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Abstract
Projectile Coulomb excitation experiments have been performed on the nuclei
130,132Ba, 154Sm, and 194,196Pt. A detailed description of the experiments and
the data analysis is given. The results on absolute decay rates of the low-lying
collective states of these nuclei allow for a comparison with predictions from dif-
ferent theoretical models of nuclear quadrupole collectivity. For the nucleus 154Sm
the data on the decay rates of the states of the first K = 0 band support the as-
signment of this band as the beta band of this nucleus. The results for the nuclei
194,196Pt allow for a comparison with the selection rules of the O(6) dynamical
symmetry of the Interacting Boson Model. The nucleus 196Pt indeed manifests the
O(6) symmetry. The results on B(M1;2+i → 2+1 ) values of the nuclei 130,132Ba com-
plete the experimental data on the evolution of the one quadrupole-phonon state
of mixed proton-neutron symmetry (2+1,ms) in the A= 130 mass region. The results
support the previous observation of increased fragmentation of the 2+1,ms state for
mid-shell nuclei, although one candidate of a 2+1,ms state of 130Ba, if confirmed,
would alter this interpretation.

Zusammenfassung
Experimente der Projektil-Coulombanregung sind an den Kernen 130,132Ba, 154Sm
und 194,196Pt durchgeführt worden. Die Experimente und ihre Auswertung werden
detailliert beschrieben. Die Ergebnisse in Form von absoluten Werten von Zerfalls-
raten tiefliegender kollektiver Zustände dieser Kerne ermöglichen Vergleiche mit
Vorhersagen unterschiedlicher theoretischer Modelle nuklearer Quadrupolkollek-
tivität. Für den Kern 154Sm konnte anhand der Ergebnisse der Zerfallsraten der
ersten angeregten K = 0 Bande eine Zuweisung dieser Bande als beta-Bande
bestätigt werden. Die Ergebnisse für die Kerne 194,196Pt ermöglichten Vergleiche
mit den Auswahlregeln der dynamischen O(6) Symmetrie des Interacting Boson
Modells. Der Kern 196Pt stellt tatsächlich eine Manifestierung der O(6) Symme-
trie dar. Die Ergebnisse der B(M1;2+i → 2+1 ) Werte in den Kernen 130,132Ba
vervollständigen die experimentellen Daten zum ein-Quadrupol-Phonon Zustand
gemischter Proton-Neutron Symmetrie (2+1,ms) in der A = 130 Massenregion. Die
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Ergebnisse bestätigen frühere Beobachtungen einer zunehmenden Fragmentierung
dieses Zustandes für Kerne in der Schalenmitte, obwohl ein Kandidat des 2+1,ms
Zustandes im Falle seiner Bestätigung diese Interpretation noch verändern kann.
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1 Introduction
The atomic nucleus is a fascinating physical object. With a size measured in units
of 10−15 m its dimensions are far beyond the abilities of human imagination. It
is remarkable that an atomic nucleus only makes up about 0.001% of the volume
of its atom leaving the rest empty. Yet, atomic nuclei comprise more than 99.9%
of the mass of all visible matter. Our contemporary idea of the properties of the
atomic nucleus can be traced back to its groundbreaking discovery together with
the development of the model of the atom by Rutherford in 1911 [Rut11]. Since
then, nuclear scientists have made tremendous progress in the description of the
atomic nucleus. But even today not all properties of the atomic nucleus have been
fully understood.

The atomic nucleus is a mesoscopic quantum system consisting of ≈ 1 − 300
interacting nucleons of two different species, namely protons and neutrons. How-
ever, their interaction is still subject to ongoing investigations. Recent attempts to
model realistic interactions try to deduce the interactions between the nucleons
from the fundaments of QCD, e.g. [Epe09], and involve different degrees of many-
body terms. Given these considerations one would expect the structure of the
nucleus to be chaotic and complicated. However, empirical data on level schemes,
in particular of even-even nuclei all across the nuclear chart reveal a different ob-
servation. In fact, almost all even-even nuclei exhibit some surprisingly simple
parts of their level schemes whose patterns are repeating in different regions of the
nuclear chart. One well-known example are the first two excited states of even-
even nuclei that in most cases are of angular momentum Jπ = 2+ and Jπ = 4+.
The ratio of their excitation energies, R4/2 = E(4+1 )/E(2

+
1 ), exhibits a very uniform

behavior as a function of the distance from the nuclear magic numbers. A plot of
the values of R4/2 across the nuclide chart is shown in Fig. 1.1.

While a unified description of nuclear structure is still not available, different
approaches have been established to describe certain features of the nuclei. For
nuclei near closed shells the nuclear shell model [Tal93] is capable of a good de-
scription, provided that the underlying single-particle energies and interactions are
known. Nuclei further away of closed shells exhibit characteristic features that can
be described by the phenomenon of quadrupole collectivity, which arises from a
coherent motion of the nucleons, a phenomenon that can be observed in numerous
even-even nuclei across the nuclear chart. A very successful theoretical frame-
work for the description of collectivity has been found in the geometrical model
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Figure 1.1.: Color-coded illustration of the ratio R4/2 = E(4+1 )/E(2
+
1 ) for the even-

even nuclei across the entire nuclear chart [Nat14].

introduced by Bohr and Mottelson [Boh98], treating the nucleus as a shaped ob-
ject which can be subject to excitations of vibrational and rotational character. A
different ansatz was developed in terms of algebraic models, among which the
Interacting Boson Model (IBM) [Iac87] is the most widely known. Short introduc-
tory chapters on all of the above-mentioned theoretical models will be given in the
subsequent chapters.

The models which describe the different phenomena of quadrupole collectivity
allow for the deduction of simple rules for experimental signatures – experimen-
tally accessible quantities that are characteristic of the respective theoretical mod-
els and can, thus, help in guiding experimentalists to design and perform dedicated
experiments. Experimental results on the quantities serving as signatures of given
theoretical models are the most crucial testing ground for the applicability of a
model. Such observables can be relative quantities like decay branching ratios or
γ-ray multipole mixing ratios. However, absolute quantities, for example in the
form of selection rules for electromagnetic transitions, allow for more substantial

8 1. Introduction



interpretations of experimental data. In the past, the experimental identification
of characteristic features of quadrupole collectivity has often been subject to either
lengthy campaigns, investigating the same nucleus under different experimental
probes and techniques to combine the results for conclusive information. Or, the
observables for sufficient identification of predictions have not been available at
all, and conclusions had to rely on relative quantities, only.

The recent technical developments in the field of experimental nuclear physics
begin to change this picture. More powerful heavy ion accelerators have been
developed [ATL14] that allow for the investigation of rare isotopes which are un-
feasible to be prepared as targets. In addition, large arrays of semiconductor detec-
tors have been designed that allow for highly efficient detection of electromagnetic
radiation [Ebe08, Lee90].

One of the most suitable experimental techniques for the investigation of
quadrupole collectivity is the electromagnetic excitation, or Coulomb excitation
(Coulex), which has been used for this kind of research for almost 60 years now.
Using this method in combination with contemporary accelerators and powerful
HPGe detector arrays opens new possibilities in the field of nuclear structure re-
search.

It is the purpose of this work to demonstrate the ability of this approach to ad-
dress crucial aspects of nuclear quadrupole collectivity on an absolute scale within
single experiments. In the course of this work, experiments focusing on the signa-
tures of three different aspects of nuclear collectivity have been performed, namely
experiments on the nuclei 154Sm, 130,132Ba, and 194,196Pt. The nucleus 154Sm is of
rotational nature and the results of this work give new insights into the nature of
its first excited K = 0 band. In the γ-soft nuclei 194,196Pt, the selection rules of the
O(6) dynamical symmetry of the Interacting Boson Model (IBM) have been com-
pared to new experimental data. The results for the nuclei 130,132Ba complete the
experimental data on states with mixed proton-neutron symmetry in the A = 130
mass region. On the example of these nuclei, it will be shown in the present work,
how the experimental technique works and is utilized. The data analysis will be
explained in detail and the results will be presented.

The content of chapters 2 and 3 represents a compilation of knowledge from text-
books and prior publications by others. The author has no intention to claim these
contents as his own ideas or his own work. These chapters are given to provide the
reader with the theoretical background based on which the present experimental
results have been interpreted. The personal contribution by the author is summa-
rized in chapters 4 and 5, where the data analysis and the interpretation of the data
are given.
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2 Theoretical approaches to nuclear
quadrupole collectivity

In this chapter, it is intended to briefly introduce some of the basic features of the
models used for the discussion of the experiments performed in the course of this
work with respect to nuclear collectivity.
In section 2.1 a brief overview on the description of nuclear structure in terms
of single particles and their residual interactions is given. In principle, given the
knowledge of the details of the interactions, this model should be able to produce
the most exact results but becomes computationally challenging when it comes to
the description of collectivity.
Those limitations can be overcome by the description of the nucleus in the frame-
work of a geometrical object. The most relevant concepts of this approach will be
shortly introduced in section 2.2. However, these models only describe limits not
manifested in a large number of real nuclei. Yet, these limits are important corner-
stones for the description of collective behavior in nuclei.
Section 2.3 deals with the Interacting Boson Model (IBM). It originates from a
truncation of the nuclear shell model space and, yet, is capable of the description
of collectivity of nuclei across the nuclear chart. One key feature of the IBM is its
algebraic structure that distinguishes it from the models discussed before.

This chapter gives a brief introduction on some well-established theoretical models
that are treated exhaustively in several textbooks. Unless otherwise stated this
chapter is based on the respective parts of the textbooks of [Ber07], [Cas01a],
[Kra87], and [May94].

2.1 Nuclear Shell Model

The nuclear shell model in its original form was introduced by Maria Goeppert-
Mayer [Goe50] and Haxel, Jensen, and Suess [Hax49] independently. It was a
great success, because it was capable of explaining the increased stability of nuclei
consisting of the particular magic numbers of protons and neutrons: 2, 8, 20, 28,
50, 82, and 126.
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The key idea behind this model is the independent motion of the nucleons under
the influence of a central potential. Other than in atomic physics, this potential has
no external source. Instead, the potential acting on the A-th nucleon is generated
by the A−1 other nucleons. The Hamiltonian is modified by adding and subtracting
a central potential U(r)

H =
∑

i

�

Ti(ri) + U(ri)
�

︸ ︷︷ ︸

≡H0

+
∑

i j

Vi j(ri , r j)−
∑

i

U(ri) = H0 +Hres , (2.1)

shown here for simplicity on the example of free nucleon motion with two-body
interactions. The contribution of the residual interaction Hres is assumed to be
small. In first approximation it can be neglected, which is a good approximation for
the derivation of the single particle orbits. However, Hres has important influence
on the formation of nuclear structure, which will be discussed later. Because of the
short-range character of the nucleon-nucleon interaction, the radial dependency
of the potential U(r) is chosen to be similar to the nuclear density ρ(r), or even
simpler, e.g. approximated by the Harmonic Oscillator (HO),

U(r) =
1

2
mω2r2 . (2.2)

Although the HO shows the wrong asymptotic behavior, its shape for the region
inside the nuclear volume is a good approximation and is valid for the study of
bound states. By also taking a spin-orbit interaction Vls into account

H0 =
∑

i

�

Ti(ri) +
1

2
mω2r2

i

�

+ Vls(r) l • s , (2.3)

the solution of the Schrödinger equation yields the orbits that are shown qualita-
tively in Fig. 2.1. The orbits are labeled with the quantum numbers nl j , where n is
the radial quantum number, l is the orbital angular momentum, and j is the total
angular momentum j = l±1/2. The value of Vls is chosen to be negative, resulting
in the decrease of the energy of the orbitals with j> = l + 1/2, while orbitals of
j< = l − 1/2 are raised. According to the Pauli principle each orbit can be popu-
lated by 2 j+ 1 nucleons. Filling the orbits consecutively results in large energetic
gaps for nucleon numbers that resemble the empirical magic numbers. It is obvious
that this model is only a rough estimate. In fact, the sequence of the orbits as well
as their energies are dependent on the region of the nuclear chart, and, not treated
explicitly here, is different for protons and neutrons.

12 2. Theoretical approaches to nuclear quadrupole collectivity
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Figure 2.1.: Qualitative illustration of the orbits resulting from the shell model.

As a consequence of the Pauli principle, the 2 j+ 1 nucleons of a completely filled
orbit nl j couple to a total angular momentum of J = 0. Therefore, the properties
of the nuclear structure are determined by the nucleons in partially filled orbits,
called valence nucleons and the residual interaction of Vres among them. Valence
nucleons of the same kind in the same orbit nl j can couple to different total angular
momenta J , whose degeneracy is broken by the residual interaction between them.
A figurative example of such an interaction is the δ interaction

Vres =−V0δ(r1 − r2) , (2.4)

which models the short-range part of the nucleon-nucleon interaction. The δ
interaction is maximal for two nucleons with maximum spatial overlap of their
wave functions. This is the case for two antiparallelly aligned nucleons with
M = m1 + m2 = 0. As a consequence of the δ interaction the energy of config-
urations of nucleons coupled to angular momentum 0+ are decreased the most,

2.1. Nuclear Shell Model 13



followed by the 2+, 4+, . . . configurations, depending on which coupled angular
momenta are allowed. Other models yield similar results, e.g. the pairing interac-
tion. In general, configurations with a minimal number of nucleons not paired to
J = 0, also referred to as configurations with minimal seniority ν , are favored by
Vres. Thus, the shell model predicts that all even-even nuclei have a ground state
with Jπ = 0+, which is also experimentally observed. As a consequence, some
properties of even-odd nuclei can be predicted from the orbit of the last unpaired
nucleon, e.g. the ground state spin and parity of the nucleus.

With an increasing number of valence nucleons, the long-range quadrupole part
of the residual interactions become more and more important. This results in the
formation of an increasingly deformed shape and in the formation of nuclear col-
lectivity. At the same time the number of possible configurations increases rapidly
and becomes computationally exhaustive. While the shell model can be expected
to yield the most exact results (provided the information on single particle energies
and interactions has been chosen correctly) the description of collective phenom-
ena of atomic nuclei in its framework is hindered by overwhelmingly large model
spaces. Therefore, different ansatzes have been developed to facilitate the theoreti-
cal description of nuclear collectivity. In the following sections, the most important
approaches will be introduced, namely the geometrical model, which describes
the nucleus as a shaped object of coherently behaving nucleons, and the Interact-
ing Boson Model, which results from a truncation of the shell-model space to the
physically most relevant configurations.

2.2 Vibrational and Rotational Nuclei

While the shell model offers a good description of nuclear structure for nuclei in
close proximity to closed shells, a very figurative way for the description of certain
phenomena observed in atomic nuclei is the geometrical model introduced by Bohr
and Mottelson [Boh98]. Despite the very complex interplay of nucleons and forces
present in the nucleus, a geometrical picture of the nucleus explains in a simple
way the basic features of the collective behavior of certain nuclei away from closed
shells, where the shell model descriptions become very complex and exhaustive
in terms of computational power. The underlying idea is the assumption of the
nucleus as a drop of a “liquid” of nucleons. It is mathematically described by a
parametrization of its surface in terms of an expansion in spherical harmonics Y µ

λ

R(θ ,φ) = R0

�

1+
∞
∑

λ=0

λ
∑

µ=−λ

αλµ Y µ
λ
(θ ,φ)

�

. (2.5)

14 2. Theoretical approaches to nuclear quadrupole collectivity



Nuclear excitations are described in this model by excitations of the shape of the
surface. Near closed shells, this liquid takes a spherical shape and can be excited
to perform oscillations around this equilibrium shape, while in mid-shell regions of
the nuclear chart deformed shapes develop, which allow the nucleus to undergo
rotational motion. The system can be described by the Bohr-Hamiltonian [Boh98,
Cas01a], which is given as

H =−
ħh2

2m

�

1

β4

∂

∂ β

�

β4 ∂

∂ β

�

+
1

β2

1

sin3γ

∂

∂ γ

�

sin3γ
∂

∂ γ

��

+
ħh2

2I
R2 + V , (2.6)

in which R is the rotational angular momentum and β and γ denote the shape
variables. They will be explained in more detail with the model of the rotor in
2.2.2.

2.2.1 Vibrator

Nuclei near closed shells have a spherical shape. With increasing distance to the
shell closures they behave increasingly collective and exhibit level schemes typical
for vibrating nuclei. To describe a vibrating, spherical nucleus with equilibrium
radius R0 the description of its surface of (2.5) is regarded in its time-dependent
form

R(θ ,φ, t) = R0

�

1+
∞
∑

λ=0

λ
∑

µ=−λ

αλµ(t) Y µ
λ
(θ ,φ)

�

. (2.7)

In the expansion the term of λ = 0 can be neglected because this term describes
a nucleus that changes its volume while keeping its basic spherical shape. This
so-called breathing mode occurs at large energies and can be neglected for the de-
scription of the low-lying collective states of the nucleus. The value of λ = 1 can
also be neglected. It corresponds to a translation of the nucleus as a whole, which
does not affect its internal structure. The higher lying values of λ = 2,3, . . . corre-
spond to quadrupole, octupole, . . . vibrations of the surface. In the following, the
discussion will focus on quadrupole collectivity and, thus, the λ = 2 term of (2.7),
neglecting minor contributions from the volume conservation condition. For λ= 2
the expansion coefficients α2µ are symmetric with respect to the value of µ, i.e.

α2µ = α2−µ (2.8)

The Hamiltonian for the vibrator can be written as [Cas01a, p. 180]

H =
1

2
B
∑

µ

�

�

�

�

dα2µ

d t

�

�

�

�

2

+
1

2
C
∑

µ

�

�α2µ

�

�

2
. (2.9)
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a) Vibrator
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Figure 2.2.: Schematic low-lying level schemes of a) vibrating nuclei and b) rotating
nuclei.

This Hamiltonian has the form of a Harmonic Oscillator with a frequency of

ω=
C

B
. (2.10)

Therefore, analog to excitations in solid state physics, excitations of a vibrating
nucleus can be imagined as phonons with angular momentum λ and parity (−1)λ,
i.e. quadrupole phonons with positive parity Jπ = 2+ in the case of quadrupole
excitations λ= 2.

The allowed angular momenta for the coupling of N phonons can be derived
in the m-scheme. Since the quadrupole phonons have integer spin, they have
to be treated like bosons, allowing for each combination of m states. This re-
sults in a triplet of 0+, 2+, 4+ states for two-phonon excitations and a quintuplet
0+, 2+, 3+, 4+, 6+ for three-phonon excitations. In practice the states of a multi-
phonon excitation are not exactly degenerate, but exhibit multiplets of close-lying
levels as depicted schematically in Fig. 2.2. In this picture, thus, the value of
R4/2= E(2+1 )/E(4

+
1 ) is expected to be R4/2= 2, which in fact is observed in col-

lective nuclei near closed shells.
In a simple notation vibrational N -phonon states can be written as

|Nph〉= (b†)N |0〉 , (2.11)
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with b† being the quadrupole phonon creation operator. A destruction operator b
acting on a state |Nph〉 leads to the expression

b|Nph〉=
p

Nph |Nph − 1〉 . (2.12)

From this expression it can be deduced that the E2 transition strength of an N -
phonon state is proportional to Nph. Thus, for a vibrating nucleus the ratio between
the transition strengths of two-phonon and one-phonon states can be predicted, in
particular the quantity B4/2 = B(E2;4+1 → 2+1 )/B(E2;2+1 → 0+1 ) = 2 is predicted by
the phonon model.

2.2.2 Rotor

With increasing distance to the closed shells, nuclei start to exhibit increasingly
deformed shapes. In these regions of the nuclear chart, the residual interaction
among the valence nuclei becomes more and more dominant and determines the
nuclear properties. In particular the long-range component of the quadrupole part
of the nucleon-nucleon interaction favors non-spherical configurations even in the
nuclear ground state. The rotational picture of the atomic nucleus describes the nu-
cleus in terms of a deformed object with moment of inertia I . Even without further
specification of the underlying residual interactions this picture yields stunningly
good descriptions of many phenomena observed in nuclei in mid-shell regions of
the nuclear chart. Some basic ideas will be discussed in the following section.

The nuclear deformation can again be described by using the parametrization of
the nuclear surface introduced in equation (2.5). Analog to the case of vibrational
nuclei all terms but the quadrupole term of λ= 2 will be neglected in the following,
since this term is most important for the description of low-lying collective state in
atomic nuclei, again neglecting minor contributions from the volume conservation
condition. The expression of (2.5), thus, reduces to

R(θ ,φ) = R0

�

1+
2
∑

µ=−2

α2µ Y µ2 (θ ,φ)
�

. (2.13)

The intrinsic coordinate system can be chosen such that

α20 ≡ α0 , α21 = α2−1 = 0 , α22 = α2−2 ≡ α2 . (2.14)
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A commonly used notation for nuclear deformation are the deformation parameters
β and γ, defined by

α0 = β cosγ , α2 =
1
p

2
β sinγ , with β ≥ 0 . (2.15)

In this notation, the value of β describes the degree of deformation. β = 0 cor-
responds to a spherical shape. The parameter γ describes the triaxiality of the
deformed nucleus. For β 6= 0, γ = 0 corresponds to a axially deformed, prolate
shape, i.e. the nucleus possesses a symmetry axis and is stretched along this axis
like in the shape of an American Football. γ = π/3 corresponds to an oblate shape
in which the nucleus is compressed along the symmetry axis, as for the shape of a
discus. For values of γ 6= n ·π/3, the shape is triaxially deformed.

With the onset of nuclear deformation, also the charge distribution in the nu-
cleus is no longer spherical. Consequently, a deformed nucleus exhibits a static
quadrupole moment Q. It is connected to the deformation parameter β by the
relation

Q0 =
3
p

5π
R2

0 Z β(1+ 0.16β) . (2.16)

Here Q0 represents the intrinsic quadrupole moment of the nucleus, which has
to be distinguished from the experimentally observable spectroscopic quadrupole
moment Q, which relates to Q0 by

Q =
3K2 − J(J + 1)
(J + 1)(2J + 3)

Q0 , (2.17)

where K denotes the projection of the total angular momentum J on the symme-
try axis of the nucleus. It follows directly from (2.17) that for states with J = 0
(in particular for the nuclear ground state) the spectroscopic quadrupole moment
vanishes. For the 2+1 state of the ground state band (K = 0), Q = −2/7 Q0. The
intrinsic quadrupole moment Q0(2

+
1 ) state is connected to the transition strength

from the ground state by

B(E2; 0+1 → 2+1 ) =
5

16π
e2 Q2

0(2
+
1 ) . (2.18)

The onset of deformation allows for rotational motion of the nucleus. The ro-
tational energy of an even-even nucleus with ground state spin Jπ = 0+ can be
written quantum mechanically

Erot =
ħh2

2I
J(J + 1) , (2.19)
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with the moment of inertia I . Only even values of J = 0,2, 4, . . . can be found
in a rotational band on top of a 0+ ground state [Cas01a, p. 204]. From ex-
pression (2.19) it follows that for a rotational nucleus E(2+1 ) = 6ħh2/2I and
E(4+1 ) = 20ħh2/2I , and, consequently, R4/2 = 3.33. The characteristic J(J + 1)
dependence of the energies of states in rotational bands is in fact frequently ob-
served for nuclei in mid-shell regions of the nuclear chart. A schematic example is
depicted in Fig. 2.2.

Besides the possibility of rotations, also vibrational excitations of a deformed
nucleus are possible. They usually appear in the level scheme as band heads of
rotational bands corresponding to superpositions of vibrational and rotational ex-
citations. The vibrational excitations do not always exhibit J = 0. Therefore, (2.19)
has to be generalized to

Erot =
ħh2

2I
[J(J + 1)− K(K + 1)] . (2.20)

Again, this results in rotational bands analog to the ground state (K = 0) band.
However, for rotational bands on top of K 6= 0 states even as well as odd angular
momenta J = K , K + 1, K + 2, . . . are allowed [Cas01a, p. 205f.]. In the low-
lying level schemes of many nuclei, in particular two rotational bands based on
top of a 0+ and a 2+ state are frequently observed. The band on top of the 2+

state is connected with the vibrational excitation of the nucleus as a function of
the deformation parameter γ and is therefore usually referred to as the γ band
of the nucleus. The rotational band on top of the 0+ state had originally been
assigned analogously, i.e. as the vibration in terms of the deformation parameter
β . However, this assignment is still object to vivid discussions and will be further
addressed within this work in the discussion of the experiment on 154Sm in the
framework of the confined-β-soft rotor model (CBS) (cf. 2.4.3 and 5.3).

The character of the states in rotational bands as a superposition of a rotation
and an excitation (regardless of its nature) allows for the prediction of ratios of
transition strengths of two transitions that have the same initial band and the same
final band. The transition matrix elements can be separated into a rotational part
and a structural part. The latter is the same for all states within the same rotational
band and will, therefore, cancel out in a ratio. The result is a ratio usually referred
to as the Alaga rule [Ala55] that is solely dependent on squares of Clebsch-Gordan
coefficients

B(E2; Ji → J f )

B(E2; Ji → J ′f )
=




Ji Ki 2∆K
�

� J f K f
�2




Ji Ki 2∆K
�

� J ′f K f
�2 , (2.21)
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Figure 2.3.: Left: Schematic level scheme of a γ-soft nucleus. Right: Relative en-
ergies of the levels in the ground state band of vibrators, rotors, and
γ-soft nuclei.

with angular momentum J and its projection K of states in two rotational bands
indicated by indices i and f . The expressions in angle brackets denote Clebsch-
Gordan coefficients for angular momentum coupling.

2.2.3 γ-soft nuclei

The third cornerstone of the phase diagram of nuclear structure (Fig. 2.4) is the
class of γ-soft nuclei introduced by Wilets and Jean in 1956 [Wil56]. As the name
suggests, it is characterized by a deformed nucleus whose potential has been chosen
to be independent of the deformation parameter γ. (It has become customary to
refer to this model by the term γ soft, although the meaning of γ-softness is more
general than of γ independence.) The level scheme of such a nucleus exhibits
certain characteristic features. A schematic illustration of the level scheme of a γ-
soft nucleus is shown in Fig. 2.3(a). The levels are labeled by the quantum number
Λ. The excitation energies of the Yrast states follow the relation E ∝ Λ(Λ+3), and
with J = 2Λ, it follows that

E ∝ J(J + 6) , (2.22)

and, thus, the energies E(J) of the Yrast states do not increase as rapidly with
angular momentum J as in the rotational case, yet faster than for vibrational nuclei,
cf. Fig. 2.3(b). Consequently, the R4/2 ratio in γ-soft nuclei is R4/2 = 2.5.
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For Λ = 2, there are two degenerate states with angular momentum 2+ and 4+,
but, unlike in the vibrational case, no 0+ state.

The quasi-γ band of a γ-soft nucleus exhibits a characteristic energy staggering,
i.e. the states of this band do not follow the relation of (2.22). Instead, odd-spin
and the respective consecutive even-spin states are (nearly) degenerate, e.g. the
3+ and 4+ states.

The model of γ-softness is closely related to the O(6) dynamical symmetry of
the Interacting Boson Model (cf. section 2.3.2), which will be dealt with in the
discussion of the results of the 194,196Pt experiments in 5.2.

2.3 Interacting Boson Model

In the preceding sections 2.1 and 2.2, two different approaches to the description of
nuclear structure have been introduced with the shell model and the geometrical
model. The Interacting Boson Model (IBM) can be seen as an intermediate way
between the two. It originates from a truncation of the shell model space and, yet,
is capable of the description of collective phenomena of different kinds. Moreover,
the IBM can be used to describe nuclei all over the phase diagram of Fig. 2.4.
In the following section 2.3.1 the main features of the IBM will be introduced. In
2.3.2 the analytically solvable limits of the IBM will be discussed. The model will
be extended to also include the proton-neutron degree of freedom in 2.3.3.

Literature on the IBM exists in abundance. The following discussions are based
to a large extent on the textbook of Iachello and Arima [Iac87] and on a review
article by Casten and Warner [Cas88].

2.3.1 Basics

The IBM has been introduced by Iachello and Arima [Iac87]. It is based on the
idea of a pairwise coupling of two nucleons that are then treated as a boson. The
number of bosons for a given nucleus is N = 1/2 (Nπ + Nν), where Nπ and Nν are
the numbers of valence protons and neutrons. Any contributions from the doubly-
magic core of the nucleus are neglected. Apparently, N is conserved for a given
nucleus. N is always counted as the closest distance to the closed shell treating
particles and holes alike. In the simplest version of the IBM-1 no distinction is
made between protons and neutrons. (The proton-neutron version of the IBM, the
IBM-2, will be discussed in 2.3.3.)

2.3. Interacting Boson Model 21



In the sd-IBM-1 each boson can only carry an angular momentum of L = 0 (s
boson) or L = 2 (d boson)1. In this respect the IBM can be seen as a truncation
of the nuclear shell model to configurations of J = 0,2. The bosons can be treated
mathematically in terms of creation and destruction operators

s† , s , and d†
µ , d̃µ , (2.23)

respectively, with µ=−2 . . . 2. The operator d̃µ is defined as

d̃µ = (−1)µd−µ (2.24)

in order to have the properties of a spherical tensor. For these operators the com-
mutation relations

[s, s†] = 1 , [s, s] = [s†, s†] = 0 ,

[dµ, d†
µ′
] = δµµ′ , [dµ, dµ′] = [d

†
µ, d†

µ′
] = 0 , (2.25)

[s, d†
µ] = [s, dµ] = [s

†, d†
µ] = [s

†, dµ] = 0 ,

apply.
The most general Hamiltonian for the treatment of excited states can be written

as

H = ε′n̂d +
1

2

∑

L

C ′L(d
†d†)(L) · (d̃ d̃)(L)

+
ν2p
10

�

(d†d†)(2) · d̃s+H.c.
�

(2.26)

+
ν0

2
p

5
(d†2s2 +H.c.) ,

with the d boson-number operator n̂d = d†d̃. Oftentimes the Hamiltonian is used
in its multipole form

H = ε′′n̂d + a0P†P + a1 L̂2 + a2Q2 + a3T 2
3 + a4T 2

4 , (2.27)

1 In the framework of the Interacting Boson Model the angular-momentum quantum number is
usually denoted by L. The present work will stick to this habit.
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in which

P =
1

2

�

d̃2 − s2� ,

Tl = (d
†d̃)(l) , l = 0,1, 2,3, 4 ,

Q = (d†s+ s†d̃)−
p

7

2
T2 = (d

†s+ s†d̃)−
p

7

2
(d†d̃)(2) ,

n̂d =
p

5 T0 ,

L̂ =
p

10 T1 .

As a basis for IBM calculations mostly the states of the U(5) dynamical symmetry
are chosen (see sec. 2.3.2 below). In this basis the states can be labeled according
to the quantum numbers

�

�N nd ν n∆ L
�

, (2.28)

where N denotes the total boson number, nd the number of d bosons, ν denotes
d-boson seniority, n∆ denotes the number of d-boson triplets coupled to 0, and L
denotes the angular momentum.

The E2 transition operator is defined by

T (E2) = eB
�

(d†s+ s†d̃) +χ[d†d̃](2)
�

. (2.29)

It has the same form as the Q operator of Eq. 2.27 except for the parameter χ.
In the framework of the consistent-Q formalism [War83] the factor of

p
7/2 in the

operator Q is replaced by χ and is kept equal for the operators Qχ and T (E2).

2.3.2 The dynamical symmetries of the IBA

One of the main characteristic features of the IBM is its algebraic structure. This
will be briefly summarized in the following.

The five components of the d boson and the s boson span a six-dimensional
space. Under the constraint of total boson number conservation, 36 different bilin-
ear combinations of two-body operators are possible, namely

s†s s†d̃µ d†
µ, s (d†, d̃)(l)µ , (2.30)
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with l = 0,1, 2,3, 4 and µ= 4,3, . . . ,−4, |µ| ≤ l. It can be shown that these opera-
tors close on commutation, i.e. each commutator of paris of these operators results
in a linear combination of the operators of (2.30) (or vanishes). Therefore, these
operators are generators of the Lie Algebra U(6). Among the set of (2.30), several
subgroups can be found that themselves close on commutation, and thus, are gen-
erators of a sub algebra of U(6). Under the physical constraint that a decomposition
of U(6) has to include the rotational algebra O(3), three chains of decompositions
are possible:

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2) , (2.31a)

U(6) ⊃ SU(3) ⊃ O(3) ⊃ O(2) , (2.31b)

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2) . (2.31c)

For each of the groups in the decompositions of (2.31) operators exist that com-
mute with all the generators of the group. These are called Casimir operators. A
Hamiltonian consisting of Casimir operators is diagonal and its eigenvalues can be
written by a sum of the eigenvalues of the Casimir operators. These eigenvalues
are unique for a group and referred to as irreducible representation. For the U(6)
algebra of the IBM, the irreducible representation is the total number of bosons,
N . Each step of decomposition into a new subgroup introduces a new irreducible
representation that breaks the degeneracy of the eigenvalues of the Casimir oper-
ator of the preceding group. This situation of a Hamiltonian consisting of Casimir
operators of a chain of subalgebras is called a dynamical symmetry. The three types
of dynamical symmetries of (2.31) are the cornerstones of the phase diagram of
the IBM, which is shown in Fig. 2.4.

Within the IBM also the description of the rest of the diagram between the
dynamical symmetries is possible, e.g. by the use of the simplified Hamiltonian
[Cas06]

H = εn̂d +κQχQχ = c
�

(1− ζ)n̂d −
ζ

4N
QχQχ

�

, (2.32)

where c is used as a normalization factor. The triangle of Fig. 2.4 can be spanned
by a variation of the parameters ζ and χ between the limits

0≤ ζ≤ 1 ,

−1.32≤ χ ≤ 0 .

In the consistent-Q formalism the value of χ is kept equal for the Q operator and for
the transition operator T (E2). The values of ζ = 0 corresponds to the U(5) limit.
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Figure 2.4.: Symmetry triangle of the IBM. The dynamical symmetries are the cor-
nerstones of phase diagram of the IBM. Using the Hamiltonian of the
consistent-Q formalism of (2.32) the whole triangle can be described in
the IBM by varying the parameters ζ and χ . The points E(5) and X(5)
denote the shape phase-transitional points, cf. sections 2.4.1 and 2.4.2.

By a change in ζ different positions inside the triangle can be described, until for
ζ = 1 the opposite leg of the triangle is reached. The position between the O(6)
limit and the SU(3) limit can be chosen by a variation of χ.

U(5)

The U(5) dynamical symmetry [Ari76] is based on the subchain decomposition
of the U(6) algebra of (2.31a). The corresponding quantum numbers of the irre-
ducible representations are

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2)
[N] nd ν , ñ∆ L ML . (2.33)

In terms of the multipole form of (2.27) the Hamiltonian for the U(5) symmetry is
given as

H = εn̂d + a1 L̂2 + a3T 2
3 + a4T 2

4 . (2.34)

For the simplest case of H = εn̂d , the resulting spectrum resembles that of a vi-
brating nucleus, in which levels with the same number of phonons nd are de-
generate. The additional terms in (2.34) break these degeneracies. Therefore
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the U(5) limit is also capable of the description of anharmonic vibrators, i.e.
R4/2(U(5)) ∈ [2.0 . . . 3.33]. For a characterization of a nucleus in terms of the
U(5) symmetry it is therefore important also to consider the B(E2) values.

For the U(5) symmetry often only the first term of the E2 transition operator of
(2.29) is used,

T (E2) = eB
�

(d†s+ s†d̃))
�

. (2.35)

Using this operator E2 transitions are allowed for ∆nd = ±1, which is analog to
the phonon picture of vibrational nuclei [Cas88]. This selection rule is the key
signature for the experimental assignment of U(5) symmetry to a given nucleus.

In the U(5) dynamical symmetry the IBM makes parameter-free predictions on
ratios of transition strengths, which can serve as important benchmarks for the
comparison of experimental results with the predictions of the model. Those pre-
dictions include the ratios [Iac87]

B(E2;4+1 → 2+1 )

B(E2;2+1 → 0+1 )

=
B(E2;2+2 → 2+1 )

B(E2;2+1 → 0+1 )

=
B(E2;0+2 → 2+1 )

B(E2;2+1 → 0+1 )
= 2

N − 1

N
−−−→
N→∞

2 , (2.36)

where N denotes the total boson number of the nucleus. The predictions for the
limit N →∞ are equal to the predictions of the simple vibrator model.

SU(3)

The SU(3) dynamical symmetry [Ari78a] is based on the subchain decomposition
of the U(6) algebra of (2.31b). The corresponding quantum numbers of the irre-
ducible representations are

U(6) ⊃ SU(3) ⊃ O(3) ⊃ O(2)
[N] (λ,µ), χ̃ L ML . (2.37)

The Hamiltonian for this symmetry limit takes the form

H = a1 L̂2 + a2Q2 . (2.38)
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The resulting level scheme can be classified in terms of the quantum numbers λ and
µ. (In the transition from SU(3) to its subgroup the additional quantum number K ′

has to be introduced.) The level scheme for the three lowest lying bands described
by the quantum number pairs (λ,µ) = (2n, 0) and (λ,µ) = (2n − 4, 2) exhibits
bands that can be identified in the geometrical picture as the rotational ground-
state band, the K = 0 band, and the γ band. Unlike in the geometrical picture,
however, the levels with even angular momentum in the K = 0 and the γ bands are
degenerate in SU(3). In this respect the SU(3) limit of the IBM describes a special
class of rotational nuclei.

In SU(3), the E2 transition operator of (2.29) is used. It forbids transitions that
connect different representations of (λ,µ), e.g. transition from the γ to the ground-
state band. However, transitions between the β and γ bands are allowed, since they
belong to the same representation, which is in contrast to the geometrical picture
[Cas88].

The predictions of ratios of transition strengths between the lowest-lying states
in the SU(3) limit are given as [Iac87]

B(E2; 4+1 → 2+1 )

B(E2; 2+1 → 0+1 )
=

10

7

(N − 1)(2N + 5)
N(2N + 3)

−−−→
N→∞

10

7
, (2.39a)

B(E2; 2+2 → 2+1 )

B(E2; 2+1 → 0+1 )
= 0 , (2.39b)

B(E2; 0+2 → 2+1 )

B(E2; 2+1 → 0+1 )
= 0 , (2.39c)

where N denotes the total boson number of the nucleus.

O(6)

The O(6) dynamical symmetry [Ari78b] is based on the subchain decomposition
of the U(6) algebra of (2.31c). The corresponding quantum numbers of the irre-
ducible representations are

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2)
[N] σ τ, ν̃∆ L ML . (2.40)

The Hamiltonian is given by

H = a0P†P + a1 L̂2 + a3T 2
3 . (2.41)

2.3. Interacting Boson Model 27



O(6) levelscheme for N=4

0

1000

2000

3000

E
n
er
gy

in
ke
V

0+

2+

4+

6+

8+

2+

3+4+

5+6+

4+

0+

2+

0+

2+

4+

2+ 0+

τ = 0

τ = 1

τ = 2

τ = 3

τ = 4

τ = 0

τ = 1

τ = 2
τ = 0

σ = N σ = N − 2 σ = N − 4

Figure 2.5.: Illustration of a typical O(6)-like levelscheme for N = 4. The level
energies have been calculated from the expression E(σ,τ, L) =
A(N −σ)(N +σ+ 4)+Bτ(τ+ 3)+CJ(J + 1) [Cas01a, Eq. (6.71)] using
parameters of A= 71 keV, B = 80 keV, C = 8 keV.

The O(6) symmetry exhibits a characteristic level scheme, a schematic example of
which is shown in Fig. 2.5. The level scheme corresponds to that of γ-soft nuclei
in the geometrical picture (cf. 2.2.3). The quantum number σ can take values of
σ = N , N − 2, . . . , 0 or 1, where N is the total boson number. States with equal σ
quantum number are grouped in families of states. Within these families, the levels
can be grouped into patterns classified in terms of the quantum numbers τ and L,
which are connected to the decomposition of the O(6) symmetry into the subgroups
O(5) and O(3). The quantum number τ can take values of τ= σ,σ− 1, . . . , 0 and
splits the levels into multiplets that resemble a phonon structure. This analogy
stems from the fact that τ originates from the O(5) symmetry which is a subgroup
of O(6) as well as of U(5) (cf. (2.31c) and (2.31a)). The degeneracy of levels of
equal τ is broken by the angular momentum quantum number L. The possible
values of L are limited by the two relations

τ= 3ν∆ +λ , (2.42a)

L = λ, λ+ 1, . . . , 2λ− 2, 2λ . (2.42b)

The level pattern created by the τ and L quantum numbers for σ = N is identi-
cally repeated for lower values of σ below a cutoff due to the τ≤ σ constraint.
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The E2 transition operator is given by

T (E2) = eB
�

(d†s+ s†d̃)
�

. (2.43)

The selection rules for E2 transitions that follow from (2.43) are [Cas88]

∆σ = 0 , (2.44a)

∆τ=±1 . (2.44b)

These selection rules are the key signatures for the assignment of O(6) symmetry to
a nucleus based on experimental data on E2 transition strengths. (With the choice
of the most general E2 transition operator T (E2) = eB

�

(d†s + s†d̃) + χ[d†d̃
�(2)�

of (2.29) also transitions with∆τ= 0,±2 and∆σ =±2 can be generated [Isa87].)
The predictions of ratios of transition strengths between the lowest-lying states

in the O(6) limit are given as [Iac87]

B(E2; 4+1 → 2+1 )

B(E2;2+1 → 0+1 )
=

10

7

(N − 1)(N + 5)
N(N + 4)

−−−→
N→∞

10

7
, (2.45a)

B(E2;2+2 → 2+1 )

B(E2;2+1 → 0+1 )
=

10

7

(N − 1)(N + 5)
N(N + 4)

−−−→
N→∞

10

7
, (2.45b)

B(E2;0+2 → 2+1 )

B(E2;2+1 → 0+1 )
= 0 , (2.45c)

where N denotes the total boson number of the nucleus.

2.3.3 The pn version of the Interacting Boson Model, IBM-2

In the preceding sections the IBM has been introduced in its most simple version
where no distinction between protons and neutrons is made. The Interacting Boson
Model 2 (IBM-2) has been introduced [Ari77, Iac87, Ots78] as an extension of the
aforementioned IBM-1 allowing for the treatment of the proton-neutron degree of
freedom. In particular the IBM-2 is capable of the description of states with a mixed
proton-neutron symmetry. The main features of the model and the properties and
signatures of mixed-symmetry states are introduced in the following.

The creation and destruction operators are defined individually for protons and
neutrons as

s†
ρ , d†

ρ,µ and sρ , d̃ρ,µ , (2.46)
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with ρ = π,ν and µ = 2,1, . . . ,−2. The Hamiltonian contains individual pro-
ton and neutron terms and additional proton-neutron boson interaction terms are
introduced. In this respect the analog of the Hamiltonian in the consistent-Q for-
malism of Eq. (2.32) can be written as

H = επn̂dπ + εν n̂dν +κππQχππ ·Q
χπ
π +κννQ

χν
ν ·Q

χν
ν

+ 2κπνQ
χπ
π ·Q

χν
ν + M̂

�

ξ1,ξ2,ξ3
�

, (2.47)

where the n̂dρ are the d-boson number operators for protons and neutrons with

the respective d-boson energies ερ. The Q
χρ
ρ denote the quadrupole operator for

proton-bosons and neutron-bosons. The last term of (2.47) denotes the so-called
Majorana interaction and is defined as

M̂
�

ξ1,ξ2,ξ3
�

=
1

2
ξ2
�

s†
πd†
ν − d†

πs†
ν

�

·
�

sπd̃ν − d̃πsν
�

−
∑

K=1,3

ξK

�

�

d†
πd†
ν

�(K)
·
�

d̃πd̃ν
�(K)�

. (2.48)

F -spin and mixed symmetric states

For a formal distinction of proton and neutron bosons the F -spin quantum number
has been introduced [Ari77]. The concept of F -spin [Isa86] is formally equivalent
to the isospin formalism but is applied to proton and neutron bosons instead of
nucleons. Therefore, proton (neutron) bosons are assigned an F -spin of F = 1/2
with projection quantum numbers Fz = +1/2 (Fz = −1/2). The value of Fz for a
nucleus is, thus,

Fz =
�

+
1

2

�

Nπ +
�

−
1

2

�

Nν =
1

2

�

Nπ − Nν
�

, (2.49)

with the proton and neutron boson numbers Nπ and Nν , respectively. The maximal
value F can take is

Fmax =
1

2

�

Nπ + Nν
�

. (2.50)

States described in the IBM-2 can be quantified by their F -spin quantum number
which is a measure of the symmetry of the wave function with respect to the ex-
change of proton and neutron labels. States that have an F -spin of F = Fmax are
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Figure 2.6.: Illustration of the low-lying level scheme of the simplified IBM-2 Hamil-
tonian H = εn̂d + λM̂ of (2.51) for Nπ = Nν = 1. The Majorana oper-
ator M̂ only affects the states with F = Fmax − 1. Figure adapted from
[Pie08].

unchanged under this exchange and are referred to as fully symmetric states (FSS).
The solutions from the IBM-1 of 2.3.1 can be identified as the solutions from the
IBM-2 with F = Fmax F -spin values. States with F = Fmax − 1 are not symmetric
under the exchange of proton and neutron labels and are called mixed symmet-
ric states (MSS). In the Hamiltonian of (2.47) the Majorana interaction (2.48) is
sensitive to states with F = Fmax − 1 only. These states reside at excitation ener-
gies higher than the FS states. A schematic drawing is shown in Fig. 2.6 using the
simplified Hamiltonian

H = εn̂d +λM̂ , (2.51)

for a vibrator nucleus with Nπ = Nπ = 1, where ε = επ = εν . Besides the vibrator-
like levels for the F = Fmax states, the F = Fmax − 1 states reside at higher energies
and are sensitive on the Majorana part of the Hamiltonian of (2.51). For vibrating
nuclei near closed-shells, the MS state lowest in energy is the mixed symmetric 2+1,ms

state. Its wave function contains the same terms as the fully symmetric 2+1 state,
but is antisymmetric under the exchange of proton and neutron labels. (For more
complex cases with Nπ, Nν > 1 the complete antisymmetry of the wave function
dissolves in favor of what is usually called mixed symmetry.) For rotational nuclei
the lowest state of mixed symmetry is the well-known 1+ scissors mode, which was
first experimentally observed at the DALINAC in Darmstadt [Boh84].
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A detailed review on the 2+1,ms excitation has been published by Pietralla et al.
[Pie08].

Q-Phonon Scheme

A very figurative way for the description of mixed-symmetric states is provided in
the framework of the Q-phonon picture [Ots94, Sie94]. It is based on the idea of
describing the nuclear states by phonon excitations, but unlike in the picture of
vibrational nuclei the phonons in the Q-phonon scheme do not act on the phonon
vacuum. Instead, an excitation of angular momentum L can be described by the
repeated action of the quadrupole phonon operator Q on the correlated ground
state of the nucleus [Q . . .Q](L)|0+1 〉. The validity of this picture has been shown
empirically [Pie94] by an evaluation of the ratio

R(2) =

∑

i>1 B(E2; 0+1 → 2+i )
∑

i≥1 B(E2; 0+1 → 2+i )
(2.52)

for all collective nuclei from Z = 30 to Z = 82. It was shown that for all collective
nuclei the value of R(2) ≤ 10%, i.e. that the 2+1 states of all collective nuclei can
indeed be described by a quadruple phonon excitation of the nuclear ground state.
An analog evaluation of the odd-spin states in collective nuclei [Pie95] has come
to similar results.

The Q-phonon scheme can be used to describe the low-lying level scheme of
Fig. 2.6 by the coupling of symmetric and mixed-symmetric Q phonons, e.g.

|2+1 〉=Qs|0+1 〉 |2+ms〉=Qm|0+1 〉

|4+1 〉= [QsQs]
(4)|0+1 〉 |1+ms〉= [QsQm]

(1)|0+1 〉 (2.53)

|3+ms〉= [QsQm]
(3)|0+1 〉 .

The expressions of (2.53) are given without normalization factors. In these re-
lations, Qs = Qπ +Qν and Qm = Qπ/Nπ −Qν/Nν denote symmetric and mixed-
symmetric quadrupole operators. The representation of (2.53) reveals the im-
portance of the 2+1,ms state as building block of nuclear collectivity, since the two-
phonon mixed-symmetric states, 1+ms and 3+ms, are generated by the coupling of a
mixed-symmetric phonon with a symmetric phonon.

Signatures of mixed-symmetric states

Mixed-symmetric states are of isovector character. Their E2 decay to the corre-
sponding fully-symmetric states is forbidden. Instead, strong M1 decays are ex-
pected to connect these states. In the case of the 2+1,ms state, a transition with
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Figure 2.7.: The unique decay signature of mixed-symmetric states is a predominant
M1 decay to the corresponding fully-symmetric state.

a matrix element of 〈2+1 |T (M1)|2+1,ms〉 ≈ 1 µN is expected. At the same time the
E2 transition to the ground-state can be expected to be weakly collective with a
strength of the order of ≈ 1 W.u. . These transition strengths result in a very short
lifetime of the 2+1,ms state of the order of τ(2+1,ms) ≈ 100 fs. A schematic illus-
tration of the E2 and M1 decays [Pie98b] of mixed-symmetric states is shown
in Fig. 2.7. The best-investigated nucleus in this respect is the nucleus 94Mo
[Pie99, Pie00, Fra01, Fra03]. In this nucleus the one and two-phonon mixed-
symmetric states have been identified on the basis of these signature transitions.

2.4 Transitional Nuclei

The model descriptions of vibrators, rotors, and γ-soft nuclei discussed above are
important cornerstones for the understanding of nuclear collectivity. Most real
nuclei, however, are usually situated in between these ideal cases. It is therefore
necessary to study the shape transitions that occur on the paths between these
limits. In this respect, the shape transitions along the legs of the symmetry triangle
of nuclear collectivity have been investigated thoroughly. The transition on the
path from U(5) to O(6) has been identified as a second-order phase transition and
the transition between U(5) and SU(3) as a first-order phase transition [Die80].
For these points analytical solutions have been found which will be introduced in
the following chapters, namely the transitional points of E(5) in 2.4.1 and X(5) in
2.4.2. (It shall be noted that despite the similarity in the nomenclature of the phase
shape transitional points to the dynamic symmetries of the IBM the E(5) and X(5)
solutions are not situated within the IBM framework.) As a generalization of the
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Figure 2.8.: Level scheme of the E(5) shape phase transitional point between the
U(5) and O(6) dynamical symmetries of the IBM compared to the level
scheme of 134Ba. Figure adapted from [Iac00] and [Cas00].

solution of the X(5) shape phase-transitional point, the confined-β-soft rotor model
has been introduced to describe nuclei on the transition from X(5) to SU(3). It will
be discussed in 2.4.3.

2.4.1 E(5)

For the transitional point on the path from U(5) to O(6) a solution in terms of a
dynamical symmetry has been given by Iachello [Iac00]. The main assumption is a
potential with no dependence on the shape parameter γ and an infinite square well
potential in the shape parameter β , for which the solution of the Bohr-Hamiltonian
of (2.6) can be given in Bessel functions. The eigenvalues of the problem are
then functions of the zeros of the Bessel functions. The resulting level scheme
can be described in terms of quantum numbers ξ, τ, and L. A level scheme is
depicted in Fig. 2.8. The solution yields fixed ratios of observables, e.g. R4/2 = 2.20.
Compared to the dynamical symmetries of the subgroup decompositions of (2.31)
the character of a dynamical symmetry arises from the class of zeros of the Bessel
functions of the Hamilton operator.

As an empirical realization of the E(5) symmetry the nucleus 134Ba [Cas00] has
been suggested, cf. Fig. 2.8.
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2.4.2 X(5)

X(5) denotes the critical point in the shape phase transition on the path from U(5)
to SU(3), cf. Fig. 2.4. A solution of the Bohr Hamiltonian of (2.6) for this point
has been suggested by Iachello [Iac01]. The ansatz is a separable potential of the
form V (β ,γ) = v (β)+u(γ), where v (β) is chosen as a square well potential in the
deformation parameter β ,

v (β) =

(

= 0 for β ≤ βW

=∞ for β > βW
, (2.54)

and u(γ) as a HO in the parameter γ around a mean value of γ = 0 to represent
axially deformed, prolate nuclei. The decoupled differential equation in β then is

�

1

β4

∂

∂ β
β4 ∂

∂ β
−

1

4β2

4

3
L(L+ 1) + u(β)

�

ξL(β) = εβξL(β) , (2.55)

where ε = (2B/ħh2)E and u= (2B/ħh2)V . With ξ̃= β3/2ξ(β), εβ = k2
β , and z = βkβ ,

the Bessel equation

ξ̃′′ +
ξ̃′

z
+

�

1−
ν2

z2

�

ξ̃= 0 , (2.56)

with boundary condition ξ̃(βW ) = 0, is obtained, where

ν =

È

�

L(L+ 1)
3

+
9

4

�

. (2.57)

The solution to (2.56) is

ξs,L(β) = cs,L β
− 3

2 Jν

�

xs,L

βW
β

�

, (2.58)

where Jν is a Bessel function of first kind. The eigenvalues are given by

εβ;s,L =
�

xs,L

βW

�

, (2.59)

where the xs,L are the sth zero of Jν in (2.58).
The resulting level scheme of the X(5) solution is shown in Fig. 2.9. The X(5)
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U(5) and SU(3) dynamical symmetries of the IBM compared to the level
scheme of 152Sm. Figure adapted from [Iac01] and [Cas01b] using ex-
perimental numbers from [Mar13].

solution shows that the wave function as a function of the deformation parameter
β of the first exited s = 2 0+2 state has a node. This, the excitation of the nucleus
in terms of the deformation parameter β , is the definition for a β band. The X(5)
solution demonstrates that a β band can occur in any nucleus whose potential is
soft in terms of the deformation parameter β , whereas in nuclei with a β-rigid
potential no β excitation can occur. The first nucleus considered exhibiting the
characteristics of the X(5) critical point has been 152Sm [Cas01b]. Further examples
are the nuclei 150Nd [Krü02], 154Gd [Dew03], 156Dy [Möl06], and 178Os [Dew05].

2.4.3 The confined-β -soft rotor model

The confined-β-soft rotor model (CBS) has been introduced [Pie04, Dus05] as a
generalization of the X(5) solution. Its aim is the analytic description of the nuclei
along the transitional path between the X(5) critical point (R4/2 = 2.9) and the
SU(3) dynamical symmetry (R4/2 = 3.33) of the IBM. Like X(5) it uses a potential
of the form V (β ,γ) = v (β)+u(γ). The potential u(γ) is treated in the same way as
in X(5). The potential of v (β) is chosen as an infinite square well with boundaries
at 0 ≤ βm ≤ β ≤ βM . Unlike in the X(5) ansatz values of βm 6= 0 are allowed
in the CBS. The potential can be parametrized by the ratio rβ = βm/βM ∈ [0, 1],
which, thus, denotes the width and stiffness of the potential in β . For any value of
rβ the model is analytically solvable in terms of Bessel functions of first and second
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Figure 2.10.: Wave functions ξ2β4 of the s = 1 0+1 and 6+1 states and of the s = 2
0+2 state in the CBS rotor model. The potential is an infinite square
well with boundaries 0 ≤ βm ≤ β ≤ βM shown here for rβ = 0.25.
The wave function of the s = 2 0+2 state exhibits its property as β
excitation. The centrifugal stretching results in a shift of the centroids
of the wave functions with increasing L.

kind. By variation of the parameter rβ , the entire path between the limits of the
model can be spanned, i.e. the CBS solution for the limit rβ = 0 equals the X(5)
solution which allows for large fluctuations in the shape parameter β , whereas the
limit rβ →∞ corresponds to the case of a rigid rotor with equilibrium deformation
and no fluctuations in β . In between those limits, the CBS model allows for shape
fluctuations, whose degree depends on the choice of the structural parameter rβ .
A schematic picture of the potential and its limits is given in Fig. 2.10.

The derivation of the resulting eigenvalues of the CBS model is to a large extent
analogous to the aforementioned X(5). The decoupled differential equation for the
deformation parameter β is

−
ħh2

2B

�

1

β4

∂

∂ β
β4 ∂

∂ β
−

1

3β2 L(L+ 1) + v (β)
�

ξL(β) = E ξL(β) . (2.60)

By choosing z =
p

E/(ħh2/2B)β and ξ̃= β3/2ξL(β), the Bessel differential equation

ξ̃′′ +
ξ̃′

z
+

�

1−
ν2

z2

�

ξ̃= 0 (2.61)
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with boundary conditions

ξ̃ν(rβzM ) = ξ̃ν(zM ) = 0 (2.62)

and

ν =

È

�

L(L+ 1)
3

+
9

4

�

(2.63)

is obtained. A quantization condition is given by

Q
rβ
ν (zM ) = Jν(zM )Yν(rβzM )− Jν(rβzM )Yν(zM ) , (2.64)

with the Bessel functions of first and second kind, Jν and Yν . The solution of (2.61)
is

ξL,s
�

β
�

= cL,sβ
− 3

2

�

Jν

�

z
rβ
L,s

β

βM

�

+ γY Yν

�

z
rβ
L,s

β

βM

��

, (2.65)

with the relative amplitude γY obtained by the boundary condition of (2.62) to

γY =−
�

Jν(rβzM )

Yν(rβzM )

�

(2.66)

The resulting eigenvalues are

EL,s =
ħh2

2Bβ2
M

�

z
rβ
L,s

�2
, (2.67)

where z
rβ
L,s is the sth zero of Q

rβ
ν of (2.64). The E2 transition operator for transitions

between states with no excitation in γ (∆K = 0) is given by

T∆K=0
µ (E2) = eeff

��

β

βM
+χ

�

β

βM

�2��

D2
µ0(Ω) , (2.68)

with the parameters eeff and χ and the Wigner function D2
µ0(Ω). The operator is

defined up to second order in β in analogy to the general E2 transition operator of
the IBM of (2.29).

The states of the ground state band are denoted by s = 1, the states of the first
K = 0 band are denoted by s = 2.
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One feature predicted by model is the centrifugal stretching, i.e. the change of
the moment of inertia of the nucleus with increasing angular momentum [Dus05].
It results in shifts of the centroids of the wave functions with increasing L. This is
schematically depicted in Fig. 2.10.

Like the solution for the critical point X(5) the wave function for the s = 2
first excited 0+ state has a node in β , and, thus, fulfills the definition of a β ex-
citation. This has been further supported by a comparison [Kru11] of the results
of CBS calculations with those of microscopic calculations in the relativistic mean
field approach [Nik09, Li09] for the nuclei 150,152Nd. The results on the spectro-
scopic observables as well as on the wave functions are in very good agreement
and further support the interpretation of the first K = 0 band in the CBS model as
a genuine β band.
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3 Experimental Method
All experiments presented in this work have been performed using γ-ray spec-
troscopy in the projectile-Coulomb excitation technique (Coulex). The main idea
of this technique is a scattering reaction of one nucleus off another, in the course
of which one or both of the reaction partners are being excited by the exchange
of virtual photons. Coulomb excitation is particularly sensitive to the excitation of
collective nuclear states and is therefore very well suited for the investigation of
different aspects of nuclear collectivity. The nuclei of interest are prepared as an
ion beam and collided onto a target. The experiments presented in this work have
been performed at the Argonne National Laboratory (ANL) in Argonne, Illinois,
USA, near Chicago. ATLAS at the ANL is a user facility under the support of the
Office of Nuclear Physics of the United States Department of Energy (DOE). The
local linear accelerator was used to provide the ion beams and the 4π-spectrometer
Gammasphere was used for the detection of γ radiation.

3.1 Coulomb excitation

The electromagnetic excitation, or Coulomb excitation (Coulex) is a method that
has been in use for nuclear structure research for several decades now. In this
process a nucleus is excited in the electromagnetic field of another nucleus in a
scattering reaction by the exchange of virtual photons. Under certain conditions
the Coulomb excitation process can be described in a semi-classical way. Its main
ideas will be briefly introduced in the following, based on the classic works on the
topic by Alder and Winther [Ald56, Ald60, Win66, Ald75].

In collisions of heavy ions the cross sections for elastic scattering can be de-
scribed by the well-known Rutherford cross-section

�

dσ

dΩ

�

Rutherford
=

1

4

a2

sin4
�

θ

2

� , (3.1)

with the half-distance of closest approach

a =
Zp Zt e2

m0 v
. (3.2)
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Here, Zp and Zt denote the atomic numbers of projectile and target nucleus, m0 is
the reduced mass of the system, and v is the velocity of the projectile. Although the
Coulomb interaction per definition is an inelastic scattering process, under certain
conditions it can be treated theoretically in a semi-classical approximation in which
the classical trajectories of the elastic scattering process are a good approximation.
These conditions are connected to two parameters that can be used to classify
scattering reactions.

The effective strength of the interaction can be described by the Sommerfeld
parameter η, which is given by the ratio of the half-distance of closest approach, a,
and the deBroglie wavelength of the projectile ion:

η= 2π
a

λ
=

Zp Zt e2

ħhv
. (3.3)

For values of η � 1 the electromagnetic interaction is strong enough to ensure
that the short-range nuclear interactions are not involved in the reaction. The
parameter ξ is the so-called adiabacity parameter

ξ=
a

ħhv
∆E , (3.4)

with the excitation energy∆E. For large values of ξ the reaction becomes adiabatic,
hindering the excitation process, while for values of ξ→ 0 the scattering happens
as a very prompt event. If the conditions η � 1 and ξ → 0 are fulfilled, a semi-
classical treatment of the Coulomb excitation is a very good approximation. In the
present work all presented experiments fulfill these conditions.

In the semiclassical approach the Coulomb excitation cross-section for the exci-
tation of a state n can be described by

�

dσ

dΩ

�

= Pn ·
�

dσ

dΩ

�

Rutherford
, (3.5)

where Pn denotes the excitation probability of the state n. It can be written in terms
of excitation amplitudes an as

Pn =
1

2Ji + 1

∑

mi mn

|an|2 , (3.6)

where Ji denotes the angular momentum of the initial state i, mi and mn denote
the angular momentum projections of initial and final states i and n, respectively.
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For the calculation of the excitation amplitudes, a perturbation calculation can
be performed. A state |ψ〉 of a nucleus is subject to the Schrödinger equation

iħh
∂

∂ t
|ψ〉=

�

H0 +HE(t)
�

|ψ〉 , (3.7)

with the Hamilton operator of the free nucleus, H0. HE(t) is the time-dependent
Hamilton operator of the electric field. It can be written in terms of a multipole-
expansion as

HE(t) =
∑

λ,µ

4πZpe

2λ+ 1
r−λ−1

p (t) Yλµ
�

θp(t),φp(t)
�

M∗(Eλ,µ) . (3.8)

Here, Yλµ denotes the spherical harmonics and rp(t), θp(t), and φp(t) describe the
time-dependent position of the projectile nucleus of atomic number Zp expressed
in spherical coordinates. The electric multipole operator M is defined as

M(Eλ,µ) =

∫

d3r rλ Yλµ
�

θ ,φ
�

ρ(r) , (3.9)

with the charge density ρ.
The state |ψ〉 of (3.7) can be written as

|ψ〉= e−
i
ħh H0 t |φ〉 . (3.10)

Then, the excitation amplitude can be defined as

an(t) = 〈n|φ〉 , (3.11)

where |n〉 is the eigenvalue for the eigenstate En of the free Hamiltonian H0. In
the semiclassical approach of the Coulomb excitation, the Hamiltonian HE can be
treated as a perturbation. It follows that the excitation amplitudes can be computed
from

iħhȧn =
∑

m

〈n|HE(t)|m〉 e−
i
ħh (En−Em)t am(t) . (3.12)

To solve this system of coupled differential equations of Eq. (3.12) the excitation
and de-exciation processes have to be assumed to be infinitely separated in time.
For the solution the boundary condition

an(t =−∞) = δ0n (3.13)
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applies, i.e. that the nucleus is in its ground state prior to the scattering. The
solution of the excitation amplitude is given by an(t =∞).

For the limit of pure one-step excitations, the solutions of (3.12) can be calcu-
lated analytically. The Coulex cross section for an electromagnetic excitation of a
state is then given by

σEλ =
� Zpe

ħhv

�2

a−2λ+2 B(Eλ) fEλ(ξ) , (3.14a)

σMλ =
� Zpe

ħhc

�2

a−2λ+2 B(Mλ) fMλ(ξ) . (3.14b)

Here, a is again the half-distance of closest approach of (3.2). The values B are the
reduced transition probabilities that are connected with the multipole operators via

B(Eλ; Ji → J f ) =
∑

m f µ

�

�〈J f m f |M(Eλ,µ)|Jimi〉
�

�

2

=
1

2Ji + 1

�

�〈J f ||M(Eλ)||Ji〉
�

�

2
. (3.15)

The values of the functions fσλ(ξ) are tabulated in Ref. [Ald56]. With increasing
multipolarity, the Coulomb excitation cross sections theoretically decrease by ap-
proximately two orders of magnitude. In practice, however, the low-lying levels of
collective nuclei are connected by strong E2 transitions while E1 strengths usually
are negligible. Therefore, Coulomb excitation can be used for the selective excita-
tion of collective states and is, thus, the ideal tool for the investigation of nuclear
collectivity.

In reality, also higher order effects play an increasing role in the excitation pro-
cess with increasingly heavier target nuclei. In the case of the present experiments,
in which only light carbon targets were used, these effects are only secondary ef-
fects. For a correct treatment of these effects, however, the coupled-channel code
CLX [Owe, Owe80] has been used for the calculations of the Coulomb excitation
cross sections.

In the previous discussion the excitation due to the magnetic field has been
neglected. In fact, the cross-sections for magnetic excitations are suppressed com-
pared to electric excitations by a factor of β2, which can be inferred from the first
factors in the expressions of (3.14). The derivation of the cross section for magnetic
excitations is, however, analog to the derivation for the electric case shown above.

The relation of Eq. (3.15) gives a good impression why the Coulex technique is
particularly suited for the investigation of collective phenomena in nuclei. Collec-
tive nuclei usually exhibit strong E2 transitions connecting the excited states. The
Coulomb excitation cross sections are very sensitive to these transitions and allow
for strong excitations of nuclear collective states.
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3.2 Experimental Principle

3.2.1 Basic Concept

The underlying idea of the experiments performed in the course of this work is
the excitation of collective states via the electromagnetic excitation mechanism –
Coulex – and the detection of deexcitation γ rays with a Germanium-detector array.
Coulex is a well-established experimental method; the theoretical framework has
already been outlined in section 3.1.

For the reactions studied in this work, ion beams of the nuclei of interest have
been impinging on thin carbon targets; in the experiments presented in this work,
targets with a thickness of 1 mg/cm2 have been used (only in the 196Pt experiment
a target with a thickness of 0.585 mg/cm2 has been used). For historic reasons,
such a setup is usually referred to as Coulomb excitation in inverse kinematics or
projectile Coulex, respectively. Besides the trivial fact that some isotopes are not
practical to be prepared as a target with reasonable effort – e.g. gaseous elements
or rare isotopes such as 130,132Ba with a natural abundance of ≈ 0.1% – inverse
kinematics Coulex on carbon targets features several experimental advantages that
shall be discussed in the following.

Natural carbon consists of 98.9% 12C isotopes and 1.1% 13C isotopes. The first
excited states of these isotopes reside at energies of 4.44 MeV and at 3.09 MeV,
respectively. Both of these energies are well above the sensitivity limit of approxi-
mately 2.5 MeV for γ rays from projectile excitations and, thus, will not appear in
the spectra.

Secondly, the choice of a low-Z target material like carbon favors one-step exci-
tations. This facilitates the calculations for the Coulomb excitation cross-sections,
in particular for nuclei that bare a complicated level scheme of excited states as it
has been the case for the Pt experiments in the present work.

The underlying kinematics of heavy projectiles scattering off light target nuclei
lead to a very small deflection angle of the projectile ions. In the case of the Barium
nuclei, the maximum scattering angle in the lab frame θsc can be calculated to
θmax

sc (
130,132Ba)≈ 5.3°, in the cases of 154Sm and the Pt isotopes θmax

sc (
154Sm)≈ 4.5°

and θmax
sc (

194,196Pt) ≈ 3.5°, respectively. A plot of the scattering angles of projectile
and recoil target nuclei in the lab frame is shown in Fig. 3.1 for the 130Ba beam. In
the analysis of the data, for instance for the correction of the Doppler shift (cf. 4.1)
or the angular distribution analysis (cf. 4.2), an event-by-event determination of
the polar angle θγ between the γ ray and the trajectory of the emitting nucleus is
necessary. In principle, θγ can be deduced from the polar and azimuthal scattering
angles

�

θsc,φsc
�

and the polar and azimuthal angles of the γ rays with respect to
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Figure 3.1.: Plot of the scattering angles θsc of projectile and recoil target nuclei in
the lab frame on the example of the 130Ba experiment, which features
the largest projectile scattering angle of the experiments in this work.

the beam axis,
�

θGe,φGe
�

, determined by the positions of the Ge detectors in the
spectrometer, cf. table 3.1. Yet, the opening angle of the Ge detectors is 14.8°
and, hence, nearly entirely determines the resolution to which θγ can be deduced.
Therefore, the angles

�

θsc,φsc
�

can be neglected, so that θγ ≈ θGe can be used
as a very good approximation during the data analysis. Consequently, a separate
particle detection of scattered particles, e.g. with a DSSSD detector, is not necessary
and a high-statistics experiment is feasible.

In order to exclude contributions of nuclear forces to the excitation processes,
one has to ensure that the distance of closest approach of projectile and target
nuclei is large enough. The nuclear interaction is very short ranged. Hence, it will
not contribute to the excitation until the matter distributions of the colliding nuclei
overlap. This can be prevented by keeping the kinetic energy of the projectiles
Ebeam below the threshold necessary to overcome the Coulomb repulsion of the
nuclei. This threshold is usually referred to as the Coulomb barrier ECoul and can be
calculated by

ECMS
Coul =

e2

4πε0
·

ZpZt

rp + rt + rextra
(3.16)

with the proton numbers of projectile and target Zp and Zt, the nuclear radii rp and
rt, and a safety distance rextra, which takes into account the non-spherical density
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distribution of atomic nuclei. The radii ri can be expressed as ri ≈ r0
3
p

Ai , with
r0 = 1.25 fm and the atomic mass numbers Ai . Equation (3.16) applies to the
kinetic energy in the center of mass system ECMS

Coul . It can be transferred to the
energy of the Coulomb barrier in the lab frame Elab

Coul using the relation

Elab
Coul =

Ap + At

At
· ECMS

Coul (3.17)

with the atomic mass numbers Ap and At of projectile and target. For a given projec-
tile ZpAp the value of Elab

Coul increases for heavier target elements. In the experimen-
tal setup surrounding the target, however, only elements heavier than carbon are
being used, in particular Aluminum and steel (Fe). Consequently, choosing a beam
energy Ebeam < Elab

Coul(
At Zt = 12C) also guarantees the prevention of nuclear reac-

tions of the projectiles with other materials in the setup. This assures experimental
γ-ray spectra free of background from nuclear reactions and is an inherent feature
of projectile Coulex of heavy nuclei on a light carbon target. This has been demon-
strated in an initial projectile-Coulex experiment on the nucleus 96Ru [Pie01].

For the successful execution of the experiment, the choice of proper values for
the experimental parameters is important. The most crucial parameter certainly
is the beam energy Ebeam. On the one hand, the Coulex cross-sections increase
strongly with increasing Ebeam. On the other hand the beam energy is limited by
the Coulomb barrier of the reaction. Finding a suitable value, thus, is always a
trade-off between those limits. In the experiments presented in this work, Ebeam
was chosen to ≈ 85% of the Coulomb barrier.

Another crucial experimental parameter is the beam intensity Ibeam, often also
referred to as beam current. It is a measure of how many projectile nuclei collide
onto the target per unit of time. Most of the time it is given in units of pnA. In gen-
eral, Ibeam is best chosen as large as possible, since the reaction rate is proportional
to the number of projectile ions. On the other hand, the maximum possible beam
intensity Imax

beam is also subject to different constraints. One possible limiting factor
might be the ion source. For the experiments using Barium beams, the ion current
was limited due the low abundance of the isotopes 130Ba and 132Ba in the source,
even though it had been enriched. This limited the achievable average beam inten-
sity to Ibeam(130Ba) = 0.25 pnA and Ibeam(132Ba) = 0.5 pnA, respectively. Another
limit is imposed by the maximal count rate the data acquisition (DAQ) can handle.
The count rate is nearly entirely determined by the decay of the 2+1 state. The limit
of the data acquisition is usually on the order of 10-20 kHz. With the usual cross
sections for the excitation of the 2+1 state, this results in a maximal beam intensity
of ≈ 1 pnA.

3.2. Experimental Principle 47



3.2.2 Connection to nuclear structure observables

The experimentally accessible quantity in the present Coulex experiments is the
deexcitation γ radiation detected by the HPGe detectors surrounding the reaction
point. Both, the gamma decay and the Coulomb excitation process, can be de-
scribed using the same electromagnetic nuclear matrix elements. Their relevance
in the Coulomb excitation process has been outlined in 3.1. The objective of the
data analysis is the connection of the prime observable – the γ-ray intensities from
the depopulation of the excited states – with the underlying nuclear transition ma-
trix elements. The physical relation of this connection will be discussed in the
following.

The deexcitation of the states populated in the Coulex reactions happens by
an electromagnetic decay, i.e. by the emission of a γ ray. Its energy Eγ is the
difference between the energies of the initial and final states Ei and E f (neglecting
the small repulsion effect on the emitting nucleus). Usually the electric field of the
electromagnetic decay is expanded into a multipole series. Depending on the spins
and parities of the connected states Jπi and Jπf the multipolaritiy λ of the emitted
radiation is limited to certain values which are given by the selection rules

�

�Jπf − Jπi
�

�≤ λ≤ Jπf + Jπi , π f πi =

(

(−1)λ for Eλ
(−1)λ−1 for Mλ

, (3.18)

where σ = E, M denotes the electric or magnetic character of the radiation and
πi and π f are the parities of initial and final states. As a consequence, transi-
tions connecting states Jπ with 0+ states are of pure multipolarity. In cases where
more than one multipolarity is allowed, as a general rule, the lowest possible mul-
tipolarity dominates in the decay. At the same time, electric transitions σ = E
dominate over magnetic transitions σ = M . However, this rule is just a rule of
thumb, whereas the real composition of the multipolarities in the γ decay is depen-
dent on the wave functions of initial and final states i and f . In collective nuclei,
however, often E2 transitions are very strong and dominate. A measure for the
composition of radiation in terms of multipolarities is the multipole mixing ratio δ
defined by

δ2 =
Γi (λ+ 1)
Γi (λ)

, (3.19)

with the partial width Γi of the transition i. It is connected to the natural width of
the state Γ via the sum over all depopulating transitions

Γ =
∑

i

Γi . (3.20)
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The width of an isolated resonance is related to the lifetime of the state via

τ=
ħh
Γ

. (3.21)

In γ-ray spectroscopy experiments, the measured γ-ray intensity is proportional
to the partial transition width, Ii ∝ Γi . The partial width is also closely related to
the reduced transition probability of a decay B(σλ) by

Γi = 8π
λ+ 1

λ
�

(2λ+ 1)!!
�2

� Eγ

ħhc

�2λ+1

· B
�

σλ; Ji → J f
�

↓

= cπλ

� Eγ

MeV

�2λ+1

· B
�

σλ; Ji → J f
�

↓ . (3.22)

The coefficients cπλ for the most relevant multipolarities are given by

cE1 = 1.0466609 meV
10−3e2fm2 , cM1 = 11.574 meV

µ2
N

,

cE2 = 8.0638146 meV
e2b2 ,

cE3 = 3.7566888× 10−4 meV
e2b3 ,

cE2
cM1
= 0.696718

µ2
N

e2b2 .

The values of B(Eλ) and B(M1) are given in units of e2bλ and µ2
N . A more com-

monly used way of the presentation of transition strengths, in particular for B(Eλ)
values, is by the introduction of single-particle units or Weisskopf units (W.u.). They
are estimates for a transition in which only one nucleon is involved. Large values of
B(Eλ) in these units, thus, resemble transitions in which many nuclei participate.
Therefore, B(Eλ) in W.u. are a good indication for the collectivity of γ transitions.
The conversion between the different units can be done by the relations [Suh07]

B
�

E1; Ji → J f
�

= 6.446× 10−4 A2/3 e2b ,

B
�

E2; Ji → J f
�

= 5.940× 10−6 A4/3 e2b2 ,

B
�

E3; Ji → J f
�

= 5.940× 10−8 A2 e2b3 .

The reduced transition probabilities can be computed from the nuclear transition
matrix elements by

B(σλ; Ji → J f ) =
∑

m f µ

�

�〈J f m f |M(Eλ,µ)|Jimi〉
�

�

2

=
1

2Ji + 1

�

�〈J f ||M(Eλ)||Ji〉
�

�

2
, (3.23)
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where M(Eλ,µ) denotes the electromagnetic multipole operator. The reduced tran-
sition probabilities are of big importance for nuclear structure research, since they
provide a link between theoretical predictions and experimental observables. The
relation of Eq. (3.23) has already been introduced earlier in the description of
the mechanism of Coulomb excitation, cf. 3.1. The Coulomb excitation of nuclear
states and their electromagnetic decay are described by the same theoretical frame-
work. Thus, the Coulomb excitation method allows for the measurement of B(σλ)
transition strengths.

3.3 Experimental Setup

The experiments performed in the course of this work have been performed at the
Argonne National Laboratory (ANL). Ion beams of the investigated isotopes have
been provided by the ATLAS accelerator. γ radiation has been detected using the
Gammasphere array.

3.3.1 ATLAS accelerator

The Argonne Tandem Linac Accelerator System (ATLAS) is a superconducting ion
accelerator and is capable of providing and accelerating beams of nearly all stable
isotopes across the nuclear chart to energies up to 17 MeV/u. Its layout is de-
picted in figure 3.2 and outlined in [Bol93]. The ions are provided by the so-called
Positive-Ion Injector (PII), which consists of an ECR ion source and a 12 MV injector
linac. The main section of ATLAS consists of a 20 MV booster linac and the 20 MV
ATLAS linac, before the beams are delivered to the different experimental setups,
one of which is the Gammasphere spectrometer.

The beams produced by ATLAS are pulsed with a frequency of 12.125 MHz. This
is of great use for the experimenter during the analysis process, when this fea-
ture is used to create beam-on and beam-off spectra for the subtraction of random
background events (cf. 4.1).

3.3.2 Gammasphere spectrometer

For the detection of γ rays the Gammasphere spectrometer [Lee90] was used. In
its full setup, this array consists of 110 high-purity Germanium detectors (HPGe).
A picture of the Gammasphere array is shown in Fig. 3.3

The single HPGe detectors have an efficiency of 78% with respect to the NaI
standard [Bea96]. They are placed at a distance of 25.25 cm [Lee97] to the target
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Figure 3.2.: Floorplan of the ATLAS accelerator facility at the ANL. The image has
been taken from the ATLAS webpage [ATL13].

Figure 3.3.: Photograph of the Gammasphere array taken during the preparation of
the experiment on the nuclei 130,132Ba. In this picture, the hemispheres
of Gammasphere have been opened to allow for access to the target
chamber.
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Figure 3.4.: Photograph of a partly disassembled detector module of Gammas-
phere. The structure in the upper part of the photo shows a capsuled
Ge detector mounted to the cryostat. The BGO shielding is placed in
the structure in the bottom of the picture. The hexagonal structure in
the right of the picture is the Hevimet shielding of the BGO detector.

position resulting in an opening angle of 14.8◦ [Nol94]. Each detector is enclosed
by a Bismuth-Germanate scintillator (BGO) with a large γ-ray detection efficiency.
These pairs of detectors are run in an anti-coincidence mode, i.e., a γ-ray detection
in a BGO will veto a coincident γ-ray detection in the corresponding HPGe detector.
The BGO detectors themselves are shielded against γ rays from the target position
by so-called Hevimets made of a tungsten-nickel-copper alloy. They ensure that
the BGO detectors only detect γ rays that have been Compton scattered out of the
HPGe crystals. This construction principle allows for an efficient suppression of
Compton-scattered γ rays. A photograph of a partly disassembled detector module
is shown in figure 3.4.

The HPGe detectors are arranged in a 4π geometry, covering up to 47% of the
total solid angle [Lee97]. The detectors are grouped into 17 rings of 5 to 10 detec-
tors of the same polar angle with respect to the beam axis. This allows for angularly
resolved measurement of γ rays. The polar angles of the detector rings are summa-
rized in table 3.1. The total γ-ray detection efficiency of Gammasphere is 9.9% at
an energy of 1.33 MeV [Lee97]. In its setup at the ATLAS facility, Gammasphere is
placed in close proximity to the Fragment-Mass-Analyzer (FMA). This requires the
permanent removal of the first detector ring under the most forward polar angle of
17.3◦. It consists of 5 detectors. In addition, not all of the remaining detectors are
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Table 3.1.: Polar angles θGe of the detector rings of the Gammasphere array. In the
setup at the ATLAS facility, ring #1 is permanently removed.

Ring # θGe Ring # θGe Ring # θGe

1 17.3° 7 79.2° 13 121.7°
2 31.7° 8 80.7° 14 129.9°
3 37.4° 9 90.0° 15 142.6°
4 50.1° 10 99.3° 16 148.3°
5 58.3° 11 100.8° 17 162.7°
6 69.8° 12 110.2°

in use for different reasons, so that, consequently, ∼100 detectors were used in the
experiments presented in this work.

Gammasphere was originally designed for experiments that yield large γ-ray
multiplicities, e.g. as they occur in high-spin physics experiments. Usually, the
triggers of the data acquisition (DAQ) of Gammasphere are, thus, set to a γ-ray
multiplicity� 1. For the experiments presented in this work, however, the trigger
of the DAQ system has been set to 1, i.e. recording every γ ray detected, regardless
of any coincidence conditions. As a consequence, the present measurements yield
a large number of events and therefore a large statistical basis. Still, in these ex-
periments ≈ 2% of the recorded events are of γ-ray multiplicity > 1, allowing for
the creation of γγ-coincidence matrices and coincidence analyses (cf. section 4.1).

A synopsis of the parameters of the experiments of the present work is given in
table 3.2.
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Table 3.2.: Overview of the basic experimental parameters in the experiments. Dur-
ing the Pt experiments, two different settings have been used for singles
and coincidence measurements – see chapter 4.4.2 for details.

GSFMA 282 GSFMA 218 GSFMA 265
Sept. 2011 Jul. 2008 Nov. 2010

130Ba 132Ba 154Sm 194Pt 196Pt

Ebeam (MeV) 444 444 570 850 850
Ibeam (pnA) 0.25 0.5 1 1 / 5 1 / 2
tduration (h) 14.5 14.5 12 28 / 12 38 / 24
dtarget (mg/cm2) 1.0 1.0 1.0 1.0 0.585 / 1.0
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4 Data analysis and results
Within this work some features of the analysis have been improved compared to
previous experiments [Ahn09, Ahn12, Coq09, Coq10, Coq11, Rai06, Rai10], e.g.
the handling of the coincidence data and the treatment of the sign-dependencies in
the CLX calculations. The process of data sort and preparation will be discussed in
the following section 4.1. In the subsequent sections 4.2 and 4.3, the calculations
are described before their results will be presented in 4.4.

4.1 Data processing and corrections

In the beginning of the data analysis process, the data is available in its raw format.
It consists of a chronological list of the events processed by the Gammasphere DAQ
system. Each of the events itself is subdivided into a header containing information
about the event in general – e.g. the γ-ray multiplicity of the event or a timing
information of the first γ ray observed – as well as detailed information on each of
the γ rays observed in this event – this information contains the ID of the observing
detector, the energy of the γ ray and time information with respect to the RF signal
of the ATLAS accelerator. It is the purpose of the data-sorting process to generate
1D and 2D histograms from the list mode data in order to visualize energy spectra
and different types of correlations in the data. A sorting code has been written
to accomplish this task. It is based on the code GSSort [Gam13] which is usually
used for the online analysis of experiments using Gammasphere. It is based on the
ROOT framework [Bru97]. In the following, the steps of the data analysis will be
discussed.

In the beginning of the data preparation, the energy calibration for each of
the ≈100 detectors has to be checked. Analogously, the correct alignment of
the timing information with respect to the RF signal has to be checked for all
detectors. This is usually done by sorting one run of the raw data using a sort-
ing code generating only very simple spectra of energy and time information. This
process and the next step, the Doppler correction, however, presuppose each other
and can, thus, not be performed independently from each other.
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Figure 4.1.: Determination of the velocity β of the ions from minimizing the width
of the 2+1 → 0+1 peak in the sum spectrum, shown on the example of
194Pt. The uncertainties in the peak widths are too small to be seen in
the figure.

Doppler correction
Gamma radiation emitted in-flight by the projectile ions is subject to the Doppler

effect. The Doppler-shifted energy ED of a γ ray emitted by an ion moving with a
velocity β = v

c
can be expressed by

ED

�

θγ,β
�

= E0

p

1− β2

1− β cosθγ
, (4.1)

with the energy of the γ ray in the frame of the nucleus E0 and the angle θγ of the
γ ray with respect to the trajectory of the ion. This angle can be approximated by
the angle θGe of the detector with respect to the beam axis, cf. 3.2.1. In the sorting
process for each γ ray the ID of the observing HPGe detector is linked with the polar
angle θGe of the detector and a correction of the Doppler effect on the γ-ray energy
according to (4.1) is performed. The effects of the Doppler correction on the sum
spectrum are depicted in the overview plot in Fig. 4.8. With no Doppler correction
applied (Fig 4.8(a)), the detectors in each of the 16 rings observe γ rays of the
energy E0 at different energies ED(θγ). Consequently, the γ rays from a transition
are widely distributed over a broad energy range. Applying the Doppler correction
leads to distinct peaks in the spectra (Fig 4.8(b)).

A necessity for a proper Doppler correction is the knowledge of the velocity β of
the projectile ions. The value of β , however, can be extracted from the experimental
data: For a proper Doppler correction, the peaks of a transition reside at the same
energies for all rings. In the sum spectrum, this results in a minimum peak width
in case of a proper Doppler correction. In practice, one measures the resulting
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Figure 4.2.: Time spectrum of the 130Ba experiment. Time conditions on γ rays are
indicated by the shaded areas. The abscissa of the spectrum represents
the time difference between the detection of a γ ray and the RF signal
preceding the detection of the first γ ray of an event. The direction of
the abscissa is reversed, i.e. time evolves from right to left.

peak widths for different sorting processes using different values of β . This is
visualized in Fig. 4.1. In close proximity to the correct value βmin the peak widths
approximately follow a parabola, whose vertex can be adopted as the value to be
used for the Doppler correction.

Background subtraction
One drawback of the Doppler correction, however, stems from the fact that the

correction is inevitably also applied on γ rays of the room background radiation.
For these, the assumption of in-flight emission does not hold true and, therefore,
incorrectly Doppler-corrected background peaks in the spectra are distributed over
a wide energy range. This can be observed very well on the example of the well-
known 1461 keV line of the decay of 40K in Fig. 4.8(a) and (b).

The emission of background radiation is randomly distributed in time, while
γ rays from Coulex reactions can only occur in the moment when a beam bunch is
colliding with the target. This fact can be made use of to discriminate γ rays from
background radiation against those following Coulex.

Figure 4.2 shows a time spectrum. The abscissa of the spectrum represents the
time difference between the detection of a γ ray and the RF signal preceding the
detection of the first γ ray of an event. In the DAQ system an electronic coinci-
dence window is opened by this first γ ray which is larger than the time difference
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Figure 4.3.: Time-energy matrix of the 130Ba experiment. The time is shown on the
abscissa, the energy is shown on the ordinate.

between successive beam bursts. Therefore, several spikes are present in the time
spectrum that are due to γ rays induced by several different beam bursts within
the coincidence window. γ rays, either following Coulex or originating from back-
ground radiation, however, are expected to occur only in a very small fraction of
beam bursts, so that in the coincidence window contributions from consecutive
beam bursts are negligible. Consequently, the time spectrum is dominated by a
single peak which surmounts the other structures by more than three orders of
magnitude. In Fig. 4.2 this peak resides between the channels 3900 and 4100,
approximately. The large peak itself exhibits a substructure, that becomes visible
in the time-energy matrix, which is depicted in Fig. 4.3 on the example of the
130Ba experiment. γ rays following the beam-induced Coulex reactions all occur
at times corresponding to a few channels around channel 4000 while γ rays from
background radiation are distributed over the whole width of the peak.

For the background subtraction new types of spectra are created for which dif-
ferent time conditions are imposed on the gamma rays. These so-called gates are
indicated in the time spectrum of Fig. 4.2. The beam-gated spectrum only contains
gamma rays for which the time condition of the beam gate is fulfilled. Such a spec-
trum is shown in Fig. 4.8(c). The background-gated spectrum contains gamma rays
in the background gate. A third spectrum is then created in which the background
spectrum is subtracted from the beam-gated spectrum. The subtraction is normal-
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Figure 4.4.: Relative efficiency curve for the Pt experiment. Due to the use of 152Eu,
56Co, and 182Ta calibration sources, a very precise efficiency calibration
was possible over the energy range of ≈ 100 keV – 3500 keV

ized on the 1461 keV line. The result is a background-subtracted spectrum as it can
be seen in Fig. 4.8(d).

Efficiency calibration
One of the most influential and most important corrections is to correct the

measured transition intensities for the relative detection efficiency. This is impor-
tant for two reasons. First, the detector rings are made up by different numbers of
individual detectors and, consequently, their detection efficiency differs. A correc-
tion, thus, is needed for the inter-comparability of intensities measured in different
rings. Second, the detection efficiency is strongly Eγ dependent. An efficiency cali-
bration thus guarantees comparability of γ intensities at different energies. For the
determination of the efficiency ε(Eγ), measurements with calibration sources have
been performed in each experimental campaign using sources of the isotopes 182Ta,
152Eu, and 56Co. The advantage of this combination of sources is their different en-
ergy coverage. 182Ta, for instance, covers the low-energy branch Eγ < 250 keV
and 56Co provides gamma rays up to an energy of Eγ ≈ 3.5 MeV. However, not all
sources have been available in all experiments, in particular an 182Ta source could
not be used in all experiments because of its small half-life of only T1/2 ≈ 115 days.

The relative intensities of the decays of the sources are known with large pre-
cision. The efficiencies ε for each of the transitions is determined by ε = A/I ,
with the experimentally determined peak area A and the literature value of the
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relative intensity I . An absolute determination of ε is not necessary since the anal-
ysis (cf. sec. 4.3) is carried out relative to the intensity of the 2+1 state. A fit was
then performed to the data points from the measurement of ε(Eγ) to the empiric
formula

ε(Eγ) = a · exp
�

−b · ln
�

Eγ − c+ d · exp
�

e · Eγ

���

, (4.2)

with the fit parameters a . . . e. As an example, a fit to the data from the Pt ex-
periment is shown in Fig. 4.4. For experiments where the 182Ta source was not
available, a simplified version of eq. (4.2) was applied, in which the parameters d
and e were set to d = e = 0:

ε(Eγ) = a · exp
�

−b · ln
�

Eγ − c
��

. (4.3)

This formula does not describe the behavior of the efficiency curve for the low-
energy branch below the maximum at E ≈ 250 keV. In most experiments, however,
only transitions at energies E > 300 keV are of significance, so that the simplified
formula of eq. (4.3) is sufficient for the correction of the detection efficiency. An
exception has been the analysis of the experiment on 154Sm, where the 2+1 state
resides at an energy of 82 keV. See 4.4.1 for details.

Coincidence data
In the experiments, the DAQ was set to singles mode, i.e. every γ ray detected

by one of the HPGe detectors was also recorded to disk. For a large majority of
the events, the γ-ray multiplicity is one. In 1-2% of the data, depending on the
actual experiment, however, more than one γ ray has been recorded. A plot of
the multiplicity distribution is shown in Fig. 4.5. This data is of special interest
during the analysis as it allows to reveal coincidence relations between the γ rays
of different energies. Such information is used for the reconstruction of the level
scheme of a nucleus and for the determination of transition intensities of weak
transitions not visible in the singles spectra.

In practice, this data is evaluated by sorting the coincidence data into γγ matri-
ces. Those are symmetrical 2D histograms, in which the contents of the channels
(Eγ1, Eγ2) and (Eγ2, Eγ1) are incremented when two γ rays of energies Eγ1 and
Eγ2 are detected during the same event. An example of such a matrix is depicted in
Fig. 4.6. In the further analysis of the data, gates are set on several transitions and
the content of the corresponding channel is projected and plotted as a spectrum.
An example is shown in the overview plot of Fig. 4.8(d).

The bare γγ matrices usually contain random coincidences. These are transi-
tions that seem to be coincident to other transitions or to themselves without a real
physical coincidence relation. These artifacts hamper reliable coincidence analyses.
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Figure 4.5.: Plot of the multiplicity distribution of the events in the 194Pt experiment
with the DAQ trigger set to γ-ray singles.

Figure 4.6.: γγ-coincidence matrix of the 194Pt experiment.

4.1. Data processing and corrections 61



1

10

102

103

104
co
u
n
ts
/k
eV

400 600 800 1000 1200

energy in keV

×10

2+1 → 0+1

Figure 4.7.: Coincidence spectrum of the 132Ba experiment gated on the 2+1 → 0+1
transition. The subtraction of random coincidences causes the unphys-
ical peak of the 2+1 → 0+1 transition coincident to itself to vanish. The
rest of the spectrum remains unaltered. For better visibility of the ef-
fect, the subtracted spectrum on the bottom has been shifted by one
order of magnitude.

Within this work a subtraction of the random coincidences from the γγ coincidence
matrix has been implemented, which will be described in the following. For sta-
tistical reasons more than one Coulex reaction can occur in a small number of
beam bursts impinging on the target. In such a case it is possible that in the same
electronic coincidence window two or more γ rays are detected without any real
physical coincidence relation. The frequency of such a scenario can be expected to
be approximately as large as the occurrence of Coulex-induced γ ray detections in
one of the consecutive beam bursts in the same coincidence window. Therefore,
another time gate is imposed for the sorting of the γγ matrix which is localized
at the position of one of the surplus spikes in the time spectrum. It is indicated
in Fig. 4.2 labeled as random coincidences gate. It is used in the sort of the data
to construct a γγ matrix under the time condition of one γ ray in the beam gate
and the second γ ray in the random coincidence gate. The resulting matrix is then
subtracted from the bare γγ matrix. The effect of this subtraction on a coincidence
spectrum gated on the 2+1 → 0+1 transition is depicted in Fig. 4.7. While the peak
of the 2+1 → 0+1 transition coincident to itself vanishes almost completely, the peaks
of the other transitions remain unaltered in shape and intensity.
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Figure 4.8.: Sum spectrum of all detectors at different stages of the data analysis:
(a) raw data without any corrections applied (b) after performing the
Doppler correction (c) after applying the beam-gate time condition (d)
fully background-subtracted sum spectrum (e) Coincidence spectrum
gated on the 2+1 → 0+1 transition with random-coincidences subtrac-
tion applied.
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4.2 Angular distribution analysis

The investigation of the angular distribution of γ-ray intensity can yield valuable
information on the spins and parities Jπ of the states connected by a gamma decay
and on the multipolarities involved. In this work the angular distributions are used
to determine the multipole mixing ratio δ of a decay. The analysis largely follows
the procedure outlined by T. Yamazaki in 1967 [Yam67] and is applied to the decays
of higher lying 2+ states to the 0+1 and 2+1 states.

The expected size of the effect is of the order of < 10%, a fact that demands
a high precision in the determination of the γ-ray intensities as well as of the ef-
ficiencies. This, in turn, requires a certain amount of statistics collected for the
transitions, which to first order is determined by the absolute value of the ground
state transition matrix element of a state and of the branching ratio of the decay
channels. In the experiments of this work, however, only the data of 154Sm fulfilled
these requirements and allowed for an angular distribution analysis.

Angular distributions
The angular distributions are determined experimentally by the ring-wise eval-

uation of γ-ray intensities from the data of the ring spectra and from the ring-wise
determined detection efficiencies. In their evaluation, however, relativistic effects
have to be accounted for that are induced by the in-flight emission of γ rays by
nuclei moving at a velocity of β ≈ 8%. For a physically sensible evaluation the
angular distributions have to be determined in the frame of the emitting nucleus
rather than in the laboratory frame. The necessary transformations have effects
on the angles θGe of the HPGe detectors with respect to the beam axis and on the
solid angles ΩGe covered by the detectors, an effect which is usually referred to
as the Lorentz boost. The effect on the angle is comparatively small – ≈ 1− 2%.
The transformation [Stu03] from the laboratory frame θγ,lab into the frame of the
nucleus θγ,nuc is described by

cosθγ,nuc =
cosθγ,lab − β

1− β cosθγ,lab
. (4.4)

The Lorentz-Boost has a larger effect of the order of≈ 10% in maximum forward
and backward direction. It affects the solid angles covered by the HPGe detectors
in the frame of the nucleus. In forward direction they are transformed to larger
values, in backward direction to smaller values. Since the detection efficiency is
directly proportional to the solid angle covered by the detector, the Lorentz boost
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directly affects the γ-ray intensities measured experimentally. The transformation
of the Lorentz boost can be described [Stu03] by

dΩnuc =
1− β2

�

1+ β cosθnuc
�2 dΩlab . (4.5)

Extraction of the multipole mixing ratio δ
The distributions of γ-ray intensities are then used to perform a fit of the stan-

dard angular distribution formula, which is an expansion in Legendre polynomials
Pk(cosθ)

W (θ) = A0 + A2P2(cosθ) + A4P4(cosθ)

= A0
�

1+ a2P2(cosθ) + a4P4(cosθ)
�

, (4.6)

with the expansion coefficients a2 = A2/A0 and a4 = A4/A0. Since the experiment
is a relative measurement, the coefficient A0 is used only for normalization and is
of no particular significance for the further calculations. The coefficients ak can be
written [Yam67] as

ak =
1

1+δ2 ρk(Ji)
�

Fk(J f λλJi) + 2δ Fk(J f λλ
′Ji) +δ

2 Fk(J f λ
′λ′Ji)

�

, (4.7)

where ρk(Ji) is a statistical tensor describing the population of the magnetic sub-
states m of the initial state. The geometrical factors Fk are tabulated in [Yam67].
The last two terms in Eq. (4.7) vanish in the case of a transition that is pure by
definition, in particular for a 2+→ 0+ transition, resulting in

ak = ρk(Ji) Fk(J f λλJi) . (4.8)

It is evident from (4.8) that the ρk can be derived from the ak of a ground state
transition 2+i → 0+1 . Alternatively, the ρk can also be drawn from Coulex calcula-
tions [Bau09]. With the knowledge of the ρk, the possible combinations of the ak
for a presumably mixed transition 2+i → 2+1 can be calculated for different values of
δ using (4.7). A parametric plot of a4 against a2 for −∞< δ <∞ results in an an-
gular distribution ellipse of the theoretical expansion coefficients for the 2+i → 2+1
transition. The values of δ can then be deduced by a comparison of the points of
the ellipse with the experimental expansion coefficients a2 and a4 of the 2+i → 2+1
transition. More details of the analysis are given for the analysis of the 154Sm data,
cf. 4.4.1.
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4.3 Coulex calculations

Other observables in γ ray spectroscopy experiments are transition intensities.
Those are extracted in the form of peak areas from the spectra and then corrected
for the detection efficiency. Coulomb excitation theory (cf. 3.1) is applied to link
these observables with the reduced transition probabilities. The calculations as well
as the underlying considerations will be discussed in the following.

General procedure
The Coulomb excitation theory is capable of the description of cross sections

σCLX(Jπi ) for the excitation of states Jπi . An equivalent to the Coulex cross section
that is experimentally accessible in γ-ray spectroscopy experiments is the so-called
yield Y (Jπi ) of a state Jπ. It is a measure of how often a state has been populated
by means of Coulomb excitation and can be calculated from the sum of the γ-ray
intensities depopulating a state subtracted by the intensities of feeding transitions.
In the course of this work the yields of the observed states are normalized to Y (2+1 )
of the first excited state, resulting in relative yields, which are equal to the relative
Coulex cross sections of the experiment

Yrel

�

Jπi
�

=
Y
�

Jπi
�

Y
�

2+1
� =

σCLX

�

Jπi
�

σCLX

�

2+1
� . (4.9)

An exception to this normalization to the 2+1 state had to be made in the analysis
of the 154Sm data, cf.4.4.1. It is the purpose of the Coulex calculations to find a
set of electromagnetic transition matrix elements that will result in the experimen-
tally observed relative Coulex cross sections. Several codes are on the market that
are capable thereof. For this work, the standard Coulex code CLX [Owe, Owe80]
has been used. It is based on the original code presented by Winther and deBoer
[Win66].

For the execution of the code, an input file has to be prepared containing the
information on the states and the transitions. An example of an input file can be
found in appendix A. The input file is divided into three main parts. In the first
section of the file, general information on the calculation to be performed is given,
e.g. input and output specifications, the desired accuracy and the nuclei involved.
The code originally was designed for experiments in ordinary kinematics. To be
able to compute also Coulex reactions in inverse kinematics, the proton numbers
Zp and Zt of projectile and target nuclei have to be interchanged in the file. The
second part of the file contains a numbered list of the states to be calculated. The
states have to be specified with their excitation energy, spin, and parity. The num-
bering of the states is again used in the third part of the file for the specification of

66 4. Data analysis and results



the transition matrix elements in terms of their value and the multipolarity of the
transition. In practice, only electric transitions play a role for the sub-Coulomb bar-
rier excitation process. The ratio of matrix elements describing the depopulation
of the same initial state Ji is constrained by the branching ratio of the γ decays via
the relation

I1

I2
=
Γ1

Γ2
=

cσ1λ1

�

Eγ1

MeV

�2λ1+1
· B
�

σ1λ1; Ji → J f ,1
�

↓

cσ2λ2

�

Eγ2

MeV

�2λ2+1
· B
�

σ2λ2; Ji → J f ,2
�

↓

=
cσ1λ1

�

Eγ1

MeV

�2λ1+1
·
�

�〈J f ,1‖M(σ1λ1)‖Ji〉
�

�

2

cσ2λ2

�

Eγ2

MeV

�2λ2+1
·
�

�〈J f ,2‖M(σ2λ2)‖Ji〉
�

�

2
, (4.10)

which can be inferred from Iγ ∝ Γi and equations (3.22) and (3.23), cf. 3.2.2.
The code CLX is capable of the calculation of Coulex cross sections for a given

set of transition matrix elements. For the determination of a set of matrix elements
from the cross sections, i.e. the inverse calculation, a fit of the matrix elements has
to be performed that reproduces the experimental relative cross sections. This fit
has been done manually. The decision not to have the fit performed by a computer
program has been made in order to have as much control and insight over the
calculations in this key step of the analysis as possible.

Among the nuclear matrix elements, the diagonal matrix elements have to be
treated separately. Those correspond to the electric quadrupole moment of the nu-
cleus in the state. In the calculations, quadrupole moments that have been known
from previous experiments have been taken from the literature. For the rest of the
states the rotational limits of (2.18), i.e. Q2

0 < 16π/5 · B(E2; 2+1 → 0+1 )/e
2, have

been used to estimate the uncertainty induced by the value of Q. In the setup of in-
verse kinematics on a light target material this is a second order effect and induces
uncertainties on the order of ≤ 3%.

As a consequence of the choice of the light target material of Carbon, the
Coulomb excitation of the projectile nuclei is almost entirely dominated by one-
step excitations. This fact significantly facilitates the analysis in several ways. First,
it assures that the interference between states that are predominantly excited di-
rectly from the ground state is only a second order effect or even less. This allows
to perform the fits of the decay matrix elements for each state individually without
significant influence on the results of the other states. It turned out during the
calculations that this holds true for those states that are connected to the ground
state via a non vanishing matrix element, such as the 2+ states, unless they are con-
nected by a strongly collective E2 transition to, e.g., an excited 0+ state. However,
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the matrix elements of states that are not (predominantly) excited directly from the
ground state are strongly affected by transitions to other states in the calculation
and by the choice of the signs of the matrix elements, e.g. the 3+1 and 4+2 states. For
those states, no reliable results can be obtained, although it is important to include
those in the CLX calculations. Second, the nearly complete independence of the
results on the treatment of other states in the calculation allowed for a treatment
of only a subset of the observed states in the calculations without significant effects
on the results. It is only due to this feature of the calculations that an analysis of the
Pt isotopes with their extensive level scheme has been possible using the present
method. Over the course of the calculations this independence had been tested
and verified. All states that do have a significant impact on the results of the other
states have been included in the calculations, in particular the afore-mentioned 3+1
states, since they are an important part of the low-lying collective structures.

Signs of matrix elements

The results on the matrix elements for the depopulation of certain states depend
very sensitively on the choice of the relative signs of the matrix elements, in partic-
ular for those states that are not connected directly to the ground state by a ground
state transition, and, thus, can only be populated by multiple Coulex reactions. This
applies especially to 4+ and 0+ states, but it can also occur in the case of individ-
ual 2+ states for which the ground state transition matrix element is a lot smaller
than the matrix element to the 2+1 state, for instance. Nevertheless, not all possible
combinations of signs result in different values for the matrix elements. The effect
rather depends on the sign of a closed loop of transitions, e.g. in the case of the 2+2
state the product sgn

�


2+2 |E2|2+1
��

× sgn
�


2+1 |E2|0+1
��

× sgn
�


0+1 |E2|2+2
��

. This
also implies that for states that predominantly are depopulated via a single decay
channel, a sign change does not affect the results, which is of particular impor-
tance for the states of the ground state band. The effect induced by sign changes
on the resulting absolute values of the matrix elements can have a huge impact on
the results, as it was observed in the case of the 0+2 state in 194Pt, for instance (cf.
Table 4.2).

In the analyses this problem has been attacked by two different approaches.
The first possibility is to find a set of physically motivated signs. One possibility,
though not chosen in the course of this work, might be the adoption of signs from a
theoretical calculation, e.g. from the IBM. In the analysis of the 154Sm experiment,
the deduction of relative signs from the Alaga rule (Eq. (2.21)) was applied instead,
an ansatz that is only applicable in rotational nuclei, where the Alaga rule is valid.
Details of this analysis are described in chapter 4.4.1 and in the corresponding
publication [Möl12].
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For the other nuclei, a new approach for the treatment of the signs has been
developed in this work. It was tried to find a valuable estimate of the influence of
sign changes on the results for the matrix elements. For this purpose, numerous
different CLX calculations have been performed in which the absolute values of all
matrix elements have been kept constant while the signs have been varied using
different combinations. The results on the Coulomb excitation yields in these test-
calculations have been compared. The sign-combinations for minimal and maximal
results on the yield of a given state have been taken to perform the Coulex fits.
It has been found that in some cases the minimal and maximal results for the
matrix elements of the depopulation of a given state have been obtained from sign
combinations that in the test-calculations led to extremal values of the yield of the
2+2 state instead of the investigated state itself.

The results of the CLX calculations using those sign combinations that led to
extremal values in the test-calculations have been assumed to represent the upper
and lower limits for the systematic uncertainty induced by the sign effect. They
have been, thus, adopted as the limits of the systematic uncertainty statement in
the results. The mean value of these two limits has been adopted as the result for
the matrix element. Not until then the determination of the statistical uncertainty
was performed, which comprises the uncertainty induced from the uncertainties in
the relative yields, the normalizing matrix element of the 2+1 → 0+1 transition, and
the effect of the quadrupole moments. This treatment of the uncertainties results
in a mean value with specifications of the systematic uncertainty and the statistical
uncertainty, cf. Tables 4.2, 4.3, 4.4, and 4.5.

Energy loss in the target

The calculations of the Coulex cross sections are highly sensitive on the kinetic
energy of the projectile ions. However, in the passage through the target they are
object to several interactions and, thus, to an energy loss that can sum up to a to-
tal of 70 MeV. As a consequence, a discrete kinetic energy for which the excitation
occurs, can not be determined. For the calculation of the energy loss in the target
it is important to take into account that in some experiments the target had been
mounted on the Gammasphere target ladder, which is tilted at an angle of 37◦. This
increases the effective thickness of the target by a factor cos−1(37◦) = 1.252.

There are different ways to deal with the energy loss of the ions in the target.
For the analysis of the 154Sm data an average beam energy in combination with
a standard deviation has been deduced and used in the CLX calculations. The
big disadvantage of this method is the large uncertainty in the results, that could
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be tolerated in this case because of other sources of large uncertainties, like the
normalization to a higher lying state, for instance, cf. 4.4.1.

For the 130,132Ba and 194,196Pt analyses the energy loss was dealt with by a virtual
segmentation of the target depth into 10 layers, for which the kinetic energies of
the projectile ions have been calculated. For each of the virtual layers individual
CLX calculations have been performed using the respective kinetic energies of the
projectiles in the layers. The final result was derived from the average cross section
of the 10 layers. This is a good approximation since the Coulex cross sections scale
linear with the beam energy and the beam energy scales linear with the penetra-
tion depth in the target to first approximation. A large drawback of this method,
however, is the 10-fold increase in time consumption of each calculation step. For
the uncertainties of the calculations, the uncertainties in the results of a single slice
have been used.

4.4 Results

The analysis of the data has been performed according to the steps outlined in the
preceding sections. However, the analyses have been performed one after the other,
so that certain features have been subject to progress throughout the course of the
present work. In particular, this applies to the treatment of the coincidence data of
the experiments and to the treatment of the signs of the matrix elements during the
calculations. In the following, the analyses of the five separate experiments will be
individually discussed in more detail. This discussion will follow the chronological
sequence in which the data sets have been analyzed, beginning with the 154Sm
experiment.

4.4.1 154Sm

An analysis of this data set had previously been started in the framework of a
Master’s thesis [Möl09]. In that analysis, the normalization of the γ-ray intensities
had been performed with respect to another state. The present work represents a
re-analysis of this data set.

Chronologically, the 154Sm data set has been the first data set to be analyzed
in the framework of this thesis. Therefore, some of the features of the analysis
discussed above and applied in the analysis of the Ba and Pt isotopes are different
in 154Sm.

To begin with, the sort of the data has not been performed using the GSSort
framework. Instead, the MTsort package [Cre] using the MIDAS data acquisi-
tion and sort system [Dar] has been used. This sorting code had already been
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utilized for the analyses of several previous experiments in the same technique
[Ahn09, Coq10, Rai06]. Within the scope of this sorting code no subtraction of
random coincidences from the γγ-matrix had been implemented. This feature was
introduced later in the ROOT-based analysis of the data of the Pt isotopes, driven
by the need of a reliable analysis based on coincidence data due to the large num-
ber of transitions in these experiments. As a consequence, the coincidence spectra
of 154Sm still contain peaks corresponding to random coincidences. The Doppler-
corrected, background-subtracted singles sum spectrum of all detectors is shown in
Fig. 4.10, and, together with an example of the coincidence data of the data set, in
appendix B.3.

The coincidence data was used mostly for the reconstruction of the level scheme
of excited states from the energies of the observed γ rays and the coincidence rela-
tions among them. The level scheme of the excited states is shown in appendix B.3.
Among the excited states there are the states of the ground-state band up to the
10+1 state. In the first excited K = 0 band the states 0+2 , 2+2 , and 4+2 have been
excited. The first three states of the γ band, namely the 2+4 , 3+1 , and 4+3 states have
been identified from the data as well. Besides these states, on which the following
discussion will be centered, also several other states have been populated. These
include the first states of two bands on top of the 1−1 and 1−2 states.

Additional excited states identified from the data lie outside this band scheme
and include the 2+3 state at 1286 keV, a 3+ state at 1707 keV, a state assigned
Jπ = 2+, 3 at 1815 keV, a Jπ = 1−, 2+ state at 2015 keV, and a Jπ = 1,2+ state at
2139 keV. (All Jπ assignments are taken from [Rei09].)

The quantitative analysis of the data, namely the derivation of the transition in-
tensities, was to a large extent performed based on the data of the singles spectrum.
In cases where the intensity of a transition had to be determined from the coinci-
dence data, the uncertainty was chosen appropriately large enough to compensate
for the random coincidences that remained in the spectra.

Unlike previous experiments performed by our group, e.g. [Ahn09, Coq10,
Rai06], and different from the Pt and Ba analyses (4.4.2 and 4.4.3) as well, in
the 154Sm analysis a normalization of the γ-ray intensities and of the yields of the
states to the 2+1 state has not been possible. This was mainly due to the small
excitation energy of the 2+1 state of only 82 keV. In this energy region, the Gam-
masphere detection efficiency usually exhibits a sharp decrease due to the use of
filters for low-energy γ rays and X-rays. At the time of the experiment, a 182Ta
calibration source was not available so that the description of the γ-ray detection
efficiency in the energy region below its maximum at approximately 250 keV could
not be performed using the data points of the 152Eu and 56Co calibration sources.
It should be noted, however, that even an efficiency calibration comprising 182Ta
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data, as it has been done for the Pt experimental campaign, does not allow for an
accuracy in the determination of the efficiency in this energy region comparable to
the accuracy achieved for the normalization in the Pt and Ba analyses.

In order to perform an analysis of the 154Sm data, the 2+4 state at 1440 keV has
been chosen to serve as a normalization during the analysis. Details on the γ-ray
intensities and on the yields of the states in this experiment relative to Y (2+4 ) are
tabulated in Tables B.5 and B.6.

The lifetime of the 2+4 state had been measured previously using the DSAM tech-
nique [Krü99] to τ(2+4 ) = 0.61(4) ps. The state predominantly decays via three
transitions of 1440, 1358, and 1173 keV to the 0+1 , 2+1 , and 4+1 states, respectively.
The use of this state as normalization required exact knowledge of the properties
of its γ decays. Since the 2+4 state is one of the states populated most strongly in
the experiment, the intensities of the decays and, hence, the branching ratios of the
decay channels, have been determined with high accuracy. The relative intensities
of the transitions determined from the data are tabulated in Table 4.1. For the
determination of the intensity of the 2+4 → 0+1 transition, the 3+(1707 keV)→ 4+1
transition, residing at the same energy of 1440 keV, had to be taken into account.
The intensity of this transition has been estimated from the peak area of the 1440-
keV peak in the spectrum coincident to the 4+1 → 2+1 transition and subtracted from
the intensity of the 1440-keV peak in the singles data. For the calculation of the
Coulex yield of the state, the only feeding from higher-lying states has been identi-
fied as the 1815→ 2+4 transition at an energy of 375 keV and has been taken into
account.

An angular distribution analysis, outlined in 4.2, has been performed to deter-
mine the multipole mixing ratio δ of the 1358 keV 2+4 → 2+1 transition. Due to
low sensitivity on the expansion coefficient a4, two possible resulting values for
the mixing ratio have been δ = −19(10), which corresponds to a nearly pure E2
transition, or δ =−0.51(7), which corresponds to a 21(5)% E2 contribution to the
transition. A figure of the angular distributions and of the angular distribution el-
lipse is shown in Figs. 4.9 and B.10b. The ambiguity of the results has been solved
by a comparison of the resulting B(E2) values with the predictions of the Alaga
rule [Ala55], which can be expected to apply in the nucleus 154Sm regarding its
rigid-rotor properties. According to the Alaga rule, the ratio

B(E2; 2+K → 2+1 )

B(E2; 2+K → 0+1 )
= 1.43 , for K = 0, 2 , (4.11)

where K denotes the K-quantum number of the initial state. For the decay of the
2+4 state with K = 2, this ratio calculated from the experimental values is either
1.66(2) for δ = −19(10) or 0.34(3) for δ = −0.51(7). The first value is closer
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to the prediction of the Alaga rule and therefore δ = −19(10) is adopted for the
further calculation. Analogous to this, the multipole mixing ratio δ of the 2+2 → 2+1
transition has been determined. Again, two possible values resulted from the an-
gular distribution analysis, namely δ = −30(21) and δ = −0.48(2). The angular
distributions and the angular distribution ellipse leading to these results are de-
picted in Fig. B.10a. The relation of (4.11) also applies to the K = 0 2+2 state.
The ratio of experimental transition strengths for the decays of this state are either
2.25(40) for δ = −30(21) or 0.47(9) for δ = −0.48(2). The value for the nearly
pure E2 transition is closer to the value of the Alaga rule and, thus, for the 2+2 → 2+1
transition δ =−30(21) is adopted for the further calculations.

In the CLX calculation of the electromagnetic transition matrix elements, the
high sensitivity of the results on the signs of the matrix elements of the transitions
had to be addressed. Unlike in the Ba and Pt analyses, in 154Sm this issue also
applied for the normalizing state 2+4 . Again, the Alaga rule was utilized. Using it in
its square rooted version,

sgn

� 


J f ||E2||Ji
�




J f ′ ||E2||Ji
�

�

= sgn

� 


Ji Ki 2 ∆K | J f K f
�




Ji Ki 2 ∆K | J f ′ K f ′
�

�

, (4.12)

it can be used to deduce the relative signs of inter-band transitions from a state Jπi,Ki
into different states Jπf ,K f

and Jπ
f ′,K f ′

of the same band with K f = K f ′ . In (4.12),

the coefficients in angle brackets on the right-hand side denote Clebsch-Gordan
coefficients. The ground state transition matrix elements of each state have been
chosen to be positive, the relative signs of the other decay matrix elements have
been deduced from (4.12).

In conclusion, the exact knowledge of the branching ratios of the decays of the
2+4 state, the mixing ratio of the 2+4 → 2+1 transition, the signs of the matrix el-
emtens, and the previously deduced lifetime allowed for the calculation of the
transition strengths of the decays of the 2+4 state, cf. Table 4.1. In the CLX calcula-
tions these result in a Coulex cross-section of σ(2+4 ) = 2.8(3) mb that defines the
absolute scale for the calculation of the other states using CLX.

Using this setup the matrix elements for the states of the ground band and of
the K = 0 band have been included into the CLX calculation, cf. 4.3. Since
the yields of the 2+1 and 4+1 states in the ground-state band could not be deter-
mined experimentally, the adopted values for the intra-band transition strengths
from the Nuclear Data Sheets [Rei09] have been used. Also adopted values for the
quadrupole moments Q(2+1 ) = −1.87(4) eb and Q(4+1 ) = −2.2(8) eb have been
included into the calculations. For the rest of the states the quadrupole moment
of the 2+1 state has been used as a first approximation. The intra-band matrix ele-
ments for transitions within the beta band do not have a significant impact on the
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results of the calculations. This has been checked by performing CLX calculations
using different values for these transitions. For the final calculations, these values
have been chosen according to the predictions of the calculations in [Pie04] as
B(E2; 4+2 → 2+2 ) = 234 W.u. and B(E2;2+2 → 0+2 ) = 165 W.u. . The results of the
calculations are tabulated in Table 4.1.

The CLX calculations (cf. Appenix A) resulted in a set of transition matrix el-
ements for the decays of the states of the K = 0 band, namely of the 0+2 state at
1099 keV, the 2+3 state at 1178 keV, and the 4+2 state at 1338 keV. These results
and their implications on the assignment of the K = 0 band as a β band will be
discussed in the framework of the confined-β-soft rotor model (CBS, cf. 2.4.3) in
chapter 5.3.
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2+γ → 0+1 2+γ → 2+1

a
4

a2

a2 = 0.229(18)
a4 = −0.029(21)

a2 = −0.073(16)
a4 = 0.005(18)

Figure 4.9.: Angular distribution analysis of the 2+4 → 2+1 transition in 154Sm. The
expansion coefficients of the ground-state transition (a) are used to cal-
culate the statistical tensors of the population of m-substates of the 2+4
state. From those, the angular distribution ellipse (c) is calculated. The
value of δ results from a comparison to the expansion coefficients of
the angular distribution of the 2+4 → 2+1 transition (b).
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Figure 4.10.: Singles spectrum of the 154Sm experiment. A more detailed image and
coincidence data is shown in appendix B.3.
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4.4.2 194,196Pt

The analysis of the Pt data has been complicated by a large number of excited states
and, thus, a large density of transitions in the spectra. Given the limited resolution
in the spectra, an analysis based on the singles data of the experiment would have
been a hopeless endeavor. Therefore it had been an urgent necessity to be able to
perform an analysis based on the coincidence data of the experiment also in terms
of quantitative measures. An issue that hindered such an approach in previous
experimental analyses had always been the presence of random coincidences in
the spectra. In order to overcome this obstacle, the sorting process of the raw data
was extended by a mechanism to subtract these artifacts from the coincidence data.
The method is described in 4.1.

194Pt analysis

The Doppler-corrected, background-subtracted sum spectrum of the 194Pt experi-
ment and the coincidence spectrum gated on the 2+1 → 0+1 transition are shown in
Fig. 4.11. Images of the spectra in more detail as well as more examples of the co-
incidence spectra are depicted in appendix B.4. Under the given circumstances the
reconstruction of the level scheme of 194Pt based on the observed transitions had
been the biggest challenge in the analysis of the data set. To maximize the statistics
for this qualitative part of the analysis the coincidence data of both experimental
runs (- γ-ray singles and multiplicity ≥2) have been used. The list of observed
transitions as well as a complete level scheme of the identified transitions and the
excited states in this experiment are shown in appendix B.4.

The identified excited states in the 194Pt experiment comprise the states of the
ground-state band up to the 6+1 state at 1411 keV. The low-lying states also contain
a band-like structure based on the 2+2 state including the 3+1 and 4+2 states. The
excitation of the 0+2 state at 1267 keV and the 0+4 state at 1547 keV has been
observed. The third 0+ state at 1479 keV, however, has not been observed in the
experimental data. This state has previously been reported in several experiments,
e.g. in 194Ir β decay [Cle76], in (n,n′γ) [Fil81], (p, d) [Ber81], and (p, t) [Dea79]
reactions. Also its E0 ground-state transition is given [Kib05]. The data comprise
several states with Jπ = 2+ assignment, e.g. states at 1622 keV and 1670 keV as
well as states with a possible Jπ = 2+ assignment, e.g. the states at 1816 keV,
2004 keV, and 2287 keV. A state at 2072 keV excitation energy has been populated.
For this state, no Jπ assignment has been made previously [Sin06]. In the course
of this work, this state is referred to with the label Jπ and will be treated during
the analysis like a 2+ state. The decays of five states with a Jπ = 3− assignment
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Figure 4.11.: Singles spectrum and spectrum gated on the 2+1 → 0+1 transition of the
194Pt experiment. More detailed images of the spectra are depicted in
appendix B.4.

have been observed, namely the states at energies of 1432 keV, 1737 keV, 2154 keV,
2246 keV, and 2546 keV.
Several additional states have been identified, see Fig. B.14 for details.

Some peaks in the spectra could not be assigned. In the singles spectrum, the
peaks at 394 keV and 657 keV could not be identified. The 394-keV peak shows
no coincidence relation to other transitions in the data. The 657-keV peak appears
again in the gate on the 4+1 → 2+1 transition. It exhibits a smaller width than ex-
pected. It was concluded that these two peaks do not stem from the excitation of
194Pt. Their origin, however, could not be resolved. Some peaks observed in the
coincidence data could not be identified either due to a general limitation in the
analysis of the coincidence data: Imposing a gate in the γγ-coincidence matrix on
a transition with a relatively small intensity (compared to the 2+1 → 0+1 transition)
can result in very small peaks in the resulting coincidence spectrum. The usual
way to identify the placement of one of these transitions within the level scheme
is, in return, to set a gate on the transition in question. If the respective transition,
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however, is only of very small intensity, the resulting coincidence spectrum is highly
unlikely to contain conclusive information. This can be attributed to the high den-
sity of transitions throughout the entire energy range of the experiment. A gate
on a very weak transition will almost inevitably also contain further – presumably
stronger – transitions.

The γ-ray intensities of the identified transitions have been determined from the
singles spectrum and in most cases from the coincidence spectra. For this quan-
titative part of the data analysis, the singles and coincidence data only from the
first experimental run using a γ-ray singles trigger has been used. The peak areas
deduced from the coincidence spectra have been normalized to the values from the
singles spectrum by using large peaks as normalization. From the γ-ray intensities
of the transitions the yields Y of the states have been deduced and then normalized
to the yield Y (2+1 ). The intensities of the transitions and the deduced yields of the
states are tabulated in detail in appendix B.4.

Based on the yields determined from the spectra a CLX calculation has been
performed as it is outlined in 4.3. The absolute scale of this calculation has been
set by the adopted value of B(E2;2+1 → 0+1 ) = 49.2(8) W.u. [Sin06]. In this
calculation, the states of the ground state band, the 2+2 , 3+1 , 4+2 , 0+2 , 2+3 , 0+4 , 2+4 ,
and 2+5 states have been included. The results for the 3+1 and 4+2 states are highly
sensitive to the choice of signs of matrix elements. The results for their transition
matrix elements are not conclusive and are, thus, not given. The 0+3 state has
also been included even though based on an upper-limit estimate of its yield. For
the CLX calculation of the excitation process of the 4+1 state, an E4 transition of
B(E4; 4+1 → 0+1 ) = 4.07×10−3 e2b4 [Set91] has been included into the calculation.
However, its effect on the result is only small. The results of the CLX calculations
on the 194Pt experiment are given in Table 4.2 and are shown in Fig. 5.9.

The uncertainties of the resulting transition strengths are given as statistical un-
certainty and, if a second uncertainty is given, systematic uncertainty. The system-
atic uncertainty results from the sensitivity of the resulting matrix elements on the
choice of the signs of the matrix elements, cf. 4.3. For the decays of the 0+2 state,
the systematic uncertainty is too large to be subsumed in one value. Therefore, the
range of the possible values is given.

The results of the other states will be discussed with respect to the O(6) symme-
try of the Interacting Boson Model in 5.2.2.
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196Pt analysis

In the analysis of the data of the 196Pt experiment, the complexity of the level
scheme and the large number of observed transitions have been the biggest
challenges. However, the know-how gained in the analysis of the 194Pt experi-
ment could also be applied in the analysis of 196Pt. In the sorting of the data
the previously developed tool for the subtraction of random, unphysical coinci-
dences has also been deployed in the case of 196Pt. In general, the analysis fol-
lowed the procedure outlined in 4.1 and 4.3. Again, the reconstruction of the
level scheme from the experimental data has been a challenge due to the large
number of transitions and of the limited resolution of the setup. The Doppler-
corrected, background-subtracted singles sum spectrum and a coincidence spec-
trum are shown in Fig. 4.12. Images of the spectra in more detail can be found in
appendix B.5.

The level scheme of excited states has been reconstructed from the coincidence
data. The analysis of the level scheme has been based on the coincidence data from
both experimental runs, namely the run with the trigger set to singles mode and
set to γ-ray multiplicity ≥2.

In this experiment, the states in the ground-state band up to the 6+1 state at
1526 keV have been excited. Also the 2+2 , 3+1 , and 4+2 states have been identi-
fied from their decays. The 0+2 , 0+3 , 0+4 states at excitation energies of 1135 keV,
1402 keV, and 1823 keV has been identified as well. The decays of several 2+

states have been observed, namely of the 2+3 , the 2+4 , and 2+5 states at energies of
1362 keV, 1604 keV, and 1677 keV, respectively. In addition, a 2+ state at 1847 keV
has been populated as well; this state will be referred to as 2+6 in the following. Sev-
eral states have been populated that have a possible Jπ = 2+ assignment, namely
at energies of 1795 keV, 1932 keV, 1984 keV, 1988 keV, 1998 keV, 2626 keV. Based
on the observation of a transition at 2426 keV coincident to the 2+1 → 0+1 transition
and another transition at 1766 keV coincident to the 3+1 → 2+2 transition it has been
concluded that a state at an excitation energy of 2781 keV had been populated in
the experiment. Near this energy the Nuclear Data Sheets [Xia07] report a state at
an energy of 2779(3) keV without a known Jπ assignment.
From the observation of three transitions, one at 2523 keV coincident to the
2+1 → 0+1 transition, another at 2004 keV coincident to the 4+1 → 2+1 transition,
and a third at 1863 keV coincident to the 3+1 → 2+2 transition, the existence of a
populated state at an excitation energy of 2878 keV has been concluded. Near this
energy, the Nuclear Data Sheets report a state at an energy of 2875.4 keV with a
Jπ = 1+(2+) assignment.
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Figure 4.12.: Singles spectrum and spectrum gated on the 2+1 → 0+1 transition of
the 196Pt experiment. Images of the spectra in more detail are shown
in appendix B.5.

In the spectra gated on the low-lying transitions of the level scheme, some peaks
have been observed that could not be identified. The reasons hindering a placement
in the level scheme have already been discussed above for the 194Pt case, cf. 4.4.2.

For the quantitative part of the analysis, only the data from the runs performed
with the trigger set to singles mode have been used. The intensities of the tran-
sitions have been determined from the coincidence spectra and from the singles
spectra. From these, the yields Y of the states have been deduced and the nor-
malized to the yield Y (2+1 ). Detailed lists of the γ-ray intensities of the observed
transitions and of the relative yields of the populated states can be found in ap-
pendix B.5.

In a CLX calculation the states of the ground-state band, the 2+2 , 3+1 , and 4+2 states
as well the 0+2 , 2+3 , 0+3 , 0+4 , and 2+5 have been included. In addition, an estimate
on lower limits of the decay rates of the 2+6 state at 1847 keV has been made. An
estimate of the intensity of the decay of the 1847 keV state into the ground-state
has been made based on the assumed sensitivity of a 195Pt(n,γ) experiment of
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Ref. [Ciz79]. The reported intensity of a decay of 1853 keV to the ground state,
which is among the smallest intensities given in the reference, was used as an
estimate for an upper limit for the intensity of the 1847-keV transition and has
been used as a limit of the branching ratio used in the CLX calculations, assuming
pure E2 character for the rest of the transitions depopulating the 1847-keV state.

The absolute scale of the calculation was set by the adopted value of B(E2; 2+1 →
0+1 ) = 40.6(2) W.u. [Xia07]. The CLX calculation followed the procedure outlined
in 4.3. For the excitation process of the 4+1 state, an E4 transition B(E4; 4+1 →
0+1 ) = 3.42× 10−3 e2b4 [Set91] has been included into the calculation. However,
its effect on the result is only small. Due to the high sensitivity of the results on the
signs of the matrix elements of the transitions, no conclusive results can be given
for the decays of the 3+1 and 4+2 states. For the same reason, the uncertainties are
given as a statistical uncertainty and a systematic uncertainty. The latter comprises
the effects of different signs of the matrix elements in the calculations.

The results of the calculations are tabulated in Tab. 4.3 and depicted in Fig. 5.7.
They will be discussed in the framework of the O(6) symmetry of the Interacting
Boson Model in 5.2.1.
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4.4.3 130,132Ba

The analyses of the Ba data sets have not been as complicated in terms of the
level scheme of excited states as compared to the Pt isotopes. Due to the small
natural abundance of ≈0.1% for both investigated isotopes, 130Ba and 132Ba, the
beam intensity during the experiment, and consequently the statistics gained in the
experiment has been limited. The experiences from the complicated Pt data has,
however, been of great use in the analysis of the data sets.

130Ba analysis

The sorting of the data of the 130Ba experiment has been done using the GSSort
code. The analysis of the data followed the procedure outlined in 4.1. The singles
spectrum of the data is depicted in Fig. 4.13. Detailed images of the spectra can
also be found in appendix B.1. From the singles and coincidence data, the level
scheme of excited states has been reconstructed. A major challenge has been im-
posed by the close-lying energies of the 4+1 state at 902 keV and the 2+2 state at
908 keV. With the limited resolution of the experimental setup, the separation of
transitions to these states has been increasingly difficult for increasing γ energies.
For the same reason, also the coincidence analysis has been affected, since an ex-
act discrimination between transitions coincident to the 4+1 → 2+1 and 2+2 → 2+1
transition was hard to achieve.

However, it has been possible to identify the transitions and the Coulomb-excited
states from the data. The complete level scheme from this experiment is shown in
appendix B.1. The population of the states in the ground-state band up to the 6+1
state at 1592 keV has been concluded. The 2+2 and 4+2 states have been populated
as well. Decays of the 2+3 state at 1557 keV, the 3−1 state at 1919 keV, and a 5− state
2168 keV has been identified. (The Nuclear Data Sheets [Sin01] report a Jπ = 3
assignment for the state at 1919 keV. Since it is highly unlikely to strongly excite a
3+ state in a one-step process in Coulex it has been concluded that this state in fact
can be identified as the 3−1 state.) Additionally, three decays of a state at 2269 keV
have been observed. The state had previously been observed, but no Jπ assignment
had been given. It will be treated like a 2+ state in the further analysis. Besides
these states, which have been assigned on the basis of the database of the Nuclear
Data Sheets [Sin01], the decays of two additional states have been observed in the
data.

A transition at 1463 keV coincident to the 2+1 ground-state decay has been ob-
served. Except for the coincidence to the 2+1 → 0+1 transition no other coincident
transition can be observed from the γγ-coincidence data. It has been concluded
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that it originates from the decay of an excited state at 1819 keV. In the literature,
no state at such an energy has been reported. In the analysis the state will be
treated under the assumption of being a 2+ state.

Another transition coincident with 2+1 → 0+1 transition has been observed at
an energy of 2014 keV. Except for the coincidence to the 2+1 → 0+1 transition no
other coincident transition can be observed from the γγ-coincidence data. The
peak of the 2014 keV transitions contains more than twice the intensity of the
1463 keV transition. It has been assigned to a state at 2371 keV. In this energy
region, no excited state has been reported except for a 2+ state at 2361 keV [Sul08].
Regarding the large energy difference of 10 keV, it does not seem probable that the
state observed in the present experiment is identical to the one reported in this
previous work. In the course of the analysis, the state at 2371 keV will be treated
under the Jπ = 2+ assumption.

From the spectra of the singles and coincidence data, the intensities of the transi-
tions have been determined. From them, the yields of the states have been deduced
and then normalized to the yield of the 2+1 state. Detailed lists of the γ-ray intensi-
ties and of the relative yields are shown in appendix B.1.

The peak of the 2+3 → 0+1 transition overlaps with the peak of the 3−1 → 2+1
transition. From the intensity-difference of this peak in the singles and coincidence
data an upper limit for the γ-ray intensity of the 1557 keV transition has been
deduced.

The presumed ground-state transition of the 1819 keV and 2371 keV states have
not been observed in the spectra. Estimates on upper limits for the intensities of
the transitions have been made.

Based on the relative yields deduced from the spectra, CLX calculations have
been performed. The calculations followed the procedure outlined in 4.3. The
2+1 , 4+1 , 6+1 , 2+2 , 4+2 , 2+3 , and 3−1 states have been included into the calculations.
Estimates on possible B(M1; 2+ → 2+1 ) strengths have been made based on lower
limits of the relative yields of the 1819 keV, 2269 keV, and 2371 keV states. These
limits have been calculated from the γ-ray intensities of the unambiguously ob-
served decays of the states. In the calculations, the absolute scale has been set by
the adopted value of B(E2;2+1 → 0+1 ) = 57.9(17) W.u. [Sin01]. As in the previous
discussions for the Pt isotopes, the values are again given with a statistical and sys-
tematic uncertainty. The latter stems from the sensitivity of the results on different
choices of the signs of the transition matrix elements.

The results of the calculations are summarized in Table 4.4. They will be dis-
cussed with respect to the existence of one-quadrupole phonon excitation of mixed
proton-neutron symmetry (2+1,ms) in 5.1.1.
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Figure 4.13.: Doppler corrected, background subtracted singles sum spectrum of
130Ba. A more detailed illustration of the spectrum and coincidence
data can be found in appendix B.1.
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Figure 4.14.: Doppler corrected, background subtracted singles sum spectrum of
132Ba. A more detailed illustration of the spectrum and coincidence
data can be found in appendix B.2.

132Ba analysis

The sorting of the data has been performed using the GSSort program that had
also been deployed for the 130Ba analysis as well as for the analysis of the Pt exper-
iments, cf. 4.1.

The reconstruction of the level scheme of excited states of 132Ba from the sin-
gles and coincidence spectra has been done without mayor problems. The singles
spectrum is shown in Fig. 4.14. Images of the spectra in more detail as well as
the complete level scheme of excited state in the experiment are to be found in
appendix B.2. In the experiment, the ground-state band up to the 6+1 state at
1932 keV has been populated. Also the 2+2 and 4+2 states have been excited in the
experiment. The decays of the third and fourth 2+ state at energies of 1686 keV
and 1998 keV have been observed as well. Octupole 3− states have been excited
at energies of 2069 keV and 2374 keV. Besides these states, a possible 4+ state at
1944 keV, a possible 0+4 state at 2271 keV and a state with a possible Jπ = 2+− 6+

at 2439 keV have been populated. In addition to these states, the existence of two
more states is assumed based on otherwise non-identified transitions in the data.
The width and position of the peak corresponding to the 3−2 → 2+1 transition in
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the spectrum coincident to the 2+1 → 0+1 transition did not meet the expectations
unless a second peak at an energy of ≈1930 keV is assumed in this alleged doublet-
peak. The energy could not be determined more exactly than about 5 keV. Since
this transition could not be placed into the level scheme, the excitation of a state at
≈2400 keV has been concluded. The Nuclear Data Sheets [Kha05] report a state
with a possible 0+ assignment at an energy of 2406(8) keV. The difference in the
energy at which is was observed has been decided to be too large for an unambigu-
ous identification. Therefore, during the analysis, this state will be treated like a
2+ state.

At an energy of≈2222 keV in the spectrum coincident to the 2+1 → 0+1 transition,
a peak has been observed that could not be identified either. It was concluded that
it stems from the decay of a state at ≈2686 keV. No state has been reported in the
Nuclear Data Sheets in this energy region. This state will be treated as 2+ state
during the analysis.

As in the analyses for the other isotopes, the intensities of the γ-ray transitions
have been determined from the singles and coincidence spectra. From these, the
yields of the states have been deduced and then normalized to the yield of the 2+1
state. Detailed lists of the experimentally deduced intensities and relative yields
can be found in appendix B.2.

Based on these data, CLX calculations have been performed including the 2+1 ,
2+2 , 4+1 , 2+3 , 4+2 , 6+1 , 2+4 , and 3−1 states. Under the assumptions of being 2+

states and of pure M1 2+ → 2+1 transitions, estimates on lower limits of possi-
ble B(M1;2+ → 2+1 ) strengths have been included in the CLX calculations for the
states at ≈2400 keV, 2439 keV, and 2686 keV. The calculations have been done
according to the procedures introduced in 4.3.

The results of the calculations are summarized in Table 4.5. These results will
be discussed with respect to the evolution of the one quadrupole-phonon states of
mixed proton-neutron symmetry, 2+1,ms, in 5.1.2.
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5 Discussion

5.1 Mixed-symmetry states of 130,132Ba

The experimental campaign for the investigation of the Ba isotopes had been mo-
tivated by the search for one quadrupole-phonon states of mixed proton-neutron
symmetry (2+1,ms) in these nuclei. This collective excitation has already been in-
troduced in the framework of the proton-neutron version of the interacting boson
model in 2.3.3. Unlike the lowest-lying collective states of atomic nuclei, in par-
ticular unlike the 2+1 state, the wave function of the 2+1,ms is not symmetric under
the exchange of proton and neutron labels. It has been demonstrated in the nu-
cleus 94Mo that this class of excitations is a fundamental building block of nuclear
collectivity [Pie00]. The unique experimental signature of mixed-symmetric states
(MSS) is a strong M1 decay to the corresponding fully-symmetric state. For the
identification of the 2+1,ms state, this corresponds to a strong B(M1; 2+1,ms → 2+1 )
decay rate of ≈ 0.2 µ2

N . The E2 transition strength of its ground-state transition is
expected to be on the order of 1 W.u. . These values result in a very short lifetime
of the state on the order of 100 fs.

2+1,ms states are the lowest-lying states of mixed-symmetry in vibrational nuclei.
Therefore, examples of these states have been predominantly observed in nuclei in
the proximity to closed shells, for example in the nucleus 94Mo, which may be con-
sidered the best-investigated nucleus with respect to mixed-symmetric excitations
[Pie99, Pie00, Fra01, Fra03], or 138Ce, which was the second nucleus in which a
MSS was identified using the present experimental technique [Rai06]. The method
of investigating the 2+1,ms state of vibrational nuclei by γ-ray spectroscopy in projec-
tile Coulomb excitation reactions on a carbon target has previously been pioneered
in an experiment [Pie01] on 96Ru, isotone of 94Mo. In a recent experimental cam-
paign using this technique, the stable even-even isotopes of the Xe isotopic chain
have been investigated with respect to the existence of a 2+1,ms state [Coq10]. It
was observed that the energy of the 2+1,ms excitation increases from 1947 keV in the
nucleus 134Xe to 2150 keV and 2127 keV in the isotopes 130Xe and 128Xe, while,
simultaneously, the strength B(M1;2+1,ms → 2+1 ) decreases from 0.3 µ2

N in 134Xe to
0.04 µ2

N in 128Xe. In the nuclei 126Xe and 124Xe, no mixed-symmetry state could
be identified from the experiments below the experimental sensitivity thresholds
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of approximately 2.1 and 2.3 MeV, respectively. These observations have been puz-
zling, in particular the decrease of the B(M1) strength on the path to mid-shell
nuclei. A possible explanation of this behavior might be an increase of the frag-
mentation of the 2+1,ms state over several 2+ states. The experimental observation
in the Xe isotopes would then only include those fragments that reside below the
limit of the experimental sensitivity. In fact, the phenomenon of fragmentation
of the 2+1,ms state has previously been observed in this mass region, e.g. in 138Ce
[Rai06] and 134Ba [Mol88, Faz92].

It was the goal of the present experiments on the nuclei 130,132Ba to extend
the database on the 2+1,ms state in the Ba chain and in the even-even isotopes of
the A = 130 mass region, which will allow for a systematic investigation of the
behavior that had been observed in the neighboring Xe isotopic chain. The results
of the two experiments on the nuclei 130,132Ba (cf. Tables 4.4 and 4.5) contain
decay rates of several 2+ states of these nuclei. This information shows that the
method of projectile Coulomb excitation using a large HPGe detector array like
Gammasphere is a very successful technique for the determination of observables
that serve as crucial signatures for nuclear collectivity.

5.1.1 130Ba

The experimental results on the nucleus 130Ba are summarized in Tab. 4.4. A plot
of the strength distributions is shown in Fig. 5.1. The values of B(E2;2+2 → 2+1 ) =
51.2(32)stat(33)sys W.u. and B(E2;2+2 → 0+1 ) = 2.96(13)stat(19)sys W.u. corre-
spond to a lifetime of τ(2+2 ) = 4.71(19)stat(22)sys ps. From an additional run of
the experimental campaign using the DSAM technique, a lifetime of this state of
τ= 6.63+0.18

−0.39 ps has been deduced [Bau13]. Despite the difference in the resulting
values, a fairly good description of the lineshape has been reached by a fit using
the present value of the lifetime, cf. [Bau13, Fig. 6.8].

In this nucleus, no absolute value for a B(M1;2+i → 2+1 ) could be deduced, be-
cause, except for the 2+3 state, no multipole mixing ratio has been known from
previous experiments and could not be determined from the present experimental
data either, due to the lack of sufficient statistics in the respective transitions. All of
the results on B(M1; 2+i → 2+1 ) values in this nucleus are, thus, based on assump-
tions of pure transitions, and, for most of the assumed 2+ states, also on estimates
of their ground-state transition intensities.

For the decay of the 2+3 state at 1557 keV to the 2+1 state two possible values for
the mixing ratio δ have been given [Sin01], δ =−23(9) corresponding to a nearly
pure E2 transition and δ− 0.31(2), corresponding to a >90% M1 contribution to

98 5. Discussion



10−2

10−1

1
( µ

2 N

)
B(M1; 2+i → 2+1 )

10−1

1

10

102

(W
.u
.)

B(E2; 2+i → 2+1 )

10−1

1

10
102
103

(W
.u
.)

0 500 1000 1500 2000 2500

energy (keV)

B(E2; 2+i → 0+1 )

Figure 5.1.: Strength distributions from the results of 130Ba.

this transition. The transition strengths have been calculated for both values. The
results on the B(M1;2+3 → 2+1 ) show that even for the nearly pure M1 transition
the strength of B(M1;2+3 → 2+1 ) ≥ 1.2× 10−3 µ2

N is only quite small. The ground-
state transition strength of B(E2; 2+3 → 0+1 ) = 0.0218(25)stat(94)sys W.u. is very
small, too. These values are considerably smaller than what would be expected for
a 2+1,ms state and indicate that the 2+3 state does not contain a considerable fraction
of the 2+1,ms wave function.

For the states at energies of 1819 keV, 2269 keV, and 2371 keV, no clear Jπ

assignment has been found in the literature. Those have been treated as 2+ states
during the analysis and their possible B(M1; 2+→ 2+1 ) values have been estimated
under the additional assumption of pure M1 multipolarity.

The estimate of B(M1;1819 → 2+1 ) ≥ 3.50× 10−3 µ2
N is also quite small. Also

the result of B(E2;1819 → 0+1 ) = 0.059(7)stat(14)sys W.u. is small. Again, these
values do not allow for the identification of a significant fragment of the 2+1,ms state.

The same conclusion can be drawn from the estimates for the decay rates of
the 2269 keV state. The value of B(M1;2269 → 2+1 ) ≤ 4.76 × 10−3 µ2

N is very
small when compared to the expectation of an isolated 2+1,ms state. The value of
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B(E2; 2269 → 0+1 ) = 0.229(38)stat(52)sys W.u. is stronger than for the 1819 keV
state.

The estimate of the decay rates of the 2371 keV state has been made under the
same assumptions of Jπ = 2+ and of a pure M1 transition to the 2+1 state. The
result of B(M1;2371→ 2+1 ) ≥ 0.134 µ2

N W.u. represents the strongest M1 transi-
tion strength for this nucleus. Its magnitude nearly fulfills the expectations on an
isolated 2+1,ms state. Also the result of B(E2;2371→ 0+1 ) = 0.46(15)stat(21)sys W.u.
meets the expectation for the order of magnitude of this transition strength. How-
ever, these numbers are based on numerous assumptions, beginning with the un-
known Jπ assignment. In this energy range the excitation of states can be ruled
out that are not fed from above and have spin quantum numbers Jπ 6= 3−OR 2+.
Unfortunately, the statistics in the data on this state are not sufficient for a more de-
tailed angular distribution analysis. As estimate of a possible B(E3; 2371keV→ 0+1 )
value for an assumed Jπ = 3− assignment resulted in an approximate value of
≈4 W.u., which does not seem unlikely in the light of the value of B(E3; 3−1 →
0+1 ) = 24.2(22)stat(3)sys W.u. . In addition, a 3− state in the level scheme of 132Ba
at 2374 keV is reported in the Nuclear Data Sheets [Kha05] and has been excited
in the experiment discussed below. An estimate of its B(E3; 2374keV→ 0+1 ) value
resulted in ≈1.2 W.u., and is, thus, of the same order of magnitude of the estimate
for the 2371 keV state of 130Ba. Therefore, a Jπ = 3− assignment of the 2371 keV
state of 130Ba cannot be ruled out based on these data.

Consequently, based on the given data the state at 2371 keV can be assigned a
candidate of an isolated 2+1,ms state in 130Ba – provided the underlying assumptions
of Jπ = 2+ and of a predominant M1 transition to the 2+1 state are valid. The other
2+ states at 1557 keV, 1819 keV, and 2269 keV exhibit nearly vanishing B(M1;2+i →
2+1 ) values and can, thus, be identified at most as weak fragments of the 2+1,ms state.

5.1.2 132Ba

The experimental results on the nucleus 132Ba are summarized in Tab. 4.5. A plot
of the strength distributions is shown in Fig. 5.2.

The results show two 2+ states for which absolute values of the B(M1;2+ →
2+1 ) transition strengths have been deduced, namely the states at 1686 keV and
1998 keV. For the 1686 keV state a transition strength of B(M1;2+ → 2+1 ) =
0.038(6)stat(10)sys µ

2
N has been deduced. This value lies well below the expected

value for the decay of an isolated 2+1,ms state. The value of B(E2;2+3 → 0+1 ) =
0.0326(36)stat(87)sys W.u. is considerably smaller than the expected value of about
1 W.u., too. From these numbers an identification of the 1686 keV state as an iso-
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Figure 5.2.: Strength distributions from the results of 132Ba.

lated 2+1,ms state can be ruled out. However, the results justify the assignment of
the 1686 keV as a fragment of the 2+1,ms state. This assignment is further supported
by the observation of the 3−1 → 2+3 transition at 383 keV. A strong E1 transition
connecting the 3−1 and the 2+1,ms states has been suggested as additional signature
of the 2+1,ms state [Pie03]. From the γ-ray intensities of the present experimental
data, a ratio

RE1 =
B(E1; 3−1 → 2+3 )

B(E1;3−1 → 2+1 )
= 1.40(7) (5.1)

can be deduced under the quite safe assumption of the 383 keV transition being an
E1 transition. This value of RE1 is smaller than it has previously been observed for
other nuclei [Pie03], but still shows an enhanced strength in the decay to the 2+3
state. Both facts, the B(E1; 3−1 → 2+3 ) being larger than the B(E1;3−1 → 2+1 ) value
on one hand, and on the other hand the fact that RE1 is not much larger than one,
may support the assignment of the 2+3 state as a fragment of the 2+1,ms state of 132Ba.

The result on the B(M1) transition strength of the decay of the 1998 keV
state of B(M1;2+ → 2+1 ) = 0.030(4)stat(1)sys µ

2
N is slightly smaller than for the
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1686 keV state, but still on the same order of magnitude. The B(E2; 2+4 → 0+1 ) =
0.397(49)stat(9)sys W.u. is considerably larger than for the 1686 keV state. Also for
this state the identification of the state as a fragment of the 2+1,ms can be drawn on
the basis of the experimental results, although no decay of the 3−1 state into the 2+4
state could be observed.

For three higher-lying states the spin and parity assignment Jπ = 2+ has been
assumed. Under the additional assumption of pure M1 decays into the 2+1 state,
estimates on lower limits on their possible M1 decay rates have been made.

The values of B(M1;2400→ 2+1 ) ≥ 0.026 µ2
N , B(M1; 2439→ 2+1 ) ≥ 0.012 µ2

N ,
and B(M1; 2686 → 2+1 ) ≥ 0.012 µ2

N do not exhibit a pronounced M1 strength.
The corresponding ground-state transition strengths are of the order of 0.2 W.u.
to 0.35 W.u. . Based on these data, the three states at 2400 keV, 2439 keV, and
2686 keV can at most be interpreted as candidates for fragments of the 2+1,ms state,
provided that the assumptions made in the calculations could be confirmed.

On the basis of the present results it can be concluded that no prominent, isolated
2+1,ms state has been observed in the nucleus 132Ba below an energy of ≈2.7 MeV.
From the B(M1) strength distributions only weak fragments of the MSS could pos-
sibly be identified in this nucleus.

5.1.3 2+1,ms states in the A= 130 mass region

The present results on the isotopes 130,132Ba complete the available experimental
data on B(M1;2+i → 2+1 ) transition strengths and 2+1,ms states in the stable even-
even nuclei of the A = 130 mass region of the nuclear chart. An overview of the
available data on the B(M1;2+i → 2+1 ) strength distributions for this mass region
is shown in Fig. 5.4. The data now allows for a comparison of the evolution of the
2+1,ms states or its fragments throughout the isotopic and isotonic chains of the mass
region. The evolution of the summed B(M1) strengths and the energies of the 2+1,ms
states of the Ba isotopic chain are depicted in Fig. 5.3.

In 136Ba an isolated mixed-symmetry state at 2129 keV had been identified. In
the even-even neighbor 134Ba the mixed-symmetry state has been observed to frag-
ment over two close-lying 2+ states at 2029 keV and 2088 keV. This decrease in en-
ergy continues for the present results on 132Ba. Here, a small fragment of the MSS
has been identified at an energy of 1686 keV. Further candidates for 2+1,ms-fragments
in this nucleus are the states at 1998 keV, and, based on different assumptions, at
2400 keV, 2439 keV, and 2686 keV. None of the possible 2+1,ms-fragments in 132Ba ex-
hibits a B(M1; 2+→ 2+1 ) of similar strength as it has been observed in the 134,136Ba
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Figure 5.3.: Evolution of the fragments of the 2+1,ms state in the Ba isotopic chain.
The upper panel shows the energies of the fragments of the 2+1,ms state.
The lower panel shows the B(M1; 2+i → 2+1 ) strength distributions for
the Ba isotopic chain. The data on the isotopes 134,136Ba has been com-
piled from [Mol88, Faz92, Pie98a, Sch04, Pie08]. The present results for
the isotopes 130,132Ba seem to support the assumption of an increase
in fragmentation of the 2+1,ms state with increasing valence space. The
energetic trend of the fragments of the 2+1,ms is opposite to the trend
observed in the neighboring Xe isotopes. However, the estimate of the
very strong value of B(M1; 2+2371 → 2+1 ) completely alters this picture,
provided the underlying assumptions are valid.

nuclei. A state with the expected properties of an isolated MS state can be excluded
in 132Ba below ≈2.7 MeV based on the experimental data.

For the nucleus 130Ba a further decrease of the energies of possible fragments
of the MSS has been observed with the 2+3 state at 1557 keV, but with an almost
entirely vanishing B(M1; 2+3 → 2+a y1) value. The same observation has been made
for M1 transition strengths of the decays of the 1819 keV state and the 2269 keV
state, respectively. If the discussion is limited to these states, the results seem to
support the afore-mentioned assumption of an increase in the fragmentation of the
2+1,ms state with increasing size of the valence space. The energies of the fragments
of the MS states decrease in energy, which would be an inversion of the energy
trend observed in the neighboring Xe isotopes. At the same time the summed
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B(M1; 2+i → 2+1 ) strength decreases almost linearly with increasing valence space,
cf. Fig. 5.3.
However, the results also include the large value of the estimate on the
B(M1; 2+2371 → 2+1 ) ≥ 0.134 µ2

N . If this value could be confirmed, it would clearly
indicate a major fragment of the 2+1,ms state or even an isolated 2+1,ms state of 130Ba.
Assuming this is true, this observation changes the picture completely. Instead of
a decrease in energy of the MS state, an increase of the energy of the 2+1,ms in the
Ba isotopic chain would have been observed with the exception of 132Ba, in which
the lack of evidence for B(M1) strengths of similar order of magnitude below ex-
citation energies of approximately 2.7 MeV is puzzling. The further development
of the discussion on the evolution of the 2+1,ms state in the Ba isotopic chain will,
thus, depend on the verification or falsification of the assumption of a strong value
of B(M1; (2+)2371→ 2+1 ).

The evolution of the summed B(M1) strengths and the energies of the 2+1,ms
states of the N = 76 isotonic chain are depicted in Fig. 5.5. While the nucleus
130Xe exhibits a large fragment or even an isolated MS state at 2150 keV, the pic-
ture changed completely for 132Ba. Here, the M1 strength is fragmented over
two states, at least, depending on the validity of the assumptions made for the
higher-lying states. The energy of the lowest fragment of the MS state is located
at 1686 keV. Based on these observations, an increase in fragmentation of the MS
state can be concluded for the N = 76 isotones with increasing valence space. At
the same time, the energies of the fragments of the MSS decrease in energy. This
is in contrast to the neighboring N = 78 and N = 80 isotonic chains, where an
increase of the energies of the MSS can be observed on the path away from the
Z = 50 closed shell, cf. Fig. 5.4.

The evolution of the summed B(M1) strengths and the energies of the 2+1,ms
states of the N = 74 isotonic chain are depicted in Fig. 5.6. While the nucleus
128Xe exhibits an isolated 2+1,ms state at 2127 keV the B(M1) strength in 130Ba is
fragmented over several states. Again, with the energy of the lowest-lying potential
fragment of the 2+1,ms state at 1557 keV, the energetic trend for increasing valence
space is a decrease in energy of the fragments of the 2+1,ms. At the same time the
strength of the potential fragments almost vanishes. In this respect the trend ob-
served in the N = 76 isotones of an increasing fragmentation with a decrease in the
energies of the fragments seems to be found analogously in the N = 74 isotones.
However, the possible 2+1,ms state of 130Ba at an energy of 2371 keV, if confirmed,
would change this picture completely and would raise the question why the M1
strength in the neighboring nucleus 128Xe is significantly smaller and no fragment

5.1. Mixed-symmetry states of 130,132Ba 105



128
Te

130
Xe

132
Ba1200

1600

2000

2400

2800

ke
V

E(2+1,ms)

0.0

0.1

0.2

0.3

0.4

µ
2 N

50 52 54 56 58

Z

∑
iB
(
M1; 2+i → 2+1

)

Figure 5.5.: Evolution of the fragments of the 2+1,ms state in the N = 76 isotonic
chain. The upper panel shows the energies of the fragments of the
2+1,ms state. The lower panel shows the B(M1; 2+i → 2+1 ) strength distri-
butions for the N = 76 isotonic chain. The data on the nuclei 128Te and
130Xe has been compiled from [Hic08] and [Coq10]. The present results
for the isotope 132Ba seem to support the assumption of an increase in
fragmentation of the 2+1,ms state with increasing valence space. For the
N = 76 isotopic chain the energetic trend of the fragments of the 2+1,ms
reveres with respect to the neighboring N = 78 and N = 80 isotonic
chains.

of comparable strength has been observed.

In conclusion it has been observed that the evolutions of the energies of the
2+1,ms state for increasing valence spaces in the isotonic and isotopic chains of the
A = 130 mass region follow different trends. While in the N = 80 and N = 78
isotones an increase of the energy of the MSS has been observed, this trend inverts
in the N = 76 isotones and, unless the assignment of the 2371 keV state as a can-
didate is based on valid assumptions, also for the N = 74 isotones.
A similar picture has been observed in the isotopic chains. While an increase of
the energies of the 2+1,ms states has been observed in the Xe isotopic chain, the en-
ergy of the MSS decreases in the Ba isotopic chain. A decrease of the energy can
also be observed in the nuclei of the Ce isotopes. The behavior of the inversion of
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Figure 5.6.: Evolution of the fragments of the 2+1,ms state in the N = 74 isotonic
chain. The upper panel shows the energies of the fragments of the
2+1,ms state. The lower panel shows the B(M1;2+i → 2+1 ) strength dis-
tributions for the N = 74 isotonic chain. The data on the nuclei 126Te
and 128Xe has been compiled from [Coq09] and [Van04, Kat02]. The
present results for the isotope 130Ba seem to support the assumption of
an increase in fragmentation of the 2+1,ms state with increasing valence
space. The estimate of the B(M1;2+2371 → 2+1 ) is a clear indication of
a dominant fragment of the MSS, but the value has been determined
with the caveat of several assumptions, beginning with the Jπ = 2+

assignment.

energetic trends seems to appear between N = 78 and N = 76 and between the
Xe and Ba isotopes, and, thus, in direct proximity to the nucleus 134Ba, which has
been suggested as a realization of the E(5) shape phase-transitional point [Cas00],
cf. 2.4.1. This seems to hint at a connection of the energetic trends in the empirical
data to the shapes of the nuclei in the region.
A common feature observed throughout all isotopic and isotonic chains in the re-
gion is the decrease in B(M1;2+i → 2+1 ) strength on the way to mid-shell nuclei to
almost vanishing values for the nucleus 130Ba.

However, if the large fragment of the MSS in 130Ba could be confirmed, com-
pletely new questions would arise, in particular concerning the lack of comparably
enhanced B(M1;2+i → 2+1 ) strengths in the neighboring nuclei 128Xe and 132Ba.
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This means either, that these nuclei indeed have a 2+1,ms state but which resides at
energies beyond the experimental detection limit, or, that this observation reflects
a real physical effect that is unexplained at present. The discussion strongly de-
pends on the nature of the 2371 keV state in 130Ba. For a continued discussion of
the observations in the A= 130 mass region further investigation of this state is of
utmost importance. Unfortunately, the experimental accessibility will presumably
been hindered by the low natural abundance of 130Ba of only ≈0.1%.

5.2 Test of the O(6) symmetry in 194,196Pt

The O(6) dynamical symmetry of the Interacting Boson Model has already been
briefly introduced in 2.3.2. It is characterized by a level scheme whose patterns
can be classified in terms of the quantum numbers σ and τ. An inherent feature
of each theoretical model are selection rules for the decay of states. For the alge-
braic framework of the Interacting Boson Model, selection rules are strongly con-
nected to the irreducible representations of each of the subchain decompositions
that characterize the different dynamical symmetries, cf. 2.3.2. In the framework
of the consistent-Q-formalism [War82, War83] of the O(6) dynamical symmetry
E2 transitions are allowed and collective if the conditions ∆σ = 0 and ∆τ = ±1
are fulfilled, cf. (2.44) in 2.3.2. The O(6) symmetry also makes parameter-free
predictions on ratios of certain transitions strengths, cf. Eq. (2.45).

There are only few examples in nature for a manifestation of the O(6) symme-
try in atomic nuclei. Among these, nuclei from the Xe-Ba-Ce region near A = 130
have been proposed [Cas85]. The nucleus considered the best example for a ma-
nifestation of an O(6) symmetry in nature is 196Pt [Ciz78, Ciz79]. In this nucleus,
the level scheme as well as the observed branching ratios in the γ decays exhibit
the characteristic features inherent for the symmetry. Its neighboring nucleus 194Pt
shows a large similarity to 196Pt concerning the level scheme as well as the proper-
ties of the γ transitions. Therefore, also this nucleus can count as a candidate for
the manifestation of the O(6) symmetry.

However, in most cases such assignments have been based on data of branching
ratios and level scheme patterns. These are of course necessary conditions for the
identification of the symmetry in a nucleus. In fact a more significant statement
would have to be based on absolute values of transition strengths, most ideally
for transitions between states belonging to different representations of the O(6)
quantum number σ.

This has recently been shown in the example of the nuclei 124Xe [Rai10] and
126Xe [Coq11]. Both nuclei had previously been identified as being good candidates
for the manifestation of structure close to the O(6) symmetry [Wer01, Gad00]. In
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experiments utilizing the same experimental technique as the present work these
nuclei have been investigated in terms of transition strengths between the low-lying
states. Unlike previous measurements the results also contained absolute values on
the transition strengths of the decays of the 0+3 states that had been assigned the
band heads of the families of states with σ = N − 2 quantum numbers in the
respective nuclei. The values of B(E2;0+3 → 2+1 ) = 12(2) W.u. and B(E2;0+3 →
2+2 ) = 19(2) W.u. in 124Xe [Rai10], and B(E2; 0+3 → 2+1 ) = 10.9(25) W.u. and
B(E2;0+3 → 2+2 ) = 13.4(41) W.u. in 126Xe [Coq11] are clearly collective and, thus,
violate the ∆σ = 0 selection rule of the O(6) dynamical symmetry.

The experiments on the 194,196Pt isotopes of the present work have been mo-
tivated by these findings. The goal of the experiments was the test of the O(6)
symmetry of the nuclei 194,196Pt based on absolute measurements of decay rates
of states with σ = N − 2 quantum number assignments. The technique of projec-
tile Coulomb excitation using a large detector array is a very powerful method to
determine absolute values of these crucial signatures within single experiments.

5.2.1 196Pt

The nucleus 196Pt is usually considered the best candidate for a manifestation of
the O(6) symmetry in the nuclear chart. Its level scheme as well as its decay pat-
tern in terms of branching ratios have been identified to be consistent with the
predictions from the O(6) limit. The 0+3 state at 1402 keV has been identified as
the band head of the σ = 4 = N − 2 family of states [Ciz78]. For its decay an
upper limit of B(E2;0+3 → 2+1 ) < 5.0 W.u. [Bör90] has been previously measured.
The 2+4 state at 1604 keV has been suggested as the σ = 4,τ = 1 state on top
of the 0+3 state. A transition between the two states has been reported, but apart
from the branching ratio, no absolute value for its strength is known. The obser-
vation of a strongly collective 2+4 → 0+3 E2 transition in combination with a weak
0+3 → 2+1 E2 transition would be strong evidence for the σ = N − 2 assignment of
both, the 0+3 and 2+4 states. The 2+ state at 1847 keV has been suggested as the
σ = 4,τ = 2 state [Ciz78], i.e. the analog to the band head of the γ band for the
σ = N − 2 family of states. This assignment would need to be confirmed by the
observation of a strongly collective E2 transition to the alleged σ = 4,τ= 1 state at
1604 keV, which would be the analog to the strongly collective 2+2 → 2+1 transition
of the σ = N states. A decay branching ratio for the 2+(1847 keV)→ 2+4 transition
has been given [Ciz79], but, again, no absolute value has yet been measured, i.e.,
while the observed γ-decay branching ratios favor the presence of states with O(6)
quantum numbers σ = N−2, a proof of their collective character is missing to date.
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Figure 5.7.: Schematic overview of the results of the analysis of the 196Pt experiment

The present results of the experimental data are tabulated in Tab. 4.2 and are
shown in Fig. 5.9.

In general it can be stated that the transitions between states with ∆τ > 1 are
suppressed compared to the transitions between states with ∆τ = ±1. This can
be seen, for example, from the decays of the τ = 4 2+3 state. While the tran-
sitions to the τ = 3 0+2 and 3+1 states are clearly collective (B(E2;2+3 → 0+2 ) =
70(23)(33) W.u. and B(E2;2+3 → 3+1 ) = 36(12)(14) W.u.), the other transitions
depopulating that state are significantly weaker and are all non-collective. Also the
decays of the 0+2 and 2+4 states support this statement. The ∆τ selection rule, and
thus, the U(5) symmetry is fulfilled in the low-lying level scheme of 196Pt.

The results contain the value of B(E2; 2+4 → 0+3 ) = 2.0(7)stat(10)sys × 102 W.u. .
Although this value has a large uncertainty, it clearly proves a strongly collective
transition between the 2+4 and 0+3 states in 196Pt for the first time. The further
decays of this state go to states within the σ = N family and with different τ quan-
tum number. According to the present results, these transitions are strongly sup-
pressed by two or three orders of magnitude compared to the transition to the
σ = N − 2,τ= 0 state.
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The result of B(E2; 0+3 → 2+1 ) = 2.7(3)stat(21)sys W.u. is about an order of magni-
tude smaller than expected for a collective transition. It represents the decay of the
band head of the σ = N−2 family of states into the σ = N family. According to the
O(6) selection rules, this transition is forbidden in the O(6) dynamical symmetry.
The experimental result on its B(E2) value qualitatively agrees with this predic-
tion and, in combination with the strongly collective 2+4 → 0+3 transition on top of
it, justifies the assignment of the 0+3 state being the band head of the σ = N − 2
structure within the algebraic description of 196Pt by the IBM.

The results of the analysis also contain estimates on the decay rates of the 2+6
state at 1847 keV. While the transitions to the 0+1 , 2+1 , and 2+2 states can be deduced
to be smaller than 1 W.u., the value of B(E2; 2+6 → 2+4 ) is collective. These numbers
support the assignment of this state as the γ band in the σ = N − 2 representation
on an absolute scale for the first time.

The present results on the decays of the 0+3 , 2+4 , and 2+6 states, thus, reveal
the same pattern of levels and connecting collective transitions among them as for
the lowest-lying 0+1 , 2+1 , and 2+2 states. This repetition of the level pattern is a
prediction of the O(6) dynamical symmetry of the IBM. Consequently, the absolute
data on transition strengths between the 0+3 , 2+4 , and 2+6 states further support their
assignment as the lowest-lying levels of the σ = N − 2 representation of the O(6)
and, consequently, support the assignment of the nucleus 196Pt as a manifestation
of the O(6) symmetry for the first time based on absolute E2 transition strengths.

The data also allow for statements concerning the ratios B4/2 = B(E2; 4+1 →
2+1 )/B(E2; 2+1 → 0+1 ) and B2/2 = B(E2;2+2 → 2+1 )/B(E2;2+1 → 0+1 ). For these ratios
the IBM in the O(6) limit makes parameter-free predictions of B4/2 = B2/2 = 1.310
for N = 6, cf. (2.45). The present data suggest that the prediction of the O(6)
dynamical symmetry limit indeed agrees very well with the present results. A com-
parison of the present results with previous experiments and this predictions is
shown in Fig. 5.8.

In conclusion, the results of the present experiment confirm that the selection
rules of the O(6) symmetry are reasonably well fulfilled in the nucleus 196Pt. This
makes 196Pt the only nucleus of the entire nuclear chart for which the manifestation
of the O(6) symmetry has been proven on the basis of absolute values on decay
rates of states with σ = N − 2 quantum number assignment.

5.2.2 194Pt

The discussion of the results of the 194Pt experiment with respect to the O(6) sym-
metry is not as obvious as in the case of 196Pt. The results of the analysis of the
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Figure 5.8.: Comparison of results from previous publications on the ratios B4/2 and
B2/2 of 196Pt. The results have been taken from [Ber72, Bol81, Mil71,
Few88, Mau90, Lim92]. The nuclear data sheets [Xia07] do not give a
value for B(E2;2+2 → 2+1 ). The data point has been calculated from the
value of the lifetime by neglecting B(M1; 2+2 → 2+1 ) and B(E2; 2+2 →
0+1 ), because the numbers given do not lead to conclusive results.

experimental data on 194Pt are summarized in Tab. 4.2 and are shown in Fig. 5.9.
Analogous to the observation in the neighboring nucleus 196Pt, the ∆τ=±1 selec-
tion rule is fulfilled. A good example for this is the decay behavior of the alleged
τ = 4 2+3 state, that decays collectively to the τ = 3 0+2 and 3+1 states (The re-
sults are B(E2;2+3 → 0+2 ) = 85(24)(34) W.u. and B(E2;2+3 → 3+1 ) < 24 W.u.,
respectively.).

In analogy to the level scheme of the nucleus 196Pt, the 0+4 state at 1547 keV
is a candidate for the σ = N − 2 band head assignment. This state has been
excited in the present experiment and the strengths of its decay have been de-
duced to be B(E2;0+4 → 2+1 ) = 12.7(8)stat(19)sys W.u. and B(E2;0+4 → 2+2 ) =
14.7(11)stat(22)sys W.u. . Not only are these transitions clearly collective, and,
thus, would break the O(6) selection rule if the state was indeed a member of
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Figure 5.9.: Schematic overview of the results of the analysis of the 194Pt experiment

the σ = N − 2 family. Also the similarity in both the absolute values of the decay
strengths as well as the branching ratio between them to the values deduced for the
124,126Xe nuclei is striking. In the Xe cases, results of B(E2;0+3 → 2+1 ) = 12(2) W.u.
and B(E2;0+3 → 2+2 ) = 19(2) W.u. in 124Xe [Rai10] and B(E2;0+3 → 2+1 ) =
10.9(25) W.u. and B(E2;0+3 → 2+2 ) = 13.4(41) W.u. in 126Xe [Coq11] have led
to the conclusion of a broken O(6) symmetry.

However, another 0+ state at 1479 keV has been reported in previous publica-
tions, e.g. in 194Ir β decay [Cle76], in (n, n′γ) [Fil81], (p,d) [Ber81], and (p, t)
[Dea79] reactions, also its E0 ground-state transition has been observed [Kib05].
In the present experiment no evidence of a Coulomb excitation of this state has
been found. The data allow for an estimate of B(E2; 0+3 → 2+1 ) < 0.12 W.u. for the
decay of this state, provided an excitation had occurred. Such a weak transition
strength would indeed satisfy the O(6) selection rule, if this 0+3 state were to be
identified as the σ = N − 2 band head.
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A decision, whether and which of the two 0+ states in question can be assigned
the σ = N − 2 quantum number could be justified by the observation of a 2+ state
on top of the 0+ state connected by a collective E2 transition as it has been ob-
served in 196Pt. For the two observed 2+4 and 2+5 states at 1622 keV and 1670 keV,
respectively, no such transition has been observed nor reported previously. How-
ever, given the small energy difference between the two 2+ states and the two 0+

states in question such a connection does not seem very probable. In this respect,
the interpretation of the results does not yield very conclusive results.

From the results, comparisons of the values of the ratios B4/2 = B(E2;4+1 →
2+1 )/B(E2;2+1 → 0+1 ) and B2/2 = B(E2; 2+2 → 2+1 )/B(E2;2+1 → 0+1 ) to the predic-
tions of the IBM can be made. The IBM in the O(6) dynamical symmetry predicts
B4/2 = B2/2 = 1.336 for N = 7, cf. (2.45). These predictions agree very well with
the results of the present experiment. A plot of the comparison between the present
results with previous experiments and the predictions is shown in Fig. 5.10. The
agreement between the present results and the O(6) prediction for the ratios B4/2

and B2/2 is even better than in the case of the 196Pt, which is, after all, considered
the best example of an O(6) manifestation in nature.

It should be noted that the adopted values from the Nuclear Data Sheets [Sin06]
on both, the B(E2;2+2 → 2+1 ) and the B(E2;4+1 → 2+1 ), only represent the largest
values of the previous experimental results and do not seem to reflect an unbiased
compilation of the previous experimental results.

In conclusion, the results of the 194Pt experiment indeed show some interesting
features predicted by the IBM in the O(6) dynamical symmetry. The decay pattern
of the 0+4 state with collective E2 transitions to the 2+1 and 2+2 states are clearly
outside the pattern of O(6) symmetry. However, a clear-cut statement on the O(6)
character of the nucleus based on decay strengths of a σ = N − 2 state can not
be made on the basis the present results. The question whether the nucleus 194Pt
exhibits a manifestation of the O(6) symmetry has, thus, to remain open for the
moment.
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Figure 5.10.: Comparison of results from previous publications on the ratios B4/2
and B2/2 of 194Pt. The results have been taken from [Ber72, Cle76,
Joh77, Bak78, Bak79, McG61, Mil71, Ste77, Wu96, Few88]. Cleve-
land76 [Cle76] give their result relative to B(E2; 4+1 → 2+1 ) which has
been calculated for the adopted value and for the present result. The
present results agree very well with the prediction of the IBM in the
O(6) limit [Iac87].
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5.3 Investigation of the β band of 154Sm

The physical motivation for the 154Sm experiment can be found in the confined-β-
soft rotor model (CBS), which has been introduced in 2.4.3. It describes the col-
lective properties of nuclei on the path between the X(5) transitional point [Iac01]
and the SU(3) dynamical symmetry of the Interacting Boson Model. Analog to the
X(5) solution, the wave function as a function of the deformation parameter β of
the first excited 0+ state in the framework of the CBS features a node in the poten-
tial. This is the defining feature of a β-band. The models for X(5) and the CBS,
thus, suggest that this type of collective excitation can occur in nuclei with a flat
potential in the deformation parameter β .

The model has been introduced for the description of the nuclei 152Sm and 154Sm
[Pie04]. Those nuclei had been chosen because the nucleus 152Sm is considered as
being the best example for a manifestation of the properties of the X(5) dynamical
symmetry in a nucleus [Cas01b]. Its neighboring nucleus 154Sm shows the typical
rotor-like behavior in its level scheme as it can already been deduced from the
value of R4/2 = 3.26. For 152Sm the CBS description agrees very well with the
experimental data on both, the excitation energies and the transition strengths for
the ground-state band as well as for the K = 0 band. This is not a very surprising
result, since the CBS is a generalization of the X(5) transitional-point description.
Good agreement of the CBS predictions with the experimental data on the ground-
state band of 154Sm had also been achieved. However, the experimental data on
the decay rates of states of the first excited K = 0 band has been incomplete at the
time, and, hence, no definitive statement on this band could be given. The available
data before the conduction of the present experiment comprised a lifetime of the
0+2 state of τ(0+2 ) = 1.3(3) ps [Krü99] deduced from a DSAM measurement, which
also included a lower limit on the lifetime of the 2+2 state of τ(2+2 ) > 3.5 ps. No
information on the transition strengths of the decay of the 4+2 state had previously
been known. The previous measurements of τ(0+2 ) in led to an assignment of this
state as a being the band head of a β band [Krü99].

The present results extend the information on the decay rates from the K = 0
band in 154Sm. The results are tabulated in Tab. 4.1 and are displayed in Fig. 5.11.
A comparison of the results to predictions of the CBS model and to the X(5) solution
is shown in Tab. 5.1.

The agreement of the X(5) predictions with the present results on the transition
strengths in the K = 0 band of 154Sm is not very good. This is not a big surprise
given the rotor-like level scheme of the nucleus 154Sm (R4/2 = 3.26). The agree-
ment of the data with the predictions of the CBS model (rβ = 0.35) [Pie04] is much
better, cf. Tab. 5.1. Only the transition strengths for the 4+2 → 6+1 and 2+2 → 4+1

116 5. Discussion



Table 5.1.: Comparison of the present results of E2 transition strengths for the
states in the β band of 154Sm with the theoretical predictions from
the X(5) description [Iac01] and from the CBS rotor model (rβ = 0.35)
[Pie04].

Ji → J f Ex(Ji)(keV) B(E2)(W.u.)

CBS Expt. X(5)[Iac01]a CBS[Pie04] present results

2+1 → 0+1 82 82 176 174 176(1)b

4+1 → 2+1 268 267 278 251 245(6)b

6+1 → 4+1 546 544 348 281 289(8)b

8+1 → 6+1 903 903 400 300 319(17)b

0+
β
→ 2+1 1231 1099 111 8.4 11.2(21)

2+
β
→ 0+1 1325 1178 3.5 0.5 0.32(4)

2+
β
→ 2+1 16 1.4 0.72(9)

2+
β
→ 4+1 63 7.1 1.32(15)

4+
β
→ 2+1 1546 1338 1.8 0.1 0.32(11)

4+
β
→ 4+1 11 1.1 0.57(18)

4+
β
→ 6+1 49 8.2 0.66(21)

aScaled to the B(E2;2+1 → 0+1 ) value.
aValue from [Rei09].

transitions are overestimated in the model by a factor of 5-12. The general agree-
ment of the CBS predictions for the transitional nucleus 152Sm obtained with a
structural parameter of rβ = 0.14 and of the rotor nucleus 154Sm (rβ = 0.35) with
the experimental data is very good. This demonstrates the ability of the CBS model
of the description of the K = 0 band of nuclei with varying stiffness of the potential
on the path from the transitional point X(5) to the rigid rotor.

Regarding the wave function of the first excited 0+ state in the CBS model, this
state is described by the parameter s = 2. The wave function of this state bears as a
characteristic feature a node when expressed in terms of the deformation parame-
ter β , cf. Fig. 2.10, and, thus describes an excitation in the deformation parameter
β . From the agreement of the CBS predictions with the present results, it can be
concluded that the first excited K = 0 band of the nucleus 154Sm can indeed be
identified as a β band. An assignment made previously [Krü99] can, therefore, be
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Figure 5.11.: Overview on the present results of the transition strengths in the β
and γ bands of 154Sm.

supported on the basis of the present experimental results.

In conclusion, the results of the present work on the decay rates in the first
excited K = 0 band of 154Sm agree very well with the predictions made in the
confined-β-soft rotor model. The character of this band in that model of being a
true β excitation allows for the conclusion that the nucleus 154Sm is one of the rare
cases where a β band can be assigned.

This analysis has previously been published in 2012 as a Rapid Communication in
Physical Review C [Möl12].
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6 Summary and Outlook
In the present work, the experiments on three different types of collective nuclei
have been presented and their results have been discussed. It has been shown how
projectile Coulomb excitation can be used to determine absolute values of decay
rates of low-lying states of collective nuclei. The method has been discussed and
the techniques used for the analysis have been introduced. In the course of this
work, the techniques used in the analysis process could be further developed, for
instance the treatment of coincidence data and the treatment of interferences in
the CLX calculations induced by different signs of transition matrix elements. The
results of the analyses yield absolute values of decay rates that had been predicted
in the form of signatures of theoretical models and, hence, allow for interesting
and important insights into several topics of current scientific interest on nuclear
collectivity.

It has been shown that the nucleus 196Pt indeed can be identified as a manifes-
tation of the O(6) symmetry. This statement can be soundly based on the measure-
ment of the decay rates of three collective states that can be assigned σ = N − 2
quantum numbers, making 196Pt the only nucleus for which such values have been
determined on an absolute scale. However, for the neighboring nucleus 194Pt the
present data do not allow for a definite statement of a possible O(6) symmetry,
which is mainly due to the existence of two close-lying 0+ states with different
decay patterns.

For the nucleus 154Sm the results on the decay rates of the states in the first
excited K = 0 band allowed for the support of a previous assignment of a beta
band, which can be established by the good agreement of the experimental data
with the predictions of the CBS rotor model.

The experimental data on the B(M1;2+i → 2+1 ) strengths of the nuclei 130,132Ba
completed the experimental data on the one quadrupole-phonon state of mixed
proton-neutron symmetry (2+1,ms) in the A = 130 mass region. The new data en-
abled a discussion of the evolution of the 2+1,ms state in the N = 76 and N = 74
isotonic chains as well as for the Ba isotopic chain. The results seem to support the
previous observation of an increased fragmentation of the 2+1,ms state for mid-shell
nuclei of that mass region. However, the results showed an enhanced candidate of
a 2+1,ms state in 130Ba that hampers a unified view of the results and their interpre-
tation, but whose results are based on several assumptions during the calculations,

119



beginning with the Jπ = 2+ assignment. Any further discussion on the evolution of
the MSS in this mass region will, therefore, depend on an independent verification
or falsification of the assumptions made for the calculations on the 2371 keV state
of 130Ba.

Beyond that, the present results clearly show that projectile Coulomb excitation
using a high-intensity ion accelerator in combination with a large multi-detector
HPGe array like Gammasphere is an ideal method for the investigation of decay
rates and, thus, enable experimenters to search for crucial signatures of different
theoretical models of nuclear quadrupole collectivity on an absolute scale. Given
the prospects of strongly increased ion intensities of future generation particle ac-
celerators, e.g. at FAIR in Darmstadt, and on increased detection efficiency and en-
ergy resolution of next generation HPGe arrays like AGATA or GRETA, this method
will certainly be able to address the afore-mentioned questions also for radioac-
tive isotopes and can therefore be able to contribute valuable results for future
nuclear-structure science.
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A CLX Input file
The program CLX reads the parameters of a calculation from an input file. As an
example, a file from the calculation for the nucleus 154Sm is shown in the following.
Since the Coulex calculations consist of many steps, this file does not represent the
complete calculation process.

154Sm -> C @570 MeV

11101111

9 2 2.

0. 0. 0.

6 154

62 12

534.158

0.001 180. 1

1 0 0.0 1 0

2 2 0.082 1 0

3 4 0.267 1 0

4 6 0.543 1 0

5 8 0.903 1 0

6 0 1.099 1 0

7 2 1.177 1 0

8 4 1.337 1 0

9 2 1.440 1 2

1 1 0.0 0

1 2 2.0765 2

1 3 0.552 4

1 4 0.0 2

1 5 0.0 2

1 6 0.0 0

1 7 0.0890 2

1 8 0.0 4

1 9 0.2163 2

2 2 -2.466 2

2 3 3.287 2

2 4 0.0 2
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2 5 0.0 2

2 6 0.2341 2

2 7 -0.1332 2

2 8 0.1186 2

2 9 0.2790 2

3 3 -2.917 2

3 4 4.29 2

3 5 0.0 4

3 6 0.0 2

3 7 0.1796 2

3 8 -0.1581 2

3 9 0.0935 2

4 4 -2.466 2

4 5 5.15 2

4 6 0.0 2

4 7 0.0 2

4 8 0.1706 2

5 5 -2.466 2

5 6 0.0 2

5 7 0.0 4

5 8 0.0 2

5 9 0.0 2

6 6 0.0 2

6 7 -2.01 2

6 8 0.0 2

6 9 0.0 2

7 7 -2.466 2

7 8 3.21 2

7 9 0.0 2

8 8 -2.466 2

8 9 0.0 2

9 9 -2.466 2

9 10 0.0 2

10 10 -2.466 2
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B Figures and Tables on the Analyses

This section contains additional information on the data analysis. This includes
sum and coincidence spectra shown in more detail and the numbers on the γ-ray
intensities and the Coulex yields of the excited states. The numbers and their
uncertainties in the tables represent intermediate data. Numbers have not been
subject to further rounding prior to the completion of the final results.

B.1 130Ba experiment

Table B.1.: Intensities of the transitions in the 130Ba experiment

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

357 2+1 0+1 1000000.00 3654.62 0.37%

544 4+1 2+1 13663.48 707.36 5.18%
551 2+2 2+1 16450.81 750.03 4.56%
569 4+2 2+2 296.37 9.96 3.36%
575 4+2 4+1 171.51 9.61 5.60%
576 5− 6+1 56.50 3.56 6.30%
649 2+3 2+2 15.65 3.56 22.76%
692 6+1 4+1 174.91 6.76 3.86%
908 2+2 0+1 11536.25 38.76 0.34%

1011 3− 2+2 122.71 10.55 8.60%
1017 3− 4+1 1539.70 13.01 0.85%
1120 4+2 2+1 196.64 8.66 4.40%
1200 2+3 2+1 39.52 4.29 10.86%
1266 5− 4+1 77.78 5.64 7.25%
1361 2269 2+2 49.75 9.10 18.30%
1463 1819 2+1 86.49 6.10 7.06%

to be continued
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Intensities of the transitions in the 130Ba experiment (continued)

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

357 2+1 0+1 1000000.00 3654.62 0.37%

1557 2+3 0+1 <9.41
1561 3− 2+1 911.40 25.62 2.81%
1912 2269 2+1 30.28 7.37 24.35%
2014 2371 2+1 190.76 14.73 7.72%
2269 2269 0+1 34.16 4.30 12.60%
1819 1819 0+1 <25.71
2371 2371 0+1 <15.29
aEstimate
bPeak appears in spectrum coincident to 2+1 → 0+1 transition. The transition
could not be assigned. A state at an energy of 2686 keV is assumed.

Table B.2.: Yields of the states in the 130Ba experiment

Jπ Ex Y dY Yrel dYrel
dYrel
Yrel

2+1 357 994630.63 3889.63 1.000×100 3.911×10−3 0.39%
4+1 902 11699.57 707.60 1.176×10−2 7.129×10−4 6.06%
2+2 908 27502.58 751.24 2.765×10−2 7.630×10−4 2.76%
4+2 1477 664.51 16.32 6.681×10−4 1.662×10−5 2.49%
2+3 1557 64.57 5.58 5.546×10−5 5.612×10−6 10.12%
6+1 1592 174.91 6.76 1.759×10−4 6.827×10−6 3.88%
2+b 1819 86.49 6.10 8.695×10−5 6.145×10−6 7.07%
5−1 2168 134.28 6.67 1.350×10−4 6.729×10−6 4.98%
2+b 2269 114.20 12.48 1.148×10−4 1.256×10−5 10.94%
2+b 2371 190.76 14.73 1.918×10−4 1.483×10−5 7.73%
aUpper limit
bAssumption used in the calculations
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4+1 → 2+1 & 2+2 → 2+1
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B.2 132Ba experiment

Table B.3.: Intensities of the transitions in the 132Ba experiment

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

465 2+1 0+1 1000000.00 2902.26 0.29%

383 3−1 2+3 37.67 1.90 5.03%
567 2+2 2+1 10823.33 30.70 0.28%
602 4+2 4+1 46.63 3.78 8.11%
654 2+3 2+2 17.93 3.54 19.77%
663 4+1 2+1 8362.09 24.09 0.29%
698 4+2 2+2 134.47 7.87 5.85%
805 6+1 4+1 52.89 3.42 6.46%
817 (4+) 4+1 57.71 3.49 6.04%
941 3−1 4+1 137.60 4.59 3.33%
966 2+4 2+2 79.57 5.67 7.12%

1032 2+2 0+1 6108.00 32.63 0.53%
1037 3−1 2+2 170.88 8.98 5.26%
1039 0+2 2+1 30.93a 10.24 33.09%
1046 3+1 2+1 31.06a 10.28 33.09%
1221 2+3 2+1 108.58 4.48 4.12%
1265 4+2 2+1 56.18 5.56 9.90%
1311 2+−6+ 4+1 80.75 5.81 7.20%
1534 2+4 2+1 309.53 7.15 2.31%
1604 3−1 2+1 2038.08 13.29 0.65%
1686 2+3 0+1 0.90 0.10 10.88%
1804 0+4 ? 2+1 44.12 4.26 9.66%
1909 3−2 2+1 74.82 5.74 7.68%
∼1930 2+1 79.24 5.36 6.76%

1974 2+−6+ 2+1 20.41 2.84 13.93%
1998 2+4 0+1 95.92 6.58 6.86%

∼2222b 2686 2+1 49.40 4.08 8.25%
∼2400 0+1 <15.4

2439 2+−6+ 0+1 <12.6
2686 2686 0+1 <30.3

aEstimate
bPeak appears in spectrum coincident to 2+1 → 0+1 transition. The transition
could not be assigned. A state at an energy of 2686 keV is assumed.
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Table B.4.: Yields of the states in the 132Ba experiment

Jπ Ex Y dY Yrel dYrel
dYrel
Yrel

2+1 465 990017.42 2937.70 1.000×100 2.967×10−3 0.30%
2+2 1032 16614.94 47.03 1.678×10−2 6.882×10−5 0.41%
4+1 1128 8019.72 26.41 8.101×10−3 3.591×10−5 0.44%
0+2 1504 –c –c

2+3 1686 85.79 4.09 8.665×10−5 4.138×10−6 4.77%
4+2 1729 237.90 10.38 2.403×10−4 1.051×10−5 4.37%
6+1 1932 52.89 3.42 5.342×10−5 3.455×10−6 6.47%
(4+) 1944 57.71 3.49 5.830×10−5 3.527×10−6 6.05%
2+4 1998 496.76 13.00 5.018×10−4 1.322×10−5 2.63%
3−1 2069 2384.22 16.79 2.408×10−3 1.840×10−5 0.76%
0+4 2271 44.12 4.26 4.457×10−5 4.308×10−6 9.67%
3−2 2374 74.82 5.74 7.558×10−5 5.805×10−6 7.68%

∼2400a <94.66 5.89 <9.561×10−5 5.959×10−6 6.23%
2+−6+ 2439 <113.79 6.99 <1.149×10−4 7.702×10−6 6.15%

2686b <79.73 4.74 8.053×10−5 4.794×10−6 5.95%
aThe literature [Kha05] reports a state at 2406(8) keV with Jπ = 0+ assignment, although the
excitation energy does not fit well.
bThe transition at ∼2221 in the spectrum gated on 2+1 → 0+1 transition could not be assigned.
An estimate of a possible 2+ state at 2686 keV has been done.
cThe reported decays of the 0+2 state of 472 keV and 1039 keV have been hidden in the peaks of
the strong transitions 2+1 → 0+1 and 3−1 → 2+2 , respectively. The yield of the 0+2 state could not
be determined.
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B.3 154Sm experiment

Table B.5.: Intensities of the transitions in the 154Sm experiment

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

82 2+1 0+1 -a - -
159 4+2 2+2 -a - -
185 4+1 2+1 -a - -
257 2+2 1−1
276 6+1 4+1 31380.29 2540.99 8.10%
359 8+1 6+1 1324.37 81.42 6.15%
375 1815 2+4 460.08 25.53 5.55%
431 10+1 8+1 67.67 10.69 15.79%
529 7−1 8+1 94.75 8.59 9.06%
555 1−2 1−1
638 5−1 6+1 1304.45 31.74 2.43%
745 3−1 4+1 6206.11 107.16 1.73%
794 4+2 6+1 343.60 24.63 7.17%
839 1−1 2+1 6133.71 94.35 1.54%
888 7−1 6+1 401.85 28.55 7.10%
911 2+2 4+1 6270.39 159.50 2.54%
914 5−1 4+1 5388.98 152.45 2.83%
921 1−1 0+1 4764.48 187.46 3.93%
930 3−1 2+1 9848.64 197.98 2.01%

1003 2015 3−1 259.65 23.08 8.89%
1017 0+2 2+1 9106.33 150.64 1.65%
1070 4+2 4+1 1309.79 88.67 6.77%
1096 2+2 2+1 8698.12 156.98 1.80%
1122 4+3 6+1 150.30 12.85 8.55%
1173 2+4 4+1 1388.38 96.92 6.98%
1178 2+2 0+1 5568.18 160.95 2.89%
1204 1286 2+1 272.31 13.21 4.85%
1231 5−2 6+1 620.71 44.29 7.14%
1255 4+2 2+1 1635.56 63.20 3.86%
1272 3+1 4+1 86.48 8.61 9.96%
1318 3−2 4+1 4221.64 97.71 2.31%
1358 2+4 2+1 25818.44 606.67 2.35%
1394 1−2 2+1 2533.66 63.77 2.52%
1398 4+3 4+1 1062.77 25.78 2.43%
1433 1515 2+1 2675.20 69.17 2.59%

to be continued
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Intensities of the transitions in the 154Sm experiment (continued)

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

1440 2+4 0+1 20760.67 525.66 2.53%
1440 1707 4+1 418.37 41.74 9.98%
1457 3+1 2+1 219.04 17.92 8.18%
1503 3−2 2+1 1128.71 32.68 2.90%
1507 5−2 4+1 317.68 25.94 8.16%
1549 1815 4+1 418.04 32.93 7.88%
1583 4+3 2+1
1933 2015 2+1 712.23 87.48 12.28%
2057 2139 2+1 507.25 29.71 5.86%
2139 2139 0+1 288b 17b 5.90%
aIn this energy range the efficiency could not be determined with sufficient
accuracy.
bIntensity deduced from branching ratio given in Nuclear Data Sheets
[Rei09].

Table B.6.: Yields of the states in the 154Sm experiment
Jπ Ex Y dY Yrel dYrel

2+4 1440.05 47507.40 808.01 1.00×100 2.41×10−2

2+1 82 -a - -a -
4+1 267 -a - -a -
6+1 543 29367.74 2543.20 6.18×10−1 5.46×10−2

8+1 902.6 1205.25 100.70 2.54×10−2 2.16×10−3

1−1 921.4 10697.49 210.54 2.25×10−1 5.86×10−3

3−1 1012.4 15795.10 226.30 3.32×10−1 7.39×10−3

0+2 1099.3 9106.33 150.64 1.92×10−1 5.59×10−3

2+2 1177.8 20536.68 275.66 4.32×10−1 9.37×10−3

5−1 1180.7 6693.43 184.19 1.41×10−1 4.56×10−3

2+3 1286.4 272.31 13.21 5.75×10−3 2.96×10−4

10+1 1332.8 67.67 10.69 1.42×10−3 2.26×10−4

4+2 1337.6 3288.95 111.64 6.92×10−2 2.63×10−3

7−1 1431 401.85 28.55 8.46×10−3 6.18×10−4

1−2 1475.7 2533.66 63.77 5.33×10−2 1.62×10−3

3+1 1539.3 305.52 19.89 6.43×10−3 4.33×10−4

3−2 1584.6 5350.34 103.03 1.13×10−1 2.89×10−3

4+3 1664.9 1413.49 29.89 2.98×10−2 8.07×10−4

to be continued
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Yields of the states in the 154Sm experiment (continued)

Jπ Ex Y dY Yrel dYrel

2+4 1440.05 47507.40 808.01 1.00×100 2.41×10−2

3+ 1706.8 418.37 41.74 8.81×10−3 8.91×10−4

5−2 1774.2 938.39 51.33 1.98×10−2 1.13×10−3

2+, 3 1815.1 875.12 41.55 1.84×10−2 8.74×10−4

1−, 2+ 2015.2 971.88 90.47 2.05×10−2 1.90×10−3

1, 2+ 2139 795.25 34.23 1.67×10−2 2.50×10−3

aThe yields of these states could not be determined with sufficient accu-
racy due to the large uncertainty of the efficiency in the respective energy
region.
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2+β → 0+1 2+β → 2+1

a
4

a2

a2 = 0.224(17)
a4 = −0.018(21)

a2 = −0.063(25)
a4 = 0.012(24)

(a) Angular distributions of the 2+2 → 0+1 and 2+2 → 2+1 transitions and
angular distribution ellipse for 2+2 → 2+1 transition in 154Sm.

2+γ → 0+1 2+γ → 2+1

a
4

a2

a2 = 0.229(18)
a4 = −0.029(21)

a2 = −0.073(16)
a4 = 0.005(18)

(b) Angular distributions of the 2+4 → 0+1 and 2+4 → 2+1 transitions and
angular distribution ellipse for 2+4 → 2+1 transition in 154Sm.

Figure B.10.: Analysis of the angular distributions for the deduction of the mixing
ratio δ for the 2+2 → 2+1 and 2+4 → 2+1 transitions in 154Sm.

B.3. 154Sm experiment 139



B.4 194Pt experiment

Table B.7.: Intensities of the transitions in the 194t experiment

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

328 2+1 0+1 1000000,00 2742,40 0,27%

172 3−4 Jπ 47.73 4.41 9.24%
203 3−1 4+2 242.63 28.55 11.77%
294 2+2 2+1 9307.08 51.22 0.55%
301 3+1 2+2 279.69 7.07 2.53%
305 3−2 3−1 24.48 1.77 7.22%
364 3−2 5−1 6.14 0.57 9.23%
365 1−1 3−1 6.19 0.68 10.96%
399 (1+, 2+)2 (2, 3−, 4) 9.59 0.63 6.59%
418 4+2 4+1 89.06 4.40 4.94%
456 (2,3−, 4) 3−1 34.55 1.59 4.59%
482 (4+) 3−1 37.1 1.7 4.52%
499 (3,4)+ 3+1 60.24 2.66 4.42%
509 3−4 3−2 19.35 2.77 14.33%
510 3−1 3+1
562 (5−)1 4+1 187.31 9.15 4.88%
589 2+3 3+1 27.68 1.31 4.72%
594 3+1 2+1 67.98 3.74 5.50%
600 6+1 4+1 127.20 6.24 4.90%
607 4+2 2+2 876.99 20.95 2.39%
621 3−1 4+1 796.96 38.74 4.86%
622 2+2 0+1 1274.10a 28.67a 2.25%
645 0+2 2+2 16.98 0.66 3.89%
699 2+4 3+1 14.13 0.75 5.33%
724 3−3 3−1 51.66 2.39 4.62%
769 3−5 (1)+

782 3−3 (5−)1 8.30 0.52 6.23%
810 3−1 2+2 165.15a 6.36a 3.85%
815 3−2 3+1 9.80ac 2.12ac 21.64%
816 3−4 3−1 302.92 12.36 4.08%
855 (1)+1 3+1 9.73ac 0.73ac 7.52%
889 2+3 2+2 17.25 1.11 6.45%
894 (2)+ 3+1 10.57 0.80 7.56%
901 4+2 2+1 80.93 2.67 3.30%
914 (1+, 2+)2 (5−)1 8.76 0.57 6.48%

to be continued
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Intensities of the transitions in the 194Pt experiment (continued)

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

328 2+1 0+1 1000000,00 2742,40 0,27%

925 0+4 2+2 50.22 1.70 3.38%
938 0+2 2+1 8.37a 0.36a 4.28%
990 (4+) 3+1 5.2 0.5 8.71%

1000 2+4 2+2 141.69 3.56 2.51%
1048 2+5 2+2 56.29 1.87 3.32%
1058 (1+, 2+)2 4+2 71.34 8.28 11.61%
1080 (1+, 2+)1 3+1 10.14 0.62 6.07%
1102 (4+) 4+1 8.3 0.7 8.30%
1104 3−1 2+1 2039.47 10.08 0.49%
1005 (2)+ 4+1 <3.7
1114 3−5 3−1 113.47 5.17 4.55%
1150 Jπ 3+1 12.22 0.76 6.20%
1150 0+3 2+1 <2.29
1156 (1)+1 2+2 67.08 2.63 3.91%
1183 2+3 2+1 66.89 2.07 3.09%
1194 (2)+ 2+2 <10.0
1218 0+4 2+1 171.49 3.31 1.93%
1232 3−3 3+1 51.30 2.37 4.62%
1261 Jπ 4+1 9.82 0.68 6.90%
1292 (4+) 2+2 33.2 1.5 4.60%
1314 3−5 4+2 98.73 11.25 11.40%
1324 3−4 3+1 22.77 1.40 6.14%
1342 2+5 2+1 97.21 1.57 1.61%
1343 3−3 4+1 23.79 1.27 5.34%
1365 (1+, 2+)2 3+1 53.15 2.74 5.15%
1432 3−1 0+1 67.29a 6.14a 9.13%
1451 Jπ 2+2 18.31 1.15 6.29%
1468 1−1 2+1 27.35 1.64 5.98%
1488 (2)+ 2+1 6.83 0.96 14.036%
1512 2+3 0+1 4.48a 1.15a 25.62%
1532 3−3 2+2 61.29 1.78 2.91%
1622 2+4 0+1 135a 10a 8.16%
1624 3−4 2+2 27.70 1.17 4.22%
1624 3−5 3+1 9.34 0.74 7.96%
1665 (1+, 2+)2 2+2 40.60 1.49 3.66%
1670 2+5 0+1 13.51a 0.74a 5.47%
1675 (1+, 2+)1 2+1 129.93 7.60 5.85%

to be continued
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Intensities of the transitions in the 194Pt experiment (continued)

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

328 2+1 0+1 1000000,00 2742,40 0,27%

1744 Jπ 2+1 18.85 1.80 9.56%
1816 (2)+ 0+1 <16.5
1826 3−3 2+1 18.99 1.33 7.02%
1924 3−5 2+2 154.35 4.20 2.72%
1959 (1+, 2+)2 2+1 13.70 1.7 12.440%
2004 (1+, 2+)1 0+1 <21.0
2072 Jπ 0+1 35.17 4.06 11.531%
2218 3−5 2+1 116.54 3.41 2.92%
2287 (1+, 2+)2 0+1 <7.7
aIntensity deduced from branching ratio given in Nuclear Data Sheets
bIntensity deduced by subtraction of doublet-peak areas in different coincidence spectra.
cDoublet peaks are assumed, although no transition can be assigned to second peak.
Treated as direct decay into 3+1 , yield unchanged within uncertainties.
dThis peak does not seem to originate from 194Pt. It shows no conclusive coincidence
relation to transitions of 194Pt. The origin of this peak could not be determined.
eThis peak does not seem to originate from 194Pt. Peak appears in spectrum coincident to
4+1 → 2+1 transition, but not in spectrum coincident to 2+1 → 0+1 . The width of the peak
does not meet the expectations. The origin of this peak could not be determined.
fPeak appears in spectrum coincident to 2+1 → 0+1 transition. The transition could not be
assigned.
gPeak appears in spectrum coincident to 2+2 → 2+1 transition. The transition could not be
assigned.
hPeak appears in spectrum coincident to 4+1 → 2+1 transition. The transition could not be
assigned.
iThe number of transitions represented by this peak could not be determined conclusively.
jPeak appears in spectrum coincident to 3−1 → 2+1 transition. The transition could not be
assigned.
kPeak appears in spectrum coincident to 3+1 → 2+2 transition. The transition could not be
assigned.
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Table B.8.: Yields of the states in the 194Pt experiment

Jπ Ex Y dY Yrel dYrel
dYrel
Yrel

(keV) (%)

2+1 328 1049631.21 2743.62 1.00×100 2.61×10−3 0.26

2+2 622 9578.86 68.33 9.13×10−3 6.93×10−5 0.76
4+1 811 12096 76 1.150×10−2 7.80×10−5 0.68
3+1 922 95.19 10.31 9.07×10−5 9.83×10−6 10.84
4+2 1229 705.62 37.51 6.72×10−4 3.58×10−5 5.32
0+2 1267 25.58 0.76 2.44×10−5 7.26×10−7 2.98
5−1 1373 164.11 9.20 1.56×10−4 8.77×10−6 5.61
6+1 1411 127.20 6.24 1.21×10−4 5.95×10−6 4.91
(3,4)+ 1422 60.24 2.66 5.74×10−5 2.54×10−6 4.42

3−1 1432 2794.73 52.93 2.66×10−3 5.09×10−5 1.91
0+3 1479 <2.32 <2.21×10−6

2+3 1512 112.63 2.71 1.07×10−4 2.59×10−6 2.42
0+4 1547 221.71 3.72 2.11×10−4 3.59×10−6 1.70
2+4 1622 436.45 15.27 3.74×10−4 1.04×10−5 2.80
2+5 1670 167.62 2.56 1.60×10−4 2.48×10−6 1.55
3−2 1737 40.42 2.82 3.85×10−5 2.69×10−6 6.98
(1)+1 1778 124.75 4.85 1.19×10−4 4.63×10−6 3.89
1−1 1797 33.53 1.77 3.19×10−5 1.69×10−6 5.29
(2)+ 1816 17.40 1.25 1.66×10−5 1.19×10−6 7.17
(2, 3−, 4) 1888 34.55 1.59 3.29×10−5 1.51×10−6 4.60
(4+) 1914(1) 83.77 2.41 7.98×10−5 2.30×10−6 2.88
(1+, 2+)1 2004 140.07 7.63 1.33×10−4 7.28×10−6 5.45

Jπ 2072 49.38 2.27 8.05×10−5 2.16×10−6 4.60
3−3 2154 215.33 4.26 2.05×10−4 4.43×10−6 5.50
3−4 2246 420.47 13.54 4.01×10−4 1.29×10−5 3.23

(1+, 2+)2 2287 125.80 3.65 1.20×10−4 3.49×10−6 2.91
3−5 2546(2) 492.43 13.53 4.69×10−4 1.29×10−5 2.76
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Table B.9.: Intensities of the transitions in the 196Pt experiment

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

356 2+1 0+1 1000000.00 2984.43 0.30%

177 3−1 5−1 55.26 2.97 5.38%
202 2+4 0+3 2.8a 0.8a 28.57%
226 2+3 0+2 6.6a 1.6a 24.24%
278 4+2 3+1 3.86 0.77 19.91%
308 (3−, 4+)1 3−1 32.43 1.32 4.06%
326 3+1 2+2 414.61 7.36 1.77%
333 2+2 2+1 6439.84 113.58 1.76%
347 2+3 3+1 27.44 3.28 11.97%
379 2174 2+(1−) 7.01 1.11 15.87%
393 5−1 4+1 361.16 15.91 4.40%
416 4+2 4+1 87.40 3.98 4.56%
419 2174 3−, 4+ 12.34 1.20 9.70%
432 3−1 3+1 188.51 21.91 11.62%
447 0+2 2+2 46.17 1.78 3.86%
485 (3−, 4+)1 5−1 44.81 2.12 4.74%
521 4+3 3+1 43.86b 5.11 11.65%
521 4+1 2+1 11913.31b 28.59 0.24%
542 2+5 0+2 9.4a 3.7a 39.36%
570 3−1 4+1 136.65 5.60 4.10%
589 2+4 3+1 11.71b 1.97 16.83%
591 3+, 4+ 4+2 38.38b 5.97 15.56%
605 4+2 2+2 463.82 8.32 1.79%
649 6+1 4+1 102.14 5.17 5.06%
659 3+1 2+1 18.24a 0.21a 1.13%
662 2+5 3+1 14.39 1.75 12.18%
673 2+3 2+2 153.34 3.17 2.06%
677 (3−, 4+)2 3−1 93.82 3.22 3.43%
727 2174 3−1 154.74 20.32 13.13%
728 2+4 4+1 40.33 2.77 6.86%
758 3−1 2+2 655.84 20.51 3.13%
780 2+(1−) 3+1 16.45b 2.22 13.52%
780 0+2 2+1 92.20b 4.52 4.90%
800 2+5 4+1 9.4a 3.7a 39.36%
814 2084 5−1 5.15 1.14 22.09%

to be continued
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Intensities of the transitions in the 196Pt experiment (continued)

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

356 2+1 0+1 1000000.00 2984.43 0.30%

817 3+2 3+1 9.19 1.38 15.03%
831 (3−, 4+)2 4+2 56.49 6.38 11.30%
854 (3−, 4+)2 5−1 160.90 7.16 4.45%
868 3+, 4+ 3+1 5.91 1.01 17.01%
878 (3−, 4+)1 4+1 51.38 2.41 4.70%
916 2+4 2+2 18.31 0.92 5.03%
938 4+2 2+1 37.31 2.63 7.04%
977 3−2 3−1 272.45 28.74 10.55%
989 2+5 2+2 26.13 1.18 4.51%

1006 3+, 4+ 4+1 13.65b 0.95 6.93%
1006 2+3 2+1 101.64b 4.41 4.34%
1013 2460 3−1 21.51 3.13 14.57%
1047 0+3 2+1 71.53 3.41 4.77%
1063 (3−, 4+)1 2+2 6.83 0.82 12.04%
1091 3−1 2+1 2587.89 16.39 0.63%
1107 2+(1−) 2+2 33.52b 4.19 12.51%
1109 (3−, 4+)2 3+1 30.91b 4.01 12.97%
1150 2597 3−1 112.60 6.10 5.42%
1180 2626 3−1 82.00 3.18 3.87%
1195 3,4+ 2+2 20.39 1.44 7.04%
1249 2+4 2+1 70.39 3.44 4.89%
1264 2626 2+3 29.60 2.45 8.29%
1296 (1+, 2+)1 2+2 58.42 2.41 4.13%
1297 2174 4+1 14.88 0.95 6.41%
1321 2+5 2+1 113.10 5.28 4.67%
1362 2+3 0+1 27.6a 5.0a 18.12%
1439 2+(1−) 2+1 451.08 14.13 3.13%
1447 3−1 0+1 388a 82a 21.13%
1468 0+4 2+1 132.95 4.61 3.47%
1492 2+6 2+1 34.52 2.05 5.95%
1576 1932 2+1 16.76 1.47 8.75%
1604 2+4 0+1 14.1a 3.2a 22.70%
1611 2626 3+1 20.95 2.78 13.28%
1628 1984 2+1 <23.14 0.81 3.50%
1632 (1+, 2+)2 2+1 50.07 2.27 4.53%
1642 1998 2+1 5.49 1.67 30.39%

to be continued
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Intensities of the transitions in the 196Pt experiment (continued)

Eγ Jπi Jπf Iγ dIγ
dIγ
Iγ

356 2+1 0+1 1000000.00 2984.43 0.30%

1677 2+5 0+1 189a 68a 35.98%
1734 3−2 2+2 45.16 3.22 7.14%
1766 2781 3+1 11.27 1.97 17.53%
1769 (3−, 4+)2 2+1 28.59 1.51 5.29%
1795 2+(1−) 0+1 <69.65 7.24 10.39%
1847 1847 0+1 <10.81 0.03 0.24%
1863 2878 3+1 6.83 1.07 15.62%
1932 1932 0+1 <33.44 0.08 0.25%
1938 2626 2+2 23.36 3.29 14.07%
1984 1984 0+1 <52.50 0.13 0.25%
1988 1988 0+1 <56.86 0.14 0.25%
1998 1998 0+1 <57.06 0.14 0.25%
2004 2878 4+1 9.14 0.98 10.69%
2068 3−2 2+1 107.52 3.80 3.53%
2270 2626 2+1 14.05 1.78 12.70%
2426 2781 2+1 26.80 1.93 7.21%
2523 2878 2+1 46.83 2.41 5.14%
2626 2626 0+1 <24.25 0.07 0.30%
2781 2781 0+1 <43.33 0.13 0.31%
2878 2878 0+1 <35.78 0.11 0.31%
aIntensity deduced from branching ratio given in Nuclear Data Sheets [Xia07]
bIntensity deduced by subtraction of doublet-peak areas in different coincidence spectra.
fPeak appears in spectrum coincident to 2+1 → 0+1 transition. The transition could not be
assigned.
gPeak appears in spectrum coincident to 2+2 → 2+1 transition. The transition could not be
assigned.
hPeak appears in spectrum coincident to 4+1 → 2+1 transition. The transition could not be
assigned.
jPeak appears in spectrum coincident to 3−1 → 2+1 transition. The transition could not be
assigned.
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3−1 → 5−1
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4+2 → 4+1 3−1 → 3+10+2 → 2+2

(3−, 4+)1 → 5−1 & 2+3 → 4+1
4+1 → 2+1 & 4+3 → 3+1

3−1 → 4+13+, 4+ → 4+2 4+2 → 2+2
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2+3 → 2+2 & (3−, 4+)2 → 3−1

2+4 → 4+1 & 2174→ 3−1
3−1 → 2+2
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Table B.10.: Yields of the states in the 196Pt experiment

Jπ Ex Y dY Yrel dYrel
dYrel
Yrel

2+1 356 1037140.09 3166.99 1.00×100 3.05×10−3 0.31%

2+2 689 4953.68 124.93 4.776×10−3 1.21×10−4 2.54%
4+1 877 11,322.45 34.84 1.092×10−2 4.73×10−5 0.43%
3+1 1015 45.01 28.66 4.34×10−5 2.76×10−5 63.68%
0+2 1135 140.72 4.91 1.36×10−4 4.76×10−6 3.51%
5−1 1270 95.04 17.86 9.16×10−5 1.72×10−5 18.79%
4+2 1293 488.74 13.25 4.71×10−4 1.29×10−5 2.73%
2+3 1362 262.18 7.19 2.53×10−4 6.98×10−6 2.76%
0+3 1402 71.89 3.43 6.93×10−5 3.31×10−6 4.78%
3−1 1447 3902.53 212.94 3.76×10−3 2.06×10−4 5.47%
6+1 1526 103.52 5.24 9.98×10−5 5.06×10−6 5.07%
4+3 1535 43.86 5.11 4.23×10−5 4.93×10−6 11.66%
2+4 1604 151.36c 12.44 1.46×10−4c 1.20×10−5 8.22%
2+5 1677 393.47c 140.35 3.79×10−4c 1.35×10−4 35.67%

(3−, 4+)1 1754 135.45 3.57 1.31×10−4 3.47×10−6 2.65%
2+(1−) 1795 501.06 14.90 4.83×10−4 1.44×10−5 2.99%

0+4 1823 132.95 4.61 1.28×10−4 4.46×10−6 3.48%
3+ 1832 9.19 1.38 8.86×10−6 1.33×10−6 15.03%
2+6 1847 34.52 2.05 3.33×10−5 1.98×10−6 5.96%

3+, 4+ 1883 78.34 6.29 7.55×10−5 6.07×10−6 8.04%
0+, 1+, 2+ 1932 16.76 1.47 1.62×10−5 1.42×10−6 8.76%
(1+, 2+)1 1984 134.05 2.41 1.29×10−4 2.36×10−6 1.83%
(1+, 2+)2 1988 50.07 2.27 4.83×10−5 2.19×10−6 4.54%

2+ 1998 5.49 1.67 5.29×10−6 1.62×10−6 30.39%
4−, 5, 6− 2084 5.15 1.14 4.96×10−6 1.10×10−6 22.09%
(3−, 4+)2 2124 405.62 21.03 3.91×10−4 2.03×10−5 5.19%

0+, 2+ 2174 188.97 20.41 1.82×10−4 1.97×10−5 10.81%
3−2 2423 425.13 29.17 4.10×10−4 2.81×10−5 6.87%

0+, 1+, 2+ 2460 21.51 3.13 2.07×10−5 3.02×10−6 14.58%
0, 1−, 2 2597 112.60 6.10 1.09×10−4 5.89×10−6 5.43%
(1, 2,3) 2626 169.96 6.15 1.64×10−4 5.95×10−6 3.63%

a 2781 38.07 2.76 3.67×10−5 2.67×10−6 7.26%
b 2878 62.79 2.81 6.05×10−5 2.71×10−6 4.48%

aThe literature [Xia07] reports a state at 2779(3) keV without Jπ assignment.
bThe literature [Xia07] reports a state at 2875.4 keV with a Jπ = 1+(2+) assignment.
cYield has been determined from BR from [Xia07] data and from Iγ(→ 2+1 ).

B.5. 196Pt experiment 155





Bibliography
[Ahn09] T. Ahn, L. Coquard, N. Pietralla et al. Evolution of the 2+1,ms one-phonon

mixed-symmetry state in N = 80 isotones as a local measure for the proton-
neutron quadrupole interaction. Phys. Lett. B 679 (2009) 19.

[Ahn12] T. Ahn, G. Rainovski, N. Pietralla et al. Identification of the 2+1,ms mixed-
symmetry state in 136Ce. Phys. Rev. C 86 (2012) 014303.

[Ala55] G. Alaga, K. Alder, A. Bohr, and B. Mottelson. Intensity rules for beta and
gamma transitions to nuclear rotational states. Dan. Mat. Fys. Medd. 29
(1955) 1.

[Ald56] K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther. Study of Nuclear
Structure by Electromagnetic Excitation with Accelerated Ions. Rev. Mod.
Phys. 28 (1956) 432.

[Ald60] K. Alder and A. Winther. On the Theory of Multiple Coulomb Excitation
with Heavy Ions. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 32 (1960).

[Ald75] K. Alder and A. Winther. Electromagnetic Excitation, (North-Holland,
1975).

[Ari76] A. Arima and F. Iachello. Interacting boson model of collective states I. The
vibrational limit. Ann. Phys. 99 (1976) 253.

[Ari77] A. Arima, T. Ohtsuka, F. Iachello, and I. Talmi. Collective nuclear states
as symmetric couplings of proton and neutron excitations. Phys. Lett. B 66
(1977) 205.

[Ari78a] A. Arima and F. Iachello. Interacting boson model of collective nuclear
states II. The rotational limit. Ann. Phys. 111 (1978) 201.

[Ari78b] A. Arima and F. Iachello. New Symmetry in the sd Boson Model of Nuclei:
The Group O(6). Phys. Rev. Lett. 40 (1978) 385.

[ATL13] ATLAS webpage. Floorplan of ATLAS. http://www.phy.anl.gov/atlas/
facility/floorplan.html, visited July 4th, 2013.

157

http://www.phy.anl.gov/atlas/facility/floorplan.html
http://www.phy.anl.gov/atlas/facility/floorplan.html


[ATL14] ATLAS webpage. ATLAS. http://www.phy.anl.gov/atlas/, visited
May 7th, 2014.

[Bak78] C. Baktash, J. X. Saladin, J. J. O’Brien, and J. G. Alessi. Electromagnetic
properties of 194Pt and the question of its triaxiality. Phys. Rev. C 18
(1978) 131.

[Bak79] F. T. Baker, A. Scott, T. Cleary et al. 194Pt(12C, 12C′) reaction and the
triaxial-rotor model. Nucl. Phys. A 321 (1979) 222.

[Bau09] C. Bauer. Der g(2+1 )-Faktor im Radionuklid 140Ba – Erste Anwendung der
“Recoil-in-vacuum” Technik an REX-ISOLDE. Master’s thesis, TU Darm-
stadt, Germany, 2009.

[Bau13] C. Bauer. Level lifetimes and quadrupole moments from projectile Coulomb
excitation of A≈130 nuclei. Ph.D. thesis, TU Darmstadt, 2013.

[Bea96] C. W. Beausang and J. Simpson. Large arrays of escape suppressed spec-
trometers for nuclear structure experiments. J. Phys. G Nucl. Part. Phys.
22 (1996) 527.

[Ber72] I. Berkes, R. Rougny, M. Meyer-Lévy et al. Electromagnetic Properties of
Even-Even Platinum Nuclei. Phys. Rev. C 6 (1972) 1098.

[Ber81] G. Berrier-Ronsin, M. Vergnes, G. Rotbard et al. Structure of 194Pt via
transfer reactions. Phys. Rev. C 23 (1981) 2425.

[Ber07] C. A. Bertulani. Nuclear Physics in a Nutshell, (Princeton University Press,
2007).

[Boh84] D. Bohle, A. Richter, W. Steffen et al. New magnetic dipole excitation mode
studied in the heavy deformed nucleus 156Gd by inelastic electron scattering.
Phys. Lett. B 137 (1984) 27.

[Boh98] A. Bohr and B. Mottelson. Nuclear deformations. Nuclear Structure,
(World Scientific, 1998).

[Bol81] H. Bolotin, A. Stuchbery, I. Morrison et al. Lifetimes of excited states in
196,198Pt; Application of interacting boson approximation model to even Pt
isotopes systematics. Nucl. Phys. A 370 (1981) 146.

[Bol93] L. Bollinger, R. Pardo, K. Shepard et al. The positive-ion injector of ATLAS:
design and operating experience. Nucl. Instrum. Methods. Phys. Res. B 79
(1993) 753.

158 Bibliography

http://www.phy.anl.gov/atlas/


[Bör90] H. G. Börner, J. Jolie, S. Robinson, R. F. Casten, and J. Cizewski. First
measurement of B(E2) values from σ < N states of an O(6) nucleus:
Gamma-ray-induced Doppler broadening studies in 196Pt. Phys. Rev. C
42 (1990) R2271.

[Bru97] R. Brun and F. Rademakers. ROOT — An object oriented data analysis
framework. Nucl. Instrum. Methods. Phys. Res. A 389 (1997) 81.

[Bur85] S. Burnett, A. Baxter, S. Hinds et al. A measurement of B(E3;0+ →
3−1 ) and some E2 transition probabilities in 132,134,136,138Ba using Coulomb
excitation. Nucl. Phys. A 432 (1985) 514.

[Cas85] R. F. Casten and P. von Brentano. An Extensive Region of O(6)-Like Nuclei
Near A = 130. Phys. Lett. B 152 (1985) 22.

[Cas88] R. F. Casten and D. D. Warner. The interacting boson approximation. Rev.
Mod. Phys. 60 (1988) 389.

[Cas00] R. F. Casten and N. V. Zamfir. Evidence for a Possible E(5) Symmetry in
134Ba. Phys. Rev. Lett. 85 (2000) 3584.

[Cas01a] R. F. Casten. Nuclear Structure from a Simple Perspective, (Oxford Univer-
sity Press, 2001).

[Cas01b] R. F. Casten and N. V. Zamfir. Empirical Realization of a Critical Point
Description in Atomic Nuclei. Phys. Rev. Lett. 87 (2001) 052503.

[Cas06] R. F. Casten. Shape phase transitions and critical-point phenomena in
atomic nuclei. Nature Phys. 2 (2006) 811.

[Ciz78] J. A. Cizewski, R. F. Casten, G. J. Smith et al. Evidence for a New Symmetry
in Nuclei: The Structure of 196Pt and the O(6) Limit. Phys. Rev. Lett. 40
(1978) 167.

[Ciz79] J. Cizewski, R. Casten, G. Smith et al. The level structure of 196Pt. Nucl.
Phys. A 323 (1979) 349.

[Cle76] W. Cleveland and E. Zganjar. Nuclear structure of 194Pt. Z. Phys. A 279
(1976) 195.

[Coq09] L. Coquard, N. Pietralla, T. Ahn et al. Robust test of E(5) symmetry in
128Xe. Phys. Rev. C 80 (2009) 061304(R).

Bibliography 159



[Coq10] L. Coquard, N. Pietralla, G. Rainovski et al. Evolution of the mixed-
symmetry 2+1,ms quadrupole-phonon excitation from spherical to γ-soft Xe
nuclei. Phys. Rev. C 82 (2010) 024317.

[Coq11] L. Coquard, G. Rainovski, N. Pietralla et al. O(6)-symmetry breaking in
the γ-soft nucleus 126Xe and its evolution in the light stable xenon isotopes.
Phys. Rev. C 83 (2011) 044318.

[Cre] J. Creswell and J. Sampson. MTsort. Unpublished, University of Liver-
pool.

[Dar] Daresbury Laboratory. Multi Instance Data Acquisition System. Unpub-
lished.

[Dea79] P. T. Deason, C. H. King, T. L. Khoo, J. A. Nolen, and F. M. Bernthal.
194,196,198Pt(p,t) reactions at 35 MeV. Phys. Rev. C 20 (1979) 927.

[Dew03] A. Dewald, O. Möller, D. Tonev et al. Shape changes and test of the critical-
point symmetry in N = 90 nuclei. Eur. Phys. J. A 20 (2003) 173.

[Dew05] A. Dewald, O. Möller, B. Saha et al. Test of the critical point symmetry
X(5) in the mass A = 180 region. J. Phys. G Nucl. Part. Phys. 31 (2005)
S1427.

[Die80] A. E. L. Dieperink, O. Scholten, and F. Iachello. Classical Limit of the
Interacting-Boson Model. Phys. Rev. Lett. 44 (1980) 1747.

[Dus05] K. Dusling and N. Pietralla. Description of ground-state band energies in
well-deformed even-even nuclei with the confined β-soft rotor model. Phys.
Rev. C 72 (2005) 011303.

[Ebe08] J. Eberth and J. Simpson. From Ge(Li) detectors to gamma-ray tracking
arrays – 50 years of gamma spectroscopy with germanium detectors. Prog.
Part. Nucl. Phys. 60 (2008) 283 .

[Epe09] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner. Modern theory of nu-
clear forces. Rev. Mod. Phys. 81 (2009) 1773.

[Faz92] B. Fazekas, T. Belgya, G. Molnár et al. Level scheme and mixed-symmetry
states of 134Ba from in-beam (n, n′γ) measurements. Nucl. Phys. A 548
(1992) 249.

160 Bibliography



[Few88] M. P. Fewell, G. Gyapong, and S. R. H. Coulomb Excitation of the 4+1 States
of 194,196,198Pt. Aust. J. Phys. 41 (1988).

[Fil81] A. J. Filo, S. W. Yates, D. F. Coope, J. L. Weil, and M. T. McEllistrem.
Positive- and negative-parity level structures of 194Pt from (n, n′γ) reaction
spectroscopy. Phys. Rev. C 23 (1981) 1938.

[Fra01] C. Fransen, N. Pietralla, P. von Brentano et al. First observation of a
mixed-symmetry two-Q-phonon 2+2,ms state in 94Mo. Phys. Lett. B 508
(2001) 219.

[Fra03] C. Fransen, N. Pietralla, Z. Ammar et al. Comprehensive studies of low-
spin collective excitations in 94Mo. Phys. Rev. C 67 (2003) 024307.

[Gad00] A. Gade, I. Wiedenhöver, J. Gableske et al. Proton–neutron structure of
low lying collective quadrupole excitations in 126Xe. Nucl. Phys. A 665
(2000) 268.

[Gam13] Gammasphere Website. Gammasphere ROOT sorter. http://www.phy.
anl.gov/gammasphere/doc/GSSort/, visited October 14th, 2013.

[Goe50] M. Goeppert Mayer. Nuclear Configurations in the Spin-Orbit Coupling
Model. I. Empirical Evidence. Phys. Rev. 78 (1950) 16.

[Hax49] O. Haxel, J. H. D. Jensen, and H. E. Suess. On the “Magic Numbers” in
Nuclear Structure. Phys. Rev. 75 (1949) 1766.

[Hic08] S. F. Hicks, J. R. Vanhoy, and S. W. Yates. Fragmentation of mixed-
symmetry excitations in stable even-even Tellurium nuclei. Phys. Rev. C
78 (2008) 054320.

[Iac87] F. Iachello and A. Arima. The Interacting Boson Model. Cambridge Mono-
graphs on Mathematical Physics, (Cambridge University Press, 1987).

[Iac00] F. Iachello. Dynamic Symmetries at the Critical Point. Phys. Rev. Lett. 85
(2000) 3580.

[Iac01] F. Iachello. Analytic Description of Critical Point Nuclei in a Spherical-
Axially Deformed Shape Phase Transition. Phys. Rev. Lett. 87 (2001)
052502.

[Isa86] P. van Isacker, K. Heyde, J. Jolie, and A. Sevrin. The F-spin symmetric lim-
its of the neutron-proton interacting boson model. Ann. Phys. 171 (1986)
253.

Bibliography 161

http://www.phy.anl.gov/gammasphere/doc/GSSort/
http://www.phy.anl.gov/gammasphere/doc/GSSort/


[Isa87] P. V. Isacker. Quadrupole moments and E2 transitions with ∆τ = 0,±2
in the γ-unstable O(6) limit of the interacting boson model. Nucl. Phys. A
465 (1987) 497.

[Joh77] N. R. Johnson, P. P. Hubert, E. Eichler et al. Lifetimes of ground-band
states in 192Pt and 194Pt. Phys. Rev. C 15 (1977) 1325.

[Kat02] J. Katakura and K. Kitao. Nucl. Data Sheets for A = 126. Nucl. Data
Sheets 97 (2002) 765.

[Kha05] Y. Khazov, A. Rodionov, S. Sakharov, and B. Singh. Nucl. Data Sheets for
A = 132. Nucl. Data Sheets 104 (2005) 497.

[Kib05] T. Kibédi and R. Spear. Electric monopole transitions between 0+ states
for nuclei throughout the periodic table. At. Data Nucl. Data Tables 89
(2005) 77.

[Kra87] K. S. Krane. Introductory Nuclear Physics, (Wiley, 1987).

[Krü99] R. Krücken, C. J. Barton, C. W. Beausang et al. Nature of excited 0+ states
in 154Sm. Phys. Lett. B 454 (1999) 15.

[Krü02] R. Krücken, B. Albanna, C. Bialik et al. B(E2) Values in 150Nd and the
Critical Point Symmetry X(5). Phys. Rev. Lett. 88 (2002) 232501.

[Kru11] A. Krugmann, Z. P. Li, J. Meng, N. Pietralla, and D. Vretenar. Comparison
of the confined β-soft rotor model and a microscopic collective Hamiltonian
based on the relativistic mean field model in 150,152Nd. J. Phys. G Nucl.
Part. Phys. 38 (2011) 065102.

[Lee90] I.-Y. Lee. The GAMMASPHERE. Nucl. Phys. A 520 (1990) c641.

[Lee97] I. Lee. Physics with GAMMASPHERE and beyond. Prog. Part. Nucl. Phys.
38 (1997) 65.
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Acronyms
ANL Argonne National Laboratory

ATLAS Argonne Tandem Linear Accelerator System

BGO Bismuth-Germanate scintillator. Used for the suppression of Compton-
scattered γ rays.

CBS Confined-β-soft rotor model. As a generalization of the X(5) solution it de-
scribes nuclei on the transition between the shape-phase transitional point
and rigid deformation in the geometrical nuclear model.

Coulex Short for Coulomb excitation. The method is described in 3.1.

DAQ Data Acquisition system

Ebeam Kinetic energy of the projectiles in the ion beam. Usually given in units of
MeV

HO Harmonic Oscillator, described by the central potential V (r) = 1/2 mω2r2.

HPGe Short for High-Purity Germanium detector

Ibeam Beam intensity, sometimes referred to as beam current. It is a measure for
how many projectile nuclei collide onto the target per unit of time. Usually
given in units of pnA.

IBM Interacting Boson Model, cf. sec 2.3

IBM-2 Interacting Boson Model 2. Extension of the IBM to also treat the proton-
neutron degree of freedom, cf. sec 2.3.3

MSS Mixed symmetry states. States in the IBM-2 that have an F -spin of F = Fmax−
1 and have wave functions non symmetric under the exchange of proton and
neutron labels.
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R4/2 ratio of the excitation energies of the 4+ and 2+ Yrast states E(2+1 )/E(4
+
1 ).

Used as signature for collective behavior of a nucleus, cf. chapter 2.2.1.

W.u. Weisskopf unit or single particle unit. Cf. 3.2.2
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