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Abstract

Continuous-time Bayesian Networks (CTBNs) represent a compact yet powerful
framework for understanding multivariate time-series data. Given complete data,
parameters and structure can be estimated efficiently in closed-form. However, if
data is incomplete, the latent states of the CTBN have to be estimated by laboriously
simulating the intractable dynamics of the assumed CTBN. This is a problem,
especially for structure learning tasks, where this has to be done for each element
of a super-exponentially growing set of possible structures. In order to circumvent
this notorious bottleneck, we develop a novel gradient-based approach to structure
learning. Instead of sampling and scoring all possible structures individually, we
assume the generator of the CTBN to be composed as a mixture of generators
stemming from different structures. In this framework, structure learning can be
performed via a gradient-based optimization of mixture weights. We combine this
approach with a new variational method that allows for a closed-form calculation
of this mixture marginal likelihood. We show the scalability of our method by
learning structures of previously inaccessible sizes from synthetic and real-world
data.

1 Introduction

Learning correlative or causative dependencies in multivariate data is a fundamental problem in
science and has application across many disciplines such as natural and social sciences, finance and
engineering [1, 20]. Most statistical approaches consider the case of snapshot or static data, where
one assumes that the data is drawn from an unknown probability distribution. For that case several
methods for learning the directed or undirected dependency structure have been proposed, e.g., the PC
algorithm [21, 13] or the graphical LASSO [8, 12], respectively. Causality for such models can only
partially be recovered up to an equivalence class that relates to the preservation of v-structures [21] in
the graphical model corresponding to the distribution. If longitudinal and especially temporal data
is available, structure learning methods need to exploit the temporal ordering of cause and effect
that is implicit in the data for determining the causal dependency structure. One assumes that the
data are drawn from an unknown stochastic process. Classical approaches such as Granger causality
or transfer entropy methods usually require large sample sizes [23]. Dynamic Bayesian networks
offer an appealing framework to formulate structure learning for temporal data within the graphical
model framework [10]. The fact that the time granularity of the data can often be very different
from the actual granularity of the underlying process motivates the extension to continuous-time
Bayesian networks (CTBN) [14], where no time granularity of the unknown process has to be
assumed. Learning the structure within the CTBN framework involves a combinatorial search over
structures and is hence generally limited to low-dimensional problems even if one considers variational
approaches [11] and/or greedy hill-climbing strategies in structure space [15, 16]. Reminiscent of
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optimization-based approaches such as graphical LASSO, where structure scoring is circumvented
by performing gradient descent on the edge coefficients of the structure under a sparsity constraint,
we here propose the first gradient-based scheme for learning the structure of CTBNs.

2 Background

2.1 Continuous-time Bayesian Networks

We consider continuous-time Markov chains (CTMCs) {X(t)}t≥0 taking values in a countable state-
space S . A time-homogeneous Markov chain evolves according to an intensity matrixR : S×S → R,
whose elements are denoted by R(s, s′), where s, s′ ∈ S . A continuous-time Bayesian network [14]
is defined as an N -component process over a factorized state-space S = X1 × · · · × XN evolving
jointly as a CTMC. For local states xi, x′i ∈ Xi, we will drop the states’ component index i, if
evident by the context and no ambiguity arises. We impose a directed graph structure G = (V,E),
encoding the relationship among the components V ≡ {V1, . . . , VN}, which we refer to as nodes.
These are connected via an edge set E ⊆ V × V . This quantity is the structure, which we will later
learn. The state of each component is denoted by Xi(t) assuming values in Xi, which depends only
on the states of a subset of nodes, called the parent set parG(i) ≡ {j | (j, i) ∈ E}. Conversely,
we define the child set chG(i) ≡ {j | (i, j) ∈ E}. The dynamics of a local state Xi(t) are
described as a Markov process conditioned on the current state of all its parents Un(t) taking values
in Ui ≡ {Xj | j ∈ parG(i)}. They can then be expressed by means of the conditional intensity
matrices (CIMs) Ri : Xi ×Xi × Ui → R, where ui ≡ (u1, . . . uL) ∈ Ui denotes the current state of
the parents (L = |parG(i)|). The CIMs are the generators of the dynamics of a CTBN. Specifically,
we can express the probability of finding node i in state x′ after some small time-step h, given that it
was in state x at time t with x, x′ ∈ Xi as

p(Xi(t+ h) = x′ | Xi(t) = x, Ui(t) = u) = δx,x′ + hRi(x, x
′ | u) + o(h),

where Ri(x, x′ | u) is the rate the transition x → x′ given the parents’ state u ∈ Ui and δx,x′
being the Kronecker-delta. We further make use of the small o(h) notation, which is defined via
limh→0 o(h)/h = 0. It holds that Ri(x, x | u) = −

∑
x′ 6=xRi(x, x

′ | u). The CIMs are connected
to the joint intensity matrix R of the CTMC via amalgamation – see, for example [14].

2.2 Structure Learning for CTBNs

Complete data. The likelihood of a CTBN can be expressed in terms of its sufficient statis-
tics [15], Mi(x, x

′ | u), which denotes the number of transitions of node i from state x to
x′ and Ti(x | u), which denotes the amount of time node i spend in state x. In order to
avoid clutter, we introduce the setsM≡ {Mi(x, x

′ | u) | i ∈ {1, . . . , N}, x, x′ ∈ X , u ∈ U} and
T ≡ {Ti(x | u) | i ∈ {1, . . . , N}, x ∈ X , u ∈ U}. The likelihood then takes the form

p(M, T | G, R) =

N∏
i=1

exp

 ∑
x,x′ 6=x,u

Mi(x, x
′ | u) lnRi(x, x

′ | u)− Ti(x | u)Ri(x, x
′ | u)

 .

(1)

In [15] and similarly in [22] it was shown that a marginal likelihood for the structure can be calculated
in closed form, when assuming a gamma prior over the rates Ri(x, x′ | u) ∼ Gam(αi(x, x

′ |
u), βi(x

′ | u)). In this case, the marginal log-likelihood of a structure takes the form

ln p(M, T | G, α, β) ∝
N∑
i=1

∑
u,x,x′ 6=x

{
ln Γ (ᾱi(x, x

′ | u))− ᾱi(x, x′ | u) ln β̄i(x | u)
}
, (2)

with ᾱi(x, x′ | u) ≡Mi(x, x
′ | u) + αi(x, x

′ | u) and β̄i(x | u) ≡ Ti(x | u) + βi(x | u). Structure
learning in previous works [16, 22, 11] is then performed by iterating over possible structures and
scoring them using the marginal likelihood. The best scoring structure is then the maximum-a-
posteriori estimate of the structure.

Incomplete data. In many cases, the sufficient statistics of a CTBN cannot be provided. Instead,
data comes in the form of noisy state observations at some points in time. In the following, we
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will assume data is provided in form of Ns samples D ≡
{

(tk, yk) | k ∈ {1, . . . , Ns}
}

, where
yk is some, possibly noisy, measurement of the latent-state generated by some observation model
yk ∼ p(Y = yk | X(tk) = s) at time tk. This data is incomplete, as the sufficient statistics of
the underlying latent process have to be estimated before model identification can be performed.
In [16], an expectation-maximization for structure learning (SEM) was introduced, in which, given a
proposal CTBN, sufficient statistics were first estimated by exact inference, the CTBN parameters
were optimized given those expected sufficient-statistics and, subsequently, structures where scored
via (1). Similarly, in [11] expected sufficient-statistics were estimated via variational inference under
marginal (parameter-free) dynamics and structures were then scored via (2).

The problem of structure learning from incomplete data has two distinct bottlenecks, (i) Latent
state estimation (scales exponentially in the number of nodes) (ii) Structure identification (scales
super-exponentially in the number of nodes). While bottleneck (i) has been tackled in many ways [4,
5, 19, 11], existing approaches [16, 11] employ a combinatorial search over structures, thus an
efficient solution for bottleneck (ii) is still outstanding.

Our approach. We will employ a similar strategy as mentioned above in this manuscript. However,
statistics are estimated under a marginal CTBN that no longer depends on rate parameters or a discrete
structure. Instead, statistics are estimated given a mixture of different parent-sets. Thus, instead of
blindly iterating over possible structures in a hill-climbing procedure, we can update our distribution
over structures by a gradient step. This allows us to directly converge into regions of high-probability.
Further, in combination of this gradient-based approach with a high-order variational method, we
can perform estimation of the expected sufficient-statistics in large systems. These two features
combined, enable us to perform structure learning in large systems. An implementation of our method
is available via Git1.

3 Likelihood of CTBNs Under a Mixture of CIMs

Complete data. In the following, we consider a CTBN over some 2over-complete graph G. In
practice, this graph may be derived from data as prior knowledge. In the absence of prior knowledge,
we will choose the full graph. We want to represent its CIMsRi(x, x′ | u), here for node i, as mixture
of CIMs of smaller support and write by using the power-set P(·) (set of all possible subsets)

Ri(x, x
′ | u) =

∑
m∈P(parG(i))

πi(m)ri(x, x
′ | um) ≡ Eπi [ri(x, x

′ | um)], (3)

where um denotes the projection of the full parent-state u on the subsetm, i.e. f(um) =
∑
u/um

f(u),
and the expectation Eπi [f(θm)] =

∑
m∈P(parG(i)) πi(m)f(θm). The mixture-weights are given by a

distribution πi ∈ ∆i with ∆i being the |P(parG(i))|−dimensional probability simplex. Correspond-
ing edge probabilities of the graph can be computed via marginalization. The probability that an edge
eij ∈ E exists is then

p(eij = 1) =
∑

m∈P(parG(j))

πj(m)1(i ∈ m), (4)

with 1(·) being the indicator function. In order to arrive at a marginal score for the mixture we
insert (3) into (1) and apply Jensen’s inequality Eπi [ln (r)] ≤ ln (Eπi [r]). This yields a lower-bound
to the mixture likelihood

p(M, T | π, r) ≥
N∏
i=1

∏
x,x′ 6=x,um

eE
π
i [Mi(x,x

′|um) ln ri(x,x
′|um)−Ti(x|um)ri(x,x

′|um)].

For details on this derivation, we refer to the supplementary material A.1. Note that Jensens inequality,
which only provides a poor approximation in general, improves with increasing concentration
of probability mass and becomes exact for degenerate distributions. For the task of selecting
a CTBN with a specific parent-set, it is useful to marginalize over the rate parameters r of the
CTBNs. This allows for a direct estimation of the parent-set, without first estimating the rates. This

1https://git.rwth-aachen.de/bcs/ssl-ctbn
2An over-complete graph has more edges than the underlying true graph, which generated the data.
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marginal likelihood can be computed under the assumption of independent gamma prior distributions
ri(x, x

′ | um) ∼ Gam(αi(x, x
′ | um), βi(x

′ | um)) over the rates. The marginal likelihood lower-
bound can then be computed analytically. Under the assumption of independent Dirichlet priors
πi ∼ Dir(πi | ci), with concentration parameters ci we arrive at a lower-bound to the marginal
log-posterior of the mixture weights π

ln p(π | M, T , α, β) ≥
∑
i

Fi[M, T , π] + lnZ, (5)

Fi[M, T , π] ≡
∑

m,um,x,x′ 6=x

{
ln Γ (ᾱi(x, x

′ | um))− ᾱi(x, x′ | um) ln β̄i(x | um)
}

+ln Dir(πi | ci),

with the updated posterior parameters ᾱi(x, x′ | um) ≡ πi(m)Mi(x, x
′ | um) + αi(x, x

′ | um) and
β̄i(x | um) ≡ πi(m)Ti(x | um) + βi(x | um). For details, we refer to the supplementary material
A.2. The constant log-partition function lnZ can be ignored in the following analysis. Because (5)
decomposes into a sum of node-wise terms, the maximum-a-posterior estimate of the mixture weights
of node i can be calculated as solution of the following optimization problem:

π∗i = arg max
πi∈∆i

{Fi[M, T , π]} . (6)

By construction, learning the mixture weights π of the CIMs, corresponds to learning a distribution
over parent-sets for each node. We thus re-expressed the problem of structure learning to an estimation
of π. Further, we note that for any degenerate π, (5) coincides with the exact structure score (2).

Incomplete data. In the case of incomplete noisy data D, the likelihood of the CTBN does no
longer decompose into node-wise terms. Instead, the likelihood is one of the full amalgamated
CTMC [16]. In order to tackle this problem, approximation methods through sampling [7, 6, 19],
or variational approaches [4, 5] have been investigated. These, however, either fail to treat high-
dimensional spaces because of sample sparsity, are unsatisfactory in terms of accuracy, or provide
only an uncontrolled approximation. Our method is based on a variational approximation, e.g.
weak coupling expansion [11]. Under this approximation, we recover by the same calculation an
approximate likelihood of the same form as (1), where the sufficient statistics Mi(x, x

′ | u) and
Ti(x | u) are, however, replaced by their expectation Eq [Mi(x, x

′ | u)] and Eq [Ti(x | u)] under a
variational distribution q, – for details we refer to the supplementary B.1. Subsequently, also our
optimization objective Fi[M, T , π] becomes dependent on the variational distribution Fi[D, π, q]. In
the following chapter, we will develop an Expectation-Maximization (EM)-algorithm that iteratively
estimates the expected sufficient-statistics given the mixture-weights and subsequently optimizes
those mixture-weights given the expected sufficient-statistics.

4 Incomplete data: Expected Sufficient Statistics Under a Mixture of CIMs

Short review of the foundational method. In [11], the exact posterior over paths of a CTBN given
incomplete dataD, is approximated by a path measure q(X[0,T ]) of a variational time-inhomogeneous
Markov process via a higher order variational inference method. For a CTBN, this path measure is
fully described by its node-wise marginals qi(x′, x, u; t) ≡ qi(Xi(t+ h) = x′, Xi(t) = x, Ui(t) =
u; t). From it, one can compute the marginal probability qi(x; t) of node i to be in state x, the
marginal probability of the parents qi(Ui(t) = u; t) ≡ qui (t) and the marginal transition probability
τi(x, x

′, u; t) ≡ limh→0 qi(x
′, x, u; t)/h for x 6= x′. The exact form of the expected statistics

were calculated to be

Eq [Ti(x | u)] ≡
∫ T

0

dt qi(x; t)qui (t), Eq [Mi(x, x
′ | u)] ≡

∫ T

0

dt τi(x, x
′, u; t). (7)

In the following, we will use the short-hand Eq [M] and Eq [T ] to denote the sets of expected
sufficient-statistics. We note, that the variational distribution q has the support of the full over-
complete parent-set parG(i). Via marginalization of qi(x′, x, u; t), the marginal probability and the
marginal transition probability can be shown to be connected via the relation

d

dt
qi(x; t) =

∑
x′ 6=x,u

[τi(x,
′ x, u; t)− τi(x, x′, u; t)] . (8)
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Algorithm 1 Stationary points of Euler–Lagrange equation
1: Input: Initial trajectories qi(x; t), boundary conditions q(x; 0) and ρ(x;T ), mixture weights π

and data D.
2: repeat
3: repeat
4: for all i ∈ {1, . . . , N} do
5: for all (yk, tk) ∈ D do
6: Update ρi(t) by backward propagation from tk to tk−1 using (10) fulfilling the jump

conditons (12).
7: end for
8: Update qi(t) by forward propagation using (10) given ρi(t).
9: end for

10: until Convergence
11: Compute expected sufficient statistics using (7) and (11) from qi(t) and ρi(t).
12: until Convergence of F [D, π, q]
13: Output: Set of expected sufficient statistics Eq[M] and Eq[T ].

Application to our setting. As discussed in the last section, the objective function in the incomplete
data case has the same form as (5)

Fi[D, π, q] ≡
∑

m,um,x,x′ 6=x

{
ln Γ (ᾱqi (x, x

′ | um))− ᾱqi (x, x
′ | um) ln β̄qi (x | um)

}
+ln Dir(πi | ci),

(9)

however, now with ᾱqi (x, x
′ | um) ≡ πi(m)Eq[Mi(x, x

′ | um)] + αi(x, x
′ | um) and

β̄qi (x | um) ≡ πi(m)Eq[Ti(x | um)] + βi(x | um). In order to arrive at approximation to the
expected sufficient statistics in our case, we have to maximize (9) with respect to q, while fulfilling
the constraint (8). The corresponding Lagrangian becomes

L[D, π, q, λ] =

N∑
i=1

Fi[D, π, q]− ∑
x,x′ 6=x,u

∫ T

0

dt λi(x; t)

{
d

dt
qi(x; t)− [τi(x,

′ x, u; t)− τi(x, x′, u; t)]

} ,
with Lagrange-multipliers λi(x; t). In order to derive Euler-Lagrange equations, we employ Stirlings-

approximation for the gamma function Γ(z) =
√

2π
z

(
z
e

)z
+O

(
1
z

)
, which becomes exact asymp-

totically. In our case, Stirlings-approximation is valid if ᾱ � 1. We thereby assumed that either
enough data has been recorded, or a sufficiently strong prior α. Finally, we recover the approximate
forward- and backward-equations of the mixture CTBNs as the stationary point of the Lagrangian
Euler-Lagrange equations

d

dt
ρi(t) = Ω̃πi (t)ρi(t),

d

dt
qi(t) = qi(t)Ω

π
i (t), (10)

with effective rate matrices

Ωπi (x, x′; t) ≡ Eui

[
R̃πi (x, x′ | u)

] ρi(x′; t)
ρi(x; t)

Ω̃πi (x, x′; t) ≡ (1− δx,x′)Eui
[
R̃πi (x, x′ | u)

]
+ δx,x′ {Eui [Rπi (x, x′ | u)] + Ψi(x; t)} ,

with ρi(x; t) ≡ exp(−λi(x; t)) and Ψi(x; t) as given in the supplementary material B.2. Further we
have introduced the shorthand Eui [f(u)] =

∑
u f(u)qui (t)

and defined the posterior expected rates

Rπi (x, x′ | u) ≡ Eπi

[
ᾱqi (x, x

′ | um)

β̄qi (x | um)

]
, R̃πi (x, x′ | u) ≡

∏
m

(
ᾱqi (x, x

′ | um)

β̄qi (x | um)

)πi(m)

,
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Algorithm 2 Gradient-based Structure Learning
1: Input: Initial trajectories qi(x; t), boundary conditions qi(x; 0) and ρi(x;T ), initial mixture

weights π(0), data D and iterator n = 0
2: repeat
3: Compute expected sufficient statistics Eq[M] and Eq[T ] given π(n) using Algorithm 1.
4: for all i ∈ {1, . . . , N} do
5: Maximize (6) with respect to πi, set maximizer π(n+1)

i = π∗i and n→ n+ 1.
6: end for
7: until Convergence of F [D, π, q]
8: Output: Maximum-a-posteriori mixture weights π(n)

which take the form of an arithmetic and geometric mean, respectively. For the variational transition-
matrix we find the algebraic relationship

τi(x, x
′, u; t) = qi(x; t)qui (t)R̃πi (x, x′ | u)

ρi(x
′; t)

ρi(x; t)
. (11)

Because, the derivation is quite lengthy, we refer to supplementary B.2 for details. In
order to incorporate noisy observations into the CTBN dynamics, we need to specify
an observation model. In the following we assume that the data likelihood factorizes
p(Y = yk | X(tk) = s) =

∏
i pi(Yi = yki | Xi(tk) = x), allowing us to condition on the data by

enforcing jump conditions

lim
t→tk−

ρi(x; t) = lim
t→tk+

pi(Yi = yki | Xi(tk) = x)ρi(x; t). (12)

The converged solutions of the ODE system can then be used to compute the sufficient statistics
via (7). For a full derivation, we refer to the supplementary material B.2.

We note that in the limiting case of a degenerate mixture distribution π, this set of equations reduces
to the marginal dynamics for CTBNs proposed in [11]. The set of ODEs can be solved iteratively
as a fixed-point procedure in the same manner as in previous works [17, 4] (see Algorithm 1) in a
forward-backward procedure.

Exhaustive structure search. As we are now able to calculate expected-sufficient statistics given
mixture weights π, we can design an EM-algorithm for structure learning. For this iteratively optimize
π given the expected sufficient statistics, which we subsequently re-calculate. The EM-algorithm
is summarized in Algorithm 2. In contrast to the exact EM-procedure [16], we preserve structure
modularity. We can thus optimize the parent-set of each node independently. This already provides a
huge boost in performance, as in our case the search space scales exponentially in the components,
instead of super-exponentially. In the paragraph "Greedy structure search", we will demonstrate how
to further reduce complexity to a polynomial scaling, while preserving most prediction accuracy.

Restricted exhaustive search. In many cases, especially for applications in molecular biology,
comprehensive 3databases of putative interactions are available and can be used to construct over-
complete yet not fully connected prior networks G0 of reported gene and protein interactions. In this
case we can restrict the search space by excluding possible non-reported parents for every node i,
parG(i) = parG0(i), allowing for structure learning of large networks.

Greedy structure search. Although we have derived a gradient-based scheme for exhaustive search,
the number of possible mixture components still equals the number of all possible parent-sets.
However, in many applications, it is reasonable to assume the number of parents to be limited, which
corresponds to a sparsity assumption. For this reason, greedy schemes for structure learning have been
proposed in previous works [16]. Here, candidate parent-sets were limited to have at most K parents,
in which case, the number of candidate graphs only grows polynomially in the number of nodes. In
order to incorporate a similar scheme in our method, we have to perform an additional approximation
to the set of equations (10). The problem lies in the expectation step (Algorithm 1), as expectation
is performed with respect to the full over-complete graph. In order to calculate expectations of the
geometric mean Eui [R̃πi (x, x′ | u)], we have to consider the over-complete set of parenting nodes
qui (t) for each node i. However, for the calculation of the arithmetic mean Eui [Rπi (x, x′ | u)] only

3e.g. https://string-db.org/ or https://www.ebi.ac.uk/intact/
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Figure 1: a) and b) AUROC and AUPR, respectively, for complete observations for different numbers
of trajectories. Learning is performed via the graph-score (2) (blue) and gradient-based optimization
of the marginal mixture likelihood (5) (red-dashed). c) Relative deviation of approximate marginal
mixture likelihood (5) from the exact marginal likelihood, computed via numerical integration, for
mixtures of different entropies given different amounts of trajectories (legend). Confidence intervals
are given by 75% and 25% percentiles.

parent-sets restricted to the considered sub-graphs have to be considered, due to linearity. For this
reason, we approximate the geometric mean by the arithmetic mean R̃πi ≈ Rπi , corresponding to the
first-order expansion Eπi [ln(x)] = ln(Eπi [x]) +O(Var[x]), which, as before, becomes more valid for
more concentrated πi and is exact if πi is degenerate.

5 Experiments

We demonstrate the effectiveness of our method on synthetic and two real-world data sets. For
all experiments, we consider a fixed set of hyper-parameters. We set the Dirichlet concentration
parameter ci = 0.9 for all i ∈ {1, . . . , N}. Further, we assume a prior for the generators, which is
uninformative on the structure αi(x, x′ | u) = 5 and βi(x | u) = 10, for all x, x′ ∈ Xi, u ∈ Ui. For
the optimization step in Algorithm 2, we use standard Matlab implementation of the interior-point
method with 100 random restarts. This is feasible, as the Jacobian of (9) can be calculated analytically.

5.1 Synthetic Data

In this experiment, we consider synthetic data generated by random graphs with a flat degree
distribution, truncated at degree two, i.e. each nodes has a maximal number of two parents. We
restrict the state-space of each node to be binary X = {−1, 1}. The generators of each node are
chosen such that they undergo Glauber-dynamics [9]Ri(x, x̄ | u) = 1

2 + 1
2 tanh

(
γx
∑
j∈parG(i) uj

)
,

which is a popular model for benchmarking, also in CTBN literature [4]. The parameter γ denotes the
coupling-strength of node j to i. With increasing γ the dynamics of the network become increasingly
deterministic, converging to a logical-model for γ → ∞. In order to avoid violating the weak-
coupling assumption [11], underlying our method, we choose γ = 0.6. We generated a varying
number of trajectories with each containing 10 transitions. In order to have a fair evaluation, we
generate data from thirty random graphs among five nodes, as described above. By computing the
edge probabilities p(eij = 1) via (4), we can evaluate the performance of our method as an edge-
classifier by computing the receiver-operator characteristic curve (ROC) and the precision-recall curve
(PR) and their area-under-curve (AUROC) and (AUPR). For an unbiased classifier, both quantities
have to approach 1, for increasing amounts of data.

Complete data. In this experiment, we investigate the viability of using the marginal mixture
likelihood lower-bound as in (5) given the complete data in the form of the sufficient statisticsM
and T . In Figure 1 we compare the AUROCs a) and AUPRs b) achieved in an edge classification task
using exhaustive scoring of the exact marginal likelihood (2) as in [15] (blue) and gradient ascend in
π of the mixture marginal likelihood lower-bound (red-dashed) as in (5). In Figure 1 c) we show via
numerical integration, that the marginal mixture likelihood lower-bound approaches the exact one (2)
for decreasing entropy of π and increasing number of trajectories. Small negative deviations are due
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Figure 2: a) AUROCs and b) AUPRs for varying number of trajectories. c) ROC and d) PR curve
for 40 trajectories. In all plots (red) denotes the exhaustive, (blue/dashed) the greedy-algorithm. e)
ROC-curve f) PR-curve for different initial π(0), where (red) denotes heuristic and (grey/dashed)
random. Confidence intervals are given by 75% and 25% percentiles of the results from 30 random
graphs, generated as explained in the main text.

to the limited accuracy of numerical integration. Additional synthetic experiments investigating the
effect of different concentration parameters c can be found in the supplementary C.1

Incomplete data. Next, we test our method for network inference from incomplete data. Noisy
incomplete observations were generated by measuring the state at Ns = 10 uniformly random time-
points and adding Gaussian noise with zero mean and variance 0.2. Because of the expectation-step
in Algorithm 1, is only approximate [11], we do not expect a perfect classifier in this experiment. We
compare the exhaustive search, with a K = 4 parents greedy search, such that both methods have the
same search-space. We initialized both methods with π(0)

i (m) = 1 if m = parG(i) and 0 else, as
a heuristic. In Figure 2 a) and b), it can be seen that both methods approach AUROCs and AUPRs
close to one, for increasing amounts of data. However, due to the additional approximation in the
greedy algorithm, it performs slightly worse. In Figure 2 c) and d) we plot the corresponding ROC
and PR curves for 40 trajectories.
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Figure 3: Run-time comparison of hill-
climbing structure search with variational in-
ference as in [11] with our gradient-based
method.

Scalablity. We compare the scalability of our
gradient-based greedy structure search with a greedy
hill-climbing implementation of structure seach
(K = 2) with variational inference as in [11] (we
limited this search to one sweep over families). We
fixed all parameters as before and the number of tra-
jectories to 40. Results are displayed in Figure 3.

Dependence on initial values. We investigate the
performance of our method with respect to differ-
ent initial values. For this, we draw the initial val-
ues of mixture components uniformly at random,
and then project them on the probability simplex
via normalization, π̃(0)

i ∼ U(0, 1) and π(0)
i (m) =

π̃
(0)
i (m)/

∑
n π̃

(0)
i (n). We fixed all parameters as be-

fore and the number of trajectories to 40. In Figure 2,
we displayed ROC e) and PR f) for our heuristic
initial and random initial values. We find, that the
heuristic performs almost consistently better.
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Table 1: AUROC (AUPR) of different methods on IRMA-data (top performers in bold).
method switch on switch off
steady state knockout 0.68 (0.42) 0.81 (0.50)
DBN G1DBN 0.78 (0.64) 0.61 (0.34)

VBSSM 0.79 (0.70) 0.76 (0.60)
ODE TNSI 0.68 (0.51) 0.68 (0.42)
NDS GP4GRN 0.73 (0.61) 0.76 (0.57)

CSId 0.63 (0.46) 0.86 (0.72)
CSIc 0.64 (0.39) 0.73 (0.59)

GC GCCA 0.71 (0.55) 0.74 (0.65)
CTBN exhaustive 0.81 (0.86) 0.93 (0.92)

greedy K=2 0.88 (0.85) 0.91 (0.89)
random 0.65 (0.45) 0.65 (0.45)

5.2 Real-world data

disabled

car

smokes

married

hospital

job statuspromotion option

looking for work

financial situation

living with partner

health status

childcare

Figure 4: Learned structure using gradient-based
greedy structure learning with maximal K = 2
parents from 600 trajectories.

British household dataset. We show scalabil-
ity in a realistic setting, we applied our method
to the British Household Panel Survey (ESRC
Research Centre on Micro-social Change, 2003).
This dataset has been collected yearly from 1991
to 2002, thus consisting of 11 time-points. Each
of the 1535 participants was questioned about sev-
eral facts of their life. We picked 15 of those, that
we deemed interpretable, some of them, "health
status", "job status" and "health issues", having
non-binary state-spaces. Because the participants
had the option of not answering a question and
changes in their lives are unlikely to happen dur-
ing the questionnaire, this dataset is strongly in-
complete. Out of the 1535 trajectories, we picked
600 at random and inferred the network presented in Figure 4. In supplementary C.2 we investigate
the stability of this result. We performed inference with our greedy algorithm (K = 2). This dataset
has been considered in [16], where a network among 4 variables was inferred. Inferring a large
network at once is important, as latent variables can create spurious edges in the network [2].

IRMA gene-regulatory network. Finally, we investigate performance on realistic data. For this,
we apply it to the In vivo Reverse-engineering and Modeling Assessment (IRMA) network [3]. It
is, to best of our knowledge, the only molecular biological network with a ground-truth. This
gene regulatory network has been implemented on cultures of yeast, as a benchmark for network
reconstruction algorithms. Special care has been taken to isolate this network from crosstalk with
other cellular components. The authors of [3] provide time course data from two perturbation
experiments, referred to as “switch on” and “switch off”, and attempted reconstruction using different
methods. In Table 1, we compare to other methods tested in [18]. For more details on this experiment
and details on other methods, we refer to the supplementary C.3, respectively.

6 Conclusion

We presented a novel scalable gradient-based approach for structure learning for CTBNs from
complete and incomplete data, and demonstrated its usefulness on synthetic and real-world data. In
the future we plan to apply our algorithm to new bio-molecular datasets. Further, we believe that the
mixture likelihood may also be applicable to tasks different from structure learning.
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