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Abstract: In recent years, significant research has been conducted on video-based human pose
estimation (HPE). While monocular two-dimensional (2D) HPE has been shown to achieve high
performance, monocular three-dimensional (3D) HPE poses a more challenging problem. However,
since human motion happens in a 3D space, 3D HPE offers a more accurate representation of the
human, granting increased usability for complex tasks like analysis of physical exercise. We propose
a method based on MediaPipe Pose, 2D HPE on stereo cameras and a fusion algorithm without prior
stereo calibration to reconstruct 3D poses, combining the advantages of high accuracy in 2D HPE
with the increased usability of 3D coordinates. We evaluate this method on a self-recorded database
focused on physical exercise to research what accuracy can be achieved and whether this accuracy is
sufficient to recognize errors in exercise performance. We find that our method achieves significantly
improved performance compared to monocular 3D HPE (median RMSE of 30.1 compared to 56.3,
p-value below 10−6) and can show that the performance is sufficient for error recognition.

Keywords: computer vision; human pose estimation; information fusion; MediaPipe Pose

1. Introduction

Physical therapy plays a vital role in treating a wide range of injuries and conditions,
including rare disorders such as hemophilia, where physiotherapy and rehabilitation are
essential for preventing disabilities and maintaining patient autonomy [1]. Ideally, ther-
apeutic exercises are performed under the guidance of medical professionals or sports
experts who can provide personalized and immediate feedback. However, many indi-
viduals lack the resources for regular supervised training sessions and instead perform
the majority of their therapeutic exercises at home. Similarly, recent years have seen a
spike in at-home sports exercises, with the COVID-19 pandemic serving as a catalyst [2].
Research indicates that home exercises can effectively support the recovery process after
injuries [3], even without expert supervision. On the other hand, improper execution,
overestimating one’s fitness level, or overexertion can lead to inefficient training or, worse,
severe injuries [4]. To address these challenges, an automated evaluation system can be
employed to assess exercise quality, reducing the reliance on human supervision. Due to
its ease of use, low price, high level of comfort, and recent advances in computer vision,
video-based human pose estimation (HPE) and motion capture (MoCap) has emerged as a
relevant tool for accessible exercise supervision [5]. Another benefit is the fact that there
are huge databases that feature videos of exercises freely available online, that can be used
when creating and training a video-based exercise evaluation system [6].
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Two-dimensional (2D) monocular HPE, i.e., the task of locating the human pose of a
single person and their distinct joints in an image plane, has been shown to achieve high
performance. Popular 2D approaches using deep learning techniques include OpenPose [7],
DeepPose [8] and MediaPipe Pose [9]. The feasibility of popular 2D approaches has been
shown both for particular medical applications like gait analysis [10] and sports activities
like yoga [11]. Conversely, three-dimensional (3D) monocular HPE, i.e., the task of locating
the human pose of a single person and their distinct joints in a 3D coordinate system, is
more challenging than its 2D counterpart, because 3D pose estimation from monocular
inputs presents an ill-posed problem, as multiple 3D predictions can correspond to the same
2D projection. Still, for obvious reasons, 3D approaches offer a more accurate representation
of the human’s pose, and have been used for more complex medical applications such as
joint load prediction [12]. One particularly popular 3D HPE library is MediaPipe Pose [13],
which is based on the BlazePose model [9] due to its higher computational efficiency and
ease of use compared to other methods, and the fact that it is open-source. While MediaPipe
Pose offers 3D pose estimations from a single camera view, the z-Axis, which is oriented
perpendicularly to the image plane, suffers from high noise. This deteriorates the overall
estimation quality, as shown in one of our previous papers [14], where we have evaluated
the accuracy of MediaPipe-based pose estimation for physical therapy.

The idea to combine the advantages of 3D pose estimation with the easier problem
of 2D pose estimation has led to research focusing on multi-view pose estimation [15–19].
Notable recent studies include the works of Wang et al. [20], who performed 3D HPE based
on a multi-scale orthogonal projection fusion network and achieved improved accuracy and
robustness, and Cai et al. [21], who developed a camera-parameter-free method fusing both
multi-view and multi-frame features in an approach called FusionFormer that achieved
state-of-the-art HPE performance. Chen et al. [22] fused their multi-view approach with
additional limb orientation data acquired through wearable inertial measurement units
(IMUs), also achieving improved performance.

In theory, two sets of 2D pose coordinates are enough to reconstruct a 3D pose utilizing
intrinsic and extrinsic camera parameters as well as direct triangulation to identify matching
epipolar lines between the two views. However, this 3D reconstruction is still highly
dependent on the quality of the 2D estimation, which is hindered by problems such as
(self-)occlusion and camera angle dependency [23]. Therefore, these approaches usually
scale in accuracy with the number of cameras. However, with the recent increase in
estimation accuracy in 2D estimators, we were able to show in a previous work [24] that
3D stereo reconstruction, i.e., finding the position of a point in space given its position
in just two images, holds up to the multi-view version. We evaluated our approach on
the Panoptic database [25] of Carnegie Mellon University (CMU) and found an optimal
angle between the two cameras used for reconstruction to be around 90°. While there
is notably less research being conducted on stereo-view HPE, there is another recent
study by Sheng et al. [26], who matched stereo-camera 2D human pose data extracted
with OpenPose through a convolutional network, attaining reliable and effective 3D HPE,
while highlighting the lower computational requirements of their approach compared to
traditional systems. To the best of our knowledge, there is no stereo-view HPE system
evaluated for accuracy in exercise assessment.

In this work, we therefore aim to verify our previous results on our own dataset
of physical therapy and compare it to MediaPipe’s monocular 3D output as well as less
sophisticated fusion methods, with and without prior filtering. We evaluate both the
absolute positional error of the landmarks as well as task-related metrics, namely selected
joint angles.

2. Methods

The goal of this work is to give a quantitative evaluation of the 3D reconstruction
based on stereo camera MediaPipe pose estimation with the intended purpose of physical
exercises. We want to evaluate both absolute positional error as well as suitability for
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the specific task of recognizing wrong exercise performance. For this, we recorded our
own dataset, consisting of nine subjects, performing squats, both in correct and incorrect
variations. The subjects were recorded by two video cameras as well as a motion capture
system. We feed the image streams of both cameras into two distinct instances of the
MediaPipe Pose framework [9] to receive two sets of 2D human pose joint estimations.
With methods of epipolar geometry and triangulation, we give an estimate for the 3D world
coordinates and compare it to the 3D coordinates of the motion capture system. The overall
approach can be seen in Figure 1.
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Figure 1. A flowchart depicting the approach to evaluate the 3D pose reconstruction through stereo
camera information fusion by performed a least squares optimization to fit the reconstructed 3D pose
data to the GT data.

2.1. Dataset

The dataset was recorded in January 2024 at Locomotion Laboratory of TU Darmstadt
in a big meeting room with uniform lighting from the ceiling. A schematic of the complete
experimental setup can be seen in Figure 2. Twelve subjects performed three different
experiments, each consisting of three trials of ten repetitions of a squat, with a 2-min break
in between each trial. In experiment one (E1), the squat was performed correctly, as defined
by the following criteria:

• Shoulder-width stance with parallel or slightly V-shaped feet.
• Heels remain on the floor throughout the exercise.
• The spine remains straight throughout the exercise.
• Both legs are loaded symmetrically, i.e., the center of the body should not deviate from

the center of the feet.

In the other experiments, the exercise was performed incorrectly. In the second
experiment (E2), the subject bends forwards excessively during the squat, which also leads
to a rounding of the back in some test subjects. In the third experiment (E3), the subject
shifts their weight heavily to the right side, which leads to asymmetry.

The subjects were recorded by the red–green–blue (RGB) cameras of two commer-
cially available smartphones (Motorola moto e40, Huawei Mate 20) in portrait format
(1080 × 1920 pixels and at 30 frames per second (fps)). Each trial is captured as an individ-
ual recording. Since our previous research [24] found the angle between two cameras for
3D pose reconstruction to be optimal when it approaches 90°, the two smartphones were
positioned frontal and lateral to the subjects. The phones were placed upon tripods at a
height of approximately 130 cm and were positioned perpendicular to the ground.

To provide a ground truth (GT) to compare our estimate of 3D joint positions to, the
subjects were also recorded by a marker-based MoCap system. The System consisted of
31 reflective markers that were taped to the subject at distinct positions and were monitored
by 11 Qualisys cameras (Oqus 300+ and 310+) recording at 100 fps. The marker positions
can be seen in Figure 3a. To position the markers as accurately as possible, the subjects
performed all experiments only wearing shorts. The trajectories of the markers captured by
the Qualisys system are assigned to their corresponding labels of the predefined marker
set. Trajectory gaps below 100 samples were interpolated using the gap-filling tool of the
MoCap data collection software version 2024.2 (Qualisys Track Manager). By combining
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the recordings from all eleven Qualisys cameras, the exact 3D position of each marker can
be triangulated with sub-millimeter precision. From these reconstructed 3D MoCap marker
positions, we constructed GT joint positions that were used as GT for this work.

CL

CF

Figure 2. Schematic of the experimental setup. The test subject is wearing markers represented
by white dots. The exact marker positions on the subject can bee seen in Figure 3a. The subject is
recorded by 11 active infrared cameras (IRCs) for the MoCap system as well as a frontal RGB camera
(CF) and lateral RGB camera (CL).

Due to problems with the MoCap system, three subjects (S1, S2 and S5) had to be ex-
cluded from the measurement, leaving a total of 81 individual recordings with 810 instances
of squats over nine subjects.

2.2. MediaPipe Pose

We present a brief overview of the BlazePose model, which is utilized by MediaPipe
and therefore serves as the baseline for our research. MediaPipe’s output consists of x-y-
z-coordinates of 33 different joint positions as well as a visibility estimate for each joint,
ranging from 0 to 1, with a higher value indicating more confidence on the estimated
joint position. The coordinate system in which these positions are given depends on the
operating mode. In landmark mode, the output coordinates are given as image coordinates,
where the x-y-plane is parallel to the image plane and the z-axis is oriented perpendicularly
away from the camera. In worldmark mode, these image coordinates are mapped onto
an internal model of a human to create an estimate for real-world coordinates in meters.
This coordinate system is centered between the hip joints and moves with the subject. We
only consider landmark mode for this work. A visualization of the landmarks is given in
Figure 3b.

As can be seen in Figure 3, the 33 joint positions output by MediaPipe and the 31 mark-
ers tracked by the MoCap system do not match up one-to-one. Therefore, we define a
common subset of 12 joints: shoulder, elbow, wrist, hip, knee, and ankle for both the left
and right side. Since the MoCap marker positions are always at the subject’s surface while
the joint positions output by MediaPipe lie within the actual joint, we have to perform
preprocessing to make the positions comparable. For example, for the left elbow, we take
the mean position between the markers A6 and A8, which we set equivalent to joint B13
from the MediaPipe output. Similarly, for the left hip, we create a fictional MoCap marker
from the x-coordinate of A12, the y-coordinate of A16 and the z-coordinate from A16 and
set it equivalent to B23 from the MediaPipe output. A full set of equivalent marker and
joint position assignments is given in Table 1.
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(a) (b)
Figure 3. General visualization of the 31 marker positions of the MoCap system (left) and the
MediaPipe Pose output (right). (a) Not all markers are visible from the back of the person. The ones
positioned at the subject’s front are color-coded in red. In this work, we only use markers A19 and
A21 relating to the right knee, A18 and A20 relating to the left knee, A27 and A29 relating to the
right ankle, A26 and A28 relating to the left ankle, A13 and A17 relating to the right hip, A12 and
A16 relating to the left hip, A5 for the right shoulder, A4 for the left shoulder, A7 and A9 relating
to the right elbow, A6 and A8 relating to the left elbow, A15 for the right wrist and A14 for the left
wrist. Explanations for the marker labels can be found in Table A1. (b) MediaPipe’s output consists
of x-y-z coordinates of 33 different landmarks. The coordinate system’s origin is in the upper left
corner of the image, with x increasing from left to right and y increasing from top to bottom. The z
axis is pointed perpendicularly away from the image plane. In this work, we only consider joints B11
to B16 for the upper body and B23 to B28 for the lower body. Explanations for the joint labels can be
found in Table A2.
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Table 1. Assignment of equivalent joint positions between the GT MoCap data and the MediaPipe
joint labels. Each MediaPipe joint is assigned to either a single MoCap marker, a combination of
MoCap markers, e.g., the mean of markers A6 and A8 for the left elbow, or a fictional marker
created from the x-coordinate of A12 and the y-coordinate and z-coordinate of A16 for the left hip.
Explanations for the marker names can be found in Table A1.

MoCap Joint Number MediaPipe Marker Number Joint Name

A4 B11 Left Shoulder

A5 B12 Right Shoulder
A6+A8

2 B13 Left Elbow
A7+A9

2 B14 Right Elbow

A14 B15 Left Wrist

A15 B16 Right Wrist

[xA12, yA16, zA16] B23 Left Hip

[xA13, yA17, zA17] B24 Right Hip
A18+A20

2 B25 Left Knee
A19+A21

2 B26 Right Knee
A26+A28

2 B27 Left Ankle
A27+A2

2 B28 Right Ankle

MediaPipe also outputs a direct estimate for joints’ depth. This z-coordinate estimation
is different than the estimation of the x- and y-coordinates, as it is not located within the
image plane. It is therefore less reliable, as 3D pose estimation from monocular inputs
presents an ill-posed problem, as multiple 3D predictions can correspond to the same 2D
projection. MediaPipe addresses this issue by fitting their 2D projection to an internal
model of a human with an assumed standard height. The best fit is selected for depth
estimation. We compare the 3D coordinates provided from MediaPipe both on the frontal
and the lateral camera to our own approach. Since the MediaPipe output does contain
noise, we compare all methods in their unfiltered version with a version where the signals
have been filtered. To find an optimal filter, a moving-average filter, a Butterworth low-pass
filter and a Savitzky–Golay filter were tried out. Their parameters were optimized through
a grid-search.

2.3. Three-Dimensional Pose Reconstruction

To give more context to the relationship between the different 2D and 3D coordinate
systems, the following section introduces definitions and fundamentals of coordinate
systems and 3D pose reconstruction. In this work, we will use homogeneous coordinates,
i.e., coordinates with an extra scaling dimension, which helps display transformations
between coordinate systems in a mathematically concise way. To reduce complexity in
notation, homogeneous coordinates will be denoted by a tilde symbol.

We define four different coordinate systems: 2D image coordinates x = [x, y], 3D
image coordinates x3D = [xz, yz, z], 3D camera coordinates pcam = [xcam, ycam, zcam] and
3D world coordinates pworld = [xworld, yworld, zworld]. In the following, we will briefly
describe how these four coordinate systems relate to each other.

The 3D camera coordinate system is defined such that the camera is positioned at the
origin of the Euclidean coordinate system, with the camera’s principal axis pointing directly
along the z-axis. The image coordinate space is related to the 3D camera coordinate system
through a projection, often approximated by the pinhole camera model. The pinhole camera
model provides a fundamental explanation of how images are created through projection.
It illustrates the geometric relationship between objects in space and their images on a flat
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image plane [27]. When applying the pinhole camera model, the projection from 3D camera
coordinates pcam into image space image coordinates x3D is given by

x3D = Kpcam, (1)

where K is referred to as the camera calibration matrix, which includes the intrinsic param-
eters of the camera. From the definition of x and x3D, it directly follows that x̃ = 1

z x3D.
The assumptions of the pinhole camera model are idealized, and in real cameras,

lenses and other optical elements are used to further focus and direct light. The curvature
and material of the lens cause light rays not to be perfectly focused on a point, leading to
both radial and tangential distortions in the image. Overall, we consider the following
distortion coefficients d:

d = (k1, k2, p1, p2, k3)

Both the camera calibration matrix and the distortion coefficients can easily be esti-
mated through sample images of a well-defined pattern, usually a chess board. We use
them to undistort the 2D image coordinates x we receive from MediaPipe and then calculate
the so-called normalized image coordinates:

x̃normalized = K−1x̃ =
1

zcam
pcam, (2)

which are independent of the camera-specific values for resolution and focal length. This
transformation has to be performed only once and the corresponding camera-specific
parameters can be ignored for the following sections. From now on, all mentions of the
image coordinates refer to the normalized image coordinates.

The relationship between the 3D world coordinate system and the 3D camera coor-
dinate system is described by the camera rotation and translation. Given a point pworld
with coordinates (xworld, yworld, zworld) in the world coordinate system, to transform this
point into the camera coordinate system, we must account for the camera’s position and
orientation in the world coordinate system. The camera is located at a specific point c in
the world coordinate system, given by the vector c = (cx, cy, cz). The orientation of the
camera in space is described by a rotation matrix R ∈ R3×3, which transforms points from
the world coordinate system into the camera coordinate system, taking into account the
orientation of the camera.

The overall transformation is then given by pcam = R(pworld − c). In homogeneous
coordinates, the translation can be expressed by a matrix multiplication, resulting in the
following equation:

p̃cam =

[
R −Rc
0 1

]
p̃world = Pworld,camp̃world, (3)

where −Rc is usually referred to as the translation vector t and Pworld,cam ∈ R4×4 is called
the projection matrix from world to camera coordinates.

If we have not one but two cameras c1 and c2, the two 3D camera coordinate systems
relate to one another through a rotation and translation, which can be expressed by

pc1 = R21pc2 + t21, (4)

where R21 ∈ R3×3 and t21 ∈ R3×1 denote the rotation and translation from camera coordi-
nate system 2 to camera coordinate system 1, respectively. The relationship between the
two coordinate systems can therefore be defined as

x̃c1E21x̃c2 = 0, (5)

where the so-called essential matrix E21 = t21 × R21, E21 ∈ R3×3 describes the Euclidean
transformation from camera coordinate system 2 to 1. This equation enables us to calculate
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the relationship between the two cameras directly from a set of image points that form
a linear system of equations. In the absence of noise, this problem is trivial and can be
solved with a minimum of seven corresponding points. When Gaussian noise is present,
the problem may be formulated as a least-squares minimization problem [28], which we
solve with the LMS (least median of squares) algorithm [29] to accommodate for outliers.
The retrieved essential matrix can be decomposed with the singular value decomposition
to obtain an estimate for R21 and t21 [30].

The resulting problem of finding an optimal estimation for 3D camera coordinates
from two corresponding sets of 2D cameras can again be formulated as a linear system of
equations, which we solve with Direct Linear Transform (DLT) and SVD [31].

Since the cameras in the experiment were positioned approximately perpendicular
to one another, the rotation from the lateral camera to the frontal camera, as given in
Equation (4), is approximately given as

Rlr =

 0 0 1
0 1 0
−1 0 0

. (6)

With that, we can also combine the coordinates output by MediaPipe’s 2D image
coordinate estimation directly by using the x-coordinate of the lateral camera as the z-
coordinate of the frontal camera and the x-coordinate of the frontal camera as the negative z-
coordinate of the lateral camera. We use this simple orthogonal combination of the two sets
of coordinates as a reference method to compare our approach of epipolar geometry against.

2.4. Evaluation Metrics

Overall, we evaluate four different methods: the main approach of 3D reconstruction
through epipolar geometry, the simple approach of 3D reconstruction through orthogonal
combination, as well as the monocular 3D MediaPipe outputs from the frontal and lateral
camera. Since each of these has its own coordinate system, we transform their coordinates
into the original GT coordinate system through a least-squares optimization to achieve
maximum comparability. The residuals of this final transformation are used as a metric of
absolute accuracy to evaluate how well this 3D estimation method works. These residuals
can be interpreted as a mean root-mean-square error (RMSE) over all joints and are com-
parable to a common metric called Mean Per Joint Position Error (MPJPE). The RMSE is
evaluated for statistical significance with a t-test and a significance level of α = 0.05. Since
we want to evaluate both the absolute accuracy of the approach as well as its suitability
for the task of error recognition in physical therapy, we also calculate the RMSE of the hip
and knee angles, which are relevant for the squat exercise. The hip angle is defined as the
3D angle spanned by the shoulder joint, hip joint and knee joint. Similarly, the knee angle
is defined as the 3D angle spanned by the hip joint, knee joint and ankle joint. Both are
calculated for the left and right side of the subjects, respectively.

3. Results and Discussion

In this section, we will present the results of the reconstruction. First, we want
to evaluate the absolute accuracy of the reconstruction, as represented by the RMSE of
the transformation of the reconstructed 3D pose data to the GT coordinate system, as
described in Section 2.4. We will compare all methods as well as investigate how well the
reconstruction worked for the different subjects and experiments. Afterwards, we will look
at the absolute error of knee and hip angles, to see if the reconstruction helps with solving
the exercise-specific task of classifying the different experiments.

In our previous work [24], we achieved a global minimum of 25.4. However, the
results are not perfectly comparable due to slight variations in the marker positions of
the ground truth. Furthermore, since the marker positions of the GT and MediaPipe joint
positions are not perfectly equivalent, we expect a minimum value for the RMSE that we
cannot surpass.
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3.1. Accuracy

Figure 4 shows the RMSE of the fitting of the reconstructed 3D pose data to the GT
coordinate system for all reconstruction methods. Each individual boxplot contains all
81 videos, independent of the specific subject and experiment. As can be seen, our proposed
method of epipolar reconstruction achieves the lowest median RMSE, with 30.9 mm and
30.1 mm for the unfiltered and filtered signal, respectively. The differences between the
epipolar method and the single-camera approaches is significant (all p-values below 10−6).
However, the difference between the epipolar method and the orthogonal method is not
significant (p-values of 0.057 and 0.120 for the unfiltered and filtered signal, respectively).
We can also see that while the low-pass filter, intended to smooth out noise, decreases the
median RMSE for all reconstruction methods, the improvement is not significant (p = 0.997).
All other filter methods had a comparable but slightly worse performance. This might
be because the MediaPipe library already uses an internal Kalman filter to smooth the
signals, making additional filtering redundant. Furthermore, some filter methods like the
moving average filter suffer from the fact that the squat movement features two sudden
shifts in direction, when the subject reaches the highest and lowest point of the movement,
leading to a visible delay in the filtered signal. Since no filter method led to a significant
improvement in performance, we only consider the unfiltered methods in the following.
The filtered epipolar method contains a single outlier video, where the RMSE reaches its
overall maximum of 292.5. For visual clarity, this outlier as well as two other outliers for
the other methods were excluded from the figure.

Figure 4. RMSE over all 81 recordings, for all reconstruction methods. The suffix _f denotes whether
the signals were filtered by a 4th-order Butterworth low-pass with cut-off frequency of 2 Hz before
fusion. All other filter methods performed worse and were therefore excluded from the graph. For
visual clarity, three singular outliers above 225 were excluded from the graph.

We can compare these results to previously mentioned related literature. The multi-
person multi-view fusion approach by Joo et al. [25] presented with the Panoptic database
achieved average errors between 39.4 mm and 62.5 mm, depending on the subject and task.
The multi-view approach of Wang et al. [20] was also evaluated on the Panoptic database,
achieving MPJPE values as low as 17.57 mm. Cai et al. [21] evaluated their approach on the
Human3.6M [32] and TotalCapture [33] datasets for different numbers of views, achieving
MPJPE values of 30.8 mm when using a stereo-view setup and 25.3 mm when using a
setup with four views. Chen et al. [22] were able to reach an MPJPE of as low as 22.7 on
the TotalCapture dataset with their approach of fusing a multi-view setup with IMU data.
The binocular approach of Sheng et al. [26] reached RMSE values between 27.2 mm and
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44.2 mm on their own dataset, depending on the action performed by the subject. In
comparison, we can see the limitation of our stereo-view approach, as it performs worse
than most multi-view approaches. Besides just having more available information, these
approaches also have the benefit of being less susceptible to an erroneous detection in a
single camera view. However, our approach outperforms the other stereo-view approaches.
Furthermore, it has to be noted that none of the datasets, on which the literature approaches
were evaluated, featured explicit footage of physical exercise.

We can also see that on our data, the single-camera approaches based on the frontal
or lateral camera perform the worst. This is to be expected since, as explained before, 3D
estimation from a single view is an ill-posed problem. We can also observe that the 3D
estimation based on the frontal camera yields worse results than the one based on the
lateral camera. One possible explanation for that is the high left–right symmetry of the
performed squats. Therefore, the self-occlusion of one half of the human pose when looking
from a lateral perspective is of lower importance than the missing depth information from
the frontal view.

Figure 5 displays the RMSE for the unfiltered epipolar reconstruction method for
each subject. Each individual boxplot contains nine videos, resulting in lower interquartile
ranges. As can be seen, most subjects achieve a low RMSE (minimum median of 25.4 mm is
achieved for subject 7), with the notable exception of subject 3, whose median RMSE value
is as high as 53.6 mm.

Figure 5. RMSE over all 81 recordings, for the unfiltered epipolar reconstruction, over the nine
included subjects. For visual clarity, one singular outlier above 200 was excluded from the graph.

Two notable things can be observed for subject 3 that can serve as explanations for the
higher RMSE. Firstly, for the first trial, the lateral camera was wrongly positioned, so that
the subject was partially outside of the cameras view. Secondly, from the lateral camera’s
view, there is a jacket on a chair directly behind the subject. The jacket’s sleeve sometimes
gets confused with the right arm, when the arm is obstructed by the body. The jacket is
not present for any other subject. This again demonstrates one major limitation of our
approach, as a noisy observation in one view deteriorates the overall estimation error, even
though the second view detected the joint correctly.

Figure 6 shows the RMSE for the unfiltered epipolar method, for all subjects over the
different experiments. Each boxplot contains 27 videos. As can be seen, no significant differ-
ence between the median values can be observed for the three experiments (E1: 29.2 mm, E2:
31.2 mm, E3: 32.0 mm, p-values of 0.270 and 0.200 between E1/E2 and E1/E3, respectively),
with E3 having a slightly increased interquartile range. Thus, we can confidently state that
the exercise quality does not have an influence on our reconstruction accuracy.
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Figure 6. RMSE for all subjects, for the unfiltered epipolar reconstruction, over experiments.

Figure 7 shows an example visualization of the unfiltered epipolar reconstruction for
a single frame taken from a recording of subject 7 during experiment 1. The RMSE over the
whole recording is calculated as 32.2 mm.

Figure 7. Visualization of the reconstruction for subject 7, experiment 1. On the left, frames from the
frontal and lateral video are shown, with the MediaPipe 2D output drawn on top. On the right, the
2D projections onto the x-y-plane and y-z-plane of the reconstructed 3D pose (top) and the GT 3D
pose (bottom) are shown.

3.2. Angle Accuracy

Figure 8a,b show the angle RMSE of the left and right knee angle, respectively. First of
all, we notice the much higher RMSE for the 3D estimation based on the frontal camera.
This is expected, since the angles are predominantly in the lateral plane. For the left side,
we can see that the epipolar reconstruction achieves the lowest median of 10.3◦, with the
3D MediaPipe data from the lateral camera being a close second at 10.7◦ and the orthogonal
reconstruction achieving slightly worse results than both. For the right side, however, the
epipolar RMSE achieves an even lower median of 7.7◦, while the lateral RMSE rises to
25.1◦. This can easily be explained by the right side of the subject being obstructed by the
left from a lateral view. Similar results can be seen when looking at the hip angle. The
differences between the epipolar and orthogonal reconstruction are not significant (p-value
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of 0.070 and 0.695 for the left and right knee, respectively). The differences between epipolar
reconstruction and the lateral single-camera approach are not significant for the left knee
(p = 0.375), but are significant for the right knee (p = 0.000). When looking at the literature,
Hancock et al. [34] have compared different goniometry methods used to measure knee
angles. They found the digital inclinometer to be the most accurate method of assessment
(6° minimum significant difference). The long arm goniometer had a minimum significant
difference of 10°, while visual estimation and short arm goniometry were found to be
equally inaccurate with 14° minimum significant difference. All of these measurements
were made with a subject laying still on an operating table. In comparison, we can see that
for our method, we can achieve comparable results with 10.7◦ even though the subject was
in motion.

(a) Angle RMSE of the left knee angle. (b) Angle RMSE of the right knee angle.

Figure 8. Angle RMSE of the left and right knee over all 81 recordings, for the different unfiltered
reconstruction methods.

Figure 9 shows the absolute angle of the left knee and hip of subject 7 for the epipolar
reconstruction and the GT. More specifically, Figure 9a shows the left knee angle of the
first three repetitions of E1 (top), E2 (middle) and E3 (bottom), while Figure 9b shows
the left for the three experiments. As can be seen, the reconstructed pose angle shows
the same trends in the signal curve as the GT. The absolute error between the two curves
is the highest when the angles reach their peak values, with the epipolar reconstruction
consistently overestimating the maximum angle. However, despite these shortcomings
of the reconstruction, we can still distinguish the three experiments from the mean peak
values obtained from the epipolar reconstruction alone. The left knee angle can be used to
separate the correct execution in E1 from the other two experiments, with a mean value
of 137.4°, which is about 20° higher than the mean peak values for E2 and E3. Similarly,
the left hip angle can be used to separate E3 from E2, with a mean peak value of 141.4°,
which is more than 10° lower than the mean peak value for E2. These differences are very
comparable to the values obtained from the GT.
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(a) (b)

Figure 9. Example angle of the left knee (left) and hip (right) for the first three repetitions of the first
sets of each experiment of subject 7. The red and green dotted lines show the mean value of the first
three peaks for the unfiltered epipolar reconstruction and GT, respectively. (a) Left knee angle for E1
(top), E2 (middle) and E3 (bottom). (b) Left hip angle for E1 (top), E2 (middle) and E3 (bottom).

4. Conclusions

In this work, we presented a method to employ MediaPipe Pose, epipolar geometry,
and direct triangulation to reconstruct human 3D pose data from a stereo camera view.
For this, we recorded a dataset featuring nine subjects performing squats. The subjects
were recorded by two perpendicular cameras as well as a motion capture system. We
used the 3D ground truth data provided by the motion capture system to analyze the
estimation accuracy of our reconstructed 3D pose and compare our approach to a simpler
fusion method as well as monocular 3D estimations. We analyzed both the residuals of a
least-squares optimization between the reconstructed 3D pose data and the ground truth,
which can be interpreted as the mean root-mean-square error over all joints and time, as
well as the angle RMSE for the task-relevant knee angle. We could show that our approach
outperforms monocular 3D estimation methods as well as straightforward orthogonal
combination and achieves an RMSE of 30.9 mm, which is in line with current state-of-the-
art approaches, while being more computationally efficient. We also showed that angles
estimated on the reconstructed 3D data are as accurate as gold standard methods, with an
RMSE of 10.7◦. We could also show that the angles are an adequate metric to distinguish
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between a correct and incorrect squat. This indicates that our method is suitable for further
usage in the analysis of physical exercises.

In a next step, we will validate our findings of a low RMSE of the reconstructed pose
data for the task of physiotherapy analysis by classifying correct and incorrect exercises.
Furthermore, we want to leverage the sensor data recorded in the dataset, namely elec-
tromyography and ground reaction force, to see if we can give an estimate for these based
on our pose data. This would enable us to not only differentiate correct and incorrect
exercises, but also make predictions about bio-mechanical processes happening during the
exercise. In future works, we plan to make these predictions more reliable, by develop-
ing more sophisticated 3D reconstruction methods making use of bio-mechanical models,
whose parameters are fitted through optimization and deconvolutional networks. This
would also help alleviate the current problem where one erroneous observation deterio-
rates the reconstruction accuracy. Furthermore, we are working on extending the dataset
both in sample size and exercise variety. Overall, this would mean an important step
towards an automated evaluation system capable of quantitative and qualitative physical
exercise evaluation.
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Appendix A

Table A1. Explanation of the MoCap marker numbers given in Figure 3a.

MoCap Joint Number Anatomical Position

A1 Left Frontal Bone

A2 Right Frontal Bone

A3 Cervical Bone Processus 7 (Vertebra prominens)

A4 Left Acromion

A5 Right Acromion

A6 Left Anterior Elbow (caput commune of extensors)

A7 Right Anterior Elbow (caput commune of extensors)

A8 Left Posterior Elbow (caput commune of flexors)

A9 Right Posterior Elbow (caput commune of flexors)

A10 Left Posterior Spina Iliaca superior

A11 Right Posterior Spina Iliaca superior

A12 Left Anterior Spina Iliaca superior

A13 Right Anterior Spina Iliaca superior

A14 Left Wrist

A15 Right Wrist

A16 Left Hip (Trochanter Major)

A17 Right Hip (Trochanter Major)

A18 Left Lateral Knee (joint line)

A19 Right Lateral Knee (joint line)

A20 Left Medial Knee (joint line)

A21 Right Medial Knee (joint line)

A22 Left Metatarsal Joint 1

A23 Right Metatarsal Joint 1

A24 Left Metatarsal Joint 5

A25 Right Metatarsal Joint 5

A26 Left Lateral Ankle (Malleolus lateralis)

A27 Right Lateral Ankle (Malleolus lateralis)

A28 Left Medial Ankle

A29 Right Medial Ankle

A30 Left Heel (Tuber calcanei)

A31 Right Heel (Tuber calcanei)
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Table A2. Explanation of the MediaPipe joint numbers given in Figure 3b.

MediaPipe Joint Number Joint Explanation

B0 Nose

B1 Left Eye (inner)

B2 Left Eye

B3 Left Eye (outer)

B4 Right Eye (inner)

B5 Right Eye

B6 Right Eye (outer)

B7 Left Ear

B8 Right Ear

B9 Mouth (left)

B10 Mouth (right)

B11 Left Shoulder

B12 Right Shoulder

B13 Left Elbow

B14 Right Elbow

B15 Left Wrist

B16 Right Wrist

B17 Left Pinky

B18 Right Pinky

B19 Left Index

B20 Right Index

B21 Left Thumb

B22 Right Thumb

B23 Left Hip

B24 Right Hip

B25 Left Knee

B26 Right Knee

B27 Left Ankle

B28 Right Ankle

B29 Left Heel

B30 Right Heel

B31 Left Foot Index

B32 Right Foot Index
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