, in
order to use it. E.g. a database dump needs to be restored into a database.

The enormous size of some resources, e.g. of the Google Web 1T 5-gram Corpus may also
cause technical problems, depending on the type of repository server being used, let alone
the disk space available in the environment to which the resource is provisioned. However,

3 E.g the Snowball stemmer [181] stopword list for English: approx. 4kb
(http://snowball.tartarus.org/algorithms/english/stop.txt - Last accessed: 2013-12-02)

4 Google Web 1T 5-gram Corpus: approx. 24 GB (compressed using gzip)

4.1 Portable workflows 67

http://snowball.tartarus.org/algorithms/english/stop.txt


with the further evolution of technology, the size of resources that can easily be handled will
inevitably increase. Not long ago, a 3.5" floppy disk with a capacity of 1.44 MB was considered
top-of-the-line. On the other hand, there will always be data too large to be handled by many
researchers. Still, those willing to invest the money and effort to work with this kind of data
should be able to access and copy it in full, in order to maintain control over the reproducibility
of their workflows. Although, the acquisition of such large data may not be as convenient,
requiring manual intervention instead of automatic distribution. That notwithstanding, even
such large resources should be registered in repositories under a unique identifier along with,
at least, human-readable instructions on how to obtain them.

Primary data

Primary data is in many respects similar to other resources. While resources are consulted
by analysis components during the analysis process, primary data is the data being subject to
analysis. In order to reproduce results, this data needs to be preserved in the same way as
everything else.

From a technical aspect, primary data is often easier to handle than resources, because it is
structured in a simpler and more uniform way than resources, e.g. as text files encoded in one
of the popular text document formats, as XML, or even as plain text.

From a legal point of view, however, primary data in natural language processing is a consid-
erable problem. Stodden [205] states "Raw data aren’t copyrightable, and thus it’s meaningless
to apply a copyright rescinding license to them." However, unlike maybe weather sensor measure-
ments, texts or other data produced by humans, are not such a kind of raw data and are subject
to legal restrictions. With a few exceptions, such as Wikipedia explicitly licensing all content
under a Creative Commons license, most content available on the web does either not carry
a license at all, or it is some form of proprietary content. Recently, a law [99] was passed in
Germany, allowing content providers to charge others, e.g. search engine providers or bloggers,
for using snippets, short excerpts of a web page, along with search results, unless these excerpts
are sufficiently short. However, the law does not define the actual permitted size, stating only
... einzelne Wörter oder kleinste Textausschnitte... (individual words or smallest passages). Such
legislature can basically remove the possibility of doing reproducible research on real world
language samples crawled from the web, or at least it leaves researchers with a feeling of un-
certainty how to do proper, reproducible research within such a legal framework. Some parties
propose that anything smaller than 300 characters should be reasonably small by the standards
of this law, but this has not yet been decided in court. Even then, certain analysis cannot be
made on excerpts of this size. Single sentences can easily be longer than 300 characters –
these may not even be parsed properly. Other analysis, like coreference resolution, requires
knowledge of large passages of a document and cannot be performed at all on short snippets.

Despite such problems, bodies of primary data should be registered in repositories and there
should be a way for a processing framework to automatically acquire them in full and access
them. Possibly, primary data artifacts may not be accessible by the public and the user may need
to be authenticated and authorized to access them. For proper public reproducibility, however,
more corpora should be made available under licenses which explicitly permit public access
and redistribution. Packaging primary data as portable artifacts is at least convenient within
the privacy of a research group, to improve the reproducibility within the group. It may also be
acceptable to the licenser of a resource that such artifacts are shared with external partners, who
also possess the necessary authorization, e.g. who have purchased the license for a particular
data set. However, an explicit permission should be requested from the licenser.

68 4 Reproducibility



4.1.1.4 Discovery

To play a role in reproducible workflows, an artifact has to be uniquely identifiable. It is useful
to know that a workflow uses a part-of-speech tagger, but to make the workflow reproducible, it
needs to be known which part-of-speech tagger in which particular version should be used and
with which particular version of a tagging model it should be configured.

Discovery is the process of locating a particular artifact based on its properties, in particular
coordinates such as identifier and version (cf. Section 3.1) but possibly also other properties,
such as the kind of data consumed or produced by an analysis component, the language of a
data set, etc. The artifact metadata should be easily accessible via a repository.

To discover components, it should not be necessary to extract archives, analyze source code,
or compiled binaries to extract the metadata. Thus, metadata should be easily readable from a
file (e.g. an XML descriptor). Alternatively, a special repository software could be used which
facilitates discovery by analyzing metadata contained inside the artifacts and which permits
querying over this metadata.

An artifact does not necessarily correspond to exactly one component or resource. The pro-
cessing frameworks we examine later allow an installable artifact – or plug-in – to contain more
than one component. This can cause confusion because a user interested in a particular compo-
nent first has to locate the artifact containing that component. Also, there could be differences
between the metadata (e.g. the version) of the installable artifact and that of the components
contained within.

4.1.1.5 Workflow description

The workflow description provides a processing framework with information which data to pro-
cess, which analysis components should be used to process it, how these should be configured,
and in which order the components should be applied. A workflow description should also be
a succinct way of communicating the details of a workflow between researchers. Optimally, it
should be human readable, or at least it should be displayed conveniently when loaded into
annotation tools provided along with the processing framework.

Reproducibility can only be expected from a workflow description, if it exactly specifies which
software and resources should be used to run it. A convenient way to do this is to include the
unique identifiers and the versions of the artifacts containing these.

4.1.2 State of the art

In this section, different approaches to achieving reproducibility are presented before examining
if and how these are supported by current processing frameworks.

4.1.2.1 Approaches to reproducibility

In this section, we examine different ways of ensuring reproducibility through portability, as
well as of creating reproducibility without any portability at all.

Virtual machine
One approach to preserving the execution environment of a workflow is to capture the full

state of the execution environment in a virtual hardware, including a bootable operating system
(cf. [55]). This is an effective approach, but it is also a large waste of resources as much of
the preserved environment is actually not involved in the execution of the workflow. Another

4.1 Portable workflows 69



drawback of the approach is that much of the environment is only preserved in binary form,
e.g. software libraries used by the components involved in the workflow. While it should be
possible to reproduce the experimental results with relative ease, inspecting the setup in detail
or searching for bugs may be difficult without access to the source code. This approach is
mainly attractive for experiments that have either been compiled to native binary code and rely
on system-level libraries, or that rely on a very specific execution platform which is not easy to
recreate.

A variant of this approach is the use of a virtual machine that runs programs which have
been compiled to portable byte-code. Instead of virtualizing a full hardware platform, these
byte-code virtual machines implement a completely hardware-independent processing model.
An example of such a byte-code VM is provided by the Java Virtual Machine (JVM) specification
[139]. Programs written for these virtual machines can run on any system platform for which a
corresponding runtime environment has been implemented, as illustrated by the slogan "write
once, run anywhere" that was used to promote the Java platform in its early days.

Capture and recreate environment
An alternative to capturing the full execution environment is capturing only that part of

the environment which is actually used by the workflow. Guo and Engler [106] provide a
tool for Linux systems called CDE which is used to intercept all kinds of system calls during
the execution of a workflow. In that way, it captures all files, libraries, etc. which are used
directly by the workflow or indirectly by spawned processes. Later, CDE can be used to run the
workflow again, this time redirecting all invocation of the system calls mentioned above to use
the previously captured files and libraries instead of accessing the actual file system or system
libraries. This approach allows building a lightweight, self-contained version of a workflow or
basically any Linux program. CDE appears to be a convenient alternative to building statically
linked binaries. A statically linked binary does not call out to other, dynamically linked libraries.
Instead, all functionality required by the program has been incorporated directly into the binary.

Web services
By building a workflow on web services, reproducibility can be achieved without requiring

portability. Web services have the benefit of being immediately usable. No local installation of
software is required. Consequently, the software running behind the web service does not need
to be portable. By means of web services, software running on arbitrary system platforms can
be made interoperable.

Furthermore, web services allow addressing certain legal issues. For example, services can
be provided only to authorized or paying users. Access to data can be limited, e.g. to avoid
the creation of exhaustive copies of databases. This way, it is e.g. possible to provide users
with at least some access to data sets, which would otherwise not be accessible at all or only
accessible for a fee. For example, limited access to the British National Corpus [28] is provided
via a web interface5 to anybody, while the full corpus can only be obtained by buying a corpus
license. Restrictions regarding the redistribution of analysis components or resources can also
be avoided by hiding them behind a web service. In this way, neither the software, nor the
resources need to be redistributed. It is questionable, though, if such a web service may be used
to process non-redistributable data, because the data would need be handed over to a third
party which is hosting the web service.

However, the use of web services in a workflow does not only solve problems, it introduces
new problems as well: the problem of reliability and the problem of versioning. Zhao et al.
[237] conducted a survey of workflows shared via the social research platform myExperiment
[103] and found that in about half of the cases, failing workflows where caused by changes in

5 http://corpus.byu.edu/bnc/ (Last visited: 2013-07-04)

70 4 Reproducibility

http://corpus.byu.edu/bnc/


third-party resources, such as web services. These cases were further analyzed and found to be
largely due to unavailability or inaccessibility, but also to a minor degree due to upgrades.

Reliably hosting a web service over an extended period, in particular a popular service, can
incur significant cost to the service provider. This cost is easily multiplied, if several versions
of the service need to be offered in parallel to ensure the reproducibility of results. For this
reason, we argue that portable artifacts and portable workflows provide a more sustainable
foundation to reproducible research than web services. The cost of hosting a repository to
distribute portable software and data should scale much better than the cost of providing each
of these pieces of data or software as services.

4.1.2.2 Support for reproducibility in processing frameworks

We now examine which provisions for reproducibility are provided in the processing frame-
works.

GATE
GATE allows exporting workflows as a GATE Application (GAPP) file. The file contains ref-

erences to data storage locations, to analysis components and their configuration. In order to
use the file, a GATE installation is required which provides the components and the data needs
to be available in the correct locations. GATE tries to make the GAPP file more portable by
storing references to files as relative paths, e.g. relative to the GATE home directory or to the
directory for custom GATE plug-ins. Since references to analysis components are not versioned,
it is impossible to know what version of GATE, or what combination of additional plug-ins need
to be installed to reproduce analysis results.

Alternatively, GATE allows exporting an application as a package for GATECloud.net [209].
This package includes, in addition to the GAPP file, all GATE plug-ins used by the application,
including their resources, and the corpus data.

Analysis components and other extensions to GATE are distributed as so-called CREOLE
(Collection of Reusable Objects for Language Engineering) plug-ins. A CREOLE can contain
one or more analysis components (called processing resource), language resources (per GATE
definition this includes corpora), or user-interface extensions (called visual resources).6 GATE
ships with a considerable number of CREOLEs. More plug-ins can be installed from remote
repositories, so-called update sites, after a local directory has been defined into which these
plug-ins are to be installed. GATE ships with a preconfigured list of update sites and more sites
can be added by the user.

Each GATE update site is described by an XML file hosted on the site (Listing 4.1). It pro-
vides a list of the CREOLE artifacts hosted at the site. Further information is then obtained
by accessing the CREOLE descriptor (creole.xml) file within the individual artifact folders.7

CREOLE artifacts are versioned at the level of this descriptor file. As each of the folders can
only contain a single CREOLE descriptor file, it appears that GATE repositories do not support
hosting multiple versions of the same artifact.

CREOLE plug-ins are described by an XML descriptor (listing 4.2). This file contains informa-
tion, such as the plug-in ID, version, description, minimum GATE version required to use the
CREOLE, etc. The descriptor file can cover multiple CREOLE plug-ins, aggregated into a CRE-
OLE directory. Versioning and the assignment of IDs does not happen at the level of CREOLE
plug-ins, but at the level of the directory. This directory-level metadata is not mandatory and

6 For consistency with the rest of this document, we will use the term CREOLE artifact instead of plug-in, analysis
components for processing resources, and resources for language resources.

7 In GATE, artifacts are not single ZIP files, but folders.

4.1 Portable workflows 71



Listing 4.1: GATE Update Site at http://creole.semanticsoftware.info/gate-update-site.xml
(Last accessed: 2013-07-09)

1 <UpdateSite>
2 <CreolePlugin url="http://creole.semanticsoftware.info/MuNPEx/" />
3 <CreolePlugin url="http://creole.semanticsoftware.info/OpenMutationMiner/" />
4 <CreolePlugin url="http://creole.semanticsoftware.info/OpenTrace/" />
5 <CreolePlugin url="http://creole.semanticsoftware.info/OrganismTagger/" />
6 <CreolePlugin url="http://creole.semanticsoftware.info/OwlExporter/" />
7 </UpdateSite>

Listing 4.2: GATE CREOLE XML for the Stanford Parser component (abbreviated)
1 <CREOLE−DIRECTORY>
2 <CREOLE>
3 <RESOURCE>
4 <NAME>StanfordParser</NAME>
5 <CLASS>gate.stanford.Parser</CLASS>
6 <JAR>gate−stanford.jar</JAR>
7 <JAR>lib/stanford−parser.jar</JAR>
8 ... snip ...
9 </RESOURCE>

10 </CREOLE>
11 </CREOLE−DIRECTORY>

can mostly be found on update sites. CREOLE plug-ins shipping with GATE itself do not nec-
essarily carry such information. For this reason, the CREOLE descriptor for the Stanford parser
component (Listing 4.2) which is bundled with GATE, does not carry such information.

Instead of fully specifying the metadata in the descriptor, the metadata can be provided in
the form of Java Annotations in the component source code (Listing 4.3). GATE augments
the descriptor with the information from these annotations while loading the plug-in. A tool to
augment the CREOLE XML descriptor during build time, to facilitate extracting such information
when an artifact is placed into a repository, is not available.

In summary, even though GATE supports exporting workflows to share them with other re-
searchers and despite its support for component repositories, the metadata is not sufficient to
reconstruct the workflow environment. In particular, workflows do not bear versioned refer-
ences to the used components. Components only carry versions when they are hosted in a
repository. Repositories do not have the capability to host multiple versions of the same com-
ponent, thus allowing users to access older versions of a component, which may have produced
different results. Exports in the GATECloud.net format contain all plug-ins, but not the actual
processing framework libraries. This format is sufficient to transfer a workflow to the GATE-
Cloud.net service, but it cannot even be easily imported into a locally installed GATE on another
workstation to repeat an experiment.

Tesla
Tesla allows exporting an experimental workflow and handing it over to another researcher

who can then repeat the experiment, given that the components and data are available. In
a research group, a Tesla server can be set up on which all experiments and their results are
kept and which can serve as an exchange hub between researchers. The workflow descriptor
contains versioned references to all components. Additionally, hashes of the documents being
processed are stored in the workflow descriptor. Consider a workflow operating on data that
may not be distributed freely due to legal restrictions. Every user of the data may have to sign a
separate license agreement and separately obtain the data from its original source. The hashes

72 4 Reproducibility

http://creole.semanticsoftware.info/gate-update-site.xml


Listing 4.3: GATE CREOLE Java annotations on Stanford Parser component (abbreviated)
1 @CreoleResource(
2 name = "StanfordParser",
3 comment = "Stanford parser wrapper",
4 helpURL = "http://gate.ac.uk/userguide/sec:parsers:stanford")
5 public class Parser extends AbstractLanguageAnalyser

Listing 4.4: Tesla Java annotations on Stanford Parser component (abbreviated)
1 @Component(
2 threadMode = ThreadMode.NOT_SUPPORTED,
3 author = @Author(
4 author = "Stephan Schwiebert",
5 email = "sschwieb@spinfo.uni−koeln.de",
6 web = "http://www.spinfo.phil−fak.uni−koeln.de/sschwieb.html",
7 organization = "Sprachliche Informationsverarbeitung"),
8 description = @Description(
9 name = "Stanford Parser",

10 licence = Licence.LGPL_2,
11 summary = "Work in progress",
12 bigO = "linear (number of Annotations)",
13 version = "1.0",
14 web = "http://nlp.stanford.edu/software/lex−parser.shtml",
15 reusableResults = true))
16 public class StanfordParser extends TeslaComponent

make sure that Tesla can verify if the workflow is actually operating on exactly the same data
for each of these users.

Tesla, being Eclipse-based, could rely on the provisioning support provided by Eclipse. This
mechanism allows registering one or more update sites8, special websites which host metadata
describing the plug-ins available at those sites, their versions, licenses, and so on. Plug-ins
offered on these websites can be downloaded and installed comfortably via Eclipse’s Install
new software wizard. Unfortunately, Tesla does not seem to make use of Eclipse’s provisioning
features for its analysis components.

The analysis components are all shipped embedded within the Tesla Server plug-in. Similar to
GATE, artifacts containing the components are folders. This is probably due to the Tesla Server
actually being a separate non-Eclipse product that runs separately from the Tesla workbench
on a dedicated server to offload work from the machines running the workbench. On the Tesla
server, any component can only be deployed in one version at a time. Even though workflows
reference a particular version of a component, they can only use the version installed on the
server. Using an older version of a component, which may have produced different results, is
not possible.

Tesla relies exclusively on Java Annotations to describe components (listing 4.4). There are
no descriptor files for components. The component’s class name doubles as its identifier, while
the component version is contained in the @Description annotation. If a component requires
further resources or dependencies, those are bundled with the components.

To summarize, even though Tesla workflow descriptions make versioned references to anal-
ysis components and even reference corpus data via hashes, Tesla lacks infrastructure to fully
make use of this information for reproducible workflows. There are no repositories from which
Tesla components can be obtained. The Tesla server does not support multiple versions of

8 The Eclipse update sites are built either for the meanwhile outdated Update Manager or its successor Equinox
p2. Even though GATE also calls its repositories update sites, they are completely different from Eclipse’s
update sites.

4.1 Portable workflows 73



the same component. While there may be sufficient information to recreate large parts of the
workflow environment from the workflow description, it is by no means easy to do so.

UIMA
UIMA supports two kinds of components, primitive components and aggregate components.

Primitive components are just regular analysis components, while aggregate components repre-
sent workflows, forwarding the analysis tasks to delegate components, which in turn can either
be primitive or aggregate components. Component descriptors can be serialized XML files and
can be shared among researchers in this way. Component descriptors, and consequently work-
flow descriptions, can be serialized to an XML file. Instead of embedding all the component
descriptors in the same XML file, delegate component descriptors can be imported either from
an URL or from the Java classpath. Such imports, however, cannot refer to a particular version
of a component. When imports are not used, at least the version information of each of the
delegate components can be embedded into the workflow description.

UIMA allows packaging analysis components as PEARs (Processing Engine ARchive9). These
artifacts contain one or more component descriptors, any required resources and dependencies
except the UIMA framework itself. A PEAR cannot be used directly from its artifact, it needs to
be installed, e.g. using the PEAR Installer tool, before it can be used.

Currently, there appear to be no dedicated public repositories for PEAR artifacts. The UIMA
Component Repository at the Carnegie Mellon University10 had provided PEARs between 2006
and 2010, but has gone offline since 2010 according to the Internet Archive.11 Since 2011, the
Apache UIMA project distributes PEAR artifacts for some analysis components, for example the
UIMA Sandbox Dictionary Annotator12, via the Maven Central Repository along with the plain
Java libraries containing the respective component implementations. Other UIMA component
collections, such as DKPro Core (Section 5.2) or ClearTK [172], also distribute components as
plain Java libraries. Contrary to the PEARs, these plain libraries do not need to be installed.

A PEAR only exports a single component (SUBMITTED_COMPONENT), all other components that
may be contained in the PEAR are considered private to it. For the plain Java library version,
there is no such restriction. This difference in granularity between artifacts and the components
contained within, makes it more difficult for the user to determine which artifact is required in
order to use a particular component. For example, the component BreakIteratorSegmenter in
DKPro Core is contained in the tokit artifact, along with several other components related to
tokenization. GATE allows the user to browse the components contained within a CREOLE
artifact in its GUI. Users of UIMA, relying on components packaged as Java libraries, can locate
the artifact containing a particular component using the classname-based search. They currently
have no way, however, to comfortably browse the components within a repository.

The lack of PEAR repositories that could be programmatically accessed by the PEAR Installer,
the need to manually locate and download PEARs, and the need to invoke the PEAR Installer for
every single PEAR that should be installed, currently makes the use of PEARs quite complicated.

The PEAR descriptor (Listing 4.5) provides an ID for the artifact, a name, information
on the installation process and how to access libraries and resources required by the anal-
ysis components within the PEAR. Most notably, there is no version information. The
SUBMITTED_COMPONENT section refers to the analysis component descriptor of the top-level com-
ponent provided by the PEAR.

9 Getting Started: Working with PEARs: http://uima.apache.org/doc-uima-pears.html
(Last accessed: 2013-03-08)

10 UIMA Component Repository at CMU: http://uima.lti.cs.cmu.edu (Last seen offline: 2013-11-12)
11 Last snapshot: http://web.archive.org/web/20100702180339/http://uima.lti.cs.cmu.edu/

(Last accessed: 2013-07-10)
12 Dictionary Annotator: http://uima.apache.org/sandbox.html#dict.annotator

(Last accessed: 2013-07-10)

74 4 Reproducibility

http://uima.apache.org/doc-uima-pears.html
http://uima.lti.cs.cmu.edu
http://web.archive.org/web/20100702180339/http://uima.lti.cs.cmu.edu/
http://uima.apache.org/sandbox.html#dict.annotator


Listing 4.5: UIMA Dictionary Annotator v. 2.3.1 PEAR descriptor (abbreviated)
1 <COMPONENT_INSTALLATION_DESCRIPTOR>
2 <OS><NAME>Windows 7</NAME></OS>
3 <TOOLKITS><JDK_VERSION>1.6.0</JDK_VERSION></TOOLKITS>
4 <UIMA_FRAMEWORK></UIMA_FRAMEWORK>
5 <SUBMITTED_COMPONENT>
6 <ID>DictionaryAnnotator</ID>
7 <NAME></NAME>
8 <DESC>$main_root/desc/DictionaryAnnotator.xml</DESC>
9 <DEPLOYMENT>standard</DEPLOYMENT>

10 </SUBMITTED_COMPONENT>
11 <INSTALLATION>
12 <PROCESS>
13 <ACTION>set_env_variable</ACTION>
14 <PARAMETERS>
15 <VAR_NAME>classpath</VAR_NAME>
16 <VAR_VALUE>$main_root/lib/uima−an−dictionary.jar;... snip ...</VAR_VALUE>
17 <COMMENTS>component classpath setting</COMMENTS>
18 </PARAMETERS>
19 </PROCESS>
20 ... snip ...
21 </INSTALLATION>
22 </COMPONENT_INSTALLATION_DESCRIPTOR>

Table 4.1: Comparison of artifact metadata

GATE Tesla UIMA
CREOLE XML PEAR

Root CREOLE-DIRECTORY SUBMITTED_COMPONENT
ID @ID folder structure ID
Version @VERSION – no equivalent – – no equivalent –
Name (uses @ID) – no equivalent – NAME
Description @Description – no equivalent – DESC
Additional info. URL @HELPURL – no equivalent – – no equivalent –
Libraries (only per component) (only per component) install.xml set_env_variable

Individual analysis components are described using an analysis engine descriptor (List-
ing 4.6). Components do not have an identifier, only a name. For primitive components,
the name of the class implementing the component can be used as an identifier. For aggre-
gate analysis components (workflows), there is no such substitute.

In summary, UIMA provides support for assembling workflow descriptions and sharing these
with others. However, these descriptions are not sufficient to recreate the original workflow
environment. From workflow descriptions, components cannot be addressed by versioned log-
ical identifiers, even if the components are distributed as PEAR artifacts as well as plain Java
libraries via repositories.

Summary
If a workflow description provides sufficient information to allow the recreation of the work-

flow execution environment, capturing the original execution environment, preserving it as a
virtual machine, or resorting to web services, is not necessary to create a reproducible workflow.
However, due to insufficient metadata being associated with workflows and analysis compo-
nents (Table 4.2), and due to the lack of sufficient integration with component repositories (cf.
Table 4.1), such portable workflows are currently not supported by the processing frameworks.
In particular, the lack of identifiers and versions for components and artifacts containing these
components, the missing ability to reference these from a workflow description, and the lack of
means to resolve these from repositories, prevent portable, reproducible workflows.

4.1 Portable workflows 75



Listing 4.6: UIMA Dictionary Annotator v. 2.3.1 analysis engine descriptor (abbreviated)
1 <analysisEngineDescription xmlns="http://uima.apache.org/resourceSpecifier">
2 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>
3 <primitive>true</primitive>
4 <annotatorImplementationName>
5 org.apache.uima.annotator.dict_annot.impl.DictionaryAnnotator
6 </annotatorImplementationName>
7 <analysisEngineMetaData>
8 <name>DictionaryAnnotator</name>
9 <description></description>

10 <configurationParameters>
11 <configurationParameter>
12 <name>DictionaryFiles</name>
13 <description>list of dictionary files</description>
14 <type>String</type>
15 <multiValued>true</multiValued>
16 <mandatory>true</mandatory>
17 </configurationParameter>
18 ... snip ...
19 </configurationParameters>
20 <configurationParameterSettings>
21 <nameValuePair>
22 <name>DictionaryFiles</name>
23 <value><array><string>dictionary.xml</string></array></value>
24 </nameValuePair>
25 ... snip ...
26 </configurationParameterSettings>
27 ... snip ...
28 <operationalProperties>
29 <modifiesCas>true</modifiesCas>
30 <multipleDeploymentAllowed>true</multipleDeploymentAllowed>
31 <outputsNewCASes>false</outputsNewCASes>
32 </operationalProperties>
33 </analysisEngineMetaData>
34 </analysisEngineDescription

4.1.3 Contribution: An approach to self-contained portable workflows

The workflow descriptions of existing processing frameworks do not sufficiently support repro-
ducibility. They put the responsibility to maintain or recreate the execution environment to the
user. We envision a form of workflow description that is minimal but contains the top-level
workflow logic as well as sufficient detail to provision the workflow’s execution environment,
i.e. analysis components, resources, and further dependencies. Such workflow description is
certainly at the border between the kinds of workflow descriptions offered by current tools and
dependency management, as it is done in software development projects.

We aim primarily for reproducibility, i.e. the ability to rerun the original experiment on the
original data producing the original results. The experiment should run the same on the com-
puter of a different researcher or possibly on a compute cluster. However, replacing the data
with different data should be easy, and replacing individual processing steps with different im-
plementations should also be easy. As noted by Drummond [68], to repeat an experiment,
simply rerunning it to produce the exact original results, is not sufficient. In order to cor-
roborate the hypothesis underlying the experiment, variations should be introduced into the
experimental setup (cf. Chapter 4).

A collection of analysis components, such as DKPro Core (Section 5.2), providing a uniform
way to try different implementations of the same processing step (e.g. part-of-speech tagging,
parsing, etc.) can provide exactly the kind of variation required to elevate an experiment from
being repeatable to being replicable.

76 4 Reproducibility



Table 4.2: Comparison of component metadata
GATE GATE Tesla UIMA

CREOLE XML CREOLE Java

Descriptive
Root RESOURCE @CreoleResource @Description variesa

Version (only per installable) (only per installable) version version
Name NAME name name name
Description COMMENT comment summary description
Vendor – no equivalent – – no equivalent – @Component(author) vendor
Copyright/License – no equivalent – – no equivalent – license copyright
Additional info. URL HELPURL helpURL web – no equivalent –
Technical
Root RESOURCE @CreoleResource @Component variesb

– Implementation CLASS – annotated class – – annotated class – variesc

– Library JAR ← directory structure (only per installable)
– Type INTERFACE interfaceName – annotated class – descriptor type
– Scaling – no equivalent – – no equivalent – threadMode multiDeploymentAllowed

a The actual XML tag varies depending on the type of component. E.g. it is processingResourceMetaData for
readers and analysisEngineMetaData for analysis components.

b The actual XML tag varies depending on the type of component. E.g. it is collectionReaderDescription for
readers and analysisEngineDescription for analysis components.

c The actual XML tag varies depending on the type of component. E.g. it is implementationName for readers
and annotatorImplementationName for analysis components.

4.1.3.1 Workflow definition

We demonstrate the feasibility of such a kind of workflow description based on a set of existing
technologies. We build an analysis workflow using the convenient workflow assembly API pro-
vided for UIMA components by the uimaFIT library. We use components from the DKPro Core
collection of UIMA components (Section 5.2), which requires minimal parametrization due to
the use of sensible parameter defaults and the automatic resource selection mechanism (Sec-
tion 3.1). Without these, a concise workflow description would not be possible. Being based on
the Java Virtual Machine, the workflow is portable across platforms.

By implementing our workflow in the Groovy language, we can make it very concise. Groovy
is another language based on the Java Virtual Machine. First attempts in using Groovy in
conjunction with uimaFIT for writing test cases were reported by Ogren and Bethard [171].
These were not pursued further, due to the immaturity of the integration of Groovy with Eclipse
IDE at the time. Meanwhile, the IDE support for Groovy has significantly improved. However,
the example we illustrate here, works even without an IDE.

Compared to Java, Groovy supports convenient syntactic shortcuts, allowing for much shorter
code. In fact, by virtue of the employed techniques, the workflow description is so concise and
to the point that we consider it a domain specific language (cf. Chapter 3). Most importantly,
however, it provides two particular features:

• Interpreted language – Groovy can be used as an interpreted language, which allows
combining it with the interpreter directive on Unix operating systems. If an executable file
in a Unix system starts with the characters #! (shebang), any text following the shebang
is taken to be the path to a language interpreter. This interpreter is invoked with the path
to the original executable file as parameter. Using this approach to implement a workflow
as a Groovy script, we maintain a nice, human-readable description format, while at the
same time creating a script that can be invoked directly from the command line.

• Grape – The Groovy Advanced Packaging Engine (Grape) allows declaring Maven depen-
dencies directly in Groovy source code – no additional configuration files (e.g. a POM file)

4.1 Portable workflows 77



are required. This allows us to declare dependencies on all the analysis components used
in the workflow.

These two concepts combined make the workflow fully self-contained and executable.

4.1.3.2 Execution

The requirements to execute the workflow are few. First, a Java Runtime Environment (JRE)
and Groovy must both be installed. Then, access to a repository containing the artifacts required
by the workflow is needed. The analysis components, along with the processing framework, are
then acquired automatically. This is different from the approaches currently followed by GATE
or Tesla. Both of these tools already come with analysis components pre-installed, or require
the user to manually install components needed by a workflow.

It should be noted that the low-level bootstrapping tools, the JRE and Groovy, are rather
stable, backwards compatible, and have little to no effect on the outcome of the workflow, even
if not the exact version is used by each researcher. The analysis components, their dependencies,
and resources, which are critical to the workflow results, however, are referenced by their exact
version and therefore are guaranteed to be exactly the same.

The following actions take place when the workflow is executed:

• The Unix program loader invokes the Groovy interpreter, passing to it the name of the
original script file.

• The Grape system resolves and acquires all dependencies and adds them to the classpath
of the script.

• The Groovy interpreter executes the script.

• The reader component loads the texts to analyze. It also sets metadata, in particular the
document language.

• The analysis components process each text in turn. Based on the document language, they
perform an automatic resource selection processing, themselves resolving and acquiring
the resource artifacts. Because components handle this dynamically, we do not need to
explicitly specify Grape dependencies on these resource artifacts.

4.1.4 Example

An example script is shown in Listing 4.7. The script accepts three command line parameters:

• The directory containing the text files to process.

• The language of the texts (alternatively, an analysis component could be used to automat-
ically detect the language of the text).

• The name of the file to which the results are written.

The first section of the scripts contains @Grab annotations instructing the Grape system which
dependencies to use for the script. The second section contains import statements which make
classes and methods accessible by their short names. The third section, finally, describes the
actual analysis workflow.

78 4 Reproducibility



We are using a UIMA-based workflow here, employing analysis components from the DKPro
Core component collection (Section 5.2). The workflow starts with a reader for text files. The
files are processed using a segmenter (performing sentence splitting and tokenization) and
part-of-speech tagger from the OpenNLP framework wrapped as UIMA components. The final
component in the workflow writes the analysis results in a format compatible with the IMS
Open Corpus Workbench [77].

It should be noted here, that the workflow benefits from the dynamic resource selection and
acquisition approach presented in Section 3.1. For this reason, it is neither necessary to explic-
itly declare the models required by the segmenter nor by the part-of-speech tagger with @Grab
annotations, nor is it necessary to specify any additional parameters on these components. They
pick up the language set on each processed document by the reader component, dynamically
select and acquire the necessary resources, and perform their analysis.

Listing 4.7: Workflow scripted in Groovy
1 #!/usr/bin/env groovy
2 @Grab(group=’de.tudarmstadt.ukp.dkpro.core’,
3 module=’de.tudarmstadt.ukp.dkpro.core.opennlp−asl’,
4 version=’1.5.0’)
5 @Grab(group=’de.tudarmstadt.ukp.dkpro.core’,
6 module=’de.tudarmstadt.ukp.dkpro.core.io.text−asl’,
7 version=’1.5.0’)
8 @Grab(group=’de.tudarmstadt.ukp.dkpro.core’,
9 module=’de.tudarmstadt.ukp.dkpro.core.io.imscwb−asl’,

10 version=’1.5.0’)
11

12 import static org.apache.uima.fit.pipeline.SimplePipeline.*;
13 import static org.apache.uima.fit.factory.CollectionReaderFactory.*;
14 import static org.apache.uima.fit.factory.AnalysisEngineFactory.*;
15 import de.tudarmstadt.ukp.dkpro.core.opennlp.*;
16 import de.tudarmstadt.ukp.dkpro.core.io.text.*;
17 import de.tudarmstadt.ukp.dkpro.core.io.imscwb.*;
18

19 // Assemble and run workflow
20 runPipeline(
21 createReaderDescription(TextReader,
22 TextReader.PARAM_SOURCE_LOCATION, args[0], // first command line parameter
23 TextReader.PARAM_LANGUAGE, args[1], // second command line parameter
24 TextReader.PARAM_PATTERNS, "[+]*.txt"),
25 createEngineDescription(OpenNlpSegmenter),
26 createEngineDescription(OpenNlpPosTagger),
27 createEngineDescription(ImsCwbWriter,
28 ImsCwbWriter.PARAM_TARGET_LOCATION, args[2])); // third command line parameter

4.1.5 Summary

In this section, we proposed an approach to reproducible analysis workflows, by setting up a
high-level description of the workflow which contains sufficient information to provision the
experiment environment and run the workflow. This approach represents an improvement over
current processing frameworks, which allow building analysis workflows and sharing them, but
leave the responsibility of setting up the execution environment to the user. In this context, we
discussed the necessity of relying on portable software for reproducibility as opposed to web
services, which are another approach to removing the responsibility of setting up the execution
environment from the user.

Using an example based on the Groovy language, we have demonstrated that analysis work-
flows can be built in such a way that they are portable, self-contained, and even executable
in the sense that they contain sufficient information to allow a generic bootstrapping layer to
recreate the workflow execution environment.

4.1 Portable workflows 79



Our approach puts the user in control over the workflow. Whereas it has been shown that
workflows based on web services are subject to decay due to services changing or becoming
unavailable, our approach relies on portable artifacts. The user can maintain private copies of
all involved artifacts and does not have to rely on third-parties.

The use of portable artifacts also facilitates running an analysis on a compute cluster as all
involved artifacts can be automatically deployed to the cluster. No manual installation of soft-
ware on the cluster nodes is required for running an analysis workflow. The DKPro BigData
[61] project facilitates porting a workflow using DKPro Core components to run on an Apache
Hadoop [8] cluster.13 It benefits from concepts we presented here and from their implementa-
tion in the DKPro Core component collection (Section 5.2).

We expect that our approach fosters and facilitates the exchange of analysis workflows among
researchers. For the DKPro Core component collection (Section 5.2), we already provide sev-
eral Groovy-based analysis workflows as introductory examples. As part of the CSniper corpus
search and annotation tool (Section 6.1), we also provide such workflows for the conversion of
corpora to the formats required by CSniper.

As future work, the assembly analysis workflows for non-expert programmers should be fur-
ther facilitated. While a Groovy script, as presented above, already provides a very concise
representation of the workflow, it still requires prior knowledge about the components that are
available, the individual parts which need to be imported from each module, and the parame-
ters of each analysis component. An interactive tool with a graphical user interface may offer a
browsable library of components to the user (cf. [129; 183]). From this library, the user could
assemble an analysis workflow. Such a tool could directly save the workflow in an executable
form, e.g. as a Groovy script, so that it can be easily shared with other users.

13 The approaches presented here have enabled the development of DKPro BigData. The credits for actually
realizing it, though, go to Hans-Peter Zorn, Martin Riedel, and several other early adopters at the Ubiquitous
Knowledge Processing Lab and the Language Technology group.

80 4 Reproducibility



4.2 Dynamic workflows

In this section, we present an approach to analysis workflows that change their structure based
on their parametrization, e.g. in a parameter sweeping experiment which runs the same work-
flow with many parameter combinations. Existing processing frameworks do not readily support
this concept. Generic workflow systems tend e.g. to target web services, which entail significant
overhead and are problematic with respect to reproducibility (cf. Section 4.1).

Our approach has been implemented in the DKPro Lab framework [72]. It uses an open
design allowing specialization for different problem domains, tools, or processing frameworks.
This facilitates the automatization of auxiliary steps that are typically performed manually and
therefore are prone to errors, e.g. directing output of one step of the experiment into the
next one. Unlike other approaches, we focus on the programmatic assembly of complex work-
flows, building on existing programming skills and development environments. To illustrate the
usefulness of our approach, we describe how it has been applied in research.

Our approach addresses the following issues in our overall scenario (Figure 4.5):

9 Workflows and components are not sufficiently debuggable and refactorable.
Our programmatic approach to workflow assembly allows building on existing program-
ming skills and integrated development environments (IDEs). Debugging can seamlessly
go from the high-level logic, over analysis components, down to the underlying libraries.
When refactoring the low-level logic, the IDE can automatically update the workflow logic.

10 Workflows that change dynamically via parametrization are not readily supported.
Our approach provides a lightweight and non-invasive way of integrating all steps of an
experiment into an automatically executable setup, it supports parameter sweeping, and
it can dynamically change the structure of the workflow depending on its parametrization.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Workflows that change 
dynamically via 

parametrization are not 
readily supported.

Initial exploration, annotation 
study, and definition of 

categories

10

Workflows and 
components are not 

debuggable and 
refactorable.

9

Figure 4.5: Issues addressed by our framework for dynamic parameter sweeping workflows

4.2 Dynamic workflows 81



4.2.1 Motivation

Processing frameworks facilitate the combination of analysis components into a workflow. How-
ever, the structure of these workflows mostly resembles a simple pipeline structure – simply
speaking, data is read from a source, analyzed by a sequence of components, and the results
are written to a target. However, research experiments typically require more complex work-
flows. E.g. the output of one step of the analysis workflow becomes a resource used by an
analysis component in another step, the same workflow needs to be run with several parame-
ter combination, or data needs to be aggregated across several workflow runs. As Fei and Lu
[80] note, research requires data-oriented workflows. Processing frameworks offer no imme-
diate support for such complex workflows. Experiment workflows may even involve multiple
processing frameworks, or tasks requiring tools that cannot be conveniently integrated into the
processing frameworks.

Reproducibility
As a consequence, researchers split their overall analysis into manageable workflow frag-

ments. These are executed separately and data produced by one workflow is manually fed
into the next one. Such manual steps are error prone and therefore need to be eliminated
from the experimental workflow whenever possible. A complex experimental setup consisting
of multiple interacting analysis workflows, should nevertheless run fully automatic to provide
reproducibility (see also Section 4.1).

Parameter sweeping
Parameter sweeping is the process of automatically exploring numerous plausible parameter

combinations. Parameter variation plays an important role in scientific experiments [169]. An
experiment can be parametrized in a way that simulates running it under different conditions,
e.g. using different implementations of an algorithm or using different data sets. If the experi-
ment yields good results under different conditions, the experiment is better suited to support
the underlying hypothesis. Alternatively, parameter variation can be used to find the optimal
experiment configuration.

Dynamic workflows
It is desirable to be able to reconfigure the very structure of a workflow depending on the

configuration parameter values. Consider, for example, an experiment being run on two differ-
ent data sets A and B. Depending on the value of the workflow parameter dataset, an analysis
component should use either one or the other of these data sets. As these data sets may be very
different, e.g. in different languages, data formats, etc., potentially very different preprocessing
needs to be applied to them, resulting in different workflows. Ogasawara et al. [169] note that
each parameter configuration essentially represents a new workflow.

4.2.2 State of the art

As there is considerable interest in scientific workflow systems, various systems are available
from the research context. Additionally, workflow systems are used to model processes in the
business context. We examine the current state of the art from the perspective of several relevant
paradigms.

82 4 Reproducibility



4.2.2.1 Control flow workflows

In control flow workflows, statements, such as conditions and loops, are the central building
blocks. Split and join operations are used to mark parallelizable sections of the workflow.

The workflow mechanisms provided by GATE and UIMA support control flow workflows. In
GATE, different kinds of workflows (called applications) can be created, ranging from simple
workflows executing a series of analysis components in a fixed order, to a fully customizable
workflow controlled by a Groovy script in which very complex control flows can be modeled.
The most commonly used flow controller is the FixedFlowController which executes analysis
component delegates in a fixed order. The UIMA framework provides the concept of a flow
controller which encapsulates workflow logic. Users can provide custom flow controllers to
realize arbitrarily complex workflows. If the controller determines that multiple analysis steps
are independent of each other, it can issue a parallel step, which permits the UIMA framework
to run these steps in parallel and in any order. An execution engine, such as Apache UIMA-AS
[11], can use this information to optimize the use of resources, e.g. by running the analysis
steps on different CPU cores.

However, in both frameworks, the workflows operate on analysis components integrated into
the framework, in particular using the framework-specific data structures to exchange data
between the components.

Slominski [195] examines the use of the control flow oriented Business Process Execution Lan-
guage (BPEL) [126] for research workflows. Since BPEL is popular in the enterprise context,
Slominski intended to reuse existing skills, resources and tools from the BPEL ecosystem. BPEL
workflows involve asynchronous communication with web services and are meant to accom-
modate long running processes. Consequently, the workflow generally maintains a state. As
part of the workflow, messages are exchanged between the involved components. As an addi-
tional benefit, BPEL workflows are not tied to any particular underlying processing framework
and data structures. The scientific observation of weather patterns is provided as one scientific
application where such kinds of workflows can be useful. Here, the workflow continuously ob-
serves sensory data over an extended period, tries to detect patterns as they occur, and generate
alert events and reports to the researchers when required.

4.2.2.2 Data flow workflows

Fei and Lu [80] argue that research is more interested in data than in processes. Hence, data
flow workflows are better suited for scientific applications, while the process-oriented control
flow workflows are better suited for the modeling of business processes. In data flow workflows,
the availability of input data drives the execution. The order in which the components are
executed is not specified explicitly, but is implicitly defined through the data dependencies
between the components. A component starts its work as soon as all required data is available.
Parallelism is implicitly given when components do not depend on each others’ results.

Tesla offers the user a data-oriented view on workflows. They are modeled by connect-
ing output ports of analysis components to input ports of other components, forming directed
acyclic graph of interconnected components rather than a pipeline. When a component within
the workflow has produced its results, messages are asynchronously sent to components which
have their data dependencies fulfilled by the new results. These components may then run in
parallel, causing a better resource utilization on multi-core machines.

Due to the modular design of UIMA, in principle any kind of flow logic can be imple-
mented. Before and after each analysis step, the current state of the analysis can be exam-
ined so that data-driven flows can be implemented. It is also possible to implement flows that
take the input and output capabilities of analysis components into account. These capabili-

4.2 Dynamic workflows 83



ties represent mainly annotation types consumed or produced by an analysis component. The
WhiteboardFlowController from the UIMA examples module executes an analysis step when-
ever its input capabilities match the combined output capabilities of any previously performed
step.

4.2.2.3 Grid computing and visual programming

As Abramson et al. [3] point out, many workflow engines are built as development environ-
ments for grid computing, or as orchestration tools for web services. In addition, many of
these environments adopt a visual programming paradigm. This entails that the user not only
requires access to a computing grid or needs to rely on web services, but also that complex
workflows with many steps are rather cumbersome to build using visual programming. While
the use of web services and visual programming may allow the rapid development of compara-
tively simple workflows, in particular third-party web services pose a significant impediment for
the reproducibility of results (cf. Section 4.1). Additionally, scaling the workflow tends to be in
the focus of attention with these engines, at the expense of concepts like parameter sweeping
or the dynamic assembly of workflows. E.g. UIMA-HPC [20] provides grid capabilities and a
visual workflow editor, but components are wired together in a pre-defined order which cannot
be changed based on parametrization. Apache UIMA-AS [11] allows scaling out UIMA analy-
sis workflows to multiple machines in a network, but sacrifices flexibility, because the analysis
components need to be pre-deployed as services on these machines. Deploying a workflow
including all analysis components on demand is not possible. As a consequence, workflows
cannot easily be shared with other researchers unless they have access to the same pre-deploy
analysis infrastructure.

4.2.2.4 Workflow history and evolution

Several approaches focus on the evolution of the workflow itself and how to relate the results
produced at different evolutionary stages to the changes made to the workflow. For example,
VisTrails [92] supports the interactive development and evolution of analysis workflows with a
focus on the visualization of results. The concept entails that all results produced within the
system are recorded along with the workflow and the parameters that produced them, a feature
which improves development turn around times as the results can be reused if portions of a
workflow and its parametrization remain unchanged in between executions. This entails that
results, once they have been produced, must not be changed again. Fei and Lu [80] call this the
single-assignment property. Slominski [195] postulates such concepts as specific requirements
for scientific workflows towards experimental flexibility, history, and provenance. In fact, in-
stead of manipulating and evolving a workflow manually, parameter sweeping can be seen as
a way to automatically explore a set of workflow variations, and thus has similar requirements
with respect to tracking results and relating them to the particular parametrization by which
they were obtained.

GATE is also capable of saving analysis results in a data store and loading them again later for
further processing, manual analysis or examination. This function, however, is not integrated
into workflows, e.g. to store intermediate results which could be inspected or reused, but
rather allows saving the results of an entire workflow. Another workflow can read documents
directly from a data store, but it writes the analysis results back to the same store. Hence, the
single-assignment property is not given. This makes setting up a chain of workflows where
each step reads data from one store and saves results to another is not possible or at least fairly
complicated.

84 4 Reproducibility



When an experiment is run in Tesla, the results of each component are persisted in a database.
Should the component ever be run in the same configuration on the same data and with the
same preprocessing, these results can be reused instead of being recalculated. Tesla protocols
the run of every experiment including which components were used in what version, how their
parameters were set, and to which data they were applied.

Workflow composition
Another important feature for a workflow system is the ability to compose workflows from

other workflows. Slominski [195] subsumes this under the heading reuse and hierarchical com-
position.

UIMA supports the notion of an aggregate analysis component. This is an analysis component
which performs no analysis by itself but delegates the analysis to a number of other analysis
components. These delegates, in turn, can again be aggregates, or they can be primitive engines,
that actually perform the analysis. Configuration parameters of delegates can be exposed as
parameters of the aggregate. This allows the creation of complex, reusable, but still configurable
aggregates.

In Tesla, embedding a workflow as a component in another workflow is not supported.
In GATE, the different kinds of workflows are realized as implementations of the
LanguageAnalyser interface. The same interface is also the basis for analysis components
that can be added as delegates to a workflow. Consequently, one workflow can be embedded
into another workflow in the role of a delegate analysis component, allowing the creation of
reusable, complex workflows. However, there is no support for configuring the delegates of a
nested workflow, limiting the reusability of complex workflows.

4.2.2.5 Workflow descriptions

Workflows are typically represented by a descriptor, typically an XML file which specifies the
characteristics of the workflow, e.g. which analysis components are used, how they are config-
ured, and in which order they are executed (cf. Section 4.1.2.2). This is particularly convenient
for a system that provides graphical tool support of for configuring components and assembling
workflows. It is relatively easy to implement such tools on a declarative model of the workflow.

However, these descriptions often refer to implementation details of the underlying analysis
components, e.g. class names, parameter names, etc. which are subject to change during the
development and refactoring of workflows and components. There has been criticism towards
descriptor-based approaches, because the refactoring support of IDEs does not update such XML
descriptions when the underlying implementations change and there is no way for the IDE to
check for errors at compile time (cf. [171]).

An alternative would be to focus on the programmatic creation of workflows and to use the
program code itself as the workflow description. Such an approach would require the workflow
engine to offer a concise programming interface, as otherwise the workflow description can
easily become hard to read.

4.2.3 Contribution: Dynamic workflows for language analysis

Current workflow systems used in language analysis offer many capabilities, from scaling to
massive amounts of data, over visual workflow editors, to fully customizable flow logic using
scripts. However, none of them facilitates the building of parameter sweeping experiments and
the dynamic assembly of workflows based on parametrization. In order to address this, we de-
signed a lightweight workflow framework called DKPro Lab [72]. We neither aim to provide yet

4.2 Dynamic workflows 85



another development environment, nor a replacement for sophisticated grid workflow systems.
Instead, we propose a lightweight framework which can easily be used for building dynamic
analysis workflows, independent of the underlying processing framework. For this reason, we
also forego grid computing, scaling out, or other parallelization at this point, although the open
design of the framework should allow adding such capabilities at a later point in time.

Goal
Our main aim is to enable researchers to go beyond the capabilities of the processing frame-

works currently used for language analysis. DKPro Lab is meant to introduce users to the
concepts of data-flow-based workflows, allowing them to gradually convert existing Java-based
ad-hoc experiment code into a more organized form resembling tasks interacting via data de-
pendencies. The framework focuses on the programmatic creation of workflows. It provides
neither a graphical user interface, nor does it use any kind of XML-based workflow description.
It allows the user to add a thin high-level orchestration layer on top of existing experimental
code, which can be refined step-by-step as the users gets acquainted with the framework and the
concept of building complex workflows. In this way, we separate the high-level workflow logic
from the lower-level implementations or particular analysis workflows, and improve readability
at the high level. Similar to Slominski [195], who examines BPEL as a workflow language for
scientific workflows, we focus on the programmatic creation of workflows using Java in order to
reuse resources and skills. While Slominski plans on reusing books and tools from the ecosystem
around BPEL, we aim to reuse integrated development environments, debuggers, and program-
ming skills for the Java platform. Our work should serve as an easy to use, yet powerful, entry
into the building of more complex workflows. After some time, with increasing familiarity with
the concepts and increasing requirements, a user may turn to more sophisticated systems, e.g.
those with grid computing capabilities.

Benefits
The reason why users are motivated to work with DKPro Lab in their experiments is because it

significantly facilitates parameter sweeping – a capability that the processing frameworks used
for simple analysis workflows do not support.

What distinguishes the approach taken by DKPro Lab from other workflow engines, is the
strong focus on the programmatic creation of workflows. Compared to using static work-
flow descriptions, the programmatic approach allows a workflow to react very flexibly to
parametrization, because the parameters drive a high-level workflow logic implemented in a
general purpose programming language. As a consequence, parameters in DKPro Lab can affect
anything from the components, over the flow of data, to the dynamic generation of new sub-
workflows. In other workflow engines, in particular those provided by processing frameworks,
parameters are passed directly to the analysis components within the workflow but cannot affect
the structure of the workflow itself.

A lightweight approach
We consider DKPro Lab to be a lightweight framework. Although the terms lightweight and

heavyweight are widely used in literature, there appears to be no widely accepted definition
of them. An interesting approach is the one suggested by Lloyd et al. [141] who measure the
weight of a framework which allows comparing different frameworks to each other. However,
they do not define absolute ranges in which a framework would be considered lightweight
or heavyweight. In general, frameworks seem to be lightweight when they are non-invasive,
focused, unobtrusive, and rely on existing concepts as much as possible. On the other hand,
heavyweight frameworks tend to require invasive changes when they are integrated with existing
code, introduce a significant set of new concepts which need to be learned, and offer features

86 4 Reproducibility



which are not related to their core functionality. By these standards, we consider frameworks
like UIMA or GATE to be heavyweight.

For DKPro Lab, the following design decisions have been made to keep the framework as
lightweight as possible:

• Modular design – Non-essential functionalities have been moved to optional modules,
thus keeping the core DKPro Lab framework as focused as possible. Such modules offer,
for example, improved support for the Groovy language or support for UIMA workflows.

• Parameters can be of any data type – DKPro Lab supports basically any data type for
parametrization. The only restriction is, that the string representation of two values needs
to be the same if the two values are the same, and different otherwise. The string repre-
sentation is obtained via the toString() method the respective Java classes.

• Mediating layer between the high-level experiment setup from low-level logic –
DKPro Lab defines the Task (see below) as a specific concept which mediates between
the DKPro Lab concepts, e.g. the parameters, workflow lifecycle, etc. and the low-level
workflow implementation. As a consequence, no invasive changes to the low-level work-
flow implementation are necessary when it is integrated into a DKPro Lab workflow.

• Using the file system as storage layer – DKPro Lab provides a storage abstraction layer
which uses the file system. As a consequence, it is easy to integrate any kind of process
into DKPro Lab, which can read data from the file system and write its results there.
Early versions of DKPro Lab used a database for storage and enforced access to the data
using Java streams. However, this was considered too restrictive and would have required
invasive changes to experiment code that was converted to using DKPro Lab.

• Programmatic approach – DKPro Lab workflows are Java or Groovy programs. This al-
lows using facilities of integrated development environments (IDEs) for debugging and
refactoring. E.g. the low-level logic is refactored, the IDE can automatically update the
workflow logic. When debugging an experiment, the whole path from the high-level ex-
perimental setup down to the low-level logic and underlying libraries can be conveniently
inspected.

Because of these design decisions, it is easy to wrap existing experiment code as a DKPro
Lab workflow, e.g. integrate previously separate experiment steps into a single comprehensive
setup, or to add support for parameter sweeping.

Additionally, the development of DKPro Lab was guided by concrete research needs and the
feedback from users. E.g. method names in the API, error message, and logging functionalities
have been improved several times to make them easier to use and more understandable.

Assumptions
For adoption, it is essential that the framework is lightweight, easy to use, and interferes

as little as possible with the programming behavior of the user. Hence, the framework en-
forces practically nothing and assumptions are also kept to a minimum. In order to keep the
framework as lightweight as possible, the following assumptions are made:

• Same in, same out – Given the same parameters, the workflow and any step or compo-
nent within it always produce the same output. In some contexts, a dynamic workflow
would be expected to react to an external event, e.g. a failing grid resource or web service.
However, this is not the kind of dynamics supported by this framework. We consider a
workflow to be dynamic when its structure can change depending on its parameters.

4.2 Dynamic workflows 87



• Run to end – A workflow starts, runs, and terminates. It should not start and run in-
definitely or wait for some external event to occur before stopping. DKPro Lab is not a
large-scale workflow engine running as a dedicated service with the aim of handling mul-
tiple parallel workflows possible from different users. It neither tries to support very long
running, asynchronous workflows.

DKPro Lab does not make any assumptions about the structure of a workflow as defined by
the data dependencies. By using a just-in-time planning approach which determines the next
processing step only when the previous step is complete, DKPro Lab allows the data depen-
dencies to change dynamically depending on the parametrization. With static planning, the
workflow system can derive an execution plan once and run it. However, this requires that
the data dependencies do not change during execution. A drawback of the just-in-time ap-
proach is, however, that it is unknown if a workflow can run, e.g. if it contains any unfulfillable
dependencies or loops, until it is actually run.

Building blocks
Experimental workflows built with the DKPro Lab framework consist of the following basic

building blocks:

• Tasks – A task is a specification of something that needs to be done. The framework
does not prescribe the exact form of such a specification, but assumes that it is a concise
piece of code written in an embedded DSL (cf. Chapter 3) or as a brief Java program.
The framework supports grouping similar tasks into task categories which may provide
mini-DSLs for tasks of the particular kind. Such a category typically consists of an in-
terface, an abstract implementation of that interface which may provide the mini-DSL to
concrete sub-classes, and a task engine which executes the task specification. The most
important category is the batch task, which has subtasks and performs a parameter sweep
over them based on the parameter space with which it has been configured. Tasks can
have parameters, and they can access results produced by other tasks or external data via
data dependencies.

• Parameters – The parametrization of tasks involves parameter dimensions which have
a name and produce a finite number of parameter values. These dimensions are used
to populate a parameter space which represents the set of all possible parameter value
combinations. Parameter space and dimensions together define the order in which the
parameter value combinations are explored.

• Data dependencies – A data dependency declares that a task depends on a particular
result from another task. When a task is executed, it runs within a context specific to this
single execution. The task context is similar to a key-value store, where results can be
stored and data can be read from. A data dependency declares that access to specific key
is redirected to access results produced by a previously run task. This entails that a task
with data dependencies can only be executed after all tasks it depends on have been run.

• Reports – Reports post-process the results produced by a task to produce informative
charts, overviews, or other forms of presentation. The results created by a task may not be
immediately suited for inspection. In the worst case, it may be binary or compressed, but
typically, it is just extremely detailed. Reports extract important information from these
results to provide the researcher with the interesting facts, e.g. comparative overviews
over results generated from different parameter combinations.

Figure 4.6 schematically shows a hypothetical workflow illustrating how these building blocks
interact.

88 4 Reproducibility



Outer batch task

Storage

Task

<Data set>
<Language>

Task

Task

<Training set>
<Testing set>

Task

<Eval. method>

Task Context
Task Context

Task Context
Task Context

Outer parameter space

Data set: A, B, C, D, ...
Language: 'de', 'en', 'zh', ...
Folds: 10, 20, 30, ...
Eval. method: Spearman, Pearson, ...

Inner batch 
task

<Folds>

Inner parameter space

… inherited parameters...
Training set: train(data set, fold)
Testing set: test(data set, fold)

Evaluation 
overview report

Evaluation 
report

Figure 4.6: Schematic illustration of a workflow in DKPro Lab consisting of an outer and an
inner batch task, each with a parameter space, reports for post processing evaluation
results, and a storage layer tracking the results of each task execution during the
parameter sweep

In the remainder of this section, we give a more detailed explanation of the building blocks
and how they can be specialized towards certain problem domains.

4.2.3.1 Tasks

A task is the specification of what should be done. Within the DKPro Lab framework, the task
serves as an adapter between the parameter space and the parametrized logic. Because a task
is typically tuned to a particular parameter space and parameter spaces tend to be specific for
a particular experiment, tasks are normally not reused between different workflows, unless
these workflows are very similar. However, certain kinds of tasks appear repeatedly across all
kinds of experiments, e.g. invocations of analysis workflows for data preprocessing, parameter
sweeping, feature extraction, etc.

Task

Abstract Task 
Base Class

Task Interface

Task Engine

Task specification

Provides mini-DSL
(optional)

Task category
definition

Task specification
execution logic

Figure 4.7: Task category: task interface, task base class, task, and task engine

4.2 Dynamic workflows 89



Listing 4.8: Minimal DKPro Lab workflow
1 def task = new ExecutableTask() {
2 void execute(TaskContext context) {
3 println "Hello world!";
4 }
5 }
6 Lab.instance.run(task);

To facilitate working with common kinds of tasks, task categories can be defined. A task
category consists of an interface, an abstract base class of that interface and a task engine (see
Figure 4.7). To define a task within a workflow, the user derives a task class for this particular
workflow from the abstract base class. This base class may provide convenience methods that
form a mini-DSL, which facilitate the task specification in the derived class. All logic commonly
performed by tasks of this category can be extracted into a task engine. When the task is
executed, the framework locates the associated task engine and passes the task to it. The
engine retrieves all information from the task that it needs to run it according to specification.
A user can register new categories of tasks (i.e. interfaces and engines) with the framework,
and thus specialize it for a particular problem domain or facilitate the interaction with particular
processing frameworks or tools. Currently, the framework provides immediate support for the
following task categories:

1. Executable task – This is the simplest category of task meant to wrap any arbitrary piece
of existing code. The task interface defines a single execute() method which needs to
be implemented, similar to the main() method in Java programs. Listing 4.8 shows a
minimal workflow using an executable task.

2. Batch task – This task category allows running multiple related sub-tasks. The relations
between sub-tasks are modeled as data dependencies. It also allows performing parameter
sweeping experiments.

3. UIMA task – This task category is specialized for running analysis workflows using the
UIMA framework. The task interface defines methods for declaring the reader14 compo-
nent and the analysis15 components of the UIMA workflow. The UIMA workflow descrip-
tions are persisted as XML files and more readable HTML files. An abstract base class for
a UIMA task provides a mini-DSL for a concise definition of UIMA workflows.

There can be multiple engines per task category. For example, for the UIMA task, we provide
two different engines, one running the UIMA analysis workflow in a single thread, and another
one using multi-threading. For development and debugging, the single-threaded engine is bet-
ter suited, while the multi-threaded engine can speed up processing. In future work, we plan
to provide alternative engines that allow running workflows in a cluster environment. The ulti-
mate aim is being able to run the same workflow on a workstation or on a cluster environment
just by exchanging the task engine implementations.

4.2.3.2 Data dependencies

A workflow consisting of isolated tasks is of little use. Rather, workflows are defined by the
data that flows between the tasks. The way in which data is allowed to flow is defined by data

14 getCollectionReaderDescription(TaskContext)
15 getAnalysisEngineDescription(TaskContext)

90 4 Reproducibility



dependencies, meaning that one task depends on a certain information produced by another task.
Data dependencies are illustrated in Figures 4.9 (p. 96) and 4.10 (p. 98) as the connections
that cross task boundaries. E.g. the classify step in the evaluation task (Figure 4.10) has a data
dependency on the classifier output of the training task. Data dependencies can be used to plan
the execution order of the workflow tasks. The data dependency in the given example implies
that the training task has to be executed before the evaluation task.

Data dependencies between tasks
Every execution of a task takes place within an execution context. This is realized by creating a

folder on the file system for each task execution. By convention, any results produced by the task
should be stored within this folder. In many cases, it is easy for the researcher to parametrize
analysis workflows or other code to write results to a certain folder. Being lightweight, the
system does not enforce this, nor does it monitor system calls to intercept access to resources
stored outside this folder.

Once results have been produced, they must not be changed again. Fei and Lu [80] call this
the single-assignment property. This allows the users to inspect intermediate results produced
by the different parametrizations of each task. It also allows the framework to detect if a task
has already been executed with a particular parametrization. If this is the case, the results from
the previous execution are reused to speed up the execution of the workflow.

In practice, however, the results of a task execution sometimes need to be updated or aug-
mented. E.g. additional information needs to be added to a file produced by a previous task or
additional files need to be placed next to files produced by a previous task. Consider a log file
which is passed on from task to task with each task writing additional logging information to
the file. At the end of every task execution, the log file contains a trace of all executions leading
up to this point, but not any information from unrelated task executions, e.g. from executions
belonging to different coordinates in the parameter space.

With some cooperation from the users, the framework can support this while maintaining
the single-assignment property without invasive mechanisms. To this end, whenever a result
from another execution context is accessed via a data dependency, an access mode needs to be
declared:

1. Read-only – a read only access is simply redirected to the folder of the other execution
context. By convention, data accessed in this way must not be changed. The framework
does not enforce this.

2. Read/write – if write access to the data is required, the framework copies the data from
the source execution context to the current context before proceeding.

3. Add-only – this mode can be used if the current task reads existing files from another
execution context and writes new results to new files besides the already existing ones.
In this case, the framework tries to avoid copying the data from the source context by
creating symbolic links instead. This approach can drastically reduce the required disk
space and decrease execution time. In case the underlying operating system does not
support symbolic links, the framework falls back to copying.

Data dependencies on external data
A task can also depend on online resources, ranging from simple files to web services offering

data via an URL. Since this data may change, the framework stores a copy of such data as part
of the execution context. Subsequent runs of the workflow can be configured either to use this
data or to acquire it again.

4.2 Dynamic workflows 91



4.2.3.3 Parameters

Parameter space
The parameter space is the space created by all possible parameter combinations. Each pa-

rameter forms a dimension in this space and is represented by the values a parameter can
assume. A point in the parameter space specifies a unique binding of values to parameters.
Listing 4.9 illustrates the definition of three dimensions called numbers, strings, and lists.

In our approach, parameter values are not limited to primitive data types. Any Java object
can be used as a parameter value, provided that its value can be represented as a unique string.
In the current design, a dimension is always made up of discrete values, e.g. a list of numbers,
strings, objects, etc. Although it is currently the case that the size of a dimension is known,
the framework does not build on that assumption. We mean to maintain the option of having
dimensions with an undetermined size, dynamically creating new values to explore certain
areas of the parameter space in more detail, e.g. to find those parameters that optimize a
certain objective function.

Listing 4.9: Discrete parameter dimension declarations
1 def dimNumbers = Dimension.create("numbers", 1, 2, 3, 4, 5, 6, 7, 8, 9, 20);
2 def dimStrings = Dimension.create("strings", "one", "two", "three");
3 def dimLists = Dimension.create("lists", [1, 2], [3, 4], [5, 6]);

Parameter bundles
It is often the case that parameters are not independent of each other. Consider a data set

from the IR scenario that contains documents, queries, and judgments. In practice, these are
three different parameters, e.g. paths to the folders containing the respective data. If the
documents come in different formats, a fourth parameter may be the component used to read
the documents into the analysis workflow. A fifth parameter may be the language of the data
set, which controls what analysis components or models are used during preprocessing. So for
what appears to be a single parameter, e.g. the data set, in practice, we end up having multiple
parameters. Of course, exploring the space of these parameters is hardly useful, e.g. testing
how well a preprocessing for English works on a set of German documents. Interdependent
parameters can be added as a bundle (Listing 4.10) to the parameter space, allowing the user
to pre-define certain parameter combinations that should be used, while all others are skipped.

Listing 4.10: Bundle parameter dimension declaration
1 def dimDataSet = Dimension.createBundle("dataSet",
2 [
3 language: "de",
4 reader: PdfReader,
5 documents: "/data/ir/set1/documents" as File
6 queries: "/data/ir/set1/queries" as File
7 judgments: "/data/ir/set1/judgments" as File
8 ], [
9 language: "en",

10 reader: TextReader,
11 documents: "/data/ir/set2/documents" as File
12 queries: "/data/ir/set2/queries" as File
13 judgments: "/data/ir/set2/judgments" as File
14 ]);

92 4 Reproducibility



Parameter constraints

Let us assume we would like to use different stopword lists depending on the language of the
data set. Of course, it would be easy to add the stopword list as an additional parameter in the
data set bundle. However, if we have multiple data sets using the same language, we may prefer
not to repeat the stopword list over and over again in every bundle. In this case, constraints are
another way of controlling which parts of the parameter space should be explored (Listing 4.11).
If constraints are defined in a parameter space, only those parts of the space are evaluated for
which the constraints evaluate to true. If more than one constraint is defined, they are treated
as a disjunction (their values are combined using a logical or operation).

Listing 4.11: Parameter constraint declaration
1 def dimStopwords = Dimension.create("stopwords",
2 "/data/ir/stopwords−de.txt", "/data/ir/stopwords−en.txt");
3

4 def stopwordsConstraint = new Constraint({
5 it["stopwords"].endsWith(it["language"] + ".txt")
6 });
7

8 def pSpace = [
9 constraints: [stopWordConstraint],

10 dimensions: [dimDataSet, dimStopwords]
11 ] as ParameterSpace;

Task parametrization

A task serves as an adapter between the high-level workflow modeled within the framework
and the low-level logic responsible for the actual processing. Within a batch task, the task
functions as an adapter between the workflow-level parameter space and the parameters of the
lower-level implementation.

The task also serves as an adapter between the parameter space and the actual logic. The
framework automatically injects parameter values into fields which have been marked as dis-
criminators. Only such fields are used to determine the execution order of tasks. To have the
framework inject parameter values into a field without having any effect on the execution order,
they can be marked as an attribute.

Batch task

The batch task allows the user to run multiple interacting tasks. Tasks are connected to each
other via data dependencies. The batch task automatically detects in which order the subtasks
have to be executed. It visits each coordinate in the parameter space in turn. At each coordinate,
a queue is constructed consisting of all subtasks. If all prerequisites for the top task in the queue
are met, it is executed. Otherwise, it is put at the end of the queue. This approach allows
the data dependencies to change at runtime depending on the parameters. Batch tasks can be
nested inside each other. A nested batch task inherits the parameter space from its parent.

For example, an experiment which contains two tasks (A and B) that preprocess the data set
in different ways. A third task C analyzes and evaluates each of these data sets. A parameter p
controls if task C should use either the preprocessed data produced by task A or the one from
task B. Thus, task C dynamically changes its data dependency on task A or B depending on this
parameter (Figure 4.8).

4.2 Dynamic workflows 93



Listing 4.12: Minimal DKPro Lab parameter sweeping workflow
1 def subtask = new ExecutableTask() {
2 @Discriminator int x;
3 @Discriminator int y;
4

5 void execute(TaskContext context) {
6 println "Parameter space coordinates x: ${x} y: ${y}";
7 }
8 }
9

10 def batchTask = [
11 parameterSpace: [
12 dimensions: [
13 Dimension.create("x", 1, 2, 3, 4, 5),
14 Dimension.create("y", 1, 2, 3, 4, 5)],
15 tasks: [subtask]
16 ] as ParameterSpace;
17 ] as BatchTask;
18

19 Lab.instance.run(batchTask);

Task BTask A

Task C

p = Task A

Task BTask A

Task C

p = Task A

a) b)

Figure 4.8: Data dependency dynamically configured via parameter p

4.2.3.4 Reporting

The results produced by a task may not be suited very well for human consumption, e.g. long
XML files, exhaustive CSV files, etc. It is the purpose of reports to post-process such results
and create charts, excerpts. Multiple reports can be added to a task. By convention, a task
should never declare a data dependency on output produced by a report. The results produced
by reports should be completely separate from the results produced by the actual task logic.
Given the output of a workflow execution, it should be possible to re-run only the reports, e.g.
to create a better visualization or interpretation of the data without having to re-run the full
workflow again. As such, reports are meant to exist as an additional layer on top of tasks.
Again, the framework does not enforce this convention.

4.2.3.5 Specialization

The DKPro Lab framework focuses on the core necessities for workflow building, but provides
an open design that allows users to specialize it towards certain problem domains.

• Reporting – The visualization of experiment results is performed by reports that can be
attached to tasks. For every problem domain, certain reports are typical, e.g. preci-
sion/recall plots for information retrieval experiments, or confusion matrices for machine
learning experiments. It is convenient to build a set of reports and associated data types
and reuse them across different experiments of the same kind. Eckart de Castilho and

94 4 Reproducibility



Gurevych [72] have built various reports for information retrieval experiments. DKPro TC
[65] provides reports for text classification experiments.

• Task categories – When certain kinds of tasks are very common in a particular problem
domain, users can create specialized versions by subclassing existing task categories or
even by creating completely new task category interfaces and corresponding task engines.
For example, DKPro TC [65] provides convenient specialized tasks for text classification
experiments: 1) a task gathering global information about the data being processed, e.g.
TF/IDF counts, 2) a feature extraction task, 3) a preprocessing task, 4) a training and
evaluation task.

• Parameter dimensions – It is possible to implement custom parameter dimensions. For
example, to support cross-validation experiments, a specialized FoldDimension has been
implemented which is wrapped around another dimension and partitions its values into
n subsets of which n− 1 can be used for training and the remaining one for testing an
algorithm. The FoldDimension returns n different folds, each time with a different com-
bination of the subset used for training and testing.

• Parameter space – We expect that future work may also require specialized parameter
space implementations. Currently, each coordinate within the parameter space is visited
during the processing of a parameter sweeping experiment. Obviously, this does not scale
to parameter spaces with millions of parameter combinations. Alternative strategies to
navigate the parameter space will be required, e.g. optimization strategies.

4.2.4 Examples

To illustrate the usefulness of dynamic workflows in more detail, this section examines two
concrete experiment scenarios: 1) an information retrieval experiment and 2) a machine learning
experiment.

Both scenarios originate from research undertaken at the Ubiquitous Knowledge Processing
Lab. DKPro Lab was conceived while the author was working on the first scenario Eckart de
Castilho and Gurevych [72]. It also serves as the basis for the DKPro Text Classification [65]
project targeting the second scenario.16

DKPro Lab has been used in additional tasks, which we do not further explain here. Ferschke
et al. [85] used it in a system for predicting quality flaws in Wikipedia. Daxenberger and
Gurevych [56] used it in experiments on automatically classifying edit categories in Wikipedia
revisions. Flekova and Gurevych [87] used it for a large scale age and gender author profiling
study in social media. Zesch and Haase [234] used it for research on preposition and determiner
correction. Zesch et al. [236] used it in a system using text similarity metrics for the textual
entailment task.

4.2.4.1 Scenario 1: Information retrieval

Information retrieval (IR) deals with the task of retrieving information satisfying the informa-
tion need of the user, which is expressed as a query statement . Given such a query, an IR system
locates relevant pieces of information, e.g. documents, and offers them ranked by relevance to
the user. An IR system performs well when those documents satisfying the information need
best are ranked highest, if no relevant documents are missed, and if irrelevant documents are

16 The credits for DKPro TC go primarily to Oliver Ferschke, Johannes Daxenberger, and Torsten Zesch. The
author has continued to extend and improve DKPro Lab in the context of DKPro TC.

4.2 Dynamic workflows 95



not retrieved. The DKPro Lab framework was used in the context of information retrieval by
Eckart de Castilho and Gurevych [73]. The experimental setup itself is discussed in Eckart de
Castilho and Gurevych [72].

Workflow structure
There are three tasks within the experimental workflow: 1) preprocessing and indexing the

documents, 2) preprocessing the queries, and 3) searching the index and evaluating the results
(Figure 4.9). Because IR systems use global information about the indexed documents, such
as term frequency counts, the indexing processing needs to be complete before any search can
be performed. The indexing task reads the documents from the data set, processes the data,
and writes the processed data to an index. Queries are preprocessed as well, e.g. to remove
stopwords, expand the query with related terms, etc. To avoid repeating this process over and
over during the search and evaluation, it is modeled as a separate task which creates a set of
preprocessed queries. This index and the preprocessed queries are inputs to the evaluation
task, which reads the queries, retrieves relevant documents from the index, and evaluates these
against the human judgments.

Each task can be easily modeled as a workflow using a processing framework. The processing
frameworks support workflows which read a document and pass it through a series of analysis
components. However, modeling the interaction of the tasks is not easily possible because each
task needs to have processed all data before the next task can begin. The processing frameworks
do not readily support workflows which consist of multiple sub-workflows that need to wait for
one another.

PreBprocess"Queries"
Processed"
queries"

PreBprocess"
&"index"Docs"

Indexed"
documents"

JudgeB"
ments"

Retrieval"&"
evalua<on"

Evalua<on"
results"

(1)"Document"preBprocessing"task"

(2)"Query"preBprocessing"task"
(3)"Retrieval"
evalua<on"task"

Figure 4.9: Information retrieval experiment workflow by Eckart de Castilho and Gurevych [73]

Parameters
The ranking function is at the heart of each IR system. Choosing the best parameters for this

function is essential to achieve good results. However, before data even reaches the ranking
function during retrieval, it is preprocessed and indexed. The indexing ensures that data can
be retrieved quickly, while the preprocessing normalizes or enriches the data. For example, IR
systems relying on the matching of terms, are unable to determine that a document containing
the term children may be relevant to a query containing the term child. A preprocessing step
called stemming needs to be applied to documents during indexing and queries while searching
to normalize query and document terms so that they can be matched. Alternative approaches

96 4 Reproducibility



enrich queries by adding terms semantically related to those query terms provided by the user.
E.g. a query for black bird may be extended by the term raven so that documents about ravens,
which are black birds, can be retrieved. So, the IR experiment roughly includes the following
parameters:

• Data set – a set of documents, queries, and human judgments indicating which documents
are relevant to which queries.

• Ranking function – the function determining the relevance of a document to a query,
possibly with additional function-specific parameters.

• Document preprocessing – the enhancements and normalizations applied to documents
before they are indexed.

• Query preprocessing – the enhancements and normalizations applied to the query before
it is used for retrieving and ranking the documents.

Summary
To summarize, we note that this scenario includes three tasks, each of which can be modeled

individually using a processing framework. However, with the present processing frameworks,
they cannot be modeled as a single workflow. We also note that the experiment calls for pa-
rameter sweeping to try different configurations for the ranking function, for the preprocessing
of documents and queries, and to run the experiment on different data sets. Depending on
the parametrization, the different analysis components are involved in the preprocessing of
documents and queries, so these preprocessing workflows need to be assembled dynamically.
However, parameter sweeping and the dynamic assembly of workflows are also not readily sup-
port by the processing frameworks. Our approach, as implemented in DKPro Lab, provides
a lightweight and non-invasive way of integrating the workflows into a single comprehensive
experimental setup, while at the same time adding support for parameter sweeping and the
ability to dynamically change the structure of the workflow depending on its parametrization.
In this way, the scenario, which previously required the manual reconfiguration of the involved
components and the manual execution of each involved workflow in turn, can be run fully
automatically.

4.2.4.2 Scenario 2: Machine learning

Machine learning (ML) approaches can be applied to a variety of language analysis tasks, such
as part-of-speech tagging or named entity identification. Based on a manually annotated cor-
pus, a classifier is trained. The classifier works well if it can correctly assign the categories it was
trained on to unseen data. DKPro Lab is used to implement such a machine-learning use-case
in the DKPro Text Classification [65] project. DKPro-TC supports parameter-sweeping experi-
ments which integrate preprocessing, training, and cross-validating of classifiers into a single
experimental workflow.

Machine learning frameworks like WEKA [110] typically also offer support for training and
cross-validation, but expect that the data already has been preprocessed. Our approach pro-
vides a way to integrate preprocessing, training, and cross-validating of classifiers into a one
parametrizable experimental setup which can be run fully automatically.

ClearTK-ML also supports the integrated preprocessing, training, and cross-validating of clas-
sifiers. However, it does not provide the ability to perform these steps in conjunction with a
parameter sweeping, which the combination of DKPro TC and DKPro Lab can provide.

4.2 Dynamic workflows 97



Train" Classifier"

Evalua<on"
Results"

(1)"Training"task"

(2)"Evalua<on"task"

PreBprocess"
Extract"
features"

Classify"PreBprocess"
Extract"
features"

Docs"

Training"set"

Test"set"

Figure 4.10: Machine learning experiment workflow

Workflow structure
An experimental setup consists of two tasks: 1) training the classifier based on feature

extracted from the data, and 2) evaluating how the classifier performs on unseen data (Fig-
ure 4.10). Since the preprocessing and feature extraction is exactly the same in both tasks, they
could also be modeled as separate tasks.

Parameters
There is a wide variety of possibilities for parametrization in an ML experiment. The manually

annotated data can be enriched with additional information before the feature extraction takes
place. Many features can be extracted from the data. The features can be used in conjunction
with different ML algorithms to train a classifier. To summarize, the ML experiment roughly
includes the following parameters:

• Data set – a set of annotated documents, which can be split into a training and test sets.

• Document preprocessing – the enhancements and normalizations applied to documents
before the features are extracted.

• Feature extraction – the extraction of features from the preprocessed documents which
can be used to train a classifier for the automatic annotation of documents according to
the categories annotated in the data set.

• Algorithm – the machine learning algorithm used to train a classifier from the extracted
features. Effectively, this parameter controls which machine learning library to use (such
as WEKA [110] or Mallet [150]), how the extracted features need to be encoded (e.g. as
a WEKA ARFF file), and which algorithm provided by that library is then invoked.

Cross-validation
A special kind of parameter variation is required for cross-validation. Cross-validation is

a technique to help the researcher to determine the quality of a classifier without the need
for a separate test set. It is often used during the development of new approaches in order to
test experimental configurations. A part of the training data is separated, the classifier is trained
using the remaining data and evaluated against the previously separated data. If we assume that
the set of data instances used to train the classifier is one parameter, a cross-validation scenario
requires some way of expressing that a workflow should be repeated several times, every time
using a different split of the data instances into training and test sets. Thus, cross-validation
requires one parameter, the documents in the data set, to be dynamically split into two new
parameters, the documents in the training set and the documents in the test set.

98 4 Reproducibility



Summary
Experimenting with different preprocessing steps, feature extraction strategies, and machine

learning algorithms, makes machine learning experiments a natural target for parameter sweep-
ing and dynamically assembled workflows. Using our approach, cross-validation experiments
can easily be modeled at the level of the parameter space, making it a natural task to perform
instead of a special concept the framework needs to support. This makes the DKPro Lab frame-
work a natural choice as a basis for the DKPro TC framework. Additionally, the programmatic
approach and the ability to dynamically assemble workflows that are provided by DKPro Lab
enable the DKPro TC framework to provide extra convenience to the user, e.g. to dynamically
add preprocessing steps depending on the kinds of feature extractors being used.

4.2.5 Summary

In this section, we have presented an approach to analysis workflows that change their structure
dynamically based on their parametrization, e.g. in parameter sweeping experiments where the
same setup is run with many parameter settings. Such a parameter variation can be used to
find the optimal configuration for an experimental setup.

However, as Drummond [68] points out, simply repeating an experiment is not sufficient
to validate the underlying hypothesis. He suggests that variation of the whole experimental
setup is important. In our approach, parameters can affect the actual structure and make-
up of a workflow, which facilitates incorporating such structural variations directly into the
experimental setup.

An important goal of our approach and its implementation in the DKPro Lab framework [72]
is to be lightweight and unintrusive. Existing code can be easily wrapped to run within the
framework. Users can adopt the framework gradually at their own speed and specialize it to
their problem domain, e.g. by implementing custom task categories, parameter dimensions, or
reports. Unlike other workflow systems, our framework focuses explicitly on the programmatic
creation of complex workflows and thus on building upon existing programming skills and tools
for the Java platform. This facilitates the creation of experimental workflows, their debugging,
and refactoring. In particular, debugging is not only limited to the level of the workflow, but
can seamlessly go down to the level of individual analysis components or even further down to
the supporting libraries.

By making the parameter sweeping workflow independent of the processing framework, we
can accommodate experimentation across multiple processing frameworks and incorporate arbi-
trary processing steps. This facilitates the automatization of auxiliary steps, typically performed
manually and therefore being prone to errors, e.g. to direct output of one step of the exper-
iment into the next one. Exploiting the data dependencies between processing steps allows
the framework to smartly run processing steps only when necessary and to automatically reuse
intermediate data.

We designed our approach to facilitate the building and sharing of complex experimental
setups. In fact, we can report that the DKPro Lab framework is already being used in diverse
research tasks, e.g. by Ferschke et al. [85] in a system for predicting quality flaws in Wikipedia,
by Daxenberger and Gurevych [56] in experiments on automatically classifying edit categories
in Wikipedia revisions, by Flekova and Gurevych [87] for a large scale age and gender author
profiling study in social media, by Zesch and Haase [234] for research on preposition and
determiner correction, and by Zesch et al. [236] in a system using text similarity metrics for
the textual entailment task. Some of these researchers have made their experimental setups
publicly available, e.g. Zesch et al. [236] as part of DKPro Spelling [64].

We also had the goal that users would adopt the concept of reusable task categories and re-
ports and that they would provide specializations of the DKPro Lab framework for new problem

4.2 Dynamic workflows 99



domains. The DKPro Text Classification framework [65] is such a new specialization for text
classification based on machine learning. It emerged as a joint effort from previous work done
by Ferschke et al. [85], Zesch and Haase [234], and Daxenberger and Gurevych [56], and pro-
vides new task categories and reports specific to this text classification and machine learning
experiments.

Future work is possible in various directions. One direction is an extension of the simple pa-
rameter sweeping support towards an optimizing sweep which prunes unpromising parameter
combinations from the parameter space. This would allow the exploration of larger parame-
ter spaces. Another direction is the support for compute clusters, e.g. via Apache Hadoop [8]
and DKPro BigData [61]. The recently published CSE Framework by Garduno et al. [97] may
serve as an inspiration for such work. It supports parameter space pruning and the deployment
on a compute cluster. However, unlike our approach, it is tightly integrated with the UIMA
framework.

100 4 Reproducibility



5 Flexibility

Users have different goals and requirements when analyzing language. Some users search for
linguistically interesting grammatical constructions, others want to improve the information re-
trieval of search engines, or perform information extraction on resumes to help human resource
managers in staffing. There is a great variety of scenarios in which language analysis plays an
important role. To avoid building analysis systems fully from scratch every time, flexible data
structures, commonly used annotation type systems, and interoperable analysis components are
required.

Flexibility of data structures
To provide for maximum flexibility, processing frameworks keep the data structures used to

model analysis results very generic. While some older systems (e.g. [154; 41]) were built
around XML and focused on trees, and later on ordered directed acyclic graphs, current systems
support arbitrary graphs. The graphs are not necessarily explicitly modeled as nodes and edges,
but rather a graph of feature structures in which a node represents a set of key/value pairs. An
edge in such a graph is represented as a feature value referencing another node.

S

VPNP

S

VPNP

children

parent parent

Node
type: S

Node
type: NP

Node
type: VP

Edge
role: parent

Edge
rel: child

Edge
rel: child

Edge
role: parent

from

toto

from

fromfrom

to to

a) b) c)

Figure 5.1: Representations of a tree: (a) Tree fragment represented as (b) feature structure
graph with edges represented as feature values referencing another feature struc-
ture and as an (c) explicit graph with nodes and edges.

The data structures used for the communication between analysis components are defined by
the processing framework. However, the annotation type system and the analysis components
need to be defined by the user and specialized for the analysis task at hand.

A type system defines how information can be modeled and stored in the data structures. The
type of a node determines which features are available. The type of a feature determines which
values it may assume. Consider a type Token represented by key/value pairs with the keys begin,
end (integer character offsets), and partOfSpeech (string). It is often possible to create derived
types, e.g. a type TokenWithLemma, which inherits all features from its supertype Token and
adds a new feature lemma (Figure 5.2). This corresponds to the inheritance mechanism that
can be found in many object-oriented programming languages.

For automatic annotation, the type system assumes the function of an interface specification
between the analysis components. One component stores its analysis results as objects of a
well-known type, while another component can collect them from there.

For manual annotation, a type system can become part of the annotation guidelines and thus
of the collaboration agreement between annotators. In order to compare the annotations from

Definition: feature structures – A feature structure (FS) is a typed container for key-value
pairs. The keys are strings representing the names of the features. The values are either
primitive (e.g. numeric, string, etc.) or a reference to another FS.

101



Token

int: begin
int: end
String: partOfSpeech

TokenWithLemma

(int: begin)
(int: end)
(String: partOfSpeech)
String: lemma

Figure 5.2: Types and inheritance: the type TokenWithLemma is derived from the type Token

different human annotators, it is important that they represent their analysis in the same way.
This comparison is the basis for calculating the inter-annotator agreement (cf. [40]), which is
an important instrument in assessing the quality of manually created annotations.

Flexibility of processing
The ability to integrate arbitrary kinds of analysis processes is already provided by flexible

data structures and type systems. However, the ability to use components interchangeably, i.e.
to replace an analysis component of a certain kind with another component of the same kind, is
not immediately provided by processing frameworks, but rather it is a trait of curated collections
of analysis components. For example, consider an analysis workflow using a slow high-quality
parser is about to be embedded in an interactive application. However, for the application,
quality is less important than speed. To operate well in this scenario, the parser is replaced with
a faster, less accurate implementation. There is a variety of other reasons why components may
be replaced in an analysis workflow.

From the perspective of the user, it is desirable that the change of a component is a local
operation. I.e. the change should not require further, potentially extensive changes throughout
the whole analysis workflow. It should also be a minimal change. This requires a high degree of
homogeneity between the components, as only a well-curated collection of analysis components
can provide it.

Manual vs. automatic analysis
Manual and automatic analysis tasks have contradictory requirements towards flexibility. A

well-known type system enables the interoperability of analysis components and therefore is
essential for providing a collection of reusable analysis components. At the same time, defining
a type system limits the freedom of a human annotator in a manual analysis task, in particular
during phases of an annotation project where the analysis guidelines have not been finalized
yet.

In Section 5.1, we compare different annotation type systems to get a better understanding of
the decisions that their designers take and their consequences for manual and automatic anno-
tation. In Section 5.2, we discuss the challenges of building a large collection of interoperable
analysis components.

102 5 Flexibility



5.1 Annotation type systems

In this section, we identify patterns underlying the design of annotation type systems and ana-
lyze their relation to each other. We compare different type systems to derive recommendations
that can be used for the design of new annotation types or new type systems. We discuss
whether there are sufficient similarities between the type systems to warrant an attempt to
create a common type system which could be used by multiple component collections. Addi-
tionally, the knowledge about common design patterns can help the developers of annotation
tools to provide user interfaces and interactions tailored to these common patterns. Finally, we
consider whether the specification of the type systems is sufficient for manual and automatic
analysis tasks, or if additional specifications are required.

This section addresses the following issues in our overall scenario (Figure 5.3):

3 Automatic analysis tools and annotation editors are not interoperable.
Our analysis provides developers of annotation editors with a set of patterns to expect in
type systems. They can then offer user interfaces tailored specifically to these common
patterns and offer a better interoperability with type systems based on these designs.

7 In automatic analysis, annotation type systems are predefined, but manual annota-
tion requires customizability.
We conclude that a compromise can be reached by limiting the freedom to define own
types in annotation editors to certain type system design patterns. E.g. tag sets could be
customizable, while the design decision for representing labels is predetermined. Addi-
tionally, constraints are needed to prevent users from creating malformed annotations.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Automatic analysis 
tools, exploration and 
annotation tools are 
not interoperable.

Annotation 
categories are not 

customizable.

Initial exploration, annotation 
study, and definition of 

categories

3

7

Figure 5.3: Design patterns in annotation type systems can guide type system designers to avoid
a proliferation of incompatible type systems. Tool designers can focus on supporting
these designs, in particular when allowing users to create custom types.

5.1 Annotation type systems 103



5.1.1 Motivation

The representation of linguistic information has been studied extensively in the past. Among
others, Chiarcos et al. [44] refer to three levels of representation formats, the physical, the
logical, and the conceptual level. The physical level refers to the serialization format used to
persist or exchange annotated data (e.g. XML, RDF, PAULA [44], GrAF [118], or XMI [173]),
the logical level refers to the abstract data model being used (e.g. annotation graphs [25],
heterogeneous relation graphs [213], the PAULA object model [44], LAF [117], or the UIMA
CAS [105]), and the conceptual level refers to the annotation types (see below) and tag sets
(cf. ISOcat [130], OLiA [43], and Section 5.2.4.2). The abstract data model is also referred to
as the meta model, whereas the conceptual data model is referred to simply as the data model.

As the eco-system around the UIMA framework is steadily growing, we take the opportunity
to analyze how different type systems based on the meta model of the UIMA framework have
been designed. To the best of our knowledge, this is the first comparative design study of
different type systems using the UIMA meta model. We focus on analyzing type systems based
on the UIMA meta model for two reasons:

1. Comparability – Design decisions can be directly compared to each other. If we had
instead compared the representation of a corpus in, for example, the PAULA meta model
[44] and the annotation graph meta model [25], the design decisions would be heavily
influenced by the meta model itself. However, we were interested in the design decisions
that have been taken by different parties that operate on the same meta model which is
based on a feature structure graph. As even within the same meta model, very different
designs can be found, we believe this to be a valuable contribution.

2. Potential for consolidation – Every major analysis component collection for UIMA cur-
rently defines its own type system (ClearTK [172], cTAKES [190], DKPro Core [Sec-
tion 5.2], JCoRe [109], and U-Compare [129]). Thus, there are currently several com-
peting type systems. By comparing these type systems, we wish to assess the potential
for setting up a common best practice type system, which could be used by multiple anal-
ysis component collections and, thus, foster interoperability and reduce the duplication
of work. From personal communication with developers of these collections, particularly
from the DKPro Core, cTAKES, and ClearTK communities, we know that there is interest
in a common type system. However, it is yet unclear how such a type system should be
designed. The present work represents a step towards the proposal of a common type
system.

An annotation type system is the machine-readable counterpart to the annotation guidelines
given to human annotators. In fact, when configuring an annotation editor for a particular
annotation project, relevant parts of the annotation guidelines may be extracted and converted
to a type system, which the editor uses to guide and assist the manual annotation process. But
as an annotation type system also serves as part of the interface specification between analysis
components, it becomes part of their API. As a result, type systems can be seen as an interface
specification between the manual and the automatic annotation processes.

Best practices
It is commonly known that the development of new annotation types and type systems is

not a simple task. Domain-specific needs are to be balanced against practical and technical
considerations. There have been various publications (e.g. [190; 109; 129]) on the subject,
each proposing a different design. Also, researchers that do not spend their time on analyzing

104 5 Flexibility



and comparing existing approaches, define types ad-hoc, which may later require significant
refactoring when requirements appear which had been initially unknown.

By examining and comparing different type system designs, we can highlight common design
decisions and discuss their respective benefits and drawbacks. The results of our analysis can
help developers of new types and type systems to make informed decisions.

Type systems for manual annotation
For an efficient manual annotation process, annotation editors need to provide good visual-

ization and interaction modes depending on the information, or rather on the specific kind of
information that is annotated. Our analysis of the design patterns used in different type sys-
tems improves our understanding of the inventory of visualization and interaction modes that
an annotation should provide in order to support these type systems. More specifically, if the
editors are intended to support the definition of custom annotation types, it helps to understand
which differences to expect between the data model used for visualization and the data model
used for representing analysis results. In this respect, the analysis performed here serves as a
preparatory study for a new extension of the state-of-the-art annotation editor WebAnno [232],
allowing for the definition of custom annotation types.

Towards a common type system for automatic analysis
It is important to think about a common annotation type system that is used by multiple

component collections and permits extensive interoperability between analysis components. In
particular at the lower analysis levels, much work is duplicated between the different com-
ponent collections. There are many tokenizers, sentence boundary detectors, part-of-speech
taggers, or lemmatizers repeatedly wrapped as UIMA analysis components. Agreeing on a com-
mon representation, even for the most basic types, would immediately allow avoiding duplicate
work and potentially to increase the coverage of languages and domains for which interopera-
ble components are available. Differentiating properties between component collections would
still remain, e.g. by focusing on certain languages or domains, by focusing on portability, speed,
or other useful properties. Our analysis helps us understand if it is feasible to design such a
common type system, and how to approach it.

5.1.2 State of the art

To determine common design decisions, but also different approaches, we compare the type
systems for linguistic annotations from five different analysis component collections based on
the UIMA framework. As the UIMA framework does not provide any domain-specific annotation
types and since, at least so far, there is no commonly agreed-upon type system for linguistic
analysis, each component collection uses its own independent type system. The collections
examined later in this section are:

• ClearTK [172]
• cTAKES [190]
• DKPro Core [Section 5.2]
• JCoRe [109]
• U-Compare [129]

Some of these type systems contain very specific types for certain domains, e.g. cTAKES has
a strong focus on the medical domain. However, all type systems also cover linguistic concepts,
such as tokens, sentences, syntactic constituency structures, dependency relations, etc. In our

5.1 Annotation type systems 105



comparison, we focus on the representation of these common concepts, because this is where
the potential for consolidation can be found.

In the rest of this section, we use the following nomenclature from the UIMA framework. A
feature structure (FS) is a typed container for key-value pairs. The keys are strings representing
the names of the features. The values are either primitive (e.g. numeric, string, etc.) or a
reference to another FS. An annotation is an FS which is anchored to the text, bearing two well
known numeric features, begin and end, representing offsets in the annotated data. In UIMA,
all primary data and FSes are stored in a Common Analysis System (CAS) [105] object, which
is used for exchanging data between analysis components.

During our analysis, special attention is paid to the benefits and drawbacks these patterns
have, not only with respect to automatic processing, but also with respect to manual annotation.
For example, some annotations types are closely related to each other and form a conceptual
layer. Annotation editors are tools for manually analyzing language data and annotating it,
e.g. the UIMA Annotation Editor [13] or WebAnno [232]. To avoid overloading the visual
appearance, such editors support the ability to show only certain types of annotations. For a
user, it is more convenient to use such a functionality on the level of the conceptual layer, e.g.
than applying it to each annotation type individually.

Applicability to other processing frameworks
Although we focus on UIMA here, the design patterns apply to other frameworks as well.

UIMA type systems can be compared to an object-oriented system with single inheritance
(cf. [210]), i.e. a type can only have a single supertype. In fact, UIMA provides a code-
generation module which renders types defined in a UIMA type system as Java classes, em-
ploying getters and setters for feature values and inheritance, but not interfaces. Additional
custom methods can be added to these generated classes. Tesla directly employs the Java type
system as its annotation type system and defines a set of Java classes that are used to store
analysis results. Additional design options could be introduced through the added support for
interfaces, which we would miss in our analysis. Unlike Tesla and UIMA, GATE does not require
the definition of types. Annotations do not have a particular type, but are represented as generic
key/value sets, like the UIMA FSes. Since large parts of our analysis are related to how to model
relations between FSes, without explicitly taking named types into account, they are relevant
for example for GATE as well.

We now briefly introduce the component collections whose type systems we compare in this
section.

5.1.2.1 ClearTK

The ClearTK analysis component collection [172] has a strong focus on machine learning, pro-
viding special support for feature extraction and for different machine learning frameworks.
Based on these, custom analysis components for all kinds of tasks can be implemented, pro-
vided that annotated data exists from which the machine learning algorithms can be trained.
Finally, ClearTK integrates several analysis components wrapping third-party tools, such as part-
of-speech taggers, parsers, etc., which mainly serve to preprocess the data before the feature
extraction is performed. Further details regarding this component collection are provided in
Section 5.2.

5.1.2.2 cTAKES

The clinical Text Analysis and Knowledge Extraction System (cTAKES) [190] is a project focus-
ing on the automatic analysis of medical records. It consists mainly of a collection of analysis

106 5 Flexibility



components specifically targeted at the application domain, e.g. annotation of drugs, finding
mentions of side effects of drugs, etc. For linguistic preprocessing tasks such as part-of-speech
tagging, chunking, or parsing, cTAKES incorporates one analysis component for each task. The
cTAKES system provides basically a single, comprehensive analysis workflow in which the com-
ponents and resources are tuned to interoperate optimally. The SHARPn common type system
adopted by the cTAKES project since version 2.5 is described by Wu et al. [227]. Further details
regarding this component collection are provided in Section 5.2.

5.1.2.3 DKPro Core

DKPro Core (Section 5.2) is a part of the Darmstadt Knowledge Processing Repository [107] and
focuses on basic linguistic preprocessing tasks, covering primarily segmentation, part-of-speech
tagging, lemmatizing, syntactic parsing, dependency parsing, named entity recognition, and
coreference resolution. DKPro Core serves as an integration framework for many third-party
tools which handle a wide range of analysis tasks. It is the mission of the project to provide the
user with a rich choice of appropriate tools for each of the tasks.

5.1.2.4 JCoRe

JCoRe [109] is a comparatively small collection of analysis components. Contrary to the other
collections, it is not advertised and versioned as a single package, but rather each component
is advertised separately. All components are based on the JCoRe type system, also known as
the JULIE Lab type system, which has been the topic of several publications [38; 108]. Unlike
other type systems, the JCoRe type system does not primarily aim at a high-level interoperability
between components, but also contains specialized types for particular corpora (e.g. a syntactic
constituent type, PTBConstituent, for the Penn Treebank [146]), for shared tasks (e.g. the type
for the Automatic Content Extraction (ACE) Program [66]), or for tools (e.g. MMAX2, [164]).

5.1.2.5 U-Compare

U-Compare [129] is a system to compare the results produced by different analysis compo-
nents or analysis workflows with each other. It consists of a workflow editor and integrates
a wide variety of analysis components, which often call out to third-party web services. In
addition to annotation types which enable the interoperability between analysis components,
the U-Compare type system provides a set of types dedicated to the encapsulation of results
produced by individual analysis components which are used in the comparison process. The
U-Compare type system was described in detail by Kano et al. [128]. Further details regarding
this component collection are provided in Section 5.2.

5.1.3 Contribution: An analysis of type system designs

Examining the aforementioned type systems, we encounter several strategies of building a type
system. In this section, we describe these strategies and discuss their respective benefits and
drawbacks.

5.1.3.1 Structural patterns

Annotations form structures over the annotated data. The most common structure is a span, a
section of the annotated data delimited by begin and end offsets (e.g. used for tokens, sentences,

5.1 Annotation type systems 107



TreeRootNode

TreeNode TreeNode

Span

begin end

RelationArgument RelationArgument

arg1  
Relation

  arg2

Link Link

first  
Head

next

FeatureStructure
FeatureStructure

FeatureStructure
FeatureStructure

Set

a) Span b) Tree c) Relation

d) Chain (Linked List) e) Set

Figure 5.4: Common structures for annotation

etc.). There are other common structures, such as trees (e.g. syntax trees), linked lists (e.g.
coreference chains), relations (e.g. dependency relations), sets (e.g. named entity mentions).

Structures can be realized as structural base types, which implement them in a generic way,
without any relation to a linguistic theory or other domain, such as medicine. Domain-specific
types are derived from these generic types, e.g. types for the annotation of dependency relations
could be derived from structural base types for relations. (Figure 5.4).

Alternatively, structures can be realized directly as domain-specific types. E.g. a type Con-
stituent with features parent and children can be used to represent nodes in a constituency parse
tree without being derived from a more generic TreeNode type.

Span [Figure 5.4 a)]
The span is the simplest and most common annotation structure. A span annotation simply

marks a continuous region of the primary data, specified by begin and end offsets. Spans are
often a built-in type in processing frameworks and special functionality is provided to handle
spans, e.g. efficiently fetching all other annotations within a span, fetching the portion of the
primary data marked by the span, etc.

In the UIMA framework, the span is represented by the built-in type Annotation. All the
examined type systems make heavy use of this structural type and most of their types are derived
from Annotation. The type defines two features begin and end which represent character offsets
in the annotated text data.

Tree [Figure 5.4 b)]
Trees are primarily used to model the syntactic constituent structure in a sentence. They

could also be used to model other annotations, e.g. the document structure (chapter, section,
paragraph, etc.).

Explicit modeling of the tree structure is not necessary in case when the nesting information
is implicitly encoded otherwise. For example, in the case of the document structure, it can be

Definition: structural base types – Types used to represent a structure in a generic way,
without any relation to a linguistic theory or other domain, such as medicine. Domain-
specific types are derived from these generic types, e.g. types for the annotation of depen-
dency relations (e.g. DependencyRelation) could be derived from structural base types for
relations (e.g. Relation).

108 5 Flexibility



BinaryTextRelation
RelationArgument: arg1
RelationArgument: arg2

CoreferenceRelation StanfordDependency

RelationArgument
String: role
Annotation: argument
List<Relation>: participatesIn

SemanticRoleRelation
SemanticArgument: argument
Predicate: predicate

SemanticArgument
String: label
SemanticRoleRelation: relation

Predicate
String: frameSet
List<SemanticRoleRelation>: relations

Annotation
int: begin
int: end

Relation
String: category
double: confidence

Figure 5.5: Relation types in cTAKES (excerpt)

assumed that all sections of a document are properly nested in each other, i.e. that no two
sections have the same offsets and all sections are fully contained within another section. In
that case the tree structure can be fully obtained from the containment information. For the case
that containment is ambiguous, because two annotations have the same offsets, UIMA provides
the type priority mechanism, defining the relative stacking of annotations. For example, if a
heading is made up of a single token, the priority may define that Heading has a higher priority
than Token, meaning that the heading contains the token, and not vice versa.

The U-Compare type system provides a structural type TreeNode, which is used as a base
type for further types representing the syntactic constituency structure (Constituent). The type
system also provides a refined set of types for representing the document structure. Even though
the document structure modelled as a tree is explicitly encoded here, the TreeNode is not used
as a base type for the document structure types.

The other type systems do not provide an abstract type for trees. However, each type system
declares types for representing the syntactic constituency structure. DKPro Core, ClearTK, and
cTAKES declare dedicated types for the root node of the tree. ClearTK and cTAKES additionally
declare dedicated types for the leaf nodes of the constituency tree. In DKPro Core, the leaves of
the constituency tree are Tokens.

Relation [Figure 5.4 c)]
Relations are a very versatile annotation structure. They are mostly used to model depen-

dency relations, but can also be used to model coreference relations, temporal relations, etc.
None of the examined type systems, except cTAKES, provides a base type for relations. The
UIMA meta model represents a graph structure, with feature structures being the nodes and
complexfeatures being the edges. However, these edges cannot have labels (features) them-
selves. A relation can be seen as a way of modeling an edge as a proper feature structure, so
that is can bear features itself.

The cTAKES type system provides a generic Relation type which serves as the basis for a whole
set of specialized types (cf. Figure 5.5). This type is not anchored to text, i.e. it does not bear
begin and end features and it is not derived from the built-in Annotation type. Neither does the
relation base type specify any arguments, such as arg1 and arg2, which are only introduced
in more specific relation types such as BinaryTextRelation or ElementRelation. Instead, it bears
features such as category and confidence.

5.1 Annotation type systems 109



This design allows specialized relations to use descriptive feature names, e.g. the Semanti-
cRoleRelation type bears the features predicate and argument instead of arg1 and arg2. On the
other hand, the design also disqualifies Relation as a structural base type, because it bears no
structural information, such as references to the relation end points.

However, the BinaryTextRelation could be considered a structural type. It defines the features
arg1 and arg2 and serves as the base for types such as CoreferenceRelation and StanfordDepen-
dency. As a consequence, these types do not have descriptive names for their relation features,
unlike SemanticRoleRelation. Instead of being encoded as feature names, the kind of relation is
encoded in the role feature of the RelationArgument type.

It is unclear why the SemanticRoleRelation, which obviously is a binary relation on text seg-
ments, has not been implemented as a subtype of BinaryTextRelation. However, the comparison
of these types nicely highlights the benefits and drawbacks of a structural type (here Bina-
ryTextRelation). The use of the structural type introduces additional complexity (here the
RelationArgument type) and inconvenience, e.g. non-descriptive feature names. However, it
provides a uniform way to access different kinds of relations (here the CoreferenceRelation and
the StanfordDependency). On the other hand, the SemanticRoleRelation and its associated types
bear descriptive type and feature names, but are not accessible in the same uniform way as the
relation types derived from the BinaryTextRelation types.

Some type systems anchor relation types directly to the text with begin and end offsets, e.g.
the DKPro Core and U-Compare type systems, others do not, e.g. the ClearTK and cTAKES type
system. Instead, the latter anchor relations indirectly to the text, e.g. through the end points
of the relation (cf. Figure 5.5). However, the access and indexing mechanisms provided by the
UIMA framework assume that annotations are directly anchored on the text. For this reason,
getting a list of relations in the order they appear in the document, or getting all the relations
pertaining to a particular section of the document, e.g. all dependency relations for a sentence,
is neither easy nor efficient. Thus, a component collection providing indirectly anchored an-
notations should also provide a library of functions dedicated at accessing and handling these.
This is also particularly inconvenient for tools which provide editing or visualization capabili-
ties, because they cannot rely on the default assumption that annotations are directly anchored,
but need to handle the specific approach to indirect anchoring.

Linked List [Figure 5.4 d)]
There is a linked list built directly into the UIMA framework: the type FSList and its subtypes

(Figure 5.6). The type NonEmptyFSList represents a link in the list and has two features: head
pointing at the FS associated with the link and tail pointing at the next link. The FSList types
do not represent structural base types, because it is not possible to derive specialized kinds
of linked lists, e.g. for coreference chains. Instead, the FSList serves to provide features with
multiple values, in particular when the number of values is not previously known.1

Whereas the DKPro Core type system does not provide a structural type for linked list, it uses
a linked list structure to model coreference chains. The type CoreferenceChain resembles the
head of the list and provides a pointer to the first element. The CoreferenceLink type is used
to model the elements of the list. Being derived from the Annotation type, they are anchored
to the text. The feature referenceType specifies the role of the link itself within the chain. The
feature referenceRelation qualifies the relationship to the next element in the chain pointed to
by the feature next. Conceptually, referenceRelation is a label on the edge to the next element.

The other type systems do not employ types which form linked list structures.

1 If the final number of values is known, FSArray is the better alternative for multi-valued features.

110 5 Flexibility



FSList

EmptyFSList NonEmptyFSList
FeatureStructure: head
FSList: tail

FeatureStructure

SomeAnnotation

List<FeatureStructure>: multiValued

Figure 5.6: UIMA FSList type hierarchy

Set [Figure 5.4 e)]
A Set groups feature structures that share a certain quality. The shared information is repre-

sented by features on the Set type. The members of the set are referenced by a multi-valued
feature (e.g. FSList or FSArray).

This structure is often used to model abstract named entities and their mentions in the text,
which is one of the ways of expressing coreference. The U-Compare type system provides
the LinkedAnnotationType to model a set of annotations. This type is used as a base type for
the NamedEntity type. The set represents the entity itself, while members of the set corre-
spond to the mentions of the entity. cTAKES provides a similar type called CollectionTextRe-
lation used to model coreference relations. The U-Compare type system also uses a set type
(LinkedAnnotationSet) to its representation of named entity annotations.

Discussion
Should generic structural base types be used, or should structures be only implicitly realized

in domain-specific types (e.g. types for constituency structure, coreference chains, etc.), and
what are the positive or possibly negative consequences?

Structural types are base types from which the more specific types, such as Token or Con-
stituent are derived. The derived type inherits all features from its parent, which of course is
desired, but can also have a negative effect. In particular, the derived type might require more
specific constraints on the features. While a generic Relation type may have two features arg1
and arg2 of the type Annotation, the derived type DependencyRelation should be constrained to
form relations between Tokens.

The naming of features is another problem. Consider again a DependencyRelation type. De-
pendency relations exist between a governor and a dependent, but the names of the features
indicating the end points of the relation are already called arg1 and arg2 in the base type
Relation. Unfortunately, there is no way to rename features, e.g. arg1 to governor.

However, structural types are very useful if there are applications which are agnostic of the
semantics of a type, e.g. if a relation is a dependency relation or some other kind of relation.
For example, to visualize a structure, to choose an efficient strategy to index a structure in a
database, or possibly to convert data from one representation format into another, it is often
sufficient to know the basic structures. If this information is not available from the structural
base types, an external mapping would be required, e.g. indicating that a DependencyRelation is
a binary relation and that the end points are specified by the governor and dependent features.

For the DKPro Core type system, we chose not to use structural types to avoid the problem of
naming features. We aimed to retain the ability of giving features descriptive names according
to their actual roles in the annotation, providing the user with a better intuition what these
features stand for without having to consult documentation.

5.1 Annotation type systems 111



Consituent
value: NP

Constituent
value: DET

Constituent
value: NN

Consituent
value: NP

Constituent
value: DET

Constituent
value: NN

Consituent
value: NP

Constituent
value: DET

Constituent
value: NNToken

Lemma
value: goose

Token

Lemma
value: goose

  lemma

geese

geese

Token

Lemma
value: goose

  token

geese

Consituent
value: NP

Constituent
value: DET

Constituent
value: NN

parentparent
children

children

parent

Token

Lemma
value: goose

  token

geese

lemma  

  lemma

a goose

a goose

a goose

a goose

begin end

begin endbeginend

a) Co-indexing

b) Forward linking

c) Backward linking

d) Forward/backward
linking

begin

begin

end

end

Figure 5.7: Strategies to associate annotations/feature structures with each other

5.1.3.2 Association patterns

Annotations do not stand alone, they relate to each other and to the primary data. The part-
of-speech tag or lemma relate to a token, because they are generated specifically for this token
and based on its context. A token relates to a sentence, because it is situated inside the sen-
tence boundaries, usually representing a word within the sentence. There are several ways to
express such relationships, e.g. explicitly by various ways of setting up links between related
annotations, or implicitly by using co-indexing.

Co-indexing [Figure 5.7 a)]
Co-indexing is an implicit method of expressing a relationship between annotations. By con-

vention, we can say that two annotations of a certain kind relate to each other, if they share the
same position in the document (start and end offsets are equal). Since most types in the exam-
ined type systems are derived from the UIMA Annotation type, most of them can be implicitly
associated via co-indexing.

Forward-linking [Figure 5.7 b)]
For the linking strategies, we assume that there is some kind of order or direction in the

relationship. E.g. in order to determine the lemma for a token, the token has to be known first.
So the annotation specifying the token exists before the annotation resembling the lemma is

112 5 Flexibility



made. A forward-linking relation is one from the earlier, or lower-level annotation to the later,
or higher-level annotation.

If the annotations are in a hierarchical or dominance relation, e.g. the child-parent relation
in a tree, this would be the relation from child to parent.2

Forward linking is commonly used to link types that are anchored to the primary data to
labels, because it often corresponds to the typical navigation path. E.g. DKPro Core and JCoRe
use forward linking to associated tokens with lemmata, part-of-speech tags, and stemmed forms.

A linking association is not an FS by itself. It is rather expressed by a feature on one FS whose
value is a pointer to the other FS. So an FS of the type Token can have a feature lemma pointing
to another FS of the type Lemma.

Backward-linking [Figure 5.7 c)]
A forward-linking relation is one from the later, or higher-level annotation to the earlier, or

lower-level annotation. As said before, it is necessary to know the token before its lemma can
be determined. In a backward-linking scenario, the Lemma annotation would have a feature
token pointing to the Token annotation for which the lemma was generated.

If the annotations are in a hierarchical or dominance relation, e.g. the child-parent relation
in a tree, this would be the relation from parent to child.

Across all type systems, backward linking is commonly used for more abstract annotations
such as named entity mentions, dependency relations, or coreference relations.

Forward-backward-linking [Figure 5.7 d)]
Forward-backward-linking is a combination of the two previously addressed linking strate-

gies. Both related annotations carry a feature linking to the respective other annotation. With
exception of the JCoRe type system, forward-backward-linking is used to model the parent/child
relationship in constituency trees. The cTAKES type system also uses this strategy to associate
relations with their arguments.

Type merging
The ability to define a type by the same name multiple times and merge these definitions is

a special concept in the UIMA framework. Consider the type Token being defined as a simple
annotation only bearing start and end offset features. A second definition of the type includes a
lemma feature and a third one includes a pos feature. When an analysis workflow is initialized
with all three definitions, they are merged into a final type definition.

Type merging can be used to create additional features on types originally defined in different
modules without resorting to inheritance. However, it is not used by any of the examined
type systems. It also does not interact well with another concept in UIMA, the JCas [193].
While UIMA type systems are defined independently of programming languages, the framework
supports the generation of JCas classes which are representations of UIMA types as classes in
the Java language. In this way, annotations become regular Java objects, features are made
accessible via getter and setter methods, and the inheritance mechanism in UIMA type systems
is mapped to the Java inheritance mechanism. These classes are pre-generated either manually,
after changes in the type system definition have been made, or at best automatically at compile
time. If the additional definitions of our Token type are not known at generation time, the getter
and setter methods for the additional features will not be present in the JCas classes. We may
even end up with multiple incompatible versions of the same class on the classpath. JCas classes
are very convenient to program with and are commonly used in analysis components. This may
be the reason why type merging is not used by any of the component collections.

2 This decision is somewhat arbitrary, but might be justified as treating the forward direction as going from the
concrete to the abstract, e.g. from a concrete token to its abstract lemma, or to a more abstract phrase.

5.1 Annotation type systems 113



Discussion
There are several benefits and drawbacks which should be considered when choosing a strat-

egy for associating feature structures with each other. The strategy should be chosen based on
the known requirements:

1. Does the association itself bear features? – If the association bears features, it should be
modeled as a feature structure.3 Such features can be generic information like id or confi-
dence, or domain-specific features, such as the role of an association (cf. RelationArgument
in Figure 5.5 on page 109).

2. Is it known at type system design time that the association exists? – If the type system
designer knows of the association, it can be modeled explicitly, but if it is not known,
the designer cannot add the necessary features, and analysis components cannot fill these
features.

3. Can the association be multi-valued in some cases, although it is normally single-
valued? – If normally a single lemma is associated to a token, then it would be inconve-
nient to turn the feature which associates a token to its lemma into a multi-valued feature,
because extra code would be required while navigating from token to lemma. However,
in some cases, a user may run multiple lemmatizers, e.g. to compare their results. In this
case, multiple lemmata are associated to the same token via co-indexing, but the token
explicitly refers only to one of them, e.g. the most frequent one.

4. Is the association used very often and is fast navigation between the associated
feature structures therefore important? – If navigation along the association in one or
both directions is frequently performed, co-indexing may significantly reduce performance
because on every navigation a search through the feature structures must be performed
in order to find co-indexed FSes.

5. Is the association part of an add-on and can therefore not be considered when de-
signing one of the associated feature structure types? – If the association is unknown
when one of the participating types is designed, it is not possible to add a feature to that
type referencing the other one. Only backward-linking is possible in this case.

6. Are the associated types defined in different modules of the collection or frame-
work? – If the associated types are defined in two different modules of a processing
framework or component collection, only a forward or a backward link can be used. A
forward/backward link would introduce a circular dependency between the modules.

7. Are the types involved in the association in the same module? – Forward/backward
linking is only possible if the associated types are defined in the same module.

Table 5.1 summarizes which strategies can be used depending on the requirements.
Co-indexing has the fewest drawbacks. It should be used as the default when performance is

not crucial and the association does not bear any features. When the annotation is performed
manually, unnecessary effort for the annotator should be avoided. E.g., if annotations are suf-
ficiently associated with each other by co-indexing, the annotator should not be forced to set
up additional explicit links between them. If such links are desirable for fast navigation during
subsequent automatic processing steps, the links should be set up automatically.

3 In general, this is not necessary unless the association is n-to-n, but it could be considered an unconventional
approach to push the features to either of the associated sides, rather than leaving them on the association
itself.

114 5 Flexibility



Backward linking is the second-best option, although we found that the more common nav-
igation direction tends to be forward, e.g. from accessing a part-of-speech label from a token
(forward), instead of accessing a token from its part-of-speech label (backward). Hence, back-
ward linking may not solve performance issues.

Forward linking often addresses navigation performance issues, but should be used with care
because it can create potentially undesired dependencies between modules. Consider the type
Token being defined in a module called segmentation and the type Constituent being defined in
a module called syntax. At the lowest level of the syntax tree, a constituent is equivalent to a
token. In a forward-linking scenario, the Token type would have a feature parent pointing to
the next higher constituent. However, segmentation is a more basic task than syntactic pars-
ing, and one might not want to make an assumption on constituency structures when defining
and implementing segmentation. In a backward-linking scenario, the Constituent type has a
multi-valued feature children, by which it can refer to other constituents or tokens.

Forward/backward linking should be reserved for exceptional cases where the two involved
types are closely related to each other, defined in the same module, and fast navigation is
important. Note that performance issues with backward linking can be alleviated by creating
a temporary reverse index within an analysis component when extensive forward navigation is
expected.

Given the friction between type merging and the convenient JCas classes, type merging is
not used as a design element in readily available type systems and should probably be avoided
when designing new types. However, type merging could become an important design element
if these frictions are resolved. One of the UIMA developers recently suggested generating JCas
classes just in time, instead of pre-generating them.4

Table 5.1: Under which conditions can an association strategy be used?
Co-indexing Forward Backward F/B

1) Association has features? - + + +
2) Association unknown? + - - -
3) Optionally multiple? + - - -
4) Frequently navigated? slow + + +
5) Unknown module? + - + -
6) Known different module? + + + -
7) Same module? + + + +

5.1.3.3 Label patterns

A label is a piece of information which could easily be represented as a primitive feature in a
feature structure. Consider a type Token. The part-of-speech tag for the token could easily be
stored as a string value in a feature pos. In many cases, type system designers create dedicated
types for these labels. For example, in the DKPro Core type system, the pos feature is not a string
value, but a reference to another annotation of the type POS (short for PartOfSpeech) which in
turn has a feature value. This section examines different strategies for modeling labels, as they
have been used in the examined type systems.

4 UIMA developer mailing list post: http://markmail.org/thread/u6bvabdsxiw4agsf
(Last accessed: 2013.08.10)

5.1 Annotation type systems 115

http://markmail.org/thread/u6bvabdsxiw4agsf


Token

PartOfSpeech
String: value=N

  

Token
String: pos = N

Token

PartOfSpeech
String: value=N

pos  

a) Primitive label b) Unique label c) Label annotation

begin

begin end

endbegin endbegin end begin end

Token

begin end

pos

Jim Smith

Token

PartOfSpeech
String: value=N

pos  

begin

begin end

endbegin end

Jim Smith

Token
String: pos = N

begin end

Jim Smith

Token

Noun
String: value=N

pos  

d) Elevated type

begin

begin end

endbegin end

Token

Noun
String: value=N

pos  

begin

begin end

endbegin end

Jim Smith

PartOfSpeech
String: value

Figure 5.8: Label modeling strategies: part-of-speech tags

Primitive label [Figure 5.8 a)]
A label can be represented as a simple primitive feature on an annotation. Considering that

a part-of-speech tag can only be assigned to a token after the token has been identified, the
obvious location to place the label feature would be on the Token annotation.

For part-of-speech, lemma, and stem information on the Token type, this strategy is consis-
tently used only by the ClearTK type system. On other types, however, the use of primitive
features for labels is common across all type systems.

Unique label [Figure 5.8 b)]
Instead of maintaining a label as a feature on its associated annotation, a separate type can be

created which bears the label feature. The feature on the annotation then changes to a reference
to the respective label type. Consider again the Token annotation. We add a new annotation
type PartOfSpeech which has a primitive string feature value for the part-of-speech tag. The pos
feature of the Token annotation then references such a PartOfSpeech annotation.

U-Compare most prominently introduces the concept of a unique label. The part-of-speech
label type POS is derived from the type UniqueLabel which is not anchored to the text. One in-
stance of the POS type is created for every part-of-speech tag and then referenced from all tokens
which bear that tag. Unique labels are also used for dependency relations and constituents.

Label annotation [Figure 5.8 c)]
Other type systems derive label types from Annotation and anchor them to the text. Conse-

quently, one label annotation exists for each labeled annotation, e.g. one POS annotation for
each Token annotation. The association between the label and the labeled annotation can be
expressed through co-indexing or through explicit linking.

Compared to unique labels, this approach incurs a massive duplication of information. How-
ever, if the labels have additional information, such as confidence or if labels must be addressable
via an id, the use of label annotations is well justified. Otherwise, such additional information
would need to be pushed down to the labeled type, e.g. by adding a feature posConfidence to
the Token type, which would remove to ability to have uniform feature names for the confidence
across types.

Elevated types [Figure 5.8 d)]
As mentioned before, label annotations incur a massive duplication of information compared

to unique labels, without providing any obvious benefit. However, a benefit may be observed
when additional types for specific tags or coarse-grained categories are derived from the label
types. Several type systems, including DKPro Core and cTAKES implement this approach. To
highlight this benefit, we take a short look at how annotations are programmatically accessed
or visualized in an annotation editor.

116 5 Flexibility



Figure 5.9: UIMA Annotation Editor displaying part-of-speech tags elevated to types

In the UIMA and uimaFIT APIs, annotations are accessed primarily by their type names. The
same is true for UIMA Ruta [133], a language for the rule-based analysis of text, which can be
used e.g. for information extraction tasks in UIMA workflows. Accessing a label via a primitive
label, unique label, or label annotation requires imposing a constraint on a feature (Listings 5.1,
5.2). By elevating often accessed labels to types, analysis engine code and Ruta scripts can be
made more concise and readable. Some analysis tools, such as the UIMA Annotation Editor
[13], are hardly usable without elevated types. This is because the editor visually highlights
annotations of different types. If all annotations have the same type (e.g. PartOfSpeech) they
all appear the same (Figure 5.9)5.

Instead of elevating all labels to types, e.g. all tags in the Penn Treebank tag set, the elevated
types can be used to model more coarse grained categories. For example, DKPro Core provides
the type POS for part-of-speech tags and derived from this several coarse-grained part-of-speech
tags, such as N (noun), V (verb), etc. These largely resemble the universal part-of-speech tags

5 Data obtained from the HIV article on the English Wikipedia using and processed with the OpenNLP segmenter
and part-of-speech tagger. (Last accessed: 2013-12-11)

Listing 5.1: uimaFIT: condition on label vs. elevated type
1 // Variant 1: Accessing nouns via a label annotation and a feature value constraint
2 List<PartOfSpeech> nouns = new ArrayList<PartOfSpeech>();
3 for (PartOfSpeech e : select(jcas, PartOfSpeech.class)) {
4 if ("Noun".equals(e.value)) {
5 nouns.add(e);
6 }
7 }
8

9 // Variant 2: Accessing nouns via an elevated type
10 List<Noun> nouns = select(jcas, Noun.class);

Listing 5.2: Ruta: condition on label vs. elevated type
1 // Variant 1: Accessing nouns via a label annotation and a feature value constraint
2 PartOfSpeech{FEATURE("value", "N")}
3

4 // Variant 2: Accessing nouns via an elevated type
5 Noun

5.1 Annotation type systems 117



suggested by Petrov et al. [178]. Such coarse-grained tags apply across languages, while the
finer-grained tag sets used in most corpora are language specific. The original, language specific
tags are also maintained, in the value feature of the POS type, which is also inherited by all the
coarse grained types. In this way, analysis component developers can choose between the easy
to use cross-lingual, coarse-grained tags that have been elevated to types and the original, less
conveniently accessible tags (cf. Section 5.2).

The U-Compare type system also elevates tags to types, but it does so in combination with
unique labels. These are not anchored to the text, therefore the benefit of easy access as shown
in (Listings 5.1, 5.2) does not apply. It is unclear what benefit the elevated types provide in this
case.

Not all features are suited to be elevated to types. An elevated type is useful if the elevated
feature specifies a kind of. E.g. a noun is a kind of part-of-speech tag. However, consider a type
Morphology with detailed features for morphological information like gender, number, case,
etc. Here male would not be a kind of morphology, if at all, it could be considered a part of
morphology. Hence, an elevated type is not useful here.

N
String: pos = NN

N
String: pos = NNS

N
String: pos = NP

N
String: pos = NPS

NN
String: pos = NN

NN
String: pos = NNS

NP
String: pos = NP

NP
String: pos = NPS

N
String: pos

NN

NNS

NP

NPS

NN

NNS

NP

NPS

a) Default mapping b) Customized mapping

Figure 5.10: Customization of the mapping from tags to elevated types

Elevated types provide an opportunity for users to customize the type system without chang-
ing its design (Figure 5.10). Consider a component collection using the universal part-of-speech
tags as elevated part-of-speech types. The collection provides a part-of-speech tagging analy-
sis component that generates part-of-speech tags from the Penn Treebank tag set [189], which
makes a distinction between proper nouns (pl: NP, sg: NPS) and common nouns (pl: NN, sg:
NNS). Per default, the analysis component creates an elevated type N for all these tags, ac-
cording to the universal part-of-speech tag set mappings. However, a researcher now requires
slightly a more fine-grained mapping, which makes a distinction between the two kinds of
nouns, although not between plural and singular. If the mapping from tags to elevated types
used by the analysis component is configurable, the researcher can introduce new elevated types
NN and NP and customize the mapping. By deriving the new elevated types from the existing
N type, this change is even fully compatible with the previous mapping, because any UIMA will
automatically find and return the annotations of the type NN and NP when a search for the
more general type N is performed. Also, the original tags continue to be preserved in the label
feature (pos). As a consequence, most analysis components which do not make use of the new,
fine-grained distinction will continue to work just as before the change.

Discussion
When a new type bearing a label is designed, it needs to be considered which of the ap-

proaches should be used to model the label. If the type system is meant primarily for automatic
processing, the primitive label should be the default choice.

The use of unique labels may appear attractive because it avoids the duplication of infor-
mation. Currently, only U-Compare uses this approach. Unless the set of labels is previously

118 5 Flexibility



known, maintaining unique labels requires extra overhead, e.g. when a new label is created, an
analysis component needs to check if a unique label FS already exists and can be reused or if a
new one needs to be created, likewise when a label is changed or removed. If the U-Compare
type system is used with analysis components or annotation editors that do not support this
bookkeeping, the approach most likely degrades to a non-unique labels. However, editing a
document annotated with unique labels in an annotation editor may be problematic, because
if the user changes the label associated with one annotation, the change also affects all other
annotations associated with that label. Given that unique labels are uncommon, this is likely to
be contrary to the user’s expectation of a local change affecting only one annotation. Depending
on the user interface provided by the annotation editor, the user may not even be able to see a
distinction between a unique label and the non-unique label.

Non-unique label annotations, like primitive labels, incur a massive duplication of informa-
tion, but are easier to handle than unique labels. This is in particular true when additional
per-label information, such as an id or a confidence score need to be maintained. They can also
serve as extension points for users who wish to add new features or to set up elevated types de-
rived from the label annotation type. However, extra care also needs to be taken to remove the
label annotations when the labeled annotations are removed. E.g. stopwords may be removed
from text simply by deleting the associated Token annotations. In this case, all label annotations
(e.g. lemma, stem, part-of-speech tag) should also be deleted.

Most of the examined type systems combine elevated types with label annotations. If analysis
components are implemented in such a way that the mapping of tags to elevated types is cus-
tomizable, this approach offers great flexibility to the user. The output of analysis components
can be customized without changing the principle type system design, such that the change
can remain oblique to any analysis components that are unaware of it. These components can
continue to work as before.

Some annotation tools, such as the UIMA Annotation Editor [13], are unable to visualize
annotations differently based on feature values, but only based on their type. Thus, elevated
types have the additional benefit of being visually distinguishable in such tools. However, we
consider the ability to visualize annotations differently based on their feature values primarily
a requirement for the tools. It should not strongly influence the type system design.

Finally, elevated types can help to abbreviate the code for analysis engines, because UIMA
and uimaFIT primarily access annotations by their types. However, we see some room for
improvement of the APIs and the scripting language to allow more concise code even in the
absence of elevated types. E.g. uimaFIT could provide a fluent-style API [89] to apply additional
filter predicates on its annotation selection methods. We already discussed such an approach in
the uimaFIT development team.6

At the present time, we consider elevated types a good choice for commonly used labels, such
as part-of-speech tags, syntactic categories, or dependency relations. The label values should
be a closed set, of preferably coarse grained categories that can apply for multiple domains or
languages.

5.1.3.4 Layer patterns

Layers are a way of organizing annotations. They are very similar to the annotation sets, but
have a different focus. In a set, the members of the set share common features, which are
moved to the set annotation instead of being repeated for every set member. A layer, in turn,
is used to group annotations from the same source (e.g. produced by a particular analysis
component) or related to the same linguistic layer (e.g. part-of-speech tagging, constituency

6 https://code.google.com/p/uimafit/issues/detail?id=65 (Last accessed: 2013-12-11)

5.1 Annotation type systems 119

https://code.google.com/p/uimafit/issues/detail?id=65


structure, dependency structure, etc.). However, an annotation layer is usually not equivalent to
a linguistic layer. For example, the linguistic layer syntax can be encoded in multiple annotation
layers, e.g constituency structure and dependency structure.

Background
Historically, terms like multi-layer annotation, multi-level annotation, or multi-tier annotation

came up because it was not normal for analysis tools to support richly annotating corpora. It
was not easily possible to represent certain linguistic annotations with the document-oriented
XML, popular for being human readable, as well as machine readable (cf. [70]). In particular
overlapping segments, crossing edges, and non-projective tree structures have been a concern.
In this context, the introduction of layers was a technical solution to overcome limitations in the
meta model used to represent linguistic annotations in XML and to query them (cf. [215]). The
idea evolved into treating layers not as containers for annotations at different linguistic levels,
but rather as general containers for annotations. Related to the linguistic search engine ANNIS,
Zeldes et al. [233] specifically contrast this generic definition of layers to the linguistically
motivated layer idea:

By multi-layer we mean that the same primary datum may be annotated independently
with (i) annotations of different types (spans, DAGs with labeled edges and arbitrary
pointing relations between terminals or non-terminals), and (ii) annotation structures
that possibly overlap and/or conflict hierarchically. While the term multi-layer itself
only implies several types of annotation, such as part-of-speech tagging or lemmatiza-
tion [...], we use this term to refer more specifically to annotations that may be created
independently of each other, annotating the same phenomenon from different points of
view, or different phenomena altogether.

Explicit layers
The U-Compare framework apparently builds upon the idea of layers as generic containers

for annotations. The framework allows comparing the output produced by different analysis
components of the same type, e.g. different part-of-speech taggers. It relies on a special facility
to group and isolate the data produced by each component from each other within the CAS.
This is implemented as a set of annotation types (e.g. AnnotationGroup) combined with logic
which allow managing these groups, e.g. extract and copy them to another CAS (cf. [129]).
This is very similar to the concept of annotation layers. It is also a case where the layer is
made explicit using dedicated annotation types and FSes, which explicitly reference all the
annotations belonging to the layer.

This concept of modeling layers explicitly within the CAS using dedicated annotation types is
unique to U-Compare. The other examined type systems do not provide similar mechanisms.

Implicit layers
The other examined annotation type systems do not offer explicit layers. Returning to the

linguistic motivation of layers, however, the types themselves can be seen as layers. E.g. the
Constituent type used to model parse trees in the DKPro Core type system could be seen as
defining a constituency layer.

One could define a layer as the set of annotations of a particular type and its subtypes.
It is possible, however, for the types related to a layer not to have a common supertype.
For example, in the DKPro Core type system, the types CoreferenceChain and CoreferenceLink
would make up an implicit coreference layer, but their common supertype is a generic base
type for annotations. All other annotations also are derived from this type, so it is not a
suitable basis for defining a layer. However, both types are defined in the same namespace

120 5 Flexibility



(de.tudarmstadt.ukp.dkpro.core.api.coref.type), which could be another information used to de-
fine a layer implicitly.

But is it useful at all to define layers implicitly in terms of interacting annotation types? In
the context of analysis tools, the visualization of analysis results, or search, it can be convenient
for the user to operate in terms of these implicit layers. Consider a richly annotated document.
Displaying it in an annotation editor can easily overload the visual appearance of the user
interface (cf. [232]). It helps if the user can selectively hide or show certain layers of annotation,
e.g. the constituency structure or coreference chains without having to individually hide each
annotation type belonging to that layer

Discussion
Layers are a method of introducing an additional means of organizing the annotation data.

UIMA has a similar, but not equal concept called views. The CAS is not limited to one primary
data object, but can accommodate multiple parallel primary data objects, one per view, each
with their own FSes. It is possible for an FS in one view to reference an FS in another view.
Layers are orthogonal to views, as a single view can contain multiple explicit or implicit layers
and these layers can include annotations in multiple views.

Views are a well-supported mechanism in UIMA, in the sense that analysis components can
either be aware or not aware of their existence and both cases can be handled conveniently by
the UIMA framework. When the analysis workflow is assembled, the component unaware of
views can be mapped to a particular view on which it should operate. Components that are
aware of views can access as necessary, e.g. to perform a comparative analysis.

Explicit layers are a unique feature of the U-Compare framework. Fortunately, U-Compare is
implemented in such a way, that individual analysis components do not need to be aware of the
layers, as these are handled at a different level, e.g. by the workflow controller.

Implicit layers are a matter of convention and, unlike views and explicit layers, they do not
require specific support from the processing framework or analysis components. We consider
the treatment of the namespace as a hierarchy of implicit layers as the best approach. Tools
that visualize annotations can easily provide a hierarchical type navigator to allow showing or
hiding all types in a namespace.

To summarize, we can say that implicit, as well as explicit layers are useful concepts. Implicit
layers are easier to handle if all annotation types belonging to a conceptual layer reside within
a common namespace. However, this entails that the namespace structure must be carefully
planned when designing a type system. Unless layers are an integral part of the processing
framework being employed, most analysis components should not be made aware of layers. An
exception may be components which perform comparison operations between layers, e.g. to
calculate inter-annotator agreement in cases where each explicit layer represents the annota-
tions from one annotator. The use of views should be considered as an alternative to explicit
layers, because they are directly supported by the UIMA framework.

5.1.4 Analysis

Initially, we aimed to provide guidelines and best practices for the design of type systems,
to evaluate the potential for a common type system that can be used by multiple component
collections, and to determine if type systems are sufficiently expressive to be used in manual an-
notation tasks. Along with the design pattern analysis, we have provided guidelines supporting
type system designer in their design decisions (Section 5.1.3). In this section, we address the
remaining two points: the potential for a common type system and whether the type system is
sufficiently expressive.

5.1 Annotation type systems 121



5.1.4.1 Towards a common type system

Even though the examined type systems are all meant for linguistic annotations at levels such
as segmentation, part-of-speech tagging, constituency parsing, etc., there are considerable dif-
ferences. It would not be sufficient to simply rename types and features in order to convert
analysis results from one type system to another, e.g. in order to use components from different
collections in the same workflow.

To illustrate the differences between the type systems, let us take a look at two very simple
types appearing in all of them: Token and Sentence. Although it may appear that these are trivial
types, we will find that there are sufficient differences between the type systems, to make them
fundamentally incompatible, even on this basic level.

Sentence
The annotation of sentences is one of the most basic and simple annotations. However, we

can already note differences between the type system here (Figure 5.2). In DKPro Core, the
sentence does not bear any special features. As any other annotation, it bears a start and end
position.

The situation is similar in ClearTK, U-Compare, and JCoRe. However, these type systems
base most of their annotations on generic types, such as ScoredAnnotation, J-Annotation7, and
BaseAnnotation, which mainly allow recording confidence information. In ClearTK, the confi-
dence score is stored in a numeric feature score (type: double), while in JCoRe, it is stored in a
feature called confidence (type: String). In U-Compare, the confidence is accessible as confidence
(type: float) via the complex feature metadata.

On top of this, there are even more features. E.g. in U-Compare, many annotations – in-
cluding Sentence – inherit from the DiscontinousAnnotation which allows the annotation to have
fragments of arbitrary annotation types again. In JCoRe, the additional features id and com-
ponentId are present, which can be used to indicate which analysis component has created the
sentence and to assign an identifier to the sentence.

These additional features range from rather questionable to useful. E.g. it can be useful to
maintain an identifier information when annotations are ingested from a corpus format which
contains such identifiers. It may be reasonable to maintain a confidence score on annotations,
but it raises the question if that entails that an analysis component should actually produce mul-
tiple annotations with different confidence scores and how other components in the workflow
should react to this - in particular when the respective annotation is as basic as a sentence. We
have not yet come across any use-case that would require discontinuous sentence annotations.
Even if a sentence was interrupted by some other element, e.g. a footnote, there should be
alternative ways of handling this without forcing the analysis components to specifically handle
discontinuous sentences (cf. [71]).

If the analysis components in the respective component collections actually make use of all
these features, transforming data between the type systems requires complex structural opera-
tions, and in some cases it incurs a loss of information.

Token
The type Token, like Sentence, is very basic. In its simplest form, it would also just be marking

a span of text without any additional features. However, none of the examined type systems
offer this most basic concept of a token. The simplest variant is provided by ClearTK. Here, the
token has three primitive string label features for the part-of-speech tag (pos), the stem, and the
lemma. However, this simplicity is offset by the fact that Token inherits from ScoredAnnotation,

7 This type is actually called Annotation (de.julielab.jules.types.Annotation), but to make it obvious that it is not
the same as the built-in UIMA Annotation type (uima.tcas.Annotation), we call it J-Annotation here.

122 5 Flexibility



Table 5.2: Comparison of the Sentence annotation type

DKPro Core ClearTK U-Compare JCoRe cTAKES
1.5.0 2.0.0-SNAPSHOT 2.2 2.6.8 3.0.0

Supertypes Annotation Annotation Annotation Annotation Annotation
DiscontinuousAnnotation

ScoredAnnotation BaseAnnotation J-Annotation
SyntacticAnnotation

Type Sentence Sentence Sentence Sentence Sentence
Features - - - - sentenceNumber

- - - - segmentId

Features inherited from supertypes
SyntacticAnnotation - - - - -
BaseAnnotation - - metadata -> - -
DiscontinuousAnnotation - - fragments[] - -
ScoredAnnotation - score - - -
J-Annotation - - - confidence -

- - - componentId -
- - - id -

Annotation begin begin begin begin begin
end end end end end

which adds the confidence feature score via inheritance. The DKPro Core type system also offers
part-of-speech tag (posTag), stem, and lemma features, but consistently uses label annotations
instead of primitive labels. Some type systems even allow assigning multiple labels of the same
kind to a token. For example, cTAKES allows a token to bear multiple lemmata, while JCoRe
allows a token to bear multiple part-of-speech tags. In U-Compare, there are even multiple
possibilities to store the part-of-speech tag. One is the posString feature, another is using a
unique label referred via the pos feature. There are even multiple kinds of unique labels that
can be used: the UnknownPOS and a whole hierarchy of elevated label types.

Summary

Given that there are already great differences between the different type systems or even
the most basic of annotation types, we shall not examine further types in detail at this point.
As we have seen, the type systems range from being relatively simple, using a relatively flat
inheritance hierarchy and few features (e.g. DKPro Core and ClearTK), to quite complex, using
a deep inheritance hierarchy introducing many features (e.g. U-Compare and JCoRe). What can
we say about the possibility of creating a common type system for all the component collections
or about making analysis components configurable in order to work with different type systems?

An analysis component is often a wrapper around an existing analysis tool, functioning as an
adapter between the type system used by the analysis workflow and the data structures used by
the analysis tool. It is possible, to implement this wrapper in such a way that the names of types
and features are configurable. This is only feasible if structural assumptions can be made about
the type system, e.g. that the type system uses exclusively primitive labels. However, looking at
the type systems examined here, we note that such an assumption would not be valid for most
of them. If the type systems are more complex, such as allowing for multiple part-of-speech
tags or using elevated types, making analysis components configurable to handle such type
systems is not trivial. The primary functionality of the wrapper is the adaption between the
wrapped analysis tool and the type system, and extracting this would mean that major portions
of the wrapper code into configurable strategies (cf. Section 3.2). Almost no functionality
would remain in the wrapper itself. We wrapped numerous analysis tools for the DKPro Core
collection (Section 5.2) and found that it is in most cases simpler to implement a new wrapper

5.1 Annotation type systems 123



Table 5.3: Comparison of the Token annotation type

DKPro Core ClearTK U-Compare JCoRe cTAKES
1.5.0 2.0.0-SNAPSHOT 2.2 2.6.8 3.0.0

Supertypes Annotation Annotation Annotation Annotation Annotation
DiscontinuousAnnotation

ScoredAnnotation BaseAnnotation J-Annotation
SyntacticAnnotation
Token
POSToken

Type Token Token RichToken Token BaseToken
Features posTag.posValue pos posString (POSToken) posTag[].value partOfSpeech

stem.value stem - stemmedForm -
lemma.value lemma base lemma lemmaEntries[].key
- - - - normalizedForm
- - - - tokenNumber

Subtypes JapaneseToken - - - ContractionToken
NewlineToken
NumToken
PunctuationToken
SymbolToken
WordToken

Features inherited from supertypes
POSToken - - pos-> - -
SyntacticAnnotation - - - - -
BaseAnnotation - - metadata -> - -
DiscontinuousAnnotation - - fragments[] - -
ScoredAnnotation - score - - -
J-Annotation - - - confidence -

- - - componentId -
- - - id -

Annotation begin begin begin begin begin
end end end end end

when a different type system is used than to make a wrapper parametrizable with respect to the
type system.

From our analysis, we see a clear potential for DKPro Core and ClearTK to adopt common
types, such as a common representation for tokens, sentences. We also see potential for a
common type system to represent syntactic parse trees, although these were not discussed here.
At the level of Token and Sentence, a few points remain that need to be discussed:

• Is a confidence score necessary at the token and sentence level? (the ClearTK feature score
is not present in DKPro Core)

• Should primitive labels (ClearTK) be used, or label annotations (DKPro Core stem and
lemma features) and elevated types (DKPro Core posTag feature)?

Types used for further concepts, such as dependency relations, coreference, or semantic role
labelling require further analysis and discussion, as the level of detail between ClearTK and
DKPro Core is very different.

5.1.4.2 Manual analysis

The information contained in the definition of type systems does not fully describe how analysis
components or annotation editors are allowed to interact with the type system. The type system
is part of the API of an analysis component. The component makes certain assumptions about
how the types from the type system are used.

Consider, for example, dependency relations. These are relations between two tokens, a de-
pendent and a governor. Consequently, in the examined type systems, dependencies are modeled

124 5 Flexibility



as some kind of relation type between annotations of the type Token. However, there is usually
an additional rule not explicated by the type system: there cannot be two dependency relations
with the same dependent. For example, the CoNLL-X shared task on multi-lingual dependency
parsing [35] used a tab-separated file format (Listing 5.3) to represent dependency annotated
sentences in which each dependent token (second column, FORM) could have one governor
(seventh column, HEAD). An analysis component writing results to a file in this format will
assume that this rule is observed. Similarly, a component rendering the dependency structure
as a tree will assume this rule is observed. This means, the code of such components will be
written in such way that it produces bad output or crashes if this rule is not observed.

Listing 5.3: Sentence with dependency annotations represented in the CONLL-X format
1 ID FORM LEMMA CPOSTAG POSTAG FEATS HEAD DEPREL PHEAD PDEPREL
2 1 The the DT DT _ 4 det _ _
3 2 quick quick JJ JJ _ 4 amod _ _
4 3 brown brown JJ JJ _ 4 amod _ _
5 4 fox fox NN NN _ 5 nsubj _ _
6 5 jumps jump VBZ VBZ _ _ _ _ _
7 6 over over IN IN _ 5 prep _ _
8 7 the the DT DT _ 9 det _ _
9 8 lazy lazy JJ JJ _ 9 amod _ _

10 9 dog dog NN NN _ 6 pobj _ _
11 10 . . . . _ _ _ _ _

Since, in practice, most, if not all, analysis components producing dependency relation an-
notations observe this rule, users working with these components and analysis components
consuming these annotations can well rely on it. However, if annotations are manually created
with an annotation editor, a user could easily, even unintentionally, violate this rule. At least at
the level of UIMA type systems, there is currently no way to specify such additional constraints
in a machine readable manner. Unfortunately, such constraints are often not even documented
for human consumption in the documentation of the respective type systems.

Apart from UIMA type systems, other technologies, such as the combination of XML [225],
XML Schema [226], and Schematron [120], allow the definition of complex constraints which
could cover such rules and which XML-based analysis tools could employ to ensure that human
annotators do not create any technically possible annotations, but also observe higher-level rules
and constraints regarding the interaction of different annotations. GATE permits the definition
of annotation schemes using XML Schema, which is comparable to the UIMA type systems,
but does not support higher-level rules which would require Schematron. Future work should
examine if these technologies can be adapted to non-XML meta models, such as the UIMA CAS.

For the WebAnno project, we plan to permit the user adding custom annotation types (or
rather layers, see below). When a custom type is created, a structural design needs to be chosen,
such as span, relation, or chain. For each of these, we plan to provide constraints, such as span
cannot cross sentence boundary, span boundaries must correspond to token boundaries, or relation
endpoint must be unique. Given that it is currently not possible to express such constraints in
terms of the type system, and given that there is currently no alternative constraint checking
technology which is compatible with the UIMA CAS, we plan to hardcode these constraints.
However, the inventory of constrains that we plan to implement in WebAnno can later serve as
a point of reference to define requirements towards a generic system for defining and checking
constraints.

5.1.5 Summary

In this section, we have examined type systems from five different analysis components for
the UIMA processing framework. We have identified several patterns in the design of these
type systems, have discussed their benefits and drawbacks, and have provided guidelines when

5.1 Annotation type systems 125



to apply them. In particular, we have discussed implications of individual patterns regarding
extensibility and customizability.

Additionally, we have compared the type systems directly to each other by examining the
representation of tokens and sentences in detail. We have come to the conclusion that there
are significant differences in the design of most of the type systems, which is a major problem
when aiming at the design of a common type system used by multiple component collections.
The DKPro Core and ClearTK type systems currently appear to be the best candidates to start
discussing about a common type system, because compared with the others their type systems
are the most similar starting at the lower level annotations, e.g. for sentences and tokens.

We hope that our analysis provides valuable information for type system designers and anal-
ysis tool developers. For example, our analysis provides developers of annotation editors with a
set of patterns to expect in type systems. They can then offer user interfaces tailored specifically
to these common patterns and offer a better interoperability with type systems based on these
designs.

In the future, we plan to further examine the feasibility of consolidating different annotation
types systems, in particular those of the different UIMA-based analysis component collections.
The present work can serve as a basis for informed discussions with the providers of these type
systems.

126 5 Flexibility



5.2 Component collection

In this section, we present a revised and extended edition of our DKPro Core component collec-
tion. It uses our techniques to improve usability (cf. Chapter 3) and provides researchers with
controllable, portable components as the basis for reproducible research (cf. Chapter 4). We
compare DKPro Core to other component collections and discuss the kinds of component collec-
tions and their underlying motivations. Finally, we analyze to what degree analysis components
are interchangeable in the workflow, their conceptual interoperability, and we make a note of
the aspects of provenance and attribution.

Processing frameworks pave the way for interoperable and interchangeable analysis compo-
nents. However, most state-of-the-art language analysis tools are provided by their authors as
standalone analysis tools. The DKPro Core collection of analysis components integrates many
of these state-of-the-art tools with the Apache UIMA [10] framework. By integrating multiple
alternative tools for the same analysis tasks, e.g. different implementations of part-of-speech
taggers or parsers, it provides a rich choice and the possibility to select the tools best suited for
the task at hand. The DKPro Core collection provides a better coverage of different languages
or domains than the single tools alone, which tend to focus on particular languages or domains.

In our overall scenario, this addresses the following issues (Figure 5.11):

1 No comprehensive set of interoperable automatic analysis components is available.
DKPro Core provides analysis assemblers with a comprehensive broad-coverage collection
of interoperable analysis components. Analysis developers benefit from the DKPro Core
API when building new interoperable components and can rely on convenient concepts,
such as the mechanism for resource loading. Analysis deployers benefit from the focus on
portability in the DKPro Core collection, as it does not rely on web services for processing.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

No comprehensive  set 
of interoperable 

analysis components is 
available.

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Initial exploration, annotation 
study, and definition of 

categories

1

Figure 5.11: DKPro Core is a comprehensive broad-coverage collection of interoperable and
portable analysis component.

5.2 Component collection 127



5.2.1 Motivation

When thinking about a collection of analysis components, we primarily expect two requirements
to be fulfilled. It should provide us with a choice between different components and models, and
it should be more than the mere sum of its parts by providing an increased coverage of different
languages and domains, new components stepping in where others fall short. To reach this
goal, we expect the components in a collection to be interoperable and interchangeable.

Choice

Minimally, an analysis component collection would provide a small set of tools, wrapped for
interoperability. However, what we would expect from any project claiming to provide a real
collection, is choice. Choice among different approaches and algorithms, some of which may
be more suited to a task at hand than others. As a simple example, a named entity recognizer
based on statistical methods can often be supported by an additional dictionary-based approach.
The dictionary-based approach tends to have a high quality (unless the entities are ambiguous),
while the statistical approach can help to tackle out-of-dictionary cases. Other reasons to value
a choice may be speed, memory requirements, quality, or the license of a particular analysis
component or its resources.

Coverage

The ability to replace one component with another one in an analysis workflow enables the
user to easily tune the workflow to another domain or language. E.g. a parser with a model
trained for the English language can be substituted for another one which comes with a model
for German, or one trained on newspaper data can be replaced by another one trained on data
from the biomedical domain.

Interoperability

Processing frameworks come with the promise of enabling the interoperability between dif-
ferent analysis tools, but they do not actually provide this interoperability. The interoperability
is provided by a common conceptualization of the data exchanged between the analysis compo-
nents, realized as an annotation type system, as well as wrappers around the tools which adapt
the data formats used by the individual tools to the formats used by the processing framework.
It is the purpose of a component collection to provide such wrappers. Given the lack of a widely
used common annotation type system (cf. Section 5.1), it is currently also the purpose of a
component collection to provide an annotation type system .

Interchangeability

While interoperability already entails that components should be interchangeable to a cer-
tain degree, there are additional expectations, which warrant treating interchangeability as a
separate topic. We consider an analysis component to be interchangeable with another one if
it consumes the same input and produces comparable and compatible output. It should also
accept largely the same set of parameters and generally exhibit the same behavior. From the
perspective of the user, it is desirable that the change of a component is a local operation. I.e.
the change should not require further, potentially extensive changes throughout the whole anal-
ysis workflow. It should also be a minimal change. This requires a high degree of homogeneity
between the components.

128 5 Flexibility



5.2.2 State of the art

In this section, we examine several analysis component collections and group them into three
general categories: single vendor collections, special purpose collections, and broad-coverage collec-
tions. We also briefly mention the integration of machine learning frameworks with processing
frameworks.

While interoperability is an inherent trait in all component collections, we find that not all
component collections meet our requirements regarding choice, coverage, interchangeability.
However, this is not due to the collections being of bad quality, but rather because they have
been built with a different objective. We find that our requirements towards choice, coverage,
and interchangeability are best met by what we describe as broad-coverage collections.

5.2.2.1 Single vendor collections

A single vendor collection provides a set of analysis components for different analysis tasks. For
each task, typically only a single analysis component is provided. In order to make the collection
useful for a larger community, support for multiple input and output formats is a convenient
extra. However, if the collection is sufficiently comprehensive, support for multiple formats
may even be unnecessary, because users can comfortably work fully within the ecosystem of the
collection. This may cause a locked-in situation, in which it becomes difficult for a user to switch
to a different collection, because data cannot be easily used with another collection.

Such a collection does typically not rely on an independent processing framework for inter-
operability, but may include a proprietary interoperability layer for use within the collection.
Other types of collections, e.g. special purpose collections or broad-coverage collections, tend
to integrate select components or all components from single vendor collections and make them
interoperable with components form other vendors.

There are many single vendor collections, such as Apache OpenNLP [9], ClearNLP [48],
FreeLing [91], GENIATagger [100], Mate-Tools [148], LanguageTool [135], LingPipe [140] and
Stanford CoreNLP [200]. For the sake of brevity, we chose two of them and describe them in
more detail.

Stanford CoreNLP
Stanford CoreNLP [200] is a collection of most of the analysis tools provided by the Stanford

Natural Language Processing Group,8 which previously had only been available as separate
tools. These include in particular a part-of-speech tagger [219], parser [131; 132; 197], named
entity recognizer [86], a coreference resolution system [137], and a sentiment analysis system
[198], among other auxiliary tools. The Stanford tools are open-source, popular, and enjoy an
excellent reputation.

CoreNLP does not rely on any existing processing framework like GATE or UIMA, but provides
its own, lightweight processing framework. CoreNLP does not support all the languages which
are supported by the individual Stanford tools. It focusses on English. However, in many cases,
it is possible to obtain models for other languages from the distribution of the individual tools
and use them with their respective counterparts within CoreNLP. Users can implement custom
components for CoreNLP. On the other hand, CoreNLP has been integrated into several analysis
component collections, e.g. ClearTK and DKPro Core.

8 http://nlp.stanford.edu (Last accessed: 2013-10-16)

5.2 Component collection 129

http://nlp.stanford.edu


Apache OpenNLP
Apache OpenNLP [9] is another collection of analysis tools. It covers similar analysis types

as CoreNLP but, its analysis is arguably less sophisticated. Yet, publicly available models for
OpenNLP cover more and largely different languages than CoreNLP, e.g. Danish, Dutch, or
Portuguese. However, not for every type of analysis are there models available for all these
languages. English remains the best supported language in OpenNLP.

OpenNLP itself does not provide any kind of processing framework to build analysis work-
flows using its tools. However, the collection provides a set of wrappers for the UIMA frame-
work. These wrappers are meant to be configurable to work with different type systems. Un-
fortunately, they expect a specific type system design relying on primitive labels, which makes
them incompatible with type systems relying of label annotations (cf. Section 5.1.3.3), such as
DKPro Core.

5.2.2.2 Special purpose collections

A collection of components may be compiled for a special purpose. The components do not
necessarily come from the same vendor, but they are carefully chosen and tuned for a specific
goal. E.g. resources used by the analysis components are targeted at a specific language or
domain. It may not be necessary to support multiple different input format or output formats
for the analyzed data.

Apache cTAKES
The clinical Text Analysis and Knowledge Extraction System (cTAKES) [190] provides such a

special purpose component collection for the processing of medical records based on Apache
UIMA [10]. It consists of a collection of analysis components specifically targeted at the appli-
cation domain, e.g. annotation of drugs, finding mentions of side effects of drugs, etc. Tools for
linguistic preprocessing are collected from different vendors and wrapped by cTAKES analysis
components. Typically, only one tool is integrated for each processing task, as the goal of the
project is not variety, but domain-specific analysis of high quality. Additionally, domain-specific
models are provided for these third-party tools, e.g. part-of-speech tagging models trained on
medical data. Components for higher-level analysis are provided by the project itself.

5.2.2.3 Broad-coverage collections

A component collection can be built with the goal of integrating a broad set of tools from
different vendors into a common framework. This can increase the coverage, e.g. as different
vendors focus on a range of domains or languages. For the convenience of the user, components
used for the same analysis task should also be usable in the same way, in particular parameters
should have the same names and accept similar settings.

ClearTK
The ClearTK [172] analysis component collection integrates third-party tools for various

linguistic analysis tasks based on Apache UIMA [10]. The focus of ClearTK is to provide a
component collection, but rather to offer a machine learning toolkit for building new kinds
of language analysis (see Section 5.2.2.4). To prepare the data with annotations which can be
used by the machine learning toolkit to generate features, ClearTK also includes several analysis
components based on different third-party tools, e.g. Apache OpenNLP [9], ClearNLP [48], and
Stanford CoreNLP [200]. The selection of these components appears to be based on the project
requirements of the ClearTK developers, not on the principled goal to provide a broad choice.

130 5 Flexibility



ClearTK additionally includes an original component for the identification of events, times, and
temporal relations [22].

JCoRe
The JCoRe collection of UIMA components [109] is relatively small and therefore does not

provide much choice. It consists of a set of components centered around the JCoRe type system
[38]. Some of these components wrap tools from third parties, such as Apache OpenNLP [9],
LingPipe [140], or the MSTParser [163]. Other components are original creations, e.g. a
named entity tagger. While most other collections are released and versioned en bloc, the JCoRe
components are versioned and released individually. There is no full release or overall version
for the whole collection.

U-Compare
The U-Compare collection of UIMA components [129] provides many components and con-

siderable choice, but it relies on web services for many of its components. Therefore, it is mostly
rather a virtual collection comprised of some portable software components and some services,
rather than a collection of portable analysis components. U-Compare wraps tools for part-of-
speech tagging, lemmatization, chunking, parsing, named entity recognition, and several other
kinds of analysis from various third-party software packages, such as OpenNLP, FreeLing [91],
and GENIATagger [100].

Tesla
Tesla [194] aims to integrate a broad-coverage collection and to provide the user with conve-

nient access to these components through a graphical user interface. While other frameworks
mainly define the interface between analysis components in terms of the annotation type sys-
tem, Tesla also considers the behavior of a component and its parameters a part of the interface
specification. A component interface specification is called role in Tesla and is realized via a
Java interface that components implement. Roles can be organized in a hierarchy using Java’s
inheritance mechanism. Tesla provides a built-in set of such roles which is called the Tesla Role
System (TRS). In practice, however, it appears that data types are not shared between roles
and that every role is tied to one particular data type which may, however, be the root of a type
hierarchy (e.g. the type hierarchy for part-of-speech tags). Thus, there are more data types than
roles defined in the TRS. However, Tesla integrates only a few tools, mainly those required for
the analysis of the allegedly enciphered Voynich manuscripts [112]. So, even though the design
of Tesla aims to be generic to integrate many tools, it could be considered a special purpose
collection.

GATE
GATE [53], similar to Tesla, also aims to integrate a broad-coverage collection and allows the

user to work with it via a graphical user interface. The focus of GATE, however, is not primarily
on making existing analysis tools interoperable, but rather to integrate them into the GATE
system as a source for automatically generated annotations which then can be used by JAPE
scripts, which can be manually corrected by human users, or which can be used as a starting
point for human annotators to add higher-level annotations.

5.2.2.4 Machine learning toolkits

While most collections are comprised of ready-to-use analysis components, others focus on
offering building blocks for the creation of analysis components. These range from feature
extractors to the integration of various machine learning methods from which particular analysis

5.2 Component collection 131



components can be built. Any pre-built components shipping in such a collection may only serve
as examples how to build others.

The ClearTK collection has a strong focus on machine learning, providing special support
for feature extraction and for different machine learning frameworks in its cleartk-ml modules
[172]. Based on these, custom analysis components for all kinds of tasks can be implemented,
provided that annotated data exists from which the machine learning algorithms can be trained.
ClearTK also provides a framework for the evaluation and cross-validation of such custom anal-
ysis components.

Toolkits like ClearTK serve as an intermediate layer between analysis components and ma-
chine learning libraries, such as Weka [110], Mallet [150], etc.

5.2.3 Contribution: A broad coverage collection of interoperable and interchangeable
components

In this section, we present the DKPro Core collection of analysis components, which was re-
designed and extended as part of the present thesis. It is a broad-coverage collection based on
the Apache UIMA framework. In DKPro Core, we integrated many, mainly third-party, analysis
tools. To our knowledge, DKPro Core is the component collection integrating the largest num-
ber of portable analysis components at the time of writing. This is illustrated by Table 5.4. For
the sake of brevity, the table covers only software packages covering multiple analysis steps and
omits stand-aloonne analysis tools, such as individual parsers, taggers, etc.

The DKPro Core component collection has already existed prior to the present work
(cf. [107]). Yet, the present thesis represents the most detailed treatise and analysis of DKPro
Core at the time of writing. It highlights the novel concepts developed within this thesis. The
author has acted as a lead developer on the DKPro Core project since 2009. In that function, the
collection was extended with many new components (e.g. [71]), and cross-cutting concerns,
such as resource loading and the introduction of naming conventions for parameters have been
addressed to improve the user experience. Additionally, DKPro Core has been turned from an
internal, monolithic project into a highly modular and increasingly popular open-source project.
For example, EXCITEMENT9, an open platform for textual entailment, has adopted DKPro Core
as part of its preprocessing infrastructure (cf. [166]).

Our experience in building this collection allows us to highlight aspects beyond technical
interoperability, that have to our knowledge not been treated sufficiently, e.g. regarding inter-
changeability and attribution. Beyond that, there is also the problem of conceptual interoper-
ability of tag sets and annotation guidelines, which has already been addressed by researchers
working on corpora, but has, to our knowledge, not yet received much attention in the context
of processing frameworks and component collections.

5.2.3.1 Goal

DKPro Core is more than just a simple collection of interoperable analysis components. It was
built with a focus on improving the productivity of researchers working with automatic language
analysis. Our goal is that researchers should be able to focus on their actual research questions,
not on the plumbing together of heterogenous technologies. The collection aims to attain this
goal by following these principles:

• Choice – For most analysis steps, we have integrated multiple different tools from different
vendors. DKPro Core 1.5.0 covers analysis tasks from coreference resolution, chunking,

9 Exploring Customer Interactions through Textual EntailMENT http://www.excitement-project.eu
(Last accessed: 2013-10-16)

132 5 Flexibility

http://www.excitement-project.eu


Table 5.4: Support for analysis tool across component collections

DKPro Core ClearTK cTAKES U-Compare GATE Tesla
1.5.0 2.0.0-SNAPSHOT 3.0.0 2.2 7.1 1.0.0.201105090947

Apache OpenNLP [9] yes yes yes yes yes -
ClearNLP [48] yes yes yes - - -
FreeLing [91] - - - yes - -
GENIATagger [100] - - - yes yes -
Mate-Tools [148] yes - - - - -
LanguageTool [135] yes - - - - -
LingPipe [140] - - - - yes yes
Stanford CoreNLP [200] yes yes - - yes yes

Note: An entry stating yes indicates that at least one of the analysis steps provided by the software package is
integrated, not that all steps are integrated. However, in most cases many or all the provided steps are integrated.
This table lists only major software packages providing multiple analysis steps (3+). All mentioned component
collections additionally support various tools providing only one or two analysis steps. Tools which are integrated
via web services are not listed, because this is not a portable integration (cf. Section 4.1). This affects mainly
U-Compare which integrates a significant number of proprietary analysis tools via web services.

decompounding, language identification, lemmatization, morphological analysis, named
entity recognition, syntactic parsing, dependency parsing, part-of-speech tagging, seg-
mentation, semantic role labeling, spell checking, to stemming. For each task, up to seven
different tools have been integrated. Additionally, 19 different data formats are supported.

• Coverage – For many of the analysis components, multiple sets of resources for different
languages have been packaged and integrated. DKPro Core 1.5.0 integrates 94 models in
15 languages.

• Interchangeability – We set up a naming convention for component parameters, and
where feasible we take care that they accept the same settings across different com-
ponents (cf. Section 5.2.3.5). For example, the parameters to manually select a model
(cf. Section 3.1.3.1) or to override the mappings for elevated types (cf. Section 5.1.3.3)
have the same names regardless of the component. So a user substituting one compo-
nent for another does not have to learn a completely new set of parameters. At times,
even only changing the name of the implementation is sufficient, with the parameters and
parameter values remaining the same.

• Portability – Analysis components are downloadable and run on different system plat-
forms, either by means of the Java virtual machine, or by providing binaries compiled for
different operating systems. DKPro Core integrates with Maven infrastructure in order to
provide properly versioned artifacts and deploy these to the user’s system. This is an im-
portant step towards the creation of portable and reproducible workflows (Section 4.1).
The portability is also an important issue because we care for the ability to scale out DKPro
Core workflows to a compute cluster in order to process large amounts of data. To main-
tain maximum control over the processing, NLP web services are explicitly excluded from
DKPro Core. Instead, we address the problems of packaging and automatically deploying
processing components to the user’s computers.

• Usability – Analysis components require only minimal mandatory configuration and many
components require no mandatory configuration at all because based on the processed
data they can automatically determine which resources, e.g. parser or part-of-speech
tagger models, are required (cf. Section 3.1). Many of the DKPro Core components are
also capable of automatically downloading resources at runtime, depending on the data
being processed.

5.2 Component collection 133



DKPro Core

API modules

Input/Output modules Analysis modules

uimaFIT

UIMA

api.io api.segmentation api.syntax api....

io.text

io.conll

io.tei

io...

stanfordnlp

clearnlp

opennlp

...

Resource modules

D
K

Pr
o 

C
or

e 
pr

ox
y

U
ps

tr
ea

m
m

od
el

Figure 5.12: DKPro Core architecture

5.2.3.2 Architecture

The DKPro Core component collection consists of four main parts (Figure 5.12): the API mod-
ules, the input/output modules, the analysis modules, and the resource modules. The collection is
fully based on UIMA and uimaFIT.

API modules
The DKPro Core API modules provide the foundation of the collection. They provide the

DKPro Core type system which forms the interface used by the components to communicate
with each other. Additionally, it provides common functionality which is shared across the
components, such as the automatic resource selection functionality (see Section 3.1). This part
consists of multiple modules which are typically named after a functional area (e.g. api.io,
api.parameter, ...), or a linguistic layer (e.g. api.segmentation, api.syntax, ...).

Input/output modules
The DKPro Core I/O modules contain components that allow reading the data to be processed

into an analysis workflow and to persist the results of a workflow. Each data format supported
by DKPro Core has its own I/O module. The module typically contains two components, one
for reading the format and one for writing it. These components build on the DKPro Core API,
in particular on the IO API module and the annotation types.

Analysis modules
The analysis modules provide wrappers turning mostly third-party analysis tools into UIMA

analysis components. Typically, the modules are named after the particular third-party tool or
software package that they wrap. Each module provides one or more analysis components, one
for each analysis step supported by the wrapped analysis tool. The modules build on the DKPro
Core type system and other functionalities provided by the API modules.

Resource modules
Many analysis components require additional resources, such as models for parsers, part-of-

speech taggers, etc. DKPro Core employs the split resource packaging mechanism introduced

134 5 Flexibility



in Section 3.1. Metadata specific to DKPro Core is maintained in a proxy artifact, while the
framework-independent resources are packaged in an upstream artifact.

5.2.3.3 Type system

The DKPro Core type system has largely existed in the present form before this thesis. Several
additions and enhancements have been made since that time. This section therefore only pro-
vides a high-level overview over the type system. Section 5.1 presents an analysis of the type
system design and comparison to other type systems.

Figure 5.13 gives a conceptual overview of the type system. All types bear various features,
as illustrated for the DocumentMetaData type, which otherwise have been omitted for brevity.

Meta data Segmentation Morphology

Syntax CoreferenceSemantics

Phonetics

DocumentMetaData

String: collectionId
String: documentId
String: documentUri
String: documentBaseUri

Document

TokenHeading

Document

Paragraph

Sentence

StopWord

Document Compound

Split

Compound
Part

Linking
Morpheme

NGram

POS

Stem

Lemma

Morpheme

Constituent

Dependency

Chunk

Coreference
Chain

Coreference
Link

SemanticField

Semantic
Predicate

Semantic
Argument

TagSetDescription

TagDescription

PhoneticTranscription

Named Entity

NamedEntity

Figure 5.13: DKPro Core type system conceptual overview

The DKPro Core type system is designed predominantly using a combination of label annota-
tions and elevated types (cf. Section 5.1). This yields a relatively flat inheritance hierarchy of
three levels for most DKPro Core types (Figure 5.14):

• Structure – The top layer is formed by the built-in UIMA type Annotation which resembles
a segment anchored to the primary data.

• Generic type – The second level is formed by generic label type (e.g. POS, Constituent
or Dependency) which inherits from the UIMA type annotation and which bears a value
feature containing the tag.

• Coarse-grained category – The third level consists of a set of coarse grained elevated
types (e.g. Noun, Verb, etc.). While the second level forms a part of the API specification
between analysis components, the coarse-grained types of the third level are customizable.
Users can their provide own mappings from fine-grained tags to these coarse-grained
elevated types, or even derive a completely new set of coarse grained types from the
generic second-level annotation type and map to those.

5.2 Component collection 135



Annotation

POS
String: posValue

N V ADJ CONJ ...

1) Structure

2) Generic type

3) Coarse-grained category

Figure 5.14: DKPro Core type system inheritance hierarchy example for part-of-speech tags

5.2.3.4 Components

Table 5.5 shows the most important analysis tools integrated into the DKPro Core component
collection and which analysis steps they cover.10 The component collection focuses on language
analysis steps which are sometimes subsumed under the term linguistic preprocessing:

• Segmentation – identification of sentence boundaries and tokens.
• Part-of-speech (POS) tagging – assignment of part-of-speech tags to tokens.
• Stemming – reduction of tokens to a truncated form (stem), typically by removing that

portion of a token which can be subject to inflection.
• Lemmatization – normalization of a token to a base form from a dictionary, typically the

nominative singular for nouns and the infinitive form for verbs.
• Named entity recognition (NER) – identification and classification of noun phrases re-

sembling entities such as organizations, persons, locations, etc.
• Constituency parsing – identification of the constituency structure of sentences.
• Dependency parsing – classification of functional relations between head words within a

sentence.
• Semantic role labelling (SRL) – identification of semantic predicate-argument structures

in sentences.
• Coreference resolution (Coref.) – identification of coreferent expressions in a document.

These steps and the analysis tools we integrated for each step have in common that the data
they consume and produce is comparatively simple and does not require a very elaborate type
system. An area that we currently only start to cover is morphological analysis, which in fact
will require annotation types with more fine-grained features, e.g. for gender, number, case, etc.
and which may require a more in-depth consideration how to normalize this information and
convert it between the different analysis components. The currently integrated analysis steps
largely rely on simple tags or string values, which are passed on verbatim between components.

5.2.3.5 Parameters

We consider an analysis component to be interchangeable with another one if it not only con-
sumes the same input and produces comparable and compatible output, but if it additionally
accepts largely the same set of parameters and generally exhibits the same behavior. The change
of a component should be a local operation and a minimal one that should not require further,
potentially extensive changes throughout the whole analysis workflow.

10 The analysis tools may provide support for additional analysis steps, which have not yet been integrated into
DKPro Core. We limited the overview only to the most important analysis steps. There may also be additional
analysis steps, e.g. chunking or spell checking, which are covered by the tools integrated into DKPro Core.

136 5 Flexibility



Table 5.5: Overview of analysis tools integrated and analysis steps covered by DKPro Core 1.5.0
for the most important analysis steps

Module Ve
rs

io
n

Se
gm

en
ta

tio
n

PO
S

ta
gg

in
g

St
em

m
in

g
Le

m
m

at
iz

at
io

n
N

ER

Co
ns

tit
ue

nc
y

D
ep

en
de

nc
y

SR
L

Co
re

f.

ClearNLP [48] 1.3.1 yes yes - yes - - yes yes -
Stanford CoreNLP [200] 3.2.0 yes yes - yes yes yes yes - yes
GATE [98] 7.1 - yes - yes - - - - -
Apache OpenNLP [9] 1.5.3 yes yes - - yes yes - - -
Mate-Tools [148] 3.5 - yes - yes - - yes - -
LanguageTool [135] 2.2 yes - - (yes) - - - - -
BerkeleyParser [21] r32 - yes - - - yes - - -
MaltParser [144] 1.7.2 - - - - - - yes - -
MeCab [155] 0.993 yes yes - - - - - - -
Morpha [161] 1.0.4 - - yes (yes) - - - - -
MSTParser [163] 0.5.1 - - - - - - yes - -
Snowball Stemmer (Lucene) [196] 3.0.3 - - yes - - - - - -
TreeTagger [220] 3.2 - yes - yes - - - - -

Note: Most of the software packages mentioned above are comprised of more than one analysis tool and possibly
multiple different approaches and algorithms per tool, for each of which publications could be cited. DKPro
Core does not integrate these algorithms individually, but rather integrates the tools. Instead of citing numerous
publications here, we refer to the websites of the individual tools in the bibliography, where the current state of
development and often links to publications can be found.

Additionally, repeating common concepts through the API facilitates learning it. For this rea-
son, there are naming conventions in the DKPro API, for example, for configuration parameters.
Following the principle of least surprise [123; 184], configuration parameters with the same
effect should also have the same name on every component (and vice versa). DKPro Core stan-
dardizes the names and the base functionality of several commonly used parameters. For some
parameters, components may accept additional, non-standard values. It is not required that all
components support all the standard parameters. Here is an overview of the most commonly
used standard parameters and their effect:

General parameters

• language – the language of the documents read if it appears on a reader, or the language
of the model to be loaded if it appears on an analysis component. In both cases, the
language must be given as a two-letter ISO 639-1 code [122].

Definition: principle of least surprise – The principle of least surprise is a general prin-
ciple of design. It simply states that the user should not be surprised, e.g. by inconsistent
design or unexpected behavior. The use of common terminology in scientific literature is
one application of this principle. Having to press a button with the label Start to turn a
computer off is a counterexample. (Also known as the Law of Least Astonishment in [123]).

5.2 Component collection 137



Parameters for readers and writers
• sourceLocation – the location to read input data from. This can be a path on the file

system, an URL, or anything else that the reader supports.11

• sourceEncoding – the encoding of the input data. This is a very common parameter,
because many data formats, in particular corpus formats are text-based.

• targetLocation – the location to output the data to. Again, this can be anything the writer
supports.

• targetEncoding – the encoding used to write the data.

Parameters for analysis component
The following parameters are related to the Resource Provider API of DKPro Core (cf. Sec-

tion 3.1.3.1) and the mapping of tags to elevated types (cf. Section 5.1.3.3):

• modelLocation – the location of the model used by the component. At least file sys-
tem paths, file URLs and classpath pseudo-URLs should be supported. A component may
support additional location types.

• modelEncoding – the character encoding expected by the model. This is mainly relevant
for analysis components that communicate with external processes. For example, Tree-
Tagger [192] models are made for a particular encoding, and this needs to be used when
sending data to TreeTagger and reading output from it.

• modelVariant – the variant of a model. The variant string provides information on tool-
specific parameters, the corpus the model was derived from, or other circumstances under
which the model has been created. For example, models for named-entity recognizers
might use the model to encode which kinds of named entities a model covers.

• <layer>MappingLocation – this is a set of parameters used to override the mapping of
tags produced by a low-level analysis algorithms to annotation data types. The place-
holder <layer> can assume values such as pos, chunker, namedEntity, etc.

• printTagSet – when a model was loaded, extract the tag set from the model and display
it. This helps the user to verify that the model is really producing the expected tag set.

5.2.3.6 Resources

Many of the analysis components integrated into DKPro Core require additional resources, such
as models for parsers, part-of-speech taggers, etc. The general strategy for accessing and pack-
aging resources has already been described in Section 3.1. What remains to be explained here
is how the packaging of resources is facilitated in DKPro Core and which metadata specific to
DKPro Core is stored in the proxy artifacts.

Resource packaging
The packaging of resources for use with DKPro Core components is performed using a set of

macros based on the Apache Ant [6] tool. Typically, a resource is downloaded from its upstream
provider and then packaged into a proxy artifact containing the DKPro Core metadata and an
upstream artifact containing the original resource. An example of how these macros are used is
given in Listing 5.4 (p. 140).

11 All readers derived from the DKProResourceCollectionReaderBase support file system paths, file: URLs, class-
path: URLs, and jar: URLs. Support for additional locations, e.g. smb: URLs for accessing Samba shares or
hdfs: URLs for accessing a Hadoop Distributed File System (HDFS) can be plugged in to the ResourceCollec-
tionReaderBase.

138 5 Flexibility



Table 5.6: Examples for the variant coordinate in DKPro Core

Original file name Variant Explanation

en-pos-maxent.bin maxent Language and kind of tool omitted
engmalt.poly-1.7.mco poly Language, tool name, and version omitted
french.tagger default No usable information available
mst-eisner.model.gz eisner Kind of tool omitted
wsj-0-18-left3words-distsim.tagger wsj-0-18-left3words-distsim Kind of tool is encoded in the extension,

full file name is used

Coordinates
As described in Section 3.1.3.1, a set of coordinates is used to uniquely identify the packaged

resources: type, language, variant, and version.

• type – The type typically assumes one of the following values, depending on the kind of
tool for which a resource is used:

– token – tokenizer
– sentence – sentence splitter
– lemmatizer – lemmatizer
– tagger – part-of-speech tagger
– morphtagger – morphological analyzer
– ner – named-entity recognizer
– parser – constituency or dependency parser
– coref – coreference resolver

• language – The language is represented by a two-letter ISO 639-1 code [122].

• variant – The variant depends on the model being packaged (Table 5.6). Typically, this
is a part of the upstream model name which allows telling models apart, but does not
contain redundant information about the language, kind of tool, or version. If suitable
information is available and we know of only one model for the combination of tool and
language, we use the variant default.

• version – For the version, we consistently use the format YYYYMMDD.XX, where YYYYM-
MDD is a timestamp and emph .XX is used to distinguish different versions of metadata
specific to DKPro Core, e.g. information on the tag set. We found not all upstream
providers provide version information for their models. Yet, these models change from
time to time, as we could observe by calculating a checksum for the upstream files and
comparing that with checksums we have observed previously. In the same way, we could
also determine that the upstream files sometimes did actually not change, even though
there was a change in their version. We update the timestamp based on the timestamp or
release date of the upstream version when we observe that the checksum of the upstream
file has changed. We update the metadata suffix when we add or update the metadata.

5.2.4 Analysis

In this section, we discuss our experiences and conclusions we draw from building the DKPro
Core component collection. To support these, we analyze the components and resources which
have been integrated into the collection. We find that most components for the same analysis

5.2 Component collection 139



Listing 5.4: Packaging a model for the DKPro Core OpenNLP part-of-speech tagger component
1 <!−− FILE: models−1.5/en−pos−maxent.bin − − − − − − − − − − − − − − − − − − − − − −
2 − 2012−06−16 | now | db2cd70395b9e2e4c6b9957015a10607
3 −−>
4 <get
5 src="http://opennlp.sourceforge.net/models−1.5/en−pos−maxent.bin"
6 dest="target/download/en−pos−maxent.bin"
7 skipexisting="true"/>
8 <install−stub−and−upstream−file
9 file="target/download/en−pos−maxent.bin"

10 md5="db2cd70395b9e2e4c6b9957015a10607"
11 groupId="de.tudarmstadt.ukp.dkpro.core"
12 artifactIdBase="de.tudarmstadt.ukp.dkpro.core.opennlp"
13 upstreamVersion="20120616"
14 metaDataVersion="1"
15 tool="tagger"
16 language="en"
17 variant="maxent"
18 extension="bin" >
19 <metadata>
20 <entry key="pos.tagset" value="ptb"/>
21 </metadata>
22 </install−model−file>

• Lines 4-7: Download resource from upstream provider.
• Line 10: Hash sum for the resource. Some upstream providers do not version their re-

sources. The hash sum is used to detect if a resource has changed. If this is the case, the
upstreamVersion field needs to be updated.

• Lines 11-14: Maven coordinates. The group ID, artifact ID and version of the resulting
Maven artifacts.

• Lines 15-17: Resource coordinates. Additional resource coordinates, according to the
scheme presented in Section 3.1.

• Line 18: File extension. File extension used for the packaged resource within the artifact.
• Line 19-21: Additional metadata. Metadata specific to DKPro Core. This data is stored

within the proxy artifact.
• Lines 8-22: Package resource. The command produces two artifacts:

– Proxy artifact – uses the group ID from line 11, the artifact ID constructed as
{artifactIdBase}-model-{tool}-{language}-{variant}, and the version con-
structed as {upstreamVersion}.{metaDataVersion}.

– Upstream artifact – uses the group ID from line 11, the artifact ID constructed
as {artifactIdBase}-upstream-{tool}-{language}-{variant}, and the version
from line 13. The resource is embedded in this file at the location constructed as
{artifactIdBase}/lib/{tool}-{language}-{variant}.{extension}.

140 5 Flexibility



Text

Sentence

Token

Part-of-speech
tagging

Stemming Named entity

LemmatizationDependency
relation

Constituency
parsing

Coreference
resolution

Semantic role
labelling

Common 
flow

Unommon
flow

Legend

Figure 5.15: Dependencies between analysis steps

tasks take the same inputs, so that exchanging one for another does mostly not entail a restruc-
turing of the analysis workflow. We find that a good interoperability between the components
can be achieved when they are used in conjunction with publicly available models, because the
models themselves are largely conceptually interoperable, e.g. using the same tag sets. How-
ever, we also find that often there is little provenance metadata about the resources, or this data
is not easily and readily accessible.

5.2.4.1 Interchangeability

We consider an analysis component to be interchangeable with another one if it consumes the
same input and produces comparable and compatible output. It should also accept largely the
same set of parameters. We already described a standard set of parameters (Section 5.2.3.5)
used across all DKPro Core components to improve their interchangeability. Now, we examine
if components addressing the same type of analysis, e.g. part-of-speech tagging or parsing,
also accept the same inputs and produce the same outputs. This allows us to determine if the
change of a component is a local operation. I.e. the change does not require further, potentially
extensive changes throughout the whole analysis workflow.

Figure 5.15 illustrates how different analysis steps typically build up on each other. This
information was derived by examining the components from the DKPro Core collection. While
we note, that most of the time the order of analysis steps is the same across tools from different
vendors, there are also some exceptions:

• Stanford CoreNLP requires tokenization before sentence splitting. Where this is not re-
quired, we place the tokenization step after the sentence splitting step, to avoid tokens

5.2 Component collection 141



spanning across sentence boundaries, e.g. because an abbreviation was not properly de-
tected. DKPro Core users are not affected by this difference, because tokenizing and
sentence splitting are always integrated into a single segmenter component.

• Stanford CoreNLP derives the dependency relations from the constituent structure using
rules. Pure dependency parsers build directly on part-of-speech and token information.

• The Mate-tools use lemma information as input to the part-of-speech tagger (cf. [5]),
while more often, the part-of-speech tag is used to take into account the context of a
token and to disambiguate the lemma, e.g. by looking it up in a morphological database.

• The Mate-tools dependency parser can use lemma information for better results.

We also need to note here, that, so far, there is only one component for semantic role labeling
and one for coreference resolution integrated into DKPro Core. Hence, the dependencies for
these tasks are based only on these components. In general, we should assume that these
steps basically build up on any of the previously generated information. E.g. named entity
information could also be useful for semantic role labeling, while dependency relations may be
useful for coreference resolution.

The order in which the analysis steps need to be performed is not always the same, depend-
ing on the analysis components being used. This affects interchangeability, because replacing
one component for another may require changing the order of the components in an analysis
workflow. However, based on the examined components, no significant flow incompatibilities
could be found.

5.2.4.2 Conceptual interoperability

Conceptual interoperability is interoperability at the level of annotation types and tag sets.
Annotation types were already discussed in Section 5.1. We now examine if components in the
DKPro Core collection are interoperable on the level of tag sets for parts of speech, constituents
(syntactic categories), and dependencies (syntactic functions).

Interoperability on the tag set level can be a major problem for a broad-coverage collection.
Since the analysis components and their models come from many sources, there is a risk that
each source uses their own tag sets and the components would not be interoperable, or possibly
only on the limited level provided by some coarse-grained tags used as elevated types.

We previously noted (Section 5.1), that a mapping of the tags produced by individual anal-
ysis components to coarse-grained types may be used to make components interoperable to a
certain degree, in particular across different languages. This mapping usually incurs a loss of
information. It is preferable, in particular when operating within a single language, that all
components use the same tag sets.

We added the ability to record tag set information as part of the analysis results to many
of the components in DKPro Core. In most cases, the tag set information is extracted directly
from the models12 used by an analysis component or sometimes from the analysis component
itself, e.g. when the tags are part of a hard-coded set of rules. Additionally, a tag set name is
recorded, if such a name has been provided as part of the model metadata that DKPro Core
adds in its proxy artifacts (cf. Section 3.1). In most cases, we tried to guess which tag sets are
used by a particular model, taking into account any documentation we found for the respective
models. Based on this, we started setting up mappings from these tag sets to coarse grained

12 We have collected these models from many sources. For the most part, they are packaged with the respective
analysis tools or are available from their websites. However, some of them have also been created by unrelated
third parties and were made publicly available on the internet.

142 5 Flexibility



elevated types, so far mainly for part-of-speech tag sets. However, for future versions of DKPro
Core, we consider setting up such mappings also for other layers, e.g. for dependency relations
(cf. [151]).

Since there is no canonical inventory of tag sets, we typically used an abbreviated name of
the corpus for which the tag set was developed (e.g. ptb for Penn Treebank, ctb for Chinese
Treebank, etc.) but also other names if convenient. To our knowledge, the currently most
complete resource on tag sets is the Ontologies of Linguistic Annotation (OLiA) [43]. Where
applicable, we provided references to this ontology, but we will also see that it covers not even
half of the tag sets we encountered.

Part-of-speech tags
Part-of-speech tags are produced or consumed by many analysis components. Table 5.7 pro-

vides an overview over the part-of-speech tag set mappings we use for models for analysis
components integrated into the DKPro Core component collection for various languages.

Based on this overview, it appears that the interoperability between analysis components
using part-of-speech information is pretty good for several languages, e.g. for English, German,
Arabic, Chinese, and Bulgarian. In all these languages, there is a predominant part-of-speech
tag set. For the other languages, in particular for Spanish and French, we observe a variety of
different tag sets.

As Petrov et al. [178] note, interoperability between part-of-speech taggers producing differ-
ent tag sets and higher level analysis components can be created by mapping the tag sets to
a set of coarse grained tags. However, this requires the higher-level analysis to be trained on
the coarse grained tags. So far, we found only a set of Spanish models for the OpenNLP part-
of-speech tagger13 producing these universal tags – no parsers or other components. Although
it would be easy to create such models for researchers having access to corpora which can be
converted to the universal part-of-speech tag set, the adoption in the community currently still
appears to be low. This might change if the universal dependency tag set proposed by McDon-
ald et al. [151] becomes popular. The example data they currently provide uses the universal
part-of-speech tags as a coarse grained tag set.

Part-of-speech annotations created by the DKPro Core components contain the tag of the
original tag set in the posValue feature, while there is a set of coarse grained elevated annotation
types which largely mirror the universal tags (cf. Section 5.1). Due to user requirements, DKPro
Core makes a distinction between common nouns (NN) and proper nouns (NP), which is not
made by Petrov et al. However, since these use the simple noun category (N) as a common
supertype, this is a fully compatible extension of the universal tags.

Constituency and dependency parsing
For constituency parsing (Table 5.8) and dependency parsing (Table 5.9), fewer tools were

integrated into DKPro Core. For constituency parsing, there appear to be no interoperability
problems, as there is only one tag set used for each language we found models for. For depen-
dency parsing, the situation is more heterogeneous. For English and Spanish, the parsers use
different tag sets. For German, Swedish, and Chinese, we only found one publicly available
model each, so a comparison is not possible.

We should mention at this point, that research on dependency parsing is quite active. There
are various publications on the adaptation of the Stanford dependency relations [57] to other
languages than English, e.g. to Chinese [42], Italian [31], or Hebrew [221]. There are even
considerations for establishing a set of universal dependency relation categories that can be
used across languages [151].

13 Part-of-speech tagger models for Spanish trained on the universal part-of-speech tag set:
https://github.com/utcompling/OpenNLP-Models (Last accesses: 2013-10-06)

5.2 Component collection 143

https://github.com/utcompling/OpenNLP-Models


Table 5.7: Part-of-speech tag sets

Component ar bg da de en es fr it nl pt sv zh
Part-of-speech taggers
MatePosTagger – – – stts ptb ancora melt – – – – ctb
ClearNlpPosTagger – – – – ptb – – – – – – –
OpenNlpPosTagger – – ddt stts ptb parole-reduced, – tanl alpino bosque talbanken05 –

universal
StanfordPosTagger atb – – stts ptb – – – – – – –
TreeTaggerPosLemmaTT4J – btb – stts ptb crater stein stein tt gamallo – lcmc
Parsers
BerkeleyParser atb btb – stts ptb – ftb – – – – ctb
MaltParser – – – – ptb freeling melt – – – stb –
MateParser – – – stts ptb ancora melt – – – – ctb
OpenNlpParser – – – – ptb – – – – – – –
StanfordParser atb – – stts ptb – ftb – – – – ctb

Tag set ID Reference OLiA Reference [43]
alpino Van Der Beek et al. [224]* –
bosque Freitas and Afonso [93](Anexo 4) –
atb Bies [23], [142]* –
ancora Taulé et al. [212] –
btb Osenova and Simov [175] –
crater Sánchez León [188] –
ctb Xia [228] http://purl.org/olia/pctb.owl

ddt Kromann et al. [134] –
freeling PAROLE-ES [176] http://purl.org/olia/parole_es_cat.owl

ftb Abeillé and Clément [1] http://purl.org/olia/french.owl

gamallo Gamallo [95]* –
melt Crabbé and Candito [49] –
lcmc McEnery and Xiao [152] –
parole-reduced PAROLE-Reduced [177] –
ptb Santorini [189] http://purl.org/olia/penn.owl

stb Ejerhed et al. [76]*, [202] –
stein Stein [203] http://purl.org/olia/french-tt.owl

stts Schiller et al. [191] http://purl.org/olia/stts.owl

talbanken05 MAMBAlex [145] –
tanl TANL-IT [211] –
tt TT-NL [222] –
universal Petrov et al. [178] –

Note: Citations marked with an asterisk (*) may only cover the research context, tool, or resource in which the
tag set is used, but may not provide an explicit account of the tags used in the tag set.

In the current DKPro Core version 1.5.0, we provide elevated types for dependencies and
constituents, but these are not coarse grained universal categories. Rather, for constituents,
the Penn Treebank tag set and for dependencies, the Stanford tag set is used. As the state
of the art advances, we consider adopting coarse grained elevated types for constituents and
dependencies as well.

Interoperability issues
Although there is some heterogeneity of tag sets within individual languages, our analysis of

publicly available models leads us to believe there is a good degree of interoperability. However,
components may still not be interoperable – or at least a decrease in quality is to be expected
– if certain components or models are replaced by others. Sometimes, two corpora are anno-
tated with very similar tag sets, but different annotation guidelines (cf. [57] vs. [46]). When

144 5 Flexibility

http://purl.org/olia/pctb.owl
http://purl.org/olia/parole_es_cat.owl
http://purl.org/olia/french.owl
http://purl.org/olia/penn.owl
http://purl.org/olia/french-tt.owl
http://purl.org/olia/stts.owl


Table 5.8: Constituent tag sets

Component ar bg de en fr zh
BerkeleyParser atb btb negra ptb ftb ctb
OpenNlpParser – – – ptb – –
StanfordParser atb – negra ptb ftb ctb

Tag set ID Reference OLiA Reference [43]
atb Maamouri et al. [143] –
btb Osenova and Simov [175] –
ctb Xue et al. [230] –
ftb Abeillé et al. [2] –
negra Brants et al. [33] http://purl.org/olia/tiger.owl

ptb Bies et al. [24] http://purl.org/olia/penn-syntax.owl

Table 5.9: Dependency relation tag sets

Component de en es fr sv zh
ClearNlpDependencyParser – clear – – – –
MaltParser – stanford iula ftb stb –
MateParser negra conll2008 ancora ftb – cpb
StanfordParser – stanford – – – –

Tag set ID Reference OLiA Reference [43]
ancora Soriano et al. [199] –
conll2008 Surdeanu et al. [208] –
clear Choi and Palmer [46] –
cpb Xue [229] –
ftb Candito et al. [39] –
iula Marimon et al. [147]* –
negra Brants et al. [33] –
stanford de Marneffe and Manning [57] http://purl.org/olia/stanford.owl

stb STB-DEP [201] –

Note: Citations marked with an asterisk (*) may only cover the research context, tool, or resource in which the
tag set is used, but may not provide an explicit account of the tags used in the tag set.

models are created based on such corpora and used in analysis components, the results appear
equivalent to the user. However, consider a rule-based information extraction system based on
dependencies. Such a system is likely to perform badly when applied to a dependency structure
which uses the same tags as the rules, but was created based on different annotation guidelines
that assumed by the rules.

Most of the DKPro Core components have the capability of extracting tag set information
directly from the models they have been configured with. We used this capability to compare
the dependency tags of models for several dependency parsing components (Table 5.10) to find
clues which may indicate that the models are based on different annotation guidelines. The
table shows only those tags where there are differences between the examined models.

We take the tag set used by the Stanford parser as a point of reference. The Stanford parser
uses a rule-based conversion of the constituent tree into dependencies, so the tag set is in fact
not part of the models – it is extracted directly from the tag set known to the parser. The
other two parsers, MaltParser and the ClearNLP parser, are statistical parsers which generate
dependency structures based on text annotated with part-of-speech tags. If a Stanford tag is
missing from their tag sets, it can be either because the corpus they were trained on did not

5.2 Component collection 145

http://purl.org/olia/tiger.owl
http://purl.org/olia/penn-syntax.owl
http://purl.org/olia/stanford.owl


Table 5.10: Differences between dependency tag sets

Component Variant ROOT abbrev agent arg comp complm cop
ClearNlpDependencyParser mayo agent complm
ClearNlpDependencyParser ontonotes agent complm
MaltParser linear ROOT abbrev complm cop
MaltParser poly ROOT abbrev complm cop
StanfordParser factored agent arg comp cop
StanfordParser pcfg agent arg comp cop

Component Variant csubjpass discourse goeswith gov hmod hyph intj
ClearNlpDependencyParser mayo hmod hyph intj
ClearNlpDependencyParser ontonotes csubjpass hmod hyph intj
MaltParser linear csubjpass
MaltParser poly csubjpass
StanfordParser factored csubjpass discourse goeswith gov
StanfordParser pcfg csubjpass discourse goeswith gov

Component Variant measure meta mod mwe nmod npadvmod null
ClearNlpDependencyParser mayo meta nmod npadvmod
ClearNlpDependencyParser ontonotes meta nmod npadvmod
MaltParser linear measure null
MaltParser poly measure null
StanfordParser factored mod mwe npadvmod
StanfordParser pcfg mod mwe npadvmod

Component Variant obj oprd pred purpcl ref rel root
ClearNlpDependencyParser mayo oprd root
ClearNlpDependencyParser ontonotes oprd root
MaltParser linear pred purpcl rel
MaltParser poly pred purpcl rel
StanfordParser factored obj pred ref rel
StanfordParser pcfg obj pred ref rel

Component Variant sdep subj tmod xsubj
ClearNlpDependencyParser mayo
ClearNlpDependencyParser ontonotes
MaltParser linear tmod
MaltParser poly tmod
StanfordParser factored sdep subj tmod xsubj
StanfordParser pcfg sdep subj tmod xsubj

Note: This table shows only those tags where there are differences between the examined models. Tags that are
shared by all models have been omitted. The MateParser does not appear in this overview, because its English
model uses the CONLL dependency tag set, which is not related to the Stanford tag set.

contain a corresponding dependency relation (coverage), or because the corpus used different
annotation guidelines which omitted the tag. However, if there is a tag which is not present in
the Stanford tag set, it is a good indicator that different annotation guidelines have been used,
which may cause further incompatibilities.

For the MaltParser models, the tags abbrev and purpcl are documented in the Stanford de-
pendency manual [57]. However, they are not present in the version of the Stanford parser we
used.14 The tag measure is not documented in the manual. The tags null and ROOT are likely
to be artifacts of the parser implementation and not actually present in the training data.

For the ClearNLP parser models, we note several new tags which are not covered by the
Stanford manual: hmod, hyph, intj, meta, nmod, oprd. There are also multiple tags present
in the MaltParser models and in the Stanford manual, which are not used by the ClearNLP
models. In fact, the ClearNLP models have been trained using different annotation guidelines,

14 The parser has been taken from Stanford CoreNLP [200] version 3.2.0, and the inspected class is
EnglishGrammaticalRelations.

146 5 Flexibility



which build up on many of the Stanford tags, but add also new ones. Looking only at the tag
sets, at first it appeared just as if the ClearNLP models were using a richer tag set and that
the training data did not cover certain kinds of constructions. Fortunately, following an e-mail
conversation with the ClearNLP developer Jinho Choi, he put the annotation guidelines [46]
online which had previously not been available. From the guidelines, we could then learn that
the structure of the dependency annotations is different. Based on this information, we then
changed the tag set metadata for the ClearNLP parser models from what we previously believed
to be the Stanford dependency tag set (stanford) [57] to the CLEAR dependency tag set (clear).

Noh and Padó [166] report on building on DKPro Core within the EXCITEMENT Open Plat-
form for textual entailment.15 While they note to benefit substantially from the provided inter-
operability, they also note that there are implicit dependencies between analysis tools. In their
system for textual entailment, they use rules over the output of a dependency parser. As these
rules were created based on dependency parsing that follow certain annotation guidelines, ex-
changing the dependency parser in their workflow for one that produces dependency relations
based on different guidelines causes problems, because the rules no longer match.

Desiderata
While previous research on interoperable analysis components has noted these incompatibili-

ties at the conceptual level, interoperability appears to be mostly discussed as being a problem of
the naming of types and features (e.g. [179; 118; 113]). Because in DKPro Core, all components
used the same type system, there is no need for extensive mapping and normalization between
different representations. We concentrate on analysis steps that are covered by analysis tools
from multiple vendors and note that these tools consume and produce information that does
not require very elaborate annotation types (segmentation, part-of-speech tags, lemma, con-
stituency parsing, dependency parsing, etc.). The only level of normalization that we currently
perform over the raw output of the tools are the coarse grained elevated types.

We notice that just by looking at the tags provided by a model, it is sometimes difficult to
tell to which tag set and underlying annotation guidelines these tags belong. For example, the
CLEAR dependency tag set [46] and the Stanford dependency tag set [57] largely overlap in
terms of tags, but prescribe different structures in their annotation guidelines. The annotation
guidelines used to prepare the training data or to create the transformation rules contain im-
portant information about the assignment of tags and the interaction between tags. However,
when models are distributed, exact information about which annotation guidelines were used
in the form of a versioned reliable reference is often not provided. Neither is an exact versioned
reference to the training data provided in most cases. Given the present standards, a model can
already be considered well-documented if it provides a non-versioned reference to the training
data, e.g. in form of citation or link to a website.

Based on the above analysis, we derive the following recommendations:

• A publicly available portable workflow (cf. Section 4.1) should exist for each model, which
could be used by anybody with access to the necessary resources to regenerate the model.

• Annotated corpora (along with their annotation guidelines) should be made available via
a repository, so that they can be referenced and accessed by such workflows.

• There should be a way to fetch a versioned reference to the guidelines used to annotate the
data from which a model was generated directly from the model file, e.g. via a reference
to ISOcat [130], OLiA [43], or an equivalent resource.

• At least the annotation guidelines for corpora should be made publicly available, even
though this may not be possible for the annotated corpora themselves due to legal restric-
tions.

15 http://www.excitement-project.eu (Last accessed: 2013-12-11)

5.2 Component collection 147

http://www.excitement-project.eu


5.2.4.3 Provenance and attribution

Processing frameworks and convenient component collections place a layer of abstraction be-
tween the users and the components and resources being used. We notice that users start talking
about using DKPro or using UIMA and tend to not mention anymore which particular underlying
analysis tools and models have been used, e.g. the Stanford PCFG parser. This may be due to
the rich choice and the convenience of automatic resource selection which make it increasingly
difficult to determine what to cite when publishing new results since the link to the source work
tends to be lost. This is damaging in many ways. Users may not critically reflect if and why a
certain tool or resource is suitable for their task. Providers of resources and tools may be set
back by their work being used without proper attribution.

Provenance
Knowing about provenance, i.e. knowing which work is involved in an experiment and con-

tributes to the generation of the experimental results, is a prerequisite for attribution. This
not only extends to the components and resources were involved in the creation of analysis
results or which configuration led to the creation of this result (cf. [84]). Also, the knowledge
about how particular resources being used in a workflow were created in the first place, e.g. on
which corpora statistical models were trained and which annotation guidelines were used for
the annotation of these corpora, is important. In order to be able to comply with the require-
ments towards attribution, the researcher must know about the provenance of the results that
an experiment has produced.

Attribution
Another problem is attribution of third-party work. Attribution of other people’s work and

giving them credit when their work is incorporated into follow-up work is an important issue. In
software development, this is covered by certain files (e.g. NOTICE, COPYRIGHT or LICENSE),
which are shipped with a library and which must be preserved and reproduced when the library
is used in a larger work. For the components and resources used in an analysis workflow, their
authors also often require to be mentioned with references to their respective work, typically in
the form of publications which describe a particular algorithm or resource.

Desiderata
Provenance and attribution are not new issues, particularly being discussed in domains that

deal primarily with content creation (e.g. arts) and in the context of workflow engines in gen-
eral (e.g. [92]). However, in the context of processing frameworks and analysis component
collections, these questions are not well addressed yet. We believe this is an important short-
coming that should receive more attention by processing frameworks and component collections
used for language analysis.

In future versions of the DKPro Core component collection, we plan to maintain attribution
information for each integrated tool and resource and to expose this information along with
other analysis results, such that the third-party work involved in the creation of these results
can easily be identified and cited by the user. This way, we aim to restore the awareness that it
is important to report which of the integrated tools and which resources were used, despite the
convenience of a component collection.

It also needs to be investigated if the adoption of a general provenance model, e.g. the
Open Provenance Model (OPM) [159] is beneficial. OPM is an abstract model for representing
the provenance of a thing as a directed graph. Nodes in such a graph represent artifacts (im-
mutable states), processes (actions producing new artifacts), and agents (entities involved in a
process). Edges represent causal dependencies, e.g. used, wasGeneratedBy or wasControlledBy.

148 5 Flexibility



Annotation
process

Corpus

Annotated
corpus

Annotation 
guidelines

Training
process

Model

wasGeneratedBy

used

wasGeneratedBy

usedused

John 
Doe

Jane
Smith

wasControlledBy
(annotator)

wasControlledBy
(annotator)

Agent

Artifact

Process

Legend

causal dependency

Figure 5.16: Provenance of a model represented as an OPM graph

Contrary to a workflow, which can be used to generate an artifact in the future, the OPM graph
is a model of the past history of how an artifact has been produced. A benefit of adopting
such a provenance representation would be the ability of aggregating provenance fragments
for models, components and primary data during the execution of a workflow to generate a
full provenance model of the workflow results. An illustration of how OPM could be used to
represent the provenance of a model is given in Figure 5.16.

5.2.5 Summary

In this section, we have examined the DKPro Core broad-coverage collection of interoperable
analysis components. At the time of writing, we found DKPro Core to be the most compre-
hensive collection of portable analysis components, i.e. components that do not rely on web
services for processing. The analysis tools integrated in DKPro core come from different re-
search contexts focusing on different languages and domains. Thus, DKPro Core provides the
users with a rich choice and increased coverage.

In the current edition, we also focused on improving the usability of DKPro Core. We have
incorporated the automatic resource selection and acquisition mechanism introduced in Sec-
tion 3.1. We also have introduced a set of common parameters across the component collection
to ensure that users do not have to learn a completely new set of parameters every time they
use a new component.

Whether a user can conveniently exercise the choice offered by DKPro Core depends on the
interchangability of the analysis components. We have analyzed the components and found
most of them that serve for the same analysis task, e.g. part-of-speech tagging or parsing, to be
consuming the same input and producing the same output. They are therefore interchangeable
within the workflow.

At the conceptual level, interoperability depends on the tag sets and on the annotation guide-
lines. Our analysis of the tools and their models integrated in DKPro Core has shown that there
exists a good interoperability between the components for languages which receive a lot of re-
search attention, such as English and German. The community has converged on certain tag
sets and provides the necessary models for these languages. For other languages, there we have
found various tag sets to be in use, thus, they are not directly interoperable. We have found

5.2 Component collection 149



that tag sets may appear to be largely similar, but even small differences are clues that they in
fact use different underlying annotation guidelines.

We are happy to report that DKPro Core is no longer only the foundation of research at the
Ubiquitous Knowledge Processing Lab. It is now also being recognized and used externally, e.g.
by the EXCITEMENT Open Platform for textual entailment [78; 167], by Riedl and Biemann
[185] in an experiment on text segmentation with topic models, in the JoBimText project16

[125; 102], and by Strötgen and Gertz [207] in experiments on temporal tagging. We believe
this to be an effect of our continuous efforts to increase the coverage of DKPro Core and to
improve its usability, such as they have been documented in this thesis.

In future work, we plan to include more metadata in analysis results. In particular, we intend
to include provenance information with resources and analysis components. This will allow
users to easily identify and give attribution to third-party work used to produce their analysis
results.

16 According to a code search engine:
http://code.ohloh.net/search?s=%22de.tudarmstadt.ukp.dkpro.core%22 (Last accessed: 2013-12-11)

150 5 Flexibility

http://code.ohloh.net/search?s=%22de.tudarmstadt.ukp.dkpro.core%22


6 Interactivity

In the previous sections, we have addressed the integration of manual and automatic analysis
mainly by making automatic analysis easier to use and more accessible to users who so far
work predominantly manually and who are not programming experts. In this section, a more
direct form of integration is addressed, where users can interactively work with automatically
generated analysis results and manually correct these or add new results that could not be
automatically created.

Roles
We first take another look at the four roles involved in the manual analysis tasks (cf. Sec-

tion 2.1) and elaborate on them:

• Explorer – This role performs preliminary exploration of the corpus data, either to gen-
erate linguistic hypotheses or to corroborate already existing hypotheses. A preliminary
exploration is usually done before the first version of the annotation guidelines is created.

• Guideline author – This role defines the annotation guidelines to be used, including the
tag sets. It requires expert domain skills, e.g. in the linguistic domain. A guideline author,
in most cases, first acts as an explorer.

• Annotator – This role performs manual analysis based on the annotation guidelines. Ba-
sic domain skills are required to interpret the annotation guidelines. For example, under-
graduate students can often take on this role. If the annotation guidelines are extremely
simple, no special skills may be required and the annotation task can be crowdsourced. In
some cases, the annotation guidelines are very complex, so that the annotator may require
a skill level similar to that of the explorer role.

• Curator – This role critically examines the annotations to resolve cases where the annota-
tors did not agree. This can lead to recommendations to the guideline author to improve
the annotation guidelines and to another iteration for the annotators. When a domain ex-
pert takes on this role, e.g. the same person as the guideline author, the curator may also
directly generate a curated annotation which is then supposed to be correct. The role can
also be assumed by an automatic mechanism that accepts a label assigned by a sufficient
number of annotators as the correct one, e.g. via a majority vote.

These roles mostly follow the ones defined by Dipper et al. [60]. The language engineer,
applying automatic methods to the corpus, is left out here, as it is better described by the roles
for automatic analysis (see Section 2.2). The guideline explorer, interested in the principles
underlying the annotation guidelines, is not relevant to the further discussion here.

The annotator and curator roles are also related to those defined by Bontcheva et al. [29].
Furthermore, they conflate the guideline author role into the curator role. No equivalent of the
explorer role is mentioned. Additionally, a project manager role is defined, which has mainly
technical and administrative responsibilities, such as setting up an annotation project in an
analysis tool, providing the corpus, overseeing the project progress, etc.

Annotation activities
In a basic manual analysis setup, four main activities can be distinguished (Figure 6.1): ex-

ploration, writing of annotation guidelines, annotation, and curation. The fifth activity shown in
the diagram, bootstrapping, is usually an automatic analysis task.

151



Boot-
strapping

Exploration

Guidelines

Annotation

Curation

revise
guidelines

develop
theoryrevise

theory

revise
annotations

Figure 6.1: Basic manual analysis

Boot-
strapping

Exploration

Guidelines

Annotation

revise
guidelines

develop
theoryrevise

theory

Figure 6.2: Preliminary manual analysis

Boot-
strapping

Exploration

Guidelines

Annotation

Curation

Training

revise
guidelines

develop
theoryrevise

theory

revise
annotations

Figure 6.3:Manual analysis with automatic
bootstrapping and re-training

The roles are closely related to these activities. Some of the activities are done in phases, not
parallel to each other, so that one role remains idle until another role has completed its work, in
particular the writing guidelines, annotation, and curation phases. As will be pointed out below,
the exploration and writing guidelines phases often closely interact with each other.

• Bootstrapping – During the bootstrapping phase, the data is prepared by applying some
initial linguistic analysis to the plain text corpus. This initial analysis is usually done
automatically, which is why this is not considered one of the main activities of manual
annotation here. The initial annotations can basically serve two purposes:

– Correction – the annotations are examined and corrected with the goal of re-training
and improving automatic analysis applied during the bootstrapping phase in a sub-
sequent iteration (cf. Figure 6.3);

– Cues – the annotations are used as cues for higher-level annotations, e.g. part-of-
speech tags are a prerequisite for the annotation of dependency relations. The initial
annotations may not even be editable in such a scenario. Annotation projects aiming
at very high quality may choose to build on a previous manual annotation task for
bootstrapping, instead of relying on automatic analysis.

• Exploration – The exploration phase is mainly used to generate hypotheses and to gather
evidence to corroborate or invalidate the hypotheses. It may also be used to gather initial
examples that can be used for writing the annotation guidelines and to generate an initial
set of categories to be used later for annotation.

152 6 Interactivity



• Writing of annotation guidelines – Annotation guidelines explain how to identify text
spans that should be labeled and how to decide which tags should be used for labeling.
They need to be prepared before annotators can be trained and before they can start an-
notating. As Dipper et al. [60] point out, the guidelines need to serve different roles,
such as the annotator, the explorer, etc. For example, while the annotator should be able
to perform the annotation task efficiently based on superficial annotation guidelines, the
explorer and later the curator may require in-depth descriptions of the theoretical under-
pinning of each category and the decisions taken in their construction. As Dipper et al.
[59] point out, the writing of guidelines and annotation activities affect each other. In
particular, while writing the initial version of the guidelines, inconsistencies in the the-
ory or the tag set become obvious, so it becomes necessary to switch often between the
exploration and writing of annotation guidelines activities. Later, changes to the annota-
tion should be fewer and be well separated from the annotation phase to avoid wasting
resources by having the annotators repeatedly revise all data already analyzed in the cur-
rent iteration and update it to changes in the guidelines. As Benikova et al. [18] point
out, it can be helpful to exchange the annotation team when the annotation guidelines
have stabilized, in order to avoid influences of earlier versions of the guidelines on the
annotators which may lead to erroneous annotations and low inter-annotator agreement.

• Annotation – The actual analysis and main effort take place during the annotation phase.
Typically, this phase can only commence once annotation guidelines are available. How-
ever, during a preliminary analysis (cf. Figure 6.2), e.g. conducted by a single researcher
to set the groundwork for an annotation project in a larger group, this task can go hand-
in-hand with the exploration task and towards the end of the analysis leads to writing
the annotation guidelines. In projects aiming to attain high-quality annotations, the data is
usually distributed among the annotators in such a way, that every unit of annotation (e.g.
every document or sentence) is analyzed by a minimum number of annotators. To avoid
bias, it may also be a requirement, that each annotator produces the analysis solely based
on the annotation guidelines, without discussing the process or otherwise interacting with
fellow annotators. The annotation process can be supported by a mechanism suggesting
the most probable locations for an annotation or the most probable tags. However, unless
such assistance is almost indispensable, for example because the corpus to annotate is
very large with relevant passages being sparsely distributed within the corpus, projects
may prefer rejecting it, because it biases the annotators decisions.

• Curation – The curation phase aims at aggregation and quality control. Aggregation is
necessary to produce a single final analysis result from the separate analysis result that
each annotator has produced during the annotation phase. The aggregation can be done
manually, by a human curator reviewing all the annotations and selecting those considered
correct. The curator may be supported by the software, which performs a preliminary
comparison of the individual analysis results and highlights those annotations that the
annotators did not agree upon. The aggregation can also be done fully automatically
by applying a voting mechanism to decide what remains in the final result. Quality is
ensured by the standards that are applied during the aggregation. E.g. a minimal level of
agreement between the annotators may be required to accept an annotation into the final
result (cf. [16]).

Extended manual analysis workflows may consist of many more states, but should generally
follow the scheme outlined above. For example, for the task of building a reference translation
corpus, Friedman et al. [94] ensure quality using a cascade of six(!) translation revision steps,
performed by translation experts with different levels of qualification instead of the annotation
and curation steps.

153



A manual analysis project usually requires several iterations of the full analysis process, with
early iterations being shorter and following a simplified process, such as the preliminary steps
outlined in Figure 6.2, leading to a more refined process in later iterations, once the annotation
guidelines have been stabilized.

If the ultimate analysis is rather complex, e.g. the analysis of the full dependency structure,
multiple iterations of the process may be used to annotate only certain tags at a time, e.g. first
all subjects, then all direct objects, etc. This requires the annotators to keep fewer guidelines
in mind during each iteration and to perform the analysis faster and more reliable (cf. [16]).
Annotation editors can support this as a mode of operation and offer a simplified annotation
interface allowing for faster annotation, such as the fast annotation mode of Knowtator [170]
or the crowdsourcing mode supported by Yimam et al. [232].

154 6 Interactivity



6.1 Search and annotation

In this section, we present the annotation-by-query approach to annotating infrequent phenom-
ena in large corpora. First, we discuss how to employ search technology to locate and annotate
infrequent phenomena in large, pre-annotated corpora. We examine existing tools and find
that they either support search on large corpora or annotation, but not both. To address this
issue, we define an annotation process which covers both, search and annotation. The process
requires new kinds of interactions between the members of the annotation team, which a tool
supporting the process needs to provide. Next, we introduce a new tool supporting the process.
Finally, we discuss how the resulting tool has been used in linguistic research.

These contributions address the following issues in our overall scenario (Figure 6.4):

6 There are no adequate tools for the selective annotation of large corpora.
The tight integration of linguistic search engines with an analysis tool, as offered by our
annotation-by-query process, enables the selective annotation of large corpora by integrat-
ing the explorer and annotator roles. Additionally, the process is defined in such a way,
that an annotator team can work fully distributed on the selective annotation task. To
support our process, we introduce the CSniper annotation tool. CSniper additionally sup-
ports the guideline author role by allowing the user to maintain the annotation guidelines
directly in the tool. The curator role is taken by an automatic aggregation mechanism,
which allows the annotation team to generate an aggregated result on demand, based on
configurable quality settings.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

There is no tooling 
to selectively 

annotate large 
corpora.

Initial exploration, annotation 
study, and definition of 

categories

6

Figure 6.4: The tool CSniper supports the selective annotation of large corpora by implementing
the annotation-by-query process.

6.1 Search and annotation 155



6.1.1 Motivation

Many analysis tools assume that a corpus will be exhaustively annotated and that the annotators
will read the full corpus, e.g. document by document or sentence by sentence. However, when
only specific phenomena are to be annotated and when these occur infrequently in corpora,
new approaches to annotation are required. In fact, finding these phenomena in the first place
can already be a challenging task:

However, for the annotators, the corpus is often a haystack within which they must find
what to annotate, and discriminating what should be annotated from what should not
is a complex task. Fort et al. [88]

Annotations already present in the corpus under examination can help the researcher to lo-
cate passages containing the desired phenomena. This calls for annotation editors which not
only support annotation, but also searching in a pre-annotated corpus in order to locate and
selectively annotate only relevant passages.

Selective annotation using a combination of a linguistic search engine and an annotation
editor has been addressed in the past. The SALTO tool [36] integrates the TIGERSearch [138]
engine for queries over treebanks. It is reported that this search functionality was used during
the SALSA project [37] to annotate role-semantic information lemma-by-lemma.

We reported on a similar procedure in Eckart de Castilho et al. [74]. It was used by Teich and
Holtz [214] for a study on how certain concepts behave in different scientific domains based on
a corpus of research papers from nine different domains. For example, the word algorithm takes
on different roles in computer science and in biology. In order to conduct this research, pas-
sages containing certain words needed to be located and selectively annotated for transitivity,
a linguistic concept from the Systemic Functional Grammar [111] used to describe processes,
participants in these processes, and circumstances under which the processes occur or are per-
formed. We did this by performing a search in the IMS Corpus Workbench [77], exporting the
search results including some preceding and following context to a file, and transforming the
file into the format of the UAM Corpus Tool [168] using the AnnoLab framework [69]. After
the annotations had been made within the UAM Corpus Tool, the data was again transformed
using AnnoLab and merged into an XML database containing the full corpus data.

However, in both tasks mentioned above, the selection took place before and separately from
the annotation process. Also, the data selection process has been used to locate all occurrences
of particular words or lemmata, which then have been annotated exhaustively.

In the course of this thesis, we worked on the task of finding non-canonical grammatical
constructions in large corpora. A non-canonical construction (NCC) deviates from the canonical
construction predominantly used in a language, e.g. the subject-verb-object order in English. For
example, the ordering of information given by a sentence is changed from the default to focus
on a particular fact (Figure 6.5).

1. [S: The media] was now [V: calling] [O1: Reagan] [O2: the frontrunner].
(canonical)

2. It was [O1: Reagan] whom [S: the media] was now [V: calling] [O2: the frontrunner].
(non-canonical: it-cleft)

Figure 6.5: Examples of a canonical and non-canonical variant of a sentence (cf. [75])

As NCCs appear with a relatively low frequency (cf. [17]), a corpus-based linguistic study
requires analyzing a large corpus. Furthermore, some NCCs are ambiguous on the surface.

156 6 Interactivity



Data
selection

Distributed
annotation

Merging

Conflict
resolution

Figure 6.6: Partially distributed process
used in SALSA [37]

Query

Annotation

Evaluation

Aggregation

review
annotations

refine
query

Figure 6.7: Annotation-by-query process
(fully distributed)

Even for an expert, it is sometimes difficult to decide if a construction is non-canonical. A more
detailed description of NCCs is given in Section 6.1.4. Our task was to develop a methodology
and a tool by which the linguists could find as many non-canonical constructions with as little
effort as possible.

Thus, we needed an approach in which searching is an integral part of the annotation process.
Because we search for specific constructions which are ambiguous on the surface, not all search
results would be proper matches. On the other hand, we did not require any sophisticated
annotations. It was sufficient to annotate whether the sentences returned as the result of a
search contained the construction in question or not. Due to our annotation team working in
different locations, we required a fully distributed process (Figure 6.7). This means that every
member of the annotation team can perform any of the steps independently from the other
team members. This is different from the partially distributed process used while creating the
SALSA corpus (Figure 6.6), where only the annotation step was distributed to the annotation
team. First, all sentences with a specific predicate were selected. Then, all these sentences
were annotated. In this way, the corpus was annotated one predicate at a time. The sentences
were distributed to the annotators who annotated them independently. Their annotations were
merged by an adjudicator who also resolved any conflicts.

In this section, we revisit the concept of integrating a linguistic search engine with an anno-
tation editor [74] and define a new, fully distributed process for the annotation of ambiguous
phenomena in large corpora. We also present a new tool called CSniper for distributed annota-
tion supporting this process. Finally, the process and the tool are discussed in the context of our
task of finding non-canonical constructions.

6.1.2 State of the art

In this section, we briefly examine existing tools and approaches which are useful for the iden-
tification of infrequent phenomena in large corpora. These cover in particular pre-annotating
the corpus with an initial set of annotations that can be used for querying, tools for querying
corpora, and different approaches to multi-user annotation.

6.1.2.1 Bootstrapping

Manually and exhaustively annotating a corpus is a tedious process. In the case that no ade-
quately annotated corpus is available, automatically pre-annotating (bootstrapping) a corpus

6.1 Search and annotation 157



with automatically created annotations can facilitate the process by reducing the work of
the human annotators to reviewing the annotations and correcting mistakes. A second use
of bootstrapping is the creation of annotations which are not corrected, but used as a basis for
higher-level annotations, e.g. to perform a linguistic search over the corpus, locating passages
particularly interesting for the research task at hand. This second use is of particular interest in
the present context.

GATE Teamware [30], for example, provides explicit support for bootstrapping. When an an-
notation project is set up, the tool allows setting up a workflow which mixes automatic analysis
tasks with manual annotation tasks. Such a workflow may start with an automatic annotation
task to bootstrap a corpus e.g. using a simple, rule-based approach. This could be followed by
a manual annotation task, in which the results from the rule-based approach are corrected. The
manually corrected data could be used by a third task to train a classifier which is then used to
pre-annotate additional documents. In a final step, these additional documents could again be
corrected manually.

The UAM Corpus Tool [168] also offers a simple form of bootstrapping with its autocoding
feature. It allows the user to specify rules consisting of a pattern and a label. Whenever the
pattern matches, the match is automatically annotated with the label.

6.1.2.2 Linguistic search

The ability to perform linguistic searches is provided by two kinds of tools: either as a conve-
nience by annotation tools, or by dedicated linguistic search engines.

Search functionality in annotation tools
Some annotation tasks exhaustively analyze a given data set, e.g. scanning through every

sentence in a corpus to mark named entities. This significantly limits the amount of data which
can be analyzed by a human annotator. Assuming only one in a thousand sentences includes a
named entity, this would be a very time-consuming approach. Thus, for infrequent phenomena,
the ability to efficiently locate those passages which are relevant for annotation is an important
aspect.

One of the analysis tools permitting the user to search through the corpus is SALTO [36].
The tool integrates the TIGERSearch [138] engine for searching over treebanks. It is reported
that this search functionality was used during the SALSA project [37] to annotate role-semantic
information lemma-by-lemma. In SALTO, the ability to perform a search and to distribute the
results to the annotation team is limited to the admin role.

GATE Teamware also supports annotation in a distributed multi-user scenario. It integrates
ANNIC [15] as a tool for searching corpora via JAPE patterns. However, this functionality is
only available to the manager role in an annotation project, not to the annotators (cf. [79]).

Compared to this, we deal with a corpus which is too large for comprehensive annotation
and in which the interesting phenomena are difficult to find. Additionally, we require that every
member of the annotation team is able to perform searches.

Linguistic search engines
A linguistic search engine can be employed to search for the relevant passages. It works

quite differently from a regular search engine used in information retrieval (IR) which locates
documents and ranks them by relevance. For example, if a search term occurs only once in
a large document, an IR search engine may rank it less relevant than a short document often
containing the search term. Such a notion of relevance is usually not desired in an annotation
task where a query is in fact a pattern, e.g. a regular expression. Thus, relevance is a binary
decision as the annotated text either matches that pattern or not.

158 6 Interactivity



a) Collaborative annotation b) Distributed annotation

Figure 6.8: Modes of multi-user annotation

Various linguistic search engines exist, focusing on different kinds of annotated corpora. The
IMS Open Corpus Workbench [77] is particularly well-suited for searching over corpora with
annotations on the level of tokens, e.g. part-of-speech or lemma annotations. There is limited
support for non-overlapping structural annotations above the level of tokens, like sentence or
document boundaries. However, it is not at all suited for structures such as parse trees or de-
pendency relations, neither in terms of the underlying technology nor in terms of the query
language. TGrep2 [187], Fangorn [101], or TIGERSearch [138] on the other hand target par-
ticularly the search over parse trees. These engines use specialized indexes to deal efficiently
with dominance and sibling relations in parse trees and offer special operators for building con-
cise queries over trees. Finally, ANNIS [233] supports a wide array of linguistically relevant
structures and relations. It allows including multiple linguistic layers in a query, e.g. building
a query with restrictions on the constituency structure, dependency relations, and tokens at
the same time. To support this wide array of annotations, ANNIS had to make concessions on
performance. TGrep2 or the IMS Corpus Workbench can operate comfortably on hundreds of
millions of tokens, whereas ANNIS is limited to hundreds of thousands.

While these engines are well-suited for locating relevant passages in corpora, they do not
allow immediately working further on these results, in particular to annotate these passages.

6.1.2.3 Multi-user annotation

In a multi-user annotation scenario, a group of annotators works together on a corpus. We
distinguish between two modes of operation (Figure 6.8):

• Collaborative annotation – all annotators work on the same set of annotations.
• Distributed annotation – there is one set of annotations per annotator.

In both modes, the annotators work on the same set of documents.

Collaborative annotation
In a collaborative annotation scenario, all annotators work jointly on the same annotations.

Interaction between the annotators is explicitly promoted and the work can be effectively shared
between the annotators. However, the quality of the analysis cannot be assessed objectively,
because there is no hard evidence if the annotators actually agree on the collaboratively created
analysis results and double checked the results of their fellows.

Collaborative annotation does not appear to be widely used. The currently possibly most
prominent collaborative analysis tool is Brat [204]. Most literature does not make an explicit
distinction between collaborative and distributed modes of annotation. So much work referring
to collaborative annotation actually describes a distributed annotation mode. However, at least
since the advent of Brat, this distinction is an important one to make.

6.1 Search and annotation 159



Distributed annotation
In a distributed annotation scenario, each annotator produces their own annotations. These

can typically not be seen by fellow annotators to avoid unsolicited bias. Every annotator gener-
ally needs to put the same effort into the annotation task, as every one performs a full analysis of
the corpus. The quality of the analysis can be assessed by comparing the results from different
annotators with each other and calculating inter-annotator agreement.

Distributed annotation is common. Older analysis tools, e.g. SALTO [37], use client software
and rely on a shared file system or database. Modern distributed analysis tools rely on web
services, e.g. GATE Teamware [30], or are fully browser-based, e.g. WebAnno [232].

6.1.3 Contribution: An approach to the annotation of infrequent phenomena in large
corpora

Existing approaches to distributed and collaborative annotation and the supporting tools are not
well suited for the annotation of infrequent phenomena in large corpora. Some analysis tools
provide support for automatically pre-annotating a corpus. However, these analysis tools do
not offer sufficiently powerful search facilities to search large corpora and to interactively locate
relevant passages. Linguistic search engines are capable of searching through large corpora, but
they do not allow the users to annotate the search results.

To address the lack of a solution for annotating infrequent, ambiguous phenomena in a large
corpus, we built up on the concepts presented by Eckart de Castilho et al. [74], and developed
these ideas into the annotation-by-query process and the supporting tool CSniper [50; 75]. The
approach and the tool distinguish themselves from others by addressing at the same time the
corpus explorer role and the annotator role while operating on large corpora.

6.1.3.1 Process

The annotation-by-query process targets specifically the annotation of infrequent, ambiguous
phenomena in large corpora. In contrast to a regular annotation process, not the annotation of
documents but the search for relevant passages is at its core. The annotation is then performed
on the search results only. It is this integrated approach to search and annotation which enables
working with large corpora.

The process consists of four steps (Figure 6.7 on page 157): query, annotation, monitor-
ing, and aggregation. While annotation, monitoring, and aggregation are standard steps for
a distributed annotation process, the preceding query step as well as the query refinement are
particular to the annotation-by-query process.

We opted for a distributed approach in which every annotator produces their own results,
not for a collaborative approach where all annotators work on a common set of results. Conse-
quently, an aggregation step to consolidate the annotations in a final analysis result is included
in the process, as well as the possibility to calculate inter-annotator agreement. The query-
based approach requires new solutions for reviewing annotations and to ensure that there is a
sufficient number of overlapping annotations to calculate inter-annotator agreement.

Because every member of the annotation team can perform all steps independently from the
other team members, we call our processes a fully distributed approach. This is in contrast
to the partially distributed SALSA process where only the annotation step is performed by the
annotation team while data distribution and aggregation can only be done by a team supervisor.

Next, we describe the four steps of the process in detail. Later, we will describe how the
individual steps of the process have been implemented in our tool CSniper, starting with Sec-
tion 6.1.3.4.

160 6 Interactivity



Query
The annotator starts by running a query over the corpus to locate occurrences of the linguis-

tic phenomenon in question. In order to locate relevant passages, the linguistic intuition of the
annotators plays an important role. This intuition helps them to design a query that charac-
terizes the phenomenon they are looking for. The query represents an initial hypothesis about
the linguistic structures expected in these passages. It can be refined up to a point where the
annotator observes a subjectively sufficient number of the phenomenon in the results, before
beginning with the actual annotation.

The query may be substituted by an alternative mechanism which extracts potential occur-
rences of the phenomenon from the corpus. For example, machine learning may be used to find
new passages which are very similar to passages that are known to contain the phenomenon.

Annotation
When a query yields good results, the annotator begins with the actual annotation task.

Most likely, not all the query results are actually occurrences of the desired phenomenon. If
that were the case, a simple rule-based annotation process would have been sufficient. On
the contrary, results may require a detailed inspection of the surrounding document context in
order to determine if they are an occurrence of the phenomenon in question or not.

Monitoring
The monitoring of annotation and query quality is an integral part of the process. There are

two measures that can be monitored:

1. Query quality – The monitoring of the query quality is, to our knowledge, unique to the
annotation-by-query process. After a user has annotated several results of a query, the pre-
cision of the query can be estimated, assuming that the occurrences of the phenomenon
are distributed equally within the query results. Individual annotators can use this infor-
mation to refine their queries by intellectually comparing the structure of their queries
to synthesize a new one. The annotation team can use it to discuss promising querying
strategies. Additionally, a systematic review of the queries used by the team can help the
annotation team to come up with ideas for new queries that may cover variants of the
desired phenomena not covered so far.

2. Inter-annotator agreement – Assessing the inter-annotator agreement is the second aspect
of monitoring. While the overall inter-annotator agreement can be used to assess the
general quality of annotations, looking in detail at disagreeing annotations helps to find
particularly difficult examples that can be used to improve the annotation guidelines. This
aspect is not specific to the annotation-by-query process, but is rather part of a distributed
annotation process in general.

Aggregation
As every annotator in a distributed annotation process creates their own results, these even-

tually need to be aggregated into a final result. This aggregation can be done manually or
automatically. As the query-by-annotation process is intended to be fully distributed, we opt for
an automatic aggregation process. The aggregation strategies can range from a simple majority
vote to manual curation.

6.1 Search and annotation 161



Bootstrapping and loading Annotation data

CQP
Index

TGrep2
Index

Serialized CAS
Documents

...

CQP
Engine

TGrepEngine

Context
Provider

Serialized 
Context
Provider

SearchEngine

CQP
Context 
Provider

...

......

Database

DKPro Core 
Workflow

Corpus

Repository

Review

Annotation Evaluation

By 
Type

By 
Query

Query Complete Find
Fr

on
te

nd
B

ac
ke

nd
C

or
pu

s 
da

ta

RepositoryImpl

Figure 6.9: CSniper architecture overview

6.1.3.2 Architecture

To support the annotation-by-query process, we implemented a web-based tool called CSniper
[50; 75]. Its overall architecture is divided into five parts (Figure 6.9 on page 162): fronted,
backend, corpus data, annotation data, and bootstrapping.

Frontend
The browser-based frontend provides the user interface and user actions. Before annotating,

the types of phenomena can be defined along with goals, i.e. how many occurrences of the
phenomena the annotation team aims to locate. For annotation, actions include searching for
phenomena, annotating search results, and reviewing annotations. It is also possible to monitor
the state of annotations and evaluate inter-annotator agreement for certain phenomena or to
examine the quality of queries. Auxilliary features, such as user management, are not covered
in this thesis.

Backend
The frontend interacts with pluggable search engines and context providers, which provide

access to the annotated corpora. Search engine plug-ins allow running a query over a corpus
using a specific search engine. A context provider plug-in allows getting context for a search re-
sult, e.g. the preceding and the following text, optionally with annotations, which the annotator
may need to decide whether a result is a true occurrence of the desired phenomenon.

Corpus data
Annotated corpora used by the tool need to be prepared in a set of different formats. Each

search engine plug-in typically uses its own index format. E.g. we provide search plug-ins
for TGrep2 [187] and for the IMS Open Corpus Workbench [77], which use their own index
formats each. Context provider plug-ins have different requirements, e.g. the requirement to

162 6 Interactivity



Figure 6.10: CSniper type definition form

retrieve corpus data with their original line breaks and spacing, or the requirement to display
annotations which are not included in the search indexes. Thus, they may again use their own
data format. We include two context providers, one using the index of the IMS Open Corpus
Workbench search plug-in and another one using serialized UIMA CASes which include the full
annotation information.

Bootstrapping and loading
The search plug-ins used by CSniper require certain metadata to be encoded in the search

indexes. This includes a collection ID, a document ID, and the offsets of words and sentences
within the respective documents. This information is necessary for the context provider plug-ins
to locate the context of a search result. The collection ID, document ID, and offsets are also used
to anchor annotations created in CSniper to the corpus data.

The DKPro Core collection (Section 5.2) includes components capable of writing indexes
for the IMS Open Corpus Workbench and for TGrep2 containing the metadata that CSniper
requires. It also includes a component to write the serialized UIMA CASes. This permits users
to use analysis components integrated into DKPro Core to preprocess corpora before using them
with CSniper. Alternatively, readily annotated corpora in various formats are directly supported
by DKPro Core and can easily be converted. Such preprocessing or conversion workflows can be
easily created and shared with other researchers as portable, executable workflows as suggested
in Section 4.1.

Annotation data
In the current implementation of CSniper, the corpus data is read-only data, including any

pre-created annotations. In particular, the currently used search engines do not support up-
dating their indexes on-the-fly. For this reason, and in order to better support the monitoring
functionality, all annotations made by the users are stored separately in a relational database.

6.1.3.3 Setting up types

Before the annotation can start, a set of interesting types of phenomena must be configured
(Figure 6.10). The type definition consists of the name of the phenomenon and a guideline for
the annotators. The guideline explains the phenomenon, how it can be identified, and possibly
some examples. It is always visible on screen during the annotation process. A simple markup

6.1 Search and annotation 163



Figure 6.11: CSniper query form

language [127], as it is used in wiki webs, is supported to visually style the guideline. It supports
features such as marking headings, italic text, bold text, or pre-formatted text.

It is possible to define goals, e.g. how many occurrences of the phenomenon the annotation
team aims to find. The goals are used to measure the progress of the annotation team.

By default, annotators can only make default annotations: mark a search result as correct or
wrong depending on whether it contains the desired phenomenon and leave a personal com-
ment. However, it is possible to define arbitrary extra features which show up as additional
columns in the annotation user interface.

6.1.3.4 Annotation

Next, we describe the user interface in CSniper used to perform the annotations. As man-
dated by the annotation-by-query process, this includes functionality for performing queries and
annotations.

The user interface for performing queries has an intentionally simplistic design (Figure 6.11).
Before any further action can be performed, the user must choose a corpus to work on and the
type of phenomenon under examination. After that selection has been made, additional actions
appear: query, review, complete, and find. Each of these actions retrieve results which can be
annotated. We will first explain querying and annotation, before addressing the other actions.

Query
CSniper does not provide an abstraction over the query languages used by different search

engine plug-ins. The query is passed on verbatim or with only minor additions to the underlying
search engine. Thus, a search engine needs to be selected before a query can be entered. Passing
the query directly to the search engine has several benefits. Users already familiar with the
underlying search engines and their query languages do not need to learn an additional query
language. Also, all features of the individual query languages can be used. New search engines
can be integrated easily. However, there are also drawbacks. E.g. it is currently not possible to
query multiple engines at the same time, e.g. in order to combine a query over the syntactic
structure in TGrep2 with a query over lemmata in the IMS Open Corpus Workbench. If the query
capabilities of individual search engines separately are not sufficient, it may be the easiest to
implement a new plug-in to support a search engine with a more powerful query language, e.g.
ANNIS.

Annotation
The query results are sentences which are displayed as a table. If the search engine supports

identifying which part of the sentence matched the query statement, then a keyword-in-context
presentation is used instead of a simple table (Figure 6.12 on page 165).

164 6 Interactivity



Figure 6.12: CSniper query result and annotation interface (data: BNC [28])

If the query results do not match the desired phenomenon to the satisfaction of the user, the
query can be refined. To help the user refine the query, it is possible to display the parse tree for
each query result and the context of the result, including part-of-speech tags.

If the results appear satisfactory, the user can start annotating. Each query result, i.e. each
sentence, can be annotated with one of the following labels:

• Correct – the search result matches the desired phenomenon.
• Wrong – the search result does not match the desired phenomenon.
• Check – the annotator is unsure and wants to get back to this result at a later time.
• No label – the search result is not annotated.

The annotation is performed by simply clicking into the label column in the row of the re-
spective result (Figure 6.12). Clicking multiple times iterates through the different labels. If
additional features have been defined for the selected type (cf. Section 6.1.3.3), these are also
shown as additional columns and can be edited. In any case, each user can only see and edit
their own annotations.

Reviewing annotations
Generally, there is no perfect agreement between annotators in any annotation task. There

can be many reasons for this, e.g. true ambiguity, misinterpretation of the data, unclear anno-
tation guidelines, or simply the annotator getting tired after a while. In any case, it is helpful
for the annotation team to review their annotations from time to time, in particular those that
the annotators do not agree upon.

The review mode allows each user examine and change their own annotations without per-
forming a query. It is also possible to look specifically at disputed results on which the annotators
do not agree. When examining disputed results, they also include results the user has not yet
annotated, but which other members of the team have annotated and do not agree upon.

This mode is particularly useful when the annotators set up a meeting and can interactively
discuss individual results and their annotations. The disputed results yield good new examples
to be added to the annotation guidelines.

Ensuring multiple annotations per result
Every annotator is supposed to use his or her own linguistic intuition to create queries for

those phenomena they are interested in. These queries are not shared between the annotators.
In the worst case, every annotator may work on completely different search results. In the
worst case, inter-annotator agreement would not be measurable, because every result has been
annotated only by a single person.

6.1 Search and annotation 165



The analysis tool needs to implement a concept to avoid this situation. In CSniper, this is
realized by an annotation mode called complete. In this mode, the user does not enter a query,
but is presented with all search results that any fellow annotator has already annotated, but the
current user has not. The annotation team should define regular intervals in which this function
is used to make sure that all results have been annotated by all team members.

The current implementation of this concept could be further improved to allow the annotation
team to reach their annotation goal faster. Consider the goal of finding 1,000 occurrences of
the desired phenomenon. After some time, the annotators have repeatedly marked many of the
search results as wrong and only a few have been marked repeatedly as correct. In order to meet
the goal more rapidly, the complete feature could preferably present results to the user which
already have been annotated as correct by fellow annotators.

Focusing on relevant results
While following the annotation-by-query process and using the tool CSniper, we observed

that after some time, the annotation team had annotated those results which could be found
by queries with a high precision. In order to find additional occurrences of the phenomena, it
was necessary to relax the queries, which in turn led to many more results which needed to be
inspected – most of them irrelevant.

To address this issue, we introduced an annotation assistant functionality called predict.
It trains a classifier on already annotated results for the phenomenon in question (cf. Sec-
tion 6.1.3.4) and uses that to classify the results of the query the user is currently working on
as predicted correct or predicted wrong. By sorting the results according to their predicted label,
the user can focus on more relevant results when a query is relaxed.

Figure 6.13: CSniper annotation suggestion configuration dialog

Because the user can select which members of the annotation team the classifier should be
trained on, this functionality also provides a way for users to indirectly interact with each other
without being able to see the annotations of the other annotators. We believe that an annotator
objectively judges the suggestions from the classifier and is less likely to be biased by its sug-
gestions. The ability to see annotations from trusted fellow annotators may cause a stronger
bias.

The data on which the classifier is trained can be configured to include only annotations
from certain members of the annotation team and to include only annotations that meet a
certain quality (Figure 6.13). The quality control settings are described in detail in the next
section (Section 6.1.3.5).

The machine learning functionality currently integrated in CSniper is training a tree kernel
support vector machine on constituency parse trees using SVM-LIGHT-TK [162; 124]. The con-
stituency structure, the part-of-speech tags, and the words themselves are the only features
currently being taken into account.

166 6 Interactivity



Finding results automatically
The occurrences of a phenomenon that can be found by a query are limited by the intuition of

the query writer. For this reason, we implemented a second annotation assistant functionality
called find using the same classifier training mechanism as before. The predict feature described
in the previous section was applied only to the results of the last search. However, the find
feature allows the user to train a classifier based on the already annotated results for the phe-
nomenon under examination and then applies this classifier to all sentences in the corpus. This
feature aims to exploit the ability of the classifier to generalize over the training data in order
to find new occurrences of the phenomenon that have not been covered by queries yet.

Because a corpus can be large and actually classifying all sentences may take too much time
in the current implementation, the corpus is partitioned into batches of 1,000 sentences each,
which are then randomly selected and classified. The process terminates when 1,000 positively
classified results have been found. As even this may take a long time, the process can be
interrupted at any time, delivering all positively classified results up to this point.

6.1.3.5 Monitoring

The monitoring functionality provides the annotation team with information about the state of
their annotation project. Progress and quality can be observed from two vantage points: based
on the annotated results and based on the queries. In both cases, the quality measures depend
on how the annotations from different users are aggregated into the result which is evaluated.
This aggregation happens on demand and its results are not persisted. However, a user can
export the aggregated results to a file, e.g. to further evaluate them in another tool.

Aggregation
CSniper uses a configurable automatic aggregation which does not require the annotation

team to perform an explicit curation step. The same aggregation mechanism is also used when
generating the data for training the classifiers mentioned previously.

The aggregation process is controlled using two parameters set by the user, e.g. when moni-
toring results (Figure 6.14 on page 168) or when configuring the automatic prediction of labels
(Figure 6.13 on page 166).1

• Participation threshold – the proportion of members of the annotation team who are
required to annotate a result before it is considered to be annotated. With a threshold
of 0, all results that have been annotated by at least one team member are taken into
account. With a threshold of 1, a result must have been annotated by all team members,
otherwise it counts as incomplete. The participation for a result is calculated by dividing
the number of correct and wrong labels by the annotation team size:

par t icipation() =
cor rect +wrong

teamsize
(6.1)

• Confidence threshold – the extent by which the majority has to win over the minority. A
confidence threshold of 0 results in a simple majority vote and a result is only considered
disputed if there is a draw. A threshold of 1 requires all annotators to agree, otherwise
the result is considered disputed. The confidence towards a result being correct or wrong
is calculated as follows:

con f idence(label) =
label

max(cor rect, wrong)
label ∈ {cor rect, wrong} (6.2)

1 Note that the participation threshold is shown as user threshold in these figures.

6.1 Search and annotation 167



Figure 6.14: CSniper inter-annotator agreement monitoring (data: BNC [28])

The aggregation process assigns one of the following labels to each search result:

• Correct – the search result matches the desired phenomenon.
• Wrong – the search result does not match the desired phenomenon.
• Disputed – a sufficient number of annotators have annotated the search result (as con-

trolled by the participation threshold), but the difference between the number of correct
and wrong labels assigned by the annotators is not above the specified confidence threshold.

• Incomplete – at least one annotator has annotated the search result, but the proportion of
team members who have annotated the search result is below the participation threshold.

Result-based monitoring
CSniper provides a detailed account over the state of annotations (Figure 6.14). After select-

ing a corpus, a type (cf. Section 6.1.3.3), and the users whose annotations to take into account,
a tabular overview over all matching annotated results is provided. This includes how often
each result was annotated as correct and wrong, how many of the selected users have not yet
annotated the result, the aggregated result according to the current quality control settings, and
the confidence.

A pie-chart provides a visual indication of the current agreement and shows the total number
of correct, wrong, and disputed results after aggregation. Note that we did not include the
incomplete results in this chart. It is easy for a single user to generate new incomplete results
by annotating results that have not been annotated before. This led to some users finding it
frustrating to see the number of incomplete items grow all the time. To avoid this, we introduced
the ability to define goals for each type and display the progress towards the goals (Progress
chart in Figure 6.14). Progress towards the goals is calculated based on the specified values for
participation threshold and confidence threshold.

E.g. if the goals have been set to 500 correct and 500 wrong results for a specific type, and if –
based on the thresholds – the results from the annotation team are aggregated into 250 correct,
700 wrong, 100 disputed, and 50 incomplete results, then the progress for the type is 75%:

progress() =
min(cor rect, goalcor rect) +min(wrong, goalwrong)

goalcor rect + goalwrong
(6.3)

168 6 Interactivity



Query-based monitoring
It is also possible to examine the state and progress of annotations based on the queries (Fig-

ure 6.15). Progress for queries is tracked relative to the number of results that a query produces.
Again, quality control settings based on the participation threshold and the confidence thresh-
old are used to define how the aggregation of annotations by different users is performed. The
precision of a query is calculated from the results labeled as correct by the aggregation process.
However, if not all results of the query have been annotated yet, this number is misleadingly low.
Assuming an equal distribution of correct results across the whole query, an additional estimated
precision is provided, which aims to better approximate the true precision of the query.

Figure 6.15: CSniper query quality monitoring

Additionally, it is possible via the query-based monitoring to see queries that other team
members have come up with. These can serve as a starting point or inspiration for new queries,
e.g. in order to increase precision or to find additional occurrences of a phenomenon which are
not covered by existing queries.

6.1.4 Identification of non-canonical constructions

The annotation-by-query approach and the CSniper tool were used by linguists in a research
project for the identification of non-canonical constructions. A non-canonical construction
(NCC) deviates from the canonical structure predominantly used in a language, e.g. the subject-
verb-object order in English. The use-case given is a summary of what has been described by
Eckart de Castilho et al. [75] and Radó [182].

Some examples for such NCCs are given in Figure 6.16. Even though these examples all
express the same fact, the variation in the ordering of information puts certain information into
the focus and yields different effects on the levels of discourse and pragmatics.

1. [S: The media] was now [V: calling] [O1: Reagan] [O2: the frontrunner].
(canonical)

2. It was [O1: Reagan] whom [S: the media] was now [V: calling] [O2: the frontrunner].
(it-cleft)

3. It was [S: the media] who was now [V: calling] [O1: Reagan] [O2: the frontrunner].
(it-cleft)

4. It was now that the [S: the media] were [V: calling] [O1: Reagan] [O2: the frontrunner].
(it-cleft)

5. [O1: Reagan] [S: the media] was now [V: calling] [O1: Reagan] [O2: the frontrunner].
(inversion)

Figure 6.16: Example of a canonical sentence and several non-canonical variations (cf. [75])

6.1 Search and annotation 169



The different kinds of NCCs appear with a relatively low frequency in corpora, some more
frequent than others. For this reason, a large corpus is required in order to perform a corpus-
linguistic study of these phenomena.

Additionally, the phenomena are ambiguous on the surface. For example, an it-cleft construc-
tion needs to be distinguished from an anaphoric it or from constructions using true relative
clauses (cf. Figure 6.17). The annotator requires access to the larger context in order to disam-
biguate such cases.

6. London will be the only capital city in Europe where rail services are expected to make a
profit,’ he added. It is a policy that could lead to economic and environmental chaos.

(anaphoric) [BNC: A9N-s400]
7. It is a legal manoeuvre that declined in currency in the ’80s.

(relative clause) [BNC: B1L-s576]

Figure 6.17: Example of surface ambiguity of it-cleft constructions (cf. [75])

Bootstrapping workflow
For the corpus linguistic research on these NCCs, we used the British National Corpus (BNC)

[28] and the TüBa-D/Z [216]. These corpora are already pre-annotated for several linguistic
features, such as segmentation, part-of-speech tags, lemma. TüBa D/Z also includes syntactic
constituency information, while this information is not part of the BNC.

Using DKPro Core, we converted these corpora to the index and document formats used by
CSniper. Where necessary, more annotations were added, to offer the same depth of analysis on
all corpora. In particular, we parsed the BNC with the Stanford parser using a factored parser
model [131]. We used DKPro Core (Section 5.2) and DKPro BigData [61] to set up an analysis
workflow with this parser and to run it on an Apache Hadoop [8] cluster.

Analysis workflow
Using these pre-annotated corpora, the annotators were able to express their linguistic knowl-

edge and intuition about the NCCs they were looking for as queries. The annotation team
started with queries based on part-of-speech and lemma patterns using the IMS Open Corpus
Workbench engine. While these queries worked very well for some NCCs, e.g. It-cleft sentences,
they were not well suited for others, e.g. NP-preposing (Figure 6.18). These could be better
captured by queries over the constituency structure using the TGrep2 engine.

NP-preposing:
A noun-phrase object of the verb appears before the subject in sentence-initial position.

8. A bagel I can give you. (NP-preposing)
9. Basketball, I like a lot better. (NP-preposing)

Figure 6.18: Examples of NP-preposing from the annotation guidelines used by Eckart de
Castilho et al. [75]

The granularity level for search results is a sentence. The corpora already contained an
annotation of sentence boundaries. We kept the annotation process simple by asking that users
only annotate if a search result contains the NCC in question. We did not ask where exactly the
NCC is located within the sentence. This binary annotation was sufficient for the annotators to
quickly process the results and the linguists to perform their study (cf. [182]).

170 6 Interactivity



Reception
In summary, the annotation-by-query process and the CSniper tool were well-received by the

annotation team of at times up to six people, consisting of linguists, computational linguists, and
computer scientists. Although the approach does not find all occurrences of a particular phe-
nomenon, it allows the annotation team to find many occurrences with a relatively low effort.
The embedded machine learning functionality further helped to find additional occurrences
which were not covered by the queries.

The requirements for special interactions supporting the annotation-by-query process, such
as the ability to review and the support for ensuring multiple annotations per result, were
direct consequences of applying the process in the distributed team. Also, the ability of adding
arbitrary custom columns to the annotation user interface was a user requirement. It was used
to further classify the sentences in which certain NCCs appeared. E.g. in case of PP-inversion2,
it was recorded whether the first constituent of the sentence was a pronoun or not, whether it
was anaphoric or elliptic, whether the PP was locative or directional, etc.

6.1.5 Summary

We have presented the annotation-by-query approach of querying a corpus for sentences match-
ing linguistic patterns, annotating them, monitoring the progress and quality of the annotations,
and automatically aggregating annotations from multiple annotators based on quality thresh-
olds. The approach is well-suited for annotation tasks that require manual analysis over large
corpora to locate ambiguous phenomena on the basis of queries and subsequently annotate
these manually by a team of annotators.

In order to use the annotation-by-query approach, pre-annotated corpora are required, based
on which linguistic queries can be formulated. This highlights the aspect of interaction be-
tween automatic and manual annotation in this process, as these corpora can be created using
automatic analysis workflows. In the present case, we used workflows based on DKPro Core
(Section 5.2), which read existing annotated corpora, augmented the annotations, and pro-
duced the index formats used by the search engines underlying CSniper. Of course, these
indexes can be used without CSniper, directly with the respective tools, e.g. the IMS Corpus
Workbench or TGrep2.

A further opportunity for the integration of automatic analysis with the manual annotation
process was taken by using a machine learning approach to help the human annotators focus
on particularly relevant results in cases that queries yield too many irrelevant results. This also
augments the distributed working mode itself, because it allows the users to indirectly interact
with each other.

A unique feature of our approach is that all members of the annotation team are equal.
There is no administrator or curator role with additional privileges, such as distributing work or
aggregating results. This works well for the binary correct/wrong annotations that we needed
in our task. Future research might examine how to extend this approach to more complex
kinds of annotations, and how such an approach could be used to set up an open annotation
platform to host distributed annotation projects for e.g. constituency parses, dependency parses,
coreference analysis, etc. For example, consider an online annotation platform which contains
a certain corpus. Many groups of researchers working on that corpus could create and share
their annotations and their guidelines there. Such a platform would provide a completely new
way for language researchers to interact and cooperate with each other.

2 From the guidelines used in the project: The subject appears in postverbal position and some canonically postver-
bal object (PP) is moved into preverbal position. The PP has to be at the beginning of the sentence. Example: “On
the left is the kitchen”.

6.1 Search and annotation 171



172 6 Interactivity



7 Conclusion

In this thesis, we have studied the integration of automatic analysis of text with manual anal-
ysis. Due to the current trend of combining natural language analysis with questions from the
humanities, this is an important topic. In collaboration with researchers from the humanities,
we developed a scenario which illustrates the cooperation of a linguist, a computer scientist,
and a computing center operator (Figure 7.1). This scenario and the issues that it highlights
are prototypical of collaborations between humanities and computer science researchers.

We have grouped the issues discovered in this scenario by four general principles: repro-
ducibility, usability, flexibility, and interactivity. To facilitate the integration of automatic and
manual analysis, we have addressed all these issues, while observing that improving support for
one of these principles does not come at the expense of another one. We now summarize our
contributions towards each of these principles in turn.

Reproducibility

We summarize our contributions towards reproducibility under two aspects: portability which
promotes the sharing of analysis workflows between researchers, and automatization which
removes error prone manual steps from experimental setups.

Portability
An important aspect in our scenario is the assembly and exchange of automatic analysis

workflows between the different parties, in order to reproduce results or to apply the analysis
workflows to new data.

Research question requires 
analysis of large corpora

Assemble basic linguistic 
analysis workflow from readily 

available components

Linguist Computing Center Computer Scientist

Assmebling 
components 

into workflows 
is too complex.

No comprehensive  set 
of interoperable 

analysis components is 
available.

Process subset of the corpora

Process the complete corpora
with basic linguistic analysis 

workflow

Explore and annotate 
processed corpora

Extend analysis workflow with 
additional custom components 

to train a classifier

Optimization of workflow 
parameters

Train classifier on additional 
annotated data

Process the complete corpora 
with extended analysis 
workflow and classifier

Final evaluation of results to 
answer research question

Workflows are not 
 transferrable.

Workflows are not 
easily deployable to 

a cluster.

Automatic analysis 
tools, exploration and 
annotation tools are 
not interoperable.

Workflows and 
components are not 

debuggable and 
refactorable.

Workflows that change 
dynamically via 

parametrization are not 
readily supported.

Annotation 
categories are not 

customizable.

There is no tooling 
to selectively 

annotate large 
corpora.

Implementing 
custom 

components is 
too complex.

Initial exploration, annotation 
study, and definition of 

categories

1

2

3

4

5

8 9

10

6

7

The analysis 
components must 

be controllable.

11

Figure 7.1: Use case: a linguist and a computer scientist collaborate on analyzing a large corpus

173



We have observed that current approaches to describing automatic analysis workflows do not
contain sufficient information to take a workflow from one computer and run it on another com-
puter. In particular, there are no versioned references to analysis components and resources. An
approach is required which allows describing analysis workflows in a concise and self-contained
manner.

We also noted that current approaches that aim to provide easily usable and reproducible
analysis workflows tend to rely on third-party web services. This prevents the researcher from
maintaining control over the experimental setup. The setup is subject to decay as these third-
party services are upgraded or as they become unavailable. In order to maintain control, the
experimental setup must rely on portable software and resources which allows each researcher
to maintain their own copies.

Additionally, we have found that current approaches to packaging resources, e.g. part-of-
speech tagger or parser models, and distributing them via repositories make it difficult to share
the resources across different analysis tools, component collections, and processing frameworks.
For example, often resources are packaged directly with the analysis components that require
them, instead of being distributed separately.

Our use-case scenario (Figure 7.1 on page 173) lists the issues mentioned above as:

4 Workflows are not portable between computers.
5 Workflows are not easily deployable to a compute cluster.
11 The user has no control over workflows that rely on expert skills from a different domain,

undocumented knowledge, or third-party infrastructures, e.g. web services.

To address these issues, we have described an approach to implementing analysis workflows
in a self-contained manner based on portable analysis components and resources (Section 4.1).
We have demonstrated this approach using a Groovy script which references all required analy-
sis components and optionally all resources. Groovy is capable of automatically provisioning all
dependencies from a repository, e.g. Maven Central [149], to the computer on which it is run.
Such a script can be easily exchanged between the different parties in our scenario, allowing
each one to run the analysis workflow. This facilitates reproducing the experimental results of
other researchers, but it also facilitates applying the analysis workflow to new data.

As part of our approach, we have defined a best practice for packaging resources, so that only
one copy of the resource needs to be maintained in a repository, but that copy can be used by
different analysis tools, component collections, and processing frameworks (Section 3.1).

In addition to providing reproducibility, our approach provides usability because the user
does not need to manually download and install tools and resources.

In future work, the assembly analysis workflows for non-expert programmers should be fur-
ther facilitated. Writing a script requires prior knowledge about the available analysis compo-
nents, where they can be found, and the parameters of each component. An interactive tool
with a graphical user interface could allow the user to browse through the components and to
assemble them into an analysis workflow. The workflow could then be saved in an executable
form, e.g. as a Groovy script, so that it can be easily shared with other users.

Additionally, further research should examine how convenient solutions such as our approach
for addressing, packaging, and distributing resources can be extended to primary data and can
be combined with nascent metadata schemes like ISOcat [130] and the Component Metadata In-
frastructure (CMDI) [34]. While these schemes offer more detailed metadata, repositories using
them, e.g. the CLARIN Virtual Language Observatory [223], do not offer the same capabilities
of automatically downloading and using resources, as our Maven-based approach provides.

174 7 Conclusion



Automatization
We have observed that current processing frameworks do not readily support parameter

sweeping experiments in which analysis workflows are executed repeatedly with different sets
of configuration parameters. They also do not support workflows that change their structure
based on their parametrization. Additionally, they expect that a workflow can process the input
data one document at a time and do not support intermediate aggregation steps, e.g. counting
the number of all tokens in the data, and using the result of such an aggregation in further
processing steps. Alternative workflow engines tend to set up completely new development
environments, workflow description languages, and often target grid computing. This incurs
additional complexity in learning, developing, and debugging such workflows.

Our use-case scenario (Figure 7.1 on page 173) lists the issues mentioned above as:

9 Workflows and components are not sufficiently debuggable and refactorable.
10 Workflows that change dynamically via parametrization are not readily supported.

We have described an approach to analysis workflows that allows them to change their struc-
ture dynamically based on their parametrization, e.g. in parameter sweeping experiments (Sec-
tion 4.2). We follow a programmatic approach that allows computer scientists and other ad-
vanced users with programming skills to employ the debugging and refactoring capabilities of
modern integrated development environments. Our approach allows modeling workflows based
on tasks that need to be performed and on data dependencies between these tasks. These con-
cepts are implemented in a lightweight manner, which makes it easy to take arbitrary existing
analysis workflows and integrate them into a comprehensive experimental setup, thus removing
the need to manually run individual workflows and to manually forward data from one work-
flow to the next. Additionally, our concept of a parameter space integrates the ability to perform
parameter sweeping experiments. Dynamic workflows are enabled by the fact that our approach
allows changing data dependencies between tasks based on the current parametrization.

In future work, we plan to investigate how to facilitate the deployment of workflows built
with our approach on compute clusters. We plan to build on the recent DKPro BigData [61]
project, in order to deploy workflows to a cluster based on Apache Hadoop [8].

Usability

We have found that the analysis workflow descriptions used by current processing frameworks
tend to be long and verbose because many parameters have no sensible default values or no
default values at all. In particular those parameters that instruct an analysis component to use
a certain resource are typically mandatory and have no default value. An approach is required
to allow analysis components to automatically decide which resources they require based on
the data they are processing.

Also, we have noted that influencing the behavior of an analysis component using only simple
parameters is not sufficient in certain kinds of analysis workflows. E.g. when setting up a ma-
chine learning workflow, the user should be able to conveniently configure the feature extraction
without requiring special programming skills. Existing approaches to influence the behavior of
components via parameters do not sufficiently cover such cases. Alternative approaches, e.g.
using inheritance, require considerable programming skills.

Our use-case scenario (Figure 7.1 on page 173) lists the issues mentioned above as:

2 Assembling automatic analysis components into workflows is too complex.
8 Implementing new interoperable automatic analysis components is too complex.

175



We have described an approach that allows analysis components to address and acquire such
resources automatically at runtime, based on the data that is being processed (Section 3.1). Our
approach contributes to keeping analysis workflow descriptions concise, because it removes the
need to define the resources to be used for each analysis component, unless the user explicitly
wants to use a non-default resource. Also, the resources can be downloaded automatically at
runtime, which removes the need of deciding in advance which resources can be used.

We have described an approach to configuring the behavior of analysis components using the
strategy pattern of object-oriented programming (Section 3.2). This pattern is not sufficiently
supported by existing processing frameworks at the level of configuring analysis components.
We extended the uimaFIT library [14] to provide the necessary support for the UIMA framework
[10]. Our approach provides a new level of flexibility when configuring analysis components.

Future work should introduce support for default strategies to further improve the usability
of our approach. Just as default parameter values, these strategies are used if the user does not
explicitly configure another strategy.

Flexibility

We have found that most current collections of analysis components tend to focus only on the
analysis tools of a specific vendor, on a specific task, or they rely on third-party web-services,
which we already considered as being problematic due to the user’s lack of control over them.
To provide the user with the flexibility of building analysis workflows for different tasks a com-
ponent collection has to offer a rich choice of analysis components and resources for each of the
supported analysis tasks, e.g. part-of-speech tagging or parsing.

We have noted that, while analysis components within a component collection are typically
interoperable, they are not interoperable with components from other collections, because each
collection uses its own annotation type system. Additionally, different tools tend to support
certain annotation type system designs better than others, e.g. designs in which annotation
type names represent linguistic categories, e.g. part-of-speech tags. An analysis of the type
systems used by different component collections is required to better understand the different
approaches to type system design and their specific benefits and drawbacks.

Our use-case scenario (Figure 7.1 on page 173) lists the issues mentioned above as:

1 No comprehensive set of interoperable automatic analysis components is available.
3 Automatic analysis tools and annotation editors are not interoperable.
7 In automatic analysis, annotation type systems are predefined, but manual annotation

requires customizability.

We have revised and extended DKPro Core (Section 5.2), our open-source collection of UIMA
components. We have improved its usability, e.g. by including the automatic selection and ac-
quisition of resources and packaged resources, and by introducing a set of common parameters
across the component collection to ensure that users do not have to learn a completely new set
of parameters every time they use a new component. While all our components are interoper-
able at the level of the type system, we have analyzed their interoperability at the conceptual
level and their interchangeability within the workflow. We have found that most components
that serve for the same analysis task, e.g. part-of-speech tagging or parsing, consume the same
input and produce the same output and are therefore interchangeable within the workflow. At
the conceptual level, interoperability depends on the tag sets and on the annotation guidelines.
We have found that for some languages, e.g. English and German, there appears to be a good
interoperability, because the models largely use compatible tag sets. For other languages, there
are various tag sets in use, thus, they are not directly interoperable. We have observed that tag

176 7 Conclusion



sets may appear to be largely similar, but even small differences are clues that they in fact use
different underlying annotation guidelines. Therefore, we recommend that it should not only
be possible to extract a list of tags from model files, but that annotation guidelines and tag sets
should have identifiers and versions which should be extractable from the model files. Likewise,
the provenance of any resources and analysis components used in an analysis workflow should
be recorded as part of the analysis results, to make it easier for the user to give attribution to
their original authors and providers when experimental results are published.

We have performed an analysis of the annotation type systems of different UIMA-based com-
ponent collections (Section 5.1). It was our aim to discover different patterns of type system
design and to determine the feasibility of consolidating parts of these type systems into a com-
mon type system. We have discovered several commonly used structural patterns, e.g. trees,
linked lists, and sets, which deserve special support by annotation editors. We have discovered
different strategies of associating annotations with each other, e.g. via co-indexing, or explicit
linking, have discussed their benefits and drawbacks, and have given recommendations how
to choose which strategy to use. We have discovered different approaches to modeling labels,
have discussed their benefits and drawbacks, and have given recommendations how to choose
which approach to use. We have discussed different approaches and motivations to organiz-
ing sets of annotations as annotation layers and have provided advice how to choose between
the approaches. We have directly compared the representation of sentences and tokens in the
different type systems and have concluded that a consolidation should happen bottom-up and
starting from type systems that have few differences. Finally, we have found that the UIMA
meta model currently is not able to express and test many constraints which are expected by
analysis components, e.g. that token annotations must not cross sentence boundaries. We rec-
ommend that it should be possible to formulate such constraints, particularly when users create
annotations manually, to ensure the manual annotations are compatible with the expectations
of automatic analysis components.

In addition to offering flexibility, our component collection provides usability by integrating
our approach for automatically selecting and installing resources. Since our components are
packaged in a portable way and distributed via a repository infrastructure, they also contribute
to reproducibility.

In future work, we plan to integrate more metadata into the DKPro Core component collec-
tion. In particular, we consider adding the ability to track the provenance of resources, analysis
components, and results as an important aspect. We also plan to continually grow and update
the component collection to further increase the coverage of different analysis tasks, languages,
tag sets, and domains.

Future work should also continue to investigate options of consolidating different component
collections and their type systems.

Interactivity

We have noted that the manual annotation of infrequent phenomena in large corpora requires
a new kind of annotation tool. In particular, it is necessary that the corpus can be searched
efficiently and that the results of this search can be annotated immediately. Existing annotation
tools only have limited search capabilities. Existing linguistic search engines do not permit the
user to make annotations. Additionally, an approach is required by which multiple annotators
can search and annotate in parallel, because this allows determining the annotation quality in
terms of inter-annotator agreement.

In our use-case scenario (Figure 7.1 on page 173), the issue mentioned above is listed as:

6 There are no adequate tools for the selective annotation of large corpora.

177



We have described the annotation-by-query approach which combines searching, annotating,
evaluating, and aggregating annotations into an integrated process (Section 6.1). Contrary to
previous approaches, our process allows every step to be performed by every member of the
annotation team. By integrating search and annotation, it becomes possible to interactively
locate potential occurrences of the infrequent phenomenon in question and annotate these at
the same time. We have implemented this process in the novel open-source annotation tool
CSniper [75; 50]. Additionally, CSniper provides the annotator with machine-learning based
suggestions, to help the annotator focus on relevant search results. The suggestions are gen-
erated by a support vector machine using a tree kernel which is trained on the constituency
parse trees of already annotated search results. The set of annotated results used for training
can be configured, e.g. based on the annotators who created them and on their agreement. To
use a corpus with CSniper, it should already be annotated for sentences, tokens, part-of-speech
tags, lemmata, and constituency parse trees. Corpora that do not offer these annotations can
be automatically annotated with a workflow using DKPro Core components.

Our approach provides a way of interactively exploiting annotated corpora in search of infre-
quent phenomena. We benefit from our previously presented contributions towards usability,
flexibility, and reproducibility. E.g. the self-contained portable analysis workflows and DKPro
Core can be used to automatically preprocess corpora and convert them to the formats used by
CSniper. CSniper uses DKPro Core and UIMA for internal storage and processing, e.g. when
generating annotation suggestions.

As future work, it could be considered to extend the idea of an open annotation platform as it
has been implemented in CSniper, in which all annotators are equals and in which annotations
are aggregated automatically and on-demand. Many annotated corpora are subject to license
restrictions preventing their free use and redistribution. An open annotation platform allowing
interested members of the community to donate small quantities of permissively licensed text
and annotations could help to address this problem. E.g. the platform could be used as part
of exercises in linguistics classes at university. Students, lecturers, and researchers could con-
tribute their own texts and annotations. Agreement evaluations could be performed in class and
could be used to discuss difficult cases and to improve the students’ understanding. Automatic
on-demand aggregation would help to keep the administrative overhead low and the platform
content usable at all times. Quality indicators such as trust towards certain contributors (e.g.
known experts in the field) and agreement thresholds as used in CSniper could be used to
control the quality of corpora extracted from the platform, e.g. to train models for automatic
annotation tools.

178 7 Conclusion



Glossary

analysis component A software tool for language analysis which has been wrapped as a
reusable component for a processing framework. 2–9, 15–21, 24–37, 39–53, 55–60, 62,
63, 65–71, 73–86, 92, 96, 97, 99, 101, 102, 104–107, 113–115, 118–125, 127–138,
141–143, 145, 147, 149, 150, 163, 174–177

analysis component collection A set of analysis components which are immediately interopera-
ble without requiring any kind of data conversion. 9, 104–106, 128–130, 148

analysis tool A standalone software for language analysis, i.e. the software is not integrated
with a particular processing framework. 1, 3, 4, 6, 12, 15, 17, 18, 23, 27–29, 31, 38,
39, 103, 117, 120, 121, 123, 125, 127–134, 136, 137, 142, 147–149, 151, 155, 156,
158–160, 166, 174, 176

analysis workflow A set of analysis components that are applied to primary data in a certain
order to produce an analysis result. 1, 3–9, 15, 16, 18–21, 23–34, 38–40, 43–47, 51–53,
55, 56, 58–61, 65, 77–82, 84, 86, 89–92, 99, 102, 107, 113, 121, 123, 128, 130, 134,
136, 141, 142, 148, 153, 170, 171, 173–178

annotation editor An application which allows conducting a manual analysis of language data
by inspecting and editing annotations over primary data, such as text. 1, 3, 6, 9, 13, 14,
18, 103–106, 116, 119, 121, 124–126, 154, 156, 157, 176, 177

annotation tool A general term for tools allowing users to create and interact with annotations,
such as annotation editors, annotation visualizers, or linguistic search engines. 13, 45, 69,
103, 119, 158, 177, 178

annotation type A type to distinguish between different kinds of annotations, bearing different
attributes and semantics. For example, when an annotation is realized as feature struc-
ture, the type defines which features can be used. A feature structure of the type PartOf-
Speech may provide a feature posTag. 6, 17, 34, 39, 84, 103, 105, 107, 116, 120–122,
125, 134–136, 143, 147

annotation type system A set of annotation types which often interact, e.g. one type bears a
feature whose value is an annotation of another type. 3, 8, 9, 15, 17, 20, 39, 101–106,
120, 128, 131

coordinate A scheme for addressing data based on key-value pairs. Maven employs GAV (group,
artifact, version) coordinates to address artifacts. In this work, we propose a base coor-
dinate system consisting of type, language, variant, and version for addressing resources
needed by analysis components, e.g. models, dictionaries, etc. Additional coordinates
like platform or tag set may be used to further qualify certain kinds of resources, such as
platform-specific binaries or annotation type mappings. 35–38, 41–43, 45, 69, 140

descriptor The metadata of an item such as analysis component, analysis workflow, resource,
etc. which a processing framework requires to use the item. Sometimes this is also called
description, in particular in the context of UIMA. 19, 20, 33–35, 49, 50, 52–54, 69, 71–75,
85

179



feature A feature is a key/value pair used to annotate primary data. It is usually part of a
feature structure, but we also use the term for attributes of annotations in general. A
primitive feature has a simple value (e.g. a number or string), whereas a complex feature
takes a feature structure as its value. Features are typically typed. 14, 15, 17, 101, 106,
108–111, 113–119, 122–124, 135, 136, 143, 147, 164, 165

feature structure A feature structure (FS) is a typed container for key-value pairs. The keys
are strings representing the names of the features. The values are either primitive (e.g.
numeric, string, etc.) or a reference to another FS. 101, 106, 109, 111, 114, 115

primary data The data being subject to analysis, e.g. text documents. In an annotated corpus,
the primary data is only the text without any annotations. 4, 5, 18, 47, 59, 68, 106, 108,
112, 113, 121, 135

principle of least surprise The principle of least surprise is a general principle of design. It sim-
ply states that the user should not be surprised, e.g. by inconsistent design or unexpected
behavior. The use of common terminology in scientific literature is one application of
this principle. Having to press a button with the label Start to turn a computer off is a
counterexample. (Also known as the Law of Least Astonishment in [123]). 137

processing framework A piece of software which enables the interoperability of analysis compo-
nents and facilitates their use. The framework defines a life cycle for analysis components,
means of configuring analysis components, as well as a common data structure which all
analysis components use to exchange data with each other. Beyond this, a processing
framework may offer many additional features, e.g. different workflow strategies, the
ability to scale the processing to large data and over multiple computers, a serialization
format for analyzed data, etc. 4, 5, 7, 8, 15–18, 23, 26, 28, 32, 34, 40–42, 44, 46–49, 51,
56–59, 61, 66, 68, 69, 71, 72, 75, 76, 78, 79, 81–83, 86, 90, 96, 97, 99, 101, 102, 108,
114, 121, 127–130, 132, 148, 174–176

repository A repository is a central place used to archive and share the components and re-
sources used by an analysis workflow, their dependencies, and possibly the workflow itself.
5, 19, 29, 37, 38, 41, 43, 45, 61, 62, 65–67, 69, 71, 72, 74, 78, 147

resource Many analysis tools require resources, such as statistical or probabilistic models, dic-
tionaries, word lists, etc. 2, 4, 5, 9, 16, 18, 20, 25–45, 47, 49, 59, 63–71, 73, 74, 76, 78,
82, 107, 128, 130, 133–135, 138–141, 147, 148, 150, 174–177

structural base type Types used to represent a structure in a generic way, without any rela-
tion to a linguistic theory or other domain, such as medicine. Domain-specific types are
derived from these generic types, e.g. types for the annotation of dependency relations
(e.g. DependencyRelation) could be derived from structural base types for relations (e.g.
Relation). 108, 110, 111

180 Glossary



List of Figures

1.1 Use case: a linguist and a computer scientist collaborate on analyzing a large corpus 2

2.1 Running multiple tools on the same data, merging the output into a single model . 16
2.2 Running multiple tools on the same data, one tool building up on the output

produced by another tool, merging the output into a single model . . . . . . . . . . 16
2.3 Running multiple tools on the same data, integrated within a processing frame-

work, and merging the output into a single model . . . . . . . . . . . . . . . . . . . . 17

3.1 Scenario for resource selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 URL template using resource coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Template to locate a resource within a resource artifact . . . . . . . . . . . . . . . . . 38
3.4 Template to locate binaries within a resource artifact using the system platform

as an additional coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Template to locate an auxiliary resource using coordinates obtained from a pri-

mary resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 A resource and its relations to the original tool and to analysis components from

different processing frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Scenario for strategy pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Strategy pattern of software design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9 Basic structure of an analysis component . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Traditional decompounding workflow using splitter and ranker components . . . . 55
3.11 Decompounding workflow using a single decompounding component, configured

with strategies for splitting and ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.12 Traditional training workflow using several feature extractor components, and a

training component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.13 Training workflow with a training component that can be configured with a list

of feature extraction strategies and a learning algorithm . . . . . . . . . . . . . . . . 57

4.1 Scenario for annotation portable workflows . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Exemplary license clause limiting redistribution . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Exemplary license termination clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Federation of repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Scenario for dynamic workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Schematic illustration of a workflow in DKPro Lab . . . . . . . . . . . . . . . . . . . . 89
4.7 Task category: task interface, task base class, task, and task engine . . . . . . . . . . 89
4.8 Data dependency dynamically configured via parameter p . . . . . . . . . . . . . . . 94
4.9 Information retrieval experiment workflow . . . . . . . . . . . . . . . . . . . . . . . . 96
4.10 Machine learning experiment workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Representations of a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Types and inheritance: the type TokenWithLemma is derived from the type Token . 102
5.3 Scenario for annotation type systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Common structures for annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Relation types in cTAKES (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6 UIMA FSList type hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.7 Strategies to associate annotations/feature structures with each other . . . . . . . . 112

181



5.8 Label modeling strategies: part-of-speech tags . . . . . . . . . . . . . . . . . . . . . . . 116
5.9 UIMA Annotation Editor displaying part-of-speech tags elevated to types . . . . . . 117
5.10 Customization of the mapping from tags to elevated types . . . . . . . . . . . . . . . 118
5.11 Scenario for component collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.12 DKPro Core architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.13 DKPro Core type system conceptual overview . . . . . . . . . . . . . . . . . . . . . . . 135
5.14 DKPro Core type system inheritance hierarchy example for part-of-speech tags . . 136
5.15 Dependencies between analysis steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.16 Provenance of a model represented as an OPM graph . . . . . . . . . . . . . . . . . . 149

6.1 Basic manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2 Preliminary manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Manual analysis with automatic bootstrapping and re-training . . . . . . . . . . . . . 152
6.4 Scenario for search and annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Examples of a canonical and non-canonical variant of a sentence . . . . . . . . . . . 156
6.6 Partially distributed process used in SALSA . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.7 Annotation-by-query process (fully distributed) . . . . . . . . . . . . . . . . . . . . . . 157
6.8 Modes of multi-user annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.9 CSniper architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.10 CSniper type definition form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.11 CSniper query form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.12 CSniper query result and annotation interface . . . . . . . . . . . . . . . . . . . . . . . 165
6.13 CSniper annotation suggestion configuration dialog . . . . . . . . . . . . . . . . . . . 166
6.14 CSniper inter-annotator agreement monitoring . . . . . . . . . . . . . . . . . . . . . . 168
6.15 CSniper query quality monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.16 Example of a canonical sentence and several non-canonical variations . . . . . . . . 169
6.17 Example of surface ambiguity of it-cleft constructions . . . . . . . . . . . . . . . . . . 170
6.18 Examples of NP-preposing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.1 Use case: a linguist and a computer scientist analyzing a large corpus . . . . . . . . 173

182 List of Figures



List of Tables

3.1 Resource selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Exemplary assignment of resource coordinates . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Example mapping resource coordinates to Maven GAV coordinates . . . . . . . . . . 38

4.1 Comparison of artifact metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Comparison of component metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Under which conditions can an association strategy be used? . . . . . . . . . . . . . 115
5.2 Comparison of the Sentence annotation type . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3 Comparison of the Token annotation type . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4 Support for analysis tool across component collections . . . . . . . . . . . . . . . . . 133
5.5 Overview of tools integrated in DKPro Core 1.5.0 . . . . . . . . . . . . . . . . . . . . . 137
5.6 Examples for the variant coordinate in DKPro Core . . . . . . . . . . . . . . . . . . . . 139
5.7 Part-of-speech tag sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.8 Constituent tag sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.9 Dependency relation tag sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.10 Differences between dependency tag sets . . . . . . . . . . . . . . . . . . . . . . . . . . 146

183



184 List of Tables



Listings

3.1 Default information for the resource provider used in the DKPro Core Stanford-
PosTagger component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Resource selection overrides in the DKPro Core StanfordPosTagger component . . 44
3.3 Resource selection overrides in the DKPro Core StanfordPosTagger component . . 44
3.4 Resource access in the DKPro Core StanfordPosTagger component . . . . . . . . . . 44
3.5 Resource access in the DKPro Core StanfordPosTagger component . . . . . . . . . . 44
3.6 Interface for strategies of calculating the average word length of a list of words . . 48
3.7 Injection of a parameter into an analysis component – parameter declaration . . . 52
3.8 Injection of a parameter into an analysis component – setting the parameter . . . . 52
3.9 Injection of a shared resource into an analysis component – declaring the re-

source dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.10 Injection of a shared resource into an analysis component – setting the resource . 52
3.11 Injection of a shared resource into another shared resource – declaration . . . . . . 53
3.12 Injection of a shared resource into another shared resource – injection . . . . . . . 53
3.13 Injection of a multi-valued shared resource into an analysis component . . . . . . . 54
3.14 Injection of a multi-valued shared resource into an analysis component . . . . . . . 54

4.1 GATE Update Site at http://creole.semanticsoftware.info/ . . . . . . . . . . . . . . . 72
4.2 GATE CREOLE XML for the Stanford Parser component (abbreviated) . . . . . . . . 72
4.3 GATE CREOLE Java annotations on Stanford Parser component (abbreviated) . . . 73
4.4 Tesla Java annotations on Stanford Parser component (abbreviated) . . . . . . . . . 73
4.5 UIMA Dictionary Annotator v. 2.3.1 PEAR descriptor (abbreviated) . . . . . . . . . 75
4.6 UIMA Dictionary Annotator v. 2.3.1 analysis engine descriptor (abbreviated) . . . 76
4.7 Workflow scripted in Groovy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Minimal DKPro Lab workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.9 Discrete parameter dimension declarations . . . . . . . . . . . . . . . . . . . . . . . . 92
4.10 Bundle parameter dimension declaration . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.11 Parameter constraint declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.12 Minimal DKPro Lab parameter sweeping workflow . . . . . . . . . . . . . . . . . . . . 94

5.1 uimaFIT: condition on label vs. elevated type . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Ruta: condition on label vs. elevated type . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Sentence with dependency annotations represented in the CONLL-X format . . . . 125
5.4 Packaging a model for the DKPro Core OpenNLP part-of-speech tagger component 140

185



186 Listings



Bibliography

[1] Anne Abeillé and Lionel Clément. Annotation morpho-syntaxique. Technical report, LLF,
Université Paris 7, Jan 2003.

[2] Anne Abeillé, François Toussenel, and Martine Chéradame. Corpus le monde - annota-
tions en constituants - guide pour les correcteurs. Technical report, LLF, UFRL, Paris 7,
Mar 2004.

[3] David Abramson, Blair Bethwaite, Colin Enticott, Slavisa Garic, and Tom Peachey. Param-
eter space exploration using scientific workflows. In Gabrielle Allen, Jaroslaw Nabrzyski,
Edward Seidel, Geert van Albada, Jack Dongarra, and Peter Sloot, editors, Computa-
tional Science – ICCS 2009, volume 5544 of Lecture Notes in Computer Science, pages
104–113. Springer Berlin / Heidelberg, 2009. URL http://dx.doi.org/10.1007/978-
3-642-01970-8_11.

[4] Enrique Alfonseca, Slaven Bilac, and Stefan Pharies. German decompounding in a diffi-
cult corpus. In Alexander Gelbukh, editor, Computational Linguistics and Intelligent Text
Processing, volume 4919 of Lecture Notes in Computer Science, pages 128–139. Springer
Berlin / Heidelberg, 2008. ISBN 978-3-540-78134-9. URL http://dx.doi.org/10.
1007/978-3-540-78135-6_12.

[5] Björkelund Anders, Bohnet Bernd, Love Hafdell, and Pierre Nugues. A high-performance
syntactic and semantic dependency parser. In Coling 2010: Demonstrations, pages 33–36,
Beijing, China, August 2010. Coling 2010 Organizing Committee. URL http://www.
aclweb.org/anthology/C10-3009.

[6] Apache Ant. Java library and command-line tool whose mission is to drive processes
described in build files as targets and extension points dependent upon each other. URL
http://ant.apache.org (Last accessed: 2013-10-02).

[7] Apache Archiva. The Build Artifact Repository Manager. URL http://archiva.apache.
org (Last accessed: 2013-11-01).

[8] Apache Hadoop. Machine learning based toolkit for the processing of natural language
text. URL http://hadoop.apache.org (Last accessed: 2013-10-16).

[9] Apache OpenNLP. Machine learning based toolkit for the processing of natural language
text. URL http://opennlp.apache.org (Last accessed: 2013-06-18).

[10] Apache UIMA. Apache UIMA. URL http://uima.apache.org (Last accessed:
2013-10-16).

[11] Apache UIMA-AS. Apache UIMA Asynchronous Scaleout. URL http://uima.apache.
org/doc-uimaas-what.html (Last accessed: 2013-10-16).

[12] Apache UIMA Community. Apache uimaFIT guide and reference, version 2.0.0. Technical
report, Apache UIMA, 2013.

[13] Apache UIMA Community. UIMA tools guide and reference, version 2.4.2. Technical
report, Apache UIMA, 2013.

187

http://dx.doi.org/10.1007/978-3-642-01970-8_11
http://dx.doi.org/10.1007/978-3-642-01970-8_11
http://dx.doi.org/10.1007/978-3-540-78135-6_12
http://dx.doi.org/10.1007/978-3-540-78135-6_12
http://www.aclweb.org/anthology/C10-3009
http://www.aclweb.org/anthology/C10-3009
http://ant.apache.org
http://archiva.apache.org
http://archiva.apache.org
http://hadoop.apache.org
http://opennlp.apache.org
http://uima.apache.org
http://uima.apache.org/doc-uimaas-what.html
http://uima.apache.org/doc-uimaas-what.html


[14] Apache uimaFIT. Apache uimaFIT. URL http://uima.apache.org/uimafit (Last ac-
cessed: 2013-10-16).

[15] Niraj Aswani, Valentin Tablan, Kalina Bontcheva, and Hamish Cunningham. Indexing
and querying linguistic metadata and document content. In Proceedings of Fifth Inter-
national Conference on Recent Advances in Natural Language Processing (RANLP2005),
Borovets, Bulgaria, 2005.

[16] Petra Saskia Bayerl and Karsten Ingmar Paul. What determines inter-coder agreement in
manual annotations? A meta-analytic investigation. Comput. Linguist., 37(4):699–725,
December 2011. ISSN 0891-2017. doi: 10.1162/COLI_a_00074. URL http://dx.doi.
org/10.1162/COLI_a_00074.

[17] David Beaver, Itamar Francez, and Dmitry Levinson. Bad subject: (Non-) canonicality
and NP distribution in existentials. In Proceedings of SALT, volume 15, pages 19–43,
2005.

[18] Darina Benikova, Chris Biemann, and Marc Reznicek. NoSta-D Named Entity Annotation
for German: Guidelines and Dataset. In Nicoletta Calzolari, Khalid Choukri, Thierry De-
clerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk,
and Stelios Piperidis, editors, Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), pages 2524–2531, Reykjavik, Iceland, May
2014. European Language Resources Association (ELRA). ISBN 978-2-9517408-8-4.

[19] Jon Bentley. Programming pearls: little languages. Communications of the ACM, 29(8):
711–721, 1986.

[20] Sandra Bergmann, Mathilde Romberg, Alexander Klenner, Christian Janßen, Thorsten
Bathelt, and Guy Lonsdale. UIMA-HPC – application support and speed-up of data ex-
traction workflows through UNICORE. In Paul Cunningham and Miriam Cunningham,
editors, eChallenges e-2012 Conference Proceedings. IIMC International Information Man-
agement Corporation„ 2012. ISBN 978-1-905824-35-9.

[21] BerkeleyParser. A natural language parser from UC Berkeley. URL http://code.google.
com/p/berkeleyparser/ (Last accessed: 2013-09-27).

[22] Steven Bethard. ClearTK-TimeML: A minimalist approach to TempEval 2013. In Second
Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings
of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages
10–14, Atlanta, Georgia, USA, June 2013. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/S13-2002.

[23] Ann Bies. Bies mapping for Penn Arabic treebank part-of-speech tags. URL
http://www.ircs.upenn.edu/arabic/Jan03release/arabic-POStags-collapse-

to-PennPOStags.txt (Last accessed: 2013-10-04), Jan 2003.

[24] Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyre. Bracketing guidelines for
Treebank II style Penn treebank project. Technical report, Linguistic Data Consortium,
Jan 1995.

[25] Steven Bird and Mark Liberman. A formal framework for linguistic annotation (revised
version). Speech Communication, 33(1-2):23–60, 2000. URL http://www.citebase.
org/abstract?id=oai:arXiv.org:cs/0010033.

188 Bibliography

http://uima.apache.org/uimafit
http://dx.doi.org/10.1162/COLI_a_00074
http://dx.doi.org/10.1162/COLI_a_00074
http://code.google.com/p/berkeleyparser/
http://code.google.com/p/berkeleyparser/
http://www.aclweb.org/anthology/S13-2002
http://www.ircs.upenn.edu/arabic/Jan03release/arabic-POStags-collapse-to-PennPOStags.txt
http://www.ircs.upenn.edu/arabic/Jan03release/arabic-POStags-collapse-to-PennPOStags.txt
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0010033
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0010033


[26] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python.
O’Reilly Media, Inc., 2009.

[27] Paul Biron, Ashok Malhotra, World Wide Web Consortium, et al. XML Schema Part 2:
Datatypes Second Edition. World Wide Web Consortium Recommendation REC-xmlschema-
2-20041028, 2004. URL http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[28] BNC Consortium. The British National Corpus, version 3 (BNC XML Edition). Dis-
tributed by Oxford University Computing Services p.p. the BNC Consortium, http:
//www.natcorp.ox.ac.uk/, 2007.

[29] K. Bontcheva, Hamish Cunningham, I. Roberts, and V. Tablan. Web-based collaborative
corpus annotation: Requirements and a framework implementation. In Proceedings of
the New Challenges for NLP Frameworks Workshop at LREC, Malta, May 2010.

[30] Kalina Bontcheva, Hamish Cunningham, Ian Roberts, Angus Roberts, Valentin Tablan,
Niraj Aswani, and Genevieve Gorrell. GATE Teamware: a web-based, collaborative text
annotation framework. pages 1–23, 2013. doi: 10.1007/s10579-013-9215-6. URL
http://dx.doi.org/10.1007/s10579-013-9215-6.

[31] Cristina Bosco, Simonetta Montemagni, and Maria Simi. Converting Italian treebanks:
Towards an Italian Stanford dependency treebank. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Discourse, pages 61–69, Sofia, Bulgaria,
August 2013. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W13-2308.

[32] Thorsten Brants and Alex Franz. Web 1T 5-gram, 10 european languages version 1.
Technical report, Linguistic Data Consortium, Philadelphia, 2009.

[33] Thorsten Brants, Roland Hendriks, Sabine Kramp, Brigitte Krenn, Cordula Preis, Wo-
jciech Skut, and Hans Uszkoreit. Das NEGRA-Annotationsschema. Negra project re-
port, Universität des Saarlandes, Saarbrücken, 1997. URL http://www.coli.uni-
sb.de/sfb378/negra-corpus/negra-corpus.html.

[34] Daan Broeder, Oliver Schonefeld, Thorsten Trippel, Dieter van Uytvanck, and An-
dreas Witt. A pragmatic approach to XML interoperability — the component meta-
data infrastructure (CMDI). In Proceedings of Balisage: The Markup Conference
2011, volume 7 of Balisage Series on Markup Technologies, August 2011. doi: 10.
4242/BalisageVol7.Broeder01. URL http://balisage.net/Proceedings/vol7/html/
Broeder01/BalisageVol7-Broeder01.html.

[35] Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural Language Learn-
ing, CoNLL-X ’06, pages 149–164, Stroudsburg, PA, USA, 2006. Association for Compu-
tational Linguistics. URL http://dl.acm.org/citation.cfm?id=1596276.1596305.

[36] Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea Kowalski, and Sebastian Pado.
SALTO: A versatile multi-level annotation tool. In Proceedings of the 5th international
conference on language resources and evaluation (LREC 2006), Genoa, Italy, 2006.

[37] Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea Kowalski, Sebastian Padó, and
Manfred Pinkal. The SALSA corpus: a German corpus resource for lexical semantics.
In Proceedings of the 5th International Conference on Language Resources and Evaluation
(LREC-2006), pages 969–974, Genoa, Italy, 2006.

Bibliography 189

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.natcorp.ox.ac.uk/
http://www.natcorp.ox.ac.uk/
http://dx.doi.org/10.1007/s10579-013-9215-6
http://www.aclweb.org/anthology/W13-2308
http://www.aclweb.org/anthology/W13-2308
http://www.coli.uni-sb.de/sfb378/negra-corpus/negra-corpus.html
http://www.coli.uni-sb.de/sfb378/negra-corpus/negra-corpus.html
http://balisage.net/Proceedings/vol7/html/Broeder01/BalisageVol7-Broeder01.html
http://balisage.net/Proceedings/vol7/html/Broeder01/BalisageVol7-Broeder01.html
http://dl.acm.org/citation.cfm?id=1596276.1596305


[38] Ekaterina Buyko and Udo Hahn. Fully embedded type systems for the semantic an-
notation layer. In ICGL 2008 - Proceedings of First International Conference on Global
Interoperability for Language Resources, pages 26–33, Hong Kong, 2008.

[39] Marie Candito, Benoît Crabbé, and Mathieu Falco. Dépendances syntaxiques de surface
pour le français (v1.2). Technical report, May 2011.

[40] Jean Carletta. Assessing agreement on classification tasks: the kappa statistic. Computa-
tional linguistics, 22(2):249–254, 1996.

[41] Jean Carletta, Jonathan Kilgour, Tim O’Donnell, Stefan Evert, and Holger Voormann. The
NITE Object Model Library for handling structural linguistic annotation on multimodal
data sets. In Proceedings of the EACL Workshop on Language Technology and the Semantic
Web (3rd Workshop on NLP and XML, NLPXML-2003, Budapest, Hungary, 2003.

[42] Pi-Chuan Chang, Huihsin Tseng, Dan Jurafsky, and Christopher D. Manning. Discrim-
inative reordering with Chinese grammatical relations features. In Proceedings of the
Third Workshop on Syntax and Structure in Statistical Translation, SSST ’09, pages
51–59, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. ISBN
978-1-932432-39-8. URL http://dl.acm.org/citation.cfm?id=1626344.1626351.

[43] Christian Chiarcos. Ontologies of linguistic annotation: Survey and perspectives. In Nico-
letta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard,
Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight Interna-
tional Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may
2012. European Language Resources Association (ELRA). ISBN 978-2-9517408-7-7.

[44] Christian Chiarcos, Stefanie Dipper, Michael Götze, Ulf Leser, Anke Lüdeling, Julia Ritz,
and Manfred Stede. A flexible framework for integrating annotations from different tools
and tagsets. Traitement Automatique des Langues, 49(2):271–293, 2008.

[45] Fernando Chirigati, Dennis Shasha, and Juliana Freire. Packing experiments for shar-
ing and publication. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, pages 977–980, New York, NY, USA, June 2013.
ACM.

[46] Jinho D. Choi and Martha Palmer. Guidelines for the CLEAR style constituent to de-
pendency conversion. Technical report 01-12, University of Colorado Boulder, Boulder,
Colorado, 2012.

[47] N. Chomsky. Aspects of the Theory of Syntax. The MIT Press Paperback Series. Mit Press,
1965. ISBN 9780262530071. URL http://books.google.de/books?id=u0ksbFqagU8C.

[48] ClearNLP. Fast and robust NLP components implemented in Java. URL http://opennlp.
apache.org (Last accessed: 2013-09-26).

[49] Benoît Crabbé and Marie Candito. Expériences d’analyse syntaxique statistique du
français. In Proceedings of TALN 2008, Avignon, France, Jun 2008.

[50] CSniper. Combining search and annotation on large corpora. URL http://code.google.
com/p/csniper/ (Last accessed: 2013-10-10).

[51] Hamish Cunningham. Software Architecture for Language Engineering. PhD thesis, Uni-
versity of Sheffield, 2000. URL http://gate.ac.uk/sale/thesis/.

190 Bibliography

http://dl.acm.org/citation.cfm?id=1626344.1626351
http://books.google.de/books?id=u0ksbFqagU8C
http://opennlp.apache.org
http://opennlp.apache.org
http://code.google.com/p/csniper/
http://code.google.com/p/csniper/
http://gate.ac.uk/sale/thesis/


[52] Hamish Cunningham, Diana Maynard, and Valentin Tablan. JAPE: a Java annotation
patterns engine (second edition). Research Memorandum CS–00–10, Department of
Computer Science, University of Sheffield, November 2000.

[53] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. GATE: an
architecture for development of robust HLT applications. In Proceedings of 40th Annual
Meeting of the Association for Computational Linguistics, pages 168–175, Philadelphia,
Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/
1073083.1073112. URL http://www.aclweb.org/anthology/P02-1022.

[54] Hamish Cunningham, Valentin Tablan, Ian Roberts, Mark A. Greenwood, and Niraj
Aswani. Information extraction and semantic annotation for multi-paradigm informa-
tion management. In Mihai Lupu, Katja Mayer, John Tait, and Anthony J. Trippe, editors,
Current Challenges in Patent Information Retrieval, volume 29 of The Information Retrieval
Series. Springer, 2011.

[55] Andrew Davison. Automated capture of experiment context for easier reproducibility in
computational research. Computing in Science & Engineering, 14(4):48–56, 2012.

[56] Johannes Daxenberger and Iryna Gurevych. Automatically classifying edit categories in
Wikipedia revisions. In Conference on Empirical Methods in Natural Language Processing
(EMNLP 2013), pages 578–589, Stroudsburg, PA, USA, October 2013. Association for
Computational Linguistics.

[57] Marie-Catherine de Marneffe and Christopher D. Manning. The Stanford typed depen-
dencies representation. In Coling 2008: Proceedings of the workshop on Cross-Framework
and Cross-Domain Parser Evaluation, CrossParser ’08, pages 1–8, Stroudsburg, PA, USA,
2008. Association for Computational Linguistics. ISBN 978-1-905593-50-7. URL http:
//dl.acm.org/citation.cfm?id=1608858.1608859.

[58] J Des Rivières and J Wiegand. Eclipse: a platform for integrating development tools.
IBM Systems Journal, 43(2):371–383, 2004.

[59] S. Dipper, M. Götze, and M. Stede. Simple annotation tools for complex annotation
tasks: an evaluation. In Proceedings of the LREC Workshop on XML-based Richly Annotated
Corpora, pages 54–62, Lisbon, Portugal, 2004.

[60] Stefanie Dipper, Michael Götze, and Stavros Skopeteas. Towards user-adaptive annota-
tion guidelines. pages 23–30, 2004.

[61] DKPro BigData. DKPro BigData. URL http://code.google.com/p/dkpro-bigdata/
(Last accessed: 2013-07-07), 2013.

[62] DKPro Core. DKPro Core. URL http://code.google.com/p/dkpro-core-asl/ (Last
accessed: 2013-12-11).

[63] DKPro Lab. DKPro Lab. URL http://code.google.com/p/dkpro-lab/ (Last accessed:
2013-12-11).

[64] DKPro Spelling. DKPro Spelling. URL http://code.google.com/p/dkpro-spelling-
asl/ (Last accessed: 2013-11-11), 2013.

[65] DKPro TC. DKPro Text Classification. URL http://code.google.com/p/dkpro-tc/
(Last accessed: 2013-08-15), 2013.

Bibliography 191

http://www.aclweb.org/anthology/P02-1022
http://dl.acm.org/citation.cfm?id=1608858.1608859
http://dl.acm.org/citation.cfm?id=1608858.1608859
http://code.google.com/p/dkpro-bigdata/
http://code.google.com/p/dkpro-core-asl/
http://code.google.com/p/dkpro-lab/
http://code.google.com/p/dkpro-spelling-asl/
http://code.google.com/p/dkpro-spelling-asl/
http://code.google.com/p/dkpro-tc/


[66] George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie
Strassel, and Ralph Weischedel. The automatic content extraction (ACE) program:
Tasks, data, & evaluation. In Proceedings of the 4th International Conference on Language
Resources and Evaluation (LREC 2004), pages 837–840, Lisbon, Portugal, May 2004.

[67] Chris Drummond. Replicability is not reproducibility: nor is it good science. 2009.

[68] Chris Drummond. Reproducible research: a dissenting opinion. 2012.

[69] Richard Eckart. A framework for storing, managing and querying multi-layer annotated
corpora. Diploma thesis, Technische Universität Darmstadt, Darmstadt, July 2006.

[70] Richard Eckart. Choosing an XML database for linguistically annotated corpora. In SDV.
Sprache und Datenverarbeitung 32.1/2008: International Journal for Language Data Pro-
cessing, pages 7–22, Berlin, Germany, September 2008. Workshop Datenbanktechnolo-
gien für hypermediale linguistische Anwendungen. Herbsttagung der Gesellschaft für
Linguistische Datenverarbeitung (GLDV), KONVENS 2008, Berlin. ISBN Universitätsver-
lag Rhein-Ruhr.

[71] Richard Eckart de Castilho and Iryna Gurevych. DKPro-UGD: A flexible data-cleansing
approach to processing user-generated discourse. In Proceedings of the First French-
speaking meeting around the framework Apache UIMA, Nantes, France, July 2009. LINA
CNRS UMR 6241 - University of Nantes.

[72] Richard Eckart de Castilho and Iryna Gurevych. A lightweight framework for repro-
ducible parameter sweeping in information retrieval. In Proceedings of the 2011 work-
shop on Data infrastructurEs for supporting information retrieval evaluation, DESIRE ’11,
pages 7–10, New York, NY, USA, October 2011. ACM. ISBN 978-1-4503-0952-3. doi:
10.1145/2064227.2064248. URL http://doi.acm.org/10.1145/2064227.2064248.

[73] Richard Eckart de Castilho and Iryna Gurevych. Semantic service retrieval based on
natural language querying and semantic similarity. In Proceedings of the 5th IEEE Inter-
national Conference on Semantic Computing (IEEE-ICSC), pages 173–176, Palo Alto, CA,
USA, Sep 2011. doi: 10.1109/ICSC.2011.44.

[74] Richard Eckart de Castilho, Mônica Holtz, and Elke Teich. Computational support for
corpus analysis work flows: The case of integrating automatic and manual annotations.
In Lingustic Processing Pipelines Workshop at GSCL 2009 - Book of Abstracts (electronic
proceedings), September 2009.

[75] Richard Eckart de Castilho, Sabine Bartsch, and Iryna Gurevych. CSniper - annotation-
by-query for non-canonical constructions in large corpora. In Proceedings of the ACL
2012 System Demonstrations, pages 85–90, Jeju Island, Korea, July 2012. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P12-3015.

[76] Eva Ejerhed, Gunnel Källgren, Ola Wennstedt, and Magnus Åström. The linguistic anno-
tation system of the Stockholm-Umeå corpus project. Technical report 33, Department
of Linguistics, University of Umeå, Umeå, 1992.

[77] Stefan Evert and Andrew Hardie. Twenty-first century corpus workbench: Updating a
query architecture for the new millennium. In Proceedings of the Corpus Linguistics 2011
conference, Birmingham, UK, July 2011. University of Birmingham.

[78] EXCITEMENT. EXCITEMENT - EXploring Customer Interactions through Textual Entail-
MENT. URL http://www.excitement-project.eu (Last accessed: 2013-12-11).

192 Bibliography

http://doi.acm.org/10.1145/2064227.2064248
http://www.aclweb.org/anthology/P12-3015
http://www.excitement-project.eu


[79] Fairview Research LLC. User guide for version 1.3 of GATE Teamware (draft). URL http:
//gate.ac.uk/teamware/teamware-1.3-guide.pdf (Last accessed: 2013-10-16), April
2010.

[80] Xubo Fei and Shiyong Lu. A dataflow-based scientific workflow composition framework.
Services Computing, IEEE Transactions on, 5(1):45–58, 2012.

[81] D. Ferrucci and A. Lally. Building an example application with the unstructured informa-
tion management architecture. IBM Syst. J., 43:455–475, July 2004. ISSN 0018-8670.
doi: http://dx.doi.org/10.1147/sj.433.0455. URL http://dx.doi.org/10.1147/sj.
433.0455.

[82] D.A. Ferrucci. Introduction to "This is Watson". IBM Journal of Research and Development,
56(3.4):1:1–1:15, 2012. ISSN 0018-8646. doi: 10.1147/JRD.2012.2184356.

[83] David Ferrucci and Adam Lally. UIMA: an architectural approach to unstructured in-
formation processing in the corporate research environment. Natural Language En-
gineering, 10(3-4):327–348, 2004. doi: 10.1017/S1351324904003523. URL http:
//dx.doi.org/10.1017/S1351324904003523.

[84] David Ferrucci, Adam Lally, Karin Verspoor, and Eric Nyberg. Unstructured information
management architecture (UIMA) version 1.0. OASIS Standard, March 2009.

[85] Oliver Ferschke, Iryna Gurevych, and Marc Rittberger. FlawFinder: A modular system
for predicting quality flaws in Wikipedia - Notebook for PAN at CLEF 2012. In Pamela
Forner, Jussi Karlgren, and Christa Womser-Hacker, editors, CLEF 2012 Labs and Work-
shop, Notebook Papers, September 2012. ISBN 978-88-904810-3-1.

[86] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local
information into information extraction systems by gibbs sampling. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05, pages
363–370, Stroudsburg, PA, USA, 2005. Association for Computational Linguistics. doi:
10.3115/1219840.1219885. URL http://dx.doi.org/10.3115/1219840.1219885.

[87] Lucie Flekova and Iryna Gurevych. Can we hide in the web? large scale simultaneous
age and gender author profiling in social media - Notebook for PAN at CLEF 2013 scale
simultaneous age and gender author profiling in social media - notebook for PAN at CLEF
2013. In Dan Tufis Pamela Forner, Roberto Navigli, editor, CLEF 2013 Labs and Workshops
- Notebook Papers, September 2013. ISBN 978-88-904810-5-5.

[88] Karën Fort, Adeline Nazarenko, and Sophie Rosset. Modeling the complexity of manual
annotation tasks: a grid of analysis. In Proceedings of the International Conference on
Computational Linguistics (COLING 2012), pages 895–910, Mumbaï, India, December
2012. URL http://hal.archives-ouvertes.fr/hal-00769631. Quaero.

[89] Martin Fowler. FluentInterface. URL http://martinfowler.com/bliki/

FluentInterface.html (Last accessed: 2013-06-18), December 2005.

[90] Martin Fowler. DslBoundary. URL http://martinfowler.com/bliki/DslBoundary.
html (Last accessed: 2013-06-18), August 2006.

[91] FreeLing. An open source suite of language analyzers. URL http://nlp.lsi.upc.edu/
freeling/ (Last accessed: 2013-09-29).

Bibliography 193

http://gate.ac.uk/teamware/teamware-1.3-guide.pdf
http://gate.ac.uk/teamware/teamware-1.3-guide.pdf
http://dx.doi.org/10.1147/sj.433.0455
http://dx.doi.org/10.1147/sj.433.0455
http://dx.doi.org/10.1017/S1351324904003523
http://dx.doi.org/10.1017/S1351324904003523
http://dx.doi.org/10.3115/1219840.1219885
http://hal.archives-ouvertes.fr/hal-00769631
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/DslBoundary.html
http://martinfowler.com/bliki/DslBoundary.html
http://nlp.lsi.upc.edu/freeling/
http://nlp.lsi.upc.edu/freeling/


[92] Juliana Freire and Claudio T. Silva. Making computations and publications reproducible
with VisTrails. Computing in Science Engineering, 14(4):18–25, 2012. ISSN 1521-9615.
doi: 10.1109/MCSE.2012.76.

[93] Cláudia Freitas and Susana Afonso. Bíblia florestal: Um manual lingüístico da floresta
sintá(c)tica. Technical report, http://www.linguateca.pt, Sep 2008.

[94] Lauren Friedman, Lee Haejoong, and Stephanie Strassel. Control Framework for Gold
Standard Reference Translations: The Process and Toolkit Developed for GALE. In Trans-
lating and the Computer 30, London, UK, November 2008.

[95] Pablo Gamallo. Tag set for Portuguese used by TreeTagger. URL http://gramatica.
usc.es/~gamallo/tagger.htm (Last accessed: 2013-10-04), Dec 2005.

[96] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Ab-
straction and reuse of object-oriented design. Springer, 2001.

[97] Elmer Garduno, Zi Yang, Avner Maiberg, Collin McCormack, Yan Fang, and Eric Nyberg.
CSE framework: A UIMA-based distributed system for configuration space exploration.
In Peter Kluegl, Richard Eckart de Castilho, and Katrin Tomanek, editors, Proceedings of
the 3rd UIMAGSCL Workshop, pages 14–17, Darmstadt, Germany, September 2013.

[98] GATE. General Architecture for Text Engineering. URL http://gate.ac.uk (Last ac-
cessed: 2013-09-26).

[99] Joachim Gauck, Angela Merkel, and Sabine Leutheusser-Schnarrenberger. Achtes Gesetz
zur Änderung des Urheberrechtsgesetzes. Bundesgesetzblatt, I(23):1161, May 2013.

[100] GENIATagger. Part-of-speech tagging, shallow parsing, and named entity recognition
for biomedical text. URL http://www.nactem.ac.uk/GENIA/tagger/ (Last accessed:
2013-09-29).

[101] Sumukh Ghodke and Steven Bird. Fangorn: A system for querying very large treebanks.
In Proceedings of COLING 2012: Demonstration Papers, pages 175–182, Mumbai, India,
December 2012. The COLING 2012 Organizing Committee. URL http://www.aclweb.
org/anthology/C12-3022.

[102] Alfio Gliozzo, Chris Biemann, Martin Riedl, Bonaventura Coppola, Michael R. Glass,
and Matthew Hatem. Jobimtext visualizer: A graph-based approach to contextualizing
distributional similarity. In Proceedings of the 8th Workshop on TextGraphs in conjunction
with EMNLP 2013, Seattle, WA, USA, 2013.

[103] Carole A Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Danius Michaelides,
David Newman, Mark Borkum, Sean Bechhofer, Marco Roos, Peter Li, et al. myEx-
periment: a repository and social network for the sharing of bioinformatics workflows.
Nucleic acids research, 38(suppl 2):W677–W682, 2010.

[104] José Manuel Gómez-Pérez, Esteban Garcıa-Cuesta, Jun Zhao, Aleix Garrido, José Enrique
Ruiz, and Graham Klyne. How reliable is your workflow: Monitoring decay in scholarly
publications. In Proceedings of the 3rd Workshop on Semantic Publishing (SePublica 2013)
at 10th Extended Semantic Web Conference, page 75, Montpellier, France, May 2013.

[105] T. Götz and O. Suhre. Design and implementation of the UIMA common analysis system.
IBM Systems Journal, 43(3):476 –489, 2004. ISSN 0018-8670. doi: 10.1147/sj.433.
0476.

194 Bibliography

http://www.linguateca.pt
http://gramatica.usc.es/~gamallo/tagger.htm
http://gramatica.usc.es/~gamallo/tagger.htm
http://gate.ac.uk
http://www.nactem.ac.uk/GENIA/tagger/
http://www.aclweb.org/anthology/C12-3022
http://www.aclweb.org/anthology/C12-3022


[106] Philip J. Guo and Dawson Engler. CDE: using system call interposition to automati-
cally create portable software packages. In Proceedings of the 2011 USENIX confer-
ence on USENIX annual technical conference, USENIXATC’11, pages 21–21, Berkeley, CA,
USA, 2011. USENIX Association. URL http://dl.acm.org/citation.cfm?id=2002181.
2002202.

[107] Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen Steimle, Markus Weimer, and
Torsten Zesch. Darmstadt Knowledge Processing Repository based on UIMA. In Pro-
ceedings of the First Workshop on Unstructured Information Management Architecture at
Biannual Conference of the Society for Computational Linguistics and Language Technol-
ogy, Tübingen, Germany, April 2007.

[108] Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao, John McNaught, Yoshimasa
Tsuruoka, and Sophia Ananiadou. An annotation type system for a data-driven NLP
pipeline. In Proceedings of the Linguistic Annotation Workshop, LAW ’07, pages 33–40,
Stroudsburg, PA, USA, 2007. Association for Computational Linguistics. URL http://
dl.acm.org/citation.cfm?id=1642059.1642064.

[109] Udo Hahn, Ekaterina Buyko, Rico Landefelda, Matthias Mühlhausen, Michael Poprat,
Katrin Tomanek, and Joachim Wermter. An overview of JCoRe, the JULIE Lab UIMA
component repository. In Proceedings of the LREC’08 Workshop ”Towards Enhanced Inter-
operability for Large HLT Systems: UIMA for NLP”, pages 1–7, Marrakech, Morocco, May
2008.

[110] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11
(1):10–18, November 2009. ISSN 1931-0145. doi: 10.1145/1656274.1656278. URL
http://doi.acm.org/10.1145/1656274.1656278.

[111] Michael A. K. Halliday and Christian M. I. M. Matthiessen. An introduction to functional
grammar, 3rd Edition. Arnold Publishers, London, UK, 2004.

[112] Jürgen Hermes. Textprozessierung - Design und Applikation. PhD thesis, Universität zu
Köln, February 2012. URL http://kups.ub.uni-koeln.de/4561/.

[113] Nicolas Hernandez. Tackling interoperability issues within UIMA workflows. In Nico-
letta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard,
Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight Interna-
tional Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may
2012. European Language Resources Association (ELRA). ISBN 978-2-9517408-7-7.

[114] Kristina M Hettne, Katherine Wolstencroft, Khalid Belhajjame, Carole A Goble, Eleni
Mina, Harish Dharuri, David De Roure, Lourdes Verdes-Montenegro, Julián Garrido, and
Marco Roos. Best practices for workflow design: how to prevent workflow decay. In
Paschke Adrian, Albert Burger, Paolo Romano, M. Scott Marshall, and Andrea Splendiani,
editors, Proceedings of the 5th International Workshop on Semantic Web Applications and
Tools for Life Sciences (SWAT4LS 2012), Paris, France, November 2012.

[115] Erhard Hinrichs, Heike Neuroth, and Peter Wittenburg, editors. Service-oriented Archi-
tectures (SOAs) for the Humanities: Solutions and Impacts – Interaction in Joint CLARIN-
D/DARIAH Workshop at Digital Humanities Conference 2012, July 2012.

[116] Marie Hinrichs, Thomas Zastrow, and Erhard Hinrichs. WebLicht: Web-based LRT Ser-
vices in a Distributed eScience Infrastructure. In Nicoletta Calzolari, Khalid Choukri,

Bibliography 195

http://dl.acm.org/citation.cfm?id=2002181.2002202
http://dl.acm.org/citation.cfm?id=2002181.2002202
http://dl.acm.org/citation.cfm?id=1642059.1642064
http://dl.acm.org/citation.cfm?id=1642059.1642064
http://doi.acm.org/10.1145/1656274.1656278
http://kups.ub.uni-koeln.de/4561/


Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel
Tapias, editors, Proceedings of the Seventh International Conference on Language Resources
and Evaluation (LREC’10), pages 489–493, Valletta, Malta, May 2010. European Lan-
guage Resources Association (ELRA). ISBN 2-9517408-6-7.

[117] Nancy Ide and Laurent Romary. Representing linguistic corpora and their annotations. In
Proceedings of the 5th international conference on language resources and evaluation (LREC
2006), pages 225–228, Genoa, Italy, 2006.

[118] Nancy Ide and Keith Suderman. GrAF: A graph-based format for linguistic annotations.
In Proceedings of the Linguistic Annotation Workshop, pages 1–8, Prague, Czech Republic,
June 2007. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W/W07/W07-1501.

[119] ISO/IEC JTC 1/SC 2/WG 3. 8-bit single-byte coded graphic character sets, part 1: Latin
alphabet no. 1. URL http://www.open-std.org/JTC1/SC2/WG3/docs/n411.pdf (Last
accessed: 2013-06-18), April 1998.

[120] ISO/IEC19757-3. Information technology - document schema definition languages
(DSDL) - part 3: Rule-based validation - Schematron. URL http://dsdl.org, June
2006.

[121] ISO/TC 37/SC 2. Codes for the representation of names of languages – part 2: Alpha-
3 code. URL http://www.iso.org/iso/catalogue_detail?csnumber=4767 (Last ac-
cessed: 2013-06-19), 1988.

[122] ISO/TC 37/SC 2. Codes for the representation of names of languages – part 1: Alpha-
2 code. URL http://www.iso.org/iso/catalogue_detail?csnumber=22109 (Last ac-
cessed: 2013-06-19), 2002.

[123] Geoffrey James. The Tao of Programming. InfoBooks, Santa Monica, CA, USA, 1987.
ISBN 0931137071.

[124] Thorsten Joachims. Advances in kernel methods. chapter Making large-scale support vec-
tor machine learning practical, pages 169–184. MIT Press, Cambridge, MA, USA, 1999.
ISBN 0-262-19416-3. URL http://dl.acm.org/citation.cfm?id=299094.299104.

[125] JoBimText. JoBimText. URL http://sourceforge.net/projects/jobimtext/ (Last
accessed: 2013-12-11).

[126] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Bar-
reto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, Alejandro Guízar, Nee-
lakantan Kartha, Canyang Kevin Liu, Rania Khalaf, Dieter König, Mike Marin, Vinkesh
Mehta, Satish Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu. Web services
business process execution language version 2.0. OASIS Standard, December 2007. URL
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[127] Matthias L. Jugel and Stephan J. Schmidt. The Radeox wiki render engine. In Proceedings
of the 2006 international symposium on Wikis, WikiSym ’06, pages 33–36, New York,
NY, USA, 2006. ACM. ISBN 1-59593-413-8. doi: 10.1145/1149453.1149465. URL
http://doi.acm.org/10.1145/1149453.1149465.

[128] Yoshinobu Kano, Luke McCrohon, Sophia Ananiadou, and Jun’ichi Tsujii. Integrated
NLP evaluation system for pluggable evaluation metrics with extensive interoperable
toolkit. In Proceedings of the Workshop on Software Engineering, Testing, and Quality

196 Bibliography

http://www.aclweb.org/anthology/W/W07/W07-1501
http://www.aclweb.org/anthology/W/W07/W07-1501
http://www.open-std.org/JTC1/SC2/WG3/docs/n411.pdf
http://dsdl.org
http://www.iso.org/iso/catalogue_detail?csnumber=4767
http://www.iso.org/iso/catalogue_detail?csnumber=22109
http://dl.acm.org/citation.cfm?id=299094.299104
http://sourceforge.net/projects/jobimtext/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://doi.acm.org/10.1145/1149453.1149465


Assurance for Natural Language Processing, SETQA-NLP ’09, pages 22–30, Stroudsburg,
PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-32-9.
URL http://dl.acm.org/citation.cfm?id=1621947.1621951.

[129] Yoshinobu Kano, Makoto Miwa, Kevin Bretonnel Cohen, Lawrence E. Hunter, Sophia
Ananiadou, and Jun’ichi Tsujii. U-Compare: A modular NLP workflow construction
and evaluation system. IBM Journal of Research and Development, 55(3):11:1–11:10,
May 2011. ISSN 0018-8646. URL http://dl.acm.org/citation.cfm?id=2001058.
2001068.

[130] Marc Kemps-Snijders, Menzo Windhouwer, Peter Wittenburg, and Sue Ellen Wright. ISO-
cat: remodelling metadata for language resources. Int. J. Metadata, Semantics and On-
tologies, 4(4):261–276, 2009.

[131] Dan Klein and Christopher D Manning. Fast exact inference with a factored model for
natural language parsing. Advances in Neural Information Processing Systems, 15(2003):
3–10, 2003.

[132] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics - Volume 1, ACL ’03,
pages 423–430, Stroudsburg, PA, USA, 2003. Association for Computational Linguis-
tics. doi: 10.3115/1075096.1075150. URL http://dx.doi.org/10.3115/1075096.
1075150.

[133] Peter Kluegl, Martin Atzmueller, and Frank Puppe. TextMarker: A tool for rule-based
information extraction. In Christian Chiarcos, Richard Eckart de Castilho, and Man-
fred Stede, editors, Proceedings of the Biennial GSCL Conference 2009, 2nd UIMA@GSCL
Workshop, pages 233–240, Potsdam, Germany, September 2009. Gunter Narr Verlag.

[134] Matthias Trautner Kromann, Line Mikkelsen, and Stine Kern Lynge. Danish dependency
treebank - annotation guide. URL http://www.buch-kromann.dk/matthias/treebank/
guide.html (Last accessed: 2013-09-30), Nov 2004.

[135] LanguageTool. LanguageTool style and grammar checker. URL http://www.
languagetool.org (Last accessed: 2013-06-18).

[136] Martha Larson, Daniel Willett, Joachim Köhler, and Gerhard Rigoll. Compound splitting
and lexical unit recombination for improved performance of a speech recognition sys-
tem for German parliamentary speeches. In Proceedings ICSLP 2000: Sixth International
Conference on Spoken Language Processing, pages 945–948, 2000.

[137] Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael Chambers, Mihai Surdeanu, and
Dan Jurafsky. Deterministic coreference resolution based on entity-centric, precision-
ranked rules. Computational Linguistics, 39(4), 2013.

[138] Wolfgang Lezius. Ein Suchwerkzeug für syntaktisch annotierte Textkorpora (German).
Ph.d. thesis, University of Stuttgart, Institut für Maschinelle Sprachverarbeitung,
2002. URL http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezius/
diss/disslezius.pdf.

[139] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java virtual machine
specification. Addison-Wesley, 2013.

[140] LingPipe. A tool kit for processing text using computational linguistics. URL http:
//alias-i.com/lingpipe/ (Last accessed: 2013-09-29).

Bibliography 197

http://dl.acm.org/citation.cfm?id=1621947.1621951
http://dl.acm.org/citation.cfm?id=2001058.2001068
http://dl.acm.org/citation.cfm?id=2001058.2001068
http://dx.doi.org/10.3115/1075096.1075150
http://dx.doi.org/10.3115/1075096.1075150
http://www.buch-kromann.dk/matthias/treebank/guide.html
http://www.buch-kromann.dk/matthias/treebank/guide.html
http://www.languagetool.org
http://www.languagetool.org
http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezius/diss/disslezius.pdf
http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezius/diss/disslezius.pdf
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/


[141] W. Lloyd, O. David, J. C. Ascough, II, K. W. Rojas, J. R. Carlson, G. H. Leavesley, P. Krause,
T. R. Green, and L. R. Ahuja. Environmental modeling framework invasiveness: Anal-
ysis and implications. Environ. Model. Softw., 26(10):1240–1250, October 2011. ISSN
1364-8152. doi: 10.1016/j.envsoft.2011.03.011. URL http://dx.doi.org/10.1016/
j.envsoft.2011.03.011.

[142] Mohamed Maamouri, Ann Bies, Sondos Krouna, Fatma Gaddeche, and Basma Bouziri.
Penn Arabic treebank guidelines (v 4.8). Technical report, Linguistic Data Consortium,
University of Pennsylvania, Philadelphia, PA, Jan 2009.

[143] Mohamed Maamouri, Ann Bies, Sondos Krouna, Dalila Tabessi, Fatma Gaddeche, and
Basma Bouziri. Penn Arabic treebank (PATB) guidelines - morphological and syntactic
guidelines. URL http://projects.ldc.upenn.edu/ArabicTreebank/ (Last accessed:
2013-09-30), Jun 2011.

[144] MaltParser. A system for data-driven dependency parsing. URL http://www.
maltparser.org (Last accessed: 2013-09-27).

[145] MAMBAlex. Lexical categories in MAMBA. URL http://stp.lingfil.uu.se/~nivre/
swedish_treebank/MAMBAlex.html (Last accessed: 2013-10-04).

[146] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of English: the Penn treebank. Comput. Linguist., 19(2):313–330, June
1993. ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.972475.

[147] Montserrat Marimon, Beatríz Fisas, Núria Bel, Marta Villegas, Jorge Vivaldi, Sergi Torner,
Mercè Lorente, Silvia Vázquez, and Marta Villegas. The IULA treebank. In Nicoletta Cal-
zolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International
Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may 2012.
European Language Resources Association (ELRA). ISBN 978-2-9517408-7-7.

[148] Mate-Tools. Tools for natural language analysis, generation and machine learning. URL
http://code.google.com/p/mate-tools/ (Last accessed: 2013-09-26).

[149] Maven Central. The Central Repository. URL http://search.maven.org (Last accessed:
2013-06-19), 2011. Sonatype Inc. (http://www.sonatype.org/central).

[150] Andrew Kachites McCallum. MALLET: A machine learning for language toolkit. URL
http://mallet.cs.umass.edu (Last accessed: 2013-10-02).

[151] Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan
Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia
Bedini, Núria Bertomeu Castelló, and Jungmee Lee. Universal dependency annotation
for multilingual parsing. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 92–97, Sofia, Bulgaria,
August 2013. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P13-2017.

[152] Tony McEnery and Richard Xiao. The Lancaster corpus of Mandarin Chinese
(LCMC). URL http://www.lancaster.ac.uk/fass/projects/corpus/LCMC/ (Last ac-
cessed: 2013-09-30), Feb 2004.

[153] Deborah L McGuinness, Frank Van Harmelen, et al. OWL Web Ontology Language
overview. W3C recommendation, 10(2004-03):10, 2004.

198 Bibliography

http://dx.doi.org/10.1016/j.envsoft.2011.03.011
http://dx.doi.org/10.1016/j.envsoft.2011.03.011
http://projects.ldc.upenn.edu/ArabicTreebank/
http://www.maltparser.org
http://www.maltparser.org
http://stp.lingfil.uu.se/~nivre/swedish_treebank/MAMBAlex.html
http://stp.lingfil.uu.se/~nivre/swedish_treebank/MAMBAlex.html
http://dl.acm.org/citation.cfm?id=972470.972475
http://code.google.com/p/mate-tools/
http://search.maven.org
http://www.sonatype.org/central
http://mallet.cs.umass.edu
http://www.aclweb.org/anthology/P13-2017
http://www.aclweb.org/anthology/P13-2017
http://www.lancaster.ac.uk/fass/projects/corpus/LCMC/


[154] David McKelvie, Amy Isard, Andreas Mengel, Morten Baun Møller, Michael Grosse, and
Marion Klein. The MATE workbench - an annotation tool for XML coded speech corpora.
Speech Communication, 33(1-2):97–112, 2001.

[155] MeCab. Japanese morphological analyzer. URL http://mecab.googlecode.com (Last
accessed: 2013-09-27).

[156] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Apache Maven. Alphascript
Publishing, 2010.

[157] George A. Miller. WordNet: a lexical database for English. Commun. ACM, 38(11):
39–41, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL http:
//doi.acm.org/10.1145/219717.219748.

[158] James D. Mooney. Bringing portability to the software process. Dept. of Statistics and
Comp. Sci., West Virginia Univ., Morgantown WV, 1997.

[159] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia
Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, et al. The open provenance model
core specification (v1. 1). Future Generation Computer Systems, 27(6):743–756, 2011.

[160] R. L. Morgan, Scott Cantor, Steven Carmody, Walter Hoehn, and Ken Klingenstein. Fed-
erated security: The shibboleth approach. Educause Quarterly, 27(4):12–17, 2004.

[161] Morpha. Morpha lex stemmer converted using jflex. URL http://github.com/
knowitall/morpha (Last accessed: 2013-09-27).

[162] Alessandro Moschitti. Making tree kernels practical for natural language learning. In
Proceedings of the Eleventh International Conference on European Association for Compu-
tational Linguistics (EACL’06), pages 113–120, Trento, Italy, 2006.

[163] MSTParser. A non-projective dependency parser that searches for maximum spanning
trees over directed graphs. URL http://sourceforge.net/projects/mstparser/ (Last
accessed: 2013-09-27).

[164] Christoph Müller and Michael Strube. Multi-level annotation of linguistic data with
MMAX2. English Corpus Linguistics, Vol.3, pages 197–214, 2006.

[165] B Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service for computer
networks. Communications Magazine, IEEE, 32(9):33–38, 1994.

[166] Tae-Gil Noh and Sebastian Padó. Using UIMA to structure an open platform for textual
entailment. In Peter Klügl, Richard Eckart de Castilho, and Katrin Tomanek, editors,
Proceedings of the 3rd Workshop on Unstructured Information Management Architecture
(UIMA@GSCL 2013), pages 26–33, Darmstadt, Germany, Sep 2013. CEUR-WS.org.

[167] Tae-Gil Noh, Sebastian Padó, Asher Stern, Ofer Bronstein, Rui Wang, and Roberto Zanoli.
EXCITEMENT open platform: Architecture and interfaces (v1.1.4). Specification, EX-
CITEMENT, October 2013.

[168] Mick O’Donnell. The UAM CorpusTool: Software for corpus annotation and exploration.
In Proceedings of the XXVI Congreso de AESLA, 2008.

[169] Eduardo Ogasawara, Daniel de Oliveira, Fernando Chirigati, Carlos Eduardo Barbosa,
Renato Elias, Vanessa Braganholo, Alvaro Coutinho, and Marta Mattoso. Exploring many
task computing in scientific workflows. In Proceedings of the 2nd Workshop on Many-Task

Bibliography 199

http://mecab.googlecode.com
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://github.com/knowitall/morpha
http://github.com/knowitall/morpha
http://sourceforge.net/projects/mstparser/


Computing on Grids and Supercomputers, MTAGS ’09, pages 2:1–2:10, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-714-1. doi: 10.1145/1646468.1646470. URL
http://doi.acm.org/10.1145/1646468.1646470.

[170] Philip V. Ogren. Knowtator: a Protégé plug-in for annotated corpus construction. In
Proceedings of the 2006 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology: companion volume: demon-
strations, NAACL-Demonstrations ’06, pages 273–275, Stroudsburg, PA, USA, 2006.
Association for Computational Linguistics. doi: 10.3115/1225785.1225791. URL
http://dx.doi.org/10.3115/1225785.1225791.

[171] Philip V. Ogren and Steven J. Bethard. Building test suites for UIMA components. In Pro-
ceedings of the Workshop on Software Engineering, Testing, and Quality Assurance for Nat-
ural Language Processing (SETQA-NLP 2009), pages 1–4, Boulder, Colorado, June 2009.
Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
W/W09/W09-1501.

[172] Philip V. Ogren, Philipp G. Wetzler, and Steven J. Bethard. ClearTK: a framework for sta-
tistical natural language processing. In Christian Chiarcos, Richard Eckart de Castilho,
and Manfred Stede, editors, Proceedings of the Biennial GSCL Conference 2009, 2nd
UIMA@GSCL Workshop, pages 241–248, Potsdam, Germany, September 2009. Gunter
Narr Verlag.

[173] OMG. OMG XML metadata interchange (XMI) specification. Technical report, Object
Management Group, Inc., January 2002.

[174] Oracle and/or its affiliates. Java object serialization specification. URL http://docs.
oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html (Last
accessed: 2013-06-18), 2010.

[175] Petya Osenova and Kiril Simov. Formal grammar of bulgarian language. Technical report,
Institute for Parallel Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria, Dec
2007.

[176] PAROLE-ES. PAROLE tagset for Spanish v2.0. URL http://nlp.lsi.upc.edu/
freeling/doc/tagsets/tagset-es.html (Last accessed: 2013-10-04).

[177] PAROLE-Reduced. SVMTool - PAROLE reduced tagset. URL http://www.lsi.upc.edu/
~nlp/SVMTool/parole.html (Last accessed: 2013-10-04).

[178] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset.
In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente
Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of
the Eight International Conference on Language Resources and Evaluation (LREC’12), Is-
tanbul, Turkey, may 2012. European Language Resources Association (ELRA). ISBN
978-2-9517408-7-7.

[179] Scott Piao, Sophia Ananiadou, and John McNaught. Integrating annotation tools into
UIMA for interoperability. In Proceedings of the UK e-Science AHM Conference 2007, pages
575–582, 2007.

[180] Brett Porter. Maven turns 3.0. JAX Magazine, 3:3–7, 2010.

[181] Martin F Porter. Snowball: A language for stemming algorithms. URL http://snowball.
tartarus.org/texts/introduction.html (Last accessed: 2013-10-16), October 2001.

200 Bibliography

http://doi.acm.org/10.1145/1646468.1646470
http://dx.doi.org/10.3115/1225785.1225791
http://www.aclweb.org/anthology/W/W09/W09-1501
http://www.aclweb.org/anthology/W/W09/W09-1501
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
http://www.lsi.upc.edu/~nlp/SVMTool/parole.html
http://www.lsi.upc.edu/~nlp/SVMTool/parole.html
http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html


[182] Janina Radó. Object fronting in English and German: A quantitative cor-
pus study. In Berry Claus, Constantin Freitag, Sophie Repp, and Edith
Scheifele, editors, Proceedings of the Linguistic Evidence Special Edition 2013, Berlin,
April 2013. URL http://www2.hu-berlin.de/linguistic-evidence-berlin-2013/
download/abstracts/Rado_LinguisticEvidence2013.pdf.

[183] Rafal Rak, Andrew Rowley, William Black, and Sophia Ananiadou. Argo: an integra-
tive, interactive, text mining-based workbench supporting curation. Database, 2012,
2012. doi: 10.1093/database/bas010. URL http://database.oxfordjournals.org/
content/2012/bas010.abstract.

[184] Eric S Raymond. The art of Unix programming. Addison-Wesley Professional, 2003.

[185] Martin Riedl and Chris Biemann. Text segmentation with topic models. JLCL, 27(1):
47–69, 2012.

[186] Christophe Roeder, Philip V. Ogren, William A. Baumgartner Jr., and Lawrence Hunter.
Simplifying UIMA component development and testing with Java annotations and de-
pendency injection. In Christian Chiarcos, Richard Eckart de Castilho, and Manfred
Stede, editors, Proceedings of the Biennial GSCL Conference 2009, 2nd UIMA@GSCL Work-
shop, pages 257–260. Gunter Narr Verlag, 2009.

[187] Douglas LT Rohde. Tgrep2 user manual version 1.15. Massachusetts Institute of Technol-
ogy. http://tedlab.mit.edu/dr/Tgrep2, 2005.

[188] Fernando Sánchez León. A Spanish tagset for the CRATER project. Technical report, Lab-
oratorio de Lingüística Informática, Facultad de Filosofía y Letras, Universidad Autónoma
de Madrid, Jun 1994.

[189] Beatrice Santorini. Part-of-speech tagging guidelines for the Penn treebank project (3rd
revision). Technical report MS-CIS-90-47, LINC LAB 178, University of Pennsylvania, Jul
1990.

[190] Guergana K. Savova, James J. Masanz, Philip V. Ogren, Jiaping Zheng, Sunghwan Sohn,
Karin C. Kipper-Schuler, and Christopher G. Chute. Mayo clinical text analysis and knowl-
edge extraction system (cTAKES): architecture, component evaluation and applications.
Journal of the American Medical Informatics Association, 17(5):507–513, 2010.

[191] Anne Schiller, Simone Teufel, and Christine Stöckert. Guidelines für das Tagging
deutscher Textcorpora mit STTS. Technical report, Universität Stuttgart, Universität
Tübingen, Aug 1999.

[192] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceed-
ings of International Conference on New Methods in Language Processing, pages 44–49,
Manchester, UK, 1994.

[193] Marshall Schor. An effective, Java-friendly interface for the unstructured management
architecture (UIMA) common analysis system. Technical Report IBM RC23176, IBM T. J.
Watson Research Center, 2004.

[194] Stephan Schwiebert. Tesla - ein virtuelles Labor für experimentelle Computer- und Ko-
rpuslinguistik. PhD thesis, Universität zu Köln, 2012. URL http://kups.ub.uni-
koeln.de/4571/.

Bibliography 201

http://www2.hu-berlin.de/linguistic-evidence-berlin-2013/download/abstracts/Rado_LinguisticEvidence2013.pdf
http://www2.hu-berlin.de/linguistic-evidence-berlin-2013/download/abstracts/Rado_LinguisticEvidence2013.pdf
http://database.oxfordjournals.org/content/2012/bas010.abstract
http://database.oxfordjournals.org/content/2012/bas010.abstract
http://kups.ub.uni-koeln.de/4571/
http://kups.ub.uni-koeln.de/4571/


[195] Aleksander Slominski. Adapting BPEL to scientific workflows. In Ian J. Taylor, Ewa
Deelman, Dennis B. Gannon, and Matthew Shields, editors, Workflows for e-Science,
pages 208–226. Springer London, 2007. ISBN 978-1-84628-519-6. doi: 10.1007/978-
1-84628-757-2_14. URL http://dx.doi.org/10.1007/978-1-84628-757-2_14.

[196] Snowball Stemmer (Lucene). Machine learning based toolkit for the processing of
natural language text. URL http://lucene.apache.org/core/3_0_3/api/contrib-
snowball/ (Last accessed: 2013-09-27).

[197] Richard Socher, John Bauer, Christopher D. Manning, and Ng Andrew Y. Parsing
with compositional vector grammars. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 455–465,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P13-1045.

[198] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, An-
drew Y. Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1631–1642, Stroudsburg, PA, October 2013.
Association for Computational Linguistics.

[199] Bàrbara Soriano, Oriol Borrega, Mariona Taulé, and M. Antònia Martí. Guidelines. Tech-
nical report 3LB-WP 03-02, Universitat de Barcelona, 2008.

[200] Stanford CoreNLP. A suite of core NLP tools. URL http://nlp.stanford.edu/
software/corenlp.shtml (Last accessed: 2013-09-06).

[201] STB-DEP. Dependency Labels in the Swedish Treebank. URL http://stp.lingfil.uu.
se/~nivre/swedish_treebank/dep.html (Last accessed: 2013-10-04).

[202] STB-POS. Part-of-speech categories in the Swedish Treebank. URL http://stp.
lingfil.uu.se/~nivre/swedish_treebank/pos.html (Last accessed: 2013-10-04).

[203] Achim Stein. French TreeTagger part-of-speech tags. URL http://nlp.lsi.upc.edu/
freeling/doc/tagsets/tagset-es.html (Last accessed: 2013-10-04), 2003.

[204] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. brat: a web-based tool for NLP-assisted text annotation. In Proceedings of
the Demonstrations at the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pages 102–107, Avignon, France, April 2012. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/E12-2021.

[205] Victoria Stodden. The legal framework for reproducible scientific research: Licensing
and copyright. Computing in Science & Engineering, 11(1):35–40, 2009.

[206] Victoria Stodden. Reproducible research: Addressing the need for data and code sharing
in computational science. Computing in Science & Engineering, 12(5):8–12, 2010.

[207] Jannik Strötgen and Michael Gertz. Multilingual and cross-domain temporal tagging.
Language Resources and Evaluation, 47(2):269–298, 2013. doi: 10.1007/s10579-012-
9179-y.

[208] Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluís Màrquez, and Joakim Nivre.
The CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies. In
CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Language

202 Bibliography

http://dx.doi.org/10.1007/978-1-84628-757-2_14
http://lucene.apache.org/core/3_0_3/api/contrib-snowball/
http://lucene.apache.org/core/3_0_3/api/contrib-snowball/
http://www.aclweb.org/anthology/P13-1045
http://www.aclweb.org/anthology/P13-1045
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://stp.lingfil.uu.se/~nivre/swedish_treebank/dep.html
http://stp.lingfil.uu.se/~nivre/swedish_treebank/dep.html
http://stp.lingfil.uu.se/~nivre/swedish_treebank/pos.html
http://stp.lingfil.uu.se/~nivre/swedish_treebank/pos.html
http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
http://www.aclweb.org/anthology/E12-2021


Learning, pages 159–177, Manchester, England, August 2008. Coling 2008 Organizing
Committee. URL http://www.aclweb.org/anthology/W08-2121.

[209] Valentin Tablan, Ian Roberts, Hamish Cunningham, and Kalina Bontcheva. GATE-
Cloud.net: a platform for large-scale, open-source text processing on the cloud. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 371(1983), 2013.

[210] Antero Taivalsaari. On the notion of inheritance. ACM Computing Surveys (CSUR), 28
(3):438–479, 1996.

[211] TANL-IT. Tanl part-of-speech tagset. URL http://medialab.di.unipi.it/wiki/Tanl_
POS_Tagset (Last accessed: 2013-10-04).

[212] Mariona Taulé, M. Antònia Martí, and Marta Recasens. AnCora: Multilevel annotated
corpora for Catalan and Spanish. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, and Daniel Tapias, editors, Proceedings of
the Sixth International Conference on Language Resources and Evaluation (LREC’08), Mar-
rakech, Morocco, May 2008. European Language Resources Association (ELRA). ISBN
2-9517408-4-0. http://www.lrec-conf.org/proceedings/lrec2008/.

[213] Paul Taylor, Alan W. Black, and Richard Caley. Heterogeneous relation graphs as a
formalism for representating linguistic information. Speech Communications, 33(1-2):
153–174, January 2001. ISSN 0167-6393. doi: 10.1016/S0167-6393(00)00074-1. URL
http://dx.doi.org/10.1016/S0167-6393(00)00074-1.

[214] Elke Teich and Mônica Holtz. Scientific registers in contact: An exploration of the lexico-
grammatical properties of interdisciplinary discourses. International Journal of Corpus
Linguistics, 14(4):524–548, 12 2009.

[215] Elke Teich, Silvia Hansen, and Peter Fankhauser. Representing and querying multi-layer
corpora. In Proceedings of the IRCS Workshop on Linguistic Databases, pages 228–237,
Philadelphia, 11-13 December 2001. University of Pennsylvania.

[216] Heike Telljohann, Erhard Hinrichs, and Sandra Kübler. The TüBa-D/Z treebank: Anno-
tating German with a context-free backbone. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation (LREC 2004), pages 2229–2235, Lis-
bon, Portual, 2004.

[217] The DUCC Team. Distributed UIMA cluster computing (0.8.0). Technical report, Apache
UIMA, Sep 2013.

[218] The Unicode Consortium. The Unicode Standard, Version 6.2.0. The Unicode Consortium,
Mountain View, CA, 2012. ISBN 978-1-936213-07-8.

[219] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich
part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology - Volume 1, NAACL ’03, pages 173–180, Stroudsburg, PA,
USA, 2003. Association for Computational Linguistics. doi: 10.3115/1073445.1073478.
URL http://dx.doi.org/10.3115/1073445.1073478.

[220] TreeTagger. A language independent part-of-speech tagger. URL http://www.cis.uni-
muenchen.de/~schmid/tools/TreeTagger/ (Last accessed: 2013-09-27).

Bibliography 203

http://www.aclweb.org/anthology/W08-2121
http://medialab.di.unipi.it/wiki/Tanl_POS_Tagset
http://medialab.di.unipi.it/wiki/Tanl_POS_Tagset
http://dx.doi.org/10.1016/S0167-6393(00)00074-1
http://dx.doi.org/10.3115/1073445.1073478
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/


[221] Reut Tsarfaty. A unified morpho-syntactic scheme of Stanford dependencies. In Proceed-
ings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 578–584, Sofia, Bulgaria, August 2013. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/P13-2103.

[222] TT-NL. Tag set for Dutch used by TreeTagger. URL http://www.cis.uni-muenchen.de/
~schmid/tools/TreeTagger/data/dutch-tagset.txt (Last accessed: 2013-10-04).

[223] Dieter Van Uytvanck, Claus Zinn, Daan Broeder, Peter Wittenburg, and Mariano
Gardellini. Virtual Language Observatory: The portal to the language resources and
technology universe. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings
of the Seventh International Conference on Language Resources and Evaluation (LREC’10),
pages 900–903, Valletta, Malta, may 2010. European Language Resources Association
(ELRA). ISBN 2-9517408-6-7.

[224] Leonoor Van Der Beek, Gosse Bouma, Rob Malouf, and Gertjan Van Noord. The Alpino
Dependency Treebank. In Computational Linguistics in the Netherlands, pages 8–22, 2001.

[225] W3C. XML - Extensible Markup Language. Technical report, World Wide Web Consortium
(W3C), (http://www.w3.org/XML), 1997.

[226] W3C. XML Schema parts 0, 1 and 2. W3C recommendation, W3C, October 2001. URLs:
http://www.w3.org/TR/.

[227] Stephen Wu, Vinod Kaggal, Dmitriy Dligach, James Masanz, Pei Chen, Lee Becker, Wendy
Chapman, Guergana Savova, Hongfang Liu, and Christopher Chute. A common type
system for clinical natural language processing. Journal of Biomedical Semantics, 4(1):1,
2013. ISSN 2041-1480. doi: 10.1186/2041-1480-4-1. URL http://www.jbiomedsem.
com/content/4/1/1.

[228] Fei Xia. The part-of-speech tagging guidelines for the Penn Chinese treebank (3.0). Tech-
nical report IRCS-00-07, University of Pennsylvania, Oct 2000.

[229] Nianwen Xue. Annotation guidelines for the Chinese proposition bank. Draft, Brandeis
University, Feb 2007.

[230] Nianwen Xue, Fei Xia, Shizhe Huang, and Anthony Kroch. The bracketing guidelines for
the Penn Chinese treebank (3.0). Technical report IRCS-00-08, University of Pennsylva-
nia, Oct 2000.

[231] F. Yergeau. UTF-8, a transformation format of ISO 10646 (RFC-3629). URL http://
tools.ietf.org/html/rfc3629 (Last accessed: 2013-06-18), November 2003.

[232] Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de Castilho, and Chris Biemann. We-
banno: A flexible, web-based and visually supported system for distributed annotations.
In Proceedings of the 51st Annual Meeting of the Association for Computational Linguis-
tics: System Demonstrations, pages 1–6, Sofia, Bulgaria, August 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P13-4001.

[233] Amir Zeldes, Anke Lüdeling, Julia Ritz, and Christian Chiarcos. ANNIS: a search tool
for multi-layer annotated corpora, 2009. URL http://edoc.hu-berlin.de/docviews/
abstract.php?id=36996.

204 Bibliography

http://www.aclweb.org/anthology/P13-2103
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/dutch-tagset.txt
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/dutch-tagset.txt
http://www.jbiomedsem.com/content/4/1/1
http://www.jbiomedsem.com/content/4/1/1
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://www.aclweb.org/anthology/P13-4001
http://edoc.hu-berlin.de/docviews/abstract.php?id=36996
http://edoc.hu-berlin.de/docviews/abstract.php?id=36996


[234] Torsten Zesch and Jens Haase. HOO 2012 shared task: UKP Lab system description. In
Proceedings of the Seventh Workshop on Innovative Use of NLP for Building Educational
Applications at NAACL-HLT, pages 302–306, June 2012.

[235] Torsten Zesch, Iryna Gurevych, and Max Mühlhäuser. Analyzing and accessing Wikipedia
as a lexical semantic resource. In Data Structures for Linguistic Resources and Applications,
pages 197–205, Tübingen, Germany, April 2007. Gunter Narr, Tübingen.

[236] Torsten Zesch, Omer Levy, Iryna Gurevych, and Ido Dagan. UKP-BIU: Similarity and
entailment metrics for student response analysis. In Proceedings of the 7th Interna-
tional Workshop on Semantic Evaluation (SemEval 2013), in conjunction with the 2nd
Joint Conference on Lexical and Computational Semantics (*SEM 2013), volume 2, pages
285–289, Stroudsburg, PA, USA, June 2013. Association for Computational Linguistics.
ISBN 978-1-937284-49-7.

[237] Jun Zhao, Jose Manuel Gomez-Perez, Khalid Belhajjame, Graham Klyne, Esteban Garcia-
Cuesta, Aleix Garrido, Kristina Hettne, Marco Roos, David De Roure, and Carole Goble.
Why workflows break – understanding and combating decay in Taverna workflows. In
8th IEEE International Conference on eScience (eScience 2012), pages 1–9. IEEE, 2012.

Bibliography 205


	Introduction
	Motivation 
	Requirements
	Contributions
	Challenges
	Publication record

	State of the art
	Manual analysis 
	Roles
	Annotation editors 
	Linguistic search engines 

	Automatic analysis 
	Roles 
	Processing frameworks 


	Usability 
	Resource selection 
	Motivation
	Selecting a resource 
	Resolving a resource
	Acquiring the resource
	Installing the resource

	State of the art
	Component-based selection
	Parameter-group-based selection
	Workflow-based selection with statically configured components
	Workflow-based selection with dynamically configured components
	No dynamic selection

	Contribution: Dynamic resource selection and acquisition 
	A coordinate system for resource selection 
	Resource selection and acquisition process
	Packaging resources for reuse 

	Example
	Summary

	Simplified API 
	Motivation
	State of the art 
	Mode selection
	Inheritance
	Strategy pattern with internal instantiation
	Strategy pattern with external instantiation
	Support in processing frameworks

	Contribution: Improved support for configurable analysis component behavior
	Injection of shared resources into analysis components
	Injection of nested resources
	Injection of multi-valued shared resources

	Examples
	Scenario 1: Decompounding
	Scenario 2: Text classification 

	Summary


	Reproducibility 
	Portable workflows 
	Motivation
	Portability
	Repositories
	Artifacts
	Discovery
	Workflow description

	State of the art
	Approaches to reproducibility
	Support for reproducibility in processing frameworks 

	Contribution: An approach to self-contained portable workflows 
	Workflow definition
	Execution

	Example
	Summary

	Dynamic workflows 
	Motivation
	State of the art
	Control flow workflows
	Data flow workflows
	Grid computing and visual programming
	Workflow history and evolution
	Workflow descriptions

	Contribution: Dynamic workflows for language analysis 
	Tasks
	Data dependencies
	Parameters 
	Reporting
	Specialization

	Examples
	Scenario 1: Information retrieval
	Scenario 2: Machine learning

	Summary


	Flexibility 
	Annotation type systems 
	Motivation
	State of the art 
	ClearTK
	cTAKES
	DKPro Core
	JCoRe
	U-Compare

	Contribution: An analysis of type system designs 
	Structural patterns
	Association patterns
	Label patterns 
	Layer patterns

	Analysis
	Towards a common type system
	Manual analysis

	Summary

	Component collection 
	Motivation
	State of the art
	Single vendor collections
	Special purpose collections
	Broad-coverage collections
	Machine learning toolkits 

	Contribution: A broad coverage collection of interoperable and interchangeable components
	Goal
	Architecture
	Type system
	Components
	Parameters 
	Resources 

	Analysis 
	Interchangeability
	Conceptual interoperability 
	Provenance and attribution

	Summary


	Interactivity 
	Search and annotation 
	Motivation
	State of the art
	Bootstrapping
	Linguistic search
	Multi-user annotation

	Contribution: An approach to the annotation of infrequent phenomena in large corpora
	Process
	Architecture
	Setting up types 
	Annotation 
	Monitoring 

	Identification of non-canonical constructions 
	Summary


	Conclusion 
	Glossary
	List of Figures
	List of Tables
	Listings
	Bibliography

