
Computer Science
Department
Intelligent Autonomous
Systems Group

Uncertainty Representations in
Reinforcement Learning
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Carlos Enrique Luis Goncalves aus Venezuela
Tag der Einreichung: 07.10.2024, Tag der Prüfung: 06.12.2024

1. Gutachten: Prof. Jan Peters
2. Gutachten: Prof. Marc G. Bellemare
Darmstadt, Technische Universität Darmstadt



Uncertainty Representations in Reinforcement Learning

Genehmigte Dissertation von Carlos Enrique Luis Goncalves

Tag der Einreichung: 07.10.2024
Tag der Prüfung: 06.12.2024

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-289562
URL: http://tuprints.ulb.tu-darmstadt.de/28956
Jahr der Veröffentlichung auf TUprints: 2025

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/28956
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/


Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version
übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem
Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs
mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der
angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 07.10.2024
C. E. Luis Goncalves

iii



Abstract

Reinforcement learning (RL) has achieved tremendous success over the last decade, primarily through
massive compute in simulated environments. However, applications of RL in physical systems have lagged
behind as a result of open challenges such as sample-efficient learning, partial observability, generalization
and adaptation to unseen tasks. Consequently, there exists a large gap to be filled before RL becomes the
standard for enabling autonomous systems in the real world.
In this thesis, we argue that proper handling of uncertainty is key to address these challenges. We introduce
uncertainty estimation techniques that consider the sequential nature of decision-making, which enable a
seamless integration of the resulting uncertainty estimates into RL algorithms.
First, we adopt the model-based RL paradigm and investigate methods that propagate uncertainty from the
learned dynamics up to long-term predictions of the value of a control policy. Key to these approaches are
probabilistic models that separate aleatoric and epistemic uncertainty: the former is an inherent part of the
problem and therefore irreducible, while the latter exists due to a lack of knowledge about the dynamics
and can be reduced by strategically collecting more data. We first tackle the problem of estimating the
epistemic variance around the predicted performance (value) of a policy. We derive a theoretically-grounded
estimation algorithm that effectively propagates model uncertainty and recovers the desired variance. We
then demonstrate how to use such epistemic variance estimates for improved exploration in tabular problems.
For more challenging continuous control tasks, we identify challenges to apply our theory and propose a
suitable approximation, which leads to a practical deep RL architecture that accomodates risk-seeking or
risk-averse policy optimization. As a natural next step, we show how to efficiently learn an entire distribution
of policy values, rather than just its mean and variance. The distributional representation of epistemic
uncertainty around values is more expressive and allows for a wider range of policy optimization objectives
while having low computational overhead. Furthermore, empirical evaluation in diverse control tasks
indicate a substantial improvement in final performance and sample-efficiency over state-of-the-art methods.
Next, we consider the problem of partial observability in model-free RL. That is, the environment observations
provide limited information for decision-making, therefore the hidden state of the environment must be
infered from trajectory data. In this setting, we propose sequence models composed of Kalman filter (KF)
layers that perform closed-form Gaussian inference in linear state-space models and train them end-to-end
to maximize returns. By design, the KF layers are a drop-in replacement of previous recurrent layers in
model-free architectures, but they are equipped with an explicit mechanism for probabilistic filtering of the
latent state representation. We empirically demonstrate that KF layers excel in tasks where reasoning over
uncertainty is crucial for decision-making.
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Zusammenfassung

Das Verstärkungslernen (Reinforcement Learning, RL) hat in den letzten zehn Jahren enorme Erfolge
erzielt, insbesondere durch massive Rechenleistung in simulierten Umgebungen. Anwendungen von RL
in physischen Systemen sind jedoch aufgrund offener Herausforderungen wie Dateneffizienz, partieller
Beobachtbarkeit, und Generalisierung und Anpassung an neue Aufgaben in Verzug geraten. Folglich gibt es
noch eine große Lücke, die geschlossen werden muss, bevor RL zum Standard für autonome Systeme in der
realen Welt werden kann.
In dieser Arbeit argumentieren wir, dass der richtige Umgang mit Unsicherheit der Schlüssel zur Bewältigung
dieser Herausforderungen ist. Wir führen Techniken zur Unsicherheitsabschätzung ein, die die sequen-
tielle Natur der Entscheidungsfindung berücksichtigen und eine nahtlose Integration der resultierenden
Unsicherheitsabschätzungen in RL-Algorithmen ermöglichen.
Erstens übernehmen wir das modellbasierte RL-Konzept und untersuchen Methoden, die die Ungewiss-
heit von der gelernten Dynamik in langfristigen Vorhersagen des Wertes eines Reglers propagieren. Das
Fundament dieses Ansatzes bilden probabilistische Modelle, die zwischen aleatorische und epistemische
unterscheiden: Erstere ist ein inhärenter Teil des Problems und daher irreduzibel, während letztere auf-
grund mangelnder Kenntnisse über die Dynamik besteht und durch strategisches Sammeln von zusätzlichen
Daten reduziert werden kann. Als ersten Schritt entwickeln wir eine Methode Methode zur Schätzung
der epistemischen Varianz um die vorhergesagte Wert eines Reglers. Insbesondere leiten einen theoretisch
begründeten Schätzalgorithmus her, der die Modellunsicherheit effektiv propagiert und die gewünschte
Varianz bestimmt. Anschließend zeigen wir, wie solche epistemischen Varianzschätzungen für die Explorati-
on in tabellarischen Problemen verbesser kann. Für anspruchsvollere kontinuierliche Steuerungsaufgaben
identifizieren wir Herausforderungen bei der Anwendung unserer Theorie und schlagen eine geeignete
Annäherung vor, die zu einer praktischen verschachtelten (tiefen) RL-Architektur führt und eine risikofreu-
dige oder risikoaverse Strategieoptimierung ermöglicht. Als natürlichen nächster Schritt wird gezeigt, wie
man die gesamte Verteilung über Werte effizient lernen kann, und nicht nur deren Mittelwert und Varianz.
Die Verteilungsdarstellung der epistemischen Unsicherheit um die Werte herum ist aussagekräftiger und
ermöglicht eine breitere Palette von Optimierungszielen bei geringerem Rechenaufwand. Darüber hinaus
zeigen empirische Auswertungen in verschiedenen Steuerungsaufgaben eine erhebliche Verbesserung der
endgültigen Performanz und der Dateneffizienz im Vergleich zu etablierten Methoden.
Als nächstes betrachten wir das Problem der partiellen Beobachtbarkeit in modellfreiem RL. Das heißt,
dass die Beobachtungen der Umgebung nur begrenzte Informationen für die Entscheidungsfindung liefern,
weshalb der verborgene Zustand der Umgebung aus den Daten in den Trajektorien abgeleitet werden muss.
In dieser Situation schlagen wir Sequenzmodelle vor, die aus Kalman-Filter (KF)-Schichten bestehen, eine
Gauß’sche Inferenz in linearen Zustandsraummodellen durchführen und Ende-zu-Ende trainiert werden
um die Performance zu maximieren. Die KF-Schichten sind als Drop-in-Ersatz für frühere rekurrente
Schichten in modellfreien Architekturen konzipiert, verfügen aber über einen expliziten Mechanismus zur
probabilistischen Filterung der latenten Zustandsdarstellung. Wir zeigen empirisch, dass die Anwendung
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von KF-Schichten inbesondere bei solchen Aufgabe effektiv ist, bei denen der mit Unsicherheit für die
Entscheidungsfindung entscheidend ist.
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List of Symbols

The following list introduces the common notation used throughout this thesis. Due to the large amount of
variables, some symbols are overloaded across chapters, in which case the correct meaning will be apparent
from the context of the respective chapter.

Symbol Description

x Scalar
X Random variable

X ∼ ν X is distributed according to distribution ν
X Set
x Vector
X Matrix

P(X) Probability density function of X
EX [f(X)] Expected value of f(X)

VX [f(X)] Variance of f(X)

Ex∼ν [f(x)] Expected value of f(x) where x is sampled from ν

Vx∼ν [f(x)] Variance of f(x) where x is sampled from ν

f#ν Pushforward distribution of ν by the function f
R Set of real numbers
P(X ) Space of probability distributions over the set X
M Markov Decision Process (MDP) or Partially Observable MDP (POMDP)
A MDP’s action space
S MDP’s state space
O POMDP’s observation space
γ MDP’s discount factor

r(·, ·) MDP’s reward function
ρ(·) MDP’s Initial state distribution
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p(· | ·, ·) MDP’s transition function
P (· | ·, ·) MDP’s random transition function
Φ(P ) Prior distribution over transition function
D Dataset of collected MDP transitions

Φ(P | D) Posterior distribution over transition function conditioned on dataset D
P Set of all transition functions
π Stochastic control policy
vπ,p Scalar value function of policy π under transition function p
Zπ Random return function of policy π
V π Random value function of policy π under random transition function P
µπ Value distribution of policy π under random transition function P
D
= Equality in distribution
T Bellman Operator
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1. Introduction

Over the past decades, there has been a wide range of real-world applications of autonomous agents. From
car manufacturing to warehouse management, current autonomous agents can execute high-precision
tasks with super-human speed and reliability. Oftentimes, such applications are possible thanks to precise
mathematical models of the system’s dynamics and predictable surroundings. However, as we move to more
complex applications, such precise models become prohibitive and classical approaches less effective. A
more general solution requires agents that efficiently learn and adapt in unknown environments.
Reinforcement learning (RL) (Sutton and Barto, 2018) has gained popularity as a paradigm to train
agents for optimal decision-making through interactions with a priori unknown environments. Despite
many successful applications of RL in simulated environments like video-games (Mnih et al., 2013) and
board-games (Tesauro, 1995), applying RL algorithms more broadly faces many challenges, from which we
highlight the following:
Challenge #1: Sample-efficiency. In problems where collecting data is expensive, e.g., due to slow
simulators or having to interact with a physical system, RL algorithms are required to be sample-efficient.
That is, a performant policy must be learned with the fewest environment interactions possible. Many
sub-challenges stem from sample-efficient learning, such as efficient exploration and leveraging historical
data (also known as offline RL).
Challenge #2: Partial observability. When the environment observations only convey limited information
for making optimal decisions, then RL algorithms must deal with partial observability. In such settings, the
RL agent must infer the state of the system from past observations and act based on it. Partial observability
is common in many practical scenarios, e.g., due to having access to limited sensors or because the dynamics
of the system change over time or across evaluation episodes.
The central argument of this dissertation is that proper handling of uncertainty offers a common framework
to tackle the aforementioned challenges. Our main research question is the following:

How can we efficiently estimate and leverage uncertainty in reinforcement learning algorithms?

To address this question, in this thesis we develop, evaluate and analyze uncertainty quantification techniques
that consider the sequential nature of decision-making, such that the estimated uncertainty can be leveraged
to improve the learning process.
We identify two types of uncertainty in RL: aleatoric uncertainty, which models the inherent noise of the
environment, and epistemic uncertainty, which captures the agent’s lack of knowledge about the dynamics
(Kiureghian and Ditlevsen, 2009). While aleatoric uncertainty is irreducible, epistemic uncertainty can
be diminished by strategically collecting more data. Thus, efficient learning algorithms isolate epistemic
uncertainty and leverage it for informed decision-making (Gal, 2016).
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Model learning Uncertainty modeling Decision-making

Value

Figure 1.1.: We define uncertainty-aware decision-making in three iterative steps. (Left) Model learning
uses prior knowledge and observed data to learn a probabilistic model of the environment.
(Middle) Uncertainty from the learned model is propagated through the decision process to
reason about the long-term value of a given behavior. (Right) The control policy is updated
considering the value uncertainty.

In the first part of this thesis (Chapters 2 and 3) we assume full observability and consider the problem
of estimating epistemic uncertainty around the long-term value of a control policy and how to leverage
those estimates for sample-efficient RL. We adopt the Model-Based RL (MBRL) framework that learns a
probabilistic model of the environment dynamics from collected data and naturally captures both sources of
uncertainty (Sutton, 1991; Strehl and Littman, 2008). Current MBRL algorithms can solve high-dimensional
tasks with unparalleled sample-efficiency by disentangling the aleatoric and epistemic uncertainties when
training a control policy (Chua et al., 2018; Curi et al., 2020). One core challenge in MBRL is propagation
of model uncertainty for long-term reasoning (Deisenroth and Rasmussen, 2011). We develop uncertainty
quantification methods that act as a bridge between learning dynamic models and optimizing a policy. That
is, our methods translate the uncertainty of the learned model into quantities that can be readily utilized
for training a control policy. In Figure 1.1, we depict a general framework for the uncertainty-aware MBRL
algorithms introduced in this thesis. To illustrate the approach, we use a running example of an autonomous
robot tasked with exploring a mine in search for treasures.
Model learning. From prior knowledge and observed data, the purpose of model learning is to build
a probabilistic model of the environment. Importantly, the learned model must capture the epistemic
uncertainty due to limited data, such as not knowing what lies beyond a rock wall. Calibrated uncertainties
in the learned model are key to enable the rest of the pipeline. While there exists lots of open questions
regarding modelling of uncertainty in learned dynamics, this topic is not a core focus in this thesis. Instead,
we start from standard practices for model learning and focus on how to leverage this knowledge for
uncertainty representation and policy optimization.
Uncertainty Quantification. This module enables reasoning about the long-term value of different behaviors.
In our example, if the robot continues digging through the mine, how likely is it that it will hit a bomb
and explode? Or how likely is it that it will find diamonds and other treasures? A proper answer to these
questions requires propagating the model uncertainty through the sequential decision process. Moreover,
such uncertainty propagation needs to be efficient, scalable and easily integrated with current MBRL
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methodologies.
Decision-making. The last step of the pipeline is to consider the estimated values and their uncertainty to
make a decision. The updated control policy depends entirely on the inherent objective of the agent. In our
running example, as shown in the right diagram of Figure 1.1, the agent has a risk-seeking objective such
that it values more the high potential of finding treasures than the low probability of death by detonating a
bomb; as such, its final decision is to continue digging through the mine.
While we initially assume full observability, in the second part of the thesis (Chapter 4) we study the role
of uncertainty in model-free RL under partial observability. Coming back to our running example of the
autonomous robot, partial observability may exist due to a variety of reasons including observation noise,
limited sensors and changing dynamics across deployments, just to name a few. For example, if the sensors
are limited and/or noisy, the robot needs to aggregate data over multiple steps and across multiple sensors
to produce a state representation amenable for navigating the mine. In this setting, we study uncertainty
quantification of the inferred latent state of the system.

1.1. Contributions

In this dissertation, we investigate uncertainty estimation methods tailored for sequential decision-making
tasks. Below is the summary of contributions of this thesis.
Chapter 2: We estimate the variance around the predicted performance (value) of a policy. The resulting
uncertainty quantification method recovers the exact epistemic variance of the policy’s value under certain
assumptions. The predicted variance is readily integrated into RL algorithms for uncertainty-aware policy
optimization. Furthermore, our method can be scaled using function approximation to tackle complex
continuous-control problems. Evaluation in both tabular and continuous problems demonstrate improved
sample-efficiency in difficult exploration problems. Moreover, we can use the same uncertainty-aware
objectives for improved performance in offline optimization. This chapter is based on two articles (Luis
et al., 2023a, 2024a), the former published at the International Conference on Artificial Intelligence and
Statistics (AISTATS) and the latter submitted to Springer Machine Learning Journal (MLJ).
Chapter 3: We show how to efficiently learn the entire distribution of policy values, induced by the epistemic
uncertainty of the learned dynamics model. The resulting method predicts a richer representation of
uncertainty than the one developed in Chapter 2 and can accomodate more diverse policy optimization
objectives. Extensive empirical evaluation shows improved final performance and sample efficiency in
diverse continuous control tasks. The content of this chapter is based on the pre-print (Luis et al., 2023b)
accepted to the Journal of Machine Learning Research (JMLR).
Chapter 4: We introduce a simple recurrent layer based on Kalman filtering that performs closed-form
probabilistic inference in a latent state-space model. Our proposed Kalman filter (KF) layer can be easily in-
tegrated in existing model-free deep RL architectures where it is trained end-to-end for return maximization.
The KF layer outputs a filtered state representation which is then used by a downstream RL algorithm. Our
method excels in various problems where probabilistic reasoning is key for decision-making. This chapter
is based on the pre-print (Luis et al., 2024b), submitted to the Transactions of Machine Learning Research
(TMLR).
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Chapter 2 Chapter 3 Chapter 4
Learn rich representation of 
value distribution 

Method to learn mean and 
variance of value distribution

Infer latent state from history of 
observations and actions

Propagate model uncertainty 
to value function

Method to learn quantiles of 
the value distribution

Method for probabilistic inference 
of latent state representation

Chapter 1: Introduction

Chapter 5: Conclusion

Full Observability Partial Observability

Figure 1.2.: Outline of thesis. Chapters 2 and 3 consider uncertainty modelling in model-based RL under
full observability, while Chapter 4 studies uncertainty representations in inferred latent states
for model-free RL under partial observability.

1.2. Outline

The outline of the thesis is illustrated in Figure 1.2. The thesis is subdivided into two parts according to
the type of RL problem being considered. The first part includes Chapters 2 and 3, where the core topic
of study is uncertainty modelling in RL with full observability. That is, we observe the state of the system
directly and the dynamics are fixed across evaluation episodes. In this context, both chapters consider
the problem of modelling epistemic uncertainty around the long-term performance predictions of the RL
agent. In Chapter 2, the proposed solution is to only model the mean and variance of the value function
distribution, while Chapter 3 considers a richer representation of distributions.
In the second part of the thesis, composed by Chapter 4, we consider RL under partial observability, where the
agent must learn a state representation from past observations and use this information for decision-making.
Lastly, in Chapter 5, we summarize the main findings of this thesis, discuss open problems and suggest
avenues for future work.
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2. Model-Based Epistemic Variance of Values for
Risk-Aware Policy Optimization

We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based
reinforcement learning. In particular, we focus on characterizing the variance over values induced by a
distribution over MDPs. Previous work upper bounds the posterior variance over values by solving a so-called
uncertainty Bellman equation (UBE), but the over-approximation may result in inefficient exploration.
We propose a new UBE whose solution converges to the true posterior variance over values and leads
to lower regret in tabular exploration problems. We identify challenges to apply the UBE theory beyond
tabular problems and propose a suitable approximation. Based on this approximation, we introduce a
general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC), that can be
applied for either risk-seeking or risk-averse policy optimization with minimal changes. Experiments in
both online and offline RL demonstrate improved performance compared to other uncertainty estimation
methods.

2.1. Introduction

The goal of reinforcement learning (RL) is optimal decision-making in an a priori unknown Markov Decision
Process (MDP) (Sutton and Barto, 2018). The RL agent obtains rewards from interactions with the MDP
and optimality is defined by some utility function of the accumulated rewards (also known as return). The
return is, in general, a random variable due to two distinct types of uncertainty: aleatoric, induced by a
combination of the agent’s stochastic action selection and the random MDP state transitions; and epistemic,
due to having limited data of the unknown MDP (Kiureghian and Ditlevsen, 2009). Aleatoric uncertainty is
irreducible, since it is an inherent property of the problem, while epistemic uncertainty can be reduced by
further interactions with the MDP. A standard utility in the RL literature is the expected return, known as
the value function, which is a risk-neutral objective that averages over the aleatoric uncertainty without
explicit treatment of epistemic uncertainty. In this chapter, we first present a method to explicitly estimate
epistemic uncertainty around the value function and then argue for epistemic risk-aware objectives as a
unified framework for tackling problems in which risk-neutrality leads to sub-optimal solutions.
We motivate the need for risk-aware objectives with two concrete practical tasks: online exploration and
offline optimization. In online exploration, the MDP’s reward signal is sparse and standard RL algorithms
based on maximizing expected return converge to a suboptimal solution even in simple tasks (Raffin et al.,
2021). In offline optimization, the RL agent does not interact with the MDP and solely relies on a dataset
with limited support; in this case, standard RL algorithms without additional regularization are known
to diverge (Levine et al., 2020). While each of these problems have been tackled individually in the past,
we propose a unified solution by quantifying epistemic uncertainty and optimizing a simple risk-aware
objective: risk-seeking to encourage exploration in the absence of a reward signal, or risk-averse for explicit
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regularization in offline optimization. The two behaviors are controlled by a single hyperparameter, thus
the same algorithm can be applied to both exploration and offline problems.
In order to model epistemic uncertainty, we adopt the model-based RL (MBRL) paradigm, in which the
RL agent learns a probabilistic model of the MDP (Sutton, 1991). For tabular RL problems with finite
state-action spaces, provably efficient RL algorithms leverage the learned model of the MDP to derive
epistemic-uncertainty-based rewards that instill exploratory behaviour (Strehl and Littman, 2008; Jaksch
et al., 2010). Beyond these tabular RL approaches, modern deep learning MBRL methods quantify epistemic
and aleatoric uncertainty in the learned MDP dynamics (Depeweg et al., 2018; Chua et al., 2018) and
leverage them to optimize the policy (Curi et al., 2020). Still, proper uncertainty quantification of long-term
return predictions remains a challenging trade-off between accuracy and tractable probabilistic inference
(Deisenroth and Rasmussen, 2011). Despite these challenges, it has been shown that quantification of
uncertainty around the policy’s value enables risk-awareness, i.e., reasoning about the long-term risk of
rolling out a policy. Promising results have been reported for both risk-seeking (Deisenroth and Rasmussen,
2011; Fan and Ming, 2021) and risk-averse (Zhou et al., 2020; Yu et al., 2020) policy optimization.
Similar to prior work in MBRL, we use a Bayesian approach to characterize uncertainty in the MDP via a
posterior distribution (Dearden et al., 1999). This distributional perspective of the RL environment induces
distributions over functions of interest for solving the RL problem, e.g., the value function. Our perspective
differs from distributional RL (Bellemare et al., 2017), whose main object of study is the aleatoric noise
around the return. As such, distributional RL models aleatoric uncertainty, whereas our Bayesian MBRL
perspective focuses on the epistemic uncertainty arising from finite data of the underlying MDP.
In this chapter, we analyze the variance of the distribution over value functions and design an algorithm to
estimate it. Our method relies on dynamic programming and the well-known Bellman equation (Bellman,
1957). In particular, previous work by O’Donoghue et al. (2018); Zhou et al. (2020) showed that the dynamic
programming solution to a so-called uncertainty Bellman equation (UBE) is a guaranteed upper-bound on
the posterior variance of the value function. Our theoretical result is a new UBE whose solution is exactly
the posterior variance of the value function, thus closing the theoretical gap in previous work. Beyond the
theoretical analysis, we further identify limitations of naive applications of our theoretical result with neural
networks as function approximators and propose a novel solution. Our aim is to devise a general algorithm
for RL problems where optimizing for risk-neutral objectives is known to underperform. In particular,
we consider two such problems: exploration, which typically requires risk-seeking behaviour, and offline
optimization, which benefits from risk-averse objectives.

Our contribution. Based on the UBE framework, we first present a result that closes the theoretical
gap in previous upper-bounds. Our epistemic variance estimate shows improved regret when used as a
signal for exploration in tabular problems. Second, we identify challenges in applying the UBE theory to
practical problems and propose suitable approximations. The result is a general-purpose algorithm called
Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy
optimization with minimal changes. We evaluate QU-SAC in exploration tasks from the DeepMind Control
(DMC) suite (Tunyasuvunakool et al., 2020) as well as offline RL tasks from the D4RL benchmark (Fu et al.,
2020).
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2.1.1. Related work

Model-free Bayesian RL. Model-free approaches to Bayesian RL directly model the distribution over values,
e.g., with normal-gamma priors (Dearden et al., 1998), Gaussian Processes (Engel et al., 2003) or ensembles
of neural networks (Osband et al., 2016). Jorge et al. (2020) estimate value distributions using a backwards
induction framework, while Metelli et al. (2019) propagate uncertainty using Wasserstein barycenters.
Fellows et al. (2021) showed that, due to bootstrapping, model-free Bayesian methods infer a posterior over
Bellman operators rather than values.
Model-based Bayesian RL. Model-based Bayesian RL maintains a posterior over plausible MDPs given
the available data, which induces a distribution over values. The MDP uncertainty is typically represented
in the one-step transition model as a by-product of model-learning. For instance, the well-known PILCO
algorithm by Deisenroth and Rasmussen (2011) learns a Gaussian Process (GP) model of the transition
dynamics and integrates over the model’s total uncertainty to obtain the expected values. In order to scale
to high-dimensional continuous control problems, Chua et al. (2018) propose PETS, which uses ensembles
of probabilistic neural networks (NNs) to capture both aleatoric and epistemic uncertainty as first proposed
by Lakshminarayanan et al. (2017). Both approaches propagate model uncertainty during policy evaluation
and improve the policy via greedy exploitation over this model-generated noise. Dyna-style (Sutton, 1991)
actor-critic algorithms have been paired with model-based uncertainty estimates for improved performance
in both online (Buckman et al., 2018; Zhou et al., 2019) and offline (Yu et al., 2020; Kidambi et al., 2020)
RL.
Online RL - Optimism. To balance exploration and exploitation, provably-efficient RL algorithms based on
optimism in the face of the uncertainty (OFU) (Auer and Ortner, 2006; Jaksch et al., 2010) rely on building
upper-confidence (optimistic) estimates of the true values. These optimistic values correspond to a modified
MDP where the rewards are enlarged by an uncertainty bonus, which encourages exploration. In practice,
however, the aggregation of optimistic rewards may severely over-estimate the true values, rendering the
approach inefficient (Osband and Van Roy, 2017). O’Donoghue et al. (2018) show that methods that
approximate the variance of the values can result in much tighter upper-confidence bounds, while Ciosek
et al. (2019) demonstrate their use in complex continuous control problems. Similarly, Chen et al. (2017)
propose a model-free ensemble-based approach to estimate the variance of values.
Offline RL - Pessimism. In offline RL, the policy is optimized solely from offline (static) data rather than
from online interactions with the environment (Levine et al., 2020). A primary challenge in this setting
is known as distribution shift, which refers to the shift between the state-action distribution of the offline
dataset and that of the learned policy. The main underlying issue with distribution shifts in offline RL relates
to querying value functions out-of-distribution (OOD) with no opportunity to correct for generalization
errors via online interactions (as in the typical RL setting). One prominent technique to deal with distribution
shifts is known as conservatism or pessimism, where a pessimistic value function (typically a lower bound of
the true values) is learned by regularizing OOD actions (Kumar et al., 2020; Bai et al., 2022). Model-based
approaches to pessimism can be sub-divided into uncertainty-free (Yu et al., 2021; Rigter et al., 2022) and
uncertainty-based methods (Yu et al., 2020; Kidambi et al., 2020; Jeong et al., 2023). While uncertainty-free
pessimism circumvents the need to explicitly estimate the uncertainty, the current state-of-the-art method
CBOP (Jeong et al., 2023) is uncertainty-based. Our QU-SAC algorithm falls into the uncertainty-based
category and differentiates from prior work over which uncertainty it estimates: MOPO (Yu et al., 2020) uses
the maximum aleatoric standard deviation of a dynamics ensemble forward prediction, MOREL (Kidambi
et al., 2020) is similar but uses the maximum pairwise difference of the mean predictions, CBOP (Jeong
et al., 2023) instead does approximate Bayesian inference directly on the Q-value predictions conditioned
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on empirical (bootstrapped) return estimates. Instead, QU-SAC learns a Bayesian estimate of the Q-values
variance via approximately solving a UBE. To the best of our knowledge, this is the first time a UBE-based
algorithm is used for offline RL.
Unified offline / online RL. The closest body of work in which offline and online optimization are treated
under the same umbrella is that of offline-to-online RL, also known as online fine-tuning (Lee et al., 2022;
Nakamoto et al., 2023). Lei et al. (2024) unify the offline and online phases under the same objective
function, but the training procedure between both phases differs, adding further complexity. Zhao et al.
(2023) use the same base algorithm (SAC) in both phases, but risk-awareness is procured by different
methods: CQL (Kumar et al., 2020) in the offline phase, and SUNRISE (Lee et al., 2021) for online
fine-tuning.
Uncertainty in RL. Interest about the higher moments of the return of a policy dates back to the work of
Sobel (1982), showing these quantities obey a Bellman equation. Methods that leverage these statistics
of the return are known as distributional RL (Tamar et al., 2013; Bellemare et al., 2017). Instead, we
focus specifically on estimating and using the variance of the expected return for policy optimization. A key
difference between the two perspectives is the type of uncertainty they model: distributional RL models the
aleatoric uncertainty about the returns, which originates from the aleatoric noise of the MDP transitions
and the stochastic policy; our perspective studies the epistemic uncertainty about the value function, due to
incomplete knowledge of the MDP. Provably efficient RL algorithms use this isolated epistemic uncertainty
as a signal to balance exploring the environment and exploiting the current knowledge.
UBE-based RL. O’Donoghue et al. (2018) propose a UBE whose fixed-point solution converges to a
guaranteed upper-bound on the posterior variance of the value function in the tabular RL setting. This
approach was implemented in a model-free fashion using the DQN (Mnih et al., 2013) architecture and
showed performance improvements in Atari games. Follow-up work by Markou and Rasmussen (2019)
empirically shows that the upper-bound is loose and the resulting over-approximation of the variance impacts
negatively the regret in tabular exploration problems. Zhou et al. (2020) propose a modified UBE with a
tighter upper-bound on the value function, which is then paired with proximal policy optimization (PPO)
(Schulman et al., 2017) in a conservative on-policy model-based approach to solve continous-control tasks.
Our QU-SAC algorithm integrates UBE-based uncertainty quantification into a model-based soft actor-critic
(SAC) (Haarnoja et al., 2018) architecture similar to Janner et al. (2019); Froehlich et al. (2022).

2.2. Problem Statement

We consider an agent that acts in an infinite-horizon MDPM = {S,A, p, ρ, r, γ} with finite state space S,
finite action space A, unknown transition function p : S ×A → P(S) that maps states and actions to the
set of probability distributions over S, an initial state distribution ρ : S → [0, 1], a known and bounded
reward function r : S × A → R, and a discount factor γ ∈ [0, 1). Although we consider a known reward
function, the main theoretical results can be easily extended to the case where it is learned alongside the
transition function (see Appendix A.2.1). The agent is equipped with an action-selection stochastic policy
π : S → P(A) that defines the conditional probability distribution π(a | s), (s, a) ∈ S ×A. Given an initial
state S0 ∼ ρ and a policy π, the RL agent interacts with the environment and generates a random trajectory
T = {Sh, Ah, Rh}∞h=0, with Ah ∼ π(· | Sh), Rh = r(Sh, Ah), Sh+1 ∼ p(· | Sh, Ah) for h ≥ 0. We define
the value function vπ,p : S → R of a policy π and transition function p as the expected sum of discounted
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rewards under the MDP dynamics,

vπ,p(s) = ET

⎡⎣ ∞∑︂
h=0

γhRh

⃓⃓⃓⃓
⃓⃓S0 = s, p

⎤⎦, (2.1)

where the expectation is taken under the random trajectories T drawn from the trajectory distribution
P(T ) =

∏︁∞
h=0 π(ah | sh)p(sh+1 | sh, ah).

2.2.1. Bayesian RL

We adopt a Bayesian perspective and model the unknown dynamics p as a random transition function P
with some prior distribution Φ(P ). As the agent acts inM, it collects data1 D and obtains the posterior
distribution Φ(P | D) via Bayes’ rule. More concretely, for tabular problems we consider priors that admit
analytical posterior updates (e.g., Dirichlet, Gaussian) (Dearden et al., 1999), and for continuous state-
action spaces we use neural network ensembles (Lakshminarayanan et al., 2017) which have been linked to
approximate Bayesian inference (Osband et al., 2018).
In what follows, we will assume P ∼ Φ(P | D) and consider trajectories T defined as previously but with
next-states as Sh+1 ∼ P (· | Sh, Ah). Notably, the sampling process of next states mixes two sources of
uncertainty: the aleatoric noise, as with the original MDP, but also the uncertainty in P due to finite data,
often called epistemic uncertainty. Consequently, the aleatoric and epistemic noise in trajectories propagates
to the returns. We define the value function of policy π as a random variable under the random dynamics P
as

V π(s) = vπ,P (s). (2.2)
According to the value function definition in (2.1), V π is an expectation over the trajectories T conditioned
on the random variable P , which means the aleatoric noise of trajectories is averaged out, but the epistemic
uncertainty (due to the conditioning on P ) remains and is propagated to V π. Intuitively, to obtain a sample
from V π is equivalent to sample from the posterior Φ(P | D) and calculate the corresponding expected
return, i.e., the value. As such, the stochasticity of V π vanishes as we gather data and Φ(P | D) concentrates
around the true transition function p.
The main focus of this chapter is to study methods that estimate the variance of the random value function
V π, denoted VP

[︁
V π(s)

]︁. Our theoretical results extend to state-action value functions (see Appendix A.2.2).
The motivation behind studying this quantity is its potential for risk-aware optimization.
A method to estimate an upper-bound of the variance of Q-values by solving a UBE was introduced by Zhou
et al. (2020). Their theory holds for a class of MDPs where the value functions and transition functions are
conditionally independent. This family of MDPs is characterized by the following assumptions:

Assumption 1 (Parameter Independence (Dearden et al., 1999)). The posterior over the random vector
P (· | s, a) is independent for each pair (s, a) ∈ S ×A.

Assumption 2 (Directed Acyclic MDP (O’Donoghue et al., 2018)). Let p̃ ∈P be a realization of the random
variable P . Then, the MDP M̃ with transition function p̃ is a directed acyclic graph, i.e., states are not visited
more than once in any finite trajectory.
1We omit time-step subscripts and refer to dataset D as the collection of all available transition data.
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Unrolling

Figure 2.1.: Procedure of unrolling anMDPwith cycles. We denote by si,k the unrolled statewhich represents
being in state si of the original MDP at time step k. The unrolled MDP is only an approximation
of the original version due to truncation after finiteH steps.

Assumption 3 (Terminal State). Define a terminal (absorbing) state sT such that r(sT , a) = 0 and p(sT |
sT , a) = 1 for any a ∈ A and p ∈ P. Let p̃ ∈ P be a realization of the random variable P . Then, the
MDP M̃ with transition function p̃ deterministically transitions to sT after a finite horizon H ≤ |S|, i.e.,
p̃(sT | sH , a) = 1 for any a ∈ A.

The consequence of these assumptions is that P (s′ | s, a) and V π(s′) are conditionally independent for all
triplets (s, a, s′) (see Lemma 3). Assumption 1 is satisfied when modelling state transitions as independent
categorical random variables for every pair (s, a), with the unknown parameter vector P (· | s, a) under a
Dirichlet prior (Dearden et al., 1999). Assumptions 2 and 3 imply that any infinite trajectory is composed of
distinct states for the first H steps and then remains at the terminal state sT indefinitely. Our theoretical
results do not hold in the general case of MDPs with cycles. However, one may still obtain reasonable
approximations by considering an equivalent time-inhomogeneous MDP without cycles (also known as
the “unrolled” MDP (O’Donoghue et al., 2018)) by forcing a transition to a terminal state after H steps.
In Figure 2.1 we show the unrolling procedure of an MDP that contains cycles. The two MDPs are not
equivalent, but the unrolled approximation improves as H →∞, but in the limit implies an infinite state
space, which would then require additional measure-theoretic considerations outside the scope of this work
(cf. Bellemare et al., 2023, Remark 2.3). While unrolling the MDP is rarely done in practice, it serves as
a reasonable approximation to extend our theoretical results to the general setting of MDPs that contain
cycles.
Other quantities of interest are the posterior mean transition function starting from the current state-action
pair (s, a),

p̄(· | s, a) = EP
[︁
P (· | s, a)

]︁
, (2.3)

and the posterior mean value function for any s ∈ S,

v̄π(s) = EP
[︁
V π(s)

]︁
. (2.4)

Note that p̄ is a transition function that combines both aleatoric and epistemic uncertainty. Even if we limit
the posterior Φ to only include deterministic transition functions, p̄ remains a stochastic transition function
due to the epistemic uncertainty.
In prior work by Zhou et al. (2020), local uncertainty is defined as

w(s) = VP
[︃∑︂

a,s′
π(a | s)P (s′ | s, a)v̄π(s′)

]︃
, (2.5)
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which captures variability of the posterior mean value function at the next state s′. Based on this local
uncertainty, Zhou et al. (2020) propose the UBE

W π(s) = γ2w(s) + γ2
∑︂
a,s′

π(a | s)p̄(s′ | s, a)W π(s′), (2.6)

that propagates the local uncertainty using the posterior mean dynamics. It was proven that the fixed-
point solution of (2.6) is an upper-bound of the epistemic variance of the values, i.e., it satisfiesW π(s) ≥
VP
[︁
V π(s)

]︁ for all s.
2.3. Uncertainty Bellman Equation

In this section, we build a new UBE whose fixed-point solution is equal to the variance of the value function
and we show explicitly the gap between (2.6) and VP

[︁
V π(s)

]︁.
The values vπ,p are the fixed-point solution to the Bellman expectation equation, which relates the value
of the current state s with the value of the next state s′. Further, under Assumptions 1–3, applying the
expectation operator to the Bellman recursion results in v̄π(s) = vπ,p̄(s). The Bellman recursion propagates
knowledge about the local rewards r(s, a) over multiple steps, so that the value function encodes the
long-term value of states if we follow policy π. Similarly, a UBE is a recursive formula that propagates a
notion of local uncertainty, u(s), over multiple steps. The fixed-point solution to the UBE, which we call the
U -values, encodes the long-term epistemic uncertainty about the values of a given state.
Previous formulations by O’Donoghue et al. (2018); Zhou et al. (2020) differ only on their definition of the
local uncertainty and result on U -values that upper-bound the posterior variance of the values. The first key
insight is that we can define u such that the U -values converge exactly to the variance of values. This result
is summarized in the following theorem:

Theorem 1. Under Assumptions 1–3, for any s ∈ S and policy π, the posterior variance of the value function,
Uπ = VP [V π] obeys the uncertainty Bellman equation

Uπ(s) = γ2u(s) + γ2
∑︂
a,s′

π(a | s)p̄(s′ | s, a)Uπ(s′), (2.7)

where u(s) is the local uncertainty defined as

u(s) = Va,s′∼π,p̄
[︁
v̄π(s′)

]︁
− EP

[︂
Va,s′∼π,P

[︁
V π(s′)

]︁]︂
. (2.8)

Proof. See Appendix A.1.1.

One may interpret the U -values from Theorem 1 as the associated state-values of an alternate uncertainty
MDP, U =

{︁
S,A, p̄, ρ, γ2u, γ2

}︁, where the agent receives uncertainty rewards and transitions according to
the mean dynamics p̄.
A key difference between u and w is how they represent epistemic uncertainty: in the former, it appears
only within the first term, through the one-step variance over p̄; in the latter, the variance is computed over
Φ. While the two perspectives may seem fundamentally different, in the following theorem we present a
clear relationship that connects Theorem 1 with the upper bound (2.6).
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Theorem 2. Under Assumptions 1–3, for any s ∈ S and policy π, it holds that u(s) = w(s) − g(s), where
g(s) = EP

[︂
Va,s′∼π,P

[︁
V π(s′)

]︁
− Va,s′∼π,P

[︁
v̄π(s′)

]︁]︂. Furthermore, we have that the gap g(s) is non-negative,
thus u(s) ≤ w(s).

Proof. See Appendix A.1.2.

The gap g(s) of Theorem 2 can be interpreted as the average difference of aleatoric uncertainty about the
next values with respect to the mean values. The gap vanishes only if the epistemic uncertainty goes to
zero, or if the MDP and policy are both deterministic.
We directly connect Theorems 1 and 2 via the equality

Va,s′∼π,p̄
[︁
v̄π(s′)

]︁⏞ ⏟⏟ ⏞
total

= w(s)⏞⏟⏟⏞
epistemic

+EP
[︂
Va,s′∼π,P

[︁
v̄π(s′)

]︁]︂
⏞ ⏟⏟ ⏞

aleatoric

, (2.9)

which helps us analyze our theoretical results. The uncertainty reward defined in (2.8) has two components:
the first term corresponds to the total uncertainty about the mean values of the next state, which is further
decomposed in (2.9) into an epistemic and aleatoric components. When the epistemic uncertainty about
the MDP vanishes, then w(s)→ 0 and only the aleatoric component remains. Similarly, when the MDP and
policy are both deterministic, the aleatoric uncertainty vanishes and we have Va,s′∼π,p̄

[︁
v̄π(s′)

]︁
= w(s). The

second term of (2.8) is the average aleatoric uncertainty about the value of the next state. When there is no
epistemic uncertainty, this term is non-zero and exactly equal to the alectoric term in (2.9) which means
that u(s)→ 0. Thus, we can interpret u(s) as a relative local uncertainty that subtracts the average aleatoric
noise out of the total uncertainty around the mean values. Perhaps surprisingly, our theory allows negative
u(s) (see Section 2.3.1 for a concrete example).
Through Theorem 2 we provide an alternative proof of why the UBE (2.6) results in an upper-bound of the
variance, specified by the next corollary.

Corollary 1. Under Assumptions 1–3, for any s ∈ S and policy π, it holds that the solution to the uncertainty
Bellman equation (2.6) satisfiesW π(s) ≥ Uπ(s).

Proof. The solution to the Bellman equations (2.6) and (2.7) are the value functions under some policy π of
identical MDPs except for their reward functions. Given two identical MDPsM1 andM2 differing only on
their corresponding reward functions r1 and r2, if r1 ≤ r2 for any input value, then for any trajectory τ we
have that the returns (sum of discounted rewards) must obey z1(τ) ≤ z2(τ). Lastly, since the value functions
vπ1 , vπ2 are defined as the expected returns under the same trajectory distribution and the expectation
operator preserves inequalities, then we have that z1(τ) ≤ z2(τ) =⇒ vπ1 ≤ vπ2 .

Corollary 1 reaches the same conclusions as Zhou et al. (2020), but it brings important explanations
about their upper bound on the variance of the value function. First, by Theorem 2 the upper bound is
a consequence of the over approximation of the reward function used to solve the UBE. Second, the gap
between the exact reward function u(s) and the approximation w(s) is fully characterized by g(s) and
brings interesting insights. In particular, the influence of the gap term depends on the stochasticity of the
dynamics and the policy. In the limit, the term vanishes under deterministic transitions and action selection.
In this scenario, the upper-bound found by Zhou et al. (2020) becomes tight.
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Figure 2.2.: Toy example Markov Reward Process. The random variables δ and β indicate epistemic
uncertainty about the MRP’s transition probabilities. State sT is an absorbing (terminal) state.

Table 2.1.: Comparison of local uncertainty rewards and solutions to the UBE associated with the toy
example from Figure 2.2. The U -values converge to the true posterior variance of the values,
whileW π obtains an upper-bound.

States u(s) w(s) W π(s) Uπ(s)

s0 −0.6 5.0 21.3 15.7

s2 25.0 25.0 25.0 25.0

Our method returns the exact epistemic uncertainty about the values by considering the inherent aleatoric
uncertainty of the MDP and the policy. In a practical RL setting, disentangling the two sources of uncertainty
is key for effective exploration. We are interested in exploring regions of high epistemic uncertainty, where
new knowledge can be obtained. If the variance estimate fuses both sources of uncertainty, then we may be
guided to regions of high uncertainty but with little information to be gained.

2.3.1. Toy Example

To illustrate the theoretical findings of this chapter, consider the simple Markov reward process (MRP)
of Figure 2.2. Assume δ and β to be random variables drawn from a discrete uniform distribution δ ∼
Unif({0.7, 0.6}) and β ∼ Unif({0.5, 0.4}). As such, the distribution over possible MRPs is finite and composed
of the four possible combinations of δ and β. Note that the example satisfies Assumptions 1 and 2. In
Table 2.1 we include the results for the uncertainty rewards and solution to the respective UBEs (the results
for s1 and s3 are trivially zero). For state s2, the upper-boundW π is tight and we haveW π(s2) = Uπ(s2). In
this case, the gap vanishes not because of lack of stochasticity, but rather due to lack of epistemic uncertainty
about the next-state values. Indeed, the values for s3 and s are independent of δ and β, which results in the
gap terms for s2 cancelling out. For state s0 the gap is non-zero andW π overestimates the variance of the
value by ∼ 36%. Our UBE formulation prescribes a negative reward to be propagated in order to obtain the
correct posterior variance.
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Algorithm 1 Model-based Q-variance estimation
1: Input: Posterior MDP Γ, policy π.
2: {pi, ri}Ni=1 ← sample_mdp(Γ)
3: Q̄π, {Qi}Ni=1 ←solve_bellman

(︂
{pi, ri}Ni=1 , π

)︂
4: Ûπ ← qvariance

(︂
{pi, ri, Qi}Ni=1 , Q̄

π
, π
)︂

2.4. Uncertainty-Aware Policy Optimization

In this section, we propose techniques to leverage uncertainty quantification of Q-values (also known as
state-action values) for both online and offline RL problems. In what follows, we consider the general setting
with unknown rewards and define Γ to be the posterior distribution over MDPs, from which we can sample
both reward and transition functions. Define Ûπ to be an estimate of the posterior variance over Q-values
for some policy π. Then, we consider algorithms that perform policy updates via the following upper (or
lower) confidence bound (Auer and Ortner, 2006) type of optimization problem

π = argmaxπ Q̄
π
+ λ

√︁
Û
π
, (2.10)

where Q̄π is the posterior mean Q-value function and λ is a risk-awareness parameter. A positive λ
corresponds to risk-seeking, optimistic exploration while negative λ denotes risk-averse, pessimistic anti-
exploration.
Algorithm 1 describes our general framework to estimate Q̄π and Ûπ: we sample an ensemble of N MDPs
from the current posterior Γ in Line 2 and use it to solve the Bellman expectation equation in Line 3,
resulting in an ensemble of N corresponding Q functions and the posterior mean Q̄π. Lastly, Ûπ is estimated
in Line 4 via a generic variance estimation method qvariance. In what follows, we provide concrete
implementations of qvariance both in tabular and continuous problems.

2.4.1. Tabular Problems

For problems with tabular representations of the state-action space, we implement qvariance by directly
solving the proposed UBE2(2.7), which we denote exact-ube. For this purpose, we impose a Dirichlet
prior on the transition function and a standard Normal prior for the rewards (O’Donoghue et al., 2019),
which leads to closed-form posterior updates. After sampling N times from the MDP posterior (Line 2),
we obtain the Q-functions (Line 3) in closed-form by solving the corresponding Bellman equation. The
uncertainty rewards are estimated via sample-based approximations of the expectations/variances therein.
Lastly, we solve (2.10) via policy iteration until convergence is achieved or until a maximum number of
steps is reached.

Practical bound. The choice of a Dirichlet prior violates Assumption 2. A challenge arises in this practical
setting: exact-ube may result in negative U -values, as a combination of (i) the assumptions not holding
and (ii) the possibility of negative uncertainty rewards. While (i) cannot be easily resolved, we propose a
practical upper-bound on the solution of (2.7) such that the resulting U -values are non-negative and hence

2For the UBE-based methods we use the equivalent equations for Q-functions, see Appendix A.2.3 for details.
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+ Actor
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Figure 2.3.: Architecture for Q-Uncertainty Soft Actor-Critic (QU-SAC). The dataset D may be either static,
as in offline RL, or be dynamically populated with online interactions. This dataset is used to
train an ensemble of dynamicsmodels which is then used for synthetic rollout generation. Each
member of the ensemble populates its own buffer Di, which is used to train a corresponding
ensemble of critics. Additionally, member-randomized rollouts are stored in Dmodel and used
to train a U -net, which outputs an estimated epistemic variance of the value prediction. Lastly,
the actor aims to optimize the risk-aware objective (2.10), which combines the output of the
critic ensemble and the U -net.

interpretable as variance estimates. We consider the clipped uncertainty rewards ũ = max(umin, u(s)) with
corresponding U -values Ũπ. It is straightforward to prove that, if umin = 0, thenW π(s) ≥ Ũπ(s) ≥ Uπ(s),
which means that using Ũπ still results in a tighter upper-bound on the variance thanW π, while preventing
non-positive solutions to the UBE. In what follows, we drop this notation and assume all U -values are
computed from clipped uncertainty rewards.

2.4.2. Continuous Problems

We tackle problems in continuous domains using neural networks for function approximation. The resulting
architecture is named Q-Uncertainty Soft Actor-Critic (QU-SAC) which builds upon MBPO by Janner et al.
(2019) and is depicted in Figure 2.3.

Posterior dynamics. In contrast to the tabular implementation, maintaining an explicit distribution over
MDPs from which we can sample is intractable. Instead, we approximate Γ with an ensemble, which have
been linked to approximate posterior inference (Osband et al., 2018). More concretely, we model Γ as a
discrete uniform distribution of N probabilistic neural networks, denoted pθ, that output the mean and
covariance of a Gaussian distribution over next states and rewards (Chua et al., 2018). In this case, the
output of Line 2 in Algorithm 1 is precisely the ensemble of neural networks.

Critics. The original MBPO trains Q-functions represented as neural networks via TD-learning on data
generated via model-randomized k-step rollouts from initial states that are sampled from D. Each forward
prediction of the rollout comes from a randomly selected model of the ensemble and the transitions are
stored in a single replay buffer Dmodel, which is then fed into a model-free optimizer like SAC. Algorithm 1
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requires a few modifications from the MBPO methodology. To implement Line 3, in addition to Dmodel, we
create N new buffers {Di}Ni=1 filled with model-consistent rollouts, where each k-step rollout is generated
under a single model of the ensemble, starting from initial states sampled from D. We train an ensemble
of N value functions {Qi}Ni=1, parameterized by {ψi}Ni=1, and minimize the residual Bellman error with
entropy regularization

L(ψi) = E(s,a,r,s′)∼Di

[︂(︁
yi −Qi(s, a;ψi)

)︁2]︂
, (2.11)

where yi = r + γ
(︁
Qi(s

′, a′; ψ̄i)− α log πϕ(a
′ | s′)

)︁ and ψ̄i are the target network parameters updated via
Polyak averaging for stability during training (Mnih et al., 2013). The mean Q-values, Q̄π, are estimated as
the average value of the Q-ensemble.

Uncertainty rewards. Our theory prescribes propagating the uncertainty rewards (2.8) to obtain the
exact-ube estimate. It is possible to approximate these rewards, as in the tabular case, by considering
the ensemble of critics as samples from the value distribution. If we focus only on estimating the positive
component of the exact-ube estimate, i.e., the local uncertainty defined by Zhou et al. (2020), then a
sample-based approximation is given by

ŵ(s, a) = Vi
[︂{︁
Q̄(s′i, a

′
i)
}︁N
i=1

]︂
, (2.12)

where s′i ∼ pi(· | s, a). While this approach is sensible from our theory perspective and has lead to promising
results in our previous work (Luis et al., 2023a), it has two main shortcomings in practice: (i) it can be
computationally intensive to estimate the rewards and (ii) the magnitude of the rewards is typically low, even
if the individual critics have largely different estimated values. The latter point is illustrated in Figure 2.4:
the term ŵ(s, a) captures the local variance of the average value function, which would be small if the
function is relatively flat around (s, a) or if the dynamics model ensemble yields similar forward predictions
starting from (s, a). Empirically, we found that across many environments the average magnitude of ŵ(s, a)
is indeed small (e.g., ∼ 10−3), which makes training a U -net challenging mainly due to vanishing gradients
from the softplus layer. We alleviate both shortcomings via a simple proxy uncertainty reward:

ŵub(s, a) = Vi
[︂{︁
Qi(s, a)

}︁N
i=1

]︂
, (2.13)

which is the sample-based approximation of the value variance. We denote this estimate upper-bound
(thus, the subscript “ub” in (2.13)), since in the limit of infinite samples from the value distribution, solving
a UBE with rewards ŵub(s, a) results in an upper bound on the value variance at (s, a).
The proxy rewards ŵub(s, a) capture explicitly the value ensemble disagreement rather than local variations
of the average value, which empirically results in larger rewards being propagated through the UBE.
Moreover, the proxy reward calculation requires only one forward pass through the critic ensemble, without
need for forward predictions with the dynamics model as for ŵ(s, a).

Variance estimate. Similar to critic training, we model the variance estimate Ûπ with a neural network,
denoted U -net, parameterized by φ and trained to minimize the UBE residual

L(φ) = E(s,a,r,s′)∼Dmodel

[︂(︁
z − U(s, a;φ)

)︁2]︂
, (2.14)

with targets z = γ2ŵub(s, a) + γ2U(s′, a′; φ̄) and target parameters φ̄ updated like in regular critics. Since
we interpret the output of the network as predictive variances, we use a softplus output layer to guarantee
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Figure 2.4.: Illustrative example of uncertainty rewards. (Left) ensemble of two value functions {Q1, Q2}.
(Right) corresponding mean value function Q̄. The theory prescribes estimating the term in
(2.5), denoted ŵ(s, a), which captures local variability of Q̄ around (s, a). Empirically, ŵ(s, a) can
be small despite large differences in individual members of the value ensemble, e.g., because
Q̄ is relatively flat around (s, a). We propose the proxy uncertainty reward ŵub(s, a) which
directly captures variability across the value ensemble and is less computationally expensive
(no dynamics model forward pass).

non-negative values. Moreover, we apply a symlog transformation to the UBE targets z, as proposed by
Hafner et al. (2023), which helps the U -net converge to the target values more easily. Namely, the U -net is
trained to predict the symlog transform of the target values z, defined as symlog(z) = sign(z) log(︁|z|+ 1

)︁.
To retrieve the U -values, we apply the inverse transform symexp(z) = sign(z)(exp(︁|z|)︁− 1) to the output
of the U -net.

Actor. The stochastic policy is represented as a neural network with parameters ϕ, denoted by πϕ. The
policy’s objective is derived from SAC, where in addition to entropy regularization, we include the predicted
standard deviation of values for uncertainty-aware optimization.

L(ϕ) = Es∼Dmodel

[︃
Ea∼πϕ

[︂
Q̄(s, a) + λ

√︁
U(s, a)− α log πϕ(a | s)

]︂]︃
. (2.15)

Online vs offline optimization. With QU-SAC we aim to use largely the same algorithm to tackle both
online and offline problems. Beyond differences in hyperparameters, the only algorithmic change in QU-SAC
is that for offline optimization we modify the data used to train the actor, critic and U -net to also include
data from the offline dataset (an even 50/50 split between offline and model-generated data in our case),
which is a standard practice in offline model-based RL (Rigter et al., 2022; Yu et al., 2020, 2021; Jeong
et al., 2023).

2.5. QU-SAC Online Implementation

In this section, we provide details regarding the online implementation of QU-SAC.
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Algorithm 2 QU-SAC (online)
1: Initialize policy πϕ, predictive model pθ, critic ensemble {Qi}Ni=1, uncertainty net Uψ (optional), envi-
ronment dataset D, model datasets Dmodel and {Di}Ni=1.

2: global step← 0
3: for episode t = 0, . . . , T − 1 do
4: for E steps do
5: if global step % F == 0 then
6: Train model pθ on D via maximum likelihood
7: forM model rollouts do
8: Perform k-step model rollouts starting from s ∼ D; add to Dmodel and {Di}Ni=1

9: Take action in environment according to πϕ; add to D
10: for G gradient updates do
11: Update {Qi}Ni=1 with mini-batches from {Di}Ni=1, via SGD on (2.11)
12: (Optional) Update Uψ with mini-batches from Dmodel, via SGD on (2.14)
13: Update πϕ with mini-batches from Dmodel, via SGD on (2.15)
14: global step← global step +1

We build QU-SAC on top of MBPO (Janner et al., 2019) following Algorithm 2. The main differences with
the original implementation are as follows:
• In Line 8, we perform a total of N + 1 k-step rollouts corresponding to both the model-randomized
and model-consistent rollout modalities. The original MBPO only executes the former to fill up Dmodel.

• In Line 11, we update the ensemble of Q-functions on the corresponding model-consistent buffer.
MBPO trains twin critics (as in SAC) on mini-batches from Dmodel.

• In Line 12, we update the U -net for the UBE-based variance estimation methods.
• In Line 13, we update πϕ by maximizing the uncertainty-aware Q-values. MBPO maximizes the
minimum of the twin critics (as in SAC). Both approaches include an entropy maximization term.

The main hyperparameters for our experiments are included in Table A.1. Further implementation details
are now provided.
Model learning. We leverage the mbrl-lib Python library from Pineda et al. (2021) and train an ensemble
of N probabilistic neural networks. We use the default MLP architecture with four layers of size 200 and
SiLU activations. The networks predict delta states, ∆ = s′ − s, and receive as input state-action pairs. We
use the default initialization of the network provided by the library, which samples weights from a truncated
Gaussian distribution, however we found it helpful to increase by a factor of 2.0 the standard deviation
of the truncated Gaussian; a wider distribution of weights allows for more diverse dynamic models at the
beginning of training.
Model-generated buffers. The capacity of the model-generated buffersDmodel and

{︁
Dimodel

}︁N
i=1
is computed

as k ×M × F ×∆, where ∆ is the number of model updates before entirely overwriting the buffers. Larger
values of this parameter allows for more off-policy (old) data to be stored and sampled for training.
SAC specifics. Our SAC implementation is based on the open-source repository https://github.com
/pranz24/pytorch-soft-actor-critic, as done by mbrl-lib. For all our experiments, we use
the automatic entropy tuning flag that adaptively modifies the entropy gain α based on the stochasticity of
the policy.
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Algorithm 3 QU-SAC (offline)
1: Initialize policy πϕ, predictive model pθ, critic ensemble {Qi}Ni=1, uncertainty net Uψ (optional), offline
dataset D, model datasets Dmodel and {Di}Ni=1.

2: Train model pθ on D via maximum likelihood
3: for steps g = 0, . . . , G− 1 do
4: if g % F == 0 then
5: for L model rollouts do
6: Perform k-step model rollouts starting from s ∼ D; add to Dmodel and {Di}Ni=1

7: Update {Qi}Ni=1 with mini-batches from {D ∪ Di}Ni=1, via SGD on (2.11)
8: (Optional) Update Uψ with mini-batches from D ∪Dmodel, via SGD on (2.14)
9: Update πϕ with mini-batches from D ∪Dmodel, via SGD on (2.15)

2.6. QU-SAC Offline Implementation

In this section, we provide further details regarding the use of QU-SAC for offline optimization.
We modify the online version of QU-SAC described in Algorithm 2 to reflect the execution flow of offline
optimization, which we present in Algorithm 3. Beyond the algorithmic changes, we now list the main
implementation details differing from the online implementation of QU-SAC:
Model learning. The only difference w.r.t. the online setting is that the we normalize the state-action inputs
to the model, where the normalization statistics are calculated based on the offline dataset D.
Data mixing. In Lines 7-9, we highlight that, in contrast to the online setting, the mini-batches used to
train the critic, actor and U -net mix both model-generated and offline data. In particular, we use a fixed
50/50 split between these two data sources.

2.7. Experiments

In this section, we empirically evaluate the performance of our risk-aware policy optimization scheme (2.10)
in various problems and compare against related baselines.

2.7.1. Baselines

In Algorithm 1, we consider different implementations of the qvariance method to estimate Û(s, a):
ensemble-var directly uses the sample-based approximation ŵub(s, a) in (2.13); pombu uses the solution
to the UBE (2.6); exact-ube uses the solution to our proposed UBE (2.7); and upper-bound refers to
the solution of the UBE with the modified rewards (2.13). We also compare against not using any form of
uncertainty quantification, which we refer to as ensemble-mean.
Additionally, in tabular problems we include PSRL by Osband et al. (2013) as a baseline since it typically
outperforms recent OFU-based methods (O’Donoghue, 2021; Tiapkin et al., 2022). We also include MBPO
(Janner et al., 2019) and MOPO (Yu et al., 2020) as baselines for online and offline problems, respectively.
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Figure 2.5.: Performance in the DeepSea benchmark. Lower values in plots indicate better performance.
(Left) Learning time is measured as the first episode where the sparse reward has been found
at least in 10% of episodes so far. (Right) Total regret is approximately equal to the number of
episodes where the sparse reward was not found. Results represent the average over 5 random
seeds, and vertical bars on total regret indicate the standard error. Our variance estimate
achieves the lowest regret and best scaling with problem size.

2.7.2. Gridworld Exploration Benchmark

We evaluate the tabular implementation in two grid-world environments where exploration is key to find
the optimal policy: DeepSea and 7-room.

Tabular Implementation Details

In this section, we provide more details about the tabular implementation of Algorithm 1.
Model learning. For the transition function we use a prior Dirichlet(1/

√
S) and for rewards a standard

normal N (0, 1), as done by O’Donoghue et al. (2019). The choice of priors leads to closed-form posterior
updates based on state-visitation counts and accumulated rewards. We add a terminal state to our modeled
MDP in order to compute the values in closed-form via linear algebra.
Accelerating learning. For the DeepSea benchmark we accelerate learning by imagining each experienced
transition (s, a, s′, r) is repeated L times, as initially suggested by Osband et al. (2019) (see footnote 9),
although we scale the number of repeats with the size of the MDP. Effectively, this strategy forces the MDP
posterior to shrink faster, thus making all algorithms converge in fewer episodes. The same strategy was
used for all the methods evaluated in the benchmark.
Policy optimization. All tested algorithms (PSRL and OFU variants) optimize the policy via policy iteration,
where we break ties at random when computing the argmax, and limit the number of policy iteration steps
to 40.
Hyperparameters. Unless noted otherwise, all tabular RL experiments use a discount factor γ = 0.99, an
exploration gain λ = 1.0 and an ensemble size N = 5.
Uncertainty reward clipping. For DeepSea we clip uncertainty rewards with umin = −0.05 and for the
7-room environment we keep umin = 0.0.

20



0

50

100
To

ta
lr

eg
re

t

L = 10

ofu-exact-ube (ours)
ofu-pombu

ofu-ensemble-var

psrl

0

100

200

L = 15

0

200

400

To
ta

lr
eg

re
t

L = 20

0

250

500

L = 25

0

500

To
ta

lr
eg

re
t

L = 30

0 200 400 600 800 1000

Episode

0

500

L = 35

0 200 400 600 800 1000

Episode

0

500

1000

To
ta

lr
eg

re
t

L = 40

Figure 2.6.: Extended results for the DeepSea experiments shown in Figure 2.5. We report the average
(solid line) and standard error (shaded region) over 5 random seeds.

DeepSea

First proposed by Osband et al. (2019), this environment tests the agent’s ability to explore over multiple
time steps in the presence of a deterrent. It consists of an L× L grid-world MDP, where the agent starts at
the top-left cell and must reach the lower-right cell. The agent decides to move left or right, while always
descending to the row below. We consider the deterministic version of the problem, so the agent always
transitions according to the chosen action. Going left yields no reward, while going right incurs an action
cost (negative reward) of 0.01/L. The bottom-right cell yields a reward of 1, so that the optimal policy is to
always go right. As the size of the environment increases, the agent must perform sustained exploration in
order to reach the sparse reward.
The experiment consists on running each method for 1000 episodes and five random seeds, recording the
total regret and “learning time”, defined as the first episode where the rewarding state has been found
at least in 10% of the episodes so far (O’Donoghue, 2021). For this experiment, we found that using
umin = −0.05 improves the performance of our method: since the underlying MDP is acyclic, propagating
negative uncertainty rewards is consistent with our theory.
Figure 2.5 (left) shows the evolution of learning time as L increases. Our method achieves the lowest
learning time and best scaling with problem size. Notably, all the OFU-based methods learn faster than PSRL,
a strong argument in favour of using the variance of value functions to guide exploration. Figure 2.5 (right)
shows that our approach consistently achieves the lowest total regret across all values of L. This empirical
evidence indicates that the solution to our UBE can be integrated into common exploration techniques like
UCB to serve as an effective uncertainty signal. Moreover, our method significantly improves peformance
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over pombu, highlighting the relevance of our theory results. We include the corresponding training curves
in Figure 2.6.
Uncertainty rewards ablation. Our theory prescribes equivalent expressions for the uncertainty rewards
under the assumptions. However, since in practice the assumptions do not generally hold, the expressions are
no longer equivalent. We evaluate the performance in the DeepSea benchmark for these different definitions
of the uncertainty rewards:
• exact-ube_1:

u(s, a) = Va′,s′∼π,p̄
[︁
q̄π(s′, a′)

]︁
− EP

[︂
Va′,s′∼π,P

[︁
Qπ(s′, a′)

]︁]︂
• exact-ube_2:

u(s, a) = VP

⎡⎣∑︂
a′,s′

π(a′ | s′)P (s′ | s, a)q̄π(s′, a′)

⎤⎦− EP
[︂
Va′,s′∼π,P

[︁
Qπ(s′, a′)

]︁
− Va′,s′∼π,P

[︁
q̄π(s′, a′)

]︁]︂

• exact-ube_3 (labeled exact-ube in all other plots):

u(s, a) = VP

⎡⎣∑︂
a′,s′

π(a′ | s′)P (s′ | s, a)q̄π(s′, a′)

⎤⎦− EP
[︂
Va′,s′∼π,P

[︁
Qπ(s′, a′)− q̄π(s′, a′)

]︁]︂

Figure 2.7 shows the results for the DeepSea benchmark comparing the three uncertainty signals. Since the
assumptions are violated in the practical setting, the three signals are no longer equivalent and result in
slightly different uncertainty rewards. Still, when integrated into Algorithm 1, the performance in terms of
learning time and total regret is quite similar. We select exact-ube_3 as the default estimate for all other
experiments.
Ensemble size ablation. The ensemble size N is one important hyperparameter for all the OFU-based
methods. We perform additional experiments in DeepSea for different values of N , keeping all other
hyperparameters fixed and with sizes L = {20, 30}. The results in Figure 2.8 show that our method achieves
lower total regret across the different ensemble sizes. For ensemble-var, performance increases for larger
ensembles. These results suggest that the sample-based approximation of our uncertainty rewards is not
very sensitive to the number of samples and achieve good performance even for N = 2.
Exploration gain ablation. Another important hyperparameter for OFU-based methods is the exploration
gain λ, controlling the magnitude of the optimistic values optimized via policy iteration. We perform an
ablation study over λ, keeping all other hyperparameters fixed and testing for DeepSea sizes L = {20, 30}.
Figure 2.9 shows the total regret for OFU methods over increasing gain. Unsurprisingly, as we increase λ,
the total regret of all the methods increases, but overall exact-ube achieves the best performance.
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Figure 2.7.: Ablation study onDeepSea exploration for different estimates ofexact-ube. Results represent
the average over 5 random seeds, and vertical bars on total regret indicate the standard error.
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7-room

As implemented by Domingues et al. (2021), the 7-room environment consists of seven connected rooms of
size 5× 5. The agent starts in the center of the middle room and an episode lasts 40 steps. The possible
actions are up-down-left-right and the agent transitions according to the selected action with probability
0.95, otherwise it lands in a random neighboring cell. The environment has zero reward everywhere except
two small rewards at the start position and in the left-most room, and one large reward in the right-most
room. Unlike DeepSea, the underlying MDP for this environment contains cycles, so it evaluates our method
beyond the theoretical assumptions. In Figure 2.10, we show the regret curves over 5000 episodes. Our
method achieves the lowest regret, which is remarkable considering recent empirical evidence favoring
PSRL over OFU-based methods in these type of environments (Tiapkin et al., 2022). The large gap between
ensemble-var and the UBE-based methods is due to overall larger variance estimates from the former,
which consequently requires more episodes to reduce the value uncertainty.

0 1 2 3 4 5

Episode ×103

0

2

4

To
ta

lr
eg

re
t

×104

ofu-exact-ube (ours)
ofu-pombu

ofu-ensemble-var

psrl

Figure 2.10.: Total regret curve for the 7-room environment. Lower regret is better. Results are the average
(solid lines) and standard error (shaded regions) over 10 random seeds. Our method achieves
the lowest regret, significantly outperforming PSRL.

2.7.3. DeepMind Control Suite - Exploration Benchmark

In this section, we evaluate the performance of QU-SAC for online exploration in environments with
continuous state-action spaces. In Appendix A.3 we list specific hyperparameters in Table A.1.
We test the exploration capabilities of QU-SAC on a subset of environments from the DeepMind Control
(DMC) suite (Tunyasuvunakool et al., 2020) with a sparse reward signal. Additionally, we modify the
environments’ reward signal to include a cost proportional to the squared norm of the action taken by the
agent. Namely,

action_cost = ρ

|A|∑︂
i=1

a2i (2.16)

where ρ is an environment specific multiplier, ai is the i-th component of the action vector and |A| is the
size of the action space. For acrobot, reacher-hard and cartpole-swingup we use ρ = 0.01; for
pendulum and point-mass we use ρ = 0.05; and lastly, for ball-in-cup we use ρ = 0.2.
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Figure 2.11.: DeepMind Control Suite Benchmark smoothened learning curves over 500 episodes (500K
environment steps). We report the mean (solid) and standard error (shaded region) over five
random seeds. QU-SAC with the upper-bound variance estimate outperforms the baselines
in 4/6 environments and has the best overall performance.

Action costs are relevant for energy-constrained systems where the agent must learn to maximize the primary
objective while minimizing the actuation effort. However, the added negative reward signal may inhibit
exploration and lead to premature convergence to sub-optimal policies. In this context, we want to compare
the exploration capabilities of QU-SAC with the different variance estimates.
In Figure 2.11 we plot the performance of all baselines in our exploration benchmark after 500 episodes (or
equivalently, 500K environment steps). In addition to individual learning curves, we aggregate performance
across all environments and report the median and inter-quartile mean (IQM) (Agarwal et al., 2021).
The results highlight that QU-SAC with our proposed upper-bound variance estimate offers the best
overall performance. The pendulum swingup environment is a prime example of a task where the proposed
approach excels: greedily optimizing for mean values, like MBPO and ensemble-mean, does not explore
enough to observe the sparse reward; ensemble-var improves performance upon the greedy approach,
but does not work consistently across random seeds unlike upper-bound. In this case, the stronger
exploration signal afforded by propagating uncertainty through the U -net is key to maintain exploration
despite low variability on the critic ensemble predictions.

2.7.4. D4RL Offline Benchmark

In this section, we evaluate the performance of QU-SAC for offline RL in the Mujoco (Todorov et al., 2012)
datasets from the D4RL benchmark (Fu et al., 2020). In Appendix A.3 we list specific hyperparameters in
Table A.2.
The core idea behind QU-SAC for offline optimization is to leverage the predicted value uncertainty for
conservative (pessimistic) policy optimization. This simply involves fixing λ < 0 to downweight values
depending on their predicted uncertainty. In addition to uncertainty-based pessimism, prior work proposed
SAC-M (An et al., 2021) which uses an ensemble of M critics and imposes conservatism by taking the
minimum of the ensemble prediction as the value estimate. A key question we want to address with our
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Figure 2.12.: D4RL learning curves for Hopper datasets, smoothened by a moving average filter. We report
themean (solid) and standard deviation (shaded region) over five random seeds of the average
normalized score over 10 evaluation episodes. We useM = 1 for all baselines on the top
row plots andM = 2 on the bottom row. QU-SAC with the upper-bound variance estimate
provides the most consistent performance across both values ofM .

experiments is whether pure uncertainty-based pessimism is enough to avoid out-of-distribution over-
estimation in offline RL.
In order to provide an empirical answer, we augment QU-SAC with SAC-M by trainingM critics for each
of the N dynamics models. The result is an ensemble of N ×M critics, labelled as Qij for i = {1, . . . , N},
j = {1, . . . ,M}. Each subset of M critics is trained using clipped Q-learning (Fujimoto et al., 2018) as
in SAC-M , where the i-th critic prediction is simply defined as Qi(s, a) = minj Qij(s, a). The mean critic
prediction is redefined as the average over clipped Q-values, Q̄(s, a) = 1/N

∑︁N
i=1minj Qij(s, a). IfM = 1

we recover the original QU-SAC which only uses variance prediction as a mechanism for conservative
optimization. Note that MOPO fixes M = 2, which means it combines uncertainty and clipped-based
conservatism by default; we re-implemented MOPO in order to allow for arbitraryM . In this context, our
key question becomes: can any of the methods perform well withM = 1, i.e., only using uncertainty-based
pessimism?
MOPO details. In order to conduct a fair comparison between MOPO and QU-SAC, we implement MOPO in
our codebase so that it shares the same core components as our QU-SAC implementation. After initial testing
of our MOPO implementation, we found that using an uncertainty penalty of λ = 1.0 worked well across
datasets. Note that our implementation of MOPO (labeled MOPO⋆ in Table 2.3) significantly outperforms
the scores reported by Bai et al. (2022), which were obtained by running the original codebase by Yu et al.
(2020) but on the v2 datasets from D4RL.
We conduct experiments in D4RL (version v2) datasets for three environments (Hopper, HalfCheetah and
Walker2D) and four tasks each (random, medium, medium-replay and medium-expert) for a total of 12
datasets. For each dataset, we pre-train an ensemble of dynamics models and then run offline optimization
for 1M gradient steps. In Figure 2.12 we present the results for the Hopper datasets usingM = {1, 2}. In
the pure uncertainty-based pessimism setting (M = 1), QU-SAC with the upper-bound variance estimate
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Figure 2.13.: D4RL smoothened learning curves forM = 1. We report the mean and standard deviation
over five random seeds of the average normalized score over 10 evaluation episodes.

obtains the best performance by a wide margin. Qualitatively, the effect of supplementing upper-bound
with clipped Q-learning (M = 2) is more stable performance rather than a significant score improvement,
unlike most other baselines that do improve substantially. These results suggest that proper uncertainty
quantification might be sufficient for offline learning, without relying on additional mechanisms to combat
out-of-distribution biases such as clipped Q-learning.
In Figures 2.13 and 2.14 we include all the learning curves for M = {1, 2}, respectively. For each run,
we report the average normalized score over 10 evaluation episodes. These averaged scores are then also
averaged over five independent random seeds to obtain the reported learning curves. In Table 2.2 we report
the associated final scores after 1M gradient steps.
We observe that for M = 2 upper-bound has lower overall performance than ensemble-var. We
believe this difference in performance is largely due to using a fixed value of λ = −1.0 for all experiments.
Since using M = 2 alread acts a strong regularizer in the offline setting, upper-bound would likely
benefit from using a lower magnitude λ given the (empirically) larger uncertainty estimates compared to
ensemble-var.
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Table 2.2.: D4RL scores after 1M gradient steps. We report the mean and standard deviation over five
random seeds of the average normalized score across 10 evaluation episodes. We highlight
the highest mean scores for each value ofM .

M = 1 M = 2

MOPO⋆ e-mean e-var u-bound MOPO⋆ e-mean e-var u-bound

Ra
nd
om

HalfCheetah 24.8±0.7 33.6 ±3.8 33.0±1.7 33.4±1.2 25.9±1.4 32.4±1.8 34.8 ±1.0 30.2±1.5
Hopper 20.7±9.2 10.3±0.8 9.3±1.8 28.3 ±8.3 32.6 ±0.2 9.8±1.1 8.7±0.8 31.5±0.2
Walker2D 0.5±0.3 20.3±4.4 21.9 ±1.0 18.2±5.0 1.0±1.9 20.5±2.3 21.7 ±0.1 21.7 ±0.1

M
ed
iu
m HalfCheetah 57.7±1.5 60.6 ±1.4 58.5±2.9 59.7±2.5 60.6±2.4 60.3±0.8 63.7 ±2.3 60.6±1.7

Hopper 35.4±4.1 41.4±8.8 75.3±24.1 104.7 ±1.0 81.3±15.7 78.8±19.8 102.0±3.8 103.5 ±0.2
Walker2D 56.9±25.8 58.3±17.9 57.3±19.9 67.8 ±14.4 85.3±1.3 88.3±1.2 88.8 ±0.9 86.5±0.7

M
ed
iu
m

Re
pl
ay

HalfCheetah 53.5±2.0 56.2±1.5 57.3±1.2 57.5 ±0.9 55.7±0.9 58.9 ±0.7 58.4±0.7 58.9 ±1.3
Hopper 36.0±2.7 38.1±4.3 42.3±8.4 102.0 ±1.2 69.0±27.0 100.3±3.6 102.9 ±0.5 86.2±20.9
Walker2D 88.2 ±5.4 75.8±13.6 77.9±13.3 84.8±2.5 83.1±5.0 84.1 ±1.4 82.4±2.9 76.8±0.6

M
ed
iu
m

Ex
pe
rt HalfCheetah 98.0 ±3.6 68.6±17.7 86.9±17.4 74.3±16.8 95.0±1.7 99.5 ±2.4 99.5 ±1.9 99.1±2.5

Hopper 47.6±8.3 56.3±14.9 65.6±16.1 107.0 ±1.2 104.5±7.7 106.9 ±3.0 102.1±12.6 93.8±10.4
Walker2D 106.2±1.2 65.9±35.6 83.9±21.3 106.8 ±5.1 107.7±0.8 108.4 ±0.5 107.9±0.4 93.7±25.6
Average 52.1 48.8 55.8 70.4 66.8 70.7 72.7 70.2
IQM 47.9 51.8 59.4 74.4 72.5 78.3 82.5 77.1
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Figure 2.14.: D4RL smoothened learning curves forM = 2. We report the mean and standard deviation
over five random seeds of the average normalized score over 10 evaluation episodes.
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Table 2.3.: D4RL final normalized scores for model-based RL algorithms. The highest average scores are
highlighted in light blue. MOPO⋆ corresponds to our own implementation of the algorithm by
Yu et al. (2020), while QU-SAC utilizes the upper-bound variance estimate andM = 2. For
MOPO⋆ and QU-SAC, we report the mean and standard deviation over five random seeds. The
scores for the original MOPO results are as reported by Bai et al. (2022). We take the results for
COMBO (Yu et al., 2021), RAMBO (Rigter et al., 2022) and CBOP (Jeong et al., 2023) from their
corresponding papers.

MOPO MOPO⋆ COMBO RAMBO CBOP QU-SAC

Ra
nd
om HalfCheetah 35.9±2.9 25.9±1.4 38.8±3.7 40.0 ±2.3 32.8±0.4 30.2±1.5

Hopper 16.7±12.2 32.6 ±0.2 17.9±1.4 21.6±8.0 31.4±0.0 31.5±0.2
Walker2D 4.2±5.7 1.0±1.9 7.0±3.6 11.5±10.5 17.8±0.4 21.7 ±0.1

M
ed
iu
m HalfCheetah 73.1±2.4 60.6±2.4 54.2±1.5 77.6 ±1.5 74.3±0.2 60.7±1.7

Hopper 38.3±34.9 81.3±15.7 97.2±2.2 92.8±6.0 102.6±0.1 103.5 ±0.2
Walker2D 41.2±30.8 85.3±1.3 81.9±2.8 85.0±15.0 95.5 ±0.4 86.5±0.7

M
ed
iu
m

Re
pl
ay HalfCheetah 69.2 ±1.1 55.7±0.9 55.1±1.0 68.9±2.3 66.4±0.3 58.9±1.3

Hopper 32.7±9.4 69.0±27.0 89.5±2.8 96.6±7.0 104.3 ±0.4 86.2±20.9
Walker2D 73.7±9.4 83.1±5.0 56.0±8.6 85.0±15.0 92.7 ±0.9 76.8±0.6

M
ed
iu
m

Ex
pe
rt HalfCheetah 70.3±21.9 95.0±1.7 90.0±5.6 93.7±10.5 105.4 ±1.6 99.1±2.5

Hopper 60.6±32.5 104.5±7.7 111.1 ±2.9 83.3±9.1 111.6 ±0.2 93.8±10.4
Walker2D 77.4±27.9 107.7±0.8 103.3±5.6 68.3±20.6 117.2 ±0.5 93.7±25.6
Average 49.4 66.8 66.8 68.7 79.3 70.2
IQM 52.6 72.5 71.1 78.0 89.3 77.1

In Table 2.3, we compare the final scores of QU-SAC (using upper-bound and M = 2) against recent
model-based offline RL methods. While scores are typically lower than the state-of-the-art method CBOP
(Jeong et al., 2023), our general-purpose method outperforms MOPO and is on-par with more recent and
stronger model-based baselines like COMBO and RAMBO3.

2.8. Conclusions

In this chapter, we derived an uncertainty Bellman equation whose fixed-point solution converges to the
variance of values given a posterior distribution over MDPs. Our theory brings new understanding by
characterizing the gap in previous UBE formulations that upper-bound the variance of values. We showed
that this gap is the consequence of an over-approximation of the uncertainty rewards being propagated
through the Bellman recursion, which ignore the inherent aleatoric uncertainty from acting in an MDP.
Instead, our theory recovers exclusively the epistemic uncertainty due to limited environment data, thus
serving as an effective exploration signal. The tighter variance estimate showed improved regret in typical
tabular exploration problems.
Beyond tabular RL, we identified challenges on applying the UBE theory for uncertainty quantification and

3WhenM = 1, QU-SAC using upper-bound obtains an average score of 70.4 (IQM of 74.4) (see Table 2.2 in the supplementary
material), which is also comparable to the reported performance of COMBO and RAMBO.
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proposed a simple proxy uncertainty reward to overcome them. Based on this approximation, we introduced
the Q-Uncertainty Soft Actor-Critic (QU-SAC) algorithm that can be used for both online and offline RL with
minimal changes. For online RL, the proposed proxy uncertainty reward was instrumental for exploration
in sparse reward problems. In offline RL, we demonstrate QU-SAC has solid performance without additional
regularization mechanisms unlike other uncertainty quantification methods.
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3. Value-Distributional Model-Based Reinforcement
Learning

Quantifying uncertainty about a policy’s long-term performance is important to solve sequential decision-
making tasks. We study the problem from a model-based Bayesian reinforcement learning perspective,
where the goal is to learn the posterior distribution over value functions induced by parameter (epistemic)
uncertainty of the Markov decision process. Previous work restricts the analysis to a few moments of the
distribution over values or imposes a particular distribution shape, e.g., Gaussians. Inspired by distributional
reinforcement learning, we introduce a Bellman operator whose fixed-point is the value distribution function.
Based on our theory, we propose Epistemic Quantile-Regression (EQR), a model-based algorithm that learns
a value distribution function. We combine EQR with soft actor-critic (SAC) for policy optimization with
an arbitrary differentiable objective function of the learned value distribution. Evaluation across several
continuous-control tasks shows performance benefits with respect to both model-based and model-free
algorithms. The code is available at https://github.com/boschresearch/dist-mbrl.

3.1. Introduction

Reinforcement learning (RL) tackles optimal decision-making in an unknown Markov Decision Process
(MDP) (Sutton and Barto, 2018). Uncertainty is at the heart of the RL problem: on one hand, aleatoric
uncertainty refers to the stochasticity in the MDP transitions and the RL agent’s action selection; on the
other hand, epistemic uncertainty appears due to lack of knowledge about the MDP. During policy evaluation,
both sources of uncertainty induce a distribution of possible returns, which should be considered for policy
optimization. For instance, in high-stakes applications like medical treatments, accounting for aleatoric noise
is key towards training risk-averse policies (Chow et al., 2015; Keramati et al., 2020). Similarly, effective
exploration can be achieved by proper handling of epistemic uncertainty (Deisenroth and Rasmussen, 2011;
Curi et al., 2020).
Two paradigms have emerged to capture uncertainty in the predicted outcomes of a policy. First, distributional
RL (Bellemare et al., 2017) models the aleatoric uncertainty about returns, due to the inherent noise of the
decision process. In contrast, Bayesian RL (Ghavamzadeh et al., 2015) captures the epistemic uncertainty
about the unknown expected return of a policy, denoted as the value function, due to incomplete knowledge
of the MDP. As such, the distribution over outcomes from each perspective has fundamentally different
meaning and utility. If we care about effective exploration of unknown (rather than stochastic) outcomes,
then Bayesian RL is the appropriate choice of framework (Osband et al., 2019).
In this chapter, we focus on the Bayesian RL setting where a posterior distribution over possible MDPs induces
a distribution over value functions. The posterior over values naturally models the epistemic uncertainty
about the long-term performance of the agent, which is the guiding principle behind provably-efficient
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exploration (Strehl and Littman, 2008; Jaksch et al., 2010). An open question remains how to effectively
model and learn the posterior distribution over value functions. We approach this problem by using tools
from distributional RL in the Bayesian framework. The key idea is that, for time-inhomogeneous MDPs with
a tabular representation, the value distribution follows a Bellman equation from which we can derive an
iterative estimation algorithm that resembles methods from distributional RL. Based on this insight, we
present a novel algorithm that uses a learned value distribution for policy optimization.
Our contribution. We introduce the value-distributional Bellman equation that describes the relationship
between the value distributions over successive steps. Moreover, we show that the fixed-point of the
associated Bellman operator is precisely the posterior value distribution. Then, leveraging tools from
distributional RL, we propose a practical algorithm for learning the quantiles of the value distribution
function. We propose Epistemic Quantile-Regression (EQR), a model-based policy optimization algorithm
that learns a distributional value function. Finally, we combine EQR with soft actor-critic (SAC) to optimize
a policy for any differentiable objective function of the learned value distribution (e.g., mean, exponential
risk, CVaR, etc.)

3.1.1. Related work

Distributional RL. The treatment of the policy return as a random variable dates back to Sobel (1982), where
it is shown that the higher moments of the return obeys a Bellman equation. More recently, distributional RL
has emerged as a paradigm for modelling and utilizing the entire distribution of returns (Tamar et al., 2013;
Bellemare et al., 2023), with real-world applications including guidance of stratospheric balloons (Bellemare
et al., 2020) and super-human race-driving in simulation (Wurman et al., 2022). The distributional RL
toolbox has expanded over the years with diverse distribution representations (Bellemare et al., 2017;
Dabney et al., 2018b,a; Yang et al., 2019) and deeper theoretical understanding (Bellemare et al., 2019;
Rowland et al., 2018; Lyle et al., 2019). In our core algorithm, we use quantile-regression (QR) by Dabney
et al. (2018b) as a tool for learning the value, rather than return, distribution. Moreover, QR has been
integrated with soft actor-critic (SAC) (Haarnoja et al., 2018) for improved performance (Wurman et al.,
2022; Kuznetsov et al., 2020). At a high level, in this chapter we combine model learning with quantile-
regression, which is then integrated with SAC for policy optimization.
Bayesian RL. Model-free approaches to Bayesian RL directly model the distribution over values, e.g., with
normal-gamma priors (Dearden et al., 1998), Gaussian Processes (Engel et al., 2003) or ensembles of neural
networks (Osband et al., 2016). Instead, model-based Bayesian RL represents uncertainty in the MDP
dynamics, which must then be propagated to the value function. For instance, the PILCO algorithm by
Deisenroth and Rasmussen (2011) learns a Gaussian Process model of the transition dynamics and integrates
over the model’s total uncertainty to obtain the expected values. In order to scale to high-dimensional
continuous-control problems, Chua et al. (2018) use ensembles of probabilistic neural networks (NNs) to
capture both aleatoric and epistemic uncertainty, as first proposed by Lakshminarayanan et al. (2017).
Both approaches propagate model uncertainty during policy evaluation and improve the policy via greedy
exploitation over this model-generated noise.
Closest to our problem setting are approaches that explicitly model the value distribution function or
statistics thereof. The uncertainty Bellman equation (UBE) offers a framework to estimate the variance of
the value distribution (O’Donoghue et al., 2018; Zhou et al., 2020; Luis et al., 2023a). Jorge et al. (2020)
propose a principled backwards induction framework to estimate value distributions, with the caveat of
assuming a Gaussian parameterization for practical implementation. Perhaps closest to our approach is the
work by Dearden et al. (1999), which introduces a local sampling scheme that maintains a sample-based
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approximation of the value distribution, which is updated using a Bellman equation. While it does not
assume a restrictive parametric form for the distribution, it ignores that samples from the value distribution
at successive states are correlated through the Bellman equation; we make a similar approximation in our
theory, see Section 3.3. In our work, rather than generating random samples of the value distribution, we
keep track of a relevant set of statistics (Rowland et al., 2019), e.g., evenly spread quantiles, that have
adequate coverage and representation power of the underlying distribution.
Mixed Approaches. Recent methods have combined distributional and model-based RL methods. Kastner
et al. (2023) introduce the distributional model equivalence principle to train models that can plan optimally
for risk-sensitive objectives. Moskovitz et al. (2021); Eriksson et al. (2022) aim to capture both sources
of uncertainty by training an ensemble of return-distributional critics, where each critic models aleatoric
uncertainty and the ensemble recovers epistemic uncertainty. Our approach is fundamentally different: we
leverage tools from distributional RL to model the epistemic uncertainty around expected returns, i.e., we
average over aleatoric noise. Moreover, our experiments show that our value representation with quantiles
leads to substantial gains in performance over an ensemble of critics.
Uncertainty-Aware Policy Optimization. There exists a wide variety of policy optimization objectives
that leverage epistemic uncertainty. Multi-model MDPs (MMDPs) (Steimle et al., 2021) consider a discrete
distribution of MDPs and study the optimization of the average value under the MDP uncertainty. Solving
exactly for the optimal policy is only possible for small MMDPs, but more recent methods can scale to
larger problems (Su and Petrik, 2023). Robust MDPs optimize for risk-averse objectives, like the percentile
criterion (also known as value-at-risk) (Delage and Mannor, 2010; Behzadian et al., 2021). In practice,
robust MDP objectives tend to be overly conservative, thus soft-robustness (Derman et al., 2018) has been
proposed as an alternative objective, which is identical to the risk-neutral objective of MMDPs.
In this chapter we approach uncertainty-aware optimization from a different perspective. Instead of fixing
the policy optimization objective and designing a particular algorithm to solve for that objective, we propose
a general-purpose method that aims to optimize any differentiable function of a learned distribution of
values. The strength of our approach is that it flexibly accomodates an entire family of objectives that might
suit different tasks, all within the same algorithm and with minimal changes.

3.2. Background & Notation

In this section, we provide the relevant background and formally introduce the problem of value distribution
estimation. The problem statement and background share many similarities with Chapter 2, but we
re-introduce the core concepts and notation for completeness.
We use upper-case letters to denote random variables and lower-case otherwise. The notation P(X ) refers
to the space of probability distributions over the set X , such that ν ∈ P(X ) is a probability measure with
the usual1 σ-algebra. We forego measure-theoretic formalisms and further qualifications of measurability
will be implied with respect to the usual σ-algebra (cf. Bellemare et al., 2023, Remark 2.1).

1Refers to the power set σ-algebra for finite X , the Borel σ-algebra for infinite X and the product σ-algebra on products of such
spaces (Bellemare et al., 2023).
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3.2.1. Markov Decision Processes

We consider an agent that acts in an infinite-horizon MDPM = {S,A, p, r, γ} with finite state space S,
finite action space A, unknown transition function p : S ×A → P(S) that maps states and actions to the set
of probability distributions over S, a known2 and bounded reward function r : S ×A → R, and a discount
factor γ ∈ [0, 1). The agent is equipped with an action-selection stochastic policy π : S → P(A) that defines
the conditional probability distribution π(a | s), (s, a) ∈ S ×A. Given an initial state s ∈ S and a policy π,
the RL agent interacts with the environment and generates a random trajectory T = {Sh, Ah, Rh}∞h=0, with
S0 = s and for h ≥ 0 we have Ah ∼ π(· | Sh), Rh = r(Sh, Ah), Sh+1 ∼ p(· | Sh, Ah).

3.2.2. Return-Distributional Reinforcement Learning

The return of a policy, denoted Zπ, is a random variable defined as the discounted sum of rewards along a
trajectory, Zπ(s) =∑︁∞

h=0

[︂
γhRh | S0 = s

]︂
. The randomness in trajectories and returns originates from the

inherent stochasticity of the environment dynamics and the policy, oftentimes called aleatoric uncertainty. A
common objective for the RL agent is to maximize the expected return, where we average over this aleatoric
noise to obtain a deterministic function known as the value. The value function of policy π under dynamics
p, starting from s ∈ S is defined as a map vπ,p : S → R and is given by

vπ,p(s) = ET

⎡⎣ ∞∑︂
h=0

γhRh

⃓⃓⃓⃓
⃓⃓S0 = s, p

⎤⎦, (3.1)

where we explicitly condition on the dynamics p; although redundant in the standard RL setting, this
notation will become convenient later when we consider a distribution over dynamics.
In contrast to learning the value function, return-distributional RL aims to learn the entire distribution of
returns by leveraging the random variable return-distributional Bellman equation (Bellemare et al., 2017)

Zπ(s)
D
= r(s,A) + γZπ(S′), (3.2)

where A ∼ π(· | s), S′ ∼ p(· | s,A) and (D=) denotes equality in distribution, i.e., the random variables in
both sides of the equation may have different outcomes, but they share the same probability distribution.
We adopt the same Bayesian framework described in Section 2.2.1, but the main focus of this chapter is
to study the value-distribution3 function µπ : S → P(R), such that V π(s) ∼ µπ(s), ∀s ∈ S. As such, µπ
represents the distribution of the epistemic noise around the expected return of a policy. In Figure 3.1, we
illustrate in a simple MDP the fundamental difference between return distributions and value distributions:
the former captures aleatoric noise from the decision process, while the latter models epistemic uncertainty
stemming from uncertain MDP dynamics. Refer to Figure 3.2 for another example of an uncertain transition
probability and the value distribution it induces. While both value and return distributions aim to obtain a
richer representation of complex random variables, only the former characterizes the type of uncertainty
that is valuable for effective exploration of the environment.

2The theory results can be easily extended to unknown reward functions.
3We focus on state-value functions for simplicity, but the results have a straightforward extension for state-action-value functions.
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Figure 3.1.: Return and value distributions in Bayesian RL. (Left) MDP with uncertain transition probability
from s0 given by a random variableX ∈ [0, 1]. (Middle) Return distributions at s0 for realizations
ofX , including the nominal dynamics (green). The return distribution captures the aleatoric
noise under the sampled dynamics. (Right) Distribution of values at s0. In the nominal case,
the value v(s0) is a scalar obtained from averaging the aleatoric uncertainty of the return
distribution Z(s0) under the nominal dynamics. In our setting, V (s0) is a random variable due
to the epistemic uncertainty around the MDP dynamics. To sample from V (s0) is equivalent to
first sampleX = x̃, compute the conditional return distribution Z(s0)|X = x̃ and finally average
over the aleatoric noise.

3.3. The Value-Distributional Bellman Equation

In this section, we establish the theoretical backbone of iterative algorithms for learning the value-distribution
function µπ. We include formal proofs in Appendix B.1.
For the nominal transition kernel p, we can relate the values at subsequent time steps using the well-known
Bellman equation

vπ,p(s) =
∑︂
a

π(a | s)r(s, a) + γ
∑︂
s′,a

π(a | s)p(s′ | s, a)vπ(s′), (3.3)

which holds for any policy π and state s ∈ S. The following statement is the straightforward extension of
(3.3) in our Bayesian setting. While the result is not novel, it serves as a building block towards our main
theoretical contribution.

Proposition 1 (Random Variable Value-Distribution Bellman Equation). Let V π be the random value function
defined in (2.2). Then, it holds that

V π(s) =
∑︂
a

π(a | s)r(s, a) + γ
∑︂
s′,a

π(a | s)P (s′ | s, a)V π(s′), (3.4)

for any policy π and initial state s ∈ S.

Note that the random variable value-distribution Bellman equation in (3.4) differs from the random variable
return-distribution Bellman equation in (3.2) in that the former holds in strict equality, while the latter
holds in the weaker notion of equality in distribution. The main caveat of (3.4) with respect to model-free
distributional RL is that, in general, P (s′ | s, a) and V π(s′) are correlated.
We now shift from discussing the random value function to focus on the value distribution function. First,
we provide a definition for µπ that holds in the general case. Intuitively, we can think of µπ as the result of
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Figure 3.2.: Example value distribution. (Left) Uncertain MDP with a truncated Gaussian transition prob-
ability X ∼ N̄ (µ = 0.4, σ = 0.1) and a scalar (deterministic) β ∈ [0, 1]. For this example, we
fixed β = 0.9. (Middle) Distribution over MDPs, which corresponds directly to the distribution
ofX. (Right) Corresponding distribution of values for state s0.

pushing the probability mass of the posterior distribution Φ through the map defined by the value function
(3.1). To formalize our statement, we leverage the notion of pushforward measures akin to Rowland et al.
(2018).

Definition 1. Given measurable spaces X and Y , a measurable function f : X → Y and a measure ν ∈ P(X ),
the pushforward measure f#ν ∈ P(Y) is defined by f#ν(B) = ν(f−1(B)), for all Borel sets B ⊆ Y.

Informally, given a random variable X ∼ ν and the map f as in Definition 1, the pushforward of ν by f ,
denoted f#ν, is defined as the distribution of the random variable f(X) (Bellemare et al., 2023).
With slight abuse of notation, define the map vπ : S ×P → R whereP denotes the set of all transition
functions4 for (S,A), such that vπ(s, p) = vπ,p(s) for any p ∈ P, s ∈ S. Then, the value distribution
function µπ is simply the pushforward measure of Φ by vπ.

Definition 2. The value distribution function is defined as

µπ = vπ#Φ. (3.5)

From Definition 2 we can already derive a simple (albeit, inefficient and computationally expensive) sample-
based algorithm to estimate µπ: sample from the posterior Φ and compute the value function (3.1) for each
sample, which results in samples from µπ. However, our main goal in this chapter is to find a recursive
definition of µπ such that we can introduce a simple, yet efficient estimation algorithm.
The main challenge in establishing a recursion for learning µπ is the dependency between P (s′ | s, a)
and V π(s′) in (3.4). We side-step this issue by restricting our study to a family of MDPs under which
these random variables are independent, as similarly done in Chapter 2. All the results that follow in this
section hold under Assumptions 1–3. Despite these limitations, in Section 3.4 we empirically show that the
algorithm stemming from our theory yields reasonable esimates of the value distribution µπ in MDPs with
cycles.
4The set of all transition functions can also be written as P(S)S×A in standard set theory notation.
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Beyond tabular representations of the transition function, introducing function approximation violates
Assumption 1 due to generalization of the model (O’Donoghue et al., 2018; Zhou et al., 2020; Derman et al.,
2020). However, in Section 3.7 our approach demonstrates strong empirical performance when paired with
neural networks for function approximation.
We want to highlight that, under our assumptions, the mean value function E[V π] corresponds exactly to
the value function under the mean of the posterior Φ, denoted p̄. That is, E[V π] = vπ,p̄. If our ultimate goal
is to estimate the mean of µπ, then standard approaches to approximately solve the Bellman expectation
equation suffice. However, in this chapter we motivate the need for the distributional approach as it allows
to flexibly specify policy objectives beyond maximizing the mean of the values. For instance, in Section 3.7
we explore the performance of optimistic value objectives.
To establish a Bellman-style recursion defining the value distribution function, we use the notion of pushfor-
ward measure from Definition 1. In particular, we are interested in the pushforward of the value distribution
by the bootstrap function in (3.4). First, for any MDP with transition function p ∈ P, we denote by
pπ : S → P(S) the transition function of the Markov Reward Process (MRP) induced by policy π, defined
by pπ(s′ | s) =∑︁a π(a | s)p(s′ | s, a). Further, it is convenient to adopt the matrix-vector notation of the
standard Bellman equation: vπ,p = rπ + γpπvπ,p, where rπ ∈ RS , vπ,p ∈ RS are vectors and pπ ∈ RS×S

[0,1] is
a so-called stochastic matrix whose entries are restricted to [0, 1] and whose rows sum up to 1, i.e., such that
it represents the transition function pπ. Then, we define the bootstrap function br,p,γ : RS → RS applied to
value vectors:

br,p,γ : v→ r+ γpv, (3.6)
for an arbitrary r ∈ RS , p ∈ RS×S

[0,1] and γ ∈ [0, 1). Applying br,p,γ is a combination of adding r to a γ-scaled
linear transformation of the input vector. Further, we express mixtures with weights given by the posterior
Φ(P | D) more compactly with the notation5 EP [·], where the argument is a probability distribution
depending on P . Given the pushforward and mixture operations, we can now propose a Bellman equation
for the value distribution function µπ.

Lemma 1 (Value-Distribution Bellman Equation). The value distribution function µπ obeys the Bellman
equation.

µπ = EP
[︁
(brπ ,Pπ ,γ)#µ

π
]︁ (3.7)

for any policy π.

Lemma 1 provides the theoretical backbone towards designing an iterative algorithm for learning the value
distribution function. In particular, the recursive definition for µπ, which corresponds to a mixture of
pushforwards of itself, leads to efficient estimation methods by dynamic programming. Alternatively, we
can also write the value-distributional Bellman equation for each state s ∈ S. With slight abuse of notation,
define br,γ : R→ R as the map v → r + γv, then

µπ(s) = EP

⎡⎣∑︂
s′

P π(s′ | s)(brπ(s),γ)#µπ(s′)

⎤⎦. (3.8)

Note that (3.5) holds generally, while (3.7) and (3.8) only hold under Assumptions 1–3. Moreover, the
operator EP [·] is well-defined in (3.7) and (3.8) since P π(s′ | s) is bounded in [0, 1] for all s, s′ ∈ S
(Billingsley, 1995).
5Adapted from Bellemare et al. (2023). It refers to a mixture distribution and must not be mistaken by an expected value, which
is a scalar.
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Figure 3.3.: Visualization of the value-distributional Bellman backups, as prescribed by (3.8). We identify
four operations on distributions: infinite mixture over posterior transition functions (solid
braces), shift by reward, scale by discount factor and mixture over next states (broken line
braces)6. The main difference w.r.t the return-distributional backup (cf. Bellemare et al., 2023,
Figure 2.6) is the presence of the two distinct mixture operations.

In Figure 3.3 we illustrate the core operations involved in the value-distributional Bellman recursion
prescribed by (3.8).
From (3.7) we can extract an operator that acts on arbitrary value distribution functions.

Definition 3. The value-distributional Bellman operator T π : P(R)S → P(R)S is defined by

T πµ = EP
[︁
(brπ ,Pπ ,γ)#µ

]︁ (3.9)

Intuitively, the operator T π corresponds to mixing pushforward distributions, where the pushforward itself
involves shifting, scaling and linearly transforming the probability mass. The natural question that follows
is whether we can establish convergence to µπ by repeated applications of T π starting from an arbitrary
initial guess µ0.
Our convergence result is an adaptation of the standard distributional RL analysis by Bellemare et al. (2023).
With some abuse of notation, we adopt the supremum p-Wasserstein distance w̄p to establish contractivity
of the operator T π (see Definition 5 in Appendix B.1).

Theorem 3. The operator T π is a γ-contraction with respect to w̄p for all p ∈ [1,∞). That is, w̄p(T πµ, T πµ′) ≤
γw̄p(µ, µ

′) for all µ, µ′ ∈ P(R)S such that V (s′) ∼ µ(s′), V ′(s′) ∼ µ′(s′) are conditionally independent of
P π(s′ | s) given s′ ∈ S.

6The pushforward operator (br,γ)# is linear (cf. Bellemare et al., 2023, Exercise 2.13), so it can be moved outside the next-state
mixture operation as depicted in the diagram.
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Theorem 3 parallels similar results in standard RL and model-free distributional RL, in that it allows us to
establish the convergence of iterated applications of T π and characterize the operator’s fixed-point.

Corollary 2. Denote the space of value distribution functions with bounded support7 by PB(R)S . Given an
arbitrary value distribution function µ0 ∈ PB(R)S , the sequence {µk}∞k=0 defined by µk+1 = T πµk for all k ≥ 0
is such that w̄p(µk, µπ) ≤ γkw̄p(µ0, µπ)→ 0 as k →∞ for p ∈ [1,∞). That is, µπ is the unique fixed-point of
the operator T π.

Proof. We wish to apply Theorem 3 on the sequence of pairs {︁(µk, µπ)}︁∞k=0
. The conditional independence

assumption required to apply Theorem 3 holds for µπ (see Lemma 3), but it is straightforward to show it
also holds (under Assumptions 1–3) for all the elements of the sequence {µk}∞k=0 (see Lemma 9). Further,
since we consider bounded rewards, it follows immediately that µπ ∈ PB(R)S . Moreover, it can be shown
that the operator T π maps PB(R)S onto itself, such that for arbitrary µ ∈ PB(R)S then T πµ ∈ PB(R)S
(see Lemma 10). By Theorem 3, T π is then a contraction mapping and by Banach’s fixed-point theorem T π
admits a unique fixed-point which is the limiting value of the sequence {µk}∞k=0. Since µπ = T πµπ holds by
Lemma 1, then µπ must be the unique fixed-point of T π.

In summary, Corollary 2 establishes that repeated applications of T π from an arbitrary initial guess converges
to the value distribution function µπ. Inspired by this theoretical result, in the remaining sections we introduce
and evaluate a practical algorithm for learning the value distribution function.

3.4. Quantile-Regression for Value-Distribution Learning

In the previous section we described an iterative process that converges to µπ starting from an arbitrary value
distribution with bounded support. In practice, however, to implement such a recursion we must project
the value distributions onto some finite-dimensional parameter space. Following the success of quantile
distributional RL (Dabney et al., 2018b), we adopt the quantile parameterization. Let Vm be the space of
quantile distributions with m quantiles and corresponding quantile levels τi = 1/m for i = {1, . . . ,m} and
τ0 = 0. Define a parametric model q : S → Rm, then the quantile distribution µq ∈ Vm maps states to a
uniform probability distribution supported on qi(s). That is, µq(s) = 1

m

∑︁m
i=1 δqi(s), where δx denotes the

Dirac delta distribution centered at x ∈ R, such that µq(s) is a uniform mixture of Dirac deltas where the
particle qi(s) corresponds to the τi-quantile at state s. With this parameterization, our aim now becomes to
compute the so-called quantile projection of µπ onto Vm, given by

Πw1µ
π := argmin

µq∈Vm
w1(µ

π, µq), (3.10)

where w1 is the 1-Wasserstein distance. Define F−1
µπ as the inverse cumulative distribution function of µπ,

then the distance metric becomes

w1(µ
π, µq) =

m∑︂
i=1

∫︂ τi

τi−1

⃓⃓⃓
F−1
µπ (ω)− qi

⃓⃓⃓
dω, (3.11)

7Under bounded reward functions, the corresponding value distributions have bounded support. The corollary can be relaxed to
distributions with bounded moments (see Proposition 4.30 in Bellemare et al. (2023).)
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Figure 3.4.: Quantile-regression loss for the example MDP of Figure 3.2. (Left) Probability density of values
for state s0, with five quantile levels in colored vertical lines. (Right) The quantile regression
loss (3.12) for the five quantile levels; the vertical lines correspond to the minimum of the
color-matching loss. The vertical lines on both plots match upto numerical precision, meaning
that following the gradient of such a convex loss function would indeed converge to the quantile
projection Πw1µ.

since µq is a uniform distribution over m Dirac deltas with support {q1, . . . , qm}. Let τ̂ i = (2i − 1)/2m,
then a valid minimizer of (3.10) exists and is achieved by selecting qi = F−1

µπ (τ̂ i) (cf. Dabney et al., 2018b,
Lemma 2). In summary, quantile projection as defined in (3.10) is equivalent to estimating each τ̂ i-quantile
of µπ.
We follow closely the treatment by Rowland et al. (2023) of quantile-regression temporal-difference learning
for return-distributions and adapt it to instead work on value-distributions. The following loss function
corresponds to the quantile-regression problem of estimating the τ -quantile of the value distribution µπ:

Lτ,πs (v) = EP
[︂(︁
τ1{V π(s) > v}+ (1− τ)1{V π(s) < v}

)︁⃓⃓
V π(s)− v

⃓⃓]︂
. (3.12)

It is an asymmetric convex loss function, where quantile overestimation and underestimation errors are
weighted by τ and 1− τ , respectively. The unique minimizer of this loss is the τ -quantile of µπ, which we
illustrate with an example in Figure 3.4.
Our goal is to propose a practical algorithm to learn the value distribution function based on the quantile-
regression loss (3.12). If we have access to samples of V π(s), denoted ṽπ(s), then we can derive an unbiased
estimate of the negative gradient of (3.12) and obtain the update rule

qi(s)← qi(s) + α
(︁
τi − 1{ṽπ(s) < qi(s)}

)︁
, (3.13)

where α is some scalar step size. One option to sample V π = ṽπ would be to first sample a model P = p̃
and then solve the corresponding Bellman equation. Instead, we use a computationally cheaper alternative
(albeit biased) and bootstrap like in temporal-difference learning, so that the samples are defined as

ṽπ(s) = rπ(s) + γ
∑︂
s′

p̃π(s′ | s)qJ(s′), (3.14)

where J ∼ Uniform(1, . . . ,m). Lastly, we reduce the variance of the gradient estimate by averaging over the
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Algorithm 4 Epistemic Quantile-Regression (EQR)
1: Input: Posterior MDP Φ, policy π, number of quantiles m.
2: Randomly initialize estimates {︁qi(s)}︁mi=1

for all s ∈ S
3: repeat
4: Sample p̃ from posterior Φ
5: for i = 1, . . . ,m do
6: Update qi(s) with (3.15) for all s ∈ S
7: until convergence
8: return

{︁
qi(s)

}︁m
i=1

values of J , which results in the update

qi(s)← qi(s) +
α

m

⎛⎜⎝τi − m∑︂
j=1

1

⎧⎨⎩rπ(s) + γ
∑︂
s′

p̃π(s′ | s)qj(s′) < qi(s)

⎫⎬⎭
⎞⎟⎠. (3.15)

We introduce EQR in Algorithm 4 to iteratively learn the value distribution function µπ. From an arbitrary
initial guess of quantiles, we sample an MDP from the posterior and update the quantiles using (3.15) for
all states until convergence. The following examples illustrate the performance of EQR in tabular problems.

Example 1 (Toy MDP). Consider once more the tabular MDP of Figure 3.2. Our goal is to assess the
convergence properties of EQR both when Assumptions 1–3 hold, but also when they are violated 8. We control
the degree of violation of Assumptions 2 and 3 via the parameter β of the MDP. If β = 0, the assumptions
hold and V (s0) and P (s2|s0) are decorrelated. As β goes from zero to one, the covariance between these
two random variables increases monotonically. We manually design three MDP posterior distributions that
result in diverse distributions for V (s0). The value distributions shown in the top row of Figure 3.5 are the
result of modelling the MDP parameter X as the following mixtures of truncated Gaussian distributions:
Xleft ∼ N̄ (µ = 0.5, σ = 0.1), Xmiddle ∼ 0.5N̄ (µ = 0.3, σ = 0.03) + 0.5N̄ (µ = 0.6, σ = 0.05) and Xright ∼
0.5N̄ (µ = 0.3, σ = 0.03) + 0.5N̄ (µ = 0.5, σ = 0.15). For this selection of value distributions, we run EQR to
estimate m = 10 quantiles.

The middle row of Figure 3.5 shows that, for β = 0, the prediction error oscillates close to zero for every
quantile, thus validating the result of Corollary 2. To test the prediction quality when the assumptions
are violated, we generate different values for β ∈ [0, 1] and run EQR for the same three MDP posterior
distributions. The bottom plots in Figure 3.5 show the 1-Wasserstein metric between the true and predicted
quantile distributions after 104 gradient steps; the error, like the covariance between V (s0) and P (s2|s0),
increases monotonically with β. The prediction quality thus degrades depending on the magnitude of the
covariance between the transition kernel and the values.
Example 1 is mostly pedagogical and serves the purpose of validating our theoretical result, but it remains a
contrived example with limited scope. The next example analyzes the performance of EQR in a standard
tabular problem.

8In order to be closer to standard settings, when the assumptions are violated (i.e., MDP contains cycles) we do not unroll the
MDP as described in Figure 2.1.
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Figure 3.5.: Performance of quantile-regression for value-distribution learning in the example MDP of Fig-
ure 3.2. The parameter β controls the covariance between V (s0) and P (s2|s0); the covariance
increases with β and is zero for β = 0. (Top) Value distributions (Gaussian, bi-modal and
heavy-tailed) generated by different prior distributions of the parameter δ. (Middle) Evolution
of the per-quantile estimation error (Πw1µ(s0)− µq(s0)) between the true quantile projection
and the prediction; for β = 0, our algorithm oscillates around the true quantile projection.
(Bottom) 1-Wasserstein metric between the true quantile projection and the estimate µq after
104 gradient steps, as a function of the correlation parameter β. As β moves from zero to one,
the regression error increases and the algorithm no longer converges to the true quantiles,
although the error is relatively small.

Example 2 (Gridworld). We consider a modification of the N -room gridworld environment by Domingues
et al. (2021), consisting of three connected rooms of size 5× 5. The task for this example is to predict m = 100
quantiles of the value distribution under the optimal policy π⋆ (obtained by running any standard tabular
exploration algorithm, like PSRL (Osband et al., 2013)). We use a Dirichlet prior for the transition kernel and a
standard Gaussian for the rewards. We collect data using π⋆, update the posterior MDP and run EQR to predict
the value distribution.

In Figure 3.6, we summarize the results at three different points during data collection. As more data is
collected, the corresponding MDP posterior shrinks and we observe the value distribution concentrates
around the value under the true dynamics (dotted vertical line). For both wide (episode 1) and narrow
(episode 100) posteriors, EQR is able to accurately predict the distribution of values. The impact of violating
Assumption 2 is the non-zero steady-state quantile-regression error. We observe the bias of the predicted
quantiles is typically lowest (near zero) close to the median and highest at the extrema.
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Figure 3.6.: Performance of EQR in a Gridworld environment. We train the optimal policy π⋆ using PSRL
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3.5. Policy Optimization with Value Distributions

In this section, we propose an algorithm to optimize a policy given some differentiable utility function f of
the learned quantile distribution µq (which is implicitly parameterized by π). Namely, we define the optimal
policy

π⋆ = argmax
π

f(µq;π). (3.16)

To approximately solve (3.16), we combine EQR with SAC (EQR-SAC) to obtain a model-based reinforcement
learning algorithm that leverages a value-distributional critic for policy optimization. Our algorithm is
agnostic to f as long as it is differentiable and thus can backpropagate gradients through it. The key
ingredients of our method are: (1) an ensemble-based posterior over MDPs, (2) a quantile-distributional
critic network that models the m-quantile function q(s, a) and (3) a policy network πϕ trained to optimize
(3.16).
Posterior Dynamics. We adopt the baseline architecture from MBPO (Janner et al., 2019) and the
implementation from Pineda et al. (2021), where the posterior MDP, denoted Γψ, is represented as an
ensemble of n neural networks trained via supervised learning on the environment dataset D to predict
the mean and variance of a Gaussian distribution over next states and rewards. We use Γψ to populate an
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experience replay buffer Dmodel with model-consistent k-step rollouts; that is, we use a consistent ensemble
member throughout a rollout, rather than randomizing the model per-step like in MBPO.
Quantile Huber loss. We adopt the quantile Huber loss from Dabney et al. (2018b) in order to train the
distributional critic. The Huber loss is given by

Lκ(u) =
{︄

1
2u

2, if |u| ≤ κ
κ(|u| − 1

2κ) otherwise , (3.17)

and the quantile Huber loss is defined by

ρκτ (u) =
⃓⃓
τ − δ(u < 0)

⃓⃓
Lκ(u). (3.18)

For κ = 0, we recover the standard quantile regression loss, which is not smooth as u → 0. In all our
experiments we fix κ = 1 and to simplify notation define ρ1τ = ρτ .
Critic. We train the critic on mini-batches drawn from Dmodel, use the entropy regularization loss from SAC
with temperature α and replace the quantile regression loss with the quantile Huber loss ρτ (u)

Lcritic(q) = E(S,A)∼Dmodel

⎡⎢⎣E(R̂,P̂ )∼Γψ

⎡⎣ m∑︂
i=1

EJ
[︂
ρτi
(︁
T qJ(S,A)− qi(S,A)

)︁]︂⎤⎦
⎤⎥⎦, (3.19)

where the target quantiles T qj are defined as

T qj(s, a) = R̂(s, a) + γ E(S′,A′)∼P̂ (·|s,a),πϕ
[︁
qj(S

′, A′)− α log πϕ(A
′ | S′)

]︁
. (3.20)

The expectation in (3.20) is approximated by generating transition tuples (s′, a′) using the policy and the
sampled dynamics from Γψ. Typically, model-based algorithms like MBPO only use data in the mini-batch
to compose critic targets, rather than leveraging the learned dynamics model for better approximation of
expectations.
Actor. The policy is trained to maximize the objective in (3.16), in addition to the entropy regularization
term from SAC,

Lactor(ϕ) = ES∼Dmodel
[︂
EA∼πϕ

[︁
f(q(S,A))− α log πϕ(A | S)

]︁]︂
. (3.21)

Let q̄(s, a) and σq(s, a) be the mean and standard deviations of the quantiles, respectively. Then, we consider
two concrete utility functions: the classical mean objective fmean(q(s, a)) = q̄(s, a) and an objective based
on optimism in the face of uncertainty fofu = q̄(s, a) + σq(s, a).

3.6. EQR-SAC Algorithm

A detailed execution flow for training an EQR-SAC agent is presented in Algorithm 5. Further implementation
details are now provided.
Model learning. We use the mbrl-lib Python library from Pineda et al. (2021) to trainN neural networks
(Line 7). Our default architecture consists of four fully-connected layers with 200 neurons each (for the
Quadruped environments we use 400 neurons to accomodate the larger state space). The networks predict
delta states, (s′ − s), and receives as inputs normalizes state-action pairs. The normalization statistics
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Algorithm 5 Epistemic Quantile-Regression with Soft Actor-Critic (EQR-SAC)
1: Initialize policy πϕ, MDP ensemble Γψ, quantile critic q, environment dataset D, model dataset Dmodel,
utility function f .

2: Warm-up D with rollouts under πϕ
3: global step← 0
4: for episode t = 0, . . . , T − 1 do
5: for E steps do
6: if global step % F == 0 then
7: Train Γψ on D via maximum likelihood
8: for each MDP dynamics in Γψ do
9: for L model rollouts do
10: Perform k-step rollouts starting from s ∼ D; add to Dmodel
11: Take action in environment according to πϕ; add to D
12: for G gradient updates do
13: Update {qi}mi=1 with mini-batches from Dmodel, via SGD on (3.19)
14: Update πϕ with mini-batches from Dmodel, via SGD on (3.21)
15: global step← global step +1

are updated each time we train the model and are based on the training dataset D. We use the default
initialization that samples weights from a truncated Gaussian distribution, but we increase by a factor of 2
the standard deviation of the sampling distribution.
Capacity of Dmodel. The capacity of the model buffer is computed as k × L× F ×N ×∆, where ∆ is the
number of model updates we want to retain data in the buffer. That is, the buffer is filled only with data
from the latest ∆ rounds of model training and data collection (Lines 6-10).
Critic Loss. The distributional critic is updated in Line 13, for which we use the loss function (3.19). To
approximate the target quantiles (3.20), we use the learned generative model and the policy to generate
transition tuples (r, s′, a′). More specifically, each (s, a) pair in a mini-batch from Dmodel is repeated X
times and passed through every member of the ensemble of dynamics, thus generating n batches of X
predictions (r, s′). Then, every s′ prediction is repeated Y times and passed through πϕ, thus obtaining
XY next state-action pairs (s′, a′). This generated data is finally used in (3.20) to better approximate the
expectation. In our experiments we use X = Y and keep their product as a hyperparameter controlling the
total amount of samples we use to approximate the expectation.

3.7. Experiments

In this section, we evaluate EQR-SAC in environments with continuous state-action spaces. We use a single
codebase for all experiments and share architecture components amongst baselines whenever possible. The
execution of experiments follows the workflow of Algorithm 5. The SAC base implementation follows the
open-source repository https://github.com/pranz24/pytorch-soft-actor-critic and we
allow for either model-free or model-based data buffers for the agent’s updates, as done in mbrl-lib. We
include specific hyperparameters used in experiments in Appendix B.2. Unless noted otherwise, all training
curves are smoothened by a moving average filter and we report the mean and standard error over 10
random seeds.
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Figure 3.7.: Performance in the Mountain Car environment. We consider the original version of the environ-
ment (left) and two variants (middle, right) that scale down the rewards by some factor (0.5
and 0.1, respectively).

3.7.1. Baselines

SACwith typical design choices like target networks (Mnih et al., 2013), clipped double Q-learning (Fujimoto
et al., 2018) and automatic entropy tuning (Haarnoja et al., 2019).
MBPO with slight modifications from Janner et al. (2019): (1) it only uses Dmodel to update the actor and
critic, rather than mixing in data from D; (2) it uses a fixed rollout length k, instead of an adaptive scheme.
With respect to EQR-SAC, MBPO collects data differently: instead of collecting k-step rollouts under each
model of the ensemble, it does so by uniformly sampling a new model per step of the rollout.
QR-MBPO, which replaces the critic in MBPO with a quantile-distributional critic, trained on the standard
quantile-regression loss from Wurman et al. (2022), but using data from Dmodel,

Lqrmbpocritic (q) = E(S,A,S′,R)∼Dmodel

⎡⎢⎣
⎡⎣ M∑︂
i=1

EJ
[︃
ρτi

(︂
T qqrmbpoJ (R,S,A)− qi(S,A)

)︂]︃⎤⎦
⎤⎥⎦, (3.22)

where the target quantile is defined as

T qqrmbpoj (r, s′, a) = r + γ
(︁
qj(s

′, a′)− α log πϕ(a
′ | s′)

)︁
, (3.23)

and a′ ∼ πϕ(· | s′). Importantly, (3.22) differs from (3.19) in that the former captures both the aleatoric
and epistemic uncertainty present in Dmodel, while the latter aims to average out the aleatoric noise from
the target quantiles. The objective function for the actor is the same as EQR-SAC.
QU-SAC, as proposed in Chapter 2. It collects data as in EQR-SAC, but stores the n model-consistent rollouts
in n separate buffers (while EQR-SAC uses a single buffer). Then it trains an ensemble of n standard critics
on the corresponding n model-buffers. As such, it interprets the ensemble of critics as samples from the
value distribution. The actor is optimized to maximize the mean prediction of the critic ensemble.

3.7.2. Case Study - Mountain Car

We motivate the importance of learning a distribution of values with a simple environment, the Mountain
Car (Sutton and Barto, 2018) with continuous action space, as implemented in the gym library (Brockman
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ẋ
[m

/s
]

−1 0

x [m]

−0.05

0.00

0.05

ẋ
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Figure 3.8.: Visualization of the learned value distribution of EQR-SAC at different points during training
in the Mountain Car environment (with reward scale of 0.5x). (Top) The predicted value
distribution at the initial state. The dotted line is the empirical value of s0 based on ten
trajectories (black lines of middle row). (Mid-Bottom) The mean (mid) and standard deviation
(bottom) of the value distribution across the state space.

et al., 2016). The environment’s rewards are composed of a small action penalty and a large sparse reward
once the car goes up the mountain, defined by a horizontal position x > 0.45 meters. We consider three
versions of the problem: the original one, and two variants where all the rewards are scaled by a constant
factor of 0.5 and 0.1, respectively.
While it is low-dimensional and has simple dynamics, many RL algorithms fail to solve the Mountain Car
problem due to its combination of action penalties and sparse rewards. Naive exploration strategies based
on injecting unstructured noise, like SAC, typically fail to solve such tasks (Raffin et al., 2021). We plot
the performance of EQR-SAC and all baselines in Figure 3.7. EQR-SAC and QR-MBPO have the best overall
performance, both using the optimistic objective function fofu (as previously defined after (3.21)). These
results highlight the need to model uncertainty and leverage it during optimization; optimizing the mean
values significantly degraded performance of the distributional approaches.
In Figure 3.8, we inspect further the distribution of values learned by EQR-SAC during a training run. The
value distribution is initially wide and heavy-tailed, as the agent rarely visits goal states. At 5K steps, the
policy is close-to-optimal but the predicted distribution underestimates the true values. In subsequent
steps, the algorithm explores other policies while reducing uncertainty and calibrating the predicted value
distribution. At 12K steps, the algorithm stabilizes again at the optimized policy, but with a calibrated
value distribution whose mean is close to the empirical value. We notice the large uncertainty in the
top-right corner of the state space remains (and typically does not vanish if we run the algorithm for longer);
we hypothesize this is mainly an artifact of the discontinuous reward function, which is smoothened out
differently by each member of the ensemble of dynamics, such that epistemic uncertainty stays high.
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Figure 3.9.: Performance in four DeepMind Control tasks. Cartpole swing-up has sparse rewards, while
Cheetah, Quadruped and Walker have dense rewards. EQR-SAC significantly improves perfor-
mance with respect to the model-based baselines.

3.7.3. DM Control Benchmark

In order to evaluate EQR-SAC more broadly, we conduct an experiment in a subset of 16 continuous-control
tasks from the DeepMind Control Suite (Tunyasuvunakool et al., 2020). The chosen environments include
both dense/sparse rewards and smooth/discontinuous dynamics. In Figure 3.9, we plot the results for four
environments ranging from small (cartpole) to mid/large (quadruped) observation spaces. Our method
significantly improves performance over previous model-based algorithms in these environments. Moreover,
in the full benchmark, EQR-SAC achieves the best (or comparable) final performance in 13 out of 16 tasks
(see Appendix B.4). We summarize the results of the DMC benchmark in Figure 3.10 and Table 3.1, following
the guidelines by Agarwal et al. (2021). At 250 episodes of training, EQR-SAC OFU achieves the highest
normalized IQM score, which is ∼ 17% higher than QR-MBPO mean. However, there exists some overlap
between the 95% confidence intervals, which tend to be large in our benchmark due to a wide range of
normalized scores across different environments. In this scenario, the recommendation in Agarwal et al.
(2021) is to analyze score distribution performance profiles, as presented in Figure 3.10, which provide a
more complete overview of the results. We observe the EQR-SAC OFU performance profile tends to dominate
over the baselines, especially for normalized scores between [0.5, 0.8].

Table 3.1.: Normalized inter-quartile mean scores in DMC benchmark after 100 and 250 episodes. For each
aggregation metric, we report the point estimate and the 95% bootstrap confidence interval
within parentheses, following the methodology in Agarwal et al. (2021). We bold the highest
mean scores in each case.

Method IQM-100 IQM-250
eqrsac mean 0.63 (0.55, 0.72) 0.73 (0.65, 0.81)
eqrsac ofu 0.61 (0.53, 0.69) 0.76 (0.69, 0.81)
qrmbpo mean 0.46 (0.37, 0.56) 0.65 (0.56, 0.73)
qrmbpo ofu 0.46 (0.38, 0.55) 0.64 (0.56, 0.69)
qusac 0.41 (0.33, 0.50) 0.51 (0.43, 0.58)
mbpo 0.30 (0.23, 0.39) 0.32 (0.24, 0.42)
sac 0.54 (0.46, 0.61) 0.59 (0.52, 0.66)

We observe a clear gap in performance between MBPO and QR-MBPO, which supports the observations
from Lyle et al. (2019) and reinforces their hypothesis that distributional critics boost performance under
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Figure 3.10.: Aggregated performance in DMC benchmark with 95% bootstrap confidence intervals. (Left)
Inter-quartile mean returns normalized by the maximum achievable score of 1000. (Right)
Performance profile at 250 episodes of training, with zoom in region with the most spread in
results. In both cases, higher curves correspond to better performance.

non-linear function approximation. The gap between QU-SAC and the distributional methods (QR-MBPO
/ EQR-SAC) indicates that the quantile representation of values leads to more sample-efficient learning
compared to the ensemble-based approach. Moreover, training one distributional critic is typically less
computationally intensive than training an ensemble of standard critics. In the next section, we investigate
more deeply the performance difference between EQR-SAC and QR-MBPO.

3.7.4. Why Does EQR-SAC Outperform QR-MBPO?

We conduct an additional experiment to determine what component(s) of EQR-SAC are responsible for
the increased performance with respect to QR-MBPO. There is three differences between EQR-SAC and
QR-MBPO: (i) EQR-SAC has a buffer n times bigger than QR-MBPO, and correspondingly scales up the
amount of data collected under the ensemble, (ii) EQR-SAC uses consistent rollouts, while QR-MBPO
randomizes the model per-step, and (iii), EQR-SAC’s critic is trained on the loss (3.19), while QR-MBPO’s
critic uses (3.22). In order to test the impact of each component in isolation, we add three additional
baselines: QR-MBPO-big, which uses the same buffer size and collects the same amount of data as EQR-SAC;
QR-MBPO-consistent, that replicates how EQR-SAC collects data under the model; and QR-MBPO-loss,
that uses (3.19) to train its critic. Figure 3.11 shows the performance of EQR-SAC and all QR-MBPO
variants (all methods optimize the actor using fmean). The main observation is that QR-MBPO-loss matches
closely the performance of EQR-SAC, while all other QR-MBPO variants share similar (lower) performance.
The key insight from these results is that our proposed critic loss function (3.19) is instrumental towards
sample-efficient learning, especially in environments with sparse rewards like cartpole swing-up (see also
fish-swim and finger-spin in Appendix B.3). As such, our theory provides a solid guideline on how to
integrate model-based RL architectures with distributional RL tools, which goes beyond simply using a
distributional critic with established algorithms like MBPO.
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Figure 3.11.: Comparison of EQR-SAC and QR-MBPO baselines in selected DeepMind Control tasks. The
results suggest that the biggest contributing factor for increased performance of EQR-SAC
w.r.t QR-MBPO is the critic’s loss function (3.19).
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Figure 3.12.: Ablation study on the amount of next state-action samples drawn to approximate the target
quantiles (3.20). Larger sample sizes perform more robustly across all environments.

3.7.5. Dynamics Sampling for Target Quantiles

The analysis in Section 3.7.4 points to the loss function (3.19) as being the key component of our proposed
approach. The main feature of our loss function is how it utilizes the generative model to produce the target
quantiles (3.20). In this experiment, we investigate the effect of the amount of next state-action samples
(s′, a′) drawn from the ensemble of dynamics when estimating the target quantiles. The hypothesis is that a
larger sample size would result in a lower-variance estimate of the expectation in (3.20), which could then
lead to better sample-efficiency. Figure 3.12 shows the performance of EQR-SAC, for both fmean and fofu,
under different sampling regimes. For the cartpole task, we observe a clear progression in sample-efficiency
as the amount of samples increases. For other environments the differences are less noticeable, but using a
sample size of 1 with the optimistic objective leads to worse performance in all cases. Since the sample size
might have large effects in performance and its runtime impact is greatly amortized by GPU parallelization,
the overall recommendation is to use larger sample sizes (25-100) by default.
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Figure 3.13.: Evaluation of EQR-SAC-τ for different quantile levels. The two tasks on the left have dense
rewards, while the other two have sparse rewards.

3.7.6. Optimistic Policy Optimization

We investigate the effect of using optimistic value estimates for policy optimization. To conduct the study,
we propose a simple variant of EQR-SAC, named EQR-SAC-τ , which uses as the actor’s objective function
the closest quantile level to a given target τ . For instance, in our experiments we use m = 21 and target
levels {0.5, 0.7, 0.9}, which correspond to actual levels {0.5, 0.69, 0.88}.
Dense versus sparse rewards. We first investigate how optimism affects performance in environments
with dense versus sparse rewards and present the results in Figure 3.13. For environments with dense
rewards (cheetah, walker) optimism has little to no effect, while it results in largely different performance
in envionments with sparse rewards (reacher-hard, finger-spin). Even though we would expect optimism to
be generally helpful in all exploration tasks, our results indicate its effect is environment-dependent: the
most optimistic objective (τ = 0.9) performed worst in reacher-hard but obtained the best performance in
finger-spin; inversely, the least optimistic objective (τ = 0.5) performed the best in reacher-hard, but worst
in finger-spin.
Action costs and sparse rewards. In Section 3.7.2, we observe that the combination of action costs and
sparse rewards represents a pitfall for methods like SAC, especially since the optimal policy must issue large
actions to observe the reward. Meanwhile, the quantile-based optimistic approaches performed best. In this
experiment, we test the same setting in two tasks with sparse rewards from the DeepMind Control suite,
where we add an action cost proportional to the squared norm of the action taken by the agent. Namely,

action_cost = ρ

|A|∑︂
i=1

a2i (3.24)

where ρ is an environment specific base multiplier, ai is the i-th component of the action vector and |A| is the
size of the action space. For cartpole-swingup we use ρ = 0.001 and for pendulum we use ρ = 0.01.
The resuls in Figure 3.14 show a similar degradation of performance for SAC. Unlike the MountainCar
experiments of Section 3.7.2, higher levels of optimism mostly resulted in less sample-efficient learning.
Overall, all these results indicate that the benefits of optimistic optimizationmight be environment-dependent.
We believe an interesting avenue for future work is to more broadly analyze this phenomenon and reconsider
our design choices (ensemble as posterior MDP, quantile representation for values, policy objectives, etc.).
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Figure 3.14.: Evaluation of EQR-SAC-τ for different quantile levels and increasing action costs. The top row
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3.7.7. Additional Ablations

We conduct additional ablation studies on three hyperparameters of our algorithm: the number of quantiles
(m) (Figure 3.15), the rollout length (k) (Figure 3.16) and the number of model updates to retain data
(∆), which controls the amount of off-policy data in the buffer (Figure 3.17). The general observation from
these experiments is that EQR-SAC’s performance is robust for a wide range of values. Performance typically
degrades only for extreme values of the parameters, for example m = 1 (only estimate median of value
distribution) or k = 1 (only generate 1-step rollouts with the model).

3.8. Conclusions

We investigated the problem of estimating the distribution of values, given parameter uncertainty of the
MDP. We proposed the value-distributional Bellman equation and extracted an operator whose fixed-point
is precisely the distribution of values. Leveraging tools from return-distributional RL, we designed Epistemic
Quantile-Regression, an iterative procedure for estimating quantiles of the value distribution. We applied
our algorithm in small MDPs, validated the convergence properties prescribed by our theory and assessed
its limitations once the main assumptions are violated. Lastly, we introduced EQR-SAC, a novel model-based
deep RL algorithm that scales up EQR with neural network function approximation and combines it with
SAC for policy optimization. We benchmarked our approach in several continuous-control tasks from the
DeepMind Control suite and showed improved sample-efficiency and final performance compared to various
baselines.
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Figure 3.15.: Number of quantiles (m) ablation study. (Top) EQR-SAC-mean. (Bottom) EQR-SAC-ofu. Note
that for EQR-SAC-ofu we requirem > 1 in order to estimate the standard deviation of quantiles
for the optimistic objective function of the actor, thus we select a minimum value ofm = 3
for this study.
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Figure 3.16.: Rollout length (k) ablation study for EQR-SAC-mean.
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Figure 3.17.: Number of model updates to retain data (∆) ablation study for EQR-SAC-mean.
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4. Uncertainty Representations in State-Space Layers
for Deep Reinforcement Learning under Partial
Observability

Optimal decision-making under partial observability requires reasoning about the uncertainty of the envi-
ronment’s hidden state. However, most reinforcement learning architectures handle partial observability
with sequence models that have no internal mechanism to incorporate uncertainty in their hidden state
representation, such as recurrent neural networks, deterministic state-space models and transformers.
Inspired by advances in probabilistic world models for reinforcement learning, we propose a standalone
Kalman filter layer that performs closed-form Gaussian inference in linear state-space models and train it
end-to-end within a model-free architecture to maximize returns. Similar to efficient linear recurrent layers,
the Kalman filter layer processes sequential data using a parallel scan, which scales logarithmically with the
sequence length. By design, Kalman filter layers are a drop-in replacement for other recurrent layers in
standard model-free architectures, but importantly they include an explicit mechanism for probabilistic
filtering of the latent state representation. Experiments in a wide variety of tasks with partial observability
show that Kalman filter layers excel in problems where uncertainty reasoning is key for decision-making,
outperforming recurrent other stateful models.

4.1. Introduction

The classical reinforcement learning (RL) formulation tackles optimal decision-making in a fully observable
Markov Decision Process (MDP) (Sutton and Barto, 2018). However, many real-world problems are partially
observable, since we only have access to observations that hide information about the state, e.g., due to
noisy measurements. Learning in partially observable MDPs (POMDPs) is statistically and computationally
intractable in general (Papadimitriou and Tsitsiklis, 1987), but in many practical scenarios it is theoretically
viable (Liu et al., 2022) and has lead to successful applications in complex domains like robotics (Zhu
et al., 2017), poker (Brown and Sandholm, 2019), real-time strategy games (Vinyals et al., 2019) and
recommendation systems (Li et al., 2010).
Practical algorithms for RL in POMDPs employ sequence models to encode the history of observations
and actions into a latent state representation amenable for policy optimization. Besides extracting task-
relevant information from the history, probabilistic inference over the latent state is also crucial under
partial observability (Kaelbling et al., 1998). As a motivating example, consider an AI chatbot that gives
restaurant recommendations to users. Since the user’s taste (i.e., the state) is unknown, the agent must
ask questions before ultimately making its recommendation. Reasoning over the latent state uncertainty is
crucial to decide whether to continue probing the user or end the interaction with a final recommendation.
An optimal agent would gather enough information to recommend a restaurant with a high likelihood
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of user satisfaction. In Section 4.5.3, we evaluate performance of our proposed approach in a simplified
version of this problem.
A standard recipe for model-free RL in POMDPs is to combine a sequence model (e.g., LSTM (Hochreiter
and Schmidhuber, 1997), GRU (Cho et al., 2014)) with a policy optimizer (e.g., PPO (Schulman et al.,
2017) or SAC (Haarnoja et al., 2018)), which has shown strong performance in a wide variety of POMDPs
(Ni et al., 2022). More recently, transformers (Vaswani et al., 2017) have also been adopted as sequence
models in RL showing improved memory capabilities (Ni et al., 2023). However, their inference runtime
scales quadratically with the sequence length, which makes them unsuitable for online learning in physical
systems (Parisotto and Salakhutdinov, 2020). Instead, recent deterministic state-space models (SSMs) (Gu
et al., 2022a; Smith et al., 2023; Gu and Dao, 2023) maintain the constant-time inference of stateful models,
while achieving logarithmic runtime during training thanks to efficient parallel scans (Smith et al., 2023).
Moreover, SSMs have shown improved long-term memory, in-context learning and generalization in RL (Lu
et al., 2023). Yet, in problems where reasoning over latent state uncertainty is crucial, it remains unclear
whether such methods can learn the required probabilistic inference mechanisms for decision making.
While model-free architectures focus on deterministic sequence models, in model-based RL probabilistic
sequence models are a widespread tool to model uncertainty in environment dynamics (Hafner et al., 2019,
2020; Becker and Neumann, 2022). Considering these two sequence modelling approaches, the purpose of
this chapter is to investigate the following questions:

Can we leverage the same inference methods developed for model-based RL as general-purpose sequence models
in model-free architectures? If so, does it bring any benefits compared to deterministic models?

Our core hypothesis is that explicit probabilistic inference in sequence models may serve as an inductive
bias to learn in tasks where uncertainty over the latent state is crucial for decision making, as our previous
example on the restaurant recommendation chatbot.
Our Contributions. Inspired by the simple inference scheme in the Recurrent Kalman Network (RKN)
(Becker et al., 2019) architecture for world models, we embed closed-form Gaussian inference in linear
SSMs as a standalone recurrent layer — denoted a Kalman filter (KF) layer — and train it end-to-end
within a model-free architecture (Ni et al., 2022) to maximize returns. Since our KF layers are designed to
be a drop-in replacement for standard recurrent layers, they can also be stacked together and combined
with other components (e.g., residual connections, normalization, etc.) to build more complex sequence
models. To the best of our knowledge, this is the first work that empirically evaluates the performance of
such probabilistic inference layers in a model-free RL architecture. We conduct extensive experiments with
a variety of sequence models over a wide range of POMDPs and show that KF layers excel in tasks where
probabilistic inference is key for decision-making, with significant improvements over deterministic stateful
models.

4.2. Related Work

RL architectures for POMDPs. In order to deal with partial observability, RL agents are typically equipped
with some form of memory system, e.g., based on human psycology (Fortunato et al., 2019) or context-
dependent retrieval (Oh et al., 2016). The most widespread memory system in the RL literature is through
sequence models, also known as history encoders (Ni et al., 2024), whose purpose is to compress the past
history into a state representation useful for RL. These sequence models can augment policies (Wierstra
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et al., 2007), value functions (Schmidhuber, 1990; Bakker, 2001) and/or world models (Schmidhuber,
1991; Becker et al., 2019; Shaj et al., 2021a,b, 2023), which allows handling of partial observability in
previous RL algorithms such as DQN (Hausknecht and Stone, 2015), SAC (Ni et al., 2022), PPO (Kostrikov,
2018; Ni et al., 2023; Lu et al., 2023), DPG (Heess et al., 2015) and Dyna (Hafner et al., 2020; Becker and
Neumann, 2022). In this chapter, we adopt an off-policy model-free architecture similar to Ni et al. (2022),
which showed strong performance in various POMDPs.
Sequence models in RL. Frame-stacking is one of the earliest sequence models used in RL (Lin and Mitchell,
1993) and it is still a common tool to convey velocity information from image-based observations, like in
the Atari benchmark (Bellemare et al., 2013; Mnih et al., 2013). However, it fails to model long-range
dependencies in more complex POMDPs. Stateful recurrent models are the most widespread sequence
models in RL to extract relevant information from arbitrarily long contexts, for instance RNNs (Lin and
Mitchell, 1993; Schmidhuber, 1990) LSTMs (Bakker, 2001) and GRUs (Kostrikov, 2018). More recently,
the transformer architecture (Vaswani et al., 2017) has shown promising results in improving the long-term
memory of RL agents (Ni et al., 2023). However, their slow inference and large memory requirements
reduce their practicality as real-time control systems (Parisotto and Salakhutdinov, 2020).
Deterministic SSMs. Advances in SSMs are of particular interest to the RL community, since they maintain
the fast inference of RNNs but scale better during training via parallel scans (Smith et al., 2023), can
circumvent vanishing/exploding gradients with proper initialization (Gu et al., 2020) and match (or even
exceed) the performance of transformers in long-range sequence modelling tasks (Lu et al., 2023). In
particular, structured state space models such as S4 (Gu et al., 2022a), S5 (Smith et al., 2023) and S6 /
Mamba (Gu and Dao, 2023) have emerged as a strong competitor to transformers in general sequence
modelling problems like language (Fu et al., 2023), audio (Goel et al., 2022) and video (Nguyen et al., 2022).
The adoption of these models in RL is still in its infancy, however. Morad et al. (2023) report bad performance
of a variant of S4 (Gu et al., 2022b) in various POMDPs. Lu et al. (2023) show strong performance in
long-term memory and in-context learning by combining S5 with PPO. Besides these contradictory results,
it remains unclear how these models perform in tasks where uncertainty of the latent state plays a vital role
in decision-making since they are not equipped with explicit probabilistic inference mechanisms.
Probabilistic SSMs. Probabilistic stateful models are the backbone of world models (Kalweit and Boedecker,
2017; Ha and Schmidhuber, 2018), trained to predict forward dynamics and rewards which can then be
used for: (i) planning (Hafner et al., 2019) or policy optimization (Becker and Neumann, 2022; Hafner
et al., 2020) via latent imagination (i.e., generate imaginary policy rollouts auto-regressively), or (ii) policy
optimization on the learned latent representation (Becker et al., 2024). A prominent approach is the
Recurrent State Space Model (RSSM) proposed by Hafner et al. (2019), which divides the latent state into
deterministic and stochastic components and uses a GRU for propagating forward the deterministic part.
More recently, GRUs have been replaced by transformers (Chen et al., 2021) and S4 (Samsami et al., 2024)
models, albeit in a simplified inference scheme that only conditions on the current observation rather than
the history. A common concern with these model-based approaches is the objective mismatch (Lambert
et al., 2020) between learning accurate world models and training performant control policies.
Inference in Linear SSMs. Closest to our approach are models that perform closed-form probabilistic
filtering in linear SSMs. Inference in linear SSMs is a well-studied problem in the dynamical systems
community, dating back to the seminal work by Kalman (1960). While Kalman filters and smoothers offer
tractable, closed-form inference, the linear-Gaussian assumption is typically not suited for high-dimensional,
multi-modal data (Murphy, 2012; Bishop, 2006). Recent methods leverage neural networks to project data
into learned latent spaces where the Kalman filter assumptions are less restrictive, leading to expressive
probabilistic models of high-dimensional data such as images (Haarnoja et al., 2016; Becker et al., 2019;
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Shaj et al., 2021a,b, 2023). The Recurrent Kalman Network (RKN) proposed by Becker et al. (2019) is
an encoder-decoder architecture that employs Kalman filtering using locally linear models and structured
(non-diagonal) covariance matrices. Follow-up work has extended the RKN framework in various ways:
Shaj et al. (2021a) include action conditioning, Shaj et al. (2021b) consider a multi-task setting with hidden
task parameters, Shaj et al. (2023) propose a hierarchical, multi-timescale architecture and Becker and
Neumann (2022) replace the closed-form filtering with a variational approach that also performs smoothing,
leading to a tight variational bound. Concurrent work by Becker et al. (2024) proposes a world model that
leverages a Mamba (Gu and Dao, 2023) backbone to learn a linear dynamics model and a time-parallel
Kalman smoother trained on a variational inference loss; the learned state representation is then used with
a SAC policy optimizer.
In this chapter, we propose a model-free RL architecture for POMDPs, similar to Ni et al. (2022), where
deterministic recurrent layers (e.g., RNNs or transformers) are replaced with KF layers that leverage the
simplified filtering scheme from RKNs. In contrast to prior work proposing RKN-based architectures for
model-based RL (Becker and Neumann, 2022; Becker et al., 2024), in our model-free RL architecture KF
layers are trained end-to-end to maximize returns instead of auxiliary world model objectives. Consequently,
our training paradigm erases concerns of objective mismatch during representation learning (Lambert et al.,
2020). Moreover, we design KF layers as standalone recurrent layers that can be stacked and combined with
other operations (e.g., residual connections and normalization) to build more complex architectures. Similar
to Becker et al. (2024), the associative property of the Kalman filter operations allows efficient training of
KF layers via parallel scans, which scale logarithmically with the sequence length provided sufficient parallel
GPU cores.

4.3. Background

In this section, we provide the relevant background and introduce core notation used throughout the chapter.
We use bold upper case letters (A) to denote matrices and calligraphic letters (X ) to denote sets. The
notation P(X ) referes to the space of probability distributions over X .

4.3.1. Reinforcement Learning in Partially Observable Markov Decision Processes

We consider an agent that acts in a finite-horizon partially observable Markov decision process (POMDP)
M = {S,A,O, T, p,O, r, γ} with state space S, action space A, observation space O, horizon T ∈ N,
transition function p : S ×A → P(S) that maps states and actions to a probability distribution over S, an
emission function O : S → P(O) that maps states to a probability distribution over observations, a reward
function r : S ×A → R, and a discount factor γ ∈ [0, 1).
At time step t of an episode inM, the agent observes ot ∼ O(· | st) and selects an action at ∈ A based on the
observed history h:t =

{︁
(oh, ah)

}︁t
h=0
∈ Ht, then receives a reward rt = r(st, at) and the next observation

o:t+1 ∼ O(· | st+1) with st+1 ∼ p(· | st, at).
We adopt the general setting by Ni et al. (2023, 2024), where the RL agent is equipped with: (i) a stochastic
policy π : Ht → P(A) that maps from observed history to distribution over actions, and (ii) a value function
Qπ : Ht × A → R that maps from history and action to the expected return under the policy, defined
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as Qπ(h:t, at) = Eπ
[︂∑︁T

h=t γ
h−trt | h:t, at

]︂
. The objective of the agent is to find the optimal policy that

maximizes the value starting from some initial state s0, π⋆ = argmaxπ Eπ
[︂∑︁T−1

t=0 γ
trt | s0

]︂
.

4.3.2. History Representations

A weakness of the general formulation of RL in POMDPs is the dependence of both the policy and the value
function on the ever-growing history. Instead, practical algorithms fight this curse of dimensionality by
encoding the history into a compact representation. Ni et al. (2024) propose to learn such representations
via history encoders, defined by a mapping ϕ : Ht → Z from observed history to some latent representation
zt := ϕ(h:t) ∈ Z. With slight abuse of notation, we denote π(at | zt) and Qπ(zt, at) as the policy and values
under this latent representation, respectively. In this paper, we propose a history encoder implemented via
Kalman filtering layers that perform simple probabilistic inference on the latent state.

4.3.3. Structured State Space Models

We consider time-varying linear SSMs defined by

ẋ(t) = Atx(t) +Btu(t), y(t) = Ctz(t) +Dtu(t), (4.1)

where t > 0 ∈ R, x(t) ∈ RN is the hidden or latent state, u(t) ∈ RP is the input, y(t) ∈ RM is the output
and (At,Bt,Ct,Dt) are matrices of appropriate size. Such a continuous-time system can be discretized
(e.g., using zero-order hold) for some step size ∆, which results in a linear recurrent model

xk = Ākxk−1 + B̄kuk−1, yk = C̄kxk + D̄kuk−1. (4.2)

As it is common in practice, we set D̄k ≡ 0. In this chapter, we consider structured SSMs, which simply
means special structure is imposed into the learnable matrices (Āk, B̄k, C̄k). In particular, we consider a
diagonal structure with the HiPPO initialization proposed in Gu et al. (2020), which induces stability in the
recurrence for handling long sequences.

4.3.4. Probabilistic Inference on Linear SSMs

To introduce uncertainty into state-space models, we consider a standard linear-Gaussian SSM

xk = Ākxk−1 + B̄kuk−1 + εk, yk = C̄kxk + νk, (4.3)

where εk ∼ N (0,Σ
p
k) and νk ∼ N (0,Σok) are zero-mean process and observation noise variables with their

covariance matricesΣpk andΣok, respectively. The latent state probabilistic model is then p(xk | xk−1, uk−1) =
N (Ākxk−1 + B̄kuk−1,Σ

p
k) and the observation model is p(yk | xk) = N (C̄kxk,Σ

o
k). Inference in such a

model has a closed-form solution, which is equivalent to the well-studied Kalman filter (Kalman, 1960).
Predict. The first stage of the Kalman filter propagates forward the posterior belief of the latent state at
step k − 1, given by N (x+k−1,Σ

+
k−1), to obtain a prior belief at step k, N (x−k ,Σ

−
k ), given by

x−k = Ākx
+
k−1 + B̄kuk−1, Σ−

k = ĀkΣ
+
k−1Ā

⊤
k +Σ

p
k. (4.4)
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Update. The second stage updates the prior belief at step k given some observation wk, to obtain the
posterior p(xk | xk−1, wk) = N (x+k ,Σ

+
k ) given by

x+k = x−k +Kk(wk − C̄kx
−
k ), Σ+

k = (I−KkC̄k)Σ
−
k , (4.5)

where Kk = Σ−
k C̄

⊤
k (C̄kΣ

−
k C̄

⊤
k +Σok)

−1 is known as the Kalman gain. The predict and update steps are
interleaved to process sequences of input and observations {uk, wk}K−1

k=0 of length K, starting from some
initial belief N (x+−1,Σ

+
−1). While (4.4) and (4.5) include expensive matrix operations, they simplify to

cheap element-wise operations under structured SSMs (e.g., diagonal), as done in prior work (Becker et al.,
2019; Becker and Neumann, 2022).

4.3.5. Parallel Scans

Efficient implementation of state-space models and Kalman filters employ parallel scans to achieve logarithmic
runtime scaling with the sequence length (Smith et al., 2023; Sarkka and Garcia-Fernandez, 2021). Given a
sequence of elements (a0, a1, . . . , aK−1) and an associative1 binary operator • , the parallel scan algorithm
outputs all the prefix-sums (a0, a0 • a1, . . . , a0 • . . . • aK−1) in O(logK) runtime, given sufficient parallel
processors.

4.4. Method: Off-Policy Recurrent Actor-Critic with Kalman filter Layers

In this section, we describe our method that implements Kalman filtering as a recurrent layer within a
standard actor-critic architecture.

4.4.1. General Architecture

In Figure 4.1 we present our Recurrent Actor-Critic (RAC) architecture inspired by Ni et al. (2022), where
we replace the RNN blocks with general history encoders. We will use this architecture in the following to
test the capabilities of different history encoders in various POMDPs.
For both actor and critic, we embed the sequence of observations and actions into a single representation h∗:t
which is then passed into the history encoders. We use a single linear layer as embedder, which we found
worked as reliably as more complex non-linear embedders used in similar RAC architectures by Morad et al.
(2023); Ni et al. (2022). We also include the skip connections from current observations and actions into
the actor-critic heads, as proposed in previous memory-based architectures (Zintgraf et al., 2021; Ni et al.,
2022).

1A binary operator • is associative if (a • b) • c = a • (b • c) for any triplet of elements (a, b, c)
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Figure 4.1.: General Recurrent Actor-Critic (RAC) architecture. The components are trained end-to-end
with the Soft Actor-Critic (SAC) loss function (Haarnoja et al., 2018). To handle discrete action
spaces, we use the discrete version of SAC by Christodoulou (2019).

Linear

Predict

Update

Linear

KF Layer

Figure 4.2.: Our proposed Kalman filter layer to build history encoders. The KF layer receives a history
sequence h:t and projects it into three separate signals in latent space: the input u:t, the
observation w:t and the observation noise (diagonal) covariance Σo:t. These sequences are
processed using the standard Kalman filtering equations, which scale logarithmically with the
sequence length using parallel scans. Lastly, the posterior mean latent state x+:t is projected
from the latent space back into the history space to obtain the compressed representation z:t.

4.4.2. Kalman Filter Layers

Our main hypothesis is that principled probabilistic filtering within history encoders boosts performance
in POMDPs, especially those where reasoning about uncertainty is key for decision-making. To test this
hypothesis, we introduce KF layers, as shown in Figure 4.2. The layer receives as input a history embedding
sequence h:t which is then projected into the input u:t, observation w:t and observation noise Σo:t sequences.
These three signals serve as input to the standard KF predict-update equations (4.4) and (4.5), which
output a posterior (filtered) latent state x+:t . Finally, the posterior sequence is projected back to the history
embedding space to produce the compressed history representation z:t.
History encoders with KF layers. Similar to recent SSM layers such as S5 (Smith et al., 2023) and S6
(Gu and Dao, 2023), these KF layers can be stacked and combined with other operations such as residual
connections, gating mechanisms, convolutions and normalization to compose a history encoder block in the
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RAC architecture. In favor of simplicity, our history encoders are only composed of KF layers and (optionally)
an RMS normalization (Zhang and Sennrich, 2019) output block for improved stability.
Filtering as a gating mechanism. We can draw interesting comparisons between KF layers and other
recurrent layers from the perspective of gating mechanisms. It was shown in Theorem 1 of (Gu and Dao,
2023) that selective SSMs (S6) behave as generalized RNN gates through an input-dependent step size ∆.
In this case, the gate depends on the SSM input and controls how much the input influences the next hidden
state. Similarly, as hinted by Becker et al. (2019), during the update step the Kalman gain is effectively an
uncertainty-controlled gate depending on the observation noise which regulates how much the observation
influences the posterior belief over the latent state. Our experiments in Section 4.5 shed some light on the
strengths and weaknesses of these approaches for RL under partial observability.
Implementation details. We simplify the implementation of KF layers and eliminate expensive matrix
operations via a diagonal-structured SSM with matching input-latent-observation dimensions, i.e., N =
P =M . In this setting, we directly learn the diagonal components of time-independent matrices A and B
(no diagonalization step as done in the S5 layer (Smith et al., 2023)), while we fix C to be the identity
matrix, as it is common in prior work (Becker and Neumann, 2022). Second, we consider a time-invariant
process noise with learnable diagonal covariance matrix Σp. The SSM is discretized using the zero-order
hold method and consider a learnable scalar step size ∆ > 0 (Smith et al., 2023).
Design decisions. We want to highlight two considerations that went into the design of our KF layers.
First, we could generalize the architecture to support time-varying process noise by including one extra
output channel (alongside the input, observation and observation noise channels) in the history linear pro-
jection. Conceptually, such an input-dependent process noise adds more flexibility to the gating mechanism
implemented within the KF layer, which would be controlled both by the observation and the process noise
signals. Second, we could include the posterior covariance Σ+

:t as an additional feature for the output linear
projection, alongside the posterior mean x+:t . We conduct an ablation study over these two choices in several
continuous control tasks subject to observation noise and report the results in Appendix C.3. The best
aggregated performance in this ablation was obtained with time-invariant process noise and only using the
posterior mean as a feature for the output projection, which empirically justifies our final design.

4.4.3. Masked Associative Operators for Variable Sequence Lengths

In off-policy RAC architectures, the agent is typically trained with batches of (sub-)trajectories of possibly
different length, sampled from an experience replay buffer. Thus, history encoders must be able to process
batches of variable sequence length during training.
A common approach is to right-pad the batch of sequences up to a common length and ensure the model’s
output is independent of the padding values. For transformer models, this can be achieved by using the
padding mask as a self-attention mask. For stateful models like RNNs and SSMs, it is imperative to also
output the correct final latent state for each sequence in the batch. This typically requires a post-processing
step that individually selects for each sequence in the batch the last state before padding. It turns out that
for any recurrent model expressed with an associative operator (e.g., SSMs and KFs), we can obtain the
correct final state from a batch of padded sequences without additional post-processing by using a parallel
scan routine with a Masked Associative Operator (MAO).

Definition 4 (Masked Associative Operator). Let • be an associative operator acting on elements e ∈ E ,
such that for any a, b, c ∈ E , it holds that (a • b) • c = a • (b • c). Then, the MAO associated with • , denoted
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•̃ , acts on elements ẽ ∈ E × {0, 1} = (e,m), where m ∈ {0, 1} is a binary mask. Then, for ã = (a,ma) and
b̃ = (b,mb), we have:

ã •̃ b̃ =
{︄
(a • b,ma) if mb = 0

ã if mb = 1
(4.6)

Now we show that any MAO is itself associative as long as we apply a right-padding mask2.

Proof. Let ã, b̃, c̃ ∈ Ẽ refer to elements in the space of the MAO •̃ , as in Definition 4, with ã = (a,ma),
b̃ = (b,mb), c̃ = (c,mc). We show that if the sequence {ma,mb,mc}, is a right-padding mask, that is:
ma = 1 =⇒ mb = mc = 1, and mb = 1 =⇒ mc = 1, then it holds that (ã •̃ b̃) •̃ c̃ = ã •̃ (b̃ •̃ c̃), i.e., the
MAO is associative. Similar to the proof in Lu et al. (2023) we consider all possible values for {ma,mb,mc}.
Case 1: mb = 1 and mc = 1. The binary masks of b and c are on, so b̃ •̃ c̃ = b̃, ã •̃ b̃ = ã and ã •̃ c̃ = ã.
Then,

(ã •̃ b̃) •̃ c̃ = ã (4.7)
= ã •̃ (b̃ •̃ c̃) (4.8)

Case 2: mb = 0 and mc = 1. The binary mask of b if off while that of c is on, so b̃ •̃ c̃ = b̃, then:
(ã •̃ b̃) •̃ c̃ = ã •̃ b̃ (4.9)

= ã •̃ (b̃ •̃ c̃) (4.10)
Case 3: mb = 0 and mc = 0. No mask is applied, then the MAO is equivalent to the underlying operator • ,
which is associative by Definition 4.
Note the case mb = 1 and mc = 0 violates associativity, but it is impossible under our initial assumption of a
right-padding mask sequence {ma,mb,mc}.

Given the associativity of MAOs, they can be readily used in parallel scan routines. In practice, augmenting
existing SSM and KF operators with their MAO counterpart is a minor code change. MAOs act as a pass-
through of the hidden state when padding is applied, thus yielding the correct state at every time step of the
padded sequence for each element of the batch without additional indexing or bookkeeping. Due to their
pass-through nature, MAOs require strictly equal or less evaluations of the underlying associative operator,
which may yield faster runtimes if the operator is expensive to evaluate and/or many elements of the input
sequence are masked.
MAOs for SSMs and KFs. As a concrete example, the associative operators for SSMs and KFs involve matrix
product and addition. A compute-efficient implementation of MAOs for such operators involves sparse
matrix operations, where the sparsity is dictated by the padding mask. However, sparse matrix operations
are only expected to yield better runtime than their dense counterparts for large matrices with sufficient
levels of sparsity, which are not typical in our application. Thus, no speed-up is expected from using MAOs
in the context of this work.
MAOs are similar to the custom operator proposed by Lu et al. (2023), but their effect is fundamentally
different: Lu et al. (2023) considers on-policy RL, where the goal is to handle multi-episode sequences,
thus their custom operator resets the hidden state at episode boundaries. Instead, in our off-policy RAC
architecture, MAOs act as pass-through of the hidden state for padded inputs.
2A right-padding mask is a sequence {m0,m1, . . . } with mi ∈ {0, 1} such that if mi = 1 then mj = 1 for all j > i.
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4.5. Experiments

In this section, we evaluate the RAC architecture under different history encoders in various POMDPs.

4.5.1. Baselines

We consider the following implementation of history encoders within the RAC architecture.
vSSM. Vanilla, real-valued SSM with diagonal matrices. It is equivalent to a KF layer with infinite observation
noise, i.e., the update step has no influence on the output. It can also be seen as a simplification of the
S4D model (Gu et al., 2022b), where states are real-valued rather than complex (as in Mega (Ma et al.,
2023), such that the recurrence can be interpreted as an exponential moving average) and the recurrence is
implemented with a parallel scan rather than a convolution (as in (Smith et al., 2023)).
vSSM+KF. Probabilistic SSM via the KF layers described in Figure 4.2, which is equivalent as adding Kalman
filtering on top of vSSM.
vSSM+KF-u. Equivalent to vSSM+KF without the input signal u:t. It maintains the uncertainty-based gating
from the KF layer, but looses flexibility in the KF predict step to influence the prior belief via the input.
Mamba (Gu and Dao, 2023). Selective state-space model with input-dependent state transition matrices.
GRU (Cho et al., 2014). Stateful model with a gating mechanism and non-linear state transitions.
vTransformer (Vaswani et al., 2017). Vanilla encoder-only transformer model with sinusoidal positional
encoding and causal self-attention.
All SSM-based approaches are implemented using MAOs and parallel scans. Besides these memory-based
agents, we include two additional memoryless agents that implement the same RAC architecure but without
embedders or history encoders.
Oracle. It has access to the underlying state of the environment, effectively removing the partial observ-
ability aspect of the problem. This method should upper-bound the performance of history encoders.
Memoryless. Unlike Oracle, it does not have access to the underlying state of the environment. This
method should lower-bound the performance of history encoders.
All the baselines share a common codebase and hyperparameters. For all stateful models, we use the same
latent state dimensionN such that parameter count falls within a 10% tolerance range except for GRU, which
naturally has more parameters due to its gating mechanism (roughly 40% increase). For vTransformer
we choose the dimension of the feed-forward blocks such that the total parameter count is also within
10% of the SSM methods. With this controlled experimental setup, we aim to evaluate strengths and
weaknesses of the different mechanisms for sequence modelling (gating, input-selectivity, probabilistic
filtering, self-attention) in a wide variety of partially observable environments.
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4.5.2. Implementation Details

In this section, we provide details of various components of the RAC architecture and the specific im-
plementations of history encoders. All methods are implemented in a common codebase written in the
Pytorch framework (Paszke et al., 2019). Specific hyperparameters used in experiments are included in
Appendix C.1.
Embedder. We embed the concatenated observation-action history with a simple linear layer mapping from
the combined observation-action dimension to the embedding dimension E.
Soft Actor-Critic. We use a standard SAC implementation with optional automatic entropy tuning (Haarnoja
et al., 2019). For discrete action spaces, we use the discrete version of SAC by (Christodoulou, 2019) and
one-hot encode the actions.
vSSM, vSSM+KF & vSSM+KF-u. These methods share a similar implementation, with an input linear layer,
a linear recurrence and an output linear layer. vSSM is equivalent to only using the “Predict” block from
the KF layer, while vSSM+KF-u removes the input signal u:t. For all methods, we discretize the SSM using
the zero-order hold method and a learnable scalar step size ∆. In practice we use an auxiliary learnable
parameter ∆̃ and define ∆ = softplus(∆̃) to ensure a positive step size. as similarly done in Mamba. We
initialize ∆̃ with a negative value such that after passing through the softplus and after ZOH discretization,
the SSM is initialized with eigenvalues close to 1 (i.e., slow decay of state information over time).
Mamba. Standard Mamba model from Gu and Dao (2023). We use a reference open-source implementation3
and modify the parallel scan to use the associated MAO.
GRU. Standard implementation included in Pytorch.
vTransformer. Default implementation of a causal transformer encoder from Pytorch. We additionally
include a sinusoidal positional encoding, as done in prior work using transformers for RL (Ni et al., 2023).

4.5.3. Probabilistic Reasoning - Adaptation and Generalization

We evaluate probabilistic reasoning capabilities with a carefully designed POMDP that simplifies our running
example from Section 4.1, where an AI chatbot probes a user in order to recommend a restaurant. Given
noisy observations (user’s answers) sampled from a bandit with distribution N (µb, σb) (user’s preference),
the task is to infer whether the mean µb lies above or below zero (binary decision between two restaurants
A and B). At the start of each episode, µb and σb (the latent parameters) are sampled from some given
distribution (i.e., we have a different user every episode). Then, at each step of an episode, the RL agent
has three choices: (1) request a new observation from the bandit (ask a new question to the user), which
incurs a cost ρ, (2) decide the arm has mean above zero (recommend restaurant A) or (3) decide the arm
has mean below zero (recommend restaurant B), both of which immediately end the episode and provide a
positive reward if the decision was correct, or a negative reward if the decision was incorrect (i.e., reward is
based on whether the recommendation matches the user’s preference). We set a maximum episode length of
1000 steps; if the agent does not issue a decision by then, it receives the negative reward. Example rollouts
for this environment are provided in Figure 4.3. Given the Bayesian state from Figure 4.3, an optimal agent
must strike a balance between requesting new information (which reduces uncertainty about the estimated
mean) and minimizing costs. Effective history encoders for this problem should similarly produce a state
representation that encodes uncertainty about the latent parameters.
3https://github.com/johnma2006/mamba-minimal/tree/03de542a36d873f6e6c4057ad687278cc6ae944d
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Figure 4.3.: Two example episodes of the Best Arm Identification task of Section 4.5.3, with µb = 0.5 and
two different noise scales. (Left) Narrow noise distribution with σb = 0.5. (Right) Wide noise
distribution with σb = 1.0. In red, we visualize the Bayesian posterior mean and 3σ confidence
interval around µb, obtained via Bayesian linear regression using all prior observations in the
episode.

We evaluate two core capabilities: adaptation and generalization. Intuitively, an optimal policy for this
problem must be adaptive depending on the latent parameters. For example, if µb is close to zero the agent
might need many observations to make an informed decision, whereas with a large |µb| the correct decision
can be made with few observations. Moreover, we can also evaluate generalization of the learned policy by
testing on latent parameters not seen during training. Our hypothesis is that an agent that learns proper
probabilistic reasoning (e.g., Bayes’ rule) should generalize reasonably well in this task.
We conduct experiments for all baselines under increasing cost ρ. Instead of providing the latent parameters
directly to the Oracle baseline, we provide the Bayesian posterior mean and standard deviation around
the latent parameter µb, as shown in Figure 4.3. The agents are trained under the latent parameter distri-
bution given by µb ∼ Unif(−0.5, 0.5) and σb ∼ Unif(0.0, 2.0). We additionally evaluate out-of-distribution
generalization by using σOODb ∼ Unif(2.0, 3.0), i.e., we test how the agent generalizes to bandits with higher
variance. In Figure 4.4 we report the normalized return and average episode length for both the training
and out-of-distribution latent parameters. Full training curves are included in Appendix C.2. vSSM+KF
achieves the highest return out of the memory-based agents, both in and out-of-distribution, while matching
the performance of Oracle in-distribution. The better performance of vSSM+KF correlates with longer
episodes: compared to the other baselines, vSSM+KF learns to request more observations in order to issue a
more informed decision.
vSSM+KF improves adaptation and generalization. To gain further insights on the results, we do a
post-training evaluation on a subset of the agents across the entire latent parameter space, as shown in
Figure 4.5. vSSM+KF learns adaptation patterns similar to Oracle: the length of episodes increase as the
noise scale σb increases and decrease as |µb| increases, as it is intuitively expected. Such adaptation is less
pronounced in vSSM, vSSM+KF-u and Mamba, where episodes are shorter and ultimately results in lower
win rates. While vSSM+KF does not match the generalization performance of Oracle, it remains the best
amongst the history encoder baselines. Given our controlled experimental setup, we attribute the enhanced
adaptation and generalization of vSSM+KF to the internal probabilistic filtering implemented in the KF
layer. Moreover, comparing vSSM+KF and vSSM+KF-u highlights that including the input signal in the KF
layer leads to improved performance in this task.
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Figure 4.4.: Performance of sequence models in the Best Arm Identification problem after 500K environ-
ment steps. We conduct experiments for increasing cost of requesting new observations and
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the mean and standard error over 5 random seeds. (Top row) Normalized return, obtained by
dividing returns by the reward given after winning (10 in our case). (Bottom row) Length of
episodes.

0.5

0.0

-0.5

µ
b

Oracle vSSM+KF vSSM+KF-u vSSM Mamba

0.0 3.02.0σb

0.5

0.0

-0.5

µ
b

0.0 3.02.0σb 0.0 3.02.0σb 0.0 3.02.0σb 0.0 3.02.0σb

0

50

100 W
in

rate
[%

]

100

101

102 E
p

.
len

gth
[%

]

Figure 4.5.: Performance heatmap on Best Arm Identification problem (ρ = 0). We generate a grid of noise
parameters (µb, σb) for a total of 625 unique combinations. The red vertical line separates
training (to the left) from out-of-distribution (to the right) latent parameters. For each pair of
latent parameters, we evaluate performance on five independently trained agents over 100
episodes and report the average win rate and episode lengths.

vSSM+KF can handle adversarial episodes. In Figure 4.6 we compare latent space rollouts4 from vSSM+KF
4We use a latent state dimension N = 2 in order to plot the policy decision boundary in latent space. This results in slightly worse
performance than the results reported in Figure 4.4, where we use N = 128.
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Figure 4.6.: Latent space rollouts in adversarial Best Arm Identification episode. (Left) Rollout in latent
space (N = 2) for vSSM+KF and vSSM after training. (Middle-Right)Policy decision boundaries
overlaid with the latent space trajectory. Circles and stars denote the beginning and end of
trajectories, respectively.

and vSSM in an adversarial episode: µb is negative, but the first two observations are positive and of relatively
large magnitude. After only four observations, vSSM is mislead by the positive observations and issues the
wrong decision, as visualized in Figure 4.6 (middle) where we show the policy’s output across latent space,
overlaid with the rollout trajectory. Instead, vSSM+KF remains in the region where the policy requests more
observations before it navigates to the correct region of latent space, as shown in Figure 4.6 (right). While
this example was hand-picked, it is consistent with the adaptation patterns from Figure 4.5.

4.5.4. Probabilistic Filtering - Continuous Control under Observation Noise

In this experiment, we evaluate the ability to learn control policies subject to observation noise. Effective
history encoders must learn to aggregate observations over multiple time steps to produce a filtered state
representation amenable for control. Our hypothesis is that internal probabilistic filtering provides an
inductive bias for learning such a filtered representation. To test our hypothesis, we conduct evaluations
across nine environments from the DeepMind Control (DMC) suite (Tunyasuvunakool et al., 2020) with
zero-mean Gaussian noise added to the observations, as done by Becker and Neumann (2022); Becker et al.
(2024). We present aggregated performance in Figure 4.7 following the recommendations from (Agarwal
et al., 2021). We now discuss the main insights from this experiment.
vSSM+KF improves performance of stateful models. The KF layer is the only evaluated add-on for
stateful models that significantly improves performance over the baseline model vSSM. This suggests that
the uncertainty-based gating in Kalman filters is more effective at handling noisy data compared to the
gating mechanism implemented by GRU and Mamba. This observation matches the results in the Best
Arm Identification problem from Section 4.5.3. Comparing vSSM+KF and vSSM+KF-u, there is a slight
improvement in performance from using an input signal in the KF layer, but it is not statistically significant.
vSSM+KF learns consistently across environments. From the detailed results in Figure 4.8, we observe
that vSSM+KF consistently improves performance over the Memoryless lower-bound and achieves the
best or comparable final performance in five out of nine tasks. Instead, GRU, Mamba and vTransformer
completely fail to learn in some tasks, barely matching the performance of Memoryless.
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Figure 4.7.: Aggregated performance in noisy DMC benchmark (9 tasks) with 95% bootstrap confidence
intervals over five random seeds. (Left) Inter-quartile mean returns normalized by the score of
Oracle. (Right) Performance profile after 1M environment steps. Higher curves correspond
to better performance.
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Figure 4.8.: Training curves for the noisy DMC benchmark. We show mean and standard error over five
random seeds. For all tasks, we add zero-mean Gaussian noise to the observations with a
scale of 0.3, except the pendulum-swingup and point-mass where the scale is 0.1.

We conduct an additional ablation over increasing noise levels in six representative tasks from the DMC
suite, as shown in Figure 4.9. Training curves are included in Appendix C.4
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We report the mean and standard error over five random seeds (ten for pendulum due to large
variance) of the return after 1M environment steps, normalized by the score of Oracle.

vSSM+KF performs close to Oracle under full observability. We observe vSSM+KF generally matches
the performance of Oracle in the absence of noise (normalized score close to 1.0), whereas vSSM and
vTransformer significantly underperform in some tasks. This suggests that the added probabilistic
filtering in vSSM+KF is a general-purpose strategy even under full observability.
vSSM+KF’s robustness to noise is environment dependent. Figure 4.9 suggests that robustness to noise
depends generally on the environment, without any clear patterns related to task specifics. vSSM+KF is
more robust in finger-spin, cheetah-run and pendulum5, vSSM is more robust in walker-run but
significantly underperforms in other environments, and vTransformer is more robuts in reacher and
point-mass but fails to learn in pendulum. Overall, vSSM+KF shows the most consistent performance
across environments and noise levels.

4.5.5. General Memory Capabilities

So far the evaluations were conducted in tasks where probabilistic filtering was intuitively expected to excel.
In this experiment, we evaluate performance in a wider variety of POMDPs from the POPGym (Morad et al.,
2023) benchmark. We select a subset of 12 tasks that probe models for long-term memory, compression,
recall, control under noise and reasoning. The aggregated results are shown in Figure 4.10 and full training
curves are also included in Appendix C.5. Below we discuss the main insights.
KF layers can be generally helpful in POMDPs. From the performance profile in Figure 4.10 we observe
a statistically significant gap between vSSM and vSSM+KF. Interestingly, the largest improvements in
sample-efficiency (RepeatPreviousEasy) and final performance (MineSweeperEasy) correspond to
5We found that Oracle underperforms in the noiseless pendulum-swingup, similarly reported in (Luis et al., 2023b), which is
why the normalized score in this task is larger than 1.0 in some cases. Moreover, performance does not strictly decrease under
higher noise levels, perhaps because noise may actually help avoid early convergence under sparse rewards.
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Figure 4.10.: Aggregated performance in POPGym selected environments (12 tasks) with 95% bootstrap
confidence intervals over five random seeds. We normalize the maximum-mean episodic
return (MMER) by the best reported MMER in (Morad et al., 2023)(Left) Normalized IQM
MMER (Right) Performance profile after 1M environment steps. Higher curves correspond to
better performance and a score of 1.0 means equivalent performance as the best baseline
(per environment) reported in POPGym.

tasks that probe for memory duration and recall, respectively. The parameter count difference between
vSSM and vSSM+KF in these problems is less than 6%, so we believe model capacity is unlikely the reason
behind the large performance difference. We hypothesize that, while probabilistic filtering is not required to
solve these tasks, the KF layer has extra flexibility via the latent observation and noise signals to accelerate
the learning process. We also highlight that vSSM+KF and vSSM+KF-u show comparable performance in
this benchmark, suggesting the input signal to be less critical in general memory tasks.
vSSM+KF is less sample-efficient in pure-memory tasks. In particular, we observe that Mamba’s input-
selectivity is the best-suited mechanism for SSM agents to solve long-term memory problems, matching
the performace of GRU and vTransformer. This is an expected result based on the associative recall
performance of Mamba reported in its original paper (Gu and Dao, 2023).
Linear SSMs can have strong performance. Morad et al. (2023) report poor performance when combining
PPO with the S4D (Gu et al., 2022b) model. While we do not evaluate the S4D model and use an off-policy
algorithm in our RAC architecture, our evaluation shows various linear SSMs have strong performance,
often surpassing the best reported scores in Morad et al. (2023). Our observation is consistent with the
strong performance of PPO with the S5 model reported by Lu et al. (2023).

4.5.6. Ablation

We conduct an ablation on vSSM+KF where we vary two hyperparameters: the latent state size N and
the number of stacked KF layers L6. We select four representative tasks from POPGym that test different
memory capabilities. The final scores are presented in Figure 4.11 and the full training curves are shown in
Figure 4.12. Performance is most sensitive to these hyperparameters in the RepeatFirstMedium task,
6We use an RMSNorm output block in vSSM+KF since it was critical to ensure stable learning when L > 1.

71



0 1MMER

N = 64, L = 1
N = 64, L = 2
N = 64, L = 3
N = 128, L = 1
N = 128, L = 2
N = 128, L = 3
N = 256, L = 1
N = 256, L = 2
N = 256, L = 3

MineSweeperEasy

0 1MMER

BanditHard

0 1MMER

NoisyPendulumHard

0 1MMER

RepeatFirstMedium

Figure 4.11.: POPGym ablation for vSSM+KF over the latent state size N and the number of layers L. We
report the mean and standard error over five random seeds of the MMER score after 1M
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Figure 4.12.: POPGym training curves for ablation experiment over the latent state size N and the number
of KF layers L. We show mean and standard error over five random seeds.

where the agent must recall information from the first observation over several steps. The general trend is
that using more than one layer improves final performance and increases sample-efficiency (see the training
curves in Figure 4.12). Our results are aligned with the good performance of stacked S5 layers reported by
Lu et al. (2023), but differ from the observations in (Ni et al., 2023), where both LSTM and transformer
models performed best with a single layer in a similar long-term memory task (T-maze passive). From these
observations, we believe an interesting avenue for future work is to study what mechanisms enable effective
stacking and combination of multiple recurrent layers.

4.6. Conclusion

We investigated the use of Kalman filter (KF) layers as sequence models in a recurrent actor-critic architecture.
These layers perform closed-form Gaussian inference in latent space and output a filtered state representation
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for downstream RL components, such as value functions and policies. Thanks to the associative nature of the
Kalman filter equations, the KF layers process sequential data efficiently via parallel scans, whose runtime
scales logarithmically with the sequence length. To handle trajectories with variable length in off-policy
RL, we introduced Masked Associative Operators (MAOs), a general-purpose method that augments any
associative operator to recover the correct hidden state when processing padded input data. The KF layers
are used as a drop-in replacement for RNNs and SSMs in recurrent architectures, and thus can be trained
similarly in an end-to-end, model-free fashion for return maximization.
We evaluated and analysed the strengths and weaknesses of several sequence models in a wide range of
POMDPs. KF layers excel in tasks where uncertainty reasoning is key for decision-making, such as the
Best Arm Identification task and control under observation noise, significantly improving performance over
stateful models like RNNs and deterministic SSMs. In more general tasks, including long-term memory and
associative recall, KF layers typically match the performance of transformers and other stateful sequence
models, albeit with a lower sample-efficiency.
Limitations and Future Work. We highlight notable limitations of our methodology and suggest avenues
for future work. First, we investigated two design decisions in KF layers related to time-varying process noise
and posterior covariance as output features. While they resulted in worse performance (see Appendix C.3),
in principle they generalize KF layers and may bring benefits in other tasks or contexts, so we believe it is
worth further investigation. Second, we use models with relatively low parameter count (< 1M) which is
standard in RL but not on other supervised learning tasks. It may be possible that deeper models with larger
parameter counts enable new capabilities, e.g., probabilistic reasoning, without explicit probabilistic filtering
mechanisms. Third, vSSM+KF uses KF layers as standalone history encoders, but more complex architectures
may be needed to stabilize training at larger parameter counts. Typical strategies found in models like
Mamba include residual connections, layer normalization, convolutions and non-linearities. Fourth, our
evaluations were limited to POMDPS with relatively low-dimensional observation and action spaces, where
small models have enough capacity for learning. Future work could further evaluate performance in more
complex POMDPs and compare with our findings.
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5. Conclusion

The goal of this thesis was to develop uncertainty estimation techniques to enhance the performance of
reinforcement learning algorithms, considering several challenges such as exploration, offline optimization,
adaptation and partial observability. In Section 5.1, we discuss how each chapter of this dissertation tackles
some of these challenges. In Section 5.2, we describe interesting areas for future research.

5.1. Summary

Chapter 2 addressed the problem of estimating the epistemic variance of value functions in model-based
RL. We derived an uncertainty Bellman equation that converges to the variance of values given a posterior
distribution of MDPs, thus closing a theoretical gap from prior work and bringing new understanding on
how to propagate uncertainty in the decision-making process. Our theoretical framework for uncertainty
estimation was paired with optimistic policy optimization to achieve lower regret in challenging exploration
problems in tabular RL. Furthermore, we extended our approach to tackle MDPs with continuous state-action
spaces leveraging neural networks as function approximators. The resulting algorithm, Q-Uncertainty Soft
Actor-Critic (QU-SAC) could flexibly tackle exploration and offline optimization problems with minimal
changes. In both problems, quantifying uncertainty around the value function and using it for policy
optimization proved instrumental for better performance.
Next, in Chapter 3 we investigated rich distributional representations of epistemic uncertainty around
value functions, given parameter uncertainty in MDPs. On the theoretical side, we proved convergence of a
so-called value-distributional Bellman operator to the value distribution of a policy. From this theoretical
result, we proposed a simple model-based algorithm named Epistemic Quantile Regression (EQR) that
iteratively estimates the quantiles of the value distribution. We proposed a deep RL architecture based
on EQR, denoted EQR-SAC, that uses neural networks for modelling the quantile representation of the
value distribution. The rich representation of uncertainty allows more flexibility in the policy’s objective
function, which can be specified as any differentiable function of the estimated quantiles. EQR-SAC showed
improved sample-efficiency in several continuous control problems and also robustness to the choice of
hyperparameters.
Lastly, Chapter 4 considered the problem of partial observability in RL, with a focus in problems where
uncertainty about the infered latent state was crucial for decision-making. To tackle these problems, we
proposed the use of Kalman filter (KF) layers as drop-in replacement for RNNs and deterministic SSMs in a
recurrent actor-critic architecture. Despite their simplified inference scheme, we empirically demonstrated
strong performance of KF layers in tasks that required adaptation and probabilistic reasoning capabilities,
surpassing commonly used models such as transformers and GRUs. Our work highlighted the strengths of
principled probabilistic inference mechanisms for modelling sequences in decision-making.
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5.2. Outlook

In this section, we propose and discuss several exciting avenues of future work.
Lifting the theory assumptions. The theory developed in Chapters 2 and 3 rest on the general assumption
that the Bayesian posterior around the transition function is independent of the Bayesian posterior around the
value function. While this is not restrictive in the tabular case, it is immediately violated when the transition
function generalizes across the state-action space, i.e., under function approximation. Given the general
importance of function approximation to tackle problems with large (even infinite) state-action spaces, an
interesting area of future work is to relax the assumptions in our theory of uncertainty-related Bellman
operators. For instance, by extending the family of MDPs (e.g., linear) where the epistemic uncertainty
around the value function still admits a recursive formulation akin the UBE or the value-distributional
Bellman equation. While under relaxed assumptions these Bellman equations may no longer exist, we
believe future work should still aim for uncertainty estimation techniques that inherently consider the
decision-making nature of RL, as those would naturally perform propagation of uncertainty.
Model learning. Accurate and well-calibrated dynamic models are essential in model-based RL (Curi et al.,
2020; Malik et al., 2019), however it was not a focus in this dissertation. We believe that advances in
dynamic models will naturally translate to improved uncertainty quantification in value functions. First,
while ensembles (Lakshminarayanan et al., 2017) have favorable statistical and practical properties, in this
work we used relatively small ensembles (< 10 members) for computational efficiency, which may limit their
uncertainty expressivity. Future work could further explore the effect of various ensembling techniques in
the estimated value uncertainty. Second, in this work we generally used short model rollouts (<50 steps) to
avoid compunding errors (Lambert et al., 2022), but longer rollouts are desirable to capture the long-term
effect of policies in a given dynamical system. Third, another interesting area of future work is to leverage
Bayesian neural networks as the backbone for learning environment dynamics (Depeweg, 2019).
Distributional representations. In Chapter 3 we used the quantile parameterization from (Dabney et al.,
2018b), which is widely adopted (Wurman et al., 2022) and easy to implement. However, thanks to the close
relationship between our Bayesian perspective and the model-free distributional RL literature, we believe
that advances in the latter can be equally leveraged by the former. From theoretical analysis (Rowland et al.,
2018, 2023) to novel distributional representations (Dabney et al., 2018a; Yang et al., 2019), we argue that
drawing strong connections between (epistemic) value distributions and (aleatoric) return distributions may
lead to interesting insights.
Joint objectives. A weakness of the uncertainty-aware framework introduced in Chapter 1 is that it treats
model learning, value uncertainty and policy optimization as three separate learning problems: dynamics
are trained with a supervised loss to accurately predict next states, value functions and their uncertainty
estimates are trained to minimize some Bellman error and policies are trained to maximize some value-based
objectives. The potential mismatch between two or more of these objectives is often labelled as a weakness
of model-based approaches, e.g., more accurate models may not yield better policies (Lambert et al., 2020).
Future work could investigate how to best integrate joint model-policy objective functions, such as the
one proposed by Eysenbach et al. (2022), with the uncertainty quantification methods developed in this
dissertation.
Scaling probabilistic inference in SSMs. In Chapter 4 we introduced a simple KF layer as a mechanism
for probabilistic inference in RL under partial observability. Since the KF layer is a standalone layer,
it can be combined with other layers and components to build complex architectures. We empirically
analyzed relatively simple architectures at low parameter counts, with few stacked KF layers and an output
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normalization block. However, sequence models in other domains such as language and vision require careful
architectural decisions and training recipes in order to train much deeper models with large parameter
counts, which enable good performance and generalization in complex tasks. It remains an open question
how to best scale up sequence models with internal probabilistic inference mechanisms and whether new
capabilities emerge at larger parameter counts.
Combining gatingmechanisms in recurrent models. In Chapter 4 we highlighted that KF layers implement
an uncertainty-based gating mechanism, while other sequence models like Mamba (Gu and Dao, 2023) and
GRUs (Cho et al., 2014) implement other gating mechanisms. We empirically analyze the strengths and
weaknesses of such gating mechanisms, but an equally interesting research question is how to best combine
these techniques into a single gating mechanism. For instance, combining the uncertainty-based gating of
KF layers with the input-dependent gating of Mamba could yield models that are equally performant at
probabilistic reasoning and long-term memory tasks.
Explicit usage of latent state uncertainty. The recurrent actor-critic architecture proposed in Chapter 4
only actively uses the filtered state representation from KF layers to condition the actor and the critic.
However, actively using the uncertainty of the latent state for decision-making is an open research problem.
Our initial experiments using the posterior variance of the latent state as an output feature of KF layers
yielded worse performance than only using the posterior mean (see results in Appendix C.3). Nevertheless,
we believe explicit usage of the uncertainty around the infered latent state is required for generally-capable
agents under partial observability.
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A. Supplementary Material for Chapter 2

A.1. Theory Proofs

A.1.1. Proof of Theorem 1

In this section, we provide the formal proof of Theorem 1. We begin by showing an expression for the
posterior variance of the value function without assumptions on the MDP. We define the joint distribution
pπ(a, s′ | s) = π(a | s)p(s′ | s, a) for a generic transition function p. To ease notation, since π is fixed, we
will simply denote the joint distribution as p(a, s′ | s).

Lemma 2. For any s ∈ S and any policy π, it holds that

VP
[︂
V π(s)

]︂
= γ2 EP

⎡⎢⎣
⎛⎝∑︂
a,s′

P (a, s′ | s)V π(s′)

⎞⎠2
⎤⎥⎦− γ2

⎛⎜⎝EP

⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⎤⎦
⎞⎟⎠

2

. (A.1)

Proof. Using the Bellman expectation equation

vπ(s) =
∑︂
a

π(a | s)r(s, a) + γ
∑︂
a,s′

p(a, s′ | s)vπ(s′), (A.2)

we have

VP
[︁
V π(s)

]︁
= VP

⎡⎣∑︂
a

π(a | s)r(s, a) + γ
∑︂
a,s′

P (a, s′ | s)V π(s′)

⎤⎦ (A.3)

= VP

⎡⎣γ∑︂
a,s′

P (a, s′ | s)V π(s′)

⎤⎦, (A.4)

where (A.4) holds since r(s, a) is deterministic. Using the identityV[Y ] = E[Y 2]−(E[Y ])2 on (A.4) concludes
the proof.

The next result is the direct consequence of our set of assumptions.

Lemma 3. Under Assumptions 1–3, P (s′ | s, a) and V π(s′) are conditionally independent random variables
for all triplets (s, a, s′) ∈ S ×A× S.
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Proof. Let T0:∞ be a random trajectory under the random transition dynamics P . Under Assumptions 2
and 3, T0:∞ is a sequence of H random, but unique states followed by the terminal (absorbing) state
{S0, S1, . . . , SH , sT , sT , . . . }, i.e., we have Si ̸= Sj for all i ̸= j. We prove the Lemma by dividing the random
trajectory into two segments: the random (finite) segment for step h ≤ H and the deterministic (infinite)
segment for h > H.
Case T0:H . Under Assumption 1, the conditioned trajectory probability P(T0:H | P ), which is itself a random
variable through conditioning on P , is a product of independent random variables defined by

P(T0:H | P ) =
H−1∏︂
h=0

π(Ah | Sh)P (Sh+1 | Sh, Ah) (A.5)

= P (S1 | S0, A0)π(A0 | S0)
H−1∏︂
h=1

π(Ah | Sh)P (Sh+1 | Sh, Ah). (A.6)

= P (S1 | S0, A0)π(A0 | S0)P(T1:H | P ). (A.7)
Note that each transition probability in P(T0:H | P ) is distinct by Assumption 2. Additionally, for any h > 0
the action probability π(Ah | Sh) is conditionally independent of P (Sh | Sh−1, Ah−1) given Sh. Then, for
arbitrary S0 = s, A0 = a and S1 = s′, we have that P (s′ | s, a) is conditionally independent of P(T1:H−1 | P ).
Since V π(S1 | S1 = s′) is a function of P(T1:H | P ), then it is also conditionally independent of P (s′ | s, a).
Case TH:∞. The Lemma is trivially satisfied since both the transition probability and the values become
constants: we have P (sT | sT , a) = 1 and V π(sT ) = 0.
Combining both results, we have that P and V π are conditionally independent for any arbitrary infinite
trajectory, which completes the proof.

Using the previous result yields the following lemma.

Lemma 4. Under Assumptions 1–3, it holds that∑︂
a,s′

EP
[︁
P (a, s′ | s)V π(s′)

]︁
=
∑︂
a,s′

p̄(a, s′ | s)EP
[︁
V π(s′)

]︁
. (A.8)

Proof. For any pair of random variables X and Y on the same probability space, by definition of covariance
it holds that E[XY ] = Cov[X,Y ] + E[X]E[Y ]. Using this identity, the fact that the independence result
from Lemma 3 implies zero correlation and the definition of posterior mean transition in (2.3) yields the
result.

Now we are ready to prove the main theorem.

Theorem 1. Under Assumptions 1–3, for any s ∈ S and policy π, the posterior variance of the value function,
Uπ = VP [V π] obeys the uncertainty Bellman equation

Uπ(s) = γ2u(s) + γ2
∑︂
a,s′

π(a | s)p̄(s′ | s, a)Uπ(s′), (2.7)

where u(s) is the local uncertainty defined as

u(s) = Va,s′∼π,p̄
[︁
v̄π(s′)

]︁
− EP

[︂
Va,s′∼π,P

[︁
V π(s′)

]︁]︂
. (2.8)
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Proof. Starting from the result in Lemma 2, we consider each term on the r.h.s of (A.1) separately. For the
first term, notice that within the expectation we have a squared expectation over the transition probability
P (s′ | s, a), thus using the identity (E[Y ])2 = E[Y 2]− V[Y ] results in

EP

⎡⎢⎣
⎛⎝∑︂
a,s′

P (a, s′ | s)V π(s′)

⎞⎠2
⎤⎥⎦ = EP

⎡⎣∑︂
a,s′

P (a, s′ | s)
(︁
V π(s′)

)︁2 − Va,s′∼π,P
[︁
V π(s′)

]︁⎤⎦. (A.9)

Applying linearity of expectation to bring it inside the sum and an application of Lemma 4 (note that the
lemma applies for squared values as well) gives

=
∑︂
a,s′

p̄(a, s′ | s)EP
[︂(︁
V π(s′)

)︁2]︂− EP
[︂
Va,s′∼π,P

[︁
V π(s′)

]︁]︂
. (A.10)

For the second term of the r.h.s of (A.1) we apply again Lemma 4 and under definition of variance⎛⎜⎝EP

⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⎤⎦
⎞⎟⎠

2

=

⎛⎝∑︂
a,s′

p̄(a, s′ | s)EP
[︁
V π(s′)

]︁⎞⎠2

(A.11)

=
∑︂
a,s′

p̄(a, s′ | s)
(︂
EP
[︁
V π(s′)

]︁)︂2
− Va,s′∼π,p̄

[︂
EP
[︁
V π(s′)

]︁]︂
. (A.12)

Finally, since
EP
[︂(︁
V π(s′)

)︁2]︂− (︂EP [︁V π(s′)
]︁)︂2

= VP
[︁
V π(s′)

]︁ (A.13)

for any s′ ∈ S, we can plug (A.10) and (A.12) into (A.1), which proves the theorem.

A.1.2. Proof of Theorem 2

In this section, we provide the supporting theory and the proof of Theorem 2. First, we will use the identity
V[E[Y |X]] = E[(E[Y |X])2]−(E[E[Y |X]])2 to prove u(s) = w(s)−g(s) holds, with Y =

∑︁
a,s′ P (a, s

′ | s)V π(s′).
For the conditioning variable X, we define a transition function with fixed input state s as a mapping
ps : A → ∆(S) representing a distribution ps(s′ | a) = p(s′ | s, a). Then X = Ps :=

{︁
Ps(s

′ | a)
}︁
s′∈S,a∈A.

The transition function Ps is drawn from a distribution Φs obtained by marginalizing Φ on all transitions
not starting from s.

Lemma 5. Under Assumptions 1–3, it holds that

VPs

⎡⎢⎣EP
⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⃓⃓⃓⃓
⃓⃓ Ps

⎤⎦
⎤⎥⎦ = VP

⎡⎣∑︂
a,s′

P (a, s′ | s)v̄π(s′)

⎤⎦. (A.14)

Proof. Treating the inner expectation,

EP

⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′) | Ps

⎤⎦ =
∑︂
a

π(a | s)
∑︂
s′

EP
[︁
P (s′ | s, a)V π(s′)

⃓⃓
Ps

]︁
. (A.15)
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Due to the conditioning, P (s′ | s, a) is deterministic within the expectation

=
∑︂
a,s′

P (a, s′ | s)EP
[︁
V π(s′)

⃓⃓
Ps

]︁
. (A.16)

By Lemma 3, V π(s′) is independent of Ps, so we can drop the conditioning

=
∑︂
a,s′

P (a, s′ | s)v̄π(s′). (A.17)

Lastly, since drawing samples from a marginal distribution is equivalent to drawing samples from the joint,
i.e., VX [f(X)] = V(X,Y )[f(X)], then:

VPs

⎡⎣∑︂
a,s′

P (a, s′ | s)v̄π(s′)

⎤⎦ = VP

⎡⎣∑︂
a,s′

P (a, s′ | s)v̄π(s′)

⎤⎦, (A.18)

completing the proof.

The next lemma establishes the result for the expression E[(E[Y |X])2].

Lemma 6. Under Assumptions 1–3, it holds that

EPs

⎡⎢⎢⎣
⎛⎜⎝EP

⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⃓⃓⃓⃓
⃓⃓ Ps

⎤⎦
⎞⎟⎠

2
⎤⎥⎥⎦ =

∑︂
a,s′

p̄(a, s′ | s)
(︁
v̄π(s′)

)︁
− EP

[︂
Va,s′∼π,P

[︁
v̄π(s′)

]︁]︂
. (A.19)

Proof. The inner expectation is equal to the one in Lemma 5, so we have that⎛⎜⎝EP

⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⃓⃓⃓⃓
⃓⃓ Ps

⎤⎦
⎞⎟⎠

2

=

⎛⎝∑︂
a,s′

P (a, s′ | s)v̄π(s′)

⎞⎠2

(A.20)

=
∑︂
a,s′

P (a, s′ | s)
(︁
v̄π(s′)

)︁2 − Va,s′∼π,P
[︁
v̄π(s′)

]︁
. (A.21)

Finally, applying expectation on both sides of (A.21) yields the result.

Similarly, the next lemma establishes the result for the expression (E[E[Y |X]])2.

Lemma 7. Under Assumptions 1–3, it holds that⎛⎜⎜⎝EPs

⎡⎢⎣EP
⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⃓⃓⃓⃓
⃓⃓ Ps

⎤⎦
⎤⎥⎦
2
⎞⎟⎟⎠ =

∑︂
a,s′

p̄(a, s′ | s)
(︁
v̄π(s′)

)︁
− Va,s′∼π,p̄

[︁
v̄π(s′)

]︁
. (A.22)

Proof. By the tower property of expectations, (E[E[Y |X]])2 = (E[Y ])2. Then, the result follows directly
from (A.11) and (A.12).
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The second part of Theorem 2 is a corollary of the next lemma.

Lemma 8. Under Assumptions 1 and 2, it holds that

EP
[︂
Va,s′∼π,P

[︁
V π(s′)

]︁
− Va,s′∼π,P

[︁
v̄π(s′)

]︁]︂ (A.23)

is non-negative.

Proof. We will prove the lemma by showing (A.23) is equal to EP
[︂
Va,s′∼π

[︁
V π(s′)− v̄π(s′)

]︁]︂, which is a
non-negative quantiy by definition of variance. The idea is to derive two expressions for E[V[Y |X]] and
compare them. First, we will use the identity E[V[Y |X]] = E[E[(Y −E[Y |X])2|X]]. The outer expectation is
w.r.t the marginal distribution Φs while the inner expectations are w.r.t Φ. For the inner expectation we have

EP

⎡⎢⎢⎣
⎛⎜⎝∑︂
a,s′

P (a, s′ | s)V π(s′)− EP

⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⃓⃓⃓⃓
⃓⃓ Ps

⎤⎦
⎞⎟⎠

2
⃓⃓⃓⃓
⃓⃓⃓⃓ Ps

⎤⎥⎥⎦ (A.24)

= EP

⎡⎢⎣
⎛⎝∑︂
a,s′

P (a, s′ | s)
(︁
V π(s′)− EP [V π | Ps]

)︁⎞⎠2
⃓⃓⃓⃓
⃓⃓⃓ Ps

⎤⎥⎦ (A.25)

= EP

⎡⎢⎣
⎛⎝∑︂
a,s′

p(a, s′ | s)
(︁
V π(s′)− v̄π(s′)

)︁⎞⎠2
⃓⃓⃓⃓
⃓⃓⃓ Ps

⎤⎥⎦ (A.26)

= EP

⎡⎣∑︂
a,s′

P (a, s′ | s)
(︁
V π(s′)− v̄π(s′)

)︁2 − Va,s′∼π,P
[︁
V π(s′)− v̄π(s′)

]︁ ⃓⃓⃓⃓⃓⃓ Ps

⎤⎦ (A.27)

=
∑︂
a,s′

P (a, s′ | s)VP
[︁
V π(s′)

]︁
− EP

[︂
Va,s′∼π,P

[︁
V π(s′)− v̄π(s′)

]︁ ⃓⃓⃓
Ps

]︂
. (A.28)

Applying the outer expectation to the last equation, along with Lemma 3 and the tower property of
expectations yields:

E[V[Y |X]] =
∑︂
a,s′

p̄(a, s′ | s)VP
[︁
V π(s′)

]︁
− EP

[︂
Va,s′∼π,P

[︁
V π(s′)− v̄π(s′)

]︁]︂
. (A.29)

Now we repeat the derivation but using E[V[Y |X]] = E[E[Y 2|X]− (E[Y |X])2]. For the inner expectation of
the first term we have:

EP

⎡⎢⎣
⎛⎝∑︂
a,s′

P (a, s′ | s)V π(s′)

⎞⎠2
⃓⃓⃓⃓
⃓⃓⃓ Ps

⎤⎥⎦ (A.30)

= EP

⎡⎣∑︂
a,s′

P (a, s′ | s)
(︁
V π(s′)

)︁2 − Va,s′∼π,P
[︁
V π(s′)

]︁ ⃓⃓⃓⃓⃓⃓ Ps

⎤⎦. (A.31)
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Applying the outer expectation:

E[E[Y 2|X]] =
∑︂
a,s′

p̄(a, s′ | s)EP
[︂(︁
V π(s′)

)︁2]︂− EP
[︂
Va,s′∼π,P

[︁
V π(s′)

]︁]︂
. (A.32)

Lastly, for the inner expectation of E[(E[Y |X])2]:⎛⎜⎝EP

⎡⎣∑︂
a,s′

P (a, s′ | s)V π(s′)

⃓⃓⃓⃓
⃓⃓ Ps

⎤⎦
⎞⎟⎠

2

=

⎛⎝∑︂
a,s′

P (a, s′ | s)v̄π(s′)

⎞⎠2

(A.33)

=
∑︂
a,s′

P (a, s′ | s)
(︁
v̄π(s′)

)︁2 − Va,s′∼π,P
[︁
v̄π(s′)

]︁
. (A.34)

Applying the outer expectation:

E[(E[Y |X])2] =
∑︂
a,s′

p̄(a, s′ | s)
(︁
v̄π(s′)

)︁2 − EP
[︂
Va,s′∼π,P

[︁
v̄π(s′)

]︁]︂
. (A.35)

Finally, by properties of variance, (A.29) = (A.32) - (A.35) which gives the desired result.

Theorem 2. Under Assumptions 1–3, for any s ∈ S and policy π, it holds that u(s) = w(s) − g(s), where
g(s) = EP

[︂
Va,s′∼π,P

[︁
V π(s′)

]︁
− Va,s′∼π,P

[︁
v̄π(s′)

]︁]︂. Furthermore, we have that the gap g(s) is non-negative,
thus u(s) ≤ w(s).

Proof. By definition of u(s) in (2.8), proving the claim is equivalent to showing

Va,s′∼π,p̄
[︁
v̄π(s′)

]︁
= w(s) + Ep∼Φ

[︂
Va,s′∼π,P

[︁
v̄π(s′)

]︁]︂
, (A.36)

which holds by combining Lemmas 5–7. Lastly, u(s) ≤ w(s) holds by Lemma 8.

A.2. Theory Extensions

A.2.1. Unknown Reward Function

We can easily extend the derivations on Appendix A.1.1 to include the additional uncertainty coming from
an unknown reward function. Similarly, we model the reward function as a random variable R drawn from
a prior distribution Ψ(R), and whose belief will be updated via Bayes rule. In this new setting, we now
consider the variance of the values under the distribution of MDPs, represented by the random variableM.
We need the following additional assumptions to extend our theory.

Assumption 4 (Independent rewards). R(x, a) and R(y, a) are independent random variables if x ̸= y.

Assumption 5 (Independent transitions and rewards). The random variables P (· | s, a) and R(s, a) are
independent for any (s, a).
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With Assumption 4 we have that the value function of next states is independent of the transition function
and reward function at the current state. Assumption 5 means that samplingM ∼ Γ is equivalent as
independently sampling P ∼ Φ and R ∼ Ψ.

Theorem 4. Under Assumptions 1–5, for any s ∈ S and policy π, the posterior variance of the value function,
Uπ = VM[V π] obeys the uncertainty Bellman equation

Uπ(s) = VR

[︄∑︂
a

π(a | s)R(s, a)
]︄
+ γ2u(s) + γ2

∑︂
a,s′

π(a | s)p̄(s′ | s, a)Uπ(s′), (A.37)

where u(s) is defined in (2.8).

Proof. By Assumptions 4 and 5 and following the derivation of Lemma 2 we have

VM
[︁
V π(s)

]︁
= VM

⎡⎣∑︂
a

π(a | s)R(s, a) + γ
∑︂
a,s′

P (a, s′ | s)V π(s′)

⎤⎦ (A.38)

= VR

[︄∑︂
a

π(a | s)R(s, a)
]︄
+ VM

⎡⎣γ∑︂
a,s′

P (a, s′ | s)V π(s′)

⎤⎦. (A.39)

Then following the same derivations as Appendix A.1.1 completes the proof.

A.2.2. Extension to Q-values

Our theoretical results naturally extend to action-value functions. The following result is analogous to
Theorem 1.

Theorem 5. Under Assumptions 1–3, for any (s, a) ∈ S × A and policy π, the posterior variance of the
Q-function, Uπ = VP [Qπ] obeys the uncertainty Bellman equation

Uπ(s, a) = γ2u(s, a) + γ2
∑︂
a′,s′

π(a′ | s′)p̄(s′ | s, a)Uπ(s′, a′), (A.40)

where u(s, a) is the local uncertainty defined as

u(s, a) = Va′,s′∼π,p̄
[︁
q̄π(s′, a′)

]︁
− Ep∼Φ

[︂
Va′,s′∼π,P

[︁
Qπ(s′, a′)

]︁]︂ (A.41)

Proof. Follows the same derivation as Appendix A.1.1

Similarly, we can connect to the upper-bound found by Zhou et al. (2020) with the following theorem.

Theorem 6. Under Assumptions 1–3, for any (s, a) ∈ S × A and policy π, it holds that u(s, a) = w(s, a)−
g(s, a), where w(s, a) = VP

[︂∑︁
a′,s′ π(a

′ | s′)P (s′ | s, a)q̄π(s′, a′)
]︂
and g(s, a) = EP

[︂
Va′,s′∼π,P

[︁
Qπ(s′, a′)

]︁
−

Va′,s′∼π,P
[︁
q̄π(s′, a′)

]︁]︂. Furthermore, we have that the gap g(s, a) ≥ 0 is non-negative, thus u(s, a) ≤ w(s, a).

Proof. Follows the same derivation as Appendix A.1.2. Similarly, we can prove that the gap g(s, a) is
non-negative by showing it is equal to EP

[︂
Va′,s′∼π,P

[︁
Qπ(s′, a′)− q̄π(s′, a′)

]︁]︂.
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A.2.3. State-Action Uncertainty Rewards

In our practical experiments, we use the results of both Appendices A.2.1 and A.2.2 to compose the
uncertainty rewards propagated via the UBE. Concretely, we consider the following two approaches for
computing state-action uncertainty rewards:
• pombu:

w(s, a) = VP

⎡⎣∑︂
a′,s′

π(a′ | s′)P (s′ | s, a)q̄π(s′, a′)

⎤⎦ (A.42)

• exact-ube:
u(s, a) = w(s, a)− EP

[︂
Va′,s′∼π,P

[︁
Qπ(s′, a′)− q̄π(s′, a′)

]︁]︂ (A.43)

Additionally, since we also learn the reward function, we add to the above the uncertainty term generated
by the reward function posterior, as shown in Appendix A.2.1: VR

[︁
R(s, a)

]︁.
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A.3. Hyperparameters

Table A.1.: Hyperparameters for the DMC experiments of Section 2.7.3. For MBPO, we use ofM = 2 as the
original method uses clipped Q-learning.

Name Value
General

T - # episodes 500

E - steps per episode 103

Replay buffer D capacity 105

Batch size (all nets) 256

Warm-up steps (under initial policy) 5× 103

SAC
G - # gradient steps 10

Auto-tuning of entropy coefficient α? Yes
Target entropy −dim(A)

Actor MLP network 2 hidden layers - 128 neurons - Tanh activations
Critic MLP network 2 hidden layers - 256 neurons - Tanh activations

Actor/Critic learning rate 3× 10−4

Dynamics Model
N - ensemble size 5

F - frequency of model training (# steps) 250

L - # model rollouts per step 400

k - rollout length 5

∆ - # Model updates to retain data 1

Model buffer(s) capacity L× F × k ×∆ = 5× 105

Model MLP network 4 layers - 200 neurons - SiLU activations
Learning rate 1× 10−3

QU-SAC Specific
M - # critics per dynamics model 1

λ - # uncertainty gain 1.0

Uncertainty type {︁
ensemble-var,upper-bound

}︁
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Table A.2.: Hyperparameters for the D4RL experiments of Section 2.7.4.

Name Value
General

G - gradient steps 106

Replay buffer D capacity 106

Batch size (all nets) 512

SAC
Auto-tuning of entropy coefficient α? Yes

Target entropy −dim(A)
Actor MLP network 3 hidden layers - 256 neurons - Tanh activations
Critic MLP network 3 hidden layers - 256 neurons - Tanh activations
Actor learning rate 3× 10−5

Critic learning rate 3× 10−4

Dynamics Model
N - ensemble size 5

F - frequency of data collection (# steps) 1000

L - rollout batch size 5× 104

k - rollout length 15

∆ - # Data collection calls to retain data 5

Model buffer(s) capacity L× k ×∆ = 3.75× 106

Model MLP network 4 layers - 200 neurons - SiLU activations
Learning rate 1× 10−3

QU-SAC Specific
M - # critics per dynamics model {1, 2}

λ - # uncertainty gain −1.0
Uncertainty type {︁

ensemble-var,upper-bound
}︁
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B. Supplementary Material for Chapter 3

B.1. Theory Proofs

Proposition 1 (Random Variable Value-Distribution Bellman Equation). Let V π be the random value function
defined in (2.2). Then, it holds that

V π(s) =
∑︂
a

π(a | s)r(s, a) + γ
∑︂
s′,a

π(a | s)P (s′ | s, a)V π(s′), (3.4)

for any policy π and initial state s ∈ S.

Proof. We proceed similarly as the standard Bellman equation proof shown by Bellemare et al. (2023). First,
the random trajectories T̃ have two properties endowed by the Markov decision process: time homogeneity
and the Markov property. Informally speaking, time homogeneity states that the trajectory from a given state
s is independent of the time k at which the state is visited, while the Markov property states that trajectories
starting from s are independent of states, actions or rewards encountered before s (c.f. Bellemare et al.
(2023) Lemmas 2.13, 2.14 for a formal definition). In the domain of random variables, these properties
imply that two trajectories starting from the same initial state s are equally distributed regardless of past
history.
From the definition (2.2) we decompose the random value into the immediate reward and the value at the
next state:

V π(s) = ET̃ [R0|S0 = s, P ] + γ ET̃

⎡⎣ ∞∑︂
h=1

γh−1Rh

⃓⃓⃓⃓
⃓⃓S0 = s, P

⎤⎦. (B.1)

For the first term, the only random variable remaining is A0, so we rewrite it as

=
∑︂
a

π(a | s)r(s, a) + γ ET̃

⎡⎣ ∞∑︂
h=1

γh−1Rh

⃓⃓⃓⃓
⃓⃓S0 = s, P

⎤⎦. (B.2)

For the second term, we apply the tower property of expectations

=
∑︂
a

π(a | s)r(s, a) + γ ET̃

⎡⎢⎣ET̃
⎡⎣ ∞∑︂
h=1

γh−1Rh

⃓⃓⃓⃓
⃓⃓S0 = s, A0, S1, P

⎤⎦
⃓⃓⃓⃓
⃓⃓⃓S0 = s, P

⎤⎥⎦. (B.3)
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By the Markov property,

=
∑︂
a

π(a | s)r(s, a) + γ ET̃

⎡⎢⎣ET̃
⎡⎣ ∞∑︂
h=1

γh−1Rh

⃓⃓⃓⃓
⃓⃓S1, P

⎤⎦
⃓⃓⃓⃓
⃓⃓⃓S0 = s, P

⎤⎥⎦. (B.4)

By time homogeneity, the inner expectation is exactly equal to the random variable V π(S1), after a change
of variable in the infinite sum index

=
∑︂
a

π(a | s)r(s, a) + γ ET̃
[︁
V π(S1)

⃓⃓
S0 = s, P

]︁
. (B.5)

Lastly, the remaining random variable is S1, for which we can explicitly write its probability distribution,
concluding the proof

=
∑︂
a

π(a | s)r(s, a) + γ
∑︂
a,s′

π(a | s)P (s′ | s, a)V π(s′). (B.6)

Notation: for the following Lemma, we use the notation D(X) to denote the distribution of the random
variable X ∈ X , as done in Bellemare et al. (2023). In particular, we use DP to denote the distribution of a
random variable belonging to the probability space of P , i.e., random variables derived from the posterior
distribution Φ(P | D).

Lemma 1 (Value-Distribution Bellman Equation). The value distribution function µπ obeys the Bellman
equation.

µπ = EP
[︁
(brπ ,Pπ ,γ)#µ

π
]︁ (3.7)

for any policy π.

Proof. In matrix-vector format, the random-variable value-distributional Bellman equation is expressed as

Vπ = rπ + γPπVπ. (B.7)

Since µπ refers to the distribution of the random variable Vπ, which belongs to the probability space of the
random transition function P , then we use our notation to write µπ = DP (V

π). Further, using the notation
DP (·) on the r.h.s of (B.7) yields

µπ = DP (r
π + γPπVπ). (B.8)

For any two random variablesX,Y in the same probability space, it holds that the marginal distribution over
X can bewritten as the expected value over Y of the conditional distribution. That is,D(X) = EY

[︁
D(X | Y )

]︁,
which follows from standard probability theory (Wasserman, 2013). Applying this property to the r.h.s of
(B.8) results in

µπ = EP
[︁
DP (r

π + γPπVπ | Pπ)
]︁
. (B.9)

A similar derivation can be found in related prior work studying the variance of µπ (O’Donoghue et al.,
2018; Zhou et al., 2019; Luis et al., 2023a).
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Given that P (s′ | s, a) and V π(s′) are independent under our assumptions, then conditioning on Pπ means
that the distribution of the matrix-vector product PπVπ is simply the distribution of applying a linear
transformation on Vπ. The result is that the conditional distribution can be interpreted as the pushforward

DP (r
π + γPπVπ | Pπ) = (brπ ,Pπ ,γ)#µ

π, (B.10)

which completes the proof.

We adopt the supremum p-Wasserstein distance to establish contractivity of the operator T π.

Definition 5. For p ∈ [1,∞), the p-Wasserstein distance between two distributions ν, ν ′ is a metric wp :

P(R)× P(R)→ [0,∞] defined by

wp(ν, ν
′) =

(︄∫︂ 1

0

⃓⃓⃓
F−1
ν (τ)− F−1

ν′ (τ)
⃓⃓⃓p
dτ

)︄1/p

, (B.11)

where F−1
(·) is the inverse cumulative distribution function. Furthermore, the supremum p-Wasserstein dis-

tance w̄p between two value distribution functions µ, µ′ ∈ P(R)S is defined by w̄p(µ, µ′) = sups∈S wp(µ(s), µ
′(s)).

The supremum p-Wasserstein distance was proven to be a metric in P(R)S by Bellemare et al. (2017).
To prove that T π is a contraction, we adopt the technique from Bellemare et al. (2023) that relies on the
alternative definition of the p-Wasserstein distance in terms of couplings.

Definition 6 (Coupling (Villani, 2008) Definition 1.1 (adapted)). Let ν, ν ′ ∈ P(R) be two probability
distributions over the reals. A coupling between ν and ν ′ is a joint probability distribution υ ∈ P(R2) whose
marginals are ν and ν ′. That is, given random variables (V, V ′) ∼ υ, we have V ∼ ν and V ′ ∼ ν ′. Further,
we denote Γ(ν, ν ′) ⊆ P(R2) the set1 of all couplings between ν and ν ′.

Intuitively, the coupling υ can be interpreted as a transport plan to move probability mass from one
distribution to another. The p-Wasserstein distance can also be defined as the cost of the optimal transport
plan

wp(ν, ν
′) = min

υ∈Γ(ν,ν′)
E(V,V ′)∼υ

[︁
|V − V |p

]︁1/p
. (B.12)

The existence of an optimal coupling υ⋆ that minimizes (B.12) is guaranteed since ν, ν ′ are measures defined
on a complete, separable metric space (R with the usual metric) and equipped with the corresponding Borel
σ-algebra (i.e., ν, ν ′ are measures on a Polish space) (cf. Villani, 2008, Theorem 4.1).
With these definitions, we now proceed to prove the contraction of the Bellman operator.

Theorem 3. The operator T π is a γ-contraction with respect to w̄p for all p ∈ [1,∞). That is, w̄p(T πµ, T πµ′) ≤
γw̄p(µ, µ

′) for all µ, µ′ ∈ P(R)S such that V (s′) ∼ µ(s′), V ′(s′) ∼ µ′(s′) are conditionally independent of
P π(s′ | s) given s′ ∈ S.

1This set is non-empty: there exists a trivial coupling in which the variables V , V ′ are independent (Villani, 2008)
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Proof. We follow closely the proofs of Proposition 4.1 by Amortila et al. (2020) and Proposition 4.15 by
Bellemare et al. (2023). For each s ∈ S, let υ⋆ denote the optimal coupling that minimizes the p-Wasserstein
metric from Definition 5 between some arbitrary pair of value distributions µ(s), µ′(s) ∈ P(R), so that
(V (s), V ′(s)) ∼ υ⋆.
Define new random variables Ṽ (s) = rπ(s) + γ

∑︁
s′ P

π(s′ | s)V (s′), Ṽ ′
(s) = rπ(s) + γ

∑︁
s′ P

π(s′ | s)V ′(s′).
By definition of the operator T π, we have that Ṽ (s) ∼ (T πµ)(s) and Ṽ ′

(s) ∼ (T πµ′)(s), which means that
the pair (Ṽ (s), Ṽ

′
(s)) ∼ υ̃ is a coupling between (T πµ)(s) and (T πµ′)(s).

Starting from Definition 6 and since the p-Wasserstein distance is a minimum over couplings, then

wpp
(︁
(T µ)(s), (T µ′)(s)

)︁
≤ EP

[︃⃓⃓⃓
Ṽ (s)− Ṽ ′

(s)
⃓⃓⃓p]︃
. (B.13)

Plugging the definition of the random variables,

= EP

⎡⎢⎣
⃓⃓⃓⃓
⃓⃓rπ(s) + γ

∑︂
s′

P π(s′ | s)V (s′)− rπ(s)− γ
∑︂
s′

P π(s′ | s)V ′(s′)

⃓⃓⃓⃓
⃓⃓
p
⎤⎥⎦ (B.14)

By re-arrangement of terms

= γp EP

⎡⎢⎣
⃓⃓⃓⃓
⃓⃓∑︂
s′

P π(s′ | s)(V (s′)− V ′(s′))

⃓⃓⃓⃓
⃓⃓
p
⎤⎥⎦. (B.15)

Since f(x) = |x|p is convex for p ≥ 1, then by Jensen’s inequality

≤ γp EP

⎡⎣∑︂
s′

P π(s′ | s)
⃓⃓
(V (s′)− V ′(s′))

⃓⃓p⎤⎦. (B.16)

By linearity of expectation

= γp
∑︂
s′

EP
[︂
P π(s′ | s)

⃓⃓
(V (s′)− V ′(s′))

⃓⃓p]︂
. (B.17)

By the independence assumption on P π(s′ | s), the expectation of the product becomes the product of
expectations

= γp
∑︂
s′

EP
[︁
P π(s′ | s)

]︁
EP
[︂⃓⃓
(V (s′)− V ′(s′))

⃓⃓p]︂
. (B.18)

Since the supremum of non-negative values is greater or equal than any convex combination of them

≤ γp sup
s′

EP
[︂⃓⃓
(V (s′)− V ′(s′))

⃓⃓p]︂
. (B.19)

By definition of the supremum p-Wasserstein distance
= γpw̄pp(µ, µ

′). (B.20)
Taking supremum on the left-hand side and taking the p-th root on both sides completes the proof.

Theorem 3 parallels similar results in standard RL and model-free distributional RL, in that it allows us to
establish the convergence of iterated applications of T π (Corollary 2).
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B.1.1. Supporting Lemmas

Lemma 9. Define an arbitrary µ0 ∈ PB(R)S . Then, under Assumptions 1–3, the sequence {µk}∞k=0 defined by
µk+1 = T πµk is such that for all k ≥ 0 the random variable Vk(s′) ∼ µk(s

′) is conditionally independent of
P π(s′ | s) given s′ ∈ S.

Proof. Intuitively, by definition of the operator T π, the random variable Vk(s′) is the result of summing
rewards starting from state s′, following the random dynamics P π for k steps and then bootstraping with
V0. That is, applying T π k times results in the random variable

Vk(s
′) = ET0:k

⎡⎣k−1∑︂
h=0

γhRh + γkV0(Sk)

⃓⃓⃓⃓
⃓⃓S0 = s′, P

⎤⎦, (B.21)

where T0:k is a random state trajectory {S0, S1, ..., Sk} starting from S0 = s′ and following the random
dynamics P . Under Assumptions 1–3, T0:k is a sequence of unique states (with the exception of the absorbing
terminal state), which means that the probability of returning to s′ are zero. Finally, since Vk(s′) is an
expectation conditioned on the initial state being s′, it follows that Vk(s′) is conditionally independent of
P π(s′ | s) given s′.

Lemma 10. If the value distribution function µ has bounded support, then T πµ also has bounded support.

Proof. From bounded rewards on [rmin, rmax], then we denote by PB(R)S the space of value distributions
bounded on [vmin, vmax], where vmin = rmin/(1− γ) and vmax = rmax/(1− γ).
Given arbitrary µ ∈ PB(R)S , let v(s) be a realization of µ(s) for any s ∈ S. Then,

∑︁
a π(a | s)r(s, a) +

γ
∑︁

a,s′ π(a | s)P (s′ | s, a)v(s′) is an instantiation of (T πµ)(s) for any s ∈ S. We have:

P
(︁
(T πµ)(s) ≤ vmax

)︁
= P

⎛⎝∑︂
a

π(a | s)r(s, a) + γ
∑︂
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax

⎞⎠, (B.22)

= P

⎛⎝γ∑︂
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax −
∑︂
a

π(a | s)r(s, a)

⎞⎠. (B.23)

Since∑︁a π(a | s)r(s, a) ≤ rmax, then

≥ P

⎛⎝γ∑︂
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax − rmax

⎞⎠. (B.24)

By definition of vmax

≥ P

⎛⎝∑︂
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax

⎞⎠. (B.25)

Finally, since v(s′) ≤ vmax for any s′ ∈ S, then
= 1. (B.26)

Under the same logic, we can similarly show that P(︁(T πµ)(s) ≥ vmin

)︁
= 1, such that P(︁(T πµ)(s) ∈ [vmin, vmax]

)︁
=

1 for any s ∈ S.
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B.2. Hyperparameters

Table B.1.: Hyperparameters for DeepMind Control Suite. In red, we highlight the only deviations of the
base hyperparameters across all environments and baselines.

Name Value
General

T - # episodes 250

E - steps per episode 103

Replay buffer D capacity 105

Warm-up steps (under initial policy) 5× 103

SAC
G - # gradient steps 10

Batch size 256

Auto-tuning of entropy coefficient α? Yes
Target entropy −dim(A)

Actor MLP network 2 hidden layers - 128 neurons - Tanh activations
Critic MLP network 2 hidden layers - 256 neurons - Tanh activations

Actor/Critic learning rate 3× 10−4

Dynamics Model
n - ensemble size 5

F - frequency of model training (# steps) 250

L - # model rollouts per step 400

k - rollout length 5

∆ - # Model updates to retain data 10

Model buffer Dmodel capacity (EQR-SAC) L× F × k ×∆(×n) = 5× 106(25× 106)

Model MLP network (quadruped) 4 layers - 200 (400) neurons - SiLU activations
Learning rate 1× 10−3

Quantile Network
m - # quantiles 51

# (s′, a′) samples (EQR-SAC only) 25
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B.3. DM Control Learning Curves
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Figure B.1.: Individual learning curves of DMC benchmark.
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B.4. DM Control Final Scores

Table B.2.: Scores in DMC benchmark after 250 episodes (or 250K environment steps). For each envi-
ronment, we report the mean and standard error scores over 10 random seeds. We bold the
highest final mean score per environment.

Environment sac mbpo qrmbpo mean qrmbpo ofu qusac eqrsac mean eqrsac ofu

acrobot-swingup 167.7± 22.4 57.7± 19.9 202.3± 18.7 204.0± 21.4 220.3± 30.8 217.8± 18.5 229.4± 17.4

ball-in-cup-catch 972.6± 3.3 972.5± 1.7 974.4± 2.3 908.3± 25.1 972.8± 2.8 977.2± 1.4 928.7± 18.5

cartpole-balance-sparse 949.5± 18.7 985.6± 9.7 977.0± 22.2 894.9± 42.8 904.5± 37.3 997.8± 2.1 968.0± 15.2

cartpole-swingup-sparse 693.8± 27.2 0.1± 0.1 476.2± 72.6 131.8± 72.1 310.6± 64.3 566.4± 54.4 510.6± 86.9

cheetah-run 551.6± 22.6 571.4± 19.3 679.1± 10.7 598.4± 16.2 567.4± 16.8 854.0± 11.7 820.0± 18.4

finger-spin 827.5± 68.1 0.1± 0.1 1.2± 1.1 734.4± 89.7 3.2± 2.6 567.1± 146.7 461.9± 154.1

finger-turn-easy 571.3± 31.3 220.0± 20.0 289.8± 34.1 399.0± 35.7 220.0± 20.0 221.3± 19.9 460.5± 58.3

fish-swim 79.9± 10.9 80.6± 10.0 70.0± 8.7 91.9± 13.3 83.8± 10.0 145.1± 27.3 168.3± 20.4

fish-upright 579.4± 50.8 660.5± 59.5 749.9± 29.1 671.4± 32.2 591.9± 53.5 766.2± 45.3 735.0± 23.5

pendulum-swingup 631.0± 111.7 484.5± 76.4 819.2± 17.2 796.9± 25.2 808.6± 19.7 834.4± 15.7 833.7± 16.0

quadruped-escape 8.0± 1.2 8.8± 1.8 34.5± 7.1 32.4± 5.0 13.7± 4.3 54.2± 16.7 41.1± 11.4

quadruped-run 352.0± 36.4 232.3± 41.2 638.5± 26.0 532.6± 19.0 421.9± 16.8 719.8± 19.0 712.5± 23.6

quadruped-walk 245.5± 57.4 360.1± 95.1 815.1± 25.4 739.4± 38.2 734.8± 26.5 844.3± 26.8 849.2± 17.1

reacher-easy 824.6± 21.9 474.3± 20.8 968.6± 9.8 959.1± 13.2 943.1± 13.8 931.2± 21.5 977.9± 2.5

reacher-hard 797.5± 38.8 291.9± 146.3 921.8± 22.2 905.0± 31.6 635.0± 139.5 919.6± 15.7 965.3± 9.8

walker-run 568.9± 19.1 474.3± 20.8 725.5± 10.8 698.9± 13.7 553.8± 30.9 727.4± 24.3 779.3± 7.9
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C. Supplementary Material for Chapter 4

C.1. Hyperparameters

Table C.1.: Hyperparameters used for Section 4.5. For the Mamba parameters, we use the notation from
the code by Gu and Dao (2023) and select parameters to match a effective state size N = 128.
GRU and vTransformer use default parameters from Pytorch unless noted otherwise.

Parameter BestArm DMC POPGym
Training

Buffer size ∞
Adam learning rate 3e-4

Env. steps 500K 1M
Batch size 64 32

Update-to-data (UTD) ratio 0.25 1.0
# Eval episodes 100 16

RAC
Embedding size (E) 16
Latent size (N) 128
Activations ReLU
Context length 256 64
Actor MLP [128] [256, 256]
Critic MLP [256] [256, 256]

SAC
Discount factor γ 0.99
Entropy temp. α 0.1 Auto

Target entropy (continuous) N/A -dim(A)
Target entropy (discrete) N/A −0.7 log

(︁
1/dim(A))︁1

History Encoders (common)
Latent size N 128
# layers 1

vSSM, vSSM+KF & vSSM+KF-u
∆̃ init -7
A init HiPPO (diagonal)
B init I
Σp init I

Inital state belief N (0, I)
RMSNorm output? No Yes No

Mamba
A init HiPPO (diagonal)

d_model (embedding size) 16
d_state (per-channel hidden size) 4

Expand factor E 2
Size of ∆ projection 1
1D Conv kernel size 4

vTransformer
# heads 1

Feedforward size 128 256
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C.2. Best Arm Identification Training Curves
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Figure C.1.: Normalized average return over 100 episodes in and out of distribution, for increasing costs.
We report the mean and standard error over 5 random seeds.
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Figure C.2.: Average (log) episode length over 100 episodes in and out of distribution, for increasing costs.
We report the mean and standard error over 5 random seeds.

1We use a lower value of −0.35 log
(︁
1/dim(A)

)︁ in the MineSweeper environment from POPGym, as the default value resulted
in divergence during training.
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C.3. KF Layer Design Ablation
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Figure C.3.: Ablation on design considerations for KF layers. (Top) Aggregated performance in noisy DMC
benchmark (9 tasks) with 95% bootstrap confidence intervals over five random seeds. (Top-
Left) Inter-quartile mean returns normalized by the score of Oracle. (Top-Right) Performance
profile after 1M environment steps. (Bottom) Training curves. We show mean and standard
error over five random seeds. Based on these results, our final design for the KF layer uses
only the posterior mean state as the output feature and a time-invariant process noise.
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C.4. DMC Noise Ablation
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Figure C.4.: Training curves in six environments from the DMC benchmark with increasing levels of noise.
We showmean and standard error over five random seeds (ten for pendulum). The base noise
scale for all tasks is 0.3, except the pendulum-swingup and point-mass environments
where the scale is 0.1
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C.5. POPGym Training Curves
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Figure C.5.: POPGym training curves. We show mean and standard error over five random seeds.
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C.6. POPGym Scores
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Figure C.6.: POPGym final MMER after 1M training steps. We show mean and standard error over five
random seeds.
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Table C.2.: Scores on POPGym tasks after 1M environment steps. For each environment, we report the
MMER mean and standard error over 5 random seeds after 1M steps of training. The MMER
is calculated from 16 test episodes. For reference, we include the best MMER score reported
by Morad et al. (2023) (mean and standard deviation over three random seeds). We bold the
highest score(s) per environment obtained by a sequence model.

AutoencodeEasy CountRecallEasy HigherLowerEasy MineSweeperEasy
vSSM+KF −0.299± 0.012 0.983± 0.002 0.588± 0.002 0.818± 0.014

vSSM+KF-u −0.247± 0.036 0.978± 0.001 0.581± 0.004 0.864± 0.020

vSSM −0.320± 0.006 0.984± 0.002 0.592± 0.003 −0.307± 0.012

Mamba −0.335± 0.023 0.982± 0.002 0.580± 0.003 0.783± 0.039

GRU −0.317± 0.025 0.984± 0.001 0.586± 0.002 0.916± 0.034

vTransformer −0.179± 0.065 0.982± 0.001 0.590± 0.001 0.676± 0.031

Oracle −0.420± 0.008 0.984± 0.002 0.257± 0.003 1.000± 0.000

Memoryless −0.463± 0.001 −0.887± 0.001 0.571± 0.004 −0.382± 0.008

Best POPGym −0.283± 0.029 0.509± 0.062 0.529± 0.002 0.693± 0.009

BanditEasy BanditHard NoisyCartPoleHard NoisyPendulumHard
vSSM+KF 0.766± 0.005 0.541± 0.040 0.535± 0.023 0.677± 0.003

vSSM+KF-u 0.771± 0.019 0.579± 0.032 0.531± 0.007 0.675± 0.003

vSSM 0.612± 0.013 0.501± 0.025 0.528± 0.013 0.639± 0.004

Mamba 0.764± 0.011 0.608± 0.043 0.516± 0.010 0.658± 0.009

GRU 0.763± 0.012 0.705± 0.017 0.486± 0.010 0.701± 0.001

vTransformer 0.580± 0.030 0.384± 0.049 0.454± 0.009 0.604± 0.004

Oracle 0.889± 0.005 0.892± 0.006 1.000± 0.000 0.946± 0.001

Memoryless 0.324± 0.013 0.399± 0.031 0.225± 0.003 0.406± 0.012

Best POPGym 0.631± 0.014 0.574± 0.049 0.404± 0.005 0.657± 0.002

RepeatFirstEasy RepeatFirstMedium RepeatPreviousEasy RepeatPreviousMedium
vSSM+KF 1.000± 0.000 0.726± 0.127 1.000± 0.000 −0.423± 0.006

vSSM+KF-u 1.000± 0.000 0.607± 0.186 1.000± 0.000 −0.429± 0.008

vSSM 0.989± 0.009 0.495± 0.034 1.000± 0.000 −0.420± 0.008

Mamba 1.000± 0.000 0.575± 0.160 0.993± 0.001 −0.441± 0.005

GRU 1.000± 0.000 1.000± 0.000 1.000± 0.000 −0.440± 0.004

vTransformer 1.000± 0.000 1.000± 0.000 1.000± 0.000 −0.426± 0.006

Oracle 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Memoryless 0.093± 0.085 0.100± 0.061 −0.434± 0.013 −0.450± 0.007

Best POPGym 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.789± 0.288
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1.1. We define uncertainty-aware decision-making in three iterative steps. (Left) Model learning
uses prior knowledge and observed data to learn a probabilistic model of the environment.
(Middle) Uncertainty from the learned model is propagated through the decision process to
reason about the long-term value of a given behavior. (Right) The control policy is updated
considering the value uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Outline of thesis. Chapters 2 and 3 consider uncertainty modelling in model-based RL under
full observability, while Chapter 4 studies uncertainty representations in inferred latent states
for model-free RL under partial observability. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Procedure of unrolling an MDP with cycles. We denote by si,k the unrolled state which
represents being in state si of the original MDP at time step k. The unrolled MDP is only an
approximation of the original version due to truncation after finite H steps. . . . . . . . . . 10

2.2. Toy example Markov Reward Process. The random variables δ and β indicate epistemic
uncertainty about the MRP’s transition probabilities. State sT is an absorbing (terminal) state. 13

2.3. Architecture for Q-Uncertainty Soft Actor-Critic (QU-SAC). The dataset D may be either
static, as in offline RL, or be dynamically populated with online interactions. This dataset
is used to train an ensemble of dynamics models which is then used for synthetic rollout
generation. Each member of the ensemble populates its own buffer Di, which is used to train
a corresponding ensemble of critics. Additionally, member-randomized rollouts are stored
in Dmodel and used to train a U -net, which outputs an estimated epistemic variance of the
value prediction. Lastly, the actor aims to optimize the risk-aware objective (2.10), which
combines the output of the critic ensemble and the U -net. . . . . . . . . . . . . . . . . . . 15

2.4. Illustrative example of uncertainty rewards. (Left) ensemble of two value functions {Q1, Q2}.
(Right) corresponding mean value function Q̄. The theory prescribes estimating the term in
(2.5), denoted ŵ(s, a), which captures local variability of Q̄ around (s, a). Empirically, ŵ(s, a)
can be small despite large differences in individual members of the value ensemble, e.g.,
because Q̄ is relatively flat around (s, a). We propose the proxy uncertainty reward ŵub(s, a)
which directly captures variability across the value ensemble and is less computationally
expensive (no dynamics model forward pass). . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.5. Performance in the DeepSea benchmark. Lower values in plots indicate better performance.
(Left) Learning time is measured as the first episode where the sparse reward has been found
at least in 10% of episodes so far. (Right) Total regret is approximately equal to the number
of episodes where the sparse reward was not found. Results represent the average over 5
random seeds, and vertical bars on total regret indicate the standard error. Our variance
estimate achieves the lowest regret and best scaling with problem size. . . . . . . . . . . . 20

2.6. Extended results for the DeepSea experiments shown in Figure 2.5. We report the average
(solid line) and standard error (shaded region) over 5 random seeds. . . . . . . . . . . . . . 21

2.7. Ablation study on DeepSea exploration for different estimates of exact-ube. Results repre-
sent the average over 5 random seeds, and vertical bars on total regret indicate the standard
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8. Ablation study over ensemble size N on the DeepSea environment. . . . . . . . . . . . . . . 23
2.9. Ablation study over exploration gain λ on the DeepSea environment. . . . . . . . . . . . . . 23
2.10.Total regret curve for the 7-room environment. Lower regret is better. Results are the average

(solid lines) and standard error (shaded regions) over 10 random seeds. Our method achieves
the lowest regret, significantly outperforming PSRL. . . . . . . . . . . . . . . . . . . . . . . 24

2.11.DeepMind Control Suite Benchmark smoothened learning curves over 500 episodes (500K
environment steps). We report the mean (solid) and standard error (shaded region) over five
random seeds. QU-SAC with the upper-bound variance estimate outperforms the baselines
in 4/6 environments and has the best overall performance. . . . . . . . . . . . . . . . . . . 25

2.12.D4RL learning curves for Hopper datasets, smoothened by a moving average filter. We report
the mean (solid) and standard deviation (shaded region) over five random seeds of the
average normalized score over 10 evaluation episodes. We useM = 1 for all baselines on
the top row plots andM = 2 on the bottom row. QU-SAC with the upper-bound variance
estimate provides the most consistent performance across both values ofM . . . . . . . . . 26

2.13.D4RL smoothened learning curves forM = 1. We report the mean and standard deviation
over five random seeds of the average normalized score over 10 evaluation episodes. . . . . . 27

2.14.D4RL smoothened learning curves forM = 2. We report the mean and standard deviation
over five random seeds of the average normalized score over 10 evaluation episodes. . . . . 28

3.1. Return and value distributions in Bayesian RL. (Left) MDP with uncertain transition proba-
bility from s0 given by a random variable X ∈ [0, 1]. (Middle) Return distributions at s0 for
realizations of X, including the nominal dynamics (green). The return distribution captures
the aleatoric noise under the sampled dynamics. (Right) Distribution of values at s0. In the
nominal case, the value v(s0) is a scalar obtained from averaging the aleatoric uncertainty of
the return distribution Z(s0) under the nominal dynamics. In our setting, V (s0) is a random
variable due to the epistemic uncertainty around the MDP dynamics. To sample from V (s0)
is equivalent to first sample X = x̃, compute the conditional return distribution Z(s0)|X = x̃
and finally average over the aleatoric noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.2. Example value distribution. (Left) Uncertain MDP with a truncated Gaussian transition
probabilityX ∼ N̄ (µ = 0.4, σ = 0.1) and a scalar (deterministic) β ∈ [0, 1]. For this example,
we fixed β = 0.9. (Middle) Distribution over MDPs, which corresponds directly to the
distribution of X. (Right) Corresponding distribution of values for state s0. . . . . . . . . . 36

3.3. Visualization of the value-distributional Bellman backups, as prescribed by (3.8). We identify
four operations on distributions: infinite mixture over posterior transition functions (solid
braces), shift by reward, scale by discount factor and mixture over next states (broken line
braces)2. The main difference w.r.t the return-distributional backup (cf. Bellemare et al.,
2023, Figure 2.6) is the presence of the two distinct mixture operations. . . . . . . . . . . 38

3.4. Quantile-regression loss for the example MDP of Figure 3.2. (Left) Probability density of
values for state s0, with five quantile levels in colored vertical lines. (Right) The quantile
regression loss (3.12) for the five quantile levels; the vertical lines correspond to the minimum
of the color-matching loss. The vertical lines on both plots match upto numerical precision,
meaning that following the gradient of such a convex loss function would indeed converge to
the quantile projection Πw1µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5. Performance of quantile-regression for value-distribution learning in the example MDP of
Figure 3.2. The parameter β controls the covariance between V (s0) and P (s2|s0); the
covariance increases with β and is zero for β = 0. (Top) Value distributions (Gaussian,
bi-modal and heavy-tailed) generated by different prior distributions of the parameter δ.
(Middle) Evolution of the per-quantile estimation error (Πw1µ(s0) − µq(s0)) between the
true quantile projection and the prediction; for β = 0, our algorithm oscillates around the
true quantile projection. (Bottom) 1-Wasserstein metric between the true quantile projection
and the estimate µq after 104 gradient steps, as a function of the correlation parameter β.
As β moves from zero to one, the regression error increases and the algorithm no longer
converges to the true quantiles, although the error is relatively small. . . . . . . . . . . . . 42

3.6. Performance of EQR in a Gridworld environment. We train the optimal policy π⋆ using
PSRL (Osband et al., 2013) and then use it for data collection. At different points during
data collection, we run EQR to estimate m = 100 quantiles of the value distribution for the
initial state under π⋆, given the current posterior MDP. (Top-Middle) PDF and CDF of the
true (dashed blue) and predicted (solid orange) value distribution, with the true optimal
value (dotted green) as vertical reference. (Bottom) 1-Wasserstein distance between the true
quantile projection and the prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7. Performance in the Mountain Car environment. We consider the original version of the
environment (left) and two variants (middle, right) that scale down the rewards by some
factor (0.5 and 0.1, respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8. Visualization of the learned value distribution of EQR-SAC at different points during training
in the Mountain Car environment (with reward scale of 0.5x). (Top) The predicted value
distribution at the initial state. The dotted line is the empirical value of s0 based on ten
trajectories (black lines of middle row). (Mid-Bottom) The mean (mid) and standard
deviation (bottom) of the value distribution across the state space. . . . . . . . . . . . . . . . 47

3.9. Performance in four DeepMind Control tasks. Cartpole swing-up has sparse rewards, while
Cheetah, Quadruped and Walker have dense rewards. EQR-SAC significantly improves
performance with respect to the model-based baselines. . . . . . . . . . . . . . . . . . . . . 48
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3.10.Aggregated performance in DMC benchmark with 95% bootstrap confidence intervals. (Left)
Inter-quartile mean returns normalized by the maximum achievable score of 1000. (Right)
Performance profile at 250 episodes of training, with zoom in region with the most spread in
results. In both cases, higher curves correspond to better performance. . . . . . . . . . . . 49

3.11.Comparison of EQR-SAC and QR-MBPO baselines in selected DeepMind Control tasks. The
results suggest that the biggest contributing factor for increased performance of EQR-SAC
w.r.t QR-MBPO is the critic’s loss function (3.19). . . . . . . . . . . . . . . . . . . . . . . . 50

3.12.Ablation study on the amount of next state-action samples drawn to approximate the target
quantiles (3.20). Larger sample sizes perform more robustly across all environments. . . . 50

3.13.Evaluation of EQR-SAC-τ for different quantile levels. The two tasks on the left have dense
rewards, while the other two have sparse rewards. . . . . . . . . . . . . . . . . . . . . . . . 51

3.14.Evaluation of EQR-SAC-τ for different quantile levels and increasing action costs. The top
row corresponds to the cartpole swingup task and the bottom row to the pendulum swingup.
The action costs range from zero (left column), to a 3× multiplier on (3.24). . . . . . . . . 52

3.15.Number of quantiles (m) ablation study. (Top) EQR-SAC-mean. (Bottom) EQR-SAC-ofu.
Note that for EQR-SAC-ofu we require m > 1 in order to estimate the standard deviation of
quantiles for the optimistic objective function of the actor, thus we select a minimum value of
m = 3 for this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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