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Sumar y

The main objective of his thesis is to develop an integrated approaclhior the
computation oHeight Reference Surfaces (HRS) in the contexaNESpositioning. For this
purposethe method oDigital Finite Elementeight Reference Surfaseftware DFHRS) is
extended, allowinghe use of physical observations in addition to geometrical observation
types. Particulaemphasiss put on (i) using Adjusted Spherical Cap Haronics to locally
model the potential, (iideveloping aparameterization of coefficient®r a least squares
estimation and(iii) optimizing the combination of data needed to calculate the coefficients
particular the selection ofthe terrestrial gravity measurements, heifjtiing points with
known ellipsoidal and normal heights, and the use of the available global gravity models as
additionalobservations armvestigated One of the main motivations is the needoonputea

high precise local potential model with the ability to deralé components related to the
potential W.These observation components are grdyjtguasigeoid height , the geoid

height N , deflectionsof the vertical in the east and north directidgnx), the fitting points
(/,f/,h|H) and the apriarinformation in terms of coefficients of a local potential model
derived fromthe developed methods @aimappingf a global one.

This thesisprovidesa methodor local and global gravity and geamlodelling The Spherical
Cap Harmoits (SCH) for modelingthe Earth potentialare introducedn detail including
their relatiorship to the normal Spherical Harmoni¢SH). The different types oSpherical
Cap Harmoits, such asAdjusted Spherical Cap Harmaes (ASCH), TranslateeOrigin
Spherical Cap Harmars (TOSCH) and the Revise&pherical Cap Harmaes (RSCH) are
discussedThe ASCH method was chosen in further foodeling the local gravitational
potential due to its simple principle, that the integer degree and order Legendre functions are
preserved and lead to faster implementation algoritAing. ASCHare usedin this thesiso
transform the global gravity moldelike EGM2008or EIGENO5cto local gravity models
guaranteeinga much smallernumberof coefficientsand making thecalculations faster and
easier

Testsareapplied to validate the use of ASCH for local gravity and potemt@elling with
ASCH coefficients calculated in test areas. Thesefficientswere used to calculatthe
values of potential or the gravity for new points ahdncompared with the real measured
valuesandreference values from globalodels. Theests include¢hetrarsformation of global
gravity models like EGM2008 arlBlIGENO5cto ASCH models and the integrated solution of
heterogeneous groups of dataluding terrestrial gravity data, heighitting points and the
locally mappedglobal gravity models.

The regionof the federal state oBadenWirttemberg in Germany was used as a testfarea
this thesido provethe conceptNearly 15000 terrestrially measurgrhvity observationgere
used tamplement al’ASCH modelin degreeand ordeiof 300 in orderto achieve aesolution
of 0.01 mGdltthatcorrespondso the measurement accuracy.

'1mGal = 13 10°ms?



Zusammenfassung

Die Zielsetzung diesefhesis ist die Integration physikalischer Beobachtungen der
geometrischer Beobachtungen und die Implementierung dieses Ansatziés DFHBF
Software zur Berechnung einergi?alen Finiten Hohenbezugsflacheim die Berechnung von
Hohenbezugsflachen zu ermdglichen. Die Schwerpunkte liegen insbesondere auf (i) der
Verwendung vorAdjusted Spherical Cap Harmonics (ASCH) zur Modellierung deslek
Potenzials, (ii) der Berechnung einer KleinQeadrateAusgleichung zur Bestimmung der
ASCH-Koeffizienten und (iii) einer zur Berechnung notwendigen, optimalen Datenfusion
unterschiedlicher Beobachtungkomponenten, die sich aus terrestrischen Sassaraan,
Hohenpasspunkten mit bekannter, ellipsoidischer Hohe und Normalhéhe und der aus globalen
Schwerefeldmodellen in die regionalen ASGtddelle abgebildeten apriori Informatiobie
Motivation zu dieser Arbeit besteht in der Notwendigkeit, ein imtegs Modell zu
entwickeln und daraus alle Komponenten, die sich auf das Potenzial W beziehen abzuleiten.

Diese sind u. a. diGravitationsbeschleunigulg Quasigeoidhéhen, die GeoidhtheNg
,unddie Lotabweichungem Nord und Ost 4,z ) und dieH6henpasspunkie ,/,h|H ).

Die Thesis stellt einige der weit verbreiteten Methoden fur lokale und globale Schwerefeld
und Geoidmodellierung vor. Im Anschluss werdspherical Cap Harmaes (SCH) zur
Modellierung des Schwerepotentials und ihre Beziehung zu normalen Spherical Harmonics im
Detail prasentiert. Die verschiedenen Arten flr Spherical Harmonics wie Adjusted Spherical
Cap Harmonics (ASCH), Translate@rigin Spherical Cap Harmdos (TOSCH) und die
RevisedSpherical Cap Harmaes (RSCH) werden diskutieDie ASCH werden deshalb fur

die Modellierung des lokalen Schwerepotentials favorisiert, weil sie einem einfacheren
Algorithmen und Design unterliegen und LegemnBunktionen mit ganzzahliger Grad und
Ordnung verwendemMithilfe der ASCHwerdenglobak Schweremodeiwie EGM 2008 und
EIGENO5c zu einem lokalen Schweremodell transformiert, sodass eine deutlich geringere
Anzahl an Koeffizienten bestimmt werden mussdudie Berechnung vereinfacht und
beschleunigt werden kann.

VerschiedeneTests verden herangezogenum die Verwendung von ASCH zur lokalen
Schwerefeld und Schwerepotentialmodellierung zu validier@abei werden i@ ASCH
Koeffizienten in den Testbereiahéerechnet. Diese Koeffizientemerdendazu verwendet,
Potential und Schwerewerte fir neue Punkte zu generieren, die mit den realen gemessenen
Werten als Referenzwertend mit den globalen Modellen verglichen werden konntere

Tests beiehensich auf @mem neuen Ansatz zur Transformation globaler Schweremodelle,
wie EGM2008 und EIGENO5c, in ASCModelle zur Integration hybrider Datentypen wie
terrestrische  Schweredaten, Hohenpasspunkte und lokal transformierter globaler
Schweremodelle.

Zur Verifizierung des Konzepts wurde in Rahmen dieser Arbeit das Bundesland -Baden
Wirttemberg in Deutschland als Testgebiet ausgewahlt, in dem nahezu 15000 terrestrisch
gemessene Schwerebeobachtungen mit Grad und Ordnung von 300 parametrisiert wurden, um
eine der Messgenakeit entsprechende Auflésung von 0.01 mGal zu erreichen.
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1. Introduction

The availability of GNSS related codand phaseneasurementifferential GNSS (DGNSS)
RTCM correction messageas wellasprecise point positioning (PPP), which arepded by
different by GNS$&positioning serices worldwide lead to the peacement of classical teest

rial gealetic rderence framedor the georeferencing of positionk.g. in Germany, several
millions of trigonometric plaa and he&ght positions have been replaced by different online
GNSS services operating in the GNSS almdernational Terrestrial Reference Frame
(ITRF)corsistentframe ETRF89Jagetet al.,2006).

The station coordinates tiese GNS®nline positioring services argiven inthe ITRFframe
or regional adoptionsof it, like the time invariantETRF89 for the stable part of Europe.
Examples in Germany are the SAPQ®vw.sg0s.d¢, AXIONET (www.axio.nej, VRSNow
(www.trimble.com/positioningservices/vranow.asp), and SMARTNET(de.smartneeu.om)
services, with 150250 stationsationwide (Jager, 2011)Furthernetworks in European states
and others round the worlite available Such servicecan providethe end user withighly
accuratereal timepositionsat a relativdy low cost. In carepording GNSS online processing,
the positioning protdm is divided into two parts$iorizontal paitioning and vertical positioning
(Jager, 2011). The horizontal position is transformed to the tmmaldinate systemthrough
geometrical datum trafmmations and residuslinterpolation followedby a specific map
projection. In this way the horizontal positrcaneasily be mergedwith other traditional
horizontal positioning techniques (Jageml.,2010).

For the vertical position gight) the situation is different, because the GNSS height is the
geometric height measur ed al on (llipsoida heglmt hyma I
Thesoc al | ed physi call ehlveeil g hhtesi glht @ , isvda c h
leveling ingruments referto the Earthgravity field (Jekeli, 2007)They are based on potential
differences to the reference potentiaj ¥d thezero level(geoid. The vertical datunms fixed

in modern height reference systems by the geopotential nuwhbeeor moredatum reference
points.

Oceans H =h - N

Figure(1.1): The principle of GNS®ased height determination: H = IN (Jageret al.,2012).
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In Europe the Normaal Am$ e r d a m@N\#&\P) B d¢hie Ireference point for thEuropean
vertical reference system (EVRS200Mepending on the detailed and slightly different
physical definition of the basic height system types, thesghts Hare called orthometric
heighs, normal or spheroid normal heights (Migights). The respective kit reference
surface (HRS) is described with the symbol Nfigure (1.1), and it is called the geoid
guasigeoidr NN-surface, depending on the kind of the above gravitgt hased height system
(Schneid 2006).

The aim of the DFHRS research projecit the Institute of Applied Research (IABj the
Hochschule KarlsruheUniversity of Applied Sciences (HSKA$ the parametrienodelingand
computation of HRS from geometric and physical observation components in a hybrid
adjustment approach (DFHRSAccess to theparametric HRSnodelis enabled byDFHRS
datdbases(DFHRSDB), which allow the direct conversion of GN&8ights h into physical
standard heights H. DFHRS datses are used for online GNB&gh determinationin
DGNSSnetworks SAPOS AXIONET, etc) directly on the GNSS controllers and WA CM
transformatiormessagem the real time GNS$ositioning andin GIS. The DFHRS datzases
havebeen computetbr different states in Germangs well ador several nations and regions
in Europe, Africa andn USA. In most of thesareas the DFHRSDB areused aghe official
vertical referencesurface The accuracy othe obtained results varies from 001 meter
(Jageret al., 2006. Recently the terrestriagravity measurements have been integrated in the
DFHRS usinghe SphericaCap Harmoits (SCH) to model the disturbingotentialT and the
related quantities like gravity anomalies, gravity disturbgngeoid heights and deflections of
thevertical (Schneid, 2006).

The main objective of this thesis is to further develop the S@btleling startedby Schneid
(2006), and to find morstable parameterizationsither by modifying the presei@pherical
Cap Harmoits or by using alternative$or the physical obseations.

Among the different types ddCH models the AdjustedSpherical Cap Harmars (ASCH)
models haveadvantages over the other types of SCH (De Santad.,1997). ASCH do not
require a search for the roots of Legendre function and its derivatives to satisfy the
orthogonality requirements. The roots of the Legendre functions in the case of ASCH can be
calculated easilysinga direct formulawith no need forcomplex andterative solutions DE
Santiset al.,1997) In addition,the Legendre functions of integer degree and order areinsed

the principle of ASCH This enables the use of the wetiown reairsive and notiterative
formulas of Legendre functionssimilar to the odinary Spherical Harmonics (SH) (De
Franceschet al.,1994). Forthesereasos, the ASCH have been chosen for modeling gravity
and potentiain regional areas

One goal of this thesis isto find an optimal way for the combination of the geometric
observations (e.g. fitting points with known ellipsoidal and normal heightglafeictions of
the) and physical observatisife.g. gravity data) for the HR@®presertationusing theAdjusted
SphericalCap Harmoits (ASCH). In the solution, the recent global gravity models presented
by means ofSpherical Harmong (e.g. EIGENO5¢c and EGM2008) are transformed to local
ASCH models and used as additional input in the adjustoigehe combinedASCH solution
Another objective ofthis studyis to compute a high precise height reference surface (1cm
accuracy) for the state of Bad@vlrttembergusingthe ASCH model forthe combnation of
global gravity modelgerrestrial gravity da and heighfitting points.




In the following Chapter(2) the general methods for global and local potential modeling using
Spherical Harmonicsthe Stokesformula, leastsquares collocatiomnd theFinite elements
methodsare introducedThe principle of Integrated Geodesyg also introducedanda general
overview of the stateof-the-art of the latest global and local gravity and geoid models is
provided

Chapter (3) introduces the locafravity potential modeling using SCH and ASCH. The
derivations of SCH and ASCH are explainéa detail Other modifications 0SCH, as wellas
other carrier functions for locahodelingof the potential ar&reated

Chapter(4) describesthe principles and resultsf the transformations of theladpal gravity
models presentedy SHto local ASCHmModels and theresults are discussed and validated.
addition, the design of the observations in the horizontalartetal directions is discusseahd
tested.

The use of Integrated Geodesy fynavity potential modeling using ASCH is explained in
chapter(5). Solution algorithms using direct least squares solutions are introduceckdLined
reductionsand transformationsf the different observation types are explain€tle observation
equations as wkhs stochastic models are discussedatail. Additionally, numerical methods
and aspects are discussed. The methods of Cholesky decomposition, blockOnalesky
decomposition and parallel processing are pitesented

Chapter(6) discusseshe resilts and analysi®f the Quasigeoid computatiorisased orgravity
data by thelevelopedASCH approach fothe state bBadenrWirttemberg Differentdatatypes
of geometric and physical observatiooembinationsare introduced. The resulsf these
differentdata combinations apresented

Chapter (7) summarizesthe thesis and its final results. In additiompnclusions and
recommendationfor furtherresearclaregiven




2. Global and local gravity field modeling

This chapter introduces the potentilthe Earthand itsapplications basednNe wt ond6s | aw
attraction the relatioship between the potential and the attraction force is explained. This
chapter shows the solution of Laplacgequation using th&H malel, which is applied to

gravity field modelingof the Earth The relatioship between the actual gravity field and the
normal gravity field of theEarthis also explained whereby the anomalous gravity field is
introduced.

The common way to represent the potential of Haethis by SH, but the related methods
require aglobalmodeling There isalwaysa need to model the potential by other methods with
local supportfor nationaland regional needddere,some of the common methods for local
modeling of the potential of thEarth are discussedSuch suitablenethods arghe Stokes
integral for gravimetric geoid modeling, the lesgtiares collocatioandthe DFHRS developed

at the Karlsruhe University of Aglied Siences.

The so calledintegrated Geodesprinciple, where combination of different data typsfs
observationls:I(fWQ\(fp)) are modeled inthe gravityand geometry spacés also briefly

discussedin addition the stée-of-the-art of thelatest globahndlocal geoid and gravity models
is presented

2.1. The gravity field of the Earth

The attraction force F between two massntsx andd [kg], separated by a distancent][
can be calcul at ed a cattractich (equgtio2-19 (HNmeanWellenhaf | a w
& Moritz, 2005).Theattraction force Feads

G
F= G_mllznz (2-1)

Her e, G is Newtonds graviegaxt mad Q@ o.riTket an't
attraction force F is symmetrid.o study how a mass attracts other massethe attracted
masgsassumedo be a unit mas& p). Theforce attracting the unit mass at pdi{X,Y,Z2)

by the massm at Py (Xo, Yo,Zo )separated by a distankis (Heiskanen & Moritz, 1967):

m
F= G|_2 (2'2)
The force F is represented by a vector frdPg to P. The vector of the gravitational force

can be defined by its magnituBfeand 3D componentsf the unit vector (Fan, 20041}\.Jis given
by

c Fxo X - X,)/ g X - X,)/ g
F=% Y=-F&v-v)n Y= GMe(\( AU 2-3
=T RAY Yo = T dY - YTy (2-3)

.0 HZ-Z)/lH &z-z) ¢




The gravitationapotentialis a conservativewhich satisfies the.aplace differentialequation
outside theEarth(see chapt@:1.1).A scalarforce generatingpotentialexists. This function is
calledthe gravitatioal potential V ¥, Y, Z) (Fan, 2004), wher¥ reads

V(X,Y, Z)= GI—M (2-4)

Theunit masselated forcevectorF in equation (23) can be rewritten in terms of V as follows:

F =grad(V) (2-53)
W g
€y U

_é- u_¢guvy -

P uTayu (2-5b)
g~ 4 é,,u
ey
epz g

Assuming a system of point massegs m... m, are attracting the point P, and sepedafrom

the point P by distancds, I, ,...,I, then the gravitational potential V is the summation of all
single potentials (HofmarwWellenhof & Moritz, 2005) Thetotal gravitationalpotentialis:

VX, Y, 2)=4V, =4 20 (2-6)

i=1 i=1 Ii

If the point P is influenced by a solid body wéhvolumev and adensityof r(X,Y,Z), then

the potential V is calculated @ysuperimposingnfinite number of point massesn The point
mass can be calculated by the volume of point maasd the density, reading

dm= rdv (2-7)

Thetotal gravitationalpotentialby the solid body is calculated ltye integratiorover the whole
volumeof the solid body{Torge, 2001). V is given by

LAX.Y,Z)dv
nn

V=iV =Gf |

\Y

(2-8)

2.1.1.Laplace differential equation andSpherical Harmonics (SH)

For a function V(X, Y, 4, the Laplace equation for this functionthieL a pl| ace oper at o
and readgFan, 200

D(V) * WY BV Y

2 2 > =0 (2-9)
pX= py®  pZ

Using spherical coordinatérsl?,/) as defined in fig 4.1), Lapl aceds equat
transformed to:




(2-10)

X

Figure(2.1): Geographicoordinates_fiQand thesphericakcoordinates h_fo.

Assumingthatthe density is constan{} is given the alue of the average density of tBarth

and dv is the same for all elementhenonly | is changing for each element. The Laplace
operator for the gravitati@h potentialin equation (28) is given by

a-n KNG _ o
D(V) = D36 = G PPN =0 2-11
)=DSh A= CN A, (2-11)
AsD(%):O, V is a harmonic function. The solution of Laplacgquation isfound by

separating the variable€hA T A using the substitution in equation {22) (Fan, 2004)
reading:

V(.7 /)= 1,0 () 1,()

(2-12a)
fl(r):rTl+1 n o= 0,1,2,6 (2-12b)
f,(F) =P, (sinf) n=0,1, 2, é -Jann d m&a2c)l, 2é, n
f,(/)=cosm/ or sinm/ m=

0, 1,12n, é. n (2-12d)

In equation (ﬂZ),an(Sinf) are the Legendrefunctiors of degreen and orderm. Assuming

sinf =t, the Legendre function is generally defined by the differential formula in equation (2
13) (HdmannWellenhof & Moritz, 2005):

. ~ 7 d"P,(t)
0 o — O 72 W2 _qyn
5 P 3 (t°-1)

(2-13)




As the differential equation {20) is linear, for each integer n there issalution The

summation of all solutions is also a solution faplacé equationYe 1. The potential V can
be written in terms of surface Spherical Harmonics (SH) inaggn (215) (Hofmanmn

Wellenhof & Moritz, 2005).

V7 ) =4 1 8 Al ) @14
Y (Fil)= gecosm/ ‘(smf) ,m¢O0 (2159
[smm/ (sinf) ,m>0
Al o e
Equation (214) can be reformulated as dda summation. In this caseré€ads
ViF =5 }ﬂ 8 (8, COSTY b,/ )R (5i0F) (2-16)

n=o I

2.1.2.The normalized SH

As shown abovethe gravitatioal potential Vsatisfies the Laplace equatidn equation (2.4),
V was modeled to solve the Laplace equation in tern&bfWhen higher degrees and orders

Legendre functiond?,.(t) are calculatednstability problems appear in the calculations (Fan,
2004). Toavoidtheseissuesanormalized form of equation {24) is introducedn equation (2
17)using the normalized Legendre functioﬁ%(t) (Sneeuw, 2006)

V(rF )= a S8 AN (2-17a)
V ( )_ fnm nm(f /) (2'17b)
ISnm t) - fnm nm(t) (2-17C)
e (2-17d)

—

nm

Finally, the potential V reads:

v(r,f,l)= a nl+1a (@nmCOSMV +bnmsSiNM/ ) Pram(SinF) (2-19)

0 m=0

The normalizing function f .. in equation (217) reads (Torge,2001)

eJ2n+1 ,m=0

(2-19)




The coefficientsa.mand b.m are constantswhich have to be determine@ihey aregenerally
calledthe spherical harmonic coefficients.

2.1.3.The normalized Legendre functions

Substituting the normalizing functiorf,,,, in equation (219) in the recursive formula of
Legendre function P, , in equation (213), thefully normalized legerdre functionin equation
(2-20) is realized P,_(sinf)is the fully normalized associated Legendre functipn(sinf)
can be calculated by theecursive formulas ¢20), with the abbreviations t=sinf and
u=cosf (Holmes & Featherstone, 200&3 follows:

= a"nmtlsn-l,m - bnmﬁn- 2m (2-208.)
_ [(2n-1)(2n+1) }
anm—\/(n_m)(mm) (2-200)
b, :\/(2n +1)(n+m- 1)(n- m- 1) (2-20c)
(n- m)(n+m)(2n- 3)
Po=1 ., PR =3 R =/3u (2-20a)

If n=m, thenP, , reads:

= /2m+1—
I:)m,m =u me-l.m-l (2'2%)

The first derivative of the fully normalized Legendre polynonnlas;_’—m can be calculated using

the calculated values of the recursive formuragquatios (2-20). Thereis no need fomew
recursive formulaso calculate the derivatives of the Legendre functitims calculated value of

the Legendre polynomiaf_Pmm can be applied directly to calculate the derivativithe Legendre
polynomial (Tscherningt al, 1983, reading:

D 2 2

P":’n%m =Lntp, - \/(n : rzn)(inﬂ)f’n.lm) forn>m (2-21a)
u ' n- '

HE;_'”‘ :%nt P forn=m (2-21b)

2.1.4.Harmonic expansion of theEarth gravitational potential

Equations (217) and (218) are used to evalate thegravitational potential V at a point
P(r,f,/ ) attracted by the solid body of thgarth Equations (20§ to (2-208 are used to

calculatethe Legendre functios The coefficients &.m, bhy) in equation (218) can be used to
evaluate thegravitationalpotential Vatthe point Pcreated by the mass of tearth(Hofmann
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Wellenhof & Moritz, 2005)Depending on the orthogonality cotidins, the coefficients,mand
b.m are given byRgan, 200%

Anm = A @) sosm/ iPam(sinf i) rd 2-223
o1 N ) oSV iPan(sin/) rdv (2-222)
— G ) — L=
brm = A @) BinM/ iPam(sSinfj) rdv 2-22b
el SR iPam(sinf) ( )

By substitutingn=0andn=0, we find boo=0, and@oois givenby (Fan, 2004)
a0 =GP PV GM (2-23)
Substitutingaoo in equation(2-18) results in

VOO = T (2'24)

Tofind 510,511, and 511, we have

a0 = % i 1/F¥in7 dm (2-25a)
au = % Fi IfiEoy iW3cosf idm (2-250)
b1 = % A Jfipif{ iv3cosfidm (2-25¢)

Geographic coordinates of the point elemean betransforned to the Cartesiancoordinates
using equations (26a) to (2-260).

risinfi=zj (2-26a)
ricosf icos/ j= Xi (2-26b)
ricosfisin/ i=yi (2-26¢)

Then awo, a11,and by read:

a0 = % A Fin (2-27a)
511=%ﬁ Firp (2-270)
bs = % A P (2-27¢)

In mechanicsthe coordinates of theenterof mass of a rigid bodsre(Torge, 2001):




% = i (2-282)
Yo = i, i (2-280)
%=~ 1 (2-280)

aw= % z (2-29)
an= GT';" X, (2-2%)
~_GM

b11= ﬁ Yo (2'290)

For a properlychosenreference framethe origin of the coordinate system coinciagéth the
center of mass of thiearth. Therefore xo, Yo andzp are equal to zeraneaningthatthe related
coefficients are zero as well.

=a,=b,=0,=0 (2-30)
Inserting equatioif2-24) and(2-30) in equation2-25) results in

V(r, f /) —GTM+a n1+1a (anmcosm/ +bnmS|nm/)an(S|nf) (2-31)

n= 2 m=0

The spherical harmonic coefficiengs.mand b.min equation (231) can be normalizedsing the
gravitationalconstantGM and the semimajor axis of the reference ellipsiids shown in

equationg2-32a) and(2-32b) to get newnormalizedcoefficientsC,mandS,m(Fan, 2004).

Com=— T am (2-32a)
a"GM

Som= ' bom (2-320)
a"GM

Inserting(2-32) in equation2-31) results inequation(2-33a) or equivalently2-33b).

GM  GM :

V(r,F,1) —T+?a( )”*1a (ComCOSMV + SomSINMY ) Pon(SiN£) (2-33a)
n=2 m=0

V(r, f /)—GTM+GTMa( =)" a (Cnmcosm/ +SnmS|nm/)an(S|nf) (2-33b)
n=2 m=0
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2.1.5.Derivatives of the potential of theEarth

A point Pon theEarthb surfaceis subjeced to two types of acceleratigaeefigure3.1). The
first typeis the gravitational acceleratigrart g, due to theEartld s maEhe seddndypeZ

is the centrifugal acceleration duetoffemthtd s r ot at i on. Tg‘ﬁ\j & the edtta |
summation of both gravitational and centrifugal acceleratigan,2004), which representhe
actual gravity vector:

I

\ &
g =9+

&
4

(2-34)

Therelationshipbetween the accelerations in equati2/34) and their related potential is given
. . . . A~
in equation(2-35). The totalgravity potential W, created by the total accelerati@n is the

summation of the gravitationabtential V andthe centrifugal ptential W . This total gravity
potentialis given by:
(2-35)

W=V+W

45

P(X.Y.Z)

Referece ellipsoid

Earth surface

Figure(2.2). The gravitational and centrifugal accelerations offbgh(Fan, 2004).

The centrifugal potential is caused by rotation of #ha&th around it minor axis. The

centrifugal acceleration vector withereforehave only two components in the X and Y

directions. As the angular velocity of the Eartharound its minor axis i€.7292118 10*s™*
as defined by the GRS80 (Torge, 2001), the centrifugal potential reads:

W= 0.5W2t‘ZCOSI?=%W2(X2+Y2) (2-36)

Its related centrifugal acceleration vector and magnitude are:

WA X @ e’ cosf cos/ 8

é _ U
& grad(W) = ZWZY H:éwzr cosf sin/ () (2-37a)
A N
L u @ 0
o ~2 o ;\2 o ~2
2=[F= \/%M’S +AWVE WG 2 X7y = wir cosf (2-370)
cX+ cHWY+ cll=+
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The total gravity vector is the gradient of theavity potentialW (§’= gradW).This can be
formulated in equatiof2-38) in 3D-cartesian coordinates (Torge, 2001).

G_epW W Wg
&uX uy  uzl (2-39)

In spherical coordinatesquation(2-38) reads:

G_eyw pw HW g
g rcosfW/ rpf (2-39)

Substituting equatioii2-35) in equation2-39) results in

&5 SU(V+V\0 MV +W) H(V+V\03 (2-40)
& W r cosf W/ W

The derivatives of the gravitational potential V in equa{ib40) are given by

W, @ ﬂ geafg (n+1)a (C,mcos(m/ )+S,,,sin(m/ )P, .(sinf)  (2-41a)
W r r n=2 (; m=0
max_ng " n _
W_EM 57828 4 m(S,,,cosf) - C,,, sin(m/ )P, (sin7) (2-41b)
IJ/ r n=2 (;r ~ m=0
max_ng~ ' n P
B - CW4 828 4 C,.cost) + 5,8 (2-410)
”f r n=2 Qr ~ m=0
Thederivatives of the centrifugal potential read:
W 2 cog 7 (2-423)
pr
HW_ (2-42b)
W
WV _ w22 cos sinf (2-42c)
W
The magnitude of gravity reads:
o ~ o ~2
a 9  auv+Wa
9= \/ 8 Hg +§‘(\:Tw)g (2-43)
- (; - Q -

By usingthe SH formulas, it is easy to derive any other functiorgantities relatedo the
potential(Heiskanen & Moritz, 1967)he most referreflinctional quantitiesn equation (244)
&)

O
are thegravity vectod gy _spher in SphericalLGV, J,oy in LGV, quasigeoid height¢height

anomalieyz , the geoid heightN, and deflections othe vertical in the east and north
directions ¢,x) (Fan, 2004).
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I e, o
LGV _Sphere_ SH H v H “g and g-CV -Ellipsoid - p 5. )1 Cg\NyH, (2-44a)
K rcostipe rpiiy] A, U
e’'yu

where the absolute value gaposition P(x,y,z) is both the same. The following quantities (2
44b) to (244e) are referring to the ellipsoid, a modern ellipsoidal georeferencing, and the
respective reference gravity field (at present GRS80):

T

g

7= (2-44b)

Q

N:gl+9'gng=z+9'gng (2-44c)
Q

x=-MW 1 W (2-44d)
MSwon  Go(M +h) pf

pho. BN _ 1 uT (2-44e)

WSee Go(N+h)cosf W

With J2and g the integrated quantities of the reference and the true gravity fieddaR
respectively, along the plumb line (practically and without loss of validity computed along the
ellipsoidal normal) are introduced. is the disturbing potential, defined asethlifference
between the gravity potential W and the ellipsoidal normal poteut{see chapter.2.2) g, is

the ellipsoidal normal gravity faxpoint Q on the sealled telluroid withthe same latitude and
longitude as the calculatigroint and an ellipsoidal height @f, = H"» =h, - z. The telluroid

is defined as the surface whose normal poteptias equal to the actuabtential at pointy,
(HofmannWellenhof & Moritz, 2005)(see figire 2.3). The telluroid is not an equipotential
surface Sy, and Sz are the differential distance elements towards North and East,

respectively. M and N are the ellipsoidal radii of curvature in the directions of |deg#nd
latitude, respectivelyThe geoid (N)coincideswith the mean sea level and was earlier used
height reference surface by measuringtitie gaugesat the cast of a countryThe difference

in the definitions between the geoid (Hihd the quasigeoid~ ) is discussed in details in

chapter(5.2.2).

P P
C
—
H @ L\Tll id -
— elurol
E
B Geoid H
W, ———
N
Q, Qo Ellipsoid U,

Figure(2.3). Height anomalyz vs. geoid height N
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2.1.6. The spherical harmonic expansion of theEarthd gravity field

The common way for representing the gravitational potential V in a global model is to use the
SH (HofmannWellenhof & Moritz, 2005Presently, there armany global gravity potential

field models available from various sources and with different spatsdluteors. The
International Center for Global Gravity Models (ICGEM) provides access to the various
satellite only or combined models on behalf of the International Association of Geodesy
(http:/licgem.gfzpotsdam.de/ICGEM/ICGEM.ht(ICGEM, 2012) Examplesof these models

are shown in table (2).

Table (21): Some of the common global gravity models witleir data sources

Model Year Degree Data

EIGENO6¢c 2011 1420 S(GOCEGRACELAGEOS),G,A
EIGENO51c 2010 359 S(GRACE, CHAMP),G,A
EIGENO5c 2008 360 S(GRACELAGEQOS),G,A
EGM2008 2008 2190 S(GRACE),G,A

EIGEN-GLO04c 2006 360 S(GRACELAGEQOS),G,A
GGMO0ZX 2004 200 S(GRACEH),G,A

EIGEN-CGOIc 2004 360 S(CHAMP,GRACE),G,A
PGM2000A 2000 360 S,G,A

EGM96 1996 360 S,.G,A

Data: S=Satellitgravity data, G = Gravity data, A = Altimetryath

The calculation othe SH coefficiens can only be solved by means of global data coverage.
This could only be achieved after the first geodetic satathissions (like the LAGEOS,
GRACE, GOCE and CHAMP missiors). The satellite missionare utilizingdifferent types of
measurement princime The LAGEOS satellites applyhe principle 6 Satellite Laser Ranging
(SLR), while the CHAMP missionuses the principle of Satelliteto-Satellite trackingn high-

low mode, where theesidualgravity accelerations ar@dditionally measured by means of an
accelerometerThe GRACE Satellite missioruses the principle of Satellitéo-Satellite tracking

in low-low mode, where the gravity differences between two satellites separated by hundreds of
kilometers are observed. The masbdern GOCE mission use the pinciple of gravity
gradiometryusing a group of accelerometerdixed on the three aseof the satelliteThe
combinationof satellite observationsith terrestrial measurements led to the combined gravity
models (e.g. EGM98A, EGM9&IGENO6c and EGM2008)The SH can be calculated by two
methods thefirst is the integration method that keeps the orthogonality conditions of the SH,
and second is the least squaessmation(Fan, 2004)

The integration methods haweveralproblems. One is that the dataveto be downward
continued tothe zero level (geoid resulting in the so-called surface SH; the other isthat
weighting of observatianof different sourcesis not possibleThe integration formulaso
calculate thespherical harmonicoefficients usinghe gravity anomalieddg and the geoid

heightsN are given by Torg€2001)

of ‘ . AToQ .

“Y A | r U U O E’}T= Q ” (2-453)
6r A0 .

7 A ST i @ (2-45D)
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In the least squares solutidhe introduction of the varian@nd covariance matrices is possible
for each group of data éor anysingle observatiofHofmannWellenhof & Moritz, 2005)

The solutions havealways been applied in two modes: theatelliteonly models and the
combined modis. The advantage of satelit@ly methods is that theyse direct gravity oa
potential functioras inputwithout the need for any reductions or correcti@s the other hand
there is always mixingrelated tothe terrestrial gravity data in the combined methods
Sometimeghe terrestrial gravitydataare free airgravity and sometimes Bouguer anomalies.
The geoid/quasigeoid heights at theightfitting pointsmay alsadbe relatedo different vertical
datuns. They canalsobe in different types of heights likbe orthometric, normal or dynamic
heights For thesereasos, it is more desirabléo havethe satelliteonly models alone without
the combination with terrestrial daféscherning 2001)

The satelliteonly models use data measured over long time periods. This provides information
about time dependerthangesof the Earth like plate tectonics, ocean circulation, ice mass
variations, tidesgtc. Each ofthese time dependent effects will affebetmeasured gravity
values. Foithese reasonthey are suitabléo beusel in definingthe global physical reference
surface (HofmamwWellenhof & Moritz, 2005)

The satellite-only method havea limited resolution whicheads to lower degree and order of
the SH model. In addition, therarealwayssomegaps in thelatg especially near the poldsuyt

the representation of thepiasgeoid requires high degrees and orders with global coverage of
data (Tscherning 2001) For these reasonserrestrial data are requiretd achievehigher
accuracyin the combined models

2.2. The local potential modeling

Here different principles of locapotentialand gravity modelingareintroduced. The methods
discussedin this chapterare the Stokedormula including the removeestore method
GNSS/Leveling the Finite Elements Methods and the Least Squares CollocaticDther
functional principle like SCH andits different modifications, Spherical Radial Basis Function
and Spherical Harmonic Splinase introduced in chapter (3). There are many other principles
available like the astrogeodetic methqds, etc.

2.2.1. Stokes formulaand removerestore method

The Stokes formula (Stokes Integralgrived by Stokes (1849), is one of the most coniynon
usedmethods for the computatiai highly accurate geoid models by meansaajridof surface
gravity anomalie¥C HereYCis the difference between the real gravitythegeoidsurfaceC
observation and the ellipsoidal nornggavity on the ellipsoid surface . The gravity anomaly
YCreduced to geoid level to g¥C to calculate the geoid using free correction and terrain
correctionsWhere/CandYC read

YC C-r (2-463)
YC C - (2-46b)

The point P, i Q and Qare explained in fig2.3). TheStokes formula reads
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a
N=—""& d 2-47
4pg[1$ﬁ()D9 S (2-47)

Here,ais the semimajor axis of the reference ellipsdite Stokes functior®(y ) is given by:
3¢ B —0¢ (2-48)

In equation (247), y is the spherical distance between the point of interest and a grid point
with given gravity anomalyG 0 € is the zero order Legendfenctionrelated toy .For the

implementation of Stokes integrdhe scattered gravity anomalies gravity points have to be
griddedover thecompleteEarthd surface teenable calculation dhe geoid heights

As the Stokedormulahas to be applied globally iprinciple, an enhancement tthis formula
has commonly been used nwodel the geoid height locallysingthe longwavdength effect,
which is introduced by the available global gravity modéfsaddition the combinatiorof the
global models wittdensegravity data and high resolution DigitaéérrainModels (DTM) lead
to the secalled removeaestore technique.

In the removeestore techique, the gravity anomglgrid pointsYCare reduced by the gravity
anomaliescomputedfrom a global gravity modeVC . The effect of the terrairthenhas to
bereduce¥C . The resultant gravity anomalig¢esidual anomalie$jC are applied in
the Stokes formula tobtainthe residual geoid heighs (Torge,2001)The final geoid
height isgiven by

y. y. (2-49)

The use ofremoverestore method enalsiéhe application of Stokes formulas over smaller
areas. This makes it possiblevrk with planar approximationgnablingapplication ofthe
FFT. The use othe Stokes formula is not possible by combination of different tiggas with
different accuracy measurdaurthermorea grid of gravity anomaliesnustalways be used. In
this way the single gravity observations cannot be stiatilly weighted andested according to
the measurement accuradyrge,2012).

2.2.2.GNSSLeveling

The GNSS/GPS leveling can be directly used in the defining the eight reference surface (HRS)
by measuringhe ellipsoidal heights (h) gfoints with known orthometric height (H) or normal
height (H*). Theellipsoidal heightsaare measured directlyy means of GPS/GNSJhe height
anomaly(e =H*) or the geoid heigh(N=h-H) at a givenpoint is directly determinedFan,

2004)

2.2.3.Digital finite elements height reference surfacelfFHRS)
The finiteelement method has been usednfmdelingthe heightreference surfacdHRS) in the

Digital Finite Element Height Reference Surfa@FHRS) project (www.dfhbf.dg9.The
DFHRS research projeet IAF of the Hochschule Karlsruhe University of Applied Sciences
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aims to implerment a parametrimodelingand computation of height reference surfaces for the
geometric and the physical observation components in a hyhustaent approach (DFHRS).
Access to theparametric HRS modeéd enabled bYpFHRS datdbases (DFHR®B), which
allow the direct conversion of GNSfights (h) into physical heigh{sl). DFHRS datébases
are used for online GNSIgeight measurements in DGN&8tworks SAPOS AXIONET etc.)

and inthe Geographic Information Systen1$). The DFHRSDB havebeen computed for
different states in Germany as well as several nations and regions in Europe, Afritee and
USA. The accuracy dahe obtained results varies from 001 meter Jageret al, 2006.

The direct conversion of the elipidal GNSS height h (Ellipsoidal height)etémined at the
Earth surface into the physicaEarth gravity field based physicdieight H, is necesary for
GNSShbased height measurements in modern GN&tioning services (Ghilani & Wolf,
2008). The basic relation between the GMNf&Sed heighth and the standard height
(orthametric heightH) in figure (2.4) reads:

H=hiN (2-50)
| |
Pl
P2

Surface
T —_—
=
N H = Orthometric height |
h = Ellipscidal height MN

l N = Geoid undulation l Ellipsoid
_,—'—'—_‘_'_'_'_ T

Figure(2.4). The relation between orthometric heightellipsoidal height$r andgeoidundulationN.

2.2.3.1Principles of DFHRS

Thegeoidis represented by its height above the Ellipsoithersecalledgeoidundulation (N).
In DFHRS N is represented by the FinilgeementMethod (FEM) with polynomial parameters

p. Thesedescribea finite elementHRS called NFEM(p|/,7,h). If a scale differenceDmis
considered for old reference systems, then the HRS is represented by NFEM|(,7,h)
(Jager & Schneid2002. Equation (250) canthereforebe written as:

H =h- DFHRY p,Dm|/,7,h) (2-51)
Or equivalently,

H =h- NFEM(p, Dm|/,f,h) (2-52)
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The finite element representation NFEM(p|x,y) isiearout by bivariate polynomials of dgree
n, which are set up in gelar or iregular mebkes (Jager & Kalber, 2000). If we deibe withp'
the polynomial cefficients (8o, @o, @1, &o, &1, &z2,...) of thei-th meshof n meshes in total, the
height NFEMp'|x,y) of the HRS over the ell§pidis:

NFEM(p' | x,y)=f(xy)" p (2-53)
P =0p,'17:i=0nk=0nandf(xy)" =(1X,Y, R xy,}2,...) (2-54)

The principle of the DFHRS is to dividearea orregion of a continuous HRStma number of
patcheswith each patchiurtherdividedinto a number of meshes as showifigire (2.5). Each
patch has a datumand associatedransformation parameter®) and each mesh has HRS
parametergp). Continuity conditionmust alsobe considered The NFEM for a point in the
boundary between two meshes should be the same depending on the two thesteealled
Co- continuity), asshouldthe slopeat the boundary for both meshes {salled G-continuity) so
thatthe meshes represent the whatea The DFHRS parameter@) andthe mesh information
are stored ithe DFHRSDB.

The DFHRS geometrical observations ud# points withellipsoidal (h) andnormal or

orthametric heightéH) asidenticalpoints,geoid heights formglobal or regional geoid models
astronomicaldeflections of the verticdlx,/7) from geoid moded andthe points with observed

ellipsoidalheights(h) oorthametric heights (H).
The parameters stored in the DFHRB are p,Dm) and are related to the projected

coordinates (x,y). The polynomial representation of the DFHRS is written in terms of design
matrix f and parameters vectpr

NFEM (p|x y)=f(x,y)" p (2-55)

The observation equation for agllipsoidal normal heightn the ith meshwith covariance
matrix C, has the following observation equation:

h+v=H+hDm+ f(x,y)" p' (2-56a)

The observation equation @ globalpotential mode{(GPM) geoid heighin the +th mesh and
the jth patchis:

Neow +V=f(x,y)" p' +pN(d’) (2-56b)

Thedeflections of the verticah the tth mesh angkth patchobservatiorequations are:

i |
z "‘V:m p'+pz(d,, ) (2-56¢)
frev= N( 7 )codf)+h P pA(dy, ) (2-56d)

Theobservation equation for the physi¢atthametricor norma) heighs reads
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H+v=H (2-56¢€)

The continuity conditiondetween different neighlbo meshes @ considered as additional
observation equations:

C+v=C(p) (2-56f)
£
&is Y
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Figure(2.5). DFHRS patches and meshes, where thick lines represent the patch boundary and thin lines represent
the meshes.

In the equations (B6a) to (256f), uN(d) is the datumparameterization ahe GPMquasigeoid
or geoid grid heightsin the patch pz(d)and pAi(d)are datum parameterizatisnof the
deflectiors of the vertical. f is the partial derivative of(x,y) with respect to théatitude.And

finally, f_isthe partial derivativef f(x,y)with respect to théongitude.

To reduce the effect of mediunor longwavelengthsystenatic shape deflectionspscifically
the naturabnd stehas i ¢ A we a(8chngidh, a00Girstie observations N and,f) from
geoidor GPM malels, these alewvations are subdivided into a niner ofpatchessee the thick
blue in figurg2.5).

2.2.3.2Extensionof DFHRS to physical observations
The DFHRS physical observations include terrestrial, airborne and space baxgy gr

measurements. In additiophysical observations from global or regionagjeopotential model
(GPM) of the Earthgravitational potential V for linted size cap area and cap pokpresented
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by the secalled SCH (S'nm,Cr']m) (see fgure3.1) may beintegratedby use of Spherical Cap
Harmonic (SCHppproach developed [8chneid (2006).

The advantage d8CH is that the number of parameters fbe local cap area significantly
lessthanthat needed iran ordinary globalSH model ThedisturbingpotentialusingSCHin a
cap coordinatesystemas defined in chapter (3,1an be written asSchneid 2006:

kmaxg R X ,
T(r,a,9)= a ge—g a (C' ymcosma+S, ,,  sinma)p,,, .(cosg) (2-57)

k=0 r - m=0

The DFHRS model can be used3@Has a condition so that NFEM=N(SCH).
N~ N(C‘n(k)msn(k)m)' f'p (2-58)

The graity observationg, at theEarthsurface, then with agravity metey refersto the local

astrononcal vertical system (LAV)The respective observed thre@nensional gravity vector
in totalis given by

A :[0’01_ gP]T (2-59a)

The related gravity anomalys Dg =g - g,. The gravity vector can be rotated using the

deflections of the verticék,/) or equivalentlyby the astronomicallatitude and longitude
F =f+x, L=/ +h/cos)) to the EarthcenterecEarthfixed system (ECEF) usingF,L),

(see chapter 5.2.Following this rotation, the centrifugal parts are removed, and the original
observatiorin equation (259a)is strictly reduced with respect to deflectiafghe verticaland

the centrifugal acderation. After a further rotation to the local geodetic vertical systgaV]
related to the cap sphetbe reduced observatio®-59a) is:

Dyea’ =[Dgy, D, Dy, T (2-59b)
In theSCHframe @-59b) using the transformatiomquationg5-10) to (517)is written as:

elur 1 uT uTz

B (2-59c)
& ug'rsing ua’ wr H
The harmonic expansion tife radial component of equati@59¢ is:
o oy SN(k)HL ~
Dggs’icr =é2588 (n(k)+1)a A (Cymcosma + S, sinma )R, n(k)m(cosq)8+dg(dg) (2-59d)
k=oG I + r Cm=0 -

The SCHhave an integer order m and a real degre@hereal degreay satisfies the property
of orthogonality 6 the function in the cap aredldines 198%). Theserepresent the roots of
Legendre function and its derivatives according to the followorglitions

P.m(cosg) =0 for k-m=odd (2-60a)
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APoum (COST) _ 0 for k-m=even (2-60b)
d
q

This principle has disadvantages, because of the need to search for the reaindegeeding

to the conditionsn equationg2-60a) and (20b) The different algorithmdor calculating the
roots of Legendre functionistroduce additional errordecause they ammostly iterative with
certain approximationsor complicated algorithmsée chapter 3.1.2)Furthermore the
computation of the real degreg is time consumingDe Santis 1997) The calculations of
Legendre functions and their derivatives with +ioteger degrees, where no recursive formulas
are given in the literature, iglso a time consuming processaking use ofapproximations
(Haines, 198B). More detailed information about SCH atietir different modification of SCH
aregivenin chapter(3).

2.2.4.Least Squares Collocation
The basic principle of the Least Squares Collocation (LSC) is that the distyndieugtial T

satisfies L alpisrapesedted adyaigeotipi obsuitable harmonic base functions
3 at given positions witltheir relatedcoefficients\ . In this cae, the disturbing potential reads:

40 A B A3 (2-61)
The measurements are assumed to be linear functionals L(T) of theidgstookentialT. The

linear operata of deflections of the verticagravity anomalies and gravity disturbances related
to the disturbing potential are given in table (2.2) fHahnrWellenhof & Moritz, 2005).

Table (2.2). e potential related observations and their linear operators L(T).

Variable Relation to the potential L(T)
Deflection of vertical eastest ) 1 HT i 1 s
9o (N +h)cosf W 9o (N +h)cosf W/
Deflection ofvertical northsouth 1 uT i 1 ®
gQ(M +h) uf 9o(M +h) uf
Gravity anomalies — _4 - -
Gravity disturbance _ _
For a given observatidn we have
B n A i (2'62)
The coefficiens” read:
n , 3 (2'63)
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In equation 2-62), we can solvdor g coefficientsby using qobservations. This method is
called collocation. If we consider a harmonic covariance propagation fun@pmhat is
symmetric with respect the point P and the reference point Q, the base fgnctelated to the
observation type of Q is :

3, O # (2-64)
Substituting 2-64) in (2-63) results in

! ’ ’ + Om # (2'65)

# # E # 1
= # # E & 1
AD # o # E # a 8 E & a (2-66)
# # E # I
The covariance propagation function K as given by To2§é1)reads:
+0 B A — 0¢ (2-67)

In equation 2-67), A is the nth degree variance that can be theoretically calculatethdy
Tscherning & Rappnethodor from the global gravity model$. is the sphericallistance
between the points P and(RofmannWellenhof & Moritz, 2005)

The greatestadvantage of LSC is the flexibility in estimating any kind of the potential related
guantities using combination of all available geodetic phyai@and geometrical obsations

in addition to its propewuse for local and global implementatiolhe primary problem
however s that for huge areas a large amount of data woutddpgred Thisrequiresextended
computatiortime of the new points.

2.3. Integrated Geodesy

High speed computerallowed the processing of large amounts d#taof different typesto

solve a large system of equationghe integrated data processing for a unified model for three
dmensi onal geodesy eddesy ln thé dlassttajdodesyonty grre aypeentl G
observation is used for gravity field modeling. An example of the classical geodesy is the
Stokes formula for geoid modelingvhereonly the gravity anomalies are used to quite the
disturbing potential THein, 1986).

The principle of Integrated Geodesy is that any time independent obserVatian be
expressed as a functiowith parameters vectop dependingon the position (Geometry)

>‘<? X.Y,Z)andthe Earthpotential W (Heclet al.,1995):

| =1(XW(X,p)) (2-68)
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In most caseghe position (geometry) is assumedowfixed. The parameterization is to model

the potential and its related quantities. The quantities introduced in chapter (2.1.5) are all
functionsof the potential that apply to equation-§8). Examples ofintegrated ®odesy are

each ofthe modeahg principlesintroduced in chapter (3)fThe DFHRSdescribedin chapter
(2.2.2)also qualifies as IntegrateceGdesy.

2.4. State of the art in the gravity field modeling

Therecurrently existmany publishedglobal, regional and local geoids the global models,
they are mady modeled by mans ofSH asdescribed in chapter (2.EiGM2008 is the global
combinedgravity model with the higkst degree and orderesentlyavailable with a maximum
degree and order of 2190he EGM2008wvould satisfya 5cm geoid height accuracin case it
woul d be fr ee (PaJisetfak 2088 ©theacprebsmedglobal gravitymodels
were calculated and introduced by GPdtsdam EIGEN models). The most receaf theseis

the EIGENO6¢ which hasa maximum degree and ordef ©420. In the goid heightsthe
accuracyof the EIGENO6c is comparable to the EGM2008. Other combined models with less
degree and ordeE(GENO01-05c) are up to degree and order of 360.

Theestimationof high degree and order models like EGM2008 BREENO6¢ havantroduced
new calculationmethod. In thesamethod, the parameters are calculatesing a combination
of integrals and least squarghakoet al.,2010. Figure(2.6) shows the use of different data
types and how they contribut® finding the harmoru coefficients of th&IGENO6¢c model.

Spherical harmonic degree

2 30 240 260 370 1420
TAGEGE | 130 160 -
GRACE
GOCE SGG Txx + Tyy + Tzz
gravity|lanomaly data DTU10

contribution to the solution:

kept separately:

Separate block diagonal solution: [
Figure(2.6). The principle of harmonic coefficients calculatiorBIGENO6¢c model. (Férstet al.,2011)

For modeling the satellitenly gravity datawhich are free of datum and zero level, satellite
only models are always introduced. One of the ncostmon applications the satelliteorbit
determination.Thesemodels however,suffer from problems associated witjround geoid
determinationThis is becase of low degrees and orders due to the tddatg especiallyin
pole areas.Table @.3) showsselectedcombinedand satelliteonly models and their related
maximum degree and order with the accuracy of the model.
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Table (2.3: Examples of satellite only and combingldbalgeoid models. (GFAvebsite 2012

Model Publishing N-max Data geoid accuracy
date in Europe (m)
EGM2008 2008 2190 S(GRACBH),G,A 0.208 m
EIGENO6c 2011 1420 S(GOCEGRACELAGEOQOS),G 0.214m
A
EIGENO6s 2011 240 S(GOCEGRACELAGEQS) 0.449 m
GGM03c 2009 360 S(GRACE),G,A 0.515m
GGM03s 2008 150 S(GRACE) 1.416 m

S= Satellite data, G=Terrestrial gravity, A=heigtiing points

The EGGO7computed by IfEHannover,is one the latest regional gravity models in Europe
and has supplantdete EuropeamuasigeoicEGG97(Torge & Denker, 1999)The EGGO#&vas
calculated by the remowestore method witlupdated terrestrial gravity, marine gravity and
airborne gravity dataVhencompared to GPS/leveling heighitee EGGO/Hhasa RMSE of 0.01
0.06 m. he worst results were in high mountains in Austria and Fréibeekeret al.,2008)
Another regionalgeoid modelwas calculated by the DFHRSoftware forthe Baltic countries
(Latvia, Estoniaand Lithuanid Theachieved accuracyof the Baltic geoid was-Bcm (Jageet
al., 2012).For Europe, aeoid model using DFHRS software was calculated in 2004 ath
accuracy obetter than 10 cm.

In terms of local geoid modglthe USGG09 and GEOI®Owere introduced in 2010 for the
United States of Americhy the NGS National Geodetic Survey)The USGGO09 isin absolute
gravimetric geoid model usinthe removerestore method using millions of land and ocean
gravity datapoints with EGM96 support fordng wave geoid height3.he combined geoid
model (GEOIDO09) is applied byombining the USGGO09 with nearly 20000 GPS/leveling
points using MultiMatrix Least Squares collocation (MMLSCn the GEOIDOQ9 six LSC
matrices were applied tachieve2km geoid resotion with RMSE of 1.5cm (Romast al.,
2010).

In Germany,the German Combined Quagjeoid 2011(GCG2011)was introducedby the
Bundesamtfur Kartographie und Geodasi@®BKG) and IfEEHannover The GCG2011 was
calculated by the remouestore methoadtombired with point mass methaodsing terrestrial
gravity, GOCEgravity and GPS/leveling point$he GCG2011 accuradyg 1-2 cm inflat and
hilly areas but isreducedto approximately3-4 cmin the high mountainsnloceanareasthe
accuracyof the GCG201Deoidis in the range o4-10cm (BKG, 2011).

In 201Q the DFHRS software was used to calculate the Height Reference S@tssgeoidl

for the State of Moldovalhe solution was applied usingreeshdesignof 5x5km In Moldova,

there are two height sisns in use. One systesifor urban areas, whilde other is for rural
areas.For this reason the solution was done twice by preparing two DHPBESField tests
haveshownan averagaccuracy of 22 cmover the entireountry (Jageet al.,2010).




3. Local potential modeling using Spherical Cap Harmonics

In this chapter the modelingof the Eartid gyravitational potentialusing Spherical Cap
Harmonics §CH) is presentedThe derivationsand applications to the potential modeling of
SCHare explainedaswell asdifferent modificationgo the modelincludingthe ASCH mode)]
Translated OrigirSpherical Cap Harmars (TOSCH) and Revisefpherical Cap Harmars
(R-SCH) are discussedOther methodgo represent theotential with local support are
introducedas well The Spherical Radial Basis Functions (SRB#)d the harmonic Spline
functionsare briefly explained.

The ASCH have many advantages ostandardSCH modelsandare discussed in this chapter.
The derivationof the ASCH and theiprinciples areexplained. The application of ASCH for
modelingthe gravitational potentisdnd the calculatianof the derived functional quantities
includinggravity, geoid/quasigeoid amtkflections of the verticalre introduced.

A special case ofpplication of SCH orASCH is to represent thgravitationalpotentialV of
theEarth In this casethe ordinarySH areused.The SH representation isnly valid foraglobal
modeling. The relatisshipsbetween SH, SCH and ASCH are explaiirethis chapter

3.1. Spherical CapHarmonics

A method for modeling thgravity potentiawas introduced by G. Hain€$985%). This method
is to be used in a local area for modelingdh&vitationalpotential V usinghe secalledSCH (

S...C..). These SCHaresuitablefor the area of a local cap coveriagegion of interest on the
sphere instead of the whole sphésee figire3.1). The cap position is described thy vector to
the cap center with spherical coordinatés, 7,, R ). The position of point& the cap region is

described by a spherical coordinaigs g,r) related to the cap polélerea is the azimuth of

the spherical linefrom the cap pole to poin}. is the spherical distance from tlap pole (
/,,f4,R) to point P Finally, r is the radial distance from thgarthcenter to the point P. The

relatiorshipbetween global coordinates and local coordinates reads:
cosf sin(/ - /)

sinf cosf, - cosf sinf,cos( - /,)

cosg =sinf sinf, - cosf cosf,cos( - /) (3-1b)

tana =

(3-1a)

In equation(3-1), (/,7) are thesphericallongitude and latitude of the poinf/,,7,)are the

sphericallongitude and latitude of the cap polé is the radius of the referensphere. The
gravitationalpotential V interms of SCH for a point Rr,a,q)within the cap reads (Haines,

1988):

kmaxg o A1)
V(r,a,q) = GM % %?8 a (C,']mcosma +§,,sinma B, , .(cosq) (3-2)
k=0Cl =~ meo
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Z
A
North Pole

Figure (3.1): Sphericalap areawith its own pole located at the origin of theea ofinterest

The SCH equation (2) looks similar the SH equation-838). The difference is the use &f
instead of/ , ¢ instead of f , and power ofn(k) instead of n.The advantage oSCH in

equation(3-2) is that the number afoefficients (C;]m, S,']m)necessary for a particular resolution
for the local cap area is much smaller thiaat(c s, ) needed in ordinary global SH for the
same resolution (Haines, 1988).

The SCHhave an integer order m and a real degi&g where the real degre€k) arethe root
of the Legendre functian Legendre functiosm and their derivatives have to satisfy the
orthogonality conditions in the cap area according to equai®®) and(3-3b) (Haines,

1985). In equatiorf3-3), k is theintegerdegreeandm is the order.q, is the angular spherical
distance from the pole of the cap area tolnendary of the area of interest.

dP,,m(CO
W =0 fork-m=even (3-3a)
o

Piom(C0S9) .0 for k-m=odd (3-3b)

The Legendre function with the real degrg€k) and the integem cannot bedoneby direct and
recursive formulas, as it is in thase of integer degree and ordsee chapteB.1.2) It is
insteaddefined by an infinite power series (Haines, 1988), whicistbe elaborated iteratively
introducing certainapproximationsthesewill introduce additional erroy®therwise,complex
algorithmsmustbe usedOliver & Smith, 1983).
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When applyingSCH, certain issuesust be considered. Firgtsearch for the real degree)
according to the conditions in equati{8t3) must be performedrhe algorithms to search for
the roots of the Legendieinctionsare nondirect or iterative resulting on additional errars
These algorithms are altme consumingDe Santis et al., 1999%urthermore,he calculatios
of Legendre factions and their derivatives with nameger degreesare again a time
consuming ierative process (Schneid, 2006).Suborithmsintroduce errors due toertain
approximationsisedHaines, 198b).Anotherdifficulty in SCH is the usef Legendre functios
of real degree and integer order, which are not so commonly gised their limited
availability in the geodetic literature in comparisoneimsily found Legendre functions with
integer degree and order.

In addition to the proper use for local modeling of the gravity fi@dadvantage of SCbélver

the othermethods igheir ability to model the potential itself instead of the disturbing potential.
Furthermore there is no need to interpolate grid of dai@ to calculate theSpherical Cap
Harmoniccoefficients thedirectly observed data can be usedet upobservation equations in

a least squares solution.

3.1.1.Derivation of SCH

Haines (1985a) has developed a method to use the Spherical Harmonics gnreclptal cap
area hrough a basis carrier function, referred to previously as. $&¥t the coordinate system
is defined by a local pole and the opening angle of the cap areauia f8l). This principle
has been widely applied in geomagnetic as aslgravity potentialfield modeling (Haines,
1985b).The SCHmodel given in equation {2) isequivalentlywritten as

kmax k
V(r,a,q)=a aVin(,a,9) (3-4)
k=0 m=0
Where
G éRa”(") . . _
Vim = Taer—o (Ckm cosma + S, sin ma)Pn(k),m(cosq) (3-5)
(;; -

The gravitational potential V representation$3-4) and (35) satisfy Laplac® quation. The
valuesn(k) and m are the single eigenvalugfsequation () calculated using the boundary
conditions of equatiofB-5) given in(3-6a, b) and3-7ad) for U dandr (Schneid, 2006).

As Ucan reach any numerical value betwekand & +2p, the boundary conditions farare:

Vk,m(r’a’q) :Vk,m(r’a + zp’q) (3-6&)
Win(r8,9) _ Wn(r,a +2p,q) (3-6b)
Ha Ha

These conditions forcen to be real and integer valuedidthe value ofS’k,O to be zero (Korte,

1999). The boundary condition fdrare at the cap polé=0 and the cap boundadgd,. The
boundaryaluesfor d are:
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V, . (r.a,g,=0)=0 (3-7a)
WV, m(r.a,q, =0) -0 (3-7b)
Hg
Vin(r.2,G0) = £ (r,a) (3-70)
I‘J'Vk,m(r’a’qo) - g(r,a) (3-7d)
Hg

The boundary condition@-7a) and(3-7b) permit an arbitrary potential that is independeni of
The functionsf(r,a@) and g(r,a)are arbitrary functions, that are independentgofHaines
(1985) has shown that the conditiq@s7c) and (3-7d) can be satisfied in the conditions given
in equationg3-8a) and(3-8b) by taking all valuesf min the boundary condin in equations
(3-6a) and3-6b) (Haines, 1985a).

Vk,m(r’a’qo) = 0 (3-861)
Wi (1, a,Go) _ 0 (3-8b)
Hg

These conditions can be satisfied usiigegendre function of the first kind. The root&) are

real values and m are integer valu€be conditions(3-8a) and(3-8b), however,cannot be
simultaneously satisfied. Hain€s98%) has shown that the conditio(%8a) and(3-8b) can be
satisfied if the Legendre function and its derivative apply for the condition separately (Schneid,
2006). The Legendre function of first kind and its derivative apply for the cond{8e8&) and
(3-8b), when the conditiong3-9a) and3-9b) ae satisfied, respectively:

P om(€0Sq,) =0 , k-m=odd (3-9a)
dPn(k),n(;(cosqo) “o k-m=even (3-9b)
q

The boundary condition in the directionrafeads:
MV, (r.a.q) =0 (3-10)

The boundary conditio(8-10) can be satisfied agk)O 0 . , Adines(1985a)has shown that
the boundary condition can be satisfied when k is not less thar(Haines, 19854dj. can
therefore begeneralizedhat the SCH functions are orthogofidhines, 1985a).

To find rootsn(k) (roots of first kind Legendre function), the condition equati@®3a) and(3-
9b) have to be fulfilled. Chaptg8.1.3) introduces different methods to find the roots of
functions. An approximate formula for the roots of Legendre function readse@]14i888):

n.(m) = %)(k +0.5)- 05 (3-11)

0
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3.1.2.Legendre function of real degree and integer order

The calculation othe Legendre function of real degreeand integer ordem can be calculated
in terms of heterogeneous functions (Oliver 8mith, 1983). The general formula for
calculating the Legendre function reads:

P, .(cosg) =K, sin"g Fgm- n,n+ml+ m,l_ czosqg (3-129)
g -
WhereF is a heterogeneous functiamich reads:
Fla,b.gx)=1+2 5%+ 2@*D6(0+) ., - (3-12b)

g A2)H(g+1)

The factorK . is the normaking factor. When the soalled Schmidt normalizing principle is
used (Haines, 1985a), thdfy, ,, reads:

—) => (D
H
3
1
o

Kn,m =1 (3'14)
!
2 [(n+m)! m. 0
2"m\ (n- m)!

For n>m>0 an approximate formula &, can be used by applying the so called Stirlings

——) —) —

formula. Here K, . is defined as:

- 0.5n+0.25
2™ an+mg o

Kom :Wgemg P> exple +e, +...) (3-15a)
o ~2
p=5%-6 -1 (3-15b)
gm+
18 10
=- Rt 3-15¢
&7 o p§ ( )
¢
1 & 3 4§
e =- g+ +—8 (3-15d)

The heterogeneous function F in equat{@nl3a) can be calculated by a recursive method
dependingnthe normalizing factoK,, ,, (Haines, 1988). Thel, ,(C0sg) reads:

J 21 _ ~j
|:>n,m = a Aj (m1 n)wg (3‘163)
j=0 ¢ -
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33 K.mSin"g j=0
A (m,n) =1 (j+m- 1)_(J.+m) - n(n+1) A (mn) >0 (3-16b)
I i(j+m) ‘1
The derivative of the Legendre function in equati®16) reads:
- : S'”qa KA (m,n)sin®iY (g/2) m=0
dn'm :!' esin 17
q II“ an kA (m,n)sin*0" 1)(q/2) +cosq88 g m>0
e i=

The value of the upper limit of the power seridsi§ not constanin all calculations, bt it can

be limited when the requiredounding accuracy is achieved. The terinis also called the
truncation factor. The incurred relative error introduced by the truncation approximededky
(Oliver & Smith, 1983):

2J- 3
e[runcatlon D J (3'18)

3.1.3.Roots of Legendre function

To calculate the gravitational potentidlin equation(3-2), the rootsng(m) of the Legendre
function are required. These roots are calculated by satisfying the cond®i®ays and(3-9b).

As equationg3-16) and(3-17) are used to calculate the Legendre function and its derivative, it
would be difficult to calculate the roatg(m) with direct formulas.

An iterative method isormally used to find the rootg(m). In this way, arapproximate value
of ng(m) is usedto calculate the functiom an iterative proces# small increment ishenadded

or subtracted tay(m). ng(m) is changeduntil the functionis sufficiently close to zero (Press

al., 2002). Tolimit the iterations a good approximation for the initi@lue ofn(m)is needed

thisis given by equatio(3-19) (Haines, 1988Yyeading:

n(m)= nk(O):iIE(kw.s)- 05 (3-19)

0

Another method to find Wim) is to use the soalled Regulgralsi procedure. The root of a
function f(x) is X. X is in the interval(a< X <b)and (f(a) <0, f(b) >0). The root is found
initially by linear intepolation (Lang & Pucker, 2005); reads:

af(b)- bf(a)

_ ,
Tt 0)- f() (3-20

Using the X calculatedby equation (3-20), (see figure3.2), f(X)is calculated.lf f(X) is
negative and larger thaa, then a=f(X). Otherwise the result isb=f(X). In this way, the

interval will be reduceceach time. Everif this methodconvergesbetter than thereviously
describednethod, it is still for many functios slowly convergingLang & Pucker, 2005).
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Figure(3.2): The principle of Regula Falér determining the root of a function.

Most often Ne wt on6s met hod uthe fangtiontf lix¢ convergsifasterthan v e o f
many other methodsin this methogdthe intersection of the tangent at the initial valuavith

x-axis gets closer to root of the function (Lang & Pucker, 2005). The recursive formula for
calculatingX is given by

(3-21)

3.1.4. Spatial resolution of SCH model

The spatial resolution of apherical harmonimodel is a function of the maximum degree used
in the model. For the global modeling, the minimum wavelength represent8&€CHys a
functionof Nymax The minimum wavelengtivy,, (in radians) reads (De Santis &fTa, 1997):

2
W, =ni (3-22)

The minimum spatial distandsy,, i.e. the sampling interval in space domain or simply the
resolution in this case is

Loin = W’“—ZR (3-23)

In the case o6CH, the system is modifiedVvhen m=0,the root p(m) is used to calculate the
maximum degree K to get the required spatial resolution. Ins€@2g) in (3-23) produces
(Haines, 1988):

_ G a2p 0 3-24
90/*(;#4-0'5@ 0.5 ( )

min
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The spatial resolution of tf®CH modeis given as:

Ly = %{ (3-25)

In comparison withglobal gravity moded, the SCH model can have the same spatial resolution
if a proper number ofoefficients arechosen. The required number afefficientsin the SCH
model reads (De Santis & Torta, 1997):

S o ~
Ngo, © —22 N, =sin?S2 N, (3-26)
SEarth Q 2 -

Here, Ny is the number o§phericalharmonic coefficientéC,,,S, ) that represent the Global
modelNg, = (N, +1)*. Nscy is the number of SChoefficientdC',,,S ). Seam is the
spherical surface area of tRarth(S,,, = 40R%). S..pis the spherical surface area of the cap
(Scap:ZpRz(l- C0sg,)). Thenmaximum degree K to get a SCH model with same resolution
of the global model reads

K =/Ngey - 1 (3-27)

3.1.5.Derivatives of the Potential in SCH

Similar to the representation of ordine®d, the gravitational acceleration is theadientof the
gravitational potential ¢’= gradV ). To formulate the gravity in terms of SCH, we define a
3D-carkesian coordinate systeiftap _eframe) see fig (3.1) The origin of the system is the
centerof the mass of théearth The Zaxis coincides with the line passirige zenithfrom the
centerof themass of thecarthand t he c a pagisis defméden,the tlideation Xf the
meridian of t he c a-pxsss pgperdeulaatntde XfanenThe drayity t h e
vector interms of thepotential themmeads (Hofmamwellenhof & Moritz, 2005):

G _eww W WwWg
cap” & v v~ =L (3'28)
P 8IJX HY “Z Hcap_e frame

In spherical cap coordinatesquation(3-28) for the gravity vectorelated to the cap local
spherical Local Geodetic Vertical (cap_LGV) fallmg the transformation formulas in chapter
(5.2.1)reads

G _ew HV we
cap gruq rsingpa urHcap_LGV

(3-29)

The derivatives of the gravitational potential V in equa{®29) are(Korte, 1999):
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V _ GM £ arg ™" X - =
E-.2Ta%0  (u(m+DA (€, ,cos(ma)+S,,sinMa)P,(cosy)
Jr " x=oGr+ m=0
(3-30a)

K o e (m) g _ o .
W_CM4838 4 mS, ,cosma)- T, ,sinma))P,,(cosq) (3-30)
pa N w=oClrh+ mo

K o ~%(m g . _ D
W _GM 3 8R8™ 4 (€, cosma) + &, sinma)) L 2em (3-30¢)
27 ' w=0Gl+  mo Y ’
The magnitude of the gravity acceleration reads:

g9=d] (3-31)

To calculate theuasigeoid, ) and thegeoidheight(N), the disturbing potential at the point P
must alsabe calculated (T=\WUJ or T=V-V 6 ) . The gravitational pot e
equation(3-11). The nor mal gravitational potenti al Vv

ellipsoid coefficients The quasigeoid andegid heightespectively readTorge,2001)

X = l - VSCH - Vnormal

(3-32a)
9 %
N:l+g-_ng (3-32b)
9 g

The deflections othe vertical can be calculated in the cap coordinate systath spherical
approximationsn two componentsthe direction of the cap polé'], andthe direction of the

azimuth (z'). The quantitieg' and z' are (De Santis & Torta, 1997):

h'=- 1_ HT (3-33)
got sing pa

Z'=- LE (3-34)
9ol Hg

The deflections of the verticaéxplained in equations {33) and (334) are with spherical
approximation in the spherical cap system. The relshiqto the ellipsoidateflections of the
vertical 1 and z are explaied in chapter (5.2.3) in detail

3.2. Adjusted Spherical Cap Harmonics

As previously discussed, the SCH use the Legendre functions of real de(kessd integer
orderm. The calculations of these functions and their derivatives are time consuming processes
due the iterative and approximate algorithms impleme(&athneid, 2006 In addition, the

roots of the Legendre functiomgk) must be calculated accorditige condions in equations

(3-9a) and3-9b).

To avoid theiterative and approximate methodsmodified approach @CH was introduced

by De Santis (1992)eferred previouslyasASCH. This approach usahe welltknown integer
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order and degree Legendre functiombe principle enlarges the cap aiaafigure (3.1)to a
hemisphere using equat®(8-35a) to (3-35d), where the pole of the hemispheralsothe pole
of the cap itself (Franceschi & De Santis, 1994).

0.50

S= (3-35a)
o

J=sqg (3-35b)

ai=a (3-35¢)

r'=sr (3-35d)

According to the ASCH definitiofB3-35), equatior{3-5) is modified, resulting in theormula in
equation(3-36). The new formula similar tothe conventionabH model, butthere isnow no
need to calculate the Legendre functions witll degree and integer order:

km ~n(k) k
V(r,a,J) —GTM aaxgelgo a ( C,,mCOSMa +SKmS|nma)5 (cosJ) (3-36)

k=0CG T m=0

3.2.1.Derivation of the ASCH

Equation (3-36) is similar to equatior§3-2). The only difference is that the angle=sg

containsthe scalingfactors. Thereforeit is only needed tgroof, that the part ot/ is harmonic

by applying it inthe Laplace equation. The most common form for the paggofn Lapl ace
equation is (HofmaniwVellenhof & Moritz, 2005):

1 da dP m* @
ing—— 3+ an(n+1 P =0 3-37
sing dqg5 qdq Qn( )- sin qH ( )

Here P is the solution of equatiof3-37), the Legendre function of degree n and order m (
=P, (g))- To avoid the complication of transforminging to sinJ, it is assumed that

sing =@q . This assumption is valid ag < 20" (De Santis, 1992Fquation(3-37) thenreads:

d

l m?
g dg

n+1- 2P =0 (3-38a)
7’ u

+

|- OO

»o_%mo
Q.| o
QT
DXy

This can simply be rewritten as:

d*p_ 1dP
dg*> gdg

2
4]
ﬂzgp =0 (3-38b)

&
+@(n+1)-
& q

As J= S@] the followingrelatiorships arevalid:

dP(g) _ (dPW)

(3-39a)
dg dJ
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dP*(g) _ (dP’()

3-39b
dg* dJ? ( )
aJ =s (3-39¢)
dg
Substituting(3-39) in (3-38b)results in
d’P 1dP én(n+l) m’g
———+=—+g - — P =0 3-40
dJ? JdJ & 2 J°Y (3-40)
To transform equation {80) to a similar form of equatiq3-38), one sets
n(n+1
(52 ) k(k +1) (3-41)
Here,the result is
d’P  1dP € n’ g,
+ =+ Kk(k+1D)- —P=0 3-42
dJ? JdJ %( ) J2 i (3-42)

The Legendre function of integer degre@nd order m is a solution of equati(®42) (De
Santis, 1992).n equation(3-40), n is a real numberlt can be calculated as function lf
(n=n(Kk)). Using equatiori3-41), n(k) reads:

n(k) = /s’k(k +1) +0.25- 0.5 (3-43)

In equation(3-43), s is the scale factor computed from equa(®35a). k is the degree
parametein the ASCHmodel. There is an approximate formula of equaf®d3) that may be
used for low degree and orde@5CH models following De Santiset al.,(1997) readng:

n(k) = s(k +0.5) (3-44)

The ASCH in equation(3-36) havethe following advantages compared to the nor8@H in
equation(3-2): First, the welknown Legendre function with its recursive formulas is used.
Second, there is no needgearch fothe rootsn(k) of Legendre functiomandtheir derivatives
accordingto the conditions in equatiot§3-9a) and(3-9b), which is timeconsuming (De Santis,
1992).The conditions in equatior(8-9a) and(3-9b) areno longerrequiredto find the roots of
Legendre functions

3.3. Relationship between SCH and SH

Different methodshave been developed and proposed in the past to transforaptieecal
harmonic coefficient®f global potentialmodels of typg2-33) to the localSCH of type (3-2).

When theSHandSCHhave the same pole, only a transformation of the Legendre funation
integer degree and order to the Legendre function with real degree and integer order is required
as shown in equatiof3-45) (De Santist al.,1999). This leads to:
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an(Q) = a A?'mpn(k),m(Q) (3'45)

The coefficientsa”m are then the parameters for the transformation from the global to the cap

system These parameters can be calculaiac grid of points over the cap area.tlis case,
the localSCH (s, ,c. ) can be directly calculated fromhe coefficients ofthe globalSH

(S...C..,) With the transformation parametesg™ using equatioif3-46).

eC I €C,n9
mn (3-46)
Sn u nam Ak gsnm a

In the general case, the transformation S coefficients to SCH coefficients requires
consideration oflifferent poles (De Santet al.,1996). Generallya SH function in terms oSH
in a coordinate systenf (/ ) is a linear combination of ather SHin arother coordinate system

(g,a). The transformation equation of tbeefficientsfrom global SH to local SCH reads:

gcosnv (i u n & 0 €b," 0
Pon ()] =4 & "nicosma 1 o cosma P (@) (3-47)
i sin m/ y /77:0@ n. my n. my u

In equation(3-47), a, b, candd are the transformation parametenghich can becalculated
using a grid of pointdistributed over the entireap area. It isworth noting that the
transformation parameters can be separately calculated for each degresng these
parametersThe SCH parameters aggven by

C'nm = an (arTanm + CrTmSnm) (3-48&)
0

S a ( rTanm drTmSnm) (3'48b)
=0

3.4. Other modifications of SCH

3.4.1. Translated-Origin Spherical Cap Harmorics (TOSCH)

De Santis (1991) introducedetltoncept of OSCH whichis generallyapplied by moving the
origin of the cap coordinate system in the direction of the cap(peéefigire3.3). This enables
a smaller minimum wavelength compared to the conventl®@al modelDe Santis, 1991).
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Cap Pole

/X/

Figure(3.3): The shift ofthe origin in the TOSCH.

With this newdefinition of thesystemorigin, a point P with spherical coordinatésa, g) will

have new coordinateqr,,a,,q,)depending on the origin shifDr. The new spherical
coordinates are:

r,=vr?+Dr?- 2rDr cosq (3-49a)

a, =a (3-4%)

g, = S|n'1% srlnqg (3-4c)
¢ o=

By substitutingg=g,and I =Rin equation(3-49a), the radius of the cap boundary in the new
systemR is derived:

R =,/R? +Dr2 - 2RDr cosg, (3-50)

According to the new systertihe opening angléor the newcapreads

gi = sin 58 '”‘7§ (3-51)
Q —

The potential in equatiof8-36) in the new system reads:

kmax§ (k)L k
a %Ri § a (Ckm cosma, + S, sinma )P n(C0sq,) (3-52
k=0C "1 ;

m=0

GM*
v(r.a,g)=—
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To find the minimum wavelength represented at the original sphere surface, the distance at the
pole from the sphere surface to the new originis required.Rg reads:

R, =R’ +Dr?- 2RDr (3-53)
The minimum spatial resolution reads:

L =R (3-54)

min
nkl

Wheren,, reads
N, = %’_A (k+05)- 05 (355
d

By equation(3-54), it is clear that the spatial resolution of the model is enhanced by the
implementation of the TOSCH. This means that a small degree and order of the model can be
applied (De Santis, 1991l is still difficult, howeverto determinethe optimal translation of

origin needed t@chievethe required accuracydditionally, the physicainterpretationof the
potential and related quantitissch aghe gravity anddeflections of the verticarenot clear
sincethe typical definition othe potential and strelated quantities are commonly referred to

the origin of theEarth E.g. the first derivative of thgravitational potential V should be the
radial gravitycomponent in the direction of the Earth ceatnot the translated centes it is

in the case of TOSCH.

3.4.2.RevisedSpherical Cap Harmonic (R-SCH)

Thebaultet al. (2004) proposed a new modification thie SCH modeto enable the upward
continuation of the geomagnetic fiedddestabliskeda relationship to the glob&H, referred to
previously as RSCH. The principle is to add more boundary conditions depending on a cone
bounded radially between the surface of Hagth(the cap area) arahother surface suitable for
satellite data Thebaultet al., 2004). The general fornof the RSCH for modeling the
geomagnetic field reads:

K maxe. ~NK)HL
V(ra.q)=RA 29 & (i cosma + s, sinmaPy,,. @)
k:OQ r-=+ m=0 (3-56)
k max p
+Ra R-(Na (Apm cosma + B sin ma)<pm(q)
p=0 m=0

In equation(3-56), the functionR, (r) is a radial functionrepresentinghe radial change of the
magnetic field in the cone. The functiodépm(q) are basis functions known as Mehler

functions that contain only one set of Legendre basis functions. P is an integer index. The
functionsR,(r) and Kpm(q) are completely derived and provétiebaultandPique(2008).
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The RSCH have been widely applied in geomagnetic fieddearch Unlike SCH, R-SCH
includesadditional functions to represent the radial change of the geomagnetic field by applying
flux correction (Thebaulet al., 2006). In addition to the doubled number of unknowns in
equation(3-56), the RSCH converge very sldw compared to SCHhe R-SCHalsodo not fit
different types of data in a solution (Thebault & Pique, 20B8)these reasonsheR-SCH are
notcommony appliedfor gravity potentiabnd the gravitynodeling in an integrated solution

3.5. Other carrier functions for local potential modeling

3.5.1. Spherical Radial Basis Functions (SRBF)

The previously mentioned SRBdfe radial symmetric functions, which aredbzing in space.
The radial basis functions support modelioigthe potentialin the local or global domain
(Jekeli, 2004). A spherég with radius R is definedothatthe spherés completelyinside the
topographic masses (Bjerhammar sphere). If two poumutslj are consideredhen theSRBFof
locationj evaluated atreads (Wittwer, 2009):

+1

O

~

Yi.)=ar &g R@) 357,

1=0 i

O

In equation(3-57), P|(qij) is the Legendre polynomial of degree g; is the angular spherical
distance between pointsndj. )/, arethe Legendre coefficients of the basis functbiiferent

types of SRBF are used for gravity field modejingpending on the choic& )|, which

generataifferentforms  Selected_egendre coefficients are introducedtable(3.1), (Kleeset
al.,2008).

Table(3.1) : Examples of Legendre coefficients .

Coefficient name Coefficient formula
. ar: @
Point mass kernel Y, = AR
2I+1Q hd
. nar; 9
Poisson wavelet of order m y, = %8
g -
AR 2 5
Dirac approaclof Bjerhammar Yi=i-1
I 0 1=01
° ~
: ar; @
Poisson kernel Y, :%8
(; -

The representation of a harmonic function like the disturbing potential T of point P using SRBF
reads (Schmidet al.,2007):
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GM [ :
sz?aanj(P’J) (3'58)

j=

In equation (3-58),a; are the SRBF coefficierst that haveto be calculatedto model the
disturbing potential using a grid of observations

3.5.2. Spherical Harmonic Splines

The Spherical Harmonic Splia@are essentiallyconstructed by spherical basis functomheir

basic advantage over tis#H is theirability to representhe geoid or potential in locak global

areas (Jekeli, 2004). The potential can be modeled using a grid of points on the latitude and
longitude lines. ThemployedLegendre coefficient in equatidB-59) reads (Wittwer, 2009):

y, =5} (3-59)

s’ are the SH degree variasc®ifferent methods are used ¢alculate the degree variances,
and hey can be directly calculated using existing gravity modealsge (2001) has giverthe
Kaul a0 estimatetf éegréewariance. According ttee Kaulad sule s|2 reads

10*°

P =@+ (3-60)

Tscherning and Rapp (1974) introduced a covariance function, \Elﬁerrmds (Torge, 2001):

&
-1 0 =01
2_a R @1 754 =2 (3-61)
S, —?—0| = -
g -1_1 A(I_l) S|+2 |23
[(I-2)(1+B)

In equation(3-61), A=42528, B=24 and s=0.999617.

To find the unknowns?; (SRBF or Spline coefficientsa grid of points with known quantities

as functions ofhe latitude and longitude must be interpolafBoesequantities can be gravity
anomalies, gravity disturbancem height anomalies. The gridf points can be used as

observation equatia@to calculate the unknowng; of each gridooint. Herg each point is to be
modeled using the other grid points (Freeden, 1984).

Many kinds of Harmonic $lines have been introducettkeli (2004) introduceseveral forms
anddemonstratetheir application to the disturbing potential. Another modiipthewasused
to calculate the geoid height using a grid of gravitpraalies; see Kng et al (1987 for

details

The use okdinesand SRBF ha advantages over the SH. Fitsbth support locahnd global
modeling of the gravity potentiabecondly,the calculations are only a&ffted by local errors.
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On the other handSH modelsare more easily employedFurthermore the calculation of
spherical harmonicoefficients is less complicated using integrals and least squares. An

important disadvantage irsing sginesor SRBF is that each grid point j has an unknawn

resultingin no redundancy of dateor quality control Finally, the reference pointsx each
model musbe in a gridJeading toadditionalinterpolation errors (Jekeli, 2004).
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4. Transformation of global SH gravity modekto local ASCH

The applicationof global based space methods for gravity field determination leads to global
SH models at first instance. At presehgre are several global gravity modiksely available

on the internet which came used by theublic. Thenewerand recentmodelsare represented
with increasinglyhigh degres and ordes like EIGENO6Cwith maximum degree and order of
1420 and thespacebased terrestrially combindeilGM2008 model with maximum degree and
order of 2190. For several reasoiigs advantageouw represent the regional or local gravity
field with a smaller number of parameters and to develop a parameter transformatiohefrom t
global model to a locaASCH model. An example is thieequentuse of a glbal model for a
specific area ointerest. The transformation die global SH model tahe local ASCH allows

the modelling of regional gravity potential withiewer coefficientsand is lessdemanding in
terms of computermemory requirementsand the timeconsumption forcomputation and
storage.

In this chapter the local ASCH are introduced for the regional gravitational potential
representation related to a local pole and allspherical coordinate system incap. Inthis
way, the global gravity models can fully be exploited and mappedégional ASCH model,
respectively in the contextof the computation ofregional geoid modelswith equivalent
resolution

The adjustmenprinciple is also presentedn this chapter. The convergence of unknowns
(ASCH coefficients)with respect to the maximum degree and order of the calculated ASCH
model is discussed. The area size as well the behavior of the ASCH modeling at the boundaries
and their effed on the accuracgre explained.The design of the observationgth respecto

the extension tthe vertical direction islsotested Finally, a practical applicatiotransforming

the EGM2008 model to a local ASCH model for the study area of Batlettemberg state in
Germany igresented and discussed

4.1. Functional models

The nethods of transformation of SH to SCH discussed in chdBt8) do not apply for
transformingSH models to theASCH modelsin an analytical way The reasons that the
coordinates are not only related to different poles but also scaled according tore(@:3).

A straightforward methotbr transformingSH to ASCH is to set up a linear equation system for
a number of positionB(r,J, /) with known potential values (V) by means of the global model,

as given in equation {4):

kma ~n(k)+1 K - _
Vil 17.2) =S G ARG 4 (C,cosma +S,,, sinma P, (c08T) = Vigpa 1.7/ )
I =Gl + m=0 ’

(4-1)

The solution of the system of equations based4ed) is linear with respect tq coefficients
(s,,..C...) by using at least m number positiofisJ,/ ) q=(k,,,+1)?. This method is derived

in Jager (2010). The extension of that approach, presenteddie® jnto accourthat both SH
of type (2-33) and ASCH of typ€3-36) are truncated series. This means that V in equédion
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33) and Vasch in equation(4-1) are incamsistent.The computation of the coefficients( c: )
thereforehas to be controlled and optimized at the same time. This is done by a least squares
estimation of § _ c. ) related to(4-1) set up in the following way: A 3@rid of points is
generated over the cap area, where the minimum number of required grid points is the same or
more than the number of unknown parameters +1)2. Figure(4.1) shows an example of grid

points distributed all over a cap covegithe state of BadeWurttemberg in Germany.
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Figure(4.1): Distribution of a sample grid points over the cap area for the example of-Bédtéemberg state in
Germany.

The potential valué(r,J,/), for the grid poinP are taken from a global mod¥g,,,,, using
equation(2-33), and used asin observatioin equation4-1).The ASCH coefficients§, _ c. )
are the unknown parameters to be estimated. The number of unknowrfS8GR model s

(k... +12(Schneid, 2006). The Isaisquares solution of the ovéetermined problem related to
(4-1) reads (Youni®t al.,2011):
£=(ATC/'A)TATC (4-2a)

The desigrmmatrix A reads:

e&GM GMR GM R GM R . [}
é — Py —cosa, P, —sina, P, O
gh non nn nn N
:~GM GM R GM R R . N
e —P, —cosa,P, —sina,P, 3 3 u
er, r, r, I r, fp u (4-2b)
°GM GM R GM R GM R . u
A=6— —P, ———cosa,P,, ——sina,;P, u
efl; r; I3 ry I3 r; I3 u
¢ 4 6 y
é u
é 4 : U
é GMAaRrg . u
é 4 %—8 sinma P, 0
e Mm CTm ]
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The vector ofunknownsE, the vector of observations and the observations covariance
matrix C, are:

£=[Cj, Ci, Ci, Si Ci, 33 S| (4-2c)
=M, V, V, v, 33 V[ (4-2d)
N T
€s, S, S Sy Sym @
e 2 u
é S, Sz Sy 3 3 Som )
S S Su Sim 8
C = é 554 3 3 S (4-2e)
e 6 40
e u
é 6 4y
& Sl

Each observation leads to a row in thecadled design matri (4-2a), and the elements of
each row are the coefficients of the unknown parametex@-2c). The column vectgare

observationgomputed from the inpMyp. - C, is the fully correlated covariance matrix of the

observationsV(r,J,/);, which mustbe computedoy applying the law of errepropagation

using the covariance matrixC 5 of the coefficients of the global modgpherical harmonic

model (Migliaccio et. al, 2010). Here the covariance matrix of the observ&tjonsads:

C, =FCg ¢ F' (4-3a)

énmv m
Where F reads:

a0) (@) (Bumasmads ©od B) (Oumeimads

e a

F — g(aQO)Z (a2 1)2 (aN maxN max)2 (b21)2 (b22)2 (bN maxN max)z 3 (4_3b)
e u
gaZO)m (a21)m (aN maxN rnax)m (b2 l)m (b22)m (bN maxN max)m H

For an observation point i,

(ajk )i :GT%@gg cosk/, P, (sinfi) (4-3c)
o i
b, ) :Gr__'v'gi"_‘é sink/, P, (sin7) (4-3d)

The covariance matrix of the Spherical Harmorigs . reads:
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e 6 u

e 2 u
C. _ -€ SENN SENN§20 SENNézl SENI\SNNU (4—36)
ComSm € s2 S.. . SN

é S20 S20521 S20SNN [

)y 2 N

@ S§21 SSZBNNl\J

e 6 u

e , u

% S§NN H

In equation4-3c) and(4-3d), GM is the gravitational constant of the global gravity modelaand
is the referenceadius of the spherical harmonitodel./ is the longitude of the poinf. is the

spherical latitude of the poink. isther adi al di stance from the ori
the point. The parametgrandk are the degree and ordertbé spherical harmonic model

The full covariance matrix of the Spherical Harmon@;s s in equation(4-3e) is not always

available for public use. Some can be requedtedh the publisher(e.g. EIGENO05J.
Furthermore they mostly have only the diagonal elements (thariances) without the
covariance. In this casgthe covariance areassumed to be zero.

4.2. Result of Transforming global SH to local ASCH

To providea better background about theability of transformed®SCH models in local areas
and to discuss the behaviortbfs model, different tests were applied to transform the global SH
to ASCH modelsin the following, the convergence of parameteelated to the maximum
degree and order is studied to see howvtdaes of the ASCHoefficientswould change by
altering the maximum degree and order of theodel The convergence of the standard
deviationss alsoobserved.

The accuracy of the calculations is studied according to the spatial distribution ot thaines

in the caparea.The accuracy of the modeés dependent othe distancdérom apoint to thecap
center(the angley). Thisis discussed texaminethe behavior of the model in the inner area of
thecaparea aswell ason thecapboundaries.

4.2.1. The convergence otoefficients

Different ASCH coefficientswere randomly chosen to monitor their convergence under the
change of the maximum degree and order of calculations. A testvdarea fixed maximum
openingcapangle of 1fvas ciosen to apply the tessall calculations applied over thisparea.

The calculations were applied over tlesp with different maximumdegreeand order. These
maximum degrees and order were 10, 20, 30 ... tdRaddomly selectedoefficientswerealso
analyzed Thesecoefficientsarec, , s, ,C,,,, @Nd C,,,, - The valuef the coefficientsand

2010
their standard deviations related to different valoéshe maximum degree and order are
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registered to be analyzed with respect to their convergence. The results of the calculations are
shown in figire (4.2).

In general, thecoefficientshave shown fewer changes with higher maximum degrees and
orders. Thecoefficientc, ,converges towardthe value of of 1 butioes not actually reach this

value. The reason for this isthat the integraformula for calculating theSH coefficient in
equation (223)is applied all over thavhole sphere ofEarth due to the orthogonality conditions
of SH, while in the ASCH this is not validoecause the cap covers only atiphpart of the
sphere. In additigrthe coefficient, , is changing as the cap and input change

The othercoefficientswere consistentlyaround the same value witmly smallchangeshe
standard deviationalso hadfewer changes. Theoefficients consistentlizad smaller standard
deviation as the maximum degree and order of the calculated AGEkigher.Thesewere the
expectedesults, asvhenthe degree and order gets higrenaller standard deviations of the
coefficients shouldappear. Theeasonfor this is thatthe errors in the observatiomvill be
distributed over more coefficients.

4.2.2.The boundary problem

Because the ASCH models are applied in a local eidaa maximum opening angle, the
behavior of ASCH on the boundary of thesp area is unknown. The reason is that the
observation data applied in the adjustment according to eqydtijnare mly available inside
this boundary and on the other side of the boundary there is no control in the adjustment.

To test the behavior of ASCH on the boundary of the area of interest, data in eajpe#éh a
maximum opening angle of 1° wemrediced usng EIGENO5c global model. The ASCH
model was calculated over this area.ékaminethe effect on the boundary, the ASCH model
in the test area was calculatesingdifferent maximum opening angsizeslarger than the area
of interest. The calculations we applied by adding 0.1°, 0.2°,30.and 04° to the original
opening angle of the test area. Higher degrand orders were used in tladcalations to keep
the same spatial resolution. The results of the different calculations in the original temtearea
shown in figire (4.3).

It is clearthat the solution shows deteriorated residuals at the boundary adgHeurthermore,

by an examination of the relationshigetween the residuals and the opening angle, it can be
easily seen that the accuracy tamsinverse relatioship to the angled (see figire4.4). By
makingthe maximuncapsize larger than tharea ofinterestandwith increasing thenaximum
degree and ordethe accuracyithin the area ofnterest couldbe enhancd. In the test the
residuals in the area of interasere getting smoother by applyisglutions with a maximum
capsize larger than the area of interest with 0.2iigher. It is important always$o consider the
need forhigher maximum degree and order in the adjustrtee keep the same accuracy and
resolution
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Figure @.2): The elation between the calculatedefficientsand the maximum degree and order.
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Figure(4.3): The behavior of ASCH at the boundary of tagpareawith opening angley  =1.0° the figure shows
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