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Abstract
We propose moment-based variational inference
as a flexible framework for approximate smooth-
ing of latent Markov jump processes. The main
ingredient of our approach is to partition the set
of all transitions of the latent process into classes.
This allows to express the Kullback-Leibler di-
vergence between the approximate and the exact
posterior process in terms of a set of moment func-
tions that arise naturally from the chosen partition.
To illustrate possible choices of the partition, we
consider special classes of jump processes that
frequently occur in applications. We then extend
the results to parameter inference and demonstrate
the method on several examples.

1. Introduction
Markov jump processes (MJPs) are popular modelling tools
in a number of domains including physics, biology, mathe-
matical finance and chemistry (Anderson, 1991). In many
cases, these models are used for planning and prediction.
To achieve this, the model parameters have to be calibrated
from sparse and noisy measurements. Mathematically, this
leads to the problem of inference for stochastic processes.
Unfortunately, inference in such scenarios is notoriously dif-
ficult because parameter inference requires estimation of the
latent Markov chain given the observations as an intermedi-
ate step. This is especially true in scenarios with unbounded
state-spaces such as population models. In recent years,
population models have become popular in systems and
synthetic biology to describe the intrinsic stochasticity of
bio-chemical reactions in a cellular environment (Anderson
& Kurtz, 2015).
Algorithms for latent state estimation are often based on
the sequential Monte Carlo framework (Doucet & Johansen,
2011) or specialized MCMC approaches (Rao & Teh, 2013).
Alternatively, if the state space is not too large, one can
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also apply a continuous version of the classical forward-
backward algorithm for hidden Markov models. In the con-
text of parameter learning, many approaches are likelihood-
based and apply a form of the EM-algorithm (Bladt &
Sørensen, 2005; Metzner et al., 2007; Liu et al., 2015).
Bayesian approaches to joint estimation of latent states
and parameters usually focus on the particle Markov chain
Monte Carlo framework which has inspired many applica-
tions (Andrieu et al., 2010; Golightly & Wilkinson, 2011;
Frigola et al., 2013).
While variational inference is ubiquituos in machine learn-
ing, most applications focus on probabilistic graphical mod-
els (Blei et al., 2017). An important contribution in the
domain of continuous time dynamic models is the work of
Archambeau et al. (2007) who developed a Gaussian ap-
proximation for stochastic differential equations. Opper &
Sanguinetti (2008) proposed the first variational method for
MJPs on the process level. The core idea of their approach
is to approximate a coupled multi-component process by a
product of independent component processes. This idea was
adapted by Cohn et al. (2010) to continuous time Bayesian
networks. More recently, Zhang et al. (2017) combined
uniformization with the classical variational method for
graphical models.
In this work, we propose a general procedure to derive
variational inference algorithms for arbitrary MJPs on a
countable state space. While based on the same divergence
functional as the approach in (Opper & Sanguinetti, 2008),
our approximation is conceptually different. The key step
in our approach is to partition the state of all transitions
into a number of predefined classes. We then express the
divergence function in terms of natural moment functions
that are induced by the partition. This allows to approxi-
mate the inference problem by an optimal control problem
with a complexity controlled by the chosen partition for the
transitions. Another difference to the mean-field approach
is that we construct our variational family as a modification
of the prior process, thus overcoming issues with absolute
continuity that can arise from a product approximation.
The remaining part of the paper is organized as follows.
Section 2 summarizes background material on MJPs. In
Section 3 we construct our variational smoothing algorithm
and discuss a few special process classes. Section 4 dis-
cusses an extension to latent parameter inference. Finally, in
Section 5 we demonstrate the methods on several examples.
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2. Background
2.1. Markov Jump Processes

We consider a Markov jump process X(t) on a countable
state space X over a finite interval [0, T ]. As is well-known,
such a process is fully specified by an initial measure p0 :
X → [0, 1] and a transition function Q : X ×X × [0, T ]→
[0,∞). The transition function defines the infinitesimal
transition probabilities in the sense that for y 6= x we have

P (X(t+ ∆t) = y | X(t) = x) = Q(x, y, t)∆t+ o(∆t)

For any t > 0 the marginal probability distribution p(x, t) =
P (X(t) = x) satisfies the master equation

d

dt
p(x, t) =

∑
y 6=x

Q(y, x, t)p(y, t)−
∑
y 6=x

Q(x, y, t)p(x, t) .

Let g : X → R be a function with finite expectation
E[g(X(t)] <∞ for t ∈ [0, T ]. Then the expectation obeys
a differential equation of the form

d

dt
E[g(X(t))] =

∑
y

E [(g(y)− g(X(t))Q(X(t), y, t)] ,

(1)
which can usually not be expressed in terms of E[g(X(t)]
alone (Ethier & Kurtz, 2005).

2.2. Path Divergence

For two probability measures µ and ν on a common proba-
bility space, the Kullback-Leibler (KL) divergence from µ
to ν is defined as

D [µ || ν] =

{∫
log
(
dµ
dν

)
dµ µ� ν,

∞ otherwise ,

where dµ
dν is the Radon-Nikodym derivative of measures and

µ� ν refers to µ being absolutely continuous with respect
to ν.
Consider two MJPs X and Z on X over [0, T ] with possibly
time-dependent transition functions QX , QZ that share the
same initial distribution. Let PX , PZ denote the measures
over the sample path space induced by X and Z. Then the
divergence on the level of sample paths is given by

D
[
PX ||PZ

]
=

∫ T

0

∑
x

pX(x, t)
∑
y 6=x

[
QZ(x, y, t)

−QX(x, y, t)−QX(x, y, t) log

(
QX(x, y, t)

QZ(x, y, t)

)]
dt ,

(2)

where and pX(·, t) refers to the marginal distribution of
X(t). For this expression to be finite it is required that

QX(x, y, t) is zero whenever QZ(x, y, t) is zero. A rigor-
ous proof of (2) can be obtained using Girsanov’s theorem
for counting processes (Kipnis & Landim, 1998). Alter-
native derivations are given in (Cohn et al., 2010) based
on explicit integration over waiting times or in (Opper &
Sanguinetti, 2008) using a limit of discrete-time Markov
chains for vanishing time steps.

2.3. Conditional Processes

From here on, we focus on a process X with time-
independent transition function Q. Often the true state X(t)
of the system is only accessible through a p-dimensional
observation process Y. We focus on the common sce-
nario where observations occur at fixed discrete times
0 ≤ t1, . . . , tn ≤ T that are not necessarily equidistant.
Such an observation process may be written as a single
matrix-valued random variable Y = (Y (t1), . . . , Y (tn)).
We assume that the observation at time tk only depends on
the latent state at time tk and denote the conditional density
of the observations as p(yk | X(tk)).
From a Bayesian perspective, we are interested in the con-
ditional probability distribution P (X(t) = x | y) for a
particular realization y ∈ Rp×n. For this type of observa-
tion, it can be shown that the smoothed process X̃ associated
with P (X(t) = x | y) is a non-homogeneous MJP (Huang
et al., 2016). The corresponding transition function Q̃ is
now time dependent and given by

Q̃(x, y, t) =
σ(y, t)

σ(x, t)
Q(x, y) . (3)

Here Q is the transition function of the prior process X
and σ(x, t) = p(yk, . . . , yn | X(t) = x) with k =
mink∈N{tk > t}. It can be shown that σ obeys the back-
ward equation

d

dt
σ(x, t) = −

∑
y 6=x

Q(x, y) (σ(y, t)− σ(x, t)) (4)

that has to be solved for the terminal condition σ(x, T ) = 1
for all x ∈ X and jump conditions

lim
t↗tk

σ(x, t) = σ(x, tk)p(yk | x)

for all x ∈ X at the observation times tk.

2.4. Variational Smoothing

Since the smoothed process X̃ as defined in Subsection
2.3 is typically intractable, we aim to find the best process
level approximation Z within a simpler variational class
U . Following the usual variational inference framework
(Jordan et al., 1999; Blei et al., 2017), we formalize this
problem by choosing Z∗ ∈ U such that

Z∗ = arg min
Z∈U

D
[
PZ ||P X̃

]
(5)
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minimizes the path divergence to the true posterior process.
The functional optimization problem (5) still depends on
the true posterior process X̃ . As shown in the supplement,
we can rewrite the objective function in (5) as

D
[
PZ ||P X̃

]
= D

[
PZ ||PX

]
−

n∑
k=1

E[log p(yk | Z(tk)] + const
(6)

which is independent of the exact functional form of the
posterior intensities.

3. Moment-Based Variational Smoothing
3.1. Variational Process Family

In our scenario, the smoothed process X̃ is an MJP with the
modified intensities (3). Intuitively, the modified transition
rate accounts for deviations of the posterior from the prior
process. If the observations suggest that transition x → y
has occurred more often than expected up to a certain time
point, the posterior process will scale up the intensity to
match the observation. The core idea of our approximation
is to mimic this behavior with a process that is simpler than
the full posterior. Thus, we define the variational transition
function QZ as

QZ(x, y, t) = λ(x, y, t)Q(x, y) , (7)

where we have introduced the variational scaling factor λ.
Note that (7) corresponds to an overparametrization of the
variational problem. Solving (5) with the variational family
induced by (7) recovers the true posterior transition function
(3). In order to achieve a reduction in complexity, we group
transitions together such that all transition within the group
share a single scaling factor.
To make this more precise, let Ψ = {(x, y) ∈ X ×X : x 6=
y,Q(x, y) > 0} be the set of all possible transitions of the
prior process. Consider a partition Π = {Πi ⊂ Ψ : i =
1, . . . , r} such that Πi∩Πj = ∅ for i 6= j and

⋃r
i=1 Πi = Ψ.

The partition Π induces a variational family by restricting
the variational scaling factor λ to be of the form

λ(x, y) = λi(t) for (x, y) ∈ Πi , (8)

where the λi : [0, T ]→ [0,∞) are from a suitably regular
class of functions. Systematic ways to choose such a tran-
sition space partition will be discussed in Section 3.3 and
Section 4.

3.2. Moment-Based Divergence

Define the natural moment functions associated with the
partition Π as

ϕi(t) =
∑

(x,y)∈Πi

Q(x, y)pZ(x, t) , (9)

where pZ refers to the marginal distribution of the varia-
tional process Z(t). It is also convenient to introduce the
function Q̃i as

Q̃i(x) =
∑
y

1Πi(x, y)Q(x, y)

with the indicator function 1Πi
(x, y) = 1 iff the transition

(x, y) is contained in Πi. Intuitively, Q̃i(x) corresponds to
the total exit rate from x to states within transition class i.
We can now express the natural moment functions as

ϕi(t) = E[Q̃i(Z(t))] .

Consider the divergence from the variational process to the
prior process D[PZ ||PX ] in (6). Exploiting (7), (8) and
(9) we obtain

D[PZ ||PX ] = L[ϕ, λ]

where ϕ and λ are vector-valued functions with components
λi and ϕi, respectively. The functional L is defined as

L[ϕ, λ] =

r∑
i=1

∫ T

0

ϕi(t) (1− λi(t) + λi(t) log λi(t)) dt .

Since the variational process Z is a non-homogeneous MJP,
the moment functions ϕ and the scaling factors λ are not
independent, but obey a differential equation of the form (1)

d

dt
ϕi(t) =

r∑
j=1

λj(t)E

[∑
y

(
Q̃i(y)

−Q̃i(Z(t))
)
1Πj

(Z(t), y)Q(Z(t), y)
]
.

(10)

Our goal is to express the r.h.s. of (10) in terms of ϕ(t),
λ(t) to obtain a closed-form description of the variational
problem in terms these quantities. In general, this is not
possible and we obtain an equation of the form

d

dt
ϕ(t) = A(λ(t))ϕ(t) +B(λ(t))ϕ̃(t) (11)

where A and B are suitable matrix valued functions and
ϕ̃ is a collection of higher order moment functions that
cannot be reduced to ϕ. In this case, we can apply an
additional approximation in the form of moment closure as
often used in the analysis of non-linear stochastic dynamical
systems (Kuehn, 2016). Generally speaking, a moment
closure scheme is a function ψ such that we may write
ϕ̃(t) = ψ(ϕ(t)). Thus, we arrive at an equation of the form

d

dt
ϕ(t) = f(λ(t), ϕ(t)) , (12)
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where f depends on the process and the applied closure
scheme. We can now recast the variational inference prob-
lem (5) into a non-linear optimal control problem of the
form

minimize L[λ, ϕ]− F [ϕ]

subject to
d

dt
ϕ(t) = f(λ(t), ϕ(t)) .

(13)

Here, F refers to the observation contribution in (6), i.e.

F [ϕ] =

n∑
k=1

E[log p(yk | Z(tk)]

which has to be understood as a functional of the natural
moments ϕ. Before turning to special classes of MJPs, we
end this section with a remark on moment closure. When
the moment equations (11) are naturally closed (i.e. B = 0),
than the control problem (13) corresponds exactly to the
process level formulation (5) and the minimum of L corre-
sponds to the usual evidence lower bound. When we use
moment closure, there is no global process equivalent to
(13) and the lower bound property is lost. This effect has
also been observed for other variational approximations that
go beyond product mean-field, for example cluster varia-
tional methods (Yedidia et al., 2000). In our case, we can
recover a valid process level result using the solution λ∗ in
(7). Generating sample paths from the so defined approxi-
mate posterior gives a means to analyze the accuracy of the
moment closure approximation.

3.3. Special Classes

In this section, we consider special classes of structured
MJPs that give rise to a natural partition of the transition
space.

State Space Lumping. Consider an MJP X with count-
able state space X and let {Π1, . . . ,Πs} be a partition of
the state space (in contrast to the partition of the transition
space). The lumped process can now be defined as

S(t) = j , for X(t) = x, x ∈ Πj .

A partition of the state space naturally induces a partition of
the transition space given by

Πij = {(x, y) ∈ {1, . . . , s}2 : x ∈ Πi, y ∈ Πj} .

This partition subsumes all transitions of the lumped process.
Accordingly, the natural moment functions become

ϕij(t) =
∑
x,y

1Πi(x)1Πj (y)Q(x, y)q(x, t) .

It is also interesting to observe that

Q̃ij(x) = 1Πi(x)
∑
y

1Πj (y)Q(x, y)

which is the total transition rate from x in Πi to Πj . In the
special case that the MJP is lumpable with respect to the
partition Π (Rubino & Sericola, 1993), we obtain

Q̃ij(x) =

{
Q̃ij x ∈ Πi

0 otherwise
,

where Q̃ij =
∑
y∈Πj

Q(x, y) which is identical for all x ∈
Πi. Inserting this into the dynamic equation yields

d

dt
ϕij = Q̃ij

∑
l 6=i

λli(t)ϕil(t)−
∑
l 6=i

λil(t)ϕil(t)

 (14)

Dividing both sides by Q̃ij , we observe that (14) is equiv-
alent to the master equation of the lumped process S. Ac-
cordingly, our variational approach will recover the exact
posterior of the lumped process. While most examples of
practical interest are not lumpable, (14) provides a way to
exploit known approximate lumping schemes for inference
purposes by understanding the approximate lumping as a
moment closure scheme.

Data Driven Partitioning. In many cases, the observa-
tions Y do not depend on the full latent stateX(t) but rather
on a summary statistic S(t) = T (X(t)) for T : X → S . In
general, S(t) will be a non-Markovian jump process on S.
However, it induces a natural partition of the form

Πz,z′ = {(x, x′) ∈ Ψ : T (x) = z, T (x′) = z′}

meaning that we group all transitions of X that lead to the
same state change of S in S.

Agent-Based MJPs. An agent-based MJP X on X =
{1, . . . ,m}d describes the behavior of d coupled agents
where each agent may be in one of m states. In addition, the
probability of two agents changing the state at the same time
is assumed to be zero. In terms of the transition function,
we obtain

Q(x, y) =

{
Qijk(x) xi = j, yi = k, xl = yl for l 6= i

0 otherwise

where Qijk is the transition rate of agent i from state j to
state k as a function of the state of the other agents. This
is the class of processes targeted by the existing mean-field
approaches for jump processes (Opper & Sanguinetti, 2008;
Cohn et al., 2010). Since our variational family is con-
structed by modifying the prior process, we cannot recover
the product-type approximation used in the classical ap-
proaches. We can, however, mimic its behavior by subsum-
ing all transitions that produce the same change of the same
agent, i.e.

Πi
jk = {(x, y) ∈ Ψ : xi = j, yi = k, xl = yl} . (15)
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Using (15), we can evaluate the corresponding moment
functions as

ϕijk(t) = E[1j(Zi(t))Q
i
jk(Z(t))] ,

which is quite intuitive, since it is the transitions rate of
agent i to go from j to k averaged over all configurations of
the remaining agents.

Population-Based MJPs. A population-based MJPX on
X = Nd0 describes the stochastic evolution of the abun-
dances of d species over time. While they seem simi-
lar to agent models from the previous section, population
models usually have an unbounded state space. In ad-
dition, one event may affect several species at the same
time. This fact is formalized by a set of change vectors
{vi ∈ Zd0 : i = 1, . . . , r} and a transition function of the
form

Q(x, y) =

{
hi(x) if y = x+ vi

0 otherwise
.

If there are change vectors that affect several species, the
product mean-field approach is ill-suited for this type of
system, since a product of independent processes will not
be absolutely continuous with respect to the prior process.
In our framework, a natural choice of partition for this type
of model is to combine all transitions that correspond to the
same change vector

Πi = {(x, y) ∈ Ψ : y = x+ vi} .

The corresponding natural moment functions become

ϕi(t) = E[hi(Z(t))] .

The time-evolution of ϕ is given by

d

dt
ϕi(t) =

∑
j

λj(t)E [(hi(Z(t) + vj)

−hi(Z(t)))hj(Z(t)] .

For systems where hi are linear functions of the state, this
equation is closed in ϕi. An example of this class will be
discussed later.

3.4. Minimizing the Divergence.

We now introduce an algorithm to find approximately opti-
mal variational scaling functions λ∗. We do this following
the indirect approach from optimal control (Bonnard & Cail-
lau, 2006). The idea here is to transform the constrained
problem (13) into an unconstraint problem by introducing
the Lagrangian

J [λ, ϕ, η] = L[λ, ϕ]− F [ϕ]

−
∫ T

0

η(t)T [f(λ(t), ϕ(t))− ϕ̇(t)] ,

where η is a vector-valued Lagrange multiplier function. By
taking the functional derivative with respect to ϕi we obtain

d

dt
ηi(t) =

r∑
j=1

(1− λj(t) + λj(t) log λj(t))

−
r∑
j=1

dfj
dϕi

ηj(t)

(16)

valid in between the observations. At the point of the obser-
vations, the functional F will induce jump conditions for η
given by

lim
t↗tk

ηi(t) = ηi(tk) +
d

dϕi(tk)
E[p(yk | Z(tk))] . (17)

Similarly, differentiation with respect to the scaling factor
λi yields an algebraic constraint of the form

0 = ϕi(t) log λi(t)−
r∑
j=1

ηj(t)
dfj
dλi

. (18)

In the classical mean-field algorithm, the scaling functions
λ can be expressed in terms of η by solving (18). The
control problem is then solved using a form of the forward-
backward sweep method (Mcasey et al., 2012). In our frame-
work, it is generally not possible to eliminate the scaling
factors. A variation of the forward-backward sweep explic-
itly including the scaling factors turned out to be unstable
in our experiments.
We therefore propose a gradient-based algorithm based on
the following argument. The moment functions ϕ are fully
determined by the scaling factors λ and an initial condition.
Hence, we may understand L as a functional of ϕ only. In
this case, the r.h.s. of (18) corresponds to the gradient of L
with respect to ϕ. Since the raw gradient updates obtained
this way do not work too well, we take advantage of the
probabilistic nature of the objective function to derive an
analogue to the natural gradient (Amari, 1998). We do this
by performing an expansion of the path divergence up to
second order in λ. From this, we obtain updates of the form

λ(n+1) = λ(n) − h∇̃L[λ(n)] (19)

with step size h and the and the natural gradient

∇̃L[λ] = λi(t) log λi(t)−
λi(t)

ϕi(t)

r∑
j=1

ηj(t)
dfj
dλi

. (20)

The updates (19), (20) ensure that we take small steps on
the manifold defined by the variational family and improve
convergence significantly. The resulting algorithm is sum-
marized in Algorithm 1. A more detailed discussion includ-
ing a derivation of the natural gradient can be found in the
supplement Section 3.
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Algorithm 1 Natural Gradient Descent for MB-VI

1: Input: Initial guess for the scaling factors λ(0),
initial condition ψ(0).

2: repeat
3: Given λ(n), ϕ(0), compute ϕ(n) using (12).
4: Given λ(n), ϕ(n), compute η(n) using (16), (17).
5: Given λ(n), ϕ(n)(t) and η(n), evaluate the natural

gradient ∇̃L according to (20).
6: Set λ(n+1) according to (19).
7: until |L[λ(n)]− L[λ(n−1)]| < tolerance
8: Output: Optimized variational scaling factor λ∗ .

4. Parameter Inference
Suppose now that the transitions function Q of the prior
process depends on a collection of parameters θ. Using
the usual framework of the variational EM algorithm, we
can find an approximate maximum likelihood estimate by
understanding the objective function L[λ, θ] as a function of
the scaling factors and the parameters and then minimizing
iteratively with respect to both arguments. In general, not
much can be said about the structure of the resulting opti-
mization problem. In the following, we focus on a special
case that allows for closed form parameter updates.
Let Π be a partition of the transition space such that the prior
process has parametrized transition function of the form

Qθ(x, y) = ci(θ)h(x, y) for (x, y) ∈ Πi ,

where ci and h are known functions with ci differentiable
with respect to θ. We proceed by defining our variational
family on Π by setting

λ(x, y, t) = λi(t)h(x, y) for (x, y) ∈ Πi . (21)

Note that (21) slightly differs from the ansatz introduced in
Section 3.1 in the fact that it only contains a part of the prior
intensity function. As a consequence, the variational family
remains independent of the parameters θ. Setting

ϕi(t) =
∑

(x,y)∈Πi

h(x, y)q(x, t) ,

we can reuse the formalism introduced in section 3.2 to
obtain stationarity conditions for λ. In addition, for fixed λ,
ϕ we obtain optimality conditions for the parameters of the
form ∑

j

(Gjcj(θ)−Hj)
dcj(θ)

dθi
= 0 ,

where we have introduced the summary statistics

Gi =

∫ T

0

ϕi(t)dt ,

Hi =

∫ T

0

ϕi(t)λi(t)dt .

Intuitively, Hi corresponds to the expected number of tran-
sitions in class i during [0, T ]. In the case where we have a
single parameter per transition class, i.e. ci(θ) = θi, we get

θi =
Hj

Gj
.

As an alternative to the EM approach, we may also follow a
Bayesian framework, i.e. by assuming a prior p(θ). Choos-
ing a variational ansatz that factorizes over parameters and
latent trajectories, we get an exponential family variational
parameter distribution of the form

q(θ) ∝ q(θ)
∏
j

cj(θ)
Hj exp

−∑
j

cj(θ)Gj

 . (22)

If the prior is a gamma distribution and the we have a single
parameter per transitions class, (22) will also have the form
of a gamma distribution.

5. Examples
In this section, we apply our method to three examples. We
focus on models of the population type for which inference
is notoriously difficult due to the unbounded state space.
First we consider a linear birth death process. This sim-
ple example allows analytic treatment and provides some
intuition. Next, we numerically study a stochastic gene ex-
pression model of the type that is frequently used in systems
biology. As a third example, we consider a stochastic preda-
tor prey model to demonstrate our method in combination
with moment closure.

5.1. Birth Death Process

Let X = N0, X0 ∈ X and c1, c2 > 0. For the transition
vectors v1 = 1, v2 = −1 together with the intensity

Q(x, y) =

{
c1 y = x+ 1

c2x y = x− 1

the resulting process {X(t), t ≥ 0} is known as the linear
birth death process and can be seen as the simplest case
of a population-type model. We therefore following the
approach of choosing the partition Π = {Π1,Π2} with

Π1 = {(x, y) : y = x+ 1} , Π1 = {(x, y) : y = x− 1}

which induce the moment functions

ϕ1(t) = c1 , ϕ2(t) = c2E[Z(t)] .

Since, ϕ1 is constant, the moment dynamics are reduced to
a single closed equation of the form

d

dt
ϕ2(t) = c2λ1(t)ϕ1 − c2λ2(t)ϕ2(t) . (23)
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Now suppose we consider the conditional process with end-
point condition X(T ) = 0. For simplicity, let us also as-
sume that X0 = 0. In this case, the backward equation
can be integrated analytically. This allows to compute the
variational scaling factors as

λ1(t) = (1− exp(T − t)),
λ2(t) = (1− exp(T − t))−1 .

Inserting this into (23) we obtain

E[Z(t)] =
c1
c2

(1− exp[−c2(T − t)])(1− exp(−c2t)) .

For this example, the true posterior intensities can be calcu-
lated analytically (Huang et al., 2016) leading to the same
result. Hence, the variational approximation coincides with
the exact smoothed process in this simple special case. A
graph of the first moment and the corresponding standard
deviation can be found in Fig. 1.
Now consider the same example where instead of a terminal
condition we have obtained a single observation YT = y
with zero mean additive Gaussian noise of variance σ2. In
this case, the objective function becomes more complicated,
since the second order moment has to be included in order to
describe the observations. Consequently, there seems to be
no simple closed form expressions to characterize the varia-
tional posterior. We ran our algorithm for different values
of σ2 and verified empirically that the solution converges
to the analytic expression for the exact terminal constraint
case with σ → 0. Fig. 1 shows the mean of the prior pro-
cess and the noise-free conditional process compared two
two observations with different noise levels. As expected,
the variational method seems to interpolate between the
observation and the prior process.

5.2. Gene Expression System

Consider the following simple gene expression model con-
sisting of a single gene that can switch between an inactive
state G0 and an active state G1 with rates c1 and c2. While
the gene is active, mRNA is produced at rate c3 (transcrip-
tion). The mRNA is then processed by ribosomes to produce
the target protein at rate c5 (translation). Both mRNA and
protein molecules undergo degradation reactions with rates
c4 and c6 respectively.
The stochastic behavior of this system is modeled by a pop-
ulation MJP X with state space X ⊂ N3

0 where the compo-
nents correspond to the numbers of active genes X1, mRNA
molecules X2 and protein molecules X3. The nonzero ele-
ments of the transition function Q are given by

Q(x, x+ e1) = c1(x1 − 1), Q(x, x− e1) = c2x1,

Q(x, x+ e2) = c3x1, Q(x, x− e2) = c4x2,

Q(x, x+ e3) = c5x2, Q(x, x− e3) = c6x3.

0 5 10 15 20 25
0

10

20

30

40

50

60

Figure 1. Mean (thick lines) and standard deviation around the
mean (dotted lines) for different endpoint constraints. All results
used the parameter configuration c1 = 5s−1, c2 = 0.1s−1.

In typical applications, the produced protein molecule is
a fluorescent reporter. Measurements of the reporter con-
centration can be obtained from live-cell microscopy by
integrating fluorescence intensity over the cross-section of
the cell. Thus, these measurements are a scaled and noisy
observation of the process component corresponding to the
protein abundance. For simplicity, we assume that the noisy
observations Y1, . . . , Yn are conditionally Gaussian given
the protein abundance. To construct our variational approx-
imation, we choose the population-type partitioning and
obtain closed form moment equations that can be found in
Section 5 of the supplement.
The results for variational posterior mean and variance are
shown in Fig. 2. The example demonstrates that the poste-
rior mean concentrates on the true realization of the latent
process. Thus, the method allows to infer latent state dy-
namics, in particular, the unobserved activation patterns of
the gene are recovered quite well. To investigate this fur-
ther, we used the posterior mean of the gene state to devise
a detector (threshold: 0.5) and evaluated the true positive
fraction α = 0.94 and false positive fraction β = 0.15 from
N = 100 pooled trajectories. We note that false detections
are mainly caused by short events. For example, if the gene
is briefly inactive during a longer period of activity, this may
not be visible in the protein activity and even less so in the
observations.
Fig 2 also reveals a drawback of our method. From an
exact smoothing, we would expect the variance of the poste-
rior to be smaller at times of observations than in between
the observations. We do not observe this behavior in our
approach. The most likely reason for this is that a single
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Figure 2. Approximate smoothing result for simulated observa-
tions from a gene expression model. Thick bold lines denote the
mean of the variational posterior process, while the thin lines indi-
cate an interval of one standard deviation around the mean. The
true latent trajectories are shown as dotted lines. Note that we only
considered a single gene but scaled the curve in the plot for better
visibility.

time-dependent factor per reaction channel does not provide
enough degrees of freedom to capture this effect. In the end,
our approach reduces the full smoothing problem to a set of
nine ordinary differential equations.

5.3. Predator-Prey Dynamics

To demonstrate our approach on a non-linear model, we
consider a stochastic form of the classical predator prey
interaction model. Here, a prey species X1 and a preda-
tor species X2 interact with each other as defined by the
transition function Q with non-zero elements

Q(x, x+ e1) = c1x1, Q(x, x− e1) = c2x1x2,

Q(x, x+ e2) = c3x1x2, Q(x, x− e2) = c4x2.

Note that this system is unstable in the sense that, in the
long run, we observe either extinction of both species or ex-
tinction of the predator and explosion of the prey population.
Using our population-type partitioning, we obtain a set of
moment equations that is not closed. In Supplement Sec. 5,
we demonstrate how moment closure can be employed to
obtain a closed system.
An application of the variational smoother to synthetic data
of the predator prey model is given in Fig. 3. Due to the
low abundances, it is possible to perform a truncation of the
state space and solve the smoothing problem by integrating
(4) backward in time. Comparing Fig. 3 to exact smoothing
results reveals that the variance of the approximate posterior
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Figure 3. Approximate smoothing result for simulated observa-
tions from a stochastic predator prey model. Thick bold lines
denote the mean of the variational posterior process, while the
thin lines indicate an interval of one standard deviation around the
mean. The true latent trajectories are shown as dotted lines.

is higher than the variance of the exact smoothed process.

6. Discussion
On the basis of a partitioning of the transition space, we
proposed a flexible framework to construct variational
inference procedures for Markov jump processes. By
defining the variational family as a modification of the prior
process, our approach circumvents problems with absolute
continuity that have plagued earlier product-type mean-field
approaches. The main advantage of our method is, however,
that the complexity of the approximation depends on the
chosen partition of the transition space and can thus be
adapted to the problem at hand. To get some insight into the
choice of partition, we discussed classes of structured MJPs
that give rise to a natural partitioning. As other variational
procedures, moment based variational inference can be
used for approximate parameter inference. An interesting
observation here is that a suitable choice of partitioning
may naturally lead to a gamma variational distribution of
the parameters. Finally, we demonstrated the method on
synthetic examples of the population type.
Our work opens several lines of future research. First of all,
we envision applications to real data, e.g. in the context of
systems and synthetic biology. On the theoretical side, it
may be interesting to assess the effect of different partition
and moment closure choices on the approximation quality.
Finally, a more systematic comparison with related methods
is required.
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