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ABSTRACT

Synthetic biology aims at designing modular genetic circuits that can be assembled according to the desired function. When
embedded in a cell, a circuit module becomes a small subnetwork within a larger environmental network, and its dynamics is
therefore affected by potentially unknown interactions with the environment. It is well-known that the presence of the environ-
ment not only causes extrinsic noise but also memory effects, which means that the dynamics of the subnetwork is affected by its
past states via a memory function that is characteristic of the environment. We study several generic scenarios for the coupling
between a small module and a larger environment, with the environment consisting of a chain of mono-molecular reactions. By
mapping the dynamics of this coupled system onto random walks, we are able to give exact analytical expressions for the aris-
ing memory functions. Hence, our results give insights into the possible types of memory functions and thereby help to better

predict subnetwork dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053816

. INTRODUCTION

One of the key goals of synthetic biology is the develop-
ment of modular genetic devices that can be assembled in a
flexible manner according to the desired task.! Each device
is designed to provide exactly one function in a robust and
reliable fashion, analogous to, e.g., resistors and capacitors
in electrical circuits. Conventionally, development and opti-
mization of each module are done in isolation, and the output
parameters are analyzed under controlled conditions. Based
on this characterization, complex genetic circuits of several
interconnected modules are designed, optimized, and imple-
mented. However, upon interconnection and implementation
into a cell, each circuit finds itself embedded in a fluctuating
environment that possibly affects the intended functioning.?
In the field of synthetic biology, these environmental influ-
ences are often subsumed as context effects and can, accord-
ing to their origin, be subdivided into different categories:>*
compositional context describes the perturbation of a module

due to the functional composition of the device, host context
captures the influences provided by the cellular environment,
and external context captures all disturbances that originate
outside the cell. In order to design reliable modules, it is essen-
tial to analyze and subsequently robustify network designs
specifically against these different and often unavoidable
contextual effects. Consequently, several authors have stud-
ied the impact of context effects and proposed methods to
account for them already during the design process of genetic
devices.

Saez-Rodriguez et al. and later Del Vecchio et al. consid-
ered compositional context effects by investigating how the
addition of a downstream module can change the output of
the upstream module. This effect was coined retroactivity.>°
The authors proposed a general approach to quantifying the
effects of retroactivity. Additionally, they designed an insu-
lating device that attenuates retroactivity and later success-
fully demonstrated its functionality. A basic assumption for
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Del Vecchio’s analysis is that there is a separation of time
scales between the dynamics of the two described modules.
While this assumption is often valid for compositional con-
text effects, it cannot be applied to host context effects since
the cellular environment often has similar time scales to the
designed subnetwork. In spite of this, the interactions with the
host environment are often ignored by assuming that the copy
numbers of environmental species are very large or the envi-
ronment is efficiently buffered. An important step forward was
made by Liebermeister et al. who developed a general frame-
work that can be used to include compositional as well as host
context effects into the rate equations, especially accounting
for the dynamical response of the environment to the out-
put of the subnetwork.”? To this purpose, they divided the
full network into a network of interest, the so-called sub-
network, and the surrounding environment. After linearizing
the equations for the environmental variables around a steady
state, they reduce its dimensionality by projecting the dynam-
ics on the subspace of the dominant dynamic modes. Apply-
ing their method to a metabolic network embedded in an
environment with parameter uncertainty, Liebermeister et al.
demonstrated how accounting for the environment improves
the predictions of the model, even if the parameters are not
known exactly. While model reduction via balanced trunca-
tion was shown to outperform conventional approaches based
on fixed environmental concentrations, Liebermeister et al.
also mentioned several limitations of their method, namely,
the requirement for a steady state in the environment and the
non-preservation of conservation relations between the sub-
net and the environment. The results of Liebermeister et al.
were recently extended by Rubin et al. who used the Mori-
Zwanzig projection operator formalism to obtain a description
for a generic subnetwork that includes the contextual effects
via the so-called memory terms.® By using memory terms,
it is possible to include complex mutual interaction between
the subnetwork and the environment into the description of
the subnetwork, for instance, when the subnetwork influences
the environment and these environmental changes are cou-
pled back to the subnetwork later in time. Using the projec-
tion technique, the authors demonstrated that the inclusion
of memory terms leads to higher accuracy in the predicted
subnetwork dynamics.

A different approach to including environmental effects
into the description of the subnet was pursued by Zechner
et al.?'% and Bronstein and Koeppl.!! In the description of
the stochastic process for the evolution of the joint network,
the environmental states were integrated out, resulting in a
description of the subnet that uses the best estimate of the
environmental state, based on the past observations of the
subnet.

In this paper, we will extend these various investigations
of environmental effects on the subnet in several respects. In
contrast to Rubin et al., who based their derivation on the
chemical Fokker-Planck equation (CFPE) in the limit of van-
ishing noise, we will apply the Nakajima-Mori-Zwanzig pro-
jection operator framework directly to the chemical master
equation (CME) to marginalize out the environmental states
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since the CME is the more fundamental equation for stochas-
tic modeling of a chemical reaction network. We will show
that for a reaction network with linear environment and lin-
ear subnet-environment interactions, the marginal descrip-
tion of the CME still possesses closed first-order moment
equations, and that these coincide with the equations obtained
by applying the projection framework to an ordinary differ-
ential equation (ODE) model of the same form as the reac-
tion rate equation (RRE). While gene-regulatory networks are
usually nonlinear, in certain situations, they can be simpli-
fied to linear networks either by expansion around a steady-
state’ or by mapping them on approximately equivalent
systems.'?

Based on this linear description, a main goal of our paper
is the systematic study of the influence of generic environ-
ments on subnetworks. In distinction to previous studies of
marginalization,® we focus on the situation that we do not
have specific knowledge of the environment into which a mod-
ule might be embedded. By considering several chain-like pro-
totypical environments (e.g., cascaded genetic module envi-
ronments), we derive analytical expressions for the memory
kernels of these common cellular environmental structures.
Those environmental building blocks can be used as general-
purpose environment models when investigating the sensitiv-
ity of a module to contextual influences. To demonstrate the
effects of such contextual influences, we take, similarly to Del
Vecchio et al., the example of an oscillating genetic module
that interacts with an environment of mono-molecular reac-
tions. Additionally, we demonstrate a more complex context
effect using the example of a negative-feedback module that
drives interconnected downstream modules. This shows that
even environments that seem to be too simple to be rele-
vant considerably change the dynamics of a module. Further-
more, our analytical results can be extended to include a broad
class of environments into the analysis of synthetic genetic
networks.

The outline of the remainder of the paper is as follows:
In Sec. II, we derive stochastic and deterministic descriptions
for the subnet that contain the effects of the environment
via memory functions and relate the corresponding marginal
description. Section III presents derivations of exact analyt-
ical expressions for the memory terms of prototypical envi-
ronments, which will be based on the deterministic marginal
description. Finally in Sec. IV, we use the memory functions
of several simple model environments and demonstrate their
effect on two specific subnets.

Il. MODEL AND METHODS

A. Reaction network: System and environment

In the following, we call the system of interest the sub-
network or target network, indicating that it is part of a larger
network that comprises the system of interest and its envi-
ronment. We model the full system as a reaction network
consisting of N + M species, where N and M denote the num-
ber of subnet and environmental species, respectively, and R
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reactions,
N M N M
D SR ) SXn = X ) mXa
n=1 n=1 n=1 n=1
forj=1,...,R The superscripts S and E denote the subnet and

environmental species respectively. The coefficients sy, .. .,

snj and s' . M] are the stoichiometric substrate coefficients,
and ryj, ..., Ty and Tijr -+ Ty are the stoichiometric product

coefficients of reaction j.

B. Stochastic and deterministic dynamics

For a well-mixed system, the time evolution of the net-
work is modeled by a continuous-time Markov chain X(t) =
(X5(t), XE(t)) in which the state x = (x5,xE) ¢ N x NY of
the system specifies the (integer-valued) copy number of each
species. The probability p(t, x) := P(X(t) = x) evolves according
to the CME

S bt = Tp(t, ) ()

with forward evolution operator

R
[Tp](x) = >~ {hi(x - vj)p

j=1

x—vj) —hj(x)p(x)}. (2

Here, h;(x) is the rate function of reaction j when the system
is in state x, also called hazard function, and v; = (vjs,vf) is
the stoichiometric change vector of reaction j with vJ.S = (ry -
Stj, - - -, TNj — SNj) and v = (1’ 1J .. ,T;v[j - vaij)'

We say that a stochastic reaction network has mass-
action kinetics if its hazards are given by

v 1)1

R, where ¢j is a constant rate parameter.

lJ
forj=1,...,

A reaction is said to be linear if its hazard function is lin-
ear. For a system with mass-action kinetics, a reaction is linear
if at most one stoichiometric substrate coefficient is nonzero,
i.e., a linear reaction takes one of the two forms

0—1[--] Xi— [

where the right-hand side of the reactions can be arbitrary.
A reaction is said to be mono-molecular if at most one sto-
ichiometric substrate as well as one stoichiometric product
coefficient is nonzero, i.e., it takes one of the forms

0 —Xi, Xi—0, Xji— X
where the first reaction type is called a birth, the second called
a degradation, and the third called a conversion reaction.

Every mono-molecular reaction is linear.

Finally, a reaction network is termed linear (respec-
tively, mono-molecular) if all reactions are linear (respectively,
mono-molecular). In particular, we define the environment
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as linear (respectively, mono-molecular) if all environment-
environment interactions are linear (respectively, mono-
molecular).

Furthermore, recall that for a function ¥(x) the evolution
equation for the moment (), = Y p(t, x)¥(x) is given by

d
F W= v

= (TTw>t’

where T, given by

= ) [Tul@p(t,)
Zx: ®)

R
i) {wix +vi) - w()),

j=1

[T'y]x) =

denotes the adjoint of the operator T with respect to the bilin-
ear form (p, y) = Yxp(x)y(x). For a linear reaction network with
mass-action kinetics, the corresponding first-order moment
equations (the mean equations) are closed and linear

R

R
<x>t Z( hixo)vi = > hi(@))v; = A@); +b,
J=1 Jj=1

where the matrix A and the vector b are defined by this equa-
tion. If the network is non-linear, the mean equations are not
closed.

At this point, we turn to considering deterministic
dynamics of reaction networks. One possibility to obtain a
deterministic description of the dynamics is to start with
the continuous-time Markov chain model and take the large
volume limit where the reaction rate equations are recov-
ered. To achieve this, we introduce the concentration variable
p =X(t)/V, where V is the system size. Inserting this concen-
tration variable in the corresponding process representation
of a continuous-time Markov chain, namely, in the random
time-change representation of Kurtz'* and applying the law
of large numbers, one obtains the well-known reaction rate
equation (RRE)

d R
O = () v;. @)
j=1

Here, the rate functions Jj are called mass-action propensities
for concentrations, and in terms of concentrations for subnet
and environmental species, p = (u5, u?), they are given by

N M
A5, 1) = ¢ [ ) | )
i=1 1=1
with the macroscopic rate constants c;. Hence, for a reac-
tion system with high copy numbers or high concentrations,
the dynamics can be well described by the deterministic
dynamics, the RRE.

C. The projection operator formalism

We use the projection operator formalism for both the
stochastic and deterministic description to derive effective
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equations for the dynamics of the subnet. For the stochas-
tic description, we apply the formalism'# (compare also the
original work of Nakajima,'> Zwanzig,'® and Mori'”) to derive
a generalized master equation. This equation describes the
evolution of the marginal probability distribution.

For the CME, a natural definition of a marginalization
operator is

[MpIGS) = > p(aS, <), (5)

This operator can be used within the projection operator
framework as described in the following.

At first, we observe that the marginalization operator
maps the distribution of the joint state space of the subnet and
environment to the marginal distribution over the subnet state
space, whereas the projection operator framework requires a
projection operator that maps the space of distributions over
the joint space to itself. Therefore, in addition to the marginal-
ization operator M defined in (5), a lifting operator L acting on
distributions p(x°) over the subnet states has to be defined. We
choose'819

[Lp](x®, %) = q(x)p(x®)
for some fixed distribution q over the environmental states.

The (time-independent) operator P := LM is a projec-
tion, i.e., we have P? = P. Defining the orthogonal projection
operator Q := | — P, we also have

Q*=Q, PQ=QP=0.
Applying M (respectively, Q) to the CME (1) and using

P+ Q =1and P = LM, we obtain the following two
equations:
d
&Mp = MTLMp + MTQp, (6)
d
an = QTQp + QTLMp. (7

Note that the projected distribution pS = Mp fully contains
the exact subnet dynamics due to the special form of our
projection operator.

Formally solving (7) results in
t
Qp(t) = 2T Qp(0) + / dte-ITQTLYS(Y),
0
and inserting the latter into (6) finally yields

t
d%ps(t) = MTLpS(t) + / dt' MTeEIRTQTLPS(t') + MTeRTQp(0).
0

®)

Here, the first term reflects the Markovian part of the dynam-
ics and the second (convolution) term the memory. The third
term represents a noise since we assume to have no knowledge
about the initial distribution of the environment. The noise
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term can be made to vanish if we assume that Q is orthogonal
to the initial distribution.

Equation (8) has a reduced number of dimensions com-
pared to the full network, but the description has not become
simpler since the equation still constitutes the exact dynam-
ics of the subnet including the effects of the environment
on it-reflected by the memory and noise terms. To obtain
simpler expressions, one needs in general approximations,
especially for the memory kernel. However, in this paper we
restrict our considerations to networks with mono-molecular
within-environment as well as subnet-environment interac-
tions, for which an analytical treatment of prototypical envi-
ronments is possible. We can then decompose the full time-
evolution operator T as T = Tp + T;, where Ty includes all
linear reactions and T; contains the non-linear subnet-subnet
interactions. Strictly speaking, the operator T; acts on dis-
tributions over the joint space of the subnet and environ-
ment. However, in the following, we will sometimes implic-
itly consider it to act on distributions over the subnet state
only.

D. Mean equation for the projected CME

In this section, we extract marginal mean equations from
the marginal CME (8). Starting from (8), the expectation (¢) of
any function ¢(x%) evolves according to

t - -
%(‘b)t = <LW°T+ M+¢>t +/0 dt/<L+TTQ+e(t_t/)T'Q’TTMT¢>

t

#(Qle I TMg) )

o

Thus, we need expressions for the adjoints of the operators
involved. Let y(x%, x¥) and ¢(x5) be two arbitrary functions. A
brief computation shows that we have

[MT¢](xS, xE) = ¢(xs)7
[L'16) = 3 a ) as, 25),

and thus

[Piy)®,x%) = )" q@ ) (x*,&°).

Choosing ¢(x%) = x5, we obtain from (9) equations for the
mean abundances. To get an explicit expression, we first con-
sider the case of a fully linear network. For a linear reaction
network, all reactions are of one of the two forms

0—1[ -], Xi— ],
where the first form can be seen as a special case of the second

form by including an auxiliary species X, with abundance 1and
replacing the reaction

0—1[-] by Xo—Xo+[--].
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We will assume in the following that this rewriting has been
performed.

Noting that ¢ is linear, we can obtain these equations
in a more explicit form by first verifying that each opera-
tor involved in (9) leaves the space of affine-linear functions
invariant. Then (9), which is infinite-dimensional, reduces to
a finite-dimensional equation for the coefficients of an affine-
linear function. Thus, let

(x5, xF) = wixS + wExE + v, pwS) = w3xS + 0

be general affine-linear functions, where w® and w® are row
vectors and v is a scalar. As explained in Sec. II B, the first-
order moment equations for a linear network are closed.
The action of the operator Tg can then be specified via the
matrix

ASS ASE
= AES AEE
as
xS
[Towl(xS,xF) = [ws,wE]A[xE].
Similarly,

wx+v

[MTe](x5,x

[LTy](x5) = wSxS +w <xE

+v
q

5=

) )
[Pﬁ/x](xs xF) = wSxS +w (xE> +v,

)= )

5=

)

q
[QuJS, %) = wh(e® - (xF) ),
[ThQwles,x

(wEAES)x + (wEAEE)x

Thus, each operator leaves the space of affine-linear func-
tions invariant. Additionally, the operator Tg removes the
inhomogeneous term v.

We can now evaluate each of the three terms in (9) in turn.
For the Markovian part, we obtain

(M), = (i) A A

To evaluate the memory term, we first note that,
because M’¢ does not depend on xF, we have Q' TIMT¢
= Q"’TBMsz. The latter does not depend on x5 so that we
obtain T'Q'T'M'¢ = T/Q'T/M'4. Similarly, one can verify
that T'TQ'¢ = T;Q'¢. For the memory term of (9), we note
that the coefficients of the linear function e TIQITIM ¢
= et=)TQ' T{ QT M’ are the solution of the ODE system

ws — wEAES,
WE = wEAEE,

at time t — t’ with initial conditions at time O given by the
coefficients of the linear function T)Q'T{M’¢. Combining all
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of these, we obtain for the memory term
t .
/ ae(LTTQeT M)
0 v
t .
_ / dt ASEe(t-1)A™ { ABSS(t) + AEE<xE> }
0 q
C SE ,(t—t')AFE AES 'S 0/
= /0 dt'A>"e A > (t)
SE tAPE/_E\ _ ASE/.E
+A>"e <x )q A <x >q.

For the noise term in (9), we use the relation QfetT'@
= Q1eRT'Q" Since Q'T'Q'T{M’¢ = 0, we have

QeRTATIM g = Q'TIM'g = 0.
We then find
<Q*etQ"'T"Q"'T*MT¢>O = <Q*etQ"'T"'Q"'T5M*¢>o
Tt ot
-faen,
=0.

The full equation for the means thus reads

§t< > (Tix s) - A%5(x / dt’ ASE p(t-1)A™ ABS(x >t’

+ ASEtA™ (xE >q. (11)

We see that the non-linearity of the subnet enters only in the
Markovian part.

At this point, we proceed to relate the projection operator
formalism for the CME as given by (8) and the correspond-
ing mean equation (I1) to the formalism applied to the ODE
model, as given by the reaction rate equation (4). In particular,
we observe that in the case of linear subnet-environment and
intra-environment interactions, the RRE (4) takes the form

G = )+ A,
' 12)
E _ AEE E_ AES, S _ 1E
—p=A +A +b".
dat H H
Here, f specifies the subnet-subnet interactions, which can be
arbitrary and, in particular, non-linear. Due to the linearity of
the remaining reactions, the corresponding dynamics can be
represented via (coupling) matrices A, with entries consisting
of rate constants {c;}, and the vector b®, containing the rate
constants of the environmental birth reactions.

Similarly as for the CME, we can derive an effective (pro-
jected) subnet description for (12). We solve the equation for
¥ and plug the result into the equation for uS. The solution
reads

t L F o
:f(”s)+/0 At ASEE-DA™ (AFS 1S(¢) 4 pF) + ASEEIA™ 1E (0).
(13)
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This is the marginal mean equation as given by (11) if we choose
the distribution q to have the correct mean, <xE>q = p®(0). This

demonstrates that the marginal CME and the marginal equa-
tions obtained from (12) are consistent. Interestingly though,
in our derivation above, the Markovian, memory and noise
terms in (9) and (11) do not correspond to each other directly.
While the noise term in (9) vanishes, the memory term in (9)
includes ASEetAEE<3cE>q which is the noise term in (11) since

it depends on the conditions of the environment which are
unknown in general. It also corresponds to the noise term in
(13)if q is chosen as stated above, <xE>q = p®(0). In addition, the
noise term in (9) vanishes in the first-order moment equations
even when the initial distribution po (x5, x®) does not factorize
into a product po(x3)po(x®).

Since (13) will be used in Sec. 1] below for the investigation
of memory effects in synthetic biology, we want to give some
intuition into the different terms of (13), similarly as for (8).
The first term f (ps) describes the dynamics that is generated
by all the reactions that have only reactants from inside the
subnetwork. We will hence call this term in Secs. [Il and IV the
local dynamics part.

The second term ASPeA™ ;E(0) =: #(t) is the contribution
that originates in the (often unknown) initial condition of the
environment. Since this term cannot be affected by the sub-
network itself and depends solely on the initial conditions, this
term is coined noise term.

The third term
t
/ dUM(t - ) pS(t), M(t—t) = ASE(-1A AES (14
0

is the memory term, where M(t — t’) denotes the so-called
memory kernel that depends on the dynamics happening
inside the environment during the time interval t — t'. This
term is due to the fact that the past states of the subnetwork
affected the time evolution of the environment, which now
acts back on the subnetwork. The matrices ASE and AFS are the
coupling matrices from the environment to the subnetwork
and from the subnetwork to the environment, respectively. In
contrast to the noise term, the influence of the memory term
on the subnetwork dynamics is therefore predictable upon
knowledge of the structure of the environment.

Although in this work we focus on the marginal mean
equation as a first measure to quantify the dynamical behav-
ior of the subnetwork, one can similarly derive the marginal
second moment equation of the subnetwork for a completely
linear reaction network (see the Appendix).

lll. PROTOTYPIC ENVIRONMENTS WITH
MONO-MOLECULAR REACTIONS

While the full environmental network typically has an
unknown and complex structure, the interactions between
the subnetwork and the environmental network can be
simple, e.g., the binding of a subnetwork species to an
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environmental promoter and vice versa, or constant inflow
and outflow of species. Proteins can also be bound in more
complex topologies like moiety-conserved cycles or tem-
porarily evolve into promiscuous conformers.?°?2 Likewise,
RNA-folding can lead to transitions between different tran-
sient structures, where only one is functional.?*> These par-
asitic interactions and the possibly resulting memory terms
need to be considered when designing and evaluating syn-
thetic genetic networks. Thus, it is desirable to obtain memory
kernels for some prototypical environments. To this purpose,
we will analytically derive memory functions for the broad
class of chain-like reaction topologies with mono-molecular
and linear interactions, as depicted in Fig. 1. Since in biology
almost every reaction is bidirectional (where one direction is
conventionally preferred), we include possible reverse reac-
tions in our environments. Additionally, each species has a
constant in- and linear outflow due to birth and death reac-
tions. Such a system is sketched in Fig. 1, where o is the
rate of inflow at each node, « is the decay rate, and «a, B8
are the rates on the connections along the chain. Before we
derive the corresponding memory functions, we will show
that a chain only exposed to constant inflow is (after an ini-
tial transient time, which we do not consider) in a steady
state and is hence captured by the noise term r(t) that
does not affect the memory terms. The noise term can be
obtained by solving the following system of coupled linear
equations:

o +X28
xl = —7
a+k
- O+ X1+ BXm
" avBre (15)
o+ aXp-1
XM= ——F"")
a+f+k

r(t) =1 = axm.

Thus, a constant influx to the environmental nodes can be
accounted for by adding a constant to the noise term. This
implies that the only nontrivial solution (a # 0) for the noise
term is given by o~ = k = 0. Consequently, for this parameter
setting the environment is mass conserving.

A. Mapping onto a random walk

Before calculating the memory function, we will first
show that the considered environment can be mapped onto a

"4 F&T Iﬂ H[
®+-0-0—  —0
1 g

FIG. 1. Linear chain topology with mono-molecular interactions as considered as
generic environment. The rates @ and B denote the transition rates between the
different species X;. o~ and « are the rates of constant in- and linear outflux,
respectively. The blue arrow indicates the coupling to the subnetwork.
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random-walk problem. Subsequently, we obtain a return-time
distribution of the random walk problem, which is identical to
the memory function of the chosen environment.

We explicitly model the interactions between the sub-
network and the environment. The subnetwork couples to
the environment at some arbitrary position x, and the envi-
ronmental chain couples back to the subnetwork at some
other position(s) y1 /2. Since in this case the coupling from the
subnetwork to the environment consists only of one single
reaction, APS will only have one non-zero element. Further-
more, we note that one key feature of a system of mono-
molecular reactions is that there is no interaction between
different molecules in the network, i.e., the reaction rate of
a molecule is independent from that of all the others. Hence,
inside the environment the mean evolution equation of the
system’s state is equal to its probability evolution equation.
To obtain the general mean equation for the system with N
particles, we need to scale up,

<x>t = Npt-

Since, additionally, for a linear system the mean equation is
identical to the deterministic evolution equation—which we
use in our calculations—it is possible to describe the dynamics
of our environmental system by

u" = Np",

where N is the number of particles in the system. Addition-
ally, for networks with mono-molecular interactions it was
shown that an initial multinomial distribution M(x, p(0)) stays
multinomial over time.?* The parameter p of this distribution
evolves according to the rate equation

p(t) = e*p(0), (16)

where B is the deterministic transition rate of the network. In
a network with an absorbing state x,,s and corresponding paps,
the probability to be already absorbed at time t is then given
by

Paps(t) = 1= M(xaps = 0, P(t)) = Pabs(t)-
Hence, the probability to get absorbed at time t is

dp abs — dpabs

dt dt

= BYp(1), (17)

where BAN contains the transition rates from the network into
the absorbing state.

Using this feature of systems with mono-molecular inter-
actions, we can reinterpret the memory kernel in (14). The sec-
ond part AFSuS(7)dr =: pF3(z) in (14) is the concentration that
enters the environment during the time interval dr coming
from the subnetwork. This initial distribution of one species
can be interpreted as a multinomial distribution with p = e;.
In the first part of (14), the matrix ASF denotes [similarly to
BN in (17)] the rate to be absorbed in the subnetwork. The
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term eA” (=7) is the deterministic solution of (16), where AFE is
the deterministic rate matrix of the environment only. Hence,
ASPeA™(t=7) = pSE(t — |7) denotes the rate to leave the envi-
ronment after a time t — 7 by entering the subnetwork again,
given that the environment was entered at time 7. Naturally, a
particle that decays inside the environment will no longer be
able to couple back to the subnetwork. Since there is no inter-
action between the single particles, this directly suggests how
linear decay enters the memory terms

pSE(t -7 T) — ASEeAEE(t—T)e—K(t—‘r)Y (18)

where A™ denotes the environmental interactions without
decay terms. We now reinterpret each environmental state
(denoted by X; in Fig. 1) as a possible position of a ran-
dom walker and take each (linear) reaction rate as the cor-
responding transition probability between the states. As a
consequence, to obtain ASFeA" (-7 = pSE(t — 7|7), we can
use a formalism used to analyze random walks with absorb-
ing boundaries to account for the coupling to the subnet-
work. Independently from us, Stephan and Stephan?> devel-
oped a complementary approach to tackle similar linear
environments.

B. Absorption probability for continuous-time
random walk

We will now derive a general expression pSi(t — 7 |7) for
any type of a linear random walk with absorbing boundaries.
The problem at hand is a general question of first-return times
of a one-dimensional random walk, before coming to more
specific situations in Secs. III C 1-1II C 3. In order to sim-
plify the notation, we will enumerate the states in the chain
withw =1, ..., Q. As we will show later, it is the most general
approach to start with a description that has two absorbing
states, namely, the states w = 0 and w = Q. We use the back-
ward master equation to describe the probability P, ,(t - 7)
of a state starting at w to have reached the absorbing state y
attimet -,

Peral®) _ o1 )Py (0 @Peyrt 0+ 8P, 0),

where « and B are the transition probabilities of one step to
the right and left, respectively. A problem like this was solved
by Heathcote and Moyal,?® where they also assumed a chain
with absorbing barriers at w = 0 and w = Q. They were able

to derive the following equations for the probability to be
absorbed at 0 or Q at time t:

s t
Do) =v® Z / e ((2JQ + w)ljores
=070
=20+ DQ - w)Iy j+1)ﬂ—w)d7 ,
%t
Pura®) =y 3 [l (@54 D0~ gma-o)
j=0

~((2) + DQ + W) @jare) ) dT,
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whereu=a+p,v = \/‘g , and I is the modified Bessel function
of the first kind with argument 2rv/a. Since both final states 0
and Q are absorbing, the probabilities are of cumulative nature
and are hence denoted by & instead of the previously used
P. We are now interested in the probability to be absorbed
exactly after a time-period of v which is formally equal to
the rate of leaving the environment and thus need the time
derivative of these equations

Poo(t) =v7® Z e ((2jQ + w)ljores
j=0

- 2(+ D2 - ©)lagina-o), 19)

P, a(t) = v Z e (2] + D)2 - w)@jp0-w)
0

- (2j+ D2+ w)(pjyarw))-

Since the environment is finite, we have

/O Tt (Poo(t) +Pua(t) =1,

which means that the mass is conserved.

In the following, we will show how we can use the
random-walk model to describe different types of generic
environments and derive the corresponding memory kernels
using the equations that we just derived.
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C. Examples of environments and memory kernels

1. One single species

To give some intuition into the effects of environmental
reactions, let us start with one of the simplest examples of a
possible environment, namely, that of just one species cou-
pled to the subnetwork with rates « and B [Fig. 3(a)]. Examples
of this type of context effect are, e.g., the reversible binding
of one subnetwork species to an environmental site. In this
case, the only non-zero elements of the coupling matrices are
ASE = _AFE = g and A®S = @, and the only non-zero element of
the memory-kernel (14) simplifies to

M(7) = BeP7 a. (20)
This is the expected exponential probability distribution of any
quantity decaying with a linear rate.

2. Chain with two connections to the subnetwork

We now consider the most general configuration where
the subnetwork couples to an environmental chain, as
depicted in Figs. 2(a) and 2(b). The chain couples back to the
subnet and can hence be left by the random walker at both
ends. Examples for this type of environment can, e.g., be found
in promiscuous conformational changes of proteins. Here, a
protein is only functional in its native state (contained in the
subnetwork’s description). Due to structural variations like
fold transitions, the protein can transform into other dysfunc-
tional states that form a loop-like reaction topology (described
by the environment).?? Thus, we can directly use the sum of
Eq. (19) that describes a finite chain with absorbing states at

0.2( 0.20, 0.20,
0.15 0.15] 0.15]
= = =
s 0.10] s 0.10] s 0.10]
0.05| 0.05] 0.05]
0.00° 0.00 0.00
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time Time Time

FIG. 2. Exemplary sketch of the topology (top) and the corresponding shape of the memory function (bottom) of circular environments as described in Sec. Il C 2. [(a) and
(b)] Bi-directional linear chain with coupling to the environment at (a) the first position and (b) some intermediate position [see (21)] and (c) directed linear chain [see (22)].
Parameters are @ = 8 = 1 and Q = 6. Additionally for (b) w = 3. The three dots denote an arbitrary long continuation of the chain.
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both ends to obtain the memory kernel of such a system
Mbichain(t) = Pe,0(t) + Po,a(t)- @1

In the given example of the promiscuous conformational
changes of proteins, the coupling from the subnetwork
to the environment is at the first position of the chain
[Fig. 2(a)], hence w = 1, but in general there is no constraint
on the coupling from the subnetwork to the environment

[Fig. 2(b)].

Enzymatic reaction cycles are often highly directional,
which means in our case that we can set lim, o [Fig. 2(c)].
Thus, there is no longer any absorption at position w = Q,
hence P, o(t) = 0 and we obtain

ﬁwe—tﬁtw—l
M(t) = lim P, o(t) = ————— 22
( ) a—0 w'()( ) F(cu) ( )
—®
)
0.20
0.15
=
s 0.10
0.05
0.00
5 10 15 20
Time
Subnet ‘ - ‘ = e o o
B B 7
0.20
0.15
s 0.10
0.05
0.00
0 5 10 15 20

Time
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As expected, this resembles the well-known Erlang distribu-
tion. For a chain length of w =1, we obtain the same result as
in (20).

3. Linear chain with one connection

to the subnetwork

Letting Q — o in (21), we minimize the influence of the
second absorbing barrier and the probability to be absorbed
at w = Q goes to zero; hence, we arrive at the description of
some environment with only one coupling to the subnetwork.
In this case, the probability to be absorbed at w = 0 at time t
simplifies to%®

Jim Py, o(t) = lim v JZ(; e ((2)Q + w)jore

- 2@+nQ- w)IZ(j+l)Q—w)

= wv @t le M. (23)

@@ -
5 5 )

0.20
0.15
=
S 010
0.05
0.00
0 5 10 15 20
Time
«
e )
-~ — —
@@=
0.20
0.15
=
< 0.10
0.05
0.00
0 5 10 15 20
Time

FIG. 3. Sketch of the topology (top) and the corresponding shape of the memory function (bottom) of linear environments with only one coupling to the environment as
described in Sec. Il C 3. (a) Environment with single species [see (20)], (b) infinite chain of interconnected species, where the coupling between the subnet and the
environment is at the same position [see (23) with w = 1], (c) infinite chain of interconnected species, where the coupling between the subnet and the environment is at
different positions [see (23) with o > 1], and (d) finite chain of interconnected species [see (24)]. Parameters are @ = B = 1. Additionally for (c) « = 3 and for (d) Q =6,

w=3.
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FIG. 4. Sketch for the equivalent trans-
formation of a finite chain to a two-ended
chain. (1) The initial finite chain we
want to describe is extended by a self-
referring loop reaction (2, green). This

;| 2 000

added reaction can be considered as a
transition reaction between two equiva-
lent finite chains that now form a two-
ended network topology (3). The “mirror”
axes are depicted as a pink dashed line.

o o o 0 I8} f
Subnet — < — (
23 e} « a 0 D o _

In comparison to the first example of a single-species envi-
ronment [Fig. 3(a)], in a longer chain more than one species
takes part in buffering species from the subnetwork [Fig. 3(b)].
Hence, the memory function decays slower.

Similarly as for the double ended chain, a coupling to the
environment at some intermediate position will lead to non-
monotonous memory functions [Fig. 3(c)].

While infinite reaction chains might be a good approxi-
mation for long reaction cascades, chains with a small number
of species are in general more relevant. Therefore, in the fol-
lowing, we consider reaction chains of finite length with one
absorbing state at w = 0 and one reflecting state at w = Q [e.g,,
see [ig. 3(d)], as depicted in Fig. 3(d) with a = B.

At each position in the chain, a particle can move to the
left and to the right with a summed propensity of a + 8. The
last species (e.g., X3 in Fig. 4) can only move to the left with
summed propensity 8. Nevertheless, without changing the
dynamics in the system we can add a self-referring loop with
rate « to Xs. This self-referring loop can also be considered as
a connection between two different X3 on two different, but
interconnected finite chains (see [ig. 4). Hence, the dynamics
of a particle on a chain with reflecting boundary condition is
equivalent to the movement of a particle on a chain of length
2Q + 1, where the absorption rate of the particle starting on
position w is given by

Pfinitechaina(t) = Puw,0(t) + Py 2041(1), (24)

where P denotes [just like in Eq. (19)] the rate of leaving the
environment, but now with chain length 2Q + 1.

IV. APPLICATIONS

A. Example 1: The effect of retroactivity on the
repressilator

1. Retroactivity

Del Vecchio et al. described a general engineering
issue that arises as soon as different subsystems (mod-
ules) are interconnected to a large device.® They defined
retroactivity as a signal that travels back from a downstream

module to an upstream module and derived a formula to
quantify the effect of this retroactivity. A basic assumption
of their derivation is the timescale separation between a
fast downstream and a slow upstream module. The projec-
tion operator framework provides a more general method
to analyze the impact of retroactivity on the performance
of a genetic module, without relying on timescale separa-
tion. Having obtained memory kernels for different proto-
typic environments, we now give some examples of how con-
text effects can drastically change the behavior of genetic
devices.

Del Vecchio et al. demonstrated the effect of retroac-
tivity on an oscillating input protein signal k(t) that is cou-
pled to a downstream promoter binding region. In insula-
tion, the system shows the desired oscillation, whereas, as
soon as interconnected to the fast promoter, the oscillation
is damped. In their study, k(t) was used as a generic out-
put signal of an upstream oscillating device. In the general
case, the complete functioning of the oscillator will be dete-
riorated by the coupling to a downstream module. Using the
example of the famous repressilator, we will explicitly model
the system of interest in terms of reactions that result in
an oscillating signal, and we will investigate the effect of
retroactivity.

2. Repressilator

The repressilator is a synthetic genetic regulatory net-
work of three genes and the corresponding three proteins,
where each protein represses another gene in a cyclic fashion.
The resulting interaction can be described by the following
equations:

dm; Y

— = -Kpmj + ———,

dt 1+ Kypl

: bP; (25)
% = —Kppi + Tmy,

where m; denotes the concentration of the three different
mRNAs and the p; of the proteins. The degradation rates of
mRNA and proteins are given by Ky, and Kp, respectively. T is
the translation rate, y, n, and Kj are the Hill parameters. This
corresponds to the following reaction scheme:
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(26)

Kp
Py — 0.

Using the parameter set given by Elowitz and Leibler,?” in
the deterministic, as well as in the stochastic simulation, one
observes a uniform oscillation in the concentrations of the
different proteins [see Fig. 5 (left)].

3. Retroactivity due to promoter binding.

Using the repressilator, we can now build the system used
by Del Veccio et al. where we, however, explicitly model the
oscillating upstream module. One of the oscillating proteins of
the repressilator is supposed to drive a downstream module
by reversibly binding to its promoter. To account for this bind-
ing, we add to the reaction equations (26) a reversible binding
reaction for protein A,

Ron

PA C7

kot

where C is the complex protein promoter. Using the results
from (20), this leads to a modified set of differential equations

: Y
m; = —Kmm; + W,

t
i = —Kppi + Tm; + 6 ( /0 kogre kot DRonpi(r)dr — pikon |- (27)
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For the isolated repressilator, one expects a driving frequency
of the promoter analogous to the one depicted in Fig. 5 (left).
Nevertheless—as shown by solving (27) as well as by stochas-
tic simulations [Fig. 5 (right)]-due to the reversible binding
of one of the proteins the oscillation frequency of the pro-
tein concentration is vastly reduced. Additionally, the ampli-
tudes of the protein concentrations are changed due to the
coupling to the promoter. This simple example highlights the
need to account for context effects when designing synthetic
genetic modules, especially, when time-scale separation is not
possible.

B. Example 2: Context effects due to promiscuity

We now want to proceed to a more sophisticated exam-
ple of a rather counterintuitive result of context effects. We
hereby build on a study by Bratsun et al.?® Based on the obser-
vation that in gene regulatory networks there is often a vast
separation of time scales between different types of reactions,
the authors presented different gene regulation modules that
show oscillations induced by delayed reactions. In the follow-
ing, we modify their example of a “negative feedback with
dimerization” by adding a constant inflow of X. Additionally,
we motivate how the context of downstream modules can
cause a delay.

A common function of synthetic genetic modules is the
activation and repression of downstream genes. This is often
achieved in two steps, where in the first step a specific
monomer has to dimerize before it can bind to a downstream
promoter. Denoting the monomer with X, the dimer with X5,
and the activated and inactivated promoter with D and D*,
respectively, the following reactions describe a repression of
the promoter D by X5:
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FIG. 5. Comparison of deterministic solution (top) and stochastic simulation (bottom) of the described repressilator system, where red, blue, and yellow denote Py, Pg, and
Pc, respectively. (left) The unmodified repressilator as given by (25). (right) The repressilator with one protein coupled to an environment as described in (27). Parameters
taken from Elowitz and Leibler?” are K, = T =5, K, = 1,n = 2.1, K, = 1, and = 250. Additionally parameters (right) taken from Ref. 6 are ko = 1000 and ks = 100.
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kmon
X+X X,
Rdim
kon
Xo+D D, (28)
Ror
Sin
X 0.
Sout

Here, the relevant output parameter is the probability of
an activated /inactivated promoter. The corresponding ODEs
read

%(t) = 8in — Sout X(t) — 2RaimX(t) + 2RmonX2(t),

Xa(t) = — kond(t)xa(t) + kofrd " (t) + RaimX(t)* — RmonX2(t),
d(t) = = kofrd(®)x2 () + kond" (t),

d*(t) =kofrd(t)xa(t) — kond" ().

(29)

Analyzed in isolation, this results in a constant probability for
an active promoter that depends on the chosen parameters
62

out Ron Rmon

P(d) = (30)

6(2)ut Ron Rmon + kclim koff.
An example simulation as well as a numerical solution of the
ODE system is shown in Fig. 6(a).

In a synthetic genetic network, the activated promoter
will be used to trigger the operation of downstream modules.
Let us assume that there is a downstream source of protein X
that has—due to, e.g., promiscuity—properties similar to the X
protein. To account for this, and assuming that expression of X
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occurs soon after the activation of the promoter D, one would
add the following reaction to (28),

D—2X  .D+X

@31
and likewise extend the first ODE in (29) that describes the
time evolution of X,

X(t) = Sin — Sout X() = 2kaimx(t)? + 2Rmonx2(t) + yd(t).

The resulting behavior depicted in Fig. 6(b) essentially means
that the feedback due to the interaction between downstream
and upstream modules leads to a shift in the probability for
an activated promoter. However, when we take into account
the time delay between activation of D and expression of X,
this result becomes modified. Such a time delay becomes sig-
nificant if the number of modules between the dimerization
module and the one expressing X is large or if there are some
slow processes between the activation of D and the expression
of X. We account for this by writing

D—2X  .D+7,

7 — s 7,,

Zy —L 7,

Iy —— L X,

I 1 i 1 i 1
1.0, e v ——y . 1.0 1.0
0.8] 0.8 0.8
@ 0.6] é 0.6 é 0.6
a o o
0.4 0.4 0.4
0.2 0.2 0.2
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Time Time Time
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@ 0.6 @ 0.6) @
a a a
0.4 0.4
0.2 0.2
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FIG. 6. Comparison of deterministic solution (bottom) and stochastic simulation (averaged over 100 runs) (top) for the probability of an active promoter for the gene-regulation
module described in Example 2. (a) The unmodified module without feedback, (b) the module with immediate feedback, and (c) the module with delayed feedback. Parameters
are in = 2, Sout = 4, kon = 1000, Koft = 100, Kmon = 1000, Kgim = 200, ¥ = 70, and = = 20.
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where Z; are the intermediate steps before X is expressed.
The chain of Z; reactions forms an environment similar to the
directed chain described under Subsection III C 3. There, we
have shown that M(t — 7) is an Erlang distribution as given
by (22). We thus need to include this memory effect in the
equation for x. We will do this by using a simplification: if we
keep the mean ¢ fixed and increase the size of the chain, the
variance decreases with L and we can simplify

wo—(t-7)B(t — 7)1
lim M(t—T) = lim ﬁ e (t T)
Jm @—const  woe INw) @ —const
w
ofeee-) @

As an approximation, we can hence treat the environment
as a memory function that has the form of a time-delayed
delta distribution. Using this result, we are now in the position
to give an approximate result for the effects of the environ-
ment on the probability for an activated promoter. Taking into
account this simple form of the memory effect, the equation
for x now takes the form

t
X(t) = Sin — Sout X(t) — deimx(t)z + 2RmonX2(t) + / M(t - 7)d(7)dr
0
= 8in — Sout X(t) — deimx(t)z + 2RmonX2(t) +y6(t — 1),

where we set M(t — 7) = 6(t — 7) as given by (32). In Fig. 6(c),
we compare the stochastic simulation and the approximate
deterministic solution of the self-repression circuit. Due to
the context effects, the probability for the promoter to be acti-
vated now oscillates in time. As we have shown, this effect can
only be observed if the memory effect of the environment is
considered.

V. CONCLUSION

In this article, we tackled the problem of context effects
of synthetic genetic networks that are embedded in a cellu-
lar environment. To this purpose, we exploited the projection
operator formalism to obtain an effective description of the
target network that includes the environmental network via
memory terms. In contrast to Rubin et al. who applied the
projection framework to the chemical Langevin equation, we
applied it directly to the chemical master equation to obtain
the exact Nakajima-Zwanzig equation. For linear networks, we
showed that the marginal RRE coincides with the first moment
equation corresponding to the marginal /projected CME. This
was, to the best of our knowledge, not done before.

Subsequently, we analyzed the memory terms of possi-
ble linear environments. While previous studies often assumed
specific knowledge about the environment, to meet the
requirements of synthetic biology, our goal was to avoid
assuming specific knowledge of the environmental struc-
ture. Therefore, we considered several prototypic envi-
ronments and deduced the memory kernels induced by
them. In particular, we focused on environmental conver-
sion chains of different lengths and with connections to the
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subnetwork. Such reaction chains are found in a lot of
scenarios of cellular environments. By exploiting the map-
ping between conversion chains and one-dimensional random
walks, we found analytical expressions for the corresponding
memory kernels.

Using the example of the repressilator, we applied our
results and illustrated how the contributions of the context
can deteriorate the system’s performance. By coupling one
protein species to an environmental promoter, we observed a
noteworthy change in the oscillation frequency. Additionally,
we used a simple self-repression module to demonstrate how
memory terms can lead to counterintuitive phenomena like
oscillations that cannot be detected with conventional analysis
strategies.

Chain-like environmental cellular reaction structures
occur in many cases, and most delay distributions can be
approximated with unimolecular stochastic reaction net-
works.?? Nevertheless, a reduction to only linear reactions is
always an oversimplification, even though it may be a good
approximation close to a steady state. Our results pose as a
starting point for further analysis of non-linear environmental
structures and more generic environments in the context of
synthetic biology.
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APPENDIX: MARGINAL SECOND MOMENT EQUATION
FOR LINEAR NETWORKS

Subsequently, we provide the derivation of the marginal
second-order moment equation for the subnetwork species of
a completely linear reaction network. Similarly to the deriva-
tion of the marginal mean equation in the main text, we start
to characterize the action of T' on quadratic functions. In
particular, we define

Y(x) =x ®x,

where ® denotes the Kronecker product and we are interested
in

d
F@e=(T"v),

which is the equation for the second moments of the full
network

Ly, = Sxex - X (xn), o

£ v @ (Xn(X)), + > (v @ vi)hi((Xy),  (AD)
j ]

where we used the linearity of the network in the last sum-
mand. As the resulting moment equations are closed and lin-
ear, we do not follow the operator formalism but rather apply
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the more direct approach of partly solving the joint system
explicitly to obtain a reduced set of equations for the moments
of the subnetwork. For this purpose, we express (Al) and the
first order dynamics as
A O
B ¢

Xt
X ®X);
where the first line corresponds to the mean equations deter-
mined by the block matrix A given by the RRE. We proceed to
characterize the matrices B and C.

(X)¢
(X ®X);

d

a ’ (AZ)

Therefore, we exploit linearity to write hj(x) = (Vhj)x,
where all entries of the gradients of the propensities are
zero except one that is equal to the rate constant of the
corresponding reaction. Thus, with

o= | 3[4 o P2

J
we can then write the last term of (Al) as

Z(VA ®v;)hi((X),) = B <Xs>t

j Vi) Ax) = E\ |

J <X >t

whereas for the first and second summand of (Al) captured by

C, we use the following identities. For column vectors x, v, h of
proper dimension, we have

;
®| %
V.
j

’

S
Vv

3
Vv

J

xx'h ®v = (I ®v ®h")vec(xx'),
veoxx'h=(veleh’)vec(xx’).
With this, the remaining matrix C reads

S S
In O V; V; In O
C= o L1+ L]®
; (O IM) VjE VjE (0 IM)
o (P05 ).

Inserting A, B, and C in (A2) and interpreting those com-
ponents of the differential equation involving environmental
variables as non-autonomous equations, we can then solve
them explicitly as a function of the variables involving only
subnetwork variables. By inserting these expressions into the
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remaining differential equations involving only subnetwork
variables, one obtains an autonomous integro-differential
equation of the Mori-Zwanzig type describing the first and
second order dynamics of the subnetwork. As the calcula-
tion is straightforward and the resulting equations are rather
lengthy, we omit the explicit expressions.
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