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Abstract 
 

The crystallization mechanism of pure water in a supercooled state is not well understood so far. There are many open-ended 

questions about the basic physics of crystallization. A new computational model using an appropriate level set formulation 

for the numerical capturing of the interface between the supercooled and the solidified liquid is applied. Mathematically, the 

phenomenon of solidification is modeled by utilizing a moving boundary problem. Recent numerical results of dendritic 

growth (Criscione et al. 2012) exhibit excellent qualitative and quantitative agreement with the Marginal Stability Theory 

(Langer & Müller Krumbhaar 1978a, 1978b, 1978c) as well as with the available experiments (Furukawa & Shimada 1993, 

Ohsaka & Trinh 1998, Shibkov et al. 2001, 2003, 2005) in the heat-diffusion-dominated region. At higher supercoolings (in 

the so-called kinetics-limited region), an explicit deviation from experiments is observed. In the published literature the 

kinetic effects are indicated as a possible reason for this deviation, approximating the kinetic undercooling as a linear 

function of the interface velocity. Based on this assumption, a new approach for the calculation of the kinetic undercooling 

term is derived. This model results in an approximation for the kinetic coefficient which establishes a non-linear dependency 

between the kinetic undercooling and the velocity of the solid-liquid interface. Furthermore, investigations concerning the 

growth of needles in an array indicate that surrounding needle-like dendrites influence considerably the steady-state tip 

velocity of an isolated needle. This phenomenon depends directly on the spacing between the needles. In the present work an 

attempt is undertaken to explain a new approach for the physical description of the crystallization mechanism at higher 

supercooling.  

 

 

 

 
I. Introduction 

 

Water droplets which exist in liquid form at temperatures 

below 273,15 K (0°C) are defined as supercooled water 

droplets. They often occur in clouds which are located at 

altitudes which aircrafts usually have to pass during start 

and landing. The terminology often used regarding the 

in-flight airframe icing classifies them as Supercooled Large 

Droplets (SLD). SLD are defined in accordance with “The 

World Meteorological Organization” as those water droplets 

with a diameter larger than 50 microns. The large mass of a 

SLD will prevent the pressure wave travelling ahead of an 

airfoil from deflecting it. When this occurs, the droplet will 

impinge further back compared to a typical cloud-sized 

droplet, possibly beyond the protected area (leading edge 

area of the airfoil). This results in the formation of an ice 

layer on the rear part of the airfoil. At the time instant 

corresponding to the droplet impact, the crystallization of 

the water is triggered, causing any free nuclei in the 

supercooled liquid may be growing, often creating dendritic 

crystals. When water crystallizes, latent heat of fusion is 

released. If an SLD freezes, in fact only a small portion of 

the drop will freeze instantaneously, not more than enough 

to raise the temperature to the crystallization/melt 

temperature of 273.15 K. Further progressive freezing takes 

place as the droplet loses heat by evaporation and 

conduction. The phenomenon of in-flight airframe icing is 

recognized as a significant aviation hazard. It leads to 

increased aerodynamic drag and weight, associated with a 

reduction in lift and thrust. Icing is not only an aviation 

problem. Wind turbines are also hardly affected by icing. 

The problem with ice on an operating turbine is that it 

causes additional drive-train loads, excessing often the 

design loads. For this reason many turbines are shut down at 

icing onset; restarts are activated only after an inspection 

confirms that the ice retrieved. This is a cumbersome 

practice, especially in remote locations and at night, limiting 

drastically the economic profit of wind power plants. 

Theoretically, the common approach to crystallization 

problems depends on the grade of the initial supercooling in 

the liquid. At low supercooling degrees, the freezing process 

can be considered as a Stefan problem corresponding to 

diffusion-driven growth (Alexiades & Solomon 1993). The 

solid-liquid interface is an active free boundary (moving 

boundary) from which the latent heat of freezing is released 

during the phase transformation. This heat is conducted 

away from the interface through both the liquid and the solid 

phase. The heat equation is solved in each phase separately. 

Both temperature fields, in the liquid and in the solid phase, 

are coupled through two boundary conditions at the moving 
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boundary. The first boundary condition is the constant 

melting/crystallization temperature at the interface. This 

temperature will be locally altered by an amount depending 

on the interfacial tension between the solid and liquid phases 

and the local curvature (Gibbs-Thomson effect). The second 

boundary condition is represented implicitly by the velocity 

of the moving boundary. It is derived from a heat balance at 

the interface (Stefan condition) and hence it depends on how 

fast the latent heat of solidification is removed from the 

interface. In the case of increasing supercooling, the 

literature reports that the so-called kinetic effects start to 

dominate the system. Thus, the slowest process of the 

freezing mechanism depends on how fast the liquid 

molecules can be brought in the proper position, orientation 

and conformation pertinent to the solid phase. The transition 

from heat-diffusion to kinetics-limited growth has been 

observed in experiments at a supercooling of approximately 

10 K (Shibkov et al. 2005). The shape of the solid-liquid 

interface depends on various parameters such as the initial 

degree of supercooling, the surface tension and its anisotropy. 

In case that the initial supercooling of the liquid is low and 

the heat flux into the solid is high, usually planar 

solidification will occur. The latent heat of solidification 

released at the interface is mainly transferred into the solid 

phase. The more heat is conducted into the liquid the more 

unstable becomes the shape of the solid-liquid interface. At 

higher degrees of supercooling in the liquid phase the planar 

solidification front transforms to dendrite shaped surface 

with side-branching growth. Arrays of branchless dendrites 

(needle-like crystals) emerge at higher degrees of 

supercooling. Shibkov et al. (2001, 2003, 2005) investigated 

the free growth of an ice crystal in pure supercooled water. 

The experiments were performed on a horizontal 200  m 

thick water film stretched over area of 30 mm
2
. In order to 

seed an ice crystal in the supercooled water and hence to 

trigger the nucleation process they used a thin steel frosted 

rod. Various shapes of ice crystal patterns in the range 

between low (T = 0.1 K) and high (T = 14.5 K) 

supercooling have been observed (Figure 1). It becomes 

evident that, as mentioned before, the shape of the 

solidification front depends strongly on the initial degree of 

supercooling in the water film. Furthermore, the shape of the 

dendritic front is determined by the balance between surface 

energy criterion and the efficiency of the interface in 

removing heat. The study of the influence of disturbances at 

the interface, the so-called morphological instability anlysis, 

has been introduced by Mullins & Sekerka (1963a, 1963b). 

 

Over the last decades, various computational approaches 

have been developed and applied to simulate crystallisation 

especially in metals. The existing computational models 

describing the solidification of pure water are not numerous. 

The direct solution of the time-dependent moving-boundary 

problem, which governs both the planar solidification and 

dendritic crystal growth, represents a great challenge. To 

date, the phase-field method has been usually used in 

simulations describing crystallisation phenomena to avoid 

the emerging difficulties in tracking a sharp boundary 

(Kobayashi 1993, Wheeler 1993, Do-Quang & Amberg 

2008). In this work, a new computational model based on the 

level set technique (Osher & Sethian, 1988) is used 

(Criscione et al. 2012). It describes freezing mechanism 

under supercooled conditions relying on the physical and 

mathematical description of the two-phase moving-boundary 

problem. The relevant numerical algorithm is implemented 

into the open source software OpenFOAM
®
. In the next 

section an outline of the physics governing the freezing 

mechanism (moving-boundary problem) and its 

mathematical description is given. The level set algorithm 

used in this work is briefly introduced in section III. 

Furthermore, the transition from heat-diffusion dendritic 

growth to the kinetics-limited region is investigated in 

section IV in order to understand the crystallization 

mechanism at higher supercooling degrees. 

 

 

 

 
 

Figure 1: Various shapes of freely growing ice crystals at 

different initial supercooling degree for the liquid phase: 

Dendrite with splitted tip a) T = 0.3 K; Dendrite with 

side-branching b) T = 0.5 K, c) T = 0.7 K, d) T = 1.1 K, 

e) T = 3.8 K; Branchless dendrite (needle-like crystal) f) 

and g) 4.2 K; Array of needles h) 8.2 K, i) 14.5 K. 

(Shibkov et al. 2003)  

 
 
 
Nomenclature 
 

c 

k 

kkin 

L 

specific heat capacity (J/kgK) 

heat conductivity (W/mK)  

kinetic coefficient  

latent heat of crystallization (J/kg) 
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n


 

Pe 
unit vector normal to solid-liquid interface (m) 

Peclét number 

T temperature (K) 

Tm melting/crystallization temperature (K) 

v


 solid-liquid interface velocity (m/s) 

 

 

 

Greek letters 















c

d







capillary constant (mK) 

solid-liquid interface 

dimensionl. supercooling 

supercooling/undercooling (K) 

level set distance function (m) 

phase of the domain 

thermal diffusivity (m
2
/s) 

capillary length (m) 

diffusion length (m) 

curvature of solid-liquid interface (1/m) 

density (kg/m
3
) 

interfacial tension (kg/s
2
) 

  

  

Subscripts 

I 

l 

n 

solid-liquid interface 

liquid 

normal to the solid-liquid interface 

s 

t 

v 

 

solid 

tip of needle-like dendrite 

volumetric property 

 

 

II. Theoretical Background 
 

Mathematically, the problem of crystallization is 

considered as a two-phase moving boundary case 

(Alexiades & Solomon 1993, Davis 2001). Both the liquid 

and the solid phases are active, i.e. the heat conservation is 

solved in both sub-domains. Heat flows from the interface 

in both directions. We consider a domain D of pure water 

where the water is either in liquid (supercooled) or solid 

phase. Let T( x


,t) represent the temperature of the water. 

The region where the water is in solid state is denoted as 

s and the region where the water is liquid as l.  

 

 
 

Figure 2: Schematic of the domain considered 

The interface between the solid and the liquid phases is of 

infinitesimal thickness and is denoted as  (Figure 2). As 

the motion in liquid region is not presently considered, the 

energy equation describing time dependent heat 

conduction in both regions reduces correspondingly to: 

 

dSnTkdV
t

Tc

S

s

V

sv 
  )(

)( ,




,    

sx 


,  (1) 

dSnTkdV
t

Tc

S

l

V

lv 
  )(

)( ,




,     

lx 


.  (2) 

 

At the interface two boundary conditions (BC) are needed to 

close the computational model. Here, := s = l is assumed. 

The first one (1
st
 BC) describes the energy balance (Stefan 

condition). It expresses the dependence of the local normal 

velocity of the interface on the heat flux discontinuity at the 

interface 

 

s

s

l

ln
n

T
k

n

T
kvL

,,  







 


 ,      x


.  (3) 

  

This boundary condition is valid only for a flat freezing 

interface. The second boundary condition (2
nd

 BC) at the 

interface relates to the temperature distribution. In the case 

of a curved interface the temperature at the interface needs 

to be described by the Gibbs-Thomson relation: 

 





 








 mmmI T

L
TTTT 1 ,       (4) 

 

here T  represents the capillary undercooling. 

For a curved interface the correct Stefan condition (1
st
 BC)  

reads: 

 

  
s

s

l

lnImv
n

T
k

n

T
kvTTcL

,,  







 


 ,    (5) 

 

where svlvv ccc ,,:  = const.  

 

 

 

Kinetic effects 

The solid-liquid interface is in a dynamic equilibrium when 

the molecules attach and detach continually at equal rates. 

In this case, the temperature of the interface, TI, is equal to 

Tm. In the case of a curved solid-liquid interface, the 

interface temperature is appropriately altered in order to 

account the capillary undercooling, Eq. (4). For the case that 

TI < Tm, molecules become more strongly bounded to the 

interface. Thus, their number detaching per unit time 

decreases. The interface velocity, nv


, increases according 

to the difference between Tm and TI. Until the point where 

the molecules in the liquid become sluggish and the rate of 

attachment decreases. Hence, for pure substances with low 

latent heats, like metals, the velocity of the solid-liquid 

interface is approximated as a linear function of the kinetic 

undercooling, kinT : 
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kinkinImkinn TkTTkv  )(


.                    (6) 

 

with kkin representing the kinetic coefficient. Thus, the effect 

of the kinetic undercooling at the interface can be modelled 

as follows: 

 

nkinmI vkTT
1 .                             (7) 

 

The latent heat of metals is comparable to that of water 

(Table 1); accordingly this approximation should also be 

valid for water. Hence, in accordance with literature, the 

interface velocity can be approximated as a linear function 

of the initial supercooling (e.g. Davis 2001).  

 

 

Pure substance Latent heat, L[kJ/K] 

Aluminium 398 

Magnesium 368 

Nickel 197 

Water 333 

 

Table 1: Latent heat of crystallization; metals vs. water. 

 

 

 

From planar freezing interface to the growth of 

needle-like dendrites 

The solid-liquid interface, which represents the 

phase-transition region where solid and liquid coexist, 

appears planar for most pure materials under ordinary 

freezing conditions (at a constant Tm), Figure 3 I. During the  

chrystallization of supercooled water the interface between 

the solid and the liquid phase becomes unstable and its 

microstructure appears to be dendritic. The supercooling 

intensity represents the destabilizing effect of the interface 

and the rate of solidification depends upon the degree of 

solidification that drives it. On the contrary, the interfacial 

tension tends to stabilize the interface bringing small 

perturbations back in line; the process described by the 

Gibbs-Thomson relation (Figure 3 II.) acts towards the 

interface stabilization. The balance between these two 

effects can be analyzed by the classical approach to 

morphological instability introduced by Mullins & Sekerka 

(1963a, 1963b) in the context of directional solidification 

(Figure 3 III.). The concept of this approach is basically 

exhibited in the simple setting of a two-dimensional 

steady-state directional solidification (Davis 2001). By 

utilizing this approach one can study the stability of a 

flat-interface solution under small sinusoidal perturbations. 

Two heaters are placed at the same distance, y, from the 

interface, the lower one has a constant temperature Ts < Tm 

and the upper one is held at a constant temperature Tl > Tm . 

The analysis of the morphological instability yields the 

cutoff wavelength, which represents the largest possible 

wavelength for a stable interface: 

 

,2
2

2
2

0,

cd

v

vm

n

c
L

cT

v



        (8) 

 

where ks = kl = k, cs = cl = c, s = l = , 0,nv


is the constant 

speed of the setup along the y-axis, while the interface 

remains flat and stationary at y = 0. In other words, 0,nv


 

represents the velocity of the non-perturbed interface given 

that the temperature gradient at the lower and upper 

boundary of the setup held at constant value. Assuming that 

the thermal diffusivity, , and the heat capacity, cv, are 

constant, the cutoff wavelength depends directly on 0,nv


. If 

the value of the interface velocity increases, the largest 

possible wavelength for a stable interface decreases. The 

cutoff wavelength gets smaller at higher supercooling for 

the liquid phase subject to the condition complying with the 

constant temperature gradient in the solid. In Figure 1 

various shapes of freely growing ice crystals at different 

initial supercooling for the liquid phase are shown. In these 

experiments it has been observed that when a trigger (a 

needle in Shibkov's experiments) reaches the surface of the 

supercooled pure water film an ice crystal freely grows 
from the point of contact. The corresponding temperature 

jump is caused by the release of the latent heat of 

crystallization. 

 

 
 

Figure 3: Sequence of events, from planar freezing front 

towards the growth of needle-like dendrites 

 

Regardless of the level of the initial supercooling degree in 

the water, the incipient structure of the crystal is a smooth 

circular disk at constant value of temperature, Tm. In a 

second step, the disk develops some bulges which grow into 

fingers. These bulges, caused by a fluctuating thermal noise 

at the smooth interface, are exposed to a steeper temperature 

gradient and hence evolve into the deformation of fingers. 

During this transition process the primary fingers develop 

into crystals of different shapes: from dendrites with 

side-branching to needles. This transition depends strongly 

on the initial supercooling degree of the pure water. The 

critical nucleation radius is defined as 

 

TL

T
R

v

m

c



2

.                              (9) 
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Only when the radius of the initial nucleus is larger than Rc, 

it will grow to R = ∞. The nucleus grows as a smooth 

spherical sphere as far as the critical radius of instability, RI, 
is achieved. When the nucleus radius is larger than RI, the 

destabilizing effect (supercooling) starts to destabilize the 

system: small bumps (instabilities) on the interface start to 

grow into the supercooled water (Figure 4). The instability 

mechanism depends on the thermal boundary layer on the 

liquid side of the particle. Conduction in the solid would 

stabilize the particle, it means that it grows to larger radius 

before it becomes unstable. In Shibkov's experiments the 

temperature is constant in the nucleus and hence conduction 

in the solid is negligible. A bump on the interface propagates 

deeper into the liquid, increasing the magnitude of the 

temperature gradient on the liquid side. Hence, the energy 

balance (Stefan condition) causes a faster bump growth 

 

 
 

Figure 4: A sketch of a cross section of a growing 

spherical nucleus. Between critical nucleation radius, Rc, 

and critical radius of instability, RI, the interfacial energy 

resists growth of bumps (smooth circular disk). 

Corresponding temperature profile of the initial nucleus is 

shown. When the nucleus radius is larger than RI, the 

destabilizing effect (supercooling) starts to dominate the 

system: small bumps on the interface start to grow into the 

supercooled water.  

 

 

The spacing between bumps (Figure 4) on the solid-liquid 

interface results from the morphological instability of 

Mullins & Sekerka: it is in agreement with the critical cutoff 

wavelength, Eq. (8), and hence it depends directly on the 

initial supercooling degree of the water. Small perturbations 

at the interface evolve into the formation of various 

polycrystal structures, depending on the supercooling degree. 

Assuming that the various crystals have a paraboloidal 

structure, Invantsov (1947) derived an analytical solution 

for the steady-state tip velocity and tip radius, under the 

assumption that, firstly, the kinetics is instantaneous, 
1

kink = 

0, and secondly, the surface tension is zero, = 0. This 

theory considers a single needle growing into an infinite 

half-space of supercooled liquid. The Péclet number, Pe, 

derived from the Ivantsov’s theory is used to establish a 

correlation between the tip velocity, 
tv


, and the tip radius, 

tr : 

 

2
ttvr

Pe  .                           (10) 

 

 

There is a unique Péclet number for the entire range of 

dimensionless supercooling, , obtained by solving the 

Ivantsov function: 

 

)(exp 010
0 PeEPe

Pe
 .         (11) 

 

The solution of this function represents a continuum family 

of parabolas/paraboloids for a given initial dimensionless 

supercooling . One of the first important hypothetical 

principle of tip selection was the marginal stability theory 

(MST) introduced by Langer & Müller-Krumbhaar (1977, 

1978a, 1978b, 1978c) in their "Universal Law of Crystal 

Growth". They analyzed the stable steady-state of the 

Ivantsov paraboloidal dendrite, introduced the interfacial 

tension effect as a linearized perturbation function and 

found that Ivantsov's continuum family of solutions may 

now be divided into a stable and an unstable region. When 

interfacial energy, , is present and kinetic supercooling is 

neglected, a new dimensionless parameter is defined, 

representing the so-called “control parameter” for the 

“operating point” of the needle: 
 

2

222 2

12










t

c

t

dc

tnv

vm

rrrvL

cT




 ,   (12) 

 

The selected dendrite corresponds to the point of marginal 

stability and hence the emerging tip radius, rt, corresponds 

to the cutoff wavelength, λC, for the stability of a planar 

interface via the Mullins-Sekerka criterion, Eq. (8). Thus, 

the control parameter is evaluated as:  

 

025.0
4

1
2

* 


 .                (13) 

 

Eq. (12) provides an additional relation between the growth 

velocity and the tip radius. The first relation is provided by 

the Peclét number (Eq. 9). On the basis of the MST, a unique 

growth velocity as a single valued function of the 

supercooling (growth law) can be calculated. 

 

Figure 5 shows the dimensionless growth speed of freely 

growing ice crystals as a function of the dimensionless 

supercooling. The solid line represents the diffusional MST 

with the controlling parameter, 

 = 0.025. The experimental 

results of Langer et al. (1978), Ohsaka & Trinh (1998), and 

Shibkov et al. (2005) show a deviation from the theoretical 

curve at high supercoolings. Shibkov et al. give as possible 

reason for the deviation the kinetic effects which start to 

influence the system at higher supercoolings. MST assumes 

a local thermal equilibrium at growing solid-liquid interface 

which may not be the case at higher supercooling degrees 
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because of the slow water molecular transfer across the 

interface (sluggish interface kinetics). Therefore, they 

propose that for higher supercooling degrees, the speed of 

solidification is predominantly determined by the 

mechanism of molecular attachment kinetics at the 

solid–liquid interface. 

 
 

 

Figure 5: Ice crystals freely growing from supercooled 

pure water, dimensionless growth, 2/0dvV t


 , plotted 

against the dimensionless supercooling, LcT p /  

(Shibkov et al. 2005). 

 

 

 

III. Numerical Algorithm 
 

A computational model based on the level set method is 

used in this study. For a detailed description of the 

computational model we refer to Criscione et al. (2012). In 

the following, a brief introduction is given. The level set 

function, , is defined as a signed distance function: the 

zero level set function represents the solid-liquid interface, 

whereas the signed value of the outer level set field 

constitutes the distance to the interface. The sign indicates 

the side of the interface one looks to: a negative sign of the 

outer level set field represents the solid phase while the 

positive sign indicated the liquid phase.  

The heat transfer equations are solved in both, the liquid and 

solid phase independently from each other. At the 

solid-liquid interface a constant value (Dirichlet boundary 

condition) for the temperature field is imposed. The 

interface temperature is calculated according to the 

Gibbs-Thomson relation, Eq. (4). Here, the curvature of the 

solid-liquid interface (zero level set function) is needed. In 

cells close to the interface, the curvature is calculated in the 

center node as the divergence of the unit vector, 

n


. Subtracting the normal distance between 

the cell center and the interface (outer level set value) from 

the curvature radius, one obtains the interface curvature 

radius. The inverse of the interface curvature radius 

describes the curvature of the solid-liquid interface. The 

temperature distribution at the solid-liquid interface of a 

growing crystal with four-fold anisotropy of the surface 

energy is illustrated in Figure 6: the interface temperature 

decreases at sections with positive curvature (finger tip), 

whereas by negative curvature (a grooving between fingers) 

the temperature is slightly higher than the crystallization 

temperature. 

 

 

 
 

 

Figure 6: Gibbs-Thomson relation, temperature distribution 

at the interface of a growing crystal into the supercooled 

liquid phase; four-fold anisotropy of the interfacial tension 

is modelled here. 

 

 

 

Ghost-faces and corresponding ghost points are applied to 

ensure accurate calculation of the temperature normal 

derivative at grid nodes close to the interface. This is 

necessary to fulfill the second boundary condition (heat flux 

balance), Eq. (5), at the interface. The interface temperature 

is stored at ghost-points. The temperature at the ghost-faces 

is calculated interpolating or extrapolating linearly the 

temperature values stored at the cell center node and the 

ghost-point. This value of the temperature stored at the 

ghost-faces is needed to approximate numerically the 

gradient of the temperature in the center node. Hence, the 

temperature in a virtual point, located at a distance normal to 

the interface corresponding to the half of a cell, is 

approximated (Taylor). Using the value of the temperature in 

the virtual point and the calculated interface temperature at 

the ghost point the normal derivative can be calculated 

accurately. Within a narrow band around the interface, 

whose width is temporally adjusted to the maximum 

curvature of the interface, the normal-to-interface velocity is 

appropriately expanded. This velocity is used to update the 

level set function within the narrow-band. After the update 

of the level set function within the band, the outer level set 

function is reinitialized to enable the setting a new band 
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around the interface in the next time step. The physical 

model and numerical algorithm are validated along with the 

analytical solution of the two-phase planar solidification.  

 
 

IV. Results 
 

Growth of an isolated needle-like dendrite including 

kinetic effects  

The computational results of dendritic growth in Criscione 

et al. (2012) exhibit excellent qualitative and quantitative 

agreement with the Marginal Stability Theory of Langer and 

Müller-Krumbhaar as well as with the available experiments 

in the heat-diffusion growth region. At high supercooling 

degrees, kinetic effects start to influence the system 

(kinetics-limited growth). Keeping in mind that the 

computations (such as MST) do not account for kinetic 

effects, one may observe a certain deviation of the 

experiments from simulations at higher supercoolings. 

Shibkov et al. (2005) found also a substantial disagreement 

between experimental results and predictions of the 

diffusional law of dendritic growth at high supercooling 

degrees (Figure 5). They concluded that the observed 

disagreement is caused by the crossover from the 

diffusion-driven growth regime to the kinetics-limited 

regime of solidification. The kinetics growth is determined 

by the rate of molecular rearrangements at the interface 

from the liquid to solid state.  

 

In the literature, the velocity of the solid-liquid interface at a 

high supercooling degree is approximated by a linear 

function of the kinetic undercooling, Tk, Eq. (6). This 

approximation should be valid for pure substances with low 

latent heat of crystallization such as metals and water (see 

Table 1). To date, the definition of the kinetic coefficient, 

kkin, is not well understood. In the following, a derivation for 

the kinetic coefficient is given. First of all, we assume that 

the steady-state dendrite velocity from experimental data 

(Shibkov et al. 2005), ,expnv


, is directly proportional to 

 

Tn Tv ~,exp


.                           (14) 

 

TT represents the total undercooling at the solid-liquid 

interface, which is defined as 

 

kinT TTT   ,           (15) 

 

At a high undercooling degree the steady-state velocity 

obtained theoretically (MST) deviates significantly from the 

experimental data. Here the effect of kinetic undercooling is 

of decisive importance. For instance, in the case of an initial 

supercooling value of 15 K, MST predicts a steady-state 

interfacial velocity of 15,88 cm/s. The steady-state dendrite 

velocity originating from experiments of Shibkov amounts 

approximately 4 cm/s. In MST the viscous force at the 

solid-liquid interface is taken into account and hence the 

viscous undercooling. In order to account for the kinetic 

undercooling, the ratio of the theoretical steady-state 

velocity (MST) to the experimental value, nv


 , is 

computed and we assume that 

 

n

T
v

T
T 




 

.                             (16) 

 

Inserting it into Eq. (15) and assuming a linear function for 

the kinetic undercooling, Eq. (6), we obtain for the kinetic 

coefficient 

 

  mn

MSTnn

kin
Tv

Lvv
k













1

,
.                    (17) 

 

 

 
 

 

Figure 7: Schematic of the computational domain and mesh 

detail in the fine resolution region. 

 

 

 

Thus, preliminary results obtained at high supercooling 

degrees after accounting for the kinetic undercooling in our 

computational model – by applying new definition of the 

kinetic coefficient, Eq. (17) - exhibit good agreement with 

the experimental data. The limitation by using Eq. (17) is 

that the kinetic coefficient is directly dependent on the 

theoretical steady-state velocity and hence on the initial 

supercooling degree. In order to find a universal constant 

being valid for all supercoolings, the relation between the 

kinetic coefficient and the steady-state velocity from 

theoretical data is approximated by following relation: 

 
32

,

*

11

2

2

1








 MSTnkin vk


.                   (18) 

 

 

Assuming that the solid-liquid interface approximates the 

theoretical value MSTnv ,


 neglecting the kinetic effects, the 

kinetic undercooling is defined as follows:  
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 
*

31

kin

n
kin

k

v
T


 .                    (19) 

 

A schematic of the appropriate computational domain is 

depicted in Figure 7. The parabolic needle-like dendrite is 

initialized in the fine-resolution region. In order to assure a 

correct curvature reproduction, the curvature radius of the 

tip is resolved with approximately twenty grid cells. The 

grid resolution in this region is adjusted to the decreasing 

curvature radius at higher supercooling degrees. ld 

represents the initial height of the parabolic needle. Other 

geometric parameters of the computational domain have to 

be selected in accordance with the vertical and horizontal 

growth of the needle, which directly depend on the 

supercooling degree. In order to fulfill the infinity 

conditions, adiabatic boundary conditions for the 

temperature solution have to be prescribed at the left, right 

and upper domain boundary. 

 

 

 

 
 

Figure 8: Tip velocity with and without kinetic effects as a 

function of time at a supercooling of T = 10 K. 

 

 

 

In Figure 8 the tip velocity of the parabolic needle-dendrite 

is plotted against the time in a specific time range. It is 

shown how the dendritic velocity decreases including 

kinetic effects at the solid-liquid interface. The kinetic 

undercooling (Eq. 20) influences the temperature at the 

solid-liquid interface and hence the heat flux released into 

the liquid phase decreases at increasing interface velocity. 

Figure 9 displays the results from our computational model 

compared to the theoretical and experimental data. The 

numerical results obtained by neglecting the kinetic 

undercooling exhibit excellent agreement with the 

diffusional Marginal Stability Theory (Criscione et al. 2012). 

At higher supercooling degrees, the experimental results 

deviate from the theoretical findings and, accordingly, to our 

afore-mentioned computational results. However, after 

accounting for the kinetic effects, by considering the new 

approach presented in this article, the computational results 

at high supercooling degrees follow closely the 

experimental results. 

 

 

 

 
 

Figure 9: Numerical results vs. MST and experiments – 

inclusion of the kinetic undercooling at the solid-liquid 

interface led to improved agreement with the reference 

experimental 

 

 

 

 

 

Array of needles 

In typical applications at high supercooling degrees the 

needle crystals arrangement do not resemble an infinite 

collective but an array. Figure 1 illustrates an array of 

needles at higher supercooling degrees. From the isolated 

dendritic shape (with and without side-branching) at a low 

supercooling degree, the crystal shape evolves into the 

formation of needle arrays due to high destabilizing factor. 

The formation of an array implies the steady-state tip 

velocity of an isolated needle being not valid anymore, 

because the thermal boundary layer around the needle-tip is 

now influenced by the surrounding growing needles. Hence, 

to investigate numerically an array of needles, the 

computational setup exhibited in Figure 7 should be slightly 

modified, introducing symmetry conditions at the left and 

right domain boundary (Figure 10). A channel-like 

subdomain with the width,  , is considered. The sidewalls 

of this channel are assumed to be perfectly insulated. 

Subsequently the width,  , represents the spacing between 

the needles, whereas w describes the initial width of the 

parabolic needle-like dendrite. 

 

Preliminary results at an initial supercooling of 15 K, 

neglecting kinetic undercooling, show that if  approximates  

the so-called fastest growing mode the steady-state velocity 

of the solid-liquid interface approaches to 15.8 cm/s, which 

corresponds to the steady-state velocity of an isolated 

dendrite. Decreasing of  reduces the steady-state velocity of 

the dendrite-tip till to stable growth. Whereas increasing of  

reduces the steady-state velocity of the dendrite-tip as well 

by unstable regime of growth.  
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Figure 10: Schematic of two-dimensional needle-like 

dendrite with initial width, w, growing at speed nv


in an 

array;   describes the spacing between the needles. 

 

 

 

 

V. Conclusions 
 

A new computational model (Criscione et al. 2012) in 

conjunction with an appropriate level set formulation for the 

numerical capturing of the interface between the 

supercooled and the solidified liquid is applied. 

Mathematically, the phenomenon of solidification is 

modeled by utilizing a moving boundary problem. The 

algorithm is capable of computing domains of arbitrary 

geometrical complexity and is capable of accounting for 

relevant influencing factors such as capillary undercooling 

at the liquid-solid interface. Results of dendritic growth 

(Criscione et al. 2012) exhibit excellent qualitative and 

quantitative agreement with the Marginal Stability Theory 

(MST) of Langer and Müller-Krumbhaar (1978) as well as 

with the available experiments in the 

heat-diffusion-dominated region (Shibkov et al. 2005). At 

higher supercooling degrees an evident deviation from 

experimental data was observed. Possible reason for this 

deviation is lack of kinetic effects in the computational 

model. On this account, a new approach for the calculation 

of the kinetic undercooling term is derived and implemented 

into the computational model. Accordingly, the results 

relevant to dendritic growth exhibit a substantially improved 

agreement with experiments also in the so-called 

kinetics-limited region.  

Further investigations concerning the growth of needles in 

an array indicate that surrounding needle-like dendrites do 

not influence considerably the steady-state tip velocity of an 

isolated needle. 
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