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Kurzzusammenfassung

Kurzzusammenfassung

Automatisierte Fahrzeuge und Mobilitätsangebote werden immer mehr zum Teil des alltäglichen

Straßenverkehrs. Die Sicherheit dieser Systeme ist von außerordentlicher Bedeutung. Aus diesem

Grund nimmt dieValidierung der Sicherheit von automatisieren Fahrsystemen eine immer größere

Rolle ein. Der Nachweis der Sicherheit lässt sich erwiesenermaßen jedoch nicht mehr durch reale

Testfahrten abbilden, da die Komplexität der Systeme und der sich daraus ergebenden Szenarien

keine wirtschaftliche Realisierung ermöglichen. Aus diesem Grund werden Simulationen genutzt,

die jedoch für diesen Zweck eine erwiesene Validität benötigen.

Neben anderen Sensoren werden Radare als wesentlicher Bestandteil zur Umfelderkennung im

automatisierten Fahrzeug verwendet. Daher sind Effekte und Unsicherheiten in Radarsensorvali-

dierungsmessungen sowie derenAuswirkungen auf Radarsensormodellvalidierungen Kern dieser

Dissertation. Dazu werden Anforderungen an Kriterien zur Akzeptanz von Radarsensormodellen

aus Radarmessungen hergeleitet und anhand der im Rahmen der Dissertation weiterentwickelten

Doppelvalidierungsmetrik (DVM) quantifiziert. Diese besteht aus einem Schätzwert für den

Mittelwertfehler sowie den Abweichungen in der Streuung von unsicherheitsbehafteten Größen.

Die Metrik wird auf Radar-Datenstrukturen in verschiedenen Abstraktionen angewendet. Dabei

lassen sich Effekte durch dedizierte Messaufbauten, Objekten und Umgebungsbedingungen

abbilden.

Nachfolgend wird ein Messaufbau abgeleitet, um den Einfluss von zuvor identifizierten Effekten

und Effektkorrelationen auf den Radarquerschnitt (engl. RCS) isoliert zu betrachten. Es zeigt

sich, dass die untersuchten Fahrzeugmodelle einen großen Einfluss auf diese Größe haben und

weitere Faktoren wie die Verbauhöhe geringe Sensitivitäten im RCS zeigen. Neben dem RCS

wird eine detaillierte Analyse der Reflektionszentren der untersuchten Objekte durchgeführt.

Referenzsensoren dienen in solchen dynamischen Szenarien dazu, die gefahrenen Trajektorien

mit möglichst geringen zusätzlichen Unsicherheiten in eine Simulationsumgebung zu übertragen.

Die vorgestellten Versuche, um die Unsicherheiten der Referenzsensorik und die Übertragung in

die Simulation zu quantifizieren, werden mit Hilfe der Superreferenz qualifiziert. Die Versuche

bestätigen die Genauigkeiten der genutzten Referenzsensorik.

Abschließend wird anhand eines beispielhaften Radarmodells eine metrik-basierte Validierung

durchgeführt, indem ein Validierungsversuch mit einem realen Sensor aufgezeichnet wird.

Dabei werden unterschiedliche Abstraktionsebenen der Radardaten unter der Nutzung der DVM

analysiert. Besonders eine Kombination von Metrikergebnis mit einem Satellitenbild ermöglicht

eine objektive Ursachenanalyse.

Die neu entwickelten Methoden und Versuchsdesigns bilden eine weitere Basis zur Standard-

isierung von Validierungsversuchen für Radarsensoren und deren Modellen.
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Abstract

Abstract

Automated vehicles and mobility services are increasingly becoming part of everyday road traffic.

The safety of these systems is of paramount importance. For this reason, safety validation of

automated driving systems is playing an increasingly major role. However, it has been shown that

safety can no longer be demonstrated through real test drives, as the complexity of the systems

and the resulting scenarios do not allow for an economical implementation. For this reason,

simulations are used, but they need to be validated.

In addition to other sensors, radars are used as an essential component for environmental detec-

tion in automated vehicles. Therefore, the effects and uncertainties of radar sensor validation

measurements and their impact on the validation of radar sensor models are the focus of this thesis.

For this purpose, requirements for acceptance criteria for radar sensor models are derived from

radar measurements and quantified using the further developed double validation metric (DVM)

in the thesis. It consists of an estimate of the mean error and the variance in the dispersion of

uncertainties. The metric is applied to radar data structures in different abstraction levels. Effects

can be represented by dedicated measurement setups, objects and environmental conditions.

In the following, a measurement setup is derived to isolate the influence of previously identified

effects and effect correlations on the radar cross section (RCS). It is shown that the vehicle

models investigated have a large influence on this value and that other factors, such as the height

of the mounting position, show little sensitivity on the RCS. In addition to the RCS, a detailed

analysis of the reflection centers of the investigated objects is carried out.

Reference sensors are used in such dynamic scenarios to transfer the driven trajectories into a

simulation environment with minimal additional uncertainties. The presented experiments to

quantify the uncertainties of the reference sensors and the transfer to the simulation are qualified

with the help of the super reference. The tests confirm the accuracy of the reference sensors used.

Finally, a metrics-based validation is performed on an exemplary radar model by recording a

validation test with a real sensor. Different levels of abstraction of the radar data are analyzed

using the DVM. In particular, the combination of the metric results with a satellite image allows

an objective root cause analysis.

The newly acquired methods and test designs form a further basis for the standardization of

validation tests for radar sensors and their models.
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1 Introduction

1 Introduction

Since the 1920s, humanity has been pursuing the dream of autonomous road mobility, marked

by initial experimental vehicles.1 The required technologies have advanced over the decades.

In 2022, the application for the first commercial operating robotaxis was submitted by Waymo

and Cruise.2 In addition to Level 4 systems, according to the Society of Automotive Engineers

(SAE) definition, automation in the private and transportation sectors is on the verge of becoming

part of everyday life. Mercedes-Benz3, Honda4 and BMW5 have introduced the first Level 3

systems in privately used cars in the luxury segment. In the transportation sector, Torc Robotics,

in collaboration with Daimler Truck6, as well as Aurora with Continental7, aim for automated

highway driving. Despite these advancements, there are persistent voices expressing skepticism

toward automation in the mobility sector. Experts are increasingly cautious in their forecasts for

the widespread adoption of automated driving functions (ADFs) and autonomous vehicles at SAE

Levels 3 to 5.8,9 Negative headlines from the United States contribute to additional skepticism

regarding technological progress. In an exemplary situation from recent history a pedestrian was

dragged beneath an automated vehicle during an accident.10

In addition to various personal, societal, and technological benefits11, the safety of complex and

automated driving systems must be guaranteed based on objective measures. To establish safety,

a transition from the conventional distance-based safety validation approach to a scenario-based

approach is one possible solution12. A combination of test environments such as simulations,

laboratory test benches, proving ground tests, and real-world tests are indispensable for this

purpose. Consequently, alongside real-world experiments, valid simulations at various levels of

virtualization will be required in the future to perform scenarios in different variations. Initial

guidelines for this shift are already being defined at the regulatory and political levels, with

virtual testing based on valid simulations mandated for the approval of ADF.13,14

1 Mobileye: A Brief History of Autonomous Vehicles (2023).

2 Grant, N.; Ludlow, E.: Waymo, Chasing Cruise, Plans Fully Driverless Rides in San Francisco (2022).

3 Mercedes-Benz: Mercedes-Benz DRIVE PILOT (2023).

4 Honda Motor Europe Ltd: Honda Receives Type Designation for Level 3 (2020).

5 BMWGroup Pressclub Deutschland: Level 3 im neuen BMW 7er (2023).

6 Clavenger, S.: Torc Autonomous Truck Launch in 2027 (2023).

7 Continental Press Release: Continental and Aurora Partner Autonomous Trucking Systems (2023).

8 Society of Automotive Engineers: SAE-J3016 (2021), pp. 24–34.

9 Robson, K.: Fully Self-Driving Cars Unlikely before 2035, Experts Predict (2023).

10 Hawkins, A.: California DMV Suspends Cruise’s Robotaxi Permit ‘Effective Immediately’ (2023).

11 Peters, S. et al.: Opportunities of Automated Driving (2023).

12 Wachenfeld, W.; Winner, H.: The Release of Autonomous Vehicles (2016), p. 442.

13 UNECE: Validation Method for Automated Driving (2022), pp. 6–8.

14 Europäische Kommission: Durchführungsverordnung (EU) 2022/1426 (2022), pp. 50–59.
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1 Introduction

1.1 Motivation

In addition to navigation, trajectory planning, and actuator control, the perception of the vehicle’s

surrounding is of particular importance for ADF. Objects and obstacles must be recognized by

the vehicle, and an appropriate response to the resulting scenario must be derived. Therefore, the

sensing and creation of the system’s environmental model hold a special role within the whole

automation pipeline. Various sensor modalities exist for this task, fundamentally categorized

into active and passive sensors. Passive sensors collect signals from the environment originating

from sources outside the automated system. Examples of such sensors include cameras and

microphones. On the other hand, active sensors emit signals using a modulation technique

and, in turn, receive the signal reflected from the environment to gather information about the

surroundings. Active sensors usually include ultrasonic, light detection and ranging (lidar), and

radio detection and ranging (radar). In addition to object position, radar sensors are capable of

determining the speed of objects using the Doppler effect. Furthermore, radar sensors are known

for their robustness in adverse environmental conditions such as rain or fog15.

Synthetic sensor data have the potential to accelerate developments in sensor signal processing

and downstream algorithms, such as trajectory planning, facilitating early error identification.16

Furthermore, synthetic augmentation of real sensor data can yield performance gains for machine

learning approaches.17 Moreover, the employed models are part of the overall automated system,

necessitating a safety validation for these models as well. Consequently, it follows that these

simulation models must be valid with respect to their intended purpose. While initial validation

methods for radar sensors exist in the literature18, there are currently no standardized experiments

and evaluation procedures to provide the proof of validity. A preliminary guideline with experi-

ments addressing performance exists for lidar sensors.19 However, such a catalog is missing for

radar sensors. The challenge lies not only in defining requirements for radar simulation models

but also in conducting and evaluating corresponding validation experiments. The comparison of

synthetic and real data relies on metrics, which have to be suitable for radar and its characteristics.

For this reason, this dissertation systematically identifies gaps in the state of research that need

to be addressed for future standardization of radar validation campaigns.

15 Ryde, J.; Hillier, N.: Laser and Radar Ranging in Adverse Conditions (2009), p. 718.

16 Ahmann, M. et al.: Towards Continuous Simulation Credibility Assessment (2022), p. 171.

17 Linnhoff, C. et al.: Simulating Road Spray Effects in Automotive Lidar Sensor Models (2022), p. 10.

18 Chapter 3 contains detailed information about the validation methods.

19 DIN: DIN SAE SPEC 91471 Assessment Methodology Automotive LiDAR (2023).
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1.2 Structure

The structure of the thesis is described below. Fig. 1-1 illustrates the organization based on

chapters and their corresponding main contents. The dissertation begins with Chapter 2, where

the theoretical foundations necessary for understanding subsequent publications are summarized.

It includes definitions of key terms, an explanation of radar measurement principles and their

interfaces, and an overview of radar simulation models, concluding with the introduction of the

so-called DVM. Chapter 3 analyses the state of the art in radar validation methods and leads to

the derivation of the main research question (RQ). The topic of radar sensor model validation is

then further analyzed using a validation methodology from literature. Subsequently, four RQs

are identified in the respective sub-chapters 3.2.1 and 3.2.4. These RQ address requirements for

simulation models, experimental design for the isolation of effects, uncertainties in reference

sensor data as well as their impact on validation results, and a metric-based radar model validation.

Chapters 4 to 7 represent the content of the four peer-reviewed journal publications used in this

cumulative dissertation, as highlighted in gray in Fig. 1-1. Each publication is associated with

a RQ that is answered within the core results of the respective publication. Finally, Chapter 8

presents the findings related to the initial RQ and offers an outlook on further necessary research

activities regarding radar model validation and standardization.

Chapter 2

Fundamentals

Chapter 3

Derivation

of RQs

Chapter 4

RQ 1:

Requirements

Chapter 5

RQ 2:

Effect

isolation

Chapter 6

RQ 3:

Reference Data

Uncertainty

Chapter 7

RQ 4:

Radar Model

Validation

Chapter 8

Conclusion and

Outlook

Paper III Paper II Paper I Paper IV

Figure 1-1: The thesis structure is based on the main research question and the resulting research questions with the

associated publications highlighted in gray.
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2 Fundamentals

2 Fundamentals

In this chapter, the foundations are laid for a deeper understanding of the thesis. The first part

provides definitions for all necessary terminologies. It is followed by an overview of the general

functioning principle of automotive radar sensors and the radar data interfaces resulting from

signal processing. Explanations of the RCS properties of objects conclude the introduction to

the radar sensor. Subsequently, fundamental information about radar models is presented, with

detailed descriptions of the model used in this thesis. The chapter concludes with validation

metrics and transitions into addressing the previously raised research questions through the DVM.

2.1 Terms and Definitions

This chapter defines basic terms that will be used in the rest of the document. Initially, termi-

nologies pertaining to simulation and modeling are elucidated.

Sensor simulation: The term sensor simulation denotes the virtual replication of a sensor and

its measurement principles, incorporating selected sensor effects. The outcome of a

sensor simulation comprises one or multiple timeframes of synthetic sensor data, which

corresponds to the output data of the modeled sensor at various levels of abstraction.

The implementation of a sensor simulation takes place within a simulation environment

provided by a simulation tool.

Sensor model: A sensor model is a mathematical representation providing an approximation

of the measurement principles inherent to the sensor.20 For this purpose, the model is

executed within a simulation tool that, in addition to determining the sensor’s position in

the virtual world, defines its relative position to other objects. These objects, depending on

the type of sensor model, can be 3D entities with material properties. Wave propagation

models are then employed to simulate the interaction between object surfaces and the

electromagnetic waves. In the context of this dissertation, a rendering-based radar model

is utilized as a sensor model.

Sensor effect: A sensor effect is any condition that induces a deviation from the original in-

formation due to interaction with the surrounding of the sensor. Causes contributing to

an effect may stem from various sources, such as inherent properties of the emission

unit’s hardware (e.g., antenna design in radar). The manifestation of an effect requires

the presence of a signal, defined as a quantified form of energy influencing the sensor

20 Holder, M. F.: Synthetic Generation of Radar Sensor Data (2021), p. 7.
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2 Fundamentals

in accordance with its measurement principle. An effect can have multiple causes, and

conversely, a single cause may lead to multiple effects. Consequently, a cause-effect chain

can evoke subsequent effects within the signal or data.21 In the context of radar sensor

models, different implementation approaches are employed to replicate such effects.

Requirement: A requirement is defined as a capability or performance that a product (model)

must fulfill or possess.22 These model requirements are verified and validated within

the V-model. Specifically, sensor model requirements describe the capability to replicate

sensor effects within defined limits and abstract their impact on a model output.

Validation: Validation involves assessing how well the predictions made by a theory or model

align with real-world empirical data. This process is distinct from verification, which

entails checking whether a model’s implementation adheres to its intended specifications.

Recent suggestions for validation methods encompass straightforward comparisons of

trends in means, more sophisticated hypothesis testing, and comprehensive Bayesian

approaches.23

The focus in the following part is on metrological definitions. Thereby, reproducibility, repeata-

bility calibration and bias are defined in accordance to ISO 3534–2.24

Reproducibility: Reproducibility refers to precision under consistent conditions, where preci-

sion is the agreement of independent measurement results under agreed-upon conditions.

Reproducible conditions are defined as independent measurement results recorded by

different experimenters with different equipment based on the same method and identical

measurement setups. Reproducibility is thus the quantitative measure of result variability.

Repeatability: Repeatability refers to precision under redoable conditions, where precision

is defined as in reproducibility. Repeatability conditions are the observation conditions

recorded by the same experimenter with the same equipment based on the same method

and identical measurement setups. The measurements must be conducted within a short

time interval for the conditions to be considered repeatable. In the context of this work, the

time interval is defined as 15min, to ensure comparable environment conditions within a

measurement series.

Calibration: Calibration refers to the set of activities that determine a calibration function under

reference states from values of a measured quantity. Measurements based on the same

calibration are defined as a measurement series.

21 Linnhoff, C. et al.: Towards Sensor Simulation for Safety Validation (2021), p. 2689.

22 VDI/VDE: VDI/VDE 2206: Development of Mechatronic and Cyber-Physical Systems (2021), p. 3.

23 Ferson, S.; Oberkampf, W.: Validation of Imprecise Probability Models (2009), p. 4.

24 DIN: DIN ISO 3534-2 Statistics - Vocabulary and Symbols (2013), pp. 55–63.
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2 Fundamentals

Bias: Bias refers to the discrepancy between the expected or measured result of a test or mea-

surement and the true value. It represents the cumulative systematic error, distinguishing

it from random error. Bias may comprise one or more systematic error components, con-

tributing to the overall systematic difference from the true value. A larger bias value

indicates a more significant systematic deviation from the true value. The true value is

exclusively available within the simulation as the GT, but remains beyond the capability

of measurement systems. In the subsequent chapters, the term bias will be employed in

the context of comparing a measurement to a simulation and comparing a measurement

against another. Therefore, the true value of a measurand is excluded.

Experiment: An experiment is defined by a specific setup. In the context of sensor validation

measurement campaigns the position of the sensor and corresponding objects is essential.

The experiment consists of at least one measurement.

Measurement: Ameasurement is defined as a single time series of measurement data collected

within the same measurement setup and the corresponding reference data.

In addition to the definitions provided so far, the subsequent terms are crucial for understanding

the scope of this work.

Reference sensor: In measurements, reference sensors are used to determine the true value of

the measured quantity with an order of magnitude greater accuracy, reliability, and a higher

update rate compared to the sensor under test.25 In this work, for stationary experiments, a

Real Time Kinematic (RTK)-based global navigation satellite system (GNSS) sensor is

used, and for dynamic situations, an Automotive Dynamic Motion Analyzer (ADMA) is

employed.26

Uncertainty: Uncertainty in measurements is a characteristic associated with a measurement

result, describing the dispersion of values that can also arise from systematic influences.24

Furthermore, uncertainty can be classified into aleatory and epistemic uncertainties, as

illustrated in Fig. 2-1. Aleatory uncertainty, also known as irreducible uncertainty, stochas-

tic uncertainty, or variability, refers to the inherent variation or randomness within a given

system. This uncertainty results from spatial and temporal variations and is typically

characterized by a probability density function (PDF) or an EDF.27 Epistemic uncertainty,

also referred to as reducible uncertainty, arises from a lack of knowledge held by the

analyst involved in modeling and simulation efforts. This uncertainty is reducible through

the incorporation of knowledge, achieved through methods such as experimentation and

enhanced numerical approximations. With sufficient investment in time and resources,

it is theoretically possible to eliminate epistemic uncertainty.27 Epistemic uncertainty

25 Brahmi, M.: Bewertung der Umfeldwahrnehmung für Fahrerassistenzsysteme (2020), p. 33.

26 GeneSys: Datasheet ADMA-G-Pro+ V35 (2023).

27 Roy, C. J.; Oberkampf, W. L.: Framework for Verification, Validation, and Uncertainty (2011), p. 2132.
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2 Fundamentals

is further categorized into recognized (known) and blind (unknown) uncertainty. In the

case of recognized epistemic uncertainty, a conscious decision is made to address it in

some manner during the validation process or to disregard it for practical considerations.

Conversely, blind epistemic uncertainty arises when there is a failure to acknowledge the

incomplete nature of knowledge about the system being modeled.28

Uncertainty

Aleatory

Uncertainty

Epistemic

Uncertainty

Known

Uncertainty

Unknown

Uncertainty

Figure 2-1: Types of uncertainity which are present in data.28

2.2 Radar

Automotive radar sensors emit electromagnetic waves through transmitting antennas at various

frequency bands, with the most widely used frequency band for long-range radars currently

ranging from 76GHz to 77GHz.29a The emitted signal is typically modulated using the frequency

modulated continuous wave chirp-sequence method29b, and the modulated frequency ideally

follows a saw tooth waveform.29c The electromagnetic wave is absorbed, transmitted or reflected

by objects and surfaces. The portion of the refelcted radiation being captured by the sensor

through receiving antennas results in a measurebale signal intensity.

The transmitted power PTx and received power PRx are related according to (2-1).
29d The factor

κ takes into account the atmospheric attenuation of the signal and, together with the radial

distance r, exhibits an exponential dependence. Here, G represents the antenna gain, which

results from the antenna’s characteristics compared to an ideal isotropic radiator. σ denotes the

RCS, a measure of an object’s reflectivity properties influenced by materials, surface conditions,

geometric features, and the wavelength λ of the electromagnetic radiation itself.29e,30a The radial

distance r affects the received power with a fourth-power dependency. The shaking factor V 2
mp

considers the effects of constructive and destructive interference of radiation due to multipath

propagation.

PRx

PTx

=
10−2κrGTxGRxσλ

2

(4π)3r4
V 2
mp (2-1)

28 Schaermann, A.: Systematische Bewertung umfelderfassender Sensormodelle (2020), p. 19.

29 Winner, H.: Automotive RADAR (2016), a: p. 327; b: pp. 352–353; c: p. 352; d: p. 331; e: p. 328; f: p. 330;

g: p. 382.

30 Buddappagari, S. J. G. et al.: Monostatic RCS Measurements of a Passenger Car (2019), a: p. 998; b: p. 999.

7



2 Fundamentals

2.2.1 Radar Data Interfaces

After reception, the signal is mixed with the transmitted signal and low-pass filtered. The result

represents the baseband signal of each antenna.31a Subsequent Fourier transformations on the

baseband signal’s frequency spectrum, obtained through multiple consecutive ramps of the mixed

saw tooth waveform, identify peaks corresponding to distance, velocity and azimuth angle.32 In

recent years, so-called „4D Imaging Radar“ provide elevation measurements, thanks to additional

vertically distributed antenna elements. The „imaging“ capability is due to increased resolution

in the angle and range dimension, which is nowadays in the decimeter magnitude. In Tab. 2-1

typical state-of-the-art radar sensor parameters are listed. The elevation angle is not further

considered due to the radar sensor used, which does not measure an elevation angle.

Table 2-1: Typical state-of-the-art automotive radar sensor parameters of the different dimensions.29g,33,34

Parameter Value

Frequency f 76GHz to 77GHz

Range r 0.2m to 250m

Range resolution ∆r 0.1m to 0.4m

Velocity v −400 km/h to 280 km/h

Velocity resolution ∆v 0.1m/s

Azimuth φ ±60°

Azimuth resolution ∆φ 3°

Elevation θ ±15°

Elevation resolution ∆θ 6°

Sample frequency fS 14Hz

Fig. 2-2 illustrates the processing of the baseband signal. Initially, a FFT is performed over

each ramp of the mixed signal, resulting in the frequency spectrum of distance bins as shown

in Fig. 2-2 (a). Subsequently, a FFT is conducted over all ramps of the individual range bins,

extracting the Doppler component in the frequency spectrum for the corresponding range bin

as illustrated in Fig. 2-2 (b). Finally, a FFT is performed over all antenna elements, analyzing

the angle-specific frequency components. The result is the so-called radar cuboid, containing

the power ratio values of transmitted and received power in each cell. Here, ι denotes the index

variable across the bins in the different dimensions of range r, velocity v, and azimuth φ as

shown in Fig. 2-2 (c). The number of cells n in one of the dimensions is denoted by I . The cell

at the maximum of all dimensions is indicated in orange with power P . All teal bins of the radar

cuboid represent bins with relative velocity 0m/s and are particularly relevant for static objects.

Depending on the configuration and parameterization of the radar sensor, ambiguities may arise

31 Holder, M. F.: Synthetic Generation of Radar Sensor Data (2021), a: p. 13; b: p. 130; c: pp. 48–52; d: pp. 130–131.

32 Meteer, O.; Bekooij, M. J. G.: Low-Power Sign-Magnitude FFT Design for Radar (2021), p. 53.

33 Waldschmidt, C. et al.: Automotive Radar — From First Efforts to Future Systems (2021), p. 138.

34 Continental Engineering Services: Datasheet Continental ARS408 (2024)
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when the signal’s phase deviation exceeds π.35

Range FFT

(a) (b) (c)
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Figure 2-2: Radar data processing with FFTs in the different dimensions resulting in the radar cuboid. One cell is

marked in orange and the plane with no relatve velocity is visualized in teal.

Based on the radar cuboid data in the frequency domain, dynamic thresholding is performed

to extract detections from the frequency spectrum. These detections include, among other

information, the parameters RCS, radial distance, azimuth, elevation, and relative velocity.36

Objects are generated based on these detections, with an increasing application of data-driven

approaches in this process.37 For further understanding of the thesis, only the radar cuboid and

the detection interface are of significance.

2.2.2 Radar Cross Section

The RCS is a measure for the detection probability representing the power level. This value

is reconstructed based on internal radar sensor parameters as antenna diagram and measured

distance. As previously described, there are several influencing factors affecting the value given

in m2 or dBm2. Typically, RCS profiles are generated in radar chambers under ideal conditions

by measuring the RCS under different azimuth and elevation angles.30b,38a Additionally, setups

on proving grounds exist in the literature, utilizing either laboratory setups39 or sensors installed

in vehicles31b. The literature highlights the following main influencing factors on the RCS

characteristics of objects in the automotive context.

Elevation angle changes due to height diversity: Due to changes in elevation, different view-

ing angles are obtained concerning the elevation direction to the target and multipath

35 Holder, M. F. et al.: Modeling and Simulation of Radar Sensor Artifacts (2019), p. 2.

36 ISO: ISO 23150:2021(E) Data between Sensors and Fusion (2021), pp. 78–79.

37 Zhou, Y. et al.: Towards Deep Radar Perception for Autonomous Driving (2022), p. 20.

38 Schipper, T. et al.: RCS Measurement for Automotive Objects (2011), a: p. 684; b: pp. 684–686.

39 Toss, H.; Karlsson, K.: Radar Reflectivity Spatial Profile of 3D Surrogate Targets and Real Vehicles (2019), p. 2.
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2 Fundamentals

propagation is directly affected. As a result of the altered viewing angle, different reflec-

tivity properties emerge.40a,31c,41

Material properties: The material properties directly affect the mechanisms of reflection, trans-

mission, and absorption. Additionally, the surface characteristics of materials, aside from

the material itself, have a direct impact on the characteristics of the reflective proper-

ties.40a,42,43,44

Aspect angle: The aspect angle is delineated as the angular measure between the major axis of

the measured object, representing its heading direction, and the line of sight corresponding

to φ = 0° of the radar.45 Due to the various viewing angles in the horizontal sensor plane,

surfaces reflect differently. Measurements have shown that the RCSmaxima occur typically

on the sides (90° and 270°), the front (0°), and the rear (180°) of the vehicle.46,38b,47,31d

Object shape: The object shape influences the back scattering of radar waves.46,38a,47,48 In

theory, the RCS, which is also wavelength-dependent, can be analytically determined for

simple geometries.49a However, the wavelength is not examined in the following, given

that the frequency modulation of the used radar sensor is predefined and non-adjustable.

A commonly used target in radar experiments is a trihedral corner cube reflector (CCR),

which reflects incident radiation back into the same spatial direction. Despite their small

size, these ideal targets achieve high RCS values. A typical vehicle, measuring 4m in

length and 2m in width, exhibits a RCS ranging from 10 dBm2 to 15 dBm2, corresponding

to an edge length of a CCR of 20 cm.49b

Polarization: For completeness, the polarization of radar waves is also listed as a factor in-

fluencing the RCS characteristics of objects. It is preset in automotive production radar

sensors and lacks direct adjustability by end-users.46,38a Consequently, polarization is not

subject to further analysis within the scope of this thesis.

40 Karlsson, K. et al.: Reducing Ground Reflection during RCS Characterization (2019), a: p. 4; b: p. 2.

41 Diewald, F.: Objektklassifikation und Freiraumdetektion auf Basis bildgebender Radarsensori (2013), pp. 49–59.

42 Abadpour, S. et al.: Dielectric Material Characterization of Traffic Objects (2023).

43 Landron, O. et al.: A Comparison of Theoretical and Empirical Reflection Coefficients (1996), pp. 346–349.

44 Langen, B. et al.: Reflection and Transmission Behaviour of Building Materials at 60 GHz (1994), p. 507.

45 Wei, Y. et al.: Extended Target Recognition in Cognitive Radar Networks (2010), p. 10.

46 Buddappagari, S. J. G. et al.: RCS Measurements of Road Traffic Objects (2020), p. 4.

47 Karlsson, K. et al.: HiFi Radar Target (2018), p. 21.

48 Aust, P. et al.: Fingerprints of the Automotive Radar Scattering of Passenger Cars and Vans (2023), pp. 7–10.

49 Winner, H.: Automotive RADAR (2016), a: pp. 4; b: p. 329.
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2.3 Radar Models

In literature, various radar models with associated interfaces exist, yielding spectral radar cuboid

data, detections, or object lists. The input ranges from object lists generated through simulation

to ray tracing results in combination with a simulated sensor signal processing. Magosi et al. pro-

vide an overview of radar models50, categorizing them according to Schöner. According to

him ground-truth models encompass all objects within a defined search radius around the ego

vehicle. Geometric models include additional information, such as the sensor’s field of view,

and comprise the object list filtered by object position. Stochastic models also output an object

list but introduce uncertainties and noise processes to the generated list. Phenomenological

and physics-based models represent a complex depiction of radar wave propagation and pro-

cessing. Phenomenological models stand apart from physics-based models as they replicate

effects using mathematical and statistical approximations. In addition to object lists, detections

are implemented as outputs. Physical models simulate the physical properties of objects and

wave propagation based on absorption, reflection, and transmission. Thus, physical models

have the potential to achieve the highest degree of realism in reproducing effects, provided that

the environmental simulation in conjunction with the simulation approach is valid. However,

this increases the complexity of the model and the calculations, which enhances the computing

time.51

This thesis employs an open-source phenomenological radar signal processing model for simula-

tion purposes.52 The model is based on Holder’s Fourier tracing approach.53 Input data consist

of the output from a ray tracing algorithm, incorporating ray length, incident angle on the sensor

in azimuth and elevation directions, relative radial velocity of objects intersected by the ray with

respect to the sensor, and the associated ray power. The environment model and ray tracing

algorithm are part of IPG CarMaker as a simulation tool. The ray tracing data, transmitted

through the Open Simulation Interface54, are conveyed to the radar model. Within the model,

this data are interpreted as δ-peaks in the frequency domain. Subsequent convolution employing

window functions in each dimension in the frequency domain generates spectral radar cuboid

data. Detection results are obtained through dynamic thresholding across all dimensions of the

radar cuboid using an ordered-statistic-constant false alarm rate algorithm55.

50 Magosi, Z. F. et al.: A Survey on Modelling of Automotive Radar Sensors (2022), pp. 8–14.

51 Schöner, H.-P.: Automotive Needs and Expectations towards Driving Simulation (2018), pp. 11–16.

52 ENVITED OpenMSL Github: SL 1-1 Reflection Based Radar Object Model (2023).

53 Holder, M. F.: Synthetic Generation of Radar Sensor Data (2021), pp. 92–93.

54 ASAM e.V.: ASAM OSI® (Open Simulation Interface) - Official Documentation (2023).

55 Scharf, L. L.; Demeure, C.: Statistical Signal Processing (1991).
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2.4 Validation Metrics for Uncertainty Quantification

For the comparison of simulated and real sensor data, various metrics are employed. The literature

identifies specific criteria that must be satisfied for the mathematical formulation of a validation

metric. According to Schaermann56, seven criteria exist, derived from a fusion of Liu et al.57 and

Oberkampf and Barone58.

1. Metrics are intuitive, and their results derived from the metric should be easily interpretable,

facilitating clear understanding.

2. Metrics exhibit broad applicability, accommodating both deterministic and non- determin-

istic data.

3. Metrics are characterized by their quantitative and objective nature, precluding the inclusion

of user-defined parameters.

4. Metrics are designed without the incorporation of explicit acceptance criteria, yielding

non-Boolean output.

5. Metrics incorporate considerations of uncertainties, encompassing both epistemic and

aleatory uncertainties.

6. Metrics establish a confidence interval in relation to the quantity of measurement data.

7. Metrics adhere to the mathematical properties59a inherent to the definition of a metric,

yielding results that might be unbounded.59a

Utilizing the aforementioned criteria, Rosenberger conducts an evaluation that scrutinizes valida-

tion metrics employed in the literature. In addition to the criteria mentioned earlier, he assesses

interfaces, considered scenarios, measurement scales, and the consideration of both aleatory and

epistemic uncertainties.59b Concerning interfaces, Rosenberger exclusively takes into account

definitions outlined in ISO 23150, which standardizes data interfaces of automotive sensors, fo-

cusing on detections, features, and objects.60 Notably, the radar cuboid interface is not considered

in his evaluation.

Rosenberger’s analysis identifies the AVM as the most favorable candidate for utilization in

sensor model validation. A notable advantage lies in its inherent intuitiveness, as the metric

is expressed in the unit of the measured quantity, enhancing its utility in defining acceptance

thresholds for model validation.59c Furthermore, the AVM demonstrates the capability to account

56 Schaermann, A.: Systematische Bewertung umfelderfassender Sensormodelle (2020), pp. 20–21.

57 Liu, Y. et al.: Toward a Better Understanding of Model Validation Metrics (2011), p. 2.

58 Oberkampf, W. L.; Barone, M. F.: MeasureAgreement between Computation and Experiment (2006), pp. 11–12.

59 Rosenberger, P.: Metrics for Simulating Sensors (2022), a: p. 99; b: pp. 100–101; c: p. 102; d: pp. 105–108.

60 ISO: ISO 23150:2021(E) Data between Sensors and Fusion (2021), p. 1.
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for both epistemic and aleatory uncertainties and incorporates them into the metric result.61

Given these considerations and additional analyses by Rosenberger in comparison to other metric

candidates, such as Kolmogorov-Smirnov divergence, Jensen-Shannon distance/divergence and

Kolmogorov-Smirnov tests59d, this work directs its focus on the AVM.

2.4.1 Area Validation Metric

The AVM is based on calculating the area between two EDFs. These EDFs, denoted as F and

F̃ for the distributions under comparison, may generate areas above F (referred to as d−) as

well as below F (referred to as d+) due to the EDFs respective shapes. Thus, for F representing

a quantity ζ and F̃ representing an identical quantity from another measurement series or a

corresponding simulated value, the mathematical relationship is given by

dAVM(F, F̃ ) =

∫︂ ∞

−∞
|F (ζ)− F̃ (ζ)|dζ. (2-2)

Taking aleatory and epistemic uncertainties in the data into account, probability boxes F and˜︁F emerge. This is due to the presence of multiple EDFs of measurement or simulation data.

Probability boxes are obtained based on the maximum and minimum values at each measurand

value of the multiple EDFs. Thus, the probability box is composed of the two enveloping EDFs.62

This leads to the following formula based on Ferson and Oberkampf63

dAVM(F , ˜︁F) = d− + d+ . (2-3)

The mathematical concept is visualized in the following. Fig. 2-3 (a) represents two distinct

datasets in black and teal, where variations in brightness indicate different EDFs within the two

datasets. In the context of validation, these could be measurements or simulation results. In Fig. 2-

3 (b), the probability boxes of the EDFs from Fig. 2-3 (a) are depicted. The areas corresponding

to d+ and d−, necessary for the AVM calculation, are marked with different colors.

According to Voyles and Roy, it is also possible to calculate the bias dbias of the probability

boxes.64 For this purpose, the two areas are subtracted from each other to equalize the shapes of

the functions. Thus, the expression for dbias is given by

dbias = d− − d+ . (2-4)

61 Ferson, S.; Oberkampf, W.: Validation of Imprecise Probability Models (2009), p. 13.

62 Williamson, R. C.; Downs, T.: Probabilistic Arithmetic (1990), pp. 107–113.

63 Ferson, S.; Oberkampf, W.: Validation of Imprecise Probability Models (2009), p. 13.

64 Voyles, I. T.; Roy, C. J.: Model Validation in the Presence of Uncertainty (2014), p. 4.
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(a) Various EDFs due to e.g. multiple repetitions of a

data set 1 F and a data set 2 ˜︁F . The color brightness
denotes the different repetitions.
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(b) Probability boxes of data set 1 F and data set 2 ˜︁F
based on the EDFs in Fig. 2-3 (a). The areas d+ and

d− of the AVM between the probability boxes are

hatched in different colors.

Figure 2-3: Exemplary EDFs and probability boxes for two datasets, along with the corresponding areas d+ and d−

for the calculation of the AVM.

In the context of radar model validation, multiple measurements give rise to a probability box

for the measured data, and due to uncertainties with their variations in simulation, a probability

box is generated for the simulated data. Therefore, the AVM serves as a validation metric that

accommodates the specific requirements of the intended application in this work.

2.4.2 Double Validation Metric

The AVM defined in (2.4.1) exhibits no sensitivity to deviations in the data scatter, provided

there is no overlap between the EDFs or probability boxes.65a,66 This limitation is addressed by

extending the conventional definition of dbias to introduce the so-called corrected AVM. In this

context, the AVM is computed after adjusting the EDF ˜︁F or probability box ˜︁F by dbias, resulting

in ˜︁Fc or ˜︁F c. In mathematical terms, this is expressed as
65b,65c

˜︁F c(ζ) = F(ζ − dbias(F , ˜︁F)) = ˜︁F(ζ − d− + d+) , (2-5)

dCAVM(F , ˜︁F) = dAVM(F , ˜︁F c) = d−c + d+c . (2-6)

The two values, dbias for the bias and dCAVM for the scatter deviation, ultimately yield the

two-dimensional DVM.65c

dDVM(F , ˜︁F) =
(︂
dbias(F , ˜︁F), dCAVM(F , ˜︁F)

)︂
. (2-7)

65 Rosenberger, P.: Metrics for Simulating Sensors (2022), a: p. 111; b: p. 117; c: p. 119.

66 Oberkampf, W. L.; Ferson, S.: Validation Under Aleatory and Epistemic Uncertainty (2007), p. 22.
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The mathematical procedure is illustrated in Fig. 2-4 for two EDFs. Subsequently, ˜︁F is shifted

by dbias, resulting in ˜︁Fc with d
+
c and d−c .
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Figure 2-4: Exemplary calculation of the DVM based on two constructed EDFs. On the left, the original

distributions are depicted, and on the right, the EDF corrected by dbias.

The current definition of the DVM is based on probability boxes and the resulting values for

dbias and dCAVM. However, there are conceivable scenarios that could lead to a misinterpretable

metric result of the current DVM definition with probability boxes. Using the method of manu-

factured universes67, various EDFs are conceived, illustrating the problem arising from using

probability boxes. In Fig. 2-5, these scenarios are depicted and categorized into four edge cases.

For situation (a), the EDFs for two datasets are shown. Here, one probability box is significantly

larger than the other. Two EDFs from different measurements coincide directly, thus having

the same distribution function. The probability boxes do not overlap at all, but the DVM yields

values of d+ and d− as 0, resulting in dbias and dCAVM also being 0. In Fig. 2-5 (b), two datasets

are visualized, where the EDF of ˜︁F shows a concentration at the right edge of the probability box.

This is not covered by the metric, and only the shaded area is considered. Therefore, identification

of underlying distributions within the probability box based on the DVM is not possible. The

distributions in (c) exhibit the same issue as in (b), but here, the other dataset is affected by the

concentration. The metric also fails to capture this case. In Fig. 2-5 (d), a different shape of

EDFs is present within the probability box. However, due to the two EDFs at the edge of the

probability box, this is not reflected in the metric. From these four situations, the necessity arises

to adapt the probability boxes to enable a meaningful and possible evaluation of the underlying

distribution functions. The showed edge cases are addressed in Chapter 4.

67 Stripling, H. F. et al.: The Method of Manufactured Universes (2011), p. 1243.
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Figure 2-5: Edge cases regarding the DVM in combination with probability boxes, which are misleading in the two

components of the metric.68

68 Elster, L. et al.: Introducing the DVM for Radar Sensor Models (2024), pp. 8–9.
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3 Derivation of Research Questions

To derive the RQs, an evaluation of the state of research regarding methods for radar model vali-

dation in the automotive context is conducted. Various validation methods for active perception

sensor models, including radar models, are available.

3.1 Validation Strategies for Radar Sensor Models

In his methodology for validating sensor models, Schaermann outlines a four-stage process. In

the first step, real sensor data is recorded and transformed into an environment model for the

ADF through fusion algorithms. This model then stimulates the driving function, influencing

the vehicle dynamics through the actuators. In addition to comparing synthetic and measured

sensor data directly, a comparison of subsequent processing stages is envisaged. Furthermore,

necessary quantities for transferring validation experiments into the simulation are determined

using reference sensors. In the simulation step, the trajectories recorded in the previous step are

synthesized. Schaermann emphasizes the importance of the similarity of the real and simulated

environmental simulation models. Subsequently, in the validation step, an assessment of the

similarity between the captured real and synthetic value pairs is carried out. The quantitative

evaluation is based on metrics, which are mathematical operators. Finally, based on the metric

results and the comparison with the requirements, a decision regarding the validity is made.

In the negative case, additional measurement data should be recorded, or the model should be

re-parameterized. If the positive case occurs, and the requirements match the metric results, the

model can be deployed.69a

Holder proposes a five-stage methodology for radar model validation70, with the selection of

artifacts to be implemented based on expert knowledge. In the first step, artifact allocation within

the radar processing pipeline is defined, stating that the artifact or effect must be measurable in

signal processing. Subsequently, artifacts are qualified, requiring the artifact to be distinguishable

based on measurements of noise processes, with assignments to specific driving maneuvers

or scenarios. The significance for the operational design domain (ODD) is also emphasized.

A falsification experiment is defined in the third step to verify the theoretical model behind

the artifact. The fourth step involves quantification through measurement databases, isolating

artifacts to prevent a false assumption of the superposition of the effects of multiple artifacts. In

the next step, a description model is synthesized, utilizing the simplest theory until validity is not

69 Schaermann, A.: Systematische Bewertung umfelderfassender Sensormodelle (2020), a: pp. 31–34; b: p. 33.

70 Holder, M. F.: Synthetic Generation of Radar Sensor Data (2021), pp. 39–40.
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achieved anymore. Finally, falsification experiments are derived by comparing measurement

and synthetic sensor data.

Rosenberger et al.71a expand and adapt the existing validation methodology proposed byViehof72a.

This method involves an objective quality assessment of simulation models through statisti-

cal validation, applied within the context of vehicle dynamics simulation validation. Rosen-

berger et al. emphasize the crucial role of using appropriate reference data and ensuring trajectory

reproducibility in developing an objective and widely accepted validation methodology. Their

statistical approach entails identifying phenomena in sensor models for sample validity. In this

context, sample validity refers to the constraint that only a specific number of experiments can

be conducted, thereby limiting the comprehensive coverage of the simulation model’s entire

parameter space. Through sensitivity analysis, relevant configurations and parameters are deter-

mined, enabling the identification of likely scenarios for model falsification. Acknowledging

the impracticality of comprehensive validation, the method focuses on essential scenarios. The

process concludes with quantifying actual accuracies, asserting that synthetic data is only valid

if the simulation reproduces a similar or the same PDF73a. The authors highlight the emerging

nature of formulating model requirements and metrics in sensor data generation due to limited

prior experience in the field.75d Rosenberger provides a detailed analysis of different metrics

in his dissertation addressing this challenge.73b Furthermore, validation is performed for lidar

sensors on the detection or point cloud level using the described methodology.73c The focus of

the validation assessment is on distance uncertainty due to the reference sensor and its transfer

into simulation as well as the impact on the metric result.73d

Ngo outlines a process involving measurements and simulations, where the two sets of data

are directly compared using multiple metrics.74a Furthermore, post-processing algorithms are

stimulated with both measurement and synthetic data, and the output of these algorithms is

analyzed using specific metrics.74b The combination of these metrics results in the simulation-

to-reality gap, defined as a measure of the deviation of the simulation compared to the real

measurement.74c

Eder follows a similar process to Ngo, although the metrics for evaluation differ. The evaluation

is based on statistical hypothesis testing with the Kolmogorov-Smirnov test.75a The research

primarily focuses on various modeling approaches for radar sensors.75b For validation, a scenario

characterized by a high number of repetitions is employed.75c The overarching validation process

plays a less significant role.

71 Rosenberger, P. et al.: Towards Generally Accepted Validation Methodology (2019), a: pp. 9–11; b: p. 10.

72 Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018), a: p. 47; b: pp. 52–54; c: p. 54;

d: p. 60; e: p. 68; f: p. 77; g: p. 82; h: p. 99.

73 Rosenberger, P.: Metrics for Simulating Sensors (2022), a: p. 46; b: p. 101; c: pp. 127–128, 134–137; d: p. 124.

74 Ngo, A.: Methodology for Validation of Radar Simulation (2023), a: p. 25; b: p. 27; c: pp. 31–33.

75 Eder, T.: Simulation of Automotive Radar (2021), a: pp. 79–82; b: pp. 33–75; c: p. 83; d: p. 27.
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Magosi et al. also compare real and synthetic radar data, summarizing various scenarios. For the

assessment of validity, they employ probability density functions with associated metrics.76

In all three mentioned publications by Ngo, Eder, and Magosi et al., no detailed considerations

regarding uncertainties and how they impact the individual components of the validation chain is

considered. Furthermore, the methodology lacks a process for defining requirements for a radar

simulation model and obtaining validation scenarios.

In the global context, a research project exists on the Japanese side, which also addresses the

modeling and validation of radar sensors.77 In the Driving Intelligence Validation Platform

project, rendering-based radar models are employed and equipped with standardized interfaces

to be compatible with various simulation tools. However, according to the author’s knowledge,

aside from smaller presentations, there are no written publications demonstrating exact validation

methods, measurements and metrics.

On the American side, NVIDIA has released an initial validation attempt with their simulation

platform DRIVE Sim.78 They validate their rendering-based radar simulation models using

highly idealized objects in the form of a CCR and apply the comparison of mean and standard

deviation as a metric. The focus of the experimental design is particularly on effect isolation

to minimize the complexity of effect superposition. However, the described approach neglects

uncertainties of the reference sensor and their impact on the validation result. In addition, the

comparison of mean and standard deviation does not take into account the underlying distribution

in the real and synthetic data.

Each of the authors and projects possesses an individualized model, distinct sensors, and a

unique dataset acquired through measurements and scenarios, none of which are shared by others.

Consequently, a lack of comparability of all approaches arises. In the current state of the art of

radar validation methodologies, aleatory and epistemic uncertainties are inadequately represented,

along with their impacts on both simulation and radar validation measurements. Particularly, the

quality and precision of reference data require consideration for a validation campaign, as these

data constitute the input to the model alongside the environmental model. From the examination

of the existing validation methods concerning radar sensors, the main RQ arises:

How can effects and uncertainties in radar validation measurements, along with their associated

impacts on radar sensor model validation, be identified and quantified?

76 Magosi, Z. F. et al.: Evaluation of Physical Radar Perception Sensor Models (2022).

77 DIVP Project: Driving Intelligence Validation Platform Homepage (2024).

78 Lehnen, M. et al.: Validating NVIDIADRIVE Sim Radar Models (2023).
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3.2 Validation Methodology by Viehof & Rosenberger

The validation process according to Viehof and Rosenberger encompasses all necessary steps

from requirement definition to a statement of validity, considering uncertainties. This criterion

distinguishes the validation process from others, prompting a more detailed examination of this

process in the context of the main RQ. Therefore, the following RQs are derived based on the

validation process, forming the core of this cumulative dissertation.

Fig. 3-1 illustrates the six-staged validation process by Viehof, represented with corresponding

labels on the left side. On the right side, the substeps of each process stage are visualized. The

shaded blue fields represent the modifications introduced by Rosenberger et al. and the adaptation

for sensor models and their validation71b aligned with the V-model79.

Figure 3-1: Validation process according to Viehof72a and the adaptations in blue by Rosenberger et al.71b, arising

from the application to sensor models.

In the first stage, requirements are derived through a methodical approach. In addition to

requirements for the simulation model, supplementary requirements such as real-time capability

need to be defined. Furthermore, the ODD and the associated application scope of the simulation

model must be known. For instance, if an ADF is only deployed under dry conditions, then

effects caused by rain need not be further considered in the simulation model and the environment.

The requirements must be quantifiable for validation purposes.72b

In stage 2, the validation study is designed. Therefore, configuration samples are selected, test

79 VDI/VDE: VDI/VDE 2206: Development of Mechatronic and Cyber-Physical Systems (2021), pp. 22, 38.
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applications are defined, and a metric is determined that allows a requirements based validity

analysis. The selection of the configuration sample involves identifying simulation parameters

that react particularly sensitively to changes at a specific operating point. This step is exclusively

simulated through a sensitivity analysis, posing open questions regarding the discretization of

the parameter space.72c In defining the test application, real-world experiments are introduced.

Laboratory or test bench experiments serve as a substitute or complement to real experiments for

validation purposes.72d The definition of metric validity criteria pertains to the output variables

of the simulation model and subsystem interfaces. In the case of a radar model, these are the

detection interface and the radar cuboid as a subsystem interface. Particularly concerning the

metrics to be used, there is no consensus within the sensor model validation community.73b,69b

In stage 3, the experiment repetitions and the coverage of the parameter space are optimized.

This is done using methods such as the design of experiments.72e Additionally, the measurement

equipment with corresponding reference sensors is prepared, and data processing is arranged to

ensure that measurement and simulation data are in an identical format.72f

Subsequently, in stage 4, data acquisition and simulation are carried out. An intermediate step is

introduced that verifies the validity of the reference data. This involves checking the compliance

with the required accuracy specifications from the requirement definition for the reference sensors.

The exact details in the context of trajectory recording are not methodically elaborated.

In stage 5, it is ultimately decided based on three levels of validation whether an iteration

in the execution of the experiment or simulation is necessary through an adaptation of the

modeling approach or the parameterization of the model. In data validation, potential formal and

systematic errors are identified72g. Furthermore, this point aims at the transfer of real data into

the simulation.71b The synthesizing of trajectories into a simulation tool and their re-simulation

are widely used in sensor model validation as an established procedure.80 However, a check of

the simulated trajectory is necessary since some simulation tools use the trajectory as a set point,

thereby stimulating their trajectory control. This results in a deviation between measured and

simulated trajectories. This uncertainty must be minimized in the validation process. Validation

level 2 refers to scenario validation, comparing the sensitivity of the real scenario to a specific

parameter compared to the sensitivity analysis from stage 2.71b Subsequently, the evaluation of

the validation study is performed in validation level 3 based on the metrics defined in stage 2.

In stage 6, all results from various validation scenarios and simulations are collected and structured.

The final validation report is compiled with the aid of a so-called validity assessment card. In

addition to an absolute comparison of real and synthetic data, a relative comparison is also

conducted. This is achieved by comparing the relative deviation between two real experiments

with the relative deviation of the virtualized experiments.72h

The described process for radar sensor model validation reveals stages that undergo a more

in-depth analysis in the following. These include stages 1, 2, 4, and 5. Detailed explanations

with justifications follow in chapters 3.2.1 to 3.2.4, resulting in the RQs that are analyzed.

80 Holder, M. F.: Synthetic Generation of Radar Sensor Data (2021), p. 130.
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3.2.1 Requirements for Radar Sensor Models

At the outset of model development, requirements need to be defined. One potential process

for definition is the Credible Modeling Process from the publicly funded SET Level research

project. This involves an initial analysis of the modeling tasks and their objectives, including the

definition of „key performance indicators and other criteria“. However, the description lacks a

precise specification on how to determine these criteria. In the subsequent phase of requirement

definition, relevant assumptions and model requirements are established.81 A more detailed

elaboration is provided by Ahmann et al. In the implementation phase and the necessary formal

validation, a quantitative determination of simulation validity is to be performed, considering

uncertainties.82a However, the selection of specific metrics is left unaddressed.82b

Linnhoff et al. propose a process for requirement definition resembling a fault tree analysis

structure based on sensor effects and their interactions.83 This involves an assessment of resulting

chains based on the frequency of occurrence in the ODD and the relevance for the system under

test.84 Rosenberger applies this approach exemplarily.85 However, defining values and boundaries

for each effect, which are allowed to exist, poses a challenge for making the requirements

quantifiable and assessable.

Aust et al. address this issue by conducting measurements and deriving quantifiable boundaries86,

following a similar approach to Viehof in the context of vehicle dynamics simulation87. They

employ two metrics for comparing point clouds resulting in significant fluctuations in the metric.

Therefore, the reliability of these metrics for requirement definition is questionable. To address

this, they analyze histogram distributions and the relative probability distributions of detection

positions using two other metrics. This allows for the determination of metric boundaries, which

are then utilized as requirements, along with the mean value. However, interpreting metric results

remains challenging, as a relationship is defined where the optimal value corresponds to 0 and

the worst value to 1. The bin discretization of histograms in Cartesian coordinates relies hereby

on expert knowledge and neglects the polar or spherical nature of radar cuboid bins. This leads

to RQ 1:

How can radar measurements be used to establish quantifiable requirements for a radar sensor

model?

81 Heinkel, H.-M.; Steinkirchner, K.: Credible Simulation Process Framework (2023).

82 Ahmann, M. et al.: Towards Continuous Simulation Credibility Assessment (2022), a: p. 176; b: p. 180.

83 Linnhoff, C. et al.: PerCollECT - LidarLimbs (2022).

84 Linnhoff, C. et al.: Towards Sensor Simulation for Safety Validation (2021), pp. 4–5.

85 Rosenberger, P.: Metrics for Simulating Sensors (2022), pp. 148–165.

86 Aust, P. et al.: Numerical Synthesis of Radar Target Detections (2023), pp. 27–29.

87 Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018), p. 51.
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3.2.2 Effect Isolation and Separation

After identifying relevant effects and defining corresponding requirements for the considered

interfaces, validation experiments are required. Therefore, it is crucial to consider various

effects and their causes. For the experimental design, it is essential that effects are measured

under repeatable or reproducible conditions with as much isolation as possible. The ideal effect

isolation occurs under laboratory conditions, where, for example, multipath propagation for radar

is suppressed using radiation-absorbent materials in radar chambers. This test environment is

suitable for examining individual effects and using them for validation. However, the behavior of

sensors deviates in real-world scenarios. Therefore, in addition to these laboratory measurements,

real-world experiments are also necessary to identify and demonstrate correlations or causality

between effects. For this reason, experiments on test sites are required alongside laboratory

experiments.

Such attempts, where effect isolation is the primary focus, are presented by NVIDIA.88 They

utilize three different scenarios to validate the effects of sensor field of view, separation capability,

and Doppler velocity. For this purpose, CCRs are employed as objects, and the driven trajectories

are transferred into the simulation using corresponding reference sensor data. However, there is

a lack of additional assessment of the returned power of the objects.

Holder follows the approach of effect-based validation in his dissertation, designing falsification

experiments for multipath propagation effects with object occlusion89a, interference caused by

multipath propagation89b, intrinsic sensor uncertainties, noise, clutter89c, and extrinsic uncer-

tainties89d. One of the significant parameters in radar at the detection interface, comparable

to a point cloud, is the previously described RCS.89e Thereby, the RCS is a measure of the

reflection intensity compensated by range and the antenna diagram. The RCS is particularly

sensitive to changes in angle as mentioned in Chapter 2.2.2. Holder uses a slalom setup for

the falsification of RCS properties, employing only one object for validating the radar models

used. The experimental setup is challenging, mainly due to the low reproducibility of radar

experiments. Another issue is the difficulty in isolating the effects from various influencing

factors related to RCS. Especially, analyzing correlations of various effects is necessary. To

illustrate the complexity of effect isolation and still consider correlations and causality due to the

complexity of real environmental conditions, RQ 2 arises:

How is it possible to isolate effects related to the RCS of road vehicles and make them measurable

under real world conditions?

88 Lehnen, M. et al.: Validating NVIDIADRIVE Sim Radar Models (2023).

89 Holder, M. F.: Synthetic Generation of Radar Sensor Data (2021), a: pp. 43–47, 51–60; b: pp. 48–50, 61–69;

c: pp. 70–75; d: pp. 76–78; e: pp. 145–147.
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3.2.3 Re-Simulation of Reference Data

Reference data from, for example, RTK-based GNSS systems are fundamental for transferring

driven trajectories from reality to simulation. Thus, the simulation and, consequently, the

validation result depend directly on the accuracy of this transformation. Rosenberger et al.90

explain that re-simulation of trajectories is meaningful only if the accuracy of the reference data

in time and space meets the requirements.91a Especially in urban environments, fluctuations

in reference data accuracy can be expected due to building occlusions and therefore multipath

propagation of the satellite signals.92 For these reasons, a qualification of reference data accuracy

is necessary beforehand, as outlined in the validation methodology in Fig. 3-1.

Furthermore, not only aleatory uncertainties of the reference sensor system need to be considered

but also the transfer of the trajectories into simulation. Deviations due to temporal effects, such

as interpolation or extrapolation of timestamps, and the implementation in the simulation tool,

including how a trajectory is recreated, are sources of epistemic uncertainties.

Roth et al. use the Virtual Test Drive software by Vires and transform the corresponding reference

data into a format readable by the simulation tool. The recreation of trajectories within the

accuracy of the reference sensor is ensured based on the imported data.93 However, Roth et al. do

not provide experimental evidence to support their claim. Schaermann also emphasizes the need

for an exact reproduction of the real trajectory to avoid introducing additional uncertainties,

but there is no evidence provided for the precise translation into the simulation.94a Similarly,

Magosi et al. adapt the CarMaker simulation tool to eliminate epistemic uncertainties, but no

evidence is presented to support this statement.95

Particularly, aleatory uncertainties from reference data, such as RTK-based GNSS systems, are

not considered in existing validation methods. There is a lack of experiments and procedures to

capture the aleatory uncertainties of reference measurement systems. Additionally, a quantitative

determination of epistemic uncertainties from the simulation tool is required. This leads to the

third research question regarding uncertainties in radar model validation, RQ 3:

How are radar model validation campaigns affected by the accuracy of the reference sensor

system?

90 Rosenberger, P. et al.: Towards Generally Accepted Validation Methodology (2019), pp. 7–8.

91 Schaermann, A.: Systematische Bewertung umfelderfassender Sensormodelle (2020), a: p. 44; b: pp. 33.

92 Gottschalg, G.: Data Fusion Architecture for State Estimation (2022), p.103.

93 Roth, E. et al.: Analysis and Validation of Perception Sensor Models (2011), p. 5.

94 Rosenberger, P.: Metrics for Simulating Sensors (2022), a: p. 32; b: p. 68–72; c: pp. 120–128.

95 Magosi, Z. F. et al.: Evaluation of Physical Radar Perception Sensor Models (2022), p. 8.
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3.2.4 Validation with Uncertainties of Radar Sensor Models

After identifying and quantifying sources of uncertainties in reference sensors and the funda-

mental uncertainties of validation measurements, the validation process involves comparing real

radar data with synthetic radar data. The quantitative comparison of data is carried out using

metrics. Metrics in the automotive sensor validation context are categorized into hypothesis

tests, confidence intervals, comparison of PDF, and correlation measurements. Hypothesis tests

provide information on whether a hypothesis is accepted or rejected, where the determination

of the acceptance level is subjective. Confidence intervals estimate the difference between

the experiment and the model. The comparison of PDF is based on the similarity analysis of

probability distributions. Correlation measurements provide a measure of the similarity of several

statistical quantities.91b Generally, the application of which metric is used in different situations

is not yet standardized. Rosenberger provides an overview of metrics in all named categories.94b

The metric must additionally be capable of incorporating uncertainties from reference sensors

into the validation process, as the GT position of sensors or objects is unknown. Therefore, it is

necessary to transfer uncertainties into the simulation by simulating both the measured value and

the value affected by uncertainties. As an example, consider the object’s x-position relative to

the sensor, determined with a reference sensor to be 10m. The uncertainty of the measurement

system is 0.02m. Consequently, multiple simulations are conducted with the measured value

and values between 9.98m and 10.02m. This procedure is already established for the distance

uncertainty only in lidar.94c

In addition to the uncertainties of the reference sensor, the measurement uncertainties of the radar

sensor itself must also be taken into account in the validation result. A sensor with a very high

reproducibility of the validation measurements requires completely different properties of the

simulation model than a sensor with very large aleatory uncertainties. For this reason, a series of

measurements consisting of several measurements is required for a plausible validation.

For the reasons mentioned above the extension of the described procedure to other uncertainty-

affected quantities and the radar sensor with its interfaces is lacking. The final research question,

RQ 4, is therefore:

How can reference sensor and radar sensor measurement uncertainties be taken into account in

a metric-based radar model validation across various interfaces?
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Prior research emphasizes methodologies and defining active perception sensor model require-

ments based on effects as described in Chap. 3.2.1. However, a quantifiable measure is missing

to define acceptance criteria for radar sensor model requirements on different interfaces in the

radar signal processing. Also, the influence of different, yet mutually independent effects and the

uncertainties due to the measurement setup itself are still an open point in the context of radar

sensor model validation. From the mentioned points RQ 1 arises addressing stage 1 in the overall

methodology in Fig. 3-1:

How can radar measurements be used to establish quantifiable requirements for a radar simula-

tion model?

Especially in the context of validation measurements, it is essential to ensure that measurements

at different locations under comparable conditions yield acceptable deviations, and resulting

maximal allowable deviations need to be defined. The deviations resulting from overlapping

influences constitute the central focus of this chapter and the research findings presented herein.

Therefore, in a first step, a methodology is derived to evaluate the various interfaces using the

DVM. The content is based on paper III.96a

4.1 Methodology

Amaximum reachable simulation accuracy is derivable based on real world measurements.97

Therefore, along with a carefully chosen metric, effects and uncertainties can be determined from

the measurement data. Hence, the necessity arises for a suitable metric that is particularly easy

to interpret to associate potential deviations to the corresponding underlying effects. From the

description in Sec. 2.4.2, it is evident that the DVM can be utilized as a metric to statistically

analyze various measurement quantities. However, a method is lacking to apply it to the respective

interfaces of radar processing considering the edge cases in Fig. 2-5.

Fig. 4-1 illustrates the methodology used for evaluating radar cuboid and detection data. The

recorded measurement data is processed and filtered according to the position of the target object.

Subsequently, the number of data points in the resulting measurement set n is compared for

different measurements. If a deviation under 10% is present, the EDF is formed for all sets of

comparable measurement data. This value should be checked for future work with hypothesis

96 Elster, L. et al.: Making Automotive Radar Sensor Validation Measurements Comparable (2023), a: -; b: p. 4;

c: p. 11; d: p. 20–21.

97 Roache, P. J.: Validation in Fluid Dynamics and Related Fields (2019), p. 665.
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testing to ensure the comparability between the data. For each EDF combination, dbias is then

calculated, and the EDF is shifted by this value. Subsequently, dCAVM is computed, and both

values are presented as box plots for all comparisons for evaluation. This approach differs from

Rosenberger in that the p-boxes are resolved, and the distribution of deviations in the EDFs are

examined. This enables dissolving the edge cases previously defined.

Measurement

data

collection

Pre-processing

and position-

based filtering

Comparison

number of

data points

Calculate all

F and ˜︁F
Calculate dbias
for all F and ˜︁F
combinations

Calculate dCAVM

for all F and ˜︁Fc

combinations

Boxplot

analysis all

dbias and dCAVM

Figure 4-1: Methodology for the comparison of different experiment setups, measurements and input data on radar

cuboid as well as detection level.96b

To quantify measurement offset dbias as well as scattering deviations dCAVM, multiple static

measurements without and with objects are conducted. The focus in the following is on analyzing

the dismantling and setup of the measurement configuration, as well as the influence of rain as

an exemplary environment condition on radar measurements. In the first scenario, no objects

are present in the measurements, and in the second setup, a Volvo XC90 serves as an exemplary

vehicle on the August-Euler Airfield proving ground in Griesheim. The evaluation is performed

for the radar cuboid and for each individual cell of the radar cuboid. Details on the experimental

setups and their evaluations, including the detection level, can be found in paper III.

4.2 Disassembly and Assembly Measurement Setup

In this section, the impacts on validation measurements arising from the disassembly and rebuild

up of the measurement setup are analyzed. Eight experiments without any specific object in the

sensor’s field of view are conducted on both Day 1 and Day 2. Fig. 4-2 illustrates the evaluation

for the entire radar cuboid. The diagram presents experiment repetitions in teal (Day 1) and black

(Day2) with corresponding brightness gradients. The visual impression generally indicates a high

agreement in the offset and curve shapes. The variation between −87 dB and −79 dB arises from

noise in the more distant bins, while higher power values result from vegetation and asphalt in

the sensor’s proximity. The tabulated counts of recorded data show only a one percent difference,

attributed to the data recording process itself. In a detailed analysis, it is observed that despite the

predefined 60 s measurement duration, some timeframes are missing in the measurement data,

resulting in the mentioned discrepancy. The maximum deviation in the number of bins is 10%.

Thus, it is imperative to ensure a reduction in this deviation during data recording to maintain the
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comparability of the metric outcome. On the right side of the figure, the box plots of the DVM

are presented, revealing a median difference of only 0.3 dB for dbias and 0.19 dB for dCAVM.
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Figure 4-2: EDFs of all eight measurements for Day 1 ( ) and Day 2 ( ) each on the radar cuboid level

without a placed object. The number of aggregated bins is listed below the diagram. On the right side the box plot

for dbias and dCAVM in dB is shown.96c

Adetailed examination of the impact of assembly and disassembly, as well as the general scattering

of the sensor, is presented in Fig. 4-3. Once again, the DVM values over day 1, day 2 and the

direct comparison between both days are visualized. The comparison reveals that the variations

between individual measurements on day 1 and day 2 are smaller compared to both days. The

assembly and disassembly result in an increase in the median deviation by 0.25 dB. Thus, the

reproducibility of individual measurements is greater than that of the assembly and disassembly.

The deviations are primarily attributed to the angular alignment of the sensor.
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Figure 4-3: Comparison of dbias and dCAVM based on the whole radar cuboid for a comparison of Day 1/2, Day 1/1,

and Day 2/2. The repeatability between the measurements of each day is higher than the reproduciblity of the

measurement setup.96c

28



4 Requirements

4.3 Influence of Rain on Radar Validation

Measurements

Fundamentally, environmental conditions such as temperature98 and rain99 have an impact on

radar measurements and, consequently, on comparability. For this reason, these conditions must

also be taken into account in the validation campaign. This is evident in Fig. 4-4 between dry

and rainy conditions. Due to the rain, there are more cells in the radar cuboid with higher power,

leading to a shift towards larger values in the power dimension. In principle, while atmospheric

attenuation increases due to rain, raindrops reflect a portion of the electromagnetic radiation,

resulting in a relative increase in power at short distances. This can also be observed in the DVM

values. A shift in the median of dbias by 1 dB indicates an increase in power. A 1 dB deviation in

dCAVM reveals increased scattering in radar measurements due to rain. For completeness, the

number of data points is again presented in tabular form, showing negligible deviations.
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Figure 4-4: EDFs of five measurements of the XC90 in dry ( ) and rainy ( ) conditions on the radar cuboid

level. The number of aggregated bins is listed below the diagram. On the right side the box plot for dbias and
dCAVM in dB is shown.96d

The analysis of the entire radar cuboid demonstrates the fundamental influence. A detailed

examination follows to identify basic influence areas within the sensor’s field of view. For

each individual cell of the radar cuboid, the DVM is calculated and combined with a satellite

image. The result of this approach is shown in Fig. 4-5. The two images display the maximum

value of the box plot for dbias and dCAVM for each radar cuboid cell in the comparison of rainy

and non-rainy conditions. The red circle in the figure visualizes the position of the center of

the bounding box of the Volvo XC90. The increased power is evident in both dbias and dCAVM

represented by the big green areas in the satellite image. Notably, dbias experiences an increase

in proximity to the sensor, extending up to approximately half of the maximum sensor range.

98 Arage Hassen, A.: Signal Degradation and Optimization Radar Sensors (2006), pp. 14–18.

99 Li, H. et al.: The Effect of Rainfall and Illumination onAutomotive Sensors Detection Performance (2023), p. 11.

29



4 Requirements

This phenomenon exerts a more pronounced impact on the road surface due to rain and the

resulting change in material properties. In the case of dCAVM, the most significant deviations

manifest within the mid-range of the field of view. Additionally, it is observed that the road is

more susceptible to these effects than the vegetation, a characteristic that can be attributed to the

stochastic properties of the vegetation movements due to wind.
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Figure 4-5: Satellite image fused with |dbias| and dCAVM coded in colors for each range azimuth bin. The object

under examination is a Volvo XC90 in rainy and dry conditions. The red circle visualizes the center of the vehicle

bounding box.96d

The procedure for deriving requirements through measurements is applicable exclusively to

sensors that currently exist in the physical domain. However, effects in signal propagation are

verifiable independently of signal processing in the sensor, making these effects generally verifi-

able. For this purpose, consideration of wavelength, objects, the environment, and environmental

conditions is necessary. Thus, the presented methodology is also suitable for developing and

testing sensors that exist purely as a digital twin in the future.
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This chapter presents the content of paper II.100a The subsequent discussions align with stage

2 of the overall validation methodology, as depicted in Fig. 3-1. As previously discussed, it is

necessary to isolate effects in signal propagation and signal processing as effectively as possible

to enable a sensor model validation. Therefore, in the experimental design, efforts must be

made to reduce or even eliminate potential mutual interference between effects. Therefore, from

Chapter 2.2.2, the following effects arise, which occur in real measurements in radar sensors:

Multipath propagation: The electromagnetic radiation of the radar sensor is reflected over

the asphalt and under the vehicle’s chassis. Multipath propagation is dependent on the

mounting height. Therefore, measurements at different sensor heights must be taken

simultaneously.

Yaw angle of the object of interest (OOI): The reflection of radar radiation depends on the

orientation of the object relative to the sensor. Therefore, it is necessary to vary the relative

yaw angle between the OOI and radar sensor during the experiment.

Geometry and material of the OOI: The RCS as well as the distribution of detections over

the bounding box are significantly dependent on the geometry and material of the vehicle

components. Therefore, in the measurement campaign, 14 objects are examined and

analyzed.

How is it possible to isolate effects related to the RCS of road vehicles and make them measurable

under real world conditions?

5.1 Measurement Setup

With the defined requirements, the experimental setup is depicted in Fig. 5-1. To analyze the

impact of multipath propagation on the RCS, six radar sensors of the same type are mounted on

top of each other on the ego vehicle as shown in Fig. 5-1 (a). The calibration of radar sensors is

individually conducted for each sensor using a CCR. This approach circumvents issues related to

the reproducibility of trajectories and ensures direct comparability of the measurement results

from the different radar sensors. Due to the interference suppression implemented in the radar

sensors, crosstalk effects will only affect the Doppler component and the signal-to-noise ratio of

100 Elster, L. et al.: Dataset Radar Scattering Characteristics (2023), a: -; b: p. 4875; c: p. 4876; d: p. 4877;

e: p. 4878.
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the detections and not the RCS.101 This property is checked before evaluating the measurements.

To vary the other mentioned parameters from the requirements, a slalom trajectory for the OOI and

a straight-line motion of the ego vehicle are suitable. Fig. 5-1 (b) and Fig. 5-1 (c) depict the setup

of the slalom on the August-Euler proving ground in Griesheim, along with the corresponding

parameters. The indices for the local coordinate system Sla of the slalom and the sensor coordinate

system S are placed in front of the variable as a subscript. Both the ego vehicle and the OOI are

equipped with a RTK-based GNSS system ADMA, and the measurement data is synchronized

using GNSS time. In Fig. 5-1 (c) ŷ is denoted as the slalom’s amplitude, SφOOI is denoted as

azimuth angle, rOOI is denoted as range in the polar sensor coordinate system and SψOOI is

denoted as the yaw angle difference between ego vehicle and OOI. For each vehicle, a slalom

with 10 periods was repeated 10 times. The measurement data102 and the evaluation code on

GitLab103 are publicly available.

(a) Picture of the ego vehicle equipped

with six identical radar sensors.100b

Slax

Slay

(b) Slalom course marked with traffic cones and slalom-

centered coordinate system.100c

Ego
OOI

30 km/h

SφOOI SψOOI

30 km/h
ŷ

rOOI

(c) Measurement setup of slalom with corresponding parameters where SφOOI is denoted as azimuth

angle and rOOI denoted as range in the polar sensor coordinate system, SψOOI is denoted as the yaw

angle difference between ego vehicle and OOI as well as ŷ is denoted as the slalom’s amplitude.100d

Figure 5-1: Experimental setup for the examination of isolated effects on the RCS of different

vehicles. © IEEE 2023.

To analyze the introduced effects, the entire detections are initially filtered based on the reference

data from the ADMA. In addition to the ego and OOI poses, the relative radial velocity of the

OOI is used as a filter. The RCS value of the filtered detections are de-logarithmized and summed.

In this process, the phase of the signal resulting from the path difference and corresponding

reflections is neglected. This is because signal processing already involves interpolations that

101 Norouzian, F. et al.: Phenomenology of Automotive Radar Interference (2021), p. 1057.

102 Elster, L. et al.: RCS Measurement Dataset (2022).

103 Elster, L.: RCS Measurement (2022)
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do not allow precise conclusions about the actual signal phase at the object on the detection

interface. Furthermore, the phase changes due to vehicle movements over a measurement cycle

of the Chirp-Sequence cycle, making the determination of the exact phase impossible. Therefore,

for RCS analysis, the following relationship is employed, where Q denotes the logarithmic size

of σ, nD,max denotes all detections per measurement cycle and σk,filt denotes detections filtered

by position and velocity. To obtain the resulting RCS, the sum of all σk,filt is calculated by the

antilogarithm of the corresponding value. Subsequently, this sum is transformed back into the

logarithmic scale to obtain the overall RCS in dBm2:

Q(σ) = 10 log10

nD,max∑︂
k=1

σk,filt (5-1)

To examine the various effects and conduct separate analyses, different evaluation methods are

employed. Due to the sinusoidal setup, in addition to temporal or spatial analysis, a frequency-

based examination is suitable. Furthermore, the RCS data is statistically processed, and the

spatial distribution is considered.

5.2 Spectral Analysis of RCS

In Fig. 5-2, the periodic RCS profiles resulting from the slalom are analyzed. Fig. 5-2 (a) displays

the RCS across the x-position of the OOI for one radar sensor. Upon processing the periodic

profiles of distinct radar sensors through FFT analysis, Fig. 5-2 (b) is generated with the frequency

on the abscissa. The two amplitude peaks at zero-frequency and the double harmonic frequency

of the slalom reveal the effects of the sensor mounting position on the RCS. Slight variations of

approximately 3 dBm2 and 1 dBm2 are noticeable, but they do not yet provide any generalizable

insights into the mounting position in comparison to the overall slalom RCS amplitude.

For this reason, in a subsequent step, the analysis is conducted across all test repetitions and

vehicles. The result is depicted in Fig. 5-3. Concerning the two frequency components, a high

degree of repeatability is observed among different test repetitions, with negligible differences

between the various radar sensor mounting positions in the context of automotive applications.

Only in the case of radar sensor 6 is a greater dispersion evident among different test repetitions.

Hence, it is apparent that multipath propagation influences the RCS within the vehicle primarily

at low mounting positions. The vehicle geometry is ruled out as the cause, as the increasing

dispersion in radar 6 is evident across all vehicles.

105 Elster, L. et al.: Dataset Radar Scattering Characteristics (2023), a: p. 4879; b: p. 4878; c: p. 4880.
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Figure 5-2: Periodic characterization of the RCS for a Toyota Auris. © IEEE 2023.
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Figure 5-3: Spread of spectral amplitudes obtained by FFT over all studied cars and trials. Circles denote

zero-frequency amplitude, triangles indicate amplitude at double natural frequency. The figure shows all radar

sensors and vehicles.104a105b © IEEE 2023.

5.3 Analysis of Detection Distribution

In addition to frequency analysis, examining the RCS distribution is meaningful for comparing

different sensors, test repetitions, and vehicles. To illustrate this, the Toyota Auris is examined

in detail in a first step. In Fig. 5-4 (a), the EDF of RCS values for various radar sensors and the

three most similar106 test repetitions are visualized.

In general, it can be observed that deviations for a radar position deviate by approximately

2.5 dBm2. This confirms the findings from Fig. 5-3 and additionally shows that the outliers are

also reproducible measurable. Radars 1, 2, and 6 deviate by only 1 dBm2 from each other, with

106 The evaluation is based on the Hilbert criterion, which is explained in detail in paper II.
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the lowest RCS. Radars 3, 4, and 5 exhibit the highest RCS values.

In the various test repetitions, the distance between the OOI and ego is also different, which is

noticeable in the measurement results regardless of the distance. Due to the varying distances,

there is also a difference in the azimuth angle distribution, suggesting that the antenna pattern and

its angular dependence have no impact on the RCS under the given conditions. Further in-depth

analyses of different oscillations confirm this hypothesis.107

In Fig. 5-4 (b), the RCS distributions for different vehicles are presented. In addition to the

offset of the different vehicles, there is also a difference in the shape of the EDFs. The RCS

characteristics of different objects deviate by up to 7 dBm2 from each other. Thus, in terms of

RCS, it can be concluded that the RCS characteristic of each vehicle on the road is different, and

there is no readily generalizable RCS profile. The presented measurement setup provides the

opportunity to quantify these resulting differences.
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Figure 5-4: Analysis of the different RCS distribution functions for one vehicle as well as all vehicles. © IEEE 2023.

To conduct a more in-depth analysis, an examination how the detections are distributed across

the bounding boxes of various vehicles. Fig. 5-5 illustrates the locations of the largest RCS

detections for each vehicle and radar sensor.108 Therefore, this analysis provides insights into

the primary scattering areas of each vehicle. The color coding in the figure represents the yaw

angle difference SψOOI between the ego vehicle and the OOI, while black rectangles delineate

the bounding boxes of the vehicles.

107 Rapp, M. L.: Messkampagne für winkelabhängige RCS-Profile (2021), pp. 75–82.

108 The figure with all vehicles is visible in paper II.
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Detections outside the bounding box can be attributed to timing effects resulting from different

measurement sampling rates and the inherent resolution of the radar sensor itself. In general,

these detections tend to cluster at the rear center of the vehicles, consistent with findings in

previous studies.109,110 However, there are subtle distinctions between radar 1/6 and radar 2/3/4/5

in the case of BMW 535i, Honda Accord, Opel Corsa, Toyota Auris, and VW Caddy.

Notably, certain unique characteristics are observed in the distribution of the detection for specific

vehicles. The BMW i3, with its carbon and aluminum body, exhibits distinctive features. The

Mercedes Unimog, equipped with various rear and side add-on parts, presents a different detection

distribution. The VW Crafter displays detections on the wheel arches at the front, setting it apart

from others. Lastly, the VW Beetle has CCR-shaped side sills, leading to a unique pattern.111

Consequently, it can be inferred that the position distribution of RCS detections is influenced by

the vehicle’s body shape and the yaw angle between the radar sensor and the OOI.
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Figure 5-5: Location of detections with the highest RCS per measurement cycle around and inside the bounding box

for specific vehicles and each radar sensor.105f © IEEE 2023.

In conclusion, the research results demonstrate the feasibility of effect isolation, albeit requir-

ing extensive preparation and effort. The initial stage of the validation study necessitates the

consideration and incorporation of potential effects. Overall, the stochastic properties of RCS

characteristics exhibited by diverse vehicles present a significant challenge to the experimental

setup.

109 Andres, M. et al.: 3D-scattering Center Detection of Automotive Targets Using Radar Sensors (2012).

110 Aust, P. et al.: Fingerprints of the Automotive Radar Scattering of Passenger Cars and Vans (2023).

111 In the readme of the evaluation code repository on GitLab pcitures of the corresponding vehicles are available.103
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6 Data Acquisition and Analysis

Following the establishment of a foundational experimental setup designed to enable the isolation

of effects, the experiment and simulation are subsequently conducted. This corresponds to the

„Data acquisition and analysis“ stage of the validation methodology from Fig. 3-1. To accurately

recreate the real measurement in the virtual simulation environment, precise transfer of reference

data into the simulation is essential.112a On the one hand, for ray tracing-based simulation models,

the 3D environment containing all objects and the associated discretization of geometries, along

with their materials, are crucial factors influencing the simulation quality. On the other hand,

recorded trajectories constitute a fundamental component of validation measurements for re-

simulation of test drives. However, in addition to the aleatory uncertainties inherent in the

measurement system itself, the transfer of references into the simulation environment introduces

further uncertainties. Not only the accuracy of various data types but also the interpretation of

the corresponding data affects the reference data transferred into the simulation. For example,

considering a trajectory recorded with the ADMA, instead of directly implementing the measured

pose data of the experiment, the transfer process into the simulation involves interpolation,

extrapolation, or closed-loop control within the simulation tool. As a result, additional sources

of uncertainties arise that impact the validation result. Consequently, the research question is

derived from these considerations and is the subject of investigation outlined in paper I.113a

How are radar model validation campaigns affected by the accuracy of the reference sensor

system?

6.1 Super-Reference for Trust in Reference Data

The preceding motivation leads to the necessity of verifying the accuracy of the reference sensors

and, consequently, the quality of the reference sensor data. Furthermore, the reference sensor

must exhibit higher accuracy than the sensor under test that requires validation.112b Additionally,

in measurement campaigns and datasets, there is often reference to a GT which denotes the

correct value of a measurement at a specific time. However, determining the GT with a measuring

instrument is impossible, and it is referred to as the true value in the literature.114 To identify the

uncertainties in the reference data, a method is required to quantify and validate the respective

deviations. This procedure is introduced as “super-referencing” and is defined as follows:

112 Rosenberger, P. et al.: Towards Generally Accepted Validation Methodology (2019), a: p. 10; b: pp. 7–8.

113 Holder, M. F. et al.: Digitalize the Twin (2022), a: -; b: p. 5; c: p. 2; d: p. 8; e: p. 10; f: p. 9; g: p. 12; h: p. 13.

114 DIN: DIN ISO 3534-2 Statistics - Vocabulary and Symbols (2013), p. 53.
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“Comparing the result ξ obtained by device A to that of device B. The underlying measurement
principle of B is fundamentally different toA, i.e., B is invariant to error sources ofA. Measuring

ξ by means of B is characterized by high fidelity, accuracy, repeatability, and intuition. B is

thereby seen as a super-reference for obtaining ξ”.113b

Fig. 6-1 displays the introduced terminology along with the deviation of the respective data from

the GT. The fundamental principle of this method is not limited to GNSS but can be generalized

to other reference quantities, such as temperature or humidity.

Ground truth Super-reference Reference sensor Sensor under test

best available

measurement

calibration

of reference

”true” value of

sensor measurement

Expectable deviation to ground truth

Figure 6-1: Relationship between GT, super-reference, reference sensor, and sensor under test.113c

Of particular significance in the transfer of trajectories with the aleatory uncertainties of the

measurement system into the simulation is, in addition to the accuracy of velocity for radar sensors,

the positional accuracy of the object during motion. To minimize the impact of uncertainties

in reference data on the validation result, it is essential to reduce aleatory uncertainties as

much as possible. Prior to conducting the validation experiment, a thorough analysis of the

reference data employed in the simulation is necessary. Exemplifying this approach, lateral and

longitudinal positions, as well as yaw angle, are examined under static conditions. Furthermore,

the investigation aims to apply the super-referencing method to dynamic measurements of the

absolute position of the ADMA and the relative position of two measurement systems. The

selection of these measurement parameters is guided by the accuracy specifications of the ADMA

and the conditions present on the proving ground. Subsequently, a more detailed examination is

conducted on the absolute position of the reference system during motion, along with a focus on

the relative positions in scenarios involving multiple vehicles.

6.2 Absolute Positioning in Dynamic Case

For the first of the two described investigations, the experimental setup from Fig. 6-2 is utilized. In

this scenario, the ego vehicle equipped with the ADMA decelerates with various initial velocities

(25m/s, 20m/s, 10m/s) through three light barriers Lb1, Lb2, and Lb3 and comes to a stop after

passing the last light barrier. By knowing the moment of passing through the light barrier and

the corresponding position, a comparison between the ADMA and the super-reference of the

light barrier becomes feasible. In light blue the different local light barrier coordinate systems

38



6 Data Acquisition and Analysis

are shown and in green the car coordinate system is visualized. To enable the differentiation of

effects between high accelerations and constant-speed driving, the experiment is repeated with a

cruise control drive at 30 km/h. While passing through, foam lines applied to the road surface

before each trial are crossed. This allows the determination of not only the longitudinal position

by triggering the light barrier but also the lateral position of the vehicle. The distance from the

foam line to the corresponding light barrier corresponds to the longitudinal distance between the

vehicle’s front and the center of the front axle, mitigating the influence of vehicle yaw.

Car1

Lb1 Lb2 Lb3

Foam 21.86 m 28.23 m

C1x/y

Lb1x/y Lb3x/yLb2x/y

Figure 6-2: Measurement setup for super-referencing absolute positioning in the dynamic case.113d

To analyze the measurement results, Equ. 6-1 is employed for the longitudinal deviation ϵlong,

and Equ. 6-2 is used for the lateral deviation ϵlat. For this purpose, the longitudinal and lateral

positions, denoted as x and y, of the reference sensor (Ref) are used with the positions of the

super-reference (SRef), where tLb1...3 denotes the times at which the light barriers are crossed.

ϵlong(tLb1...3) = C1xRef(tLb1...3) − Lb1...3xSRef(tLb1...3) (6-1)

ϵlat(tLb1...3) = C1yRef(tLb1...3) − Lb1...3ySRef(tLb1...3) (6-2)

The evaluation of these results yields Fig. 6-3. The lateral and longitudinal error for each

light barrier depicted as different color is visualized. Additionally, the triangles denote the

measurements with deceleration and the circles denote the measurements with constant velocity.

Across different measurements and light barrier positions, a high level of precision is achieved

in both longitudinal and lateral measurements. However, it is observed that the longitudinal

error exhibits increasing deviation as the vehicle’s speed becomes greater during its passage

through the light barrier. As a result, it is recommended to use lower velocities to maintain an

acceptable level of measurement accuracy. Alternatively, the use of devices with higher sampling

frequencies is necessary. This phenomenon is attributed to measurement errors arising from the

time delay associated with the operation of the light barrier. The impact of this delay is evident

in the reduction of longitudinal deviation as the vehicle’s speed decreases, as indicated by the

triangular markers. Notably, at a speed of 25m/s, the time delay introduces a worst-case error of

8mm.

Furthermore, the remaining discrepancies observed in the results can be attributed to the errors

inherent in the ADMA device itself, as well as the inaccuracies arising from the positioning of

the experimental setup. The lateral error produced by the super-referencing method consistently
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Figure 6-3: Lateral ϵlat over longitudinal error ϵlong obtained by light barriers and foam.
113e

demonstrates deviations exceeding the declared accuracy of the ADMA device, particularly at

the second light barrier. These deviations are characterized by values of approximately 2.5 cm

in excess of the proclaimed accuracy, thus suggesting the presence of an error inherent to the

experimental setup. Hence, it is highly recommended to use precision instruments such as

tachymeters for a more accurate absolute positioning of the light barriers and the marks within

the foam.

Lastly, when examining the ADMA’s performance under absolute dynamic conditions with low

vehicle velocities, it is evident that the device consistently exhibits a positive error. This error

varies between 0 cm and 3.8 cm in the longitudinal dimension and between 0.5 cm and 4.5 cm

in the lateral dimension. These discrepancies can be attributed to the device’s performance and

highlight the need for careful consideration when utilizing a GNSS-based reference system.

6.3 Relative Positioning in Dynamic Case

In addition to the findings on absolute positional accuracy, a further investigation delves into

the relative dynamic positional accuracy of two identical GNSS systems. For this purpose, the

two vehicles are connected by a tow bar, and the positions of the tow bar’s attachment points are

used as reference points for evaluation. It is assumed that the clearance in the joint and stretch of

the tow bar are smaller than the accuracy of the reference system under analysis. The driving

maneuver follows the sequence 0 km/h→ 30 km/h→ maintaining→ 60 km/h→ maintaining

→ 30 km/h→ maintaining→ 0 km/h. This experimental setup is designed to include portions

of constant-speed driving and accelerations. Furthermore, the experiment is repeated five times.

Fig. 6-4 illustrates the corresponding experimental setup. The connection points of the tow bar

are measured in the local Cartesian coordinate system L for Car1 and Car2.

For the evaluation of the measurement data, Equ. 6-3 is employed, with the length of the installed

tow bar ltb,SRef precisely determined with an accuracy of 0.5mm as a super-reference.
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Car2 Car1
tow bar

(Lx2, Ly2)(Lx1, Ly1)Lx

Ly

Figure 6-4: Measurement setup for dynamic dual super-reference with a tow bar in a local coordinate system L.113f

ϵtb = ltb,Ref − ltb,SRef =

⃦⃦⃦⃦
⃦
(︄

Lx2 − Lx1

Ly2 − Ly1

)︄⃦⃦⃦⃦
⃦
2

− ltb,SRef (6-3)

The deviation of the tow bar with respect to velocity ẋRef and acceleration ẍRef is illustrated in

Fig. 6-5. The temporal aspect of the velocity or acceleration profile is indicated by the color

gradient from black to light brown, depicting all trials of the experiment. Analyzing the sensitivity

of ϵtb to velocity reveals three consistent characteristics for all tests. The error in the tow bar

fluctuates by 2 cm during quasi-stationary driving, aligning with the device specifications. When

the vehicle is in the process of acceleration or deceleration, the measurement error remains

relatively constant and falls within the acceptable range of variation. As the vehicle comes to

a complete stop, the measurement error stabilizes at a specific value that remains within the

permissible limits of the dual measurement setup.
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Figure 6-5: Tow bar deviation ϵtb over ẋRef and ẍRef . During areas of “constant” speed, the distance error settles

within the accuracy of the measurement devices and the distance error only shows low sensitivity to acceleration.

All trials are depicted and running time is denoted by the line’s color gradient.113g

After confirming the accuracy of the ADMA, the impact of trajectory transfer into the simulation is

analyzed. This is achieved by transferring the recorded trajectory into two commercial simulation

tools using the OpenScenario115 format.116 Once again, the deviation from the originally measured

length of the tow bar is utilized to evaluate the transfer into the simulation.

115 ASAM e.V.: ASAM OpenSCENARIO® - User Guide (2021).

116 Holder, M. F. et al.: Source Code Xosc-Converter (2021).
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ϵSim1/2 = (ltb,Sim1/2 − ltb,SRef) (6-4)

Fig. 6-6 illustrates the deviations in both simulation tools. The experimental data reveals that

variations in measurement accuracy differ across multiple test runs. These variations are notably

influenced by the vehicle’s speed, with lower speeds resulting in reduced measurement errors, and

the highest errors occurring during acceleration or deceleration phases. The resulting disparities

between the reference measurement data and the data from simulation tools stem from the

software-based interpretation of the reference data. Specifically, the temporal interpolation or

extrapolation of trajectory data and control algorithms prior to vehicle dynamics simulation

are the causes of the divergent results. In the first simulation, during phases of near-stationary

velocities, the measurement errors occasionally surpass the specified accuracy of the ADMA.

In contrast, the second simulation consistently falls within the specified accuracy range. The

findings indicate that the best performance in replicating test drives is achieved with the first

simulation tool when the vehicle maintains relatively constant speeds and low accelerations

below 2m/s2. This disparity complicates the comparison between simulated and measured data,

as the reference data itself displays variations.
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Figure 6-6: On the left side, ϵSim1 over ẋRef is shown in case of the first simulation. On the right side, ϵSim2 over

ẋRef is shown within the second simulation. Each measurement trial is visualized with a different color.
113h
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After reducing, determining, and validating the uncertainties of the reference sensors used in

the experiment following the validation process by Viehof and Rosenberger, the simulation is

conducted. Subsequently, validation is performed based on the previously defined requirements

and the isolated effects. Therefore, evaluating the validity of a radar sensor model is only possible

by considering the uncertainties of both the reference sensors and the radar measurements

themselves. This leads to the overarching research question of this chapter:

How can reference sensor and radar sensor measurement uncertainties be taken into account in

a metric-based radar model validation across various interfaces?

The reference sensor data recorded during the measurements, along with their uncertainties,

are propagated through the simulation for the analysis of the research question. Finally, the

measurement and simulation data is compared using the DVM, enabling a validity assessment

based on bias and scattering deviation. This chapter is based on the content of paper IV.117a

7.1 Measurement Setup and Uncertainties

To address the research question, a simple validation scenario is conducted with a CCR to analyze

the metric-based radar model validation. The measurement setup is illustrated in Fig. 7-1. In

addition to the schematic representation on the left, a photo of the setup is shown on the right.

CCR Position 1 (Pos 1) is used for calibrating the simulated power, while Position 3 (Pos 3)

is employed for validation. The two positions differ in azimuth angle Sφ in sensor coordinates

while maintaining a constant radial distance Sr. Five repetitions are done for each position to

account for effects of successive measurements in the validation. Each measurement of the static

experiment lasts 60 s resulting in approximately 224 timeframes based on a sample frequency of

14Hz.

The measurement setup induces the uncertainties listed in Tab. 7-1 for the reference data. All

mentioned reference data are determined using RTK-based GNSS, from which both the measured

quantity and uncertainties arise. Only the sensor height and the edge length of the CCR are

determined using a tape measure. Theoretically, additional influencing factors such as material

properties and environmental conditions like temperature or random road surface structures

should be considered. However, in the conducted measurement campaign, either no suitable

reference sensors are available resulting in an increased aleatory uncertainty or the parameters

are invariable in the used simulation tool.

117 Elster, L. et al.: Introducing the DVM for Radar Sensor Models (2024), a: -; b: p. 6; c: p. 19; d: p. 21.
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Sr
Sφ

Gy

Gx

Sx

Sy
Pos 3

Pos 1

Figure 7-1: Experimental setup of the validation study. CCR position 1 (rCCR,Pos1 = 29.56m, φCCR,Pos1 = 0) is

used for simulation calibration purposes and position 3 (rCCR,Pos3 = 29.56m, φCCR,Pos3 =−8°) is analyzed based

on the presented methodology.117b

Table 7-1: Measured reference data uncertainties for CCR position 3 defined in Fig. 7-1. The local cartesian

coordinate system G is defined in East-North-Up direction with the origin located on the August-Euler airfield in

Griesheim.117b

Reference data Variable Measurement Uncertainty

Sensor azimuth orientation in G GφS 197.91° ±0.07°
Sensor x position in G GxS 977.43m ±0.02m
Sensor y position in G GyS 241.56m ±0.02m
Sensor height in G GhS 12.89m ±0.02m
CCR x position in G GxC 948.33m ±0.02m
CCR y position in G GyC 216.46m ±0.02m
Edge length CCR lC 0.240m ±0.005m

7.2 Evaluation of Radar Measurement

The uncertainties defined in the previous chapter are subsequently propagated through simulation

by varying both the measured value and the positive and negative uncertainties individually. A

full factorial combination of uncertainties is avoided at this point due to the exploding parameter

space. With seven parameters, the measured value, and two boundaries, there are 2187 possible

combinations. Consequently, 15 simulation results are obtained by simulating the upper and lower

boundary of each parameter and all measured values, with each simulation also conducted for

60 s. The radar model described in Chap. 2.3 in combination with the simulation tool CarMaker,

is employed for the simulations.

The model is extended with a stochastic noise simulation based on additional measurements, in

which the radar sensor is oriented towards the sky without any object. The resulting data from the

real and virtual worlds are evaluated following the methodology outlined in Chap. 4.1 of paper

III. In addition to evaluating the entire radar cuboid, all detections, and clustered detections

detailed in paper IV, the evaluation of a region of interest around the CCR and each individual

cell of the radar cuboid is performed. The upper limit of the propagated uncertainties is denoted

as +, and the lower limit is denoted as −.
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In Fig. 7-2, the diagrams depict the EDFs of the simulation ( ) and the measurement data ( ).

The left diagram illustrates all EDFs for the 15 simulations and the five measurements. The right

diagram visualizes the 15 EDFs shifted based on dbias relative to the first measurement, Meas 1.

On the radar cuboid interface the radar data is filtered by the measured reference position of the

CCR. The observed step-shaped pattern in the measurements arises from the analysis of the four

filtered distinct range azimuth cells. These four cells are a consequence of the placement of the

CCR on the edge of the bins in the range and azimuth dimensions. The temporal fluctuations

within each cell exhibit a modest range of decibels, as discerned from the slopes evident in the

EDFs. Additionally, there is notable consistency in the reproducibility of the measurements,

manifesting in the substantial overlap.
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Figure 7-2: The uncorrected and corrected EDFs as well as the deviation based on the different simulations and

measurements coded in colors for |dbias| and dCAVM.
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It is noteworthy that the simulations manifest a discernible model bias, primarily attributable

to initial modeling inaccuracies in the signal processing and calibration. Thus, the presented

experiment is suitable for substantiating the foundational maturity of a model. The model is

specifically calibrated to the RCS of the CCR at position 1, resulting in disparities in RCS

calculations between the radar cuboid signal strength and the detections. Moreover, the simula-

tions are susceptible to uncertainties. The variation in length and positive height, in particular,

amplifies the discrepancy between the model and the simulation. While certain simulations

approximate the step-shaped pattern observed in the measurements, disparities are apparent in

the slope characteristics. In particular, the initial slope in several simulations is less pronounced,

and in some instances, notably smeared. This is due to a different number of simulated rays

hitting the CCR in the simulation in different timeframes. The simulation tool employed utilizes

sampling methods for the directional initialization of rays, resulting in a variable number of rays

hitting the object depending on the time step. The effects in the simulation model on the power

become more pronounced with increasing distances between the sensor origin and the object,

unless appropriate algorithmic countermeasures are implemented in the ray sampling process.

The initiation of the simulation slopes is attributed to the noise simulation, where two radar

cuboid cells unaffected by the CCR-induced signal strength increase are considered. This arises

from the fact that the noise simulation has a mean value at the CCR position of approximately

−80 dB. Deviations arise from differences in window functions between the actual sensor and

the simulation model. Additionally, the discrepancy in the number of cells visualized in the table

below the diagrams is a result of a simulation sampling distinction between the model and the

real sensor. The previously expounded observations derived from the EDFs find corroboration

in the DVM heat map visualization. Notably, simulations of Sy
−, Cx

−, as well as Sh
− exhibit

minimal deviations in both model bias and scattering error.

In the upper image of Fig. 7-3, a discernible discrepancy of approximately 30 dB is observable

in the vicinity of the CCR’s location (Box 1). On one hand, the CCR’s power is excessively

low, a deficiency addressable through model calibration at the radar cuboid level. On the

other hand, the iterative determination of the window function in the model introduces the

possibility of measurement and modeling errors. The maximum deviation of 55 dB between

the simulation model and actual measurement is present in the range of the CCR location but

in a different azimuth angle (Box 2). Notably, the simulation model lacks input data from

the ray tracing algorithm at this location, and these radar cuboid cells are solely populated by

noise simulation. Despite the absence of discernible objects or asphalt irregularities during

measurements justifying the observed signal strength increase, it is inferred that an unaccounted-

effect in the radar sensor’s signal processing, triggered by the CCR, exists. Consequently, the

method is adept at identifying a systematic model error. Along the transition between runway

and vegetation, persistent model bias increases ranging from 15 dB to 25 dB are evident (Box

3). In the second satellite plot, the scattering error denoted by dCAVM is visually represented

(Box 4). The CCR exhibits the highest deviation, and the measured distribution assumes a step
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function appearance. In contrast, the simulation EDF exhibit less steep profiles, with pronounced

impacts from propagated uncertainties, particularly at lower power levels. Substantial deviations

are apparent along the runway and the transition to vegetation, mirroring observations in |dbias|.
Of specific interest is the intersection of the taxiway with the runway (Box 5). The transition

from vegetation to asphalt yields elevated values in dCAVM compared to surrounding cells, as

microscopic movements of the vegetation influence the shape distribution of the measurement

data.
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Figure 7-3: Satellite image in which the results of the DVM are shown. From top to bottom, the validation results

for |dbias| and dCAVM are visualized.117d
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8 Conclusion and Outlook

In this chapter, the findings regarding the posed RQs are summarized and recontextualized within

the overall framework related to the main RQ. The guiding question of this thesis is:

How can effects and uncertainties in radar validation measurements, along with their associated

impacts on radar sensor model validation, be identified and quantified?

Below, the four RQs are reiterated. Therefore, a conclusion of the RQ is provided. Afterwards

the contribution to the main RQ is elaborated. Finally, an outlook on future research directions

related to the validation of radar sensor models based on the insights gained is given.

RQ 1: How can radar measurements be used to establish quantifiable requirements for a radar

sensor model?

Conclusion: To address the RQ, various measurement setups and conditions are compared.

The distribution of measurement data on the radar cuboid and the detection interface is

analyzed using the DVM. Different scenarios demonstrate the effects of various factors

and the resulting measurement uncertainties in radar sensors. It is evident that position

filtering for detections is necessary, as the number of detections between measurements

fluctuates significantly. In addition to environmental influences, the complex wave propa-

gation, particularly the multipath propagation, is responsible for this phenomenon. The

detailed analysis of each azimuth range cell of the radar cuboid allows insights into the

causality between measurement fluctuations and the environment, providing a new form

of interpretability and comparability of measurement results. This is due to in the less

processed data of the radar cuboid, leading to a higher informational content compared to

the detection interface. Furthermore, repeatability and reproducibility of measurements is

accessible. Since the measured uncertainties represent the maximum simulation fidelity

achievable through simulation, it becomes possible to quantify the impact of various ef-

fects such as rain. Consequently, this allows the derivation of fundamental requirements

for effects on radar signal processing interfaces from simple scenarios. In addition to

quantifying requirements, the methodology presented facilitates the comparison of various

measurement setups. This includes the evaluation of the effects of different test grounds,

laboratory facilities, and environmental conditions.

Contribution to main RQ: Thus, in the context of the main RQ, it is evident that validation

measurements in radar sensors have to be simple to demonstrate and validate individual

effects in the sensor model. Furthermore, utilizing reference sensors for environmental con-

ditions is crucial to quantify external factors and determine their influence. In conclusion,
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the methodology presented allows for comparability of measurements across locations in

radar model validation campaigns.

Outlook: This aspect plays a crucial role, especially in the potential future standardization of

validation experiments, ensuring comparability. Additionally, it is essential to explore

the feasibility of extending the procedure to dynamic measurements. On the detection

interface, filtering based on the Doppler effect simplifies position filtering. However, the

relative velocities of the wheels at the wheel contact point complicates the filtering, as the

relative speed corresponds to the static environment. Therefore, a preliminary examination

of this effect on radar measurements is necessary. Furthermore, the described methodology

is well-suited for comparing various sensors of the same type. Consequently, it allows the

identification of uncertainties stemming from the production process and their impacts on

radar measurements such as the antennas.

RQ 2: How is it possible to isolate effects related to the RCS of road vehicles and make them

measurable under real world conditions?

Conclusion: The effects on the RCS obtained from literature are investigated through a slalom

setup to examine the reflectivity properties of different vehicles. Additionally, six identical

radar sensors are positioned one above the other to analyze the mounting height of the

sensors. A frequency analysis, considering the periodic RCS characteristics, provides

amplitude and a constant component for all vehicles and radar sensors. The results indicate

slight variations for all sensors between measurements, but significant differences exist

between various vehicles. The lowest radar sensor exhibits the largest fluctuations in

RCS, attributed to multipath propagation of radar waves. Additionally, due to the low

mounting position, a greater portion of the vehicle underbody is visible, serving as another

influencing factor on the fluctuations. The EDF of the vehicles confirm the findings from

the frequency analysis. The uniqueness of the vehicles is ultimately confirmed through the

analysis of detections relative to the position in the bounding box of the respective vehicle.

Contribution to main RQ: The demonstrated process of inferring effects on the experimental

setup allows for separation and identification at the sensor output. This is demonstrated by

the mounting position, and thus the multipath propagation, the aspect angle, and the various

vehicle models. High reproducibility is achievable even by a human using landmarks in

dynamic validation scenarios. In general, initial measurements indicate that the validation

effort can be reduced by investigating the influence of specific parameters in advance, as

demonstrated here, for example, with the mounting height beyond a certain threshold.

Outlook: However, the described approach lacks a methodology that systematically derives

experiments from effect-based requirements. The validation experiments still rely on expert

knowledge and a standardized approach is missing. Furthermore, a generalization of object

models is necessary to ensure that the complexity for the virtual validation approach does
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not exceed its benefits. The presented results are only valid for the specific radar sensor

used. Increased range and azimuth resolutions and the elevation component can influence

the presented results. Therefore, demonstrating the generalizability of the trends with

another radar sensor is essential.

RQ 3: How are radar model validation campaigns affected by the accuracy of the reference

sensor system?

Conclusion: The reference data for the re-simulation of RTK-based GNSS data is qualified

through the principle of the super-reference. Methods for absolute and relative positioning

of individual and multiple systems in both static and dynamic cases are presented. The

evaluation of the experiments confirms the specified accuracies but also indicates the need

for further optimizations for the experimental setup with the light barriers. The transfer of

reference data into the simulation introduces additional epistemic uncertainties.

Contribution to main RQ: The developed methods serve to identify the aleatory uncertainties

in the reference sensor data. This allows for the consideration of these uncertainties in

the re-simulation by propagating them through the simulation. The experiments enhance

confidence in the measurement results of the reference and demonstrate the previously

specified requirements for the reference sensors.

Outlook: Furthermore, it is necessary to validate the reference data for velocity and rotational

speed. This allows for the avoidance of simple errors such as incorrectly determined

positions of the ADMA in the vehicle, which directly impact measurement results, as well

as the absence of timestamps. Additionally, experiments are necessary in areas that do

not represent ideal measurement conditions for the reference system. In the case of the

sensor used, these areas include urban canyons or forests, where accuracy is reduced due to

multipath effects and occlusion. Moreover, simulation environments must ensure precise

repeatability of recorded trajectories. Otherwise, they are unsuitable for radar sensor model

validation. Besides GNSS systems, there are emerging methods for determining object

positions, such as lidar or sensor fusion. New experimental designs for the super-reference

methodology are required in these cases.

RQ 4: How can reference sensor and radar sensor measurement uncertainties be taken into

account in a metric-based radar model validation across various interfaces?

Conclusion: Using a simple validation scenario with a CCR as an object, the application of

the DVM on radar data of the radar cuboid and detection interface is conducted. An

adapted open-source radar model in combination with IPG CarMaker serves as the source

of synthetic data. Aleatory uncertainties from radar measurements are incorporated by

comparing multiple measurements taken in quick succession with simulation data. In

turn, in the simulation, epistemic uncertainties from reference data are propagated through

the simulation, enabling a comprehensive evaluation of the validation experiment. The
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DVM, in conjunction with various evaluation methods, ensures a high interpretability of

the results.

Contribution to main RQ: The presented methodology quantifies the deviations between the

uncertainty-affected validation measurements and the radar simulation model. Due to the

characteristic of the DVM being invariant regarding input parameters, the methodology is

also applicable to the object list and other experimental setups.

Outlook: The conducted analysis is confined to examining the maximum and minimum epis-

temic uncertainty of the reference sensor. Currently, the combination of uncertainties is

neglected. Therefore, it is recommended to reduce the parameter space of reference sensor

uncertainties through pre-analysis sensitivity studies. Additionally, material properties

and the shape of objects need to be incorporated into the process along with position data.

Furthermore, due to the high number of necessary experiments for statistical validation,

there is a need for the automation of measurement campaigns. Otherwise, validating radar

models using the proposed method exceeds the affordable effort. In essence, the described

approach could serve as the foundation for standardizing the evaluation process for active

perception sensor models and complementing existing standards in that regard.118

118 DIN: DIN SAE SPEC 91471 Assessment Methodology Automotive LiDAR (2023).
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Abstract: In the course of the development of automated driving, there has been increasing interest
in obtaining ground truth information from sensor recordings and transferring road traffic scenarios
to simulations. The quality of the “ground truth” annotation is dictated by its accuracy. This
paper presents a method for calibrating the accuracy of ground truth in practical applications in
the automotive context. With an exemplary measurement device, we show that the proclaimed
accuracy of the device is not always reached. However, test repetitions show deviations, resulting
in non-uniform reliability and limited trustworthiness of the reference measurement. A similar
result can be observed when reproducing the trajectory in the simulation environment: the exact
reproduction of the driven trajectory does not always succeed in the simulation environment shown
as an example because deviations occur. This is particularly relevant for making sensor-specific
features such as material reflectivities for lidar and radar quantifiable in dynamic cases.

Keywords: virtual validation; automated driving; ground truth; reference measurement; calibration
method; simulation

1. Introduction

“Ground truth (GT) data was obtained using an real time kinematic (RTK)-based
global navigation satellite system (GNSS) device and provides accuracy of up to ±3 cm”.
Such statements are often found in research articles to justify the quality of reference data
accompanying data acquisition for various tasks [1,2]. In the automotive context, RTK-
aided GNSS is widely used for obtaining positions. There is no doubt that RTK-based
GNSS methods can achieve accuracies in the cm range. However, this applies only to
the position determination of the antenna and under favorable operating conditions of
the GNSS receiver. If one is, however, interested in the position information of another
reference point, e.g., the center of the vehicle’s rear axle, the translational offsets between the
antenna and the respective point must be determined very precisely. In complex geometries
such as vehicles, further aids are needed for this. Uncertainties in the determination of
these offsets can be hardly avoided. For this reason, it is unclear whether the specified
precision of the device can also be achieved in its installed state.

In this work, we address the issue of the trustworthiness of reference data obtained
with GNSS devices. We aim to refine the notion of GT in the context of environmental
perception with different sensor modalities. It must be ensured that the reference measure-
ment shows higher credibility against other sensors used, e.g., lidar or radar sensors. To
determine this, reference measurements are required to determine the credibility of the
reference, called the “super-reference”. Figure 1 contextualizes the aforementioned term
“super-reference” in comparison to GT and a reference sensor.
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The GT can only be measured with finite accuracy, which we call the super-reference.
Thereby, GT is only approximated by the super-reference, leaving a minor deviation to GT.
A super-reference is typically only available in limited and controllable circumstances. A
reference sensor, however, is optimized for the practical application at the cost of potentially
higher GT deviation. To achieve higher trustworthiness in the accuracy of the reference,
a super-reference is used for its calibration. Ultimately, when validating sensors, it is of
interest to determine measurement uncertainties, which result from the difference between
sensor and reference measurement.

Ground truth Super-reference Reference sensor
Sensor

under test

best available
measurement

calibration
of reference

"true" value of
sensor measurement

Expectable deviation to ground truth

Figure 1. Relationship between GT, super-reference, reference sensor, and sensor under test.

The main interest of this article lies in increasing the trustworthiness in reference data,
which enables the reenacting of real-world test drives in virtual environments. This is of
particular importance in the development and validation of sensor models for the virtual
validation of automated driving (AD), as reference data are required. The basic idea of
transferring test drives to simulation is admittedly not new. However, our paper specifically
deals with the calibration process of positioning measuring devices and discusses the
achievable accuracy.

This paper is structured as follows. First, we discuss the need for the careful calibration
of measurement devices that are used for collecting reference data. Next, an overview of
previous research on obtaining GT data and sensor principles employed for this purpose
is presented. We present stationary and dynamic calibration experiments, which serve
as a reference and are thereby eligible for the calibration of measurement devices. In
the practical application of our experiments, we show that the proclaimed accuracy of
the positioning devices is not always met. Finally, we show the achievable precision
when reenacting a real-world test drive in two simulation environments. The source
code for creating scenarios with real driven trajectories based on GNSS measurements is
made available.

2. A Motivational Example: Can We Trust Our Reference?

After data collection with sensors in real-world scenarios, faithful reenacting of the
driven scenario in simulation is tedious, but of high interest for virtual validation aspects.
There are various types of measurement phenomena that are inherent in the sensor mea-
surement principle and can manifest as measurement artefacts. These can cause deviations
between the obtained measurement result and GT. A simple yet illustrative example is
the limited resolution of the (discrete) distance measurement with radar and lidar sensors,
which causes quantization errors in the determination of the (continuous) distance to an
object. For this reason, reference sensors are needed that are capable of measuring the
movement and position of vehicles with high accuracy, precision, and reliability.

Even for simple scenarios, such as a follow-up drive with an Adaptive Cruise Control
(ACC) system, one can observe non-stationary behavior when inspecting the movements
of the vehicles in close detail, although the vehicle movements were subjectively perceived
by the occupants as stationary. If the movement of the vehicle in front is now recorded by a
sensor, further sensor-specific uncertainties are superimposed on its perception.

Figure 2 shows an example of a measurement record of an ACC drive run at 40 km/h
with a medium time gap to the front vehicle. The measured variables used for the ACC
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function are read out from the radar sensor, which supplies the object information for the
ACC system, via the vehicle Controller Area Network (CAN).

0 10 20 30 40 50 60 70
−1

0
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Passed time in s
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ACC follow-up drive, set speed = 40 km/h, medium time gap

S∆yR in m S∆yRef in m S∆ẋR in m/s S∆ẋRef in m/s

Figure 2. Variation of lateral distance and longitudinal speed between ego car and object of interest
(OOI) in an ACC scenario. The left index “S” denotes the sensor coordinate system, “R” the radar
sensor and “Ref” the GNSS-based reference system.

Several aspects emerge from the measurement record shown in the figure: the relative
longitudinal velocity S∆ẋ shows a variation bandwidth of ±0.5 m/s, which is around
one order of magnitude above the velocity resolution of automotive radar sensors. In the
lateral direction, i.e., S∆y, the object fluctuates within its lane at around ±0.2 m, which can
hardly be noticed with visual inspection by a human driver. The object reported by the
used radar sensor shows the pronounced discretization of the lateral measurement. The
direct transfer of the radars’ measured variables into the simulation would lead to sudden,
physically implausible jumps in an object’s trajectory. Although the radial velocity of
objects is measured by the radar with high precision, the discretization by the sensor used
in this example makes post-processing necessary in order to obtain a feasible motion profile.

There is reasonable hope that high-accuracy motion analyzers, which combine GNSS
position measurements as well as accelerations and angular rates captured by inertial
measurement unit (IMU) sensors, can be used to capture the motion of agents with high
precision. An exemplary device is the GeneSys Automotive Dynamic Motion Analyzer
(ADMA) or the RT device series by OXTS. The corresponding measurements of such a
device are also shown in Figure 2 and denoted by “Ref”. However, the question remains as
to the actual accuracy of measuring motion and transferring the motion to the simulation.
The central question of this paper is therefore as follows: How much accuracy does a
reference measurement system really provide and how does one perform its calibration?

3. Related Work

Real-world traffic is a suitable data source for developing and testing automated
driving functions because it is highly diverse and has random characteristics. Moreover,
regarding simulation aspects, real-world data offer the highest possible quality for the
validation of simulation models. Consequently, there are several previously reported
approaches to transfer a real-world test drive into the simulation.

Roughly speaking, two categories can be found. These are, on the one hand, object
list-based approaches. Here, the object list from sensors or a fused sensor cluster is taken
as the starting point for scenario reconstruction. The goal of this method is to prepare
real data for a scenario-based testing approach in the simulation. Regarding the study of
absolute accuracy, previous work in the field of reference sensing deals with obtaining the
accuracy that is achievable with contemporary automotive grade perception sensors.

3.1. Object List-Based Approach

In the literature, there are approaches known in which the object lists of the sensors
are used to transfer the recorded scenario into a simulation. These methods aim to extract
a concrete scenario from the measurement data in the sense of scenario-based testing.
Logical scenarios can be abstracted from this. A typical pipeline consumes sensor data (e.g.,
object lists, point clouds, etc.) and compiles a standardized scenario description using the
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OpenScenario/OpenDrive language format. A typical example is the framework proposed
by Wagner et al. that relies on lidar sensors [3]. It is capable of sensing road objects as well
as road semantics (e.g., road geometry, lane markings, etc.). There are also a number of
commercial suppliers in this field that compile scenario data from sensor readings, such
as [4,5].

These methods require a comprehensive object list as well as additional sensor data
to facilitate the inference of the road properties or street layout. This prerequisite is not
fulfilled in many everyday traffic situations, such as the occurrence of occlusions, or the
cutting in/out of objects. Object detection is generally not reliable in such moments. This
constraints can be gradually resolved by manual annotations of sensor data. There are
no uniform quality standards, to the best of our knowledge, for the required accuracy of
such methods. Based on the published information about these procedures, there is an
impression that a visual inspection is performed by experts or the test engineers.

Services that provide so-called GT information for the annotation of sensor data (lidar
point cloud, camera images), such as [6,7], are not within the scope of this paper because
no reference data are used for this purpose. Instead, recorded sensor data, which may
be calibrated extrinsically to each other when multiple sensor modalities are used, are
annotated in a manual or (semi-)automated fashion.

3.2. Reference Sensors

With the help of reference sensors (e.g., high-precision GNSS measurement technology
or laser scanners), the position of traffic participants can be obtained within the respective
measurement accuracy. Data sets such as KITTI, nuScenes, WaymoOpen, etc., therefore
provide GT information of traffic participants obtained from an automotive-grade laser
scanner mounted on the roof of the ego vehicle. This approach provides useful results for
annotating bounding boxes such as those used for labeling in machine learning methods.
Minor inaccuracies in the labeling, so-called label noise, can even increase the robustness
of the learning algorithm under certain circumstances. In order to use bounding boxes
that are labeled in this way as a reference when transferring the scenario to the simulation,
a specification of the accuracy over several time steps is required. This is not given in most
data sets. The suitability of automotive-grade lidar sensors was investigated in a paper
by Schalling et al. [8]. However, the limitations of lidar sensors with respect to the factors
influencing their measurement result prevent their justification as GT sensors.

Thorough research on referencing the reference system (“super-referencing”) has been
presented by Brahmi [9]. His focus is on the evaluation of object-based advanced driver
assistance system (ADAS) systems. The basic ideas presented in his thesis can essentially be
applied to the problem of this paper, namely the transfer of a real test drive to a simulation.

In a paper by Steinhard, the suitability of a lidar sensor system for GT determination is
investigated [10]. As with Brahmi, a high-precision laser scanner with sub-mm resolution
serves as a super-reference.

3.3. Gaps in State of the Art

The determination of GT is mostly done via RTK-based GNSS or high-precision lidar
sensors with mm-scale resolution e.g., Leica D5. In this context, however, there is no
verification that the proclaimed accuracy is actually met under all circumstances. Previous
experiments, such as the work from Brahmi [9], have indeed identified the need for a
calibration procedure with reference sensors. What remains unresolved so far is to study
the fidelity of “GT” in dynamic cases, as well as the stationary analysis of the yaw angle
between two reference systems, which is of the utmost interest in reflectivity studies and
signal drift.

The digitalizing of a test run relies on the position accuracy of the RTK-based GNSS
device. However, it lacks the discussion of whether the proclaimed accuracy is maintained
during dynamic situations. Modern lidar and high-resolution radar sensors have distance
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resolutions in the cm range. If sensor models are to be validated, high demands are
therefore made on the accuracy of the trajectory reproduction in the simulation.

4. Calibration Aspects: The Need for a Super-Reference

At this point, a discussion of the term “GT” in the context of automotive simulation is
needed to obtain a common understanding of it. It is often used to describe the true state
of an object, and potentially also the future state, e.g., in terms of planned actions. Thus,
there is a state that can be estimated or measured. Its true value is called GT. It is initially
irrelevant how GT is determined. The only relevant aspect is that the GT value serves as a
reference against other methods for determining a certain value (measurement, estimation).
Especially in the field of virtual environments, which consider 3D representations of
objects, the term can be used in a broader sense: it covers material assignments, reflectively
properties, as well as geometry detailing, and others.

When a “GT” is obtained with a prospective device, the resulting deviations can be
conceptualized in terms of “accuracy” and “precision”. The term “accuracy” is defined
as “the degree to which the result of a measurement or calculation matches the correct value or
a standard” [11]. Moreover, the term “precision” is defined as “the quality of being exact,
accurate and careful” [12].

GT can hardly claim to be completely accurate. It represents rather a value that can be
faithfully measured to the best of one’s knowledge and belief, as well as up to the accuracy
of the measurement equipment used. Prominent examples are object states, such as its
longitudinal and lateral positions, as well as the object’s orientation. Measurement errors of
all kinds, as they are present in all measuring instruments, mean that GT can basically only
be obtained with finite accuracy. Nevertheless, the measurement data obtained using the
highest-precision device are considered to be a GT measurement. Consequently, a GT to
the “GT” is needed. Thus, for verification of the reference sensor, a more accurate reference
is needed, the so-called “super-reference”. We define the term “super-reference” as follows:

“Comparing the result ξ obtained by device A to that of device B. The underlying
measurement principle of B is fundamentally different to A, i.e., B is invariant to error
sources of A. Measuring ξ by means of B is characterized by high fidelity, accuracy,
repeatability, and intuition. B is thereby seen as a super-reference for obtaining ξ”.

In order to distinguish the term “super-reference” from the calibration of a measuring
device, the definition of calibration is considered. Calibration is defined as “to mark units of
measurement on an instrument so that it can be used for measuring something accurately” [13].
Therefore, the usability of a measuring device for determining the “GT” is qualified by a
calibration procedure.

The “super-reference” principle is demonstrated using position measurements with
GNSS. A GNSS device is chosen to serve as a reference measurement technique. To deter-
mine the shortest distance between two GNSS points, their Euclidean distance according
to the obtained GNSS positions can be used. The result is subject to all errors affecting
the GNSS measurements and can only be seen as correct within ±2 cm. A super-reference
for calibrating this method is given by a length-measuring device such as a tape measure
or meter stick, which usually have an accuracy level in the sub-mm range according to
EC Regulation 2004/22/EC [14]. Thereby, the demand for accuracy during the setup of
the measurement to obtain these values has to be absolutely exact regarding experimental
conduct.

4.1. Super-Referencing in Automotive Use Cases

The current state of an object is given by its translational and rotational degrees of
freedom and the respective rates of change and accelerations, which are defined accord-
ing ISO 8855 [15]. In a Cartesian frame, these would be x = [x, y, z, φ, θ, ψ] along with
ẋ = [ẋ, ẏ, ż, φ̇, θ̇, ψ̇] and ẍ = [ẍ, ÿ, z̈, φ̈, θ̈, ψ̈], as well as

...x when also considering jerk.
For the calibration of these 24 quantities, only the longitudinal acceleration values offer

a natural reference value: standard acceleration due to gravity (approx. 9.81 m/s2 [16]) can
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be calculated for different locations and altitudes [17]. An acceleration sensor measuring
along the axis pointing to the center of the earth can be referenced via this value. Aids are
required for calibrating the other measured variables. For example, translational distances
can be referenced via auxiliary means, such as the aforementioned meter stick. With
respect to manufacturing tolerances, high-precision Computerized Numerical Control
(CNC) machinery would provide sufficient accuracy for calibration rotation angles [18].

Finding a super-reference is more difficult for velocities. Although the speed of sound
defines a reference, it is beyond relevant velocities in the automotive domain. Furthermore,
the specified velocity resolution of precision-measuring instruments such as ADMA or
OXTS is in the range of less than 0.01 m/s. This is an order of magnitude above the velocity
resolution of automotive radar sensors via the Doppler effect [19] (p. 272).

Technically, velocity can be determined by the change in location within a time interval.
However, this requires very high sampling rates in the automotive context, as the following
calculation example illustrates: let an object’s longitudinal velocity ẋ = 10 m/s and the
lowest possible distance between two measurement points ∆x = 5 cm be the parameters
of the measurement setup; the necessary sampling frequency fs is calculated by the time
difference between ẋ and the sum of ẋ and the velocity accuracy ∆ẋ = 0.01 m/s. Then, the
following consideration is valid under the assumption of constant velocity.

fs =
1

∆x
ẋ −

∆x
ẋ+∆ẋ

≈ 200 kHz (1)

This sampling frequency exposes high demands on typical measurement devices and
is therefore beyond the scope of our considerations.

4.2. Materials and Methods for Practical Super-Referencing

The following section is organized as follows: first, the ADMA is described. Next,
the different experimental setups for super-referencing the lateral ySRef and longitudinal
xSRef position in stationary and dynamic cases with the corresponding materials, as well
as determination of the yaw angle, are described. Thereby, the index “SRef” denotes the
super-reference measurement. In the automotive sensor modeling and validation context,
these values are of the utmost interest.

The ADMA-G-PRO+ by Genesys Offenburg GmbH is available as a reference mea-
surement technique in this study. Because of the high accuracy of up to ±2 cm [20], high
sampling frequencies of up to 1000 Hz and the possibility to use the device as standalone,
as well as the combination of two systems, the methods and results can be generalized for
comparable devices. Next to the position, the yaw angle accuracy is specified by±0.05◦ [21]
and the velocity is measured with an accuracy of less than ±0.01 m/s.

The ADMA is mounted via a rack on the vehicle. To configure the device, the mounting
offset between its measuring center and the GNSS antenna is required. The ADMA is
capable of outputting the poses and their derivatives in a defined point of interest (POI),
provided that their positions with regard to its measuring center are known. In our case,
we define and measure two POIs: the center of the rear axle and the connection point of
a tow bar in the front/back of the vehicle. We use cross line lasers, a measurement tape,
and meter rods to determine the described aforementioned offsets with an accuracy of
±2 mm. Additional supporting points are obtained by photogrammetry measurement of
the vehicle.

4.2.1. Calibration of Lateral and Longitudinal Position in Stationary Conditions

To determine the correct measurement procedure during the setup of the ADMA and
antenna in the vehicle, a stationary calibration experiment has to be conducted to ensure
lateral and longitudinal positioning correctness. The accuracy of the measurement device
can be determined by two reference points. These points must be known with regard to
their geodetic or Cartesian position. One of these reference points marks the origin of a
local coordinate system, of which one axis spans through the second reference point. For



Energies 2022, 15, 989 7 of 16

a positioning device, a given lateral/longitudinal displacement between the POI and the
measurement origin is to be indicated. When one of them is brought to zero, the other
quantity can be determined directly. The method is applicable for a single or dual car setup.

For the single-car calibration, the vehicle equipped with the positioning measurement
device is placed along one of the axes of the reference coordinate system; see Figure 3a. The
measured longitudinal component should now indicate zero, while the lateral component
can be determined with a reliable distance measurement device such as a meter stick. The
remaining errors indicate the calibration offsets of the positioning device, such as in the
aforementioned mounting offsets.

For determining the position of two cars with regard to each other, the setup is
fundamentally similar. The rear axles of two vehicles are placed parallel to each other,
resulting in zero displacement in the longitudinal direction. The lateral distance can now
be obtained in the same way with a meter stick. To ensure the correct positioning of the
vehicle’s POI at the position Lx = 0 in a local coordinate system “L”, a cross line laser is
used. The super-reference measurement of ∆LySRef is done by means of two cross line
lasers focusing on the middle axis of the vehicles, as visualized in Figure 3b. The measured
values are then compared to the output of the GNSS device.

Ly

Lx

(a)

∆LySRef

(b)
Figure 3. Dual-car calibration setup. Super-reference is provided by perpendicular cross line
laser lines. (a) Zero longitudinal offset (i.e., ∆LxSRef = 0) between the vehicles is verified by cross line
laser through center of rear axles. (b) Lateral offset is obtained by measuring the distance between
cross line laser lines focusing along the vehicle’s middle axis.

4.2.2. Yaw Angle

The yaw angle and, in turn, the relative orientation between vehicles is among the
relevant quantities in evaluating movement patterns in road traffic. Given the sensitivity of
the reflectivity of vehicles with regard to the aspect angle for radar and lidar sensors, its
accurate determination is highly desirable.

When using IMU-based systems for angle measurement, drift of the displayed angle
may occur. This error is caused by the integration of the measured rotation rate and the
angular acceleration by the IMU. An offset error can hardly be avoided, which results in
a higher drift after a longer operating time, without correction by additional efforts. This
so-called drift stability is usually provided in the sensor specification.

As a super-reference for the yaw angle, the cosine theorem is used: it determines the

enclosed angles from the given side length of a triangle, i.e., cos(ψSRef) =
x2

1+x2
2−d2

2x1x2
. The

measurement setup for the stationary yaw angle super-reference is shown in Figure 4. This
experiment is suitable as a super-reference, because the underlying measurement principle
is completely different in comparison to the device under test.

CLL1

CLL2
ψSRef

Car1

Car2

x1 = 2 m

x2 = 2 m

d

Figure 4. Measurement setup for yaw angle super-reference.
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We use two cross line lasers, which are positioned in the same directions as the x-axes
of the two cars, to obtain the origin of the straight x1 and x2. Cross line lasers are aligned so
that they point exactly through the centerline of the vehicles. The manufacturer’s logo on
the trunk and the shark radio antenna on the roof serve as support points when aligning
the lasers. Starting from the intersection of the laser lines, the side lengths of the triangle
can now be determined. The edges x1 and x2 are determined using a 2 m long meter stick.
Meter rods offer accuracy classes in the sub-mm range, which is considered adequate for
the intended use here. This simplifies angle determination by means of the law of cosine
because two side lengths are already fixed. The length of d is measured by a measurement tape
and ψ is calculated by the three given lengths and the cosine theorem. Five measurements are
made within 36 min. The accuracy of this measurement method can be calculated based on the
Gaussian error propagation. The values for the error propagation are x1 = x2 = 2 ± 0.005 m,
dmin = 0.902 ± 0.005 m and dmax = 1.529 ± 0.005 m.

∆ψmax,SRef =

∣∣∣∣ ∂ψ

∂x1

∣∣∣∣∆x1 +

∣∣∣∣ ∂ψ

∂x2

∣∣∣∣∆x2 +

∣∣∣∣∂ψ

∂d

∣∣∣∣∆d = ±0.085deg (2)

4.2.3. Absolute Positioning in Dynamic Case

To investigate the absolute accuracy of the reference measurement technique in the
dynamic case, the following experiment is proposed: a vehicle passes through three light
barriers designated as Lb1, Lb2, and Lb3. These are aligned perpendicular to the roadway.
The timesteps tLb1...3 at which a light barrier is crossed mark the point in time with zero
longitudinal offset between the light barrier and the front point of the vehicle in a light
barrier-centered coordinate system. In addition, a foam line is drawn perpendicular to the
road. The measurement principle of the super-reference is again completely different to the
ADMA and therefore this experiment is suitable as a super-reference. The full measurement
setup is illustrated in Figure 5.

Car1

Lb1 Lb2 Lb3

Foam 21.86 m 28.23 m

C1 x/y

Lb1
x/y Lb3 x/yLb2 x/y

Figure 5. Measurement setup for super-referencing absolute positioning in the dynamic case.

The error of the reference system is found at each light barrier as

εlat(tLb1...3) = C1 xRef(tLb1...3) − Lb1...3 xSRef(tLb1...3). (3)

and when crossing the foam line, the lateral error can be determined based on the tire
marks that remain on the foam. The lateral offset can only be determined at the wheels. The
imprint of the tires is determined with a measurement tape and gives the lateral distance
between the light barrier and the wheels. To account for the offset between the front of the
vehicle and the front axle, the foam line is applied in front of the light barrier with an offset
by this amount to minimize errors due to yaw angles. In other words, the longitudinal
offset is known at the time at which the light barrier is crossed and should be zero. The
longitudinal error is obtained at tLb1...3 for each light barrier and reads:

εlong(tLb1...3) = C1 yRef(tLb1...3) − Lb1...3 ySRef(tLb1...3). (4)

The experiment is conducted with the vehicle passing the light barriers at a constant
velocity of 30 km/h and with an initial set speed of ẋC1 = 100 km/h at Lb1 and braking.
When the vehicle is decelerated while passing through the light barriers, the accuracy of
the positioning in the dynamic case can be studied. Crossing the barriers with constant
velocity indicates the potential sensitivity of positioning errors to velocity.
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Three SICK WL 12-2 light barriers that have a specified delay time of 330 µs are chosen
for use in the experiment. The light barriers are connected to a second ADMA that is placed
stationary next to Lb2. Time synchronization between both devices is given by timestamps
conveyed in the GNSS signal. Both ADMAs operate with fs = 1000 Hz to minimize the
positioning error due to sampling discretization.

The position of the light barriers in GNSS coordinates is measured with the RTK-aided
Piksi Multi GNSS Module by Swift Navigation. The position of the point is averaged by
measurement over 60 s. The verification of these GNSS coordinates is given as it matches
the distance between the light barriers, which is determined by a measuring tape with
mm accuracy. The spherical GNSS coordinates are converted into an East-North-Up (ENU)
coordinate system based on the WGS84 ellipsoid, which is a metric Cartesian system.

4.2.4. Relative Positioning between Vehicles in Dynamic Case

To determine the accuracy of the ADMA in the dual measurement setup under dy-
namic conditions, a constant distance between the two vehicles can be used. A tow bar
mounted between two vehicles fulfills the requirement between the respective mounting
points, also while driving. The position of the towing lugs on the vehicles relative to the
ADMA is defined as a POI. By using the positioning information obtained, the calibration
goal is to obtain the length of the tow bar, denoted ltb,Ref, which is assumed constant when
neglecting strain effects of materials. Then, the resulting error, i.e., εtb = ltb,Ref − ltb,SRef,
is obtained, which should give zero for an ideal measurement. Measured length ltb,SRef
by a measuring tape of the tow bar is defined as the Euclidean distance of the measured
mounting points in Cartesian world coordinates, i.e.,

ltb,Ref =

∥∥∥∥(Lx2 −L x1

Ly2 −L y1

)∥∥∥∥
2

(5)

Car1 accelerates from standstill to a given set speed. After a period of constant velocity,
the front vehicle brakes the convoy to standstill. The velocity is controlled by Car1’s speed
limiter, while Car2 rolls behind in towing mode, i.e., neutral gear position. Three velocity
profiles were studied, each with multiple repetitions.

1. 0→ 30 km/h→maintaining→ 60 km/h→maintaining→ 30 km/h→maintaining
→ 0

2. 0→ 30 km/h→maintaining→ 0
3. 0→ 80 km/h→maintaining→ 0

The profiles differ in the duration and intensity of acceleration or deceleration, as well
as the duration of cruising at “constant” speed. In this way, the influence of these motion
phases on the error can be studied. It is to be noted that the set speed of the speed limiter is
the speedometer value, which is above the actual GT speed. The general scenario setup is
shown in Figure 6.

Car2 Car1
tow bar

(Lx2,L y2) (Lx1,L y1)Lx

Ly

Figure 6. Measurement setup for dynamic dual super-reference with a tow bar in a local coordinate
system L.

5. Super-Referencing Results Obtained in Practical Experiments

The proposed super-reference methods were performed at the August Euler airfield
near Darmstadt, Germany, between April and September 2021. The ADMA devices used
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were mounted, measured, and initialized according to the manufacturer’s instructions.
A 2015 VW Golk Mk7 and a 2018 Mercedes S Class V222 were available as test vehicles.

5.1. Yaw Angle

Figure 7 shows the results of our yaw angle referencing experiment. It compares the
heading angle as calculated from the law of cosine to the measured value from the ADMA,
i.e., εψ = |ψRef − ψSRef|. The experiment was conducted five times at various positions and
data were collected for around 60 s each. The vehicles were moved only for the purpose
of changing position and were otherwise stationary, especially during the determination
of the super-reference, which took a couple of minutes. Stationary operating conditions
particularly favor the occurrence of yaw angle drift. The drift objectively shows little effect
and the deviations are less than 1 deg even after 36 min. It should be noted that the IMU
and GNSS fusion system utilizes the dynamic movements of the device. Such a stationary
experiment over a long time is challenging for the system. Drift is therefore an expected
side effect.

Trial 1 @ 0 min Trial 2 @ 6 min Trial 3 @ 19 min Trial 4 @ 28 min Trial 5 @ 36 min
0

0.2

0.4

0.6

0.8

ε ψ
in

de
g

Figure 7. Statistical analysis of heading angle error εψ.

5.2. Absolute Positioning in Dynamic Case

The results of the super-referencing absolute positioning in the dynamic case by using
light barriers (see Section 4.2.3) are shown in Figure 8. The lateral and longitudinal errors
are denoted by εlat and εlong, respectively.

0 1 2 3 4 5
0

2

4

εlong in cm

ε l
at

in
cm

25 m/s Lb1
20 m/s Lb2
10 m/s Lb3
8 m/s Lb1
8 m/s Lb2
8 m/s Lb3
ADMA accuracy

Figure 8. Lateral εlat vs. longitudinal error εlong obtained by light barriers and foam.

In general, high longitudinal and lateral precision in the three trials of every exper-
iment and light barrier position is achieved. It is to be noted that εlong is larger with a
higher speed of the vehicle as it crosses the light barrier. Therefore, low velocities should
be used as target velocities to achieve sufficient accuracy or devices with higher sampling
frequencies. This is explained with measurement errors due to the light barrier’s time delay
∆tLb = 330µs [22]. This explains the decreasing deviation in the longitudinal direction with
decreasing speed, visible by the triangle markers. The delay results in a worst-case error at
25 m/s of

εlong,max = ẋC1,max∆tLb = 8 mm @ 25 m/s. (6)

The remaining deviation is the error of the ADMA and the positioning error of the
experimental setup. The lateral error εlat of our calibration method shows deviations
higher than the proclaimed accuracy of the ADMA consistently present at the second light
barrier. It shows deviations of around 2.5 cm from the proclaimed accuracy and indicates
the experimental setup error. The ADMA’s error in the absolute dynamic case with a low
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velocity is always positive and differs between 0 cm and 3.8 cm in the longitudinal and
0.5 cm and 4.5 cm in the lateral direction.

5.3. Relative Positioning in Dynamic Case

The relative positioning error in the dynamic case is obtained by estimating the length
of a tow bar mounted between two vehicles while driving; see Section 4.2.4. Figure 9 shows
exemplary results obtained during one trial of the experiment. It is structured as follows:
the error, which is obtained when estimating the tow bar length, i.e., εtb, varies within
±3 cm. Because of the dual measurement setup, the worst-case error based on (5) and
∆x1/2 = ∆y1/2 = ∆x = ±2 cm is:

∆εtb =
√
(∆x1 + ∆x2)2 + (∆y1 + ∆y2)2 = 2

√
2∆x = 5.7 cm (7)

Therefore, the deviation of the devices is in accordance with their specification. Longi-
tudinal acceleration in Car1 or Car2 with the fixed coordinate system shows little difference
due to the mechanical coupling by the tow bar, which causes crabbing at the rear car.
Moreover, the velocity profile is shown and does not indicate a strong correlation between
error dynamics and longitudinal acceleration.

0 20 40 60 80 100
−4

−2

0

2

4

6

Passed time in s

O
bt

ai
ne

d
qu

an
ti

ty

εtb in cm

C1 ẍRef in m/s2

C2 ẍRef in m/s2

C1 ẋRef/10 in km/h

Figure 9. Exemplary measurement reading from one out of five trials. The distance error in cm,
longitudinal acceleration, and velocity of the front vehicle are shown. Note that velocity is scaled for
better readability. The color gradient with the velocity indicates the running time.

In Figure 10, the influence of velocity and acceleration on εtb is shown. The time
course of the velocity or acceleration profile is coded in the color gradient from black to
light brown and all trials of the experiment are shown. Studying the sensitivity of εtb to
velocity reveals three consistent characteristics for all tests; see the left column in Figure 10.

1. The error shows a fluctuation range of approximately 2 cm during quasi-stationary
driving and matches the specification.

2. During acceleration and braking phases, the error remains at a tolerable constant
value within the fluctuation range.

3. When reaching standstill, the error settles at a certain value, which lies inside the
specification of the dual measurement setup.

No consistent correlations follow from the acceleration profile, as shown in the right
column of Figure 10. However, it can be seen that the error also changes during the
acceleration phases in the range of a few cm. It is worth noting, however, that the error
profile shows some consistency when the acceleration profile is similar, as shown in the
portion highlighted by a light blue ellipse in the right column and the first row of Figure 10.
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Figure 10. In the left column, εtb vs. velocity is shown for the different velocity profiles mentioned in
Section 4.2.4. During areas of “constant” speed, the distance error settles within the accuracy of the
measurement devices. In the right column, εtb vs. acceleration is shown. The distance error dynamics
show only low sensitivity to acceleration. All trials are depicted and running time is denoted by the
line’s color gradient.

6. Feasibility of Transferring Real-World Test Drives to Simulation

The main interest in using reference sensors in the context of virtual validation is
ultimately to transfer real-world test drives to virtual environments. Under the so-called
“Measurement2Sim” method, modern simulation tools such as IPG CarMaker, Vires VTD,
or CARLA are able to control an actor’s position based on a given trajectory. The tow
bar experiments are suitable to represent a simulation’s capability to render recorded
measurements in the movement of objects. For this purpose, these experiments were
transferred to two different simulation environments: Sim1 and Sim2.

The results are given in Figure 11 and are organized as follows. The left column shows
the error εSim1 of the first simulation and the right column shows the error εSim2 of the
second simulation. The topmost figures show five trials of the experiment, where the
two vehicles undergo two phases of acceleration and deceleration with semi-stationary
drive in between, i.e., from 0 to 30 km/h, 30 km/h to 60 km/h, back to 30 km/h, and
finally to 0. The middle figures show the experiment with 30 km/h and the bottom
figures with 80 km/h. The figures visualize the error between the reference measurement,
as discussed in Section 5.3, and the simulation environment. Zero error would indicate that
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the measurement of the distance between vehicles, obtained either in simulation or via the
reference measurement, exactly corresponds to the length of the tow bar.

εSim1/2 = (ltb,Sim1/2 − ltb,Ref) (8)
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ẋRef/10 in km/h

ε S
im

2
in

cm

0 2 4 6 8
−10

−5

0

5
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Figure 11. In the left column, εSim1 vs. velocity is shown for the different velocity profiles in the first
simulation. In the right column, εSim2 vs. the same profiles is shown in the second simulation. Each
trial is visualized with a different color.

The experiments show that the resulting deviations vary between trials through all
trials of the experiments. The error in both simulation tools thereby shows sensitivity to
velocity: from the results shown, it can be concluded that the error becomes less with lower
speeds, while showing the largest error during phases of acceleration or deceleration. In the
first simulation during phases of semi-stationary velocities, the error occasionally extends
the proclaimed accuracy of the ADMA. In the second simulation, in turn, the errors are
always in the accuracy range.

Our results show that the reenacting of test drives performs best with the first simula-
tion tool when the velocities of the vehicles are kept fairly constant and the accelerations are
low, i.e., less than 2 m/s2. The absolute deviation between measurement and simulation is
in orders of magnitude exceeding the distance resolution of lidar sensors or high-resolution
radar sensors. This makes the comparison of simulation to measurement considerably
more difficult, since the basis of comparison shows deviations.
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7. Discussion

In this paper, we present four different experimental setups to obtain super-reference
measurements. With the proposed methods, the confidence in GNSS- and IMU-based
reference data for lateral and longitudinal positions can be strengthened in stationary and
dynamic cases, as well as the drift analysis of the stationary yaw angle. We note that the
highest precision is required when setting up the measurement equipment in order to
achieve useful results in terms of super-referencing. During our experimental setups, we
encountered the necessity of excellent measuring conditions regarding GNSS measurement
devices, because the accuracy of the device’s data is highly dependent on the surrounding
conditions. Effects such as multipath propagation, shading by other objects, and loss of
differential GNSS and RTK connection result in deviation that is an order of magnitude
above ideal conditions.

Our experiments reveal the strengths and weaknesses of the reference system under
study, the ADMA. The stated measurement accuracy is almost consistently met. The
yaw angle measurement quantifies the expected drift of the device. The reference system
confirms the proclaimed accuracy during the light barrier experiment. The experiment
shows the difficulty in verifying the position accuracy by means of the super-reference,
showing less deviation than the system under test. In the dynamic dual measurement setup
with the tow bar, the deviation always lies within the specification.

Our comparison of the simulation and real test drive shows a new possibility of
verifying the fidelity of so-called “Measurement2Sim” methods. Not only the transfer
of the trajectory into the simulation is a source of deviations between measurements
and simulation, but also the simulation tool itself provides errors due to the trajectory
discretization. The results between the two simulation tools differ clearly. The sources of
the deviations cannot be directly identified. When the “Measurement2Sim” method is used
in the context of validation of sensor models, it has to be noted that the deviation must not
exceed the accuracy of the sensor itself. In the case of lidar, typically, accuracy lies within
in the centimeter range. The second simulation tool is better suited to reproducing sensor
effects in sensor simulation models with the “Measurement2Sim” method. This simulation
tool converts the trajectories very well on the basis of an OpenScenario xosc file based on
the measurements of x = [x, y, z, φ, θ, ψ]. For future verification and validation experiments
in combination with “Measurement2Sim” methods, we highly recommend the analysis of
the transfer error of the measurement into the simulation.

Regarding virtual validation by means of digital twins, our results indicate that
sample validation using “reference measurement sensors” can hardly be achieved. This is
of particular importance when considering the accuracy of perception sensors, which is
close to the stochastic deviation margin of the reference measurement system. Rather, our
findings strengthen the argumentation for stochastic validation approaches that explicitly
take the measurement uncertainties of the reference system into account.
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The following abbreviations are used in this manuscript:

ACC Adaptive cruise control
AD Automated driving
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ADMA Automotive dynamic motion analyzer
CAN Controller area network
GNSS Global navigation satellite system
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IMU Inertial measurement unit
POI Point of interest
RTK Real-time kinematics
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Vehicles Under Real-World Driving Conditions:
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Abstract—In the virtual validation of automated driving,
trustworthy simulation models of perception sensors are
required. Radar sensors are particularly hard to model,
as their measurements are notoriously difficult to interpret.
This is due to their complex measurement principle, involving
multipath propagation of mm-waves, varying backscattering
characteristics of objects, and further factors such as limited
measurement ranges and resolutions that introduce uncer-
tainty to the measurements. This work presents a method
for studying the backscatter characteristics of vehicles under
real-world driving conditions. A slalom-like driving scenario,
which is representative of road driving where the vehicle is
visible under different aspect angles, has been designed.
It aims at a high level of reproducibility of the trajectories
driven by the vehicles, hence reducing additional sources
of uncertainty that were otherwise present in the measure-
ments. In a large-scale measurement campaign, 13 vehicles have been studied. The vehicles under test are observed by
multiple radars, mounted at different heights, and carry reference sensors for obtaining their positions. In this article,
we present the measurement campaign and show major findings from our measurement results. Our focus lies on
drawing conclusions for trustworthy sensor simulation. Both sensor measurement data and MATLAB code for data
analysis are made publicly available alongside this article.

Index Terms— Millimeter-wave sensors, sensor model analysis, sensor testing and evaluation.

I. INTRODUCTION

V IRTUAL test methods are required for the release of
automated driving. Such methods use simulation models

of the involved sensor modalities. Radar sensors are of the
utmost importance for automated driving functions, due to
their ability to measure relative velocity, robustness against
adversarial weather conditions, and low costs in comparison
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to frequency-modulated continuous-wave (FMCW) lidar
systems.

Still, the development of simulation models of radar sensors,
which are ready for deployment in simulation-based testing
toolchains, is the subject of current research. A research
problem, that is closely linked to radar sensor simulation, is the
ability to model mm-wave scattering behavior realistically in
virtual environments. Radar measurements are known to have
a noisy characteristic, which originates from the measurement
principle. Physically interpretable quantities, such as range,
velocity due to the Doppler effect, and angular positions
are deduced from spectral analysis of modulated mm-wave
signals.

The backscattered energy is dictating the existence and
achievable accuracy of radar detection. In radar theory, the
physics for obtaining backscatter is conceptually absorbed in
the radar cross section (RCS) denoted as σ . It is a measure of
the strength of the signal reflected by an object. Influencing
factors include object size, geometry, material, wavelength,
and aspect angle under which the object is visible to the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Stochastic nature of RCS observed for a vehicle during five
trials. The average value is indicated as a bold line and is obtained by
using a moving average filter over 2.5 s. In our work, we use Q(σ) to
denote RCS in the logarithmic scale, and σ for the linear scale.

sensor [1]. When inserted into the radar equation [2], as given
in the following equation, the received power PRx can be
obtained:

PRx = PTx
G2 V 2

mp σ λ
2

(4π)3 r4 . (1)

Here, PTx denotes the transmitted power, and G, λ, and
r denote the antenna gain, wavelength, and radial distance,
respectively. This equation disregards the atmospheric attenu-
ation and introduces Vmp as the so-called shaking factor (0 ≤

Vmp ≤ 2) to account for influences by multipath propagation.
The RCS is well known, or analytically available, for simple

geometries such as flat plates, spheres, or corner cube reflec-
tors (CCRs). Analytical models are, however, not available for
large objects with complex surfaces, such as vehicles.

In automotive radars, the RCS of objects is not mea-
sured directly. Instead, it is inferred from the received sig-
nal strength, the radial distance, and the angular position.
Therefore, influences due to the free-space propagation loss,
which is governed by r−4, and the antenna gain pattern are
compensated. Still, it is widely used as a quantification of the
backscatter on an ordinal scale. Therefore, RCS, indicating
the intensity of a detection, allows for object detection or free
space estimation [3]. The noisy characteristic of the received
power is also present when obtaining the corresponding RCS
values in measurements. This is illustrated by the following
example, obtained in a simple scenario where a vehicle is
placed in front of the Ego vehicle, where “Ego” refers to the
radar sensor carrier vehicle. As it is traveling at a higher speed
than the Ego, the distance between the cars increases gradually.
The RCS of the detections associated with the object of interest
(OOI) are displayed in Fig. 1 and a distinct stochastic nature
of the RCS is visible. By smoothing the noisy measurements,
a moderately constant RCS value is revealed. This is, however,
overlaid by additional phenomena, for example, multipath
propagation, that causes a significant spread between repe-
titions and even adjacent measurement values. These results
indicate that RCS measurement is influenced by the number
of factors in a stochastic, nondeterministic fashion.

Radar models must be validated with real data to allow
their usage for virtual safety validation. Therefore, the virtual

environment is assessed together with the sensor model, as the
real sensor is also subject to many real-world effects outside of
idealized testbench conditions and anechoic radar chambers.

Although methods from the field of computational electro-
magnetic wave propagation allow us to compute backscatter
profiles, it is debatable to what extent such simulation results
may be transferred into real-world conditions. In reality, effects
like multipath propagation and interference directly influence
the RCS profiles and the validity of analytical models in
comparison to real-world measurements, as it is highlighted
in [4] and [5]. Similarly, measurement campaigns conducted in
anechoic radar chambers need yet to prove their applicability
to field measurements on public roads.

Therefore, we conducted an open-source available large-
scale measurement campaign to obtain vehicle RCS pat-
terns from automotive radar sensors under real driving
conditions.

A. Related Work
The noisy and random nature of RCS is a well-known

phenomenon in many radar applications. In radar literature,
stochastic behavior is also referred to as fluctuation loss.
Prominent research on this topic was carried out already in
1954 by Swerling [6]. He derived probabilistic models based
on Rayleigh distributions describing the statistical properties
of the RCS of objects with complexly formed surfaces, such
as an aircraft. However, their application to automotive radar
application, operating at mm-waves, is limited as different
conditions apply here: Most notable is the presence of mul-
tipath reflections, for example, induced by reflections of the
pavement, which are not present in airborne radar.

For automotive radar, a number of researchers have carried
out reflectivity measurements in anechoic chambers obtained
with automotive-grade radars, or vector network analyzers [7],
[8]. Here, a vehicle has been placed on a rotating plate and
its 360◦ RCS profile has been obtained from the received
signal strength for a given rotation angle. Direct applicability
of such results to automotive scenarios is not immediate,
since the distance between radar and object is often chosen
to be very small (e.g., less than 25 m), which is debatable
for two reasons: First, the Fraunhofer criterion for far-field
with typical aperture sizes in automotive radar is only fulfilled
with 15 m onward. Second, long-range radar usually deploys
high-pass filtering to avoid overloading the analog-to-digital
(AD) converter for detections close to the sensor. Nevertheless,
these results retain their validity and the fact that comparable
results have been generated in different studies emphasizes
their integrity. As the RCS profile is computationally expensive
to calculate, simplified models have been derived. Based on
observations and measurements, so-called “scattering center
models” have been proposed [9], [10]. This theory assumes
the total reflectivity of complex geometries such as vehicles
is composed of individual scatterers. At the same time, there
are areas on the vehicle from which a stronger backscatter
is expected, such as the license plate, the wheel arches,
or the exterior mirrors. The challenge with such models is
the deduction of generalizability to different vehicle types and
sizes, as large databases are missing.
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In recent years, more radar datasets became publicly
available, such as View-of-Delft [11], Radar Scenes [12],
nuScenes [13], and others. They are designed for benchmark-
ing and development of object detection and classification
algorithms. It is difficult to extract reproducible scenarios
for detailed RCS investigations from such datasets. In most
scenes, parked (static) vehicles can be seen, or the rear of the
vehicles in front while following behind. Annotations are often
only available via lidar or bounding boxes, which typically do
not have the precision of dedicated global navigation satellite
system (GNSS) measurements.

We, therefore, design our study of vehicle backscatter such
that it is representative of real road traffic conditions and
at the same time generates a broad statement through many
repetitions of the experiment and the use of different vehicles.

The measurement data,1 and the evaluation source code2

are all open-source and publicly available.

B. Research Questions and Method Outline
We state the following research questions, which we see as

particularly relevant when studying the RCS characteristics
in real-world traffic conditions, also in the light of radar
simulation.

RQ1: What is the influence of the aspect angle of the
radar to the object? Vehicles are often seen by the radar
under different perspectives, for example, during lane changes.
Our work addresses this research question by obtaining mea-
surements of vehicles that follow a slalom-shaped trajectory.
Therefore, they are visible under different aspect angles while
conducting multiple repetitions to strengthen the underlying
database for evaluation of the experiments. Utilizing a slalom
course for studying reflectivity has been carried out in the
author’s previous work [14].

RQ2: What is the influence of the radar mounting height
on RCS? In today’s vehicles, radars are usually mounted at
different heights. In order to study the effect of mounting
height on the measured RCS, we use six identical radar
sensors, mounted on a sensor rack (cf. Fig. 2).

RQ3: What is the influence of vehicle body shape on RCS?
In everyday traffic, a wide variety of vehicles is encountered.
Variations in their individual RCS profile are expected, due to
differences in geometry, size, and material compounds. A total
number of 13 vehicles of different categories (e.g., compact
car, sedan, and truck) have been used in this study.

RQ4: Where is the strongest backscatter located depending
on aspect angle and body shape? The position of radar detec-
tions with the highest RCS per measurement cycle is expected
to depend on the aspect angle as well as the body shape of
the vehicle. By comparing different vehicles scattering centers
and scattering characteristics can be revealed.

II. EXPERIMENTAL SETUP

The overall experimental setup and calibration methods for
the measurement campaign as well as the quality criterion of
the driven trajectory are explained in this chapter.

1https://www.fzd-datasets.de/rcs/
2https://gitlab.com/tuda-fzd/fzd-datasets/rcs-measurement

Fig. 2. Mounted sensor rack with six radar sensors at the front of the
Ego vehicle. The rack has a lateral offset of 265 mm to the center.
In addition to the radars and GNSS, it is also carrying lidar sensors.
They are not considered in this work but the lidar data is also available
within the published dataset.

TABLE I
MOUNTING HEIGHTS OF THE RADAR SENSORS

A. Sensors, Measurement Setup, and Calibration
Our research vehicle is a 2018 Mercedes-Benz S450

retrofitted with multiple Continental ARS408 radar sensors
that are stacked on top of each other. Fig. 2 shows the
installed measurement rack of the six radar sensors at the
front of the vehicle. These radars are open-market adaptions
of Continentals fourth-generation long-range radars, repre-
senting state-of-the-art automotive-grade 77-GHz radar [15].
This setup enables investigating the influence of the mounting
height on the RCS profile of an OOI. The mounting heights
of the sensors, measured from the ground to the center of
the sensor, are specified in Table I. Due to the interference
mitigation techniques of the manufacturer, interference is only
recognizable in a raised signal to noise ratio (SNR) because of
the six mounted sensors. As there are six same sensors used,
we assume that the results focusing on RCS values are not
affected based on our measurement setup.

These positions include above-average sensor heights for
currently available vehicles, for example, the radar position in
the Mercedes-Benz GLS series [16].

For obtaining the vehicle positions and motion, both the
Ego vehicle and the OOI are equipped with the real-time
kinematic (RTK)-based GNSS device automotive dynamic
motion analyzer (ADMA).

Radar calibration was conducted both extrinsically and
intrinsically. For extrinsics, CCRs have been placed at pre-
cisely measured positions with respect to the radar for obtain-
ing the horizontal twist angles due to mounting. Intrinsic
calibration aims at verifying the RCS value obtained by the
radar. This is realized by placing a CCR with predefined RCS
at a known distance from the radar (e.g., 40 m) over minimal-
reflecting terrain. Both the radar and the CCR are mounted at a
height of 3 m to avoid disturbances due to ground reflections.

Calibration of the relative positions between the Ego and
OOI, both obtained with GNSS systems, is done by aligning
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them along their rear axles, indicating zero longitudinal offsets.
At standstill, the lateral offset can then be determined with
a measurement tape. The known values for longitudinal and
lateral offset are compared to the in the GNSS systems mea-
sured relative position data. These calibration values absorb
uncertainties during obtaining mounting positions and are
considered during the processing of the measurement data.

The radars report a set of detection points at a scan rate
of approximately 14 Hz. Each scan contains a range, radial
velocity by utilizing Doppler effect, azimuth, and RCS, and
the radars are able to transmit up to 250 detections per mea-
surement cycle. As large objects can cause multiple detections,
the total RCS of an object is found by the linear sum over
nd,max detections that are linked to the object, that is,

Q(σ ) = 10 log10

nd,max≤250∑
k=1

σk . (2)

The association of detections with an object is determined
by multistage filtering that relies on the relative position and
velocities of the OOI reported by the GNSS. The GNSS system
samples at 100 Hz. While the GNSS system is reporting a
precise time stamp, time referencing is made by time-stamping
the individual data packages upon receiving via controller area
network (CAN) bus. The radars are not synchronized in their
measurement cycles. In other words, the measurement cycles
of the radar sensors are independent of each other, that is,
it cannot be guaranteed that the radar scans are performed
simultaneously among all six radars.

B. Slalom Construction
The test setup consists of a sinusoidal slalom with ten

periods. We briefly describe the setup of the slalom course,
which is optimized for high repeatability for driving through
it, and minimal effort for construction on straight roads. For
each run, the OOI approaches the slalom setup driving straight
ahead, with an offset to the center line. It is followed by the
Ego vehicle which continues driving straight ahead on the
center line while the OOI follows the sinusoidal trajectory
of the slalom. The slalom parameters are designed to match
distances and aspect angles that are similar to the real-world
driving scenario of the OOI entering a curve, followed by the
Ego vehicle when assuming a German EKL3-type road [17].
The geometry of the slalom is defined by the amplitude ŷ
and the frequency fSla. ŷ is defined as 5 m to ensure a wide
spectrum of aspect angles between Ego vehicle and OOI. The
frequency is chosen as fSla = 0.014(1/m), which results in
a slalom period of approximately 71 m. In test runs with an
amplitude of 5 m, this frequency proved to be effortlessly
manageable by the driver. The given geometric parameters
result in a maximum yaw angle of SψOOI = 25◦ referred to the
slalom’s center line. To define the relative movement between
the Ego vehicle and the OOI, the corresponding speeds, vOOI
and vEgo, as well as the initial distance between the two
vehicles 1r are used. While driving through the slalom course,
the OOI is visible to the Ego vehicle under different aspect
angles: Its azimuth and yaw angles are changing periodically
and both are opposed in phase, that is, maximum yaw is

Fig. 3. Measurement setup of slalom with corresponding parameters
where SφOOI is denoted as the azimuth angle and rOOI denoted as the
range in the polar sensor coordinate system, SψOOI is denoted as the
yaw angle difference between the Ego vehicle and OOI as well as ŷ is
denoted as the slalom’s amplitude.

obtained at 0 azimuth, and vice versa. Fig. 3 illustrates the
geometrical quantities.

The Ego vehicle’s speed vEgo is set to 30 km/h. This
is the lowest possible speed that allows for the usage of
speed control systems in both vehicles, although not all OOIs
are equipped with equivalent systems. The target speed of
the OOI vooi is also set to 30 km/h. By using the lowest
speed possible, the duration of each experiment execution is
maximized and therefore also the number of measurement
samples. The sinusoidal trajectory and therefore a longer travel
path in comparison to the Ego produce the most representative
distance ranges with respect to the aspect angle. Lower speeds
are preferred to generate as many data samples as possible
during the slalom run. The usage of speed control systems
causes a better reproducibility of the slalom runs, however,
since they have to be manually set independent of each other,
they also cause a deviation of the initial distance between Ego
and OOI.

In order to guide the driver of the OOI along the ideal
trajectory, traffic cones are placed along the slalom. For
their placement, a sinusoidal function congruent to the ideal
trajectory is calculated and eight equidistant sampling points
per period are obtained. These sampling points include both
vertices as well as both inflection points of each period. Each
one of these characteristic positions is marked with two tall
traffic cones which the OOI passes in between. The spacing
between the two traffic cones is adjusted to and exceeds the
width of the OOI. This is due to the fact that the reference
point for the determination of the OOI’s position is set as
the center of the rear axle. Therefore, the front axle’s center
position can differ significantly from the ideal trajectory which
requests additional space requirements. The four remaining
sampling points are marked with flat cones over which the
OOI passes. Fig. 4 shows the fully constructed slalom course.
For each vehicle, ten slalom runs with five in each direction
are conducted.

C. Evaluation of Trajectory
To evaluate the uniformity of the trajectory, a quality

criterion based on the Hilbert transform is introduced. The
Hilbert transform phase shifts a sinusoidal signal, in this case,
either the trajectory of the OOI or ŷ over xOOI, by 90◦.
The result is an analytical signal z(xOOI), consisting of the
initial signal as a real part and the phase-shifted signal as
the imaginary part. This signal is referred to as z(x) in the
following paragraphs. To derive a quality criterion from this
mathematical transformation, the absolute of the analytical
signal is calculated. For an ideal trajectory, this would result
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Fig. 4. Slalom course marked with traffic cones and slalom-centered
coordinate system.

in a constant function with the same value as the amplitude of
the slalom. However, due to human errors and environmental
impacts, z(x) oscillates unevenly along xOOI. In the next step,
this function can be easily described by its mean value |z(x)|
and the according to variance s2(z(x)), which is referred to
as s2 henceforth. To consider deviation from the ideal mean
value and the variance, the final unitless quality criterion is
calculated as shown in the following equation with the optimal
value of 2:

kQ

=



s2
max − s2

s2
max − s2

id
+

|z(x)| − |z(x)|min

|z(x)|id − |z(x)|min
, |z(x)| ≤ 5 m

s2
max − s2

s2
max − s2

id
+

|z(x)|max − |z(x)|

|z(x)|max − |z(x)|id
, |z(x)| > 5 m.

(3)

Here, s2
max is set as 0.05 m2 which represents a subjectively

chosen threshold based on the rough evaluation of previous test
runs. Likewise, the thresholds for the mean value are defined
as |z(x)|max = 5.2 m and |z(x)|min = 4.8 m. Furthermore,
the ideal values are defined as s2

id = 0 and |z(x)|id = 5 m,
which reflect the ideal sinusoidal trajectory with an amplitude
of 5 m. The quality criterion is normalized in a way that
each summand equals 1 when the mean value, respectively,
the variance, equals the ideal value. As soon as one of the
two variables passes the minimum/maximum threshold value,
the corresponding summand becomes negative. In conclusion,
the ideal trajectory results in kQ = 2 and decreases steadily
with increasing variance s2 and increasing absolute difference
||z(x)| − 5|.

Out of the test runs of each vehicle, the runs of the highest
quality can be determined by calculating the corresponding
quality criteria. These runs are of the highest available repro-
ducibility. Fig. 5 shows the achieved precision of the driver’s
trajectory during all test runs. The red dashed lines represent
the predefined threshold values for the mean value and the
variance. On average, the achieved mean value lies below the
ideal of 5 m. This is most likely due to the fact that the driver
orients himself to the traffic cones on the inner side of
each vertex. Factors influencing the variance include different
vehicles, human factors, for example, seating positions as
well as fatigue and driver experience in handling various
vehicles.

Fig. 5. Achieved precision of driver trajectory, quantified by the mean
value of the Hilbert transformation’s absolute, and the corresponding
variance. The red dashed lines indicate the predefined thresholds for
mean value and variance.

Fig. 6. RCS of Toyota Auris observed while it is driving through the
slalom. A periodic pattern is visible after moving median smoothing.

III. RESULTS

Core results, that are available from our measurement
campaign, are outlined in this section and are structured
according to the research questions in Section I-B. Each plot
can be generated for different vehicles and sensors with the
MATLAB tool that is released alongside this article. We show
detailed measurement results for a Toyota Auris, representing
a medium-size vehicle, and extend our findings to the full
vehicle dataset.

A. Influence of Aspect Angle
We begin with a typical result of the RCS profile obtained

during one slalom run. It is shown in Fig. 6 and reveals a
periodical pattern, which is more distinct after smoothing with
a moving median filter. In the smoothed signal, we can obtain
a mean RCS value of approximately 18 dBm2 with peak
amplitudes of approximately 4 dBm2. In the raw signal, the
RCS shows sporadic peaks that span between 13 and 25 dBm2.
Qualitatively similar patterns can be found for all vehicles by
executing the “RCS over x” plot in the MATLAB program.

Fig. 7 shows the RCS again, but now plotted over azimuth
and yaw angle. Slalom driving renders as circles in this
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Fig. 7. RCS profile of Toyota Auris over azimuth φOOI and yaw ψOOI.

Fig. 8. Spectral analysis of RCS during the same slalom. Q̂(σ) denotes
the amplitude of the oscillating RCS pattern. Only minor differences in
measurements between sensors at the dc-component (zero-frequency)
and double harmonic frequency are visible.

representation. The RCS trends to its maximal value at close
to zero yaw, that is, at maximal azimuth and minor mitigation
is visible through the trial. The minimal values are found at
zero azimuth but maximum yaw, that is, as the OOI is crossing
through the boresight line during driving through the slalom.
From both figures, we can conduct a major influence of the
yaw angle on the RCS profile. This plot is generated with
the “RCS over yaw and azimuth” function in the MATLAB
program.

B. Influence of Mounting Height
To reveal governing frequencies visible in the harmonic

course, we obtain a spectral analysis of the signal via fast
Fourier transform (FFT) on the RCS over range, which was
shown in Fig. 6. A typical result is shown in Fig. 8, which
shows the single-sided amplitude spectrum over all radar
sensors. This plot is generated with the “FFT over x” plotting
function in the MATLAB program. The FFT reveals the
signal amplitudes at the dominant frequencies in the signal.
At zero frequency, the FFT gives the dc component, which
is the amplitude at zero frequency, as the quasi-mean value
of the periodic RCS signal. It shows an additional peak at
double the natural frequency of the slalom, which is around
0.028(1/m). This is due to the orientation and therefore
visibility of the OOIs’ left- and right-hand sides. The changes
in the respective magnitudes indicate the effect of the sensor
mounting height and vehicle body shapes. Noise components
will render minor spectral components outside these two
frequencies.

Fig. 9. eCDF plot of Toyota Auris’ RCS of all six radar sensors and the
three best runs in terms of the Hilbert criteria.

Fig. 10. eCDF plot of all OOI’s summed RCS of all radar sensors of the
best run in terms of the Hilbert criterion.

Fig. 11. RCS profiles of Mercedes-Benz Unimog, Toyota Auris, and VW
Caddy.

We can only notice a little spread in RCS between sensors,
which is below 3 dBm2 and therefore small compared to its
total dynamic range. It is to emphasize that these amplitudes
do not represent an absolute RCS value, but the amplitudes
of the oscillation of RCS during the slalom. The relation of
the amplitude at the harmonic frequency to the amplitude at
0 quantifies its dynamic range. The difference between the
two amplitude levels can be understood as the sensitivity of a
particular vehicle body to the aspect angle. The higher the
amplitude at the harmonic frequency, the higher the range
between minimal and maximal observed RCS during the
slalom.

So far, we have only discussed the amplitudes obtained by
the FFT-based spectral analysis. The RCS measurements are
characterized by considerable noise, which leads to significant
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Fig. 12. Spread of spectral amplitudes obtained by FFT over all studied cars and trials. Circles denote zero-frequency amplitude, and triangles
indicate amplitude at the double natural frequency. The figure shows all radar sensors and vehicles simultaneously for the best comparison.

outliers with particularly high or low RCS values. To analyze
the quantitative distribution, we compute the eCDF, showing
the distribution of samples and the frequency of their occur-
rence. Fig. 9 visualizes the eCDF of the six radar sensors and
three best runs regarding the Hilbert criterion of the Toyota
Auris. In general, all graphs show almost identical behavior
and are lying within a 2-dBm2 range. From this finding,
we conclude that the previously mentioned noise is present
in a similar manner in all six radar sensors as well as in
all runs. An explanation for the recognizable spread beside
the stochastic character of the RCS is the run quality, but
also different distances between the Ego and the OOI. The
distribution of the RCS is another indication that the influence
of the sensor mounting height on the reflectivity characteristics
of vehicles is lost in the signal bandwidth of the RCS itself.

C. Influence of Body Shape
For studying the behavior of different vehicle bodies, the

spectral FFT analysis is now extended to the full set of vehicles
and sensors. Therefore, their spread during multiple test repe-
titions becomes quantitatively specifiable. This gives objective
insights into how well the repeatability of the experiment, that
is, how well similar results can be obtained in a repeated trial.

We focus on the amplitudes at the dc component and
the doubled natural frequency. Fig. 12 shows the spectral
amplitudes obtained by FFT over all studied cars, trials, and
mounting heights. The preliminary finding from the Toyota
Auris, as presented above, can be well transferred to the other
vehicles. While each vehicle differs in amplitude, we see
a little spread across sensors and repetitions. Differences
between vehicle bodies become more notable when taking
the amplitudes at the doubled natural frequency into account.
Here, we see that large amplitudes at the dc component are
not necessarily followed by large amplitudes at the double
natural frequency. Of particular note are the Mercedes-Benz
Unimog and the BMW i3, which show strong dc component
amplitudes, but only minor amplitudes at the doubled natural
frequency. Contradicting examples are given by the VW
Multivan and VW Caddy. From this result, we further justify
minor influences of the sensor mounting position, which is less
than 3 dBm2 across all studied vehicles. The highest spread
is present at radar sensor 6, which is closest to the ground.
At the same time, variations between multiple trials remain at
the same level.

To view the RCS distributions in addition to the FFT
spectral analysis, the eCDF graphs of the different vehicles are
visualized in Fig. 10. The eCDFs shows significant differences
between all vehicles. No direct correlation between vehicle
size and RCS can be seen. This can be especially demonstrated
by comparing Honda Accord or VW Multivan and Toyota
Auris. Furthermore, the eCDF of the Mercedes-Benz Uni-
mog resembles a log-normal distribution despite its complex
structures on the sides. This is also evident for BMW i3,
Honda Accord, Opel Astra, Toyota Auris, and VW Käfer.
BMW 535, BMW Z3, Opel Corsa, VW Caddy, VW Crafter,
VW Golf, and VW Multivan exhibit a kind of kink in the
distribution function, which resembles a log-logistic distribu-
tion. Therefore, not only the quantitative value of RCS differs,
but also the distributions are different between all vehicles.
No direct correlation between body size, shape, and material
can be identified. Therefore, other radar sensors and mounting
positions are the focus of future work.

The FFT analysis and the eCDF do not give information
about the noise and sensitivity of the RCS at individual
yaw angles. To take these aspects into account, it is rec-
ommended to display the RCS in a polar plot. From the
findings in Fig. 9, we conclude that on the basis of the
Hilbert criterion, an evaluation of the trajectories regarding
their comparability is reasonable. Therefore, the different radar
sensors as well as the three best runs of the vehicles are
aggregated. The summed RCS values from each time step
are assigned to the yaw angle SψOOI, which is discretized
with 0.5◦. Subsequently, the median of the RCS is formed
for each discrete yaw angle and displayed in a polar plot.
Fig. 11 shows RCS profile for all radar sensors and the
three best runs for the Unimog, the Auris, and the Caddy.
Toyota Auris and VW Caddy show a qualitatively similar RCS
character, with the VW showing a significantly higher as well
as more brawny shaped pattern. The many add-on parts and the
complex structures of the Unimog result in an asymmetrical
RCS profile, which is clearly distinguishable from all other
vehicles.

Due to the fact that based on the experimental setup,
the projected area of the vehicle at SφOOI ̸= 0 is
higher in comparison to a turntable in an anechoic cham-
ber the RCS profile differs from a laboratory profile.
Nevertheless, the measured characteristics of the vehi-
cles can be used for validation purposes in sensor
simulation.
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Fig. 13. Location of detections with the highest RCS per measurement cycle around and inside the bounding box for each vehicle and each radar
sensor. For evaluation, we took the best run in terms of the Hilbert criterion.
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D. Strongest Scatter Location
For a deeper analysis, we consider the distribution

of the detections with the highest RCS over the bounding
box of the different vehicles. Fig. 13 shows the detection
location of the best run of each vehicle and each radar
sensor. Therefore, only the detection with the highest RCS
is visualized to gain insights into the main scattering parts
of each vehicle. The yaw angle difference SψOOI between
Ego and OOI is coded as color identifier. Additionally, the
bounding boxes of the different vehicles are represented in
the form of black rectangles. The detections outside of the
bounding box can be explained by timing effects due to
different measurement frequencies as well as the resolution
of the radar sensor itself. In general, the detections are at the
rear center of the vehicles, as already shown in [9]. Slight
differences between radar 1/6 and radar 2/3/4/5 are visible
for BMW 535, Honda Accord, Opel Corsa, Toyota Auris, and
VW Caddy. Special features in the distribution can be seen
in the BMW i3, which is equipped with a carbon body, the
Unimog, which has various add-on parts at the rear and side,
the Crafter, which shows detections on the wheel arches at
the front, and the Käfer, which has CCR-shaped side sills.
Therefore, we conclude that the position distribution of the
detections depends on the body shape as well as on the yaw
angle between the sensor and OOI.

IV. DERIVED FINDINGS FOR SENSOR SIMULATION

We summarize the core results of our research from various
points of view as follows. Here, we focus on statements
that are of immediate value to the sensor simulation research
community.

A. Analytical RCS Models
Sensor modeling must take into account the fact that even

a reference measurement can never be made with infinite
accuracy. Uncertainties remain, which are difficult to quantify
but remain visible as nondeterministic and stochastic behav-
ior. This becomes particularly clear in the deviations of the
RCS measurements between the tests. Our results stress the
stochastic nature of the RCS characteristics of vehicles. For
each vehicle geometry, we find differences at the microscopic
level that justify deviations in the RCS. Due to a large number
of possible geometries of today’s and future cars, we consider
it difficult to maintain vehicle-specific analytical RCS models.
In object-based sensor modeling, a generative model can be
derived from our data that returns an RCS value for a given
aspect angle. For other modeling approaches, our work gives
reference measurements that can be used for simulation model
falsification.

B. Spatial Distribution of Detections
We identified clear differences in the spatial distribution of

detections around the vehicles. The Volkswagen Käfer is of
particular note: Its body design at the bottom of the front door
forms a CCR-shape and leads to a concentration of detections
around this area.

These results, however, pose a challenge for traditional
scattering center models. They assume “fixed” areas of sig-
nificant scatter, while our results show that these areas differ
significantly between vehicle shapes [6]. This also poses a
challenge for object detection algorithms, relying on detection
clustering. The centerpoint of clusters varies between vehicles,
resulting in a systematic position offset between the true and
estimated position of the vehicle.

C. Sensor Model Validation
Our results and dataset can serve as a baseline for sensor

model validation. The RCS behavior obtained during reenact-
ing the slalom drive in the virtual world should match its eCDF
distribution. In “physical,” or “reflection-based” sensor simula-
tion, the detailing of 3-D models is of high importance. These
models must convey material descriptions and meshing must
be fine enough to preserve geometrical details. By comparing
the spatial distribution of the detections, the appropriateness
of 3-D models for radar simulation becomes judgeable.

Sensor models that process object information as input data
do benefit from our work by having access to a publicly
available dataset that allows model parameterization.

D. Transferring Results to Other Radar Sensors
The gathered RCS data and detection distribution are

only valid for Continental ARS408 sensors. However, when
gathering the same data with other radar sensors, the RCS
profiles presented in Fig. 11 are expected to look similar
in their qualitative form and the stochastic RCS behavior
will have a similar dynamic range. It is also expected that
the detection focal point of the spatial distribution will be
identical for the various vehicles. By using radar sensors with
higher resolutions, the position of the (strongest) detection
can be determined more precisely. Still, our results are well
aligned with previous research, such as [9], which utilizes the
SAR method. In future research, radar sensors with elevation
measurements are expected to lead to further insights into the
3-D location of detections.

V. CONCLUSION

The aim of the work was to investigate the aspect angle
dependence of the RCS. For this purpose, an experimental
setup was proposed in which the vehicle under investigation
drives a slalom while being observed by several radar sensors.

The design of our slalom aims at minimizing uncertainties
in radar perception introduced by human drivers. Hereby,
we could isolate the noise that is typically present in radar
measurements to the radar measurement principle. At the same
time, additional influences, such as unsteady driving through
a slalom course by human drivers, are isolated.

From the measurement results, we gained knowledge about
the stochastic behavior of the RCS and the local distribution
of the detections.

For further work, we recommend examining the SNR value
in addition to the RCS value. While this will show propor-
tionality to the RCS value, it has the advantage of taking into
account the performance of the radar. Thus, the SNR value
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is easier to determine than the RCS because, for example,
the antenna pattern and frequency filters have no influence.
When setting up the test again, we recommend considering
an additional radar, which is installed with a horizontal offset.
This can be used to draw conclusions about the transferability
between horizontal shoring positions. In our work, we have
shown that the vertical shoring position has a negligible part.
The evaluation methodology can be applied straightforwardly
to lidar sensors as well. In this way, similar investigations of
reflectivity can also be performed for lidar sensors.

Furthermore, by providing ground truth and vehicle meta-
data, our dataset also provides a scientific basis for defining
detection-level metrics of sensor data. This is the subject of
ongoing research for the evaluation of sensors and simulations
and also in the interest of industrial standardization processes.
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Abstract: Virtual validation of radar sensor models is becoming increasingly important for the safety
validation of Light Detection and Rangings (lidars). Therefore, methods for quantitative comparison
of radar measurements in the context of model validation need to be developed. This paper presents
a novel methodology for accessing and quantifying validation measurements of radar sensor models.
This method uses Light Detection and Rangings (lidars) and the so-called Double Validation Metric
(DVM) to effectively quantify deviations between distributions. By applying this metric, the study
measures the reproducibility and repeatability of radar sensor measurements. Different interfaces and
different levels of detail are investigated. By comparing the radar signals from real-world experiments
where different objects are present, valuable insights are gained into the performance of the sensor. In
particular, the research extends to assessing the impact of varying rain intensities on the measurement
results, providing a comprehensive understanding of the sensor’s behavior under these conditions.
This holistic approach significantly advances the evaluation of radar sensor capabilities and enables
the quantification of the maximum required quality of radar simulation models.

Keywords: automotive radar; validation measurements; virtual validation; sensor model validation;
Double Validation Metric

1. Introduction

Automated driving is one of the biggest challenges facing the automotive industry.
Advantages are expected in the areas of connection of village regions, better utilization of
existing resources with accompanying minimization of vehicle downtimes, and additional
technological development. However, any benefits depend on the safety of such ADFs
being proven. Until it is reliable that automation is safer than humans, such systems will not
be deployed in large numbers and in all areas of road transport [1]. For a variety of reasons,
it is currently not possible to prove safety for such an ADF. One approach that addresses
this problem is scenario-based testing [1]. These tests will be performed alongside real test
drives in different simulation environments, such as software-in-the-loop, hardware-in-the-
loop, or vehicle-in-the-loop. In this way, safety-critical scenarios can be performed for the
vehicle and involved agents.

Along with path planning and control, the perception of the environment is an ele-
mentary component of ADFs. Therefore, in addition to vehicle dynamics and environment
models, sensor models are required to represent the entire ADF pipeline in simulation.
However, it is fundamental for the simulation validation process to objectively validate the
models used. Both the simulation models and real-world validation measurements play a
crucial role in this process. Although the first approaches to validation measurements exist,
the comparability, reproducibility, and repeatability of these measurements are often prob-
lematic, especially for Radio Detection and Ranging (radar) sensors [2] (p. 68), [3] (p. 84).

In addition to radar, cameras, Light Detection and Ranging (lidar), and ultrasonic sen-
sors are established perception sensors in production vehicles [4]. Radar sensors determine
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position information, intensities, and speeds by means of frequency modulation, which is
determined by the Doppler effect. There are different processing levels in the sensor that
can be used for radar sensor model validation measurements. Radar cuboid as a level after
a fast Fourier transform (FFT) algorithm in the radar processing chain and detections as a
result of the application of dynamic thresholding algorithms [5], which are of interest for
this publication. The object list will not be explored further in the course of the paper, as
the identification of effects in further processed interfaces increases in complexity.

Therefore, this paper presents a method to compare radar measurements at the radar
cuboid and detection levels. The application of this method is intended to provide objective,
comparable, and quantifiable radar sensor validation measurements for radar sensor
models as part of the safety argumentation of ADFs in the context of scenario-based testing.

1.1. Related Work

There are several measurements in the literature that intend to validate radar models.
The related work is separated into radar measurement campaigns as well as lidar and
general model validation measurement campaigns.

In order to show the lack of state-of-the-art in this field, the first step is to define
the terms repeatability and reproducibility. We define repeatability as the variation of a
measurement due to the radar sensor itself. Reproducibility is defined as the variation in
the measurement data resulting from the measurement system (setup, sensor, operator)
using the same sensor under the same conditions.

1.1.1. Radar

Schaerman et al. transfer real scenarios with a high accuracy of 5 cm standard de-
viation into the simulation to validate raw data models. However, the repeatability and
reproducibility of the measurements are not directly considered [6]. Abadpour presents
radar measurements of vulnerable road users and their back-scattering behavior. Neverthe-
less, the number of repetitions of the measurements is only one trial, and reproducibility is
not further addressed [7]. Schneider analyzes different objects and their back-scattering
behavior in radar sensors. He compares the characteristics using histograms to investigate
the corresponding distributions in the sensor. A deeper investigation about repeatability
and reproducibility on radar cuboids and detection levels is missing in his analysis [8]. Eder
analyzes an overtaking maneuver with 100 repetitions and finds that the trajectory is almost
identical, but the fluctuation and therefore a lack in the repeatability of the measurement
result in the detection level hinder a deeper analysis [3]. Holder et al. use EDFs to study
the detection distribution of occluded and unoccluded objects. The number of detections
on an object is also analyzed using EDFs. Here, three repetitions of the measurement are
performed, but a deeper analysis of the repeatability is not considered further [5]. Magosi
et al. also aggregate the detections over the bounding box of a scenario but do not consider
test repetitions. Only a comparison between simulation and measurement is made [9]. Aust
et al. use 10 repetitions of a scenario by driving the radar sensor towards a static object.
They aggregate the detections over the bounding box of the target object and examine the
distribution of detections using the probability density function (PDF). However, they do
not directly compare the measurements with each other [10]. Buddapaggari et al. also use
resimulation of measured trajectories to compare detections in over-the-air/vehicle-in-the-
loop test beds with real radar data. The number of experimental replicates is also limited
to one, which means that measurement repeatability is not further considered [11]. Ngo
uses different scenarios to determine the simulation-reality gap he defines for detections
and object lists. For each scenario, only one trial repetition is considered [12] (pp. 66, 84).
Holder analyzes different scenarios, running three trials for each scenario. Various vari-
ations are shown, but in the context of repeatability and reproducibility, these are not
discussed further in terms of quantitative deviations and the identification of measurement
outliers [2].
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1.1.2. Lidar and Other Domains

In addition to radar sensors, different validation measurements of lidar sensors are also
introduced in different publications. Rosenberger et al. use a relatively complex validation
scenario with multiple objects but also neglect the repeatability of the experiments in their
analysis [13]. Linnhoff et al. use a meteorological station to analyze lidar data based on
real weather conditions. However, due to the real conditions, there is no reproducibility
of the measurements, despite a high number of experimental replicates [14]. In DIN SAE
SPEC 91471:2023-05 [15], different measurement setups are presented, which serve for the
evaluation of lidar performance. The technical description lacks information about the
number of repetitions and an evaluation metric to compare the different results with each
other. Viehof uses 15 measurements in the validation of vehicle dynamics models and
explicitly emphasizes the need to ensure the quality of the measurement data [16]. However,
no specific procedure is given for evaluating the repeatability of the measurements and the
deviation quantification.

1.2. Research Questions

The following research questions arise from the validation measurement campaigns
in the literature for radar sensors.

Research Question 1: How reproducible are radar measurements and identical measurement
setups?

Identical measurements in this case refer to a comparison of unchanged measurement
setups in less than 10 min consecutively where the sensor is not switched off. Furthermore,
it is investigated how dismantling and reconstruction of the measurement setup behave on
the radar measurements at constant position with precise markings on the test track.

Research Question 2: How do different objects and object positions affect radar measurements?
Different objects here denote a corner cube reflector (CCR), which is an ideal point

target, and extended targets, which differ in shape and size (Volvo XC90, Mercedes Vito).
Furthermore, the poses of the vehicles to the sensor are varied to analyze this influence.

Research Question 3: How do environmental conditions such as rain affect radar validation
measurements?

Due to the stochastic behavior of rain, it is challenging to quantify the effect and make
different rain intensities comparable.

2. Evaluation Methodology

To answer the research questions, a methodology based on the so-called DVM intro-
duced by Rosenberger [17] (pp. 118,119) is used. The corresponding process is visually
illustrated in Figure 1. In the first step, the measurement data for the different experiments
is collected. We gather multiple measurements per experiment setup. After pre-processing
and position-based filtering of the measurement data, the number of resulting measurement
data points is compared between the respective measurements or experiments. We name
this filtered area region of interest (ROI). The comparison of the overall number is due
to the condition that this deviation must be small for the DVM to be used [17] (p. 103).
The DVM is based on a comparison of the EDFs of the measured data and, therefore, the
underlying distribution. Rosenberger’s approach uses the area validation metric of Roy
et al. [18] (p. 307) and extends it by a second factor to evaluate the EDFs. In contrast to
Rosenberger, we do not summarize the individual distribution functions of the measure-
ments, but evaluate the differences of the EDFs individually. Therefore, the area between
all the resulting distribution functions is determined, which is a measure for the deviation
of the mean value denoted as dbias of the measurements and experiments. Therefore, the
mathematical description for dbias results with F denoted as the first EDF, F̃ denoted as
the second EDF, d+ denoted as the area between F̃ and F , where F̃ ≥ F and d− denoted
as the area between F̃ and F , where F̃ < F , in

dbias(F , F̃ ) = d− − d+. (1)
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If subsequently the EDFs are shifted by dbias and the resulting area between the
corrected EDFs F̃ c and the first EDF F is calculated, a metric dCAVM for the shape de-
viation of the distribution functions is obtained, giving information about the scattering
difference [17] (pp. 116–119).

Therefore, the following mathematical expression is obtained as

dCAVM(F , F̃ ) = dAVM(F , F̃ c) = d−c + d+c . (2)

These two parameters give information about the similarity of the different distribution
functions in the unit of the analyzed measurand. In a final step, the distribution of dbias
and dCAVM is visualized and analyzed via box plots.

Measurement
data

Pre-
processing

and position-
based

filtering

Comparison
number of
measuring

points

Calculate
EDF for

each mea-
surement of
E1 and E2

Calculate
dbias for

each EDFE1
compared
to EDFE2

Calculate
dCAVM by

shifting each
EDFE2 by
dbias for

each EDFE1

Boxplot
comparison
of all dbias
and dCAVM

values

Figure 1. Used Methodology for the comparison of different experiment setups (E1 and E2), mea-
surements and input data on radar cuboid as well as detection level.

Five different evaluation levels are considered input data for the process:

1. All range azimuth bins with the Doppler component 0 of the radar cuboid→ whole
radar cuboid (WRC);

2. All detections in the dimensions distance, azimuth, and Radar Cross Section (RCS)→
all detections (WD);

3. A region of interest, which only includes the bins where the object is present in the
measurement, on radar cuboid level with the Doppler component 0 → ROI of the
radar cuboid (ROI RC);

4. A region of interest, which only includes detections where the object is present in the
measurement, on detection level→ ROI of the detecions (ROI D);

5. Each range azimuth bin combination separately on the radar cuboid level→ each bin
of the radar cuboid (EB RC);

The different evaluation levels are selected according to their relative deviation of the
number of data points or detections of all measurements for the respective experiment.
Furthermore, the additional information content plays a role in whether the evaluation is
performed. On this basis, the evaluation scheme in Table 1 is derived, and the evaluation is
performed in the following Section 4.

Table 1. Overview of the application of the different evaluation levels. In the first column, the
compared experiments and objects are listed, which are explained in detail in Section 3.

Experiment WRC WD ROI RC ROI D EB RC

CCR\ CCR X X X X X
Day 1\ Day 2 X X
CCR\ XC90 X X

XC90\ XC90 rotated X X X
XC90\ Vito X X X X

XC90\ XC90 rain X X

3. Experimental Setup

The validation experiments are performed at the August-Euler airfield in Griesheim.
Except for the experiments on Day 1 and Day 2, all experiments are performed with the
same sensor position on the airfield. The setup and the orientation of the sensor are very
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crucial for the analysis of the data because, with effort, the epistemic uncertainties can be
reduced and thus increase the comparability between the experiments. The measurement
setup consists of a radar sensor mounted on a sensor rack and an object positioned in front
of it. The radar sensor is a series of active cruise control (ACC) radars with a maximum
range of approx. 200 m. The field of view (FoV) is approx. 12.8◦. For each measurement, a
measurement time of 60 s is reproduced by the measurement computer. However, due to
measurement data failures in the recording, this number may fluctuate.

The frame on which the radar sensor is mounted can be leveled in all directions
by means of four adjustable feet. In addition, the height, azimuth angle, and elevation
angle of the sensor can be adjusted. The elevation angle is set to 0. The orientation of the
azimuth angle of the sensor is set by a centered far point target, and the orientation for
the positioning of the point target and the sensor is given by the driving stiff mark. The
height is based on the mounting position of the sensor in the vehicle. Therefore, a height of
70 cm is chosen. For the objects, a distinction is made between a point target in the form
of a CCR and an extended object in the form of two different vehicles. The vehicles are a
Mercedes-Benz Vito (van, production year 2020) and a Volvo XC90 (sport utility vehicle,
production year 2019). The chosen objects are exemplars, but the developed methodology
is applicable to any kind of object.

The Day 1 and Day 2 experiments do not contain an object. This is to quantify the
effects of setup and dismantling, as well as to study the static environment itself. The exact
setup of the different experiments can be found in Table 2.

Table 2. Different parameters in the experimental setups. In the first column the compared objects
are listed with the corresponding parameters.

Experiment r in m φ in ◦ ψ in ◦

CCR\CCR 29.56\29.56 0\0 0\0
Day 1\Day 2 - - -
CCR\XC90 29.56\29.50 0\0 0\0.5

XC90\XC90 rotated 29.50\29.68 0\0.1 0.5\13.7
XC90\Vito 29.50\29.59 0\0 0.5\−0.2

XC90 \XC90 rain 48.60\48.60 8.1\8.1 −1.1\−1.1

The experimental setup follows the scheme shown in Figure 2. The center of the
sensor defines the origin of the drawn S-coordinate system. The object positions are defined
relative to this coordinate system. For the description of the experimental setups, a two-
dimensional experimental space is chosen, which can be defined by the polar coordinates,
distance (r), and azimuth angle (φ) of the sensor. The reason for this is that the FoV of the
sensor is also divided into polar coordinates. As the evaluation is also done at the radar
cuboid level, a logical positioning with respect to the bins makes sense. The bins result
from the resolution of the sensor in range and azimuth. The real positions of all structures
are measured during the experiments with an RTK-based global navigation satellite system
(GNSS) antenna. The position of the CCR as a point target is thus described by the two
parameters r and φ. Due to the size of the vehicles themselves, the position of the vehicle
must also be described by the rotation around the vertical axis ψ. For the vehicles, the wheel
contact points are measured, and the center of the vehicle and the rotation ψ are calculated
accordingly. The direction of rotation of the angles φ and ψ is defined in a mathematically
positive sense and takes the x-axis of the sensor as a reference.



Appl. Sci. 2023, 13, 1405 6 of 24

S x

Syr
φ

ψ

Figure 2. On the left side a sketch of the experimental setup is shown. The Cartesian sensor coordinate
system origin is denoted as Sx and Sy. The parameters for the different experiments are the polar
coordinates distance r and azimuth angle φ. The yaw angle of the object is defined as ψ. On the right
side a picture of the measurement setup of the XC90 on the August-Euler airfield is visualized.

4. Evaluation

This chapter contains the evaluation results based on the method proposed in Section 2.
The chapter is structured as subsections based on the research question’s order.

4.1. RQ 1: Repeatability of Measurements and Reproducibility of Measurement Setups

In the following subsections, five measurements of a CCR are compared with each
other to check repeatability (Section 4.1.1). Afterwards, reproducibility is considered on
the basis of two sets of eight individual measurements, where the measurements differ in
that the sensor is set up and taken down on Day 1. On the following Day 2, the sensor is
set up again in the same weather conditions and in as similar a position as possible using
markings on the ground (Section 4.1.2).

4.1.1. Comparison of CCR Measurements

In the first step, the number distribution of the five measurements on the different
evaluation levels is compared. Figure 3 shows the deviation of the data points. The number
of bins from the radar cuboid is nearly identical, with a small deviation of 2 timeframes,
corresponding to a percentage deviation of 2.5 ‰. Since the radar cuboid is also used for
the evaluation of the ROI and each bin, and it is the same object class for both experiments,
the deviation is the same. The number of detections for the whole field of view varies
more significantly compared with the data points in the radar cuboid over the different
measurements, with a maximum deviation of 11.9 %. Nevertheless, an evaluation of the
detections is carried out in the sense of the methodology as an example. For the ROI at the
detection level, however, the relative deviations are small, with a maximum of 1.2 ‰.
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Figure 3. Plot of the relative deviation for the number of the data points or detections of all measure-
ments of the CCR experiment. The evaluation is shown for the WRC, WD, the ROI RC and the ROI
D, as well as EB RC. The gradations of the respective color delineate the different measurements.

Whole Radar Cuboid

Figure 4 shows the different EDFs, the box plots for dbias and dCAVM, as well as the
number of data points in the different colored distributions. Since the EDFs are very close
to each other, it appears in the representation as if only one EDF is shown, whereas the
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opposite is the case. Due to this closeness, a visualization of the by dbias shifted EDF
is omitted.
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Figure 4. EDFs of all five measurements of the CCR on the radar cuboid level. The number of
aggregated bins is listed below the diagram. On the right side the box plot for dbias and dCAVM

is shown.

Both the EDFs and the by dbias corrected EDFs are close to each other, indicating a high
degree of agreement between the measured and examined data. The statistical distribution
of dbias and dCAVM can be seen in the box plot on the right-hand side of Figure 4. There
are only small differences between the five measurements for the two evaluation criteria.
Compared to dbias, dCAVM shows a smaller scatter. However, the median of dbias is lower
than that of dCAVM. The values obtained show that the spread for dbias is 0.16 dB, while for
dCAVM it is only 0.05 dB. In summary, it can be concluded from the analyses carried out that
the measurements show high repeatability with respect to the whole radar cuboid. There
are no outliers, which means that several successive radar measurements with this sensor
can be considered almost identical based on the analysis of the whole radar cuboid.

Whole Detections

In Figure 5 the EDFs and box plots for distance, azimuth, and RCS are visualized. It
can be seen that the EDFs for distance are close to each other, but a spread is visible. At a
distance of 29.65 m, there is an accumulation of detections, which shows the influence of the
CCR. In general, the detections are distributed over a distance of up to 147 m. Close to the
sensor, detections are located on the road surface, and with higher distances, the number of
detections increases at the transition between vegetation and the road. Furthermore, in the
vegetation itself, multiple detections are present. A decrease in the number of detections
above 110 m indicates a lower signal-to-noise ratio (SNR), making detections random.
Above 147 m, the SNR is so low that there are no more detections in the environment.
The median of all dbias is similar to dCAVM in absolute terms. However, the scatter of the
dbias values is larger compared with dCAVM. In addition to the very different number of
detections and the large scatter in the metrics, the repeatability of the measurement results
for the distance of all detections is very low. The influence of the environment is too large
to draw conclusions from the distance evaluation.

As with distance, the azimuth distribution is affected by the environment. Between
−5◦ and 5◦ the CCR is notable with the step at 0. The visible shoulder area next to 0
indicates a few detections due to the road. The second step close to 0 at negative azimuth
angles can be associated with detections at close-range as well as at twice the distance
between the CCR and the sensor. The median of dbias is about 0.5◦, which is a relatively high
value in relation to the sensor’s FoV, indicating, in addition to the scatter, a low repeatability
of the measurements. The scatter deviation of dCAVM confirms this impression.
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Figure 5. EDFs of all five measurements of the CCR on the detection level. In the first row the distance
distribution, in the second row the azimuth distribution and in the third row the RCS distribution
with the corresponding box plot for dbias and dCAVM are shown. The aggregated number of detections
is listed below the diagrams.

The CCR is also evident in the RCS EDFs. 5 % of the detections are due to the point
target with an approximate 27 dBm2. This indicates high repeatability with respect to the
reflectivity characteristics. However, especially for detections at close-range due to asphalt
and vegetation, different distributions show the stochastic behavior of the majority of the
detections. As before, dbias and dCAVM are difficult to interpret because there is too much
randomness in the way the detections are generated by the environment. In particular,
there is an outlier in dCAVM, which is due to the comparison of measurements 2 and 5. Here,
the number of detections is the most spread over all measurements.

From the evaluation of all detections, it can be concluded that a comparison of all
detections is not useful for the validation of this specific radar sensor. The environment has
too much influence on the detection distribution. This evaluation experiment can be used
in future validation studies to assess whether an evaluation of all detections is useful in the
studied environment in the context of validation measurements.

ROI Radar Cuboid

Figure 6 shows the same structure as in the previous evaluations. However, in this
case, only the bin of the radar cuboid and therefore the power where the CCR is located
are analyzed. The distribution functions show a slight deviation from each other. This is
also reflected in the two metrics. The deviations in dbias show a spread of 0.045 dB and a
much smaller spread in dCAVM. This shows that the repeatability of the experiments for the
CCR is even higher in comparison to the whole radar cuboid. This evaluation is therefore
suitable for validation measurements in the case of this sensor for point targets.
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Figure 6. EDFs of all five measurements of the CCR on the radar cuboid level filterd by an ROI are
shown in the diagram. The power distribution with the corresponding box plot for dbias and dCAVM

is visualized on the right side. The aggregated number of bins is listed below the diagram.

ROI Detections

Figure 7 visualizes the RCS distribution of the CCR detections based on an ROI. Due
to the point target characteristics and the small, defined ROI, an analysis of the distance
and azimuth is not discussed. The deviations in dbias are 0.01 dbm2, and an even smaller
scatter in dCAVM appears. Finally, the ROI on detection level shows a high repeatability of
the measurements. For point targets, it can therefore be concluded that a ROI can be used
as a filter on the detection level for validation measurements.
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Figure 7. EDFs of all five measurements of the CCR on the detection level filterd by an ROI are
shown in the diagram. The RCS distribution with the corresponding box plot for dbias and dCAVM is
visualized on the right side. The aggregated number of detections of all timeframes is listed below
the diagram.

Each Range and Azimuth Bin on Radar Cuboid Level

For a detailed analysis of the environmental influence on the repeatability of the radar
cuboid, the EDFs are compared using dbias and dCAVM for each individual range azimuth
bin. For this purpose, the respective maximum of |dbias| and dCAVM of the corresponding
range azimuth bin are visualized with a satellite image and the radar position measured by
the GNSS sensor. This makes it possible to interpret the causes of anomalies and assign
them to areas in the radar FoV. The result is shown in Figure 8.

It can be seen that for the CCR position, there are small deviations across all azimuths
and ± 2 range bins. This can be explained by the results of the ROI of the CCR. Due to
the high back scattering power, stochastic effects are less pronounced. Due to the window
functions used in the radar sensor, the power is smeared into the neighboring bins of the
radar cuboid, resulting in the high repeatability in the previously identified range for dbias
and dCAVM. Only in front of and behind this area do deviations occur in both metrics in the
center of the FoV. In the near range, the largest deviations occur for dbias and dCAVM. These
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variations in the radar cuboid lead to the close-range detections identified in the whole
detection analysis. In general, the transition from road to vegetation causes the largest
deviations. Here, the deviations decrease with increasing azimuth space from the grass.
The road surface, on the other hand, shows a very high repeatability of the measurements,
with only minor deviations. Cracks and vegetation on the runway are possible explanations
for this observation. Smaller deviations at the road junction confirm this impression when
the opposite side with the grass is also taken into account. As the distance increases, the
deviations in the two metrics decrease, and the distributions in the different cells become
more similar.
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Figure 8. Satellite image fused with |dbias| and dCAVM coded in colors for each range azimuth bin.
The red circle visualizes the position of the CCR.

4.1.2. Dismantling and Setting Up on Two Different Days

In this chapter, measurement data from two consecutive days with eight measurements
each is compared. No object is placed in front of the radar sensor, and only the surrounding
area is measured. A dismantling and reassembly of the measurement setup between the
two days is performed. In this way, the reproducibility of the radar model validation
measurement setup is checked, and the second part of RQ 1 is addressed. Compared to the
CCR measurements, the sensor position on the runway is different, but this does not affect
the research objective.

In itself, the measurements between Day 1 and Day 2 are consistent in terms of the
number of data points (see Figure 9). However, it can be seen that switching the sensor and
PC on and off for data recording has an effect on the number of data points. The recording
time is always 60 s for both days. It follows that such effects must be taken into account in
the quality assurance of the measured data for the validation of sensor models. Due to the
fact that no objects were placed, an analysis of the ROI RC and the ROI D is not feasible.



Appl. Sci. 2023, 13, 1405 11 of 24

WRC WD EB RC
0

2

4

6

R
el

.d
ev

ia
ti

on
in

%
Figure 9. Plot of the relative deviation for the number of the data points or detections of all mea-
surements of the two test days, Day 1 and Day 2. The compared data are WRC, the ROI for the ROI
RC and EB RC. Experiment 1 is denoted as and experiment 2 as . The gradations of the
respective color delineate the different measurements.

Whole Radar Cuboid

In general, the EDFs of the whole radar cuboid are visually close, which is confirmed
by the deviations in dbias and dCAVM (see Figure 10). However, a comparison of these
measurements with those of CCR shows that the scatter of dbias and dCAVM is greater.
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Figure 10. EDFs of all eight measurements for Day1 ( ) and Day 2 ( ) each on the radar cuboid
level. The number of aggregated bins is listed below the diagram. On the right side the box plot for
dbias and dCAVM in dB is shown.

To support this observation, Figure 11 shows the comparison of dbias and dCAVM
for Day 1/2, Day 1/1 and Day 2/2. It can be seen that reconfiguring the measurement
setup has a greater effect than taking several measurements in succession. With the method
presented, this effect is quantifiable via the scatter of the two metrics, and the reproducibility
is measurable.
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Figure 11. Comparison of dbias and dCAVM based on the whole radar cuboid for Day 1/2, Day
1/1, and Day 2/2. The repeatability between the measurements of each day is higher than the
reproduciblity of the measurement setup.
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Each Range and Azimuth Bin on Radar Cuboid Level

Figure 12 shows dbias and dCAVM over all range azimuth bins. The largest deviations
occur in the near range of the sensor, with up to a 15 dB difference in power for dbias at the
edge of the FoV. Compared to the CCR measurements, where only 5 dB are present. It can
be concluded that the close-range is particularly affected by the mounting and dismounting
of the sensor. Especially for validation measurements with objects and environments, the
reproducibility of the measurements must be checked before using them for a validity
statement. For this reason, close-range measurements must be taken with particular
accuracy. On the road surface, deviations of up to 10 dB in dbias can be detected up to a
distance of 74 m. The roadside, on the other hand, has an effect on the readings over the
whole visibility range due to differences in the sensor orientation. Both dbias and dCAVM
show deviations at identical positions in the range azimuth map.
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Figure 12. Satellite image fused with |dbias| and dCAVM coded in colors for each range azimuth bin.

4.2. RQ 2: Effects of Objects on Radar Measurements

In this chapter, the influence of objects on radar validation measurements is investi-
gated. For this purpose, the measurements of the CCR from Section 4.1.1 are first compared
with those of a Volvo XC90. The center of the vehicle is almost identical to the position
of the CCR. The yaw angle of the vehicle is close to 0. Next, the XC90 is observed in the
identical position but rotated by a yaw angle in the second experiment. This analyzes the
influence of the rotation on the measurement result. Finally, the XC90 and a Mercedes Vito
are compared with each other at an almost identical position and yaw angle.

4.2.1. Comparison of the CCR and XC90

In this chapter, effects due to complex geometries compared with an ideal target are
identified. Figure 13 shows the number of data points between detection and radar cuboid
level. The relative deviation for the radar cuboid level is for the evaluation of WRC, the ROI
RC, and the EB RC, which are similar and below 1%. At the detection level, the number
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of detections differs significantly between the objects, which is why a comparison for the
evaluation of WD and the ROI D is not meaningful.
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Figure 13. Plot of the relative deviation for the number of the data points or detections of all mea-
surements of the two experiments (CCR and XC90). All evaluation levels are compared. Experiment
1 is denoted as and experiment 2 as . The gradations of the respective color delineate the
different measurements.

Whole Radar Cuboid

Figure 14 visualizes the result for the comparison of the vehicle and the ideal target.
For the entire radar cuboid, it is evident from the EDFs that the CCR affects all bins.
Already at −82 dB deviations are recognizable. At occurrences above 90%, the EDF of
both objects equalizes again. At −78 dB, there is a kink in the course of the EDF of the
XC90, which suggests the influence of the environment, since this kink is also evident
in the measurements of Day 1/2. For dbias, a median of −2 dB is shown for the whole
radar cuboid. The different shape of the EDF is also reflected in dCAVM. The values have
significantly increased compared with the previous experiments.
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Figure 14. EDFs of all five measurements for the objects CCR ( ) and the Volvo XC90 ( ) each
on the radar cuboid level. The number of aggregated bins is listed below the diagram. On the right
side the box plot for dbias and dCAVM in dB is shown.

Each Range and Azimuth Bin on Radar Cuboid Level

The analysis of the data in Figure 15 shows significant differences in dbias, especially at
the object positions. These discrepancies can be attributed to the better reflective properties
of the CCR. In addition, the influence of the windowing function can be seen, which smears
the power across the range bins. This effect is noticeable in the central area of the FoV.
The deviations at the edge of the roadway again confirm the effect already described in
the evaluation of the entire radar cuboid. The CCR influences all bins. This finding is also
reflected in the distribution of the dCAVM. Lower deviations are seen both at the object’s
position and at twice the distance. This is a proof of the reproducibility of multipath
propagation of radar waves due to objects. In general, it can be seen that the object is
influenced by its surrounding and its characteristics.
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Figure 15. Satellite image fused with |dbias| and dCAVM coded in colors for each range azimuth bin.
The objects under examination are a CCR and a Volvo XC90. The red circle visualizes the position of
both objects.

4.2.2. Comparison of XC90 and Rotated XC90

In this section, the rotation of an object on the wave propagation for an exemplary
yaw angle is examined. However, the difference between these two experiments is the
yaw angle of the same object. As in Section 4.2.1, the relative deviation on the detection
level is significantly higher than the deviation o then radar cuboid level. Due to the high
deviations on the detection level, see Figure 16, the comparability of the measurements
and thus of the experiments is not given. Therefore, this comparison is only evaluated at
the radar cuboid level. The relative deviations on the radar cuboid level for the different
evaluations (WRC, ROI RC, and EB RC) are in the same order of magnitude and thereby
below 1%.

WRC WD ROI RC ROI D EC RC
0

10

20

30

R
el

.d
ev

ia
ti

on
in

%

Figure 16. Plot of the relative deviation for the number of the data points of all measurements of
the two experiments (XC90 and XC90 rotated).The WRC, WD, the ROI for the ROI RC and the ROI
D, as well as EB RC are compared. Experiment 1 is denoted as and experiment 2 as . The
gradations of the respective color delineate the different measurements.

Whole Radar Cuboid

The rotation of the object has a small influence on the total power distribution in the
radar cuboid, as visible in Figure 17. The distribution functions are again visually hardly
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separable, which is reflected in the values for dbias and dCAVM. The scatter of dbias is 0.17 dB,
which puts the difference in a range also observed in the CCR measurements. This can be
explained by the main influence of the environment and the disproportionate amount of
road and vegetation in the measurements. An effect over the entire radar cuboid due to
rotation, as in the CCR and XC90 comparisons, cannot be observed. Based on this finding,
an evaluation of the whole detection is omitted, and a detailed look at the ROI is given.
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Figure 17. EDFs of all five measurements for the XC90 ( ) and the XC90 rotated ( ) each on the
radar cuboid level. The number of aggregated bins is listed below the diagram. On the right side the
box plot for dbias and dCAVM in dB is shown.

ROI Radar Cuboid

The evaluation of the ROI is shown in Figure 18. The rotation leads to a significant
decrease in the power values in the filtered bins, with little fluctuation between experiments.
This observation confirms dbias with a significant deviation of 5.5 dB at the median. Rotation
also affects the shape of the distribution functions, such that dCAVM is almost equal to 2.8 dB.
The results show high inter-experiment repeatability for static experiments but a significant
influence of object orientation.

−90 −80 −70 −60 −50 −40 −30
0

0.2
0.4
0.6
0.8

1

Pιr ,ιφ ,ιv=0 in dB

F

5.2

5.4

5.6

dbias in dB

2.4

2.6

2.8

3
dCAVM in dB

1 n: 28,560 2 n: 28,490 3 n: 28,490 4 n: 28,420 5 n: 28,525
1 n: 28,490 2 n: 28,595 3 n: 28,560 4 n: 28,560 5 n: 28,385

Figure 18. EDFs of all five measurements of the XC90 ( ) and the rotated XC90 ( ) on the
radar cuboid level filterd by an ROI are shown in the diagram. The power distribution with the
corresponding box plot for dbias and dCAVM is visualized on the right side. The aggregated number
of bins is listed below the diagram.

Each Range and Azimuth Bin on Radar Cuboid Level

The findings from the ROI become even clearer in the satellite image (see Figure 19).
Especially in the vicinity of the object, values of 25 dB are present in dbias. In this area,
however, dCAVM shows only low values, which speaks for the previously established high
repeatability of the results in this area. Interesting are the high deviations in dbias at the
roadside and partly in the vegetation. 15 dB are increasingly and patchily detectable. This is
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further evidence of the influence of objects on the detected surroundings due to multipath
propagation or effects in the signal processing of the radar sensor. The variations of dCAVM
are largest where dbias is also high. Comparison with satellite images of CCR and XC90
shows similar values, suggesting a stochastically constant behavior of vegetation in the
different experiments and measurements.
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Figure 19. Satellite image fused with |dbias| and dCAVM coded in colors for each range azimuth bin.
The object under examination is a Volvo XC90 with different yaw angles. The red circle visualizes the
center of the vehicle’s bounding box.

4.2.3. Comparison of Volvo XC90 and Mercedes Vito

Finally, the Volvo XC90 is compared with a Mercedes Vito. The effects of different
object geometries and sizes are analyzed regarding their effects on validation measurement
campaigns. The relative deviations are comparable to the previous findings. The deviations
are higher at the detection level than those at the radar cuboid level, as seen in Figure 20.
However, there is a difference in the deviations of all detections compared with the de-
viations for the detections in the ROI, which are significantly higher. Thus, also for this
comparison, an evaluation is performed on the radar cuboid level with a relative deviation
for the number of data points below 1 % and the whole detections.
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Figure 20. Plot of the relative deviation for the number of the data points of all measurements of the
two experiments (XC90 and Vito). The WRC, WD, the ROI for the ROI RC and the ROI D, as well as
EB RC are visualized. Experiment 1 is denoted as and experiment 2 as . The gradations of
the respective color delineate the different measurements.
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Whole Radar Cuboid

Furthermore, the entire radar cuboid is analyzed. From Figure 21, it can be seen that
the object has an influence on all bins, as in the comparison of CCR and XC90. This can
be seen from the higher power distribution of the EDFs in the Mercedes Vito. The shape
of the object (hatchback compared with vertical rear) therefore has a direct influence on
the measured environment. In addition to the rear, the underbody can also influence the
measurement result. The overall effect can be seen in dbias, which shows a relatively high
deviation with a low spread. For both metrics, it can be seen that the repeatability of the
measurements of the different objects is very high, as the scatter is low.
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Figure 21. EDFs of all five measurements for the Volvo XC90 ( ) and the Mercedes Vito ( )
each on the radar cuboid level. The number of aggregated bins is listed below the diagram. On the
right side the box plot for dbias and dCAVM in dB is shown.

Whole Detections

Figure 22 shows the EDFs for the distance, azimuth, and RCS, as well as a correspond-
ing box plot for them. A look at the EDFs for the distance shows that these are similar
to each other, but a deviation is still visible. In the distance of the vehicles at 29.65 m, a
small step and thus an accumulation of detections can be seen. All detections extend over
a maximum distance of 150 m. In the vicinity of the sensor, these detections result from
reflections of the road surface and, with increasing distance, from the transition between
road and vegetation. Whereby it can be seen from the course that at distances over 115 m,
fewer detections can be recognized. Above 160 m, only isolated detections with a low RCS
are present, which argues for purely stochastic causes. The median values for dbias and
dCAVM are similar when considered as absolute values. However, the scatter of dbias at 5 m
is significantly larger than the scatter of dCAVM at 1 m.

Looking at the EDFs for the azimuth, it is noticeable that the EDFs overlap better for
angles below 0 than for angles above 0. Furthermore, the steps for the accumulation of
detections by the two vehicles are different, so the step for the XC90 is at 1.5◦ and not
as significant as the one for the Vito at 0. Basically, however, there is an accumulation
of detections around 0 for both vehicles, which corresponds to the vehicle position and
reflections from the road surface near the sensor. For angles below −5◦ and above 5◦,
detections can be seen by the transition from the road surface to vegetation. The plateaus
between −5◦ and 0, and between 0 and 5◦, are due to the road surface. The median values
of dbias and dCAVM are similar for an absolute observation. However, it can again be seen
that the scatter is larger for the dbias than for the dCAVM.
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Figure 22. EDFs of all five measurements of the XC90 ( ) and Vito ( ) on the detection level. In
the first row the distance distribution, in the second row the azimuth distribution and in the third row
the RCS distribution with the corresponding box plot for dbias and dCAVM are shown. The aggregated
number of detections is listed below the diagrams.

When looking at the EDFs for the RCS, these are close to the two vehicles between
−30 dBm2 and −10 dBm2 and have a similar trend, but a deviation is visible. Below
−30 dBm2, the EDFs of the XC90 are determined by more significant steps compared with
the Vito. Above −10 dBm2, the curve is similar, but there is a clear offset between the two
vehicles, indicating more detections on the Vito, proving the findings in Figure 20. The steps
above −10 dBm2 indicates the RCS for both vehicles. A difference in the maximum RCS for
the detections can be observed; the RCS for the XC90 is 5 dBm2 less than the RCS of the
Vito. In addition, a difference in the number of detections between the XC90 and the Vito
can be seen in the level of the step. The medians for dbias and dCAVM differ by 1.75 dBm2,
with this being larger for dCAVM. However, the dispersion for dbias is 0.2 dBm2 larger than
for dCAVM. As noted in the comparison of the two CCRs, it is difficult to interpret the dbias
and dCAVM due to the randomness that comes from the vegetation-generated detections.

ROI Radar Cuboid

Figure 23 shows the ROI at the radar cuboid level. It confirms the impression from the
analysis of all bins of the radar cuboid. In general, the Vito generates more power in the
bins around its own position. Thereby, a high level of repeatability between the individual
measurements is shown. The outer bins of the ROI provide the low powers, which are
similar for both objects. However, dbias also increases with increasing power values. dbias
shows values from 3.7 dB to 3.95 dB and illustrates the deviations caused by the object
geometry. Similarly, dCAVM is clearly influenced by the different objects. Therefore, the
shape of the distribution functions differs because of the different objects.
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Figure 23. EDFs of all five measurements of the Volvo XC90 ( ) and Mercedes Vito ( ) on the
radar cuboid level filterd by an ROI are shown in the diagram. The power distribution with the
corresponding box plot for dbias and dCAVM is visualized on the right side. The aggregated number
of bins is listed below the diagram.

Each Range and Azimuth Bin on Radar Cuboid Level

The detailed analysis of the range of azimuth bins is visualized in Figure 24. For dbias,
it is clearly visible that there are increased deviations in front of and behind the vehicle
position. These extend over the entire azimuth range and are up to 18 dB in the center.
At twice the vehicle distance, multipath propagation across the sensor is evident. These
are the largest at up to 25 dB and also extend over the entire azimuth range due to the
windowing function. There is also a deviation up to maximum visibility in the center of
the FoV. This effect is more noticeable in the comparison between the CCR and the XC90.
Here, the higher reflectivity of the Vito causes smearing in the more distant-range bins due
to the sensor’s windowing functions. For dCAVM there are increased values in the double
distance in the object position as well as for vegetation, which is comparable to the satellite
images of the other object analyses.
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Figure 24. Satellite image fused with dbias and dCAVM coded in colors for each range azimuth bin. The
object under examination is a Volvo XC90 and a Mercedes Vito at the same position and orientation.
The red circle visualizes the center of the vehicles’ bounding boxes.
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4.3. RQ3: Influence of Rain on Radar Measurements

For the experiment, the XC90 is in the same position, but five measurements are
recorded without rain and five measurements with rain. Subjectively, the intensity of the
rain decreases over time.

The rain is of natural origin, and no rain intensity or raindrop size distribution data
are available.

Also for the investigation of the environmental conditions, in this case rain, a difference
of the relative deviations for the number of data points is shown (see Figure 25). On the
detection level, the deviation is higher than on the radar cuboid level. However, the
deviations for the evaluation of all detections are many times higher than those for the
detections from the ROI. The rain increases the number of detections. Therefore, the
evaluation is examined at the radar cuboid level. The relative deviation is similar for every
evaluation on the radar cuboid level and below 1%.

WRC WD ROI RC ROI D EC RC
0

20

40

60

R
el

.d
ev

ia
ti

on
in

%

Figure 25. Plot of the relative deviation for the number of the data points of all measurements of the
two experiments (XC90 and XC90 with rain). The WRC, WD, the ROI for the ROI RC and the ROI
D, as well as EB RC are compared. Experiment 1 is denoted as and experiment 2 as . The
gradations of the respective color delineate the different measurements.

4.3.1. Whole Radar Cuboid

In Figure 26, the EDFs of the whole radar cuboid are shown. Rain generally increases
the power of all bins. The rain measurement No. 5 lays on the measurements without
rain. This may be due to the fact that the rain intensity in this measurement is already low.
There is no reference data for rain intensity to make an accurate assessment. From −70 dB,
the curves of all EDFs equalize, which shows the increasing influence of the XC90. This is
again evident in the box plots for dbias and dCAVM. Rain leads to larger deviations in both
metrics compared with the previous measurements in Section 4.2. For a detailed analysis,
the satellite image is used.
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Figure 26. EDFs of five measurements of the XC90 in dry ( ) and rainy ( ) conditions on the
radar cuboid level. The number of aggregated bins is listed below the diagram. On the right side the
box plot for dbias and dCAVM in dB is shown.
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4.3.2. Each Range and Azimuth Bin on Radar Cuboid Level

The satellite image in Figure 27 clearly shows the effect of the rain. The increased
power is shown in both dbias and dCAVM. In particular, dbias is increased in the vicinity of
the sensor and up to about half of the FoV. The road surface is particularly affected by this
phenomenon. For dCAVM, the largest deviations occur in the medium range of the FoV.
Furthermore, the road is more affected than the vegetation, which can be explained by the
previously identified stochastic properties of the vegetation.
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Figure 27. Satellite image fused with |dbias| and dCAVM coded in colors for each range azimuth bin.
The object under examination is a Volvo XC90 in rainy and dry conditions. The red circle visualizes
the center of the vehicle bounding box.

5. Conclusions

This paper presents a methodology to make radar measurements comparable in the
context of the validation of radar sensor models. The two metrics dbias and dCAVM are used
to evaluate the similarity of the measured distribution functions. For this purpose, the
number of data points is first analyzed in order to be able to make any comparisons using
DVM. The analysis of the level of the radar cuboid simplifies the explanation of the different
effects, especially in combination with the representation of the range azimuth bins using a
satellite image. Finally, the research questions raised in Section 1.2 are answered, and the
applicability of the findings to other radar sensors remains to be shown.

Research Question 1: The analysis of the measurements with a CCR shows in direct
comparison that there is good repeatability of the measurements, especially near an object
in radar measurements. Only vegetation and the road surface in close proximity are
characterized by larger deviations in dbias and dCAVM. Furthermore, the dismantling and
repositioning shows that smaller influences occur. Nevertheless, the measurements can be
performed reproducibly with the right tools (e.g., ground markers).

Research Question 2: Extended objects can be analyzed in detail with the presented
methodology, and deviations can be quantified accordingly. However, it can be seen that



Appl. Sci. 2023, 13, 1405 22 of 24

objects have a direct impact on the overall FoV of the sensor, depending on the orientation
and type of object.

Research Question 3: Based on our methodology, environmental influences are compa-
rable, and their influence is quantitatively detectable. In particular, the close-range of the
radar sensor shows larger deviations due to rain on average. With increasing distance, rain
leads to larger scattering, whereas the effect decreases again after a certain distance and the
rain merges with the background noise of the sensor.

Therefore, for validation measurements of radar sensors, the following aspects can be
derived from the results:

• Measurements of static vehicles and point targets are well reproducible on radar
cuboid and detection levels.

• Vegetation and the close-range of the radar sensor lead to large deviations, especially
on the detection level, which is why this interface complicates the validation of radar
sensor models with the methodology described here.

• The presented methodology can be used to quantify deviations between validation
measurements and identify measurement outliers.

• Using ideal laboratory measurements, effects in real measurements can be identified
based on the deviations in dbias and dCAVM, and their influence can also be quantified
(e.g., multipath propagation and interference).

• With the presented methodology, a maximum achievable quality of simulation models
can be determined with a quantitative value in the unit of the measurand with respect
to the repeatability and reproducibility of experiments.

The previous considerations refer only to static scenarios. In particular, dynamic tests
are of great importance for the radar sensor due to the Doppler effect and the associated
direct velocity measurement. Therefore, in the next step, the approach and analysis will
be transferred to dynamic scenarios. So far, only the usefulness of the methodology for
the sensor used has been demonstrated. In the next step, the knowledge gained has to be
proven with other radar sensors.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC active cruise control
ADF automated driving function
CCR corner cube reflector
D detecions
DVM Double Validation Metric
EB RC each bin of the radar cuboid
EDF empirical cumulative distribution function
FFT fast Fourier transform
FoV field of view
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GNSS global navigation satellite system
Lidar light detection and ranging
PDF probability density function
Radar Radio Detection and Ranging
RC radar cuboid
RCS Radar Cross Section
RTK real time kinematic
ROI region of interest
SNR signal-to-noise ratio
WD whole detections
WRC whole radar cuboid
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Abstract
In automated vehicles, environment perception is performed by various sensor types, such as cameras, radars, lidars, and 
ultrasonics. Simulation models of these sensors, as required in virtual validation methods, are available in various degrees 
of detail. However, proving the validity of such models is a subject of research. New metrics and methods for credibility 
assessment of simulation are needed to standardize the validation process in the future. The so-called double validation met-
ric (DVM) has shown advantages and allows an intuitive interpretability of the validation results. The DVM has so far only 
been applied to lidar sensor models. In this paper, an extension to the DVM is introduced, which is called the DVM Map. 
A static measurement scenario is conducted in reality and transferred into simulation. The novel method is demonstrated 
on the obtained real and simulated radar sensor data. In this simple scenario special focus is put on the position accuracy 
of GNSS reference sensors. Therefore, their impact on the result of sensor model validation is discussed. The paper shows 
that the method provides a more detailed and accurate validation in comparison to the state of the art of a radar simulation, 
revealing previously undetected simulation errors. Errors due to the environment model, signal propagation, and signal pro-
cessing are separated and satellite imagery is used for intuitive visualization of the results. This method is a complementary 
tool to existing validation techniques to improve the interpretability and judging the trustworthiness of radar simulations.

Keywords Radar model validation · Double area validation metric · DVM map · Radar cuboid interface · Detections 
interface

1  Introduction: what is so special 
about automotive radar modeling?

Simulation is playing an increasingly important role in prov-
ing the safety of automated vehicles. New procedures are 
envisaged in institutions such as UNECE [1, p. 5, 6], where 
simulation will be an integral part of the certification pro-
cess. Automated vehicles (SAE level 3+ [2]) rely on robust 

environment perception with multiple sensor technologies. 
Radar (“radio detection and ranging”) is one of these tech-
nologies, where a signal is actively transmitted to receive the 
echo instead of passively collecting it from other sources, 
like cameras. Automotive radar sensors commonly used in 
series production at different OEMs are based on the fre-
quency modulated chirp-sequence principle, which is used 
to determine the range and the angular position of objects 
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via antenna patches with respect to the sensor. What makes 
radars special among current perception sensor technologies 
is their ability to measure the radial velocity via the Dop-
pler effect and their wide use in series applications. This 
leads to an additional dimension of information and a radar 
“point cloud” therefore includes range r, azimuth angle � , 
elevation angle � , radar cross section (RCS) � , and relative 
radial velocity v.

As shown in Fig. 1, a radar “point cloud”, or more pre-
cise a radar “detection list” [4], appears more sparse and 
unstructured when compared to lidar. It becomes visible that 
modern digital beam forming radar sensors are not struc-
turing the scans of the environment in a per layer order, 
as current time-of-flight lidar (“light detection and rang-
ing”) sensors do with their laser beams. The unstructured 
and more noisy appearance of radar detections is reasoned 
in the radar sensor’s wave propagation characteristic and 
signal processing. Its front end, as shown in Fig. 2, entails 
the signal reception via the antennas and analog-to-digital 
conversion (ADC). After applying a discrete fast Fourier 
transform (DFFT) algorithm, the time-based signal is struc-
tured into the so-called radar cuboid. This term means a 
cubic multidimensional volume, often called radar cube for 
simplicity. It consists of multiple cells, so-called “bins”, that 
can be divided into the dimensions range �r , relative radial 
velocity �v , azimuth �� , and elevation ��.

To enhance explainability, in the remainder, the content 
is limited to radars with range, azimuth, and radial veloc-
ity dimensions. However, the methodology can be applied 
to elevation without restriction, as each coordinate is any-
way validated separately. The three dimensions of the radar 
cuboid are visualized in Fig. 3 with one single bin colored 
in orange and the teal color depicting the bins of the radar 
cuboid at a relative radial velocity of 0 ms−1 . Each bin 
contains a power ratio P in dB, which is calculated from 
the transmitted and the received signal. The number of 
bins Ir∕v∕�∕� of each dimension results from sensor design 
parameters like bandwidth, sampling rate and measurement 
time, as well as the configuration of the antennas. Except 
for digitization itself, only information due to windowing 
and noise, preexisting prior to the application of the DFFT, 
is lost at radar cuboid level. Because of this condensation of 
all digital available information, it is reasonable to simulate 
the synthetic data with chirp sequence frequency modu-
lated continuous wave radars with uniform array antennas 
at this very early interface. For the required level of detail 
in simulation-based safety validation of automated driving, 
low-level interfaces must be taken into account to simulate 
specific perception tasks like fusion algorithms [5] due to 
challenging environmental conditions or object constella-
tions. Furthermore, simulated low level interfaces enable to 
enhance early signal processing.

Fig. 1  Comparison of a radar (left) and lidar (right) “point clouds”, projected into the captured scene with parking cars [3, p. 3]. The color repre-
sents the intensity-equivalent value per detection

World
Wave

propagation Antennas ADC FFTs Thresholding Interpolation
Object
tracking

Environment Front end Data processing

Radar cuboid Detections Objects

Fig. 2  An abstracted radar processing chain with elements visualized as blocks with rounded corners. The group within the processing chain is 
visualized as dashed rounded blocks and the sensor interfaces are marked as edged blocks
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Nevertheless, it will not be sufficient to have only a simula-
tion model of a sensor available, but the validity of the sensor 
model must be proven along with its delivery. Only in this case 
simulation models can also be used in a trustworthy manner 
for safety assessments, as already envisaged by the UNECE 
[1, p. 5, 6]. Therefore, the complexity of radar measurements 
is due to noise based on multi-path propagation and RCS sen-
sitivities. Also, the lack of public data sets and limitations in 
measurement repeatability is challenging [6]. Additionally, the 
number of detections depends on multiple causes and the noise 
of the sensor is complex due to e.g. the high frequency hardware 
components.

2  Related work on metrics for validation 
of active perception sensor simulation

In this chapter validation metrics from literature for radar 
model validation are listed and evaluated. Finally, an over-
view of the DVM and its application on lidar data is given.

2.1  Comprehensive review of already used 
validation metrics

According to Oberkampf and Trucano, validation is the 
“process of determining the degree to which a model is an 
accurate representation of the real world from the perspec-
tive of the intended uses of the model” [7, p. 719]. Viehof [8, 
p. 91] introduced the so-called sample-vise validity in the 
context of vehicle simulation validation. Therefore, radar 
sensor model validation is understood as the comparison of 

synthetic and real sensor data with decent metrics, sample-
wise for a specific region of the desired parameter space of 
the application area. However, this means not only to be able 
to access the real sensor to simulate at the specific inter-
face of interest, but also to design measurement campaigns 
according to the cause-effect chains that are modeled and 
investigated for a specific sample of the possible parameter 
space of the sensor model.

As described in the previous section, radar sensor mod-
eling is a special case, as e.g. the relative velocity is directly 
measured and due to the complex interaction during radar 
wave propagation. Validation of radar sensor models is a 
complex task due to the complexity of radar measure-
ments, as outlined in the previous section. Besides experi-
ment design to optimize repeatability and reproducibility 
of measurements, while minimizing epistemic and aleatory 
uncertainties in reference data, the metrics for comparing 
real and synthetic data play a crucial role in validation. Alea-
tory uncertainty is a statistical deviation based on probability 
distributions in data. Epistemic uncertainty means a lack of 
information regarding model structure, world knowledge and 
measurement errors. Benke et al. [9] While epistemic uncer-
tainties can and should be reduced by enhanced reference 
data collection, aleatory uncertainties describe the inherent 
randomness of measurements.

A first decision guidance for metric selection is provided by 
the seven criteria for validation metrics as refined by Rosen-
berger [10, p. 99] and e.g. used by Magosi [11, p. 11], which 
were condensed by Schaermann [12, pp. 20–21], combining 
the original lists of six criteria by Oberkampf and Barone [13, 
pp. 11–12] and the seven features from Liu et al. [14, p. 2]: 

1. Metrics meet the mathematical properties of a metric as 
defined by Fréchet [15]. (Unbounded results)

2. Metrics are intuitive. (Plausible & output in unit of measur-
and)

3. Metrics are applicable to both deterministic and non-
deterministic data.

4. Metrics are quantitative and objective. (No manually 
tuned parameters)

5. Metrics do not include acceptance criteria. (No Boolean 
output)

6. Metrics consider uncertainties. (Epistemic and aleatory)
7. Metrics define a confidence interval with respect to the 

number of measurement data.

The state of the art in validation metrics for active percep-
tion sensor simulation is extensively discussed by Rosen-
berger [10, pp. 60ff.]. Multiple metrics in this collection 
of 34 options are only indirect metrics, where detections 
are sorted into occupancy grids first or object detection and 
tracking is applied. These cannot be applied on radar data at 
earlier interfaces like radar cuboid or detection level. Other 

Pιr=Ir,ιφ=Iφ,ιv=Iv

ιr
nr = Ir

ιφ
nφ = Iφ

ιv
nv = Iv

Fig. 3  Visualization of the radar cuboid with bins in range denoted 
as r, azimuth as � and Doppler as v. The overall number of bins is I 
and one bin in the corresponding dimension is � . In orange one bin 
with the power value P at the position Ir , I�, Iv is highlighted. The teal 
colored front marks the radar cuboid at the Doppler bin 0, which is of 
interest for static validation studies
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metrics measure distances between points in space. These do 
not take into account intensity or power values. Therefore, 
they are not applicable to the radar cuboid, which is not a 
list of detections, but an equidistant distributed volume filled 
with power values.

Table 1 shows an excerpt of the remaining metric can-
didates for radar data. If a metric is capable of a category 
given by the column title, it is marked in a specific shade of 
green, otherwise the cells stay blank. The table considers 
the data interfaces that the metrics are or could be applied to 
(D: Detections, O: Objects). Then, the ability to be applied 
to ( ∙∕ ⇝ : (Quasi) static/dynamic) scenario is provided. 
Additionally, in Table 1 the scale of measurement it is able 
to process is considered (M: Metric (interval or ratio), O: 
Ordinal). The uncertainties it is able to process (  s   ( : Alea-
tory/epistemic) are given per metric, as well. For the first 
four columns, it is marked if the metrics are applied without 
modification in literature (x), or if the metrics are applied 
in literature with moderate adaptions ( ⋆ ). Additionally, the 
coverage of the seven criteria for validation metrics from the 
beginning of this section is marked in dark green.

Typical metrics that can be applied on object poses in 
space or detection coordinates like Manhattan distance ( dMa ) 
and overall error (OE) could be applied to the power values 
for a bin-wise comparison of a synthetic and a real radar 
cuboid. This also holds e.g. for mean error d , root mean 
squared error (RMSE) and all other familiar error metrics 
from the collection that are not explicitly mentioned in 
this work, but listed in the original source collection [10, 
pp. 68–72]. Still, none of these strictly mathematical met-
rics accounts for aleatory or epistemic uncertainties, which 
disqualifies them to be applied for radar sensor model vali-
dation on the detection or radar cuboid interface, due to the 
stochastic and sensitive characteristics. The machine learn-
ing-based Deep Evaluation Metric (DEM) as introduced by 
Ngo [16] is used to measure an overall simulation-to-reality 

gap, but it does not cover most of the seven criteria. Addi-
tionally, due to the black-box nature of the results, there is a 
lack of interpretability, making it difficult to formulate safety 
arguments based on this metric. Also, it does not provide 
insights on how to calibrate and enhance a sensor model and 
is therefore not considered in the following. In Rosenberger’s 
enumeration of metrics, the Mahalanobis distance dM and its 
weighted variant are absent [17]. To achieve comprehensive 
coverage, Table 1 is supplemented with this metric. In the 
literature, this metric has already been applied to real and 
synthetic detection data from radar sensors [18, p. 33]. How-
ever, only the detection distribution over a binned bounding 
box is considered, without the inclusion of RCS or power 
values of the radar cuboid. Due to the metrics characteristic 
of not accounting for either aleatory or epistemic uncertain-
ties, the Mahalanobis distance and its weighted form are 
excluded as metric candidates for radar validations.

Consequently, only the Kullback–Leibler divergence 
DKL as applied by Schaermann [12], the Jensen–Shannon 
distance dJS as used by Magosi et al. [11], the area valida-
tion metric (AVM) dAVM introduced by Ferson et al. [19], 
and the Frequency of positive Kolmogorov–Smirnov tests 
fKS , as applied by Eder [20] remain as metric candidates. 
This means that besides the AVM as best candidate based 
on 1, two families of metrics should be evaluated further, 
namely divergences and hypothesis testing. Clearly, both 
are not intuitive concepts for most people and involve 
some more abstract thinking compared to just comput-
ing the area between two curves, as done for cumulative 
distribution functions (CDFs) or empirical cumulative 
distribution functions (EDFs) in case of the AVM. Rosen-
berger presents a detailed analysis of both metric candidate 
families [10, pp. 105ff.], where the technique of manufac-
tured universes [21] is used. Multiple EDFs are generated, 

Table 1  Excerpt of the evaluation of metrics applied for active perception sensor simulation from Rosenberger [10, p. 99]

The Mahalanobis distance is added compared to the original table. Green color: Metric is capable of a category, Color gradient: different evalu-
ation categories for readability, x/⋆ : Metric applied in literature without/with adaptions. The abbreviation “Interf.” stands for Interfaces, “Scen.” 
denotes Scenario, and “Unc.” represents Uncertainty. The covered criteria are the seven mentioned metric criteria
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where one is denoted as the real data and the others mimic 
simulated data to provoke edge cases for the metrics.

After showing hypothesis testing results for the differ-
ent compared EDFs and a short summary on the ongoing 
discussions on these kinds of tests in general, this metric 
family is dismissed for sensor model validation due to 
the sometimes misleading and above all counter-intuitive 
results. They are not available in the unit of the meas-
urand, which makes it less user-friendly e.g. in model 
specification, especially for negotiations with people 
with non-technical background. The same difficulties in 
interpretation of the results from comparing the different 
EDFs are present when applying Kullback–Leibler diver-
gence or Jensen–Shannon distance, leading to not further 
considering them for sensor model validation, too [10, 
pp. 104–108].

The remaining metric candidate is the AVM that is 
simply the integral of the absolute difference between 
two CDFs F, F̃  over all real and simulated sensor 
measurements

Due to the fact that the cumulated probability F(�) for each 
measurand � is limited to [0, 1] and unitless with m (e.g. 
100) quantiles, the integral can be applied over the ordinate 
resulting in the mean error of all m quantiles of the CDF like

Therefore, the AVM is very similar to the mean error of all 
n measurements

As visible in Table 1, the AVM is the only metric that han-
dles aleatory and epistemic uncertainties. This ability is 
reasoned by the fact that it is not only applicable on EDFs 
describing aleatory uncertainties reflected in the shape of the 
EDFs, but also on so-called probability boxes (p-boxes). A 
p-box is expressed by the left and right boundaries of multi-
ple EDFs. The width of the p-box at each quantile describes 
the epistemic uncertainties, as in Fig. 4 for the two simula-
tion EDFs. First introduced by Williamson and Downs [22], 
a p-box gives the possible interval of cumulative probabili-
ties for a specific measurand x and for a given cumulative 

(1)dAVM(F, F̃) = ∫
∞

−∞

|F(�) − F̃(�)| d� .

(2)
dAVM(F, F̃) = ∫

1

0

|� (F) − �̃(F)| dF

=
1

m

m∑

i=1

|�(Fi) − �̃ (Fi)| .

(3)d =
1

n

n∑

i=1

|�i − �̃i| .

probability it gives a possible interval of values, as discussed 
in detail e.g. by Ferson et al. [23].

As epistemic and aleatory uncertainties should always be 
minimized during measurements, but can never be elimi-
nated, they must be propagated through the simulation to 
reflect these uncertainties when the model is validated. Prac-
tically, this means that e.g. every position of a sensed object 
must be captured with reference sensors during the measure-
ments to collect the real sensor data to validate the model. 
The uncertainty of this reference position measurement 
device, e.g. ±1.0 cm, is then input for multiple simulations 
per measurement, e.g. one with the exact reference position 
and two more for the edge cases of ±1.0 cm. These multiple 
simulations result in several EDFs and a combination of all 
EDFs from simulation forms the p-box. Its boundaries are 
composed of the maximum and minimum x-values of the set 
of EDFs for each y-value.

The AVM for p-boxes is simply calculated by adding the 
two portions where the simulated p-box F̃  is higher ( d+ ) or 
lower ( d− ) than the real p-box F  as

For simplification, in Fig. 4 the EDF F is an infinitely thin 
p-box. Consequently, the AVM only considers the left and 
the right borders of the p-box, the original course of each 
EDF inside is irrelevant, and the borders could actually 
originate from different EDFs.

(4)dAVM(F, F̃) = d− + d+ .

Fig. 4  Portions of the AVM, where the simulated p-box F̃  is higher 
( d+ ) or lower ( d− ) than the real EDF F, based on Voyles and Roy [24]
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2.2  The DVM and its application in validation 
of lidar sensor simulation

An additional requirement on validation metrics is the 
ability to distinguish model bias and model scattering 
error to enable the structured elimination of these two 
different modeling errors [10, p. 72]. Model bias is an 
approximation of the mean deviation and model scatter-
ing error the deviation in the distribution function’s shape. 
Figure 5 illustrates the difference between model and 
measurement bias and also shows the difference between 
the measurement standard deviation and the model scat-
tering error. Indeed, measurement bias and scattering error 
are conceptually similar to the differences in mean and 
variance between a set of normal distributions. However, 
the distribution functions of the measurand can deviate 
from normal distributions.

Rosenberger therefore introduced the DVM that distin-
guishes the two components [10, p. 118ff.]. The first part 
is essentially the difference of d+ and d− in comparison to 
the original AVM as sum of these two portions. Voyles and 
Roy [24] introduced this difference that is proven to be a 
good estimate for the model bias as

It eliminates symmetrically distributed area portions of the 
AVM, which reflect the model scattering error and therefore 
only keeps the model bias. Consequently, (5) can be used to 
estimate a “corrected” [24] p-box as

(5)dbias(F, F̃) = d− − d+ .

(6)F̃c(�) = F̃(� − dbias) = F̃

(
� − (d− − d+)

)
.

Taking this idea of a corrected, bias-free simulated p-box 
further, a second-order AVM can be computed with F̃c that 
now only entails the remaining model scattering error. This 
novel metric introduced by Rosenberger [10, p. 118] is called 
corrected AVM (CAVM) and formulated as

As illustrated in Fig. 6, the CAVM is a multistep process 
that inherently includes the calculation of the model bias on 
its way. It starts with the calculation of d+ and d− for dbias 
(5). Then the simulated p-box is corrected by dbias to get F̃c 
(6). Finally, d+

c
 and d−

c
 are calculated, resulting in dCAVM (7).

Consequently, the novel DVM for comparison of two 
p-boxes F  , or EDF F as infinitely thin p-boxes, is achieved 
that distinguishes model bias and model scattering error 
with respect to the actual sensor bias and its real scatter-
ing behavior, as

Aligned with distinguishing model bias and model scattering 
error, model validation should start simple to reach more 
complex scenarios later. Accordingly, Rosenberger starts 
with demonstrating the DVM for beam-wise model evalua-
tion in static scenarios, like targets in different distances with 
no other effects taking place, to more complex and object-
wise validation of synthetic lidar detections. Aside from the 
interpretability of the results in the unit of the measurand, 
the accuracies are considered by the reference tests using 
the p-boxes. Consequently, for radar model validation, the 
validation should follow this incremental approach. The 
experimenter should take special care to consider isolated 
cause-effect chains, which influence the radar signal propa-
gation. A possible ontology to derive them is PerCollECT 
[25] as available on Github [26].

Besides the DVM there are other applications of the 
AVM described in the literature. Brune et al. compare in 
their application the left and right edges of the measure-
ment and simulation p-boxes with each other [27]. Com-
pared to the DVM, this approach offers the advantage that 
the p-box size is included in the metric result. This aspect 
is missing in the DVM according to Rosenberger. How-
ever, Brune’s AVM does not explicitly consider the scat-
tering error of the distribution function, which means that 
the information about the shape similarity of the p-box is 
lost. Figure 7 shows the AVM according to Brune et al. 
and illustrates how the size of the p-boxes is incorporated 
into the result of the AVM.

(7)dCAVM(F, F̃) = dAVM(F, F̃c) = d−
c
+ d+

c
.

(8)dDVM(F, F̃) =
(
dbias(F, F̃), dCAVM(F, F̃)

)
.

Ideal
value

Measured
bias

Simulated
bias

Probability
Density Measurement

bias
(vs. trueness)

Model
bias

Measured
standard
deviation

(vs. precision)

Simulated
standard
deviation

0 Measurand

Fig. 5  Bias and scattering of measurement and model [10, p. 11]. In 
the case of normal distributions the two factors are the mean value 
and the standard deviation
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2.3  Double validation metric limitations

As mentioned in Sect. 1, the measurement of the radial rela-
tive component of the velocity is possible with radar sensors. 
This allows the discussion of the DVM to model validation 

in dynamic scenarios. As already shown by Holder, even 
simple measurement scenarios on a proving ground are sub-
ject to difficulties regarding repeatability of complex geom-
etries that must be taken into account [28]. Figure 8 shows 
the variation of the RCS denoted as Q(�) over the distance 
in the radar sensor coordinate system denoted as Sr of a 
retroreflector, which is a corner cube reflector (CCR), and 
a vehicle.

Therefore, to apply the metric, it is advisable to introduce 
p-boxes for the measurement data to consider the limited 
measurement repeatability and take them into account in the 
metric result. Based on Fig. 8 and the limited reproducibility 
the size of the measurement p-box and the distribution of 
EDFs must be part of the metric.

Additionally, the size of the simulation p-box is a factor 
influencing the quality of the DVM. These properties are 
missing in the DVM according to Rosenberger because these 
characteristics are lost during the transformation of EDFs to 
p-boxes. Theoretically constructed ECs based on the method 
of manufactured universes substantiate the previous remarks.

These ECs can appear in the application of the valida-
tion methodology to radar due to the sensitivity of the model 
to small changes in reference sensor measurement uncer-
tainties, but also due to the problem of reproducibility of 
measurements.

Figure 9 shows the first ECs with the results of the Rosen-
berger’s DVM and the evaluation according to Brune et al. 
[27]. It addresses, on the one hand, the size of the p-box and 
the overlap of the simulation and measurement p-box. To 
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Fig. 6  Illustration of the CAVM [10, p. 118] in a lidar sensor meas-
urement campaign. A plate is placed in front of the sensor at 10 m 
in a static scenario. rnom and rref are the nominal and measured refer-
ence range. n and ñ1 are the number of detections from real data and 
simulation sim1, which is a control factor for the comparison of the 
different EDFs [10, p. 103]. These F is the EDF from real data. F̃  is 
the p-box from simulation. F̃

c
 is the simulated p-box corrected with 

the estimated model bias dbias . d+ and d− mark areas where the simu-
lated p-box F̃  is higher (+) or lower (-) than the real EDF F. d+

c
 and 

d−
c
 mark areas where the corrected simulated p-box F̃

c
 is higher (+) 

or lower (−) than the real EDF F 

Fig. 7  Visualization of the AVM calculation dL and dR based on the 
left and right border comparison between measurement FL , FR and 
simulation F̃L , F̃R , based on Brune et al. [27]. In the context of radar 
sensor data, the measurand could pertain to parameters such as the 
range of the detection distribution or the distribution of power values 
within the radar cuboid
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proof the independence of the methodology regarding the 
number of simulation and measurement EDFs, the combina-
tion of EDFs is varied.

Figure 9 illustrates EC 1 consisting of a large simulation 
p-box in comparison to the measurement. Additionally, the 
right side of the simulation p-box equals the left side of the 
measurement p-box. The AVM and the CAVM are both 0, 
and therefore, the model is valid based on the DVM. The 
extension by Brune of the AVM covers this EC by resulting 
in a dL , which has the same value as the simulation’s p-box 
size.

Figure 10 shows EC 2 with a large measurement p-box 
in comparison to the simulation. A concentration of meas-
urements EDFs on the right side is also present. For Rosen-
berger’s DVM the simulation results are only the deviation 
between the right simulation and left measurement EDF.

The AVM is small and the CAVM is almost 0, because 
the shape of the right simulation and left measurement EDF 
are nearly identical. Also, the AVM definition by Brune fails 
in this case. The value for dL covers just the offset between 
the two p-boxes.

Figure 11 visualizes EC 3 consisting of two simulation 
EDFs at the left and the right side, which are very similar 

Fig. 8  RCS experiment trials of 
a CCR in blue and a Golf Mk5 
in black from Holder [28]
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in shape. Between the outer distributions there are several 
simulation EDFs that show a completely different distribu-
tion shape. By forming the simulation p-box, the information 
of the inner distributions is lost.

This leads to the fact that the deviations in the shape of 
the distribution function are insufficiently considered in the 
DVM validity consideration. Brune’s AVM covers the big 
size of the simulation p-box but fails with identifying the 
inner distribution functions.

Figure 12 illustrates EC 4, which is similar to number 2, 
where the distribution of the simulation distribution func-
tions has no effect on the validation result itself. In the case 
of Brune’s AVM, only the total deviation of the p-boxes is 
quantified.

However, the important information of the accumulation 
of distribution functions on the right side of the simulation 
p-box is lost, which could be helpful for the modeler and 
the experimenter. In the context of simulation, the aggre-
gation of distribution functions suggests that the model’s 
underlying parameterization exhibits heightened sensitiv-
ity at a specific point, resulting in a substantial deviation 
from other simulations. This observation is mitigated by the 
utilization of the p-box. Conversely, for the experimenter, 
such aggregation signifies an outlier within the measured 
data, indicating potential issues such as erroneous execution, 

deviation from the intended scenario, or significant altera-
tions in environmental conditions.

The presented ECs show the shortcomings of the two 
validation metrics. Especially the distribution of the EDFs 
within the p-box borders are disregarded. Another disad-
vantage is that an assignment of the EDF outliers, which 
results from parameters varied in the simulation, to the 
validation result is excluded. Generally, the introduction of 
p-boxes obscures the validation result and leads to poten-
tial misinterpretation. Therefore, the methodology to apply 
the DVM has to be extended and modified.

To ensure comparability of simulated and real data 
based on DVM, it is essential to include the number of 
data points in the evaluation process. A deviation in the 
numbers between simulation and measurement of 10% is 
considered as an acceptable limit in the remainder of this 
paper by the authors. The deviation in data points occurs 
due to time effects in the radar sensor, which are not cov-
ered in the simulation model with a predefined sample 
frequency. At the detection level, this is particularly prob-
lematic in the case of the radar sensor, as the number of 
detections can vary greatly between individual measure-
ment cycles, for example due to clutter from vegetation 
or rain.
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Fig. 11  EC 3 of the DVM definition by Rosenberger and AVM calculation by Brune
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3  Radar validation methodology

In this chapter the methodology for determining the DVM is 
adapted. Furthermore, it is shown how the new methodology 
can be applied to radar data.

3.1  The DVM map

To overcome the DVM limitations of simulation and meas-
urement p-box size as well as distribution and shape of EDFs 
an adaption of the DVM is necessary. Figure 13 shows the 
adapted validation methodology based on the AVM and 
CAVM metric. Compared to Rosenberger, the measurement 
and simulation p-boxes are resolved, and each simulation is 
compared to each measurement, deriving the new "DVM 
Map" as a validity tool visualized as a heat map.

In a first step, the AVM is formed for each simulation 
EDF in combination with each measurement and corrected 
by the determined dbias according to (5). The absolute value 
of |dbias| is used for visualization in the DVM map so that for 
negative and positive model bias, the color value of the scale 
is unambiguous. Following the aforementioned procedure, 

the corresponding CAVM is formed and dCAVM determined 
according to (7). This results in a value for the model bias 
and the scattering error for each simulation in comparison 
to each measurement. The scattering error finds an intuitive 
explanation in the shape deviation of the corrected simula-
tion EDF in comparison to the measurement EDF. To calcu-
late the overall comparison score dSum the absolute value of 
the model bias is added with the CAVM result as

These deviations of the simulation can be quantified in 
comparison to all measurements. Therefore, the DVM Map 
shows the most critical measurement and simulation of the 
corresponding reference data uncertainty. When the results 
of the DVM Map need to be further processed, the maxi-
mum of dSum is formed, thus identifying the most critical 
combination of measured and simulation data for sample 
validation. To demonstrate the utility of the newly devel-
oped DVM Map, the ECs from Figs. 9, 10, 11 and 12 are 
re-examined.

(9)dSum = |dbias| + dCAVM.
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Fig. 13  This figure shows the adapted DVM methodology to address 
the different ECs with the new DVM Map as intermediate step

Sim1
Sim2
Sim3
Sim4
Sim5
Sim6
Sim7

EC1

Sim1
Sim2
Sim3
Sim4
Sim5
Sim6
Sim7

M
ea
s1

M
ea
s2

Sim1
Sim2
Sim3
Sim4
Sim5
Sim6
Sim7

EC2

M
ea
s1

M
ea
s2

M
ea
s3

M
ea
s4

M
ea
s5

M
ea
s6

M
ea
s7

EC3

M
ea
s1

M
ea
s2

EC4

0

5

10

15

|d
b
ia
s|

0

1

2

3

d
C
A
V
M

M
ea
s1

M
ea
s2

0

5

10

15

d
S
u
m
=

|d
b
ia
s|
+
d
C
A
V
M
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Figure 14 is sorted by the ECs from left to right and 
shows the results for |dbias| , dCAVM and dSum from top to bot-
tom. The DVM Map of EC 1 shows that the large model 
bias of simulation 2 can be compensated. The CAVM shows 
minor deviations since the shape of all EDFs is similar to 
each other. It can be seen that the combination of measure-
ment 2 and simulation 1 performs worst in terms of sample 
validity.

For EC 2, the focus is also on model bias examination. 
The accumulations of EDFs on the right-hand side are 
clearly evident, with simulation 1 deviating more than simu-
lation 2. The result also shows up in dsum , resolving the EC.

EC 3 shows that the distribution of the different simula-
tion EDFs can be mapped using the dCAVM . However, the 
influence of dbias predominates for simulation 1.

EC 4 shows that the DVM Map can also reproduce high 
deviations of the simulation and thus reflects valuable infor-
mation regarding sample validity and the influence of vari-
ous aleatory uncertainties.

In Sect. 2.1, the seven criteria for metric selection are 
enumerated. As the DVM is based on the AVM, which is 
listed in Table 1, and the DVM Map is derived from the 
DVM, there exists an association among the criteria of the 
three metrics. Nevertheless, the DVM Map is evaluated 
based on the seven criteria outlined subsequently. Given 
that the DVM Map exhibits no boundary in its outcome, 
the first condition is met. As demonstrated by examples 
from the ECs, the results are plausible and consistent with 
the unit of the corresponding measure, facilitated by the 
use of the DVM. Furthermore, the metric is applicable to 
both deterministic and non-deterministic data. Addition-
ally, aleatory and epistemic uncertainties are accounted 
for through the measurements and simulations of reference 
data. These two aspects are illustrated in the evaluation 
presented in Sect. 5. The metric itself possesses no tuning 
parameters and lacks any acceptance criteria. Hence, these 
two points from the list of criteria are also fulfilled. Confi-
dence intervals can be defined based on the measurement 
data. However, this is not explicitly demonstrated in the 
subsequent evaluation.

3.2  DVM map application on radar sensor interfaces

Figure  15 shows the methodology application to radar 
cuboid and detections in a study of sample validity of a radar 
model. The first step is to run defined scenarios in the real 
world (bright red). In addition to the measurement data at 
detection and radar cuboid level, the measurement campaign 
yields the operational reference data, which is subject to 
epistemic and aleatory uncertainties. Operational reference 
data means in this context the ability to take a reference 
measurement with additional sensors independent of the 

radar sensor. The uncertainties are determined by means of 
reference sensors or reference sources.

The measured reference data is transferred to the simula-
tion (light blue) in a further step. Here, in addition to the 
measured reference value, the epistemic uncertainties are 
propagated through the simulation. As a result, simulation 
data on detection and radar cuboid level are available, where 
the number of simulations depends on the number of simu-
lated uncertainties.

Different variants of the new validation methodology can 
then be applied to the measurement and simulation data. 
First, a very rough consideration of all detections and all 
cells of the radar cuboid is advisable. From this, basic devia-
tion of the sensor model from the measured data can be 
derived, as well as which uncertainty combination together 
with which measurement shows the largest measurand devia-
tion. This allows conclusions to be drawn about gross mod-
eling errors, as well as measurement outliers, provided the 
number of measurements is large enough to identify outliers. 
While more measurement data of longer time periods and / 
or repetitions (at least three repetitions should be required) 
is always better for the analysis, the number of measure-
ments in practice is mostly restricted by ecological factors 
like available time at test tracks and personal.

Detections and the corresponding bins in the radar cuboid 
are of great interest of a validation study. This can be jus-
tified firstly by the fact that detections represent the input 
for all subsequent steps of radar processing, and secondly 
that here, either due to the environment or due to objects, 
power differences are present that a simulation model should 
represent.

Therefore, the time aggregated detection data from all 
measurements are clustered using a Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algorithm 
and thus a region of interest is defined, which in turn can be 
transformed into cells of the radar cuboid. By applying the 
new methodology, individual areas of particular interest in 
the radar measurement are testable in a dedicated manner.

Finally, an application of the radar validation methodology 
to each individual cell of the radar cuboid is performed. Local 
effects and influences are the focus of the investigation and 
provide valuable information about the model sensitivity with 
respect to the reference sensor uncertainties. By matching the 
results to a satellite image detailed investigations of the influence 
of the environment are possible.

4  Application validation methodology

In this chapter the aspects considered theoretically so far 
are verified in the following by means of a validation study. 
For this purpose, a measurement campaign is carried out on 
the August–Euler airfield proving ground in Griesheim. The 
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study is intended to serve as a proof of concept of the DVM 
Map, therefore a static scenario is measured. Moreover, 
within the context of sensor model validation, it is deemed 
essential to commence the process by scrutinizing simple 
scenarios to iterative rectify any errors inherent in the model. 
Consequently, the selected example is designated as the ini-
tial, static experiment within a broader validation campaign. 
Consequently, subsequent analyses refrain from a detailed 
investigation of the Doppler component within the dataset, 
with deference given to forthcoming publications for a more 
comprehensive examination of this aspect.

4.1  Experimental setup

The object in the validation study is a CCR lying flat on the 
asphalt, which is placed on different positions in front of 
the radar sensor. The positions differ in the range r to the 

radar sensor and the azimuth angle � . For r, 29.56 m and 
48.33 m are chosen, respectively, due to the radial resolu-
tion, so that the CCR is located once close to the edge and 
once in the center of the range bins. For � , positive as well 
as negative angles are defined so that the CCR is within the 
sensor’s unambiguous azimuth measurement range and the 
width of the test site is sufficient. Thus, angles of − 8 ◦ , −4 ◦ , 
0 ◦ , 4 ◦ , 8 ◦ are obtained. Figure 16 shows a sketch of the 
measurement setup with the different CCR positions, which 
are measured one after another, on the left side and the real 
world measurement setup for position 1 on the right side. 
The position of the CCR and the sensor is obtained using a 
real time kinematic (RTK)-based global navigation satellite 
system (GNSS) antenna with a measurement uncertainty of 
0.02 m. For each measuring position, 5 measurements of 
60 s each are recorded with the radar sensor resulting in 
approx. 850 samples.

Validation study

Real world
measurement

Get radar mea-
surement data

Define operational
reference data

Operational
reference data

Get reference data
and uncertainty

Resimulation of
measurement

Measurement
detection data

Measurement
radar cuboid data

Get radar
simulation data

Simulation radar
cuboid data

Simulation
detection data

DVM Map radar
cuboid each cell

DVM Map
detection data

DVM Map whole
radar cuboid

DVM Map radar
cuboid each cluster

Apply DBSCAN
Algorithm

Clustered
detections

Region of interest
radar cuboid

Fig. 15  Validation methodology to apply the DVM Map to different 
levels in the radar processing chain. From left to right the applica-
tion of the DVM map to all detections, to the entire radar cuboid, 

the region of interests, which result from time aggregated, clustered 
detections, associated with the corresponding radar cuboid cells and 
each radar cuboid cell separately is visualized
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The measurement setup and the existing measurement 
technology result in the uncertain reference data listed in 
Table 2. Here, some parameters are determined directly and 
others result from the propagation of error of several meas-
urement uncertainties. In case of the sensor height and the 
edge length a measurement tape is used with a given meas-
urement uncertainty of 0.005 m. The sensor orientation is 
measured via a reference target and the RTK-based GNSS 
antenna resulting in 0.07 ◦.

4.2  Simulation model

The reference data uncertainties listed in the table are 
transferred to the simulation in a next step. Reference data 
uncertainty propagation through simulation is realized by 
defining separate scenarios with the upper + and lower limit 
− of this uncertainty. Additionally, one simulation with all 
uncertainty-free reference measurement data denoted as N 
is integrated. For the radar simulation, the output of a black 
box radar ray tracing algorithm by IPG CarMaker version 

9.1.1 and an adapted open source radar signal processing 
model [29] is used.

The input from the ray tracing algorithm is interpreted in 
the radar model as a delta peak in frequency space and is called 
“Fourier tracing” [28]. The range and angle information of 
the ray is used to calculate the radar cuboid bin in the differ-
ent dimensions in which the delta peak is located. A window-
ing function is used to smear the power of the delta peak into 
the neighboring bins. This allows effects such as ambiguities, 
separation capabilities and interferences to be present in the 
radar model. In addition, a non-deterministic noise simulation 
is implemented to demonstrate the metric capabilities even for 
such modeling approaches. Based on measurements, the mean 
and standard deviation are determined for each range-azimuth 
cell combination. A Gaussian distribution with the determined 
parameters is then imposed on cells whose minimum power is 
below the noise floor. Figure 17 shows the determined mean 
and standard deviation as a range azimuth map. This result is 
conducted by placing the sensor on the asphalt with its front side 
pointing into the sky.

The radar model is parameterized using the data sheet and 
calibrated with position 1 of the CCR on the detection inter-
face. Additionally, a simulation model of the August–Euler 
airfield in Griesheim is used for the environment simulation.

5  Results and discussion

In this chapter, the different results of the DVM Map are 
shown and discussed. Therefore, the methodology defined 
in Sect. 3 is applied to the static validation scenario. The 
DVM Map with the new validation methodology is applied 
to the different interfaces as described in Figs. 13 and 15. In 
Sect. 5.1 all detections are analyzed. Afterwards in Sect. 5.2 
the results of the whole radar cuboid is discussed. The 

Fig. 16  Experimental setup of the validation study. CCR position 1 ( rCCR, Pos 1 = 29.56 m, �CCR, Pos 1 = 0) is used for simulation calibration pur-
poses and position 3 ( rCCR, Pos 3 = 29.56 m, �CCR, Pos 3 = -8 ◦ ) is analyzed based on the presented methodology

Table 2  Measured reference data uncertainties for CCR position 3 
defined in Fig. 16. The local Cartesian coordinate system G is defined 
in East-North-Up direction with the origin located on the August–
Euler airfield in Griesheim

Reference data Variable Measurement Uncertainty

Sensor azimuth orientation 
in G

G
�
S 197.91 ◦ ± 0.07 ◦

Sensor x position in G
G
x
S

977.43 m ± 0.02 m
Sensor y position in G

G
y
S

241.56 m ± 0.02 m
Sensor height in G

G
h
S

12.89 m ± 0.02 m
CCR x position in G

G
x
C

948.33 m ± 0.02 m
CCR y position in G

G
y
C

216.46 m ± 0.02 m
Edge length CCR l

C
0.240 m ± 0.005 m
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region of interest in the radar cuboid by means of clustered 
detections is described in Sect. 5.3. Finally, the results of 
each cell of the radar cuboid combined with a visualiza-
tion on top of a satellite image are shown. As an example, 
the previously mentioned scenario of CCR position 3 at 
rCCR, Pos 3 = 29.56 m and �CCR, Pos 3 = − 8 ◦ is evaluated.

5.1  Whole detections

This section contains the evaluation for all detections of the 
measurements and simulations. Figure 18 shows all detec-
tions of all measurements combined in one diagram in Car-
tesian coordinates, where the origin is the sensor position. 
Therefore, the EDFs of the different distributions of the 
quantities r, � and � are calculated.

The representation of the detections as distribution func-
tions is visible the top row of Fig. 19. The EDFs of the 

different measurements are close to each other and the devia-
tion of numbers of detections is less than 1%. This indicates 
a high reproducibility of the measurement results. However, 
there is a significant difference in the number of detections 
between simulation and measurement, which prevents a 
valid evaluation based on the DVM.

Nevertheless, further analysis of the data will be con-
ducted to describe and analyze the general methodology. 
The distributions of the detections from the simulation are 
almost at the same position in every cycle for the range as 
well as the azimuth angle. However, deviations of the simu-
lations in RCS show up. The analysis of the RCS shows that 
the model reacts very sensitively to small changes of the 
scenario, which again emphasizes the necessity to consider 
the reference sensor uncertainties.

The basically different distribution functions between 
measured and simulated data result from the environment 
model of the August–Euler airfield as well as the ray trac-
ing simulation. The ray tracer used in the CarMaker ver-
sion has no reflections from the road surface in the given 
setup as well as no reflections from the vegetation next to 
the asphalt surface due to the lack of simulated vegetation. 
Therefore, only rays from the CCR are processed as radar 
signal processing model input. Thus, only detections at the 
object result, whereby besides the small number of detec-
tions also the distribution in range and azimuth are limited 
to the position of the CCR. However, the detections of the 
CCR are in the same distance in measurements and simula-
tions. This can be seen particularly well in the second row at 
r = 29.56 m as well as � = -8 ◦ by the step in the measure-
ment EDFs highlighted by the red ellipse.

The second row of the Fig. 19 shows the simulation EDFs 
F̃c corrected by the model bias dbias based on the AVM calcu-
lation to measurement 1. This represents the second step of 
the methodology from Sect. 3. It is already evident, without 
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Fig. 18  Plot of all detections in the Cartesian sensor coordinate sys-
tem. Especially in near range of the sensor as well as at the transition 
of the asphalt and vegetation clutter is present. The CCR is located at 
Sx = 29.4 m and Sy = −4.2 m
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a quantitative determination of the deviation by means 
of dCAVM , the fundamental difference of the distribution 
functions.

The DVM Map in Fig. 19 verifies the findings already 
made from the first visual impression. In the range domain, 
the constancy of the simulation of dbias and dCAVM stands out. 
In the range, the simulation model is insensitive to the simu-
lated uncertainties. This is due to the fact, that the measure-
ment uncertainties are very small compared to the radar’s 
range resolution of 1.8 m. Measurement 1 and 5 show the 
smallest deviations in the model bias and measurement 2 the 

largest deviation. The scattering error of measurement 2 is 
largest and lowest for measurement 5 for the range dimen-
sion. Thus, the differences in the results of the DVM Map 
are due only to the differences in the measurements.

In the case of the azimuth dimension, the model is 
slightly more sensitive, as shown by the minor color changes 
in the perpendicular components of the DVM Map. These 
variations are small compared to the measurement influence 
shown in the horizontal of the various uncertainties. Here, 
the negative variations of the y-position and the rotation � 

Fig. 19  From left to right are 
the range in m, azimuth in ◦ , 
and RCS in dBm2 results of all 
detections. The first row visual-
izes the EDF of all measure-
ments F and of all simulations 
F̃ . In the second row the EDF 
of measurement 1 FMeas1 and 
the corrected simulation EDFs 
F̃c are shown. The red circles 
illustrate the data points in the 
measurement EDFs where the 
CCR is located. The last two 
rows show the DVM Map of 
the above-mentioned quantities. 
The number of detections of the 
measurement n and simulation 
ñ is in the legend
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of the sensor are the uncertainties with the most notable 
influence on the result.

For the RCS, in turn, the negative x-position of the CCR 
variation and the negative sensor height variation have the 
largest influence. All parameters have a clear but different 
influence on the RCS distribution of detections. In addi-
tion, it is shown that the DVM Map is able to represent the 

different positions of the EDFs with respect to each other in 
a very intuitive and simple way.

The influence of the environment in combination with 
the ray tracing algorithm as stated above is simply too large 
to make a validity statement by means of the analysis of all 
detections. However, the analysis of all radar detections can 
be used to compare stochastic effects from the environment. 
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Fig. 20  The DVM Map of the whole radar cuboid in dB is shown. 
The first diagram visualizes the EDF of all measurements F and of all 
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and the corrected simulation EDFs F̃c are shown. The second row 

shows the DVM Map of the above-mentioned quantities. The number 
of analyzed radar cuboid cells of the measurement n and simulation ñ 
is in the legend
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This includes not only influences like vegetation but also 
weather influences like rain and snowfall.

5.2  Whole radar cuboid

In this section, the DVM Map is applied to the whole radar 
cuboid. The only dimension considered in this case is the 
power distribution P of all cells of the radar cuboid, with the 
velocity dimension reduced to one cell �v = 0 . This reduces 
the radar cuboid to a range-azimuth map where each cell 
holds a spectral power value. Figure 20 shows the EDFs of 
simulation and measurement as well as the corresponding 
DVM Map.

The course of the simulation EDFs is characterized by 
the noise simulation at the beginning. Only above − 82 dB 
the effect of the radar cuboid cells filled by the CCR with a 
higher power is visible. In relation to the number, however, 
these are represented much less frequently, so that the gray 
curves just above − 80 dB are just close to 100% cumulative 
probability. All simulation runs are very close to each other 
and show only minor differences. This observation is again 
justified based on the sensor noise simulation introduced 
into the model. Nevertheless, the measurement EDFs devi-
ate from the simulation course by a few dB up to − 80 dB. 
Above − 80 dB the model of the environment and the ray 
tracing algorithm become noticeable again. Due to reflec-
tions of the environment, cells of the radar cuboid in the 
measurement are filled with power up to − 60 dB. Subse-
quently, the effect of the CCR is visible in the form of steps 
at − 43 dB up to − 20 dB in the EDFs.

The corrected EDFs are also close to each other, which 
means that only small deviations in the dCAVM are to be 
expected. The number of cells still indicates that the cycle 
time of the simulation model does not yet match the real sen-
sor. Nevertheless, the deviation in the number of data points 
allows a comparison because the deviation is less than 10%. 
The problem of comparability, as evident in Sect. 5.1 when 
analyzing all detections, is less present in the radar cuboid.

The values of the dbias are close to the real measurement 
due to the noise simulation and a deviation of 3.5 dB is 
tolerated given the dynamic range of a radar sensor that 
spans over 80 dB. Measurement 2 and 3 show the largest 
deviations to all simulation parameters, with an increased 
sensitivity of the model to the uncertainties Cx− , Sy− as well 
as Sh−.

dCAVM is around 3.5 dB and can be justified by the alea-
tory uncertainties of the environment on the measurement 
result. Different areas on the test track produce higher pow-
ers in the measurement, which the environment simulation 
does not cover. In conclusion, the noise simulation distorts 
the influence of the environment model and the ray tracing 
algorithm. Thus, before integrating stochastic effects, it is 

recommended to analyze and optimize the whole simulation 
chain with ideal test objects and small region of interests.

5.3  Clustered detections on radar cuboid level

In this section, the results of clustered detections at radar 
cuboid level are presented and analyzed. Figure 21 shows 
the position of the clustered detections in the Cartesian sen-
sor coordinate system. The cluster of CCR is number 5 and 
highlighted in the figure with a red circle at Sx = 29.4 m 
and Sy = −4.2 m. At close range of the sensor, some detec-
tions are visible due to the reflection of the road surface. 
Especially on the x-axis and in the edge region of the sensor 
more detections due to this effect show up. All detections 
from Sx = 40 m are located at the road border where the 
asphalt ends and the vegetation starts. This clutter is pre-
sent in all measurements and differs only slightly between 
measurements.

In detail, the CCR and the corresponding bins of the radar 
cuboid are considered below. The upper part of Fig. 22 again 
represents the uncorrected and corrected EDFs of simula-
tions and measurements and measurement 1, respectively.

The step shape visible in the measurements results from 
the 4 different range azimuth cells analyzed in the evaluation 
based on the CCR’s position. The variations of a cell are 
within a few dB over time, which can be seen in the slope of 
the EDFs. Furthermore, the reproducibility of the measure-
ments is exceptionally high, which is reflected in the overlap 
of the courses of the measurements.

In general, the simulations have a clear model bias. Here, 
the first modeling errors of the signal processing are evident. 
The model is calibrated to the RCS of the CCR at position 1 
and therefore a difference in the calculation of the RCS from 
the radar cuboid power to the detections exists.

Furthermore, there is a clear influence of the uncertainties 
propagated by the simulation. In three simulations, the step 
shape is similar to the measurements, but the slope itself is 
more substantially smeared and not as steep. All other simu-
lations have a much lower slope after the initial step. The 
beginning of the simulation slopes can be explained by the 
noise simulation. Two radar cuboid cells are considered here, 
which are not yet affected by the power increase due to the 
CCR. From this, a modeling error can again be identified. The 
window functions of the real sensor differ from those of the 
simulation model because the power increase of the CCR does 
not smear as far into neighboring bins as in the measurement. 
The discrepancy in the number of cell values considered indi-
cates a sampling difference between the model and the real 
sensor. This is reasoned by the fact that the real sensor does 
not exhibit fixed cycle times, and the co-simulation restricts 
this parameter through a specific sampling frequency.



 Automotive and Engine Technology             (2024) 9:6     6  Page 18 of 23

The previously described findings from the EDFs are also 
reflected in the DVM Map. The simulations of Sy− , Cx− as 
well as Sh− show the lowest deviations in model bias as well 
as scattering error. This is in agreement with the findings 
from Sect. 5.2, where also the mentioned uncertainties rep-
resent the smallest deviation (see also Fig. 20).

In comparison to the previous figures, the heat map of 
dSum is additionally shown, since the further considerations 
in Fig. 21 are based on these results. To compare the clusters 
with each other, the maximum value of dSum and its corre-
sponding cell in the heat map is used. The values for |dbias| as 
well as dCAVM of the uncertainty measurement combination 
are transferred to a separate bar diagram in Fig. 23.

Clusters 1 to 4, 10, 13, 17, 21 and 24 in Fig. 23 show 
the clear difference between simulation and measurement 
in the close range of the sensor. As already described, 
ground reflections are not further considered in the simula-
tion model, which results in the visible difference between 
simulation and measurement. Clusters 6 and 7 represent the 
largest clusters with the main clutter due to vegetation. The 
influence of vegetation is not as large as the deviations in the 
near sensor range, since the distance is larger and thus the 
power in the radar cuboid approach the noise level. Never-
theless, a clear difference between simulation and measure-
ment can be identified.

Among the clusters farthest from the sensor in the range, 
number 18 stands out. At this location, there is an intersec-
tion of runway and taxiway on the August–Euler airfield. 
The effects of the change in ground properties are thus 
detectable in the methodology using the DVM Map. Across 
all clusters, no trend in the measurements and uncertainty 
parameters can be detected, which on the one hand speaks 
for the good reproducibility of the measurements and on the 
other hand for the high sensitivity of the radar model. If such 
a trend is observed in the presented analysis, either for an 
uncertain parameter or a measurement, it suggests the pres-
ence of either a parameterization with high sensitivity in the 
simulation or an outlier in the measurements.

5.4  Each range and azimuth radar cuboid cell

To increase the interpretability of the results, the outcome 
of the DVM Map are plotted on a satellite image. For this 
purpose, the measured positions of the sensor and the deter-
mined orientation are taken as origin and the range as well as 
azimuth resolution of the radar cuboid is used to distribute 
its cells over the satellite image. From top to bottom, |dbias| , 
dCAVM and dSum are visualized in Fig. 24. The coloring of 
the cells corresponds to the results of the DVM Map per 
radar cuboid cell. As an example, the DVM Map of cell 
�r = 18, �� = 16 is shown. As in Fig. 23 for further analysis, 
the maximum of dSum for the measurement and uncertainty 
combination is used. Therefore, this combination is used to 
color the cell in the value of |dbias| , dCAVM and dSum.

In the top plot it can be seen that there is a deviation 
of about 30 dB in the area where the CCR is located. The 
smearing of the power in neighbor bins due to the window-
ing function is included in the simulation model, but an 
assignment to the causal effect of the deviation is difficult. 
On the one hand, the power of the CCR is too low, which 
can be corrected by calibrating the model at radar cuboid 
level instead of the detection interface with its RCS value. 
Nevertheless, there is a model error in signal processing 
in the calculation of RCS from radar cuboid data, as the 
simulation is calibrated to a centrally positioned CCR on 
the runway. On the other hand, the window function in the 
model is iteratively determined, which means that measure-
ment and modeling errors may also be present here.

Directly next to the highlighted cell �r = 18, �� = 16 there 
is an area with the maximum deviation between simulation 
model and measurement, which is 55 dB. In the simulation 
model there is no input data from the ray tracing algorithm 
and only the noise simulation fills these cells of the radar 
cuboid with power values. During the measurements, no 
objects or asphalt peculiarities were noticed that justify this 
increase in power. For these reasons, there has to be an effect 
in the signal processing of the radar sensor, which is not 
considered in the radar model and is triggered by the CCR. 

Fig. 21  Clustered radar detec-
tions of all measurements in the 
sensor coordinate system, where 
the color represents the belong-
ing to a cluster. The red circle 
at Sx = 29.4 m and Sy = −4.2 m 
shows cluster 5, where the CCR 
is located
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Therefore, the method is able to identify a systematic model 
error at this point. Along the runway there are still increases 
in the model bias, ranging from 15 to 25 dB especially in the 
transition area of the asphalt and vegetation.

In the second satellite plot the scattering error represented 
by dCAVM is visualized. The highest deviation is present at 
the CCR. The distribution shape in the measurement looks 
like a step function. The simulation EDFs are not so steep, 

and the propagated uncertainties have a big impact on the 
shape especially at lower powers. This proves the high sen-
sitivity of the radar model chain with respect to the measure-
ment data uncertainty.

Along the runway and the transition to vegetation, nota-
ble deviations are evident, as already in |dbias| . Of particular 
interest is the intersection of the taxiway with the runway 
highlighted by the red circle. Due to the transition between 
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vegetation and asphalt, higher values in comparison to the 
surrounding cells for dCAVM are shown.

In the dSum satellite plot, the differences now become even 
more apparent. In addition to the features of the runway, 
vegetation, and intersection already mentioned, the sensor’s 
close range has significant discrepancies. This underlines 
the findings from the analysis of the clusters in the previous 
chapter.

6  Conclusion

This paper introduces the concept of the DVM Map and its 
application to radar data using a static scenario. Based on four 
ECs, the need for an extension of the existing DVM definition 
is presented. A methodology which allows to apply the DVM 
Map on radar cuboid and detection level is described. A vali-
dation study is exemplified using the described experimental 
setup and an adapted radar simulation model. It is evident that 
looking at all detections only makes sense if the environment 
simulation is matched with the ray tracing algorithm. It can be 
seen that the different number of detections is a fundamental 
problem of the simulation model with all its components. The 
evaluation of the entire radar cuboid has the advantage that the 
number of data depends only on the correct model parameteri-
zation. The comparison reveals whether aleatory uncertainties 
such as noise are modeled correctly. The clustered detections 
are used to analyze the areas that are particularly affected 
by power differences. In the case of the validation study, the 
analysis of the CCR shows high deviations between meas-
urement and simulation. Therefore, objects can be identified 
and evaluated particularly well using this approach. Finally, 
all cells of the radar cuboid are analyzed. Local aleatory and 
epistemic uncertainties of the environment model, e.g. vegeta-
tion and asphalt, are visible. Additionally, effects of the radar 
signal processing model can be separated from environment 

model and ray tracing algorithm. In general, it can be seen that 
validation of a sensor model and its signal processing is only 
possible if the environment simulation is qualified regarding 
physical effects and aleatory uncertainties.

Overall, it can be seen that the DVM Map with its applica-
tion to the different levels significantly increases the interpret-
ability of scenarios in the following manner:

• The DVM Map gives the output score in units of the ana-
lyzed size.

• The DVM Map gives information about the sensitivity of 
each modeled reference data inaccuracy in the simulation 
with each measurement.

• Clustering gives dedicated information about object model 
and modeling errors.

• Using the DVM Map in combination with the satellite plot, 
errors can be spatially localized, and thus the environment 
model can be examined.

The DVM Map can also be used to compare measurements 
with each other and thus investigate stochastic effects such 
as rain and compare the similarity of rain conditions between 
measurements. Furthermore, measurement setups that have 
to be dismantled and reassembled can be examined and com-
pared by a reference measurement. Particular attention should 
be paid to the periphery of the radar sensors’ field of view, 
where azimuth ambiguities are present and radar detection 
accuracy is lower compared to the boresight. Therefore, future 
experiments should focus specifically on this area and evaluate 
the performance of the DVM Map. Additionally, an analysis 
of the signal-to-noise ratio offers further potential to improve 
the understanding of the underlying effects in the future. So 
far, the consideration of uncertainties is limited to the upper 
and lower bounds, which does not take into account mutual 
influences of the uncertainties. Therefore, it is recommended 
in a next step to combine the uncertainties with each other and 

Fig. 23  Bar plot of all clusters 
of |dbias| , dCAVM and dSum with 
the corresponding cluster num-
ber as well as the biggest influ-
ence based on the measurement 
uncertainty parameter combina-
tion on the x-axis. The evaluated 
interface is the radar cuboid of 
the different clusters in dB
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to limit the parameter space in the process. As soon as fur-
ther uncertainties are added and not only the upper and lower 
bounds of the uncertainties are varied, this inevitably leads 
to an explosion of the parameter space. Assuming a param-
eter number in the present scope with five instead of three 
variations is examined full factorial, the number of necessary 
simulations for just one scenario with a CCR is

This estimate does not include material properties or com-
plex geometries and each simulation has to be repeated for 
a change in the model itself. Therefore, the parameter sensi-
tivity of the model must be determined in advance and thus 
reduce the parameter space. In the future, we will extend the 
methodology developed here for static scenarios to dynamic 

(10)nsim = n
nparam
var = 57 = 78,125.

Fig. 24  Satellite image in which the results of the DVM Map of the 
radar cuboid interface in dB are shown. From top to bottom, the vali-
dation results for |dbias| , dCAVM and dSum are illustrated. In the lower 

right corner of each plot, the DVM Map of cell �r = 18, �� = 16 is 
shown as an example on which the coloring in the satellite plot is 
based
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scenarios. However, this poses challenges specifically with 
respect to temporal aggregation of data. It is imperative that 
these challenges be resolved to qualify the methodology for 
model validation.

Funding Open Access funding enabled and organized by Projekt 
DEAL. This work was supported in part by the German Federal Min-
istry for Education and Research (BMBF) through Virtual Validation 
Tool Chain for Automated and Connected Driving (VIVID) under 
Grant 16ME0173. This work also received funding from VVM of the 
PEGASUS project family, promoted by the German Federal Ministry 
for Economic Affairs and Energy (BMWK) under Grant 19A19002S.

Declarations 

Conflict of interest The corresponding authors declare no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Devision, U.T.: New Assessment/Test Method for Automated 
Driving (NATM) Guidelines for Validating Automated Driving 
System (ADS)—amendments to ECE/TRANS/WP.29/2022/58. 
UNECE. https:// wiki. unece. org/ downl oad/ attac hments/ 18461 
5115/ VMAD- SG2- 39- 01% 20SG2% 20sol ved% 20UK% 20com 
ments% 20on% 20NATM% 20Gui delin es. docx? api= v2. Accessed 
17 Apr 2023 (2022)

 2. Society of Automotive Engineers.: SAE-J3016: Taxonomy and 
Definitions for Terms Related to Driving Automation Systems for 
On-Road Motor Vehicles. https:// www. sae. org/ stand ards/ conte nt/ 
j3016_ 202104/. Accessed 06 Jan 2022 (2021)

 3. Zheng, L., Ma, Z., Zhu, X., Tan, B., Li, S., Long, K., Sun, W., 
Chen, S., Zhang, L., Wan, M., Huang, L., Bai, J.: TJ4DRadSet: 
a 4D radar dataset for autonomous driving. In: 2022 IEEE 25th 
International Conference on Intelligent Transportation Systems 
(ITSC), pp. 493–498. IEEE, Macau, (2022). https:// doi. org/ 10. 
1109/ ITSC5 5140. 2022. 99225 39. https:// ieeex plore. ieee. org/ 
docum ent/ 99225 39/. Accessed 03 Apr 2023

 4. International Organization for Standardization.: ISO 
23150:2021(E): road vehicles—Data Communication Between 
Sensors and Data Fusion Unit for Automated Driving Functions—
Logical interface (2021)

 5. Steinbaeck, J., Steger, C., Holweg, G., Druml, N.: Design of a low-
level radar and time-of-flight sensor fusion framework. (2018). 
https:// doi. org/ 10. 1109/ DSD. 2018. 00056

 6. Holder, M.F., Rosenberger, P., Winner, H., D’hondt, T., Mak-
kapati, V.P., Maier, M., Schreiber, H., Magosi, Z., Slavik, Z., 

Bringmann, O., Rosenstiel, W.: Measurements revealing chal-
lenges in radar sensor modeling for virtual validation of autono-
mous driving. In: 2018 IEEE 21st International Conference on 
Intelligent Transportation Systems (ITSC), pp. 2616–2622. IEEE, 
Maui (2018). https:// doi. org/ 10. 1109/ ITSC. 2018. 85694 23. https:// 
ieeex plore. ieee. org/ docum ent/ 85694 23/. Accessed 10 Nov 2020

 7. Oberkampf, W.L., Trucano, T.G.: Verification and validation 
benchmarks. Nucl. Eng. Des. 238(3), 716–743 (2008). https:// 
doi. org/ 10. 1016/j. nucen gdes. 2007. 02. 032

 8. Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimu-
lationen durch statistische Validierung. PhD thesis, Technische 
Universität Darmstadt, Darmstadt (2018). http:// tupri nts. ulb. tu- 
darms tadt. de/ 7457/

 9. Benke, K.K., Norng, S., Robinson, N.J., Benke, L.R., Peterson, 
T.J.: Error propagation in computer models: analytic approaches, 
advantages, disadvantages and constraints. Stoch. Environ. Res. 
Risk Assess. 32(10), 2971–2985 (2018). https:// doi. org/ 10. 1007/ 
s00477- 018- 1555-8.

 10. Rosenberger, P.: Metrics for specification, validation, and uncer-
tainty prediction for credibility in simulation of active perception 
sensor systems. Ph.D. thesis, Technische Universität Darmstadt, 
Darmstadt. https:// doi. org/ 10. 26083/ tupri nts- 00023 034. http:// 
tupri nts. ulb. tu- darms tadt. de/ 23034/ (2023)

 11. Magosi, Z.F., Wellershaus, C., Tihanyi, V.R., Luley, P., Eich-
berger, A.: Evaluation methodology for physical radar perception 
sensor models based on on-road measurements for the testing and 
validation of automated driving. MDPI Energies 15(7), 20 (2022). 
https:// doi. org/ 10. 3390/ en150 72545

 12. Schaermann, A.: Systematische Bedatung und Bewertung 
umfelderfassender Sensormodelle. Ph.D. thesis, Technische Uni-
versität München, München (2020). http:// nbn- resol ving. de/ urn/ 
resol ver. pl? urn: nbn: de: bvb: 91- diss- 20200 526- 15186 11-1-9

 13. Oberkampf, W.L., Barone, M.F.: Measures of agreement between 
computation and experiment: validation metrics. J. Comput. Phys. 
217(1), 5–36 (2006). https:// doi. org/ 10. 1016/j. jcp. 2006. 03. 037

 14. Liu, Y., Chen, W., Arendt, P., Huang, H.-Z.: Toward a better 
understanding of model validation metrics. J. Mech. Des. (2011). 
https:// doi. org/ 10. 1115/1. 40042 23

 15. Fréchet, M.R.: Sur quelques points du calcul fonctionnel. Rend. 
Circ. Mat. Palermo 1884–1940(22), 1–72 (1906). https:// doi. org/ 
10. 1007/ BF030 18603

 16. Ngo, A.: A methodology for validation of a radar simulation for 
virtual testing of autonomous driving. Ph.D. thesis (2023). https:// 
doi. org/ 10. 18419/ opus- 12703. Accepted: 2023-02-07T13:58:14Z 
ISBN: 9781833425246. http:// elib. uni- stutt gart. de/ handle/ 11682/ 
12722. Accessed 11 Feb 2023

 17. Wölfel, M., Ekenel, H.K.: Feature weighted mahalanobis distance: 
improved robustness for gaussian classifiers. In: 13th European 
signal processing conference (EUSIPCO 2005), 4–8 September 
2005, Antalya, Turkey. ISBN: 9781604238211, pp. 1–4 (2005)

 18. SafeTRANS Closing the Gap Initiative: controlling risk for highly 
automated transportation systems operating in complex open 
environments (2024). https:// safet rans- de. org/ de/ Uploa ds/ Aktue 
lle_ Meldu ngen/ White_ Paper_ Versi on_1. 3. pdf?m= 17115 36874. 
Accessed 09 Apr 2024

 19. Ferson, S., Oberkampf, W.L., Ginzburg, L.: Model validation and 
predictive capability for the thermal challenge problem. Comput. 
Methods Appl. Mech. Eng. 197(29), 2408–2430 (2008). https:// 
doi. org/ 10. 1016/j. cma. 2007. 07. 030

 20. Eder, T.: Simulation of automotive radar point clouds in standard-
ized frameworks. Ph.D. thesis, Technische Universität München, 
München. Google-Books-ID: QYJSEAAAQBAJ (2021)

 21. Stripling, H.F., Adams, M.L., McClarren, R.G., Mallick, B.K.: 
The method of manufactured universes for validating uncertainty 
quantification methods. Reliab. Eng. Syst. Saf. 96(9), 1242–1256 
(2011). https:// doi. org/ 10. 1016/j. ress. 2010. 11. 012



Automotive and Engine Technology             (2024) 9:6  Page 23 of 23     6 

 22. Williamson, R.C., Downs, T.: Probabilistic arithmetic. I. Numeri-
cal methods for calculating convolutions and dependency bounds. 
Int. J. Approx. Reason. 4(2), 89–158 (1990). https:// doi. org/ 10. 
1016/ 0888- 613X(90) 90022-T

 23. Ferson, S., Kreinovick, V., Ginzburg, L., Myers, D.S., Sentz, K.: 
Constructing probability boxes and dempster-shafer structures. 
Technical Report SAND2002-401 (2003). https:// www. seman 
ticsc holar. org/ paper/ Const ructi ng- Proba bility- Boxes- and- Demps 
ter- Shafer- Ferson- Krein ovick/ 8eff7 43341 521cc a30f6 d2a48 df50b 
f6977 c96b2. Accessed 24 Mar 2023

 24. Voyles, I.T., Roy, C.J.: Evaluation of model validation techniques 
in the presence of aleatory and epistemic input uncertainties. In: 
17th AIAA Non-deterministic Approaches Conference. Ameri-
can Institute of Aeronautics and Astronautics, Kissimmee, Florida 
(2015). https:// doi. org/ 10. 2514/6. 2015- 1374. Accessed 18 Aug 
2021

 25. Linnhoff, C., Rosenberger, P., Schmidt, S., Elster, L., Stark, R., 
Winner, H.: Towards serious perception sensor simulation for 
safety validation of automated driving—a collaborative method to 
specify sensor models. In: 2021 IEEE 24th International Confer-
ence on Intelligent Transportation Systems (ITSC), Indianapolis, 
pp. 2688–2695 (2021). https:// doi. org/ 10. 1109/ ITSC4 8978. 2021. 
95646 61

 26. Linnhoff, C., Hinsemann, T., Rosenberger, P., Elster, L.: 
PerCollECT-LidarLimbs. PerCollECT. or iginal-date: 
2021-03-19T07:34:25Z (2022). https:// github. com/ PerCo llECT/ 
Lidar Limbs. Accessed 03 Apr 2023

 27. Brune, A.J., West, T.K., White, L.M.: Calibration probe uncer-
tainty and validation for the hypersonic material environmental 
test system. NTRS Author Affiliations: NASA Langley Research 
Center NTRS Report/Patent Number: NF1676L-33286 NTRS 
Document ID: 20200002798 NTRS Research Center: Langley 
Research Center (LaRC) (2020). https:// doi. org/ 10. 2514/1. T5839

 28. Holder, M.F.: Synthetic generation of radar sensor data for virtual 
validation of autonomous driving. PhD thesis, Technische Univer-
sität Darmstadt, Darmstadt (2021). https:// doi. org/ 10. 26083/ tupri 
nts- 00017 545. http:// tupri nts. ulb. tu- darms tadt. de/ 17545/

 29. Github Open MSL: Reflection Based Radar Model. https:// github. 
com/ openM SL/ sl-1- 1- refle ction- based- radar- object- model. 
Accessed 23 Mar 2023

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.



Bibliography

Bibliography

Abadpour, S. et al.: Dielectric Material Characterization of Traffic Objects (2023)

Abadpour, Sevda; Pauli, Mario; Kretschmann, Marius; Iqbal, Hasan;Aust, Philip; Zwick, Thomas:

Dielectric Material Characterization of Traffic Objects in Automotive Radar Applications, in:

2023 17th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, 2023

Ahmann, M. et al.: Towards Continuous Simulation Credibility Assessment (2022)

Ahmann, Maurizio; Le, Van Thanh; Eichenseer, Frank; Steimann, Frederik; Benedikt, Martin:

Towards Continuous Simulation Credibility Assessment, in: Asian Modelica Conference 2022,

Tokyo, Japan, November 24-25, 2022, pp. 171–182, 2022

Andres, M. et al.: 3D-scattering Center Detection of Automotive Targets Using Radar

Sensors (2012)

Andres, Markus; Feil, Peter; Menzel, Wolfgang: 3D-scattering Center Detection of Automotive

Targets Using 77 GHz UWB Radar Sensors, in: 2012 6th European Conference on Antennas and

Propagation (EUCAP), pp. 3690–3693, 2012

Arage Hassen, A.: Signal Degradation and Optimization Radar Sensors (2006)

Arage Hassen, Alebel: Indicators for the Signal Degradation and Optimization of Automotive

Radar Sensors underAdverseWeather Conditions, PhDThesis, Technische Universität Darmstadt,

2006

ASAM e.V.: ASAM OpenSCENARIO® - User Guide (2021)

ASAM e.V.: ASAM OpenSCENARIO® - User Guide, URL: https://www.asam.net/standards/

detail/openscenario/, 2021, visited on 12/20/2023

ASAM e.V.: ASAM OSI® (Open Simulation Interface) - Official Documentation (2023)

ASAM e.V.: ASAM OSI® (Open Simulation Interface) - Official Documentation, URL: https:

//opensimulationinterface.github.io/osi-documentation/, 2023, visited on 02/28/2024

Aust, P. et al.: Fingerprints of the Automotive Radar Scattering of Passenger Cars and

Vans (2023)

Aust, Philip; Hau, Florian; Dickmann, Juergen; Hein, Matthias: Fingerprints of the Automotive

Radar Scattering of Passenger Cars and Vans, in: Applied Sciences, Vol. 13, 2023

Aust, P. et al.: Numerical Synthesis of Radar Target Detections (2023)

Aust, Philip; Hau, Florian; Dickmann, Jürgen; Hein, Matthias A.: Numerical Synthesis of Radar

Target Detections Based on Measured Reference Data, in: 2023 20th European Radar Conference

(EuRAD), pp. 26–29, 2023

129

https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://opensimulationinterface.github.io/osi-documentation/
https://opensimulationinterface.github.io/osi-documentation/


Bibliography

BMWGroup Pressclub Deutschland: Level 3 im neuen BMW 7er (2023)

BMW Group Pressclub Deutschland: Ab Frühjahr: Hochautomatisiertes Fahren auf Level 3

im neuen BMW 7er. URL: https: / /www.press.bmwgroup.com/deutschland/article/detail /

T0438214DE/ab-fruehjahr:-hochautomatisiertes-fahren-auf-level-3-im-neuen-bmw-7er?

language=de, 2023, visited on 12/18/2023

Brahmi, M.: Bewertung der Umfeldwahrnehmung für Fahrerassistenzsysteme (2020)

Brahmi, Mohamed: Bewertung der objektbasierten Umfeldwahrnehmung für Fahrerassisten-

zsysteme mithilfe von Referenzsystemen, PhD Thesis, Universitätsbibliothek Braunschweig,

2020

Buddappagari, S. J. G. et al.: RCS Measurements of Road Traffic Objects (2020)

Buddappagari, Sreehari Jayapal Gowdu; Schwind,A.; Stephan, R.; Hein, MatthiasA.: Monostatic

RCS Measurements of Representative Road Traffic Objects in the 76 … 81 GHz Frequency

Band, in: 2020 IEEE Radar Conference (RadarConf20), pp. 1–6, 2020

Buddappagari, S. J. G. et al.: Monostatic RCS Measurements of a Passenger Car (2019)

Buddappagari, Sreehari Jayapal Gowdu; Schwind, Andreas; Stephan, Ralf; Hein, Matthias A.:

Monostatic RCS Measurements of a Passenger Car Mock-up at 77 GHz Frequency in Virtual

Environment, in: 2019 49th European Microwave Conference (EuMC), pp. 996–999, 2019

Clavenger, S.: Torc Autonomous Truck Launch in 2027 (2023)

Clavenger, Seth: Torc Lays Out Road Map to Autonomous Truck Launch in 2027, URL: https:

//www.ttnews.com/articles/torc-autonomous-launch-27, 2023, visited on 12/18/2023

Continental Engineering Services: Datasheet Continental ARS408 (2024)

Continental Engineering Services: Datasheet ContinentalARS408, URL: https://conti-engineering.

com/wp-content/uploads/2020/02/ARS-408-21_EN_HS-1.pdf, 2024, visited on 01/22/2024

Continental Press Release: Continental andAurora PartnerAutonomous Trucking Systems

(2023)

Continental Press Release: Continental and Aurora Partner to Realize Commercially Scalable

Autonomous Trucking Systems, URL: https://www.continental.com/en/press/press-releases/

20230427-continental-aurora/, 2023, visited on 02/12/2024

Diewald, F.: Objektklassifikation und Freiraumdetektion auf Basis bildgebender Radarsen-

sori (2013)

Diewald, Fabian: Objektklassifikation und Freiraumdetektion auf Basis bildgebender Radarsen-

sorik für die Fahrzeugumfelderfassung, PhD Thesis, Universität Ulm, 2013

DIN: DIN ISO 3534-2 Statistics - Vocabulary and Symbols (2013)

DIN: DIN ISO 3534-2:2013-12, Statistik- Begriffe Und Formelzeichen- Teil 2: Angewandte

Statistik (ISO 3534-2:2006); Text Deutsch Und Englisch, URL: https://www.beuth.de/de/-/-

/192284289, 2013, visited on 11/06/2023

130

https://www.press.bmwgroup.com/deutschland/article/detail/T0438214DE/ab-fruehjahr:-hochautomatisiertes-fahren-auf-level-3-im-neuen-bmw-7er?language=de
https://www.press.bmwgroup.com/deutschland/article/detail/T0438214DE/ab-fruehjahr:-hochautomatisiertes-fahren-auf-level-3-im-neuen-bmw-7er?language=de
https://www.press.bmwgroup.com/deutschland/article/detail/T0438214DE/ab-fruehjahr:-hochautomatisiertes-fahren-auf-level-3-im-neuen-bmw-7er?language=de
https://www.ttnews.com/articles/torc-autonomous-launch-27
https://www.ttnews.com/articles/torc-autonomous-launch-27
https://conti-engineering.com/wp-content/uploads/2020/02/ARS-408-21_EN_HS-1.pdf
https://conti-engineering.com/wp-content/uploads/2020/02/ARS-408-21_EN_HS-1.pdf
https://www.continental.com/en/press/press-releases/20230427-continental-aurora/
https://www.continental.com/en/press/press-releases/20230427-continental-aurora/
https://www.beuth.de/de/-/-/192284289
https://www.beuth.de/de/-/-/192284289


Bibliography

DIN: DIN SAE SPEC 91471 Assessment Methodology Automotive LiDAR (2023)

DIN: DIN SAE SPEC 91471:2023-05Assessment Methodology for Automotive LiDAR Sensors,

2023

DIVP Project: Driving Intelligence Validation Platform Homepage (2024)

DIVP Project: Driving Intelligence Validation Platform Homepage, URL: https://divp.net/, 2024,

visited on 02/16/2024

Eder, T.: Simulation of Automotive Radar (2021)

Eder, Thomas: Simulation of Automotive Radar Point Clouds in Standardized Frameworks, PhD

Thesis, Technische Universität München, 2021

Elster, L.: RCS Measurement (2022)

Elster, Lukas: RCS Measurement, URL: https : / / gitlab . com / tuda - fzd / fzd - datasets / rcs -

measurement, 2022, visited on 12/05/2023

Elster, L. et al.: Dataset Radar Scattering Characteristics (2023)

Elster, Lukas; Holder, Martin F.; Rapp, Manuel: A Dataset for Radar Scattering Characteristics

of Vehicles Under Real-World Driving Conditions: Major Findings for Sensor Simulation, in:

IEEE Sensors Journal, Vol. 23, pp. 4873–4882, 2023

Elster, L. et al.: RCS Measurement Dataset (2022)

Elster, Lukas; Holder, Martin Friedrich; Rapp, Manuel: RCS Measurement Dataset, URL: https:

//tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3606, 2022, visited on 12/05/2023

Elster, L. et al.: Introducing the DVM for Radar Sensor Models (2024)

Elster, Lukas; Rosenberger, Philipp; Holder, Martin; Mori, Ken; Staab, Jan; Peters, Steven:

Introducing the Double Validation Metric for Radar Sensor Models, in: Automotive and Engine

Technology, Vol. 9, p. 6, 2024

Elster, L. et al.: Making Automotive Radar Sensor Validation Measurements Comparable

(2023)

Elster, Lukas; Staab, Jan Philipp; Peters, Steven: Making Automotive Radar Sensor Validation

Measurements Comparable, in: Applied Sciences, Vol. 13, p. 11405, 2023

ENVITED OpenMSLGithub: SL 1-1 Reflection Based Radar Object Model (2023)

ENVITED OpenMSLGithub: SL 1-1 Reflection Based Radar Object Model, URL: https://github.

com/openMSL/sl-1-1-reflection-based-radar-object-model, 2023, visited on 12/04/2023

Europäische Kommission: Durchführungsverordnung (EU) 2022/1426 (2022)

Europäische Kommission: Durchführungsverordnung (EU) 2022/1426 Der Kommission, 2022

Ferson, S. et al.: Validation of Imprecise Probability Models (2009)

Ferson, Scott; Oberkampf, William: Validation of Imprecise Probability Models, in: International

Journal of Reliability and Safety, Vol. 3, 2009

131

https://divp.net/
https://gitlab.com/tuda-fzd/fzd-datasets/rcs-measurement
https://gitlab.com/tuda-fzd/fzd-datasets/rcs-measurement
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3606
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3606
https://github.com/openMSL/sl-1-1-reflection-based-radar-object-model
https://github.com/openMSL/sl-1-1-reflection-based-radar-object-model


Bibliography

GeneSys: Datasheet ADMA-G-Pro+ V35 (2023)

GeneSys: Datasheet ADMA-G-Pro+ V35, URL: https://genesys-offenburg.de/wp-content/

uploads/2023/07/GeneSys-Datasheet-ADMA-G-Pro-v35.pdf, 2023, visited on 12/07/2023

Gottschalg, G.: Data Fusion Architecture for State Estimation (2022)

Gottschalg, Grischa: Data Fusion Architecture with Integrity Monitoring for State Estimation in

Automated Driving, PhD Thesis, Technische Universität Darmstadt, 2022

Grant, N. et al.: Waymo, Chasing Cruise, Plans Fully Driverless Rides in San Francisco

(2022)

Grant, Nico; Ludlow, Edward: Waymo, Chasing Cruise, Plans Fully Driverless Rides in San

Francisco, in: Bloomberg.com, 2022

Hawkins, A.: California DMV Suspends Cruise’s Robotaxi Permit ‘Effective Immediately’

(2023)

Hawkins, Andrew: California DMV Suspends Cruise’s Robotaxi Permit ‘Effective Immediately’,

URL: https://www.theverge.com/2023/10/24/23930629/california-dmv-suspends-cruise-

robotaxi-permit-safety, 2023, visited on 11/30/2023

Heinkel, H.-M. et al.: Credible Simulation Process Framework (2023)

Heinkel, Hans-Martin; Steinkirchner, Kim: Credible Simulation Process Framework, URL: https:

//gitlab.setlevel.de/open/processes_and_traceability/credible_simulation_process_framework,

2023, visited on 12/06/2023

Holder, M. F.: Synthetic Generation of Radar Sensor Data (2021)

Holder, Martin Friedrich: Synthetic Generation of Radar Sensor Data for Virtual Validation of

Autonomous Driving, PhD Thesis, Technische Universität Darmstadt, 2021

Holder, M. F. et al.: Digitalize the Twin (2022)

Holder, Martin Friedrich; Elster, Lukas; Winner, Hermann: Digitalize the Twin: AMethod for

Calibration of Reference Data for Transfer Real-World Test Drives into Simulation, in: MDPI

Energies, Vol. 15, p. 989, 2022

Holder, M. F. et al.: Source Code Xosc-Converter (2021)

Holder, Martin Friedrich; Elster, Lukas; Winner, Hermann: Source Code Xosc-Converter: ”Digi-

talize the Twin: AMethod for Calibration of Reference Data for Transfer Real-World Test Drives

into Simulation”, URL: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2993, 2021, visited

on 12/20/2023

Holder, M. F. et al.: Modeling and Simulation of Radar SensorArtifacts (2019)

Holder, Martin Friedrich; Linnhoff, Clemens; Rosenberger, Philipp; Popp, Christoph; Winner,

Hermann: Modeling and Simulation of Radar Sensor Artifacts for Virtual Testing of Autonomous

Driving, in: 9. Tagung Automatisiertes Fahren, 2019

132

https://genesys-offenburg.de/wp-content/uploads/2023/07/GeneSys-Datasheet-ADMA-G-Pro-v35.pdf
https://genesys-offenburg.de/wp-content/uploads/2023/07/GeneSys-Datasheet-ADMA-G-Pro-v35.pdf
https://www.theverge.com/2023/10/24/23930629/california-dmv-suspends-cruise-robotaxi-permit-safety
https://www.theverge.com/2023/10/24/23930629/california-dmv-suspends-cruise-robotaxi-permit-safety
https://gitlab.setlevel.de/open/processes_and_traceability/credible_simulation_process_framework
https://gitlab.setlevel.de/open/processes_and_traceability/credible_simulation_process_framework
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2993


Bibliography

Honda Motor Europe Ltd: Honda Receives Type Designation for Level 3 (2020)

Honda Motor Europe Ltd: Honda Receives Type Designation for Level 3 Automated Driving,

URL: https://hondanews.eu/eu/en/cars/media/pressreleases/318975/honda-receives-type-

designation-for-level-3-automated-driving, 2020, visited on 12/18/2023

ISO: ISO 23150:2021(E) Data between Sensors and Fusion (2021)

ISO: ISO 23150:2021(E): Road Vehicles — Data Communication between Sensors and Data

Fusion Unit for Automated Driving Functions - Logical Interface, 2021

Karlsson, K. et al.: Reducing Ground Reflection during RCS Characterization (2019)

Karlsson, Kristian; Toss, Henrik; Costagliola, Francesco: Reducing Influence from Ground Re-

flection during RCS Characterization of Automotive Targets, in: 2019 13th European Conference

on Antennas and Propagation (EuCAP), pp. 1–5, 2019

Karlsson, K. et al.: HiFi Radar Target (2018)

Karlsson, Kristian; Toss, Henrik; Lang, John; Costagliola, Francesco; Zheng, Tian; Marel, Elias:

HiFi Radar Target : High Fidelity Soft Targets and Radar Simulation for More Efficient Testing

(Real and Virtual), 2018

Landron, O. et al.: A Comparison of Theoretical and Empirical Reflection Coefficients

(1996)

Landron, O.; Feuerstein, M.J.; Rappaport, T.S.: A Comparison of Theoretical and Empirical

Reflection Coefficients for Typical Exterior Wall Surfaces in a Mobile Radio Environment, in:

IEEE Transactions on Antennas and Propagation, Vol. 44, pp. 341–351, 1996

Langen, B. et al.: Reflection and Transmission Behaviour of Building Materials at 60 GHz

(1994)

Langen, B.; Lober, G.; Herzig, W.: Reflection and Transmission Behaviour of Building Mate-

rials at 60 GHz, in: 5th IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, Wireless Networks - Catching the Mobile Future. Vol. 2, 505–509 vol.2, 1994

Lehnen, M. et al.: Validating NVIDIADRIVE Sim Radar Models (2023)

Lehnen, Matthias; Montebaur, Marius; Elsaeid, Ayman: Validating NVIDIADRIVE Sim Radar

Models, URL: https://developer.nvidia.com/blog/validating-nvidia-drive-sim-radar-models/,

2023, visited on 02/16/2024

Li, H. et al.: The Effect of Rainfall and Illumination on Automotive Sensors Detection

Performance (2023)

Li, Hexuan; Bamminger, Nadine; Magosi, Zoltan Ferenc; Feichtinger, Christoph; Zhao, Yongqi;

Mihalj, Tomislav; Orucevic, Faris; Eichberger, Arno: The Effect of Rainfall and Illumination on

Automotive Sensors Detection Performance, in: Sustainability, Vol. 15, p. 7260, 2023

Linnhoff, C. et al.: PerCollECT - LidarLimbs (2022)

Linnhoff, Clemens; Hinsemann, Timo; Rosenberger, Philipp; Elster, Lukas: PerCollECT - Lidar-

Limbs, URL: https://github.com/PerCollECT/LidarLimbs, 2022, visited on 12/06/2023

133

https://hondanews.eu/eu/en/cars/media/pressreleases/318975/honda-receives-type-designation-for-level-3-automated-driving
https://hondanews.eu/eu/en/cars/media/pressreleases/318975/honda-receives-type-designation-for-level-3-automated-driving
https://developer.nvidia.com/blog/validating-nvidia-drive-sim-radar-models/
https://github.com/PerCollECT/LidarLimbs


Bibliography

Linnhoff, C. et al.: Towards Sensor Simulation for Safety Validation (2021)

Linnhoff, Clemens; Rosenberger, Philipp; Schmidt, Simon; Elster, Lukas; Stark, Rainer; Winner,

Hermann: Towards Serious Perception Sensor Simulation for Safety Validation of Automated

Driving - A Collaborative Method to Specify Sensor Models, in: 2021 IEEE 24th International

Conference on Intelligent Transportation Systems (ITSC), pp. 2688–2695, 2021

Linnhoff, C. et al.: Simulating Road Spray Effects in Automotive Lidar Sensor Models

(2022)

Linnhoff, Clemens; Scheuble, Dominik; Bijelic, Mario; Elster, Lukas; Rosenberger, Philipp;

Ritter, Werner; Dai, Dengxin; Winner, Hermann: Simulating Road Spray Effects in Automotive

Lidar Sensor Models, URL: http://arxiv.org/abs/2212.08558, 2022, visited on 01/19/2023

Liu, Y. et al.: Toward a Better Understanding of Model Validation Metrics (2011)

Liu, Yu; Chen, Wei; Arendt, Paul; Huang, Hong-Zhong: Toward a Better Understanding of Model

Validation Metrics, in: Journal of Mechanical Design, Vol. 133, 2011

Magosi, Z. F. et al.: A Survey on Modelling of Automotive Radar Sensors (2022)

Magosi, Zoltan Ferenc; Li, Hexuan; Rosenberger, Philipp; Wan, Li; Eichberger, Arno: A Survey

on Modelling of Automotive Radar Sensors for Virtual Test and Validation of Automated Driving,

in: Sensors, Vol. 22, p. 5693, 2022

Magosi, Z. F. et al.: Evaluation of Physical Radar Perception Sensor Models (2022)

Magosi, Zoltan Ferenc; Wellershaus, Christoph; Tihanyi, Viktor Roland; Luley, Patrick; Eich-

berger, Arno: Evaluation Methodology for Physical Radar Perception Sensor Models Based on

On-Road Measurements for the Testing and Validation ofAutomated Driving, in: MDPI Energies,

Vol. 15, p. 20, 2022

Mercedes-Benz: Mercedes-Benz DRIVE PILOT (2023)

Mercedes-Benz: Mercedes-Benz DRIVE PILOT, URL: https : / /www .mercedes - benz . de /

passengercars / technology - innovation /mercedes - benz - drive - pilot . html, 2023, visited on

12/18/2023

Meteer, O. et al.: Low-Power Sign-Magnitude FFT Design for Radar (2021)

Meteer, Oğuz; Bekooij, Marco J. G.: Low-Power Sign-Magnitude FFT Design for FMCW Radar

Signal Processing, in: Workshop on Design and Architectures for Signal and Image Processing

(14th Edition), pp. 52–59, 2021

Mobileye: A Brief History of Autonomous Vehicles (2023)

Mobileye: A Brief History of Autonomous Vehicles – from Renaissance to Reality, URL: https:

//www.mobileye.com/blog/history-autonomous-vehicles-renaissance-to-reality/, 2023, visited on

11/30/2023

Ngo, A.: Methodology for Validation of Radar Simulation (2023)

Ngo, Anthony: A Methodology for Validation of a Radar Simulation for Virtual Testing of

Autonomous Driving, PhD Thesis, Universität Stuttgart, 2023

134

http://arxiv.org/abs/2212.08558
https://www.mercedes-benz.de/passengercars/technology-innovation/mercedes-benz-drive-pilot.html
https://www.mercedes-benz.de/passengercars/technology-innovation/mercedes-benz-drive-pilot.html
https://www.mobileye.com/blog/history-autonomous-vehicles-renaissance-to-reality/
https://www.mobileye.com/blog/history-autonomous-vehicles-renaissance-to-reality/


Bibliography

Norouzian, F. et al.: Phenomenology of Automotive Radar Interference (2021)

Norouzian, Fatemeh; Pirkani, Anum; Hoare, Edward; Cherniakov, Mikhail; Gashinova, Marina:

Phenomenology of Automotive Radar Interference, in: IET Radar, Sonar & Navigation, Vol. 15,

pp. 1045–1060, 2021

Oberkampf, W. L. et al.: Validation UnderAleatory and Epistemic Uncertainty (2007)

Oberkampf, William L.; Ferson, Scott: Model Validation Under Both Aleatory and Epistemic

Uncertainty, in: NATO/RTO Symposium on Computational Uncertainty in Military Vehicle

Design, vol. Paper No. AVT-147/RSY-022. P. 26, 2007

Oberkampf,W. L. et al.: MeasureAgreement between Computation and Experiment (2006)

Oberkampf, William Louis; Barone, Matthew F.: Measures of Agreement between Computation

and Experiment: Validation Metrics, in: Journal of Computational Physics, Vol. 217, pp. 5–36,

2006

Peters, S. et al.: Opportunities of Automated Driving (2023)

Peters, Steven; Abendroth, Bettina; Adamy, Jürgen; Ahrend, Klaus-Michael; Findeisen, Rolf;

Kassens-Noor, Eva; Peters, Jan; Rinderknecht, Stephan; Janine, Wendt: Opportunities of Auto-

mated Driving - The Darmstadt View on AD, URL: https://www.fzd.tu-darmstadt.de/media/

fachgebiet_fzd/responsive_design/content/forschung_12/Darmstadt_View_on_AD_updated_1.

pdf, 2023, visited on 12/18/2023

Rapp, M. L.: Messkampagne für winkelabhängige RCS-Profile (2021)

Rapp, Manuel Lukas: Messkampagne Zur Bestimmung Der Winkelabhängigen RCS-Profile von

Verkehrsteilnehmern, bathesis, Technische Universität Darmstadt, 2021

Roache, P. J.: Validation in Fluid Dynamics and Related Fields (2019)

Roache, Patrick J.: Validation in Fluid Dynamics and Related Fields, in: Beisbart, Claus; Saam,

Nicole J. (Hrsg.): Computer Simulation Validation: Fundamental Concepts, Methodological

Frameworks, and Philosophical Perspectives, Springer International Publishing, 2019

Robson, K.: Fully Self-Driving Cars Unlikely before 2035, Experts Predict (2023)

Robson, Kurt: Fully Self-Driving Cars Unlikely before 2035, Experts Predict, URL: https :

//www.verdict.co.uk/fully-self-driving-cars-unlikely-before-2035-experts-predict/, 2023, visited

on 11/30/2023

Rosenberger, P.: Metrics for Simulating Sensors (2022)

Rosenberger, Philipp: Metrics for Specification, Validation, and Uncertainty Prediction for Cred-

ibility in Simulation of Active Perception Sensor Systems, PhD Thesis, Technische Universität

Darmstadt, 2022

Rosenberger, P. et al.: Towards Generally Accepted Validation Methodology (2019)

Rosenberger, Philipp;Wendler, JanTimo;Holder,Martin Friedrich; Linnhoff, Clemens; Berghöfer,

Moritz; Winner, Hermann; Maurer, Markus: Towards a Generally Accepted Validation Method-

ology for Sensor Models - Challenges, Metrics, and First Results, in: 12th Grazer Symposium

Virtuelles Fahrzeug (GSVF), 2019

135

https://www.fzd.tu-darmstadt.de/media/fachgebiet_fzd/responsive_design/content/forschung_12/Darmstadt_View_on_AD_updated_1.pdf
https://www.fzd.tu-darmstadt.de/media/fachgebiet_fzd/responsive_design/content/forschung_12/Darmstadt_View_on_AD_updated_1.pdf
https://www.fzd.tu-darmstadt.de/media/fachgebiet_fzd/responsive_design/content/forschung_12/Darmstadt_View_on_AD_updated_1.pdf
https://www.verdict.co.uk/fully-self-driving-cars-unlikely-before-2035-experts-predict/
https://www.verdict.co.uk/fully-self-driving-cars-unlikely-before-2035-experts-predict/


Bibliography

Roth, E. et al.: Analysis and Validation of Perception Sensor Models (2011)

Roth, Erwin; Dirndorfer, Tobias; Knoll, A.; von Neumann-Cosel, Kilian; Ganslmeier, T.; Kern,

Andreas; Fischer, Marc: Analysis and Validation of Perception Sensor Models in an Integrated

Vehicle and Environment Simulation, in: 22nd Enhanced Safety of Vehicle Conference (ESV),

2011

Roy, C. J. et al.: Framework for Verification, Validation, and Uncertainty (2011)

Roy, Christopher J.; Oberkampf, William L.: A Comprehensive Framework for Verification,

Validation, and Uncertainty Quantification in Scientific Computing, in: Computer Methods in

Applied Mechanics and Engineering, Vol. 200, pp. 2131–2144, 2011

Ryde, J. et al.: Laser and Radar Ranging in Adverse Conditions (2009)

Ryde, Julian; Hillier, Nick: Performance of Laser and Radar Ranging Devices in Adverse Envi-

ronmental Conditions: Ryde & Hillier: Comparison of Laser and Radar inAdverse Environmental

Conditions, in: Journal of Field Robotics, Vol. 26, pp. 712–727, 2009

Schaermann, A.: Systematische Bewertung umfelderfassender Sensormodelle (2020)

Schaermann, Alexander: Systematische Bedatung und Bewertung umfelderfassender Sensormod-

elle, PhD Thesis, Technische Universität München, 2020

Scharf, L. L. et al.: Statistical Signal Processing (1991)

Scharf, Louis L.; Demeure, Cédric: Statistical Signal Processing: Detection, Estimation, and

Time Series Analysis, Addison-Wesley Series in Electrical and Computer Engineering. Digital

Signal Processing, Addison-Wesley Pub. Co, 1991

Schipper, T. et al.: RCS Measurement for Automotive Objects (2011)

Schipper, Tom; Fortuny, Joaquim; Tarchi, D.; Reichardt, Lars; Zwick, Thomas: RCSMeasurement

Results for Automotive Related Objects at 23-27 GHz, in: 5th European Conference onAntennas

and Propagation (EUCAP), p. 686, 2011

Schöner, H.-P.: Automotive Needs and Expectations towards Driving Simulation (2018)

Schöner, Hans-Peter: Automotive Needs and Expectations towards Next Generation Driving

Simulation, in: Driving Simulator Conference 2018, 2018

Society of Automotive Engineers: SAE-J3016 (2021)

Society of Automotive Engineers: SAE-J3016: Taxonomy and Definitions for Terms Related to

Driving Automation Systems for On-Road Motor Vehicles, URL: https://www.sae.org/standards/

content/j3016_202104/, 2021, visited on 01/06/2022

Stripling, H. F. et al.: The Method of Manufactured Universes (2011)

Stripling, H. F.; Adams, M. L.; McClarren, R. G.; Mallick, B. K.: The Method of Manufactured

Universes for Validating Uncertainty Quantification Methods, in: Reliability Engineering &

System Safety, Vol. 96, pp. 1242–1256, 2011

136

https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/


Bibliography

Toss, H. et al.: Radar Reflectivity Spatial Profile of 3D Surrogate Targets and Real Vehicles

(2019)

Toss, Henrik; Karlsson, Kristian: Radar Reflectivity Spatial Profile of 3D Surrogate Targets

and Real Vehicles, in: 2019 13th European Conference on Antennas and Propagation (EuCAP),

pp. 1–5, 2019

UNECE: Validation Method forAutomated Driving (2022)

UNECE: Validation Method for Automated Driving -39th SG2 Session (Virtual Testing), URL:

https://wiki.unece.org/display/trans/VMAD-39th+SG2+session, 2022, visited on 12/18/2023

VDI/VDE: VDI/VDE 2206: Development of Mechatronic and Cyber-Physical Systems

(2021)

VDI/VDE: VDI/VDE 2206: Development of Mechatronic and Cyber-Physical Systems, 2021

Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018)

Viehof, Michael: Objektive Qualitätsbewertung von Fahrdynamiksimulationen Durch Statistische

Validierung, PhD Thesis, Technische Universität Darmstadt, 2018

Voyles, I. T. et al.: Model Validation in the Presence of Uncertainty (2014)

Voyles, Ian T.; Roy, Christopher J.: Evaluation of Model Validation Techniques in the Presence

of Uncertainty, in: 16th AIAANon-Deterministic Approaches Conference, 2014

Wachenfeld, W. et al.: The Release of Autonomous Vehicles (2016)

Wachenfeld, Walther; Winner, Hermann: The Release of Autonomous Vehicles, in: Maurer,

Markus; Gerdes, J. Christian; Lenz, Barbara; Winner, Hermann (Hrsg.): Autonomous Driving,

Springer Berlin Heidelberg, 2016

Waldschmidt, C. et al.: Automotive Radar — From First Efforts to Future Systems (2021)

Waldschmidt, Christian; Hasch, Juergen; Menzel, Wolfgang: Automotive Radar — From First

Efforts to Future Systems, in: IEEE Journal of Microwaves, Vol. 1, pp. 135–148, 2021

Wei, Y. et al.: Extended Target Recognition in Cognitive Radar Networks (2010)

Wei,Yimin; Meng, Huadong; Liu,Yimin;Wang, Xiqin: Extended Target Recognition in Cognitive

Radar Networks, in: Sensors (Basel, Switzerland), Vol. 10, pp. 10181–97, 2010

Williamson, R. C. et al.: Probabilistic Arithmetic (1990)

Williamson, Robert C.; Downs, Tom: ProbabilisticArithmetic. I. Numerical Methods for Calculat-

ing Convolutions and Dependency Bounds, in: International Journal of Approximate Reasoning,

Vol. 4, pp. 89–158, 1990

Winner, H.: Automotive RADAR (2016)

Winner, Hermann: Automotive RADAR, in: Winner, Hermann; Hakuli, Stephan; Lotz, Felix;

Singer, Christina (Hrsg.): Handbook of Driver Assistance Systems: Basic Information, Compo-

nents and Systems for Active Safety and Comfort, Springer International Publishing, 2016

137

https://wiki.unece.org/display/trans/VMAD-39th+SG2+session


Bibliography

Zhou, Y. et al.: Towards Deep Radar Perception for Autonomous Driving (2022)

Zhou, Yi; Liu, Lulu; Zhao, Haocheng; López-Benítez, Miguel; Yu, Limin; Yue, Yutao: Towards

Deep Radar Perception for Autonomous Driving: Datasets, Methods, and Challenges, in: Sensors,

Vol. 22, p. 4208, 2022

138



D Own Open Source Content

Own Open Source Content

Holder, Martin; Elster, Lukas; Winner, Hermann: Source Code xosc-Converter: ‘‘Digitalize

the twin: A method for calibration of reference data for transfer real-world test drives into

simulation‘‘,

https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2993,

2021, Accessed 03.05.2024.

Rosenberger, Philipp; Linnhoff, Clemens; Elster, Lukas: Modular OSMP Framework,

https://gitlab.com/tuda-fzd/perception-sensor-modeling/modular-osmp-framework,

2022, Accessed 03.05.2024.

Elster, Lukas, Holder, Martin; Rapp, Manuel: RCS Measurement Dataset,

https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3606,

2022, Accessed 03.05.2024.

Elster, Lukas, Holder, Martin; Rapp, Manuel: RCS Measurement Evaluation Code,

https://gitlab.com/tuda-fzd/fzd-datasets/rcs-measurement,

2022, Accessed 03.05.2024.

Rosenberger, Philipp; Linnhoff, Clemens; Elster, Lukas: Reflection Based Lidar Object Model,

https://github.com/openMSL/sl-1-2-reflection-based-lidar-object-model,

2023, Accessed 03.05.2024.

Linnhoff, Clemens; Rosenberger, Philipp; Elster, Lukas: Object Based Generic Perception

Object Model,

https://github.com/openMSL/sl-1-3-object-based-generic-perception-object-model, 2023, Ac-

cessed 03.05.2024.

Elster, Lukas; Linnhoff, Clemens; Rosenberger, Philipp: Reflection Based Radar Object Model,

https://github.com/openMSL/sl-1-1-reflection-based-radar-object-model,

2023, Accessed 03.05.2024.

Rosenberger, Philipp; Hinsemann, Timo; Linnhoff, Clemens; Elster, Lukas: PerCollECT —

Lidar Limbs,

https://github.com/PerCollECT/LidarLimbs,

2022, Accessed 03.05.2024.

Linnhoff, Clemens; Hinsemann, Timo; Elster, Lukas; Rosenberger, Philipp: PerCollECT —

RadarRami,

https://github.com/PerCollECT/RadarRami,

2022, Accessed 03.05.2024.

139

https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2993
 https://gitlab.com/tuda-fzd/perception-sensor-modeling/modular-osmp-framework
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3606
https://gitlab.com/tuda-fzd/fzd-datasets/rcs-measurement
https://github.com/openMSL/sl-1-2-reflection-based-lidar-object-model
https://github.com/openMSL/sl-1-3-object-based-generic-perception-object-model
https://github.com/openMSL/sl-1-1-reflection-based-radar-object-model
https://github.com/PerCollECT/LidarLimbs
https://github.com/PerCollECT/RadarRami


D Own Open Source Content

Elster, Lukas; Hinsemann, Timo; Linnhoff, Clemens; Rosenberger, Philipp: PerCollECT —

CameraCopse,

https://github.com/PerCollECT/CameraCorpse,

2022, Accessed 03.05.2024.

Elster, Lukas; Hinsemann, Timo; Linnhoff, Clemens; Rosenberger, Philipp: PerCollECT —

UltrasonicUnderwood,

https://github.com/PerCollECT/UltrasonicUnderwood,

2022, Accessed 03.05.2024.

140

https://github.com/PerCollECT/CameraCorpse
https://github.com/PerCollECT/UltrasonicUnderwood


D Supervised Theses

Supervised Theses

Bai, Juntao: Umfelderkennung für Automatisiertes Fahren basierend auf Punktdetektionen von

Radar.

Master-Thesis Nr. 823/21

Gröger, Simon: Analyse und Entwicklung einer Objektklassifizierung von Zusatzzeichen der

StVO basierend auf Kameradaten eines automatisierten Fahrzeugs.

Bachelor-Thesis Nr. 1380/21

Hinsemann, Timo: Analyse von Effekten in Lidardaten für die virtuelle Absicherung automa-

tisierter Fahrfunktionen.

Bachelor-Thesis Nr. 1387/21

Hofrichter, Kristof: Entwicklung eines FMCW-Lidar Signalverarbeitungsmodells.

Master-Thesis Nr. 871/23

Lüsebrink, Marcel: Entwicklung, Konstruktion und Inbetriebnahme eines modularen, teilau-

tomatisierten Validierungsprüfstands für FMCW-Lidar Sensoren.

Master-Thesis Nr. 885/23

Park, Sochoong: Entwicklung und Analyse eines Algorithmus zur gemeinsamen Schätzung der

Eigenbewegung und Ausrichtung mehrerer Eck-Radarsensoren.

Master-Thesis Nr. 855/22

Paul, Frederic: Umfelderkennung für Automatisiertes Fahren basierend auf Punktdetektionen

von Radar.

Master-Thesis Nr. 832/21

Rapp, Manuel: Messkampagne zur Bestimmung der winkelabhängigen RCS-Profile von

Verkehrsteilnehmern.

Bachelor-Thesis Nr. 1384/21

Schweiwe, Gunnar: Identifikation und Analyse von Beugungseffekten bei Radar-Sensoren.

Master-Thesis Nr. 810/21

Staab, Jan: Entwicklung und Anwendung einer Methode zur Validierung von Radarmodellen.

Master-Thesis Nr. 856/23

Tsai, Cheng-Ting: Sim2Real Transfer für Lidar Perzeption.

Master-Thesis Nr. 848/22

Walter, Angelo: Entwicklung eines Lidarraytracing Algorithmus mit Hilfe von OptiX.

Master-Thesis Nr. 843/22

141



D Supervised Theses

Yörük, Oguz: Untersuchung der Einflüsse von Gischt auf Lidar- und Radarsensoren automa-

tisierter Fahrzeuge.

Bachelor-Thesis Nr. 1389/21

142


	Kurzzusammenfassung
	Abstract
	Preface
	Table of Contents
	List of Symbols and Indices
	List of Abbreviations
	List of Figures
	List of Tables
	List of Papers
	Related Papers and Presentations
	1 Introduction
	1.1 Motivation
	1.2 Structure

	2 Fundamentals
	2.1 Terms and Definitions
	2.2 Radar
	2.2.1 Radar Data Interfaces
	2.2.2 Radar Cross Section

	2.3 Radar Models
	2.4 Validation Metrics for Uncertainty Quantification
	2.4.1 Area Validation Metric
	2.4.2 Double Validation Metric


	3 Derivation of Research Questions
	3.1 Validation Strategies for Radar Sensor Models
	3.2 Validation Methodology by Viehof & Rosenberger
	3.2.1 Requirements for Radar Sensor Models
	3.2.2 Effect Isolation and Separation
	3.2.3 Re-Simulation of Reference Data
	3.2.4 Validation with Uncertainties of Radar Sensor Models


	4 Requirements
	4.1 Methodology
	4.2 Disassembly and Assembly Measurement Setup
	4.3 Influence of Rain on Radar Validation Measurements

	5 Design of Validation Study
	5.1 Measurement Setup
	5.2 Spectral Analysis of RCS
	5.3 Analysis of Detection Distribution

	6 Data Acquisition and Analysis
	6.1 Super-Reference for Trust in Reference Data
	6.2 Absolute Positioning in Dynamic Case
	6.3 Relative Positioning in Dynamic Case

	7 Validation
	7.1 Measurement Setup and Uncertainties
	7.2 Evaluation of Radar Measurement

	8 Conclusion and Outlook
	A Paper I
	B Paper II
	C Paper III
	D Paper IV
	Bibliography
	Own Open Source Content
	Supervised Theses

