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Abstract

Germany’s transition to green energy requires new transmission infrastructure, including
underground High-Voltage Direct Current (HVDC) technology. HVDC cable joints, which
interconnect cable segments, are the most vulnerable part of these systems due to instal-
lation errors and electric field stresses. Since the length of individual cable segments is
limited to 1.5–2 km due to transportation constraints, a large number of cable joints is
required. As a result, the reliability of these joints is critical to the overall performance of
the system. This dissertation contributes to enhancing the reliability of HVDC cable joints
by developing simulation tools aimed at facilitating future advancements in joint design
and reliability assessment.
The dissertation begins with a discussion on electrothermal modeling of HVDC cable

joints during steady-state and transient operations. A freely available electrothermal solver
is implemented, specifically tailored for HVDC cable joint simulation. The solver addresses
challenges such as field- and temperature-dependent material properties and the multi-
rate nature of the transient electrothermal problem. It is validated against commercial
software using a 320 kV HVDC cable joint specimen, with brief analyses conducted for
both steady-state and transient operations.
The dissertation focuses on developing simulation tools for efficient sensitivity com-

putation, which are vital for design and optimization. Two complementary methods for
sensitivity computation are implemented: the direct sensitivity method, which scales with
the number of investigated design parameters, and the adjoint variable method, which
scales with the number of investigated quantities of interest but is independent of the
number of design parameters. The derivation of the adjoint variable method for transient
electroquasistatic-thermal problems represents a core contribution of this thesis.
The dissertation also demonstrates how simulation can estimate model parameters

from experimental data using an inverse problem approach, highlighting the role of
measurement data quality. It discusses factors such as measurement sensitivity, data
points, and noise corruption.
Finally, the dissertation provides a comprehensive literature review on modeling and

simulation approaches for slow polarization processes in HVDC cable joints. This chapter
reviews various methodologies from the literature, aiming to enhance the accuracy of
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simulations and analyses for HVDC insulation systems exposed to prolonged unidirectional
electric fields.
By providing tools for simulation-aided design, this dissertation aims to enable more

effective and reliable approaches to HVDC cable joint development. In doing so, it supports
the broader goal of improving energy transmission infrastructure and contributing to a
stable and sustainable energy supply.
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Abstract

Deutschlands Umstellung auf erneuerbare Energien erfordert eine moderne Übertra-
gungsinfrastruktur, einschließlich der Nutzung unterirdischer Hochspannungs-Gleichstrom-
Übertragungs (HGÜ)-Technologie. HGÜ-Kabelmuffen, welche Kabelsegmente miteinander
verbinden, sind aufgrund von Installationsfehlern und elektrischen Feldbelastungen die
fehleranfälligsten Komponenten dieser Systeme. Da die Länge einzelner Kabelsegmente
aufgrund von Transportbeschränkungen auf 1.5–2 km begrenzt ist, ist eine große Anzahl
von Kabelmuffen erforderlich. Daher ist die Zuverlässigkeit der Kabelmuffen entscheidend
für die Zuverlässigkeit des Gesamtsystems. Diese Dissertation trägt durch die Entwicklung
von Simulationswerkzeugen, welche künftige Fortschritte im Design robuster Kabelmuffen
ermöglichen, zur Verbesserung der Zuverlässigkeit von HGÜ-Kabelmuffen bei.
Zu Beginn wird eine elektrothermische Modellierung von HGÜ-Kabelmuffen im sta-

tionären und transienten Betrieb vorgestellt. Ein eigens entwickelter, frei verfügbarer
elektrothermischer Löser wird eingeführt, der speziell auf die Herausforderungen der
HGÜ-Simulation zugeschnitten ist, wie z.B. feld- und temperaturabhängige Materialeigen-
schaften und stark unterschiedliche elektrische und thermische Zeitskalen. Dieser Löser
wird am Beispiel einer 320 kV-HGÜ-Kabelmuffe validiert und eine kurze Analyse des
elektrothermischen Verhaltens vorgestellt.
Ein Schwerpunkt der Dissertation liegt auf der Entwicklung von Simulationswerkzeugen

zur effizienten Berechnung von Sensitivitäten, die für das Design und die Optimierung
von Kabelmuffen unerlässlich sind. Zwei komplementäre Methoden werden vorgestellt:
die direkte Sensitivitätsmethode, die mit der Anzahl der untersuchten Designparameter
skaliert, und die adjungierte Methode, die mit der Anzahl der untersuchten Zielgrößen
skaliert, aber unabhängig von der Anzahl der Designparameter ist. Die Herleitung der
adjungierten Methode für transiente elektrothermische Probleme ist ein wesentlicher
Beitrag dieser Arbeit.
Zusätzlich wird gezeigt, wie durch Simulationen Modellparameter aus experimentellen

Daten mittels inverser Probleme ermittelt werden können. Dabei wird die Bedeutung
der Messdatenqualität betont und es werden Faktoren wie Messsensitivität, Anzahl der
Datenpunkte und Rauschverfälschung diskutiert.
Abschließend bietet die Dissertation einen umfassenden Literaturüberblick über beste-
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hende Modellierungs- und Simulationsansätze für langsame Polarisationsprozesse in
HGÜ-Kabelmuffen. Ziel ist es, die Genauigkeit der Simulationen und Analysen für
HGÜ-Isolationssysteme unter langanhaltenden unidirektionalen elektrischen Feldern zu
verbessern.
Durch die Bereitstellung von Werkzeugen für simulationsgestützte Designverfahren zielt

diese Dissertation darauf ab, effektivere und zuverlässigere Ansätze für die Entwicklung
von HGÜ-Kabelmuffen zu ermöglichen. Damit unterstützt sie das übergeordnete Ziel einer
stabilen und nachhaltigen Energieversorgung.
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1 Introduction

1.1 Motivation

The transition to green energy is a critical component of Germany’s strategy to combat
climate change and achieve sustainable energy independence. Central to this strategy is
the Energiewende, a policy initiative aimed at transforming the country’s energy system.
Key targets outlined in the Energy Expansion Act (EEA) include significant increases
in renewable energy production, with a particular emphasis on wind energy [1]. The
northern part of Germany, with its favorable wind conditions, is poised to play a leading
role in this energy transition [2, 3]. However, the integration of wind energy on a large
scale necessitates the development of new transmission infrastructure to transport the
electric power from the north to other parts of the country [4, 3]. High voltage direct
current (HVDC) technology has been identified as the most efficient method for long-
distance power transmission, motivating the decision for several new HVDC transmission
lines (see Fig. 1.1) [5, 6, 3, 4].
In 2015, a significant political choice was made to prioritize underground cable systems

over overhead transmission lines for the new HVDC projects (see Fig. 1.2a) [7, 8]. This
decision was influenced by public resistance to overhead lines and by the perceived benefits
of underground systems in terms of aesthetics and reduced land use conflicts [9]. However,
the design and implementation of underground HVDC cable systems remain an area of
active research [10, 11, 12]. One of the most critical aspects of these systems is the
reliability of the cable joints.
Cable joints are considered the most vulnerable components in HVDC transmission lines

[11, 9, 3, 6]. HVDC cable joints may fail due to the following reasons: on-site installation
errors, charge accumulation, polarization effects, and high internal electric field stresses
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Figure 1.1: Planned high voltage direct current transmission lines in Germany (Figure
taken from [13]).

[12, 14, 3]. The failure of HVDC cable joints is especially critical due to the large number of
joints required along a transmission route. This necessity arises from the immense weight
of the cable drums, which limits underground cables to segments of 1-1.5 kilometers in
length (see Fig. 1.2b) [15, 16]. Given the high number of joints, ensuring their individual
reliability is paramount to the overall reliability of the transmission system. A single joint
failure can result in extended downtime, significantly impacting the electrical energy
supply [8].

This thesis focuses on the development of simulation tools to aid in the design of HVDC
cable joints, aiming to mitigate the issues leading to joint failures and enhance their overall
reliability. Through this research, the thesis contributes to the broader goal of ensuring a
stable and efficient green energy transition in Germany.
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(a) (b)

Figure 1.2: (a) Construction site of an underground cable system (Figure taken from [17]).
(b) Cable drum of a HVDC cable (Figure taken from [18]).

1.2 Overview

This dissertation presents a comprehensive study on the electrothermal modeling and
simulation of HVDC cable joints, with a particular focus on both steady-state and transient
operations. The work is organized into the following chapters:
Chapter 2 provides background information on HVDC cable joint technology. This

chapter sets the foundation for understanding the technical aspects and challenges in
HVDC cable joint design.
Chapter 3 introduces the 320 kV lead example used throughout the thesis, a model

provided by [12]. This example serves as a consistent reference point for the discussions
and simulations presented in subsequent chapters.
Chapter 4 details the electrothermal modeling and simulation approach for HVDC

cable joints during steady-state operation. It describes the implementation of a nonlinear
coupled electrothermal solver within Pyrit [19], a freely available Finite Element (FE)
framework developed at the Institute of Accelerator Science and Electromagnetic Fields
at the TU Darmstadt. The solver is validated against a reference solution obtained via
the commercial software COMSOL Multiphysics®, and the electrothermal behavior of the
lead example during steady-state operation is discussed briefly.
Chapter 5 expands the modeling approach to transient operations, such as switching

impulse events. The chapter describes the implementation of a transient nonlinear coupled
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electrothermal solver in Pyrit and discusses the benefits of a multi-rate time integration
scheme. The solver is validated using COMSOL Multiphysics®, and the transient elec-
trothermal behavior of the 320 kV lead example during switching impulse operation is
analyzed.
Chapter 6 explores different approaches for efficient sensitivity computation, focusing

on the derivation of the direct sensitivity method (DSM) and the adjoint variable method
(AVM) for coupled transient electrothermal problems. The derivation of the AVM, which
is a core contribution of this thesis and published in [20, 21, 22], is discussed in detail.
The chapter also covers the discretization and multi-rate implementation of the AVM. The
AVM is applied to compute the sensitivities of the 320 kV lead example during switching
impulse operation and the sensitivites are validated against results obtained by the direct
sensitivity method implemented in Pyrit as well as finite difference computations in
COMSOL Multiphysics®.
Chapter 7 demonstrates the application of simulation for estimating material param-

eters from measurement data. An inverse problem approach is used to estimate the
thermal conductivities of the joint’s insulating materials based on mock-up temperature
measurements.
Chapter 8 reviews various approaches for modeling and simulating slow polarization

processes and evaluates their suitability for application to HVDC cable joint simulation.
Chapter 9 concludes the dissertation with a summary of the findings and suggests

directions for future research.
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2 Background on HVDC Cable Joints

In the realm of HVDC power transmission via underground cables, cable joints play a
critical role in connecting short cable segments to span long distances. This chapter
introduces the general setup of a cable joint, and discusses different materials and field
grading concepts.

2.1 Structure of a Cable Joint

The purpose of a cable joint is to securely connect two cable segments while ensuring
mechanical strength to prevent damage or separation and offering protection against
environmental factors such as moisture. The basic structure of a cable joint consists of
several key components and is depicted in Fig. 2.1. The cables themselves consist of copper
conductors (domain 3), an insulation layer (domain 2) and a grounded outer sheath
(domain 1). At the joint, the copper conductors are exposed by partially removing the
cable insulation and sheath. The exposed conductors are then connected by a conductor
clamp (domain 4) which is covered by a semi-conductive shielding electrode (domain 5)
in order to ensure a smooth electric field distribution. The core of the joint is made up of
insulating material (domain 6), and the joint is completed by a semi-conductive outer
sheath (domain 7), which is connected to ground potential.

2.2 HVDC Insulation Materials

Insulation systems of HVDC cable joints face distinct challenges compared to alternating
current (AC) systems. The unidirectional direct current (DC) voltage can cause the accu-
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1 2 3 4 5 6 7

Figure 2.1: Basic structure of a cable joint: (1) grounded semi-conductive outer cable sheath (2)
cable insulation (3) conductors (4) conductor clamp (5) semi-conductive deflector
(6) joint insulation (7) grounded semi-conductive outer joint sheath (adapted from
[12, 23]). The conducting, semi-conducting and insulating materials are highlighted in
dark gray, light gray, and blue, respectively.

mulation of space charges, leading to local electric field enhancements and an increased
risk of breakdown [24, 25]. In addition, the constant high electric field stresses in HVDC
systems degrade insulation materials more rapidly than the alternating stresses in high
voltage alternating current (HVAC) systems [26]. Finally, the electric field distribution in
HVDC joints is highly dependent on the electric conductivity of the materials, which often
varies strongly with temperature, leading to unpredictable field variations and increased
failure rates [3, 27].

Research on the failure mechanisms of HVDC cable joints is an ongoing effort. A key
focus area is the development of advanced insulation materials with better thermal and
electrical properties, enhanced resistance to polarization, and lower charge accumulation
tendencies. Insulation in high voltage (HV) cable joints typically utilizes either silicone
rubber (SiR) or ethylene propylene diene monomer (EPDM) [11, 28, 29]. SiR is preferred
for HVAC cable joints due to its manufacturing benefits [11], higher breakdown strength
and wider temperature range of stability of electrical and mechanical properties [28].
In contrast, EPDM is predominantly used for HVDC cable joints because its electrical
properties can be tailored to minimize charge accumulation and because EPDM is less
complex to compound [29, 28].

Recent advancements in nanotechnology allow for tailored insulation materials with
nonlinear fillers [30, 31, 32, 33, 34, 35]. These advancements, coupled with challenges
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in manufacturing, installation, operation, and aging, introduce significant variabilities
and uncertainties. Therefore, design optimization based solely on prototyping and experi-
mentation is impractical. It is essential to develop and apply dedicated measurement and
advanced simulation approaches for HVDC cable joints. In the long run, these methods
will provide new insights into the nonlinear electrothermal behavior, incorporate the latest
developments in material science and manufacturing technologies and translate these
insights into design rules and strategies.

2.3 Electric Field Grading

(a) Cable end without field grading. (b) Cable joint with geometric field grading.

(c) Cable joint with nonlinear resistive field grad-
ing.

2.5 Numerical Field Calculation 113 
 

 

Stator winding insulation in generators and in 
big motors is the traditional application of re-
sistive and non-linear field grading, Figure 
7.1.6-4. The coatings are very thin and can 
therefore be applied to the insulated conduc-
tors, which are in close proximity to each other 
in winding heads. 

Refractive field grading can only be used for 
time-varying voltages (AC or impulse). Resis-
tive and non-linear gradings are strongly de-
pendent on the frequency of the applied vol-
tage (frequency sensitivity). 
 
All the field and potential grading methods 
have in common that they reduce the tangen-
tial field strengths at interfaces and surfaces. 
Nevertheless, these interfaces and surfaces are 
still normally highly stressed and have to be 
treated with particular care. This means that 
contaminations, pollutions, deposits, access of 
water, air-inclusions, voids and other defects 
have to be precluded with high reliability dur-
ing the production process and service opera-
tion. 
 
 
2.5 Numerical Field Calculation 

Numerical field calculation is one of the most 
important tools for high voltage engineers in 
design, development and research. Sufficiently 
accurate field strength magnitudes for complex 
insulation arrangements can only be deter-
mined by numerical calculation. 
 
Nevertheless, numerical calculations must not 
replace the intellectual analysis of the given 
kind of stress. Both a thorough preparation of 
the calculation and a thorough analysis/ dis-
cussion of the results are necessary, in order to 
avoid mistakes or wrong and too far-reaching 
conclusions.  
 
It is recommended therefore, always to make a 
qualitative visualization by field mapping 
(Section 2.3.3) and to try an analytical es-
timation for a simplified insulation model. 
Based on these approximations, numerical 
results can be checked for plausibility.  
 
 
2.5.1 Overview 

For this introduction, the discussion is limited 
to electric potential fields, i.e to static, quasi-
static and steady-state (capacitive) displace-

Figure 2.4-36: Technologies for field and potential
grading on typical creepage surfaces, rotationally
symmetric surfaces of cable insulation (example). 
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Figure 2.2: Schematic representation of equipotential lines near the end of the grounded
cable sheath for different types of field grading [5].

Modern cable joint designs rely heavily on the principle of field grading, i.e. balancing
the electric field stress at material interfaces and within the insulation materials in order
to prevent a dielectric breakdown [3, 5]. In HVDC systems, the two main field grading
approaches are geometric field grading and nonlinear resistive field grading [3, 5, 29].
It is crucial to select a field grading strategy that is appropriate for both steady-state DC
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operation as well as transient overvoltages [3, 5].

Figure 2.2a shows the equipotential lines at the end of a cable segment. It can be
seen that near the grounded cable sheath, a strong voltage drop and, as a result, strong
electric field stresses occur. Geometric field grading reduces this voltage drop by extending
the grounded outer cable sheath with a curved deflector, as shown in Figure 2.2b. This
deflector, embedded in the joint insulation and connected to ground potential, mitigates
the field stress along the material interface. However, challenges include the increased size
of the device and the inability to optimize field grading for different operating conditions
due to the fixed shape of the electrodes [3, 5].

An alternative approach is nonlinear field grading, which uses a layer of field grading
material (FGM). The conductivity of the FGM layer increases significantly beyond a
switching field strength, as illustrated in Fig. 2.3 [12, 3, 36]. Placed between the cable
and joint insulations, the FGM layer balances the electric field distribution by becoming
more conductive in high-stress areas, thus redistributing the voltage drop to less stressed
regions (see Fig. 2.2c) [3, 5, 36]. The dynamic adaptability of the FGM layer to different
field distributions provides a distinct advantage over geometric field grading, and it
requires minimal volume [3, 5]. Potential issues include the temperature-dependent
conductivity of FGMs, which can cause Joule heating, posing potential threats to the joint’s
thermal stability and long-term performance [3, 5, 36].

Refractive field grading is often used in HVAC cable joints. In the HVDC context, it
often appears as a side effect to nonlinear resistive field grading, since most FGMs feature
higher permittivities than insulation materials [3]. Field refraction reduces the normal
component of the electric field inside the FGM, resulting in a lower field strength at the
end of the cable sheath (see Figure 2.2d). Refractive field grading is only effective during
transient processes, when the fields are dominated by displacement currents.

Field grading remains a complex and evolving area of research due to its many depen-
dencies and challenges [11, 23, 10, 12, 36]. For example, even small variations in the
dimensions and placement of geometric field grading components can substantially influ-
ence the overall breakdown behavior of cable accessories [37]. Consequently, designing
effective field grading is a primary challenge in the development of HVDC cable joints.

Accurate modeling and simulation of electric field and temperature distributions are
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indispensable for developing effective field grading strategies. This understanding helps
to reduce reliance on empirical knowledge and simplifies the design process by providing
deeper insights into the electrothermal behavior of HVDC cable joints.
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Figure 2.3: Nonlinear field-dependent conductivity of the FGM. The FGM conductivity is
described by the analytic function (3.1).
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3 Lead Example

In this thesis, the realistic 320 kV HVDC cable joint specimen with a nonlinear FGM grading
concept presented in [12, 15] serves as the lead example. Figure 3.1 depicts a cut of the
cable joint in a cylindrical coordinate system (ϱ, φ, z), where the dash-dotted line indicates
rotational symmetry along the z-axis. To allow for a two-dimensional (2D) axisymmetric
simulation approach, three-dimensional (3D) details such as screws or conductor bundeling
have been neglected. The joint connects two cables, each comprising a copper conductor
(domain 4), a semi-conductive inner shield (domain 3), an insulation layer (domain 2),
and a grounded outer sheath (domain 1). The conductors are connected by an aluminum
connector (domain 5), which is encased by a semi-conductive shielding electrode (domain
6). The cable’s primary insulation is made of cross-linked polyethylene (XLPE), while
the main insulation of the joint body (domain 7) is made from insulating SiR. The semi-
conductive layers (domain 1, 3, 6, and 9) are made of semi-conductive SiR. Both the outer
sheath of the cable joint (domain 9) and the outer semiconductor of the cable (domain
1) are connected to ground potential. A layer of nonlinear FGM (domain 8) is placed
between the insultation layers of the cable and the joint. The joint is placed 2m below
the ground and surrounded by a 30 cm thick base layer of sand.
The conductivity of the FGM is highly variable and depends on the electric field strength,

E in kV/mm, and the temperature, θ in K. It is given by the analytic function [36, 38]

σFGM(E, θ) = p1
1 + p

(E−p2)p
−1
2

4

1 + p
(E−p3)p

−1
2

4

exp(−p5(θ
−1 − θ−1

amb)) , (3.1)

with the parameters p1 = 10−10 S/m, p2 = 0.7 kV/mm, p3 = 2.4 kV/mm, p4 = 1864 and
p5 = 3713.59K and θamb = 293.15K. The field dependence at a fixed temperature is shown
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Figure 3.1: Schematic of the investigated HVDC joint in the ϱ-z-plane (adapted from [12, 15]). The
colors indicate conductive materials (dark gray), semi-conductive layers (light gray),
insulating materials (blue) and the FGM material layer (yellow).

in Fig. 2.3 [39]. The remaining material characteristics are summarized in Table 3.1 and
Table 3.2.

12



Table 3.1: Electric HVDC Cable Joint Material Parameters [12].

domain electric conductivity relative permittivity
σ in S/m εr

outer cable sheath (1) 1.0 10
cable insulation (2) 1.0 · 10−15 2.3
inner cable shield (3) 1.0 10
cable conductors (4) 6.0 · 107 1

connector (5) 3.8 · 107 1
shielding electrode (6) 1.0 10
joint insulation (7) 5.0·10−13 10

FGM (8) see (3.1) 10
outer joint sheath (9) 1.0 10

sand – –
soil – –
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Table 3.2: Thermal HVDC Cable Joint Material Parameters [12].

domain thermal conductivity density specific heat
λ in W/(m·K) ρ in kg/m3 capacity cp

in J/(kg·K)

outer cable sheath (1) 0.25 1160 1250
cable insulation (2) 0.3 963 2500
inner cable shield (3) 0.25 1050 1250
cable conductors (4) 400 8960 385

connector (5) 238 2700 900
shielding electrode (6) 0.25 1050 1250
joint insulation (7) 0.22 1100 1230

FGM (8) 0.5 1100 1500
outer joint sheath (9) 0.25 1160 1250

sand 0.54 2200 835
soil 0.8 1275 1830
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4 HVDC Cable Joint in Steady State
Operation

HVDC cable joints, when subjected to a constant DC voltage, ultimately attain a resistive-
thermal steady state [23]. This chapter delves into the modeling and simulation of this
steady state, providing a detailed analysis of the simulation results for the 320 kV specimen
introduced in Ch. 3.

4.1 Electrothermal Modeling

The resistive-thermal steady state is characterized by the combination of the stationary
current problem and the stationary heat conduction problem. The stationary current
problem reads

div (J) = 0 , r ∈ Ω ; (4.1a)

J = σE , r ∈ Ω ; (4.1b)

E = − grad (ϕ), r ∈ Ω ; (4.1c)

ϕ = ϕfixed , r ∈ ΓD,el ; (4.1d)

J · nel = Jn,fixed , r ∈ ΓN,el , (4.1e)

where J is the resistive current density, E is the electric field and ϕ is the electric scalar
potential. Here, σ is the specific electric conductivity, r is the position vector, and Ω

represents the computational domain. The fixed voltages at the Dirichlet boundaries,
ΓD, el ̸= ∅, are denoted as ϕfixed. At the Neumann boundaries, ΓN, el = ∂Ω\ΓD, el, a normal
current density, Jn,fixed, is defined. The normal unit vector at the Neumann boundaries

15



z
ϱ

Figure 4.1: Illustration of the electric boundary conditions used for the steady-state simulation
of the 320 kV cable joint specimen. The Dirichlet boundaries, ΓD, el, define the ground
potential (blue) at the outer cable sheath and outer joint sheath, as well as the high
voltage potential (red) at the copper conductors. The nominal current of I = 2 kA
through the conductors is prescribed using a Neumann boundary condition (green)
with Jn,fixed = I

ACu
, where ACu is the cross-sectional area of the copper conductors.

Homogeneous Neumann conditions, Jn,fixed = 0, are applied to all remaining bound-
aries.

is denoted as nel. For a clearer understanding, Fig. 4.1 illustrates the electric boundary
conditions applied during the steady-state simulation of the 320 kV cable joint specimen.
Eliminating J and E yields the potential equation,

−div (σ grad (ϕ)) = 0 , r ∈ Ω ; (4.2a)

ϕ = ϕfixed, r ∈ ΓD,el ; (4.2b)

−σ grad (ϕ) · nel = 0 , r ∈ ΓN,el . (4.2c)

The stationary heat conduction problem reads

div (q̇) = pJoule , r ∈ Ω ; (4.3a)

q̇ = −λ grad (θ), r ∈ Ω ; (4.3b)

θ = θfixed , r ∈ ΓD, th , (4.3c)

q̇ · nth = 0 , r ∈ ΓN, th , (4.3d)

where θ is the temperature, q̇ is the heat flux density, pJoule is the Joule loss density, and
λ is the thermal conductivity. θfixed are the fixed temperatures at the Dirichlet boundaries,
ΓD, th ̸= ∅, and nth is the unit vector at the Neumann boundaries, ΓN, th = ∂Ω\ΓD, th. The
two equations (4.1) and (4.3) are coupled along the Joule loss density, pJoule = J ·E, and
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Figure 4.2: Illustration of the thermal excitations and boundary conditions used for the steady-
state simulation of the 320 kV cable joint specimen. The primary heat source are
the Joule losses within the cable joint (red). Additionally, an ambient temperature of
θfixed = 20◦C is assumed at the top of the soil (blue).

the field- and temperature-dependent electric conductivity, i.e. σ = σ(E, θ). Eliminating
q̇ from (4.3) yields

−div (λ grad (θ)) = pJoule, r ∈ Ω ; (4.4a)

θ = θfixed , r ∈ ΓD,th ; (4.4b)

−λ grad (θ) · nth = 0 , r ∈ ΓN,th . (4.4c)

The thermal model of the 320 kV cable joint specimen is illustrated in Fig. 4.2.

4.2 Numerical Approach

4.2.1 Finite Element Discretization

The differential equations describing the electrothermal behavior of a cable joint are for-
mulated as a 2D axisymmetric FE problem. The Finite Element Method (FEM) discretizes
the spatial computational domain into simple geometric elements—here, triangular ele-
ments that are rotated around the symmetry axis—and approximates the solution using
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piecewise polynomial functions. Substituting this approximate solution into the governing
partial differential equations transforms the problem into a system of algebraic equations
or, for time-dependent problems, a system of ordinary differential equations. For more
information about the FEM, see [40, 41].
In this work, the electric scalar potential and the temperature are discretized using

linear nodal shape functions, Nj(ϱ, z), i.e.,

ϕ ≈
∑︂
j

ujNj ; (4.5)

θ ≈
∑︂
j

vjNj , (4.6)

where uj and vj are the degrees of freedom (DoF), which are assembled in the vectors
u and v, respectively. The discretized versions of (4.2) and (4.4) according to the Ritz
procedure read

Kσu = 0 ; (4.7)

Kλv = spJoule , (4.8)

with

[K(·)]ij =

∫︂
Ω
(·) grad (Ni) · grad (Nj) dΩ i, j = 1, ..., Nnode ; (4.9)

[s(·)]i =

∫︂
Ω
(·)Ni dΩ i = 1, ..., Nnode , (4.10)

where Nnode denotes the number of nodes.

4.2.2 Electrothermal Coupling

To accurately capture the resistive-thermal steady state of HVDC cable joints, it is essential
to couple the electric and thermal subproblems. This is achieved through a successive
substitution scheme, which iteratively updates the solutions of the electric and thermal
fields until convergence is reached. The successive substitution scheme is shown in
Fig. 4.3 and comprises the following steps: The process begins with an initial guess
for the temperature distribution within the cable joint. This initial guess could be a
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uniform temperature or an estimated distribution based on prior knowledge. Using this
temperature distribution, the temperature-dependent electric conductivities, σ = σ(E, θ),
are updated. The electric subproblem (4.7) is then solved using the Newton method. Once
the electric field and current density are determined, the Joule loss density, which acts
as the primary heat source, is calculated using pJoule = J ·E. This calculated Joule loss
density is then used as an input for the thermal subproblem (4.8), which is then solved.
The updated temperature distribution is then fed back into the electric subproblem, and
the process is repeated iteratively. This successive substitution continues until a specified
convergence criterion is reached or the maximum number of iterations is exceeded.
Starting with a uniform initial temperature guess of 20◦C, and setting the convergence

criteria for both the successive substitution method and the Newton method to a relative
change in Joule heat, i.e.

∫︁
Ω pJoule dΩ, below 10−6% and 10−7% respectively, the steady-

state simulation of the cable joint typically requires 7 successive substitution iterations
and a total of 31 Newton iterations.

4.2.3 Implementation and Solver Validation

The electrothermal solver and cable joint model are implemented in Pyrit [19], a freely
available FE framework developed in Python at the Institute of Accelerator Science and
Electromagnetic Fields at the TU Darmstadt. Pyrit features a template-based structure
that allows for a simple and user-friendly simulation workflow. At the same time, it
grants access to all FE matrices and basic routines, supporting the implementation of
innovative modeling and simulation ideas often found in a research setting, such as the
AVM presented in Ch. 6.
The simulations of the cable joint are performed using a mesh consisting of 21663

nodes and 42842 finite elements. The simulation results obtained with Pyrit are validated
against results obtained using the commercial simulation software COMSOLMultiphysics®.
Figure 4.4 presents a comparison between the results from both solvers. Figure 4.4a
shows the tangential electric field at the interface between the cable insulation and the
layer of FGM (dark blue line in Fig. 4.5). Figure 4.4b illustrates the radial temperature
distribution inside the cable joint at z = 0.405m (yellow line in Fig. 4.5). The results
from both Pyrit and COMSOL Multiphysics® are in very good agreement, confirming the
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Figure 4.3: Structural diagram of the successive substitution coupling scheme.

accuracy and reliability of the Pyrit-based solver. The electrothermal solver has thereby
been successfully validated, demonstrating its capability to accurately model the complex
interactions within the cable joint under continuous DC operation.

4.3 Electrothermal Analysis

In this section, the electrothermal simulation results of the 320 kV cable joint specimen
are discussed. Figure 4.6a shows the electric field distribution inside the cable joint. High
field strengths, in the range of several kV/mm, are observed in the cable and the joint
insulation. Since the FGM’s electric conductivity is significantly higher than those of the
cable’s and joint’s insulation, respectively, the electric field stresses within the FGM layer
are low, effectively decoupling the stresses in the cable insulation from those in the joint
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Figure 4.4: Comparison of the simulation results obtained by Pyrit and COMSOL
Multiphysics®. The left side shows the tangential electric field at the in-
terface between the cable insulation and the FGM. The right side shows the
radial temperature distribution at z = 0.405m. The results of both solvers are
in very good agreement.

body.

Figure 4.6b shows the temperature distribution inside the cable joint. The temperature
ranges from 65.5◦C at the copper conductors to 40.6◦C inside the joint insulation.

The combined effect of the electric field strength and the temperature leads to an
increase in the nonlinear electric conductivity inside the FGM from 10−10 S/m up to
5 · 10−9 S/m. The Joule losses inside the joint’s insulation and FGM layer are 2.7W. For
comparison, the losses per meter inside the copper conductors are 34W/m.

According to [5], tangential electric field stresses at material interfaces are particularly
critical. Therefore, Fig. 4.7 shows the tangential electric field stress at (a) the interface
between the FGM and the cable insulation (dark blue evaluation path in Fig. 4.5) and (b)
at the interface between the FGM and the joint insulation (light blue evaluation path in
Fig. 4.5). Generally, the highest tangential field stress is expected to be located near the
triple points (red circles in Fig. 4.5). According to Fig. 4.7, during steady-state operation,
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Figure 4.5: Evaluation paths and positions inside the cable joint.

the highest tangential electric field stress of 0.85 kV/mm is located at the triple point
next to the conductor clamp (triple point 1), closely followed by a stress of 0.81 kV/mm
at triple point 3 next to the housing of the cable joint. Additionally, to demonstrate the
benefits of employing a nonlinear FGM, Fig. 4.7 also shows the tangential electric field
stress obtained when the electric conductivity of the FGM is fixed at a constant value of
10−10 S/m. It can be seen that the nonlinear behavior of the FGM reduces the maximum
tangential field stress at the triple point next to the conductor clamp by nearly 60%, from
2.0 kV/mm to 0.85 kV/mm.
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(a) Electric field strength E in V/m.

(b) Temperature θ in ◦C.

Figure 4.6: (a) Electric field and (b) temperature distribution inside the 320 kV cable joint
specimen during steady-state operation.

23



0.2 0.3 0.4 0.5 0.6

0

1

2

length z in m

el
ec
tr
ic
fie
ld

E
z
in
kV
/m
m

σFGM = σFGM(E, θ)

σFGM = 10−10 S/m

(a)

0 0.2 0.4 0.6

0

0.5

1

length z in m

el
ec
tr
ic
fie
ld

E
z
in
kV
/m
m

σFGM = σFGM(E, θ)

σFGM = 10−10 S/m

(b)

Figure 4.7: Tangential electric field strength at (a) the interface between the FGM and
the cable insulation (dark evaluation path in Fig. 4.5) and (b) at the interface
between the FGMand the joint insulation (light blue evaluation path in Fig. 4.5).
The blue curves represent results for an FGM with a field- and temperature-
dependent electric conductivity, while the yellow curves represent results with
the FGM’s electric conductivity fixed at 10−10 S/m.
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5 HVDC Cable Joint in Switching Impulse
Operation

In this chapter, the electrothermal behavior of HVDC cable joints during impulse operation
is explored. This analysis is crucial for understanding the joint’s performance and robust-
ness under transient conditions, such as switching operations, which can significantly
impact the electric field distribution and thermal stresses within the joint.

5.1 Electrothermal Modeling

The electrothermal behavior of a cable joint that is subjected to transient overvoltages,
e.g. a lightning strike or switching operations, can be described by the combination of the
transient electroquasistatic (EQS) equation and the transient heat conduction equation
[42]. The transient EQS problem is defined as follows:

div (J) + div (∂tD) = 0 , t ∈ [ts, tf], r ∈ Ω ; (5.1a)

J = σE , t ∈ [ts, tf], r ∈ Ω ; (5.1b)

D = εE , t ∈ [ts, tf], r ∈ Ω ; (5.1c)

E = − grad (ϕ), t ∈ [ts, tf], r ∈ Ω ; (5.1d)

ϕ = ϕfixed , t ∈ [ts, tf], r ∈ ΓD,el ; (5.1e)

(J + ∂tD) · nel = 0 , t ∈ [ts, tf], r ∈ ΓN,el ; (5.1f)

ϕ = ϕ0 , t = ts , r ∈ Ω , (5.1g)

where D is the electric displacement field, and ε represents electric permittivity. The
initial and final simulation time are denoted as ts and tf, respectively. ϕ0 denotes the initial
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condition of the electric potential, representing the steady state before the transient event
(see Ch. 4). Eliminating J ,D and E yields the EQS potential equation,

−div (σ grad (ϕ))− div (∂t (ε grad (ϕ))) = 0 , t ∈ [ts, tf], r ∈ Ω ; (5.2a)

ϕ = ϕfixed, t ∈ [ts, tf], r ∈ ΓD,el ; (5.2b)

(−σ grad (ϕ)− ∂t (ε grad (ϕ))) · nel = 0 , t ∈ [ts, tf], r ∈ ΓN,el ; (5.2c)

ϕ = ϕ0 , t = ts , r ∈ Ω . (5.2d)

The transient heat conduction equation reads

∂t (cVθ) + div (q̇) = pJoule , t ∈ [ts, tf], r ∈ Ω ; (5.3a)

q̇ = −λ grad (θ), t ∈ [ts, tf], r ∈ Ω ; (5.3b)

θ = θfixed , t ∈ [ts, tf], r ∈ ΓD,th ; (5.3c)

q̇ · nth = 0 , t ∈ [ts, tf], r ∈ ΓN,th ; (5.3d)

θ = θ0 , t = ts , r ∈ Ω , (5.3e)

where cV = ρcp is the volumetric heat capacity, and θ0 denotes the initial condition
of the temperature, i.e. the steady-state temperature distribution before the transient
event. The two equations are coupled along the Joule loss density pJoule = J ·E and the
field- and temperature-dependent electric conductivity and permittivity, respectively, i.e.
σ = σ(E, θ) and ε = ε(E, θ). Eliminating q̇ gives

∂t (cVθ)− div (λ grad (θ)) = pJoule, t ∈ [ts, tf], r ∈ Ω ; (5.4a)

θ = θfixed , t ∈ [ts, tf], r ∈ ΓD,th ; (5.4b)

−λ grad (θ) · nth = 0 , t ∈ [ts, tf], r ∈ ΓN,th ; (5.4c)

θ = θ0 , t = ts , r ∈ Ω . (5.4d)

5.2 Numerical Approach

5.2.1 Discretization

The differential equations describing the electrothermal behavior of a cable joint are
formulated as a 2D axisymmetric FE problem. The electric scalar potential and the
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temperature are discretized using linear nodal shape functions according to (4.5) and
(4.6), respectively. The semi-discrete versions of (5.2) and (5.4) according to the Ritz
method read

Kσu+ ∂t (Kεu) = 0 ; (5.5)

Kλv + ∂t (McVv) = spJoule , (5.6)

with

[M(·)]ij =

∫︂
Ω
(·)NiNj dΩ i, j = 1, ..., Nnode . (5.7)

The equations (5.5) and (5.6) are further discretized in time using an implicit Euler time
stepping scheme, i.e.

∆tel,n+1K
n+1
σ u+Kn+1

ε un+1 = Kn
εu

n ; (5.8)

∆tth,n+1K
n+1
λ vn+1 +Mn+1

cV vn+1 = ∆tth,n+1s
n+1
pJoule

+Mn
cVv

n, (5.9)

where the superscripts indicate the time step at which the quantities are evaluated and
∆tel,n+1 and ∆tth,n+1 denote the electric and thermal time step size, respectively.

5.2.2 Multi-Rate Time-Integration

When simulating the transient electrothermal problem, an effective strategy to reduce
computational cost involves employing a multi-rate time-integration scheme [43]. A multi-
rate approach involves treating the electric and thermal domains as separate subsystems,
each with its own time integration step, ∆tel and ∆tth [43, 44]. With thermal dynamics
spanning minutes to hours [37, 27] and electric phenomena occurring on the microsecond
to millisecond scale, different time steps are necessary. Smaller steps are used for the
electric domain to capture rapid electrical changes, while larger steps suffice for the slower
thermal processes. This strategy efficiently simulates the transient electrothermal problem
while accurately representing both rapid electrical dynamics and slower thermal responses.
The coupling between the two domains is achieved through a weak coupling scheme, as
illustrated in Fig. 5.1 [43]. This scheme assumes a proportional relationship between the
thermal time step and the smaller electric time step, i.e., ∆tth = N∆tel, with N being an

27



arbitrary positive integer. Initially, the electric solver advances N times using the smaller
electric time step, ∆tel. Subsequently, the Joule loss density is computed, followed by a
single thermal time step calculation. After each thermal time step, updates are made to
the electric material characteristics, and the electric solver is restarted at the next time
interval. This iterative process continues until reaching the final simulation time tf. To
handle the nonlinearities inherent in the electric subproblem, a damped Newton method
is employed.

start

run electric solver
in [t, t + ∆tth]

using ∆tel =
∆tth
N

update loss
density pJoule

update material
characteristics σ, ε

t+∆tth = tf ?
run thermal solver in
[t, t+∆tth] using ∆tth

end

t = 0

yes

no

t = t+∆tth

Figure 5.1: Structural diagram of a electrothermal simulation procedure with a weak
coupling scheme.

5.2.3 Implementation and Solver Validation

The transient electrothermal solver is implemented for 2D axisymmetric problems in Pyrit
and validated using the model depicted in Fig. 5.2. The model consists of a layer of FGM
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Figure 5.2: Geometry of the validation model in the ρ-z-plane. The symmetry axis is
indicated by the dashdotted line.

with an inner radius ρ1 = 0.1m and an outer radius ρ2 = 0.3m. In z-direction, a height
of h = 0.1m is assumed. The FGM is placed between two electrodes, Γ1 and Γ2, and
surrounded by a layer of soil with ρ3 = 1m. The outer electrode, Γ2, is set to ground
potential and a sinusoidal voltage U = 150 kV+ 80 kV sin

(︁
2π
300 s t

)︁
is applied to the inner

electrode, Γ1. Furthermore, the inner electrode and the outer boundary of the soil layer,
Γ3, are set to a fixed temperature of 60◦C and 20◦C, respectively. The initial potential
and temperature distribution are set to the resistive steady state that corresponds to a DC
excitation of 150 kV (see Fig. 5.3).
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Figure 5.3: Steady-state electric field distribution (a) and temperature distribution (b)
along the ρ-axis.
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The first step in validating the multi-rate time integration approach involves computing
the mean and maximum relative deviation, denoted as erel, of the electric field along the
ρ-axis for different time step sizes, ∆t = ∆tel = ∆tth. The relative deviation is computed
with respect to a reference solution obtained for a very small time step size of ∆t = 0.1 s.
As shown in Fig. 5.4a, with a time step size of ∆t = 0.25 s a relative deviation below
0.01% is achieved. Next, the relative deviation is computed for different thermal time
steps while fixing the electric time step at ∆tel = 0.25 s. Figure 5.4b shows that the solver
maintains a maximum relative deviation of approximately 0.01% even when the thermal
time step is set twelve times larger than the electric time step, i.e. ∆tth = 12∆tel = 3 s.
Finally, the simulation results obtained with Pyrit are compared to results obtained via

COMSOL Multiphysics®. Figures 5.5a and 5.5b compare the results for the electric field
strength and the temperature at ρ = 0.15m over time. The results of both solvers are in
very good agreement with a mean and maximum relative deviation of the electric field
strength of 0.05% and 0.1%, respectively. Thus, the transient electrothermal solver has
been successfully validated.
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Figure 5.4: (a) Relative deviation of the electric field along the ρ-axis for different time
step sizes, ∆t = ∆tel = ∆tth. (b) Relative deviation of the electric field along
the ρ-axis for different thermal time step sizes, ∆tth and a fixed electric time
step size ∆tel = 0.25 s
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Figure 5.5: Comparison between the results obtained via COMSOL Multiphysics®and
Pyrit. (a) shows the electric field strength E and (b) the temperature at ρ =

0.15m over time.

5.3 Electrothermal Analysis

In this section, the electrothermal simulation results of the 320 kV cable joint specimen
subjected to a switching impulse are discussed. The switching impulse is depicted in
Fig. 5.6 and defined according to [5, 10] as

Uswitch(t) = UDC + Û
τ2

τ2 − τ1

(︃
exp

(︃
− t

τ2

)︃
− exp

(︃
− t

τ1

)︃)︃
, (5.10)

withUDC = 320 kV, Û = 1.15UDC = 368 kV and the constants τ1 = 250
2.41 µs and τ2 =

2500
0.87 µs.

It rises to peak potential of 688 kV within trise = 0.357ms and then declines, taking
tfall,50% = 2.45ms to fall by 50%.
Figure 5.7 shows the tangential electric field at the material interfaces of the FGM and

the insulating materials at various time instances during the impulse. Here, time instance
trise,50% = 0.0614ms represents the time required for the impulse to reach half its peak
value. The simulation results reveal that the electric field distribution during the impulse
varies significantly from the steady-state distribution. Notably, the maximum field stress is
approximately doubled.
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Figure 5.6: Switching impulse overvoltage over time defined according to [5, 10].

Figure 5.8 shows the absolute value of the tangential field electric field at the material
interfaces near all three triple points over time. The maximum tangential field stress of
1.75 kV/mm occurs after 0.0916ms and is located at triple point 1 next to the conductor
clamp (see Fig. 4.5). Figure 5.8b shows that after approximately 2.5 s, the electric field
returns to its steady-state distribution.
During the switching impulse, the nonlinear conductivity of the FGM increases sig-

nificantly, reaching a maximum value of 6 · 10−7S/m compared to the maximum value
of 5 · 10−9S/m observed during steady-state operation. Figure 5.9a shows a substantial
increase in Joule losses, which spike from 2.7W during steady-state operation to a peak
of 46 kW after 0.351ms, i.e. shortly before the impulse peak. Despite this dramatic rise in
Joule losses, no significant heating is observed due to the short duration of the impulse, as
shown in Fig. 5.9b.
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Figure 5.7: Tangential electric field strength at (a) the interface between the FGM and
the cable’s insulation (dark blue evaluation path in Fig. 4.5) and (b) at the
interface between the FGM and the joint’s insulation (light blue evaluation
path in Fig. 4.5) for different time instances.
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Figure 5.8: Absolute value of the tangential electric field stress at the material interfaces
near the three triple points (see Fig. 4.5) over time. For clarity, the figure
presents the results across different time scales, with (a) highlighting the
interval from 0ms to tfall,50%=2.45ms.
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Figure 5.9: (a) The Joule losses Q̇Joule over time. (b) The radial temperature distribution
at z = 0.405m for different time instances.
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6 Sensitivity Computation

Advances in material science have enabled the precise tailoring of an FGM’s nonlinear
conductivity characteristic to fit specific application requirements [45, 36]. When de-
signing an FGM, its material properties are represented by a set of design parameters
p = [p1, ..., pNp ]. The performance of the FGM is assessed based on several quantities of
interest (QoIs), Gk, where k = 1, ..., NQoI, such as the Joule losses or the electric field
stress at critical positions.
Traditionally, practical approaches and rules of thumb have been developed to select the

nonlinear conductivity characteristics of FGMs [36]. However, relying on these methods
can be limiting, as they often depend on prior knowledge that may not be available for
future cable joint designs. Moreover, the nonlinear behavior of FGMs and the need to
balance multiple – possibly conflicting – QoIs make manual optimization, e.g. using
parameter sweeps, extremely challenging. For example, sweeping the five parameters
defining the conductivity characteristic (3.1) with only three values each would already
result in 35 = 243 simulations, which is impractical.
A more systematic approach can be achieved by leveraging sensitivity information to

guide the design process. Sensitivities quantify how small changes in a design parameter
pj influence a given QoI Gk, expressed as dGk

dpj (p0), where p0 = [p1,0, ..., pNp,0] denotes
the current parameter configuration. This information allows the quantification of the
influence of individual parameters and enables the comparison of their effects on different
QoIs. Sensitivities are the foundation of gradient-based optimization approaches, which
can effectively reduce the number of expensive nonlinear coupled transient FE simulations
[46].
In this chapter, two complementary methods for the sensitivity computation of HVDC

cable joints with respect to material parameters are presented: the DSM and the AVM.
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The derivation of the AVM for nonlinear transient coupled electrothermal problems is one
of the core contributions of this thesis and has been published in [20, 21, 22].

6.1 Direct Sensitivity Method

One of the most commonly used methods for sensitivity computation is the DSM [47]. The
DSM appeals with its simple derivation and straight-forward implementation. The method
computes the sensitivities of the electric potential and the temperature, respectively, i.e.
dϕ
dpj (p0) and dθ

dpj (p0), from which the sensitivities can then be computed directly according
to

dGk

dpj
(p0) =

∂Gk

∂pj
(p0) +

∂Gk

∂ϕ

dϕ
dpj

(p0) +
∂Gk

∂θ

dθ
dpj

(p0) , (6.1)

where the sensitivity has been written in more detail using the chain rule. The sensitivities
dϕ
dpj (p0) and dθ

dpj (p0) are computed by solving the sensitivity formulation. The sensitivity
formulation is a system of linear coupled transient partial differential equations (PDEs)
obtained by taking the derivative of (5.1) and (5.3) to pj . Thus, the DSM requires the
solution of one additional PDE system for each parameter. Consequently, this approach is
efficient if the number of QoIs, NQoI, is larger than the number of parameters, Np. The
derivative of (5.1) to pj reads

div
(︁
J ′)︁+ div(︃∂D′

∂t

)︃
= 0 , t ∈ [ts, tf], r ∈ Ω ; (6.2a)

J ′ =
∂σ

∂pj
E + σdE

′ +
∂σ

∂θ
θ′E , t ∈ [ts, tf], r ∈ Ω ; (6.2b)

D′ =
∂ε

∂pj
E + εdE

′ +
∂ε

∂θ
θ′E , t ∈ [ts, tf], r ∈ Ω ; (6.2c)

E′ = − grad
(︁
ϕ′)︁ , t ∈ [ts, tf], r ∈ Ω ; (6.2d)

ϕ′ = 0 , t ∈ [ts, tf], r ∈ ΓD,el ; (6.2e)(︃
J ′ +

∂D′

∂t

)︃
· n = 0 , t ∈ [ts, tf], r ∈ ΓN,el ; (6.2f)

ϕ = ϕ0 , t = ts , r ∈ Ω . (6.2g)

where all quantities are evaluated at p0 and (·)′ = d(·)
dpj is used as a shorthand for the full

derivatives of of a quantity to pj , e.g., ϕ′ = dϕ
dpj . The differential electric conductivity and
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differential permittivity are denoted by σd and εd, respectively. They are defined as [21,
48]:

σd(E, θ) = σ(E, θ)

[︄
1 0

0 1

]︄
+ 2

dσ
dE2

(E, θ)EET ,

εd(E, θ) = ε(E, θ)

[︄
1 0

0 1

]︄
+ 2

dε
dE2

(E, θ)EET ,

and are evaluated for the operating points defined by the nominal solution. Since the elec-
trode potentials do not depend on material parameters, the Dirichlet boundary condition
becomes homogeneous. Eliminating J ′,D′ and E′ brings up

−div
(︁
σd grad

(︁
ϕ′)︁)︁− div(︃ ∂

∂t

(︁
εd grad

(︁
ϕ′)︁)︁)︃

= −div
(︃
∂σ

∂pj
E +

∂σ

∂θ
θ′E

)︃
− div

(︃
∂

∂t

(︃
∂ε

∂pj
E +

∂ε

∂θ
θ′E

)︃)︃
, t ∈ [ts, tf], r ∈ Ω ; (6.3a)

ϕ′ = 0 , t ∈ [ts, tf], r ∈ ΓD,el ; (6.3b)

( −σd grad
(︁
ϕ′)︁− ∂

∂t

(︁
εd grad

(︁
ϕ′)︁)︁)︃ · n

= −
(︃
∂σ

∂pj
E +

∂σ

∂θ
θ′E +

∂

∂t

(︃
∂ε

∂pj
E +

∂ε

∂θ
θ′E

)︃)︃
· n, t ∈ [ts, tf], r ∈ ΓN,el ; (6.3c)

ϕ′ = ϕ′
0 , t = ts , r ∈ Ω . (6.3d)

The derivative of (5.3) to pj reads

∂

∂t

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃
+ div

(︁
q̇′
)︁

= p′Joule =

(︃
∂σ

∂pj
+

∂σ

∂θ
θ′
)︃
E2 + J ·E′ + σdE ·E′, t ∈ [ts, tf], r ∈ Ω ; (6.4a)

q̇′ = − ∂λ

∂pj
grad (θ)− ∂λ

∂θ
θ′ grad (θ)− λ grad

(︁
θ′
)︁

, t ∈ [ts, tf], r ∈ Ω ; (6.4b)
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θ = 0 , t ∈ [ts, tf], r ∈ ΓD,th ; (6.4c)

q̇′ · n = 0 , t ∈ [ts, tf], r ∈ ΓN,th ; (6.4d)

θ′ = θ′0 , t ∈ t = ts, r ∈ Ω . (6.4e)

where, again, all quantities are evaluated at p0. Eliminating q̇′ yields

−J ·E′ − σdE ·E′

+
∂

∂t

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃

−div
(︃
∂λ

∂θ
θ′ grad (θ)

)︃
− div

(︁
λ grad

(︁
θ′
)︁)︁

− ∂σ

∂θ
θ′E2

= div
(︃

∂λ

∂pj
grad (θ)

)︃
+

∂σ

∂pj
E2 , t ∈ [ts, tf], r ∈ Ω ; (6.5a)

θ = 0 , t ∈ [ts, tf], r ∈ ΓD,th ; (6.5b)

q̇′ · n = 0 , t ∈ [ts, tf], r ∈ ΓN,th ; (6.5c)

θ′ = θ′0 , t ∈ t = ts, r ∈ Ω . (6.5d)

6.2 Adjoint Variable Method

An alternative approach for sensitivity computation is the AVM. The AVM is very efficient
when the number of parameters, NP, is greater than the number of quantities of interest
(QoIs), NQoI [49, 50]. It has originally been applied for the analysis of electric networks
[47] and only recently gained interest in the HV engineering community [51]. In this
section, the AVM is derived for nonlinear transient coupled electrothermal problems.
The idea of the AVM is to avoid the separate computation of dϕdpj (p0) and dθ

dpj (p0) for
each parameter by a clever representation of the QoIs: Each QoI, Gk, is formulated as
an integral over the computational domain in space and time, Ω× [ts, tf], by means of a
functional, gk. Furthermore, the EQS equation (5.1) and the transient heat conduction
equation (5.3) are substracted, multiplied by test functions wel,k and wth,k, respectively:

Gk(ϕ, θ,p) =

∫︂ tf

ts

∫︂
Ω
gk(ϕ, θ, r, t,p)dΩdt
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−
∫︂ tf

ts

∫︂
Ω
wel,k(r, t) (div (∂tD + J))⏞ ⏟⏟ ⏞

(5.1a)
= 0

dΩdt

−
∫︂ tf

ts

∫︂
Ω
wth,k(r, t) (∂t (cVθ) + div (q̇)− q̇Joule)⏞ ⏟⏟ ⏞

(5.3a)
= 0

dΩdt . (6.6)

As indicated by the curved brackets, the additional terms are zero by construction. Con-
sequently, the test functions, wel,k and wth,k, can be chosen freely without changing the
value of the QoIs. Taking the derivative of (6.6) to pj yields:

G′
k(p0) =

∫︂ tf

ts

∫︂
Ω

∂gk
∂pj

+
∂gk
∂ϕ

ϕ′ +
∂gk
∂θ

θ′ dΩdt⏞ ⏟⏟ ⏞
=: 1O

−
∫︂ tf

ts

∫︂
Ω
wel,k div

(︁
J ′)︁ dΩdt⏞ ⏟⏟ ⏞

=: 2O

−
∫︂ tf

ts

∫︂
Ω
wel,k div

(︃
∂D′

∂t

)︃
dΩdt⏞ ⏟⏟ ⏞

=: 3O

−
∫︂ tf

ts

∫︂
Ω
wth,k div

(︁
q̇′
)︁
dΩdt⏞ ⏟⏟ ⏞

=: 4O

−
∫︂ tf

ts

∫︂
Ω
wth,k

(︃
∂

∂t

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃)︃
dΩdt⏞ ⏟⏟ ⏞

=: 5O

−
∫︂ tf

ts

∫︂
Ω
wth,kp

′
Joule dΩdt⏞ ⏟⏟ ⏞

=: 6O

.

(6.7)

The goal is to factor ϕ′(p0) and θ′(p0) out and choose wel,k and wth,k such that all unknown
terms vanish. First, the second integral 2O is investigated. Applying integration by parts
leads to

2O =

∫︂ tf

ts

∫︂
Ω

grad (wel,k) · J ′ dΩdt−
∫︂ tf

ts

∫︂
∂Ω

wel,kJ
′ · dSdt (6.8)

Substituting (6.2b) and (6.2d) brings up

2O =

∫︂ tf

ts

∫︂
Ω
grad

(︁
wel,k

)︁
·
(︃
∂σ

∂pj
E − σd grad

(︁
ϕ′)︁+ ∂σ

∂θ
θ′E

)︃
dΩdt
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−
∫︂ tf

ts

∫︂
∂Ω

wel,kJ
′ · dSdt (6.9)

A second time integrating by parts leads to

2O =

∫︂ tf

ts

∫︂
Ω
grad

(︁
wel,k

)︁
·
(︃
∂σ

∂pj
E +

∂σ

∂θ
θ′E

)︃
dΩdt

+

∫︂ tf

ts

∫︂
Ω
div
(︁
σd grad

(︁
wel,k

)︁)︁
ϕ′ dΩdt

−
∫︂ tf

ts

∫︂
∂Ω

wel,kJ
′ · dSdt−

∫︂ tf

ts

∫︂
∂Ω

(︁
σd grad

(︁
wel,k

)︁)︁
ϕ′ · dSdt . (6.10)

In a similar manner, integral 4O can be rewritten as

4O =

∫︂ tf

ts

∫︂
Ω
grad

(︁
wth,k

)︁
·
(︃
− ∂λ

∂pj
grad (θ)− ∂λ

∂θ
θ′ grad (θ)

)︃
dΩdt

+

∫︂ tf

ts

∫︂
Ω
div
(︁
λ grad

(︁
wth,k

)︁)︁
θ′ dΩdt

−
∫︂ tf

ts

∫︂
∂Ω

wth,kq̇
′ · dSdt−

∫︂ tf

ts

∫︂
∂Ω

θ′λ grad
(︁
wth,k

)︁
· dSdt . (6.11)

Next, the third integral 3O is investigated. The differential operator is shifted from ∂D′

∂t to
the adjoint variable, wel,k, using integration by parts,

3O = −
∫︂ tf

ts

∫︂
Ω
wel,k div

(︃
∂D′

∂t

)︃
dΩdt (6.12)

=

∫︂ tf

ts

∫︂
Ω
grad

(︁
wel,k

)︁
· ∂D

′

∂t
dΩdt−

∫︂ tf

ts

∮︂
∂Ω

wel,k
∂D′

∂t
· dSdt . (6.13)

Integration by parts in time removes the time derivative fromD′, i.e.,

3O =

∫︂
Ω
grad

(︁
wel,k

)︁
·D′ dΩ

⃓⃓⃓⃓
t=tf

−
∫︂
Ω
grad

(︁
wel,k

)︁
·D′ dΩ

⃓⃓⃓⃓
t=ts

−
∫︂ tf

ts

∫︂
Ω

∂

∂t
grad

(︁
wel,k

)︁
·D′ dΩdt−

∫︂ tf

ts

∮︂
∂Ω

wel,k
∂D′

∂t
· dSdt , (6.14)

where the integral evaluated at t = ts is given through the sensitivity of the initial condition
(6.2g). The third integral of (6.14) is further unravelled by inserting (6.2c) and (6.2d)
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and integrating by parts, i.e.,

−
∫︂ tf

ts

∫︂
Ω

∂

∂t
grad

(︁
wel,k

)︁
·D′ dΩdt (6.15)

= −
∫︂ tf

ts

∫︂
Ω

∂

∂t
grad

(︁
wel,k

)︁(︃ ∂ε

∂pj
E − εd grad

(︁
ϕ′)︁+ ∂ε

∂θ
θ′E

)︃
dΩdt (6.16)

= −
∫︂ tf

ts

∫︂
Ω

∂

∂t
grad

(︁
wel,k

)︁
·
(︃

∂ε

∂pj
E +

∂ε

∂θ
θ′E

)︃
+ div

(︃
εd

∂

∂t
grad

(︁
wel,k

)︁)︃
ϕ′ dΩdt

+

∫︂ tf

ts

∫︂
∂Ω

εd
∂

∂t
grad

(︁
wel,k

)︁
ϕ′ · dSdt .

(6.17)

The boundary integrals occurring in (6.10),(6.11),(6.14) and (6.17) can be simplified
using (6.2e), (6.2f), (6.4c) and (6.4d), i.e.

−
∫︂
∂Ω

wel,k

(︃
J +

∂D′

∂t

′)︃
· dS (6.2f)

= −
∫︂ tf

ts

∫︂
ΓD, el

wel,k

(︃
J ′ +

∂D′

∂t

)︃
· dSdt ; (6.18)

−
∫︂
∂Ω

(︁
σd grad

(︁
wel,k

)︁)︁
ϕ′ · dS (6.2e)

= −
∫︂
ΓN,el

(︁
σd grad

(︁
wel,k

)︁)︁
ϕ′ · dS ; (6.19)∫︂

∂Ω

(︃
εd

∂

∂t
grad

(︁
wel,k

)︁)︃
ϕ′ · dS (6.2e)

=

∫︂
ΓN,el

(︃
εd

∂

∂t
grad

(︁
wel,k

)︁)︃
ϕ′ · dS ; (6.20)

−
∫︂
∂Ω

wth,kq̇
′ · dS (6.4d)

= −
∫︂
ΓD,th

wth,kq̇
′ · dS ; (6.21)

−
∫︂
∂Ω

θ′λ grad
(︁
wth,k

)︁
· dS (6.4c)

= −
∫︂
ΓN,th

θ′λ grad
(︁
wth,k

)︁
· dS . (6.22)

Next, integral 5O is investigated. Integration by parts in time removes the time
derivative from θ′, i.e.,

5O = −
∫︂ tf

ts

∫︂
Ω

wth,k

(︃
∂

∂t

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃)︃
dΩdt

=

∫︂ tf

ts

∫︂
Ω

∂wth,k
∂t

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃
dΩdt

−
∫︂
Ω

wth,k (cVθ)
′ dΩ

⃓⃓⃓⃓
t=tf

+

∫︂
Ω

wth,k (cVθ)
′ dΩ

⃓⃓⃓⃓
t=ts
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=

∫︂ tf

ts

∫︂
Ω

∂wth,k
∂t

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃
dΩdt

−
∫︂
Ω

wth,k (cVθ)
′ dΩ

⃓⃓⃓⃓
t=tf

+

∫︂
Ω

wth,k

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃
dΩ
⃓⃓⃓⃓
t=ts

, (6.23)

where the sensitivity of the temperature at t = ts is given by (6.4e). The sensitivity
can now be written as

G′
k(p0) =

∫︂ tf

ts

∫︂
Ω

∂gk
∂pj

+ grad (wel,k) ·
∂σ

∂pj
E − ∂

∂t
grad (wel,k) ·

∂ε

∂pj
E dΩdt

+

∫︂ tf

ts

∫︂
Ω

− grad (wth,k) ·
∂λ

∂pj
grad (θ)+wth,k

∂σ

∂pj
E2+

∂wth,k
∂t

∂cV
∂pj

θ dΩdt

+

∫︂ tf

ts

∫︂
Ω

∂gk
∂ϕ

ϕ′ + div
(︁
σd grad (wel,k)

)︁
ϕ′ dΩdt

+

∫︂ tf

ts

∫︂
Ω

−div
(︃
εd

∂

∂t
grad (wel,k)

)︃
ϕ′ dΩdt

+

∫︂ tf

ts

∫︂
Ω

−div
(︁
wth,k

(︁
σdE + J

)︁)︁
ϕ′ dΩdt

+

∫︂ tf

ts

∫︂
Ω

∂gk
∂θ

θ′ + div (λ grad (wth,k)) θ′ dΩdt

+

∫︂ tf

ts

∫︂
Ω

+wth,k
∂σ

∂θ
E2θ′+

∂wth,k
∂t

∂cV
∂θ

θθ′ +
∂wth,k
∂t

cVθ
′ dΩdt

+

∫︂ tf

ts

∫︂
Ω

grad (wel,k) ·
∂σ

∂θ
Eθ′ − ∂

∂t
grad (wel,k) ·

∂ε

∂θ
Eθ′ dΩdt

+

∫︂ tf

ts

∫︂
Ω

− grad (wth,k) ·
∂λ

∂θ
grad (θ) θ′ dΩdt

+

∫︂ tf

ts

∫︂
ΓD, el

−wel,k

(︃
J ′ +

∂D′

∂t

)︃
· dSdt

+

∫︂ tf

ts

∫︂
ΓN, el

(︃
−σd grad (wel,k)ϕ′ + εd

∂

∂t
grad (wel,k)ϕ′

)︃
· dSdt
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+

∫︂ tf

ts

∫︂
ΓN, el

ϕ′wth,k
(︁
σdE + J

)︁
· dSdt

−
∫︂ tf

ts

∫︂
ΓD, th

wth,kq̇
′ · dSdt−

∫︂ tf

ts

∫︂
ΓN, th

θ′λ grad (wth,k) · dSdt

+

∫︂
Ω

grad (wel,k) ·D′ dΩ
⃓⃓⃓⃓
t=tf

−
∫︂
Ω

grad (wel,k) ·D′ dΩ
⃓⃓⃓⃓
t=ts

−
∫︂
Ω

wth,k (cVθ)
′ dΩ

⃓⃓⃓⃓
t=tf

+

∫︂
Ω

wth,k

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃
dΩ
⃓⃓⃓⃓
t=ts

, (6.24)

where all unknown terms are highlighted in red and blue, respectively. The aim
is for all unknown terms to vanish and cancel each other out. This yields the
so-called adjoint problem, which is a linear coupled system of PDEs for the test
functions wel,k and wth,k, i.e.,

div
(︃
εd

∂

∂t
grad

(︁
wel,k

)︁)︃
−div

(︁
σd grad

(︁
wel,k

)︁)︁
+div

(︁
wth,k

(︁
σdE + J

)︁)︁
=

∂gk
∂ϕ

, t ∈ [ts, tf], r ∈ Ω ;

wel,k = 0 , t ∈ [ts, tf], r ∈ ΓD,el ;(︃
−σd grad

(︁
wel,k

)︁
+ εd

∂

∂t
grad

(︁
wel,k

)︁
+ wth,k

(︁
σdE + J

)︁)︃
· nel = 0 , t ∈ [ts, tf], r ∈ ΓN,el ;

wel,k = 0 , t = tf , r ∈ Ω ,

(6.25a)

(6.25b)

(6.25c)

(6.25d)
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and

∂

∂t
grad

(︁
wel,k

)︁
· ∂ε
∂θ

E

− grad
(︁
wel,k

)︁
· ∂σ
∂θ

E

−
∂wth,k
∂t

(︃
cV +

∂cV
∂θ

θ

)︃
−div

(︁
λ grad

(︁
wth,k

)︁)︁
+ grad

(︁
wth,k

)︁
· ∂λ
∂θ
grad (θ)

−wth,k
∂σ

∂θ
E2 =

∂gk
∂θ

, t ∈ [ts, tf], r ∈ Ω ;

wth,k = 0 , t ∈ [ts, tf], r ∈ ΓD,th ;

−λ grad
(︁
wth,k

)︁
· nth = 0 , t ∈ [ts, tf], r ∈ ΓN,th ;

wth,k = 0 t = tf , r ∈ Ω .

(6.26a)

(6.26b)

(6.26c)

(6.26d)

Once the test functions wel,k and wth,k are computed as the solution of the adjoint
problem, the sensitivity simplifies from (6.24) to

Gk(p0)
′ =

∫︂ tf

ts

∫︂
Ω

∂gk
∂pj
dΩdt

+

∫︂ tf

ts

∫︂
Ω
− ∂

∂t
grad

(︁
wel,k

)︁
· ∂ε

∂pj
E + grad

(︁
wel,k

)︁
· ∂σ

∂pj
E dΩdt

+

∫︂ tf

ts

∫︂
Ω

∂wth,k
∂t

∂cV
∂pj

θ dΩdt

+

∫︂ tf

ts

∫︂
Ω
wth,k

∂σ

∂pj
E2 − grad

(︁
wth,k

)︁
· ∂λ

∂pj
grad (θ) dΩdt

−
∫︂
Ω
grad

(︁
wel,k

)︁
·D′ dΩ

⃓⃓⃓⃓
t=ts

+

∫︂
Ω
wth,k

(︃(︃
∂cV
∂pj

+
∂cV
∂θ

θ′
)︃
θ + cVθ

′
)︃
dΩ
⃓⃓⃓⃓
t=ts

. (6.27)

This means that once the test functions wel,k and wth,k are available, the sensitivity
of a QoI Gk with respect to any parameter pj can be computed simply by post-
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processing, i.e. by evaluating (6.27). Since the the adjoint problem (6.25) and
(6.26) depends only on the QoI and not on the parameter under investigation, the
AVM requires the solution of just one additional linear PDE system for each QoI,
regardless of the number of parameters, Np.

6.3 Numerical Approach

The electric scalar potential and the temperature are discretized according to
(4.5) and (4.6), respectively. Furthermore, the following spatial discretizations
are applied:

ϕ′(r, t) ≈
∑︂
r

u′
r(t)Nr(r) ; (6.28a)

θ′(r, t) ≈
∑︂
r

v′r(t)Nr(r) ; (6.28b)

wel,k(r, t) ≈
∑︂
r

wel,k,j(t)Nr(r) ; (6.28c)

wth,k(r, t) ≈
∑︂
r

wth,k,j(t)Nr(r) . (6.28d)

The semi-discrete counterpart of the adjoint formulation, (6.25) and (6.26), reads

−Kεd

∂

∂t
wel,k +Kσd

wel,k −AT
J+σdE

wth,k = xel ; (6.29a)

A ∂ε
∂θ

E

∂

∂t
wel,k −A ∂σ

∂θ
Ewel,k −M

cV+
∂cV
∂θ

θ

∂

∂t
wth,k

+
(︂
Kλ −A− ∂λ

∂θ
grad(θ) −M ∂σ

∂θ
E2

)︂
wth,k = xth , (6.29b)

with the FE operators

[A(·)]rs =

∫︂
Ω

(·) · grad (Ns)Nr dΩ ; (6.30a)

[xel]r =

∫︂
Ω

∂gk
∂ur

dΩ ; (6.30b)
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[xth]r =

∫︂
Ω

∂gk
∂vr
dΩ , (6.30c)

which are assembled for r, s = 1, ..., Nnode. The adjoint problem is implemented for
axisymmetric problems in Pyrit [19]. A multi-rate coupling scheme with implicit
Euler time-stepping is performed [44]. The coupling between (6.29a) and (6.29b)
is resolved using the successive substitution method. Since the adjoint problem
provides terminal conditions instead of initial conditions, i.e. (6.25d), (6.26d)
are defined at the terminal simulation time tf, the time-stepping is performed
backwards in time [52, 49]. The semi-discrete counterpart of (6.27) is given by

dGk

dpj
(p0) =

∫︂ tf

0

∫︂
Ω

∂g

∂pj
dΩdt

−
∫︂ tf

0

uTK ∂σ
∂pj

wel,kdt

+

∫︂ tf

0

uTK ∂ε
∂pj

∂

∂t
wel,kdt

+

∫︂ tf

0

vTM ∂cV
∂pj

∂

∂t
wth,kdt

+

∫︂ tf

0

∂

∂t
wT
th,ks ∂σ

∂pj
E2dt

+

∫︂ tf

0

−vTK ∂λ
∂pj

wth,kdt

+ uTK ∂ε
∂pj

wel,k

⃓⃓⃓⃓
t=ts

+ (u′)TKεd
wel,k

⃓⃓⃓⃓
t=ts

+ uTK ∂ε
∂θ
dT
dp
wel,k

⃓⃓⃓⃓
t=ts

+ vTM ∂cV
∂pj

+
∂cV
∂T

dT
dpj

wth,k

⃓⃓⃓⃓
t=ts

+ (v′)TMcVwth,k

⃓⃓⃓⃓
t=ts

(6.31)
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Figure 6.1: The switching impulse over the simulated time span [ts, tf] = [0, 30ms].

6.4 Method Validation

In this section, the AVM presented in the previous section is validated. The method
is applied to the 320 kV cable joint specimen and the results are compared to results
obtained via the DSM as well as results obtained via finite difference computations
in COMSOL Multiphysics®.
The cable joint is investigated during the switching overvoltage event described
in Ch. 5. The impulse over the simulated time span [ts, tf] = [0, 30ms] is shown in
Fig. 6.1. Furthermore, a fixed conductor temperature of 65◦C is assumed, which
is the mean conductor temperature obtained in the simulation results of Ch. 5.
The validation is performed by investigating the sensitivity of the Joule heat,

GJoule =
∫︁ tf
ts
PJoule dt, with respect to the material parameters of the FGM, i.e. p1 to

p5 of (3.1). This is motivated by the findings of [38] and [12], where it has been
demonstrated that inappropriate choices for p1 to p5 can result in a substantial
elevation of the Joule heat and consequently a significant temperature increase
(see Fig. 6.2). To apply the AVM, the Joule heat is written in terms of a functional
gJoule,

GJoule(ϕ, θ,p) =

∫︂ tf

ts

∫︂
Ω

gJoule(ϕ, θ, r, t,p)dΩdt =
∫︂ tf

ts

∫︂
Ω

pJoule dΩdt . (6.32)
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Figure 6.2: Joule heat as an exemplary QoI for (a) different values of p1 and (b) different
values of p2.

Note that this integral notation does not restrict the choice of QoIs. QoIs that may
not inherently be expressed as integral can be effectively represented using Dirac
delta functions, δ, within the integral expression. For example, the temperature
θ(rQoI, tQoI) at a particular position, rQoI, and time instance, tQoI, reads in integral
notation:

Gθ(rQoI,tQoI)(ϕ, θ,p) =

∫︂
Ω

∫︂ tf

ts

θ(r, t)δ(r − rQoI)δ(t− tQoI)dΩdt . (6.33)

For more information on QoIs that are evaluated at specific points in space or
time and the numeric implications, see [21]. The QoI-dependent parts of the FE
formulation are defined by∫︂

Ω

∂gJoule
∂pj

dΩ ≈ uTK ∂σ
∂p
u (6.34a)

xel = uT (Kσ +Kσd
) (6.34b)

xth = s ∂σ
∂T

E2 (6.34c)
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The results are collected in Table 6.1. The sensitivities are both positive and
negative and their absolute values vary substantially. Comparing the absolute
value of the sensitivity to p1 and p2, respectively, indicates that the QoI is much
more sensitive to changes in p1 compared to p2. However, the comparison of the
sensitivities should take the absolute value of the parameters into account. This
can be done for example by using a first order Taylor series approximation of the
QoI’s dependence on the parameters,

GJoule(pj) ≈ GJoule(p0,j) +
dGJoule
dpj

(p0,j)∆pj, j = 1, ..., 5 ,

where ∆pj = pj − p0,j is the perturbation of the j-th parameter. The Taylor series
can be used to estimate the relative change of a QoI that occurs for an increase of
a parameter ∆pj = 1%p0,j, i.e.

∆G1%,j :=
∆GJoule
GJoule(p0,j

≈ dGJoule
dpj

(p0,j)
1%p0,j

GJoule(p0,j)
, (6.35)

with ∆GJoule = GJoule(p0,j +∆pj)−GJoule(p0,j). The normalized sensitivities are
brought together in Table 6.2. Comparing the normalized value of the sensitivity
to p1 and p2 now shows that the QoI actually is much more sensitive towards
relatively small changes in p2 compared to p1 (see Fig. 6.4a and Fig. 6.4b). In
fact, p2 appears to be the most influential design parameter. The significant
impact of p2 can be understood by considering its influence on the nonlinear
conductivity characteristic. Figure 6.3 shows that p2 determines the field strength
at which the electric conductivity transitions from the constant base conductivity
to the nonlinear region. Additionally, small values of p2 increase the slope of
the conductivity rise. Consequently, reducing p2 results in a local increase of the
conductivity by several orders of magnitude and, therefore, significantly greater
Joule heat.
Finally, the adjoint formulation (6.25) and (6.26) is validated by comparing
the sensitivities of the Joule heat obtained by the AVM to two reference solutions.
The first reference solution is obtained by finite difference computations using
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Table 6.1: Sensitivities of the Joule heat with respect to the parameters p1 to p5 of the
nonlinear FGM conductivity defined by (3.1).

Parameter Value Sensitivity
pj p0,j

dG
dpj (p0)

p1 1.0e-10 S/m 2.76e+11 kJ/(S/m)
p2 0.70 kV/mm -6.28e-4 kJ/(kV/mm)
p3 2.4kV/mm 2.38e-8 kJ/(kV/mm)
p4 1900 1.65e+2kJ
p5 3700 1.01e+2kJ

COMSOL Multiphysics®. The second reference solution is computed using the
DSM which is also implemented in Pyrit. Fig. 6.5 shows that the results agree for
all parameters. Hence, the method is successfully validated.
Figure 6.6 investigates the convergence behavior of the AVM. Figure 6.6a
shows that the relative error, ϵrel, of the sensitivity dGdp2 (p0) of the Joule losses to
p2 converges quadratically with respect to the maximum edge length inside the
2D triangular mesh. In order to achieve a relative error below one 1%, mesh
consisting of 24722 nodes and 52544 elements is selected for all computations.
Figure 6.6b shows the relative error, ϵrel, of the sensitivity dGdp1 (p0) of the Joule
losses to p2 with respect to the time step size. As expected for the implicit Euler
method, the relative error converges quadratically with respect to the time step
size. With a maximum step size of ∆tmax = ∆tel,max = ∆tth,max = 0.56ms, a
relative error below 0.1% can be achieved. It furthermore shows the convergence
of the sensitivity with respect to the maximum thermal time step, ∆tth,max, while
the maximum electric time step is fixed at ∆tel,max = 0.56ms. The thermal time
step can be chosen approximately 5.4 times larger than the electric time step
without loss of accuracy, demonstrating the benefits of a multi-rate time-integration
approach. The AVM is, thus, successfully validated, which is an important step
towards the optimization of FGMs in HVDC cable joints.
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Table 6.2: Normalized sensitivities according to (6.35) of the Joule heat with respect to
the parameters p1 to p5 of the nonlinear FGM conductivity defined by (3.1).

Parameter Normalized sensitivity
pj ∆G1%,j

p1 0.780%

p2 −12.4%

p3 1.61e-3%
p4 0.870%

p5 1.06%
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Figure 6.3: Field-dependence of the nonlinear conductivity defined for different values of
the switching field strength, p2.
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Figure 6.4: The QoI, i.e. the Joule heat, for different values of (ab) p1 and (b) p2. The red
lines indicate the slope of the tangents as computed by the AVM.
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Figure 6.5: Comparison of the sensitivities of the Joule heat computed by the AVM and
the reference solutions, respectively.
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7 Parameter Identification from
Measurement Data

The accuracy and predictive capabilities of a simulation depend significantly on the
quality of its model parameters, which are often not precisely known. This chapter
illustrates how simulations can estimate unknown material parameters from mea-
surement data using an inverse problem approach [53, 54]. This study utilizes
code originally developed for parameter identification in electrical machines [55],
which has been adapted for use with HVDC cable joints.

7.1 Model Formulation

In this study, the thermal conductivities of the 320 kV cable joint specimen pre-
sented in Ch. 3 are estimated using temperature measurements.
Firstly, a mathematical model of the cable joint is formulated dependent on the
parameters to be estimated, namely the thermal conductivities, λ. The thermal
steady-state of the cable joint is described by the static heat conduction equation
(4.3), which is considered in a 2D axisymmetric FE simulation (see (4.8)).
Secondly, measurement data capturing the relevant aspects of the systems behav-
ior are collected. Since no experimental data is available, mock-up measurement
data is generated by a forward thermal steady-state simulation of the cable joint
to which a synthetic noise is added [55], i.e.,

θmeas = θsim(λexact) + η , (7.1)
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where θsim = [θsim,1, ..., θsim,Nmeas ] represents the temperatures obtained by a for-
ward simulation, λexact are the thermal conductivities of the forward simulation,
and η(0, ση) is a standard-distributed noise with a standard deviation of ση. A
purely thermal experimental setup is selected, assuming a constant conductor
temperature of 65◦C and an ambient temperature of 20◦C, no voltage is applied
to the joint.
Lastly, the inverse problem is defined as a least square optimization problem

[55],

argmin
λ

Nmeas∑︂
i=0

(θmeas,i − θsim,i(λ))
2 , (7.2)

aiming to minimize the difference between measured and simulated temperatures.
Both the forward and inverse problem are implemented and solved within the FE
framework Pyrit. The optimization problem (7.2) is solved using the "scipy"-library
with the default optimizing method L-BFGS-B. An initial guess of 1W/(m·K) is
assumed for all thermal conductivities. The optimization problem is bounded to
search for thermal conductivities between 0.01W/(m·K) and 20W/(m·K).

7.2 Noise-Free Virtual Measurements at all Mesh Nodes

Table 7.1: Exact thermal conductivities of the forward problem.

Material Symbol Thermal Conductivity in W/(m·K)

FGM λFGM 0.5
XLPE λXLPE 0.3

insulating SiR λSiR, insul. 0.22
conductive SiR λSiR, cond. 0.25
housing λhousing 0.25
soil λsoil 0.79
sand λsand 0.54
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In a first step, it is verified that the inverse problem is able to correctly recover
the thermal conductivities if the temperature solution of the forward simulation is
available at every node of the FE mesh and no noise is added. The exact thermal
conductivities, λexact, of the forward problem are listed in Table 7.1.

In [56], it was demonstrated that in a purely thermal setting, the solution of the
inverse problem lacks uniqueness, with thermal conductivities recoverable only
up to a factor. Two solutions address this issue. One introduces additional source
terms in the form of Joule heating, i.e. by choosing an electrothermal steady-state
setting. The other fixes one or more thermal conductivities beforehand. Both
approaches are able to recover the thermal conductivities perfectly. Since the
latter approach is computationally more efficient, in the following the thermal
conductivities of the FGM, XLPE and insulating SiR will be estimated while the
others are provided as input in the simulation.
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Figure 7.1: Relative error, ϵrel, in % for (a) different standard deviations, ση , and (b) different
numbers of measurement sets. In (b), a standard deviation of ση = 1K has
been adopted.
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7.3 Noisy Virtual Measurements at all Mesh Nodes

It is investigated how noise influences the estimation of the thermal conductivities.
Figure 7.1a shows the relative error,

ϵrel =
|λest − λexact|

λexact
, (7.3)

of the estimated thermal conductivities, λest, for standard deviations ranging from
0.1K to 3K. A standard deviation of 3K means that according to the 2ση-interval,
95.45% of the measurement data have a deviation of 6K or less. To increase
the level of randomness, the parameter estimation has been repeated using ten
different random seeds for the noise generation after which the results have been
averaged. For all three parameters a linear increase of the relative error with
respect to the standard deviation can be observed. Figure 7.1a furthermore shows
that not all parameters are estimated equally well. This is due to the fact that the
quality of a parameter destination depends on the sensitivity of the measurement
data to the estimated parameter [56]. Figure 7.2 illustrates that the temperature
inside the cable joint is much more sensitive towards λXLPE and λSiR,insul. compared
to λFGM. Figure 7.1b shows that the quality of the estimation can be improved and
the influence of the noise reduced by conducting multiple sets of measurements.
It shows the convergence of the relative error of an estimation with a standard
deviation of σν = 1K with respect to an increasing number of measurement sets.
A convergence order of 0.5 with respect to the number of measurement sets is
observed, which is in agreement with the results of [56]. Naturally, one thousand
measurement sets are unrealistic in an experimental setting. However, even by
conducting ten sets of measurements, a relative error below one percent can be
achieved for all estimated thermal conductivities.
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Figure 7.2: Sensitivity of the temperature to the different thermal conductivities inside
the insulation materials of the cable joint at (a) z = 0.2m and (b) z = 0.4m.

7.4 Virtual Measurements at Selected Positions

Since experimental data are often only available at a few sensor positions, the pa-
rameter estimation is now performed using 17 artificial measurement data points.
The positions of the data points are illustrated in Fig. 7.3. Again, after successfully
confirming that the correct thermal conductivities are recovered for noise free
measurement data, the influence of noise corruption is investigated. Figure 7.4a
shows that, due to the small number of measurement samples, the relative error
now strongly depends on the standard deviation. A standard deviation of 1K leads
to a relative error of 30% of the FGM’s thermal conductivity. The estimation can
be improved by either inserting more sensors and thereby increasing the size of
the measurement data or, again, by conducting multiple sets of measurements.
Figure 7.4b shows the convergence of the relative error with respect to the number
of measurement sets. A convergence rate of 0.5 is observed and it can be seen
that by conducting ten sets of measurement sets the relative error of the FGM’s
thermal conductivity can be effectively reduced from 30% to 6%.
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Figure 7.3: Positions of the artificial measurement data points used for the inverse prob-
lem in Sec. 7.4.

7.5 Conclusion

This study has demonstrated the effectiveness of inverse problem solving in re-
covering unknown material properties from experimental data. It highlights the
critical role played by the quality of the measurement data for accurately esti-
mating parameters. Factors such as measurement sensitivity, the number of data
points, and noise corruption significantly influence the estimation process.
The methodology presented here offers a flexible approach suitable for investigat-
ing various parameters defining cable joint problems across different operational
scenarios.
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Figure 7.4: Relative error, ϵrel, in % for (a) different standard deviations, ση , and (b) different
numbers of measurement sets. In (b), a standard deviation of ση = 1K has
been adopted.
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8 Simulation of Slow Polarization Processes

In HVDC cable joints, slow polarization phenomena play a more pronounced role
compared to HVAC systems due to the prolonged exposure to a unidirectional elec-
tric field [57]. Standard EQS or electroquasistatic-thermal (EQST) simulations of
HVDC insulation systems typically account for fast polarization processes through
the relative permittivity but may not fully capture slower polarization effects.
This chapter reviews various modeling and simulation approaches for slow
polarization processes in time-domain, focusing on their applicability to HVDC
cable joints. By presenting and comparing different methodologies from the
literature, this chapter aims to enhance the accuracy of simulations and analyses
for HVDC insulation systems.

8.1 Background on Polarization

Dielectric polarization is a phenomenon that occurs in insulating materials (di-
electrics) when they are subjected to an external electric field. It refers to the
alignment of atoms or molecules or the separation of positive and negative charge
carriers according to an applied electric field [58]. The polarization caused by the
external electric field, Eext, generates an electric field, EP, which is superimposed
on the external field. The total electric field E then results in

E = Eext +EP . (8.1)

A distinction can be made between several polarization mechanisms [5]:
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• Deformation polarization refers to the displacement of an atom’s electron
shell or charged atoms within a molecule in response to an external electric
field (see Fig. 8.1a).

• During lattice polarization, the charged lattice elements are displaced in the
crystal lattice. Dipoles are formed within the lattice, which are aligned with
the external field (see Fig. 8.1b).

• In orientation polarization, charged molecular groups are aligned under the
action of an external electric field (see Fig. 8.1c).

• During interfacial polarization, charge carriers accumulate at the interfaces
between substances of different conductivity. These align themselves against
the external electric field (see Fig. 8.1c)[57].

(a) Deformation polarization. (b) Lattice polarization.

(c) Orientation polarization. (d) Interface polarization.

Figure 8.1: Overview of different polarization mechanisms. Figures (a)-(c) are adapted
from [5], and figure (d) is adapted from [59].
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Since the polarization mechanisms do not only occur individually, but often
simultaneously, the total polarizability of a material can be seen as the sum
of all processes [58]. The occurrence of individual polarization mechanisms
depends on the frequency of the excitation. At low frequencies, the material’s
polarization processes have sufficient time to respond to the changing electric
field. However, as the frequency increases, the polarization mechanisms within
the material cannot keep pace with the rapidly oscillating electric field. This can
be interpreted as a frequency dependent relative permittivity and is illustrated in
Fig. 8.2. Therefore, in the presence of a DC excitation, all polarization mechanisms
need to be considered.
In addition to its frequency dependence, polarization also varies with tempera-
ture [5]. The temperature dependence is primarily due to orientation polarization.
At higher temperatures, dipoles become more mobile, which facilitates orienta-
tion polarization (see Fig. 8.3). Additionally, increased temperature can lead to
changes in conductivities and the initiation of interfacial polarization mechanisms.
The presence of temperature gradients in HVDC cable joints, hence, motivates a
coupled electrothermal simulation approach.

Figure 8.2: Frequency dependence of the relative permittivity. (Figure taken from [5])
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Figure 8.3: Illustration of the temperature dependence of dipole polarization. (Figure
taken from [5], here T denotes the temperature and f the frequency.)

8.2 Modeling Approaches

As described in Ch. 5, the transient electric behavior of HVDC equipment is
conventionally described by the transient EQS equation (5.1). The EQS equation
can also be expressed as

div (Jtot) = 0 , (8.2)

where Jtot represents the total current density, which is composed of the conduction
current density, JC, and the displacement current density, JD, i.e.

Jtot = JC + JD . (8.3)

The conduction current density arises from the movement of mobile charge carriers
in the electric field and is described by the material law [5, p. 269]

JC = σE . (8.4)

The displacement current density, JD, on the other hand, accounts for the current
density due to transient polarization processes, i.e. the displacement of immobile
positive and negative charge carriers relative to each other [5, p. 79]:

JD = ∂tD = ∂t (ε0E + P ) . (8.5)
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Here, ε0 represents the vacuum permittivity, and P represents the dielectric
polarization. The polarization is typically modeled by the relative permittivity ,
εr, i.e.,

D = ε0E + P = ε0εrE . (8.6)

When a constant permittivity is assumed, typically determined at a frequency
of 50 Hz, the absolute permittivity ε = ε0εr often only reflects fast polarization
processes, while neglecting slower polarization currents, such as those caused by
the orientation of large molecules. Hence, the total current density is extended by
a term, JP, that represents slow polarization currents [57, p. 17], [60] i.e.,

Jext = JC + JD + JP . (8.7)

In the following, several approaches for the modeling and simulation of the slow
polarization currents, JP, are discussed. In general, slow polarization phenomena
can be modeled either by additional free charge densities or by bound charges.
Free charges appear in Gauss’ law as the charge density on the righthandside.
Bound charges are not counted there, but are considered by adapting the rela-
tive permittivity. In both cases, the result for the electric field will remain the
same, since it is directly related to the forces acting on electric charges. The
different models will, however, exhibit different charge densities, different electric
displacement fields and, obviously different permittivities.

8.2.1 Debye Approach and Network Model

For materials with linear polarization behavior, the transient polarization, P (t), is
assumed to be the result of the linear superposition of all individual polarization
processes, Pk(t) [5, p. 269]:

P (t) =
n∑︂
k

Pk(t) . (8.8)

The Debye model assumes that the rate of change, ∂tPk(t), for each polarization
process is proportional to the difference between Pk(t) and the steady-state end
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value Pk(∞), as expressed by the differential equation [61]:

∂tPk(t) =
1

τk
(Pk(∞)− Pk(t)) . (8.9)

This equation describes a polarization that decays exponentially with the time
constant τk towards the steady-state value Pk(∞):

Pk(t) = Pk(∞)

(︃
1− exp

(︃
− t

τk

)︃)︃
(8.10)

This transient behavior can also be represented by a network model as shown in
Fig. 8.4 [62]. The initial displacement field due to the vacuum capacitance corre-
sponds to charging the capacitor C0, while the resistive steady-state corresponds
to the steady-state conduction through the resistor R∞. Dielectric properties for
rapid transient or high-frequency loads are simplified using anRC-element. In this
element, the geometric capacitance or high-frequency capacitance, CGeo = εrC0,
represents the relative permittivity εr, and the resistance Rtan(δ) the corresponding
losses, where tan(δ) refers to the loss factor. The delayed exponential polarization
processes described by (8.10) can then be modeled by additional RC-elements
with the parameters Rk and Ck such that τk = RkCk. This approach has been
applied to HV bushings in [63] However, the representation of more complex
insulation systems quickly leads to a prohibitively large computational effort [62].

8.2.2 Curie-von Schweidler Approach

The Curie-von Schweidler law is an empirical expression that characterizes the
time-dependent response of a dielectric material to a step change in the electric
field [64, pp. 1955-1960][65, p. 715 ff.]. According to the Curie-von Schweidler
law, the slow depolarization current in a dielectric material after a constant field
is abruptly turned off is described by a power function, i.e. [65]

JP(t) ∝ t−β , (8.11)
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Figure 8.4: Network model of a dielectric according to the Debye approach [62].

with the exponent β ∈ [0, 1]. Since the power law can be expressed as

t−β =
1

Γ(β)

∫︂ ∞

0

τ−(β+1)exp
(︃
− t

τ

)︃
dτ , (8.12)

with the Gamma function Γ(β), the Curie-von Schweidler law is often interpreted
as the weighted sum of an infinite number of Debye functions [66]. The Curie-von
Schweidler ansatz is implemented in FE simulations by defining an "effective"
time-dependent electric conductivity [67, 68, 69, 70].

The Curie-von Schweidler’s power law has the disadvantage that it is a purely
empirical approach [64, pp. 1955-1960]. Although it can be interpreted as a
superposition of many polarization mechanisms according to Debye, a specific
physical interpretation is missing. An polarization behavior according to Curie-von
Schweidler’s power law can be observed approximately for many solids, but lacks a
general validity. Furthermore, this approach lacks a storage term for charges [60].
This means that the charge stored in the dielectric material caused by polarization
is not taken into account. In some cases, the solutions deviate substantially from
the Debye theory [64, pp. 1956].
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8.2.3 Poisson-Nernst-Planck Equation

In the case of charge carrier transport processes inside liquid media, it is also
possible to describe the movement by diffusion, drift and displacement current
density using the Poisson-Nernst-Planck (PNP) equation [71]. The total current
density is described by the terms of the fast polarization ("displacement"), the
conduction current ("drift") and by charge carrier gradients ("diffusion"),

J(t) =
∑︂
i

zieµiE(t)⏞ ⏟⏟ ⏞
Drift current density

+
∑︂
i

zieDi grad (ni(t))⏞ ⏟⏟ ⏞
Diffusion current density

+ ε∂tE(t)⏞ ⏟⏟ ⏞
Displacement current density

. (8.13)

Here, zi corresponds to the valence of the i-th charge carrier species, µi to the
mobility and ni to the particle density. The diffusion coefficient of the i-th charge
carrier species is denoted as Di. The slow polarization mechanisms are not taken
into account by (8.13) [71].
Since the PNP modeling approach only describes the charge carrier transport in
liquid media and does not consider slow polarization processes, it is not suitable
for the modeling of slow polarization processes in HVDC cable joints. Further-
more, while the PNP modeling approach has been successfully applied to simple
one-dimensional (1D) and 2D objects, its extension to complex geometries of
high-voltage components is currently hindered by computational limitations [71].
Another challenge lies in the determination of material parameters, including the
mobility µi and diffusivity Di [71, 60].

8.2.4 Debye-FEM Approach

As outlined in Section 8.2.1, the use of network elements is common in calculations
aiming to capture polarization effects in accordance with the physically motivated
Debye approach. However, the network-based approach encounters challenges in
efficiently discretizing complex insulation systems. To address this limitation, [62]
and [60] propose a hybrid methodology combining the Debye approach with the
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FEM for a more adaptable spatial discretization. In this approach, the necessary
differential equations are set up and implemented directly in the FEM.
According to (8.8), the transient polarization is a linear superposition of all
individual polarization processes. Hence, JP in (8.7) can be written as the sum
of n current densities, which represent the different polarization mechanisms or
different RC-elements, respectively, i.e.,

JP =
n∑︂

k=1

Jk . (8.14)

Based on a one-dimensional model of an infinitesimal RC-element, [62] derives
a differential equation for the polarization current density corresponding to the
k-th polarization process, Jk, i.e.,

∂tE =
1

σk

∂tJk +
1

εk
Jk . (8.15)

Here, the quantities σk and εk are material data that are obtained by curve fitting
Polarization-Depolarization-Current (PDC) measurements [60, p. 54]. Equation
(8.15) yields n differential equations that must be solved in addition to the EQS
formulation,

div

(︄
JC + JD +

n∑︂
k

Jk

)︄
= 0 , (8.16)

with regard to the unknowns E, J1 to Jn.
The system of PDEs comprised of (8.15) and (8.16) can be directly implemented
into the FEM. For this purpose, the scalar potential and the polarization current
densities are discretized using linear nodal shape functions, N(r), and Raviart-
Thomas shape functions [72], zq, respectively, i.e.,

ϕ(r, t) ≈
Nnode∑︂
i=1

ui(t)Ni(r) , (8.17)

Jk(r, t) ≈
Nedge∑︂
q=1

vk,q(t)zq(r) . (8.18)
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Here, Nnode and Nedge denote the number of mesh nodes and mesh edges, respec-
tively. Raviart-Thomas shape functions are associated with the edges of the FE
mesh and ensure normal continuity of the polarization current densities [72]. The
semi-discrete version of the PDEs system is then obtained by a weighted residual
approach using linear nodal shape functions for testing (8.16) and Raviart-Thomas
shape functions for testing (8.15). The semi-discrete system reads:

Kσu+Kε∂tu+
n∑︂

k=1

Xvk = 0 , (8.19)

XTu+B 1
σk

∂tvk +B 1
εk

vk = 0 , (8.20)

with

Xiq = −
∫︂
Ω

zq · grad (Ni)dV , (8.21)

B(·),pq =

∫︂
Ω

(·)zp · zq dV . (8.22)

8.2.5 Summary

In summary, both the Curie-von Schweidler approach as well as the Debye-FEM
approach are promising methods for modeling slow polarization within a finite
element setting. The Debye-FEM approach appeals through its physical motivation,
while the Curie-von Schweidler approach is of heuristic nature. Nevertheless,
according to [73], in scenarios involving polarization processes with varying time
constants, the Debye approach may simplify and overlook memory effects. Both
methods can be implemented efficiently into the FEM. The implementation of a
time-dependent conductivity, as seen in the Curie-von Schweidler approach, proves
more straightforward compared to the discretization of the additional differential
equation inherent to the Debye approach.
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9 Conclusion and Outlook

9.1 Conclusion

Germany’s Energiewende initiative underscores the country’s critical transition
to green energy, pivotal for combating climate change and achieving sustainable
energy independence. Emphasizing substantial increases in renewable energy
production, particularly from wind energy in the northern region, this strategy
necessitates the development of new transmission infrastructure, including High-
Voltage Direct Current (HVDC) technology, for efficient long-distance power trans-
portation.
A key decision in this transition was the prioritization of underground HVDC
cable systems over overhead lines, driven by public resistance and aesthetic con-
cerns. Cable joints, being the most vulnerable components due to factors such as
installation errors and electric field stresses, are integral to the overall reliability
of the transmission network.
This dissertation aims to support the advancement of future cable joint technol-
ogy by developing simulation tools tailored for joint design and analysis.
The dissertation began with a discussion on the electrothermal modeling of
HVDC cable joints during both steady-state and transient operations. A freely-
available electrothermal solver was implemented in the Python-based finite el-
ement framework Pyrit , specifically tailored for HVDC cable joint simulation.
This solver successfully addressed numerical challenges inherent in cable joints,
including strong field- and temperature-dependent material properties, and the
multi-rate nature of the transient electrothermal problem. The solver’s accuracy
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was validated against commercial software using a 320 kV HVDC cable joint speci-
men as a lead example, with brief electrothermal analyses conducted during both
steady-state operation and transient switching impulse operation.

The dissertation then focused on the development of simulation tools for the ef-
ficient computation of sensitivities. Sensitivities, which quantify how a quantity of
interest is influenced by small changes in a design parameter, play a vital role in the
design and optimization of HVDC cable joints. Two complementary methods for
sensitivity computation were implemented within the Pyrit framework: The direct
sensitivity method, which scales with the number of investigated design parame-
ters, and the adjoint variable method, which scales with the number of investigated
quantities of interest but is independent of the number of design parameters. The
derivation of the adjoint variable method for transient electroquasistatic-thermal
problems represented the main contribution of this thesis.

Furthermore, the dissertation demonstrated how simulation could estimate
model parameters from experimental data using an inverse problem approach. It
highlighted the critical role of measurement data quality in accurately estimating
parameters and discussed the influence of factors such as measurement sensitivity,
the number of data points, and noise corruption on the estimation process.

Finally, the dissertation provided a comprehensive literature review on mod-
eling and simulation approaches for slow polarization processes in HVDC cable
joints. This chapter reviewed various methodologies from the literature, aiming
to enhance the accuracy of simulations and analyses for HVDC insulation systems
exposed to prolonged unidirectional electric fields.

This dissertation developed several tools for the design and optimization of
HVDC cable joints, supporting the goal of advancing simulation-aided design
methods to improve joint reliability and performance.
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9.2 Outlook

Future research may expand the existing simulation toolbox to further advance
simulation-aided design and investigation of HVDC cable joints.
One example is the implementation of tools for building surrogate models that
relate crucial quantities of interest to influential design parameters. The aim is to
achieve a good compromise between the surrogate’s size and its accuracy. To cope
with the large number of important design parameters, adaptive sparse polynomial
interpolation techniques [74] may be applied. These surrogate models might be
offered as a graphical user interface with sliders, serving as rapid evaluation tools
to support experimental work and catalyze scientific insights. They could enable
quick extraction of material data from macroscopic measurements and expedite
uncertainty quantification and optimization processes.
Furthermore, variable material parameters and manufacturing tolerances indi-
cate the need for uncertainty quantification focused on critical parameters. To
reduce the number of costly transient FE simulations, uncertainty quantifications
are preferably carried out on the surrogate models. Uncertainty quantification
enables robust optimization and thereby enhances the reliability and efficiency of
HVDC cable joints.
To improve the understanding of the transient behavior of HVDC cable joints, the
existing solver should be extended to account for slow polarization processes into
the existing electrothermal solver and the results validated against measurement
data. Integrating these processes into the solver could improve simulation accu-
racy and provide a more realistic assessment of joint performance over extended
operational lifetimes.
The overall aim being the simulation-aided design of HVDC cable joints, the
developed tools should be applied to deepen the understanding of electrother-
mal joint behavior, planning measurement campaigns and exploring novel cable
joint configurations ensuring robust performance and reliability under diverse
operational conditions.
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