Changes in the Ptolemy Ii
source code

%7 TECHNISCHE
gr@-/e UNIVERSITAT
Y0,

%9/ DARMSTADT

I made several changes to the source code of Ptolemy II. A major improvement is scriptability — the ability to
control Ptolemy II through a script. Furthermore, I added several actors to Ptolemy IT's actor library and fixed some
minor bugs.

1 Batch Processing

Jacl [DeJ08] is an interpreter for the scripting language Tcl. Jacl itself is written in Java. Jacl is open source, which
means it can be enhanced by custom commands and integrated into other programs. Using Jacl, I created a simple
program named PtolemyBatchApplication, which expects a file name as its command line parameter. The program
then opens the specified file and tries to execute the file’s content as a Tcl script. The interpreter recognizes the
following commands in addition to the usual features of Tcl:

ptloadmodel loads a Ptolemy II model from a file,
ptgetparameter reads the value of a model parameter,
ptsetparameter sets the value of a model parameter,
ptrunmodel starts the execution of a Ptolemy II model and

ptgenerate creates a given number of instances of a given actor.

Furthermore, the interpreter supports a new data type named TclPtolemyActor, which is a reference to a Ptolemy II
actor or an entire model (which is only a special case of a composite actor).

1.1 The ptloadmodel Command

The ptloadmodel command expects a character string parameter which contains a file name. The command opens
the specified file and interprets its contents as a MoML document (Model Markup Language, a markup language for
Ptolemy IT models). An error message is produced if the command fails. The command returns a reference to the
model.

1.2 The ptgetparameter Command

The ptgetparameter command expects two parameters:

1. A reference to a Ptolemy II model and

2. a character string containing the qualified name of a parameter within the model.

The qualified name of a parameter consists of the names of all containing actors, starting at the highest level of the
hierarchy, and the name of the parameter itself, separated by dots (.)!.

The command searches the given model for a parameter with the given qualified name. It then returns the
parameter’s value as a character string. An error message is produced if the command fails.

1.3 The ptsetparameter Command

The ptsetparameter command expects three parameters:

1. A reference to a Ptolemy II model,
2. a character string containing the qualified name of a parameter within the model and

3. another character string containing the expression to be assigned to that parameter.

The command searches the given model for a parameter with the given qualified name. It then sets the parame-
ter’s expression accordingly. An error message is produced if the command fails.

The third parameter may contain arbitrary expressions; it is not limited to constant values. When setting the
value of a string parameter, the expression must start and end with double quotes (). When setting the value of
an array parameter, the expression must start and end with curly braces ({, }) and the array elements must be
separated by commas ().

The command does not return anything.

1 Example: The qualified name of the parameter factor of the actor Scale, which is contained in the composite actor Cavities, is

Cavities.Scale. factor

1.4 The ptrunmodel Command

The ptrunmodel command expects a reference to a Ptolemy II model as a parameter: The command begins the
execution of the given model and blocks until the simulation has finished. Different error messages are produced
if the simulation cannot be started or is terminated prematurely.

The command does not return anything.

1.5 The ptgenerate Command

The ptrunmodel command expects three parameters:
1. A reference to a Ptolemy II model,
2. a character string containing the qualified name of an actor within the model and
3. an integer number > 1 specifying how many instances of the given actors shall be created.

The qualified name of an actor consists of the names of all containing actors, starting at the highest level of the
hierarchy, and the name of the actor itself, separated by dots (.)2.

The command searches the given model for an actor with the given qualified name. It then creates the given
number of instances of that actor and connects the ports of the created instances with the same relations as the
corresponding ports of the original. An error message is produced if the command fails. The command returns a
list containing the names of the created instances.

The name ptgenerate is inspired by the generate keyword of VHDL, which creates a number of concurrent
instances of a given component.

By using this command, a deficiency in Ptolemy II version 7 can be overcome which prevents the dynamic
instantiation of continuous-time actors (MultilnstanceComposites do not work with continous-time actors, see
section 3.2).

2 New Actors

With the help of several students, I created a number of new actors:
DeadTime

CSVRecordReader

CSVRecordWriter

TappedCircularBuffer

CyclicIntegrator

AntiWindUpIntegrator

These actors are discussed in the following.

2.1 The DeadTime Actor

This class of actors, which has been developed by Tao Guo in his diploma thesis [Guo08], represents continuous-
time dead-time elements in Ptolemy II.
This class of actors has two parameters:

initialState The initial state of the output (a real number)

deadTime The dead-time (a positive, real number)

2 Example: The qualified name of the actor Scale, which is contained in the composite actor Cavities, is Cavities.Scale

The input x,;(t) at time ¢t becomes the output x(t + Tp) at time t + Tj, where T}, is the constant dead-time. The
actor calls the fireAt method of the Director class in the ptolemy.actor package to ensure that the continuous-
time model is re-evaluated at t + T,. If t is a node of the numeric simulation, then t + T}, is also a node. However,
in a heterogeneous model, events which require the continuous-time differential equations to be re-evaluated can
occur at any time. In that case, a new node may be created at time t even though there is no node at t — Tj,.
In order to be able to calculate the output x(t) for any arbitrary t, it may therefore be necessary to interpolate
between neighboring input values.

The implementation is documented in Tao Guo’s diploma thesis [Guo08].

2.2 The CSVRecordReader Actor

CSVRecordReader
t [l

Figure 1: Vergil Icon of a CSV Record Reader

This class of actors reads data in CSV format [RFC4180] and provide these data to other actors via their output
port. Another output port indicates whether further data is available or not. The file to be read is specified via a
parameter. Figure 1 shows how an actor of this class is displayed in Vergil.

The entire file is read into memory at the start of the simulation in order to avoid file operations during run-time,
which may slow down the simulation.

2.2.1 Ports

This class of actors has three ports:
trigger Whenever any token arrives at this input port, the next record is read from the file.

output The fields of each record are output via this output multiport whenever a token arrives at the trigger
port. The first channel of the output contains data from the first column, the second channel contains data
from the second column, and so on.

endOfFile A Boolean token indicating whether the end of the input file has been reached is output via this output
port whenever a token arrives at the trigger port.

2.2.2 Parameters

This class of actors has two parameters:
fileOrURL This string parameter contains the path of the input file.

numberOfLinesToSkip This non-negative integer parameter specifies the number of lines at the top of the file
which shall be skipped.

2.2.3 Source Code

The source code of this class can be found in the directory ptolemy/actor/lib/io. The class uses a library for
handling data in CSV format which is described in section 4.

2.3 The CSVRecordWriter Actor

This class of actors writes data in CSV format [RFC4180]. The name of the file to be written as well as the access
mode are specified using parameters. Figure 2 shows how an actor of this class is displayed in Vergil.

CSVRecordWriter
o [

Figure 2: Vergil Icon of a CSV Record Writer

2.3.1 Ports

This class of actors has one input multiport named input. As soon as any tokens arrive at this port, they are being
converted to character strings and a record is formed in which the token from the first channel becomes the first
column, the token from the second channel becomes the second column, and so on. The actor buffers records in
memory and writes them to a file from time to time because writing larger blocks of data is more efficient. The file
is created if it does not yet exist at the start of the simulation. Any records remaining are flushed at the end of the
simulation and the file is closed afterwards.

2.3.2 Parameters

This class of actors has four parameters:
fileOrURL This string parameter contains the path of the file to be written. The path may be set to /dev/null in
order to discard output without removing the actor from the model.

headlines This string parameter contains a header line which will become the first line in the file.

append This Boolean parameter indicates what to do if the file already exists. If it is set to true, data will be
appended to the end of the file; if it is set to false, the file is truncated.

confirmOverwrite This Boolean parameter indicates what to do if the file already exists. If it is set to true, the
user will be asked for a confirmation before the file is truncated. If the output file is stdout or /dev/null,
no confirmation is required.

2.3.3 Source Code

The source code of this class can be found in the directory ptolemy/actor/lib/io. The class uses a library for
handling data in CSV format which is described in section 4.

2.4 The TappedCircularBuffer Actor

TappedCircularBuffer

S

Figure 3: Vergil Icon of a Tapped Circular Buffer

This class of actors represents circular buffers with intermediate taps; they can be used to model digital filters
with sparse coefficient vectors (for more details on these filters and their applications, see [Han06; The07; PGK10;
Sur+11; Sam+11; Kli+07]). Figure 3 shows how an actor of this class is displayed in Vergil.

2.4.1 Ports

This class of actors has three ports:

input Data arriving at this input port are written to the head of the circular buffer. The oldest value is removed
from the tail of the buffer.

trigger As soon as an integer token arrives on any channel of this port, it is used as an index into the buffer and
a token containing the value at that index is produced at the output port. Index O corresponds to the most
recent value, index 1 to the second most recent value, and so on.

output As soon as an index token arrives at the trigger port, the selected value is output on this port.

2.4.2 Parameters

This class of actors has two parameters:

defaultValue This parameter specifies the value with which the buffer is filled initially.

capacity This parameter, which must be a positive integer number, defines the size of the buffer.

2.4.3 Source Code

The source code of this class can be found in the directory ptolemy/domains/de/1ib.

2.5 The CyclicIntegrator Actor

Cyclic Integrator

J

Figure 4: Vergil Icon of a Cyclic Integrator

This class of actors represents integrators whose output wraps around, which may be useful, for instance, when
integrating frequencies or frequence differences to obtain phases or phase differences. In that case, the output is
limited to [—m, +7] (or [0,360°]). By computing the remainder of the division by 2- 7, for example, the set of real
numbers R can be mapped to the interval [0; 27). Figure 4 shows how an actor of this class is displayed in Vergil.

This class of actors has three parameters:

initialState The initial state of the actor (a real number)

lowerBound The lower bound of the state (a real number); the state wraps around to the upper bound if it becomes
smaller than the lower bound

upperBound The upper bound of the state (a real number); the state wraps around to the lower bound if it becomes
smaller than the lower bound

If the lower bound is set to —oo and the upper bound to 400, this actor behaves like an ordinary integrator.
The source code of this class can be found in the directory ptolemy/domains/ct/1ib.

2.6 The AntiWindUpIntegrator Actor

Anti-Wind-Up Integrator

Figure 5: Vergil Icon of an Anti-Wind-Up Integrator

This class of actors represents integrators whose output saturates, which may be useful when modeling, for
instance, PID controllers with output constraints. The output value of the integrator saturates at a given upper
bound and does not increase further even if the input is positive. Likewise, the output saturates at a given lower
bound and does not decrease further even if the input is negative. Figure 5 shows how an actor of this class is
displayed in Vergil.

This class of actors has three parameters:

initialState The initial state of the actor (a real number)
lowerBound The lower bound (a real number) at which the actor saturates

upperBound The upper bound (a real number) at which the actor saturates

If the lower bound is set to —oo and the upper bound to 400, this actor behaves like an ordinary integrator.
The source code of this class can be found in the directory ptolemy/domains/ct/1ib.

120
121
122
123

120
121
122
123

3 Budfixes

Working with Ptolemy II version 7.0.1, I noticed four annoying bugs:
* The simulation step size shrinks continously during simulation, until the simulation nearly freezes.
* MultilnstanceComposites do not work with continuous-time models.
* FirstOrderHold elements do not behave identically to a combination of a ZeroOrderHold and an integrator.

* When using transfer functions in the Laplace domain, the simulation sporadically terminates with the error
message “Graph is cyclic”.

3.1 Shrinking Step Size

Even if a fixed-step solver is chosen in Ptolemy II, the simulation step size is not constant. The reason for that is that
asynchronous events may occur at any point in time in between two steps. In that case, the step size is reduced
appropriately and the model is re-evaluated at the time of the asynchronous event.

However, the step size was not returned to its former value afterwards, but the new, reduced step size was used
instead. Sooner or later, another asynchronous event would lead to the step size being reduced again, so that the
step size keeps shrinking during the course of the simulation. In extreme cases, the simulation would grind to a
halt.

My solution was to change the return value of the method integratorPredictedStepSize of the
FixedStepSolver class in the package ptolemy.domains.ct.kernel.solver:

Listing 1: Original Source Code of the integratorPredictedStepSize Method

public final double integratorPredictedStepSize (CTBaselntegrator integrator) {
CTDirector director = (CTDirector) getContainer();
return director.getCurrentStepSize();

b

Listing 2: Modified Source Code of the integratorPredictedStepSize Method

public final double integratorPredictedStepSize (CTBaselntegrator integrator) {
CTDirector director = (CTDirector) getContainer();
return director.getlnitialStepSize ();

b

This way, the step size keeps being reset to its initial value.

3.2 Dynamic Instantiation of Continuous-Time Submodels

The MultiInstanceComposite construct allows creating arbitrarily many instances of a given sub-model. A
MultiInstanceComposite actor is a container for a sub-model and has a parameter nInstances which speci-
fies how often this sub-model shall be instantiated. The sub-model must have a director of its own.

In Ptolemy II version 7.0.1, it is not possible to instantiate continuous-time sub-models this way, for the following
reason: Two different directors, CTDirector and CTEmbeddedDirector, exist for continuous-time models. The for-
mer can only be used at the top level, and the latter is intended to be used within continuous-time sub-models inside
other domains. Since there already is a CTDirector at the top level, it is not possible to use another CTDirector
inside the MultiInstanceComposite. Using a CTEmbeddedDirector is not possible either since that director ex-
pects its container to implement the CTStepSizeControlActor interface, but the MultiInstanceComposite class
does not implement that interface.

The problem no longer exists in Ptolemy II version 8, (available since October 2010), in which the CT do-
main has been replaced by the Continuous domain. Edward A. Lee wrote in the ptolemy-hackers mailing list
(ptolemy-hackers@lists.eecs.berkeley.edu) on April 18™, 2009:

The solution for this is to use the ContinuousDirector rather than CTDirector. However, this domain
is not quite finished yet. The actor library is incomplete, for example. It has also not been thoroughly
tested, and the current scheduler is probably somewhat inefficient.

Basically, CTDirector taught us quite a bit, including how to implement composable continuous-time
models correctly. The approach is documented here:

http://ptolemy.eecs.berkeley.edu/publications/papers/07/unifying/index.htm

I hope we can finish this within the next few months...

A possible workaround is to use the scripting feature described in section 1 and in particular the ptgenerate
command (see section 1.5) [SGK10].

3.3 First-Order Hold Elements

A ZeroOrderHold element has an input x; and an output x, which remains constant after a token has arrived at
the input until the next token arrives. A FirstOrderHold element has two inputs x;; and x;, and its output x,
linearly increases at a rate of x;,, starting from x;;, after tokens have arrived at the inputs. Let t; and t, be two
points in time at which successive tokens arrive at the inputs. For the ZeroOrderHold,

xo(t) =x;(t1), t; St <ty, 1)
and for the FirstOrderHold,
Xo(t) =xp1(t1) +xp2(t1) - (t = tq), t; St <ty (2

The output x,(t) of a FirstOrderHold is continuous at time t, iff x;;(ty) = x;1(t1) + x52(t;) - (t5 — ;). In that
case, a FirstOrderHold should behave identically to a ZeroOrderHold followed by an integrator.

Apparently, this is not always the case, and the output of an integrator following a ZeroOrderHold is some-
times different from the output of a corresponding FirstOrderHold. The reason for that is probably that the
FirstOrderHold class implements the CTWaveformGenerator interface, but the Integrator class implements the
CTDynamicActor interface, and the director calls the different actors in different phases of the simulation.

Therefore, I prefer to use ZeroOrderHold elements followed by an integrator instead of FirstOrderHolds, which
is of course only possible as long as there are no discontinuities in the signals in question.

3.4 "Graph is cyclic”

When using ContinuousTransferFunctions, the simulation is randomly terminated with the error message “Graph
is cyclic” if an explicit solver is being used. The reason for that is that Ptolemy II builds a linear sub-model com-
prising Add, Integrator and Scale elements at run-time. In some cases, Scale elements with zero gain are being
instantiated in the process, and Ptolemy II is not able to remove these from the model. If these elements are on the
feedback path, Ptolemy II detects an algebraic loop, which an explicit solver cannot resolve by itself.

4 Handling of Data in CSV Format

In the context of a cooperation with the GSI Helmholtz Center for Heavy-Ion Research (GSI), I created a Java
library to handle data in CSV format [RFC4180]. The GSI aims at standardizing their internal data formats used
in RF control based on that format [KZ11]. Fig. 6 shows the class diagram of that library. The source code of this
library can be found in the directory gsi/rf/data.

http://ptolemy.eecs.berkeley.edu/publications/papers/07/unifying/index.htm

package gsi.rf.data
package gsi.rf.data.csv

CSVReader

+ DEFAULT_FIELD_SEPARATOR_SET : Set< Character>
+EXTENDED_FIELD_SEPARATOR_SET : Set<Character>
+ UNSUITABLE_FIELD_SEPARATOR_SET : Set<Character>

+ setAcceptableFieldS eparators(Set<Character>) : void
+ tumStrictParsing Of() : void

+ tumStictParsingOn() : void

+ read(File) : CSVDocument

Amer

T
\
parser
\

+ equals(Object) : boolean
+ getContent() : String
+isEmpty() : boolean

+ setContent(String) : void
+ trim() : void

package g,si.rf.dala.cs\il])}ve/ \ N
\ N
CSVScamer \ ' \
+ DEFAULT_FIELD_SEPARATOR_SET : Set<Character> CSVParser : AN
+ EXTENDED_FIELD_SEPARATOR_SET : Set<Character> | persE— N
+ UNSUITABLE_FIELD_SEPARATOR_SET : Set<Character> ‘I N
\
+ advanceState(char) : boolean -+ advanceState(Token) : void ‘I ‘\
+ begin(Sting) : void -+ begin(String) : void 1 reads &retuns | + tumTrimmingOff() : void N
+ consumeToken() : Token + getDocument() : CSVDocument ' + tumTrimmingOn() : void \
+ hasToken() : boolean + terminate() : boolean \ + write(CS VDocument, File) \
+ setAcceptableFieldSeparators(Set<Character>) : void + turnStrictParsing Off() : void i + write(CSVDocument, File,boolean) \
+ terminate() : boolean + tumStrictParsingOn() : void ‘\ B \
+ tumStrictScanningOff() : void / " N \ / N
+ tumStrictScanningOn() : void 4 \ Sl Y)/ \
v . \ Mmoo S \
' N L, \ \ I ~ \
tokens produces dhwows +” consumes \ parses &refluns rwrites ‘wows
\ N Seeo- M v N v
' RN CSVDocument \ |
I / N \ \
\ K N \ |
\ , S + addField(CSVField) : void \ \
"2 k N + addRecord(CSVRecord) : void ! H
Token N + clear() : void | \
A + countRecords() : int 1 !
TlegalCharacterException + equals(Object) : boolean ! !
+ Token(String, int, TokenKind, String) + getField(int,int) : CSVField [|
+ getFileName() : String + getFieldContent(int, int) : String, ! |
+ getKind() : TokenKind + TlegalCharacterExc eption(String,int, char) + getRecord(int) : CSVRecord | |
+ getLineNumber() : int +isEmpty() : boolean ! !
+ getText(): String + records() : Enumeration<CSVRecord> | i
+ removeDuplicateRecords() : void \ I
+ setRecord(int, CSVRecord) : void H ,
+ setField(int,int, CSVField) : void v I
+ setFieldContent(int,int, String) : void ‘\ :
+tHm() : void \ |
\
. | .‘
nd " :
y v
TokenKind * ParseException
WHITESPACE L + ParseException(String, String)
CARRIAGE_RETURN + addField(CSVField) : void + ParseException(String, Throwable)
LINE_FEED + countFields() : int \ + ParseException(String, String, Throwable)
LINE_BREAK * equals(Object) : boolean e cor + ParseException(String,int, String)
QUOTATION_MARK + getField(int) : CSVField 1 + ParseException(String int, Throwable)
ESCAPE_SEQUENCE + getFieldContent(int) : String | + ParseException(String int, String, Throwable)
FIELD_SEPARATOR + isEmpty() : boolean \ + ParseException(Stringint,int, String)
TEXT_DATA + setField(int, CSVField) : void | + ParseException(String,int,int, Throwable)
+ getDescription() : String + setFieldContent(int, String) : void + ParseException(String,int,int, String, Throwable)
- i S a—. | + trim() : void ‘I
T :
fields)gets / sets)
" Y v
CSVField
+ CSVField(String)

N

javalang, Exception

Figure 6: UML Class Diagramm for Handling of Data in CSV Format

Bibliography

[DeJ0O8]
[Guo08]

[Han06]

[Kli+07]

[KZ11]

[PGK10]

[RFC4180]

[Sam+11]

[SGK10]

[Sur+11]

[The07]

Mo DeJong. The Tcl/Java Project. 2008. urL: http://tcljava.sourceforge.net.

Tao Guo. “Analyse und Implementierung eines Losungsverfahrens fiir Differentialgleichungen mit
Totzeit in Ptolemy II”. Diploma Thesis. Technische Universitdt Darmstadt, Institute of Microelectronic
Systems, 2008.

Liang Han. “Reconfigurable FIR Filter for Large Tap Distances and Low Tap Counts”. Bachelor Thesis.
Technische Universitdt Darmstadt, Institute of Microelectronic Systems, 2006.

Harald Klingbeil, Bernhard Zipfel, Martin Kumm, and Peter Moritz. “A Digital Beam-Phase Con-
trol System for Heavy-Ion Synchrotrons”. In: IEEE Transactions on Nuclear Science 54.6 (2007),
pp. 2604-2610.

Harald Klingbeil and Bernhard Zipfel. “Data Analysis File Formats for RF Applications”. Version 0.80.
May 2011.

Surapong Pongyupinpanich, Manfred Glesner, and Harald Klingbeil. “Implementation of Realtime
Pipeline-Folding 64-Tap Filters on FPGA”. In: Proceedings of the Conference on Ph. D. Research in
Microelectronics and Electronics. 2010, pp. 1-4.

Internet Engineering Task Force, ed. Common Format and MIME Type for Comma-Separated Values
(CSV) Files. Request for Comments 4180 (2005).

Faizal Arya Samman, Pongyupinpanich Surapong, Christopher Spies, and Manfred Glesner. “Floating-
point-based hardware accelerator of a beam phase-magnitude detector and filter for a beam phase
control system in a heavy-ion synchrotron application”. In: Proceedings of the International Confer-
ence on Accelerators and Large Experimental Physics Control Systems. 2011, pp. 683-686.

Christopher Spies, Manfred Glesner, and Harald Klingbeil. “Statusbericht zum GSI-Projekt ‘System-
modellierung und Vernetzung der digitalen Mehr-Kavitaten-Regelung fiir das FAIR-Projekt’ — A Stan-
dard Scenario for Future Design Space Exploration”. Berichtszeitraum Januar bis Juni 2010. Dec.
2010.

Pongyupinpanich Surapong, Christopher Spies, Manfred Glesner, and Harald Klingbeil. “Design of
frequency-variable digital filters for beam phase control”. In: GSI Scientific Report (2011), p. 340.

Alexander Theisen. “Implementierung, Optimierung und Systemintegration eines FIR-Filters in
VHDL”. Bachelor Thesis. Technische Universitdt Darmstadt, Institute of Microelectronic Systems,
2007.

http://tcljava.sourceforge.net

	Batch Processing
	The ptloadmodel Command
	The ptgetparameter Command
	The ptsetparameter Command
	The ptrunmodel Command
	The ptgenerate Command

	New Actors
	The DeadTime Actor
	The CSVRecordReader Actor
	Ports
	Parameters
	Source Code

	The CSVRecordWriter Actor
	Ports
	Parameters
	Source Code

	The TappedCircularBuffer Actor
	Ports
	Parameters
	Source Code

	The CyclicIntegrator Actor
	The AntiWindUpIntegrator Actor

	Bugfixes
	Shrinking Step Size
	Dynamic Instantiation of Continuous-Time Submodels
	First-Order Hold Elements
	``Graph is cyclic''

	Handling of Data in CSV Format

