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Abstract

This dissertation consists of three studies, each examining a different topic in the field of
energy and environmental economics. The topics comprise: (i) estimating potentials for
greenhouse gas emission reductions of economic sectors, (ii) forecasting the oil production
of a region based on historical data from discoveries, and (iii) examining the determinants
of electricity price fluctuations. Each of the studies uses a particular statistical method
or mathematical model that is specifically adapted to the research question and the data
set under investigation.

The first study is a stochastic nonparametric efficiency analysis in which greenhouse gas
emissions are included as bad outputs. For seven economic sectors and sixteen European
countries, this study estimates greenhouse gas emission reduction potentials, i.e., the
quantity of emissions that could potentially be reduced by improvements in productive
efficiency. The standard DEA method is extended by a specific bootstrapping procedure
used to implement a bias correction and to compute confidence intervals. The magnitudes
of the emission reduction potentials are compared with the emission reduction targets for
2030 from the European Commission. The results show that improvements in productive
efficiency are a quantitatively important element, potentially allowing for a substantial
reduction of greenhouse gas emissions in the European Union.

The second study presents a stochastic model for forecasting for an oil-producing region
the amount of undiscovered oil, the future path of oil discovery and that of oil production.
The model combines three submodels: (i) an empirically-founded production model at the
level of individual oil fields, (ii) a successive sampling discovery model after Kaufman et al.
(1975) for forecasting field sizes, and (iii) a stochastic birth process model for forecasting
discovery dates. The model is estimated and evaluated for the oil-producing regions of
Norway and the U.S. Gulf of Mexico (the latter further split into shallow- and deep-water
parts). The results show that the predictions for oil discovery are somewhat too low
compared to the actuals for Norway and for the shallow-water Gulf of Mexico, while for
the deep-water Gulf of Mexico the predictions are too high. This is similarly reflected in
the predictions for oil production.

The third study is a multivariate wavelet analysis of the German wholesale electricity
market, which examines the determinants of electricity price fluctuations using daily
time series. The possible determinants are coal prices, gas prices, and the residual load
(i.e., electricity consumption minus wind and solar generation). The multivariate wavelet
method allows for a detailed examination of the relations between the time series in time-
frequency space, while also taking into account the interdependencies among the different
time series. The results show that the residual load is the key short-run determinant of
electricity prices, while coal and gas prices are the key long-run determinants. Also, this
study finds that the co-movement relation among the energy prices is time-varying, which
is consistent with the findings of other studies (e.g., Sousa et al. (2014); Aguiar-Conraria
et al. (2018)).
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Zusammenfassung

Die vorliegende Dissertation beinhaltet drei Studien, die jeweils unterschiedliche Themen
aus dem Forschungsfeld der Energie- und Umweltökonomie untersuchen. Die Forschungs-
themen der Studien umfassen: (i) die Schätzung von Einsparpotentialen für Treibhaus-
gasemissionen auf Sektorebene, (ii) die Prognose der Ölförderung einer Region auf Basis
von historischen Daten zu Ölfunden, (iii) die Untersuchung der Bestimmungsfaktoren von
Strompreisschwankungen. Jede der Studien nutzt dabei bestimmte statistische oder ma-
thematische Methoden, welche speziell auf die Forschungsfrage und den zu untersuchenden
Datensatz zugeschnitten sind.

Die erste Studie ist eine stochastische, nichtparametrische Effizienzanalyse mit Treibh-
ausgasemissionen als unerwünschte Outputs. Es werden für sieben Wirtschaftssektoren
und sechstzehn Europäische Länder Einsparpotentiale für Treibhausgasemissionen ge-
schätzt, d.h. die Emissionsmengen, die möglicherweise durch Produktivitätsverbesserun-
gen eingespart werden könnten. Dafür wird die übliche DEA-Methode durch ein spezielles
Bootstrapping-Verfahren ergänzt, um eine Bias-Korrektur durchzuführen und Konfiden-
zintervalle zu ermitteln. Die geschätzten Einsparpotentiale für Treibhausgasemissionen
werden mit den Emissionsreduktionszielen der Europäischen Kommission für 2030 ver-
glichen. Der Vergleich zeigt, dass Produktivitätsverbesserungen ein quantitativ wichtiges
Element darstellen, wodurch gegebenenfalls eine substanzielle Verringerung der Treibh-
ausgasemissionen der Europäischen Union möglich ist.

Die zweite Studie präsentiert ein stochastisches Modell, welches darauf abzielt, die unent-
deckten Ölmengen sowie den Zeitpfad der Ölentdeckungen und der Ölproduktion für eine
ölfördernde Region vorherzusagen. Das Modell kombiniert drei Submodelle: (i) ein empi-
risch fundiertes Produktionsmodell für individuelle Ölfelder, (ii) ein „Successive Sampling
Discovery Model“ nach Kaufman et al. (1975) zur Prognose der Feldgrößen, und (iii) ein
stochastisches Modell vom Typ Poisson-Prozess zur Vorhersage der Entdeckungszeitpunk-
te. Das Modell wird für die ölfördernden Regionen Norwegen und dem Golf von Mexiko
(letztere weiter untergliedert in „Flachwasser-“ und „Tiefwasser-Region“) geschätzt und
evaluiert. Die Ergebnisse zeigen, dass für Norwegen und für die „Flachwasser-Region“ des
Golfs von Mexico die prognostizierten Ölentdeckungen etwas zu niedrig sind im Vergleich
zu den tatsächlichen Ölentdeckungen, während für die Tiefwasser-Region des Golfs von
Mexico die Prognosen zu hoch sind. Ähnliches spiegelt sich in den Prognosen für die
Ölproduktion wider.

Die dritte Studie ist eine multivariate Wavelet-Analyse des deutschen Großhandelsstrom-
marktes, welche die Bestimmungsfaktoren von Strompreisfluktuationen anhand von tägli-
chen Zeitreihen untersucht. Die möglichen Bestimmungsfaktoren sind Kohle- und Gasprei-
se sowie die Residuallast (die gesamte Netzlast minus die Erzeugung aus Windkraft und
Solarenergie). Die multivariate Wavelet-Methode erlaubt eine detaillierte Untersuchung
der Beziehungen zwischen den Zeitreihen nach Zeit und Frequenz, wobei ebenso die Ab-
hängigkeiten zwischen den verschiedenen Zeitreihen berücksichtigt werden. Die Ergebnisse
zeigen, dass die Residuallast der wesentliche Bestimmungsfaktor über kürzere Perioden
ist, während Kohle- und Gaspreise die wesentlichen Bestimmungsfaktoren über längere
Perioden sind. Ebenso findet die Studie, dass der Zusammenhang zwischen den Energie-
preisen zeitlich veränderlich ist, was mit Ergebnissen aus anderen Studien übereinstimmt
(siehe z.B., Sousa et al. (2014); Aguiar-Conraria et al. (2018)).
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1 Introduction

“Simply put, energy is the only truly universal currency, and nothing (from galactic
rotations to ephemeral insect lives) can take place without its transformations” (Smil
(2022), p. 21).

Since the industrial revolution, there has been an unprecedented rise in human energy
consumption across the various sectors of the economy, such as manufacturing, trans-
portation, agriculture and housing, mainly in the form of fossil fuels (coal, oil, natural
gas). As their combustion leads to CO2 emissions, this has triggered the problem of an-
thropogenic global warming which is caused by CO2 and other greenhouse gas emissions
(IPCC (2023)).

From a resource point of view the above quote from Vaclav Smil qualifies energy as the
“master resource” (Michaux (2021), p. 2; Martenson (2023), p. 125). If energy is the
master resource, then oil in particular could be considered the “master” among the set of
master resources due to its high energy density (both per unit volume and per unit mass),
since it is easy to transport and store, and since it can fuel even the largest engines and
vehicles (Hall et al. (2009), p. 35; Miller and Sorrell (2014), p. 2).

The increased global access to energy has furthermore allowed the increasingly rapid
exploitation of other mineral and ecosystem resources, also with consequential waste gen-
eration, which has lead to the ongoing processes of resource depletion and environmen-
tal degradation. Among others, these include biodiversity loss (i.e. species extinction),
land-system impacts (e.g. deforestation, soil erosion), overfishing, depletion of some large
aquifers, aerosol emissions, plastic pollution, and pollution by chemicals with eco-toxicities
such as pesticides (see, for example, Steffen et al. (2015); Raugei (2023), p. 1). Although
these processes operate primarily on the regional scale, there are interactions among these
processes, and if the scope thereof transgresses certain boundaries this will turn into im-
pacts at the global level (Steffen et al. (2015)). In this sense, Rockström et al. (2009) and
Steffen et al. (2015) highlight the existence of multiple “planetary boundaries” that are
better not exceeded in order to guarantee the stability of the current conditions prevailing
on the Earth which can support human societies.

A crucial paradigm of ecological economics is that economic analysis should be centered
around the recognition that the economic system is a subsystem of the surrounding ecosys-
tem or of the Earth system (Daly (2007), pp. 39, 41).1 The Earth system comprises the
biosphere (i.e. the natural ecosystems), the “geosphere” (including the lithosphere where
the soil and the deposits of minerals and fossil fuels reside), the hydrosphere (the oceans,
ice sheets, etc.), and the atmosphere (Hagens and White (2021), p. 135). It is finite, non-
growing, and materially closed (Daly (2007), pp. 9-10), though energetically it is open
with a constant inflow of solar energy and an outflow of heat radiation. The Earth system
supplies the necessary raw materials for economic production, absorbs waste flows, and
delivers ecosystem services without which humans and other species could not survive
(e.g. pollination, nutrient recycling, climate regulation).

From the fact that the Earth system is finite and non-growing, the concept that there
are biophysical limits to the size and scope of human economic activity and its growth

1The terminology “Earth system” is adopted from Steffen et al. (2015). Regarding the Earth as a
integrated system that is akin to a complex organism is also the viewpoint behind the Gaia hypothesis
(Lovelock and Margulis (1974)).
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becomes evident (Meadows et al. (1972); Daly (2007)). These pertain to the limited
capacity “of the ecosystem to absorb wastes and replenish raw materials in order to
sustain the economy [and the population]” (Daly (2007), p. 9). To give an example,
the waste stream of CO2 emissions could in principle be absorbed by biomass production
(i.e. CO2 uptake in plant mass and topsoil), but the rate at which this can happen is
limited (though it can be influenced by human efforts, e.g. via afforestation and farming
practices).

With regard to nonrenewable resources use, the issue of limits or sustainability is more
difficult to define. For example, one can extend the definition of limited capacity from
above by saying that nonrenewable resources should not be extracted at rates that “exceed
the rate of development of renewable substitutes” (Daly (2007), p. 14). One can extend
this definition to allow for the substitution with other nonrenewable substitutes (which
then, of course, should be available in quantities so that their extraction rate does not
violate the same definition of limited capacity).

Since global primary energy consumption in 2022 was still to 82% based on fossil fuels
(Energy Institute (2023), p. 9), this means that, as of now, global civilization is largely
a fossil-fuel based civilization. In fact, this is in part related to the four materials that
are most indispensable for modern society, which Smil (2022, p. 77) refers to as the “four
pillars of modern civilization: cement, steel, plastics, and ammonia”. The large-scale
production of these materials is crucially dependent on fossil fuels as an energy source or
as a petrochemical feedstock. The process of iron ore smelting is fueled by coking coal
and natural gas, cement production involves coal or heavy fuel oil, plastics are largely
made from oil and natural gas, and ammonia is synthesized from natural gas that is also
used as the energy source for the synthesis. In total, the global production of these four
materials is responsible for 17% of global primary energy supply, and a quarter of the
CO2 emissions from fossil fuels (Smil (2022), p. 78).

This dependence on fossil fuels for many production processes shows that an important
research topic is the study of greenhouse gas (GHG) emission reduction potentials that
could arise by improving the productive efficiency of firms, and therefore, of economic
sectors. Chapter 3 of this thesis deals with this topic by examining efficiency-related
GHG emission reduction potentials by sector (e.g. manufacturing, power generation) for
a sample of European countries.

Reconsidering the above paragraph where I have referred to energy and oil in particular
as the “master resource”, it is hard to imagine the current world without oil. Aside from
being used to produce plastics, oil is currently essential for powering heavy transportation,
including heavy machinery in agriculture and mining. It is vital for transportation also in
other ways: synthetic rubber for tires is made from oil (or natural gas),2 and the asphalt
pavement of roads contains bitumen, a viscous residue from oil distillation.3 Since oil
has provided 31.6% of global primary energy in 2022 (Energy Institute (2023), p. 9),
and considering the nonrenewable nature of this fossil resource, this makes it important
to study the future prospects of oil availability. Chapter 4 of this thesis considers this
topic by formulating a predictive model for oil production, which is then applied to the
oil-producing regions of Norway and the U.S. Gulf of Mexico.

Both the resource depletion issue and the issue of global warming highlight the importance

2See https://www.britannica.com/science/rubber-chemical-compound
3See https://www.britannica.com/science/bitumen
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of developing and deploying substitutes for fossil fuel use. The renewable energy flows
harnessed by solar panels and wind turbines, hydropower plants, and biomass use are
widely regarded as substitutes for fossil fuels, and a massive expansion of these renewable
technologies is planned by many of the world’s nations. Alternative candidates could
be the latest generation nuclear power reactors and geothermal power generation. Since
these energy technologies produce mainly electricity (except for biomass), if they are to
substitute for the fossil energy that is used in non-electric sectors, their expansion would
require the further electrification of the other sectors, by which the electricity sector would
further rise in importance.

The analyses presented in Chapters 3 and 4 necessarily employ a long-run perspective
since efficiency-related emission reduction potentials require time to be realized and since
oil discovery and depletion are per se lengthy processes. Chapter 5 of this thesis con-
siders, among other things, the energy mix of German electricity generation. This is
now approached from a short-run perspective by examining how the electricity price is
dynamically influenced by the electricity mix and fuel prices. In particular, this study
of electricity price formation deals with a situation where electricity is generated from a
mix of fossil and renewable energy sources, and where the renewable generation capacity
is subject to a steady expansion. The German electricity market is well suited for this
because Germany is currently a forerunner where large investments into renewable energy
expansion have been made. In 2022, 40% of the total electricity demand was provided by
wind and solar, 11% by hydropower and biomass, while 34% was provided by coal and 8%
by gas (data obtained from the Bundesnetzagentur). In Chapter 5, therefore, I examine
for the German electricity market with a suitable method the relative importance of the
“periodic oscillations” in renewable energy generation versus those in fossil energy prices
for explaining the “periodic oscillations” in daily wholesale electricity prices.

1.1 Outline of the Thesis

The doctoral thesis is structured as follows. Chapter 2 starts with an empirical exami-
nation of the global macroeconomic relationships between primary energy consumption,
GHG emissions, and GDP. Afterwards, historical trends of GHG emissions, oil production,
and renewable energy generation shares are briefly explored. The chapter is concluded by
briefly sketching a framework for macroeconomic production functions with energy as an
input and GHG emissions as an undesirable output.

Chapter 3 presents a stochastic nonparametric efficiency analysis in which the emission
of greenhouse gases are taken into account as bad outputs. The chapter reports point
estimates and confidence intervals for GHG emission reduction potentials for 7 sectors
(comprising the largest GHG emitting sectors) in a sample of 16 large European countries.
In addition to GHG emissions, the variables used in the efficiency analysis are gross value
added as the good output and the conventional labor and capital measures as inputs. The
nonparametric approach of the efficiency analysis employs directional distance functions
(DDF) to find the maximum possible reduction of the bad outputs which is feasible within
a convex technology set that envelopes the input-output combinations of the sample
countries. The first variant obtains in this way estimates of the reduction potentials for
a single GHG aggregate, computed as the sum of CO2, CH4 and N2O emissions. In
other variants the reduction potentials for splits of the different greenhouse gases are
examined as well. In a further variant the combination of GHG emission reduction and
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output enhancement is examined. In these cases where the inefficiency is assessed in
the direction of multiple bad outputs or of a combination of bad and good outputs, the
direction vector of the DDF is determined endogenously with the inefficiency. Since the
nonparametric efficiency analysis provides only point estimates that are also biased, which
is a peculiarity that generally arises for frontier function estimation, the computations
are extended by a specifically designed bootstrapping procedure to compute confidence
intervals and correct the bias. Thus, the main results of Chapter 3 are bias-corrected GHG
emission reduction potentials with confidence intervals. In the final sections of Chapter 3,
some policy implications of the analysis are discussed and the magnitudes of the emission
reduction potentials are put into perspective by comparison with the emission reduction
targets for 2030 as set by the European Commission (see EU (2020)).

Chapter 4 presents a stochastic model for oil production in a region with empirical appli-
cations to oil production in Norway and the U.S. part of the Gulf of Mexico. The chapter
starts with a literature review of previous mathematical approaches for modeling oil pro-
duction in a region, such as those based on fitting suitable curves (e.g. bell-shaped) to
regional production time series, often called “top-down” models. The chapter then formu-
lates in great detail a stochastic “bottom-up” model for the regional rate of oil production
that combines three mathematical submodels. The first one is an empirically-derived field-
level production model, where it is assumed that each individual oil field follows a certain
deterministic production profile over time, which can vary by field size (i.e. the amount
of recoverable oil). The second model is based on certain axioms about how the discovery
of new fields proceeds. The main axiom postulates that the fields are not discovered as
a random sample but instead via a successive sampling scheme where field size is the
key determinant of the discovery order, henceforth called size-biased sampling. The third
model is about the dates of “when” the new fields are discovered. Here I use the stochastic
process model referred to as a pure birth process. I also introduce time-varying behavior
into this model for the discovery times by using extrapolations of certain temporal trend
functions, which either pertain to the pace of exploration well drilling or directly to the
pace of new field discoveries. A large part of the methods section of Chapter 4 covers
the statistical estimation procedure for the size-biased sampling model in detail. The
estimation allows to infer from a sample of oil fields (or rather their sizes) a predictive
distribution for the undiscovered resource potential (i.e. the remaining amount of oil that
“is still out there” in the undiscovered fields). The methods section then proceeds with the
pure birth process model for the discovery times, after which the overall properties of the
combined model for regional oil production are summarized, and expectations regarding
the dynamics of the model are discussed. The empirical part of Chapter 4 first reports the
parameter estimates of the size-biased sampling model jointly with the resulting estimates
of undiscovered resources. These are then compared to the estimates that are published
by the respective official agencies for the regions. The final subsection presents the main
results of the chapter, namely the projections of regional oil production (and discovery)
for each year beyond the time period that was used to estimate the parameters. These
projections are conditional on certain scenarios for future exploration well drilling or for
the future pace of new field discoveries. The projections comprise a whole predictive
distribution that is shown as a mean forecast with an associated quantile range.

Chapter 5 presents a conditional wavelet analysis that examines the relation between
German wholesale electricity prices and a few possible determinants, using daily data from
2015-2023. These determinants are the total electricity demand, wind and solar electricity
generation, the residual load (i.e. total demand minus wind and solar generation), and
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proxy price series for the import prices of hard coal and natural gas. The chapter starts
with a brief review of related literature and continues with the methodology of wavelet
and cross-wavelet analysis, where also the novel multivariate wavelet methods (partial and
multiple wavelet coherence) which are applied in this chapter are explained. After a brief
data description, the empirical results section first considers each time series separately
via univariate wavelet analysis. Then, the bivariate wavelet analysis examines the co-
movement relations between the electricity price and the possible price determinants in
time-frequency space, where the frequency dimension corresponds to cycles with period
lengths ranging from 2 days to 2-4 years. The bivariate results are presented graphically
via wavelet coherence plots jointly with an indication of the statistical significance of
the coherence, which is computed from simulations of independent surrogate series. Also
derived from the bivariate analysis are phase difference plots that allow to assess the lag-
lead relation between the pair of series and how this relation changes over time. Finally,
the analysis in Chapter 5 goes beyond the usual bivariate wavelet analysis by computing
also partial and multiple wavelet coherences. The partial wavelet coherence allows to
analyze in time-frequency space the relation between the electricity price and the quantity
series (e.g. the residual load series) after elimination of the potentially distorting influence
of the price series (i.e. coal and gas prices), and vice versa. Besides, the multiple wavelet
coherence allows to quantify the explanatory power that the quantity and price series
jointly have for the electricity price across the time-frequency space. In the final part
of Chapter 5, I summarize the insights gained from the wavelet analysis regarding the
question of which of the possible electricity price determinants are most important at
which frequency, and how this has changed during 2015-2023.

Chapter 6 briefly reviews the key insights gained from the analyses in Chapters 3 - 5, and
based on these insights, possible avenues for future research are outlined.
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2 Energy as a Factor of Production

To motivate the studies in Chapters 3 - 5 which deal with GHG emissions, energy (oil)
supply and energy (electricity) prices, sect. 2.1 starts with a descriptive examination of
the macroeconomic dependence on energy consumption by studying the relations between
energy, GDP, and GHG emissions for the economies of the world. Sect. 2.2 proceeds
with a further data description of historical trends for GHG emissions, oil production,
and renewable energy generation shares. Finally, sect. 2.3 offers a brief sketch of a
macroeconomic production function in which the previously established central role of
energy and associated GHG emissions can be accounted for explicitly.

2.1 The Macroeconomic Relations between Energy, GHG Emis-
sions, and GDP

The data used in this section are GDP and population data from the Penn World Table
10.01,4 primary energy consumption data published by the OECD (called “primary energy
supply” on their website),5 and GHG emission data published by the Potsdam Institute
for Climate Impact Research (PIK).6 The PIK emission time series are officially called the
PRIMAP-hist national historical emissions (version 2.1) time series, and the sources and
methods used for the construction of this dataset are described in detail by Gütschow et
al. (2016; 2019). The GHG emission series include all Kyoto gases (excluding land use,
land use change and forestry, LULUCF) and are expressed in tons of CO2 equivalents.

Figure 2.1 shows the bivariate relationships for each pair of the three time series (primary
energy consumption, GDP, GHG emissions). The time series are computed as sums over
the 110 countries for which data during the period 1971-2019 is available, comprising most
of the major economies. On the left-hand side the series are depicted in levels. A linear
fit is added as a red line, for which the linear regressions are reported above the panels.
On the right-hand side the series are plotted as year-to-year percentage changes and as
functions of time. The linear regressions of the red-colored series on the black-colored
series are reported above the panels. In Figure 2.2, analogous plots are shown when the
series are expressed in per capita terms.

The upper row in Figure 2.1 shows how global energy consumption and GDP have in-
creased over the past 50 years in perfect lockstep. The upper-left panel suggest an almost
one-to-one co-movement relation between global GDP and global energy consumption.
In order to remove the trend in the time series to avoid spurious correlation between the
two nonstationary series, the relation is studied on the right using year-to-year changes.
The high correlation is evident and the correlation coefficient amounts to

√
0.6 ≈ 0.77.

The upper-right panel also shows that there were two recessions in terms of global GDP
which followed or co-occurred with a decline energy consumption: the first one was in
1981 following a decline in energy consumption in 1979-81 after the second oil crisis, the
second one was in 2008 after the 2007–08 financial crisis, which co-occurred with a tiny
decline of global energy consumption in 2008.

4The data are accessible at https://www.rug.nl/ggdc/productivity/pwt/
5The data are accessible at https://data.oecd.org/energy.htm
6The data are accessible at https://www.climatewatchdata.org/
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Figure 2.1: Global time-series relations, in total, 1971-2019
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Figure 2.2: Global time-series relations, per capita, 1971-2019
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Figure 2.3: Cross-sectional relation between energy consumption and GDP in 2010-19
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Source: OECD energy data, Penn World Table 10.01.
Note: The variables are taken as medians over 2010-2019. ISO alpha-3 country codes are shown for
selected countries. Trinidad and Tobago (TTO), Qatar (QAT) and Iceland (ISL) (not shown in the right
panel) are not used to compute the regressions in both panels as they are clearly outliers.

The upper row in Figure 2.2 shows that the relations between per capita energy consump-
tion and GDP exhibit correlations of the same high magnitude. From the upper-right
panel showing the short-run relationship one can see that per capita GDP has declined
in 1974 after a decline in per capita energy consumption in 1973-74 (the years of the first
oil crisis), and also in 2014 jointly with a decline in per capita energy consumption in
2014-15. This brief descriptive analysis suggests that the direction of causation between
energy and GDP goes in both ways, as there were clearly recessions that were preceded
by a decline in energy consumption, but there were also recessions where the decline in
energy consumption occurred only in the same year or afterwards.

Moreover, the bottom row of Figure 2.1 shows a very close association between GHG
emissions and primary energy consumption, which according to Figure 2.2, however, is
less close when expressed in per capita terms. In particular, the bottom-left panel of
Figure 2.2 reveals that the emission intensity of energy consumption has substantially
declined after the second oil crisis, but then has increased back again during the 1990s
and 2000s.

In Figure 2.3, the relation between per capita energy consumption and GDP is analyzed
from a cross-sectional perspective. For a global cross-section of 135 countries, where the
variables are taken as the medians over 2010-19, the left panel shows the results from
regressing energy consumption on GDP on a double-logarithmic scale, while the right
panel shows the results for a quadratic specification. Figure 2.4 shows the same kind
of plots and regressions where GHG emissions are used instead of energy consumption.
Note that in the left panels the axes have a log-scale. The regression on the left in
Figure 2.3 shows that the power function Energy/capita = 1.88(GDP/capita)0.83 fits the
macroeconomic data well. As noticed by West (2017) and by Hagens and White (2021, p.
198), such a power law relation is quite similar to a well-known scaling law that applies
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Figure 2.4: Cross-sectional relation between GHG emissions and GDP in 2010-19
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to biological organisms, namely Kleiber’s law. This refers to the empirical relationship
between the metabolic rate and the mass of animals, which is found to be well-described
by a power function with an exponent of 0.75 (West (2017); Thommen et al. (2019)).

In the environmental economics literature, quadratic or cubic functional forms have been
employed for the relationship between environmental pollution and GDP, specifically in
the literature that studies the so-called Environmental Kuznets Curve (EKC). The EKC
refers to an inverse-U-shaped relation between a measure of economic development or
output on the x-axis and an environmentally relevant variable on the y-axis. The concept
was first studied by Grossman and Krueger (1991; 1995) and Panayotou (1993) with
respect to air pollution such as SO2 emissions, but there were also early studies using
CO2 emissions (e.g. Holtz-Eakin and Selden (1995)). In the following decades a long
list of studies has been published on this topic, as recently surveyed by Shahbaz and
Sinha (2019). Some of the papers also examine an EKC with energy consumption as the
environmental variable, for example Richmond and Kaufmann (2006). From the right
panels in Figures 2.3-2.4 it is possible to assess whether the relations between energy
consumption / GHG emissions and GDP follows an EKC. Figure 2.3 shows that, although
the quadratic term is statistically significant, the resulting curve is not inversely U-shaped
since the hypothetical turning point for GDP per capita lies far outside the sample range
(at about 143,000 US$ per capita). The picture for GHG emissions in Figure 2.4 is similar,
as expected because both variables are strongly tied due to the CO2 emissions from fossil
fuels. The hypothetical turning point is here comparatively lower at about 97,000 US$
per capita. Since this point is still quite outside of the sample range, I conclude that there
is also no EKC for GHG emissions and GDP.

In sum, Figures 2.1-2.4 elucidate the very strong connection between energy consump-
tion / GHG emissions and GDP both from a global time-series perspective and from a

10



country-level cross-sectional perspective. This result is not very surprising from a physical
understanding of the role of energy for economic production, i.e. from the point of view of
thermodynamics (as expressed for example in the introductory quote to Chapter 1 from
Vaclav Smil). As also stated by Ayres and Warr (2009, p. xviii): “In contrast to the
neoclassical economic model, the real economic system depends on physical material and
energy inputs, as well as labour and capital. The real economic system can be viewed
as a complex process that converts raw materials (and energy) into useful materials and
final services. Evidently materials and energy do play a central role in this model of
economic growth.” Besides, Hall et al. (2001, p. 663) point out that “the two laws [of
thermodynamics] say that nothing happens in the world without energy conversion and
entropy production, with the consequence that every process of biotic and industrial pro-
duction requires the input of energy”. In particular, the second law of thermodynamics
implies that “the valuable part of energy (exergy) is transformed into useless heat at the
temperature of the environment (anergy), and usually matter is dissipated, too. This
results in pollution and, eventually, exhaustion of the higher grade resources of fossil fuels
and raw materials” (Hall et al. (2001), p. 664). One of the first economists who stressed
the importance of taking into account the relation between the laws of thermodynamics
and the economic process was Nicholas Georgescu-Roegen (1971). Among others, these
scientists have criticized the prevalent (macro-)economic doctrine where the important
role of energy is largely ignored. As Smil (2022, p. 21) states: “Given all of these readily
verifiable realities, it is hard to understand why modern economics, that body of explana-
tions and precepts whose practitioners exercise more influence on public policy than any
other experts, has largely ignored energy”.

2.2 Historical Trends for GHG Emissions, Oil Production, and
Renewable Energy

In this section, further historical time series on GHG emissions, oil production, and re-
newable energy shares are depicted and briefly analyzed.

Figure 2.5 depicts the GHG emissions (measured in tons of CO2 equivalents) during the
time period 1900-2022 for the 10 countries that are the largest emitters as of 2022. As
the gray line the figure also shows the aggregate emissions of the remaining countries.
To allow for comparison with the sample of 16 European countries examined in Chapter
3, I also added a dashed black line that shows their total GHG emissions. First, one
can see that the GHG emissions of the sample from Chapter 3 and of India have been
converging so that both are of the same magnitude in 2022. The figure also illustrates the
proportions of the GHG emissions of the two largest economies, the United States and
China, versus those of “Others”. Particularly noteworthy is the unprecedented rise in the
GHG emissions of China after 2000. On the other hand, while the Chinese population
is more than four times as large as the US population, the Chinese GHG emissions were
only about twice as large as the US emissions in 2022.

Figure 2.6 shows the monthly production of liquid fuels for the world (left panel) and
for the US only (right panel), obtained from the US Energy Information Administration
(EIA). The blue area represents crude oil production and the lightest orange represents
natural gas liquids (NGL) production.7 The NGL category includes the hydrocarbon

7The other orange areas pertain to refinery or processing gain and fuel ethanol production, for defini-
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Figure 2.5: GHG emissions of top 10 emitters and others, 1900-2022
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Figure 2.6: World (left panel) and US (right panel) liquid fuel production
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Figure 2.8: Renewable energy (RE) shares in primary energy consumption, 1990-2020
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Source: OECD energy data on renewable energy.

molecules ethane, propane, butane, and pentane. The shorter molecules (ethane, propane)
are rarely used for transportation but rather for petrochemicals or heating and have a
considerably lower energy content than crude oil. Ethane occupies the largest share of
NGL production and is almost exclusively used to make plastics.8 The left panel of Figure
2.6 shows that the recovery of world liquid fuel production after the onset of the COVID
crisis has to a larger extent come from NGLs than from crude oil. In fact, global crude oil
production so far has not recovered to the peak production that occurred in November
2018, which was more than one year before the beginning of the COVID crisis. Of course,
this may still be the aftereffects of the COVID crisis combined with a lagged recovery for
crude oil in a capital-intensive industry, but this recent trend highlights the importance
of examining the prospects of future crude oil availability. To provide a country-level
resolution, Figure 2.7 shows the yearly crude oil production time series for 18 of the largest
oil-producing countries over the period 1971-2021, obtained from the OECD website.9

Finally, Figure 2.8 shows the shares of renewable energy in primary energy consumption
for several country groups, obtained from the OECD website.10 One can see a shift of the
curves when comparing the left panel (with solid biofuels) to the right panel (without solid
biofuels), but the rates of increase after 2005-2010 are similar in both panels, showing that
this recent increase has come from the new renewables (solar, wind, non-solid biofuels)
or hydropower. Still, when excluding solid biofuels, the renewable energy shares in 2020
amounted only to 6.3% for the world and to 9.8% for the EU-28. Overall the EU countries
show the fastest rise of the renewable energy share.

tions see https://www.eia.gov/tools/glossary
8See https://www.eia.gov/todayinenergy/detail.php?id=5930
9See ’crude oil production’ at https://data.oecd.org/energy.htm

10See ’renewable energy’ at https://data.oecd.org/energy.htm
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2.3 A Framework for Macroeconomic Production Functions with
Energy and GHG Emissions

To conclude this chapter, what follows is a brief sketch of a framework for macroeconomic
production functions in which the central role of energy consumption and of associated
GHG emissions, as consistent with the conclusions from sect. 2.1, is explicitly taken into
account. Specifically, I consider a function that maps the three inputs capital (K), labor
(L), and energy consumption (E) into the economic output such as GDP (Y ), jointly with
a second production function for GHG emissions (U) as a by-product from producing the
economic output. Besides, energy consumption is further subdivided into fossil fuel energy
(Ef ) and energy from other sources (Eo), where E = Ef + Eo. The general framework
thus looks as follows:

Y = F
(
KA Y

K , LA
Y
L , (Ef + Eo)A

Y
E

)
,

U = G
(
K/A U

K , L/A
U
L , Ef/A

U
E

)
,

(2.1)

where also the partial derivatives of the functions F and G with respect to each argument
are nonnegative.

The function F contains as parameters the augmentation indices of capital (A Y
K ), labor

(A Y
L ), and energy (A Y

E ) which can be interpreted as reflecting changes in technology or
efficiency that improve the capability of the respective inputs to produce GDP. For the
function G, the parameters A U

K , A U
L , and A U

E are analogous augmentation indices that
reduce the GHG emissions per input use. To give an example, an increase in A U

E (lowering
GHG emissions per fossil energy consumption) could occur due to the substitution of coal
with gas (since gas contains less carbon per unit of energy), due to reduced leakage of
methane emissions at gas or oil production sites, or due to the application of carbon
capture and storage (CCS).

The next chapter now continues with an environmental efficiency analysis of 7 main GHG
emitting sectors in 16 European countries, from which GHG emission reduction potentials
are estimated for the sectors and countries. While the analysis does not explicitly include
energy consumption, an implicit estimation of the functional relation (or rather of the
efficient frontier) between the other variables (GHG emissions, economic output, labor
and capital) is conducted by using a nonparameteric efficiency analysis approach.
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3 Greenhouse Gas Emission Reduction Potentials in

Europe by Sector: A Bootstrap-Based Nonpara-

metric Efficiency Analysis11

3.1 Introduction

The reduction of greenhouse gas (GHG) emissions on a global level is the key measure
to counteract the detrimental effects of climate change and global warming. Other ap-
proaches to limit global warming, like carbon removal or geoengineering approaches are
either infeasible or extremely risky (see Nordhaus (2019, p. 1998) for a clear statement).
This is largely undisputed in the economic literature (see the survey articles by Myhre
et al. (2001), Aldy et al. (2010), Hsiang and Kopp (2018) and Tol (2018), among others)
and is the basis for several international agreements. The most prominent agreements
are the Kyoto Protocol of 1997 and the Paris Agreement on climate change of 2015 to
reduce GHG emissions to reach the 2°C target, meaning the stabilization of the increase
in temperature at “well below 2°C above pre-industrial levels”.12

The European Union (EU) as a key actor in this area has achieved an agreement among
its member countries to reduce GHG emissions by 40% until 2030, 60% until 2040 and
80% until 2050, compared to the levels of 1990 (EU (2011), p. 3). Recently these targets
have been tightened to reduce GHG emissions by 55% until 2030, 80% percent until
2040 and to reach climate neutrality by 2050, also accounting for the effects of carbon
removal technologies, land use change and forestation (see EU (2020) and especially figure
1 therein).

Efforts to improve the productive efficiency of sectors could be a potentially important
building block of an emission reduction strategy. Therefore it is important to know to
which extent GHG emissions could be reduced by achieving productive efficiency while
holding the economic inputs and outputs constant. In our companion paper Krüger and
Tarach (2020) we applied nonparametric methods of efficiency analysis in the presence of
undesirable outputs derived from a variant of data envelopment analysis (DEA) to give
an account of the potential reductions of GHG by country and sector for the period 2008-
2016. The main finding is that efficiency improvements can contribute considerably to
emission reduction, albeit the extent to which the measured potentials could be realized in
practice remains open. However, the measurement approach used in the companion paper
is purely deterministic and prone to biases. Furthermore, no account of the estimation
uncertainty is provided there.

In this paper we pick-up these issues by combining the nonparametric efficiency mea-
surement approach with a specifically designed bootstrapping procedure to achieve a bias
correction and to compute confidence intervals for assessing estimation uncertainty. To
our knowledge this is the first time that a nonparametric approach combined with stochas-
tic elements is applied in an environmental efficiency measurement context. We report
estimates of aggregate emission reduction potentials for 16 major EU countries and 7 main

11This chapter is joint work with Jens Krüger and is published in Environmental and Resource Eco-

nomics, see Krüger and Tarach (2022).
12This 2°C target is defined in Article 2 of the Paris Agreement jointly with the plea to pursue an even

tighter target of 1.5°C, see https://newsroom.unfccc.int/process-and-meetings/the-paris-agreement/the-
paris-agreement.
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sectors of the private economy. As emissions we consider a broad GHG aggregate as well
as splits to single GHG (CO2, CH4 and N2O). The results show that the bias correction
leads to larger emission reductions compared to the “raw” measures from our compan-
ion paper which are based on the purely deterministic approach. We can show that the
potentials for emission reduction are concentrated in certain countries and sectors. In
addition, we find that the estimation uncertainty is substantial in these cases.

In contrast to much of the literature on eco-efficiency which is also concerned with emission
reduction on a macroeconomic level or major sectors we assess the contribution of potential
efficiency improvements to the EU reduction targets by expressing them as potential
reductions measured in physical units, i.e. CO2 equivalents (CO2e). The usual habit in
the literature (see Camarero et al. (2014), Färe et al. (2004), Korhonen and Luptacik
(2004), Kortelainen (2008), Kuosmanen and Kortelainen (2005), Rashidi and Farzipoor
Saen (2015), Zaim and Taskin (2000), Zhou and Ang (2008) and Zofío and Prieto (2001),
among others) is to focus on relative measures instead. More closely related to our analysis
are studies such as Domazlicky and Weber (2004) and Krautzberger and Wetzel (2012)
which are also based on a methodological setting employing directional distance functions
and are also confined to specific industries.

The exposition in this paper starts with a description of the data and the country-sector
coverage in section 3.2. This is followed by the description of the nonparametric method-
ology we use to obtain our estimates of emission reduction potentials in section 3.3. In
this section, the implementation of the bootstrapping approach as well as the computa-
tion of the bias-corrected measures and the confidence intervals are also outlined. Section
3.4 contains the discussion of the results from several specifications of the undesirable
outputs. The specifications comprise a single total GHG aggregate as well as splits to
CO2, CH4 and N2O. We also discuss the results of a variant where possible enhancements
of the economic output are permitted in addition to the emission reductions. Policy rec-
ommendations are provided at the end of the section. The final section 3.5 concludes with
an evaluation of the contribution of the emission reduction by efficiency improvements to
the EU emission reduction targets and discusses the feasibility of the potential reductions
measured.

3.2 Data Description

The data required for the efficiency analysis comprise the inputs, the good (desirable)
outputs and the bad (undesirable) outputs, i.e. the emissions of greenhouse gases. In the
subsequent measurement of inefficiency and the potential emission reduction derived from
the inefficiency measure we always include the two conventional inputs labor and capital
as well as value added as the single economic output. The emissions as undesirable
outputs are used in different forms. As the description of the methods will show, the
inefficiency is measured as the potentially reachable enhancement of the good output
and/or the potentially reachable reduction of the emissions. The economic data, meaning
the inputs and the good (desirable) output are taken from the EU-KLEMS database. The
November 2019 release we use is described by Stehrer et al. (2019) and can be obtained
from https://euklems.eu. Labor input is measured in total hours worked by employees
(comprising self-employed persons and expressed in full-time equivalents). Capital input
is quantified by the real fixed capital stock (at constant 2010 prices). The output variable
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is gross value added (also at constant 2010 prices).13 Using this variable is associated
with a much more comprehensive data coverage compared to the alternative of using a
gross output measure with materials and energy as additional input variables.14

The emissions data to quantify the bad (undesirable) outputs15 are taken from two
sources.16 As greenhouse gas (GHG) emissions, we focus on the three main greenhouse
gases (GHGs) which are emitted by anthropogenic sources, namely carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N2O). The global warming potentials usually differ
for each GHG, but they can be converted to CO2 equivalents (abbreviated CO2e and
measured in tons, kilotons or megatons). CO2 emissions are retrieved from the World
Input Output Database (WIOD) described in Timmer et al. (2015) and can be down-
loaded from http://www.wiod.org. The data for CH4 and N2O emissions are retrieved
from the Eurostat Air Emission Accounts (AEA).17 In the AEA database, CH4 and N2O
emissions are already expressed in tons of CO2e and so we obtain our measure of total
GHG emissions by simply adding them to the CO2 emissions from the WIOD. There are
further GHGs which are of minor quantitative importance and therefore neglected.18

All three major GHGs have specific anthropogenic sources. CO2 emissions stem primarily
from burning fossil fuels (coal, oil and natural gas), but also from industrial processes
such as the manufacturing of cement. In addition, CO2 is emitted from land use, land
use change and forestry (LULUCF). Although its global warming potential per ton is
less than that of CH4 or N2O, CO2 is quantitatively the most important GHG. In 2010
CO2 emissions (without LULUCF) accounted for 82% of total GHG emitted by the EU
(Debelke and Vis (2015), p. 96).

CH4 has an atmospheric lifetime of 12 years, meaning that on average it stays in the
atmosphere for only 12 years before it is broken down into CO2 and water (Hsiang and
Kopp (2018), p. 12). It has a global warming potential of 25 CO2e (meaning one ton of
CH4 has the global warming potential of 25 tons of CO2, Eurostat (2015), p. 105). The
two major anthropogenic sources of CH4 emissions are industrial livestock farming and the
exploitation of fossil fuels. Natural gas (largely consisting of CH4) may be leaking when
recovered from gas or oil fields or during transport and storage. CH4 is also contained
in coal beds (coal mine methane), especially in deeper coal beds and coals with higher
carbon content (i.e. hard coal), and may similarly leak during coal mining (Kholod et al.
(2020)). In the EU, CH4 emissions already declined between 1990-2010 by 32% (Debelke
and Vis (2015), p. 96).

N2O is a very potent GHG with the same global warming potential as 298 tons of CO2

(Eurostat (2015), p. 105) during an atmospheric lifetime of 116 ± 9 years (Tian et al.

13We always mean the good (desirable) economic output when we simply refer to the output in the
following.

14This alternative would also increase the dimensionality of the input-output space which is a crucial
issue for nonparametric analyses in general.

15We subsequently refer to emissions when we mean the bad (undesirable) outputs.
16These data bases are used instead of the Emissions Database for Global Atmospheric Research

(EDGAR) because of their conformability to an economic sector classification and their coverage of more
recent periods.

17These data can be accessed at https://ec.europa.eu/eurostat/web/products-datasets/-
/env_ac_ainah_r2.

18Further anthropogenic GHGs are sulphur hexafloriode, hydrofluorcarbons and perfluorcarbons, which
are not included in our measure of total GHG emissions. They made up only 2% of total GHG emissions
in the EU-28 in 2010 (Debelke and Vis (2015), p. 96), slightly rising to about 2.5% in 2018 (EEA data).
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(2020)). In addition, N2O has a depleting effect on the stratospheric ozone layer. The
major anthropogenic source of N2O is the agricultural sector, in particular the large-scale
use of nitrogen fertilizers. According to Tian et al. (2020) agricultural emissions accounted
for about 70% of anthropogenic N2O emissions globally in 2007-16. Other comparatively
smaller anthropogenic sources include the fossil fuel and chemical industry. In contrast
to rising or stagnant N2O emissions in most other countries globally, European emissions
from agriculture declined by 21% between 1990-2010 (Tian et al. (2020), p. 254), which
the authors attribute to European agricultural policies favoring more efficient fertilizer use.
Besides, non-agricultural N2O emissions in the EU were reduced even more strongly during
that period, mainly due to improved abatement technologies in the chemical industry
(Tian et al. (2020), pp. 253-255).

Assessing the data coverage in the database we are able to achieve an almost complete
coverage for 16 countries and 7 sectors during the period 2008-2016 on a classification of
sectors (industries) according to NACE Rev. 2 (equivalent to ISIC Rev. 4). The countries
covered comprise (with World Bank country codes in parentheses):

Austria (AUT) Germany (DEU) Poland (POL)
Belgium (BEL) Greece (GRC) Slovakia (SVK)
Czech Republic (CZE) Ireland (IRL) Spain (ESP)
Denmark (DNK) Italy (ITA) Sweden (SWE)
Finland (FIN) Netherlands (NLD) United Kingdom (GBR)
France (FRA)

The sectors covered are:

A Agriculture, Forestry and Fishing
B Mining and Quarrying
C Manufacturing
D Electricity, Gas, Steam and Air Conditioning Supply
E Water Supply Sewerage, Waste Management and Remediation Activities
F Construction
G Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles
H Transportation and Storage

The emissions data in the AEA database are only available for a sector combining the
sectors D and E. So we had to aggregate the economic input-output data of the sectors D
and E to a combined sector, henceforth named DE. Cross checking assures that the sums
of the values of the sectors D and E are very close to the values of the combined sector
DE which is also available in the EU-KLEMS data.19 Since the sector D is considerably
larger than E in most countries we refer to the combined sector DE frequently as “energy”
or as “energy and water” in the subsequent discussion.

We exclude Estland, Lithuania, Luxembourg and Slovenia from our analysis despite full
data coverage. The reason is that these are very small countries and Luxembourg is
merely a large city rather than a country. Including those small countries can severely
bias the entire efficiency analysis when they determine parts of the frontier function and
overstate the potential emission reductions. Growiec (2012) provides further discussion

19An exception are two capital stock values of Belgium in 2008 and 2009 where the sums of the values
of the sectors D and E deviate from those of the combined sector DE by 18 and 5 percent, respectively.
Here we use the time series of the sum of the single sectors which looks more plausible than the time
series of the combined sector. In the case of Spain only data for the combined sector are available and
therefore these data are used directly.
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of this issue. In some of these countries we also suspect recording errors in the data for
some sectors (e.g. zero emissions in sector G in Slovenia).

The value added and capital stock data are directly expressed in Euro for the major-
ity of the countries (appropriately deflated with base year 2010). In the case of the
non-Euro countries Czech Republic, Denmark, Poland, Sweden and the United Kingdom
these variables are expressed in the respective national currencies. To convert the data
to a common currency we use purchasing power parities (PPPs) from the OECD Na-
tional Accounts Statistics (OECD (2020)). While exchange rates only convert currencies,
PPPs also take account of different price levels of the countries. This is important since
price levels tend to be systematically higher in high-income countries than in low-income
countries. Using exchange rates would therefore overstate the values of the variables in
the case of high-income countries and understate them in low-income countries. Instead,
PPPs convert expenditures to a common price level. This is also important for countries
with a common currency (as the Euro) which also can have rather different national price
levels.20

We split these data in two five-year subperiods t1 = 2008-2012 and t2 = 2012-2016 and take
medians over these subperiods for the subsequent empirical analysis. This eliminates the
effects of single or even two outlying observations and makes the efficiency analysis more
robust. The way of taking medians to robustify the analysis is in our view preferable to the
alternative of outlier detection by methods such as those proposed by Wilson (1993) and
subsequent outlier elimination. This procedure also solves the problem with two missing
values in sector C of Ireland.21 Thus, when we refer to the first and second subperiod in
the following we always mean the medians of the inputs and outputs (including emissions)
over the indicated five-year intervals.

The aggregate GHG emissions over all countries and sectors are 3341 mt of CO2e in the
first subperiod, declining to 3070 mt in the second subperiod. Figure 3.1 shows stacked
barplots of the three GHG emission variables for both subperiods (the corresponding data
are reported in Table A1 in the appendix). The left-hand side of each plot depicts the
bars for the sectors, followed by the bars of the countries on the right-hand side (separated
by the thick vertical line). This kind of plot gives a succinct summary of the distribution
of the aggregate emissions over sectors and countries jointly with an indication of the
distribution of the different GHGs (CO2, CH4 and N2O in mt of CO2e). More descriptive
information on the data is discussed in the companion paper of Krüger and Tarach (2020).

From Figure 3.1 we immediately see that the sectors C and DE are most emission intensive,
while A and H also contribute considerably, and the remaining sectors (B, F and G) are
of minor importance. CO2 is the quantitatively most important emission category in all
sectors except A where CH4 and N2O emissions are dominating. CO2 is the main emission
category in all countries, including those with large aggregate emissions (Germany, Spain,
France, the United Kingdom, Italy and Poland), although the contribution of CH4 and
N2O is also visible here. While the overall quantity declines from the first to the second

20PPPs are also central for the construction of comparable national accounts provided in the Penn
World Table (see Feenstra et al. (2015)).

21In the case of Ireland the capital stock values for the final years 2015 and 2016 are missing in sector C.
Since the preceding values 2012-2014 show a rising trend (and capital is an accumulating stock variable)
we can safely suppose that the missing values are larger than the value in 2014. Then taking the 5-
year median over the subperiod 2012-2016 will result in just the value of 2014 irrespective of the exact
magnitudes of the missing values.
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Figure 3.1: GHG emissions across sectors and countries
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subperiod, the distribution of the emissions across sectors and countries is rather similar
in both subperiods.

3.3 Nonparametric Efficiency Measurement and Bootstrapping

For the estimation of the potential emission reductions we apply nonparametric methods of
efficiency analysis. These methods are an extension of data envelopment analysis (DEA),
developed by Charnes et al. (1978) and Banker et al. (1984). The specific modification
we rely on is based on the device of the directional distance function (DDF), introduced
by Chambers et al. (1996) and extended to an environmental context by Chung et al.
(1997). This approach allows to measure inefficiency as the distance to a piece-wise linear
frontier function along a mix of possible reduction of inputs and enhancement of some
outputs (the good, desirable outputs), while other outputs (the bad, undesirable outputs)
are supposed to be reduced (see Färe and Grosskopf (2004)). This property of reducing
outputs allows to incorporate undesirable outputs like GHG emissions in a consistent way
(Zhou et al. (2008b)). Like in DEA, here also no price information is required and no
functional form assumptions about the underlying technology (e.g. a production function)
need to be imposed. These are major advantages of the nonparametric approach.

3.3.1 Technology Set

The nonparametric approach of efficiency analysis is based on the concept of an abstract
technology set, comprising the feasible input-output combinations. It can be stated as
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T = {(x,y,u) ∈ R
m+s+r
+ : x ≥ 0 can produce (y,u) ≥ 0}, (3.1)

where x denotes the m-vector of the input quantities, y the s-vector of the quantities of
the good (desirable) outputs and u the r-vector of the quantities of the bad (undesirable)
outputs.22 Since we are dealing with sectors within countries it is suitable to suppose that
each sector operates with a different technology set.23

To impose some structure on the technology set it is supposed to be closed, bounded and
convex (Färe and Primont (1995)). Furthermore, it is supposed that standard axioms such
as strong disposability of the inputs and the good outputs are satisfied. Two additional
axioms are required in the context of an environmental efficiency analysis to incorporate
the special role of undesirable outputs in a consistent way. The first is null-jointness,
meaning that it is not possible to produce positive quantities of the good outputs without
generating emissions (i.e. if (x,y,u) ∈ T and u = 0 then y = 0). The second is
weak disposability stating that proportional reductions of emissions are always feasible as
long as the good outputs are reduced by the same proportion (i.e. if (x,y,u) ∈ T then
(x, αy, αu) ∈ T for α ∈ [0, 1]). For more detailed discussions of these axioms see Färe
and Grosskopf (2004), Färe et al. (2005) and Zhou et al. (2008a).24

3.3.2 Directional Distance Functions

The directional distance function (DDF) is defined on the technology set T as proposed
by Chambers et al. (1996) and extended to the incorporation of undesirable outputs by
Chung et al. (1997). It is a generalization of the Shephard (1970) distance function to the
case of non-proportional changes of the inputs and outputs and can be formally stated as

DDF (x,y,u; gx, gy, gu) = sup{δ ≥ 0 : (x− δgx,y + δgy,u− δgu) ∈ T }. (3.2)

Herein, the inefficiency measure δ expresses the distance of a particular input-output com-
bination (x,y,u) towards the boundary of the technology set along a particular direction
gx ≥ 0, gy ≥ 0, gu ≥ 0. This measure is equal to zero if the input-output combination
is a point on the boundary (is on the frontier function) and it is larger than zero if the
input-output combination is below the boundary (is below the frontier function).

In the following we mostly impose the restriction gx = 0 and gy = 0, meaning that the
inefficiency is measured exclusively as the extent of possible reduction of the bad outputs.
In our application the entities under investigation are sectors in different countries. On
such a high level of aggregation it is appropriate to assume that no reduction of input
usage is intended. Since we are mainly interested in measuring the maximum potential

22In the subsequent discussion of the results we will frequently simply refer to the outputs when we
mean the good outputs and to the emissions when we mean the bad outputs.

23Here we also include conventional inputs as labor and capital. Related papers such as Picazo-Tadeo
et al. (2012) measure eco-efficiency scores by directional distance functions without using inputs.

24An alternative to this approach is the so-called by-production approach proposed by Murty et al.
(2012) which relies on the availability of abatement options (and requires appropriate data). This ap-
proach models the technology set as the intersection of two parts to be estimated separately. One part is
related to the production of the good outputs and the other part is related to the production of the bad
outputs. This setting avoids the assumptions of weak disposability and null-jointness. Further discussion
and critique is provided by Dakpo et al. (2016).
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emission reductions, we also exclude the possibility of output enhancement for most of the
analysis. In one variant we only impose gx = 0 so that the output enhancement would
also be possible.

The data required for the computation of the DDF pertain to n countries in a particular
sector. The analysis is performed for each sector separately, so that an additional index
to distinguish sectors is not necessary. The data for the m inputs are contained in the
m × n matrix X with the ith column xi comprising the input quantities of country i
(i = 1, ..., n). Likewise, the data for the s good outputs are contained in the s× n matrix
Y and the data for the r bad outputs are contained in the r × n matrix U , with the ith
columns yi and ui comprising the observations pertaining to country i for the good and
bad outputs, respectively.

In (3.2) the direction vectors gy and gu are not specified. A frequent choice in applications
is to make the directions proportional to the variables yi and ui which serves to let the
inefficiency measure be invariant to units of measurement (see e.g. Chung et al. (1997)
and Färe et al. (2007)). Since this is restrictive it would be beneficial to compute the
directions endogenously. Hampf and Krüger (2015) propose one possibility to endogenize
the direction in an environmental efficiency setting and Färe et al. (2013) provide a re-
lated proposal to compute endogenous directions in the case of a slacks-based inefficiency
measure. As pointed out by Chen and Delmas (2012), these proposals have the additional
advantage of avoiding the problem of dominated (weakly-efficient) reference points on the
frontier function.

We follow Hampf and Krüger (2015) and propose the following optimization problem to
endogenize the computation of the direction vector

max
δ,αy ,αu,λ

δ

s.t. xi ≥ Xλ

yi + δαy � yi ≤ Y λ

ui − δαu � ui = Uλ

1
′αy + 1

′αu = 1
λ,αy,αu ≥ 0

(3.3)

where ’�’ denotes the direct (Hadamard) product. Herein, λ is a n-vector containing the
weight factors to determine the reference point on the frontier function. The direction
weights αy and αu are computed jointly with δ and λ with the objective of maximizing
the distance towards the frontier function. The identification of δ is permitted by the
additional constraint 1

′αy + 1
′αu = 1. In this specification the direction vectors are

proportional to yi and ui which lets the inefficiency measure be invariant to the units of
measurement.

The optimization problem (3.3) is nonlinear and therefore difficult so solve. This is caused
by δ and αy or αu arising multiplicatively. By defining γy = δαy and γu = δαu the
problem can be transformed to a well-behaved linear programming problem

max
γy ,γu,λ

1
′γy + 1

′γu

s.t. xi ≥ Xλ

yi + γy � yi ≤ Y λ

ui − γu � ui = Uλ

λ,γy,γu ≥ 0

(3.4)
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Taking the constraint 1′αy+1
′αu = 1 from (3.3) into account we easily see that the value

of the objective function 1
′γy + 1

′γu = δ · (1′αy + 1
′αu) is equal to δ as before. Program

(3.4) can be easily solved by the ordinary simplex algorithm.25 The solution values for δ,
αy and αu can be backed out from the solutions for γy and γu by δ = 1

′γy +1
′γu as well

as αy = γy/δ and αu = γu/δ. For a particular country i the solution values are denoted
δi, αyi, αui, γyi, γui and λi (i = 1, ..., n).26

With these solution values we can compute the efficient input-output combination on
the frontier function with the coordinates x̂i = Xλi, ŷi = Y λi and ûi = Uλi. The
potential reductions of the r bad outputs for country i in the sector under consideration
can be computed as ui − ûi = γui � ui = δiαui � ui. We see that the potential emission
reductions depend on the magnitude of the inefficiency measure δi as well as on the
optimized direction vector αui of country i. The total emission reduction potential of
country i is the sum over all emission categories RPi = 1

′(ui − ûi) with 1 denoting a
conformable vector of ones and the prime denoting transposition. The sum can, of course,
only be validly computed if the emission variables are denominated in a common unit of
measurement. This is indeed the case in our application where greenhouse gas emission
are expressed in CO2 equivalents. To report the results later on we further aggregate the
potential emission reductions across countries and sectors. Potential output enhancement
can likewise be computed as ŷi − yi = γyi � yi = δiαyi � yi for the case where we do not
impose γyi = 0 or αyi = 0 a priori.

3.3.3 Variable Returns to Scale

All above stated optimization problems compute the inefficiency measures under the as-
sumption of constant returns to scale (CRS). In a cross-country sectoral setting with
countries of rather different size and with a rather different sectoral structure CRS seems
to be an overly restrictive assumption. So it would be beneficial to get rid of this rather
unrealistic assumption and to measure inefficiency under variable returns to scale (VRS).
In nonparametric approaches of efficiency measurement VRS is usually induced by adding
the constraint 1

′λ = 1 to the optimization problems. In the case of environmental effi-
ciency analysis this would violate the weak disposability property. Zhou et al. (2008a)
show how to induce VRS in a way which is consistent with weak disposability. This
implementation again leads to a linear programming problem

max
β,γy ,γu,ζ

1
′γu + 1

′γu

s.t. βxi ≥ Xζ

yi + γy � yi ≤ Y ζ

ui − γu � ui = Uζ

1
′ζ = β

1 ≥ β ≥ 0 , ζ,γy,γu ≥ 0

(3.5)

with an additional parameter β which is bounded in [0, 1]. Details can be found in Zhou
et al. (2008a). As before, we obtain the solution values for γu which allow to back out

25For the computation of the solutions in this paper the R-package “lpSolve” is used.
26In the case of the efficient countries (with δ = 0) the solution for αy and αu is indeterminate.

Clearly, there exists no direction towards the frontier function if an observation already stays on the
frontier function.
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δ = 1
′γy + 1

′γu, αy = γy/δ and αu = γu/δ and to compute the emission reduction
potentials. This problem can again be easily solved by the simplex algorithm. Here also,
the solution values are denoted δi, αyi, αui, γyi, γui and λi for a particular country i
(i = 1, ..., n). We stick to the VRS assumption throughout this paper.

3.3.4 Bootstrapping

The inefficiency measures and the derived reduction potentials are estimates from a data
sample which are subject to measurement error and therefore stochastic in nature. Fron-
tier function estimation is associated with a further peculiarity. Specifically, the empirical
implementation of the linear programming problems (3.4) or (3.5) is based on the ob-
served input-output combinations in the data. This lets the empirically estimated fron-
tier function provide a closer envelopment of the data than the true (unobserved) frontier
function. As a consequence, the empirically determined technology set T̂DDF underlying
the empirical analysis is a subset of the true technology set T , i.e. T̂DDF ⊆ T . This leads
to downward-biased estimates of the inefficiency measures and the emission reduction
potentials. This bias can be substantial and bootstrapping provides a practical way to
achieve a correction (see Simar and Wilson (2008, 2011)).

We resort to a bootstrapping approach to compute bias-corrected estimates of the re-
duction potentials and to establish confidence intervals for these measures. The specific
approach pursued here is analogous to the procedure proposed by Simar and Wilson
(1998) adapted to the setting of directional distance functions. Compared to the double-
bootstrap algorithm of Simar et al. (2012) the chosen approach is more transparent and
easier to communicate. The approach of Simar et al. (2012) uses a complicated orthog-
onal transformation of the data and two smoothing loops which requires the selection of
two critical bandwidth parameters instead of one. This bandwidth choice is particularly
problematic in small-sample situations. Moreover, the algorithm seems not to be adapted
to the inclusion of bad outputs since the direction vector pertaining to the outputs is
restricted to be non-negative.

The smoothed bootstrap algorithm adapted from Simar and Wilson (1998) to the DDF
setting starts with some preparatory steps. First, the DDF and the optimal directions
are computed from the original data by solving (3.5) to obtain δ̂i as well as the optimal
directions αyi and αui for all i = 1, ..., n. The directions are computed once and kept fixed
during the whole procedure. Furthermore, the bandwidth parameter h for the smoothing
is chosen as described in Simar and Wilson (2011) where also some R code is provided.

The main part of the bootstrapping algorithm cycles B times through the following steps:

• A bootstrap resample is obtained by first drawing with replacement from D =
{δ̂1, ..., δ̂n,−δ̂1, ...,−δ̂n} which implements a boundary reflection about zero. The
result of this step is denoted δ̃i (i = 1, ..., n).

• The smoothing step is performed by adding h · εi to each draw, where the εi are
independent standard normal draws, thus obtaining δ̃i + h · εi and finally returning

δ∗i =
∣∣∣δ̄ + (δ̃i + h · εi − δ̄)/

√
1 + h2/σ̃2

δ

∣∣∣ for all i = 1, ..., n where δ̄ and σ̃2
δ denote the

sample mean and variance of δ̃i (i = 1, ..., n), respectively.
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• These resampled inefficiencies are used to construct the bootstrap resample of the
reference points by setting x∗

i = xi, y∗
i = yi + (δ̂i − δ∗i )αyi � yi, u

∗
i = ui − (δ̂i −

δ∗i )αui � ui for all i = 1, ..., n. By that operation the observation (yi,ui) is first
projected on the frontier (by +δ̂i) and then randomly away from the frontier (by
−δ∗i ) along the fixed direction (αyi � yi and −αui � ui). The resulting bootstrap
resample consists of X∗ = (x∗

1, ...,x
∗
n), Y

∗ = (y∗
1, ...,y

∗
n) and U ∗ = (u∗

1, ...,u
∗
n).

• The efficiency measures are computed by solving (keeping the directions fixed)

max
β,δ,ζ

δ

s.t. βxi ≥ X∗ζ
yi + δαyi � yi ≤ Y ∗ζ
ui − δαui � ui = U ∗ζ

1
′ζ = β

β ≥ 0 , ζ ≥ 0

(3.6)

for each i = 1, ..., n, where xi, yi and ui constitute the original observation for
country i and X∗, Y ∗ and U ∗ are taken from the preceding step. The results are the
bootstrap inefficiency measures δ̂∗i for all i = 1, ..., n. From the bootstrap inefficiency
measures the emission reduction potentials ∆û∗

i = δ̂∗iαui � ui or potential output
enhancement ∆ŷ∗

i = δ̂∗iαyi � yi are obtained for all i = 1, ..., n.27

Cycling through the preceding steps B times we obtain the bootstrap resamples (δ̂∗i,b,
∆ŷ∗

i,b, ∆û∗
i,b) with b = 1, ..., B for each country i = 1, ..., n in a given sector.

Based on the bootstrap resamples the bias correction and percentile confidence intervals
can be obtained. Letting zj be the generic notation of either interesting variable (e.g.
aggregates of reduction potentials over sectors or countries), we denote the estimate from
the original data by ẑj and the bootstrap resamples by ẑ∗j,b for each b = 1, ..., B.

The bias correction is performed by computing ẑbc,j = ẑj−b̂iasj with b̂iasj = B−1
∑B

b=1ẑ
∗
j,b−

ẑj. This measure is only computed for those cases j (countries or sectors) where |b̂iasj|/σ̂j >
1/
√
3 with σ̂2

j = (B−1)−1
∑B

b=1(ẑ
∗
j,b− z̄∗j,b)2 and z̄∗j,b = B−1

∑B
b=1ẑ

∗
j,b. The rationale for this

rule is that the absolute bias has to be sufficiently large compared to the standard devi-
ation in order to achieve a reduction in the mean squared error from the bias correction
(see Simar and Wilson, 2008, pp. 449f.).

Percentile confidence intervals [ẑcl,j, ẑcu,j] are established using the α/2 and 1− α/2 per-
centiles of {ẑ∗j,1, ..., ẑ∗j,B}, denoted ẑcl,j and ẑcu,j, respectively, for some confidence level
1− α. For the usual value of α = 0.05 we thus have Pr(ẑcl,j ≤ zj ≤ ẑcu,j) = 0.95.

One problem that occasionally arises during the bootstrap resamples is that we obtain
reduction potentials which are larger than the actual emission quantities. To deal with
this problem we prune out those cases in the spirit of an accept-reject procedure. The bias
correction and the confidence intervals are established from this truncated distribution.
Since we base the confidence intervals on a large number of bootstrap replications (actually
B = 20000)28 there always remains a sufficient number of replications for obtaining reliable

27As a computational detail an offset is added to δ in (3.6) and subtracted after the solution is obtained.
This allows for negative values for δ arising during the bootstrap replications.

28We also explored an even higher number of 50000 bootstrap replications for selected variants and
reached essentially the same findings.
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estimates of the confidence bounds. The bias correction, which is more concerned with
the center of the distribution instead of the tails, is even less affected by the pruning
operation anyway.

3.4 Results and Discussion

The exposition of the results in this section is structured along four specification variants:
(a) with a single emission variable (total GHG emissions in CO2e), (b) with two emission
variables (CO2 and other (non-CO2) GHG emissions) and (c) with three emission variables
(CO2, CH4, N2O measured in CO2e). Whereas we fix αy = 0 in these variants, we pursue
an additional variant (d) where we also allow for enhancement of the (good) output in
addition. We consider the two subperiods t1 = 2008-2012 and t2 = 2012-2016 where all
inputs and outputs are computed as medians over the indicated years to achieve greater
robustness of the results.29 Most of the discussion focuses on the second subperiod, since
there is not much change in the pattern of results across sectors and countries between
both subperiods and the results for the more recent subperiod are of greater relevance for
the current discussion about climate change. All variants include the conventional inputs
capital K and labor L as well as the single economic output Y as defined in section 3.2.
Finally, in subsection 3.4.4 we conclude this section with an extensive discussion of policy
implications.

3.4.1 Total Greenhouse Gas Emissions

We start with total GHG emissions as the single emission variable. Figure 3.2 depicts the
results for the first subperiod in the upper panel and for the second subperiod in the lower
panel. In each panel we depict the actual emissions (open circles, connected by a dashed
line) and the bias-corrected emission reduction potentials (bullet points, connected by a
solid line) aggregated for the 7 sectors on the left side and the 16 countries on the right
side. The vertical lines extending above and below the bullet points indicate the 95%
bootstrap confidence intervals as explained above. The scale on the ordinate reveals that
all values are expressed in million tons (mt) of CO2e.

The corresponding numerical results are reported in Table A2 in the appendix for ref-
erence. There we see that the sum of actual emissions over all sectors and countries
amounts to 3341 mt of GHG (in CO2e) in the first subperiod which decrease to 3070 mt
in the second subperiod. Total bias-corrected reduction potentials are 1522 mt (with 95%
confidence interval [1236, 1886]) in the first subperiod and 1448 mt (with 95% confidence
interval [1177, 1801]) in the second subperiod. These amount to 46% and 47% of the
actual emissions in the two subperiods, respectively.

Figure 3.2 shows that the bias-corrected reduction potentials are quite sizable in some
sectors and in a number of countries. Notice that the countries are of rather different
size economically and this is also reflected in the differences of the actual GHG emis-
sions. The bias correction lets the estimates of the reduction potentials appear much
larger compared to their “raw” equivalents discussed at length in the companion paper of

29Recall that the median is a more robust measure of location compared to the mean.
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Figure 3.2: Potential emission reduction of total GHG for the period 2008-2012 (upper
panel) and the period 2012-2016 (lower panel), variant (a)
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Krüger and Tarach (2020).30 Most of the confidence intervals are quite narrow pointing to
rather precise estimates of the potential emission reductions. There are some exceptions,
however, where the confidence intervals are wider. These exceptions pertain to sectors or
countries with larger actual emissions and larger reduction potentials (e.g. sectors C and
DE or Germany).

We first turn to the lower panel with the results for the second subperiod. Regarding
the sectors the estimated reduction potentials are particularly large in sector DE (mostly
energy) and C (manufacturing) where they amount to 49% and 52% of the actual emis-
sions, respectively.31 This is followed by sectors A (agriculture) and H (transport) where
the reduction potentials are smaller in absolute terms, amounting to 57% and 29% of
the actual emissions, respectively. For the remaining sectors the reduction potentials are
small to negligible.

Germany (DEU) is the country with the largest actual emissions, but its reduction po-
tential is of the same size as that of the United Kingdom (which is considered as an EU
member country during the sample period until 2016) which has the second largest actual
emissions. Other countries with sizable reduction potentials are Poland, Italy, France
and Spain (with decreasing reduction potentials in this order). The reduction potentials
amount to 34% of the actual emissions in the case of Germany, 61% for the United King-

30The gray line depicts the “raw” reduction potentials (without bias correction) which are throughout
smaller than their bias-corrected counterparts and track them quite closely, except in some cases where
the actual emissions are particularly large.

31In sector DE emissions are to a large extent determined by the share of fossil power-generation.
France and Sweden are very efficient and have shares of nuclear and water power of about 80% (see
NEA-OECD (2018), p. 19 and Byman (2016), p. 8, respectively). Thus, the reduction potentials of the
other countries implicitly require similar shares of non-fossil power-generation which may be realized by
either nuclear power, water power or other renewable forms (biomass, solar, wind).
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dom, 67% for Poland, 48% for Italy, 45% for France and Spain. Reduction potentials of
the other 10 countries in our sample are absolutely smaller and thus are not as easily
visible. Nonetheless, for both groups of countries reduction potentials are very much in
proportion to their actual GHG emissions. During 2012-16, these 10 smaller countries
account for almost one quarter of total GHG emissions in our sample. As can be verified
from Table A2, summing the reduction potentials of these countries results in almost one
quarter of the total reduction potential as well. Hence, although we primarily focus our
discussion here on the results for the largest countries, we want to stress that the joint
contribution of the smaller countries to emission reduction is as important as that of the
largest countries.

Comparing these results with those for the first subperiod in the upper panel of the
figure we find the distributions across sectors and countries to be rather similar in both
subperiods. The major difference is the overall magnitude of the actual emissions and
the estimated reduction potentials which are both larger in the first compared to the
second subperiod. There are exceptions from this rule in the some sectors and countries
as can be seen from a closer inspection of Table A2 in the appendix but these are of
minor quantitative importance. Combined with the greater relevance of the more recent
subperiod in the current debate about climate change, this similarity justifies the focus
on the subperiod (2012-2016) in the subsequent discussion of the other variants

3.4.2 CO2 and other GHG (CH4 and N2O) Emissions

In this subsection, we proceed by splitting total GHG emissions into CO2 and other
GHG emissions (which is the sum of CH4 and N2O, or equivalently total GHG minus
CO2, expressed in CO2e). Bias-corrected estimates of reduction potentials and confidence
intervals are calculated for each of the two emission variables as well as for their sum
(total GHG emissions). Figure 3.3 shows actual emissions and reduction potentials for
the sectors and countries in the sample, and Table A3 in the appendix permits a closer
look at the exact quantities. Aggregated over all sectors and countries we find total GHG
reduction potentials of 1642 mt (with 95% confidence interval [1321, 2049]), amounting
to 53% of the actual emissions.

The lowest panel of the figure reveals that sector A is by far the largest emitter of other
GHG, and these emissions also account for the majority of emissions in this sector (about
80%). In addition to sector A, emissions of other GHG are sizable in absolute terms in
sector DE, although they amount only to about 10% of the sector’s total GHG emissions.
In contrast, emissions of other GHG in sector B are small in absolute size, but nonetheless
make up 42% of total GHG emissions here. Figure 3.3 shows that the sectors C and H emit
mostly CO2. Together with sector DE they account for the majority of CO2 emissions
in our sample. One result of this subsection, which is evident from the middle panel of
Figure 3.3, is that sector C has almost the same CO2 reduction potential as sector DE,
although it emits clearly less CO2, which points to the relevance of the manufacturing
sector for saving CO2 emissions. Another finding is that there is overall higher inefficiency
regarding other GHG rather than CO2 in relative terms. In particular, the share of
reduction potentials to actual emissions for other GHG is with 64% (largely concentrated
in sector A) considerably above the corresponding value for CO2 (51%).

Looking at the countries we observe that reduction potentials for other GHG are partic-
ularly sizable for the two largest emitters of other GHG, namely France and Germany,
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Figure 3.3: Potential emission reduction of CO2 and other GHG for the period 2012-2016,
variant (b)
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where they make up 42% and 26% of the countries’ total GHG reduction potentials, re-
spectively. This indicates that it is important also to include the agricultural sector with
its CH4 and N2O emissions in the respective emission reduction plans in France and Ger-
many. For some other large countries, the potentially feasible reductions for other GHG
are comparably smaller than for CO2 (at or below 17% of total GHG reduction potentials
in the cases of the United Kingdom, Poland, Italy and Spain). Confidence intervals are
generally quite narrow for reductions of other GHG for most sectors and countries.

Next, we further split the other GHG emissions into CH4 and N2O emissions. Figure 3.4
shows the results of this split (see also Table A4). The differences to the results above
can be explained by the direction choice where now one further possibility is available.
During the second subperiod (2012-2016), our sample countries and sectors emitted a
total of 3070 mt CO2e, out of which 6% were N2O emissions, 12% CH4 emissions, and
82% CO2 emissions. As above, the shares of reduction potentials in actual emissions are
higher for N2O (81%) and CH4 (57%) than for CO2 (45%). For total GHG this translates
into a share of reduction potentials in actual emissions of 48%, or 1487 mt (with 95%
confidence interval [1214, 1840]).

Since the use of nitrogen fertilizers is the major source of N2O emissions, their reduction
potentials are clearly largest in sector A. Here, we find that the lower bound of the
confidence interval indicates that reduction potentials below 65% of actual emissions are
unlikely at the 95% confidence level. Our results imply that there is the potential for
the sample countries to continue the N2O reduction path that has already started in
Europe during 1990-2010 (see Tian et al. (2020) for regional trends of anthropogenic N2O
emissions for the period 1980-2016). Sector A also is the major source of CH4 emissions
(mainly from animal livestock) and our results reveal that it has a sizable potential for
reducing CH4. Our bias-corrected estimate is 69% of actual emissions (144 mt of CO2e)
and a reduction potential of less than 50% of actual emissions is unlikely based on the 95%
confidence interval. In addition to sector A, Figure 3.4 reveals that sector DE contributes
substantially to CH4 emissions with a rather small reduction potential. Finally, for sector
B the CH4 reduction potentials are an order of magnitude smaller than those of sector A,
and for the other sectors they are negligible.

3.4.3 Combined Direction with Output Enhancement

In the preceding subsections we have measured inefficiency exclusively in the direction
of reducing emissions, holding the good output and the inputs constant. As noted in
section 3.3.2, it is not sensible to measure inefficiency in the direction of reducing the
inputs at this high level of aggregation. However, instead of pure emission reductions a
combination of emission reductions and output enhancement (i.e. economic growth) is
a realistic objective of policy makers. We account for this possibility by allowing more
flexible directions αy ≥ 0 in the linear program of equation (3.3).32 By this, we allow
emission reductions to be traded off against output enhancement, so that inefficiency
measures reflect a combination of emission reduction and output enhancement.

These estimates are reported (again for the second subperiod) in Figure 3.5 and Table A5.
For the emission variable we use total GHG, so that reduction potentials can be directly
compared with those from subsection 3.4.1 for the period 2012-16. In total, allowing for

32The boundary solution of pure emission reductions is still possible but needs no longer be optimal.
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Figure 3.4: Potential emission reduction of CO2, CH4 and N2O for the period 2012-2016,
variant (c)
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Figure 3.5: Potential emission reduction of total GHG and output enhancement for the
period 2012-2016, variant (d)
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output enhancement causes reduction potentials to decline from 1448 mt to 1272 mt (with
95% confidence intervals changing from [1177, 1801] to [1028, 1595]), or equivalently from
47% to 41% of the actual emissions. As this decline is rather small, the result indicates
that most inefficiency is due to generating too much emissions instead of producing too less
of the economic output. When comparing the upper panel of Figure 3.5 with the lower
panel of Figure 3.2, we notice only slight differences regarding the distribution across
sectors. It is visible that reduction potentials for sector C (manufacturing) decline the
most (by about 100 mt) from 52% of actual emissions to 40%. For the other sectors the
differences are much smaller. This is in line with our estimates for output enhancement
potentials, which are low in all sectors except C (see Figure 3.5, lower panel).33 Hence, we
find that a great deal of inefficiency in the direction of output enhancement, being large
enough to substantially lower the scope for emission reductions, is present only in sector
C.

For most countries we find reduction potentials of somewhat smaller size than in subsec-
tion 3.4.1. Figure 3.5 (upper panel) reveals a distribution across countries which is very
similar to that of Figure 3.2 (lower panel). There are three exceptions (Belgium, France
and Poland) where we obtain even higher reduction potentials than in subsection 3.4.1.
This can be attributed to the bias correction applied to the “raw” estimates.

33Even for sector G (mainly wholesale and retail trade), which produces substantial value added, output
enhancement potential is quite low, indicating that this sector is overall quite efficient in transforming
inputs (labor and capital) to output (value added).
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3.4.4 Policy Recommendations

Altogether, the preceding discussion shows that there is a sizable extent of inefficiency in
the sectors which could be transformed into emission reductions. Therefore, the question
arises how can policy support the realization of the potentials in practice. Policies should
aim at inducing firms to improve their productive efficiency (which then improves the
efficiency of the sectors we measure here) to move towards the frontier function combined
with specific measures to channel this movement in the right direction, i.e. mainly in the
direction of emission reduction and less in the direction of output enhancement. In the
long-run, effort to generate technological progress to shift the frontier function towards less
emission intensive modes of production would also work in the right direction, although
this aspect is beyond the scope of the measurement exercise we conduct here.

As a theoretical guidepost for structuring the discussion of policy measures we use the
macroeconomic model of Stern and Kander (2012). From the first-order condition in
equation (15) of that paper one can derive an equation for energy demand as

E = γ
1/σ(1−φ)
E · Y ·

(
pE
p

)−1/(1−φ)

· Aφ/(1−φ)
E (3.7)

with E denoting the energy input in the underlying CES production function, Y gross
output, and pE/p the price of energy relative to the price of output. AE is an augmen-
tation factor of the energy input in the production function. This factor increases if a
firm or sector in a country improves its energy efficiency. It can be viewed as also com-
prising the aspect of energy quality as discussed in Stern and Kander (2012) and Stern
(2010). Increasing energy quality acts like a further factor (named Q in Stern and Kan-
der (2012)). If we consider E as the input of mostly fossil fuels, changing the energy
mix towards renewable energy sources operates analogous to an improvement of energy
quality associated with less GHG emissions. The parameter φ is related to the elasticity
of substitution σ between energy and a capital-labor aggregate by φ = (σ − 1)/σ and γE
is a further production function parameter related to the energy input.

Various estimates of the parameters are reported in table 1 of Stern and Kander (2012).
They can be roughly summarized as γE ≈ 0.2, σ ≈ 2/3 and φ ≈ −1/2. Taken at face value
we get a calibrated version of the energy demand equation as

E = 0.2 · Y ·
(
pE
p

)−2/3

· A−1/3
E . (3.8)

This shows that the energy demand and therefore GHG emissions (assuming that a sub-
stantial part of energy is generated from fossil sources) are linearly related to the level of
gross output. Emissions are decreasing with a higher relative price of energy pE/p as well
as with an improvement of productive efficiency leading to a larger AE. These variables
are linked to various policy measures which are discussed in the following. In addition
to the direct effect of pE/p there is a further, indirect, effect working through AE, i.e.
adopting more energy efficient and therefore less emission intensive technologies in the
medium to long run when pE/p is higher.

To increase the productive efficiency of firms and sectors, a large variety of policy measures
can be beneficial. Examples of these measures directed generally towards inefficiency
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reduction are fostering competition, reducing some regulations, incentivizing research and
development and protecting intellectual property. Yet, the effect of these policy measures
has to be channeled towards improvements in energy efficiency (AE) or energy quality
which are associated with emission reductions. There are many diverse policy measures
available which could be appropriately combined and coordinated.

This policy mix, of course, has to comprise traditional instruments of environmental
policy such as phasing out the most emission-intensive modes of power generation (i.e.
coal), abandoning certain modes of travel (e.g. short-distance flights) or setting energy
consumption standards for new products (e.g. cars, heating). Incentives or subsidies for
behavior modification (i.e. switching to electric cars, more attractive public transport,
thermal insulation of buildings) could also direct efficiency improvement in the desired
direction.

A well-designed carbon price is a key measure to influence the relative price of fossil-fuel
based energy (pE/p) and thus, by the energy demand relation, also combustion thereof
(Sen and Vollebergh (2018), Best et al. (2020)). Important for the design here is a broad
sector and country coverage (Aldy et al. (2010), p. 928). One finding of our efficiency
analysis, in particular from subsection 3.4.2, is that emission reduction potentials for
the manufacturing sector are substantial, i.e. of similar magnitude as for the energy
sector. We also find substantial reduction potentials in the transport sector, although
these are smaller in relative terms. Currently, European emission trading still covers only
power generation, heavy industry and intra-European aviation (Delreux and Ohler (2019),
p. 7). Thus, comprehensive EU-wide carbon tax policies could push manufacturing and
transport sectors closer to their frontier in the desired direction of reducing CO2 emissions.
An extension of emission trading to these sectors, if designed effectively (i.e. with a
steadily decreasing cap of overall emissions), would also work in the desired direction.
However, for the manufacturing sector, we also find in subsection 3.4.3 that there is
considerable inefficiency in the output direction. Therefore, a uniform carbon price could
easily be set too low in order to channel the direction of inefficiency reduction towards CO2

reduction in those sectors where much efficiency can also be gained by output enhancement
instead.

Furthermore, innovations are important for decarbonization. Sufficient carbon pricing
works in the direction of inducing innovations for technologies with high potential for
GHG emission reductions and therefore increases AE (Aghion et al. (2016), van den Bergh
and Savin (2021)). These include in particular the new renewable energy technologies (i.e.
wind and solar), large-scale and cost-efficient energy storage, and electric cars. Equally
important may be all types of innovations which are able to substantially improve the
energy efficiency of products or production processes, in particular if the energy used
there is still fossil-fuel based.34 To induce innovative activity, public funding of research
and development could be specifically targeted at these areas. As knowledge creation
is a public good, there is considerable under-investment in these areas to be expected
(Knopf et al. (2013), p. 233). However, it seems generally difficult to anticipate which
technologies will be most crucial for the energy system of the future. Thus, with respect to
the direction of research and development funding, “policy-makers have to strike a delicate
balance between supporting promising developments whilst avoiding the temptation to
prematurely pick winners” (Knopf et al. (2013), p. 234).

34An example are activities such as steel or cement production, where substitution of fossil fuel may
be more difficult and where there are sizable regional differences in energy efficiency (Oda et al. (2012)).
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These policy measures appear to be well adapted to the sectors C, DE and H with a large
amount of CO2 emissions, while sector A (agriculture) is special in its emission mix caused
by the use of fertilizes, animal livestock, as well as its essentiality for human nutrition.
When comparing our results for N2O to other studies, these seem to be quite optimistic.
Winiwarter et al. (2018) estimate that if only the lowest-cost N2O abatement measures
were implemented, global emissions thereof could be reduced by 6.2% compared to a
baseline scenario, while if also high-cost abatement measures were implemented, global
N2O reduction potentials would amount to 26%. Independent of the exact quantity of
N2O reduction potentials, there are several N2O abatement measures available which in
the agricultural sector generally comprise any measures that improve the efficiency of
nitrogen application to crops (Winiwarter et al. (2018), table 1). There is also evidence
that organic farming, in particular biodynamic farming, reduces N2O emissions per yield
and is associated with a modest uptake of CH4 (Skinner et al. (2019), p. 4).

The extent of measured inefficiency is, of course, not confined to Europe. In other coun-
tries, emerging economies in particular, there are also huge quantities of potential emission
reductions to be expected which could be realized by means of efficiency improvements.
Thus, strengthening international cooperation and technology transfer from advanced
countries towards emerging countries at favorable conditions could tremendously enhance
the overall benefit.

3.5 Discussion and Conclusion

The bottom line of the results of the above analysis with the stochastic nonparametric
approach to environmental efficiency analysis is that the bootstrap bias-corrected esti-
mates of potential reductions of GHG emissions by reducing the inefficiency relative to
the most efficient countries in each of seven sectors are quantitatively substantial. Along
with the bias-correction also confidence bounds are established which show that the re-
duction potentials are estimated with great precision in some sectors while being wider
in other sectors. The comparison with the results of the companion paper Krüger and
Tarach (2020) shows that the bias correction leads to substantially increased estimates of
the potential emission reductions.

To put the magnitudes of the estimated potential emission reductions into perspective
we compare them to the emission reduction targets recently tightened by the European
Commission (see EU (2020)). Therein, an emission target of 45% (meaning a reduction by
55%) compared to the GHG emission levels in 1990 until 2030 is postulated. Since the 16
sample countries of our study overall emitted roughly 5000 mt of GHG in 1990 (retrieved
from the EEA greenhouse gas data viewer) this implies a necessary emission reduction
of about 2750 mt until 2030. As stated by the European Environmental Agency (EEA
(2019)), it is highly likely that the target level of a reduction of 20% compared to 1990
is to be achieved or is even slightly outperformed by 2020. Thus, an emission reduction
of about 1000 mt is already achieved to date. The remaining 1750 mt until 2030 are
not far away from the bias-corrected estimates of the total potential emission reductions
aggregated over both countries and sectors (ranging from 1271 mt in variant (d) to 1642
mt in variant (b)) and are well within the confidence intervals. The distribution of the
EU reduction targets across sectors also corresponds to the pattern of our estimated
reduction potentials. Therefore, becoming more efficient can provide a substantial part
of the reductions until 2030, especially in the sectors with large emission volumes.
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The distribution of the reduction potentials across countries reflects their (economic) size.
Naturally, larger countries tend to have larger manufacturing and transportation sectors
which goes along with a need for a larger energy generating sector. These are the sectors
with the largest actual emission quantities and also with the largest reduction poten-
tials. Poland seems to be an exception operating with a much higher emission intensity.35

Agriculture is another sector with large GHG emission which are here more caused by
CH4 and N2O rather than CO2. Thus, in addition to conventional environmental policy
measures and new technologies which come to mind first, structural change in a direction
towards the less emission intensive sectors could contribute to the realization of reduction
potentials. Exactly this form of structural change is taking place since several decades
in the form of tertiarization (where tertiarization means an increasing share of the less
emission intensive service sector at the expense of the primary and secondary sectors;
Fourastié (1949)).

Of course, it is not realistic to expect that these emission reductions can be fully achieved
within the next decade. The reasons for this assessment are manifold. Policy measures
become effective with a time lag. Despite structural change going in the right direction it
is a rather sluggish process taking place over longer spans of time. Here, the demand side
and the slowly changing consumer preferences play a major role. Economic actors also
adapt to changing conditions such as prices and also adverse reactions are to be expected
(such as “rebound effects”; Greening et al. (2000)). Structural change is also impeded
by the specific roles of the countries in the context of international specialization which
prevents that all countries will reach the same sectoral structure (de Araújo et al. (2020)).

On the other hand, the present analysis is purely static (mostly confined to the medians
to 2012-2016) and does not take account of the emission reducing effects of technological
change. New technologies and in particular less emission intensive forms of energy gen-
eration and mobility are crucial for reaching the targets. Since the European countries
are only responsible for a small share of global GHG emissions, spillover effects and the
transfer of these emission reducing technologies to countries outside Europe is the key
factor for new technologies to become effective for large scale emission reduction. This
leads to the natural extension of this work towards a dynamic analysis (by projecting
the potential emission reductions into the future) or an extension with a global country
sample.

35This is in broad agreement with the literature on eco-efficiency, where also some countries as Austria,
Germany and Sweden are found to be rather efficient while eastern European countries such as Poland
appear very inefficient (see Camarero et al. (2014) and Kortelainen (2008)).
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4 Bottom-Up Aggregation of Field-Level Oil Produc-

tion Profiles via a Successive Sampling Discovery

Model and a Birth Process: An Application to the

Gulf of Mexico and Norway

4.1 Introduction

Since the dawn of the oil and gas industry, the capacity to maintain or grow the supply
of these fuels has periodically regained attention and concern. After oil and gas have
become predominant energy sources for the world since the post WWII era, the question
of their future availability and affordability has undergone recurrent debates.

The issue may be structured by separating it into two questions based on the distinction
between stocks and flows: first, “How much recoverable oil [or gas] exists?”, and second,
“Which path will production take over time?” (Brandt (2010), p. 1). The second issue,
the flow, is what is ultimately relevant, since energy flows are what economies and soci-
eties depend on (Jakobsson et al. (2012), p. 861). Though obviously the flow depends
on the existing stock, the answer to the second question is not fully determined by the
answer to the first one, that is, they are not two sides of the same coin. Discussions in
the debate often ignore this or are based on the assumption that production rates will be
kept constant until “all” of the resource is exhausted, as implicit in calculations based on
resource-to-production ratios. Such an oversimplified model likely gives unrealistic pre-
dictions (e.g., Bartlett (2000); Bentley (2002)), and “may induce unwarranted optimism”
(Bardi and Lavacchi (2009), p. 647).

On the other hand, as argued by Adelman and Lynch (1997), “undue pessimism” may
follow from how the first question is formulated, that is from the fixed view on the resource
stock. According to Adelman (1997), mineral and fossil fuel production should rather be
understood as a “struggle between depletion and increasing knowledge” (p. 13), since the
recoverable stock is a variable quantity that depends on technology, geological knowledge,
and economic factors.

To disentangle the issue for the case of oil, Brandt (2010) reviews mathematical modeling
approaches that have been used to convert given estimates of the stock of oil into future
rates of production. Overall, the models are divided into four categories: top-down mod-
els, system dynamic models, bottom-up models, and economic models based on optimal
depletion theory. Top-down approaches directly start with modeling the production rate
at some aggregate (e.g. national, global) level, while omitting the details how this ag-
gregate emerges from underlying physical and economic mechanisms or from the dozens
to thousands of individual production units. The most famous top-down approach is
known as the Hubbert curve. Essentially, this is a curve fitting model applied to the ob-
served production or discovery path of a resource, where the parametric curve being fit is
bell-shaped (usually the Gaussian function or the derivative of the logistic function), and
where the total amount of recoverable resources is either exogenously given or estimated
from the fitting.

The model has been first proposed by M. King Hubbert (1956; 1962; 1982), primarily
based on empirical considerations about the extraction of oil or other non-renewable re-
sources. The implicit assumptions of the Hubbert curve are the following: that maximum
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production (the peak) occurs when approximately half of the resource is depleted, that
the decline in production mirrors the increase in production, and that production occurs
in a single cycle without multiple peaks (Brandt (2007), p. 3075). Other, more flexible
curve types for describing or predicting the dynamics of energy systems at a top-down
level are reviewed, e.g., by Höök et al. (2011). Apart from Hubbert’s forecasts, the most
prominent applications of bell-shaped curves to forecast the global production of conven-
tional oil are from the petroleum geologists Colin Campbell and Jean Laherrère, e.g. in
Campbell and Laherrère (1998). Bentley (2023) has recently reviewed the methodology
from Campbell and Laherrère based on which their conclusions about peak oil supply were
reached. Other applications of Hubbert curves to forecast conventional oil production can
be found, for example, in Maggio and Cacciola (2009), Nashawi et al. (2010), Wang et al.
(2011), and Ebrahimi and Ghasabani (2015).

The use of such curve fitting models at aggregate levels where several have generated fore-
casts of an imminent peak in global conventional oil production has repeatedly generated
controversy, and commentators seem divided into two groups of those who are “concerned”
or “unconcerned” about the “future availability and affordability of oil” (Jakobsson et al.
(2012), p. 861). Already in the year of publication of Campbell and Laherrère (1998),
the opposing viewpoints were critically examined, for example, by Smil (1998). Recently,
Bardi (2019) has discussed aspects of the debate on “peak oil” and the cycles it has under-
gone during the last 20 years in scientific or press articles including a decline in coverage
in recent years.

Declining attention to the issue of oil (and gas) depletion may also be related to the plans
of many nations to drastically ramp up their share of renewables in primary energy con-
sumption in light of the recent agreements on climate change mitigation such as the Paris
Agreement, together with targets of some nations (e.g. European) to phase out fossil
fuels completely. Several authors argue, though, that the anthropogenic climate change
problem and the fossil energy problem are interwoven and require a holistic solution, or
that depletion of fossil fuels could constrain CO2 emissions as to limit global warming
to a manageable extent (Höök and Tang (2013); Nel and Cooper (2009); Kharecha and
Hansen (2008)). Furthermore, despite the recent rise of the new renewable energy tech-
nologies (i.e., solar, wind, modern biofuels), the author of this paper is of the opinion
that the supply of oil and gas remains crucial for many decades. The reasons for this are
multifaceted. First, energy demand in many developing countries is expected to rise as
these are growing in terms of GDP per capita and aiming to catch up with the developed
countries. In 2021, fossil fuels (oil, gas, coal) made up 82.3% of global primary energy
consumption, while renewables (excluding hydropower) made up only 6.7% (BP (2022),
p. 9). Also, oil and gas power many critical activities such as transportation and the op-
eration of heavy machinery in mining and agriculture, and oil and gas is used as chemical
feedstocks for plastics and fertilizers (Day et al. (2018)). Oil accounted for 90% of the
energy consumed globally in the transport sector in 2021 (IEA (2022), p. 146). Moreover,
gas-fired plants are the most flexible conventional plants for balancing a rising share of
intermittently generated renewable power.

Besides, there are several interrelated difficulties associated with phasing out the current
work done by fossil fuels and replacing it with the new renewable energy technologies (e.g.
wind turbines, solar panels, batteries, hydrogen-based technology). In particular, these
include the high intermittency of renewable power generation, the high requirements of
potentially scarce metals (e.g. lithium, cobalt, platinum, and Rare Earth elements), es-
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pecially for large-scale battery storage as a means to balance the intermittency (Michaux
(2021; 2023)), and also a relatively lower power density than fossil fuels (Smil (2015)).
Besides, the new renewables might have a lower energy return on energy invested (EROI)
compared to fossil fuels (Hall and Day (2009); Hall et al. (2014)), although several EROI
analyses available in the literature have been criticized in terms of methodological rigor
(Raugei (2023)), and the issues of boundaries and methodological harmonization for com-
parative EROI analyses are still being discussed (Raugei (2019); Murphy et al. (2022)).
In total, though, the issues mentioned make it less clear in which time frame and to what
extent the phasing out will be accomplished, and together with the issue of peak oil (or
gas), this makes the problem of predicting the future oil and gas availability an important
research topic.

In this paper, we formulate a stochastic bottom-up model for the rate of oil production
in a region by combining a size-biased sampling model of the discovery process, a pure
birth process model for the discovery times, and empirically founded field-level production
profiles. The size-biased sampling model is also known as the Barouch-Kaufman model,
named after Gordon Kaufman and his co-workers, including Eytan Barouch, who first
studied the model in Kaufman et al. (1975) and Barouch and Kaufman (1976a). We
estimate the parameters of the size-biased sampling model for three different regions
which, upon combining with the other parts of the bottom-up model, allows to evaluate
how well the overall model can predict the actual paths of the discovery and production
rates.

Regarding the parameter estimation of the size-biased sampling model, we contribute
(in sect. 4.3.2) by making two extensions to the usual expectation-maximization (EM)
algorithm based estimation procedure and the usual covariance matrix of the estimators
(see, e.g., Nair and Wang (1989); Lee (2008)). We first extend both the estimation
procedure and the covariance matrix for the case that the number of fields is random
with a Poisson prior distribution (based on Lee (2008), pp. 195f.), and secondly, for
the case that the support of the field-size distribution is truncated to a compact interval
(based on Dempster et al. (1977)).

Among others, Michel (2011) has already formulated a stochastic model for the oil pro-
duction in a region which is based on the idea of bottom-up aggregation of field-level pro-
duction profiles. For this Michel (2011) assumes a certain statistical distribution where
the launching times of the fields depend on size so that large fields tend to produce first,
but he does not incorporate the Barouch-Kaufman model. In contrast, Jakobsson et al.
(2012) show theoretical simulation results from a bottom-up model where the discovery of
new fields is explicitly modeled via a variant of the Barouch-Kaufman model. Jakobsson
et al. (2012) further show that one can endogenize within the model the drilling of un-
successful exploration wells by including an “empty area”, as also formalized in Herbert
(1983), so that the model is extended into a model of the discovery yield per exploration
effort.

In this paper, we contribute (in sect. 4.3.3) by proposing two different approaches that
allow to integrate the size-biased sampling model with a stochastic model for the discovery
times of the fields. We formalize this using the stochastic model called a pure birth process.
The first approach estimates a distribution function for the future discovery times directly
from extrapolating the past trend of “when” the discoveries have occurred with a suitable
trend function. Mathematically, the future discovery times can here be described as
coming from an inhomogeneous Poisson process. The second approach is based on the

40



extension from Jakobsson et al. (2012) or Herbert (1983), combined with a suitable trend
function for future exploration wells. Mathematically, the future discovery times can here
be described as coming from a more general inhomogeneous pure birth process. We also
contribute (in sect. 4.3.4) by showing how a result from Pitman and Tran (2015) can be
used to derive for both approaches an asymptotic approximation to the mean function of
the discovery and the production rate.

Since the approach of combining a model in which larger fields tend to be found first
with a model for field-level production is close to the approaches of Michel (2011) and
Jakobsson et al. (2012), it is not surprising that several results we obtain in this paper
are qualitatively similar (e.g. peak production often happening before 50% of cumula-
tive production). However, the results from Michel (2011) are not built formally on the
Barouch-Kaufman model, and the results from Jakobsson et al. (2012) remain theoretical,
i.e. the parameters are not adapted to the discovery history of a particular region. We
therefore also contribute to the literature on the modeling of oil supply with our empirical
application.

This paper proceeds as follows: we start in sect. 4.2 with a brief review of the literature
on models of oil production, structured along the categories from Brandt (2010). Sect. 4.3
introduces the mathematical model, where sect. 4.3.1 begins with field-level production
profiles adapted from IEA (2008). Sect. 4.3.2 presents formally the central component,
the discovery process model based on size-biased sampling, and explains the strategy we
use to estimate its parameters. Sect. 4.3.3 explains the two approaches with which we
integrate the size-biased sampling model with a model for the discovery times, and sect.
4.3.4 summarizes the mathematical properties of the overall model. In sect. 4.4, we briefly
describe the data sources for our applications to the Gulf of Mexico and Norway. Then,
sect. 4.5.1 starts with a descriptive analysis, followed by sect. 4.5.2 where we present the
estimation results of the size-biased sampling model. In sect. 4.5.3 we present and discuss
the Monte Carlo simulation results of the overall model, and finally sect. 4.6 concludes.

4.2 Literature Review of Mathematical Modeling Approaches

Using data from a large number of oil producing regions, Brandt (2007) conducts an
empirical analysis of the fit of the Hubbert curve vs. other parametric curves. In total,
Brandt (2007) collects production data from 139 regions at widely varying scales (U.S.
states or regions, nations, (sub-)continents). Single-peaked symmetric and asymmetric
curves are fitted to the historical production data. Six larger regions representing 36% of
2004 production are classified by the author as borderline cases meaning that the produc-
tion pattern is judged by the author as not well-characterized by a single-peaked curve
(Brandt (2007), p. 3082).36 Comparing the fit of three different symmetric curves (linear,
bell-shaped, exponential) for the remaining regions, the bell-shaped Hubbert curve over-
all performs best. Extending this comparison study to include also asymmetric versions
of the three curves, Brandt (2007) finds that the asymmetric exponential curve has the
highest number of regions where it performs best. Overall, Brandt (2007) concludes from
his study that symmetric models are not fully satisfactory in describing historical produc-
tion. However, the author considers the implication of this result for prediction efforts to

36These are: Central, Southern, and Western Asia; Saudi Arabia, Venezuela, and Former Soviet Union
(Brandt (2007), p. 3078).
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be less clear, since fitting asymmetric curves becomes impossible when an evident peak
does not (yet) appear in the production record.

Rehrl and Friedrich (2006, pp. 2414ff.) give a stylized description about how discoveries
proceed which suggests a bell-shaped pattern as a reasonable approximation. Geological
information about the prospects in a region is obtained in proportion to either cumulative
discoveries or cumulative exploration effort, and technical know-how specific to the region
may be gained alongside. As both information is accumulated, the chance of successful
discovery increases, which the authors refer to as the “information effect” (see also Uhler
(1976); Reynolds (1999)). This constitutes a positive feedback-loop for the rate of discov-
ery. The negative feedback-loop is the “depletion effect” that the declining amount of oil
in the ground makes the remaining oil resources harder to find, the discoveries smaller,
etc.. If both feedback-loops are understood mathematically as linear proportionalities,
the result is the logistic function. The theory of the information and depletion effect is
studied in further detail by Reynolds (2001; 2002) and other papers from the author.

Another framework from which bell-shaped production curves can emerge is described by
Bardi and Lavacchi (2009), Bardi et al. (2011), and Perissi et al. (2021). The authors
propose as a framework for the extraction of a non-renewable or slowly renewable resource
a modified version of the Lotka-Volterra (LV) model. The LV model originates as a model
of dynamical predator-prey interactions in ecological systems. Bardi and Lavacchi (2009)
explain how the two differential equations of the LV model can give a plausible description
of the life-cycle of the extracted resource stock (“the prey”) jointly with the life-cycle of the
capital stock with which the resource is produced (“the predator”) when the reproduction
rate of the resource stock is set to zero. The model contains three parameters plus
the initial stocks of resource and capital. Bardi and Lavacchi (2009) obtain parameter
estimates by fitting the model to the observed paths of the resource and capital stocks
for a number of data sets: gold mining where the number of miners is the capital stock
proxy, whaling in the 19th century where ship tonnage is the capital stock proxy, and
oil discoveries in U.S. lower 48 states and in Norway where the number of exploration
wells is the capital stock proxy. Overall the fit is quite good, but the authors add the
qualification that the number of cases for which the model could be tested is limited,
mainly due to difficulties of obtaining data on reasonable capital stock proxies (Bardi and
Lavacchi (2009), p. 652). Also, Bardi et al. (2011) and Perissi et al. (2021) explain how
the LV framework can be interpreted as a simple dynamical model of the energy return
on energy invested (EROI) or the net energy as the key underlying variable.

The cornerstone of the optimal depletion theory is the classical Hotelling (1931) model.
This and various modifications have been used in economics to model the extraction of an
exhaustible resource such as oil (e.g., Lin (2009); Anderson et al. (2018)). In the classical
model, the depletion of a resource by economic agents is formulated as an inter-temporal
optimization problem, where the non-renewable nature of the resource is taken into ac-
count by a fixed constraint on the amount of extractable resource over all periods. The
resource price is usually an endogenous variable determined by equilibrium of the supply
function derived from the inter-temporal optimization with an exogenously given demand
function. The basic prediction of the model is that the shadow price of the resource grows
at the rate of interest, which under the simplest assumptions translates into the resource
price growing at the rate of interest (known as the Hotelling rule), and production declin-
ing accordingly as dictated by the demand function. The are many extensions of the basic
Hotelling model (see Krautkraemer (1998) for a review). However, most extensions do not
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consider time-varying constraints on the production rate, and do not take into account
the nature of the discovery cycle or geophysical production characteristics. Exceptions
can be found, for example, in Pindyck (1978) and more recently in Anderson et al. (2018)
and Holland (2008). The “site development model” of Holland (2008, pp. 69-74) is based
on optimal depletion theory but is conceptually also a bottom-up model. Therein, the
inter-temporal optimization solves in addition to production from existing sites also how
large the new sites which are chosen to be developed next should optimally be.

The approach of bottom-up modeling has been recently reviewed by Jakobsson et al.
(2014), who judge it as promising for “identifying areas of uncertainty and new research
questions” (p. 113). Bottom-up modeling starts with defining a smallest production
unit (e.g. an oil field), and then is concerned with modeling (i) the production from
the existing units, (ii) the addition of new production units from the reserves, and (iii)
the addition of new reserves (Jakobsson et al. (2014)). As the production behavior of
individual oil fields shows well-understood regularities which can be approximated by
standard production profiles that depend only a few variables (e.g., ch. 10 of IEA (2008);
Höök et al. (2009b; 2009a); Höök (2014); Miller and Sorrell (2014)), a model for the
production from existing fields can be derived from these insights. At some point the
discovery of new reserves by exploration will be subject to the “depletion effect” or “the
law of diminishing returns”, causing yield per exploration effort to decline. One approach
to model this are so-called “creaming curves” which extrapolate cumulative discoveries
towards an asymptote (Meisner and Demirmen (1981); Sorrell and Speirs (2010), p. 220).

The approach which we pursue in this paper is to model the “depletion effect” by a
discovery process model at the level of individual fields, for which the most well-known
approaches are based on Arps and Roberts (1958) and Barouch and Kaufman (1976a).
The Arps-Roberts model assumes a discrete field-size distribution, and postulates that one
more unit of exploration effort causes new discoveries in a certain size class in proportion
to the number of undiscovered fields in that class times the average areal extent of a field
in that class. The result of this assumption are exponential decline curves for the number
of undiscovered fields in each size class (e.g., Herbert (1982; 1983); Schuenemeyer and
Drew (1983)). Kaufman et al. (1975) and Barouch and Kaufman (1976a; 1976b) were the
first to postulate, in mathematical form, that discovery of oil reservoirs may be described
by sampling without replacement and proportional to size from a finite population, which
again is a random sample from an underlying superpopulation distribution (Lee (2008),
p. 17). According to the originators the advantages of this model are that, first, it is
based on “explicitly stated postulates [that] can be empirically validated using observed
data”, second, it provides “not only single-number estimates, but an explicit measure of
the degree of uncertainty” (Kaufman et al. (1975), p. 13).

Finally, let us turn to the bottom-up models mentioned at the end of sect. 4.1 which are
closest to the model of this paper. Michel (2011) formulates a stochastic model where oil
production in a region is derived from the combination of field-level production profiles,
the field-size distribution, and the dates when the fields are launching oil production.
Michel (2011) assumes a truncated Pareto distribution as the field-size distribution, and
that the launching times are conditionally (on the field sizes) Gamma distributed where
the parameters vary for four different size classes so that larger fields tend to be launched
first. A novel and interesting approach pursued by Michel (2011) is the construction of
field-level production profiles via kernel functions which are estimated nonparametrically
using natural cubic splines. This flexible construction of production profiles makes it easy
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to incorporate the assumption that the shapes of the production profiles vary continuously
with the field’s size (Michel (2011), p. 440).

Jakobsson et al. (2012) employ a field-level production model rooted in operations re-
search which combines the geophysical facts of oil depletion with economic inter-temporal
optimization of drilling and platform capacity additions. In this approach, the production
profiles can be related to different scenarios for the oil price and cost parameters (see pp.
864-866). Then, Jakobsson et al. (2012) conduct a Monte Carlo simulation of size-biased
sampling with the following assumptions: sampling of fields is exactly proportional to field
size (recoverable oil), an exemplary lognormal distribution is assumed for the field sizes,
and the drilling of unsuccessful exploration wells is endogenized by including an “empty
area” that does not diminish with exploration. The simulation results are combined with
three trends for the number of exploration wells per year and with the field-level produc-
tion model, and the resulting regional discovery and production rates are shown in figures
12-13 of Jakobsson et al. (2012).

4.3 Mathematical Model

In a nutshell, the bottom-up model we formulate is composed of three elements. The first
element are empirically founded field-level production profiles which convert the size of an
oil field into a continuous time path for production. This is explained in sect. 4.3.1. The
second element is a variant of the discovery process model from Barouch and Kaufman
(1976a), which we refer to as the size-biased sampling model. We use this to predict the
sequence of field sizes in order of discovery. In essence, the model allows the field sizes to
decline (or increase) with the succession of fields in a stochastic fashion, and the degree to
which this occurs can be estimated from the data. This is explained in sect. 4.3.2. As the
third element, we assume that the discovery times of new fields are stochastic variables
generated by a pure birth process. This is explained in sect. 4.3.3. Combining the three
elements of the bottom-up model, a continuous time path for the rate of oil production
in the region emerges simply as the sum of the individual field-level production paths.

Regarding notation, we stick to the notation of probability theory. Let P[·] be the proba-
bility of a specified event, E[·] be the expected value operation for scalar random variables
(rvs) and random vectors, Var[·] be the variance operation for scalar rvs, and V[·] be the
covariance matrix for random vectors. We denote random variables or vectors by upper
case letters while we denote their possible realizations by the corresponding lower case
letters. In case we deviate from this convention the definitions will be clearly stated in
the text. Cumulative distribution functions are referred to as cdfs and probability density
functions as pdfs. Besides, we occasionally make use of the Bayesian notation for pdfs
(using the symbol ∝), which means that we leave out the normalizing constant. Also,
for a continuous random vector with a density, say fX,Y (x, y), we often use the notation
P[X ∈ dx, Y ∈ dy] = fX,Y (x, y)dxdy, which is common in probability theory. Also, we
write X ∼ · to express the assumption that X is distributed according to a certain prob-
ability distribution. Finally, let 1(·) denote the indicator function, ⊥⊥ denote statistical
independence, and > denote the transpose of a vector or matrix.
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4.3.1 Overview and Production Profiles

In this section, we first formalize the aggregation from individual fields to the region, and
then explain in detail how the field-level production profiles look like.

We define the stochastic process (Qτ )τ≥0 we are interested in as the superposition of the
individual contributions to that process from all oil fields in the region. We write this
formally as

Qτ :=
N∑

i=1

q(τ, Ti, Xi). (4.1)

Here, τ denotes real (physical) time, the index i labels the fields in order of discovery,
and N denotes the number of fields in the region which are ultimately (economically or
technically) recoverable. Ti and Xi are, respectively, discovery time and size of the ith

field, where we mean by size the ultimately recoverable resources (URR) of a field. The
function q models the individual contribution that a field with a certain discovery time
and size makes to the regional aggregate at time τ . As we are primarily interested in the
modeling the rate of oil production, the function q should be a model for the production
of an individual oil field. Aside from this, we introduce functions for q with which (4.1)
becomes a model for remaining reserves or a “smoothed” discovery rate.

It is known empirically that for fields of similar size and physiographic situation (onshore,
shallow offshore (shelf), deep water), oil production evolves quite similar as a function
of time since first production (e.g., ch. 10 of IEA (2008); Höök et al., (2009b; 2009a);
Höök (2014); Miller and Sorrell (2014)). This justifies using a deterministic function that
depends only on the oil field’s size and time since discovery (or first production), that is we
can use a bivariate function qprod(τ − t, x). In principle, any bivariate function is feasible
if
�∞
0
qprod(t, x)dt = x. Schematic figures of empirical profiles can be found in Höök et

al. (2009b, p. 42) or Jakobsson (2014, p. 117). These profiles have a build-up phase
of increasing oil production, followed by a plateau phase where new drilling or water-
/gas-injection just compensates the pressure-driven decline, which is finally followed by a
decline phase that is either exponential or hyperbolic (Höök (2014), p. 100).

Using a comprehensive data set, IEA (2008) reports in chapter 10 the results of a field-by-
field analysis conducted to estimate standard production profiles for fields of similar size
and physiographic situation. The results are presented by IEA (2008) via a few summary
statistics, which we show in Table 4.1. In order to convert this into a fully parameterized
production profile, we choose the function

qprod(τ − t, x) :=





0 if τ − t ∈ (−∞, δ0],

x · q · (τ−t−δ0)
δ1−δ0

if τ − t ∈ (δ0, δ1],

x · q · e−ϑ2(τ−t−δ1) if τ − t ∈ (δ1, δ2],

x · 0.85q · e−ϑ3(τ−t−δ2) if τ − t ∈ (δ2, δ3],

0 if τ − t ∈ (δ3,∞).

(4.2)

First, note that the function is linear in x, i.e. qprod(t, x) = qprod(t, 1)x. Nonlinear
dependence on the field size will be achieved with different parameters for the different
field-size categories shown in Table 4.1. The function implies that first oil is produced δ0
years after the discovery. Production then starts with a linear build-up phase for the first
δ1 − δ0 years, followed by a first phase of moderate exponential decline at rate ϑ2 for the
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Table 4.1: Summary statistics of standard production profiles from 725 oil fields analyzed
by IEA (2008)

% of initial

reserves

produced in

peak year

% of initial

reserves

produced until

peak year

Number of

years of

production at

plateaua

Estimated

average total

number of

production

yearsb

Post-plateau

decline rate

Onshore, <500 Mb 3.9 21 7 75 9.4%

Shelf, <500 Mb 9.7 25 4 60 12.2%

Onshore, 500 Mb - 1.5 Gb 2.3 17 10 90 5.5%

Shelf, 500 Mb - 1.5 Gb 3.5 20 8 65 8.6%

All, > 1.5 Gb 1.7 15 13 110 NA

Deepwater 7.0 22 5 27 12.6% (<500 Mb)

10.8% (>500 Mb)

Note: Mb=Mega barrels, Gb=Giga barrels
aDefined as the period during which production is more than 85% of that in the peak year.
bOver the full lifetime of the field, assuming that cumulative production strictly equals initial reserves

Source: taken from World Energy Outlook 2008, International Energy Agency, table 10.6 (p. 231), table 10.8 (p. 238)

next δ2 − δ1 years, after which we assume that production has reached 85% of the peak
level. Thus, the two parameters ϑ2 and δ2 − δ1 are related by exp(−ϑ2(δ2 − δ1)) = 0.85.
The profile then enters into the final phase of exponential decline at the higher rate ϑ3

for δ3 − δ2 years. δ3 − δ0 is the time from first oil to abandonment, which occurs after
production has declined below a threshold where revenues cannot compensate anymore
for fixed operating cost.

The first column of Table 4.1 is used as a value for the peak level, q. From q together with
the second and third columns, it is possible to determine the parameters δ1−δ0, δ2−δ1, and
ϑ2. For the decline rate parameter ϑ3 we take values from table 10.8 of IEA (2008), where
post-plateau decline rates are reported by size and physiographic situation. Unfortunately,
decline rates for the size category >1.5 Gb are missing while only the category “super-
giant” appears, which is defined by IEA (2008, p. 222) as >5 Gb. Therefore, we only
classify fields into non-giants (<500 Mb) and giants (>500 Mb), using the numbers from
the 500 Mb - 1.5 Gb categories for all giants.

Another problem is that when choosing q as in the first and δ3−δ0 as in the fourth column,
respectively, we find that the condition

�∞
0
qprod(t, x)/xdt = 1 is not fulfilled exactly for

the function (4.2). Therefore, for each category, we adjust the two parameters so that the
condition holds exactly.37 Figure 4.1 plots the resulting production profiles (4.2) for four
different parameterizations from Table 4.1, with δ0 = 0 and a field size normalized to one.

Turning now to the parameter δ0, the usual timeline between discovery and first oil pro-
duction can be summarized as follows: after oil has been discovered by an exploration
well, the surrounding area is geologically searched by further wells to assess the amount
of oil contained in the field and the viability of recovering it (Mihalyi (2021), p. 7). This
assessment phase is followed by feasibility studies with a detailed investigation of tech-
nical and financial aspects, and by the obtainment of necessary permits from the local
regulator (Mihalyi (2021), p. 8). After the permits have been granted, the oil company
can approve the development of the field. After approval, the necessary physical capital

37If the integral is greater than one, we fix q as in Table 4.1 and reduce δ3 − δ0 so that the condition
is fulfilled. If the integral is less than one, we fix δ3 − δ0 and increase q so that the condition is fulfilled.
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Figure 4.1: Four production profiles based on equation (4.2) and Table 4.1
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Note: The scale of the y-axis is normalized so that each production profile integrates to one.

is procured and installed on-site, and only upon completion thereof the company can
extract the first barrel of oil (Mihalyi (2021), pp. 8f.). The phase from discovery until
approval usually takes several years and is usually longer than the capital procurement
phase. Analyzing a comprehensive data set of about 20,500 oil and gas fields with first
production before 2020, Mihalyi (2021) calculates a mean duration between discovery and
approval of 5.5 years (with a standard deviation of 8.3 years), and a mean duration for
the capital procurement phase of 1.5 years (with a standard deviation of 2.4 years).

Mihalyi (2021) also analyzes the impact of geographical location and other variables on
the duration between discovery and first production. The author finds strong differences
by continent. While fields in the Americas have a mean duration of 6.4 years, fields in
Sub-Saharan Africa have a mean duration of 16.8 years, and fields in Europe, Asia and
other parts of Africa lie somewhere in between. The variability of the duration shows sim-
ilar differences across the continents. Mihalyi (2021) also employs econometric duration
analysis to examine the impact of field-level geological and country-level macroeconomic
and institutional characteristics. Larger fields tend to have longer durations, although
this finding seems to apply mainly to gas fields. As illustrated in figure 3 of Mihalyi
(2021), for oil fields the durations increase only slightly with field size.

Once the production profile qprod is fully specified, one can also substitute q-functions
representing other quantities that are related to or derived from the production profile into
(4.1), so that (4.1) describes the evolution over time of these related quantities aggregated
to the region. Of particular interest can be the remaining reserves, which are defined as the
difference between cumulative discoveries and cumulative production (Sorrell and Speirs
(2009), p. 10). Thus, (4.1) can describe the regional remaining reserves by using

qres(τ − t, x) := 1(τ − t ≥ 0) · x−
� τ−t

0

qprod(u, x)du. (4.3)

Moreover, a smoothed discovery rate at time τ can be obtained by using the rectangular
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Figure 4.2: Overall timeline
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2
,

0 else,
(4.4)

where ϑ is a moving average window.

Finally, another q-function of interest may be a discounted value of the expected revenues
or profits from producing a field according to a certain production profile. For this q-
function the time parameter τ is integrated out by definition, so that (4.1) then does not
define a stochastic process in τ but a single random variable, representing the discounted
value of the expected revenue stream from the aggregate region. There are papers where
such discounted production profiles are used. For example, Arezki et al. (2017) use pro-
duction profiles to calculate present values of the revenues from fields in the giant oil field
data set from Horn (2014), employing the oil price which was prevalent at the time of
discovery and country-specific discount rates for valuation. However, it is out of the scope
of this paper to combine such present value functions with the other components of the
model presented here. This remains an interesting avenue for future research.

Let us end this section by clarifying the timeline of the overall exploration and production
cycle in the region which we have in mind in the exposition of the following sections (see
Figure 4.2). Time 0 is the date when first knowledge about significant oil deposits in the
region is obtained so that commercial exploration ensues, and time t denotes “now”, after
k ≥ 0 discoveries have been made and from where one aims to forecast future oil discovery
and production.

4.3.2 Size-Biased Sampling Model

In this section, we present the assumptions and parameter estimation strategy for the
size-biased sampling model. Due to the mathematical complexity of the model, we use
several result not proven here, where we only cite the relevant literature. In order that
this paper is self-contained, we complement this section with our own derivations of some
relevant results that are known, and also of some new results. This can be found in sects.
B.1-B.5 in the Appendix.

A parametric discovery process model usually starts with an assumption about the field-
size distribution, also referred to as the superpopulation distribution. This can be stated
as follows (e.g., Kaufman et al. (1975), p. 15; Barouch and Kaufman (1976a), p. 2; Nair
and Wang (1989), p. 423; Lee (2008), pp. 26ff.):

Assumption 1. Nature has generated the oil fields with sizes {X̃1, . . . , X̃n}, where the
relative frequencies of the sizes follow some probability law which can be described by a
pdf fθ that is known up to an unknown vector of parameters θ ∈ Θ. Letting the indices
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{1, . . . , n} be uninformative about the sizes, this data generating process is mathematically
a random sample X̃n := (X̃1, . . . , X̃n) from fθ.

Already by Arps and Roberts (1958) and Kaufman (1963), oil field sizes and related
geological random variables have been approximated by a lognormal distribution, since
empirically these variables show distributions that are positively skewed with long right
tails (Kaufman et al. (1975), p. 15). The lognormal, Pareto, and Weibull distributions
are the most common size distributions with these characteristics (Lee (2008), pp. 61ff.;
Jakobsson et al. (2014), p. 120). In this paper, we assume that oil field sizes are generated
from a (truncated) distribution from the regular exponential family, which includes the
Pareto and lognormal distribution, but excludes the Weibull distribution. We restrict the
class of distributions to the exponential family since this is convenient from a statistical
point for estimating the parameters as we will see later. We also assume that fθ is
truncated with support [x, x], and use the notation fθ/ptr(θ) from here on, where ptr(θ) :=� x

x
fθ(x)dx. The support is assumed to be known or estimated on a rule of thumb basis

from the observed field sizes.

A second assumption is added which lends the name to the size-biased sampling model.
This can be stated as follows (e.g., Nair and Wang (1989), p. 423; Lee (2008), p. 30):

Assumption 2. Given that the oil fields which exist in the region have the sizes X̃n =
(X̃1, . . . , X̃n), and assuming that all fields are in principle available for discovery at each
time, the order of discovery is sampled from X̃n without replacement and with probabilities
proportional to some positive, monotonous transformation of the size, w(x). For oil dis-
covery, this function is usually chosen as w(x) = xβ, where β is called the discoverability
parameter.38

To achieve a concise formal notation, we introduce the outcome sets for permutations and
drawing without replacement from the letters {1, . . . , n} as

In :=
{
(i(1), . . . , i(n)) ∈ {1, . . . , n}n

∣∣i(r) 6= i(s) for r 6= s
}
,

Il,n :=
{
(i(1), . . . , i(l)) ∈ {1, . . . , n}l

∣∣i(r) 6= i(s) for r 6= s
}
.

The successive sampling from X̃n can be described formally by a random vector that is
a permutation of the letters {1, . . . , n}. Let (σ(1), . . . , σ(n)) denote this random vector,
containing the n indices which relate the field sizes as labeled in the order of discovery,
Xi, to the uninformatively labeled field sizes, X̃i, that is X1 := X̃σ(1), . . . , Xn := X̃σ(n).
Expressed formally, assumption 2 implies that the conditional probability mass function
(pmf) of observing Xl = X̃i(l), for any l ≤ n and any distinct indices (i(1), . . . , i(l)) ∈ Il,n,
equals (Nair and Wang (1989), p. 423; Pitman and Tran (2015), p. 2484)

P
[
σ(l) = i(l)

∣∣σ(1) = i(1), . . . , σ(l − 1) = i(l − 1), X̃n

]
=

X̃β
i(l)

Sn − X̃β
i(1) − . . .− X̃β

i(l−1)

, (4.5)

where Sn := X̃β
1 + . . .+ X̃β

n .

38The reason why w(x) = xβ is convenient is that it nests several sampling-schemes. For β = 0, the
density of observing the first k sizes (x1, ...., xk) reduces to that of iid sampling. For β = 1, the sampling
becomes exactly proportional to size. For β → ∞ (−∞), it is certain that the largest (smallest) field will
be discovered first, then the second largest (smallest), and so on. Thus, the parameterization also nests
the order statistics case.
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Multiplying over l = 1, ..., n yields the pmf of observing X1 = X̃i(1), . . . , Xn = X̃i(n) for
given values X̃n = (X̃1, . . . , X̃n) and any index permutation (i(1), . . . , i(n)) ∈ In,

P
[
σ(1) = i(1), . . . , σ(n) = i(n)

∣∣X̃n

]
=
X̃β

i(1)

Sn

·
X̃β

i(2)

Sn − X̃β
i(1)

· . . . ·
X̃β

i(n)

Sn − X̃β
i(1) − . . .− X̃β

i(n−1)

=
X̃β

i(1)

X̃β
i(1) + . . .+ X̃β

i(n)

·
X̃β

i(2)

X̃β
i(2) + . . .+ X̃β

i(n)

· . . . ·
X̃β

i(n)

X̃β
i(n)

,

(4.6)

where the second equality follows from rewriting the denominator. Combining this with
assumption 1 yields the joint distribution of (σ(1), . . . , σ(n), X1, . . . , Xn), from which the
distribution of (X1, . . . , Xn) is readily derived as follows

Pθ

[
σ(1) = i(1), . . . , σ(n) = i(n), X1 ∈ dx1, . . . , Xn ∈ dxn

]

= Pθ

[
σ(1) = i(1), . . . , σ(n) = i(n), X̃i(1) ∈ dx1, . . . , X̃i(n) ∈ dxn

]

=
( n∏

j=1

fθ(xj)

ptr(θ)
dxj
)
·
( n∏

j=1

xβj

xβj + . . .+ xβn

)
,

⇒Pθ[X1 ∈ dx1, . . . , Xn ∈ dxn] = n!
n∏

j=1

fθ(xj)

ptr(θ)

xβj

xβj + . . .+ xβn
dxj.

(4.7)

The last line is due to the exchangeability of the iid rvs (X̃1, . . . , X̃n), which makes the
joint distribution evaluated at each index permutation (i(1), . . . , i(n)) ∈ In identical, and
due to |In| = n!.

Let us now consider only the first k field sizes, which we collect into the vector X :=
(X1, . . . , Xk). By analogous derivations a formula for the distribution of X can be derived.
Upon introducing the notation bj := xβj + . . .+x

β
k for j = 1, . . . , k, and letting Sn−k be the

sum of n− k iid rvs which are distributed like X̃β
1 , it holds that (Barouch and Kaufman

(1976a), p. 3; Pitman and Tran (2015), p. 2486)

Pθ[X1 ∈ dx1, . . . , Xk ∈ dxk] =
n!

(n− k)!

( k∏

j=1

fθ(xj)

ptr(θ)

xβj
bj

dxj
)
· Eθ

[ k∏

j=1

bj
bj + Sn−k

]
. (4.8)

In the context of oil discovery, it is reasonable to add a third probabilistic assumption
about the total number of fields in the region which is so far regarded as a fixed quantity.
Lee (2008, p. 38, pp. 195f.) proposes to approximate the number of fields with a Poisson
prior distribution in the absence of detailed geological knowledge that would specify a
different distribution. This effectively replaces the fixed quantity n by a parameter for
the expected number of fields in the region, which we denote by ν. A Poisson distribution
for the number of oil accumulations might also be justified on the basis of a spatial Poisson
point process, which is a common model in mineral prospectivity analysis (e.g. Baddeley
(2018)).

Assumption 3. The total number of fields in the region has a Poisson prior: N ∼
Pois(ν).

Let us consider the information available to a forecaster at time t (see Figure 4.2 for
the time arrow). The forecaster observes that the first k field sizes in order of discovery
assume the values x1, . . . , xk, and infers from this that the region contains a total of N ≥ k

50



fields. We refer to this information as the observed data, and summarize it formally by
F :=

{
X = (x1, . . . , xk), N ≥ k

}
(for k > 0).

From the Poisson prior and the likelihood function (eq. 4.8, to be arranged in a different
form in eq. 4.13), we derive a mixed Poisson distribution as the Bayesian posterior of
N−k, the number of undiscovered fields, after the information in F has been conditioned
on. We prove this in Lemma 2 in Appendix B.1. The final result is that this posterior is
the distribution (N − k)|Uk ∼ Pois(νUk), where Uk is a mixing rv that is data-dependent
(i.e. dependent on (x1, . . . , xk)), and assumes values in (0, 1].39 Although the formula for
the posterior mean of N − k under a Poisson prior has been derived by Lee (2008, pp.
195f.), the fact that the posterior distribution is a (mixed) Poisson distribution has not
been established in this reference, and to the best of our knowledge, it has not been stated
somewhere else in the discovery process model literature.

After knowing the distribution of the number of undiscovered fields, we also need the
distribution of the sizes of these fields. Reconsidering the likelihood function (4.8), one
can see that these sizes are contained there in the sum Sn−k with respect to which the
expectation is taken. Conditional on N = n, the joint distribution of the k discovered and
the n − k undiscovered field sizes is obtained from (4.8) by writing out the expectation
over Sn−k = X̃β

k+1 + . . . + X̃β
n , where the X̃i are mutually iid with pdf fθ/ptr(θ) as

defined above, and by dropping the integral with respect to these variables. To express
this as a joint density function we write X̃ := (X̃k+1, . . . , X̃n) for the random vector
of the undiscovered field sizes, and x̃ := (x̃k+1, . . . , x̃n) for a possible realization. We
also refer to the collections (X̃,X)|N (under assumptions 1 - 2 alone) and (X̃,X, N)
(under assumptions 1 - 3) as the complete data. Thus, under assumptions 1 - 2 and under
assumptions 1 - 3, respectively, the pdf of the complete data equals

fθ(x̃,x|n) =
n!

(n− k)!

( k∏

i=1

fθ(xi)

ptr(θ)

xβi
bi

)( k∏

i=1

bi

bi + x̃βk+1 + ...+ x̃βn

n∏

i=k+1

fθ(x̃i)

ptr(θ)

)
,

f(θ,ν)(x̃,x, n) = e−ν νn

(n− k)!

( k∏

i=1

fθ(xi)

ptr(θ)

xβi
bi

)( k∏

i=1

bi

bi + x̃βk+1 + ...+ x̃βn

n∏

i=k+1

fθ(x̃i)

ptr(θ)

)
.

(4.9)

Essentially, the preceding discussion implies for statistical inference that this is an incom-
plete data problem where one observes only a subset of the complete data, and where
the observed and unobserved data are jointly distributed in a non-independent fashion,
as (4.9) shows. For these type of problems, the expectation-maximization (EM) algorithm
as introduced by Dempster et al. (1977) can be applied to find the maximum likeli-
hood estimator of the observed data likelihood by iteratively maximizing the expected
log-likelihood of the complete data. The use of the EM algorithm for estimating the
parameters of discovery process models was first proposed by Barouch et al. (1983).

As described by Dempster et al. (1977, pp. 6ff.) in its general form, starting from an

39This result is best verified by the reader by first continuing to read until after (4.15), where Uk is
defined directly as a function of another mixing rv Γk, whose distribution is also specified there, and then
going through the proof of Lemma 2 in in Appendix B.1.
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initial guess θ0, each iteration of the EM algorithm can be summarized as follows:

EM iteration θr → θr+1 :

E-step: Compute the expectation of the complete data log-likelihood as a function of θ′ ∈ Θ,

where the expectation is taken with respect to the distribution of the

unobserved given the observed data, which is parametrized by θ = θr.

M-step: Choose θr+1 as a value θ′ ∈ Θ that maximizes this function.

The remainder of this section is concerned with deriving under assumptions 1 - 3 the
EM iterations from the complete data pdf and the Hessian matrix of the observed data
log-likelihood. The final result of this parameter estimation strategy is summarized in
Theorem 1.

To enable the necessary derivations, we first introduce a well-known integral representa-
tion of the expectation in (4.8), and state how this formula changes by adding assumption
3. It has been shown in the literature (e.g., Barouch and Kaufman (1976a), pp. 12f.; Nair
and Wang (1989), p. 427; Lee (2008), p. 179) that the expectation or integral,

Eθ

[ k∏

i=1

bi

bi + X̃β
k+1 + ...+ X̃β

n

]
=

�

[x,x]n−k

k∏

i=1

bi

bi + x̃βk+1 + ...+ x̃βn

n∏

i=k+1

fθ(x̃i)

ptr(θ)
dx̃k+1 · · · dx̃n, (4.10)

can be rearranged by several nontrivial steps into a one-dimensional integral that includes
in the integrand not anymore the fractions in (4.10) but instead powers of the Laplace
transform of X̃β

1 . This Laplace transform is defined by

φθ(γ) := Eθ

[
e−γX̃β

1

]
=

� x

x

e−γxβ fθ(x)

ptr(θ)
dx. (4.11)

As a second term the integrand includes a data-dependent density function. In particular,
this is the convolution of k exponential pdfs with parameters b1, . . . , bk,40 which is why it is
referred to as the general gamma (or Erlang) density (McGill and Gibbon (1965), pp. 4f.;
Nair and Wang (1989), p. 427). We denote this density by gb(γ) since it is parameterized
by the vector b := (b1, . . . , bk). It is sensitive to the discoverability parameter β and
the order in which the field sizes (x1, . . . , xk) are observed. With these definitions, the
alternative integral representation of (4.10) is as follows

k∏

i=1

bi

bi + x̃βk+1 + ...+ x̃βn
=

� ∞

0

( n∏

i=k+1

e−γx̃β
i

)
gb(γ)dγ,

⇒ Eθ

[ k∏

i=1

bi

bi + X̃β
k+1 + ...+ X̃β

n

]
=

� ∞

0

φθ(γ)
n−kgb(γ)dγ,

(4.12)

where the interchange of the order of integration in the second line is allowed by Fubini’s
theorem because all terms are positive.

A complication of this approach, though, is that the general gamma density does not have
a useful analytic expression. However, there is a feasible numerical approach employed
in the literature, the Fourier-series method for inverting the Laplace transform of the

40A convolution emerges in probability theory when summing independent rvs, where the sum then
has a pdf equal to the convolution of the individual pdfs.
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density. We describe the details of this method and how we implement it in Appendix
B.2.

Applying (4.12) to (4.8) rearranges the pdf of the observed data under assumptions 1 - 2.
By adding assumption 3 we also need to take the mean of the resulting expression with
respect to the Poisson prior, which does not further complicate the expression (we derive
the formula in Lemma 1 in Appendix B.1). Denoting the pdf or likelihood of the observed
data by `, this function becomes under assumptions 1 - 2 and under assumptions 1 - 3,
respectively

`θ(x|n) =
n!

(n− k)!

( k∏

i=1

fθ(xi)

ptr(θ)

xβi
bi

)( � ∞

0

φθ(γ)
n−kgb(γ)dγ

)
,

`(θ,ν)(F) = νk
( k∏

i=1

fθ(xi)

ptr(θ)

xβi
bi

)( � ∞

0

eν(φθ(γ)−1)gb(γ)dγ
)
,

⇒ L(θ, ν) := ln(`(θ,ν)(F)).

(4.13)

From (4.13) we obtain L(θ, ν) as the log-likelihood we want to maximize.

Next, what is required to derive the EM iterations is the posterior distribution of the
unobserved given the observed data. Upon introducing a new mixing rv Γk, the collections
(X̃, Γk)|(X, N) and (X̃, N, Γk)|F , respectively, can be shown to have pdfs

ρθ(x̃, γ|x, n) =
( n∏

i=k+1

e−γx̃β
i fθ(x̃i)

φθ(γ)ptr(θ)

)
·
(

φθ(γ)
n−kgb(γ)�∞

0
φθ(γ)n−kgb(γ)dγ

)
,

ρ(θ,ν)(x̃, n, γ|F) =

( n∏

i=k+1

e−γx̃β
i fθ(x̃i)

φθ(γ)ptr(θ)

)
·
(
(νφθ(γ))

n−k

(n− k)!
e−νφθ(γ)

)

·
(

eν(φθ(γ)−1)gb(γ)�∞
0

eν(φθ(γ)−1)gb(γ)dγ

)
.

(4.14)

To allow for a more compact notation we also define the two univariate pdfs

ρθ(x̃|γ) :=
e−γx̃β

fθ(x̃)

φθ(γ)ptr(θ)
,

g
(0)
(θ,ν)(γ|F) :=

eν(φθ(γ)−1)gb(γ)�∞
0

eν(φθ(γ)−1)gb(γ)dγ
.

(4.15)

The first density in (4.14) can be derived by dividing fθ(x̃,x|n) by `θ(x|n), as shown in
Nair and Wang (1989, p. 427) or Lee (2008, p. 184). We prove in Lemma 2 in Appendix
B.1 how the Poisson prior assumption allows to derive the second density in (4.14) from
the first density. Based on this, we define the mixing rv Uk from the discussion below
assumption 3 as Uk := φθ(Γk), where Γk has the pdf g(0)(θ,ν)(γ|F). The second line in (4.14)
contains the Poisson posterior result that (N −k)|Uk ∼ Pois(νUk). Besides, the first term
in (4.14) makes it clear that X̃ is distributed as a mixture of iid rvs: for fixed values of
(n, γ) it contains n− k iid elements from pdf ρθ(x̃|γ).
Finally, we alter the complete data likelihood from (4.9) so that the truncation factors
cancel and it becomes easier to maximize via the EM algorithm. This general approach
was also introduced by Dempster et al. (1977, pp. 13f.) and it involves “artificially” ex-
tending the complete data vector by certain carefully constructed random variables, which
does not change the observed data likelihood, but cancels the ptr(θ)-terms in the complete
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data likelihood. Specifically, let M |N ∼ NegBin(N, ptr(θ)) (negative binomial distribu-
tion), and let Ỹ := (Ỹ1, . . . , ỸM) be a random sample from pdf fθ(ỹ)

/(
1 − ptr(θ)

)
with

support on (0, x)
⋃
(x,∞), where each Ỹi is independent of (M, X̃,X, N).41 Multiplying

(4.9) by the conditional pdf of (Ỹ ,M)|N , the joint pdf of (Ỹ ,M, X̃,X, N) becomes

f(θ,ν)(ỹ,m, x̃,x, n) = e−ννn
k∏

i=1

fθ(xi)
m∏

i=1

fθ(ỹi)
n∏

i=k+1

fθ(x̃i)

·
{

1

(n− k)!

(
m+ n− 1

m

) k∏

i=1

xβi
bi + x̃βk+1 + ...+ x̃βn

}
.

(4.16)

Denoting the expected complete data log-likelihood derivable from (4.16) by F (θ′, ν ′|θ, ν),
this function equals42

F (θ′, ν ′|θ, ν) = E(θ,ν)

[
lnf(θ′,ν′)(Ỹ ,M, X̃,X, N)

∣∣∣F
]

=
k∑

i=1

lnfθ′(xi) + E(θ,ν)

[ M∑

i=1

lnfθ′(Ỹi)
∣∣∣F
]
+ E(θ,ν)

[ N∑

i=k+1

lnfθ′(X̃i)
∣∣∣F
]

− ν ′ + ln(ν ′)E(θ,ν)

[
N
∣∣F
]
+ constant.

(4.17)

In the EM framework it is useful to restrict fθ to be a member of the regular ex-
ponential family, where any distribution from this class can be expressed as fη(x) =

c(x)eη
>s(x)/a(η). Here, the so-called “natural” parameters η are a vector-valued trans-

formation of θ, and the vector-valued function s(x) contains the corresponding sufficient
statistics. The univariate function c(x) depends only on the observation and a(η) only
on the parameters. For distributions from the regular exponential family the EM itera-
tions as outlined above simplify considerably. In particular there is no need to compute
the expectation of the complete data log-likelihood, it is only necessary to compute the
expectations of the sufficient statistics. The exponential family form of the lognormal
distribution is summarized in Table B1 in Appendix B.3.

The topic of Theorem 1 is now to summarize the EM iterations derivable from (4.17) and
the Hessian derivable from (4.13) for (truncated) distributions from the regular exponen-
tial family, such as the lognormal or Pareto distribution. The EM iteration in part (1) of
the Theorem (without the term to adjust for the truncated distribution) appears in Lee
(2008, p. 196). To our knowledge, previous derivations of the Hessian matrix have only
been done for the model based on assumptions 1-2 only. The Hessian matrix in part (2)
of the Theorem is thus a novel extension.

Theorem 1.
(1). For any (truncated) distribution fθ/ptr(θ) from the regular exponential family, the
EM iteration (θr, νr) → (θr+1, νr+1) under assumptions 1 - 3 is obtained by solving the

41Because the random variable M is used only in this section there should be no confusion with the
stochastic birth process (Mu)u≥0 introduced in sect. 4.3.3.

42The “constant” accounts for the curly bracket of (4.16) which does not depend on the parameters
(θ′, ν′) and thus is irrelevant for maximization.
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following expected moment equations43 44

∂lna(θr+1)

∂η
= ptr(θr)α(θr, νr)

(1
k

k∑

i=1

s(xi)
)
+
(
1− ptr(θr)

) �

(0,x)∪(x,∞)

s(x)
fθr

(x)

1− ptr(θr)
dx

+ ptr(θr)
(
1− α(θr, νr)

) ∞�

0

x�

x

s(x)ρθr
(x|γ)g(1)(θr,νr)

(γ|F)dxdγ,

νr+1 = k + E(θr,νr)[N − k|F ],

where α(θ, ν) = k
/(
k + E(θ,ν)[N − k|F ]

)
, and where g

(1)
(θ,ν)(γ|F) and E(θ,ν)[N − k|F ] are

g
(1)
(θ,ν)(γ|F) ∝ νφθ(γ)e

ν(φθ(γ)−1)gb(γ),

E(θ,ν)[N − k|F ] =

�∞
0
νφθ(γ)eν(φθ(γ)−1)gb(γ)dγ�∞
0

eν(φθ(γ)−1)gb(γ)dγ
.

(4.18)

(2). For any (truncated) distribution fθ/ptr(θ) from the regular exponential family, the
Hessian matrix of the log-likelihood under assumptions 1 - 3 is given by

∂2L(θ, ν)

∂η∂η> =− k · Vθ

[
s(X̃1)

]

+ E(θ,ν)[N − k|F ] ·
{ ∞�

0

(
Vθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Vθ

[
s(X̃1)

])
g
(1)
(θ,ν)(γ|F)dγ

}

+ E(θ,ν)[(N − k)2|F ] ·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])

·
(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])>
g
(2)
(θ,ν)(γ|F)dγ

}

− (E(θ,ν)[N − k|F ])2 ·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])
g
(1)
(θ,ν)(γ|F)dγ

}

·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])>
g
(1)
(θ,ν)(γ|F)dγ

}
.

Here, the conditional mean vector and covariance matrix are taken with respect to the
conditional pdf ρθ(x|γ), the unconditional mean vector and covariance matrix are taken

with respect to the pdf fθ(x)/ptr(θ), and g
(2)
(θ,ν)(γ|F) and E(θ,ν)[(N − k)2

∣∣F ] are

g
(2)
(θ,ν)(γ|F) ∝ νφθ(γ)

(
1 + νφθ(γ)

)
eν(φθ(γ)−1)gb(γ),

E(θ,ν)[(N − k)2
∣∣F ] =

�∞
0
νφθ(γ)

(
1 + νφθ(γ)

)
eν(φθ(γ)−1)gb(γ)dγ�∞

0
eν(φθ(γ)−1)gb(γ)dγ

.
(4.19)

43Remember that iterating the EM algorithm gives a sequence of parameter estimates which converges
to a (possibly local) maximum of the observed data log-likelihood (see Dempster et al. (1977)).

44As a consequence of the formula we state in eq. (B.16) in Appendix B.3, one can avoid the integration
over the unbounded set (0, x) ∪ (x,∞) by making the replacement

(
1− ptr(θ)

) �

(0,x)∪(x,∞)

s(x)
fθ(x)

1− ptr(θ)
dx =

∂lna(θ)

∂η
−

x�

x

s(x)fθ(x)dx.
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Proof of Theorem 1:

The first part follows from plugging the exponential family form fη(x) into (4.17), and
then deriving the first-order conditions with respect to (η′, ν ′). We carry out the details
in Appendix B.3, where we also show that the first-order conditions are sufficient to find a
maximum of F (η′, ν ′|η, ν) in each iteration. The second part requires taking the second-
order derivative of L(θ, ν) from (4.13) with respect to η, and then rearranging with a
formula based on Dempster et al. (1977, p. 5). This allows to express the derivative
in terms of the expectation vectors and covariance matrices, see eqs. (B.16-B.17) in
Appendix B.3. We also carry out the details of this derivation in Appendix B.3. Finally,
the formulas in (4.18-4.19) are derived in Lemma 3 in Appendix B.1. �

Note that Theorem 1 provides the Hessian of the log-likelihood with respect to the natural
parameters η, not θ. Thus, the usual negative inverse of this matrix is the covariance
matrix of η̂, not θ̂. The delta method can be used to transform this into the covariance
matrix of θ̂. For this the Jacobian of the parameter transformation η → θ is required,
which we state for the lognormal distribution in Table B1 in Appendix B.3.

Finally, let us mention a consequence of the second equation for ν in part (1) of the
theorem. Denoting with (θ̂, ν̂) the maximum likelihood estimate, convergence of the EM
iterations implies that ν̂ − k ≈ E(θ̂,ν̂)[N − k|F ]. By the law of iterated expectation and
the properties of the Poisson distribution, this also implies that ν̂ − k ≈ E(θ̂,ν̂)[ν̂Uk|F ].
From this, a possible approximation to the mixed Poisson posterior of N − k would be to
ignore the randomness of ν̂Uk and replace it by its expected value. This would give the
approximation

Uk ≈
ν̂ − k

ν̂
⇒ (N − k)|F approx.∼ Pois(ν̂ − k), (4.20)

which illustrates how the Poisson distribution "acts like" a conjugate distribution for the
total number of fields parameter in the likelihood function of the size-biased sampling
model.

4.3.3 Models for the Discovery Times and Exploration Success

In this and the next section, we are not concerned with parameter estimation of (θ, ν),
and hence drop the parameter subscripts and also drop the truncation factor by writing
f for the truncated pdf f/ptr.

In this section, we propose two approaches for integrating the size-biased sampling model
with a stochastic model for the discovery times. The two approaches are conceptually
somewhat different. The first approach (assumption 4a) derives the discovery times from
directly extrapolating a (possibly nonlinear) trend function for the cumulative number
of discovered fields, as a temporal function, into the future. The second approach (as-
sumption 4b) is based on work from Herbert (1983) and Jakobsson et al. (2012) who have
extended the size-biased sampling model into a model for the discovery yield per explo-
ration effort. This approach also requires a trend extrapolation, now for the cumulative
number of exploration wells, since a mapping of exploration wells onto time is required
to derive the discovery times.

The next paragraph summarizes the essence of the extension from Herbert (1983) and
Jakobsson et al. (2012).
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Previous extensions to model the discovery yield per exploration effort

It is possible to extend the size-biased sampling model to include the unsuccessful explo-
ration wells (“dry wells”) that are drilled before a new oil fields is discovered. Formally,
the extension from Herbert (1983) and Jakobsson et al. (2012) requires a new parameter,
say b0, which heuristically stands for the “empty area” in the region, i.e. the area that is
explored for oil but does not contain oil fields. Let the variable Zi − Zi−1 represent the
number of exploration wells that are drilled between the (i−1)th and the ith discovery (so
that there are Zi−Zi−1−1 dry wells). Defining bi = xβi +. . .+x

β
n when there are n fields in

the region, the ratio bi/(bi + b0) can be interpreted as the probability that an exploration
well strikes the “area” occupied by the remaining fields, bi, rather than the “empty area”,
b0. Extending (4.7) in this way, Herbert (1983, p. 36) arrives at an equation similar to

P[X1 ∈ dx1, . . . , Xn ∈ dxn, Z1 = z1, . . . , Zn = zn] = n!
n∏

i=1

f(xi)
xβi

bi + b0

( b0
bi + b0

)(zi−zi−1−1)

dxi.

In their Monte Carlo simulation, Jakobsson et al. (2012, p. 867) add “empty area” that
is proportional to the simulated value of the total field size, so that the fields always
cover 10% of the “total area”. In our notation, this corresponds to setting β = 1 and
b0 = 9b1 = 9(x1 + . . .+ xn).

Modeling the discovery times via a pure birth process

This subsection proceeds as follows. We first explain a few properties that the stochastic
process needs to have in order to be a reasonable model for the discovery times. We
then explain the two assumptions 4a and 4b, first in simple words, and afterwards fill in
the formal details. For each assumption the explanations are organized as follows: first,
we state the conditions under which it is consistent with assumption 3 and the resulting
posterior for N , second, we relate the discovery times to random variables with fully
specified distributions, and third, we propose our estimation strategy for the involved
parameters.

In probability theory, a counting process is a plain type of stochastic process that only
takes on nonnegative integer values and is nondecreasing over time, so that the increments
of the process measure how many “events” occur in a given time interval. We let (Nt)t≥t

denote the counting process for the number of discovered oil fields, so that the increment
Nt − Ns measures how many fields are discovered in the time interval (s, t]. Thus, the
successive jump points at which (Nt)t≥t increases correspond to the successive discovery
times. Because there are already k ≥ 0 discoveries during the sample period (0, t] (see
Figure 4.2), the process needs to start at Nt = k.

In the previous section with assumption 3, we only had the variable N representing the
total number of fields, while now with assumptions 4a or 4b we want to extend N into
a stochastic process (Nt)t≥t that also lends a distribution to the discovery times. Thus,
we assume that all fields in the region will be found eventually, which leads us to redefine
N := lim

t→∞
Nt. We therefore need to ensure that N defined in this way is consistent with

assumption 3 and the resulting posterior as derived in sect. 4.3.2.

To create a counting process with enough modeling flexibility, we combine a textbook-
type pure birth process, denoted as (Mu)u≥0, with a function Λ(t) that we call a “trend
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Figure 4.3: Transition-rate diagram for assumption 4a

k k + 1 k + 2 k + j· · · · · ·νUk νUk νUk νUk νUk

Note: The circles represent the states of the process (the number of discovered fields), the arrows show
the transition / discovery rates.

function”. Turning first to the trend function, we assume that it is defined on the domain
[t,∞), that it starts at Λ(t) = 0, and that it is increasing and differentiable. We denote
its inverse and derivative by Λ−1 and Λ′, respectively. We combine this function with
the pure birth process by making the composition Nt := MΛ(t). The role of Λ(t) is to
introduce time-dependent behavior into (Nt)t≥t.45

Turning now to the pure birth process (Mu)u≥0, this process has the defining property
that it is a continuous-time Markov chain which can only jump upward by one step at a
time. It can be seen as an immediate generalization of the Poisson process. The process
is fully characterized by a starting point M0 = k and a sequence of nonnegative numbers
Rk+1, Rk+2, . . . which determines the transition probabilities over any small interval (u, u+
h] as h ↓ 0. This is formally expressed by the following set of equations for each i ≥ k+1
(see, e.g., Karlin and Taylor (1975), p. 119):

P[Mu+h −Mu = 1|Mu = i− 1] = Rih+ o(h),

P[Mu+h −Mu = 0|Mu = i− 1] = 1−Rih+ o(h),

P[Mu+h −Mu > 1|Mu = i− 1] = o(h).

(4.21)

Here, o(h) is the usual “little-o” notation for terms which decline in h faster than linearly.
The numbers Rk+1, Rk+2, . . . are called the transition rates, and as we have defined it, Ri

is the rate for transitioning away from state i− 1. Thus, Ri is the rate for discovering the
ith field, so we also use the term discovery rate for Ri in this section.46

Assumptions 4a and 4b now give a concrete form to the discovery rates and to the trend
function.

Assumption 4a. The discovery rates Ri in (4.21) are constant and independent of the
field sizes that are yet-to-be discovered. Time-varying behavior of the process (Nt)t≥t is
introduced (to allow for time-inhomogeneity in the distribution of the discovery times) and
fully governed by the trend function Λa(t), which is required to be a bounded function.

When transition rates are constant in (4.21), the pure birth process Mu becomes a Poisson
process with intensity parameter equal to the constant transition rate (e.g., Karlin and
Taylor (1975), p. 118; Shortle et al. (2018), p. 68). In order make assumption 4a

45In technical terms, (Nt)t≥t is said to be a (time-)inhomogeneous pure birth process or a pure birth
process with nonstationary increments. Making a Taylor series expansion, the equations which correspond
to (4.21) for Nt are

P[Nt+h −Nt = 1|Nt = i− 1] = RiΛ
′(t)h+ o(h),

P[Nt+h −Nt = 0|Nt = i− 1] = 1−RiΛ
′(t)h+ o(h),

P[Nt+h −Nt > 1|Nt = i− 1] = o(h).

46We also use the term “discovery rate” in sect. 4.3.4 and sect. 4.5 to refer to the aggregate rate
of discovered oil amounts in the region (e.g. measured in Mega-barrels per year). There should be no
confusion, as we use the term “discovery rates” for the abstract transition rates Ri only in this section.
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Figure 4.4: Illustration of the estimation strategy for assumption 4a
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Note: The actuals (in black) represent Norwegian oil field discoveries, see section 4.4 for the data source.
The trend functions that are fitted and extrapolated are: an exponential function (left), a linear function
(middle), a cumulative Gaussian function (right). The sample period to which the functions are fitted
covers the years 1967 until t = 1989. As the value for the asymptote (the expected number of oil fields)
we assume 150. 5%- and 95% quantiles are shown, which are computed using the approximation given
in (4.20) with Uk = (150− k)/150. k = 55.

consistent with assumption 3 and the resulting posterior for N , we need the following
condition on the constant transition rate and the function Λa(t).

Proposition 4a. For N := lim
t→∞

Nt, it holds that (N − k)|Uk ∼ Pois(νUk) if the product

of lim
t→∞

Λa(t) and the constant transition rate is equal to νUk.

A proof of Proposition 4a can be found in Appendix B.4.

Thus, we can further specify assumption 4a by setting lim
t→∞

Λa(t) = 1, and Ri = νUk for

all i ≥ k + 1, which follows from Proposition 4a without loss of generality.47 Figure 4.3
shows the corresponding transition-rate diagram.

Turning to the distribution of the discovery times, first note that a homogeneous Poisson
process like (Mu)u≥0 can be characterized informally by saying that “it distributes points
’at random’ over the infinite interval [0,∞) in much the same way that the uniform
distribution distributes points over a finite interval” (Karlin and Taylor (1975), p. 123).
Formally, this refers to the well-known order statistic result (Karlin and Taylor (1975),
pp. 126f.; Feigin (1979); Puri (1982)). The case of Nt = MΛa(t) where Λa(t) is a bounded
function is a special case of this result. Here Nt simply distributes a finite number of
points as the order statistics from Λa(t)/( lim

t→∞
Λa(t)). Thus, the following is a recipe for

simulation: make N − k ordered draws from the uniform distribution on [0, 1], denoted
by Uk+1 < . . . < UN , and then compute the jump points of Nt by Ti = Λ−1

a (Ui).

Since assumption 4a reduces to saying that, for given N , the distribution of the discovery
times is fully governed by how the function Λa(t) looks like, how can a parametric estimate

47Alternatively, one can set lim
t→∞

Λa(t) = νUk and Ri = 1.
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of the function be derived from the previous discovery times? This can be done by fitting a
parametric function to the observed step-function for the cumulative number of discovered
fields, and extrapolating beyond t towards an asymptote. A reasonable estimate for this
asymptote is the expected number of fields, E[N |F ]. Letting n(t) denote such a parametric
function that is fitted to the data on (0, t] and extrapolated, we get the estimate of Λa(t)
by Λa(t) = (n(t) − n(t))/( lim

t→∞
n(t) − n(t)) for t ∈[t,∞), since this function has the limit

one (for t→ ∞).

Figure 4.4 shows an example of the estimation strategy using data from Norwegian oil
field discoveries. In the left panel n(t) is chosen as an exponential trend function, in the
middle as a (piecewise) linear trend function, and on the right as a cumulative Gaussian
trend function. The sample period to which the functions are fitted covers the years 1967
until t = 1989. As the value for the asymptote (the expected number of oil fields) we
assume 150. For the exponential fit the rate at which new oil fields are discovered grows
by 4% p.a., while for the linear fit on average 3.3 new fields are discovered p.a.. The
Gaussian extrapolation is similar to the linear initially, but then negative feedback from
approaching the asymptote slows down the pace of new discoveries. Figure 4.4 shows that
all three extrapolations overpredict the actual pace at which new oil fields were found in
Norway. The data indicate a structural break with a declining pace of discovery that
started before 2000 and ended somewhat before 2010. The right panel of Figure C3 in
Appendix C shows that exploration well drilling can at least partially explain this: in the
midst of the decade 2000-2010 there was also a slow-down in the pace of exploration well
drilling.

The example illustrates the difficulty of deciding on a “suitable” functional form for n(t)
/ Λa(t), so this aspect bears considerable specification uncertainty and is not without
bias, as Figure 4.4 shows. Nonetheless, a set of different functions can be interpreted as
representing different scenarios for the pace of new discoveries. To improve the model,
one could specify n(t) / Λa(t) as a function that depends on an index of time-dependent
explanatory variables instead of on time only, using variables that presumably influence
the chance of discovery, such as the number of drilled of exploration wells. However, we
do not pursue this approach of introducing exploration well drilling into assumption 4a
in this paper. Instead we use assumption 4b, where we introduce the rate of exploration
well drilling differently. Assumption 4b is still based on (4.21) and Nt := MΛ(t), but now
the discovery rates and the function Λ(t) are specified differently.

Assumption 4b. At any stage in the discovery process, the discovery rates Ri in (4.21)
are a function of the field sizes that are yet-to-be discovered. Additional time-varying
behavior of the process (Nt)t≥t can occur due to temporal variation in exploration well
drilling. For this, it is assumed that the cumulative number of drilled exploration wells
follows the trend function Λb(t).

48

As Herbert (1983) and Jakobsson et al. (2012), we use functions of the yet-to-be discov-
ered field sizes to model the probability with which a marginal unit of exploration effort
discovers one of the remaining fields. We assume that these discovery rates are

Ri :=





Xβ
i +...+Xβ

N

a0(X
β
i +...+Xβ

N )+b0
, if i = k + 1, . . . ,N ,

0, if i ≥ N + 1,
(4.22)

48As a generalization, Λb(t) could be an index of time-dependent explanatory variables including but
not restricted to exploration well drilling.

60



Figure 4.5: Transition-rate diagram for assumption 4b

k k + 1 k + 2 N· · ·Rk+1 Rk+2 Rk+3 RN Rj = 0 for j > N
Note: The circles represent the states of the process (the number of discovered fields), the arrows show
the transition / discovery rates.

where also
(N − k)|Uk ∼ Pois(νUk).

The parameters a0, b0 are nonnegative and at least one of the two must be strictly positive.
As above, the parameter b0 represents “empty area” which does not diminish with ex-
ploration, while the new parameter a0 also allows “empty area” to diminish with each
discovery in proportion to the yet-to-be discovered field sizes. Figure 4.5 shows the
transition-rate diagram for assumption 4b.

Next follows a technical condition that makes the assumption consistent with assumption
3 and the resulting posterior for N .

Proposition 4b. If Λb(t) is an unbounded function, the distribution of Nt will approach
that of N for t→ ∞. In this case it holds for N := lim

t→∞
Nt that (N − k)|Uk ∼ Pois(νUk).

A proof of Proposition 4b can be found in Appendix B.4.

To distinguish more clearly between assumptions 4a and 4b, we now use the index z instead
of u, i.e. Mu becomes Mz. Also, let the jump points of Mz be denoted by Zk, Zk+1, . . . , ZN ,
where by assumption Zk = 0. A consequence of the definition in (4.21) is the property that
the differences between the jump points are independent and exponentially distributed
(e.g., Karlin and Taylor (1975), p. 121; Shortle et al. (2018), pp. 62ff.). We express this

formally as (Zi − Zi−1)
ind∼ Exp(Ri) for i = k + 1, . . . , N . A simulation thus requires only

N − k draws from the exponential distribution. From the relation between Nt and Mz,
the jump points of Nt are then computed by Ti = Λ−1

b (Zi). As a formal side note, note
that the marginal distribution of Zi is the general gamma distribution with parameters
Rk+1, . . . , Ri.

Turning now to our estimation strategy for a0 and b0, we first define ek+1 := E
[
Xβ

k+1 +

. . .+Xβ
N

∣∣F
]
, and ei := xβi + . . .+x

β
k +ek+1 for each i = 1, . . . , k. For the first k discovered

fields, we use data on the number of exploration wells that had to be drilled to discover
a field around the time of their discoveries. Let this variable be denoted by r−1

obs,i, so that
robs,i is the observed success rate of an exploration well around the time when the ith field
was discovered. Extending (4.22) backwards to i = 1, . . . , k and replacing Xβ

i + . . .+Xβ
N

with its expected value given the data, ei, we can rearrange the resulting equation into
the linear regression specification

r−1
obs,i = a0 + b0e

−1
i + υi, i = 1, . . . , k, (4.23)

where υi is an error term, and from which estimates â0 and b̂0 are readily computed by
OLS.

For the function Λb(t), we choose the parametric function Λb(t) = ctd− ctd. The involved
parameters can be estimated by least squares fitting of ctd to the time series of the
cumulative number of exploration wells drilled during (0, t].
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4.3.4 Combination, Distributional Properties, and an Asymptotic Approxi-
mation

The first part of this section leads to Theorem 2, in which we summarize what the as-
sumptions from sections 4.3.1-4.3.3 together imply for the distributional properties of the
stochastic process (Qτ )τ≥t, presented in a way suitable for a Monte Carlo (MC) simula-
tion. It is here where we introduce an alternative representation of the distribution of
the size-biased variables (X1, . . . , XN), called by Pitman and Tran (2015) the distribution
of induced order statistics. To let this paper be self-contained we fully derive this repre-
sentation in Appendix B.5. There, we also show that the representation requires only a
slight modification after conditioning on the first k variables (X1, . . . , Xk) and Γk, which
has not been shown in the reference Pitman and Tran (2015).

In the second part of this section, we explain and make use of an asymptotic result which
Pitman and Tran (2015) derive from the induced order statistics representation. The
result is a coupled system of first-order differential equations, which for large n (or ν) can
be used to approximate the mean function of the regional discovery rate. We show how
this result can be extended to the mean function of the production rate for a production
profile like (4.2). We apply this result first to the case of assumption 4a, and then show
how analogous equations can be derived for the case of assumption 4b. In the latter case,
the model actually becomes close to the Arps-Roberts model, a connection which has
already been recognized by Herbert (1983).

We conclude this section with a subsection where we verbally explain what kind of dy-
namics we expect for the overall model of production and discovery.

Distributional properties

To conduct a MC simulation of the remaining field sizes, one can start with drawing from
the joint distribution defined in (4.14). A draw for (X̃k+1, . . . , X̃N) represents the sizes of
the remaining fields, however arranged in an uninformative order instead of in the order
of discovery. Then, the order of discovery can be obtained by iteratively drawing indices
from the discrete probability distribution defined in (4.5).

Alternatively, the distribution that arises from size-biased sampling can be related to the
order statistics from the Laplace transform defined in (4.11). This representation has
been derived first, for the marginal distributions of the sequence (Xi, i = 1, . . . , n), by
Barouch and Kaufman (1976a) (assertion 4 on p. 15 with a proof on pp. 60f.). The
authors have used this to analyze the sequence of means under size-biased sampling, the
“discovery decline curve” (Barouch and Kaufman (1976b); Kaufman (1993), p. 190).
For a deterministic vector of sizes, it has been shown by Gordon (1983) that size-biased
sampling is closely related to the order statistics of independent exponentially distributed
rvs. For the case as in assumptions 1 - 2, where the size-biased sampling permutes an iid
random vector, Pitman and Tran (2015) use the result by Gordon (1983) to derive the
corresponding Laplace transform based expressions, as derived by Barouch and Kaufman
(1976a) for the marginals, for the joint distribution of (X1, . . . , Xn).

Pitman and Tran (2015) refer to the resulting distribution as that of induced order statis-
tics. The first studies of induced order statistics are i.a. Bhattacharya (1974) and David
and Galambos (1974). (X1, . . . , Xn) are called the induced order statistics of some iid
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sequence of bivariate random vectors,
(
(X̃i, Γ̃i), i = 1, . . . , n

)
, if they have the distri-

bution of the X̃-component after reordering the sequence by the Γ̃ -component (Pitman
and Tran (2015), p. 2489). In other words, let Γ1 < . . . < Γn be the rearrangement of
(Γ̃1, . . . , Γ̃n) in ascending order. Then, the Xi that was associated with Γi in the original
sequence of bivariate random vectors is the ith induced order statistic. For our case of
size-biased sampling applied to oil fields, this is the ith field size. In bullet points e)-f) of
Theorem 2, we state the exact distributions of Γi and Xi|Γi which follow from the induced
order statistics result for size-biased sampling. Note that in place of bullet points e)-f),
we could have characterized the distribution of the field sizes equivalently as explained in
the first paragraph of this subsection.

Theorem 2 now characterizes the stochastic process (Qτ )τ≥t by summarizing the distri-
butional consequences from all assumptions made in sections 4.3.1-4.3.3.

Theorem 2.
Under assumptions 1 - 3 and 4a or 4b, the distribution of (Qτ )τ≥t, given the data
F :=

{
X = (x1, . . . , xk), N ≥ k

}
and the discovery times (t1, . . . , tk), can be characterized

as follows:

a) Eq. (4.1) becomes Qτ =
∑k

i=1 q(τ, ti, xi)+
∑N

i=k+1 q(τ, Ti, Xi), where q is for example
(4.2), (4.3), or (4.4).

b) To take into account the uncertainty inherent in the parameters θ which are esti-
mated from a sample, we add a distribution for θ. Based on the ML-estimation, we
assume that θ has the multivariate normal distribution centered at the ML-estimates
θ̂ and with the estimated covariance matrix of θ̂.49

c) (Qτ )τ≥t depends on rvs which do not explicitly appear in the formula, namely Γk,
and Γk+1, . . . , ΓN .

d) The mixing rv Γk has the data-dependent pdf g
(0)
θ (γ|F) ∝ eν(φθ(γ)−1)gb(γ),

Uk := φθ(Γk), and the number of undiscovered fields N − k has the mixed Poisson
posterior (N − k)|Uk ∼ Pois(νUk).

e) The rvs (Γk+1, . . . , ΓN) are distributed as N − k order statistics from the cdf
1− φθ(γ)/φθ(Γk) supported on [Γk,∞).

f) For i = k + 1, . . . , N , the field sizes Xi|Γi are independently distributed with pdf

hθ(xi|γi) ∝ xβi e−γix
β
i fθ(xi) on support [x, x].50

g) The discovery times (Tk+1, . . . , TN) are distributed as specified in assumption 4a or
assumption 4b from sect. 4.3.3. In case of assumption 4b, this distribution depends
on the yet-to-be discovered field sizes (Xk+1, . . . , XN).

49This can be justified as follows: without having a prior distribution, and without being able to work
out a posterior from an uninformative prior and the likelihood (4.13), the only information about such a
posterior for θ are the ML-estimates and the estimated covariance matrix.

50Monte Carlo draws from this pdf can be obtained by a simple accept/reject procedure based on
drawing from the (truncated) Weibull distribution, and an accept criterion based on the function xfθ(x).
We explain this below eq. (B.28) in Appendix B.5.
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Proof of Theorem 2:

Bullet points e)-f) follow from the induced order statistics result as outlined above and
proven in Appendix B.5. Bullet points d) and g) have already been derived / explained
in sects. 4.3.2 - 4.3.3. �

Asymptotic approximation

In this subsection, we use a result from Pitman and Tran (2015) that allows to express
the “mean dynamics” of the size-biased sampling model as a coupled system of first-order
differential equations with known solutions. This system asymptotically (for large n or
ν) approximates the mean function of the aggregate discovery rate, and we show how
this can be used to approximate the mean function of the aggregate production rate
when individual fields have production profiles such as (4.2). This result can be useful to
foster a better intuition about the dynamics of the model. Also, it could be used as an
alternative way to estimate some of the parameters of the model, namely by fitting the
resulting curves for discovery or production to the actuals. For making forecasts, however,
we want to stress that a MC simulation of the full stochastic model is clearly preferable
because this yields a predictive distribution, which can account for some of the inherent
uncertainties in the underlying variables (i.e. field sizes, discovery times).

To derive the result, it helps to see that the ρ-density and the h-density (see bullet point
f above in Theorem 2) are related in a specific way. Making the substitution γ = φ−1(u)
for both densities, where φ−1 is the inverse of φ, let us define the new densities (Pitman
and Tran (2015), p. 2499)

ρ∗(x|u) := e−φ−1(u)xβ

f(x)

u
,

h∗(x|u) := xβe−φ−1(u)xβ

f(x)

−φ′(φ−1(u))
,

(4.24)

where φ′ denotes the derivative of φ. Since h∗ is a pdf it is easy to see that the following
relation holds

−φ′(φ−1(u)) =

� x

x

xβuρ∗(x|u)dx.

Using this relation after taking the derivative of uρ∗(x|u), Pitman and Tran (2015, pp.
2499f.) show in lemma 19 that ρ∗(x|u) satisfies the following differential equation (the
key mathematical property here is the rule for the derivative of the inverse)

∂

∂u

[
uρ∗(x|u)

]
= h∗(x|u) = xβuρ∗(x|u)� x

x
xβuρ∗(x|u)dx

, u ∈ (0, 1], (4.25)

subject to the boundary condition ρ∗(x|1) = f(x).

The result can be interpreted as follows: for any distribution f(x) and a positive size
measure w(x), the distribution w(x)f(x)

/
E[w(X)] is called its size-biased distribution,

or alternatively, its weighted distribution with weight function w(x) (e.g., Patil and Rao
(1978); Vardi (1982)). Equation (4.25) thus reveals that for the family of density functions
ρ∗(·|u) over u ∈ (0, 1], h∗(·|u) is the size-biased density of ρ∗(·|u) with size measure
w(x) = xβ.
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It is well-known that in the limiting case (for n→ ∞) of size-biased sampling from an iid
sequence with distribution f , “finite elements” of the sequence (i.e., with indices i such
that i/n → 0) become iid and have the size-biased distribution of f (e.g., Patil and Rao
(1978); Vardi (1982); Pitman and Tran (2015), p. 2500). Based on their result in lemma
19, Pitman and Tran (2015) show in corollary 21 and theorem 23 that a Glivenko-Cantelli-
type theorem holds for the last u-fraction from a size-biased sequence. In particular, the
result is that the empirical distribution function of the last bnuc elements from a size-
biased sequence of length n converges for n→ ∞ to the distribution with density ρ∗(·|u),
for all u ∈ (0, 1].

Based on this result and the interpretation of the differential equation (4.25) provided by
Pitman and Tran (2015, p. 2501), we propose here how one can derive an asymptotic
approximation to the mean discovery rate, and more generally to the mean function of
(Qτ )τ≥t. First, we need to specify how to map the variable that represents the remaining
fraction of fields, u, onto the time axis. Under assumption 4a this is achieved by equating

the two cdfs, 1 − φ(γ)/φ(Γk)
!
= Λa(t), and substituting u = φ(γ) and Uk = φ(Γk), thus

yielding u(t) = Uk(1 − Λa(t)). Let us denote by y(x, t), t ≥ t the following family of
real-valued (as opposed to integer-valued) frequency distributions:

y(x, t) := ν · u(t) · ρ∗(x|u(t))
= exp

{
− φ−1(Uk(1− Λa(t)))x

β
}
νf(x), x ∈ [x, x], t ∈ [t,∞).

(4.26)

Differentiating with respect to time is simply an application of (4.25) and the chain rule,
which gives

∂

∂t
y(x, t) = −νUkΛ

′
a(t)

xβy(x, t)� x

x
xβy(x, t)dx

. (4.27)

Here we may replace the term νUk with its expectation, E[N − k|F ]. Note that eqs.
(4.25-4.27) have a simple successive sampling interpretation. In (4.27), the aggregate
frequency of fields declines at the rate of νUkΛ

′
a(t), and each infinitesimal size class [x, x+

dx) assumes a certain fraction of that decline. This fraction equals the size measure xβ

times the frequency of fields in the size class at time t, y(x, t)dx, divided by the integral
over all sizes classes.

Evaluating the initial condition y(x, t) by taking the expectation given the data, we arrive
at

E
[
νUk · ρ∗(x|Uk)

∣∣F
]
= E

[
νUk · ρ

(
x
∣∣φ−1(φ(Γk))

)∣∣F
]

= E[N − k|F ] ·
� ∞

0

ρ(x|γ)g(1)(γ|F)dγ, x ∈ [x, x],
(4.28)

which follows from equation (B.7) derived in Appendix B.1.

Note that multiplying (4.28) by x and integrating over x ∈ [x, x] gives precisely the
posterior mean of the undiscovered resources, see equation (4.35). Letting y(x, t) start
at this frequency distribution, the function

(
− x ∂

∂t
y(x, t)dx

)
is the discovery rate at any

t ≥ t for just the size class [x, x+ dx). Hence, the aggregate discovery rate in the region
at time t equals � x

x

−x ∂
∂t
y(x, t)dx. (4.29)

How can the aggregate production rate as a function of time be derived from this? Re-
member that the stochastic process defined in (4.1) just aggregates over all fields the
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contributions q these fields make at time τ to the regional aggregate. Assume for now
that the parameters of the production profiles are identical for all field-size categories,
unlike in Table 4.1, and treat n and (ti, xi), i = 1, . . . , n as known quantities. Then, for
all q-functions introduced in sect. 4.3.1, the formula for Qτ becomes

∑n
i=1 q(τ − ti, 1)xi.

Note that this is formally just like a kernel estimator where the realizations ti occur at
the “frequencies” xi, and the kernel function being applied is q(·, 1) (e.g., the rectangular
kernel in (4.4) or the production profile in (4.2)). The continuous analogue of this discrete
situation is the same kernel function applied to all infinitesimal intervals, [t, t + dt) ⊂
[t,∞), where each interval “occurs” at the frequency given by the continuous function
(4.29) times dt. This naturally leads to the production rate as the convolution integral
between q(τ − t, 1) and (4.29). The approach of computing production from convolutions
based on past discoveries has already been used by Pukite et al. (2019).

Turning back to allow for size-dependent production profiles as shown in Table 4.1, there
are simply two size categories (below vs. above 500 Mb) for which the calculation needs

to be carried out separately and added. Letting q(>500)
prod denote the function (4.2) for the

above-500-Mb category, the aggregate production rate from this category at time τ equals

∑

i∈{{1,...,k}: xi>500}
q
(>500)
prod (τ − ti, 1)xi +

� τ

t

q
(>500)
prod (τ − t, 1)

( � x

500

−x ∂
∂t
y(x, t)dx

)
dt. (4.30)

This approach can easily be extended if the production profiles differ for more than two
size categories.

Finally, we derive a set of equations similar to (4.26-4.27) that have an analogous succes-
sive sampling interpretation for the case of assumption 4b where “empty area” is included.
For this, consider first the following “extension” of the Laplace transform from (4.11),

ϕ(γ) := a0

� x

x

e−γxβ

νf(x)dx− b0γ, (4.31)

where the parameters a0 and b0 are as in sect. 4.3.3.

Note that ϕ(γ) is decreasing and has range (−∞, a0ν], while ϕ(Γk)−ϕ(γ) on the restricted
domain [Γk,∞) is increasing and has range [0,∞), which is the same range that Λb(t) has.

Thus, equating ϕ(Γk) − ϕ(γ)
!
= Λb(t), solving for γ, and plugging this into e−γxβ

νf(x),
we define the family of frequency distributions, y(x, t), t ≥ t by

y(x, t) := exp
{
− ϕ−1(ϕ(Γk)− Λb(t))x

β
}
νf(x), x ∈ [x, x], t ∈ [t,∞). (4.32)

Using Λb(t) = 0 and taking the expectation given the data, the initial condition is still
equal to (4.28). Moreover, taking the time derivative of y(x, t) gives the following dif-
ferential equation (the key mathematical property to derive this is again the rule for the
derivative of the inverse)

∂

∂t
y(x, t) = −Λ′

b(t)
xβy(x, t)

a0
� x

x
xβy(x, t)dx+ b0

. (4.33)
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This equation has a successive sampling interpretation analogous to (4.27), but now the
denominator mimics (4.22). In line with assumption 4b, the function Λ′

b(t) should now
be a model of the drilling rate of new exploration wells.

Finally, note that the model (4.33) nests the Arps-Roberts model by setting a0 = 0, since
this yields the differential equation51

∂

∂t
y(x, t) = −Λ′

b(t)
xβy(x, t)

b0
. (4.34)

Note that the linkage between the differential equations is removed in (4.34). Even with
a0 > 0, the Arps-Roberts model can be a reasonable approximation at any point t′

where the parameter b0 is sufficiently larger than a0 times the “area” occupied by the
fields, i.e. where b0 � a0

� x

x
xβy(x, t′)dx. Neglecting the a0-term thus does not nu-

merically change equation (4.33) by much. Since y(x, t) is a declining function of time
the Arps-Roberts model is then also good approximation for any t ≥ t′. Under the
initial condition consistent with (4.28) the Arps-Roberts model (4.34) has the solution
y(x, t) = e−(Γk+Λb(t)/b0)x

β

νf(x).

Expectations regarding the dynamics of the model

In this subsection, we summarize what we expect about the dynamics of the overall
model. The juxtaposition of the size-biased sampling model and the birth process model
determines the rate of aggregate discovery in the region. We refer to this quantity in
the following as the discovery rate, which should not be confused with the transition
rates that we have also called discovery rates in sect. 4.3.3. It is clear that β > 0
implies that the expected field sizes decline with the succession of fields. The higher the
parameter β the more rapid is the decline and the smaller are the variances of the field
sizes conditional on discovery number. The strength of this relation also depends on the
field-size distribution, where in particular the decline becomes more rapid if the variance
of the field-size distribution is larger (Lee (2008), pp. 48 ff.).

For the case of assumption 4a, it is clear that if β > 0, and if the number of discoveries
per time unit Λ′

a(t) (times E[N − k|F ]) is a declining function, then the discovery rate is
also a declining function. However, the function Λ′

a(t) can be increasing for a substantial
portion of the whole discovery cycle in the region, consistent with an oil industry that
grows its exploration activity at a certain rate per year. Λ′

a(t) can also be increasing if
the exploration success rate increases via the “information effect” (Reynolds (1999); Rehrl
and Friedrich (2006)). Thus, if Λ′

a(t) increases fast enough over some period the discovery
rate will rise over this period.

When assumption 4b is made, the functional form in (4.22) implies that the exploration
success rate, i.e. the chance that a unit of exploration effort discovers a field, declines
monotonously. A large parameter a0 has the effect of slowing down this decline initially,
consistent with the “information effect”, but the exploration success rate remains a de-
clining function in any case. Of course, if the rate of exploration drilling Λ′

b(t) grows fast

51The original Arps-Roberts model is formulated not as a function of time but of cumulative exploration
wells, and it uses data on the average area occupied by fields in each size class (e.g., Herbert (1982), p.
296; Schuenemeyer and Drew (1983), p. 154). Our formulation in (4.34) is a variant where cumulative
exploration wells are mapped onto the time axis by Λb(t), and also where the average area of fields in
size class [x, x+ dx) is given by w(x) = xβ .
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enough as to compensate this, the number of discoveries per time unit will rise. In the
case of β � 0, though, once the average size per discovered field declines fast enough (call
this date the regional “peak oil of discovery”), the discovery rate will also decline. These
dynamics can well result in a single-peaked profile that is hump- or bell-shaped.

Of major interest is now how the discovery rate translates into the production rate.
We have formally expressed the production rate in (4.30) as the convolution between
the discovery rate and field-level production profiles, computed separately for different
field-size categories and then added. First, note that the convolution is mathematically
a smoothing operation, rendering the production rate more smooth or stretched-out.
Second, remember from Figure 4.1 that the production profiles of giant fields decline
more slowly than the profiles of smaller fields. The effect of this has been examined by
Jakobsson et al. (2014), who sketch in figure 4 an example of the aggregation of three
declining functions which have different decline rates and which are also shifted in time,
and the result resembles the decline side of a bell-shaped curve. In summary, we expect
that the production rate “inherits” the discovery rate profile, and that a bell-shaped
pattern is likely if there are also enough larger fields with comparatively lower decline
rates.

One element that we have left out in the above discussion of how discovery translates into
production is the duration between discovery and first oil production. In our production
profile model explained in sect. 4.3.1 this is the parameter δ0, which we assume to be a
fixed value for all fields in the region. This and the production profile implies that the
production rate lags behind the discovery rate with a lag length greater than δ0.52

Of course, the fact that an oil field has been discovered neither implies that it will be
produced, nor determines when it will be produced. The fixed duration assumption can
thus be criticized as unrealistic. For giant fields that are located offshore, Höök et al.
(2009b, p. 51) calculate that the median duration between discovery and first oil has
increased between the 1960s and the 2000s from 3.5 to 7.5 years. The duration between
discovery and first oil is possibly affected by economic factors (such as the oil price),
and regulatory, environmental, and technological factors, as well as the experience gained
from previous development projects, all of which are in principle dynamic factors. On
the other hand, as already mentioned in sect. 4.3.1, there is some evidence that field size
does not have a strong influence on the duration between discovery and first oil (Mihalyi
(2021), p. 14). For future research, the constant duration assumption could be refined
by replacing it with a hazard-rate based duration model in which a time-dependent index
captures the effects of some of these variables, including field size if this variable has a
significant influence. In this paper, however, we abstain from this, in order to remove the
additional layer of complexity and specification choices that would follow from making
this refinement.

4.4 Data Sources

In this section, we present the sources for the data sets that are used in this paper. We
also touch on some potential data issues that are related to the fact that the field-size
data are based on remaining reserve estimates. In particular, we discuss the distinction
between backdated and current reserves.

52The lag is greater than δ0 because the fields require some time to reach their production plateaus
(see Figure 4.1).
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We obtain field-level oil reserve data for the U.S. part of the Gulf of Mexico (GOM)
from the U.S. Bureau of Ocean Energy Management (BOEM).53 We download the most
recent data, which are as of 31th December 2019. Burgess et al. (2021) is the official
publication where the data are described.54 The main Excel table is a data set of all
oil and gas fields in the GOM region, which contains for each field an estimate of the
size (“original reserves”) in million barrels (Mb), the discovery year,55 water depth in feet
(ft), and a classification into oil and gas fields. We also download the “Access database
of field monthly production”, from which we compute yearly production time series, and
download a well-level data file (“mv_boreholes”), which contains all exploration wells and
the date when each well reached its total depth. Based on this we calculate the number
of exploration wells drilled per year.

In our analysis we only include the fields that are classified as oil fields.56 In principle, the
analysis could have been conducted with all fields using the sum of oil and gas reserves
expressed in oil equivalents, but we restrict it to oil fields to avoid potential bias from
mixing oil and gas fields. Important for our empirical analysis is the insight that discovery
and production in the GOM region is best treated as two separate cycles. Burgess et al.
(2021) plot in figure 15 annual oil production for all fields located in deep water (defined
as deeper than 1,000 ft) and those in shallow water as two separate curves. The curves
show that the shallow water fields started to produce a couple of decades before the deep
water fields. Accordingly, we assign the 288 oil fields for which we obtain data to the two
sub-regions, which we refer to as “GOM Flat” and “GOM Deep”. Of the 288 oil fields,
164 are assigned to GOM Flat and 124 to GOM Deep. All of our calculations in sect. 4.5
are carried out for GOM Flat and GOM Deep as separate regions.

The data for Norway are retrieved from the Fact Pages of the Norwegian Petroleum Di-
rectorate (NPD), see https://factpages.npd.no/en. We obtain the field-level data sets
“Overview”, which contains the date when the discovery wellbore was completed, “Re-
serves”, which contains the NPD’s estimates of the field sizes (“original recoverable oil”)
in million standard cubic meters (Sm3), “Description”, which contains the water depth in
meters, and “Production - Saleable - Monthly - by field”, which contains the net amount
of oil produced by field and month in million Sm3. We convert the size and oil production
data from million Sm3 to Mb,57 and also convert the water depth from meters to feet in
order to make the units comparable with those used in the GOM data set. Our download
for the production data covers all years up to and including 2021. Our download for the
field-size estimates reflects the NPD’s reserve estimates as of 31th December 2020. Fi-
nally, we download the table “Wellbore - Statistics - Completion year (include junked)”,
from which we obtain the number of exploration wells drilled in each year.58

Regarding the field-size data, which consist of remaining reserve estimates plus the cu-
mulative historical production, it is important to distinguish the two concepts of current

53The data are available at: https://www.data.boem.gov/
54See https://www.boem.gov/oil-gas-energy/resource-evaluation/discovered-resources/
55Since the discovery dates for the GOM region are available only up to the year, we obtain ties in

the discovery order. We solve these ties by randomly assigning the discovery order for all fields with the
same discovery year.

56We also delete 5 oil fields where either no data on original reserves or production is available. The
total resulting number of oil fields with data is 288.

57The conversion factor is 1 Sm3 = 6.2898 barrel.
58There are actually two exploration well series, wildcats and appraisal wells. We use the sum of both

to measure exploration wells.
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vs. backdated reserves. Either of the two concepts can be found in applications where
regional oil reserves or discovery rates are calculated and plotted as functions of time.
When the current reserve concept is used, any revision in the reserve estimate of a field
is assigned to the year it is made, while when the backdated reserve concept is used, any
revision in the reserve estimate of a field is assigned to the discovery date of that field
(Sorrell and Speirs (2009), pp. 10f.). In this way, discovery rates computed using the
current reserve concept will lag behind discovery rates computed using the backdated
reserve concept. Equations (4.3-4.4) show what the backdated reserve concept means
mathematically: there is only a single increase in the reserves which occurs at the time of
discovery t and is of magnitude x, the estimated field size. Thus, we use the backdated
reserve concept in this paper.59

Moreover, instead of the estimates for recoverable oil it may be favorable to use estimates
for in-place oil which also include unrecoverable oil. This approach would then require
a model that converts in-place field sizes to recoverable field sizes (e.g., by applying a
typical recovery factor) before these are plugged into the production profile. Estimates
for in-place oil are indeed available for Norway but not for the GOM region, so this
approach is not pursued in this paper. The approach remains a fruitful avenue for future
research since oil-in-place is, in contrast to reserves, a geological fact, and thus oil-in-place
estimates might contain less reporting bias (see also Jakobsson et al. (2012), p. 862).

4.5 Results

This exposition of the results is structured as follows. In sect. 4.5.1 we first provide a
descriptive analysis of the empirical field-size distributions, and then analyze the correla-
tions between the variables discovery order, field size, and water depth. In sect. 4.5.2, we
present our estimation results for the parameters of the size-biased sampling model for all
three regions and using several different sample periods. We compute the resulting esti-
mates of undiscovered resources and compare these to the estimates that are published by
the respective official agencies (i.e. the BOEM and the NPD). Finally, sect. 4.5.3 presents
our main results, the MC simulation results for the overall model. In particular, we show
here graphically how the distributions of the following stochastic processes evolve over
time: the number of discovered fields, the discovered amounts (i.e. the discovery rate),
and the production rate.

4.5.1 Data Description and Pre-Analysis

This section starts with a descriptive analysis of the empirical field-size distribution for
each region. The aim is to find out whether the lognormal or the Pareto distribution is
the better candidate for this distribution. Afterwards we analyze the correlation between
the discovery order and the two variables field size and water depth, in order to give a
first quantification to which degree the phenomenon of size-biased sampling is present,
and to which degree a sampling bias due to water depth is also present.

59It would be entirely possible to alter the q-functions from sect. 4.3.1 so that they become consistent
with the repeated reserve revisions of the current reserve concept. For this, include into eqs. (4.3-4.4) a
model how reserve estimates get revised over time (typically they grow over time). Also, if it is plausible
that not only ultimate recovery but also reported current reserves determine how fast an oil field is
produced, this can be included in the production profile (4.2).
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Table 4.2: Selected years for the empirical analysis

GOM Flat Norway GOM Deep

Se-

lected

year

No. of

disc.

fields

Disc.

resources

(in Gb)

Se-

lected

year

No. of

disc.

fields

Disc.

resources

(in Gb)

Se-

lected

year

No. of

disc.

fields

Disc.

resources

(in Gb)

1957 17 3.55 1979 23 14.39 1990 26 4.19

1962 28 4.62 1984 40 22.90 1995 37 5.24

1967 47 6.22 1989 55 27.32 2000 61 8.05

2020 164 10.34 2022 112 35.46 2020 124 12.75

First we show in Table 4.2 several selected years upon which our empirical analysis is
based. The table reports the number of oil fields and the amounts of oil discovered before
a certain year. In Appendix C, we also show graphically how the actuals of the following
variables evolve over time: the yearly oil and gas production time series (Figure C1), the
cumulative amounts of discovered oil, the cumulative number of discovered oil fields, and
the cumulative number of exploration wells (Figures C2-C4).

In contrast to the other two regions, we can assume for GOM Flat that in 2020 the
discovery cycle for the region is completed, since the last new oil field is discovered in
2008. Overall, the total discovered oil in this region is quite small with only 10.34 Gb.
However, this is also due to the fact that GOM Flat is predominantly a gas-prone region
(BOEM (2017), p. 12). From Figure C1 one can see that gas production is substantially
above oil production for GOM Flat, while for GOM Deep oil is dominant, and for Norway
both is similar. Since oil and gas production pretty much move in lockstep for GOM Flat,
the results we obtain for oil may be roughly transferable to gas, making our results for
this region quantitatively more relevant.

Figure 4.6 depicts the empirical size distributions (with sizes in logarithms) for several
subsamples of oil fields. A subsample for a given region contains all fields that are discov-
ered before a selected year, see Table 4.2. To analyze the goodness-of-fit of the lognormal
distribution, a fitted normal density is added in each panel as a dashed line. Also, we
present descriptive statistics and test results for the null hypothesis of a lognormal distri-
bution in Table 4.3.

For GOM Flat, what is clearly visible from Figure 4.6 is that the size distribution is
sharply concentrated at larger values initially, while in later years it successively stretches
out to smaller values. The distribution also shows a right tail that is above the normal fit
for 1957. Together, this provides clear evidence of size-biased sampling. Figure 4.6 shows
for 2020 that the normal distribution provides an acceptable fit, although the empirical
size distribution has some degree of negative skew. Table 4.3 shows for 2020 that this
deviation from the normal fit causes the AD- and KS-test to reject the null of a lognormal
distribution at the 5% significance level.

Turning now to Norway, we see in Figure 4.6 that the size distribution is quite broad
already in the earlier periods 1979-1989, substantially broader in comparison to the other
regions. Also, the right tail of the size distribution is initially clearly above the normal
fit. A considerable share of fields that are discovered before 1979-1989 have log-sizes
above 6.2, which qualifies these fields as giant oil fields (since exp(6.2) ≈ 500 Mb). Then,
between 1989 and 2022, most probability mass is added at or below the mean log-size
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Table 4.3: Summary of the ln(Size) distributions
G

O
M

F
la

t

Data Until Min. Max. Mean Sdev. Skew. Kurt. AD (p-val.) KS (p-val.)

1957 4.13 6.39 5.10 0.67 0.53 2.28 0.24 0.17

1962 1.95 6.39 4.73 0.94 -0.68 4.03 0.57 0.33

1967 -0.92 6.39 4.33 1.34 -1.63 6.92 <0.01 <0.01

2020 -2.30 6.39 2.90 1.90 -0.57 2.84 <0.01 0.02

N
o
rw

ay

Data Until Min. Max. Mean Sdev. Skew. Kurt. AD (p-val.) KS (p-val.)

1979 2.12 8.21 5.15 1.68 0.24 2.12 0.70 0.58

1984 0.76 8.21 4.86 2.01 -0.25 2.35 0.76 0.93

1989 0.37 8.21 4.82 1.93 -0.35 2.59 0.60 0.76

2022 -2.07 8.21 4.14 2.00 -0.23 2.84 0.50 0.66

G
O

M
D

ee
p

Data Until Min. Max. Mean Sdev. Skew. Kurt. AD (p-val.) KS (p-val.)

1990 -2.30 7.59 3.83 2.03 -1.41 5.13 <0.01 <0.01

1995 -2.30 7.59 3.74 2.07 -1.48 5.19 <0.01 <0.01

2000 -2.30 7.59 3.91 1.77 -1.62 6.77 <0.01 <0.01

2020 -2.30 7.59 3.57 1.71 -0.86 4.30 <0.01 0.17

Note: Kurt.=Kurtosis, AD=Anderson-Darling test, KS=Lilliefors (Kolmogorov-Smirnov) test.

of 4.14 (≈ 65 Mb). This pattern that a large fraction of the giants are discovered early
while mostly small- to medium-sized fields are discovered later provides clear evidence of
size-biased sampling. Table 4.3 shows that the fit of the lognormal distribution is fairly
good: the null of a lognormal distribution can neither be rejected by the AD-test nor by
the KS-test in any of the years.

For GOM Deep, Figure 4.6 shows that the distribution is initially quite narrow and peaked,
concentrating around a median log-size of about 4.4 (≈ 82 Mb) for 1990-2000. Gradually
it becomes stretched-out, also on the right tail, which implies that also several larger
fields are discovered in later years. This pattern provides some evidence against size-
biased sampling as the main mechanism that determines the discovery order. For 2020,
a comparison of the empirical size distribution with the lognormal fit leads to similar
conclusions as for GOM Flat, and Table 4.3 shows an inconclusive test result based on
the AD- and the KS-test.

Overall, Figure 4.6 indicates that the lognormal distribution is a better candidate than the
Pareto distribution for all three regions. Besides having more probability mass at small
values, the Pareto distribution also has a thicker right tail compared to the lognormal
distribution, which is quantitatively more relevant since this implies more very large fields
(Jakobsson et al. (2014), p. 120). With the possible exception of Norway, a thicker right
tail is not observable for the size distributions in the most recent periods shown in Figure
4.6.

In order to quantify the magnitude with which each of the two variables, size and water
depth, is correlated with the discovery order, we report in Table 4.4 results from univariate
regressions of the logarithm of each on the discovery rank. To disentangle the correlations
between the two variables and the discovery order, we report in Table 4.5 the Spearman
rank correlations between discovery date, size and water depth.

Table 4.4 shows that for the fields discovered before 2020 in GOM Flat, each successive
field became on average 2.8% smaller. At the same time, the coefficient of ln(Depth)
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Table 4.4: Results from regressing size and water depth on discovery rank

G
O

M
F

la
t

Data Until 1957 Data Until 1962 Data Until 1967 Data Until 2020

ln(Size) ln(Depth) ln(Size) ln(Depth) ln(Size) ln(Depth) ln(Size) ln(Depth)

Rank -0.033 0.043** -0.058** 0.023** -0.047*** 0.027*** -0.028*** 0.007***

(0.037) (0.019) (0.028) (0.010) (0.014) (0.005) (0.002) (0.002)

Obs. 17 28 47 164

N
or

w
ay

Data Until 1979 Data Until 1984 Data Until 1989 Data Until 2022

ln(Size) ln(Depth) ln(Size) ln(Depth) ln(Size) ln(Depth) ln(Size) ln(Depth)

Rank -0.003 0.032*** -0.047* 0.015** -0.022 0.014*** -0.023*** 0.008***

(0.058) (0.010) (0.027) (0.007) (0.016) (0.004) (0.005) (0.002)

Obs. 23 40 55 112

G
O

M
D

ee
p

Data Until 1990 Data Until 1995 Data Until 2000 Data Until 2020

ln(Size) ln(Depth) ln(Size) ln(Depth) ln(Size) ln(Depth) ln(Size) ln(Depth)

Rank 0.024 0.047*** 0.006 0.025*** 0.014 0.019*** -0.007* 0.008***

(0.051) (0.012) (0.027) (0.008) (0.012) (0.003) (0.004) (0.001)

Obs. 26 37 61 124

Note: Obs.=Number of observations. HAC (Newey/West) standard errors are in parenthesis. *p<0.1. **p<0.05. ***p<0.01.

Table 4.5: Rank correlations (Spearman) between size, water depth and discovery date

G
O

M
F

la
t Data Until 1957 Data Until 1962 Data Until 1967 Data Until 2020

Disc Size Disc Size Disc Size Disc Size

Size -0.169 -0.421 -0.442 -0.718

Depth 0.493 -0.037 0.448 -0.150 0.586 -0.060 0.356 -0.143

N
o
rw

ay

Data Until 1979 Data Until 1984 Data Until 1989 Data Until 2022

Disc Size Disc Size Disc Size Disc Size

Size 0.005 -0.232 -0.157 -0.369

Depth 0.544 0.128 0.336 0.268 0.400 0.289 0.406 0.101

G
O

M
D

ee
p Data Until 1990 Data Until 1995 Data Until 2000 Data Until 2020

Disc Size Disc Size Disc Size Disc Size

Size 0.050 0.005 0.043 -0.229

Depth 0.732 0.170 0.543 0.234 0.595 0.253 0.530 0.247
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shows that each successive field was located on average in 0.7% deeper waters. These
effects start to become statistically significant from the period 1962 onwards, and have
initially even higher magnitudes. In Norway, the coefficients for the 2022 period are
of similar magnitude: fields discovered before 2022 became 2.3% smaller and were lo-
cated in 0.8% deeper waters, on average. Note that the ln(Size) coefficient for Norway
is (marginally) significant before 2022 only in 1984, although in 1989 it has already the
“correct” magnitude from 2022.

For GOM Deep, the coefficient of ln(Size) starts to become negative and (marginally)
significant only in 2020, and has a small magnitude compared to coefficients from the other
regions. In contrast, the coefficient of ln(Depth) is always significant and of roughly similar
magnitude as in the other regions. When comparing the magnitudes of the ln(Depth)-
coefficients across the regions, however, note that the water depth of the oil fields ranges
from 1000-9000 ft in GOM Deep, while it ranges from 10-1000 ft in GOM Flat and from
200-1300 ft in Norway. Thus, the GOM Deep coefficients correspond to a much greater
absolute increase in water depth.

Based on Tables 4.3-4.5 and Figure 4.6, the joint influence of size and water depth on the
discovery order in GOM Deep may be summarized as follows. Primarily, fields in more
shallow water are biased for early discovery. Secondarily, a size bias is observable when
considering all data until 2020. Also, the rank correlation between size and water depth in
Table 4.5 is throughout positive which reveals that larger fields tend to be located deeper.
Thus, the initially “narrow” distribution observable in the right column of Figure 4.6 can
be explained as follows: the bias to discover first fields in more shallow waters prevents
the early discovery of several of the larger fields that are “hidden” in deeper waters. At
the same time, the presence of at least some degree of size-biased sampling prevents also
the early discovery of many of the smaller fields.

4.5.2 Estimation Results for the Size-Biased Sampling Model

In this section, we first explain some computational details regarding the parameter es-
timation. From this it will be clear which parameters are estimated rigorously from the
data, and which parameters are “hyperparameters”, by which we mean that these are
fixed at certain values prior to the estimation (and thus are not rigorously estimated).
Afterwards, we discuss our estimation results reported in Tables 4.6-4.7, in particular the
implied undiscovered resources estimates for each region, which can be compared to point
estimates published by the BOEM and the NPD.

Based on the analysis from the previous section we assume for each region that fθ/ptr(θ)
is the truncated lognormal distribution with parameters θ = (µ, σ) supported on [x, x].
We choose the support for each region on a rule-of-thumb basis from the observed field
sizes. The values for the more important upper truncation point x are shown in Tables
4.6-4.7. For this distribution, we repeat the ML-estimation via the EM-algorithm as
described in Theorem 1 for multiple grid points of the discoverability parameter β.60 For
each β, ML-estimates can be obtained by iterating the EM-algorithm from an initial guess
(µ0, σ0, ν0) until the sequence of log-likelihoods L(µ0, σ0, ν0), L(µ1, σ1, ν1), . . . converges
at some specified tolerance.

60We choose the grid points at a distance of 0.05, and adjust the range so that it accommodates a clear
maximum of the log-likelihood function.
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However, instead of the joint estimation of (µ, σ) and ν as stated in Theorem 1, we have
decided to repeat the estimation with a few pre-determined values for ν, and then choose
ν based on the likelihood.61 Treating ν as a hyperparameter, our estimation procedure
results in the conditional ML-estimates µ̂(β) and σ̂(β) and their covariance matrix. To
reduce the potential influence of the initial guess (µ0, σ0), we repeat the EM-algorithm
for four different guesses and take the mean of the resulting estimates. After calculating
the log-likelihood function L(β) as in (4.13), the ML-estimate for β is easily obtained via
one-dimensional grid search.

The integrals over x which appear in Theorem 1 are numerically calculated using the R-
function “quadv” from the R-package “pracma”, which implements a vectorized adaptive
Simpson quadrature. Since the evaluation of the density gb(γ) is costly, we evaluate
all functions of γ on a pre-determined grid of values (see Appendix B.2 for a detailed
description how we calculate gb(γ)). The integrals over γ are calculated numerically
using these grid points, and we implement this via Simpson’s 1/3 rule.

The conditional ML-estimates µ̂(β), σ̂(β) allow to calculate the posterior mean of the
undiscovered resources as a function of β by the formula

Eβ

[ N∑

i=k+1

Xi

∣∣∣F
]
= Eβ[N − k|F ] ·

� ∞

0

� x

x

x · ρβ(x|γ)g(1)β (γ|F)dxdγ. (4.35)

For several specifications for each region, we plot the conditional ML-estimates µ̂(β),
σ̂(β), L(β), and the function (4.35) in Appendix C (see Figures C8-C11). The figures
show that the mean of the undiscovered resources is a declining function of β at nearly
all grid points, as expected because a higher β corresponds to a higher degree of size-bias
in the successive sampling scheme. In particular, β = 0 is equivalent to random sampling
for which the mean of the total resources should be close to ν

k

∑k
i=1 xi.

The monotony of the function (4.35) provides an alternative approach to choose the
parameter β if a point estimate of the ultimately recoverable resources (URR) in the
region is available from external sources. In this case, one can choose β so that the mean
undiscovered resources plus the resources from known fields is closest to the external
estimate. This is similar to what is known in the discovery process literature as the
“anchored method”, see for example Chen and Sinding-Larsen (1999, p. 50). In this
terminology, we “anchor” the discoverability parameter β as to match the external URR
point estimate.62 We pursue this approach as a further variant in addition to the ML-
estimation of β. For GOM Flat, we use the value of total discovered oil resources by
2020 (10.34 Gb). For Norway, we refer to the most recent estimate of total oil resources
on the Norwegian continental shelf published in NPD (2021), which amounts to about
50 Gb.63 For GOM Deep, we refer to the resource assessment from the U.S. BOEM

61For the joint estimation of (µ, σ) and ν we have obtained parameter estimates which are quite
dependent on the initial guess and sometimes yielded nonsensical estimates (e.g. ν very low or high). To
simplify the calculations we have thus decided to fix the values for ν. This should, however, not discourage
future research to carry out the joint estimation. The above-mentioned problems could potentially be
avoided by imposing lower and upper bounds on the parameters in each iteration of the EM algorithm.

62The match is not exact since (4.35) has to be computed numerically, for which choose β on a grid
with distance of 0.05.

63The report is available for download at: https://www.npd.no/en/facts/publications/re-
ports/resource-accounts/. The 50 Gb figure is obtained from the second column (“Oil million scm”)
of table 1-1. We deduct from the total the category “contingent resources in fields”, as these should
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Table 4.6: Estimation results

GOM Flat, t = 1962 GOM Flat, t = 1967 Norway, t = 1984 Norway, t = 1989

x 600 600 600 600 4400 4400 4400 4400

ν 164 164 164 164 150 150 150 150

ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR

β̂ 1.50 1.10 1.05 0.60 0.50 0.25 0.50 0.20

µ̂ 2.96 3.40 2.28 3.30 1.65 3.64 2.47 4.11

(0.17) (0.24) (0.26) (0.29) (0.72) (0.33) (0.30) (0.32)

σ̂ 1.58 1.41 2.64 2.09 3.29 2.90 3.00 2.61

(0.22) (0.17) (0.65) (0.31) (0.76) (0.51) (0.50) (0.32)

Resa 3.52 5.63 1.51 4.43 8.11 25.21 5.87 23.84

[2.67;4.44] [3.81;7.56] [0.98;2.14] [2.85;6.18] [4.30;12.71] [13.19;37.95] [3.19;9.22] [13.45;35.15]

Lb -166.41 -167.36 -272.59 -276.24 -274.45 -274.92 -374.16 -375.02

LRc 1.90 7.30*** 0.94 1.72

Note: Estimated standard errors are in parenthesis.
aUndiscovered resources in Gb. The upper row is the mean estimate, in brackets are the 10% and 90% quantiles.
bLog-likelihood evaluated at the parameter estimates. cLikelihood ratio statistic. *p<0.1. **p<0.05. ***p<0.01.

published in BOEM (2017). Therein, estimates of undiscovered technically recoverable
oil and gas resources in the Gulf of Mexico are presented per geological assessment unit
(see table 11 of BOEM (2017) on p. 61). Choosing the assessment units labeled as “slope”
which correspond to deep water, we arrive at a resulting mean estimate of undiscovered
technically recoverable oil resources of about 40 Gb.64 Adding this to the 13 Gb discovered
until 2020 yields 53 Gb, a similar figure as for Norway. We label the specifications where
we choose β̂ as to best match the above-mentioned URR figures “FIT-URR”, while when
we choose β̂ by maximizing the likelihood function we label this “ML-EST”.

Tables 4.6-4.7 summarize our estimation results for all regions and all specifications.
A specification consists of, (1) the year t that separates the sample period from the
projection period, (2) whether β̂ is determined by “ML-EST” or “FIT-URR”, and (3)
the hyperparameters ν and x, which are, however, not varied in the specifications shown
in Tables 4.6-4.7. The original plan was to pick as t for each region the three latest
years that are shown in Table 4.2. However, for GOM Deep we have obtained estimates
with huge variances for the year t = 1995, so we start with t = 2000 and add the year
t = 2005. For GOM Flat, we omit estimation for t = 2020 because discovery in the region
can be assumed as completed. Besides the parameter estimates, the tables show in the
row “Res” our estimates of undiscovered resources with associated 10%- to 90%-quantiles
in brackets.65 The resource estimates and quantiles are computed from MC simulations
of the undiscovered field sizes.

Tables 4.6-4.7 show that comparatively the highest estimates for β are obtained for

belong to the already discovered fields, and convert the resulting number from standard cubic meters to
barrels.

64We include also the large “Norphlet” play which has many deep water oil fields (BOEM (2017), pp.
55f.), and exclude the “Mezozoic Slope” which is considered as “conceptual” (BOEM (2017), p. 56). Also,
we deduct 5% from the reported figures to arrive at the 40 Gb figure. The reason is that we have deleted
from our sample the fields which are classified as gas fields. We calculate from all fields discovered before
2020 in GOM Deep that 5% of oil resources are actually contained in the fields which are classified as
gas fields.

65We use the 10%- and 90%-quantiles since these correspond to the established concepts of 1P (proved)
and 3P (proved+probable+possible) estimates of reserves (e.g., Thompson et al., 2009, p. 12)
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Table 4.7: Estimation results (cont’d)

Norway, t = 2022 GOM Deep, t = 2000 GOM Deep, t = 2005 GOM Deep, t = 2020

x 4400 4400 700 700 700 700 700 700

ν 150 150 300 300 300 300 300 300

ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR

β̂ 0.35 0.00 -0.30 -0.20 0.40 -0.30 0.50 -0.45

µ̂ 2.72 3.95 6.61 6.08 2.42 6.09 2.18 5.61

(0.21) (0.26) (1.54) (1.30) (0.21) (1.14) (0.16) (0.79)

σ̂ 3.14 2.74 2.56 2.56 2.79 2.58 2.53 2.36

(0.42) (0.26) (0.47) (0.46) (0.49) (0.40) (0.32) (0.28)

Resa 1.10 12.75 47.99 42.83 8.01 40.93 3.31 38.34

[0.39;2.01] [6.51;19.80] [34.73;58.63] [31.20;52.42] [5.61;10.57] [31.33;49.53] [2.28;4.45] [29.86;46.13]

Lb -684.54 -692.38 -351.57 -351.65 -504.96 -505.93 -672.57 -680.53

LRc 15.68*** 0.16 1.94 15.92***

Note: Estimated standard errors are in parenthesis.
aUndiscovered resources in Gb. The upper row is the mean estimate, in brackets are the 10% and 90% quantiles.
bLog-likelihood evaluated at the parameter estimates. cLikelihood ratio statistic. *p<0.1. **p<0.05. ***p<0.01.

GOM Flat, which is consistent with the results from Tables 4.4-4.5. A positive value
for β is generally associated with a mean parameter below and a standard deviation
parameter above the respective figure from the observed sample. This can be seen, for
example, by the estimates of the ML-EST specification for Norway, t = 1984, which
amount to (µ̂, σ̂) = (1.65, 3.29) in comparison to the values (4.86, 2.01) from Table
4.3, while the conditional ML-estimates of the FIT-URR specification are in-between
at (µ̂, σ̂) = (3.64, 2.90). Besides, we see that for GOM Flat the estimates for σ are mostly
below the respective estimates for the other two regions. This is consistent with the em-
pirical size distributions shown in Figure 4.6, where the kernel densities for GOM Flat
do not reach out to very large field sizes, in contrast to what is the case for Norway.
Comparing the giant fields in these two regions, the data show that there are only two oil
fields with sizes above 500 Mb in GOM Flat,66 while until 2022 there have been 17 giant
discoveries in Norway.67

For GOM Flat, t = 1962, the ML-EST specification implies a mean estimate for URR of
8.14 Gb, which is calculated by adding the mean estimate for undiscovered resources from
Table 4.6 to the 4.62 Gb already discovered before 1962. The corresponding 10%- to 90%-
quantile range is 7.29 - 9.06 Gb, which is below the known amount of 10.34 Gb discovered
until 2020. For t = 1967, the estimated URR even decreases somewhat compared to
t = 1962. Note that the likelihood ratio statistic for t = 1967 becomes significant, so that
this test would imply the rejection of the 10.34 Gb figure. Overall, we can conclude that
the recoverable resources in GOM Flat are underestimated by the our estimation results.

Turning next to Norway, t = 1984, Table 4.6 shows for the ML-EST specification a mean
estimate of undiscovered resources of 8.11 Gb, and a 10%- to 90%-quantile range of 4.30
- 12.71 Gb. Adding this to the 22.90 Gb already discovered before 1984 yields a range of
27.20 - 35.61 Gb, which just contains 35.46 Gb, the total amount of oil discovered by 2022.
Overall, the estimate can be judged as somewhat low but still reasonable if one assumes

66These are West Delta 030 and Bay Marchard 002 with 596 and 550 Mb of oil. If one includes the gas
fields as well and measures size as the sum of oil and gas resources in barrels of oil equivalents, there are
7 giants with sizes in the range of 555-813 Mb of oil equivalents.

67The largest two are Stratfjord and Ekofisk with 3.67 Gb and 3.44 Gb of oil.
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that no significant discoveries will be made in Norway from 2022 onwards. However, the
NPD’s estimates from 2021 imply that discoveries on the order of 15 Gb might still be
made. Thus, in the FIT-URR specification for t = 1984, the closest match to the 50 Gb
figure for URR is achieved by setting β̂ = 0.25. Table 4.6 shows that this specification is
also associated with wider interval estimates, implying for URR a 10%- to 90%-quantile
range of 36.09 - 60.85 Gb.

For GOM Deep, the ML-EST specification for t = 2000 yields a negative β̂-coefficient
of -0.3, implying mean undiscovered oil resources of 48 Gb, which upon adding to the
8 Gb discovered until 2000 gives an amount close to the external URR estimate of 53
Gb. However, for t = 2005 and 2020, the undiscovered resource estimates are reduced
considerably in the ML-EST specifications where now positive β̂-coefficients of 0.4 and
0.5 and correspondingly much lower µ̂-coefficients are obtained. Adding to the quantiles
for undiscovered resources the amounts already discovered by t = 2005 or t = 2020, which
are 10.8 Gb or 12.75 Gb, respectively, we obtain for URR the 10%- to 90%-quantile ranges
of 16.41 - 21.37 Gb or 15.03 - 17.2 Gb, respectively.

For both GOM Deep and Norway, we conclude that the ML-estimation of (β, µ, σ) mostly
gives URR estimates that are substantially below what the respective agencies estimate.
For both regions, the likelihood ratio statistics for the two earlier periods reported in
Tables 4.6-4.7 are small, so that no statistically significant differences between the β̂-
coefficients from the FIT-URR and ML-EST specifications can be found. In contrast, for
the most recent period for both regions the likelihood ratio statistics are clearly statis-
tically significant, so that the FIT-URR specifications would be rejected based on this
statistic, similar as for GOM Flat for t = 1967. Note that for these most recent periods
the ML-estimates of undiscovered resources become pretty small in comparison to what
has already been discovered.

4.5.3 Simulation Results for the Overall Model

In this section, we examine how well the overall model from sect. 4.3 can predict the
actual production and discovery rates. For this we conduct MC simulations as 10,000
runs of a simulation procedure based on Theorem 2. The simulations are based on the
parameter values reported in the previous section for (x, ν, β̂, µ̂, σ̂), and the estimated
covariance matrix for (µ̂, σ̂). Additionally, the simulations require specification of all
the other parameters introduced in sect. 4.3. Thus the next few paragraphs explain
how these parameters are estimated / chosen. Afterwards, we present and discuss our
main results from the simulations. For reasons of space we show in this section only the
results from three specifications, namely a single ML-EST specification for each region,
which is based on assumption 4b and the years t = 1962, 1984, and 2000 for GOM Flat,
Norway, and GOM Deep, respectively. The results are presented in Figures 4.8-4.10. In
Appendix C, we also show the results from the corresponding FIT-URR specifications
and the corresponding specifications based on assumption 4a.

For the ML-EST specifications, we want to stress that the only information which we
use in the simulations and which is calculated from the full samples up to 2020 (or 2022
for Norway) are the durations between discovery and first oil (δ0), and the parameter
ν = 164 for GOM Flat. The parameter δ0 is always chosen as the sample median from
the full samples, which amounts to approximately 4, 6, and 10 years for GOM Flat, GOM
Deep, and Norway, respectively. Note that values of roughly similar magnitude could be
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inferred by inspection of figure 1 shown by Mihalyi (2021). In all cases the parameters for
the production profiles are based on IEA (2008) as explained in sect. 4.3.1. The upper
row in Figure 4.1 shows the two profiles that we use for Norway. The panel “deepwater &
non-giant” in Figure 4.1 shows what we use for fields in GOM Deep with sizes below 500
Mb. For giant fields in GOM Deep we use the corresponding profile where the decline rate
is instead only 10.8%, as reported in Table 4.1. Although fields in GOM Flat are located
offshore on the shelf, we find from comparing some actual production profiles with the
ones generated from the parameters “shelf” vs. “onshore” that the more stretched-out
profiles based on the onshore parameters fit much better, which are consequently used
here.68 Because there are only two giant oil fields in GOM Flat with sizes slightly above
500 Mb (596 and 550 Mb), we use the “onshore & non-giant” profile also for these two
fields. Hence, the profile that we use for GOM Flat can be seen in the bottom-right panel
of Figure 4.1.

For the FIT-URR specifications (shown in the Appendix C), we obviously use as “ex-post
information” also the external estimates of the regional URR. To the extent that these
numbers will turn out as correct, we thereby reduce the error about the area under the
curves, while we can still evaluate how well the “shape” of the curves (i.e. the pattern
how the discovery and production rates evolve over time) is predicted.

For the simulations based on assumption 4b, our preferred specifications, we also need
to estimate the parameters a0 and b0. We plot in the right columns of Figures C5-C7 in
Appendix C the historical trends for the number of exploration wells that were needed to
discover a field, which is computed from the exploration well time series and the discovery
times. Shown as the black line in the figures is a moving average of this trend that is
computed using a time window of 10 years. By evaluating this function at the k discovery
times within the sample period, we obtain the data r−1

obs,i, i = 1, . . . , k, with which we
estimate the parameters a0 and b0 from the regression (4.23). The resulting estimates â0
and b̂0 can be found in Table C1 in Appendix C.69

Each specification contains furthermore three scenarios for the trend functions Λ(t), which
we organize in the figures as three different columns. As explained in sect. 4.3.3, we
estimate Λb(t) by fitting a power function ctd to the actual exploration well series. This
provides only a single scenario for Λb(t), which we always put under scenario 2 in the
figures. To arrive at different Λb(t)-functions for scenarios 1 and 3, we simply multiply
the estimated value of d by 2 or 1/2, respectively.70

To explain how the figures for the simulation results are structured, we anticipate in
Figure 4.7 the result of scenario 2 from Figure 4.8. First, observe that in each panel we

68This could be related to the fact that many of these fields are in very shallow water (the median
water depth is 200ft), or to the fact that these fields were launched mostly in the 1950s-80s. The
numbers published by IEA (2008) reveal that non-OPEC oil fields that were launched in the 1950s-80s
had substantially lower decline rates than those that were launched in the 1990s-2000s (IEA (2008), p.
240).

69For the constant we have imposed the restriction â0 ≥ 1 by setting â0 = 1 whenever â0 < 1 was
obtained by OLS. We do this to make the denominator of (4.22) decline at least as fast as the “area”
of the yet-to-be discovered fields. This parameter restriction is not necessary for assumption 4b as it is
currently presented (see sect. 4.3.3), but it also should not affect the overall results too strongly.

70For the specifications based on assumption 4a, we employ three different parametric functions for
Λa(t): for scenario 1 we use an exponentially growing function bounded by 1, for scenario 2 we use a
variant of the Gaussian cdf which is flexible to be asymmetric (see Brandt (2007), p. 3086), and for
scenario 3 we use the cdf of the exponential distribution (i.e. a bounded growth curve). The parameters
of these functions are estimated as illustrated in Figure 4.4.
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Figure 4.7: Simulation results illustration (scenario 2 of Figure 4.8 for GOM Flat)
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Note: The black vertical line marks the date t. Colored curves are predictions while black refers to actuals.
In the upper panel, the scale on the left pertains to the orange curves and the black step function, while
the scale on the right pertains to the green and black dot-dashed lines. In the lower panel, the red dotted
line shows the oil that would be produced if no new fields were discovered after time t.

have marked the year t that separates the sample period from the projection period by
drawing a black vertical line. The first row depicts as the green dot-dashed line the trend
function Λb(t) for the cumulative number of exploration wells. The actual time series
is depicted as the black dot-dashed line. Note that the scale for exploration wells is on
the right-hand side of the panel. In contrast, the scale on the left-hand side of the panel
pertains to the cumulative number of discovered fields, for which the actuals are shown by
the black step function. The simulation results for this variable, which in mathematical
terms is the stochastic process (Nt)t≥t as described in sect. 4.3.3, are shown in the form
of its mean function (orange solid line) and its 5%- to 95%-quantile range (orange dashed
lines).

The second row depicts in blue our simulation results for the smoothed discovery rate,
which we compute using the function qdisc (eq. 4.4) with ϑ = 10. Again the solid line is the
mean function and the dashed lines show the 5%- to 95%-quantile range. The black dots
show the actual smoothed discovery rates as calculated from the full available discovery
history (until 2020 for GOM, until 2022 for Norway), and using qdisc with ϑ = 10.

In the third row, we depict in red the production rate computed by using the production
profiles qprod (eq. 4.2) with parameters as explained above. Again the solid line, the
dashed lines, and the black dots represent the mean function, the quantile range, and the
actual yearly production time series, respectively. We have also added a red dotted line to
show the amount of oil that would be produced if suddenly no new fields were discovered
after time t. Note that due to the assumed fixed durations between discovery and first oil
production for each field, the red lines start to diverge only at t+ δ0 in each specification.
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In each panel, we also show the asymptotic approximation to the mean function of the
variable of interest. Be it the production rate, the discovery rate, or the cumulative num-
ber of discovered fields, this can be computed from (4.28-4.30) or related equations, plus
either (4.26) or (4.32). The asymptotic approximations are indicated in the figures by
colored dots that generally lie at or very close to the colored solid lines (the dots super-
impose the solid lines in Figure 4.7). This confirms that the asymptotic approximations
are nearly identical to the mean functions as computed from the MC simulations.

The graphical presentation of the results is complemented by Table 4.8 which reports for
various specifications the goodness-of-fit of the mean discovery and production curves,
and certain summary statistics for the mean production curves. The first two columns
report the root mean squared prediction error (RMSPE), after division by the mean of
the respective actuals over the prediction years to facilitate comparison among the regions
and specifications. The summary statistics in the other columns pertain to the “shape” of
the mean production curves, similar as the summary statistics in Table 4.1 pertain to the
shape of the field-level production profiles. Thus, Table 4.8 allows to compare the shape
of the production curves resulting from assumptions 4b vs. 4a, ML-EST vs. FIT-URR,
and from two different scenarios for Λ(t) in each case.

Turning now to the results, we start with Figure 4.8 for GOM Flat. The figure shows
that the quantile ranges for both discovery and production are too low compared to the
actuals in most years. This is due to the fact that the ML-EST specification implies
for the integral under the discovery and production curves a range of 7.29 - 9.06 Gb,
while the observed total discoveries until 2020 are 10.34 Gb. Nonetheless, except for this
scale difference the pattern how the discovery rate declines over time is matched to a
reasonable degree by our forecast. To eliminate the effect from having underpredicted
the total resources, we consider for comparison the corresponding FIT-URR specification,
which we show in Figure C12 in Appendix C. Note that here scenarios 2-3 show a very
good correspondence of the projected discovery rate and the actuals, and that the actual
production lies within the quantiles for many years. Besides, when using assumption 4a
with a Gaussian trend function as shown in scenario 2 of Figure C13 in Appendix C, we
have by chance obtained an almost perfect match to the number of discovered fields. Here
the resulting discovery rate is also matched almost perfectly by the forecast, while for the
production rate there remains some discrepancy.

The strongest mismatch of our forecasts for GOM Flat is the unanticipated stagnation
and rise in production during the 1990s. This is underpredicted in Figure 4.8 and Figures
C12-C13, where a declining trend is predicted instead. In contrast to our production
forecasts (the red solid lines) which always show a single local maximum, the actual pro-
duction curve oscillates and has three local maxima during 1962-2000. This indicates
that several other factors (e.g. economic, regulatory, environmental or technology-related
factors) that are omitted in our model play a role for the discovery and production dy-
namics here. For example, the duration between discovery and first oil production may
not be constant as assumed, but instead can systematically change over time as a func-
tion of oil prices, regulatory factors, or due to experience gained from past development
projects. Similar factors may dynamically affect the initial production build-up phase for
many fields. Alternatively, the observed rise in production during the 1990s could also
come from secondary and tertiary enhanced oil recovery projects applied to several of the
older fields that at this time were approaching the end of their production years. All
of this implies that the mismatch arises because field-level production is to some extent
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Table 4.8: Summary statistics for the simulation results

Specification Sce-
nario

RMSPE
disc.

RMSPE
prod.

% of
URR

prod. at
peak

% of URR
prod. until

peak

Number
of

years at
plateaua

Rate of
increase
pre-peak

(%)

Rate of
decline

phase 1b

(%)

Rate of
decline

phase 2c

(%)

Rate of
decline

phase 3d

(%)

GOM Flat,

t = 1962

4b,ML-EST 1 0.71 0.39 3.0 46 17 21.7 2.3 6.6 9.2
4b,ML-EST 2 0.73 0.39 2.7 33 17 25.3 1.5 5.2 6.5
4b,FIT-URR 1 0.89 0.38 3.3 47 12 21.4 2.6 7.3 9.7
4b,FIT-URR 2 0.47 0.29 2.8 43 15 20.8 2.1 5.7 7.5

4a,ML-EST 1 0.67 0.36 2.6 22 17 30.7 1.3 3.1 8.7
4a,ML-EST 2 0.58 0.36 2.6 28 21 27.7 1.1 4.7 8.8
4a,FIT-URR 1 0.42 0.23 2.2 47 29 17.2 1.4 4.4 9.3
4a,FIT-URR 2 0.18 0.24 2.5 50 22 17.7 1.9 5.2 8.8

Norway,

t = 1984

4b,ML-EST 2 0.61 0.16 3.4 42 12 16.0 2.2 6.7 10.6
4b,ML-EST 3 0.57 0.14 3.2 42 12 15.8 2.8 5.5 8.2
4b,FIT-URR 2 1.76 0.52 2.7 50 19 12.6 1.9 6.4 9.7
4b,FIT-URR 3 1.04 0.27 2.2 27 19 16.0 1.2 3.1 5.3

4a,ML-EST 2 0.63 0.17 3.5 42 11 16.2 1.8 7.4 10.5
4a,ML-EST 3 0.56 0.14 3.2 42 12 15.8 2.7 6.0 8.2
4a,FIT-URR 2 1.82 0.56 2.9 44 15 14.0 1.6 6.3 9.6
4a,FIT-URR 3 1.06 0.29 2.2 27 18 16.0 1.1 3.0 5.1

GOM Deep,

t = 2000

4b,ML-EST 1 7.18 0.79 3.5 52 13 15.3 2.7 8.0 38.9
4b,ML-EST 3 2.11 0.30 1.3 24 26 14.5 1.0 1.7 2.0

GOM Deep,

t = 2005

4b,ML-EST 1 2.32 0.26 3.4 56 15 15.3 2.5 8.5 38.5
4b,ML-EST 3 1.42 0.25 2.9 34 15 18.3 1.7 5.4 6.8
4b,FIT-URR 1 10.50 0.35 3.2 53 13 14.0 2.1 7.6 33.4
4b,FIT-URR 3 3.90 0.26 1.4 29 25 13.5 1.1 2.0 2.4

4a,ML-EST 1 2.42 0.25 3.2 62 18 14.4 2.8 9.7 59.7
4a,ML-EST 3 1.77 0.26 3.0 46 16 16.3 1.9 6.5 13.4
4a,FIT-URR 1 13.83 0.30 4.4 55 7 14.7 3.6 10.9 25.0
4a,FIT-URR 3 5.56 0.29 1.8 50 38 11.3 0.6 8.7 14.2

Note: The division of the decline phase into three separate phases is based on IEA (2008, p. 235).
aDefined as the period during which production is more than 85% of peak level. bDefined as peak year until end of plateau.
cDefined as end of phase 1 until production reaches 50% of peak level. dDefined as end of phase 2 until the last year from our calculations.
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Figure 4.8: Simulation results for GOM Flat (t = 1962, ML-EST, assumption 4b)

S
c

e
n

a
ri

o
 1

050001000015000

No. of exploratory wells

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

050100150

No. of discovered fields

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

0100200300400

Discovery (in Mb)

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l
l

l

l
l

l

l
l

l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

050100200300

Production (in Mb)

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

S
c

e
n

a
ri

o
 2

050001000015000

No. of exploratory wells

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

050100150

No. of discovered fields

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

0100200300400

Discovery (in Mb)

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l
l

l

l
l

l

l
l

l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

050100200300

Production (in Mb)

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

S
c

e
n

a
ri

o
 3

050001000015000

No. of exploratory wells

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

050100150

No. of discovered fields

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

0100200300400

Discovery (in Mb)

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l
l

l

l
l

l

l
l

l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

1
9
6
0

1
9
8
0

2
0
0
0

2
0
2
0

050100200300

Production (in Mb)

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

84



Figure 4.9: Simulation results for Norway (t = 1984, ML-EST, assumption 4b)
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Figure 4.10: Simulation results for GOM Deep (t = 2000, ML-EST, assumption 4b)
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dynamically influenced by several factors instead of only being a function of time since
discovery.

For Norway, Figure 4.9 shows a fit of the forecasts to the actuals that is overall good. Until
2005, the mean forecast of the smoothed discovery rate matches well to the actuals. The
increased discovery rate during 2005-15 is largely driven by the 2010-11 discoveries of the
giant fields Johan Sverdrup and Johan Castberg, which contain about 2.6 Gb and 560 Mb
of oil, respectively. That such large discoveries occur after the discovery rate has declined
to rather low levels is not foreseen by the forecasts. On the other hand, the increase
and decline of production around the peak year 2000 is well anticipated by the forecasts.
Also the suspension of the declining trend for production in the 2010s is well within the
quantiles. The actuals exit the quantile range only since 2020, after the Johan Sverdrup
field has started to produce in late 2019. Let us compare Figure 4.9 to the corresponding
FIT-URR specification (with a mean of additional 17 Gb of oil) shown in Figure C14 in
Appendix C. In scenario 3, the scenario with the best fit regarding exploration wells, a
large discovery around 2010 just like Johan Sverdrup and Johan Castberg is predicted.
Turning to the production forecast, the figure shows actuals that lie between the predicted
lower quantile and mean even during the 2010s. Comparing the two figures for Norway
shows that the additional 17 Gb of oil do not substantially delay the predicted year of
peak production, but considerably mitigate the post-peak decline. This is confirmed in
Table 4.8 numerically: while peak production occurs in all specifications before or when
50% of the URR is extracted, the plateau lengths are increased and the decline rates are
reduced when comparing the FIT-URR to the ML-EST specifications.

Let us provide possible explanations for why the latest large discoveries around 2010 are
underpredicted in Figure 4.9, which will soon after 2021 also cause the production forecast
to underpredict the actual production. One important issue here pertains to the regulatory
access to the different parts of the Norwegian continental shelf which needs to granted
by the regulator (i.e. the NPD) before oil exploration can take place. This happened at
different times for the different parts of the region: while exploring for petroleum in the
North Sea was permitted already since 1965, exploring in the Norwegian and Barents Sea
was permitted only since 1980, and even nowadays access to vast areas of the Barents
Sea is not yet permitted (NPD (2021), p. 3). A more “natural” discovery history as
consistent with the axioms of the discovery process model has thus been prevented. In
particular, these axioms require that all fields are in principle available for discovery at
each time while only size governs the probabilities to observe a particular discovery order
(see assumption 2 in sect. 4.3.2). Clearly, this assumption is violated by the differential
access to the different parts of the Norwegian continental shelf, which has introduced
additional bias into our parameter estimates and thus into the discovery and production
forecasts.

Since we have not treated the discovery sequence of the Barents and the Norwegian Sea
as separate samples but instead pooled the fields together with the North Sea fields, their
resource potential is likely underestimated in the results shown in Tables 4.6-4.7 and
Figure 4.9. For example, the giant field Johan Castberg that was discovered in 2010 is
located in the Barents Sea. In contrast, the huge Johan Sverdrup field is located in the
North Sea where access was possible since 1965, so that the explanation regarding the
regulatory access does not apply to Johan Sverdrup. Indeed, the field was missed by 200
meters by an exploration well in 1967 (Lillestøl and Sinding-Larsen (2017), p. 69). Thus
we need to find other reasons for why our model underpredicts a large discovery like Johan
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Sverdrup. Note for this that the late discovery of Johan Sverdrup is fully consistent with
the probabilistic nature of the discovery process model which permits that huge discoveries
can occur late in the discovery process, albeit with low probabilities. A possible reason for
why our predictions imply that the probability for this event is too low could be because
the total number of fields has been chosen too low with ν = 150. This is in line with results
by Lillestøl and Sinding-Larsen (2017; 2018) who estimate a creaming discovery process
model based on Meisner and Demirmen (1981) for Norwegian oil and gas fields. Lillestøl
and Sinding-Larsen (2017, p. 79) find that allowing for a sufficiently large number of new
fields is necessary so that their resource estimate matches the one from the NPD, and in
this case the authors calculate that the chance to find another field like Johan Sverdrup
is 12%.

Turning now to GOM Deep, Figure 4.10 shows the results of the ML-EST specification
based on t = 2000 and assumption 4b. In each scenario the huge additional resources
(of 48 Gb) are discovered at rates drastically above the actual rate that instead declines
during 2005-20, showing that such a large resource potential is at odds with the actual
discovery record until 2020. As the resource potential of the FIT-URR specifications is
of similar magnitude (see Table 4.7), this casts some doubt on the large undiscovered
resource estimates as reported in BOEM (2017). Thus, the deviation of our forecasts in
Figure 4.10 from the actuals is due to greatly overestimated resources. It remains the
question why the ML-estimation procedure for t = 2000 has given such an overestimated
resource potential. From Figure C10 in Appendix C one can see that the likelihood
profile from which β̂ was determined is very flat. In fact, it is not possible to reject with a
likelihood ratio test at the 10% significance level any β-values in the range of [−0.5, 0.65].
The higher values in that range would imply a much lower resource potential.71 The
reason for the flat likelihood profile is probably the lack of a clear declining trend in the
discovery size per discovered field before the year 2000 (see Table 4.4, or the middle panel
of Figure C7 in Appendix C). As discussed at the end of section 4.5.1, this is probably
because there is instead a clear depth bias in the discovery sequence which overshadows
the size bias.

Among all the specifications we estimated for GOM Deep, the ML-EST specification for
t = 2005 with an implicit total resource estimate of 19 Gb fits best to the actuals. This is
shown in Figure C16 in Appendix C, where scenario 3 provides a match with the actuals
that is not too bad. Even here the predictions for the discovery rate are persistently above
the actuals. Potentially, this mismatch could also arise if the published reserve estimates
pertaining to the more recent discoveries are underestimations of the “true” remaining
reserves. The could be either since several pools discovered before 2020 are missing in
the reserve reports, e.g. because they are not yet assessed in terms of the profitability
of recovery, or due to future reserve growth. If substantially increased field sizes are
reported in future reserve publications, especially for the more recent discoveries since
reserve growth more strongly affects fields in the initial years after discovery (see, e.g.,
figure 1 in Schmoker and Klett (2000)), the decline of the discovery rate during 2005-20
might not be as pronounced as shown in the figures.

Despite the general mismatch of the forecasts in Figure 4.10 when compared to the actuals,
scenario 3 of the figure provides a nice example that illustrate some conditions under
which the model produces curves without evident peaking, i.e. where the production

71Also the rather high value ν = 300 (or 250) was chosen for the total number of fields, which has a

large impact on the resource estimate for β̂ = −0.3 (see the right panel of Figure C10).
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and discovery rates are rather flat. For scenario 3 of Figure 4.10 we have specified a
nearly linear trend function for exploration wells, with the result that the pace at which
new fields are discovered (as shown by the orange lines) gradually slows down over time.
Combined with the negative value β̂ = −0.3, which implies that successive fields become
larger on average, this yields extended plateaus for both the discovery and the production
rate. Table 4.8 shows that in scenario 3 of Figure 4.10 the production is at a plateau
for more than 25 years and that the decline rates are very low. Thus, we have obtained
here a constellation of parameters where discovery and production clearly deviates from
a bell-shaped or hump-shaped curve. In contrast, scenario 1 shows a strongly increasing
rate of exploration effort (that is probably highly unrealistic logistically or in terms of
economic costs), resulting in a fast discovery of the remaining fields, and in discovery and
production curves with a pronounced peak and a sharp decline side (see Table 4.8).72

Overall, the logic of the model and our empirical results suggest that flat profiles emerge
only for the case of non-positive or “very low” values of β̂. To illustrate this, consider
the FIT-URR specifications for Norway as an example, shown in Figures C14-C15 in
Appendix C. Here the amount of undiscovered resources is also quite large but β̂ = 0.25.
The figures show that the discovery and production curves are again rather hump- or
bell-shaped than flat (though this conceptual distinction is, of course, a gradual one), and
that the additional resources do not prevent production from declining but only mitigate
the rate of decline.

As a side note to the results for GOM Deep, note that average water depth shows an
increasing trend with discovery order (see Tables 4.4-4.5), and that water depth can range
up to 9000 ft for these deepwater fields. Hence, even if the large undiscovered resources as
estimated in BOEM (2017) are to be discovered in the form of many large but at the same
time deeper fields, the energy required to extract oil from these fields will be substantially
higher. As the quantity that is relevant to the economy is the net energy that remains
after deducting the energy required for extraction, a hypothetical curve for net energy for
this case could be substantially below the oil production curves shown in Figure 4.10.

4.6 Conclusion

Let us conclude by summarizing and commenting on the major takeaways from our em-
pirical analysis. At first, the descriptive analysis in sect. 4.5.1 has established with simple
methods that there is a size bias for oil field discoveries in GOM Flat and Norway. For
GOM Deep the size bias is less evident and is only present when analyzing all discoveries
until 2020. The finding that larger oil fields tend to be found first is not only in align-
ment with “industry folklore” but also with similar findings in the literature for the North
Sea (e.g., Smith and Ward (1981); Michel (2011)), and also for other oil plays (e.g., Lee
(2008); Chen and Osadetz (2009)). Since the size bias is the key axiom of the size-biased
sampling discovery process model, the model seems in principle suitable based on the
descriptive analysis. Because the axioms as stated in sect. 4.3.2 also imply that size is

72To bring the point home we show in Figure C17 in Appendix C also the result from a specification
based on assumption 4a (for t = 2005 and with the parameters from the FIT-URR specification in Table
4.7). For scenario 3 we have extrapolated a bounded growth curve for the cumulative number of discovered
fields, with the result that the production and discovery rates have flat profiles until all remaining fields
are found. (To fit the bounded growth curve, however, we had to add the arbitrary assumption that all
fields are found by 2050.)
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the only variable that influences the discovery order (and that the residual influence is
“chance”), a violation in the form of other factors with strong influence on the discovery
order can, of course, introduce bias into the estimates derived from the model. In sect.
4.5.1 we have found that water depth is another variable that influences the discovery
order. In particular, we have found for each region that there is a clear tendency of in-
creasing water depth, i.e. a depth bias, which is in line with what is known for the deep
water plays in the GOM (Burgess et al. (2021), p. 13; Managi et al. (2005)). This finding
is not fully surprising since deep water technologies such as tension leg platforms or sub-
sea completions have become commercial only since the 1980s (Managi et al. (2005), pp.
622f.). Lastly, sect. 4.5.1 has found for all three regions that the lognormal distribution
provides a fairly good approximation to the empirical field-size distribution and seems
better suited than the Pareto distribution.

Secondly, we have reported in sect. 4.5.2 the undiscovered resource and URR estimates
as estimated via maximum likelihood from the discovery process model. For most of the
selected years for GOM Flat and Norway the ML-estimation has returned point estimates
for URR which are below the resources known with hindsight as of 2022. When all data
until the most recent year are used, the remaining resource estimates are often fairly small
compared to the resources that are already discovered. Besides, for Norway and for GOM
Deep (for t = 2005, 2020), the resulting URR estimates are substantially below the point
estimates published by the official agencies (i.e. the NPD and the BOEM). Of course, the
“true” URRs in the regions GOM Deep and Norway which are not yet fully explored are
unknown quantities associated with considerable uncertainty. Our estimates for GOM
Flat provide an example where the ML-estimation has to some degree underestimated
the “true” URR (based on total field sizes discovered by 2020).

Thirdly, as presented in sect. 4.5.3, the main purpose of this paper was to explore which
curves emerge for the discovery and production rates of the overall bottom-up model, and
to analyze how well these curves can predict the actuals. For GOM Flat and Norway,
using discovery sequences until the years 1962 and 1984, respectively, has yielded discovery
and production curves which to a reasonable degree match to the pattern of the actuals,
even quite far out-of-sample. Possible reasons for the remaining mismatch between the
discovery and production curves and the actuals for GOM Flat and Norway have been
discussed in sect. 4.5.3. For GOM Deep our predictions are overall less conclusive,
driven by large discrepancies between the estimated amounts of undiscovered resources
when using discovery sequences of different lengths and in comparison to the estimates
from BOEM (2017). Here the estimation based on the discovery sequence until 2000
has returned a discoverability parameter β that is negative with a consequentially large
undiscovered resource estimate. This has happened probably because of the lack of a clear
pattern of size bias within the discovery sequence before 2000, where instead there is a
clear bias due to water depth. In the corresponding predictions, the simulated discovery
rates drastically overpredicts the actual discovery rate.

Despite the mismatch of these specifications for GOM Deep when compared to the actual
discovery rate, the results have given interesting insights into the conditions under which
curves that are “rather flat” can emerge. When the negative β parameter is combined with
a scenario where there is a gradual decline in the pace at which new fields are discovered,
we obtain curves where the production rate is rather flat instead of following a hump- or
bell-shaped curve. Overall, though, when the discoverability parameter β is “far enough”
above zero, our results indicate that roughly hump- or bell-shaped curves emerge and
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that oil production peaks when - or mostly before - half of the oil is extracted. Campbell
and Laherrère (1998, p. 80) have claimed in support of the Hubbert model that “adding
the output of fields of various sizes and ages [...] usually yields a bell-shaped production
curve for the region as a whole”. The bottom-up model presented in this paper provides
a mathematical framework to examine this phenomenon. Of course, several similar and
differing models or empirical calculations have been brought forward as an explanation for
this phenomenon (aside from the references mentioned in sections 4.1-4.2, see for example
Miller and Sorrell (2014), p. 14; Stark (2008); Bentley (2002); Michaelides (2017); Mohr
and Evans (2008); Bardi (2005); Kaufmann and Cleveland (2001)). Thus, the framework
described in this paper should be regarded as complementary.

The nature of the bottom-up approach is such that it is allows for various extensions
(Jakobsson (2012), p. 71). It can also serve as a theoretical guidepost to discover new
research questions (Jakobsson et al. (2014), p. 121). For example, we have specified for
the oil production profiles that the duration between discovery and first oil production is
constant. Additional research could further investigate this issue, as in Mihalyi (2021),
and introduce time dependent or field-size dependent durations into the model (see also
the discussion at the end of sect. 4.3.4). Moreover, with the constant parameter for the
“empty area” (b0) we have assumed that the success rate of exploration wells diminishes
after each discovery. In this regard, future research could examine whether and to which
extent the information gains that accumulate with exploration activity narrow down the
area that is searched for new oil fields. Based on this the assumption of a constant b0
and thus of monotonously declining success rates could be relaxed. Also, besides the
number of exploration wells there are other proxies for exploration effort, such as the
cumulative meters drilled by exploration wells. This measure can account for variation in
drilling depth and also for horizontal drilling that has become widespread due to technical
advances.

Furthermore, since our estimation procedure has shown the tendency to underestimate
the regional URR, future research could instead apply the multivariate discovery process
model as in Nair and Wang (1989), Lee (2008, pp. 40ff.), or Chen and Osadetz (2009).
Here the successive sampling probabilities from assumption 2 are not only a function of
size (recoverable oil), but instead of a multiplicative index of several jointly distributed
lognormal variables. This would allow not only to include size into the estimation proce-
dure but also water depth, or to break down the size variable according to the reservoir
equation into the variables areal extent, net pay, et cetera (see Chen and Osadetz (2009),
p. 107).

Finally, another avenue would be to use a different discovery process model for the esti-
mation of the undiscovered resources and the prediction of the undiscovered field sizes. In
particular, one could use the “creaming” discovery process model introduced by Meisner
and Demirmen (1981) and recently used by Lillestøl and Sinding-Larsen (2017). Here
the size bias phenomenon is introduced by a mean parameter (the “creaming factor”)
that diminishes with the successive discoveries where the field sizes are distributed as
independent lognormal random variables, which makes the whole estimation procedure
computationally much simpler. Lillestøl and Sinding-Larsen (2017; 2018) use an exponen-
tial functional form for the creaming factor in their empirical application to Norwegian
oil and gas fields, and obtain a good fit to their dataset and to the resource estimates
published by the NPD. A particular nice feature of the creaming model is that there is no
need to specify the parameter for the total number of fields (n or ν) prior to the estimation
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of the other parameters, so that misspecification of this parameter cannot interfere with
the parameter estimation. Besides, the creaming model is amenable to a full Bayesian
estimation, see Lillestøl and Sinding-Larsen (2018). Although the model based on suc-
cessive size-biased sampling from a finite population is conceptually more satisfying, our
results suggest that it can have poor predictive power for certain discovery sequences,
and it certainly involves the problem of specifying the total number of fields because the
estimation thereof is fraught with problems. In other words, although the simpler cream-
ing model may not be “the best possible explanation of the exploratory behavior itself”
(Lillestøl and Sinding-Larsen (2017), p. 82) it may give reasonable predictions and is
computationally simpler. Therefore, future research could work on combining the cream-
ing model with the other parts of the overall model (field-level production, exploration
success and discovery times) presented in this paper.
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5 A Wavelet Analysis of the German Wholesale Elec-

tricity Market Using Daily Data

5.1 Introduction

Understanding electricity market dynamics and their evolution over time is important for
market participants such as power generators, grid operators, regulators, and industrial
electricity consumers. Electricity market dynamics can be subject to further changes in the
future if sector coupling raises the share of electricity in total energy consumption. Sector
coupling or electrification refers to the replacement of non-electric energy (mostly fossil)
used in sectors such as manufacturing, transport, and heating by electricity, preferably
generated from renewable energy sources (i.e., wind, solar, biomass, geothermal). This
is regarded as a cornerstone of current plans (e.g by the EU) to decarbonize the energy
system (Van Nuffel et al. (2018); EU (2018); EU (2020)).

This paper examines the determinants of wholesale electricity prices with methods that
can account for their cyclical as well as possibly nonstationary behavior. While for house-
holds and most smaller industrial customers retail prices as charged by the electricity
providers are of primary interest, retail prices are dynamic only over longer cycles due
to contractual fixation and are also subject to data availability issues. Therefore, this
paper examines only wholesale electricity prices. In light of the planned rapid expansion
of variable renewable electricity generation capacity (VRE, including wind and solar) and
the plans for sector coupling, important insights can arise from investigating how an in-
creasing VRE share interacts with the supply from conventional power plants, whose cost
are in large part a function of fuel input prices (e.g., coal, gas, uranium), to determine
wholesale electricity prices. Since each of these time series (VRE generation, fuel prices,
electricity prices) moves in characteristic periodic cycles that are composed of multiple
frequencies, a fundamental issue here is that the interactions among the different vari-
ables can differ substantially by frequency. As a further complication the periodic cycles
and their interactions can also change over time. Wavelet methods are best adapted to
disentangle these interactions by frequency and trace their evolution over time.

In this paper, I conduct a wavelet and cross-wavelet analysis using daily German electric-
ity market data and daily prices of coal and gas for the period 2015-2023. The German
electricity market data include time series on the wholesale electricity price, total elec-
tricity demand, and electricity generation by generation technology from which I obtain
a time series on VRE generation. Applying bi- and multivariate wavelet methods allows
me to examine the co-movement of electricity demand, VRE generation, and fossil input
prices with electricity prices as a function of frequency and time. This is an advantage
to spectral analysis methods (which operate only in the frequency domain) and to more
traditional time domain methods (e.g., vector autoregression, cointegration).

Wavelet analysis is a commonly used method in economics already for some while. Some
recent applications are, among others, Rua and Nunes (2009), Alvarez-Ramirez et al.
(2012), Aguiar-Conraria et al. (2012), Verona (2016), Flor and Klarl (2017), Aguiar-
Conraria et al. (2020), Krüger and Neugart (2020), and Krüger (2021). There is also a
growing literature where wavelets are used to study topics in energy economics, including
for example Sousa et al. (2014), Papaioannou et al. (2015), Aguiar-Conraria et al. (2018),
Aguiar-Conraria et al. (2021).
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This paper proceeds as follows. Sect. 5.2 reviews the related literature on electricity
price determinants, including both the related literature where more traditional statistical
methods are used and where wavelets methods are used. In sect. 5.3, I explain the
methodology of wavelet and cross-wavelet analysis. Sect. 5.4 presents the time series data,
and sect. 5.5 present the results of the wavelet analysis. The results section is structured
into three subsections for the results from univariate, bivariate, and multivariate wavelet
analysis, respectively. Finally, sect. 5.6 concludes.

5.2 Literature Review

There is a large literature studying the relations between renewable electricity generation,
total electricity demand, and wholesale electricity prices. In this literature, many papers
find that marginal increases of renewable electricity generation tend to reduce wholesale
electricity prices (e.g., Sensfuß et al. (2008); Nicolosi and Fürsch (2009); Würzburg et al.
(2013); Ketterer (2014); Cludius et al. (2014); Benhmad and Percebois (2018); de Lagarde
and Lantz (2018); Sapio (2019); Maciejowska (2020); Cevik and Ninomiya (2022)). Since
Sensfuß et al. (2008) this effect has been referred to as the merit order effect. The merit
order refers to an ordering of the different power producers in terms of increasing marginal
cost, yielding a short-term marginal cost curve. Intersecting the curve with an electricity
demand curve that is inelastic during a short time period (e.g. an hour) determines the
marginal power producer and the market price for this time period. Since renewable
energy providers have negligible marginal cost (but instead fixed cost), when renewable
energy production is high (or demand is low) only the conventional power plants with
comparatively lower marginal cost are producing, and thus prices are reduced.

In this way, several papers identify the residual demand as a key determinant of electricity
prices (Nicolosi and Fürsch (2009); Cludius et al. (2014); Wozabal et al. (2016); Kyritsis
et al. (2017)). This quantity is defined as total electricity demand minus renewable
generation, which therefore is the quantity that needs to be supplied by conventional
power plants. For the German electricity market, one can observe a clear-cut positive
correlation between the residual demand and the wholesale electricity price (Nicolosi and
Fürsch (2009); Cludius et al. (2014)).

Moreover, several papers examine how renewable electricity generation impacts the volatil-
ity of wholesale electricity prices, overall finding that wind power increases price volatility
while solar power tends to reduce it (Ketterer (2014); Kyritsis et al. (2017); Rintamäki
et al. (2017); Maniatis and Milonas (2022)). Other papers use quantile regression to an-
alyze which factors impact the distribution quantiles of wholesale electricity prices (Do
et al. (2019); Sapio (2019); Maciejowska (2020)).

For empirical examinations of electricity prices as a function of renewable generation share,
instead of analyzing marginal effects on wholesale electricity prices based on the merit
order, more relevant for households and many industrial customers might be long-run or
cross-country analyses of retail (i.e. end-user) electricity price levels. In Germany, retail
prices include, in addition to passing on wholesale prices, distribution cost and profit
margins for electric utilities, grid fees as compensation for transmission grid operators,
electricity taxes and concessions, as well as certain levies. The biggest of these levies in
Germany was the so-called “EEG-Umlage” introduced in the year 2000, which was levied
to compensate the grid operators, who are obliged to remunerate any renewable electricity
generation with fixed feed-in tariffs or a market premium to the wholesale price (§19 of
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EEG, German Renewable Energy Law). Since the 1st of July 2022, however, the levy is
no longer payable by end-users but instead paid for by the German government.73

There are few studies examining retail electricity prices, probably due to data availability
issues. Two recent studies are Klopcic et al. (2022) and Hannesson (2024). For example,
Klopcic et al. (2022, p. 5) calculate that German retail electricity prices for households
increased from 23.8 ct/kWh in 2010 to 27.4 ct/kWh in 2013, but then remained roughly
constant until 2019. Hannesson (2024) examines correlations between VRE share and
retail electricity price levels for households and industry both via cross-sectional and time
series regressions. The cross-sectional analysis reveals that there is a positive relation
between the two variables across countries, and via individual time series regressions for
28 countries Hannesson (2024) finds that approximately half of the countries have positive
and statistically significant regression coefficients. However, Hannesson (2024) also finds
that retail electricity prices have declined in Denmark after reaching a share of above
40% for VRE generation, and that in Germany and Australia retail prices have stopped
to increase since about 2013 while the VRE generation share has continued to rise.

Turning now to the literature that examines the impact of fuel cost of conventional power
plants on wholesale electricity prices, this literature is embedded in the literature on the
long-run co-movements among the prices of different energy commodities. The methods
commonly employed here are cointegration testing and vector error correction modeling
(VECM). Earlier studies that analyze the co-movement of energy and electricity prices
include, among others, Emery and Liu (2002), Asche et al. (2006), Bunn and Fezzi (2008),
and De Jong and Schneider (2009). For instance, Bunn and Fezzi (2008) estimate a VECM
with daily spot prices of electricity, gas and carbon allowances for Germany and the UK
for the period of 2005 until mid 2006. Key results by Bunn and Fezzi (2008), which
apply to both countries, are the existence of a single cointegration relation between the
three price series, and the result that the error correction occurs almost entirely by the
electricity price, i.e. that the electricity price follows gas and carbon prices and not vice
versa, as is consistent with role of these prices as cost fundamentals.

Frydenberg et al. (2014) examine the existence of cointegration between front-month fu-
ture prices of coal, oil, gas, and electricity for Germany, the UK, and the Nordic countries,
using daily data with coverage from 2006-2012. They find that electricity prices in all
three country groups are cointegrated with coal prices, and that UK electricity prices are
also cointegrated with gas prices. Moreover, Papaioannou et al. (2018) examine the Greek
electricity market and find similar results as Bunn and Fezzi (2008). Papaioannou et al.
(2018) use daily data from 2007-2014 on the Greek electricity spot price, the prices of
Brent oil, gas futures, and carbon allowances, as well as Greek lignite prices. Testing for
cointegration and estimating a VECM, they find a single cointegration relation between
all prices, where also here solely the adjustment of the electricity price towards equilib-
rium is statistically significant and quantitatively relevant. Computing also a variance
decomposition and impulse response functions, Papaioannou et al. (2018) identify gas
futures prices and carbon prices as the two main drivers of the Greek electricity price,
while the contributions of Brent oil and lignite prices are found to be negligible.

Cointegration analysis and vector autoregressions are time domain techniques. In con-
trasts, wavelet methods allow analysis in both time and frequency domain. Wavelet
analysis is a commonly used method in economics already for some while. Some early

73See https://www.bundesregierung.de/breg-de/themen/tipps-fuer-verbraucher/eeg-umlage-faellt-
weg-2011728
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applications in economics and finance are Ramsey and Lampart (1998b; 1998a), Gençay
et al. (2005), Gallegati et al. (2011), which all rely on the discrete wavelet transform.
Later papers started using the continuous wavelet transform (e.g., Rua and Nunes (2009);
Alvarez-Ramirez et al. (2012); Aguiar-Conraria et al. (2012)). Among the many recent
economic applications using the continuous wavelet transform are, for example, Krüger
(2021) with an evaluation of leading business cycle indicators for the German economy,
Krüger and Neugart (2020) and Aguiar-Conraria et al. (2020) who examine the stability
of Okun’s law across time and frequency, and Verona (2016) and Flor and Klarl (2017)
with financial applications.

There is also a growing literature where the continuous wavelet transform is applied in
energy economics. For example, Papaioannou et al. (2015) examine the market integra-
tion between Italian and Greek electricity markets via bivariate wavelet analysis of their
wholesale electricity prices. Sousa et al. (2014) apply bi- and multivariate wavelet tools to
examine the link between EU ETS carbon prices and front-month future prices of electric-
ity, gas, and coal. A key finding by Sousa et al. (2014) is that carbon prices and electricity
prices are highly correlated at low frequencies, and remain so after controlling for the effect
of the other variables, while the correlation between carbon price and gas or coal prices is
significantly reduced after removing the influence of the other variables. Aguiar-Conraria
et al. (2018) conduct a similar analysis for the California carbon market and examine the
interaction of carbon prices with gasoline and electricity prices. Their key results from
computing partial coherences can be summarized as follows. Gasoline and carbon prices
have significant partial coherence at cycles with lengths around a year and half a year,
where the two prices move in an out-of-phase relationship. For electricity and carbon
prices they find that there is significant partial coherence at the same frequencies but
over comparatively shorter portions of the sample period. At the half-year frequency the
coherence and phase difference plots overall show an unstable relation between electricity
prices and carbon prices. In contrast, at the yearly frequency the coherence is significant
between mid 2015 and late 2016 (with a sample period covering 2014 - late 2017) where
also the phase difference shows a stable in-phase relation.

Finally, Aguiar-Conraria et al. (2021) apply multivariate wavelet analysis to European,
Japanese, and U.S. gas prices to examine the gas market integration. They first find from
computing bivariate coherences the strongest connection between European and Japanese
gas prices. Computing partial coherences then reveals that a large portion of this is
actually driven by the Brent oil price, which itself is highly correlated with European and
Japanese gas prices but less so with the U.S. gas price. When the influence of the Brent
price is removed, significant coherence remains only at the longest cycles (6 - 9 years), and
this result is alike for all three gas price pairs. This result from Aguiar-Conraria et al.
(2021) exemplifies how bivariate coherence can give a “clouded” picture of the actual
relations and illustrates the benefit of using partial coherences.

5.3 Wavelet and Cross-Wavelet Analysis

In this section, I explain the wavelet analysis tools that are used in this paper. Tools
for uni- and bivariate time series are explained in sect. 5.3.1, while tools for multivariate
time series are covered in sect. 5.3.2.

Wavelet analysis applied to time series can be regarded as a recent refinement of spectral
analysis (see, e.g., Jenkins and Watts (1968); Koopmans (1974); Percival and Walden
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(2020) for book-length treatments of the spectral analysis of time series). It can be seen
as a refinement due to the fact that the wavelet transform allows to examine how the
spectral properties of a time series change over time, thus providing resolution in both
time and frequency domain. An earlier technique for providing time-frequency resolution
is the so-called windowed Fourier transform, but the wavelet transform is advantageous.
This is because the windowed Fourier transform uses windows of same width regardless of
the frequency that is to be resolved, while the wavelet transform automatically compresses
(stretches) the width of the wavelet when higher (lower) frequencies are to be resolved
(see, e.g., Daubechies (1992), pp. 3f., for an illustration).

5.3.1 Uni- and Bivariate Wavelet Tools

The continuous wavelet transform (CWT) of a single time series {xt} in discrete time with
t = 1, . . . , T represents the time series {xt} as a bivariate function in time and frequency
space. The first step of the wavelet transform is the selection of a “mother wavelet”,
a continuous function ψ(t), from which a family of “daughter wavelets” can be derived
by ψs,τ (t) = |s|−1/2ψ

(
t−τ
s

)
. Here, the parameter τ ∈ R controls the time translation

and s ∈ R controls the scale (inverse of frequency) where |s| > 1 stretches and |s| < 1
compresses the wavelet.

Several choices for ψ(t) exist, which can be real-valued or complex-valued. In this pa-
per, the analysis is carried out using the R-package ’WaveletComp’ (version 1.1, see
Rösch and Schmidbauer (2018)), which implements all wavelet transforms with the Mor-
let mother wavelet. The Morlet mother wavelet is the complex-valued function ψ(t) =
π−1/4eiω0te−t2/2, where i =

√
−1 denotes the imaginary number and ω0 is a constant usu-

ally set to ω0 = 6 (Aguiar-Conraria and Soares (2014), p. 352).74 First introduced by
Grossmann and Morlet (1984), the Morlet wavelet is widely used due to its optimal reso-
lution compromise between the time- and frequency-domain (Aguiar-Conraria and Soares
(2014), p. 352). Letting ∗ denote the complex conjugation, the CWT of the time series
{xt} is defined formally as its convolution with the function |s|−1/2ψ∗( ·

−s

)
, i.e.,

Wx(τ, s) =
T∑

t=1

xt
1√
|s|
ψ∗
(t− τ

s

)
, τ, s ∈ R, s 6= 0. (5.1)

The WaveletComp package implements the CWT not by directly evaluating the convolu-
tion (5.1), but instead by multiplication in Fourier space and using Fast Fourier Transform
(FFT) algorithms (see Torrence and Compo (1998) for details).

For complex-valued wavelets as the Morlet wavelet, the CWT is generally complex-valued,
thus containing modulus and phase coordinates. In accordance with the terminology from
spectral analysis, the wavelet power spectrum is defined as the squared modulus (divided
by s for bias correction),75 Px(τ, s) = 1

s
|Wx(τ, s)|2, and the phase angle is defined as

74To meet the formal admissibility condition for wavelets, the Morlet wavelet is more correctly defined
as ψ(t) = π−1/4(eiω0t − e−ω2

0
/2)e−t2/2 (Aguiar-Conraria and Soares (2014), p. 365), but for ω0 = 6 the

correction term is so small that it can be ignored for numerical purposes.
75Division by s is implemented in the WaveletComp package as it reduces bias in the wavelet power

spectrum, see Liu et al. (2007)
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φx(τ, s) = arctan
(

Im(Wx(τ,s))
Re(Wx(τ,s))

)
∈ (−π, π].76 The wavelet power spectrum has the inter-

pretation of an estimated variance as a function of time and frequency (inverse of scale),
analogous to a Fourier power spectrum estimate which is interpretable as an estimated
variance in the frequency domain only.

With more than a single time series, interest lies in applying the wavelet methodology to
analyze how the covariance and correlation between the time series at different frequencies
evolve across time. For two time series {xt} and {yt}, the cross-wavelet transform (XWT)
is defined in terms of the CWTs of the two time series, Wx(τ, s) and Wy(τ, s), simply
as Wxy(τ, s) = 1

s
Wx(τ, s)W

∗
y (τ, s).

77 The cross-wavelet power spectrum, given by the
modulus of the XWT, is interpretable as an estimated covariance (or rather its absolute
value) as resolved in frequency and time domain. This is analogous to the modulus of the
sample cross spectrum in spectral analysis which provides a measure of covariation in the
frequency domain only.

The measure of correlation analogous to the complex coherency from spectral analysis is
the complex wavelet coherency, which is defined as

%xy(τ, s) =
S(Wxy(τ, s))√

S(Px(τ, s)) · S(Py(τ, s))
, (5.2)

where S(·) denotes the smoothing operation across scale and time.78 As in the spectral
analysis case, smoothing is necessary since otherwise %xy would have modulus of exactly
one for all times and scales. Due to smoothing %xy is indeed a complex-valued correlation
coefficient since it has modulus in [0, 1], as follows from the Cauchy-Schwarz inequality.

As in Rösch and Schmidbauer (2018, p. 7), I will refer to the squared modulus of the
complex wavelet coherency as the wavelet coherence, R2

xy(τ, s) = |%xy(τ, s)|2. This the key
measure of “strength” of the co-movement between two time series after dissection into
frequency- and time-domain. It is formally analogous to the coefficient of determination
from statistics, as it represents information about the strength but not the sign of the
correlation.

As a measure of the sign of the correlation, using a complex-valued wavelet allows to
quantify the lag-lead relationship between two time series. In particular, this can uncover
whether the co-movement relation at a specified frequency band is in-phase (positive
correlation) or out-of-phase (negative correlation), and whether this relationship is stable
or unstable over time. In this paper, the phase difference between series xt and yt is
computed as the phase coordinate of the complex wavelet coherency,79

φxy(τ, s) = arctan
(Im(%xy(τ, s))

Re(%xy(τ, s))

)
∈ (−π, π]. (5.3)

76The convention is that the angle lies in (0, π) (or (−π, 0), respectively), if the imaginary part of the
complex number is positive (or negative, respectively).

77Division by s is implemented in the WaveletComp package also for the bivariate case, also for bias-
correction, see Veleda et al. (2012).

78Intuitively, the smoothing operation can be thought of as producing a weighted average from a finite
number of equally-spaced points located within a certain window around the point (τ, s).

79Some papers instead define the phase difference as the phase coordinate of the XWT, which can differ
somewhat from my definition since the coherency is affected by smoothing. I use the definition in (5.3)
because only this can be carried over to the multivariate case (see remark 2.2 in Aguiar-Conraria et al.
(2018)).
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If the phase difference is exactly zero then both series move in perfect lockstep, while
for a phase difference of π or −π both series move perfectly anti-cyclical. Making the
abbreviation φxy ≡ φxy(τ, s), we can summarize the lag-lead relationship as follows
(Aguiar-Conraria and Soares (2014), p. 356): both series move in-phase with xt leading
if φxy ∈ (0, π/2), and they move in-phase with yt leading if φxy ∈ (−π/2, 0). An out-of-
phase relationship is present if |φxy| > π/2, where xt is leading if φxy ∈ (−π,−π/2), and
yt is leading if φxy ∈ (π/2, π).

Statistical significance of the estimated coherences and wavelet power spectra can be
assessed via Monte Carlo simulation of surrogate series, as is implemented with several
options in the R-package WaveletComp (Rösch and Schmidbauer (2018), p. 8). For the
wavelet power spectra of individual time series I select the option ’AR(1)’, where the
surrogate series are red noise processes fitted to the original time series. To judge the
significance of the coherences WaveletComp offers the option ’Fourier randomization’,
where two independent surrogate series that have the same Fourier power spectrum as
the two original series are simulated.

The significance tests for the bivariate and multivariate applications carried out in this
paper are not based on the simulations done using the WaveletComp package. Since
the methods in WaveletComp do not save the simulated surrogate series, I carry out my
own implementation of ’Fourier randomization’ because this is necessary to assess the
significance when applying the multivariate wavelets tools that will be explained in the
next subsection.

My own implementation of ’Fourier randomization’ is based on the ’circulant embedding’
method as described in Percival and Walden (2020) (pp. 601-611), which can be imple-
mented efficiently via FFT algorithms. In the empirical applications I first of all take first
differences for all of the time series. Afterwards I remove whatever trend remains using
the R-command ’loess’ (with span=0.75) and also standardize the time series, since this is
what is done internally by the methods in WaveletComp (Rösch and Schmidbauer (2018),
p. 5). For the resulting time series, the simulation method then generates surrogate se-
ries of the same length, which are distributed as zero mean Gaussian stationary processes
whose Fourier power spectrum is identical to the estimated Fourier power spectrum of the
original series.80 For this, I estimate the Fourier power spectrum of the original series by
the periodogram (e.g., Percival and Walden (2020), p. 170). Since the different series are
generated independently, this allows to derive the Monte Carlo distribution of the wavelet
coherence (as a function of (τ, s)) under the null hypothesis of no coherence between any
of the series, while permitting auto-correlation (i.e. nontrivial univariate Fourier power
spectra) in each series.

In all simulations I use 1000 repetitions. In order to keep the simulations of the coheren-
cies computationally tractable, I make the following approximation: after computing the
wavelet coherency between a pair of surrogate series, I only use the values from each 20th

point (τ) in time-space and each 5th point (s) in frequency-space. I then approximate
the wavelet coherencies for all points in-between by linear interpolation. This is unlikely
to create large error since the CWT (eq. 5.1) is continuously differentiable. Indeed, by
comparing the areas of statistical significance (in the bivariate coherence plots) which
result from my own simulations with those computed using the ’Fourier.rand’ option of

80By implication, the process also has an auto-covariance function that is identical to the estimated
auto-covariance function of the original series.
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the WaveletComp package, I observe that the areas are nearly identical, which serves as
a check on the accuracy of my simulation procedure.

5.3.2 Multivariate Wavelet Tools

When one is concerned with more than two time series there can be interactions between
any of them, thus there is a need to account for these interactions in the wavelet analysis.
Luckily, since complex wavelet coherency is formally entirely analogous to the correlation
coefficient, as is the case for Fourier coherency in spectral analysis, the techniques from
linear regression theory and from correlation analysis based on the multivariate normal
distribution can be applied here (Aguiar-Conraria and Soares (2014), p. 357). Thus,
partial coherency and multiple coherence can be obtained in the same way as partial and
multiple correlation coefficients can be calculated from a correlation matrix (see, e.g.,
Kendall and Stuart (1979), ch. 27; Jenkins and Watts (1968), pp. 476ff.).

In the following, let there be multiple time series where the complex wavelet coherency
between any pair of series exists. To simplify the notation I drop the dependence on (τ, s)
so that coherency, coherence, and phase difference for the pair (i, j), i 6= j are denoted
%ij ≡ %ij(τ, s), R2

ij ≡ R2
ij(τ, s), and φij ≡ φij(τ, s), respectively. For example, if one wants

to calculate the coherency between series 1 and 2 after controlling for the influence of
series 3, the partial complex wavelet coherency denoted by %12.3, one can use the following
formula (Aguiar-Conraria and Soares (2014), p. 358)

%12.3 =
%12 − %13%

∗
23√

(1−R2
13)(1−R2

23)
. (5.4)

For the general case with p series, let A denote the p×p-matrix containing the coherencies,

A =




1 %12 · · · %1p

%∗12 1
. . .

...
...

. . . . . .
...

%∗1p · · · · · · 1


 .

Note that this is formally a complex-valued correlation matrix and thus Hermitian (and
positive definite). Partial coherencies can then be expressed in terms of the cofactors of
A. Let det(·) denote the determinant, and let Aij be the submatrix of A obtained by
deleting the ith row and the jth column, then the cofactor to the (i, j)th entry in A is
defined as (−1)(i+j)det(Aij). I also use qj as an abbreviation for all series except 1 and j,
i.e. qj = {2, . . . , p}\{j}. Then, one can compute the partial complex wavelet coherency
between series 1 and j, controlling for the influence of all other series, by (Aguiar-Conraria
and Soares (2014), p. 369)81

%1j.qj
= − (−1)(j+1)det(Aj1)√

det(A11) · det(Ajj)
. (5.5)

81The partial coherency %1j.qj
involves the cofactor to the (j, 1)th entry in A (i.e., the order is swapped)

because this cofactor appears as the (1, j)th entry in the inverse A−1(up to the constant 1/det(A)). See
Kendall and Stuart (1979), ch. 27 for a derivation for the case of real-valued partial correlations. Since A

is Hermitian it follows that det(A1j) = det(Aj1)
∗, and thus from (5.5) that %j1.qj

= %∗1j.qj
, which shows

that the partial coherencies are conjugate symmetric just like the bivariate coherencies, resulting again
in a Hermitian matrix of partial coherencies.
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Table 5.1: Time series used in the wavelet analysis

Abbreviation Time series Unit

ELP Wholesale electricity price ct/kWh
TOT Total electricity load GWh
VRE Variable renewable electricity generationa GWh
RES Residual loadb GWh
COP Rotterdam coal futures price €/ton
NGP Natural gas spot price €/mill BTU

aDefined as electricity generation from onshore wind, offshore wind, and solar photovoltaic.
bDefined as TOT minus VRE.

It is easy to see that (5.4) is a special case of (5.5) for j = 2 and qj = {3}.

As above, the partial wavelet coherence and partial phase difference are derived from

this by R2
1j.qj

= |%1j.qj
|2 and φ1j.qj

= arctan
(

Im(%1j.qj )

Re(%1j.qj )

)
∈ (−π, π]. Turning now to the

multiple wavelet coherence, this measure is defined analogously to the multiple R2 in
linear regression. Denoting the multiple wavelet coherence between series 1 and all the
other series by R2

1(2...p), this can be computed from A by (Aguiar-Conraria and Soares
(2014), p. 369)

R2
1(2...p) = 1− det(A)

det(A11)
. (5.6)

Alternatively, it can be calculated from partial wavelet coherences by the recursive formula
(Aguiar-Conraria and Soares (2014), p. 370)

R2
1(2...p) = 1− (1−R2

12)(1−R2
13.2) . . . (1−R2

1p.(2...(p−1))). (5.7)

Finally, I also want to compute the multiple wavelet coherence between series 1 and series
2, ..., (p − 1), after controlling for the influence of series p. This can be done by first
computing the partial coherencies ρij.p for all (i, j) with 1 ≤ i < j ≤ p − 1, and then
plugging the resulting Hermitian correlation matrix into (5.6).

5.4 Time Series Data

In this section, I describe the time series data that are used in the subsequent wavelet
analysis. The time series are listed and abbreviated in Table 5.1. The first four are
electricity market data which are published online by the German Federal Network Agency
(Bundesnetzagentur).82

These are daily time series on the wholesale electricity price (which is fixed at the Euro-
pean Energy Exchange (EEX) one day ahead at 12:00), the total electricity load, variable
renewable electricity generation, and the residual load. I obtain full data coverage for all
days from the 5th of January 2015 until the 29th of December 2023, so that each time
series has a length of 3281 observations. The total electricity load refers to the aggregate

82The data are available from 2015 onwards and can be downloaded from
https://www.smard.de/home/downloadcenter/download-marktdaten/
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Table 5.2: Yearly total electricity load and electricity generation shares for Germany

2015 2016 2017 2018 2019 2020 2021 2022 2023

Total electricity load [TWh] 495 503 506 509 497 485 505 483 455
Thereof, ...
hydro + biomass + other RE [%] 10 12 11 11 12 12 11 11 12
VRE (all wind + solar) [%] 25 25 29 31 35 38 34 40 45
hard coal + lignite [%] 43 42 39 39 30 24 30 34 26
natural gas [%] 3 5 5 8 11 12 10 8 11
nuclear [%] 17 16 14 14 14 13 13 7 1
other non-renew. [%] 11 9 2 2 3 3 3 2 3
net imports [%] -4 -4 3 -3 -2 -1 4 1 5
net PHS generationa [%] -4 -4 -4 -3 -3 0 -4 -3 -3

aPHS=pumped hydro storage.

Source: German Federal Network Agency (Bundesnetzagentur), https://www.smard.de/

quantity of electricity that is taken from the Germany power grid by all power consumers
situated in Germany, thus it reflects total German electricity consumption or demand.
By definition it also equals total generation from all electricity generation units (including
net generation from pumped hydro-storage) plus the net electricity imports from neigh-
boring countries. Variable renewable electricity (VRE) generation includes onshore wind,
offshore wind, and solar photovoltaic. The residual load is defined as the total load mi-
nus VRE generation. Therefore, it includes the generation from biomass, hydropower,
net generation from pumped hydro-storage, nuclear power plants, the major fossil power
plants (lignite, hard coal, and natural gas), other fossil or non-renewable power plants
like diesel-based generators or waste incineration, and the net electricity imports from
neighboring countries. Table 5.2 shows the total electricity load for each year and the
shares of the different generation technologies and net imports in the total load.

I complement this dataset with daily time series that are proxies for the import prices of
natural gas and hard coal purchased from the international market. This is to reflect these
procurement prices as the major items of variable cost for German fossil power generation
plants. For the proxy series for natural gas import prices I obtain daily natural gas spot
prices published online by the German exchange in Frankfurt.83 For hard coal I could not
find any data source which publishes spot prices. Therefore, I use prices of Rotterdam
coal futures traded on the Intercontinental Exchange (ICE). The series is obtained from
https://www.tradingview.com/. On the major commodity exchanges like the ICE, one
can trade distinct future contracts with different maturities. The contracts are differen-
tiated by expiration month and mature at the end of the expiration month. The website
https://www.tradingview.com/ offers price information on “continuous future contracts”,
which are artificial financial instruments that concatenate different future contracts upon
maturity. In particular, I download the time series that has the abbreviation “ATW1!”
on the website. This is a so-called “front-month continuous contract” that automatically
rolls over to the future contract with the nearest expiration month once the current con-
tract expires.84 In this sense, the series should be the closest available proxy to a spot
price series.

83This is downloaded from https://www.boerse-frankfurt.de/rohstoff/erdgaspreis/
84For further explanation see https://www.tradingview.com/support/solutions/43000483493-what-are-

1-and-2-continuous-futures-contracts/
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Figure 5.1: Comparison of proxy prices to monthly import prices
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Both price series are denominated in US$, so I apply daily exchange rates downloaded
from the ECB Data Portal to convert them into €.85 Because the coal price, gas price,
and exchange rate data refer to exchange-traded contracts, no data exists for weekends
and national holidays. Both the coal and gas price data contain an opening and a closing
price for each trading day from which I construct artificial prices for weekends and national
holidays by linear interpolation between the last available closing and the next available
opening price. For each trading day I use the average of opening and closing price to
arrive at a single series. The result of this procedure are two price series (COP and NGP)
denominated in € with full data coverage for each day between 5th Jan 2015 and 29th Dec
2023.

To assess how well the proxy price series reflect the actual procurement prices of German
fossil generation plants, I also obtain monthly data from the Federal Statistical Office of
Germany (Destatis) on import price indices for hard coal and natural gas up until the end
of 2022.86 Figure 5.1 compares the monthly series obtained from Destatis to the monthly
series derived from the proxy price series by calculating monthly averages. The figure
shows that monthly import prices for hard coal are very well represented by the prices
of Rotterdam coal futures, at least until the end of August 2021 after which proxy prices
are mostly above import prices. The correlation between both series is 0.99. Import
prices for natural gas are somewhat less well represented by natural gas spot prices with a
correlation of 0.93. Especially noticeable are again the differences after August 2021 where
now proxy prices are substantially below import prices. Overall, I conclude from Figure
5.1 that both series are reasonable proxies for the long-run behavior of the procurement
prices. However, to the extent that procurement prices are fixed in the short-run via
bilateral contracts, the short-term movements in the proxy prices contain volatility that
is unlikely to be present in the actual procurement prices, and is unlikely to be passed on
to electricity prices by the German utilities. As a consequence for the subsequent wavelet
analysis, I expect to find high values for the coherence between the proxy price series and

85The series is accessible at https://data.ecb.europa.eu/data/datasets/EXR/EXR.D.USD.EUR.SP00.A/
86This is downloaded from https://www.destatis.de/EN/Themes/Economy/Prices/Publica-

tions/Downloads-Energy-Price-Trends/energy-price-trends-pdf-5619002.html
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electricity prices only for the longer periods (e.g., above one year).

5.5 Empirical Results

In this section, I report the results from conducting a wavelet analysis with the time series
listed in Table 5.1. In sect. 5.5.1, I first analyze the results of applying univariate wavelet
tools to each time series. I also discuss similarities and correlations between the time series
that can be seen either from the series directly or from their (wavelet) power spectra.
In sect. 5.5.2, I discuss the results of applying bivariate wavelet tools (i.e., coherence
and phase difference analysis) to the electricity price paired with any of the other series
(i.e., the explanatory variables). Finally, sect. 5.5.3 examines how the results from the
bivariate analysis can be refined by applying the multivariate wavelet tools introduced
in sect. 5.3.2. This is important because there can be interdependencies among any
of the explanatory variables, which could cause the bivariate analysis to give a clouded
picture of the actual relevance of the different variables. Also, I want to quantify the joint
explanatory power that the input prices and the quantity series have for explaining the
electricity price, which due to interdependencies among the variables cannot be inferred
from the individual explanatory powers.

5.5.1 Univariate Wavelet Analysis

Figures 5.2 and 5.4 depict the results of the univariate wavelet analyses for the time
series listed in Table 5.1. To assure stationarity of all time series, the series ELP, RES,
VRE, and TOT are taken as first differences, and the series NGP and COP are log-
transformed and then taken as first differences.87 The left panels in each figure plots
the time series as handed over to the R-command for computing the wavelet transform.
The middle panels of the figures show the colored plots of the wavelet power spectra,
where the correspondence between colors and numerical values can be found on right-
hand side of the plot. White lines in the plot indicate the ridges (i.e., local maxima) of
the wavelet power spectrum, and the shaded, purple-colored area is the so-called cone
of influence. This is the area of time-period space where results can only be interpreted
with caution due to the edge effects caused by the finite length of the time series (e.g.,
Torrence and Compo (1998)). Also drawn in the middle panels are black contour lines
that enclose areas of statistical significance at the 10% level. As explained in sect. 5.3,
statistical significance is assessed from comparing the wavelet power spectra to those of
1000 simulated red noise (i.e., AR(1)) processes. The right panels of the figures show
the time-averaged wavelet power spectrum, which I refer to for briefness simply as the
power spectrum. This constitutes an estimate of the spectral density of the time series
which can be interpreted just as “classical” spectral density estimates based on the Fourier
transform. Note that in contrast to the two other panels, the abscissa here shows the values
of the power spectrum instead of calendar dates. Statistical significance is depicted by the
colored dots that are superimposed onto the graph, for which blue and red dots indicate
significance at the 10%- and 5%-level, respectively.

87Table D1 in Appendix D reports the results of unit-root tests carried out with the R-package ’urca’.
The results confirm that all series are stationary after taking first differences. Since wavelet analysis
can also deal with nonstationary time series, I also show the analogous figures of the univariate wavelet
analysis with time series in levels in Figures D1-D2 in Appendix D.
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Figure 5.2: Univariate wavelet results

Time Series: ELP
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Time Series: NGP
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Figure 5.3: Wholesale electricity, natural gas, and hard coal prices in levels
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Note: the lower panel “zooms in” on Jan 2015 - July 2021, the time period before the price
explosion. The colors of the axes match the colors of the time series. Units are given in the
legend.
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Figure 5.4: Univariate wavelet results (cont’d)

Time Series: RES
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The top-left panel of Figure 5.2 shows that day-to-day electricity price changes have
undergone a structural break in form of a large increase in volatility starting in mid 2021.
Consequently, the top-middle panel of Figure 5.2 shows a visibly large and significant
wavelet power spectrum at the shorter periods only from mid 2021 onwards. Considering
the electricity price series expressed in levels, which is shown in Figure 5.3 as the orange-
colored curve, reveals that there has been a strong price increase after mid 2021. The
average wholesale electricity price in 2015-2020 was fairly stable around a value of 3.5
ct/kWh. Thereafter, it increased to 9.7 ct/kWh in 2021, to 23.5 ct/kWh in 2022, and
returned back to 9.6 ct/kWh in 2023. In Figure 5.3 I also overlay the electricity price series
with the natural gas and hard coal price series, shown in red and black, respectively. As
can be seen immediately from the figure, the price explosion starting in 2021, accelerating
in 2022, and the subsequent decline in 2023 is shared by all three series. Thus, an evident
interpretation of Figure 5.3 is that the electricity price anomaly in 2021-2023 has been
caused by the movements of gas and coal prices. This will be further examined using bi-
and multivariate wavelet tools in sects. 5.5.2-5.5.3. That the increased price volatility on
international energy commodity markets had already started before the Russian invasion
of Ukraine (which began on 24th February 2022), namely in the second half of 2021, is
also found by several papers examining the pandemic-era inflation, e.g. Ball et al. (2022),
Blanchard and Bernanke (2023), and di Giovanni et al. (2023).

In Figure 5.2, the rows below continue with the results for day-to-day percentage changes
in coal (middle row) and gas prices (bottom row). From the discussion above, Figure 5.3,
and the left panels in Figure 5.2, it is now clear why also here the wavelet power spectra
show the highest volatility during the era between mid 2021 and mid 2023. Gas prices also
exhibit high volatility around mid 2020 with some exceptional day-to-day changes above
+15%. Note from Figure 5.3 that this occurs after gas prices have reached the minimum
price of the sample period in June 2020, so the increase results as a catch-up effect from
a very low price level. The low gas and coal prices during the first half of 2020 are clearly
related to the shock of the COVID-19 pandemic and the subsequent lock-down policies,
which reduced demand and demand expectations for energy. For example, oil prices even
briefly were negative during April 2020.88 Turning next to the power spectra, the middle-
right panel of Figure 5.2 shows a power spectrum for coal prices which is statistically
larger than that of red noise chiefly for the 14-60 days period band. The bottom-right
panel shows that for gas prices this is the case mainly for the 2-7 days period band, but
also for the period of a year. A plausible explanation here is that the widespread use of
gas for the heating of buildings in Germany induces important yearly periodicity into the
gas price series. Overall, Figure 5.2 reveals that the power spectra of the two price series
COP and NGP put higher weight on larger periods as compared to that of the electricity
price series.

Turning now to Figure 5.4 with the electricity-quantity time series, and first to the middle
row for the total load, one sees that day-to-day changes of the total load rarely exceed
±300 GWh (compared to an average daily total load for 2015-23 of 1353 GWh). In
comparison, the residual load and VRE generation exhibit a larger range of day-to-day
changes caused by the inherent intermittency of the variable renewables, which I will
analyze in more detail in a paragraph below. Considering beforehand the (wavelet) power
spectra of the residual and the total load, one sees at first that these are fairly stable over
time and, secondly, that these show pronounced maxima at the 7- and 3.5-day periods.

88See https://www.eia.gov/todayinenergy/detail.php?id=46336.
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Figure 5.5: Fourier power spectra of the total load (day-to-day changes) and of a 7-day
periodic dummy series
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Note: the dotted red lines are at 3.5 and 7 days. The dummy series is a 7-day periodic series
with value 1 at days 1-5 and value -1 at days 6-7, which is repeated to give a series of 3820
observations.

It is evident that the residual load “inherits” this from the total load and that the 7-day
periodicity in the latter is caused by the weekly cycle of electricity demand with higher
demand on work days than on weekends.

What explanation can be found for the importance of the 3.5-day period? It turns out
that this is largely an artifact due to the 7-day periodicity being composed of 5 work days
followed by 2 days of weekend. In Figure 5.5, I compare the power spectra of day-to-day
changes in the total load with that of a 7-day periodic dummy series that takes on the value
1 for 5 days and then equals -1 for 2 days. Both power spectra are computed as simple
periodograms via the discrete Fourier transform, are then smoothed across frequency, and
plotted on a log-scaled period axis. The figure reveals the clear-cut similarity between
the two power spectra, as both are dominated by two peaks located precisely at 3.5 and
7 days.

Considering next the results for VRE generation depicted in the bottom row of Figure
5.4, one can see that day-to-day changes on many days exceed ±300 GWh. Besides, it
is visible from the left and the middle panel that the volatility of VRE generation has
gradually increased over the sample period. Turning to the power spectrum on the right
one sees that, much in contrast to what is the case for the total load, the power spectrum
declines gradually, almost linearly, for the periods between 3-30 days. This shows how
the inherent intermittency caused by weather-dependency is reflected in a power spectrum
with a broader range of periodicities. To examine the VRE time series and in particular
its volatility in more detail, I show in Table 5.3 several statistics for 2015-23. In Table D2
in Appendix D, I also report the same statistics for the three components solar, onshore
wind, offshore wind, and for comparison also for nuclear power. In the tables, the first
row showing the installed generating capacity is based on data that is also available at
https://www.smard.de. The rows below report the mean, the capacity factor, and the
coefficient of variation for daily generation. Rows 1-3 of Table 5.3 show how the mean
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Table 5.3: German VRE generation capacity, mean and variability of daily generation

2015 2016 2017 2018 2019 2020 2021 2022 2023

Installed generating capacitya [GW] 79.6 87.6 95.7 102.0 106.7 112.2 118.2 124.8 135.5
Daily generation, mean [GWh] 340 338 404 432 476 504 463 523 567
Daily generation, capacity factor [%] 18 16 18 18 19 19 16 17 17
Daily generation, coef. of var. (CV) [%] 42 42 43 41 42 42 44 40 39
Daily generation, robust CVb [%] 28 25 30 26 27 29 29 28 27

aReported are the means between two consecutive years as the original data refer to installed capacity on 1st of January.
bDefined as the interquartile range divided by the sum of the quartiles.

Source: German Federal Network Agency (Bundesnetzagentur), https://www.smard.de/

daily VRE generation rises alongside the installed generation capacity at a fairly stable
proportion, with an average capacity factor over the sample period of 17.5%. The last two
rows report the coefficient of variation (CV) and a robust version of this statistic (e.g.,
Arachchige et al. (2022)). Both coefficients lie within a range of 5 percentage points,
which suggests also a fairly proportional relationship between volatility and mean of daily
VRE generation.

To conclude this subsection, note that from the relation RES = TOT − VRE and the
right panels in Figure 5.4, one can see how the power spectrum of the residual load is a
“mixture” of the more narrow spectrum of the total load and the broader spectrum of
VRE generation. Besides, comparing the power spectrum of the residual load with that
of the electricity price in Figure 5.2 reveals that both look strikingly similar, and in fact
from all pairs that involve the electricity price this is the pair with the largest overlap
in the power spectra. Hence, I expect that this is the pair where the bivariate wavelet
analysis shows the highest coherence over a broad range of periods. As discussed above in
connection with Figure 5.3, I also expect to find high coherence between electricity prices
and coal and gas prices at the longer periods.

5.5.2 Bivariate Wavelet Analysis

In this section, I separately examine the influence of each of the quantity series (RES,
VRE, and TOT) and each of the price series (COP and NGP) on the electricity price via
bivariate coherence and phase difference analysis.

Figures 5.6-5.7 depict on the left the pairwise wavelet coherences for several pairs of time
series. The calculated wavelet coherence is depicted on a color scale ranging from blue
(zero) to red (one). As above, the now light-shaded area is the cone of influence where
the results can only be interpreted with caution due to edge effects, and the black contour
lines enclose areas where the wavelet coherence is statistically significant at the 10% level.
As explained in sect. 5.3.1, this is assessed from 1000 simulations of two independent
surrogate series with a similar spectrum as the original two series. Inside the enclosed
areas, the black arrows point in the direction of the phase difference between the two
time series at the specific point in time-period space, as calculated from eq. (5.3). On
the right, the figures show how the phase differences at certain period bands evolve over
the sample period. For this, the phase differences are averaged over all periods within
a certain interval (period band) that is always annotated as the label of the y-axis. To
repeat the explanation from sect. 5.3, if the phase difference between x and y is between
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Figure 5.6: Bivariate wavelet results
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Figure 5.7: Bivariate wavelet results (cont’d)
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0 and π/2 (−π/2 and 0) the series are said to move in-phase, that is they are positively
correlated, and x (y) is leading. If the phase difference is between π/2 and π (−π and
−π/2) the series are said to move out-of-phase, that is they are negatively correlated, and
y (x) is leading.

Figure 5.6 shows that the wavelet coherence between ELP and RES is persistently sig-
nificant at the 2-30 days period band. It is also significant and high over extended time
intervals at the 30-91 days period band. The figure also shows significant coherence at
the yearly period band until mid 2020, after which this seems to switch towards the 2-
4 years period band. This is probably related to the structural break of the electricity
price series during 2021-2023, and it could also be related to changing electricity demand
patterns due to COVID policies that started in 2020. Turning to the panels with the
phase differences shown on the right, one sees first that the phase differences between
ELP and RES are very close to zero at the 2-30 and 30-91 days period bands, showing
that both variables move in perfect lockstep at these period bands. The phase difference
at the yearly period band is fairly stable and reveals an in-phase relation where the price
is leading and the quantity is lagging. Here the average phase difference over the whole
sample period, after conversion from radians to days, amounts to 41 days. It is unclear
why here price changes are leading the quantity changes of the residual demand, perhaps
this might reflect anticipatory behavior of the market participants who are well familiar
with the pattern of how total electricity demand and VRE generation tends to vary across
the seasons.

For the total electricity demand (TOT), the second row of Figure 5.6 shows the respective
plot for the coherence with the electricity price. One can observe a significant coherence
over extended time intervals only at the yearly and the 2-4 years period band. The phase
differences at these period bands are fairly close to ±π/2 (at the yearly period band, for
example, the average phase difference is 83 days, while π/2 would correspond to 91 days),
which makes an interpretation of the lag-lead relationship unclear.

Turning now to the third row of Figure 5.6 with the coherence between ELP and VRE
generation, the overall picture looks quite similar to what is shown in the first row for ELP
and RES. For the 2-14 days period band coherence is mostly significant but generally lower
in comparison to what is shown in the first row, and at the yearly period band coherence
is contiguously high and significant until mid 2020, after which it again switches towards
the 2-4 years period band. From the relation VRE = TOT − RES, it is clear why the
phase differences between ELP and VRE show approximately a mirror image of what is
the case for ELP and RES, i.e. that electricity prices and VRE generation are negatively
correlated. This can be seen from the arrows in the coherence plots which point to the
left, revealing a phase differences close to ±π, and this is also visible from the phase
difference diagrams where the phase difference frequently switches from (−π,−π/2) to
(π/2, π) at the lower period bands. At the yearly period band the phase difference is
mostly in (π/2, π), which reveals that the series move out-of-phase and that the quantity
of VRE generation is leading while the price is lagging. By converting the phase difference
averaged over the years 2015 - mid 2022 (until which it is fairly stable) from radians to
days, I obtain an estimate for the lag between VRE generation and price which amounts
to 133 days.

Turning now to the first row in Figure 5.7 for the coherence between ELP and COP, one
can see significant and high coherence at the yearly period band until 2020, and at the
2-4 years period band from mid 2018 onwards. For the 2-4 years period band the phase

113



difference is small but all the time in (−π/2, 0), with an average of −0.06 ·2π, which upon
converting to days using the mean period length of 3 years implies that changes in coal
prices lead changes in electricity prices on average by 65 days. The bottom row in Figure
5.7 shows a very similar picture for the coherence between ELP and NGP, and similarly,
the lead of changes in gas prices with respect to changes in electricity prices at the 2-4
years period band has a time average of 55 days. This stable lag-lead relation between fuel
and electricity prices is entirely plausible and may well be the consequence of contractual
fixation of coal and gas procurement prices, due to which changes in procurement prices
are passed on only with a lag.

The lag length of about 60 days can be compared to a few results from related studies
where a lag length can be inferred from the figures that are shown there. For the California
carbon market, Aguiar-Conraria et al. (2018, p. 11) plot the phase difference between
carbon and electricity prices at the yearly period band, from which I infer by inspection
approximately a time average of π/4, which converts to 45 days. For the Greek electricity
market Papaioannou et al. (2018, p. 52) show with a different method, namely with
impulse response functions, that the response of electricity prices to a shock in gas prices
reaches its full effect after about 30 days. Albeit shorter than the 60 days which I obtain for
Germany, the mentioned lag lengths can be regarded as similar in magnitude, especially
when considering that different countries, time periods, and variables (e.g. carbon price)
are examined.

5.5.3 Multivariate Wavelet Analysis

In this section, I further disentangle the correlations between the four series (ELP, RES,
COP, and NGP) by applying multivariate wavelet tools introduced in sect. 5.3.2. From the
three quantity series I focus on the residual load since it neatly summarizes the influence
of both the total load and VRE generation, and has turned out as the quantity series
that has the highest coherence with the electricity price over a broad range of periods.
Complementing the bivariate analysis from the last section with a multivariate analysis is
important because there can be significant interactions between any of the series, which
can also vary substantially by frequency and time. I have found in the previous section
that the input prices mainly impact the electricity price at lower frequencies, while the
residual load mainly impacts at high and medium frequencies. Still there is some overlap
that remains, which together with interactions among the explanatory variables may have
impacted the results in a significant manner. Partial coherency analysis allows to take
care of the interactions and thus give an “unclouded” picture. Additionally, computing
multiple coherences allows to quantify the joint power that multiple of the explanatory
variables have for explaining the electricity price series, just like what can be assessed
from the R-squared in a multivariate regression. This makes it possible to quantify the
unexplained variation as a function of frequency and time.

The first row of Figure 5.8 shows the partial wavelet coherence and phase differences
between ELP and RES, after controlling for the influence of both fuel price series COP
and NGP. For the lower period bands (e.g., 2-91 days) both the partial coherence and
the phase difference plot give a picture that is almost identical to the picture from the
bivariate analysis (upper row of Figure 5.6). This reveals that, in addition to the negligible
interactions of coal and gas prices with electricity prices at these lower periods, also the
interactions of coal and gas prices with the residual load are negligible here. For the
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Figure 5.8: Multivariate wavelet results
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yearly and the 2-4 years period band, however, the partial coherence is practically never
significant, which is different from what is found in the bivariate analysis. For the yearly
period band the lack of a stable co-movement relationship is also visible from the phase
difference diagram on the right.

The second and third row show the results for multiple coherences. Note that here no
arrows are depicted since no single phase difference can be defined from multiple lag-
lead relationships. The multiple wavelet coherence between electricity price and coal and
gas prices is depicted on the left, while the coherence between the same variables after
controlling for the influence of the residual load is depicted on the right. The third row
shows the multiple wavelet coherence between electricity price, the fuel prices and the
residual load. The difference between the right panel in the second row and the third row
can be understood as follows. In the former, the influence of the residual load is removed
from the electricity price series and from both fuel price series, so that only the variation
that remains is taken into account. In the latter, the full variation of all variables is taken
into account, just like for the multiple R-squared in a linear regression.

In the second row of Figure 5.8, the plots show a lot of red for all of the larger periods,
which reveals how much the joint correlation of coal and gas prices with electricity prices is
higher (and more stable) than the individual bivariate correlations. In terms of statistical
significance, however, the area of significant coherence is smaller in comparison to the
corresponding areas in Figure 5.7, especially in the plot on the right where the influence
of the residual load is controlled for. Here significant coherence at the periods longer
than 1 year exists only from mid 2020 onwards. One can conclude from this that, after
removing the influence of the demand for fossil fuel powered electricity, which is the major
component of the residual load, the co-movement between fossil fuel and electricity prices
before mid 2020 is actually too weak to be distinguishable from “noise” (i.e., from the
co-movement detectable between independent series with similar spectra as the original
series). This is consistent with what can be observed from Figure 5.3 where during the
price explosion all three prices move fairly close together, while for the period Jan 2015 -
July 2021 changes in fuel prices co-occur only with changes in electricity prices that are
of much smaller magnitude.

Lastly, the panel in the third row further illustrates how the residual load and the fuel
prices have their main influence on the electricity price in distinct period bands, since the
plot looks very much like a juxtaposition of the plots from the first and the second row. It
also finally shows the high joint explanatory power that the residual load and the coal and
gas prices have across the majority of the time-frequency space. In fact, the variation in
electricity prices which remains unexplained exists largely at the highest frequencies, and
this may simply be the inherent noise (i.e. unexplainable) component that the electricity
price formation process entails.

5.6 Conclusion

In this paper, I have presented a wavelet analysis of the determinants and the periodic
behavior of German wholesale electricity prices. This section summarizes the key insights
and compares them with results from related studies.

First, my results confirm previous analyses that have identified the residual load as a
key determinant of wholesale electricity prices (e.g., Nicolosi and Fürsch (2009); Cludius
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et al. (2014); Wozabal et al. (2016); Kyritsis et al. (2017)). My results go beyond the
previous analyses by determining the period band (2 days - 60 or 90 days) at which a
statistically ensured in-phase co-movement relation exists between the residual load and
wholesale electricity prices. I have also found that this co-movement occurs with nearly
instantaneous adjustment. Conversely, there is a corresponding out-of-phase co-movement
relation between VRE generation and electricity prices, although this relation is overall
less persistent over time and also weaker at the highest frequencies. This is due to the
fact that the residual load also captures the variation in total electricity demand, which
contains an important pattern of weekly variation (see Figure 5.5 above).

Secondly, my results confirm the important role of cost fundamentals (coal and gas prices)
as determinants of German wholesale electricity prices over cycles with length of a year or
more. Similar results on the long-run relation between cost fundamentals and electricity
prices are found in literature, usually examined with more traditional time series methods.
For example, the existence of cointegration relations between electricity prices and coal,
gas, or carbon prices is established by Bunn and Fezzi (2008) and Frydenberg et al.
(2014) for Germany and the UK, and by Papaioannou et al. (2018) for Greece. However,
in contrast to wavelet methods these traditional time series methods are limited with
respect to identifying at which periodic cycles the interactions take place, and are also
unable to assess how the relations between the variables change over time.89

Third, my results based on partial wavelet coherences reveal that the co-movement relation
between cost fundamentals and electricity prices is time-varying. In post-2020 Germany
electricity prices have closely followed hard coal and gas prices when these moved sub-
stantially. On the other hand, during a period of relatively stable fuel prices (2015-2020)
German wholesale electricity prices have been even more stable than fuel prices, so that
for 2015-2020 no statistically significant coherence can be found after controlling for the
influence of the residual load. This is in line with the results of Sousa et al. (2014) and
Aguiar-Conraria et al. (2018) who also find that the coherence between carbon and elec-
tricity prices is significant only for subsets of the sample period. In particular, Sousa et al.
(2014, p. 125) find that the coherence stops being significant throughout the whole year
2009, and Aguiar-Conraria et al. (2018, p. 11) find that the coherence is significant only
between mid 2015 and late 2016 (with a sample period covering 2014 until late 2017).

Fourth, the wavelet analysis has given insights into the lag-lead relations between fossil
input prices and electricity prices. My results show that coal and gas prices lead German
wholesale electricity prices by about 60 days at the lowest-frequency cycles (with cycle
lengths of 2-4 years). This number is similar to the result from Aguiar-Conraria et al.
(2018) for the phase difference between carbon and electricity prices of roughly 45 days
at the yearly frequency, which can be inferred by visual inspection of figure 5 in Aguiar-
Conraria et al. (2018, p. 11). It is also in line with the estimated impulse response
function of Greek electricity prices after a gas price shock as shown by Papaioannou et
al. (2018, p. 52).

Finally, the combined explanatory power of quantity variables (residual load, the differ-
ence between total demand and VRE generation) and cost fundamentals (coal and gas
prices) as determinants of wholesale electricity prices has been assessed. There remains
little unexplained variation across the majority of the time-frequency space (see Figure
5.8 above). When it comes to forecasting wholesale electricity prices, different market

89An exception is Papaioannou et al. (2018, p. 50) who employ a rolling-window Johansen test that
gives insight into how the cointegration test statistic evolves over time.

117



participants can be interested in different time horizons and different periodicities of the
electricity price movements. The analysis has shown which variables are relevant at cycles
with lengths ranging from a few days to several years. For the purpose of forecasting at
specific time horizons, the results have implications with regard to which variables should
be included in a forecasting model for shorter and longer forecast horizons and which
variables can be omitted. In particular, for forecasting at the time horizon of a week or
within a season of the year (i.e. a horizon of a few months), it is essential to include
total electricity demand and VRE generation, while for forecasting at horizons longer
than a year, the fuel (and carbon allowance) prices paid by conventional power plants
are indispensable variables. This finding can be relevant to the whole range of wholesale
electricity market participants such as power generators, grid operators, large industrial
electricity consumers, and regulators or government.
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6 Conclusion

This chapter gives a concise summary of previous conclusions and an outlook on future
research topics. The key insights from the main Chapters 3 – 5 are summarized in sect.
6.1 and the outlook follows afterwards in sect. 6.2.

6.1 Summary and Conclusions

Chapter 3 has reported bootstrap bias-corrected point and interval estimates for green-
house gas (GHG) emission reduction potentials for 7 main sectors in a sample of 16 large
European countries. The bottom line of the results is that these potentially feasible re-
ductions from eliminating the inefficiency relative to the most efficient countries in each of
seven sectors are quantitatively substantial. The estimated emission reduction potentials
have been compared to the recently tightened emission reduction targets set by the Eu-
ropean Commission (see EU (2020)). The target that is postulated for 2030 is to achieve
GHG emissions amounting to only 45% of the level of emissions in 1990. With emissions
in 1990 for the 16 sample countries of roughly 5000 mt, the 2030 target would require
yearly emissions of 2250 mt in 2030, i.e. a reduction by 2750 mt. Since a reduction of
1000 mt or more compared to 1990 levels was already achieved by 2020, the target implies
a further reduction of 1750 mt of GHG emissions until 2030. The estimates from Chapter
3 show that a substantial contribution to this from improving productive efficiency is con-
ceivable, since the 1750 mt are not far away from the bias-corrected emission reduction
potentials aggregated over both countries and sectors (ranging from 1271 mt in variant
(d) to 1642 mt in variant (b)), and are well within the confidence intervals.

There are, however, several reasons why it is not realistic to expect that all of the emission
reductions can be achieved in a short time period such as until 2030. These include
the circumstances that structural change (e.g. tertiarization) and changes in consumer
preferences are rather slow processes, that structural change is limited due to the role a
country plays within the international specialization (de Araújo et al. (2020)), and that it
is not uncommon that “rebound effects” occur after energy efficiency improvements have
been achieved (Greening et al. (2000)).

In Chapter 4, I have formulated a stochastic model for oil production in a region, and have
applied the model to discovery histories from Norway, from the shallow water part of the
Gulf of Mexico (GOM Flat), and from the deep water part of the Gulf of Mexico (GOM
Deep). The model contains as the key component the size-biased sampling discovery
process model that is based around the idea that oil fields are not discovered as a random
sample but instead via a successive sampling scheme where field size is the key variable
that influences the discovery order. At first, a descriptive analysis has found that there
is such a size bias for GOM Flat and Norway, while for GOM Deep the size bias is
only present when analyzing all discoveries until 2020. Water depth has been found
as another variable that influences the discovery order. Chapter 4 has then reported
estimates of undiscovered resources and of ultimately recoverable resources (URR) derived
from the parameter values that maximize the likelihood function of the discovery process
model. Overall, this estimation strategy has shown the tendency to underestimate the
undiscovered resources, because some of the URR estimates are below the resources known
with hindsight as of 2022. The obtained resource estimates have also been compared to the
published resource estimates from the official agencies of the regions (i.e. the Norwegian
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Petroleum Directorate for Norway and the Bureau of Ocean Energy Management (BOEM)
for GOM Deep), with the result that the majority of the obtained estimates are below
the published estimates.

Then, the main purpose of Chapter 4 was to explore which curves emerge for the discovery
and production rates of the overall model, and to analyze how well these curves can
predict the actuals. For GOM Flat and Norway, despite implying undiscovered resources
that are somewhat underestimated, the resulting curves for discovery and production
match to a reasonable degree the pattern of the actuals, even quite far out-of-sample.
Possible explanations for the remaining discrepancies have been outlined. For GOM Deep
we have obtained less conclusive predictions, driven by large discrepancies between the
estimated amounts of undiscovered resources when using discovery sequences of different
lengths and in comparison to the estimates from BOEM (2017). Here the estimation
based on taking the sample of discoveries until the year 2000 has returned a negative β
parameter. (Recall that in the model of Chapter 4, β is the discoverability parameter
where a positive value implies that oil fields tend to get smaller with the succession of
discoveries, while a negative value implies an “inverse” size bias so that fields tend to get
larger.) Consequentially, a fairly large undiscovered resource estimate has been obtained
for this specification for GOM Deep. Although this resource estimate is close to the
published point estimate from BOEM (2017), the resulting discovery rate predictions after
the year 2000 are drastically above the actuals, suggesting that this high resource estimate
is implausible. On the other hand, the specification with the negative β parameter has
given interesting insights into conditions under which discovery and production curves
that are “rather flat” can emerge, namely when this is combined with a gradual decline in
the pace of new field discoveries. In contrast, our empirical results from the other regions
and specifications have indicated that when the β parameter is “far enough” above zero
(i.e. successive fields tend to become sufficiently smaller on average) roughly hump- or
bell-shaped oil production curves emerge for the plausible scenarios of exploration well
drilling and new field discoveries. In these cases oil production peaks when - or mostly
before - half of the oil is extracted. This overall suggests that a ’mid-point’ peak or
Hubbert curve (i.e. a bell-shaped curve, see for example Campbell and Laherrère (1998);
Bardi (2019); Bentley (2023)) or similar but somewhat asymmetric curves (e.g. Höök
et al. (2011)) are indeed plausible approximations for the time path of oil production
under frequent circumstances. Still, in such a model, a crucial parameter is of course
the amount of oil that is eventually recoverable. The method for resource estimation
as conducted in Chapter 4 is confronted with considerable estimation uncertainties and
possible biases, also caused by the necessity to make some (hyper-)parameter choices.
Nonetheless, many possible avenues for improving the procedures of oil resource estimation
exist in the literature (see the last paragraphs of sect. 4.6), or possibly within the agencies
that are making such estimations.

Chapter 5 has presented a wavelet analysis of the determinants and the periodic be-
havior of daily German wholesale electricity prices. Consistent with previous literature
examining electricity markets with renewable energy, the residual load (i.e. the differ-
ence between total electricity demand and wind and solar generation) is found to be a
key electricity price determinant (e.g., Nicolosi and Fürsch (2009); Cludius et al. (2014);
Wozabal et al. (2016); Kyritsis et al. (2017)). By employing the powerful tools of multi-
variate wavelet analysis, which go beyond mere examinations of bivariate relationships, I
have obtained several further insights. In particular, after removing the interaction with
the coal and gas prices as confounders, it has been found that the co-movement between
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the residual load and the electricity price takes place predominantly at high-frequency
cycles with period lengths of 2-90 days, where the co-movement also occurs with nearly
instantaneous adjustment. In this way, peaks in the corresponding cycles for solar and
wind generation are associated with troughs in the cycle for electricity prices, and vice
versa. Besides, the results of Chapter 5 have revealed that coal and gas prices are key
determinants of German wholesale electricity prices at low-frequency cycles with period
lengths above 365 days. My results have also shown that the statistical significance of
this relationship is time-varying, where in particular the significance is robust only dur-
ing the time period where coal and gas prices were highly volatile (2021-2023). Similar
findings of time-varying relationships between energy prices exist in the literature (Sousa
et al. (2014); Aguiar-Conraria et al. (2018)), which illustrates the merit of using a wavelet
approach. Moreover, my results have revealed that it takes approximately 60 days for
changes in coal or gas prices to be passed on as changes in electricity prices, which is also
roughly in line with related estimates from the literature (Aguiar-Conraria et al. (2018);
Papaioannou et al. (2018)).

Finally, Chapter 5 has shown that there is little unexplained variation in electricity prices
across the time-frequency space when both quantity and price variables are used as ex-
planatory variables, but also that there is substantial variation across the time-frequency
space as to which of the explanatory variables are most important. This result can guide
the construction of forecasting models of wholesale electricity prices because it provides
valuable insights into how the different explanatory variables are of different importance
at different periodicities. In particular, when the goal is to forecast at the time horizon
of a week or within a season of the year (i.e. a horizon of a few months), it is essential
to include total electricity demand and solar and wind generation, while when the goal
is to forecast at horizons longer than a year, the fuel (and carbon allowance) prices are
indispensable variables.

6.2 Outlook

Starting with Chapter 3, the analysis presented there has the limitation that it is purely
static and does not take into account the emission reducing effects of technological change.
New technologies enabling less emission-intensive forms of energy generation and mobility
are crucial to reduce GHG emissions. Thus, a natural extension of the analysis presented
in Chapter 3 would be the application of a dynamic method that can account for changes in
the technology set occurring over time. Another extension would be to use a global country
sample. Both of these possibilities have been taken up by Fait et al. (2022), where trend
functions are employed to project into the future the GHG emission reduction potentials
that are estimated for the period 1990-2017 and for a global country sample. A further
refinement here could be the application of the Malmquist-Luenberger decomposition to
separate the yearly changes in the technology set from the yearly changes in the efficiency
of the countries relative to the current technology set.

In Chapter 4, the size-based sampling discovery process model that was used to estimate
undiscovered resources and predict future discoveries could be refined by using other
discovery process models available in the literature, with the potential for improved es-
timation results or simpler computations. The multivariate discovery process model as
employed by Nair and Wang (1989), Lee (2008, pp. 40ff.), or Chen and Osadetz (2009)
is a promising approach for delivering better estimation results. With this approach one
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can go beyond the pure bivariate relation between size and discovery order and explic-
itly take into account other field-level characteristics that possibly influence the discovery
order. Alternatively, the creaming discovery process model (see Meisner and Demirmen
(1981); Lillestøl and Sinding-Larsen (2017; 2018)) is promising as it is computationally
much simpler, which helps in particular in the bottom-up framework of Chapter 4 where
the computations from several submodels need to combined to arrive at the final predic-
tions for oil production, which necessarily involves a high degree of complexity. Besides,
the creaming model avoids the issue with the specification of the parameter for the total
number of fields prior to the parameter estimation stage (see also the discussion at the
end of sect. 4.6).

Furthermore, in the model of Chapter 4 it was assumed for simplicity that the duration
between the discovery of an oil field and the date of initial oil production is constant
and identical for all fields. In reality, there is large variation across oil fields regarding
this parameter, which can also change over time as experience from previous development
projects is gained and with the adoption of new technologies. Therefore, further studies
on the duration between oil field discovery and first oil production with different samples
of oil fields from across the world, as well as the formulation of a predictive model for this
parameter, are fruitful avenues for future research. It may also be interesting to examine
in this context whether there are policies that could incentivize oil-producing firms to
postpone the development specifically of some of the giant fields, or to temporally extend
the initial or plateau phases of the production profiles of giant fields. Such an incentivized
delay or extension of production for some of the best (i.e. largest) fields would compensate
for their early discovery caused by the size bias.

However, with respect to the current global situation where many of the world’s giant
fields and all but a few of the world’s supergiant fields are already discovered and are
producing, it would first and foremost be crucial to have better data availability at a
global level for these fields on the remaining recoverable reserves, production history,
and other key variables. These numbers could then be used to make forecasts of the
future production paths for these giants, using more sophisticated models than the simple
production profiles used in Chapter 4, including for example the potential for enhanced
oil recovery projects. Here also the impact of economic variables, technology options,
and policy on the production profiles are important research topics that would be worth
studying. When conducted at the global level, such projections for the known giant
and supergiant oil fields would considerably help to assess the future prospects of oil
availability and affordability.

Finally, the model of Chapter 4 could also be applied to assess the future availability of
other important resources than oil such as coal, uranium, or copper. Copper in particular
is a key metal because it is used in all kinds of electrical equipment and thus is vital
for renewable energy expansion. For mineral ores like uranium or copper, a key variable
related to deposit size is the concentration of the ore, called the ore grade. As this
variable is likely to influence the order of discovery (or of first production) in addition
to the variable total deposit volume (or area), it could be advantageous here to combine
both variables in a multivariate discovery process model.

Chapter 5 has pointed out the differential importance of wind and solar electricity gener-
ation, total electricity demand, and fuel prices for explaining wholesale electricity prices
at different time horizons (e.g. a week, several months, a year). Of course, the method as
applied in Chapter 5 can equally be applied to similar data from other countries. Suitable
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time series models with seasonal components could then be constructed and applied to
forecast wholesale electricity prices.

A limitation of the analysis in Chapter 5 is that only wholesale electricity prices are
examined (which are set at the European Energy Exchange), while the expenditures of
most electricity consumers are based on the retail electricity prices as set by electricity
providers. The retail prices contain as a markup the transmission grid fees and other levies
like the German “EEG-Umlage”.90 An examination of the impact of rising wind and solar
generation on retail electricity prices necessitates a long-run perspective, and a different
method more suitable to estimate long-run relationships (since the wavelet method used
in Chapter 5 is only suitable to uncover the oscillations at different frequencies). This
would also require longer time series and / or panel datasets, so that data availability
issues due to the short time series on wind and solar generation and also limited data
availability for retail electricity prices constrain the possibility of such an analysis.

Instead, it is vital that future research on the transition away from fossil energy (including
government plans and reports such as those from the EU, see e.g. EU (2019)) examines the
inherent issues of a strongly increasing renewable energy share with greater realism and
from a systemic perspective, as these issues suggest that the cost are nonlinear functions
of the share of wind and solar generation, rising when these are employed to be the main
energy sources.

As a first example, consider how the cost of integrating intermittent renewables into the
electricity grid while assuring grid stability rises with their share in electricity generation
due to the intermittency. That the intermittent generation can pose severe problems is
for example illustrated in an analysis by Mearns and Sornette (2023) of the recent Swiss
energy transition plans. The Swiss Energy Strategy 2050 was endorsed by the majority
of voters in a referendum on 27th May of 2017.91 The strategy entails the target to phase
out all of the existing nuclear and fossil power plants and to substitute the lost power
production with renewables, mainly with solar photovoltaic. The bottom line of the
analysis by Mearns and Sornette (2023) is the finding that while the plan would indeed
work for a summer month like July, there would be a large deficit of electricity generation
for a winter month like January so that the majority of Swiss electricity demand would
have to be covered by imports.

To give a second example, a battery storage is often proposed as the solution for the
intermittency problem (for example in the Swiss plans, see Mearns and Sornette (2023, p.
2)). The feasibility of such a grid-scale battery storage using lithium-ion technology has
been examined by Michaux (2021; 2023) in terms of the required volumes of metals. The
author finds that for each of the metals copper, nickel, lithium, cobalt, and graphite the
estimated required volumes vastly exceed the current mining production and the stated
current reserves. Michaux (2023) concludes by stressing the need to further develop
alternative battery chemistries, and also stresses the need to reassess some the existing
energy transition plans as these are confronted with serious challenges.

Overall, the conclusions and examples from above highlight that a systemic perspective
is vital. It is not only important to consider GHG emissions, energy, economic output

90Although the “EEG-Umlage” is since July 2022 paid for by the German government, this is ultimately
paid for by the tax payer, so the cost of this subsidy needs to be accounted for when examining the full
impact of renewable generation share on electricity generation costs.

91See https://www.swissinfo.ch/eng/politics/vote-opener/43190762
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and the relations between these variables (see Chapter 2), but in detail all the tech-
nological options for energy supply with their practicalities, logistical bottlenecks, and
environmental impacts, from a perspective not only restricted to the monetary cost but
also accounting for the material and energy requirements to manufacture the technology
units, as well as for the limits to growth and to the resource throughput imposed on the
economic subsystem by the finite planet earth as the source of resources and the sink for
waste streams.

124



References

Abate, J. and W. Whitt (1995): “Numerical inversion of Laplace transforms of prob-
ability distributions,” ORSA Journal on Computing, 7 (1), 36–43.

Adelman, M. A. (1997): “My education in mineral (especially oil) economics,” Annual
Review of Energy and the Environment, 22, 13–46.

Adelman, M. A. and M. C. Lynch (1997): “Fixed view of resource limits creates
undue pessimism,” Oil and Gas Journal, 95 (14).

Aghion, P., A. Dechezleprêtre, D. Hemous, R. Martin, and J. Van Reenen
(2016): “Carbon taxes, path dependency, and directed technical change: evidence from
the auto industry,” Journal of Political Economy, 124, 1–51.

Aguiar-Conraria, L., G. Conceição, and M. J. Soares (2021): “How far is
gas from becoming a global commodity?” NIPE Working Papers 06/2021, NIPE -
Universidade do Minho.

Aguiar-Conraria, L., M. Joana Soares, and R. Sousa (2018): “California’s car-
bon market and energy prices: a wavelet analysis,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170256.

Aguiar-Conraria, L., M. M. Martins, and M. J. Soares (2012): “The yield curve
and the macro-economy across time and frequencies,” Journal of Economic Dynamics
and Control, 36, 1950–1970.

——— (2020): “Okun’s Law across time and frequencies,” Journal of Economic Dynamics
and Control, 116, 103897.

Aguiar-Conraria, L. and M. J. Soares (2014): “The continuous wavelet transform:
moving beyond uni-and bivariate analysis,” Journal of Economic Surveys, 28, 344–375.

Aldy, J. E., A. J. Krupnick, R. G. Newell, I. W. Parry, and W. A. Pizer
(2010): “Designing climate mitigation policy,” Journal of Economic Literature, 48,
903–934.

Alvarez-Ramirez, J., E. Rodriguez, and G. Espinosa-Paredes (2012): “A par-
tisan effect in the efficiency of the US stock market,” Physica A: Statistical Mechanics
and its Applications, 391, 4923–4932.

Anderson, S. T., R. Kellogg, and S. W. Salant (2018): “Hotelling under pres-
sure,” Journal of Political Economy, 126 (3), 984–1026.

Arachchige, C. N., L. A. Prendergast, and R. G. Staudte (2022): “Robust
analogs to the coefficient of variation,” Journal of Applied Statistics, 49, 268–290.

Arezki, R., V. A. Ramey, and L. Sheng (2017): “News shocks in open economies:
evidence from giant oil discoveries,” The Quarterly Journal of Economics, 132 (1),
103–155.

Arps, J. J. and T. G. Roberts (1958): “Economics of drilling for Cretaceous oil on
east flank of Denver-Julesburg basin,” AAPG Bulletin, 42 (11), 2549–2566.

125



Asche, F., P. Osmundsen, and M. Sandsmark (2006): “The UK market for natural
gas, oil and electricity: are the prices decoupled?” The Energy Journal, 27, 27–40.

Ayres, R. U. and B. Warr (2009): The Economic Growth Engine: How Energy and
Work Drive Material Prosperity, Edward Elgar.

Baddeley, A. (2018): A statistical commentary on mineral prospectivity analysis,
Springer International Publishing, chap. Handbook of Mathematical Geosciences: Fifty
Years of IAMG, 25–65.

Ball, L. M., D. Leigh, and P. Mishra (2022): “Understanding U.S. inflation during
the covid era,” IMF Working Paper 22/208.

Banker, R. D., A. Charnes, and W. W. Cooper (1984): “Some models for es-
timating technical and scale inefficiencies in data envelopment analysis,” Management
Science, 30, 1078–1092.

Bardi, U. (2005): “The mineral economy: a model for the shape of oil production
curves,” Energy Policy, 33 (1), 53–61.

——— (2019): “Peak oil, 20 years later: failed prediction or useful insight,” Energy
Research & Social Science, 48, 257–261.

Bardi, U. and A. Lavacchi (2009): “A simple interpretation of Hubbert’s model of
resource exploitation,” Energies, 2 (3), 646–661.

Bardi, U., A. Lavacchi, and L. Yaxley (2011): “Modelling EROEI and net energy
in the exploitation of non renewable resources,” Ecological Modelling, 223 (1), 54–58.

Barouch, E. and G. Kaufman (1976a): “Oil and gas discovery modelled as sampling
proportional to random size,” Working Paper Alfred P. Sloan School of Management.

——— (1976b): “Stochastic modelling of natural resource discovery - the case of oil and
gas,” A talk for Colloque International Sur L’Analyse de Systemes et ses Orientations
Nouvelles. December 22, 1976.

Barouch, E., G. Kaufman, and J. Nelligan (1983): “Estimation of parameters of
oil and gas discovery process models using the expectation-maximization algorithm,”
Energy Modelling and Simulation, 109–117.

Bartlett, A. A. (2000): “An analysis of US and world oil production patterns using
Hubbert-style curves,” Mathematical Geology, 32 (1), 1–17.

Benhmad, F. and J. Percebois (2018): “Photovoltaic and wind power feed-in impact
on electricity prices: the case of Germany,” Energy Policy, 119, 317–326.

Bentley, R. W. (2002): “Global oil & gas depletion: an overview,” Energy Policy, 30
(3), 189–205.

——— (2023): “Colin Campbell, oil exploration geologist and key proponent of ‘peak
oil‘,” Biophysical Economics and Sustainability, 8, 3.

Best, R., P. J. Burke, and F. Jotzo (2020): “Carbon pricing efficacy: cross-country
evidence,” Environmental and Resource Economics, 77, 69–94.

126



Bhattacharya, P. (1974): “Convergence of sample paths of normalized sums of induced
order statistics,” The Annals of Statistics, 2 (5), 1034–1039.

Blanchard, O. J. and B. S. Bernanke (2023): “What caused the U.S. pandemic-era
inflation?” NBER Working Paper 31417, National Bureau of Economic Research.

BOEM (2017): “2016a National assessment of undiscovered oil and gas resources of the
U.S. outer continental shelf,” Tech. rep., U.S. Department of the Interior, Bureau of
Ocean Energy Management. OCS Report BOEM 2017-085.

BP (2022): “Statistical review of world energy, 71th edition,” Tech. rep.

Brandt, A. R. (2007): “Testing Hubbert,” Energy Policy, 35 (5), 3074–3088.

——— (2010): “Review of mathematical models of future oil supply: historical overview
and synthesizing critique,” Energy, 35 (9), 3958–3974.

Bunn, D. W. and C. Fezzi (2008): Markets for Carbon and Power Pricing in Europe,
Edward Elgar Publishing Limited, chap. 6: A vector error correction model of the
interactions among gas, electricity and carbon prices: an application to the cases of
Germany and the United Kingdom, 145–159.

Burgess, G. L., K. K. Cross, and E. G. Kazanis (2021): “Estimated oil and gas
reserves Gulf of Mexico OCS region, December 31, 2019,” Tech. rep., U.S. Department
of the Interior, Bureau of Ocean Energy Management, OCS Report BOEM 2021-052.

Byman, K. (2016): “Electricity Production in Sweden - IVA’s Electricity Crossroads
Project,” Royal Swedish Academy of Engineering Sciences, Report.

Camarero, M., J. Castillo-Giménez, A. J. Picazo-Tadeo, and C. Tamarit
(2014): “Is eco-efficiency in greenhouse gas emissions converging among European
Union countries?” Empirical Economics, 47, 143–168.

Campbell, C. J. and J. H. Laherrère (1998): “The end of cheap oil,” Scientific
American, 278 (3), 78–83.

Cevik, S. and K. Ninomiya (2022): “Chasing the sun and catching the wind: energy
transition and electricity prices in Europe,” IMF Working Paper 22/220.

Chambers, R. G., Y. Chung, and R. Färe (1996): “Benefit and distance functions,”
Journal of Economic Theory, 70, 407–419.

Charnes, A., W. W. Cooper, and E. Rhodes (1978): “Measuring the efficiency of
decision making units,” European Journal of Operational Research, 2, 429–444.

Chen, C.-M. and M. A. Delmas (2012): “Measuring eco-inefficiency: a new frontier
approach,” Operations Research, 60, 1064–1079.

Chen, Z. and K. G. Osadetz (2009): “Improving reservoir volumetric estimations in
petroleum resource assessment using discovery process models,” Petroleum Science, 6,
105–118.

Chen, Z. and R. Sinding-Larsen (1999): “Estimating petroleum resources using geo-
anchored method - a sensitivity study,” Natural Resources Research, 8, 49–58.

127



Chung, Y. H., R. Färe, and S. Grosskopf (1997): “Productivity and undesirable
outputs: a directional distance function approach,” Journal of Environmental Manage-
ment, 51, 229–240.

Cludius, J., H. Hermann, F. C. Matthes, and V. Graichen (2014): “The merit
order effect of wind and photovoltaic electricity generation in Germany 2008-2016:
estimation and distributional implications,” Energy Economics, 44, 302–313.

Crump, K. S. (1976): “Numerical inversion of Laplace transforms using a Fourier-series
approximation,” Journal of the ACM (JACM), 23 (1), 89–96.

Dakpo, K. H., P. Jeanneaux, and L. Latruffe (2016): “Modelling pollution-
generating technologies in performance benchmarking: recent developments, limits and
future prospects in the nonparametric framework,” European Journal of Operational
Research, 250, 347–359.

Daly, H. E. (2007): Ecological Economics and Sustainable Development, Selected Esays
of Herman Daly, Edward Elgar.

Daubechies, I. (1992): Ten Lectures on Wavelets, CBMS-NSF Regional Conference
Series in Applied Mathematics (vol. 61), Philadelphia: SIAM.

David, H. and J. Galambos (1974): “The asymptotic theory of concomitants of order
statistics,” Journal of Applied Probability, 11 (4), 762–770.

Day, J. W., C. F. D’Elia, A. R. Wiegman, J. S. Rutherford, C. A. Hall,
R. R. Lane, and D. E. Dismukes (2018): “The energy pillars of society: perverse
interactions of human resource use, the economy, and environmental degradation,”
Biophysical Economics and Resource Quality, 3, 1–16.

de Araújo, I. F., R. W. Jackson, A. B. F. Neto, and F. S. Perobelli (2020):
“European Union membership and CO2 emissions: a structural decomposition analy-
sis,” Structural Change and Economic Dynamics, 55, 190–203.

De Jong, C. and S. Schneider (2009): “Cointegration between gas and power spot
prices,” The Journal of Energy Markets, 2, 27–46.

de Lagarde, C. M. and F. Lantz (2018): “How renewable production depresses
electricity prices: evidence from the German market,” Energy Policy, 117, 263–277.

Debelke, J. and P. Vis (2015): EU Climate Policy Explained, London: Rouledge.

Delreux, T. and F. Ohler (2019): “Climate policy in European Union politics,”
in Oxford Research Encyclopedia of Politics, ed. by L. F., Oxford: Oxford University
Press.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977): “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society.
Series B (Methodological), 39 (1), 1–38.

di Giovanni, J., S. Kalemli-Özcan, A. Silva, and M. A. Yildirim (2023):
“Pandemic-Era inflation drivers and global spillovers,” Working Paper 31887, National
Bureau of Economic Research.

128



Dickey, D. A. and W. A. Fuller (1979): “Distribution of the estimators for autore-
gressive time series with a unit root,” Journal of the American Statistical Association,
74, 427–431.

Do, L. P. C., Š. Lyócsa, and P. Molnár (2019): “Impact of wind and solar pro-
duction on electricity prices: quantile regression approach,” Journal of the Operational
Research Society, 70, 1752–1768.

Domazlicky, B. R. and W. L. Weber (2004): “Does environmental protection lead
to slower productivity growth in the chemical industry?” Environmental and Resource
Economics, 28, 301–324.

Dubner, H. and J. Abate (1968): “Numerical inversion of Laplace transforms by
relating them to the finite Fourier cosine transform,” Journal of the ACM (JACM), 15
(1), 115–123.

Durbin, F. (1974): “Numerical inversion of Laplace transforms: an efficient improvement
to Dubner and Abate’s method,” The Computer Journal, 17 (4), 371–376.

Ebrahimi, M. and N. C. Ghasabani (2015): “Forecasting OPEC crude oil produc-
tion using a variant multicyclic Hubbert model,” Journal of Petroleum Science and
Engineering, 133, 818–823.

EEA (2019): “Trends and Projections in Europe 2019,” European Environmental Agency,
EEA Report, No 15/2019.

Elliott, G., T. J. Rothenberg, and J. H. Stock (1996): “Efficient tests for an
autoregressive unit root,” Econometrica, 64, 813–836.

Emery, G. W. and Q. Liu (2002): “An analysis of the relationship between electricity
and natural-gas futures prices,” Journal of Futures Markets: Futures, Options, and
Other Derivative Products, 22, 95–122.

Energy Institute (2023): “Statistical review of world energy, 72nd edition,” Tech. rep.

EU (2011): “A roadmap for moving to a low-carbon economy in 2050,” European Com-
mission, COM(2011) 112 final, Brussels.

——— (2018): “Going climate-neutral by 2050 - A European strategic long-term vision
for a prosperous, modern, competitive and climate neutral economy,” European Com-
mission, COM(2018) 773 final, Brussels.

——— (2019): “Going climate-neutral by 2050: a strategic long-term vision for a pros-
perous, modern, competitive and climate-neutral EU economy,” Tech. rep., European
Commission, Directorate-General for Climate Action, Publications Office.

——— (2020): “Stepping up Europe’s 2030 climate ambition,” European Commission,
COM(2020) 562 final, Brussels.

Eurostat (2015): “Manual for Air Emission Accounts, 2015 Edition,” Luxembourg: Pub-
lications Office of the European Union.

129



Fait, L., J. J. Krüger, M. Tarach, and H. Wetzel (2022): “Trend projections
of greenhouse gas emission reduction potentials: a bootstrap-based nonparametric effi-
ciency analysis,” SSRN Working Paper 4107819.

Färe, R. and S. Grosskopf (2004): New Directions: Efficiency and Productivity,
vol. 3, New York: Springer.

Färe, R., S. Grosskopf, and F. Hernandez-Sancho (2004): “Environmental per-
formance: an index number approach,” Resource and Energy Economics, 26, 343–352.

Färe, R., S. Grosskopf, D.-W. Noh, and W. Weber (2005): “Characteristics of
a polluting technology: theory and practice,” Journal of Econometrics, 126, 469–492.

Färe, R., S. Grosskopf, and C. A. Pasurka Jr (2007): “Environmental production
functions and environmental directional distance functions,” Energy, 32, 1055–1066.

Färe, R., S. Grosskopf, and G. Whittaker (2013): “Directional output distance
functions: endogenous directions based on exogenous normalization constraints,” Jour-
nal of Productivity Analysis, 40, 267–269.

Färe, R. and D. Primont (1995): Multi-Output Production and Duality: Theory and
Applications, New York: Springer.

Feenstra, R. C., R. Inklaar, and M. P. Timmer (2015): “The next generation of
the Penn World Table,” American Economic Review, 105, 3150–82.

Feigin, P. D. (1979): “On the characterization of point processes with the order statistic
property,” Journal of Applied Probability, 16 (2), 297–304.

Flor, M. A. and T. Klarl (2017): “On the cyclicity of regional house prices: new
evidence for U.S. metropolitan statistical areas,” Journal of Economic Dynamics and
Control, 77, 134–156.

Fourastié, J. (1949): Le grand espoir du XXème siècle, Paris: Presses Universitaires
de France.

Frydenberg, S., J. I. Onochie, S. Westgaard, N. Midtsund, and H. Ueland
(2014): “Long-term relationships between electricity and oil, gas and coal future prices -
evidence from Nordic countries, Continental Europe and the United Kingdom,” OPEC
Energy Review, 38, 216–242.

Gallegati, M., M. Gallegati, J. B. Ramsey, and W. Semmler (2011): “The US
wage Phillips curve across frequencies and over time,” Oxford Bulletin of Economics
and Statistics, 73, 489–508.

Gençay, R., F. Selçuk, and B. Whitcher (2005): “Multiscale systematic risk,”
Journal of International Money and Finance, 24, 55–70.

Georgescu-Roegen, N. (1971): The Entropy Law and the Economic Process, Harvard
University Press.

Gordon, L. (1983): “Successive sampling in large finite populations,” The Annals of
Statistics, 11 (2), 702–706.

130



Greening, L. A., D. L. Greene, and C. Difiglio (2000): “Energy efficiency and
consumption – the rebound effect – a survey,” Energy Policy, 28, 389–401.

Grossman, G. M. and A. B. Krueger (1991): “Environmental impacts of a North
American free trade agreement,” Working Paper 3914, National Bureau of Economic
Research.

——— (1995): “Economic growth and the environment,” The Quarterly Journal of Eco-
nomics, 110, 353–377.

Grossmann, A. and J. Morlet (1984): “Decomposition of Hardy functions into
square integrable wavelets of constant shape,” SIAM Journal on Mathematical Analysis,
15, 723–736.

Growiec, J. (2012): “The world technology frontier: what can we learn from the US
States?” Oxford Bulletin of Economics and Statistics, 74, 777–807.

Gütschow, J., L. Jeffery, R. Gieseke, A. Günther, R. Gebel, D. Stevens,
M. Krapp, and M. Rocha (2019): “The PRIMAP-hist national historical emissions
time series, V. 2.1. GFZ Data Services,” .

Gütschow, J., M. L. Jeffery, R. Gieseke, R. Gebel, D. Stevens, M. Krapp,
and M. Rocha (2016): “The PRIMAP-hist national historical emissions time series,”
Earth System Science Data, 8, 571–603.

Hagens, N. J. and D. J. White (2021): Reality Blind: Integrating the Systems Science
Underpinning Our Collective Futures (Vol. 1), Independently published.

Hall, C. A. and J. W. Day (2009): “Revisiting the limits to growth after peak oil,”
American Scientist, 97, 230–237.

Hall, C. A., J. G. Lambert, and S. B. Balogh (2014): “EROI of different fuels
and the implications for society,” Energy Policy, 64 (C), 141–152.

Hall, C. A. S., S. Balogh, and D. J. R. Murphy (2009): “What is the minimum
EROI that a sustainable society must have?” Energies, 2 (1), 25–47.

Hall, C. A. S., D. Lindenberger, R. Kümmel, T. Kroeger, and W. Eichhorn
(2001): “The need to integrate the natural sciences with economics,” BioScience, 51,
663–673.

Hampf, B. and J. J. Krüger (2015): “Optimal directions for directional distance func-
tions: an exploration of potential reductions of greenhouse gases,” American Journal
of Agricultural Economics, 97, 920–938.

Hannesson, R. (2024): “Green electricity prices,” Biophysical Economics and Sustain-
ability, 9.

Herbert, J. H. (1982): “A review and comparison of some commonly used methods of
estimating petroleum resource availability,” Energy Sources, 6 (4), 293–320.

——— (1983): “A concise mathematical statement of the relationship between the
Arps/Roberts and Barouch/Kaufman models for estimating the petroleum resource
base,” Energy Sources, 7 (1), 33–42.

131



Holland, S. P. (2008): “Modeling peak oil,” The Energy Journal, 29 (2), 61–79.

Holtz-Eakin, D. and T. M. Selden (1995): “Stoking the fires? CO2 emissions and
economic growth,” Journal of Public Economics, 57, 85–101.

Höök, M. (2014): “Depletion rate analysis of fields and regions: a methodological foun-
dation,” Fuel, 121 (4), 95–108.

Höök, M., R. Hirsch, and K. Aleklett (2009a): “Giant oil field decline rates and
their influence on world oil production,” Energy Policy, 37 (6), 2262–2272.

Höök, M., J. Li, N. Oba, and S. Snowden (2011): “Descriptive and predictive
growth curves in energy system analysis,” Natural Resources Research, 20 (2), 103–116.

Höök, M., B. Söderbergh, K. Jakobsson, and K. Aleklett (2009b): “The
evolution of giant oil field production behavior,” Natural Resources Research, 18 (1),
39–56.

Höök, M. and X. Tang (2013): “Depletion of fossil fuels and anthropogenic climate
change - a review,” Energy Policy, 52, 797–809.

Horn, M. K. (2014): “Giant oil and gas fields of the world,”
https://edx.netl.doe.gov/dataset/aapg-datapages-giant-oil-and-gas-fields-of-the-world.

Hotelling, H. (1931): “The economics of exhaustible resources,” Journal of Political
Economy, 39 (2), 137–175.

Hsiang, S. and R. E. Kopp (2018): “An economist’s guide to climate change science,”
Journal of Economic Perspectives, 32, 3–32.

Hubbert, M. K. (1956): “Nuclear energy and the fossil fuels,” Drilling and Production
Practice. American Petroleum Institute, 7–25.

——— (1962): “Energy resources: a report to the Committee on Natural Resources of the
National Academy of Sciences,” Tech. rep., National Academy of Sciences - National
Research Council, Washington, D.C.

——— (1982): Techniques of prediction as applied to the production of oil and gas, Na-
tional Bureau of Standards, Washington, DC, 16–141.

IEA (2008): “World energy outlook,” Tech. rep.

——— (2022): “World energy outlook,” Tech. rep.

IPCC (2023): “Climate Change 2023: Synthesis Report. Contribution of Working Groups
I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change [Core Writing Team, H. Lee and J. Romero (eds.)],” Tech. rep., IPCC, Geneva,
Switzerland, 184 pp.

Jakobsson, K. (2012): “Petroleum production and exploration: approaching the end
of cheap oil with bottom-up modeling,” Ph.D. thesis, Acta Universitatis Upsaliensis,
Uppsala Universitet.

132



Jakobsson, K., R. Bentley, B. Söderbergh, and K. Aleklett (2012): “The end
of cheap oil: bottom-up economic and geologic modeling of aggregate oil production
curves,” Energy Policy, 41, 860–870.

Jakobsson, K., B. Söderbergh, S. Snowden, and K. Aleklett (2014): “Bottom-
up modeling of oil production: a review of approaches,” Energy Policy, 64 (C), 113–123.

Jenkins, G. M. and D. G. Watts (1968): Spectral Analysis and its Applications, San
Francisco: Holden-Day.

Karlin, S. and H. Taylor (1975): A First Course in Stochastic Processes, 2nd edn,
New York: Acad. Press.

Kaufman, G. M. (1963): Statistical Decision and Related Techniques in Oil and Gas
Exploration, Prentice-Hall.

——— (1993): “Statistical issues in the assessment of undiscovered oil and gas resources,”
The Energy Journal, 14 (1), 183–215.

Kaufman, G. M., Y. Balcer, and D. Kruyt (1975): “A probabilistic model of the
oil and gas discovery process,” in Proceedings of the Conference on Energy Modeling
and Forecasting, June 28-29, 1974, AAPG Special Volumes.

Kaufmann, R. K. and C. J. Cleveland (2001): “Oil production in the lower 48
states: economic, geological, and institutional determinants,” The Energy Journal, 22
(1), 27–49.

Kendall, M. G. and A. Stuart (1979): The Advanced Theory of Statistics (Vol. 2),
4th edn, London: Griffin.

Ketterer, J. C. (2014): “The impact of wind power generation on the electricity price
in Germany,” Energy Economics, 44, 270–280.

Kharecha, P. A. and J. E. Hansen (2008): “Implications of ’peak oil’
for atmospheric CO2 and climate,” Global Biogeochemical Cycles, 22, GB3012,
doi:10.1029/2007GB003142.

Kholod, N., M. Evans, R. C. Pilcher, V. Roshchanka, F. Ruiz, M. Coté, and
R. Collings (2020): “Global methane emissions from coal mining to continue growing
even with declining coal production,” Journal of Cleaner Production, 256, 120489.

Klopcic, A. L., J. Hojnik, and S. Bojnec (2022): “Do increased cross-border
flow and greater competition in the market lead to lower electricity prices for end-
consumers?” The Electricity Journal, 35, 107146.

Knopf, B., Y.-H. H. Chen, E. De Cian, H. Förster, A. Kanudia, I. Karkat-
souli, I. Keppo, T. Koljonen, K. Schumacher, and D. P. Van Vuuren (2013):
“Beyond 2020: strategies and costs for transforming the European energy system,” Cli-
mate Change Economics, 4, 1340001.

Königsberger, K. (2003): Analysis 1, 6. Auflage, Berlin, Heidelberg: Springer-Verlag.

Koopmans, L. H. (1974): The Spectral Analysis of Time Series, New York: Acad. Press.

133



Korhonen, P. J. and M. Luptacik (2004): “Eco-efficiency analysis of power plants:
an extension of data envelopment analysis,” European Journal of Operational Research,
154, 437–446.

Kortelainen, M. (2008): “Dynamic environmental performance analysis: a Malmquist
index approach,” Ecological Economics, 64, 701–715.

Krautkraemer, J. A. (1998): “Nonrenewable resource scarcity,” Journal of Economic
Literature, 36 (4), 2065–2107.

Krautzberger, L. and H. Wetzel (2012): “Transport and CO2: productivity growth
and carbon dioxide emissions in the European commercial transport industry,” Envi-
ronmental and Resource Economics, 53, 435–454.

Krüger, J. J. (2021): “A wavelet evaluation of some leading business cycle indicators
for the German economy,” Journal of Business Cycle Research, 17, 293–319.

Krüger, J. J. and M. Neugart (2020): “Dissecting Okun’s law beyond time and
frequency,” Applied Economics Letters, 28, 1744–1749.

Krüger, J. J. and M. Tarach (2020): “Greenhouse gas emission reduction potentials
in Europe: a nonparametric efficiency analysis approach using sectoral data,” SSRN
Working Paper 3716203.

——— (2022): “Greenhouse gas emission reduction potentials in Europe by sector: a
bootstrap-based nonparametric efficiency analysis,” Environmental and Resource Eco-
nomics, 81, 867–898.

Kuosmanen, T. and M. Kortelainen (2005): “Measuring eco-efficiency of production
with data envelopment analysis,” Journal of Industrial Ecology, 9, 59–72.

Kwiatkowski, D., P. C. Phillips, P. Schmidt, and Y. Shin (1992): “Testing the
null hypothesis of stationarity against the alternative of a unit root: how sure are we
that economic time series have a unit root?” Journal of Econometrics, 54, 159–178.

Kyritsis, E., J. Andersson, and A. Serletis (2017): “Electricity prices, large-scale
renewable integration, and policy implications,” Energy Policy, 101, 550–560.

Lee, P. J. (2008): Statistical Methods for Estimating Petroleum Resources, Oxford Uni-
versity Press.

Lillestøl, J. and R. Sinding-Larsen (2017): “Creaming and the likelihood of dis-
covering additional giant petroleum fields,” Mathematical Geosciences, 49, 67–83.

——— (2018): “Creaming - and the depletion of resources: a Bayesian data analysis,”
NHH Dept. of Business and Management Science Discussion Paper No. 2017/16, Avail-
able at SSRN: http://dx.doi.org/10.2139/ssrn.3072338.

Lin, C.-Y. C. (2009): “Insights from a simple Hotelling model of the world oil market,”
Natural Resources Research, 18 (1), 19–28.

Liu, Y., X. S. Liang, and R. H. Weisberg (2007): “Rectification of the bias in
the wavelet power spectrum,” Journal of Atmospheric and Oceanic Technology, 24,
2093–2102.

134



Lovelock, J. E. and L. Margulis (1974): “Atmospheric homeostasis by and for the
biosphere: the gaia hypothesis,” Tellus, 26, 2–10.

Maciejowska, K. (2020): “Assessing the impact of renewable energy sources on the
electricity price level and variability - a quantile regression approach,” Energy Eco-
nomics, 85, 104532.

Maggio, G. and G. Cacciola (2009): “A variant of the Hubbert curve for world oil
production forecasts,” Energy Policy, 37 (11), 4761–4770.

Managi, S., J. J. Opaluch, D. Jin, and T. A. Grigalunas (2005): “Technolog-
ical change and petroleum exploration in the Gulf of Mexico,” Energy Policy, 33 (5),
619–632.

Maniatis, G. I. and N. T. Milonas (2022): “The impact of wind and solar power
generation on the level and volatility of wholesale electricity prices in Greece,” Energy
Policy, 170, 113243.

Martenson, C. (2023): The Crash Course (Revised Edn): An Honest Approach to
Facing the Future of Our Economy, Energy, and Environment, Wiley.

McGill, W. J. and J. Gibbon (1965): “The general-gamma distribution and reaction
times,” Journal of Mathematical Psychology, 2 (1), 1–18.

Meadows, D. H., D. L. Meadows, J. Randers, and W. W. Behrens (1972):
The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of
Mankind, New York: Universe Books.

Mearns, E. and D. Sornette (2023): “Are 2050 energy transition plans viable? A
detailed analysis of projected Swiss electricity supply and demand in 2050,” Energy
Policy, 175, 113347.

Meisner, J. and F. Demirmen (1981): “The creaming method: a Bayesian procedure
to forecast future oil and gas discoveries in mature exploration provinces,” Journal of
the Royal Statistical Society: Series A (General), 144 (1), 1–31.

Michaelides, E. E. (2017): “A new model for the lifetime of fossil fuel resources,”
Natural Resources Research, 26 (2), 161–175.

Michaux, S. P. (2021): “Assessment of the extra capacity required of alternative energy
electrical power systems to completely replace fossil fuels,” Tech. rep., Geological Survey
of Finland (GTK).

——— (2023): “Material supply challenges for the green transition to phase out fossil
fuels,” in: SEB’s The Green Bond Report, February 2023.

Michel, B. (2011): “Oil production: a probabilistic model of the Hubbert curve,” Applied
Stochastic Models in Business and Industry, 27 (4), 434–449.

Mihalyi, D. (2021): “The long road to first oil (March 21, 2021),” Available at SSRN:
http://dx.doi.org/10.2139/ssrn.3719751.

Miller, R. G. and S. R. Sorrell (2014): “The future of oil supply,” Phil. Trans. R.
Soc. A, 372: 20130179.

135



Mohr, S. H. and G. M. Evans (2008): “Peak oil: testing Hubbert’s curve via theo-
retical modeling,” Natural Resources Research, 17, 1–11.

Murphy, D. J., M. Raugei, M. Carbajales-Dale, and B. Rubio Estrada
(2022): “Energy return on investment of major energy carriers: review and harmo-
nization,” Sustainability, 14, 7098.

Murty, S., R. R. Russell, and S. B. Levkoff (2012): “On modeling pollution-
generating technologies,” Journal of Environmental Economics and Management, 64,
117–135.

Myhre, G., A. Myhre, and F. Stordal (2001): “Historical evolution of radiative
forcing of climate,” Atmospheric Environment, 35, 2361–2373.

Nair, V. N. and P. C. C. Wang (1989): “Maximum likelihood estimation under a
successive sampling discovery model,” Technometrics, 31 (4), 423–436.

Nashawi, I. S., A. Malallah, and M. Al-Bisharah (2010): “Forecasting world
crude oil production using multicyclic Hubbert model,” Energy & Fuels, 24 (3),
1788–1800.

NEA-OECD (2018): “Nuclear Technology Development and Economics, Nuclear Energy
Data,” NEA No. 7416.

Nel, W. P. and C. J. Cooper (2009): “Implications of fossil fuel constraints on
economic growth and global warming,” Energy Policy, 37 (1), 166–180.

Nicolosi, M. and M. Fürsch (2009): “The impact of an increasing share of RES-
E on the conventional power market - the example of Germany,” Zeitschrift für En-
ergiewirtschaft, 33, 246–254.

Nordhaus, W. (2019): “Climate change: the ultimate challenge for Economics,” Amer-
ican Economic Review, 109, 1991–2014.

NPD (2021): “Resource accounts for the Norwegian continental shelf as per 31 December
2021, Report no. OD-02-22,” Tech. rep., Norwegian Petroleum Directorate.

Oda, J., K. Akimoto, T. Tomoda, M. Nagashima, K. Wada, and F. Sano
(2012): “International comparisons of energy efficiency in power, steel, and cement
industries,” Energy Policy, 44, 118–129.

OECD (2020): “Purchasing power parities (PPP),” doi: 10.1787/1290ee5a-en.

Panayotou, T. (1993): “Empirical tests and policy analysis of environmental degra-
dation at different stages of economic development,” Ilo working papers, ILO Working
Paper, International Labour Organization.

Papaioannou, G. P., C. Dikaiakos, G. Evangelidis, P. G. Papaioannou, and
D. S. Georgiadis (2015): “Co-movement analysis of Italian and Greek electricity
market wholesale prices by using a wavelet approach,” Energies, 8, 11770–11799.

136



Papaioannou, G. P., C. Dikaiakos, A. Stratigakos, A. Dramountanis, and
A. T. Alexandridis (2018): “Using a rolling vector error correction model to model
static and dynamic causal relations between electricity spot price and related funda-
mental factors: the case of Greek electricity market,” International Journal of Energy
Economics and Policy, 8, 38–54.

Patil, G. P. and C. R. Rao (1978): “Weighted distributions and size-biased sam-
pling with applications to wildlife populations and human families,” Biometrics, 34 (2),
179–189.

Percival, D. B. and A. T. Walden (2020): Spectral Analysis for Univariate Time
Series, Cambridge University Press.

Perissi, I., A. Lavacchi, and U. Bardi (2021): “The role of energy return on energy
invested (EROEI) in complex adaptive systems,” Energies, 14 (24), 8411.

Picazo-Tadeo, A. J., M. Beltrán-Esteve, and J. A. Gómez-Limón (2012): “As-
sessing eco-efficiency with directional distance functions,” European Journal of Opera-
tional Research, 220, 798–809.

Pindyck, R. S. (1978): “The optimal exploration and production of nonrenewable re-
sources,” Journal of Political Economy, 86 (5), 841–861.

Pitman, J. and N. M. Tran (2015): “Size-biased permutation of a finite sequence
with independent and identically distributed terms,” Bernoulli, 21 (4), 2484–2512.

Pukite, P., D. Coyne, and D. Challou (2019): Mathematical Geoenergy: Discovery,
Depletion, and Renewal, vol. 241, John Wiley & Sons.

Puri, P. S. (1982): “On the characterization of point processes with the order statistic
property without the moment condition,” Journal of Applied Probability, 19 (1), 39–51.

Ramsey, J. B. and C. Lampart (1998a): “The decomposition of economic relation-
ships by time scale using wavelets: expenditure and income,” Studies in Nonlinear
Dynamics & Econometrics, 3.

——— (1998b): “Decomposition of economic relationships by timescale using wavelets,”
Macroeconomic Dynamics, 2, 49–71.

Rashidi, K. and R. Farzipoor Saen (2015): “Measuring eco-efficiency based on green
indicators and potentials in energy saving and undesirable output abatement,” Energy
Economics, 50, 18–26.

Raugei, M. (2019): “Net energy analysis must not compare apples and oranges,” Nature
Energy, 4, 86–88.

——— (2023): “Addressing a counterproductive dichotomy in the energy transition de-
bate,” Biophysical Economics and Sustainability, 8, 4.

Rehrl, T. and R. Friedrich (2006): “Modelling long-term oil price and extraction
with a Hubbert approach: the LOPEX model,” Energy Policy, 34 (15), 2413–2428.

Reynolds (2002): Scarcity and Growth Considering Oil and Energy: An Alternative
Neo-classical View, The Edwin Mellen Press, pp. 240.

137



Reynolds, D. B. (1999): “The mineral economy: how prices and costs can falsely signal
decreasing scarcity,” Ecological Economics, 31 (1), 155–166.

——— (2001): “Oil exploration game with incomplete information: an experimental
study,” Energy Sources, 23, 571–578.

Richmond, A. K. and R. K. Kaufmann (2006): “Is there a turning point in the
relationship between income and energy use and/or carbon emissions?” Ecological
Economics, 56, 176–189.

Rintamäki, T., A. S. Siddiqui, and A. Salo (2017): “Does renewable energy genera-
tion decrease the volatility of electricity prices? An analysis of Denmark and Germany,”
Energy Economics, 62, 270–282.

Robert, C. P. and G. Casella (2010): Monte Carlo Statistical Methods, 2nd edn,
New York: Springer.

Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin III, E. Lam-
bin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist,
C. A. De Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P. K.
Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W.
Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richard-
son, P. Crutzen, and J. Foley (2009): “Planetary boundaries: exploring the safe
operating space for humanity,” Ecology and Society, 14 (2): 32.

Rösch, A. and H. Schmidbauer (2018): “WaveletComp 1.1: a guided tour through
the R package, https://cran.r-project.org/web/packages/WaveletComp/,” .

Rua, A. and L. C. Nunes (2009): “International comovement of stock market returns:
a wavelet analysis,” Journal of Empirical Finance, 16, 632–639.

Sapio, A. (2019): “Greener, more integrated, and less volatile? A quantile regression
analysis of Italian wholesale electricity prices,” Energy Policy, 126, 452–469.

Schmoker, J. W. and T. R. Klett (2000): World Petroleum Assessment 2000, U.S.
Geological Survey (USGS), chap. RG: Estimating Potential Reserve Growth of Known
(discovered) Fields: A Component of the USGS World Petroleum Assessment 2000.

Schuenemeyer, J. H. and L. J. Drew (1983): “A procedure to estimate the parent
population of the size of oil and gas fields as revealed by a study of economic truncation,”
Journal of the International Association for Mathematical Geology, 15 (1), 145–161.

Sen, S. and H. Vollebergh (2018): “The effectiveness of taxing the carbon content
of energy consumption,” Journal of Environmental Economics and Management, 92,
74–99.

Sensfuß, F., M. Ragwitz, and M. Genoese (2008): “The merit-order effect: a
detailed analysis of the price effect of renewable electricity generation on spot market
prices in Germany,” Energy Policy, 36, 3086–3094.

Shahbaz, M. and A. Sinha (2019): “Environmental Kuznets curve for CO2 emissions:
a literature survey,” Journal of Economic Studies, 46, 106–168.

138



Shephard, R. W. (1970): Theory of Cost and Production Functions, Princeton: Prince-
ton University Press.

Shortle, J. F., J. M. Thompson, D. Gross, and C. M. Harris (2018): Funda-
mentals of Queueing Theory, 5th edn, Hoboken, New Jersey: John Wiley and Sons.

Simar, L., A. Vanhems, and P. W. Wilson (2012): “Statistical inference for DEA
estimators of directional distances,” European Journal of Operational Research, 220,
853–864.

Simar, L. and P. W. Wilson (1998): “Sensitivity analysis of efficiency scores: how to
bootstrap in nonparametric frontier models,” Management Science, 44, 49–61.

——— (2008): The Measurement of Productive Efficiency and Productivity Growth, Ox-
ford: Oxford University Press, chap. Statistical inference in nonparametric frontier
models: recent developments and perspectives, 421–521.

——— (2011): “Estimation and inference in nonparametric frontier models: recent de-
velopments and perspectives,” Foundations and Trends in Econometrics, 5, 183–337.

Simon, R. M., M. T. Stroot, and G. H. Weiss (1972): “Numerical inversion of
Laplace transforms with application to percentage labeled mitoses experiments,” Com-
puters and Biomedical Research, 5 (6), 596–607.

Skinner, C., A. Gattinger, M. Krauss, H.-M. Krause, J. Mayer, M. G. Van
Der Heijden, and P. Mäder (2019): “The impact of long-term organic farming on
soil-derived greenhouse gas emissions,” Scientific Reports, 9, 1–10.

Smil, V. (1998): “Future of oil: trends and surprises,” OPEC review, 22 (4), 253–276.

——— (2015): Power Density: A Key to Understanding Energy Sources and Uses, Cam-
bridge: The MIT Press.

——— (2022): How the World Really Works: A Scientist’s Guide to Our Past, Present
and Future, Penguin Books Ltd.

Smith, J. L. and G. L. Ward (1981): “Maximum likelihood estimates of the size
distribution of North Sea oil fields,” Journal of the International Association for Math-
ematical Geology, 13, 399–413.

Sorrell, S. and J. Speirs (2009): “UKERC review of evidence on global oil depletion:
technical report 1: data sources and issues,” Tech. rep., UK Energy Research Centre,
London.

——— (2010): “Hubbert’s legacy: a review of curve-fitting methods to estimate ulti-
mately recoverable resources,” Natural Resources Research, 19 (3), 209–230.

Sousa, R., L. Aguiar-Conraria, and M. J. Soares (2014): “Carbon financial
markets: a time-frequency analysis of CO2 prices,” Physica A: Statistical Mechanics
and Its Applications, 414, 118–127.

Stark, D. (2008): “Peak production in an oil depletion model with triangular field
profiles,” Journal of Interdisciplinary Mathematics, 11 (5), 695–706.

139



Steffen, W., K. Richardson, J. Rockström, S. E. Cornell, I. Fetzer, E. M.
Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke,
D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Rey-
ers, and S. Sörlin (2015): “Planetary boundaries: guiding human development on
a changing planet,” Science, 347, 1259855.

Stehrer, R., A. Bykova, K. Jaeger, O. Reiter, and M. Schwarzhappel (2019):
“Industry Level Growth and Productivity Data with Special Focus on Intangible Assets:
Report on Methodologies and Data Construction for the EU KLEMS Release 2019,”
Vienna Institute for International Economic Studies.

Stern, D. I. (2010): “Energy quality,” Ecological Economics, 69, 1471–1478.

Stern, D. I. and A. Kander (2012): “The role of energy in the industrial revolution
and modern economic growth,” Energy Journal, 33, 125–152.

Thommen, A., S. Werner, O. Frank, J. Philipp, O. Knittelfelder, Y. Quek,
K. Fahmy, A. Shevchenko, B. M. Friedrich, F. Jülicher, et al. (2019):
“Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate
in planarians,” Elife, 8, e38187.

Thompson, E., S. Sorrell, and J. Speirs (2009): “UKERC review of evidence
on global oil depletion: technical report 2: definition and interpretation of reserve
estimates,” Tech. rep., UK Energy Research Centre, London.

Tian, H., R. Xu, J. G. Canadell, R. L. Thompson, W. Winiwarter, P. Sun-
tharalingam, E. A. Davidson, P. Ciais, R. B. Jackson, G. Janssens-
Maenhout, et al. (2020): “A comprehensive quantification of global nitrous oxide
sources and sinks,” Nature, 586, 248–256.

Timmer, M. P., E. Dietzenbacher, B. Los, R. Stehrer, and G. J. De Vries
(2015): “An illustrated user guide to the world input–output database: the case of
global automotive production,” Review of International Economics, 23, 575–605.

Tol, R. S. (2018): “The economic impacts of climate change,” Review of Environmental
Economics and Policy, 12, 4–25.

Torrence, C. and G. P. Compo (1998): “A practical guide to wavelet analysis,”
Bulletin of the American Meteorological Society, 79, 61–78.

Uhler, R. S. (1976): “Costs and supply in petroleum exploration: the case of Alberta,”
Canadian Journal of Economics, 72–90.

van den Bergh, J. and I. Savin (2021): “Impact of carbon pricing on low-carbon
innovation and deep decarbonisation: controversies and path forward,” Environmental
and Resource Economics, 80, 705–715.

Van Nuffel, L., J. Gorenstein Dedecca, T. Smit, and K. Rademaekers (2018):
“Sector coupling: how can it be enhanced in the EU to foster grid stability and de-
carbonise?” Tech. rep., European Parliament, Committee on Industry, Research and
Energy.

140



Vardi, Y. (1982): “Nonparametric estimation in the presence of length bias,” The Annals
of Statistics, 10 (2), 616–620.

Veleda, D., R. Montagne, and M. Araujo (2012): “Cross-wavelet bias corrected
by normalizing scales,” Journal of Atmospheric and Oceanic Technology, 29, 1401–1408.

Verona, F. (2016): “Time-frequency characterization of the U.S. financial cycle,” Eco-
nomics Letters, 144, 75–79.

Wang, J., L. Feng, L. Zhao, S. Snowden, and X. Wang (2011): “A comparison of
two typical multicyclic models used to forecast the world’s conventional oil production,”
Energy Policy, 39 (12), 7616–7621.

West, G. B. (2017): Scale: The Universal Laws of Growth, Innovation, Sustainability,
and the Pace of Life in Organisms, Cities, Economies, and Companies, Penguin Press.

Wilson, P. W. (1993): “Detecting outliers in deterministic nonparametric frontier mod-
els with multiple outputs,” Journal of Business and Economic Statistics, 11, 319–323.

Winiwarter, W., L. Höglund-Isaksson, Z. Klimont, W. Schöpp, and
M. Amann (2018): “Technical opportunities to reduce global anthropogenic emissions
of nitrous oxide,” Environmental Research Letters, 13, 014011.

Wooldridge, J. M. (2002): Econometric Analysis of Cross Section and Panel Data,
Cambridge, Mass.: MIT Press.

Wozabal, D., C. Graf, and D. Hirschmann (2016): “The effect of intermittent
renewables on the electricity price variance,” OR Spectrum, 38, 687–709.

Würzburg, K., X. Labandeira, and P. Linares (2013): “Renewable generation
and electricity prices: taking stock and new evidence for Germany and Austria,” Energy
Economics, 40, S159–S171, supplement Issue: Fifth Atlantic Workshop in Energy and
Environmental Economics.

Zaim, O. and F. Taskin (2000): “Environmental efficiency in carbon dioxide emissions
in the OECD: a non-parametric approach,” Journal of Environmental Management, 58,
95–107.

Zhou, P. and B. Ang (2008): “Linear programming models for measuring economy-
wide energy efficiency performance,” Energy Policy, 36, 2911–2916.

Zhou, P., B. W. Ang, and K. L. Poh (2008a): “Measuring environmental perfor-
mance under different environmental DEA technologies,” Energy Economics, 30, 1–14.

Zhou, P., B. W. Ang, and K.-L. Poh (2008b): “A survey of data envelopment anal-
ysis in energy and environmental studies,” European Journal of Operational Research,
189, 1–18.

Zofío, J. L. and A. M. Prieto (2001): “Environmental efficiency and regulatory
standards: the case of CO2 emissions from OECD industries,” Resource and Energy
Economics, 23, 63–83.

141



A Appendix to Chapter 3

Table A1: GHG emissions across sectors and countries

Period 2008-2012 Period 2012-2016
CO2 CH4 N2O GHG CO2 CH4 N2O GHG

Sectors:
A 92.193 208.540 158.558 460.256 89.712 208.016 160.372 459.659
B 52.031 33.637 0.941 86.494 42.449 31.123 0.898 73.785
C 817.971 7.452 17.099 841.163 756.424 7.236 10.555 774.389
DE 1190.735 138.968 16.030 1345.091 1053.977 117.502 15.930 1183.434
F 52.972 0.079 1.073 54.123 49.755 0.067 1.045 50.885
G 74.259 0.316 0.563 75.132 67.838 0.250 0.596 68.618
H 469.594 4.549 4.685 478.748 449.482 4.335 5.210 458.907
Countries:
AUT 51.107 6.920 3.191 61.114 43.931 6.470 3.172 53.483
BEL 73.401 8.399 6.847 88.198 66.619 7.929 6.059 80.396
CZE 90.279 14.302 4.285 108.843 80.649 13.945 4.396 99.051
DEU 654.103 56.302 36.961 747.224 641.271 54.210 37.423 732.635
DNK 78.315 7.153 5.405 90.926 64.979 6.857 5.402 77.228
ESP 230.152 37.313 14.355 283.416 203.419 35.532 15.064 254.097
FIN 52.091 5.091 4.471 61.539 44.399 4.740 4.543 53.900
FRA 229.250 57.504 40.761 327.310 207.434 54.678 39.493 299.578
GBR 386.425 62.979 20.077 467.680 341.522 51.729 19.234 412.077
GRC 74.828 9.422 5.151 89.561 61.145 9.045 4.219 74.408
ITA 304.934 43.995 16.758 365.478 255.947 41.205 15.619 312.340
IRL 33.364 12.069 6.111 51.442 32.168 12.760 6.373 51.625
NLD 142.834 18.525 8.112 170.053 138.514 17.553 8.051 164.691
POL 273.152 43.978 19.542 336.437 260.262 43.084 19.303 321.933
SVK 30.617 4.469 2.317 37.254 27.183 4.162 1.758 33.054
SWE 44.903 5.119 4.607 54.534 40.197 4.632 4.497 49.180
Total:
Σ 2749.754 393.539 198.949 3341.008 2509.637 368.528 194.605 3069.678
Note: GHG (CO2, CH4,N2O ) and their totals (column GHG) are expressed in mt of

CO2e. Minor discrepancies may arise when the sum of the individuals GHG is

compared to their totals. This is due to taking the sum and the median operations in

different orders for the totals.

142



Table A2: Potential emission reduction of total GHG for the period 2008-2012 (left
columns) and period 2012-2016 (right columns), variant (a)

Total GHG Period 2008-12 Total GHG Period 2012-16
Actual Esti-

mate
Conf. Interval Actual Esti-

mate
Conf. Interval

Sectors:
A 460.256 213.643 [144.405, 292.685] 459.659 264.259 [210.028, 338.978]
B 86.494 47.723 [31.040, 71.862] 73.785 40.674 [25.127, 59.511]
C 841.163 453.659 [326.684, 605.299] 774.389 402.751 [287.109, 538.407]
DE 1345.091 641.263 [481.872, 890.818] 1183.434 580.397 [430.116, 845.409]
F 54.123 21.969 [17.803, 29.988] 50.885 14.559 [10.164, 22.237]
G 75.132 17.891 [9.874, 29.784] 68.618 14.956 [8.742, 25.026]
H 478.748 126.126 [93.834, 174.577] 458.907 130.819 [96.634, 179.703]
Countries:
AUT 61.114 29.662 [25.144, 35.780] 53.483 27.579 [23.597, 33.000]
BEL 88.198 40.568 [27.973, 61.432] 80.396 36.432 [25.800, 50.537]
CZE 108.843 72.512 [68.170, 78.469] 99.051 75.065 [71.876, 79.836]
DEU 747.224 254.258 [77.702, 523.120] 732.635 252.501 [84.405, 534.271]
DNK 90.926 21.414 [4.333, 50.740] 77.228 19.342 [4.014, 45.480]
ESP 283.416 116.465 [73.985, 183.253] 254.097 113.490 [82.492, 153.683]
FIN 61.539 26.210 [16.878, 43.054] 53.900 23.291 [15.014, 39.776]
FRA 327.310 115.542 [52.775, 206.256] 299.578 135.333 [94.202, 197.693]
GBR 467.680 293.249 [263.718, 333.514] 412.077 252.008 [224.468, 292.130]
GRC 89.561 23.852 [3.886, 59.044] 74.408 23.218 [4.581, 56.536]
ITA 365.478 157.301 [119.860, 203.656] 312.340 151.437 [122.248, 190.379]
IRL 51.442 22.263 [14.082, 34.416] 51.625 15.396 [2.101, 34.861]
NLD 170.053 94.760 [79.141, 114.023] 164.691 65.654 [36.604, 115.461]
POL 336.437 211.488 [181.380, 252.492] 321.933 216.391 [194.421, 246.129]
SVK 37.254 21.470 [18.714, 25.195] 33.054 18.647 [15.938, 22.180]
SWE 54.534 21.231 [15.523, 29.114] 49.180 22.442 [17.679, 29.551]
To-
tal:
Σ 3341.008 1522.274 [1236.410, 1885.573] 3069.678 1448.417 [1176.830, 1801.477]
Note: Total GHG are expressed in million tons (mt) of CO2 equivalents and reported with

three digits following the decimal point. 95% percent bootstrap confidence intervals are in

square brackets.
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Table A5: Potential emission reduction of total GHG and output enhancement for the
period 2012-2016, variant (d)

Output Total GHG
Actual Esti-

mate
Conf. Interval Actual Esti-

mate
Conf. Interval

Sectors:
A 176.698 44.130 [30.172, 62.709] 459.659 248.062 [174.338, 336.317]
B 80.654 35.034 [19.751, 55.689] 73.785 36.179 [22.278, 56.240]
C 1809.919 678.039 [425.829, 1014.403] 774.389 306.796 [212.143, 424.805]
DE 314.613 49.079 [28.352, 85.066] 1183.434 547.370 [397.768, 792.031]
F 597.705 35.946 [12.313, 75.856] 50.885 14.100 [10.217, 21.628]
G 1320.321 94.173 [45.442, 168.895] 68.618 11.536 [7.331, 18.844]
H 546.876 47.462 [27.166, 78.382] 458.907 107.550 [82.477, 145.105]
Countries:
AUT 126.909 28.021 [20.330, 37.812] 53.483 14.858 [11.615, 19.785]
BEL 134.940 15.215 [6.451, 31.835] 80.396 42.007 [24.473, 69.574]
CZE 118.664 44.038 [37.385, 54.093] 99.051 49.621 [42.766, 60.568]
DEU 1124.347 207.739 [26.270, 524.734] 732.635 171.658 [62.563, 360.565]
DNK 72.893 15.874 [6.789, 27.895] 77.228 10.218 [1.709, 22.885]
ESP 442.674 131.032 [99.570, 175.213] 254.097 94.736 [58.357, 165.020]
FIN 65.276 24.055 [16.677, 35.392] 53.900 16.570 [10.382, 28.677]
FRA 625.329 92.779 [36.879, 190.854] 299.578 156.579 [84.457, 243.573]
GBR 612.464 109.440 [80.558, 146.340] 412.077 238.760 [194.299, 321.503]
GRC 62.585 8.165 [1.552, 18.656] 74.408 14.299 [3.408, 34.666]
ITA 602.858 174.096 [111.289, 249.810] 312.340 96.580 [77.844, 127.095]
IRL 61.638 11.475 [1.313, 30.100] 51.625 9.361 [1.278, 21.550]
NLD 225.522 30.538 [15.204, 57.622] 164.691 60.244 [34.418, 103.644]
POL 376.336 45.867 [24.653, 80.858] 321.933 247.319 [184.337, 315.200]
SVK 62.312 43.017 [36.939, 50.859] 33.054 5.665 [4.376, 7.861]
SWE 132.039 2.511 [0.847, 5.233] 49.180 22.626 [17.129, 30.944]
To-
tal:
Σ 4846.786 983.863 [676.145, 1380.091] 3069.678 1271.601 [1028.342, 1594.755]
Note: Total GHG and Output are expressed in million tons (mt) of CO2 equivalents and in

bn € (in PPP of 2010), respectively. Both are reported with three digits following the decimal

point. 95% percent bootstrap confidence intervals are in square brackets.

146



B Formal Appendix to Chapter 4

B.1 Derivation of the Posterior Distribution from a Poisson
prior

Under the Poisson prior assumption of N ∼ Pois(ν), Bayes’ rule implies for the posterior
of N that

P[N = n|F ] =
e−ν νn

n!
`(x|n)∑∞

n=k e−ν νn

n!
`(x|n) , (B.1)

where `(x|n) is given in equation (4.13). Substituting l = n− k, the numerator in (B.1)
can be rearranged as follows

P[N − k = l|F ] ∝ e−ν ν(k+l)

(k + l)!

(k + l)!

l!

( k∏

i=1

fθ(xi)

ptr(θ)

xβi
bi

)( � ∞

0

φθ(γ)
lgb(γ)dγ

)
,

P[N − k = l|F ] ∝ νk
( k∏

i=1

fθ(xi)

ptr(θ)

xβi
bi

)( � ∞

0

e−ν (νφ(γ))
l

l!
gb(γ)dγ

)
.

Hence the posterior of N − k, the number of undiscovered fields, becomes

P[N − k = l|F ] =

�∞
0

e−ν · (νφ(γ))l

l!
gb(γ)dγ∑∞

l=0

�∞
0

e−ν · (νφ(γ))l

l!
gb(γ)dγ

.

We also need the posterior pdf of Γk given X = x and N − k = l from the first line of
equation (4.14), which is

g(0)(γ|x, l) := φθ(γ)
lgb(γ)�∞

0
φθ(γ)lgb(γ)dγ

.

In Lemmas 1-2, we derive a specific refactoring of the joint distribution of (Γk, N − k)|F ,
which proves the claim from sect. 4.3.2 that N − k has a mixed Poisson posterior. In
Lemmas 3-4, we derive some further formulas from the joint distribution. The formulas
in Lemma 3 for E[(N−k)1|F ] and g(1)(γ|F) have already been derived by Lee (2008) (see
equations (A.72)-(A.74) on pp. 195f.), while the refactoring in Lemma 2 has not been
stated in the literature, at least to our knowledge.

Lemma 1. It holds that
∞∑

l=0

� ∞

0

e−ν · (νφ(γ))
l

l!
gb(γ)dγ =

� ∞

0

eν(φ(γ)−1)gb(γ)dγ. (B.2)

Proof of Lemma 1: Interchanging the order of summation and integration is allowed
by Fubini’s theorem since all terms are positive. The remainder follows directly from the
definition of the exponential function. �

Lemma 2. The joint distribution g(0)(γ|x, l) · P[N − k = l|F ] can be refactored as a
continuous mixture of Poisson distributions. In particular,

g(0)(γ|x, l) · P[N − k = l|F ] = P[N − k = l|Γk = γ] · g(0)(γ|F),

where P[N − k = l|Γk = γ] =
(νφ(γ))l

l!
e−νφ(γ),

and g(0)(γ|F) =
eν(φ(γ)−1)gb(γ)�∞

0
eν(φ(γ)−1)gb(γ)dγ

.

(B.3)
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Proof of Lemma 2:

g(0)(γ|x, l) · P[N − k = l|F ] =

(
φ(γ)lgb(γ)�∞

0
φ(γ)lgb(γ)dγ

)
·
(�∞

0
e−ν · (νφ(γ))l

l!
gb(γ)dγ�∞

0
eν(φ(γ)−1)gb(γ)dγ

)

= φ(γ)lgb(γ) ·
e−ν νl

l!�∞
0

eν(φ(γ)−1)gb(γ)dγ

=
(νφ(γ))l

l!
· e−νgb(γ)�∞

0
eν(φ(γ)−1)gb(γ)dγ

=

(
(νφ(γ))l

l!
e−νφ(γ)

)
·
(

eν(φ(γ)−1)gb(γ)�∞
0

eν(φ(γ)−1)gb(γ)dγ

)
.

(B.4)

We first apply the result of Lemma 1 in the denominator of P[N − k = l|F ], then cancel
the integrals

�∞
0
φ(γ)lgb(γ)dγ, then reorder some terms, and finally expand by e−νφ(γ).

�

Lemma 3. For m = 1, 2, it holds for the posterior moments E[(N − k)m|F ] that

E[(N − k)1|F ] =

�∞
0
νφ(γ)eν(φ(γ)−1)gb(γ)dγ�∞
0

eν(φ(γ)−1)gb(γ)dγ
,

E[(N − k)2|F ] =

�∞
0
νφ(γ)

(
1 + νφ(γ)

)
eν(φ(γ)−1)gb(γ)dγ�∞

0
eν(φ(γ)−1)gb(γ)dγ

.

(B.5)

Also, for m = 1, 2, it holds for the densities

g(m)(γ|F) :=
( ∞∑

l=0

lmP[N − k = l|Γk = γ]g(0)(γ|F)
)/

E[(N − k)m|F ]

that

g(1)(γ|F) =
νφ(γ)eν(φ(γ)−1)gb(γ)�∞

0
νφ(γ)eν(φ(γ)−1)gb(γ)dγ

,

g(2)(γ|F) =
νφ(γ)

(
1 + νφ(γ)

)
eν(φ(γ)−1)gb(γ)�∞

0
νφ(γ)

(
1 + νφ(γ)

)
eν(φ(γ)−1)gb(γ)dγ

.

(B.6)

Proof of Lemma 3: (B.5) follows from the properties of the Pois(λ)-distribution which
has mean λ and second moment λ(1+λ), together with the law of iterated expectations /
the law of total probability. To see (B.6), note that integrating

∑∞
l=0 l

m
P[N − k = l|Γk =

γ]g(0)(γ|F) over γ gives by definition the mth posterior moment from above. Thus, the
numerators in (B.6) have to match the numerators in (B.5), with the only difference that
the numerators in (B.6) have no integral. �

Lemma 4. Consider any continuous transformation of Γk, denoted by t∗(Γk). For m =
1, 2, provided that

�∞
0
t∗(γ)g(m)(γ|F)dγ exists, it holds that

E[(N − k)mt∗(Γk)|F ] = E[(N − k)m|F ]

� ∞

0

t∗(γ)g(m)(γ|F)dγ. (B.7)

Proof of Lemma 4: We write out the expectation after factoring the joint distribution
as P[N − k = l|Γk = γ] · g(0)(γ|F), then pull t∗(γ) out of the sum, then expand by
E[(N − k)m|F ], and finally recognize the formula of g(m)(γ|F). �
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B.2 Numerical Computation of the General Gamma Density

A draw from the general gamma distribution gb(γ) with parameters b = (b1, ..., bk) and
support [0,∞) as defined in sect. 4.3.2 is easily obtained by the sum

∑k
j=1 εj/bj, where

εj are iid standard exponential variates. With this one can approximate the density gb(γ)
by Monte Carlo methods, and one could try to approximate the integrals of the type�∞
0

eν(φ(γ)−1)gb(γ)dγ or
�∞
0
φ(γ)n−kgb(γ)dγ by Monte Carlo integration. However, the

integrands e−ν[1−φ(γ)] or φ(γ)n−k exhibit a very sharp decline after zero due to the large
exponents ν and n − k.92 Thus, a highly precise evaluation of gb(γ) is required at its
left tail in the proximity of zero. Since Monte Carlo methods do not perform well at
approximating the tails of a distribution, they have not been used in the literature here
to our knowledge.

The pdf gb(γ) does have an analytical expression, which can be obtained via partial
fractions expansion from its real-valued Laplace transform that is given by

ψb(s) :=
k∏

j=1

bj
bj + s

, s ∈ R+. (B.8)

The resulting expression is (McGill and Gibbon (1965), pp. 4f.; Barouch and Kaufman
(1976a), p. 13):

gb(γ) =
k∑

j=1

Cjbje
−γbj , where Cj =

k∏

l=1,l 6=j

bl
bl − bj

for j = 1, . . . , k.

However, this expression is practically useless for accurately evaluating the density, in
particular at the important points near zero (Nair and Wang (1989), pp. 430f.). The
problem with this formula is that already for modest values of k the coefficients Cj,
j = 1, ..., k, become extremely large and are always alternating in sign so that each
coefficient would need to be computed with numerically infeasible precision.

In the literature, the method that is instead used to compute gb(γ) is the Fourier-series
method for numerically inverting the complex-valued Laplace transform of gb(γ). Let
i =

√
−1 denote the imaginary number, and insert the complex number s = a + iω into

(B.8). The inversion integral ψb(s) → gb(γ) of the Laplace transform gb(γ) → ψb(s) is
given by either of the following formulas (Abate and Whitt (1995), p. 37)

gb(γ) =
eaγ

π

∞�

0

[
Re{ψb(a+ iω)}cos(ωγ)− Im{ψb(a+ iω)}sin(ωγ)

]
dω, γ ∈ R,

gb(γ) =
2eaγ

π

∞�

0

Re{ψb(a+ iω)}cos(ωγ)dω, γ ∈ R+,

(B.9)

where a can be an arbitrary real number greater than the real parts of all singularities of
the complex-valued Laplace transform. For the general gamma density this requirement
implies that a > −bk.

92The Laplace transform φ(γ) fulfills φ(0) = 1, is convex, and declines monotonously towards the
asymptote lim

γ→∞
φ(γ) = 0. This carries over to the integrand φ(γ)n−k. The integrand e−ν[1−φ(γ)] also

starts at 1, is convex, and declines monotonously towards the asymptote e−ν . Both integrands exhibit
an extremely sharp decline in the proximity of zero.
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Inverting Laplace transforms via the Fourier-series method means essentially that a trape-
zoidal quadrature rule is applied to either of the integrals from (B.9). The key result is
that a carefully chosen trapezoidal rule is equivalent to a Fourier-series approximation of
the density of interest on a certain compact interval (Dubner and Abate (1968); Durbin
(1974); Crump (1976); Abate and Whitt (1995)). This makes the method particular
effective as a numerical technique.

The version of the Fourier-series method we found most useful and practical to implement
for evaluating the general gamma density is the “Euler method”. For probability appli-
cations this method is neatly outlined by Abate and Whitt (1995). In particular, here
the trapezoidal rule is applied to the second line of (B.9) with a step-size of h = π/(2γ).
Denoting the Fourier-series approximation of gb(γ) by g̃b(γ), and also setting a = A/(2γ),
the approximation at each γ is the nearly alternating series (Abate and Whitt (1995), pp.
37f.)

g̃b(γ) =
eA/2

γ

(
1

2
ψb

( A
2γ

)
+

∞∑

m=1

(−1)mRe
{
ψb

(A+ i(2mπ)

2γ

)})
. (B.10)

For the general gamma distribution, the real part of the complex-valued Laplace transform
is easily derived from (B.8) as

Re{ψb(a+ iω)} =
( k∏

j=1

bj√
(bj + a)2 + ω2

)
· cos

( k∑

j=1

atan
( ω

bj + a

))
. (B.11)

It can be shown generally that the discretization error of the approximation g̃b(γ), i.e.
the difference between the series in (B.10) and the exact integral in (B.9), equals (Abate
and Whitt (1995), p. 38)

g̃b(γ)− gb(γ) =
∞∑

m=1

e−mAgb(γ(2m+ 1)). (B.12)

The crux of the method is that the free parameter A can always be chosen so that the
discretization error becomes as small as desired. For example, if we wanted a discretization
error of exactly 10−E at some γ, we would need to pick A so that the right-hand side of
(B.12) equals 10−E. Obviously, since gb(γ(2m + 1)) is not known this cannot be done.
What can be done is bounding (B.12) by a function that envelopes gb(γ), and then
computing A based on this envelope so that the discretization error is forced to be less
than 10−E.

The delicacy of the Fourier-series method is that there is a risk of setting A too high,
which can lead to large error. The reason is that the discretization error (B.12) is not the
only error, there is also an error from the necessity to truncate the series in (B.10). The
term eA/2 reveals that this truncation error grows exponentially with A. To mitigate the
problem, Euler summation for accelerating the convergence of the series has been proposed
by Simon et al. (1972), which allows to approximate the limit of a nearly alternating series
such as (B.10) much faster. According to Abate and Whitt (1995), Euler summation for
a nearly alternating series is equivalent to a simple weighted average of the last ∆M
partial sums, where the weights are from the binomial distribution with parameters ∆M
and p = 1/2. Put more clearly, Euler summation of (B.10) amounts to computing the
terms inside the sum of (B.10) for m = M,M + 1, . . .,M + ∆M , then computing the
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corresponding partial sums while also adding the initial M terms, and finally averaging
with the binomial probabilities.93

The remainder of this section is concerned with how to envelope the function gb(γ) in order
to determine A as to achieve the desired discretization error 10−E.94 The usual candidate
for bounding gb(γ) is its maximum. As explained by McGill and Gibbon (1965), it is clear
that gb(γ) behaves globally similar to a usual gamma density, in particular that gb(0) = 0
when k ≥ 2, lim

γ→∞
gb(γ) = 0, and that the function has a unique maximum. The maximum

is not derivable analytically, but is easily approximated by a Monte Carlo simulation.95

In the following, we propose a novel idea for how to get an improved envelope for gb(γ)
at very small values of γ, so that the error parameter E need not be chosen with as much
care as when using only the maximum as the envelope. We use the known Taylor series
of gb(γ) developed at γ = 0, which is given by (Barouch and Kaufman (1976a), p. 13;
Nair and Wang (1989), p. 430)96

gb(γ) =
k∏

j=1

bj
γk−1

(k − 1)!
+O(γk). (B.13)

Since a different A needs to be computed for each γ, we evaluate (B.10) iteratively at
equally-spaced grid points. The iterative evaluation has the following advantage: if we
know that gb(γ −∆γ) < gb(γ), where ∆γ is the distance between adjacent grid points, it
is possible to use the following inequality

1

gb(γ)
<

1

gb(γ −∆γ)
≈ 1

g̃b(γ −∆γ)
, (B.14)

where the approximation is valid provided that g̃b(γ −∆γ) has been calculated without
large error.

We propose to construct the envelope for gb(γ) from the minimum of the Taylor approx-
imation (i.e. (B.13) without the O(γk)-terms) and the unique maximum of the density.
Denoting the unique maximum by g and also using (B.14), we can bound the relative
discretization error of the approximation (B.10) as follows:

g̃b(γ)− gb(γ)

gb(γ)
=

∞∑

m=1

e−mA gb(γ(2m+ 1))

gb(γ)
≤

∞∑

m=1

e−mAmin
{
(2m+ 1)k−1,

g

g̃b(γ −∆γ)

}
.

Letting M∗ be the last index where (2m + 1)k−1 is the minimum, and setting M∗ = 0 if
this is never the case, we get that

M∗ = max

{⌊
− 1

2
+

1

2

( g

g̃b(γ −∆γ)

) 1
k−1
⌋
, 0

}
,

where b·c is the floor function, and that

g̃b(γ)− gb(γ)

gb(γ)
≤
{(∑M∗

m=1(2m+ 1)k−1e−mA
)
+ g

g̃b(γ−∆γ)
e−(M∗+1)A, if M∗ ≥ 1,

g
g̃b(γ−∆γ)

e−A, if M∗ = 0.
(B.15)

93Abate and Whitt (1995) (p. 38) propose to use ∆M = 11. In our applications we always use
∆M = 11, and use M = 100, increasing M to 500 for very small values of γ.

94We use a five-digit accuracy (E = 5), which worked well for all values of γ.
95For example one may compute a kernel estimate of the density at its median, which usually is not

far away from the mode since gb(γ) is sufficiently symmetric already for modest values of k.
96To see this, evaluate the first k− 1 derivatives of equation (5c) in McGill and Gibbon (1965) at zero.
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Here we have omitted the factor 1/(1 − exp(−A)) from summing the geometric series
because exp(−A) is negligible. For M∗ = 0, the right-hand side of (B.15) is easily solved
for A to achieve a relative error of 10−E. For M∗ ≥ 1, we need a root-finding algorithm
to determine A.97 This requires feeding lower and upper bounds Amin and Amax into the
root-finding algorithm, so that the right-hand side of (B.15) is greater than 10−E at Amin

and smaller than 10−E at Amax.

We are left with deriving suitable values for Amin and Amax. Starting with Amin, the right-
hand side of (B.15) is obviously larger than its first summand, exp((k − 1)ln3 − Amin),
which is greater or equal to 1 already if Amin ≤ (k − 1)ln3 ≈ k − 1. For this reason one
can use Amin = k − 1. Continuing with Amax, note that for any Amax > (k − 1)ln3 the
following inequalities hold

0 > (k − 1)ln(2 · 1 + 1)− 1Amax > (k − 1)ln(2 · 2 + 1)− 2Amax > . . . > (k − 1)ln(2 ·m+ 1)−mAmax.

Thus, the sum over m = 1, . . . ,M∗ in (B.15) is always less than M∗exp((k−1)ln3−Amax),
so that the right-hand side of (B.15) is always less than

2 · max
{
M∗exp((k − 1)ln3− Amax),

g
g̃b(γ−∆γ)

exp(−(1 +M∗)Amax)
}
.

Hence, we know that the right-hand side of (B.15) remains below 10−E if we choose Amax

as

Amax = max
{

ln(2M∗) + (k − 1)ln3 + Eln10,
1

1 +M∗
(
ln(2g)− lng̃b(γ −∆γ) + Eln10

)}
.

B.3 Maximum Likelihood Estimation

In this section we again show the parameter dependence and separate the truncation
factor in the field-size density as fθ/ptr(θ).

Point estimation

At first, we state the important relation that for any distribution from the exponential
family connects the log-derivatives of the parameter dependent function a(η) to the mean
vector and covariance matrix of the sufficient statistics s(x). If X is distributed with pdf
c(x)eη

>s(x)/a(η), then it holds that (see Dempster et al. (1977), p. 5)

a(η) =

�
c(x)eη

>s(x)dx,

⇒ ∂lna(η)

∂η
= Eη

[
s(X)

]
,

⇒ ∂2lna(η)

∂η∂η> = Vη

[
s(X)

]
.

(B.16)

By truncating a pdf from the exponential family, the only change in the exponential family
form is that the parameter dependent function needs to be multiplied by the truncation

97We use the R-method “uniroot”. We implement this by solving the natural logarithm of (B.15) for
−Eln10.
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factor. Thus, the pdf of Ỹ1 has the parameter dependent function a(η)(1 − ptr(η)).
Moreover, the density of the remaining field sizes in equation (4.15) can be written in
exponential family form as

ρη(x|γ) =
[
e−γxβ

c(x)
]
eη

>s(x)
/[
a(η)φη(γ)ptr(η)

]
, (B.17)

showing that it has the parameter dependent function a(η)φη(γ)ptr(η). Table B1 sum-
marizes several important formulas for the exponential family form of the lognormal dis-
tribution.98

Table B1: Exponential family form of the lognormal distribution

(
η1(µ, σ), η2(µ, σ)

)
=
(
µσ−2, (−2σ2)−1

)
(
µ(η1, η2), σ(η1, η2)

)
=
(
η1(−2η2)

−1, (−2η2)
− 1

2

)

c(x) = 1√
2πx

, s1(x) = lnx, s2(x) = (lnx)2, lna(η) = −1
4

η21
η2

− 1
2
ln(−2η2)

Jacobian of η → θ: µ(η1, η2) σ(η1, η2)

Derivative w.r.t. η1 σ2 0

Derivative w.r.t. η2 2µσ2 σ3

Gradient of lna(η): ∂lna(θ)/∂η1 = µ, ∂lna(θ)/∂η2 = µ2 + σ2

Hessian of lna(η): ∂lna(θ)/∂η1 ∂lna(θ)/∂η2

Derivative w.r.t. η1 σ2 2µσ2

Derivative w.r.t. η2 2µσ2 4µ2σ2 + 2σ4

We continue from equation (4.17) by reparameterizing θ → η so that the exponential
family form of the function becomes

F (η′, ν ′|η, ν) = k ·
(1
k

k∑

i=1

s(xi)
>η′
)
− klna(η′) + E(η,ν)

{( M∑

i=1

s(Ỹi)
>η′
)
−M lna(η′)

∣∣∣F
}

+ E(η,ν)

{( N∑

i=k+1

s(X̃i)
>η′
)
− (N − k)lna(η′)

∣∣∣F
}

− ν ′ + ln(ν ′)E(η,ν)

[
N
∣∣F
]
+ constant.

98For the Pareto distribution the exponential family form is derived as follows. Rearrange the density as
fθ(x) = θxθ/xθ+1 = (1/x)e−θ(lnx−lnx)(1/θ−1). Thus, η(θ) = −θ, s(x) = lnx− lnx, and lna(η) = −ln(−η).
Taking derivatives with respect to η and plugging in η(θ) yields ∂lna(θ)/∂η = 1/θ, ∂2lna(θ)/∂η2 = 1/θ2.
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Thus, the necessary conditions for maximization with respect to (η′, ν ′) are

0
!
=
∂F (η′, ν ′|η, ν)

∂η′

⇔ E(η,ν)[N +M |F ]
∂lna(η′)

∂η′ = k ·
(1
k

k∑

i=1

s(xi)
)
+ E(η,ν)[M |F ]Eη

[
s(Ỹ1)

]

+ E(η,ν)

{ N∑

i=k+1

Eη

[
s(X̃i)

∣∣N,Γk,F
]∣∣∣F
}

⇔ E(η,ν)[N |F ]

ptr(η)

∂lna(η′)

∂η′ = k ·
(1
k

k∑

i=1

s(xi)
)
+ E(η,ν)[N |F ]

1− ptr(η)

ptr(η)
· Eη

[
s(Ỹ1)

]

+ E(η,ν)

{
(N − k) · Eη

[
s(X̃k+1)

∣∣Γk,F
]∣∣∣F
}

⇔ ∂lna(η′)

∂η′ = ptr(η)α(η, ν)
(1
k

k∑

i=1

s(xi)
)
+
(
1− ptr(η)

)
Eη

[
s(Ỹ1)

]

+ ptr(η)
(
1− α(η, ν)

) � ∞

0

Eη

[
s(X̃k+1)

∣∣Γk = γ,F
]
g
(1)
(η,ν)(γ|F)dγ,

where α(η, ν) = k
/
E(η,ν)[N

∣∣F ], and

0
!
=
∂F (η′, ν ′|η, ν)

∂ν ′
,

⇔ ν ′ = E(η,ν)[N |F ].

In the above derivations, we proceed after taking the derivative by evaluating the expec-
tations stepwise with the law of iterated expectations. To arrive at the third equality, we
first use the fact that the Negbin(n, p)-distribution has the mean n(1−p)/p which implies
that

E(η,ν)[M |F ] = E(η,ν)[N |F ](1− ptr(η))/ptr(η),

E(η,ν)[N +M |F ] = E(η,ν)[N |F ]/ptr(η).

To arrive the third equality, we also use the fact that

Eη

[
s(X̃i)

∣∣N,Γk,F
]
= Eη

[
s(X̃i)

∣∣Γk,F
]
= Eη

[
s(X̃k+1)

∣∣Γk,F
]

for all i = k+1, . . . , N , as can be seen from equation (4.14). To arrive at the fourth equal-
ity, we apply Lemma 4 (eq. B.7) to the outer expected value over the joint distribution
of (N,Γk)|F .

Finally, note that the necessary conditions are sufficient for (η′, ν ′) to be a maximum given
(η, ν). The function F (·|·) is globally concave in (η′, ν ′) since its hessian with respect to
(η′, ν ′) equals

∂2F (η′, ν ′|η, ν)
∂(η′, ν ′)∂(η′, ν ′)>

=

[
−E(η,ν)[N |F ]

ptr(η)
∂2lna(η′)
∂η′η′> 0

0 −E(η,ν)[N |F ]

(ν′)2

]
,

where ∂2lna(η′)
∂η′η′> is positive definite for each η′, as can be seen by the relation to a covariance

matrix shown in (B.16). Thus, independent of (η′, ν ′) all eigenvalues of the hessian are
negative, which implies that it is globally negative definite.
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Interval estimation

By reparametrizing equation (4.13) into exponential family form, and taking second-order
derivatives, we arrive at

∂2L(θ, ν)

∂η∂η> =− k
(∂2lna(θ)
∂η∂η> +

∂2lnptr(θ)

∂η∂η>

)

+

{ � ∞

0

∂2φθ(γ)

∂η∂η>
1

φθ(γ)
νφθ(γ)e

ν(φθ(γ)−1)gb(γ)dγ

+

� ∞

0

∂lnφθ(γ)

∂η

∂lnφθ(γ)

∂η>
(
νφθ(γ)

)2
eν(φθ(γ)−1)gb(γ)dγ

−
( � ∞

0

∂lnφθ(γ)

∂η
νφθ(γ)e

ν(φθ(γ)−1)gb(γ)dγ
)

·
( � ∞

0

∂lnφθ(γ)

∂η> νφθ(γ)e
ν(φθ(γ)−1)gb(γ)dγ

)}/( � ∞

0

eν(φθ(γ)−1)gb(γ)dγ
)
.

Using ∂2φθ(γ)
∂η∂η>

1
φθ(γ)

= ∂2lnφθ(γ)
∂η∂η> + ∂lnφθ(γ)

∂η
∂lnφθ(γ)

∂η> to split the term in the second line, then

combining the resulting ∂lnφθ(γ)
∂η

∂lnφθ(γ)
∂η> -term with the term in the third line, and finally

using the formulas from (B.5-B.6) yields

∂2L(θ, ν)

∂η∂η> =− k
(∂2lna(θ)
∂η∂η> +

∂2lnptr(θ)

∂η∂η>

)

+ E(θ,ν)[N − k|F ]

� ∞

0

∂2lnφθ(γ)

∂η∂η> g
(1)
(θ,ν)(γ|F)dγ

+ E(θ,ν)[(N − k)2|F ]
{ � ∞

0

∂lnφθ(γ)

∂η

∂lnφθ(γ)

∂η> g
(2)
(θ,ν)(γ|F)dγ

}

− E(θ,ν)[N − k|F ]2
{ � ∞

0

∂lnφθ(γ)

∂η
g
(1)
(θ,ν)(γ|F)dγ

}{ � ∞

0

∂lnφθ(γ)

∂η> g
(1)
(θ,ν)(γ|F)dγ

}
.

Moreover, the relations from (B.16-B.17) imply

∂2lna(θ)

∂η∂η> +
∂2lnptr(θ)

∂η∂η> = Vθ

[
s(X̃1)

]
,

∂2lnφθ(γ)

∂η∂η> =
∂2ln[a(θ)ptr(θ)φθ(γ)]

∂η∂η> − ∂2ln[a(θ)ptr(θ)]

∂η∂η> = Vθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Vθ

[
s(X̃1)

]
,

∂lnφθ(γ)

∂η
=
∂ln[a(θ)ptr(θ)φθ(γ)]

∂η
− ∂ln[a(θ)ptr(θ)]

∂η
= Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

]
,

where X̃k+1|Γk is distributed with pdf ρθ(x|γ) and X̃1 is distributed with pdf fθ(x)/ptr(θ).

155



This finally results in the following formula for the Hessian of the log-likelihood:

∂2L(θ, ν)

∂η∂η> =− k · Vθ

[
s(X̃1)

]

+ E(θ,ν)[N − k|F ] ·
{ ∞�

0

(
Vθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Vθ

[
s(X̃1)

])
g
(1)
(θ,ν)(γ|F)dγ

}

+ E(θ,ν)[(N − k)2|F ] ·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])

·
(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])>
g
(2)
(θ,ν)(γ|F)dγ

}

− (E(θ,ν)[N − k|F ])2 ·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])
g
(1)
(θ,ν)(γ|F)dγ

}

·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,F
]
− Eθ

[
s(X̃1)

])>
g
(1)
(θ,ν)(γ|F)dγ

}
.

B.4 Proof of Proposition 4a and 4b

Proof of Proposition 4a: When transition rates are constant at Ri = C for all i =
k+1, k+2, . . ., the process (Mu)u≥0 is a Poisson process with intensity parameter C and
starting value M0 = k, that is (Mu − k) ∼ Pois(Cu), or

P[Mu − k = l] = e−Cu (Cu)
l

l!
for each u > 0. (B.18)

Without loss of generality assume lim
t→∞

Λa(t) = 1 and C = νUk. This implies

lim
t→∞

Nt = lim
u↑1
Mu =M1,

where the first equality follows from Λa(t) ≤ 1 and lim
t→∞

Λa(t) = 1, and the second equality

holds with probability one (because there can be a jump exactly at u = 1, but this event
has probability zero).

Thus, plugging u = 1 and C = νUk into (B.18) establishes that

P
[(

lim
t→∞

Nt

)
− k = l

∣∣Uk

]
= P[M1 − k = l|Uk] = e−νUk

(νUk)
l

l!
.

�

Proof of Proposition 4b: We condition on a particular value for N , i.e. let N = n ≥ k.
The requirement Ri = 0 for i ≥ n + 1 implies that P[Mz = n] = P[Mz ≥ n]. The next
step uses the equivalence P[Mz ≥ n] = P[Zn ≤ z], which is a fundamental property of
counting processes. Because P[Zn ≤ z] is the cdf of a random variable supported on the
nonnegative real numbers (Zn is the sum of n− k of exponentially distributed variables),
it follows that

lim
z→∞

P[Mz = n] = lim
z→∞

P[Zn ≤ z] = 1.
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Using Nt = MΛb(t) shows that this carries over to Nt if the function Λb(t) is unbounded,
yielding lim

t→∞
P[Nt = n] = 1. Removing the conditioning on N = n, this clearly implies

that
lim
t→∞

P[|Nt −N| ≤ ε] = 1, for each ε > 0,

which means that Nt converges in probability to N . As convergence in probability implies
convergence in distribution, the proof is complete. �

B.5 Further Derivations for the Size-Biased Sampling Model

We now prepare the derivation of the induced order statistics result for (X1, . . . , Xn) with
the following Lemma. To give a concise notation for order statistics we need the following
definitions. Let ∆n(c) be the unordered and ∆∗

n(a, b) be the ordered n-dimensional, open
simplex over the intervals (0, c) and (a, b), respectively, i.e.

∆n(c) =
{
(ε1, . . . , εn) ∈ R

n
∣∣ε1, . . . , εn > 0,

n∑

i=1

εi < c
}
,

∆∗
n(a, b) =

{
(γ1, . . . , γn) ∈ R

n
∣∣a < γ1 < γ2 < . . . < γn < b

}
.

Note that with c = b−a, the latter set is a coordinate transform of the former set resulting
as the partial sums plus a shift by a.

Lemma 5. Let w1, . . . , wk > 0 and s ≥ 0. Upon defining the partial sums bi = wi+. . .+wk

for each i = 1, . . . , k, the term
∏k

i=1(bi + s)−1 has the two integral representations

k∏

i=1

(bi + s)−1 =

∞�

0

∞�

γ1

· · ·
∞�

γk−1

e−γks

k∏

i=1

e−γiwidγi,

k∏

i=1

(bi + s)−1 =
k∏

i=1

b−1
i

∞�

0

e−γksgb(γk)dγk,

(B.19)

where gb(γk) is the general gamma density with parameters b = (b1, . . . , bk).

Proof of Lemma 5:

First, recall the straight-forward property of the exponential function that
�∞
0

e−ε(b+s)dε =
(b+ s)−1. Upon applying this for all i = 1, . . . , k we get

k∏

i=1

(bi + s)−1 =
k∏

i=1

[ � ∞

0

e−εi(bi+s)dεi
]

=

∞�

0

· · ·
∞�

0

e−(ε1+...+εk)se−(ε1b1+...+εkbk)dε1 · · · dεk.
(B.20)

Here the product over the integrals can be expanded just like a product over finite sums
since all integrands are positive, allowing arbitrary interchange of the order of integration
by Fubini’s theorem.

To proceed, we rearrange the second exponent from (B.20) by applying a version of Abel’s
summation by parts, which is the discrete analogue to integration by parts as applicable
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to sequences. Upon defining γi = ε1 + . . . + εi for each i = 1, . . . , k, the summation by
parts formula is expressible as (see, e.g., Königsberger (2003), p. 305)99

ε1(w1 + . . .+ wk) + ε2(w2 + . . .+ wk) + . . .+ εkwk

= γ1b1 + (γ2 − γ1)b2 + . . .+ (γk − γk−1)bk

= γ1(b1 − b2) + . . .+ γk−1(bk−1 − bk) + γkbk

= ε1w1 + . . .+ (ε1 + . . .+ εk−1)wk−1 + (ε1 + . . .+ εk)wk.

(B.21)

Then, the multivariate substitution (ε1, . . . , εk) → (γ1, . . . , γk) yields via the substitution
rule for multivariate mappings100

k∏

i=1

(bi + s)−1 =

∞�

0

· · ·
∞�

0

e−(ε1+...+εk)se−{ε1w1+...+(ε1+...+εk)wk}dε1 · · · dεk

=

∞�

0

∞�

γ1

· · ·
∞�

γk−1

e−γkse−(γ1w1+...+γkwk)dγ1 · · · dγk.

To prove the second part, we proceed from (B.20) directly by substituting (ε1, . . . , εk−1, εk) →
(ε1, . . . , εk−1, γk), i.e. we substitute only γk = ε1 + . . .+ εk:

k∏

i=1

(bi + s)−1 =

∞�

0

∞�

0

· · ·
∞�

0

1(ε1 + . . .+ εk−1 < γk)e
−γkse−{ε1b1+...+(γk−ε1−...−εk−1)bk}dε1 · · · dεk−1dγk

=
k∏

i=1

b−1
i

∞�

0

e−γks

{ �

∆k−1(γk)

( k−1∏

i=1

bie
−εibi

)
bke

−(γk−ε1−...−εk−1)bkdε1 · · · dεk−1

}
dγk.

The proof is completed by noting that the integral in the curly brackets is precisely the
convolution of k exponential densities with parameters b1, . . . , bk. �

Both representations from Lemma 5 have been used in the size-biased sampling literature
for further derivations. Starting with the second representation, multiplying by

∏k
i=1 bi

and setting s = x̃βk+1 + . . .+ x̃βn proves the first line of equation (4.12).

The first representation allows to derive the induced order statistics result, which follows
in the next subsection.

99For this case of finite-dimensional vectors, the summation by parts formula is also easily derived by
simple matrix algebra: First, write the vector (b1, . . . , bk)

> as the product of the upper triangular matrix
filled with 1s and (w1, . . . , wk)

>. Then, rearrange the sum ε1b1 + . . .+ εkbk as

(ε1, . . . , εk) · (w1 + . . .+ wk, . . . , wk)
>

= (ε1, . . . , εk) ·
(


1 · · · 1
...

. . .
...

0 · · · 1


 ·




w1

...
wk



)

=

(


1 · · · 0
...

. . .
...

1 · · · 1


 ·




ε1
...
εk



)>

·




w1

...
wk




= (ε1, . . . , ε1 + . . .+ εk) · (w1, . . . , wk)
>.

100Note from the last footnote that the Jacobian of this mapping is the lower triangular matrix of 1s,
so that the Jacobian and its inverse have a constant determinant of 1.
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A priori: the joint distribution of all field sizes in the order of discovery

We use the first integral representation from Lemma 5 with wi = xβi , i = 1, . . . , n, and
s = 0 to rearrange equation (4.7). Factoring all terms inside the integrals, we get

P[X1 ∈ dx1, . . . , Xn ∈ dxn|N = n] = n!
n∏

i=1

xβi
xβi + . . .+ xβn

f(xi)dxi

=

∞�

0

∞�

γ1

· · ·
∞�

γn−1

n!
n∏

i=1

xβi e−γix
β
i f(xi)dxidγi.

(B.22)

Following Pitman and Tran (2015) (pp. 2489ff.), (B.22) can be interpreted as follows: let
X̃1, . . . , X̃n be iid as in assumption (1), ε1, . . . , εn be iid standard exponential rvs, where
the εi are also independent of the X̃i, and define Γ̃i = εi/X̃

β
i . By the fact that

(
(X̃i, Γ̃i),

i = 1, . . . , n
)

form n iid pairs from the joint pdf xβe−γxβ

f(x), and noting that n! = |In|,
we can restate (B.22) in probabilistic terms as

P[X1 ∈ dx1, . . . , Xn ∈ dxn|N = n]

=

∞�

0

∞�

γ1

· · ·
∞�

γn−1

∑

(i(1),...,i(n))∈In

P
[
Γ̃i(1) ∈ dγ1, X̃i(1) ∈ dx1, . . . , Γ̃i(n) ∈ dγn, X̃i(n) ∈ dxn

]

= P

[ ⋃

(i(1),...,i(n))∈In

{Γ̃i(1) < . . . < Γ̃i(n), X̃i(1) ∈ dx1, . . . , X̃i(n) ∈ dxn}
]
.

(B.23)

For a fixed set of size-measures, {x1, . . . , xn}, this interpretation was first proved by
Gordon (1983). (B.23) expresses the probability that the X̃i which becomes the first
size-biased pick has the smallest Γ̃i, the one which becomes the second size-biased pick
has the second smallest Γ̃i, etc., which means precisely that (X1, . . . , Xn) are the induced
order statistics or concomitants of (Γ̃1, . . . , Γ̃n) (Pitman and Tran (2015), p. 2489).

We proceed by expanding in (B.22) each term by (minus one times) the derivative of the
Laplace transform.. Due to −φ′(γ) =

� x

x
xβe−γxβ

f(x)dx, this expansion is mathematically

equivalent to refactoring the joint density of (X̃i, Γ̃i) according to Bayes’ rule. Then, the
joint pdf of (X1, . . . , Xn) given N = n can be restated as

∞�

0

∞�

γ1

· · ·
∞�

γn−1

{ n∏

i=1

xβi e−γix
β
i f(xi)dxi

−φ′(γi)

}
·
{
n!

n∏

i=1

(−φ′(γi))dγi

}
. (B.24)

We denote the pdf from the first bracket by h(xi|γi) ∝ xβi e−γix
β
i f(xi). The second bracket,

together with the integral boundaries, shows that (Γ1, . . . , Γn) are jointly distributed
as (increasing) order statistics from the pdf −φ′(γ) (with cdf 1 − φ(γ)). Pitman and
Tran (2015) (p. 2490) go further to express (B.24) in terms of decreasing uniform order
statistics, which immediately follows since φ(γ) is a complementary cdf. Making the
corresponding substitution ui = φ(γi), (B.24) becomes

1�

0

u1�

0

· · ·
un−1�

0

{ n∏

i=1

xβi e−φ−1(ui)x
β
i f(xi)dxi

−φ′(φ−1(ui))

}
·
{
n!

n∏

i=1

dui

}
. (B.25)
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Overall, (B.22-B.25) imply a further procedure with which Monte Carlo draws for (X1, . . . .Xn)
can be obtained: take (X̃1, . . . , X̃n) as a random sample from f , then draw Γ̃i|X̃i as
Γ̃i = εi/X̃

β
i , and then rearrange the sequence as Γ̃i(1) < . . . < Γ̃i(n), from which one

obtains X1 = X̃i(1), . . . , Xn = X̃i(n).

A posteriori: the joint distribution of the remaining field sizes in the order of
discovery

We now derive a posterior version of the above equations for the distribution of the remain-
ing field sizes (Xk+1, . . . , XN) given (X1, . . . , Xk, N). In (B.22-B.24), we interchange the
order of integration so that the integral over γk is the outermost integral, and the integrals
over γ1, . . . , γk and γk+1, . . . , γn are each pooled inside. Then, (B.22-B.24) becomes

n!

∞�

0

{
p(<)(x; γk)dx1 · · · dxk

}
·

�

∆∗
n−k(γk,∞)

{ n∏

i=k+1

xβi e−γix
β
i f(xi)dxi

−φ′(γi)

}
·
{ n∏

i=k+1

(−φ′(γi))dγi

}
· dγk,

where we define p(<)(x; γk) as the density of (X1, . . . , Xk) jointly with the probability that
the mixing rvs with index below k are smaller than the value γk, i.e.

p(<)(x; γk) =

�

∆∗
k−1(0,γk)

k∏

i=1

xβi e−γix
β
i f(xi)dγi.

We rearrange the integral over the ordered set ∆∗
k−1(0, γk) by applying Abel’s formula

(B.21) with bi = xβi +. . .+x
β
k , i = 1, . . . , k. That is, we substitute back (γ1, . . . , γk−1, γk) →

(ε1, . . . , εk−1, γk) to rearrange the p(<)-term as in the second integral representation of
Lemma 5 (with s = 0 and without the integral over γk which is kept fixed here):

p(<)(x; γk) =
{ k∏

i=1

xβi f(xi)
}
·
{ �

∆∗
k−1(0,γk)

e−(γ1x
β
1+...+γkx

β
k
)dγ1 . . . dγk−1

}

=
{ k∏

i=1

xβi
bi
f(xi)

}
·
{ �

∆k−1(γk)

( k−1∏

i=1

bie
−εibi

)
bke

−(γk−ε1−...−εk−1)bkdε1 · · · dεk−1

}

=
{ k∏

i=1

xβi
bi
f(xi)

}
· gb(γk).

This shows that the general gamma density expresses how the p(<)-term varies as a func-
tion of γk. Plugging this into the equation from above, and expanding by (n − k)! and
φ(γk)

n−k, yields

n!

(n− k)!

k∏

i=1

xβi
bi
f(xi)dxi ·

∞�

0

φ(γk)
n−kgb(γk)

·
( �

∆∗
n−k(γk,∞)

{ n∏

i=k+1

xβi e−γix
β
i f(xi)dxi

−φ′(γi)

}
·
{
(n− k)!

n∏

i=k+1

−φ′(γi)

φ(γk)
dγi

})
· dγk

(B.26)
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Note that (B.26) expresses still the joint pdf of (X1, . . . , XN) given N = n. Dividing by
`(x|n)dx1 · · · dxk to get the conditional pdf given (X1, . . . , Xk) = x, and dropping the
integral over γk so that this becomes a joint pdf for (Xk+1, . . . , XN , Γk), we get

P[Xk+1 ∈ dxk+1, . . . , Xn ∈ dxn, Γk ∈ dγk|(X1, . . . , Xk) = x, N = n]

=

(
φ(γk)

n−kgb(γk)dγk�∞
0
φ(γk)n−kgb(γk)dγk

)

·
∞�

γk

∞�

γk+1

· · ·
∞�

γn−1

{ n∏

i=k+1

xβi e−γix
β
i f(xi)dxi

−φ′(γi)

}
·
{
(n− k)!

n∏

i=k+1

−φ′(γi)

φ(γk)
dγi

}
.

(B.27)

This shows that (Xk+1, . . . , Xn) depends on the observed data (X1, . . . , Xk) = x only
via its dependence on the mixing rv Γk, which for fixed n has the data-dependent pdf
g(0)(γk|x, n) ∝ φ(γk)

n−kgb(γk). We also note from comparing (B.24) and (B.27) that the
h-density remains unchanged, while the n− k order statistics are now from the truncated
cdf 1− φ(γ)/φ(γk) defined on [γk,∞).

Because the h-density for Xi|Γi remains unchanged, the Monte Carlo procedure based on
inverting decreasing uniform order statistics via the inverse Laplace transform is basically
the same as for the “a-priori case”. For the procedure based on exponential order statistics,
it is now required that the (X̃k+1, . . . , X̃n) are drawn from the remaining data pdf ρ(x̃|γk)
defined in equation (4.15), before proceeding as in the “a-priori case” to obtain Xk+1 =
X̃i(k+1), . . . , Xn = X̃i(n).

An accept / reject procedure for drawing from the h-density

For the case of w(x) = xβ (with β 6= 0), it is possible to make a rearrangement which
relates the h-density to the pdf of the Weibull distribution. Let us denote the sign of β
by d = signβ, so that w(x) = xd|β|. Then, the h-density is proportional to

h(x|γ) ∝ xd|β|e−γxd|β|

f(x)

∝ γ|β|xd(|β|−1)e−γxd|β| · xdf(x), ∀x ∈ [x, x].
(B.28)

Letting h(Wei)
(|β|,γ)(s) = γ|β|s|β|−1e−γs|β| denote the pdf of the Weibull distribution with shape

parameter |β| and scale parameter γ, (B.28) shows that h(x|γ) ∝ h
(Wei)
(|β|,γ)(x

d) ·xdf(x). The
parameterization adopted here with the scale parameter γ is the one often encountered
in econometrics (e.g. Wooldridge (2002), p. 689).101

Draws from the h-density for Xi|Γi are easily obtained by an accept / reject procedure
(e.g. Robert and Casella (2010)). Consider first the case of β > 0. Let X denote repeated
drawings from the truncated Wei(|β|, γi)-distribution on [x, x], and U from the U(0, 1)-

distribution. Then, since the function h(Wei)
(|β|,γi)(x)· max

r∈[x,x]
{rf(r)} envelopes h(Wei)

(|β|,γi)(x)·xf(x),
the rule for accepting becomes as follows: accept X as a draw for Xi for the first pair
(X,U) which fulfills the inequality U · max

r∈[x,x]
{rf(r)} < Xf(X).102

101An alternative parameterization encountered in statistics is based on substituting ζ = γ−1/|β| as
the scale parameter, which is then directly proportional to the mean of the Weibull distribution. This
substitution might be impractical if |β| is very small.

102Note that for β > 0 and for a truncated log-uniform field-size distribution, which has density f(x) ∝
1/x on [x, x], the result is that Xi|Γi has the truncated Wei(β, γi)-distribution on [x, x].

161



In the case of β < 0 we have d = −1, so that we get h(Wei)
(|β|,γi)(x

−1)·x−1f(x) = h
(Wei)
(|β|,γi)(x

−1)x−2·
xf(x). In fact, integrating gives

� x

x
h

(Wei)
(|β|,γi)(r

−1)r−2dr =
� x−1

x−1 h
(Wei)
(|β|,γi)(s)ds, so that we can

make the repeated drawings X−1 from the truncated Wei(|β|, γi)-distribution on support
[x−1, x−1]. We then accept the inverse of the draw, X, as a draw for Xi for the first pair
(X−1, U) which fulfills U · max

r∈[x,x]
{rf(r)} < Xf(X).

C Appendix to Chapter 4

162



Figure C1: Actual oil (black) and gas (red) production for the three regions
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Figure C2: Discovery and exploration history - GOM Flat
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Note: depicted are the cumulative amounts of discovered oil (blue), the cumulative number of
discovered oil fields (orange), and the cumulative number of drilled exploratory wells (green)
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Figure C3: Discovery and exploration history - Norway
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Note: depicted are the cumulative amounts of discovered oil (blue), the cumulative number of
discovered oil fields (orange), and the cumulative number of drilled exploratory wells (green)

Figure C4: Discovery and exploration history - GOM Deep
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Note: depicted are the cumulative amounts of discovered oil (blue), the cumulative number of
discovered oil fields (orange), and the cumulative number of drilled exploratory wells (green)
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Table C1: Estimation results for â0 and b̂0

GOM Flat, t = 1962 GOM Flat, t = 1967 Norway, t = 1984 Norway, t = 1989

x 600 600 600 600 4400 4400 4400 4400

ν 164 164 164 164 150 150 150 150

ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR

ek+1 27308 8686 1772 812 628 311 526 221

â0 1.00 1.00 1.00 1.00 7.14 5.59 1.70 1.00

(NA)a (NA) (NA) (NA) (1.82) (3.72) (1.91) (NA)

b̂0
â0ek+1

19.69 17.20 45.22 32.50 0.27 0.62 7.71 11.93

(6.29) (5.82) (4.06) (3.26) (0.36) (1.14) (10.20) (1.09)

R2 0.21 0.10 0.52 0.31 0.05 0.05 0.51 0.42

Note: HAC (Newey/West) standard errors are in parenthesis.
aWhenever â0 < 1 is obtained we set â0 = 1, hence no standard errors are available.

Norway, t = 2022 GOM Deep, t = 2000 GOM Deep, t = 2005 GOM Deep, t = 2020

x 4400 4400 700 700 700 700 700 700

ν 150 150 300 300 300 300 300 300

ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR ML-EST FIT-URR

ek+1 95 38 64 102 644 58 561 25

â0 3.97 1.00 1.00 1.00 3.88 1.77 1.96 1.00

(3.05) (NA)a (NA) (NA) (4.97) (5.96) (2.08) (NA)

b̂0
â0ek+1

7.26 29.27 12.36 12.15 2.88 7.54 10.81 22.11

(8.08) (3.80) (1.12) (1.12) (5.22) (29.34) (13.06) (1.00)

R2 0.33 0.30 0.14 0.13 0.17 0.18 0.58 0.57

Note: HAC (Newey/West) standard errors are in parenthesis.
aWhenever â0 < 1 is obtained we set â0 = 1, hence no standard errors are available.
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D Appendix to Chapter 5

Table D1: Results of unit-root tests

Series Levels First differences

Trend? ADF ERS KPSS Trend? ADF ERS KPSS

ELP No -3.37** -3.07*** 4.551*** No -12.92*** -9.30*** 0.0229
COP No -1.42 -1.03 4.935*** No -27.23*** -16.29*** 0.1065
NGP No -2.24 -2.26** 2.192*** No -28.82*** -14.03*** 0.0625
RES No -3.38** -1.18 5.845*** No -13.31*** -0.22 0.0164
TOT No -3.76*** -2.79*** 1.505*** No -10.94*** -2.57*** 0.0086
VRE No -20.64*** -13.25*** 5.307*** No -23.55*** -2.73*** 0.0139

Note: *p<0.1,**p<0.05,***p<0.01. ADF=Augmented Dickey-Fuller test. No. of lags selected via BIC.

ERS=Elliott/Rothenberg/Stock test. No. of lags is the same number as used for the ADF test.

KPSS=Kwiatkowski/Phillips/Schmidt/Shin test. No. of lags selected as ’long’ in R-method ’ur.kpss’.

Table D2: German VRE and nuclear capacity, mean and variability of daily generation

2015 2016 2017 2018 2019 2020 2021 2022 2023

P
h
ot

ov
ol

ta
ic Installed generating capacitya [GW] 38.0 39.8 41.8 44.1 46.8 50.8 55.5 60.4 68.4

Daily generation, mean [GWh] 116 116 116 132 133 146 147 172 176
Daily generation, capacity factor [%] 13 12 12 12 12 12 11 12 11
Daily generation, coef. of var. (CV) [%] 55 55 58 59 60 58 60 57 60
Daily generation, robust CVb [%] 48 47 49 54 52 51 52 53 54

W
in

d
on

sh
or

e Installed generating capacitya [GW] 39.4 44.1 49.3 52.2 53.0 53.8 54.9 56.4 58.8
Daily generation, mean [GWh] 186 178 233 245 274 282 245 276 323
Daily generation, capacity factor [%] 20 17 20 20 22 22 19 20 23
Daily generation, coef. of var. (CV) [%] 79 77 74 72 71 73 76 77 72
Daily generation, robust CVb [%] 53 48 56 50 48 52 48 55 53

W
in

d
off

sh
or

e Installed generating capacitya [GW] 2.1 3.7 4.6 5.7 6.9 7.6 7.8 8.0 8.3
Daily generation, mean [GWh] 38 44 54 55 69 77 71 75 68
Daily generation, capacity factor [%] 73 49 49 40 41 42 38 39 34
Daily generation, coef. of var. (CV) [%] 155 99 62 59 51 57 62 60 58
Daily generation, robust CVb [%] 61 51 43 46 44 51 55 47 47

N
u
cl

ea
r

Installed generating capacitya [GW] 11.4 10.8 10.2 9.5 8.8 8.1 6.1 4.1 2.0
Daily generation, mean [GWh] 231 219 198 197 195 166 179 90 19
Daily generation, capacity factor [%] 84 85 81 86 92 85 123 92 38
Daily generation, coef. of var. (CV) [%] 13 16 17 12 15 14 8 13 158
Daily generation, robust CVb [%] 8 14 18 9 10 10 7 4 100

aReported are the means between two consecutive years as the original data refer to installed capacity on 1st of January.
bDefined as the interquartile range divided by the sum of the quartiles.

Source: German Federal Network Agency (Bundesnetzagentur), https://www.smard.de/
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Figure D1: Univariate wavelet results for time series in levels
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Figure D2: Univariate wavelet results for time series in levels (cont’d)
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