List of Tables

3.1.	Coefficients of Normal Gravity Formulas	14
5.1.	Stations coordinates: Geographical and UTM zone 49 South on the	
	WGS84 ellipsoid	46
5.2.	Summary of observation campaigns	47
5.3.	Calibration factors of gravimeters	48
5.4.	Gravity value g and standard deviation s of the gravity repetition network	50
5.5.	Ellipsoidal heights h and standard deviations s of the gravity repetition	
	network	51
6.1.	Gravity changes Δg relative to campaign Merapi I (Aug. 1997)	52
6.2.	Gravity changes Δg between particular epochs	56
6.3.	Height changes ∆h relative to campaign Merapi I (Aug. 1997).	60
6.4.	Height changes Δh between particular epochs	64
7.1.	Intersections of contour lines of gravity changes at stations JRA13 and	
	JRA15 (from fig.7.2)	70
7.2.	Intersections of contour lines of gravity changes at stations JRA13,	
	JRA15 and JRA100 (from fig. 7.3).	71
7.3.	Intersections of contour lines of gravity changes at stations JRA13,	
	JRA15 and JRA100 (from fig. 7.6).	74
7.4.	Intersections of contour lines of gravity changes at stations JRA13,	
	JRA15 and JRA100 (from fig.7.7).	75
7.5.	. Vertical gravity effects (nm/s^2) of the "sphere and vertical thin rod	
	model" at JRA1, JRA4, JRA6, and JRA9. Magma height is 8045.5 m	
	(August 1997), 8305 m (August 1999) and 8356 m (August 2000).	77
7.6.	Vertical gravity effects (nm/s ²) of the "sphere and vertical thin rod	
	model" at JRA0, BABA, MRIY, DELE, CEPO, and KALI. Magma	
	height is 8045.5 m (August 1997), 8305 m (August 1999) and 8356 m	
	(August 2000).	78
7.7.	Vertical gravity effects (nm/s ²) of the "sphere and vertical thin rod	
	model" at BUTU, MUNT, BOYO, and MVOY. Magma height is 8045.5	
	m (Aug. 1997), 8305 m (Aug. 1999), and 8356 m (Aug. 2000).	79

List of tables

7.8.	Intersections of contour lines of gravity changes at the stations JRA13	
	and JRA15 (from fig.7.13).	81
7.9.	Intersections of contour lines of gravity changes at the stations JRA13,	
	JRA15, and JRA100 (from fig. 7.14)	82
7.10.	Vertical gravity effects (nm/s^2) of the "sphere and vertical thick cylinder	
	model" at JRA1, JRA4, JRA6, JRA9; as magma heights in the cylinder	
	8050.5 m (Aug. 1997), 8310 m (Aug. 1999), and 8358 m (Aug. 2000) are	
	assumed (see tables 7.8 and 7.9)	84
7.11.	Vertical gravity effects (nm/s^2) of the "sphere and vertical thick cylinder	
	model" at the stations JRA0, BABA, MRIY, DELE, CEPO, and KALI;	
	the magma heights in the cylinder are 8050.5 m (Aug. 1997), 8310 m	
	(Aug. 1999), and 8358 m (Aug. 2000)	85
7.12.	Vertical gravity effects (nm/s^2) of the "sphere and vertical thick cylinder	
	model" at the stations BUTU, MUNT, BOYO, KLAT and MVOY; the	
	magma heights in the cylinder are 8050.5 m (Aug. 1997), 8310 m (Aug.	
	1999), and 8358 m (Aug. 2000).	86
7.13.	. Inner- and outer-radius of cylinders.	89
7.14.	Density changes of the concentric cylinders between August 1997,	
	August 1998, August 1999 and August 2000; as constraints density	
	changes of $\pm 50 \text{ kg/m}^3$ are introduced.	89
8.1.	Magma height in the conduit as determined by gravity changes.	93

xiv