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Abstract

Macroscopic systems exhibit complex behavior that cannot be understood by studying
their few-body components alone. A key challenge in modern physics is to uncover how
many-body phenomena emerge from the underlying few-body world. One approach to this
problem is to study properties of the system as the particle number increases. Motivated
by recent experimental advancements enabling such investigations in ultracold atom
systems, this thesis contributes to three goals of the field “few-to-many-body crossover”:
1) Advance numerical investigations of this crossover by improving theoretical tools. 2)
Connect many-body concepts with the description of few-to-many systems. 3) Explore
basic physics of few-body systems to facilitate new many-body research.

We contribute to the first goal by comparing different renormalization methods for the
one-dimensional contact interaction. Although this interaction requires no regularization,
renormalized interactions have been shown to significantly improve the convergence of
ab initio calculations. This expands the accessible parameter space, allowing one to study
systems with stronger interactions and larger particle numbers. Our results address a
gap in the literature by contrasting commonly used renormalized interactions in cold
atom setups, providing valuable guidance for selecting the most suitable renormalization
scheme.

Next, we study a one-dimensional system of bosons with a repulsively interacting
impurity. Impurities are important for few-to-many studies because they act as probes of
the environment. We introduce an experimentally motivated Hamiltonian and connect
its energy spectrum to a quasi-particle known as the Bose polaron, thereby achieving the
second goal. The connection with this many-body concept offers an intuitive understanding
of the system. It enables the exploration of the few-to-many-body crossover in cold-atom
polaron problems beyond conventional observables.

In a separate study, we investigate an attractive impurity interacting with bosons in one
dimension. The attractive interaction complicates many-body studies of this system as the
impurity forms a bound state with the bosons. Therefore, our focus is on characterizing
this state. For example, we derive the maximum number of bosons that can be bound to
the impurity. This few-body analysis addresses the third goal by providing key insights for
many-body research on one-dimensional attractive impurities.
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In the final part of this thesis, we examine a two-dimensional system of attractively
interacting bosons. Previous research has demonstrated that this system exhibits intriguing
universal behavior. Given that most experiments are performed in harmonic traps, we
study the influence of such confinement. Specifically, we investigate the transition from a
trap-dominated state to an interaction-dominated one. Inspired by the many-body concept
of phases, we introduce an observable that can be used as an indicator of the transition in
few-to-many systems, contributing to the second goal. Furthermore, we also add to the
third goal by studying finite range effects in the few-body sector.

Parts of this thesis have been published in the following articles and preprints:

1. F. Brauneis et al., “Artificial atoms from cold bosons in one dimension”, New J. Phys.
24.6 063036 (2022)

2. F. Brauneis et al., “Emergence of a Bose polaron in a small ring threaded by the
Aharonov-Bohm flux”, Communications Physics 6.1, p. 224 (2023)

3. F. Brauneis et al. “Comparison of renormalized interactions using one-dimensional
few-body systems as a testbed”, arXiv: 2408.10052 (2024)

4. F. Brauneis, A. Volosniev, H.-W. Hammer “Two-dimensional bosonic droplets in a
harmonic trap”, arXiv: 2410.00570 (2024)
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Zusammenfassung

Makroskopische Systeme zeigen komplexes Verhalten, das nicht allein durch das Studium
ihrer Komponenten verstandenwerden kann. Eine zentrale Herausforderung dermodernen
Physik besteht darin, herauszufinden, wie Vielteilchenphänomene aus der zugrundelie-
genden Welt weniger Teilchen hervorgehen. Dazu können Systeme mit zunehmender
Teilchenzahl untersucht werden. Motiviert von kürzlichen Fortschritten bei Experimenten
mit ultrakalten Atomen, die solche Studien ermöglichen, trägt diese Arbeit zu drei Zielen
des Forschungsfeldes „few-to-many-body crossover“ bei: 1) Erweiterung numerischer
Untersuchungen durch Verbesserung theoretischer Werkzeuge. 2) Verknüpfung von Viel-
teilchenkonzepten mit der Beschreibung von few-to-many-Systemen. 3) Untersuchung
grundlegender Physik von Wenigteilchensystemen, um zukünftige Vielteilchenforschung
zu ermöglichen.

Das erste Ziel wird durch den Vergleich verschiedener Renormierungsmethoden für
die eindimensionale Kontaktwechselwirkung erreicht. Obwohl diese Wechselwirkung
theoretisch keine Regularisierung erfordert, haben frühere Studien gezeigt, dass renor-
mierte Wechselwirkungen die Konvergenz von ab initio Berechnungen erheblich verbessern.
Dadurch wird der zugängliche Parameterraum erweitert, einschließlich stärkerer Wech-
selwirkungen und größerer Teilchenzahlen. Durch diesen Vergleich wird eine Lücke in
der Literatur geschlossen, indem gängige renormierte Wechselwirkungen für Systeme
kalter Atome gegenübergestellt werden. Somit werden wertvolle Hinweise zur Auswahl
des geeignetsten Renormierungsschemas für zukünftige Studien geliefert.

Als nächstes wird ein eindimensionales System von Bosonen mit einer repulsiv-wechsel-
wirkenden Verunreinigung untersucht. Verunreinigungen sind für Studien im Bereich
few-to-many wichtig, da sie als Testobjekte der Umgebung fungieren. In diesem Teil
der Arbeit wird ein experimentell motivierter Hamiltonoperator eingeführt und dessen
Energiespektrum mit einem Quasiteilchen, das als Bose-Polaron bekannt ist, in Verbin-
dung gebracht. Damit wird zum zweiten Ziel beigetragen. Diese Verbindung bietet ein
intuitives Verständnis der Physik des Systems und ermöglicht die Untersuchung des few-
to-many-body crossovers in Polaron-Problemen bei kalten Atomen über herkömmliche
Beobachtungsgrößen hinaus.

In einer separaten Studie wird die Untersuchung auf eine attraktive Verunreinigung
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erweitert, die mit Bosonen in einer Dimension wechselwirkt. Die attraktiveWechselwirkung
erschwert Vielteilchenuntersuchungen dieses Systems, da die Verunreinigung mit den
Bosonen einen Bindungszustand bildet. Daher liegt der Fokus auf der Charakterisierung
dieses Zustands. Beispielsweise wird die maximale Anzahl von Bosonen bestimmt, die
an die Verunreinigung gebunden werden können. Diese Wenigteilchenanalyse setzt das
zweite Ziel um, indem wichtige Erkenntnisse für zukünftige Vielteilchenforschung über
eindimensionale attraktive Verunreinigungen geliefert werden.

Im letzten Teil dieser Thesis wird ein zweidimensionales System von attraktiv wechsel-
wirkenden Bosonen untersucht. Frühere Forschungen haben gezeigt, dass dieses System
faszinierendes universelles Verhalten aufweist. Da die meisten Experimente in harmoni-
schen Fallen durchgeführt werden, wird deren Effekt untersucht. Genauer gesagt, wird der
Übergang von einem fallendominierten zu einem wechselwirkungsdominierten Zustand
studiert. Inspiriert von der Vielteilchenbeschreibung von Phasen wird eine Observable
eingeführt, welche als Indikator des Übergangs genutzt werden kann. Damit wird zum
zweiten Ziel beigetragen. Weiterhin wird das dritte Ziel adressiert, indem endliche Reich-
weiteneffekte im Wenigteilchensektor untersucht werden.

Teile dieser Thesis wurden bereits in folgenden Artikeln und Preprints veröffentlicht:

1. F. Brauneis et al., „Artificial atoms from cold bosons in one dimension“, New J. Phys.
24 063036 (2022)

2. F. Brauneis et al., „Emergence of a Bose polaron in a small ring threaded by the
Aharonov-Bohm flux“, Communications Physics 6.1, p. 224 (2023)

3. F. Brauneis et al. „Comparison of renormalized interactions using one-dimensional
few-body systems as a testbed“, arXiv: 2408.10052 (2024)

4. F. Brauneis, A. Volosniev, H.-W. Hammer „Two-dimensional bosonic droplets in a
harmonic trap“, arXiv: 2410.00570 (2024)
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1. Introduction

The subjects of many scientific fields are large composite systems whose properties are
determined by their microscopic constituents. In sociology, for example, one goal is
to understand how a large community made up of many individuals – each with their
own views and properties – behaves collectively. A biological example is a cell, which
is composed of molecules, which in turn consist of atoms. This complex composition
enables a wide variety of biological mechanisms such as communication within the cell.
In physics, we describe large systems (large typically means in the thermodynamic limit,
i.e., an infinite number of particles) by their macroscopic properties, such as energy,
pressure, or their phase. These macroscopic properties must ultimately be determined by
the underlying microscopic Hamiltonian.

However, it is naive to assume that solving the few-body problem will directly reveal the
many-body properties. As Anderson put it: “More is different” [1]. For example, when
many particles interact via two-body interactions, solving the two-body problem alone
is insufficient to describe the entire system. Consider an electron moving through an
ion crystal: even though this system can be modelled using only two-body interactions,
a faithful description requires solving the many-body Schrödinger equation. This is a
highly non-trivial task and one must resort to approximations, which is typical for large
systems. For our example, Landau and Pekar showed that by introducing a quasi-particle
called “polaron” the description can be simplified considerably [2]. Instead of considering
the electron and all its interactions, the polaron concept is introduced: A quasi-particle
which behaves similar to the electron but has modified single-particle parameters such as
self-energy and effective mass which depend on the interactions1.

Interesting questions that arise in this context are: How do many-body phenomena
emerge from their underlying few-body physics? How many particles are needed to
show “many-body” effects such as quasi-particles, superfluidity2 and phase transitions?
Experiments with Helium have shown that superfluidity can emerge with as few as 60
1For example, stronger interactions result in a polaron with an increased effective mass, meaning it moves
slower than the bare particle.

2A state certain systems acquire when cooled to very low temperatures, where an object can move through
it without friction.
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Helium atoms [3], a surprisingly small number. Atomic nuclei offer another example
of systems with a finite number of particles where phenomena typically associated with
the thermodynamic limit, such as the emergence of collective modes or signatures of
superfluidity, have been observed [4, 5]. Additionally, an interesting question is whether
there is new physics in the parameter region between the few- and the many-body domain,
known as the mesoscopic or few-to-many region. Do we gain insight into the many-body
world by studying this domain?

Such questions are studied by considering the “few-to-many-body crossover” which is
an active field of research (see, e.g., Refs. [6–14] and references therein). This thesis
contributes to three goals of this field:

1. Advance numerical investigations of this crossover by improving theoretical tools.

2. Connect many-body concepts with the description of few-to-many systems.

3. Explore basic physics of few-body systems to facilitate new many-body research.

Studying the few-to-many-body crossover in “standard” physical systems, such as those
in nuclear or solid-state physics, is often challenging due to complex interactions and
limited tunability. Therefore, we focus on systems of ultracold atoms, which have simple
interactions and are highly tunable. For example, the dimension of a system can be
reduced (see below), which allows us to focus on low-dimensional setups.

1.1. Ultracold atoms

1.1.1. Motivation

One of the guiding principles in physics is to simplify the description of physical phenomena
by focusing only on the relevant degrees of freedom. A historical example is the use of the
Ising model to understand ferromagnetism and phase transitions. While it is a significant
simplification compared to more realistic models like the Heisenberg model, its simplicity
made it solvable and provided important insights [15]. For a theoretician, implementing
a simpler system can be “easily” achieved by neglecting certain parts of a Hamiltonian or
simplifying interactions. With the advent of ultracold atom systems, this approach also
became experimentally viable.

Simulation of complex many-body phenomena became possible with the first realization
of a Bose-Einstein condensate (a state where the majority of particles occupy the same
quantum state) in ultracold atom systems [16, 17]. Since then, the field of cold atom
physics expanded significantly, providing a versatile platform for fundamental tests of

2



quantum mechanical properties, for building and testing descriptive models [18–21].
Ultracold atoms are also considered as a potential platform for quantum computing [22].
These experimental advances motivate further theoretical studies, as the high tunability
of experiments allows one to use ultracold atoms as a “physicist’s playground” [9]. The
insights gained from ultracold atoms can, in turn, help to better understand more complex
systems.

1.1.2. Control and flexibility

The versatility of ultracold atoms stems from high control over many different parameters.
For example, different types of atoms can be selected, enabling the study of fermionic,
bosonic, or even mixed systems [18]. Additionally, the type of interaction can be modified.
Typically, atoms interact via the van der Waals potential, which can be treated as a
contact interaction for ultracold atoms [18, 23]. However, long-range interactions can
also be studied, e.g., by choosing atoms that showcase dipolar interaction [24–26]. Using
Feshbach resonances, one can tune the strength of atom-atom interactions by applying an
external magnetic field [27]. This flexibility even allows one to tune the interaction from
strongly repulsive to strongly attractive, which is used to study phenomena such as the
BCS-BEC crossover (for reviews, see Refs. [28, 29]).

Furthermore, the trapping confinement of the atoms can be manipulated. This allows
one to effectively change the system’s dimensionality by freezing out spatial degrees of
freedom (see Refs. [6, 18]). Imagine a cigar-shaped trap modelled by the generic potential

W =
m

2

(︁
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)︁
, (1.1)

that becomes increasingly more elongated, ωz ≪ ωx, ωy. The translational excitations
along the length of the trap (h̄ωz) require less energy, while the vertical excitation energy
(h̄ωx, h̄ωy) increases. If temperatures are low enough, vertical excitations are no longer
accessible, and the system becomes effectively one-dimensional (1D). Today, 1D and 2D
setups of ultracold quantum gases are commonly prepared [6, 18].

Studying low-dimensional systems is particularly interesting for several reasons. Firstly,
reducing the system’s dimensionality can help reduce its complexity. For instance, in
2D and in 1D the aforementioned Ising model is analytically solvable [30, 31]. Another
class of analytical solvable systems in 1D are equal mass particles interacting via contact
interaction confined to a ring, i.e., periodic boundary conditions; for fermions this system is
known under the name of Gaudin-Yang model while for bosons it is called the Lieb-Liniger
model. Their solution can be obtained using the Bethe Ansatz [32–36]. Such analytical
solutions can offer valuable insights. Secondly, low-dimensional systems can exhibit vastly
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different physical properties compared to their 3D counterparts, making their physics
fascinating on their own. For example, the so-called Tonks-Girardeau gas describes a 1D
system of impenetrable bosons that can be mapped onto non-interacting fermions [37].
This prediction was successfully tested in cold atom experiments [38]. In 2D, intriguing
effects also emerge. For example, Hammer and Son showed that a system of bosons with
attractive contact interaction exhibits a universal many-body bound state [39]. For a large
number of particles, its binding energy is fully determined by the two-body ground state
energy; increasing the particle number simply results in an exponential increase of the
binding energy by a constant scaling factor, EN+1/EN = 8.567. This means that although
the system is not in the thermodynamic limit, it can still be considered a many-body
system because the addition of a particle only leads to an absolute change of the properties
of the system while relative quantities remain unchanged.

1.1.3. Few-to-many-body studies

In recent years, systematic bottom-up studies of many-body effects starting from few-body
systems have become possible in ultracold atom systems (see, e.g., Ref. [6] and references
therein). These experiments began with the breakthrough of preparing a 1D system in
a harmonic trap where the particle number could be tuned between 1 and 10 fermions
by “spilling” the remaining ones [40]. After that, the “Formation of a Fermi Sea One
Atom at a Time” was studied (see below for more details) [41]. The experiments were
then extended to two dimensions, where a precursor of a quantum phase transition was
observed [42]. In the same setup, the pair correlation function of fermions was directly
measured, which enabled studies of the emergence of Cooper pairs from the few-body
limit [43]. Another work explored the emergence of hydrodynamics [44].

A key element of Ref. [41] was the introduction of a particle with a different spin (a
so-called impurity) into the system, where it acted as a probe for the environment. The
interaction energy, i.e., the energy difference for the system with and without the impurity,
was measured for an increasing fermion number. This allowed the authors to determine
how many fermions are needed to screen the impurity and thus, to form a Fermi sea
around the impurity. Surprisingly, only a handful of fermions were sufficient.

The idea of using an impurity as a probe for few-to-many-body studies dates back to
earlier experiments. In the above-discussed experiment from Ref. [3], a similar approach
was used to determine how many helium-4 atoms are required for superfluidity. An
impurity in the form of a single molecule was inserted into superfluid helium-4 and non-
superfluid helium-3 droplets consisting of about 104 atoms. Then, the infrared spectrum
of the impurity was measured. The spectra showed qualitatively different behavior which
was attributed to the superfluid nature of helium-4. To test how many helium-4 atoms
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are needed to show superfluidity, helium-4 atoms were added to the helium-3 droplet,
effectively screening the impurity. For approximately 60 atoms, the spectrum of helium-4
was recovered. The authors interpreted this system as the minimum required to form
superfluidity in helium around an impurity.

In general, studying the effects of impurities is fascinating, as their introduction – a
seemingly small change in the system – can have tremendous effects on the system’s
overall properties.

1.2. Theoretical approaches

For most Hamiltonians, obtaining an analytical solution is not possible. Therefore, approx-
imations, such as the mean-field ansatz, are often applied to gain physical insight into the
system’s properties. While these techniques can be powerful, one must be cautious and
verify the validity of the approximations. This can be done either through physical argu-
ments or, alternatively, by performing ab initio calculations, i.e., numerically solving the
many-body Schrödinger equation3. This is often the only viable option if approximations
do not describe the relevant physics faithfully.

One of the simplest numerical methods is the exact diagonalization, also known as the
configuration interaction (CI) method [45–54], which we employ in this thesis. While
theoretically exact, meaning no approximations are required beyond a finite Hilbert
space, this method suffers from exponentially growing Hilbert spaces with increasing
particle numbers, making calculations with more than a handful of particles impractical.
To overcome this issue, various numerical methods have been developed, such as the
multi-layer multi-configuration time-dependent Hartree method for atomic mixtures[55–
57], coupled cluster methods [58–60], flow equation approaches [61–63], extensions
to the CI method like the importance-truncated CI [64, 65], and Monte Carlo methods
(see, e.g., Refs. [66, 67] and references therein). All of these techniques introduce an
approximation to the Schrödinger equation, resulting in a controllable error. For different
systems, different methods are better suited than others and, in order to ensure that the
error is small, a comparison to other methods or an estimate of this error is necessary.

In this thesis, we employ the CI method and the flow equation method for bosons. The
latter is motivated by its use in condensed matter [68] and nuclear physics [69, 70],
where it has been applied to nuclei with more than 50 nucleons (in this context, it is
often called in-medium similarity renormalization group, which we will also use in this
thesis). The bosonic flow equation approach has recently been applied in the context of
3The challenges associated with this are very similar to those faced in nuclear structure and quantum
chemistry.
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ultracold quantum gases to study the properties of one-dimensional systems with and
without impurities (see Refs. [61, 71, 72] for previous works and Refs. [62, 63] for works
that are discussed in Chaps. 4 and 5 of this thesis. Additionally, we use the mean-field
approximation for bosonic systems to gain analytical and physical insight.

1.3. Outline

In this thesis, different systems of low-dimensional ultracold atoms are studied to con-
tribute to the field of the few-to-many-body crossover. We begin with two method-oriented
chapters. In Chap. 2, we introduce the methods used throughout the thesis, including a
short introduction into the description of many-body systems and an explanation of the two
ab initio methods employed. We also show how to simplify the study of a one-dimensional
system with an impurity and briefly discuss how such systems can be investigated using
the mean-field approximation.

The first goal, “Advance numerical investigations of this crossover by improving theoreti-
cal tools”, is met in Chap. 3, where different renormalized interactions are compared. The
results of this chapter can help future ab initio studies to expand the parameter regime
and thereby aid the study of the few-to-many-body crossover.

The following chapters focus on physical results. In Chap. 4 and Chap. 5, we study
one-dimensional systems of bosons with an impurity. As discussed above, impurities can
probe the environment in the few-to-many-body transition. In Chap. 4, we introduce an
experimentally motivated Hamiltonian and connect its description with the many-body
concept of a polaron. This allows for a few-to-many study of the effective mass of a one-
dimensional Bose polaron. To the best of our knowledge, such an investigation has not
been conducted previously. This chapter addresses the second goal: “Connect many-body
concepts with the description of few-to-many systems”.

While in Chap. 4, we focus on a repulsively interacting impurity, in Chap. 5 the effects
of an attractively interacting impurity are studied. The attractive interaction leads to
bosons bound to the impurity which complicates theoretical studies, as only few bosons
are bound while the remaining ones occupy scattering states. To alleviate this issue and
facilitate many-body investigations, we study the bound state in detail. Among other
things, we derive the maximum number of bound particles. These results pave the way
for future many-body studies of attractive impurities, e.g., they might be used to construct
effective models that allow for an easier description of the many-body system. Therefore,
this chapter contributes to the third goal: “Explore basic physics of few-body systems to
facilitate new many-body research.”

Finally, in Chap. 6, we extend our study to two-dimensional systems, specifically focusing
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on a system of attractively interacting bosons in 2D (see above). It exhibits intriguing
universal behavior such as an exponentially increasing binding energy with the addition
of another particle, see Ref. [39]. This exponential increase makes experimental tests of
universal properties challenging, requiring a few-to-many approach where the particle
number is increased one by one. Since most experiments are conducted in harmonic
confinements, we analyze how this influences the results of Ref. [39]. In particular, we
explore the transition from a trap-dominated regime to an interaction-dominated one.
Motivated by the description of phase transitions, we introduce an observable that can be
used to identify analogs of such transitions in few-to-many systems (see the second goal:
“Connect many-body concepts with the description of few-to-many systems”). Additionally,
we investigate the effects of finite-range interaction for a few particles, contributing to
the third goal: “Explore basic physics of few-body systems to facilitate new many-body
research.”.

We summarize our findings in Chap. 7 and provide an outlook on future research topics.
Appendices provide technical details and additional information to support our findings
and conclusions.
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2. Methods

As mentioned in Chap. 1, only few physical systems can be solved analytically. Typically,
one has to resort either to approximations such as the mean-field ansatz or to numerical
methods to study the few-to-many-body crossover. The purpose of this chapter is to
introduce the relevant methods used in this thesis.

We start by briefly explaining howmany-body physics can be described. In particular, we
will introduce the formalism of second quantization. This formalism builds the basis of the
ab initio methods used in this thesis: The configuration interaction method and the flow
equation approach. We will provide a short introduction to both methods and summarize
their advantages and disadvantages. Afterwards, we will demonstrate how the analysis of
an impurity embedded in a sea of particles can be simplified for one-dimensional models
with periodic boundary conditions (i.e., confined on a ring). The study of impurity systems
provides valuable insight into the few-to-many-body crossover, as impurities embedded in
a particle sea serve as probes for the environment (see Chap. 1). Lastly, we will shortly
discuss the mean-field approximation for bosonic problems, focusing specifically on the
key concepts relevant to this thesis. The mean-field approximation greatly simplifies
their description; for certain systems even allowing for a semi-analytical treatment of the
many-body Schrödinger equation. It is a powerful and versatile tool for the description of
weakly interacting bosons [73, 74].

2.1. Description of many-body quantum systems

Before we explain the ab initio methods used in this thesis, we need to establish the
necessary theoretical foundation to describe many-body quantum systems. In particular,
we introduce the formalism of second quantization which will be the basis for our numerical
methods. This discussion follows Ref. [75].
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2.1.1. Core concepts

In the following, we describe a system consisting of N particles. The N -body Hilbert space

H(N) = H1 ⊗H2 ⊗ ...⊗HN , (2.1)

is given by a tensor product of the single particle Hilbert spaces Hi. To describe a specific
state of the N -body system, we first write the many-body basis as a direct product of the
one-body basis states

|φN ⟩ = |i1⟩ |i2⟩ ... |iN ⟩ ≡ |i1i2...iN ⟩ , (2.2)

where |ij⟩ is the i-state of the j-th particle. With this many-body basis, it is possible to
represent any many-body state, ΨN .

In this thesis, we describe quantum systems consisting of indistinguishable particles1,
i.e. observables shall remain unchanged under the exchange of particles. This leads to
the following constraint on the many-body state:

Pαβ |Ψ(1, ..., α, ...β, ..., N)⟩ = ± |Ψ(1, ..., β, ...α, ..., N)⟩ (2.3)

with Pαβ the permutation operator, which exchanges α-th particle with the β-th. The plus
sign corresponds to a symmetric exchange of two particles, which are called bosons, while
the minus sign corresponds to the antisymmetric exchange, so-called fermions.

Because symmetric or antisymmetric states can only be expanded in symmetric or
antisymmetric many-body basis states, we define the symmetrization operator

S± |i1i2...iN ⟩ =
1√
N !

∑︂
P∈SN

(±1)PP |i1i2...iN ⟩ , (2.4)

where SN is the permutation group of all N particles, to construct symmetrized basis
states. The short-hand notation (−1)P implies that a minus sign is used if the permutation
is odd and a plus sign if the permutation is even.

Now, we have a formal definition of many-body states obeying either fermionic or
bosonic exchange symmetry. However, this description is quite cumbersome because the
symmetrization operation grows combinatorically with the number of particles.

1In Chaps. 4, 5 we also consider an impurity embedded into a sea of indistinguishable particles. However, we
exclude the impurity particle by performing a transformation to relative coordinates, see below Sec. 2.4
for more details.
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2.1.2. Formalism of second quantization

Symmetric or antisymmetric states are fully characterized by their occupation numbers.
We can utilize this to define so-called occupation number states. For example, for bosons
such a state is defined as

|n1, n2, ...⟩ = S+ |i1i2...iN ⟩
1√

n1!n2! ...
(2.5)

with ni the number of particles occupying the i-th state. These states build an orthonormal
basis of H and span the so-called Fock space, which is the direct sum of the Hilbert spaces
containing a specific number of particles

H = H(0) ⊕H(1) ⊕H(2) ⊕ .... (2.6)

We can now define operators that allow for a transition between the Hilbert space with
N particles to the space with N ± 1. For bosons they are defined via:

ai |n0, ..., ni, ...⟩ =
√
ni |n0, ..., ni − 1, ...⟩ , (2.7)

a†i |n0, ..., ni, ...⟩ =
√
ni + 1 |n0, ..., ni + 1, ...⟩ (2.8)

while for fermions

bi |n0, ..., ni, ...⟩ = ni(−1)
∑︁

j<i nj |n0, ..., ni − 1, ...⟩ , (2.9)

b†i |n0, ..., ni, ...⟩ = (1− ni)(−1)
∑︁

j<i nj |n0, ..., ni + 1, ...⟩ . (2.10)

These operators are called annihilation and creation operators. A many-body basis state
can now be written as:

|φ⟩bosons =
∏︂
i

1
√
ni

(︂
a†0

)︂n0
(︂
a†1

)︂n1

... |0⟩ (2.11)

|φ⟩fermions =
(︂
b†0

)︂n0
(︂
b†1

)︂n1

... |0⟩ . (2.12)

The symmetric exchange symmetry for bosons imposes the following permutation
relations:

[ai, aj ] = [a†i , a
†
j ] = 0, [ai, a

†
j ] = δij (2.13)

with [a, b] = ab− ba the commutator. For fermions, we get a similar expression

{bi, bj} = {b†i , b
†
j} = 0, {bi, b†j} = δij (2.14)
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with {a, b} = ab+ ba the anticommutator.
In the following we simplify the notation by using ai and a†i for both, fermions and

bosons; the type of particles will always be clearly stated.
One can use these creation and annihilation operators to express any operator. For

example, a typical Hamiltonian with kinetic energy, an external trapping potential (W )
and a two-body interaction (V ) can be written as

H = − h̄2

2m

N∑︂
i=1

∇2
i +

N∑︂
i=1

W (x⃗i) +
1

2

∑︂
α̸=β

V (xα, xβ)

=
∑︂
ij

Aija
†
iaj +

∑︂
ijkl

Bijkla
†
ia

†
jakal,

(2.15)

where Aij = ⟨i|A|j⟩ and Bijkl = ⟨ij|B|kl⟩. To calculate these matrix elements one can
project onto coordinate space and calculate:

Aij = − h̄2

2m

∫︂
ddxφ∗i (x⃗)∇2φj(x⃗) +

∫︂
ddxφ∗i (x⃗)W (x⃗)φj(x⃗) (2.16)

Bijkl =

∫︂
ddx1

∫︂
ddx2φ

∗
i (x⃗1)φ

∗
j (x⃗2)V (x⃗1, x⃗2)φk(x⃗1)φl(x⃗2) (2.17)

with d denoting the dimension.
Using the creation and annihilation operators we can also define so-called “field opera-

tors”
Ψ(x⃗) =

∑︂
i

φi(x⃗)ai, Ψ†(x⃗) =
∑︂
i

φ∗i (x⃗)a
†
i , (2.18)

which fulfill the following commutation relation

[Ψ(x⃗),Ψ(x⃗′)] = [Ψ†(x⃗),Ψ†(x⃗′)] = 0, [Ψ(x⃗),Ψ†(x⃗′)] = δ(d)(x⃗− x⃗′). (2.19)

Above commutation relation holds for bosons. For fermionic systems, the field operators
can be defined analogously with the respective anti-commutators.

The interpretation of the field operators is that they create/annihilate a particle at
position x⃗. Using these operators, we can write the Hamiltonian with kinetic energy,
external trapping potential and two-body interaction as

H =

∫︂
ddx

(︄
h̄2

2m
∇Ψ†(x⃗)∇Ψ(x⃗) + Ψ†(x⃗)W (x⃗)Ψ(x⃗)

+
1

2

∫︂
ddx′Ψ†(x⃗)Ψ†(x⃗′)V (x⃗, x⃗′)Ψ(x⃗′)Ψ(x⃗)

)︄
.

(2.20)
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The described formalism is called “second quantization”. It is often advantageous in
the description of many-body quantum systems as it allows for an easy and systematic
representation of many-body basis states. We will utilize this formalism (more specifically
the occupation number representation) in the next two sections where we explain our ab
initio methods.

2.2. Configuration interaction method

In this section, we give a short introduction to the configuration interaction (CI) method
(also known as exact diagonalization method). A more detailed explanation of the method
can be found, e.g. in Refs. [8, 50]. The code used in this thesis was developed by the
Lund cold atom group [8, 9]. For applications of this method in this thesis see Chap. 3
and Chap. 6.

To study the few-to-many-body crossover theoretically, we solve themany-body Schrödinger
equation. An analytical solution exists only for a few systems and typically one has to
resort to numerical methods to find the eigenenergies and eigenstates of the Hamiltonian.
One of the most straightforward numerical approaches for this is the so-called CI method.
This method has been used in many different fields, see, e.g., Ref. [54] for applications in
the context of nuclear physics, Ref. [76] for quantum chemistry or Ref. [6] cold quantum
gases.

The basic idea is to expand the Hamiltonian matrix in a (many-body) basis. This matrix
is then diagonalized giving access not only to the eigenenergies of the system but also to
the corresponding eigenvectors. These can then be used to calculate any observable of
the system, e.g., density, pair correlation functions, etc.. Furthermore, the properties of
the ground state as well as excited states can be calculated. This makes this method one
of the most versatile ab initio methods.

This flexibility, however, comes with a price: In practical calculations, we have to restrict
the Hilbert space to be finite. Thus, such calculations are only meaningful if the used basis
is sufficiently large. This condition is fulfilled when increasing the Hilbert space does not
lead to a change in the calculated observables. However, as we show below, the size of
the Hilbert space grows rapidly with the number of particles. Therefore, calculations for
systems with more than a handful of particles are virtually impossible. Furthermore, if
the eigenstates of the system have only little overlap with the basis states, i.e., if the basis
is made of the non-interacting eigenstates but the system has strong interactions, a large
number of basis states can be needed to adequately describe the system. Therefore, the
accessible parameter space of the CI method is limited by the number of particles and the
strength of the interactions. We will discuss this shortcoming and possible improvements
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Figure 2.1.: Illustration of the CI method.
The basis states |Φi⟩ are used to construct the Hamiltonian matrixH . This
matrix is then diagonalized. After the diagonalization, thematrixE is diagonal
with the eigenstates |Ψi⟩. The different sizes of the squares shall illustrate
the truncation and subsequent increase of the cutoff.

in Chap. 3.

2.2.1. Practical steps

Let us briefly summarize the necessary steps for a CI calculation. For a schematic depiction
of the method see Fig. 2.1.

1. Many-body basis. The first step is to find a suitablemany-body basis, {|Φ0⟩ , |Φi⟩ , ...}.
In this thesis, we always solve the one-body part of the Hamiltonian to get access to
a set of one-body basis states |i⟩. For example, if we study a system on a ring, we
can use a plain wave or sin/cos basis. After determining the single-particle states,
we can construct our set of many-body basis states within the formalism of second
quantization (see Eqs. (2.11), (2.12)).

2. Truncation. There are several ways to restrict the Hilbert space to a finite size. One
can restrict the set of one-body basis states to only include the n lowest one-body
basis states [50, 77] or fix a maximal many-body energy as in Refs. [52, 78]. Other
possible choices use selection rules imposed by symmetries [45, 52] or employ
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importance truncation as in Refs. [64, 65, 79] – an iterative scheme which selects
the most important many-body basis states.

3. Building the Hamiltonian matrix. Here, the formalism of second quantization
allows for an easy setup. One calculates thematrix elementsAij andBijkl, Eq. (2.15),
once. Afterwards, the creation and annihilation operators simply act on the many-
body basis states written in occupation number representation. At this point, the
above-mentioned limitations of the CI-method enter. Assume we have N fermions
and we choose to truncate the one-body basis to include the first n elements. In this
case, the dimension of the Hilbert space is

dim(H) =

(︃
n

N

)︃
. (2.21)

Therefore, the size of the Hilbert space grows rapidly and can become too large to
be handled. This can be the case if either many basis states are required to represent
the true eigenstates of the Hamiltonian (e.g. for strong interactions) or if a system
with many particles is studied.

4. Diagonalizing the Hamiltonian matrix. Often, the Hamiltonian matrix contains
many zero elements, making the matrix sparse. In this case, an optimized diagonal-
ization algorithm like the Arnoldi/Lanczos method [80] can be used. The resulting
eigenvalues are the eigenenergies of the system and the eigenvectors are the eigen-
states. The eigenvectors can be used to calculate the expectation value of any
operator, as soon as this operator is written in the second quantization formalism.

5. Checking convergence. The final step is to ensure that the chosen truncation is
large enough for the eigenvectors to properly approximate the true eigenstates.
To verify this, one calculates the expectation value of the operator of interest for
different truncations, such as different numbers of one-body basis states, and checks
if the change in the expectation value becomes sufficiently small. Alternatively, one
can extrapolate the results from a finite cutoff to an infinite cutoff, as discussed in
Refs. [50, 59].

2.3. Flow equation approach

As we have discussed in the previous section, the CI method can only be used for a handful
of particles. However, for the study of the few-to-many-body crossover, simulations with
more particles are necessary. There exists a plethora of different numerical methods that
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try to circumvent this problem by imposing different approximations to the many-body
Schrödinger equation. Some examples are the multi-layer multi-configuration time-
dependent Hartree method for atomic mixtures [55–57] or coupled cluster methods [58–
60]. Another class of methods to solve the many-body Schrödinger equation are Monte-
Carlo methods, see, e.g. Refs. [66, 67].

In this thesis, we use the flow equation approach (also called in-medium similarity
renormalization group method, short IM-SRG)2. This method has been used with great
success in nuclear physics to study nuclei with more than 50 nucleons (see, e.g., Refs. [69,
70])3. It is also used in condensed matter systems, see, e.g. Ref. [68]. For one-dimensional
bosonic systems, the method was developed in the group of Hans-Werner Hammer [61,
71, 72] and we further applied this method [62, 63], see also Chap. 4 and Chap. 5. The
core idea of this method is to start with a reference state which should approximate
the true state of the system4. Then, this reference state is transformed via a (unitary)
transformation to the true eigenstate of the system. If one performs the full unitary
transformation, the numerical cost of this method is comparable to the CI method. To
be able to calculate properties of systems with larger particle numbers, one therefore
truncates parts of the transformation as we discuss below. This also introduces a truncation
error (or even renders the calculation completely impossible) if the overlap between the
reference state and the true ground state of the system is too small. However, as long as
the reference state is a good approximation of the true eigenstate, the method is a viable
alternative to the CI approach for larger particle numbers [68, 70, 71].

In this thesis, we focus on the flow equation approach for bosons. More details on the
method can be found in Ref. [71] and Ref. [61]. For a detailed review about the flow
equation approach for fermions in the context of nuclear physics, we refer to Ref. [70].

2.3.1. Basics

The flow equation approach was developed independently by Wegner [82] and Glazek
and Wilson [83]. The idea is to perform a continuous unitary transformation of the
Hamiltonian

H(s) = U(s)H(s = 0)U †(s), (2.22)

where s plays formally the role of an imaginary time. As s approaches infinity, the Hamil-
tonian matrix becomes block-diagonal. This means that the matrix element previously
2Throughout the thesis we will use both expressions interchangeably.
3It is also used in nuclear physics to soften the interaction between the nucleons such that other ab initio
methods converge faster. If it is used in this context, it is called similarity renormalization group [81].

4For example, for a system of weakly interacting bosons, one can use a product state ansatz for the reference
state.
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Figure 2.2.: Illustration of the flow equation approach.
The upper row depicts the unitary transformation of the Hamiltonianmatrix to
a block-diagonal form. This effectively decouples the reference state matrix
element (depicted with hatched green) from all excitations. The bottom
row illustrates our truncation scheme of induced many-body elements: We
approximately include three-body terms (represented with checkered blue)
which couple to the reference state. All other induced matrix elements are
truncated. After the flow equation converges, these elements are used to
estimate the truncation’s accuracy. Figure taken from Ref. [61].
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associated with the reference state becomes “decoupled” from excitations, meaning that
it now describes the ground state of the system. Finding the unitary matrix U directly is
difficult and instead, we solve the equivalent flow equation [68]

dH

ds
= [η,H] (2.23)

with η(s) = dU
ds U

† the so-called generator. This representation allows us to choose the
antihermitian generator η for each step of the flow equation so that we can steer the flow
in the desired direction.

However, solving the full flow equation for a many-body system leads to similar problems
as faced by the CI method: The commutator between the generator and the Hamiltonian
induces many-body terms. Taking into account all of these terms and then solving the
flow equations amounts to a numerical effort similar to the CI method. Instead, we have
to truncate the many-body terms in a meaningful way and ensure that their truncation
has only a small influence on the resulting ground state. We show a schematic illustration
of the method in Fig. 2.2.

2.3.2. Normal ordering and truncation scheme

To establish a meaningful truncation scheme, we first normal order the Hamiltonian with
respect to a reference state, |Ψref⟩ (in our case a condensate, see Eq. (2.36) below). We
define the following contractions, following Ref. [71]:

: a†iaj : = a†iaj − ICij , (2.24)

: a†ia
†
jakal : = a†ia

†
jakal − ICijkl −

N − 1

2N
(1 + Pij)(1 + Pkl)Cjk : a

†
ial : , (2.25)

where a†i is a creation operator, Cij = ⟨Ψref |a†iaj |Ψref⟩ and Cijkl = ⟨Ψref |a†ia
†
jakal|Ψref⟩.

The number of bosons is given by N ; I denotes the identity operator; the operator Pij
exchanges the indices i and j.

With this, we can rewrite a Hamiltonian with one- and two-body operators:

H =
∑︂
i,j

Aija
†
iaj +

1

2

∑︂
i,j,k,l

Bijkla
†
ia

†
jakal , (2.26)

to its normal ordered form:

H = ϵNI+
∑︂
i,j

fij : a
†
iaj : +

1

2

∑︂
i,j,k,l

Γijkl : a
†
ia

†
jakal : , (2.27)
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with

ϵN =
∑︂
m,n

AmnCmn +
1

2

∑︂
m,n,o,p

BmnopCmnop , (2.28)

fij = Aij +
N − 1

N

∑︂
m,n

BimnjCmn , (2.29)

Γijkl = Bijkl . (2.30)

ϵN = E is the ground state energy while fij (Γijkl) describes one-particle (two-particle)
excitations. Since we have a system of bosons, we impose the bosonic symmetry Bijkl =
Bjikl = Bijlk.

Our truncation scheme for the flow equation is now as follows: We truncate all oper-
ators with rank higher than two, keeping only three-body operators that couple to the
condensate, i.e. contain at least one a†0a0 operator. For these operators, we assume that
the occupation in the ground state is macroscopic, so that we can treat them as a number,
i.e. we replace a†0a0 by N (see Ref. [71] for details).

This results in a closed system of differential equations, which we solve numerically:

dϵ

ds
= S00 + (N − 1)

(︄
1

2

∑︂
m

S00mm00 − S000000

)︄
, (2.31)

dfij(s)

ds
= −(N − 1)2(S0i00j0 + S0ij000 + S000ij0) + (N − 1)

∑︂
m

Si0mm0j

+ (N − 1)S0ij0 +
(N − 1)(N − 2)

2
(S00ji00 + S0i00j0DjDi)

+
(N − 1)(N − 2)

2
(S0ij000Di + S000ij0Dj) + Sij , (2.32)

dΓijkl(s)

ds
=

(1 + Pij)(1 + Pkl)

2

(︃
Sijkl

− (N − 1)(Sijk00l + Si00jkl) +
1

2

∑︂
m

Sijmmkl

+ (N − 2)DiDlS0ikjl0 + (N − 2)IijDlSijk00l

+ (N − 2)DiIklSi00jkl + (N − 2)IijIklSij00kl

)︃
, (2.33)
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with Di = 2− δi0, Iij = 1 + δi0δj0 − 2δj0, and

S
(1)
ij =

∑︂
m

(ηimfmj − fimηmj) ,

S
(2)
ijkl =

∑︂
m

(ηimΓmjkl − Γijkmηml + ηijkmfml − fimηmjkl) ,

Sijklmn =
∑︂
o

(ηijkoΓolmn − Γijkoηolmn) . (2.34)

For the generator we choose to use the matrix elements which couple the condensate
to the excitations:

η =
∑︂
i

fi0 : a
†
ia0 : +

1

2

∑︂
i,j

Γij00 : a
†
ia

†
ja0a0 : −H.c. . (2.35)

This choice can be justified a posteriori if indeed the reference state becomes decoupled
from all excitations, i.e. when the matrix elements fi0 and Γij00 vanish. For other possible
choices of the generator see Ref. [71].

2.3.3. Reference state

The transformation of the Hamiltonian via the flow equation can be seen as a transfor-
mation of the reference state to the true ground state of the system. To ensure that
the truncated many-body operators have only a small impact on the flow equation, the
reference state must provide a good representation of the true ground state of the system.
As we are interested in the ground state of a system of bosons, a natural choice for the
reference state is a condensate ansatz:

Ψref(x1, x2, ..., xN ) =

N∏︂
α=1

f(xα), (2.36)

where f(x) describes a single particle orbital. There are different possible choices for f .
For example, one can use the lowest state of the one-body basis. Another option would be
to first solve the Gross-Pitaevskii equation (i.e. to find the f which minimizes the energy
functional, see below). We found that the most robust choice for the reference state stems
from an iterative calculation. Starting with the lowest state of the one-body basis as f ,
we calculate the density of the system with the flow equation approach (see below for an
explanation how observables are calculated with this method). Then we use this density
to define a new f . These steps are repeated until the results from the flow equations no
longer vary (see Ref. [61] for details).
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2.3.4. Error estimation

There are two sources of inaccuracies in the flow equation method:
1) The finite number of basis states used for the construction of the Hamiltonian matrix,
2) The truncation of many-body operators.

For the first one, we can follow a similar pattern as for the CI-method. We increase the
number of basis states and calculate for each cutoff the observables of interest. Afterwards,
we check if they are already converged or we interpolate to the infinite cutoff limit. The
error from this interpolation contributes to an error of the flow equation approach, see
Ref. [61].

For the second contribution, we estimate the truncation error of the ground-state energy
using second-order perturbation theory (for further details we refer to [71])

δϵ ≃ 1

N

∑︂
p

(︁
⟨Ψp|

∫︁∞
0 W (s)ds|Ψref⟩

)︁2
⟨Ψp|H|Ψp⟩ − ⟨Ψref |H|Ψref⟩

, (2.37)

where W (s) are all truncated three-body operators. Ψp describes a state that contains
three-body excitations. We estimate the expectation value ⟨Ψp|H|Ψp⟩ in the denominator
by three one-body excitations, i.e. the matrix elements fii.

2.3.5. Calculation of observables

To calculate observables other than the energy, we need to transform the corresponding
operator alongside the Hamiltonian. This means that additionally to solving Eq. (2.23),
we compute

dO

ds
= [η,O] (2.38)

simultaneously. Induced higher-order terms are truncated according to the same truncation
scheme as for the Hamiltonian.

To estimate the truncation error for O, we cannot use Eq. (2.37). Because we truncate
induced many-body operators, the flow equation does not represent a unitary transfor-
mation. Therefore, in general, H(s) and O(s) do not commute, i.e. they do not have the
same eigenstates. Instead, we define a “relative truncation error” (see Ref. [61] for more
details)

∆ =
δϵ

ϵ
, (2.39)

with δϵ being the error estimate from Eq. (2.37) and ϵ the resulting ground state energy
per particle. Now, we estimate the truncation error of the operator to be

δO = ∆ ⟨O⟩ . (2.40)
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We want to stress that this is only an estimate of the truncation error for observables which
has been shown to be a useful phenomenological estimate, see Ref. [61] and Refs. [62,
63] which are also discussed in this thesis in Chaps. 5, 4.

2.4. Impurity in a one-dimensional ring: transformation to the
frame ‘co-moving’ with the impurity

As discussed in Chap. 1, studying impurity systems provides valuable insights into the
few-to-many-body crossover, as the impurity can serve as a probe of the environment.
To facilitate studies of such systems, in this section we demonstrate how the description
of a one-dimensional system with an impurity atom can be simplified when the system
is confined to a ring, i.e., if the system has periodic boundary conditions and if the
interactions are translationally invariant5. Note that such conditions can be prepared
experimentally, see e.g. Refs. [89, 90]. This approach is used in Chap. 4 and Chap. 5
where we discuss a system of bosons with an impurity in one dimension.

The Hamiltonian of interest reads

H = − h̄2

2m

∂2

∂y2
− h̄2

2M

N∑︂
i=1

∂2

∂x2i
+ c

N∑︂
i=1

δ(xi − y) + g
∑︂
i<j

δ(xi − xj) , (2.41)

y (xi) is the position of the impurity (ith bath particles), m refers to the mass of the
impurity atom, andM denotes the mass of a bath particles. We impose periodic boundary
conditions, i.e. Ψ(y+L, {xi}) = Ψ(y, {xi}) andΨ(y, {x0, ..., xi+L, ..., xN}) = Ψ(y, {xi}),
where Ψ(y, {xi}) describes the wave function of the system. Therefore, it is sufficient to
restrict the coordinates to y ∈ [0, L], xi ∈ [0, L]. We model the atom-atom interactions by
contact interactions [91]. The parameters c and g determine the impurity-particle and
particle-particle interaction strength.

Since the interactions depend only on the relative distance between two particles and
because we employ periodic boundary conditions, the Hamiltonian is translationally
invariant. Therefore, the total (quantized) momentum of the system, P = 2πn/L, n ∈ Z,
is conserved. We can exploit this to simplify the description of the system. We eliminate
the impurity coordinate from the Schrödinger equation by writing the wavefunction
as [92]

Ψ(y, {xi}) = Ψ̃({zi})eiPy, (2.42)
5We want to note that this transformation can also be applied in higher dimensions, see e.g. Refs. [84–88].
However, in this thesis, we apply this approach only for one-dimensional systems. Also, note that a similar
transformation can be performed for a harmonic trapping potential [49].
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where zi = Lθ(y−xi)+xi−y with θ(x) being the Heaviside step function. In other words:
Instead of solving the Schrödinger equation for N + 1 particles, we solve the Schrödinger
equation for N particles. The corresponding Hamiltonian for the wavefunction Ψ̃ reads

HP = − h̄2

2M

N∑︂
i=1

∂2

∂z2i
− h̄2

2m

(︄
N∑︂
i=1

∂

∂zi

)︄2

+
ih̄P

m

N∑︂
i=1

∂

∂zi
+ g

∑︂
i<j

δ(zi − zj) + c
N∑︂
i=1

δ(zi).

(2.43)
The transformation {y, xi} → {zi} can be interpreted as a coordinate-space analog of the
Lee-Low-Pines transformation [93].

This form of the Hamiltonian, Eq. (2.43), has a few advantages over the original form,
Eq. (2.41):

1. Instead of working with N + 1 particles, we only work with N particles.

2. The impurity-particle interaction can be implemented as a boundary condition
for the CI-method, Sec. 2.2, or the flow equation approach, Sec. 2.3. Therefore,
only the particle-particle interaction together with the mixed derivative can lead to
off-diagonal elements in the Hamiltonian matrix. This allows us to study strongly
interacting impurities while keeping the size of the Hilbert space sufficiently small.

3. In Chap. 4 we will show that this representation also allows for a connection between
an external artificial gauge flux and the total momentum which will greatly simplify
the analysis of this system.

4. We can use this representation to get semi-analytical insight into the system by
using the mean-field approximation (see below) even for strong impurity-particle
interaction. This has been used e.g. in Refs. [62, 63, 72, 94–98].

2.5. Mean-field approximation for one-dimensional bosonic
systems

As described above, few many-body systems can be solved analytically. However, for
a weakly interacting Bose gas, we can exploit the fact that it can exhibit Bose-Einstein
condensation (BEC) [16, 17]. In a BEC the ground state is macroscopically occupied,
and the system exhibits off-diagonal long-range order. This allows for an approximate
(semi-analytical) description of the wavefunction using a product state ansatz (also called

23



a condensate ansatz):

Φ(x⃗1, ..., x⃗N ) =
N∏︂
i=1

f(x⃗i). (2.44)

The idea of the mean-field approximation is to find the single particle orbital f that
minimizes the ground-state energy. Once f is determined, any observable of the system
can be calculated within this approximation.

However, care must be taken when using the mean-field description as it only works
well when the system exhibits off-diagonal long-range order. In particular, in 1D and 2D
systems density fluctuations can be suppressed while phase fluctuations (also known as
phase correlations) destroy the off-diagonal long-range order [99, 100]. This issue can
be mitigated if the system is trapped. In this case, the phase fluctuations can be small
on the order of the trapped system such that the mean-field approximation can still be
valid [101]6. Still, strong interactions can enhance phase fluctuations and reduce the
applicability of the mean-field ansatz. The use of the mean-field approximation can be
motivated by physical arguments, i.e. when we focus on local properties of the system, or
validated through ab initio calculations.

The mean-field approximation is a powerful and versatile tool that has been used
extensively for describing bosonic systems. In this section, we focus on a one-dimensional
system with an impurity, where the single-particle orbital f can be found semi-analytically.
This will enable us in Chaps. 4, 5 to a) simplify the analysis of the system, b) extend
our research to particle numbers outside the range of ab initio calculations and c) gain
analytical insights. We also apply a product state ansatz in Chap. 6 for a two-dimensional
system of attractive bosons, where we will detail our approach to finding f . Since a more
in-depth explanation of the mean-field approximation is beyond the scope of this thesis,
we refer interested readers to Refs. [73, 74].

We use the Hamiltonian of N bosons, which are interacting via contact interaction,
and a single impurity, which also interacts via a contact interaction with the bosons, in
a system with periodic boundary conditions, i.e. on a ring. We simplify the description
by going to the frame ‘co-moving’ with the impurity, see Sec. 2.4. To find the optimal
f , we insert the product state ansatz into the Schrödinger equation ‘co-moving’ with
the impurity, Eq. (2.43), and minimize the ground-state energy of the system under the
condition that the total particle number is conserved7. With this, we derive the following

6Note that this is also consistent with the fact that in 1D and 2D systems BEC can only occur for trapped
systems, not in free space.

7This condition leads to the constraint that the orbital f has to be normalized to one
L∫︁
0

f∗(z)f(z)dz = 1.
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non-linear differential equation for f

− h̄
2

2κ

d2f

dz2
+
ih̄P

m

df

dz
+ g(N − 1)f(z)3 + cδ(z)f(z) = µf(z) , (2.45)

where κ = mM/(m +M) is the reduced mass and µ is the chemical potential. This
equation is known as the Gross-Pitaevskii equation (GPE) [73, 74]. To obtain a semi-
analytical solution to the GPE, we use the fact that the equation is integrable for c = 0, with
Jacobi elliptic functions as the solution [102]. For non-zero values of c, the impurity-boson
δ-interaction is implemented as the boundary condition,

∂f

∂z

⃓⃓⃓⃓z=0+

z=L−
= 2cκf(0) , (2.46)

which, together with the normalization condition, determines the solution of the GPE. We
can use this solution to calculate any observable of the system. For example, the energy
of the system is given by

E

N
= µ− g(N − 1)

2

L∫︂
0

|f(x)|4dx . (2.47)

In Chaps. 4 and 5, we benchmark the outcome of the mean-field approach against
ab initio calculations to justify its use. Furthermore, we directly estimate the strength
of beyond-mean-field effects, by using the one-body density matrix prescription from
Refs. [73, 101, 103]

ρ(x, x′) ≡ ⟨Φ|
∑︂
i,j

φ∗i (x)φj(x
′)a†iaj |Φ⟩ =

√︁
ρ(x)ρ(x′) exp

{︃
−δΦxx

′

2

}︃
(2.48)

with ρ(x) the density and δΦxx′ phase fluctuations. The quantity δΦxx′ is a measure of
the off-diagonal long-range order. Its calculation allows us to further test the validity
of the mean-field approach. If δΦxx′ vanishes, the system is in a coherent state, i.e.
it is well described by the condensate wave function. As soon as the system becomes
more correlated, e.g. because of stronger interactions, phase fluctuations grow which
means that the mean-field approach is less justified. Note that δΦxx′ is not only useful for
theoretical analysis of beyond-mean-field effects. It can also measured in experimental
settings through methods like Bragg spectroscopy and interferometry [104].
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3. Comparison of renormalized interactions
using one-dimensional few-body systems
as a testbed

As stated in the introduction, Chap. 1, one goal of this thesis is “Advance numerical
investigations of the few-to-many crossover by improving theoretical tools”. In this chap-
ter, we contribute to this goal by comparing different renormalization methods for the
one-dimensional contact interaction. Although this interaction requires in principle no
regularization, previous studies have shown that the use of renormalized interactions
improves the convergence of numerical ab initio calculations considerably [77, 105–111].
This enables studies in an increased parameter space, i.e. stronger interactions and larger
particle numbers which is important for studies of few-to-many systems. We hope that
renormalized interactions will eventually become a standard approach in ab initio studies
within the cold atom community and that the discussion in this Chapter will assist readers
in selecting the most appropriate method for their problem.

We compare three different renormalization methods: a ‘running coupling constant’,
where we use the two-body ground state energy as renormalization condition as well
as two effective interaction approaches which further include information about excited
states. We use the configuration interaction method to calculate the energy and density
of a few-fermion system in a harmonic oscillator. A comparison with the bare contact
interaction shows that the running coupling constant approach improves the convergence
significantly. An effective interaction that is constructed from the relative part of the energy
spectrum shows a similar improvement. We achieve even better convergence with an
effective interaction which additionally includes center-of-mass excitations. Furthermore,
we also discuss a transformation of operators alongside the renormalization for effective
interactions. Therefore, we calculate the expectation value of the one-body Hamiltonian
and transition matrix elements. Our results demonstrate that this transformation can
significantly improve the accuracy.

Parts of this chapter have been published in this or similar form in our manuscript
“Comparison of renormalized interactions using one-dimensional few-body systems as a

27



testbed” [112]. Note that the implementation of the configuration-interaction method
used in this chapter was provided by the Lund cold atom group, see e.g. Refs. [8, 9].

3.1. Introduction

As discussed in Chap. 1, recent experimental advances in cold-atom physics have enabled
the creation and study of (quasi) one-dimensional (1D) systems consisting of a few (up to
10) particles in a highly controllable setting [12, 40, 41]. Since the particle number can
be controlled, few-to-many body studies, such as the convergence of the self-energy of an
impurity in a one-dimensional Fermi gas, are possible. These advancements also motivated
theoretical studies on such systems [6, 113]. There exists a plethora of numerical methods
such as the multi-layer multi-configuration time-dependent Hartree method for atomic
mixtures [55–57], coupled cluster methods [58–60], flow equation approaches [61–63],
or exact diagonalization methods, also known as the configuration interaction method
(CI) [45–53] and its extension, the importance truncated CI [64, 65]1. Although these
methods are very powerful, they often face problems when a large Hilbert space is
needed, e.g. because of strong interactions or because of large particle numbers, since
computational resources are limited (see also Chaps. 1, 2).

Similar problems are also faced in the nuclear structure community. There, renormal-
ization methods (such as so-called “Lee-Suzuki” transformations [114] or renormalization
group ideas [81, 115]) have been developed to transform the nuclear potential. Their aim
is to decrease the size of the needed Hilbert space which enabled considerable progress in
nuclear structure calculations over the last twenty years [116]. Recently, similar “effective
interaction” methods have also been used for cold-atom setups [77, 105–107], see also
Refs. [108–111] for other related approaches.

For a one-dimensional contact interaction, in principle, no regularization is needed
(unlike in 2D or 3D). However, Refs. [77, 105–111] have demonstrated that the usage of
renormalized interactions significantly reduces the Hilbert space needed for converged
results. This enables calculations with stronger interactions and larger particle numbers.
To the best of our knowledge, there is so far no direct comparison of the different renormal-
ization schemes: all were only benchmarked against the bare contact interaction. The goal
of this chapter is to fill this gap and to compare different renormalization schemes used
for 1D cold atom systems. Furthermore, we will also discuss the unitary transformation
of operators alongside the renormalization of the interaction. Although this procedure
is well-known in nuclear physics [116], it has yet not been applied to one-dimensional

1In this thesis, we only use the CI and flow equation method, see Chap. 2.
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few-body problems. Our results will show that this transformation can be necessary to
achieve converged results for observables other than the energy.

In this chapter, we provide a short introduction to renormalized interactions and a
detailed comparison of their convergence patterns. We hope that a reader can decide
afterward on the most suitable method for their problem. Out of the three renormalized
interactions we use, the simplest method to implement is the running coupling constant
approach. It fixes the two-body ground-state energy in a truncated Hilbert space and might
be used for preliminary qualitative calculations. The most precise results are obtained
with an effective interaction that reproduces the full low-energy spectrum of the two-body
problem. To the best of our knowledge, this interaction has not been used before in few-
body calculations of cold atom systems. We will showcase that it outperforms previously
used effective interactions which only consider the relative part of the energy spectrum.

Note that while we focus in this chapter on one-dimensional setups, our results can also
be extended to studies of 2D systems, which have also been realized experimentally [42,
43, 117]. In the outlook, we will show a preliminary comparison of two different renor-
malization schemes, see also Refs. [51–53, 79] for studies on 2D systems. For 3D systems,
most studies using renormalized interactions were performed for nuclear systems, see e.g.
Ref. [116] and references therein, but some works also studied cold atom systems [105].

For our comparative study, we use a system of fermions that interact via zero-range
interaction and are trapped by a harmonic oscillator potential. This is a well-studied
system for which many properties are already known (see, e.g., [45–47, 59, 118, 119]). At
the same time, convergence in a harmonic oscillator is slow [59] which makes this system
an ideal testbed for a comparison study of renormalized interactions. Additionally, the
two-body solution is known analytically [120, 121] which will help us in the construction
of effective interactions.

We use the CI method for the simulation of this system (for an explanation of the CI
method see Sec. 2.2). This method is “exact” in the sense that no additional approximations
besides a finite Hilbert space are performed. This has the benefit that no approximations
on the many-body Schrödinger equation disguise the usefulness of the renormalized
interactions. The CI method can be used to study excited states as well as dynamical
observables like the transition rate between different states, which is not possible with
most other numerical methods. The price one has to pay for this is that calculations with
more than a handful of particles become nearly impossible. Still, the main characteristics
of renormalized interactions can be studied using small systems.

This chapter is structured as follows: We start by introducing the system in Sec. 3.2.
There, we will also introduce our basis and cutoff scheme of the CI method. After that, in
Sec. 3.3 we briefly showcase the basic ideas behind a running coupling constant approach
by showing results in momentum space. Then, we explain the different renormalization
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schemes used in this Chapter: A running coupling constant approach that fixes the
two-body ground-state energy in a truncated Hilbert space, an effective interaction that
reproduces the relative energy spectrum and an effective interaction that reproduces the
full energy spectrum (relative and center-of-mass excitations). In Sec. 3.4 we compare
these different interactions in terms of their convergence for the energy and density.
Furthermore, we discuss a transformation of operators alongside the renormalization for
one-body operators (the one-body part of the Hamiltonian: kinetic energy and harmonic
confinement) and for a two-body observable (transition matrix elements from the ground
state to an excited state induced by a periodic modulation of the interaction). Lastly, in
Sec. 3.5 we will summarize our findings and give a short outlook into future research
opportunities. In particular, we will showcase some preliminary results for 2D systems. In
App. A we provide additional details.

3.2. Formalism

3.2.1. Hamiltonian

Our system consists of spin-1/2 fermions confined by a 1D harmonic oscillator potential
(see Fig. 3.1). Its Hamiltonian reads

H = T +W +
∑︂
i<j

V (xi, xj) , (3.1)

where xi is the coordinate of particle i in the laboratory frame and V (xi, xj) describes
the interaction potential. The one-body parts of the Hamiltonian are the kinetic energy T
and the harmonic trapping potentialW :

T = −
N∑︂
i=1

h̄2

2m

∂2

∂x2i
W =

N∑︂
i=1

mω2

2
x2i , (3.2)

where N = N↑ +N↓ is the number of fermions. The interaction conserves the spin of the
particles such that N↑ and N↓ are fixed. Since we have a system of ultra-cold fermions,
we assume zero-range contact interaction [18, 23]. Due to the Pauli exclusion principle,
only fermions with different spin can interact. In what follows, we will use a system of
units such that h̄ = m = ω = 1.

3.2.2. Potentials

As sketched in Fig. 3.1, we use four different interaction potentials in this chapter. We
employ the ‘bare contact interaction’, V (x1, x2) = gδ(x1 − x2), as a baseline for the
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Figure 3.1.: Sketch of the system.
Depicted is a system with spin-up and spin-down fermions in a harmonic
trap. We use four different two-body interactions: a bare contact interaction,
gδ(x1−x2); a contact interaction with a running coupling constant, g(n)δ(x1−
x2), where n is the one-body cutoff in our calculations; an effective interaction
defined in relative coordinates, V rel

eff ; an effective interaction that includes
relative and center-of-mass excitations, V rel+cm

eff (see the text formore details).
Figure taken from Ref. [112].

renormalized interactions and we work with three different renormalized interactions:
(i) A contact interaction with a running coupling constant V (x1, x2) = g(n)δ(x1 − x2),
where n is the cutoff on the basis states included in our calculations (see Sec. 3.3.1);
(ii) an effective interaction, V rel

eff , which is defined in relative coordinates using the exact
two-body solution (see Sec. 3.3.2) and (iii) V rel+cm

eff , an effective interaction where the
full two-body spectrum is used for its construction (see Sec. 3.3.2).

3.2.3. Configuration interaction method

We use the CI method to solve the Schrödinger equation of our system. For an explanation
of the method we refer to Sec. 2.2. To expand the Hamiltonian matrix, we use the one-
body eigenstates of the non-interacting system, i.e. the eigenfunctions of the 1D harmonic
oscillator:

Φl(z) =
1√
2ll!

(︃
1

π

)︃ 1
4

e−
1
2
z2Hl(z), (3.3)
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whereHl is the l-th Hermite polynomial. For the truncation, we use the n lowest one-body
basis states2. Although more sophisticated truncation schemes exist, such as fixing the
energy of the many-body basis states [52, 78], selection rules imposed by symmetries [45]
or importance truncation as in Refs. [64, 65, 79], we focus here on the most general
truncation as our focus is on comparing different renormalized interactions. Therefore,
we do not optimize the truncation scheme.

As a reminder: For a system with N↑ spin-up and N↓ spin-down fermions the Hilbert
space for the CI method grows as

dimH =

(︃
n

N↑

)︃(︃
n

N↓

)︃
, (3.4)

where
(︁
n
k

)︁
= n! /(k! (n − k)! ) is the binomial coefficient. This means that we can only

study systems where the size of the one-body basis needed for convergence is sufficiently
small. As we will show below, the usage of renormalized interactions can help to decrease
the size of the Hilbert space needed for convergence.

3.2.4. Two-body problem

Note that for N↑ = N↓ = 1 there exists an analytical solution. We will use this exact
solution later for the construction of the renormalized interaction. The solution reads
[120, 121]

Ψi(x,X) = Φni(X)ψνi(x) (3.5)

with x = (x1 − x2)/
√
2 and X = (x1 + x2)/

√
2 being the relative and center-of-mass

coordinates respectively. Because the contact interaction acts only on the relative part of
the wavefunction, the center-of-mass solution Φni(X) is simply the harmonic oscillator
eigenfunction with eigenenergy Eni = ni + 1/2. Furthermore, odd relative states are
not influenced by the interaction and their solutions are therefore also the ones from the
non-interacting harmonic oscillator. The even states are

ψνi(x) = Nνie
−x2U(−νi, 1/2, x2) , (3.6)

where U is the Tricomi function [102]. The parameter Nνi =
√︂

Γ(−νi+1/2)Γ(−νi)
π(ψ(−νi+1/2)−ψ(−νi)) , with

Γ the gamma function and ψ the digamma function, is the normalization coefficient. The
eigenenergy of these states is given by ϵνi = 2νi + 1/2 with νi determined from

2
√
2Γ(−νi + 1/2) = −gΓ(−νi). (3.7)

2For our system, the number of one-body basis states corresponds to an energy cutoff n+ 1/2.
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3.3. Renormalized interactions

In this section, we want to introduce commonly used renormalized interactions in one-
dimensional systems, see e.g. Refs. [50, 106, 108, 110, 111].

Let us first motivate the use of renormalized interactions. If we have ‘strong’ interactions,
we need a ‘large’ Hilbert space, i.e. ‘many’ one-body basis states, to achieve accurate
results, see Sec. 3.4. Therefore, calculations for few-body systems with strong interactions
or for a medium number of particles with moderate interactions are very hard if not
impossible. This is where renormalized interactions come into play: The numerical value
of ‘many’ is drastically decreased by using them. This allows one to increase the available
parameter space, i.e. stronger interactions and/or larger particle numbers. The idea of
a renormalized interaction is to fix physical parameters (e.g. the ground-state energy
of two particles or the phase shift, i.e. the scattering length) in a finite Hilbert space.
One can interpret the truncation of the Hilbert space as effectively changing properties
of the interaction, such as the two-body ground-state energy. A renormalization of the
interaction reverses this process and leads to a description of the actual physical quantities.

In this chapter, we use three different renormalization schemes for the contact inter-
action, i)-iii) mentioned above in Sec. 3.2 (see also Fig. 3.1). Below, we will benchmark
their convergence against the bare contact interaction, which serves as a baseline, and
compare their performance with each other. Before we explain these different methods,
we review the relevant literature. A similar approach to the running coupling constant
was used in Ref. [111]. In this work, the authors found an analytical expression for a
running coupling constant based on truncating the exact solution of two particles inter-
acting in a harmonic oscillator. Note that our approach is more general as we explicitly
fine-tune the interaction strength for each cutoff to reproduce the two-body ground state
energy (for details see Subsec. 3.3.1). Therefore, it can be easily extended also to other
geometries or interactions even if no analytical two-body solution is available. Ref. [108]
introduces another modification of a running coupling constant. There, the energy of
strongly repulsive bosons was used as a renormalization condition. This renormalized
interaction can be used for one-dimensional geometries where the energy of infinitely
strongly repulsive bosons can be calculated exactly because they can be described as
non-interacting fermions [37, 122].

Applications of the effective potential V rel
eff are discussed, e.g., in Refs. [50, 77, 105,

106]. In Ref. [115] the connection between effective interaction and renormalization
group ideas is studied in the context of nuclear physics. The interaction V rel+cm

eff is based
on the same idea as V rel

eff but instead of using only the relative part of the exact two-
body energy spectrum, it takes into account the full one. To the best of our knowledge,
it has not been explored previously in the context of low-dimensional ultracold gases.
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g(n) gunconf.(λ) g(n→∞)

Figure 3.2.: Comparison of running coupling constants.
Running coupling constant for the unconfined system as well as for the 1D
harmonic oscillator for g(n→ ∞) = −2.5607 (corresponding to E1+1 = −1,
the two-body energy in the trapped system). Dots show g(n), the running
coupling constant used for harmonic confinement, which is calculated by
explicitly fixing the two-body ground state energy of two interacting particles
in a harmonic trap for each single-body cutoff n. Squares show gunconf., the
running coupling constant in free space, given by Eq. (3.10). To relate the
momentum space cutoff λ with the one-body cutoff n we used Eq. (3.14).
Figure taken from Ref. [112].

Setting up these effective potentials is slightly more complicated than the running coupling
constant approach (see below). However, as we will demonstrate in Sec. 3.4, the boost in
convergence can be larger than for g(n)δ. In particular, effective interactions allow for
a transformation of operators alongside the renormalization which can be necessary to
improve the convergence of certain observables.

3.3.1. Running coupling constant

To introduce the concept of a running coupling constant, we first showcase how the contact
interaction can be renormalized in an unconfined system. This way, we can introduce a
momentum space cutoff and illustrate the basic ideas of the running coupling concept.
Our calculations adapt the approach presented for 2D systems in Ref. [123]. Afterwards,
we will make the connection to our truncation in the CI method for a trapped system.
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Unconfined system

To renormalize the two-body contact interaction, we consider the Schrödinger equation in
free space. It is sufficient to focus on the problem in relative coordinates, x = (x1−x2)/

√
2,(︃

−1

2

∂2

∂x2
+

g√
2
δ(x)

)︃
Ψ(x) = Eunconf.

1+1 Ψ(x), (3.8)

where Eunconf.
1+1 is the two-body energy in the unconfined system. Here, we only consider

g < 0 because we want to use the two-body binding energy (Eunconf.
1+1 < 03) as the

renormalization condition. For g > 0, we would need to use a different renormalization
condition such as the phase shift of two scattered particles.

Solving Eq. (3.8) leads to the following equation for the two-body ground state energy
(see App. A.7 for details):

−1

g
=

1√
2π

∫︂ ∞

−∞

dk

k2 − 2Eunconf.
1+1

. (3.9)

Because we are in 1D, the integral on the right side converges4. To restrict the Hilbert
space (as mandatory for numerical calculations), we introduce a momentum space cutoff
λ. Note that λ is a continuous parameter while the energy cutoff n described above for
the CI-method is discrete. Below, we connect these two cutoffs for ‘large’ values with the
semi-classical approximation5.

Let us now introduce the running coupling constant gunconf.(λ). To this end, we fix the
two-body ground state energy Eunconf.

1+1 independent of λ and tune gunconf.(λ) such that
Eq. (3.9) with k ∈ [−λ, λ]

− 1

gunconf.(λ)
=

1

π
√︂
|Eunconf.

1+1 |
arctan

⎡⎣ λ√︂
|2Eunconf.

1+1 |

⎤⎦ (3.10)

holds. This equation is the central equation for the running coupling constant in free space.
It renormalizes the interaction strength such that for each momentum space cutoff λ the
two-body ground state energy, Eunconf.

1+1 , remains the same. This means that instead of the
3Note that for 1D systems, there is always a bound state if g < 0 [124].
4For 2D it diverges logarithmically and for 3D linearly, i.e. one has to regularize the zero-range potential,
see e.g. Refs. [23, 51, 123] for possible regularization schemes.

5The semi-classical approximation can only be used if the energy of an excited state is so large, that
excitations to states with higher energy can be neglected. For the harmonic oscillator, one can define this
region also by the asymptotic approximation of Hermite polynomials [125].
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bare value of g, Eunconf.
1+1 is now the measure of the interaction strength and determines

the physical properties of the system.
For large values of λ this leads to

− 1

gunconf.(λ)
≃ 1

2
√︂

|Eunconf.
1+1 |

−
√
2

πλ
. (3.11)

This equation gives us the well-known solution for the Schrödinger equation in full
space gunconf.(λ→ ∞) = −2

√︂
|Eunconf.

1+1 | [124]. This term also allows us to estimate the
convergence of the energy Eunconf.

1+1 (λ) as a function of the momentum space cutoff λ if
the bare contact interaction is used. We treat the second term on the right-hand-side of
Eq. (3.11) as a perturbation (for details see App. A.1):

Eunconf.
1+1 (λ) ≃ Eunconf.

1+1 (λ→ ∞) +

√
2C

πλ
, (3.12)

where C = g2 ⟨Ψ|δ(x)|Ψ⟩ is the contact parameter [126]. The functional behavior of the
convergence in free space is in agreement with Refs. [71, 110]. Below, we will show that
the convergence behavior is dependent on the trapping potential.

1D Harmonic oscillator

As written above, the cutoff in our CI-calculations is not a finite momentum space cutoff
λ but instead the number of one-body basis states used, n. For the running coupling
constant

V = g(n)δ(x1 − x2) (3.13)

we explicitly tune g(n) for each cutoff such that the two-body ground state energy remains
fixed. In a trapped system, this approach can be used for attractive as well as for repulsive
interactions.

Let us now g(n)with the running coupling constant in the unconfined system, gunconf.(λ).
We start by finding a relation between the momentum space cutoff λ and n. We use the
Wilson–Sommerfeld quantization condition

∮︁
H(p,x)=E p dx = 2πn which results in

λ = 2
√
n . (3.14)

We show the details of this connection together with an extension for general polynomial
potentials in App. A.8. One can see that the convergence for a harmonic oscillator is slow
(see also Ref. [59]) which makes the use of renormalized interactions particularly useful.
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We show a comparison plot of the two running coupling constants, g(n) and gunconf.(2
√
n)

in Fig. 3.2. Using Eunconf.
1+1 = −g(n→ ∞)2/4 and Eq. (3.10) allows us to calculate gunconf..

For g(n) we calculate the exact two-body ground state energy (see Eq. (3.7)) and tune
g(n) for each cutoff such that this energy remains fixed. We can see that both running
coupling constants show qualitatively the same behavior and for large cutoffs, they even
agree quantitatively (less than 1% disagreement for n ≥ 21). The small discrepancies for
small cutoffs are due to the semi-classical approximation that we used to derive Eq. (3.14).
It only holds in the limit of large quantum numbers.

3.3.2. Effective interactions

One can include (additionally to the ground state) also information about excited states
to renormalize a potential. In nuclear physics, this approach is known under the name
of “Lee-Suzuki” transformation [114, 116] and in the cold atom community these in-
teractions are often called effective interactions, see e.g. [50, 53, 105, 106]. In this
renormalization procedure, the two-body potential is constructed such that in a truncated
Hilbert space the exact two-body eigenspectrum is reproduced. To make this chapter
self-contained, we explain the idea below (note that this follows closely Refs. [50, 105,
127]). Although setting up these effective interactions can be more complicated than
using a running coupling constant, they have additional advantages. For example, they
allow for a transformation of operators alongside the renormalization of the potential,
which can lead to improved convergence as we show below.

General framework

We start by writing the Hamiltonian of a two-body system as

H(2) = U † ˜︁H(2)U . (3.15)

The tilde denotes that ˜︁H(2) = E(2) is a diagonal matrix with the eigenenergies on the
diagonal; the matrix U is a unitary matrix which has the eigenvectors as columns Uij =
⟨i|Ψj⟩, where |i⟩ is a two-body basis state and |Ψj⟩ an eigenstate of the interacting
two-body system: H(2) |Ψj⟩ = Ej |Ψj⟩. Formally, we can write the truncation of the
Hilbert space via so-called projection operators PM with M the Hilbert space in which
we perform our CI calculation. With this, we can define the matrices UMM = PMUPM,
EMM = PME(2)PM. It is important to note that for a finite Hilbert spaceM, UMM is not
unitary. Even though UMMU †

MM is diagonal, the diagonal matrix elements are smaller
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than one. However, we can define a unitary matrix QMM = UMM

(︃√︂
U †
MMUMM

)︃−1
6.

With these definitions, we are now able to define an effective Hamiltonian in a truncated
Hilbert space:

Heff
MM = Q†

MMEMMQMM. (3.16)
Next, we extract the effective interaction by subtracting the kinetic energy:

V eff
MM = Heff

MM − PMTPM, (3.17)

where T describes the kinetic energy matrix. One important feature of this effective
interaction is that its construction can be interpreted as a unitary transformation of the
Hamiltonian [116, 127], see also App. A.6.

This allows us to also transform operators alongside the renormalization of the interac-
tion. For a one-body operator

O(1) =

N∑︂
α=1

Oα, (3.18)

where Oα is an operator written in first quantization (in second quantization it reads
O(1) =

∑︁
ij aija

†
iaj), many-body operators are induced by the unitary transformation,

i.e. by the renormalization. Since we built the effective interaction using the two-body
solution, we include induced two-body operators and neglect higher-order ones (see also
Ref. [127]). This leads to

O
(1,2)
eff =

N∑︂
α=1

Oα +Q†
MM

˜︁O(2)
MMQMM −O

(2)
MM, (3.19)

where

O
(2)
MM = PM

N∑︂
α>β=1

(Oα +Oβ)PM. (3.20)

Remember that the tilde, ˜︁O(2)
MM, means that the operator is expanded in the eigenstates

of the interacting two-body system |Ψi⟩, while O(2)
MM is written in the two-body basis

states |i⟩. A two-body operator

O(2) =
N∑︂

α,β=1

Oαβ, (3.21)

6Note that for increasing Hilbert spaces, the normalization of this operator,
(︃√︂

U†
MMUMM

)︃−1

, converges

towards unity.
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with Oαβ an operator in first quantization (in second quantization it reads O(2) =∑︁
ijkl bijkla

†
ia

†
jakal) is transformed as

O
(2)
eff = Q†

MM
˜︁O(2)
MMQMM. (3.22)

For a derivation of the transformation of operators alongside the renormalization see
App. A.6.

We build the effective interaction using the exact solution presented in Eqs. (3.5), (3.7).
This solution is written in terms of relative and center-of-mass coordinates. Therefore,
the transformation of operators is straightforward, if an operator factorizes in these
coordinates. If it does not, more involved calculations are needed. For details on how
the transformation of operators can be implemented for our two effective interactions
see App. A.6.3, A.6.4. Note that also other renormalization methods exist which allow
for a transformation of operators alongside the renormalization such as the similarity
renormalization group method used in nuclear physics [81]7.

Effective interaction from the energy spectrum in relative coordinates: V rel
eff

We employ two different effective interactions following the general framework presented
above, using the exact two-body solution Eq. (3.5). Our first approach is to build the
effective interaction matrix in relative coordinates, i.e. using only ψνi from above. Then,
this interaction matrix is transformed to the laboratory frame (the frame defined in
Eq. (3.1)), in which the CI calculations are performed. Note that this approach is only
possible because the exact two-body solution factorizes in center-of-mass and relative
part where only the latter is affected by the interaction. This approach is the one used in
previous studies on effective interactions in systems of cold atoms, see e.g. Refs. [50, 105,
106]. For completeness, we present the relevant set of equations to set up this interaction
in App. A.5.1, see also Ref. [50].

Note that with this interaction, the full two-body spectrum is not immediately converged
for a finite cutoff. The reason is that relative and center-of-mass coordinates are coupled
in a truncated Hilbert space. Therefore, building the effective interaction matrix in relative
coordinates and then transforming to the laboratory frame leads only to an approximate
two-body spectrum. However, typically for the low-energy part of the spectrum the
coupling between relative and center-of-mass coordinates is weak and with increasing
cutoff this coupling vanishes.

7In Ref. [116] this method is compared against a running coupling constant approach in the context of
nuclear physics.
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Effective interaction from the full two-body energy spectrum: V rel+cm
eff

The second effective interaction is based on the full two-body solution, i.e. including center-
of-mass excitations and relative ones. This approach leads to the exact two-body spectrum
for any one-body cutoff because it accounts for the coupling of relative and center-of-mass
coordinates in a finite Hilbert space. This comes at the price that construction of the
interaction matrices for V rel+cm

eff is more complicated to construct than for V rel
eff . The reason

for this is that the overlap between the laboratory frame and the exact two-body solution
has to be known. As we will show below, V rel+cm

eff leads to an improved performance. Also,
note that this interaction is the only option if one has trapping geometry or bare interaction
for which the exact two-body solution does not factorize in relative and center-of-mass
coordinates8. We show the relevant set of equations for the construction of this interaction
in App. A.5.2.

3.4. Results

Now, we will benchmark the convergence of the four different interactions – bare contact
interaction9 gδ, running coupling constant g(n)δ (see Sec. 3.3.1), V rel

eff (see Sec. 3.3.2)
and V rel+cm

eff (see Sec. 3.3.2) – against each other. To this end, we will discuss the
convergence for the energy and density. Furthermore, we discuss additionally the effect
of the transformation of operators alongside the renormalization presented in Eqs. (3.19)
and (3.22) for the expectation value of the kinetic energy and the trapping confinement
as well as for transition matrix elements.

We will use two different sets of particle numbers: 1+1 and 1+3 fermions. As we show
in App. A.4 our conclusions also hold for larger particle numbers, which is particularly
important for future few-to-many-body studies. Although the 1 + 1 system is used for the
renormalization of our interactions, not all observables, like the density, are fixed by the
renormalization schemes. This means that for such observables a large number of basis
states might be needed for converged results. Because of its simplicity, the 1+1 system will
provide us with valuable insight into the convergence properties. Furthermore, because
of the existence of an exact solution, we have an accurate benchmark for large cutoffs.
From a practical point of view, the the results for the 1 + 3 system are more relevant for

8Note however, that for non-harmonic traps one can still employ a harmonic oscillator basis and use the
effective interactions discussed in this Chapter. This in turn will result in an off-diagonal one-body
Hamiltonian matrix Aij .

9Only for a one-dimensional system the bare coupling constant leads to a well-defined system, i.e. for higher
dimensional ones, there is no benchmarking against the bare coupling constant possible.
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future few-to-many calculations as no exact solution exists and ab initio calculations are
necessary to gain insight into the few-to-many-body crossover.

We showcase results for two representative interaction strengths: One for a repulsive
and one for an attractive interaction. We verified that our conclusions also hold for other
interaction strengths. We use one-body cutoffs from n = 11 up to n = 31 which means
that for our particle numbers, the calculations can be performed on a normal computer.
As we will demonstrate, the renormalized interactions allow one to achieve converged
results with these cutoffs.

3.4.1. Energy

We start our comparison by studying the interaction energy, E(g)− E(g = 0). We show
the results for the different interactions in Figure 3.3 as a function of the one-body
cutoff parameter, n. To judge the convergence, we use the harmonic oscillator energy
unit, h̄ω = 1, as the relevant scale. Because we use the two-body ground state as the
renormalization condition for the running coupling constant, we show results for the
second excited state for the 1+1 system (the first excited state is a center-of-mass excitation
and therefore not useful). For the 1 + 3 system, we present results for the ground state.

Because there exists an exact solution for the 1 + 1 system, Eq. (3.7), we can compare
the numerical results against it. As expected, the renormalized interactions converge faster
to the limit n→ ∞ than the bare interaction. For example, the running coupling constant,
g(n)δ(x), with a cutoff of n = 31 deviates from the exact result by E(n = 31) − E(n =
∞) ≈ 0.035 while for the bare contact interaction, gδ(x), E(n = 31)− E(n = ∞) ≈ 0.33.
For V rel

eff we observe a similar convergence pattern as for the running coupling constant.
For V rel+cm

eff the 1 + 1 spectrum is converged for all cutoffs by construction.
For the 1 + 3 system we can see that V rel+cm

eff leads to the best convergence. Already for
n ≃ 21 the change in the energy with increasing cutoff is smaller than 1% on the harmonic
oscillator energy unit, e.g. E(n = 21)− E(n = 31) ≲ 0.004. Therefore, we use the value
with the highest cutoff of this interaction as a benchmark for the other interactions, i.e.
E(n → ∞) ≈ E(n = 31). As for the 1 + 1 system, we can see that g(n)δ(x) and V rel

eff

perform similarly, e.g. for the largest cutoff we have E(n = 31)−E(n→ ∞) ≈ 0.05. Also
similar to the 1 + 1 system is the performance of the bare contact interaction. There, we
have a significant deviation from the converged result: E(n = 31)− E(n→ ∞) ≈ 0.7.

As stated above, this slow convergence of the bare contact interaction is expected. We
can estimate the convergence of the energy for large cutoffs (n→ ∞) by using Eqs. (3.11)
and (3.14) (for details and a comparison to the data see App. A.1):

Egδ(n) ≃ Eg(n)δ(n) +
C

π
√
2n
, (3.23)
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Figure 3.3.: Interaction energy of the system for different particle numbers and interac-
tions as a function of the cutoff parameter n.
Panels a) and b) show the interaction energy (E(g)−E(g = 0)) of the second
excited state for 1 + 1 particles; panels c) and d) are for the ground state
of 1 + 3. Panels a) and c) are for attractive interaction with g = −2.5067
(which corresponds to E1+1 = −1); b) and d) show results for repulsive
interactions, g = 3 (which corresponds to E1+1 = 1.6). Numerical data are
shown with markers of different shapes; lines are added to guide the eye.
The interested reader can see these data plotted as a function of 1/n and
as double logarithmic plots for the 1 + 1 system in App. A.9.1, A.9.2. Figure
modified from Ref. [112].

whereEV (n) describes the energy calculated with the potential V in the Hilbert space with
cutoff n; C = g2 ⟨Ψ|

∑︁
i<j

δ(xi − xj)|Ψ⟩ is the contact parameter [126]. As shown above,

the running coupling constant leads to fast convergence which means that we can assume
Eg(n)(n) to be constant for sufficiently large cutoffs. Therefore, we can estimate the
convergence rate of the bare contact interaction, to be 1/

√
n for any number of particles,

in agreement with the numerical analysis of Ref. [59].

To further analyze the convergence behavior, we performed a fitting analysis of the data
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motivated by Eq. (3.23)

EV (n) = EV (n→ ∞) +
AV
nσN

. (3.24)

Note that in general, the parameters EV (n → ∞), AV and σN depend on the used
interaction potential V . To increase readability, in the following we will explicitly state
the used potential and omit the subscript V . We show the results of the fits and a detailed
discussion of these data in App. A.2. This analysis further solidifies our statements above:
The renormalized interactions lead to a faster convergence rate, signaled by a larger
value σ, than the bare interaction, in agreement with previous studies [50, 108, 111].
Furthermore, they show that V rel

eff leads to a similar improvement as the running coupling
constant approach while V rel+cm

eff has the fastest convergence.
Finally, we want to mention a typical feature of renormalized interactions: For the 1+ 3

system, some energies converge from below when increasing the Hilbert space (see also the
non-monotonic behavior of renormalized interactions for the other observables discussed
below). This may seem contradictory to the variational behavior of CI calculations with
non-renormalized interactions but can be easily understood using the running coupling
constant, see e.g. Fig. 3.2: Upon larger cutoffs, the attractive interaction effectively
weakens, see Eq. (3.10), which means that the energy increases. Therefore, there is a
competition between a decreasing energy because of the larger cutoff and an increase
because of a weaker interaction10. Note that this feature is not necessarily a disadvantage;
we can utilize it to approximate the error due to the finite cutoff. If one interaction
converges from above and one from below, we can use the deviations between these two
to estimate the value in infinite Hilbert space and to judge the convergence.

3.4.2. Density

Here, we study the density of the ground state for an attractive interaction, which is
defined as

ρ(z) =
N∑︂
i=1

δ(z − xi) =
∑︂
i,j

φi(z)φj(z)a
†
iaj . (3.25)

We show our results in Fig. 3.4. In the left panels, we display the density calculated with
the bare contact interaction and the running coupling constant approach. In the right
ones, we showcase the density in the center of the trap calculated with all interactions as
a function of the cutoff parameter n.
10Note that while we did not observe any oscillatory behavior, we cannot rule it out. However, for large

cutoffs, we also expect that any potential oscillations are suppressed.
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Figure 3.4.: Density of the ground state for different particle numbers and interactions
as a function of the cutoff parameter n.
Panels a) and b): Density of the ground state calculated with the potentials
gδ(x) and g(n)δ(x) and two cutoff parameters. Panels c) and d): Density of
the ground state in the center of the trap as a function of the cutoff parameter
n for the four potentials considered in this chapter. Panels a) and c) show
results for the 1 + 1 system; panels b) and d) are for 1 + 3. All panels are
for attractive interactions g = −2.5067, which corresponds to E1+1 = −1.
Numerical data in panels c) and d) are shown with markers of different
shapes. Lines are added to guide the eye. In Apps. A.9.1, A.9.2, we also
present these data as a function of 1/n and as double logarithmic plots for
the 1 + 1 system. Figure modified from Ref. [112].

The induced two-body operator, see Eq. (A.47),

ρ(2)(zα, zβ) = ρ(zα) + ρ(zβ) (3.26)

does not factorize in relative zα,β = 1√
2
(zα − zβ) and center-of-mass Zα,β = 1√

2
(zα + zβ)

coordinates. Hence, the computation of the transformed operator is not straightforward
(for details see App. A.6). Because the density converges fast with V rel+cm

eff even without
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a transformation of the operator alongside the interaction (see Subsec. 3.3.2), we leave a
study of the transformation of the density operator to future works.

As we can see in the left panel, the overall shape of the density is reproduced well with
both interactions even for small cutoffs. However, large cutoffs are needed to get accurate
values for the density, in particular in the center of the trap, ρ(z = 0)11. Similar to the
energy, V rel+cm

eff performs best. A comparison to the exact two-body solution shows that
the exact value is reached fast. For the 1 + 3 system this interaction also shows the fastest
convergence while g(n)δ(x) and V rel

eff perform similarly. The bare contact interaction
showcases the slowest convergence.

These conclusions are further supported by a fitting analysis with the function

O(n) = O(n→ ∞) +
A

nσ
. (3.27)

For a detailed description and the results of this fitting procedure, we refer to App. A.1.
The discussion in this subsection showcases that although the renormalized interactions
are constructed to improve the convergence for the energy, they also lead to a faster
convergence for the density, in agreement with previous studies [50, 108, 111].

3.4.3. Transformation of operators

In this section, we discuss the transformation of operators alongside the renormalization
of interactions, which, to the best of our knowledge, has not been explored previously in
the context of cold atoms. To this end, we calculate the expectation value of the one-body
parts of the Hamiltonian, i.e. the kinetic energy operator T 12 and the trapping potential
W , see Eq. (3.2), whose expectation value is the mean-square radius for our system. As
discussed above, the effective interactions (V rel

eff and V rel+cm
eff ) are constructed via unitary

transformations which can also be used to transform operators (for details see App. A.6).
Since the running coupling constant approach is not related to a unitary transformation,
we cannot transform operators for this interaction. As for the energy, we use the harmonic
oscillator energy unit, h̄ω = 1, as relevant scale for the convergence.

11We have checked that even if one considers the relative density, (ρn=11(z) − ρn=31(z))/ρn=31(z), the
dependence on the cutoff at the trap center is of the same order of magnitude as at the edges of the
system.

12Note that strictly speaking the kinetic energy is not an observable quantity. Although its expectation value
is well-defined in one dimension, for higher dimensional systems it diverges, see e.g. Ref. [128] where
this is shown with Tan’s contact parameter [129]. We still calculate the expectation value of T because it
is one of the simplest operators which factorizes in center-of-mass and relative coordinates and which is
sensitive to local changes of the wave function.
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Figure 3.5.: Expectation value of the kinetic energy operator, ⟨T ⟩, for different particle
numbers and interactions as a function of the cutoff parameter n.
Panels *1) show results where the operator T has been transformed together
with V rel

eff and V rel+cm
eff , while panels *2) show results where only the potential

is renormalized but the operator T remains unchanged. Panels a) and b) are
for the 1+1 system, while panels c) and d) are for 1+3 particles. Panels a) and
c) show results for an attractive interaction with g = −2.5067 (corresponds
to E1+1 = −1) while panels b) and d) are for repulsive interaction with g = 3
(corresponds to E1+1 = 1.6). Data is shown with markers; lines are added
to guide the eye. We show these data also as a function of 1/n and double
logarithmic plots for the 1 + 1 system in Apps. A.9.1, A.9.2. Figure modified
from Ref. [112].

When transforming the operators T andW alongside the effective interactions, Eq. (3.19),
two-body operators are induced, see Eq. (3.20)

T (2) =
∑︂
ijkl

tijkla
†
ia

†
jakal, W (2) =

∑︂
ijkl

wijkla
†
ia

†
jakal, (3.28)

where tijkl = δj,ltik + δi,ktjl, and wijkl = δj,lwik + δi,kwjl with tik = −
∫︁
dxΦi(x)Φ

′′
k(x)/2

and wik =
∫︁
dxΦi(x)x

2Φk(x1)/2. Because these two-body operators factorize in center-
of-mass and relative coordinates, it is straightforward to calculate ˜︁T (2) and ˜︂W (2), the
expectation values with respect to the analytical two-body solution.
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Figure 3.6.: Expectation value of the trap operator, W , for different particle numbers
and interactions as a function of the cutoff parameter n.
Panels *1) show results for ⟨W ⟩ when the operatorW has been transformed
together with V rel

eff and V rel+cm
eff , while panels *2) correspond to only renormal-

izing the interaction while keepingW unchanged. Panels a) and b) are for
the 1 + 1 system, while panels c) and d) are for 1 + 3 particles. Panels a)
and c) show results for attractive interaction g = −2.5067 (corresponds to
E1+1 = −1); panels b) and d) depict the convergence for repulsive interaction
g = 3 (corresponds to E1+1 = 1.6). Data is shown with markers; lines are
added to guide the eye. We show these data also as a function of 1/n and
double logarithmic plots for the 1 + 1 system in App. A.9.1, A.9.2. Figure
modified from Ref. [112].

We show in Fig. 3.5 the results for the expectation value of the kinetic energy. In panels
*1) we show ⟨T ⟩ when T is transformed alongside the renormalization while in panels
*2) we show results when only the interaction but not the operator has been transformed.
We provide a quantitative analysis of our data with the same fitting procedure as above,
Eq. (3.24), in App. A.2.

We see that a transformation of the operator can be necessary to improve the con-
vergence: For attractive interaction, the convergence of ⟨T ⟩ is improved only slightly
compared to the bare contact interaction if a non-transformed operator is used. For the
repulsive interaction, the data converges even slower. We can understand this behavior
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using the running coupling constant approach. If we have repulsive interactions, the
renormalization leads to a weaker interaction (g(n) is smaller than g). This results in a
smaller expectation value of the kinetic energy. At the same time, increasing the cutoff
results in an increased value, i.e., the renormalization works against the convergence in
this case. For attractive interaction, it is exactly the opposite: The renormalization leads
to a stronger interaction, i.e. a larger value of the observable just as an increasing cutoff
also increases the value of the kinetic energy. However, if the kinetic energy operator is
transformed, the convergence properties of the effective interactions are improved signif-
icantly. Similar to the energy and the density, V rel+cm

eff leads to the fastest convergence.
For the 1 + 1 system, the results are converged for any cutoff (this is by construction) but
also for the 1 + 3 system V rel+cm

eff leads to converged results within our truncation range.
For the trapping potential, shown in Fig. 3.6, the transformation of the operator is not

as important – there is barely any difference visible between the panels *1) and *2). The
potentials V rel

eff and g(n)δ result in similar convergence patterns that are faster than the
bare contact interaction while V rel+cm

eff leads to virtually converged results already for
n ≃ 25 (relative difference is ≃ 0.01). Again, we provide a detailed analysis with a fitting
procedure in App. A.2.

The results in this subsection can be summarized as follows: For observables that are
sensitive to local changes of the wavefunction (such as the kinetic energy), the transfor-
mation of operators alongside the renormalization is more important than for observables
that are sensitive to global properties (such as the trapping potential, i.e. the mean-square
radius). However, further research is needed to prove this statement.

3.4.4. Transition matrix elements

As a last observable we study the transition rate between the ground state and an excited
state upon a small periodic modulation of the interaction. To the best of our knowledge,
for this observable the improved convergence of renormalized interactions has not been
demonstrated before. It is interesting to calculate this observable for two reasons: 1)
the corresponding two-body operator is sensitive to two-body correlations between the
fermions. This means that it is sensitive to local changes in the wavefunction and should
therefore further showcase the importance of transforming the operator alongside the
interaction. 2) this operator is a useful probe in cold atom systems. It has been used
to study the few-body precursor of a phase transition in a two-dimensional system of a
two-component Fermi gas, theoretically [52] as well as experimentally [42]. It has been
further explored in few-body bosonic droplets [65].
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Figure 3.7.: Transition matrix elements from the ground state to the lowest-energy
state that can be excited by a periodic modulation of the interaction,M0→f ,
for different particle numbers and interactions as a function of the cutoff
parameter n.
Panels *1) showM0→f if the operator has been transformed together with
the potential while panels *2) show results when only the potential has been
renormalized but the operator remains unchanged. Panels a) and b) are for
the 1 + 1 system while panels c) and d) are for 1 + 3 particles. Panels a)
and c) show results for attractive interaction with g = −2.5067 (corresponds
to E1+1 = −1); panels b) and d) depict repulsive interaction with g = 3
(corresponds to E1+1 = 1.6). Our data are shown with markers; lines are
added to guide the eye. We show these data also as a function of 1/n and
double logarithmic plots for the 1 + 1 system in App. A.9.1, A.9.2. Figure
modified from Ref. [112].

We consider a periodic modulation of the interaction strength

g(t) = g(0) + η sin(ωt), (3.29)

where we assume that |η| ≪ |g(0)|. Using Fermi’s golden rule, the transition rate from
the ground state |0⟩ to an excited state |f⟩ as R0→f ∝ η2|M0→f |2δ(Ef − E0 − ω) can be
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estimated. Therefore, we have to calculate the transition matrix element

M0→f = ⟨Ψf |
∑︂
i<j

δ(xi − xj)|Ψ0⟩ . (3.30)

Since this matrix element is only dependent on the relative coordinates, it is straightfor-
ward to calculate the transformation of the corresponding operator for the renormalization
using the effective interactions, Eq. (3.22). Additionally, we can even introduce a heuristic
transformation for the running coupling constant approach. We interpret this regulariza-
tion scheme as a transformation of the delta-function potential, which implies the ‘natural’
transformation of the transition matrix element:

δ(xi − xj) →
g(n)

g
δ(xi − xj). (3.31)

We show our results for |M0→f | from the ground state to the first excited state acces-
sible through a modulation of the contact interaction13 in Fig. 3.7. As we can see, the
transformation of the observable is necessary to achieve accurate results. If we do not
transform the observable, the results based upon the bare contact interaction are in fact
more accurate than the ones using the renormalized interactions. The explanation is the
same as in the previous subsection: The renormalization works against the convergence.
Therefore, only by transforming the operator, i.e. by using Eq. (3.30) and Eq. (3.22), can
we achieve a boost in convergence. We provide a detailed quantitative analysis of the data
with the fitting procedure in App. A.2.

Comparing the different interactions, we see again that the highest accuracy is achieved
using the V rel+cm

eff interaction. This is particularly noticeable for the 1 + 3 system and
attractive interaction. There, the fitting routine with Eq. (3.24) gives meaningful results
only for V rel+cm

eff and a transformed observable. In particular, the fit does not produce
an accurate parameter c (remember, the extrapolated value of the observable in infinite
Hilbert space) for the data calculated with the bare contact interaction, at least for the
considered truncated Hilbert spaces. Another interesting feature of these parameters is
that the data defy the naive expectation that the convergence patterns for systems with
more than two particles should be comparable to those for the 1 + 1 system. This idea
is based upon the fact that the transition matrix elements are a two-body operator, and
hence their convergence can be studied with the 1 + 1 system. Instead, we can clearly see
that even though the data for the 1 + 1 system with attractive interaction can be fitted
by Eq. (3.24), for the 1 + 3 system only data obtained with V rel+cm

eff and a transformed
13The periodic modulation of the interaction can only couple states which have the same center-of-mass

quantum number.
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observable are useful in our fitting procedure, i.e. for an extrapolation to infinite Hilbert
space (see App. A.2 for a quantitative discussion).

A comparison between the effective interactions and the running coupling constant
approach shows that the use of V rel+cm

eff and V rel
eff is advantageous over the use of g(n)δ

in computations ofM0→f . This is expected as the transformation of the operator for the
running coupling constant, Eq. (3.31), is only a heuristic transformation while for V rel

eff

and V rel+cm
eff the transformation is based upon a unitary transformation (see App. A.6).

Nevertheless, the running coupling constant approach with the heuristically transformed
operator improves the convergence for all considered cases except for 1 + 1 and repulsive
interaction, where g(n)δ and gδ lead to similar results. To give some numbers: For the
1 + 3 system and repulsive interactions,M0→f changes by 3% when increasing the cutoff
parameter from n = 25 to n = 31 for gδ while for g(n)δ this change is 2%. The largest
improvements in the accuracy of results are seen for the effective interactions: For V rel

eff

the corresponding difference is 0.6% and for V rel+cm
eff it is only 0.05%.

This subsection emphasizes the importance of renormalizing the interaction and also
of transforming operators, like transition matrix elements, in numerical studies of few-
fermion models. In particular, we can achieve precise numerical results for attractive 1+ 3
systems with only n ≃ 30, resulting in matrices that can be diagonalized on a standard
PC.

3.5. Conclusions

3.5.1. Summary

In this chapter, we compared different renormalization schemes for the one-dimensional
contact interaction. In agreement with previous studies [50, 105, 108, 111], the accuracy
of numerical many-body calculations can be improved considerably by renormalizing the
interaction, i.e. by explicitly including information about converged two-body energies
in the many-body calculations with a truncated Hilbert space. Therefore, the usage of
renormalized interactions improves ab initio studies of the few-to-many-body crossover.

We found that the simple running coupling constant approach (used e.g. in Refs. [108,
111]) is a good starting point for approximate calculations of the energy spectrum. It is
easy to set up and provides a similar boost in performance as the effective interaction
approach, which uses the relative energy spectrum for the renormalization, V rel

eff , used in
Refs. [50, 77, 105]. Furthermore, because of its simplicity, g(n)δ is transparent and can be
helpful in understanding the concepts of renormalized interactions. The largest boost in
convergence was obtained with the effective interaction which includes the full two-body
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spectrum, i.e. relative and center-of-mass excitations, V rel+cm
eff . This potential has not

been used before in the context of cold atom systems (to the best of our knowledge). We
hope that our results will motivate its use in future studies.

For observables other than the energy, we discussed the unitary transformation of
operators alongside the renormalization of the interaction – something which is possible
with the effective interactions, V rel+cm

eff and V rel
eff , as they are generated by a unitary

transformation. We observed that this transformation (in particular for the kinetic energy
and the transition matrix elements) can be necessary to improve the convergence over the
bare contact interaction. In particular, for V rel+cm

eff this allowed us to obtain numerically
exact results for relatively small sizes of the Hilbert space. The difference between V rel

eff

and V rel+cm
eff can be understood from the harmonic trapping confinement which breaks

the translational invariance of the system. Only for an infinite basis, the relative and
center-of-mass motion decouple in a harmonic oscillator. The effective interaction V rel+cm

eff

corrects for this finite basis artifact and, therefore, converges more quickly. Note that for
large basis sizes, relative and center-of-mass motions are effectively decoupled and V rel

eff

gives similar results as V rel+cm
eff .

3.5.2. Outlook

Even though we demonstrated a necessity for the transformation of operators for the
kinetic energy and transition matrix elements, our results for the expectation value of the
trapping potential showed almost no influence on the transformation of the corresponding
operator. Furthermore, for the density we also showed that renormalized interactions
without a transformation of the operator leads to large improvements. Currently, our
understanding is that observables that are influenced by “global” properties of the wave
function are less susceptible to this transformation than “local” observables. The reasoning
behind this is that the latter class is sensitive to changes of the wave function at short
length scales which are determined mainly by particle-particle interactions. However, a
more systematic study of the effect of the transformation of operators is needed. This is in
particular important for the use of the running coupling constant approach, g(n)δ, as this
renormalization scheme does not allow for a transformation of operators alongside the
renormalization.

We want to emphasize that, as already described in the introduction of this chapter,
the use of renormalized interactions is not limited to calculations based upon the CI
method. Indeed, the interactions discussed in this chapter can be easily implemented
into other ab initio methods (e.g. the flow equation method introduced in Sec. 2.3).
Provided the method also uses a one-body basis cutoff scheme, the interactions can be
implemented in exactly the same way. This combination will allow for calculations of an
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Figure 3.8.: Interaction energies of a two-dimensional harmonic oscillator for particles
interacting via g(n2D)δ or V rel

eff as a function of the cutoff n2D.
Panel a) shows the first excited state of the 1 + 1 system with a vanishing
total angular momentum. Panel b) shows the energy of the ground state for
1+2 particles. The parameters are chosen such that the ground state energy
of two fermions is E1+1 = 1.1. Our data are shown with markers; lines are
added to guide the eye. Figure modified from Ref. [112].

increased parameter space, i.e. larger particle numbers and stronger interactions, which
is important for works on the few-to-many-body transition. In an upcoming study, we will
combine renormalized interactions and an extension of the CI method, the importance
truncated CI (see e.g. Refs [64, 65, 79]) to calculate systems with larger particle numbers
(mainly enabled by the importance truncation) and stronger interactions (mainly enabled
by renormalized interactions) than possible without these improvements. We discuss parts
of this study in the outlook of Chap. 5.

Also, note that our results are not limited to contact interactions or to one dimension.
For example, studies using cold dipoles such as Refs. [24–26] might benefit from the
use of renormalized interactions. Furthermore, odd-channel interactions, which need
to be regularized, might be another interesting application of our interactions [6, 130,
131]. Our study also motivates the extension of our comparative study to regularization
methods used for two-dimensional systems [51–53]. In particular as two dimensions
are less explored in this context than one or three spatial dimensions. We showcase a
preliminary comparison between the running coupling constant approach and the V rel

eff

interaction for a two-dimensional harmonic oscillator confinement in Fig. 3.8, see App. A.3
for the details of our calculation such as the Hamiltonian and basis functions. The cutoff is
given by the maximum one-body energy, n2D, used to construct the Hamiltonian. For this
system, the bare contact interaction diverges and we follow the prescription of Ref. [51]
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to regularize it: We fix the two-body ground state energy for each cutoff, i.e. we use
a running coupling constant approach. We show results for the first excited state of
1 + 1 particles with the total angular momentum of zero and the ground-state energy for
the 1 + 2 system14. Note that although it appears as if the energy for the 1 + 2 system
calculated with the effective interaction is already converged for n2D = 8, there is still a
slight increase in the energy, and a more rigorous study similar to Sec. 3.4 is needed for
two-dimensional systems. We also expect that the use of effective interactions together
with a transformation of operators will boost calculations of observables other than the
energy.

14We have observed similar convergence patterns also for other particle numbers such as 3 + 3 fermions.
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4. Emergence of a Bose polaron in a small
ring threaded by the Aharonov-Bohm flux

Studying impurities embedded in a medium is crucial for understanding the few-to-
many-body crossover, e.g., they can serve as probes for their environment. As introduced
in Chap. 1, the description of many-body systems with impurities can be simplified by
introducing quasi-particles, such as a polaron – an impurity dressed by its interactions
with the surrounding environment. A polaron behaves similarly to an impurity in free
space but has modified one-body parameters, such as the effective mass. Until now, it has
been unclear how to investigate the emergence of the effective mass starting from a few
particles. In this chapter, we introduce a few-to-many system that enables such a study by
connecting its description with the many-body concept of a polaron, thereby contributing
to the second goal outlined in Chap. 1.

We consider an impurity in a one-dimensional sea of bosons under the influence of an
Aharonov-Bohm flux. The Aharonov-Bohm flux is typically studied in the context of a
single particle, where it provides fundamental insights into the coupling between gauge
potentials and matter. Here, we extend this model to incorporate interactions with other
particles. We demonstrate that the ground state of our system can be described using
the many-body concept of a polaron. This enables us to intuitively explain the energy
spectrum by introducing the effective mass. To the best of our knowledge, this is the first
time that the effective mass has been defined for a finite number of particles, extending
the conventional study of the few-to-many-body crossover in impurity systems beyond the
usual self-energy analysis [12]. Furthermore, we demonstrate how currents in the system
can be tuned by modifying impurity-boson interactions, and we discuss the influence of
defects in our setup. Our findings propose the Aharonov-Bohm ring as a novel platform
for the few-to-many-body crossover of quasi-particles that arise from impurities immersed
in a medium.

Parts of this chapter have been published in this or similar form in our manuscript
“Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux” [63].
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4.1. Introduction

In the idealized model of a ring threaded by the Aharonov-Bohm (AB) flux, a particle
moves in a region without any magnetic field. However, the presence of magnetic flux
still manifests itself in a minimal substitution −i∂/∂x→ −i∂/∂x+Φ, where the position-
independent parameter Φ determines the strength of the flux. This model provides insight
into many fundamental physical phenomena. For example, it showcases the significance
of potentials in quantum mechanics [132], geometric phases [133], the Josephson effect
and persistent currents [134, 135]. AB physics is most often based upon a single-particle
picture [136, 137], which already has the power to explain some experiments qualitatively
such as spectroscopy in semiconductor rings [138]. However, one-body studies neglect
interactions of a charge carrier with other particles, in particular, with the environment.
Therefore, they should be extended for realistic systems. In this chapter, we discuss such
an extension assuming a one-dimensional bosonic environment.

We investigate one of the simplest two-component many-body models – a particle
(impurity) coupled to the AB flux that interacts with a weakly interacting Bose gas.
Besides AB physics, this setup is motivated by recent cold-atom experiments on Bose
polarons [139–145]. As described in Chap. 1, impurities have been used in previous
studies to explore the few-to-many-body crossover because they act as a probe for the
environment. For example, in Ref. [12], the self-energy of an impurity was measured for
an increasing number of sea particles, which allowed one to test how many fermions are
needed to build a Fermi sea.

Theoretical and experimental advances in realizing ring-shaped trapping potentials
and artificial gauge fields with neutral cold atoms (see e.g. Refs. [89, 90, 146]) are
another motivation to study our system. So far, ring-shaped condensates with effective
gauge potentials have not been engineered in impurity systems. We will show below that
this combination leads to rich physics. Note that systems with polaritons might also be
another setup to test our results because of recent advances in engineering ring-shaped
potentials [147–149] and tunable gauge fields [150].

Let us first briefly review known few-body physics in the AB ring. For identical particles,
there is no interplay between particle-particle interactions and the AB flux. Hence, the
flux couples only to the total angular momentum of the system, shifting the global energy
minimum but leaving the internal dynamics unperturbed [137, 151–153]. This also
applies to distinguishable particles with identical masses and fluxes, though, for such
systems, the AB flux can change the ground state symmetry, see, e.g., Ref [154]. For
particles with different masses or charges (e.g., electrons and holes [155, 156]), the
AB flux and the internal structure are coupled. For two particles, this can modify the
threshold for binding (which may preclude the formation of excitons for weakly attractive
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potentials in one dimension [157]) or lead to the formation of dark excitonic states [158].
As far as we are aware, systems with more than two particles have not been explored
extensively.

In this chapter, we focus on dressing the impurity, a typical many-body phenomenon
that affects system properties such as transport and magnetization. Therefore, our results
complement earlier studies on small systems which used few-body approaches. Our key
finding is that an impurity threaded by an AB flux and interacting with bosons, which are
both confined to a one-dimensional ring, can be described in terms of the one-dimensional
Bose polaron. Consequently, the concepts and ideas developed for such systems [72, 94,
159–166] can be applied here. This connection allows us to draw a number of useful
conclusions:

1. Prior studies of the Bose polaron provide insights into the properties of our system
and offer an intuitive interpretation of our results. This insight can also be beneficial
for the interpretation of numerical lattice simulations that consider electron-phonon
interactions, see, e.g., Ref. [167].

2. The AB ring serves as a conceptual model for defining the effective mass in a finite-
size system, enhancing the understanding of the crossover from few- to many-body
systems. In particular, our work opens the door for studying this crossover beyond
the self-energy of an impurity [12].

3. Persistent currents be used to examine the phase coherence of the polaron across
the AB ring providing information about the validity of the Bose-polaron concept in
one dimension.

This chapter is structured as follows: First, we introduce our system and showcase the
connection between the AB flux and the total momentum of the system by transforming the
Hamiltonian to the frame “co-moving” with the impurity (see Sec. 2.4). This connection
is one of the key methodological findings of this chapter. Afterwards, we will shortly
discuss the methods used in this chapter. We use the mean-field approximation [MFA]
(see Sec. 2.3 for details) and we present the solution to the Gross-Pitaevskii equation of
this system. We further employ the ab initio method of the flow equation approach (see
Sec. 2.5) for which we discuss our choice for the reference state and explain the used
one-body basis. We use this method to discuss the validity of the MFA. Then, we present
our main results: We start by discussing the energy spectrum, which we interpret in terms
of the Bose polaron. We use this connection to define and calculate the effective mass in
a finite setting. This allows us to discuss the convergence of the effective mass towards
the thermodynamic limit. Furthermore, we set limits for the applicability of the polaron
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Figure 4.1.: Sketch of the system.
Blue balls show bosons at positions xi; the impurity is a red ball at position y.
The AB flux is depicted via the hatched circle and its value is presented by Φ.
The strength of the boson-boson (impurity-boson) interaction is given by g
(c). Figure modified from Ref. [63].

approximation. Then, we calculate currents in our system and demonstrate how we can
tune the current of the impurity and bosons via the interactions. As a last result, we shortly
discuss the influence of defects in our system. We conclude this chapter with a summary
of our findings and discuss future research enabled by our setup. In particular, we explain
why further few-to-many-body studies on the critical velocity in a one-dimensional Bose
gas are interesting. We provide additional information in App. B.

4.2. System

We study a one-dimensional system of N bosons and a single impurity atom, as illustrated
in Fig. 4.1. We impose periodic boundary conditions, i.e. the system is contained on a
ring of length L. The position of the impurity (i-th boson) is given by Ly (Lxi); the mass
of the impurity (a boson) ism (M). We assume that the impurity is coupled to the AB flux
Φ/L1. Note that we have neutral particles and therefore Φ is not generated by a magnetic
flux threading the ring. Instead, alternative mechanisms are implied [146, 168], such as
stirring with a weak external potential at speed v, in which case Φ = mvL/h̄.

1It is worth noting that the more general case, where the AB flux is coupled to both particle species, can be
easily incorporated into our model, see App. B.1.
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The Hamiltonian reads

H =
h̄2

2mL2

(︃
−i ∂
∂y

+Φ

)︃2

− h̄2

2ML2

∑︂
i

∂2

∂x2i
+ Vib + Vbb . (4.1)

For the impurity-boson, Vib, and boson-boson, Vbb, interactions we use delta-function
potentials

Vib =
c

L

N∑︂
i=1

δ(xi − y), Vbb =
g

L

∑︂
i,j

δ(xi − xj), (4.2)

where c and g define the strength of the interactions.
For simplicity, we shall use a system of units in which h̄ =M = 1. In this chapter, we

assume that the bosons and the impurity have identical masses,m = 1. Note however that
a mass imbalance does not change the main conclusions, see App. B.2. The dimensionless
parameters c/g and γ = gL/N determine all physical properties as long as the particle
number N remains fixed. Here, we focus on c > 0 to avoid bound states [62, 169, 170]
that are beyond the polaron physics. We discuss the implications of an attractive impurity
in Chap. 5. We consider a weakly-interacting Bose gas for which the MFA (see Sec. 2.5)
can be employed, i.e. we use γ = 0.2. Note that the case with γ = 0.2 and N = 19 for
Φ = 0 was considered in Ref. [171] providing us with a reference point to benchmark our
numerical calculations.

In the following analysis, we will use the Hamiltonian from Eq. (4.1). However, it is
important to note that the parameter Φ can in principle be excluded from this Hamiltonian
via a gauge transformation Ψ → eiΦyΨ, where Ψ is the wave function. The flux effect
is then incorporated into a ”twisted” boundary condition, i.e. the wave function has
to acquire a phase ei2πΦ after a complete turn [172, 173]. This condition implies that
the energy spectrum must be a periodic function with period Φ/(2π) (see Fig. 4.3 for a
schematic sketch of the energy spectrum). For general multi-component systems, such
as strongly interacting Bose-Fermi mixtures, a smaller period of the ground-state energy
is possible [153, 154]. However, as we demonstrate below, this does not occur for an
impurity in a weakly-interacting Bose gas, whose low-energy spectrum resembles that of
a single particle.

Without flux, Φ = 0, our system is one of the most studied one-dimensional models [6,
113, 174, 175]. This allows us to use already known methods to solve the system with
Φ ̸= 0. In particular, we work in the frame co-moving with the impurity (see Sec. 2.4),
where the MFA (see Sec. 2.5) and flow equation approach, also called in-medium similarity
renormalization group method [IM-SRG] (see Sec. 2.3), provide powerful theoretical
tools. These methods enable us to explore the impact of the AB flux on the properties
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of the one-dimensional polaron problem beyond previous studies [176, 177], which
examined relevant molecular-crystal models. Specifically, we can define and analyze
flux-independent properties of the Bose polaron, such as the effective mass, in a finite
system.

4.2.1. Co-moving frame

We use the transformation of the Hamiltonian to the frame co-moving with the impurity,
which is introduced in Sec. 2.4, to simplify the description of our system2. The Schrödinger
equation in the co-moving frame reads[︃

− 1

2

(︄∑︂
i

∂

∂zi

)︄2

− 1

2

∑︂
i

∂2

∂z2i
+

(P +Φ)2

2

+ L2Vib + L2Vbb + i(P +Φ)
∑︂
i

∂

∂zi

]︃
Ψ̃ = EΨ̃ ,

(4.3)

where E is the dimensionless energy of the system. The total momentum of the system, P ,
is quantized to fulfill the periodic boundary conditions: P = 2πn, where n is an integer.
The AB flux Φ, however, is a continuous parameter. The transformation to the frame
co-moving with the impurity reveals an important connection: Φ and P enter this equation
together as a sum P = P +Φ. Therefore, we interpret P as a “continuous effective total
momentum” that determines the total current in the system. This interpretation is crucial
for understanding the system’s properties in terms of an effective one-body picture. We
will use this below to intuitively explain our results for the energy spectrum and currents
and to define the effective mass in a finite system. Note that Ψ̃∗

P solves the Schrödinger
Eq. (4.3) with −P, which is a manifestation of time-reversal symmetry.

4.3. Methods

4.3.1. Mean-field approximation

To gain semi-analytical insight into the system, we apply the MFA, see Sec. 2.5. The
Gross-Pitaevskii equation for our system reads

− 1

2κ

∂2f

∂z2
+ i

P
m

∂f

∂z
− i(N − 1)

Pbos

m

∂f

∂z
+ g(N − 1)|f |2f = µf, (4.4)

2Note that the transformation to the co-moving frame has been used to study the few-to-many-body
transition of the self-energy of the Bose-polaron with Φ = P = 0 [72]. Here, we study this transition for
non-vanishing P , where the continuous parameter Φ provides a bridge between the discrete values of P .
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where µ is the chemical potential, P = P +Φ is the “total” momentum, κ = m/(m+1) is
the reduced mass, and

Pbos = −i
∫︂
f∗
∂f

∂z
dz (4.5)

is the momentum of one boson. We implement the impurity-boson interaction as a
boundary condition

f ′(0+)− f ′(0−) = 2cκf(0) . (4.6)

This Gross-Pitaevskii equation has been discussed before, see, e.g., Ref. [63, 178]. For
convenience of the reader, we summarize its solution. We simplify the notation by
introducing the momentum of the impurity as

Pimp = P − (N − 1)Pbos. (4.7)

Then, we rewrite f
f(z) = h(z)eiθ(z), (4.8)

which leads to the two coupled differential equations:

− h′′ + (θ′)2h− 2Pimpθ
′h
κ

m
+ 2κg(N − 1)h3 − 2hκµ = 0, (4.9)

− θ′′h− 2θ′h′ + 2Pimph
′ κ

m
= 0 . (4.10)

Their solutions read

h(z) =

√︂
(s2 − s1) sn (A| p)2 + s1, (4.11)

θ(z) =
dn (A| p)

√︁
κg(N − 1)s1s2s3Π

(︂
1− s2

s1
; am (A| p)| p

)︂
2s1(K(p)− α)

√︂
1− p sn (A| p)2

+ zPimp
κ

m
. (4.12)

with p = s2−s1
s3−s1 , α = F

(︂
sin−1

(︂√︂
smin−s1
s2−s1

)︂⃓⃓⃓
p
)︂
, β = E

(︂
sin−1

(︂√︂
smin−s1
s2−s1

)︂⃓⃓⃓
p
)︂
and A =

α+2z(K(p)−α). sn and dn are Jacobi elliptic functions, F (K) is the (complete) elliptic
integral of first kind, E the elliptic integral of second kind, Π the elliptic integral of third
kind and am is the Jacobi amplitude [102].

The parameters s1, s2, s3 characterize the solution and are eventually determined from
the particle number and interaction strengths. The impurity boundary condition3 gives
3Note that there exist three different solutions to this condition, i.e., three different values of smin. We take
the solution that reproduces the physical behavior of the Bose polaron in the limit P → 0 discussed in
Ref. [72].
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smin as a function of s1, s2, s3. To determine s1, s2, s3 we solve a set of equations: One
which demands that f(z) solves the Gross-Pitaevskii equation, one for the normalization
of f , and one for the periodicity of f :

4p(K(p)− α)2 − κg(N − 1)(s2 − s1) = 0, (4.13)

−(s1 − s3)(α− β −K(p) + E(p))

α−K(p)
+ s1 = 1, (4.14)

θ(0) = θ(L). (4.15)

These equations are solved numerically under the condition that s1 ≤ s2 ≤ s3.
The chemical potential is given by

µ =
1

2
g(s1 + s2 + s3) . (4.16)

The solution, Eqs. (4.11), (4.12), allows us to calculate all observables of the system,
such as energy or currents, within the MFA.

4.3.2. Flow equation approach

Even though we consider a weakly interacting Bose gas, as described in Sec. 2.5 care must
be taken when the MFA is employed in one-dimensional systems. To ensure the applica-
bility of the MFA, we use the beyond mean-field flow equation approach as benchmark.
For details on this method, we refer to Sec. 2.3. In this section, we only briefly discuss the
reference state and one-body basis used in this chapter.

For the one-body basis, we solve the one-body Hamiltonian in the frame co-moving with
the impurity for Φ = P = 0, i.e. we use sin/cos functions which include the impurity-
boson interaction. Because the odd states are zero at the position of the impurity, they
are not affected by the strength of the interaction while for even states, we solve

∂φi
∂zi

⃓⃓⃓⃓0−
0+

= 2cκφi(0) . (4.17)

The basis states also fulfill periodic boundary conditions, φi(0) = φi(L). In our calculations,
we use a finite number of basis states with n ∈ [11, 13, 15, 17, 19, 21] and extrapolate to
infinite Hilbert space according to the description in Sec. 2.3.

As described in Sec. 2.3, we construct the reference state iteratively, beginning with the
ground state of the one-body basis. Using the flow equation approach, we calculate the
density and phase for P = 0 and use the results as a new reference state. This process is
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Figure 4.2.: Mean-field validation: Density, phase and phase fluctuations.
Density [a)], phase [b)] and phase fluctuations [c)] for N = 19,M = m = 1,
γ = 0.2, c/g = 1 and different total momenta P (given in the legend). Solid
lines show the results from the MFA; the symbols demonstrate the IM-SRG
results. Dashed lines between these symbols are added to guide the eye.
Figure taken from Ref. [63].

repeated until both, phase and density, remain unchanged upon an additional iteration.
Next, we increment P slightly and repeat the iterative calculation. This continues until
the desired value of P is achieved or the flow equations diverge. While other choices
for the reference state, such as the mean-field solution, are possible, we found that this
procedure allows us to compute system properties over a wider range of P.
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4.3.3. Validity of mean-field approximation

To test the validity of the MFA, we calculate the density

ρ(z) =
∑︂
i,j

φi(z)φj(z)a
†
iaj (4.18)

and the phase

θ(z) = Im

⎡⎣log
⎛⎝∑︂

i,j

φ∗i (0)φj(z)a
†
iaj

⎞⎠⎤⎦ (4.19)

for P = 0, 2π, 4π with MFA and the flow equation method, see Fig. 4.2. For P = 0
and P = 2π, we find good agreement between the two methods. However, for the
largest considered effective total momentum, P = 4π, noticeable differences are seen. In
particular, the phase predicted from the MFA appears to be too small.

Additionally, we estimate directly the off-diagonal long-range order by calculating
phase fluctuations, see Sec. 4.3.1, Eq. (2.48). The results are also shown in Fig. 4.2. In
agreement with the results for density and phase, for P = 0 and P = 2π phase fluctuations
are nearly identical and small while for P = 4π there is a considerable increase. We
conclude that care must be taken when systems with P > 2π are studied. In the remainder
of this chapter, we show IM-SRG results for certain values of P to further justify the use
of the MFA. In the outlook, Sec. 4.5.2 we discuss excitations of the Bose gas due to the
flux/momentum which is directly connected to the limitations of the MFA.

4.4. Results and discussion

4.4.1. Energy spectrum

In Fig. 4.3, we present a sketch of the ground state energy as a function of the flux Φ
for different quantized momenta P , which shows that the energy is periodic in Φ. The
Schrödinger equation in the co-moving frame, Eq.(4.3), offers a simple explanation for
why different momenta correspond to different periods of Φ: P and Φ always appear as the
sum P = P +Φ. Additionally, the energy spectrum is symmetric under the transformation
Φ → −Φ due to time-reversal symmetry. In what follows we calculate the lowest-energy
states for fixed values of P , so-called Yrast states (cf. [137]), and currents for 0 ≤ Φ ≤ π.
These values of the flux determine the experimentally relevant parameters.

We show the energy spectrum for the first and second Yrast state in Fig. 4.4. In
agreement with our discussion on the validity of the MFA, we find good agreement also
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Figure 4.3.: Sketch of the ground state energy.
Schematic depiction of the ground-state energy as a function of the flux with
(c > 0) and without (c = 0) impurity-boson interaction. The interaction leads
to an energy shift Ep at Φ = 0 and a different curvature for finite values of
Φ. The quantized momentum of the system is P/L. The shift of the energy
spectrum, Ep, and the change of the curvature can be parameterized by
effective one-body parameters, see text for details. Figure modified from
Ref. [63].

for the energy for4 |P|≤ 2π. Furthermore, we see that for Φ = ±π there is a level crossing
between the two Yrast states with P = 0 and |P |= 2π. This is a consequence of the
rotational symmetry of the problem in the co-moving frame, see Eq. (4.3). We can destroy
this rotational symmetry by introducing a defect into the system which will result in an
avoided level crossing. We discuss this below in Subsec. 4.4.4.

We also show the ground-state energy of a non-interacting impurity (c = 0) which is
simply given by E(P,Φ)−E(P = 0,Φ = 0) = (P +Φ)2/2. We see that the impurity-boson
interaction leads to a smaller curvature of the energy, i.e., the solid curves representing
the energy of the interacting impurity are always below the dotted line corresponding
to the non-interacting one. This is also depicted in Fig. 4.3, however, in this sketch, the
self-energy of the impurity, Ep is not yet subtracted. The stronger the impurity-boson
interaction, the more pronounced this effect (compare the left and right panels of Fig. 4.4).
This feature can be easily understood using the concept of a polaron and its effective mass
which we will discuss in the next subsection.

4Wewill discuss the reason for worse agreement of the MFA for high values of P in the outlook, see Sec. 4.5.2.
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Figure 4.4.: The energy spectrum as a function of the AB flux, Φ.
Different colors correspond to different values of the momentum: Blue P = 0
and orange |P |= 2π. The parameters of the system are N = 19, γ = 0.2,
and c/g = 1 [a)], c/g = 5 [b)]. The data are obtained using the MFA (solid
curves) and the IM-SRG (crosses with error bars), black triangles show results
from Yang et al. [171] for Φ = 0. The dotted curves show the energy of the
non-interacting system. Figure modified from Ref. [63].

4.4.2. Effective mass

Let us start by introducing the concept of the effective mass in the thermodynamic limit
for an impurity embedded into a sea of particles5: The low-energy spectrum of the system
shows a quadratic increase with the effective total momentum (see, e.g., [94, 96] for a
discussion of one-dimensional Bose polarons)

lim
P→0

[E(P,Φ = 0)− E(P = 0,Φ = 0)] =
P 2

2mTD
eff

, (4.20)

with mTD
eff the effective mass in the thermodynamic limit6. This equation is one of the

core concepts of the polaron approximation and of effective one-body descriptions of
mobile impurities. However, this definition is not useful for finite-size systems because P
is discrete.
5We consider the case of Φ = 0 for this introduction.
6For different definitions of the effective mass see App. B.3.
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Figure 4.5.: Effective mass for a finite-size system.
a): Convergence of the effective mass to its thermodynamic limit for γ = 0.2
and different values of c/g. b): Inverse of d2E

dΦ2 for Φ → 0 with P = 0 and
|P |= 2π. The parameters of the system areN = 19, γ = 0.2. The green curve
shows the known result for P → 0 in the thermodynamic limit (TD. limit) [94,
96]. The data in both panels are obtained using the MFA. Figure taken from
Ref. [63].

To introduce a definition of the effective mass in a finite system, we employ the connec-
tion between the flux Φ and the quantized total momentum P via P = P + Φ. Φ is an
external parameter, which means that it is continuous. Time-reversal symmetry suggests
that E(Φ, P = 0) is proportional to Φ2 for small values of Φ. The mean-field calculation
also shows this behavior. Therefore, we define – in analogy to the Bose-polaron problem
in the thermodynamic limit – the effective mass of an impurity in a small AB ring by

lim
P,Φ→0

[E(P = 0,Φ)− E(P = 0,Φ = 0)] =
Φ2

2meff
. (4.21)

This expression links our system to the established polaron problems, enabling predictions
about an impurity’s behavior in the AB ring. For example, it easily explains why the
curvature of the energy spectrum decreases with increasing impurity-boson interaction:
The effective mass increases with c. This also means that we reduce the current associated
with the impurity when c is increased, as discussed below.

Because we are now able to define an effective mass in a few-to-many setting, we can
use the AB ring as a physical testbed for studying the few-to-many-body crossover of
one-dimensional Bose-polaron problems. We illustrate this crossover for the effective mass
in Fig. 4.5. We see that for weak impurity-boson interactions (c/g = 0.05) the effective
mass converges quickly to the thermodynamic limit. However, for strong interactions
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(c/g = 5) the convergence is slow, i.e. many bosons are needed to screen the impurity for
large values of c/g. In App. B.4 we compare the convergence of the effective mass with
the self-energy of the impurity. This analysis indicates that the effective mass converges to
the thermodynamic limit more slowly than the self-energy. In particular, the convergence
rate of the effective mass strongly depends on the impurity-boson interaction – opposite
to the self-energy, which appears to converge nearly independently of the interaction.

For both one-body parameters, the underlying process for the convergence is the same:
The high compressibility of a weakly-interacting Bose gas requires a large number of
bosons to screen a strongly interacting impurity. The number of bosons required for
effective screening depends significantly on the parameter γ. This can be seen most clearly
for γ → ∞: In this case, the bosons behave like non-interacting spin-polarized fermions
and only a handful of particles are needed to screen the impurity, cf. [12, 179, 180].
Hence, the crossover from few-to-many-body should be analyzed separately for fermions
and weakly-interacting bosons.

Finally, we note that the polaron approximation with an effective mass computed with
Eq. (4.21), describes only the Yrast curve with P = 0 well. We show this in Fig. 4.5 by
plotting the second derivative of the energy in the limit Φ → 0 for P = 0 and |P |= 2π
using the mean-field results. If we consider a non-interacting impurity, this derivative is
given by 1/m for all values of P . This is not the case for an interacting one: Instead, for
P = 0 the result is the effective mass in the finite-sized setting 1/meff . Figs. 4.4, 4.5 show
that the effective mass increases for stronger impurity-boson repulsion in agreement with
our expectations. Furthermore, we can also see that for the |P |= 2π state additional effects
come into play and change the second derivative. The underlying physics will become
more clear below when we discuss currents. The difference between “effective masses”
defined for P = 0 and |P |= 2π showcases limitations of the use of the quasiparticle picture
for a small AB ring. Nonetheless, the polaron model describes the qualitative aspects of
the spectrum even for P ̸= 0.

4.4.3. Currents

The AB flux induces impurity and bosonic currents. We define them via the continuity
equations for the impurity and bosons in the laboratory frame:

∂ρI
∂t

= −∂jI
∂y

;
∂ρB
∂t

= −∂jB
∂x

, (4.22)
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Figure 4.6.: Currents in the system.
Panels a) and b) present the impurity current while c) and d) show the bosonic
one. Blue, orange, and green colors are for P = 0, |P |= 2π, and |P |= 4π,
correspondingly. The parameters of the system are N = 19 and γ = 0.2.
Panels a) and c) show results for c/g = 1, whereas b) and d) are for c/g = 5.
The data were obtained with the MFA (solid lines) and the IM-SRG (crosses).
Black triangles are the results of Yang et al. [171] for Φ = 0. Dashed lines in a)
and c) show the impurity current in the polaron approximation jI = P/meff .
Here,meff is calculated within the MFA using Eq. (4.21). Figure modified from
Ref. [63].
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where tL2 is the time and ρI (ρB) is the probability density of the impurity (bosonic)
cloud. The (local) probability currents are given as

jI = − i

2

∫︂
dx1...dxN

(︃
Ψ∗∂Ψ

∂y
−Ψ

∂Ψ∗

∂y

)︃
+ΦρI , (4.23)

jB = − i

2

∫︂
dydx2...dxN

(︃
Ψ∗ ∂Ψ

∂x1
−Ψ

∂Ψ∗

∂x1

)︃
. (4.24)

Due to rotational symmetry, jI , jB, ρI and ρB are position-independent. This allows us
to work with the more convenient integral quantities, e.g., ρI =

∫︁
ρIdy/(2π). Using these

quantities, it is straightforward to show that jI +NjB = P . Hence, the current of the total
density, ρI +NρB, (also called the total current) is given by P = P +Φ. It is important to
note that although the AB flux is coupled only to the impurity, boson-impurity interactions
also generate a bosonic current. We show results for the currents for c/g = 1 and c/g = 5
in Fig. 4.6 (with other parameters being N = 19, γ = 0.2). We can see that a stronger
impurity-boson interaction leads to increased bosonic currents.

This observation can be easily explained with the Bose-polaron picture. We can relate
the impurity current and the energy using the Hellmann–Feynman theorem

jI =
∂E

∂Φ
. (4.25)

This is also the standard definition of the current in a one-body problem, see Ref. [137]7.
Combining this with the polaron picture for P = 0 leads to jI = Φ/meff which connects the
current (and transport properties) of the impurity to the effective mass of the polaron. Due
to the conservation of the total current, the bosonic current in the same approximation is
NjB = (1− 1/meff)Φ. The bosonic current generated by the AB flux follows the impurity,
resulting in the renormalization of the impurity’s mass. This simple calculation shows that
in the polaron picture, the currents depend linearly on Φ, with the slope fully determined
by the properties of the polaron: its effective mass.

The range of validity of the polaron approximation is determined by P and the impurity-
boson interaction strength. To showcase this, we display in Fig. 4.6 the linear behavior
of the impurity current by dashed lines. For the weaker impurity-boson interaction,
c/g = 1, we can see that the polaron approximation is accurate for |P|≲ 2π. However,
for stronger interactions, c/g = 5, we start to see deviations from the linear increase
already for |P|≲ π. In the limit of c→ ∞, the polaron approximation is only accurate for
P → 0. Our interpretation is that coherent propagation of the impurity becomes infeasible
7Note that this expression provides an indirect way for measuring currents by studying the energy landscape
of the problem with RF spectroscopy (cf. Scazza et al. [181]).
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for strong boson-impurity interactions and finite fluxes. As c → ∞, an impurity can
coherently exchange positions with a boson only on timescales of 1/c. Therefore, strong
(fast) impurity currents excite bosons, leading to a nonlinear increase in the currents
with Φ, see also Ref. [171]. In the outlook of this chapter, Sec. 4.5.2, we shortly discuss
excitations of the Bose-gas8. One can quantify these non-linear effects, by considering the
above-discussed second derivative of the energy, see Fig. 4.59. As discussed before (see
also Figs. 4.5), for |P |= 2π the second derivative is larger than expected from the polaron
approximation and this difference increases with stronger impurity-boson interaction.

Fig. 4.6 also shows another interesting feature: For |P |= 4π, the current of the impurity
seems to remain nearly constant as a function of Φ. We call this current critical because
increasing the value of the flux only generates a stronger current in the bosons. We can
see that the value of this critical current, jcrI , decreases when increasing c. This is in
agreement with previous mean-field studies [95, 182]. However, we can see that the MFA
predicts a critical current which is larger than the flow equation results.

This current can be compared to the critical velocity observed when an object moves
through a superfluid (cf. Landau critical velocity). Interestingly, the MFA predicts unphys-
ical values of the critical velocity, larger than the speed of sound, for weak interactions
(small c/g) [95]. Unfortunately, we are not able to determine the critical velocity using
the flow equation approach, as this method becomes unstable for high values of P . In the
outlook of this chapter, Sec. 4.5.2, we discuss possible future research perspectives about
the critical velocity in one dimension in more detail.

4.4.4. Role of defects

The system’s rotational symmetry results in a double degeneracy in the Yrast energy
spectrum, as shown in Fig. 4.4 at Φ = ±π. However, in a realistic setup, this symmetry
is broken due to defects, causing avoided crossings in the energy spectrum as illustrated
in Fig. 4.7. The avoided crossings lead to vanishing one-body currents in the system,
impacting transport properties of the system [136].

Note that one of the simplest experimental realizations of an AB flux in cold-atom
systems is implementing a rotating weak link [183]. This utilizes the equivalence between
the Coriolis force in a non-inertial frame and the Lorentz force acting on a charged
particle in a uniform magnetic field. The introduction of a rotating link serves as a “defect”
potential in the system. Its effects are explored in this subsection.
8These excitations are also the reason for the breakdown of the MFA for large values of the effective total
momentum, see below.

9Note that one can arrive at the same conclusions by considering the bosonic current as it is related to the
impurity current via NjB = P +Φ− jI .
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Figure 4.7.: Effect of a defect on the energy crossing.
Panel a) shows the energy for P = 0 and P = −2π as a function of the flux
with and without a defect. The solid lines show results for the unperturbed
system while the dashed lines correspond to a perturbation strength of
aN = 0.01. The other parameters of the system are N = 19, γ = 0.2 and
c/g = 1. Panel b) depicts the result of Eq. (4.28) in the thermodynamic
limit as a function of the impurity-boson interaction strength c/g for different
boson-boson interactions γ. All data are obtained with the MFA. Figure taken
from Ref. [63].

Let us consider a small perturbation to the Hamiltonian:

HW = H+W , (4.26)

where H is the original Hamiltonian from Eq. (4.1) and

W =
a

L

∑︂
i

δ(xi) . (4.27)

This additional term describes a short-range potential coupled exclusively to the Bose
gas. The current of the impurity is sensitive toW only via the impurity-boson interaction,
and therefore the avoided crossing should contain information about the impurity-boson
correlation function. This approach is similar to the concept of impurities acting as probes
for their environment (see Chap. 1): introducing an impurity (or defect) modifies the
system’s properties, allowing insights into the medium. For example, in Ref. [12], the
self-energy of the impurity was measured to determine how many fermions are needed
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to build a Fermi sea around an impurity. Here, the size of the avoided energy crossing
depends on the impurity-boson interaction. Therefore, measuring this crossing reveals
information about interactions within the system.

If the perturbation is small, a → 0, we can consider the defect to have a negligible
impact on our system, except near the degeneracy points at Φ = ±π. In the vicinity of
these points, we use degenerate state perturbation theory to calculate the energy:

HW ≃
(︃
E0 + L2 ⟨Ψ0|W |Ψ0⟩ L2 ⟨Ψ0|W |Ψ1⟩
L2 ⟨Ψ1|W |Ψ0⟩ E1 + L2 ⟨Ψ1|W |Ψ1⟩

)︃
,

where E0 ≃ Φ2/(2meff) (E1 ≃ Φ2/(2meff)) is the energy of the Yrast state with P = 0
(|P |= 2π); Ψ0 (Ψ1) is the corresponding eigenstate. We can use the MFA to get an
expression for these matrix elements

⟨Ψi|W |Ψj⟩ =
a

L
NαN−1

∫︂
ei(Pj−Pi)yf∗i (y)fj(y)dy,

whereα =
∫︁
f∗i (z)fj(z)dz, and subscripts determine the Yrast state, e.g., i = 0 corresponds

to P = 0.
We are mostly interested in the influence of the perturbation on the avoided crossing.

For Φ = ±π, f1 = f0 and the matrix element ⟨Ψi|W |Ψj⟩ is solely determined by the
density in the co-moving frame10. Because the density is sensitive to the impurity-boson
interaction, the splitting of the energy levels is dependent on the value of c. For example,
if we consider a non-interacting impurity, c = 0, the defect destroys only the rotational
invariance of the Bose gas. In this case, |f |2 is constant and ⟨Ψi|W |Ψj⟩ = 0, i.e. there is
no avoided energy level crossing.

We show in panel a) of Fig. 4.7 the energy difference E(P,Φ)− E(P = 0,Φ = 0) for a
small value of a. The key observation is, that in the presence ofW the energies of the first
and second Yrast state no longer cross.

The difference between the energies, ∆E = 2aLNI, is determined by the integral

I =

∫︂
ei2πy|f0(y)|2dy. (4.28)

We estimate it by using the density in the thermodynamic limit at Φ = 0 [72]:

|f0(y)|2≃
Lµ

g(N − 1)
tanh2

(︃
√
µκLδ

[︃
(z − L/2)

δL
+

1

2

]︃)︃
,

10Or equivalently by the impurity-boson correlation function in the laboratory frame.
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where

δ ≃ 1 +
2d

√
γκN

, d =
1

2
asinh

(︃
2ρ

c

√︃
γ

κ

)︃
, (4.29)

µ ≃ γρ2
N − 1

N

(︃
1− 2

tanh(d)− 1
√
γκN

)︃
. (4.30)

In panel b) of Fig. 4.7 we show the energy splitting for increasing values of c. Because
we have zero-range interactions, the value of I converges to a constant value for c→ ∞.
This constant value is determined from the boson-boson interaction strength, γ. It is
noteworthy that for small values of γ, the impurity can substantially modify the density
of the bosons, resulting in increased values of I.

Finally, we mention an interference effect that appears if we place a second small
perturbation into the system:

W =
a

L

∑︂
i

(δ(xi) + δ(xi + d)) . (4.31)

Analog to our previous calculation, we define

I =
(︂
1 + ei2πd

)︂∫︂
ei2πy|f0(y)|2dy . (4.32)

For d = 1/2, this matrix element becomes zero, leading to a crossing of the energy levels
again (within the lowest order of perturbation theory). We can understand this from the
effective restoration of the rotational symmetry when the two perturbations are placed
opposite to each other11.

4.5. Conclusions

4.5.1. Summary

Let us summarize this chapter: We investigated an impurity coupled to the AB flux in
a bosonic medium, starting by connecting the AB flux to the system’s quantized total
momentum via a transformation to the frame co-moving with the impurity. This enabled
us to simplify the description of the system (with a finite number of particles) using
many-body techniques developed for the Bose polaron. We argued that our setup serves
11This phenomenon also occurs with more than two perturbations, as long as they are symmetrically positioned

on the ring, e.g. three defects arranged in an equilateral triangle.
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as a testbed for studying the crossover from few-to-many-body behavior in cold-atom
polaron problems. For example, observing persistent currents in the AB ring with an
impurity could reveal valuable insights into the coherence properties of the Bose polaron.

To study the system, we applied the MFA and the flow equation approach. In particular,
we used the latter to check the validity of the MFA. We calculated the energy spectrum
and currents. The connection of our system with the Bose polaron allowed for an intuitive
and simple interpretation of our results. Furthermore, we defined the effective mass of
the polaron for a finite number of bosons in an experimentally feasible way which – to the
best of our knowledge – was not proposed before. We explored its convergence towards
the thermodynamic limit and found that a large number of bosons (N > 50) is required
for this convergence even for moderate impurity-boson interaction strength. Comparing
with the self-energy of the impurity, we found that the effective mass approaches the
thermodynamic limit more slowly. Furthermore, the convergence rate of the self-energy is
independent on the impurity-boson interaction strength while the effective mass exhibits
a strong dependence. We also tested the validity of the polaron approximation, observing
that it holds for smaller values of the AB flux as the impurity-boson interaction increases.
In the limit of c → ∞, the approximation only holds as P → 0. Nevertheless, even for
impurity-boson interactions five times larger than the boson-boson interaction, the polaron
approximation remains valid up to Φ ≈ π. Lastly, we examined the role of defects in the
system and showed that they lead to avoided energy level crossings between different
Yrast states. We argued that the size of this level splitting is sensitive to the interactions of
the system.

4.5.2. Outlook

As already discussed in the main text, for “large” values of P the AB ring features a critical
current jcrI which no longer depends on Φ. As we can relate the energy of the system
to the bosonic current via the Hellmann-Feynman theorem E = Ecr + jcrI Φ, this can be
interpreted in terms of few-body precursor of collective excitations in a Bose gas. In other
words, the AB ring provides a platform for studying a few-body analogue of the critical
velocity in a Bose-polaron problem.

The value of the critical velocity in a one-dimensional Bose gas is unknown, and further
studies are needed to clarify the mechanisms that determine it. Understanding those is
essential for current research on non-equilibrium dynamics, addressing questions such
as: “How does the impurity behave when it is injected into the Bose gas?” or “What
happens to the one-dimensional polaron if the impurity acquires a velocity larger than
the critical velocity?”, see for example Refs. [95, 98, 182, 184–187]. Future bottom-up
studies offer an exciting opportunity to identify the effects that set the critical velocity. In
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the following subsection, we explore some of the challenges associated with the critical
velocity in one-dimensional Bose gases.

Critical velocity of an impurity in a one-dimensional Bose gas

In Ref. [182] the critical velocity with which a Bose gas can flow around an object was
defined using the MFA. This setup is similar to the one discussed in this chapter, an impurity
embedded into a sea of bosons. Therefore, naively one can apply the same definition for
the critical velocity as in Ref. [182]. As explained in Sec. 4.3.1, there exist three different
solutions to the Gross-Pitaevskii equation. One solution is unphysical because it contains
an imaginary part; another solution corresponds to the polaron solution of Ref. [72] for
P → 0 (this is the one we used in the main part of the work) and the third one corresponds
to a soliton, see Ref. [95]. The critical velocity was defined in Ref. [182] as the value of
vcrit.imp = P crit.

imp /m for which the three solutions are equal.
However, this definition faces a problem for our system: For weak impurity-boson

interactions, it predicts a critical velocity larger than the speed of sound, vs =
√︁
gN/LM ,

see Ref. [95]. We illustrate this in Fig. 4.8 where we show the impurity velocity as
a function of P for different impurity-boson interactions. We can clearly see that the
MFA overestimates the critical velocity and, in particular for very weak impurity-boson
interaction [see panel a)], predicts a velocity larger than the speed of sound, which is
unphysical. Therefore, further studies using ab initiomethods are important to a) calculate
the critical velocity and b) to understand the beyond-mean-field effects that determine it.
Unfortunately, the IM-SRG method is not able to predict the correct value of the critical
current for weak impurity-boson interactions and/or large particle numbers: It starts to
diverge for too large values of P. While the method used in Ref. [171] allows for larger
values of P , in this work the authors did not consider the AB flux and therefore there exist
results only for discrete values of P . This does not allow for a precise determination of the
critical velocity. In future studies, one should check if the system studied in this chapter
can be investigated using the method of Ref. [171].

One can understand why the MFA predicts wrong results for the critical velocity by
considering the case of vanishing impurity-boson interaction, c → 0. In this case, we
approximate the system to be the well-known Lieb-Liniger gas which is exactly solvable [32,
33]. For the Lieb-Liniger gas, we include bosonic currents via two types of excitations:
type-I and type-II excitations. While the former corresponds to phononic excitations, the
latter has been shown to be connected with highly correlated states [188]. Interestingly,
in one-dimensional systems, the latter excitation is energetically more favorable [33].

We show a plot of the energy for c → 0 as a function of P in Fig. 4.8, panel d). We
consider two cases: The solid blue line is the energy of the system when all bosons are in
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Figure 4.8.: Impurity velocity for different impurity-boson interaction strengths and
energy for a non-interacting impurity (c→ 0).
Panels a), b), c) show the impurity velocity as a function of P calculated
with IM-SRG (crosses) and mean-field (solid lines). Additionally shown are
results from Ref. [171] (triangles). Panels a) and b) show polaron and the
soliton mean-field solutions while for panel c) only the polaron solution was
obtained. Different panels correspond to different impurity-boson interaction
strengths: Panel a) c/g = 0.05, b) c/g = 1, c) c/g = 5.
Panel d) depicts the energy for c→ 0, i.e., when the Bose gas can be described
by the Lieb-Liniger model. The energy is shown for the Bose-gas ground or
first excited state (see text for details). The parameters of the system are
N = 19 and γ = 0.2. The triangles show the results from Ref. [171]. Panel d)
modified from Ref. [63].
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the ground state and the impurity caries the effective total momentum:

E(P)− E(P = 0) =
P2

2
. (4.33)

The dashed orange line corresponds to the case where the Bose gas carries a momentum
of |P |= 2π, i.e. it is in an excited state, while the remaining momentum is distributed to
the impurity12:

E(P)− E(P = 0) = Ebosons +
(P − 2π/L)2

2
. (4.34)

Additionally, we also show the results from Ref. [171] for P = 2π, 4π to determine which
case corresponds to the ground state of the system.

For small values of P it is energetically more favorable to include all P in the impurity.
However, for P < 4π there is a crossing of the curves and it is favorable to have the
Bose gas excited. Note that because the type-II excitation is energetically more favorable,
this state is highly correlated and therefore out of reach for the MFA. The flow equation
approach shares the same problem as it uses a condensate as a reference state, i.e. if a
condensate is not a good approximation the flow equations diverge, see Sec. 2.3. We
see this for example for c/g = 0.05 close to the point where it is energetically more
favorable to excite the Bose-gas [e.g., P ≃ 3.8π in Fig. 4.8, panel d)]. Interestingly, for
stronger interactions, the flow equation method converges for larger values of P, e.g. for
c/g = 5 it is in good agreement with Ref. [171] even for P = 4π. This suggests that
impurity interactions modify bosonic excitations, so that a condensate approximation,
the reference state of the IM-SRG method, has a larger overlap with the true ground
state of the system. Since these excitations ultimately determine the critical velocity in
one-dimensional Bose gases, this raises the question of how impurity interactions alter
bosonic excitations and, consequently, which physical phenomena determine the critical
velocity of the one-dimensional Bose gas. We leave these questions to future studies.

12We retrieve Ebosons from Ref. [171]
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5. Artificial atoms from cold bosons in one
dimension

This chapter “explores basic physics of few-body systems to facilitate new many-body
research”, one of the goals introduced in Chap. 1. As discussed earlier, in Chaps. 1, Chap. 4,
studying systems with impurities can provide important information on the few-to-many-
body crossover. In the previous chapter, we discussed a repulsively interacting impurity
in a weakly repulsive one-dimensional Bose gas; now we extend our investigation to an
attractive impurity.

Due to the attraction, bosons can be bound to the impurity. This complicates many-body
studies of such systems, as we show in the outlook of this chapter, Subsec. 5.7.2. Therefore,
our focus is on characterizing the bound state of the impurity and the bosons to pave the
way for future few-to-many studies with attractive impurities.

First, we analyze our setup using the mean-field approximation in a finite ring. We find
two different solutions, which correspond in the low-density limit, i.e. an infinite line, to
the asymptotic cases:

1. All bosons are bound to the impurity.

2. All bosons occupy scattering states.

We derive the critical condition under which either the first or the second case occurs.
In the low-density limit, we demonstrate that this condition sets the maximum number
of bosons that bind to the impurity, forming a so-called ‘artificial atom’. Furthermore,
we validate the mean-field approximation through comparison with beyond mean-field
ab initio calculations. Despite beyond-mean-field effects destroying long-range order in
the Bose gas, we find that the mean-field prediction for the maximum number of bound
bosons still holds.

Our few-body findings are important for understanding artificial atoms in low-density
Bose gases with both static and mobile impurities, as well as to advance few-to-many
studies of polarons with attractive impurity-boson interactions. Furthermore, the existence
of different states offers an exciting opportunity to explore the transition between them
from a few-to-many perspective, see Subsec. 5.7.2.
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Parts of this chapter have been published in this or similar form in our manuscript
“Artificial atoms from cold bosons in one dimension” [62]. Note that the results presented
in Sec. 5.4 were calculated in part by Timothy Backert [189]. The data shown in Fig. 5.7
were provided by Lila Chergui [190].

5.1. Introduction

If the probability of finding parts of a system infinitely far from each other vanishes, such
a state is called “bound state”. Determining conditions under which bound states occur
is one of the basic problems in quantum mechanics. While these issues often arise in
few-body systems, their relevance extends to many-body physics as well. For example, a
low-energy model of a dilute many-body system may include bound states as effective
components. Moreover, the transition from an unbound to a bound state can offer insight
into the precursors of quantum phase transitions (see Ref. [65]).

In only a few special cases are there results that provide conditions for binding. For
example, in one (1D) and two (2D) spatial dimensions, any attractive potential supports
a two-body bound state. However, in three dimensions (3D), only sufficiently “deep”
potentials can lead to bound states [191, 192]. For systems with more than two particles,
there are no general conditions for binding known, and (until now) there is no universal
theoretical approach to determine such. Furthermore, most systems are not analytically
solvable – except for a few cases, sometimes within certain approximation. Often, one
has to employ numerical methods to solve the problem. In this chapter, we will discuss
a system for which we can find an analytical mean-field solution: bound states formed
by weakly repulsive bosons bound to an attractive short-range potential [170, 193–195].
Due to the similarity of such a system with an atom (the role of the attractive nucleus is
played by the impurity potential while the repulsive nature of the electrons is captured by
the repulsive interaction between the bosons), we refer to this system as ‘artificial atom
from bosons’.

Artificial atoms have been primarily studied in either one or three spatial dimensions.
In 3D, different studies utilizing different theoretical models show disagreement on the
number of bosons that can be bound to an impurity [170, 193–195]. A similar puzzle arises
in 1D. While studies based on the mean-field approximation (MFA) predict a finite number,
which depends on the interactions in the system (see Refs. [169, 170]), phenomenological
arguments of Ref. [194] claim that only a single boson can be bound. This argument
suggests that a dilute Bose gas can always be mapped onto a system of non-interacting
fermions. Due to the Pauli exclusion principle, this implies that only a single boson can be
bound. These different results highlight the need for further investigation on the ‘artificial
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atom’.
Since these problems involve an impurity embedded into a medium, they not only

provide insight into conditions for binding, they further contribute to the understanding
of the physics of Bose polarons (see, e.g., [140–142]), in particular onto the polaron-to-
molecule transition region. As discussed in Chap. 1 and shown in Chap. 4, understanding
such systems sheds light on the crossover from few-body to many-body physics. This
chapter extends our analysis to attractively interacting impurities, laying foundations for
future investigations into the few-to-many-body crossover. Here, we will focus on the 1D
artificial bosonic atom.

To study the artificial atom, we derive a mean-field solution in a finite ring. This
solution rigorously demonstrates that an impurity can support a many-boson bound state.
Extending the solution to an infinite line reveals three distinct scenarios based on the
number of bosons and interactions: i) Many-body bound state: Below a critical particle
number, all bosons are bound to the impurity, leading to an exponentially decaying density,
consistent with previous studies [169, 170]. ii) Critical state: At the critical particle number,
all bosons remain bound, but the density decays as 1/x2. iii) Scattering state: Beyond
the critical number, some bosons occupy scattering states, indicating a non-vanishing
probability of finding bosons far from the impurity.

We validate these mean-field results using the flow equation method, also called in-
medium similarity renormalization group method [IM-SRG] (see Sec. 2.3)1. The ab
initio calculations reveal phase coherence in the vicinity of the impurity, see Fig. 5.4. We
conclude that the MFA works well when all bosons are bound to the impurity. However,
as soon as bosons occupy the whole space, phase fluctuations increase. This indicates that
the argument of Ref. [194] (that bosons fermionize in artificial atoms in 1D) occurs only
for bosons in scattering states.

This chapter is structured as follows: In Section 5.2 we introduce the system under
consideration and provide a short intuitive description of the relevant physics. After that,
we present in Section 5.3 our mean-field solution which we expand to the zero-density
limit in Sec. 5.4. Then, we benchmark our mean-field solution against the flow equation
method in Sec. 5.5. We further extend our results to mobile impurities in Sec. 5.6. In
Section 5.7 we summarize our results and provide an outlook in which we discuss how
our results may be useful for future few-to-many-body studies. We provide additional
information in App. C.

1Furthermore, we also benchmark the flow equation method against the well-established multi-layer multi-
configuration time-dependent Hartree method for atomic mixtures (ML-MCTDHX) [56] in App. C.1.
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Figure 5.1.: Illustration of the system and sketch of the Bose gas density in the zero-
density limit.
Panel a) illustrates our system. Similar to Fig. 4.1, blue balls show the N
bosons. However, in this chapter we focus on an impurity potential and
therefore we depict it here with the red line.
Panel b) depicts a sketch of the density of the Bose gas for a finite value ofN ,
and large system size (i.e., zero-density limit) assuming that g/|c|≪ 1. In the
vicinity of the impurity (at distances ∼ 1/(Mc)) the impurity-boson attraction
leads to a high Bose-gas density. This results in a weak effective boson-
boson interaction because we have a 1D system. For larger distances from
the impurity, the Bose-gas density becomes low, which strongly increases
the effective boson-boson interaction, see text for details. Figure taken from
Ref. [62].

5.2. Formulation

5.2.1. Hamiltonian

We study a similar system as in the previous chapter: N bosons with an impurity in
one-dimension with periodic boundary condition, i.e. on a ring2. A sketch of our system
can be found in Fig. 5.1. In contrast to the previous chapter, now we focus on an attractive
impurity instead of a repulsive one.

The standard Hamiltonian which describes such systems in cold-atom physics (see,
e.g., [6, 113] and references therein) is similar to the one used in the previous chapter,
Chap. 4,

H = − 1

2m

∂2

∂y2
− 1

2M

N∑︂
i=1

∂2

∂x2i
+ c

N∑︂
i=1

δ(xi − y) + g
∑︂
i,j

δ(xi − xj) , (5.1)

2For completeness, we also present results for a box trap in C.1 and C.2. Such boundary conditions can also
be realized in experiments [196, 197].
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where we have used a system of units in which h̄ = 1. The position of the impurity (ith
boson) is described by the coordinates y (xi), m parameterizes the mass of the impurity
whileM is the boson mass. Because s-wave scattering is dominant in the ultracold regime,
we model the atom-atom interactions by delta-function potentials [91]. The parameter c
determines the impurity-boson interaction strength while g describes the boson-boson
interaction. Due to Feshbach resonances, these interactions can be tuned in an experiment
via external fields to virtually any value [27]. We consider attractive impurity-boson
interaction, c < 0, and repulsive boson-boson interaction, g > 0.

Our model is characterized by three parameters that define the length scales: 1/(Mg),
1/(M |c|) and L. One of these parameters can be used to define the system of units. In this
chapter, we use 1/(M |c|) as the unit-defining length scale because it is the only relevant
length scale for the impurity-boson bound state if N = 1 or g = 0 (see Eq. (5.2)). The
corresponding two dimensionless parameters are the relative interaction strength α = c/g
and the dimensionless length LM |c|. Note that it is sometimes useful to express the
latter as LM |c|/N or equivalently asM |c|/ρ, where ρ = N/L is the density of the Bose
gas without the impurity. This parameterization will be especially convenient when we
consider the zero-density limit (L→ ∞ and N is finite) in Sec. 5.5.

In the main part of this chapter, we will focus on a heavy impuritym/M → ∞. However,
we will show in Sec. 5.6 that our results also apply to a mobile one. Without loss of
generality, we fix the impurity position at y = 0. Note that a heavy impurity can be
realized experimentally by using atom species with different masses, e.g., 7Li (bosons)
and 174Yb (impurity) [198]. In this case, one can neglect the kinetic energy of the
impurity. Alternative realizations of an impurity potential include a localized external
field (light blade) to trap the impurity atom [140] or to directly produce a delta-function
potential3 [199].

5.2.2. Physical picture

Before we analyze the Hamiltonian, we provide some intuition into the physics of the
system, which is driven by the interplay between attractive impurity-boson and repulsive
boson-boson interactions. For a non-interacting Bose-gas (g = 0) an arbitrary number
of bosons can be bound to the impurity because the delta-function potential supports a
single bound state (see, e.g., [124]). In the opposite limit, if the bosons are impenetrable
(1/g = 0), they can be described by spin-polarized fermions (an effect called “fermion-

3Note that different experimental realizations might lead to different finite range effects whose investigation
we leave to future studies.
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ization”) [37], and only a single boson can be trapped by the impurity4. For a finite
boson-boson repulsion, this implies that the interplay between the attraction from the
impurity and the repulsion between the bosons should lead to a critical number of bosons,
Ncr, that can be bound to the impurity.

We estimate this critical number in this chapter using the MFA (Sec. 4.3.1), see also
Refs. [169, 170]) which we benchmark with the flow equation method below. However,
let us provide some physical arguments as to why the MFA leads to an accurate estimate
of the critical number Ncr (see Fig. 5.1 for an illustration of our arguments):

Consider the zero-density limit, i.e. L→ ∞ and N fixed and assume strong attractive
interaction g/|c|≪ 1. To parameterize the effective boson-boson interaction strength, we
use the natural parameterization Mg/ρ(x), where ρ(x) is the density of the Bose gas,
see, e.g., Ref. [73]. Because the impurity is attracting the bosons, the Bose-gas density
is largest in the vicinity of the impurity, and, hence the boson-boson repulsion is the
weakest. Towards the edges, the density decays which results in stronger interaction.
Note that this is a particularity of 1D systems: A lower density corresponds to stronger
interactions (in 3D this relation is reversed: High densities correspond to strong inter-
actions)5. For a non-interacting Bose-gas (g = 0), we can write the Bose-gas density as
ρ(x) = N |c|Me−2M |cx| [124]. If we assume that this density approximately also describes
the density for a weakly interacting Bose-gas g/|c|≪ 1, we can conclude that:

g

ρ(x)
≃ g

NM |c|
e2M |cx|. (5.2)

This result implies that the MFA describes the Bose gas well in the vicinity of the impurity.
We can characterize the width of the ‘mean-field’ region by 1/(M |c|). If all bosons are
bound, the probability of finding a boson far away from the impurity vanishes. Therefore,
in this case, the MFA describes the system well. However, if bosons occupy scattering states,
this probability becomes non-zero, making the bosons strongly repellent. In that case, the
MFA no longer applies. We validate this line of argument using ab initio calculations in
Sec. 5.4.

4Note that when we consider a mobile impurity, also more fermions can become bound if the mass of the
impurity is lighter than the one of the fermions [200].

5This can be explained in the following way: To determine if interactions are strong or weak one should
compare the scale of the potential energy with one given from the kinetic energy. The potential energy
scales in every dimension linearly with the density ρ, Epot ∝ ρ. The kinetic energy, however, scales like
Ekin ∝ 1/r2ipd, with ripd the inter-particle distance. In 3D, it is given by ripd ∝ 1/ρ1/3 but in 1D it is
ripd ∝ 1/ρ. Therefore, in 1D the kinetic energy scales like Ekin ∝ ρ2 but in 3D it scales like Ekin ∝ ρ2/3.
This means that in 1D a high density leads to a dominating kinetic energy, i.e. weak interactions, while in
3D potential energy dominates, i.e. strong interactions.
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5.3. Mean-field approximation for the heavy impurity problem

Because of our physical picture, see above, it is reasonable to assume that the majority of
the bosons are weakly interacting. This motivates the use of the MFA, i.e. we use a product
state ansatz for the ground state wave function: Φ =

∏︁
i
f(xi), where f(x) describes the

single-particle function that minimizes the energy of the system. The Gross-Pitaevskii
equation (GPE) for our system reads (for details see Sec. 2.5):

− 1

2M

d2f

dx2
+ g(N − 1)f(x)3 + cδ(x)f(x) = µf(x) , (5.3)

where µ describes the chemical potential6. Because we consider the system to be on a
ring, f has to fulfill periodic boundary conditions, f(−L/2) = f(L/2) (we briefly discuss
a system with a box trap in App. C.2). As discussed in Sec. 2.5, phase fluctuations can be
large for one-dimensional systems [73, 100, 202, 203] and we therefore also check the
validity of the MFA, at least for the bosons in the vicinity of the impurity, with ab initio
calculations in Sec. 5.5.

To find a solution to Eq. (5.3), we follow the prescription given in Sec. 2.5: We use the
known solutions for c = 0 and implement the impurity-boson interaction as a boundary
condition at x = 0. We find two solutions, which we present below. By expanding the
ring size L→ ∞, we can adiabatically connect the two solutions to two different physical
states: (i) all bosons are bound to the impurity7, (ii) no boson is bound, see Sec. 5.4. Both
solutions are equivalent at the threshold for binding, which we call “point of transition”
(PoT). This chapter’s focus is on systems with a finite ring size L. This allows us to
directly benchmark the mean-field solution against the ab initio calculations. Furthermore,
finite-sized systems are experimentally relevant. Finally, a finite value of L allows us to
study the case of N > Ncr. This case is relevant for understanding the transition of this
system to the thermodynamic limit which we leave to further studies.

5.3.1. Mean-field solutions

One solution to Eq. (5.3) reads

fmbb(x) =

√︄
4K(pmbb)2

MgL2δ2(N − 1)
ds
(︃
2K(pmbb)

[︃
|x|
δL

+
1

2
− 1

2δ

]︃
, pmbb

)︃
, (5.4)

6Note that, this equation was also derived and studied in a system different from ours: A heavy atom in a
strong magnetic field, see parameter regime 5 (‘region 5’) of Ref. [201].

7Note that the bound-state solution has already been discussed in Refs. [169, 170] for L → ∞.
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with the Jacobi elliptic function ds [102]. The solution fulfills periodic boundary conditions
and further it is parity symmetric fmbb(−x) = fmbb(x). The chemical potential is

µmbb =
2K(pmbb)

2(1− 2pmbb)

Mδ2L2
,

where K is the complete elliptic integral of the first kind.
The second solution to Eq. (5.3) is given by the Jacobi elliptic function ns:

fscatt(x) =

√︄
4K(pscatt)2

MgL2δ2(N − 1)
ns
(︃
2K(pscatt)

[︃
x

δL
+

1

2
− 1

2δ

]︃
, pscatt

)︃
. (5.5)

The corresponding chemical potential is

µscatt =
2K(pscatt)

2(pscatt + 1)

Mδ2L2
.

To determine the parameters pscatt ∈ [0, 1), pmbb ∈ [0, 1) and8 δ we solve two additional
equations given from the normalization condition and the boundary condition given by
the impurity-boson potential

L/2∫︂
−L/2

|f(x)|2dx = 1,
df

dx

⃓⃓⃓⃓
x→0+

=Mcf(0) .

We can rewrite these conditions in a more explicit form, e.g. for fmbb the normalization
condition reads

E
(︃
K − K

δ
, p

)︃
+ (1− p)nd

(︃
K

δ
, p

)︃
sc

(︃
K

δ
, p

)︃
− ϵ(p) +

1− p

δ
K =

MgLδ(N − 1)

4K
,

(5.6)

where K = K(p), and p = pmbb (E , ϵ, sc and nd are standard Jacobi functions [102]).
The boundary condition due to the impurity-boson interaction is written as

2K(pmbb)
sc
(︂
K(pmbb)

δ , pmbb

)︂
nc
(︂
K(pmbb)

δ , pmbb

)︂ =
M |c|δL

dc
(︂
K(pmbb)

δ , pmbb

)︂ . (5.7)

8If one allows for negative values of p, the two solutions can be transformed into one another via pmbb =
− pscatt

1−pscatt
. The parameter δ remains unchanged in this transformation.
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Note that these two equations, Eq. (5.6) and Eq. (5.7), can only be fulfilled for N ≤ Ncr,
i.e., fmbb describes only systems with particle numbers less or equal to the critical one.
The solution fscatt on the other hand describes systems with N ≥ Ncr. The value of Ncr is
presented in the next section, see Eq. (5.10).

We call the first solution many-body bound state (‘mbb’) and the second scattering
state (‘scatt’) because for a large system (L→ ∞) Ncr determines the maximum number
of bosons that can be bound to the impurity, see Ref. [169, 170] and the discussion in
the next section. One can see this, e.g., from the fact that for large system sizes the
chemical potential is negative (positive) for the first (second) solution because pmbb → 1
and pscatt → 1 for L→ ∞. This showcases that the first solution describes a many-body
bound state where the energy decreases if more particles are added while the second is
applicable if the bosons occupy scattering states and increase the energy upon adding
additional ones.

To illustrate the mean-field solutions, we show plots of them in Fig. 5.2 for different
values of N and L. The attractive impurity-boson interaction leads to bunching of the
bosons at the position of the impurity. We further show in this figure the energy per
particle. Increasing the particle number leads to a decrease in the binding energy per
particle (i.e. it increases the energy per particle) which is due to the repulsive boson-boson
interaction. This also leads to a flatter profile of the density. We also show the parameters
p and δ in the figure insets as a function of the particle number. We can see that increasing
the particle number forces to δ → 1. For the parameter p, we can see that it first drops to
0 at N = Ncr and that it then rises again to p→ 1 (note that we omitted the subscripts: p
corresponds to pmbb for N ≤ Ncr and pscatt for N ≥ Ncr). If we increase the ring size, p
also increases. We find empirically that for L → ∞, p → 1 except in the vicinity of Ncr.
For the chemical potential, as shortly mentioned above, we find that for the largest ring
size and N ≲ Ncr it becomes negative, see Fig. 5.2 c).

5.3.2. Point of Transition

As already mentioned for certain parameters in the system, both solutions are equal. In
this case pmbb = pscatt = 0 (cf. the insets in Figs. 5.2 a) and b)). We can simplify the
mean-field solution at the PoT to:

fPoT(x) =

√︄
π2

MgL2δ2(N − 1)

1

cos
(︂
π(x−L/2)

δL

)︂ (5.8)
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Figure 5.2.: Mean-field wave function, chemical potential and energy for different sys-
tem sizes.
The upper panels show the mean-field solutions for different numbers of
particles. Panel a) showcases the solutions for LM |c|= 1 while panel b) is
for LM |c|= 5. The relative interaction strength is fixed to α = −5. Therefore,
the maximal particle number in a bound state is Ncr = 11, see Eq. (5.10).
In the insets, we show the parameters p and δ as a function of the particle
number. The lower panels depict the corresponding chemical potential [c)]
and the energy per particle [d)] for different system sizes (see legend). Figure
taken from Ref. [62].

with the corresponding chemical potential

µPoT =
π2

2Mδ2L2
.

Note that the chemical potential at the PoT vanishes for large system sizes, L → ∞.
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Because at the PoT the parameter p is already determined, the normalization and impurity-
boson boundary condition lead to only one equation for the parameter δ

π tan
(︂ π
2δ

)︂
=M |c|Lδ , (5.9)

and determine the critical number of bosons to be

Ncr =
2|c|
g

+ 1 . (5.10)

Note that for a non-interacting Bose gas, g → 0, Ncr → ∞ and Ncr = 1 when g → ∞, in
agreement with our discussion in Sec. 5.2.2.

Interestingly, Eq. (5.9), which determines δ, depends only on the dimensionless param-
eter M |c|L, while the critical boson number Ncr depends only on the ratio |c|/g. This
suggests an unexpected decoupling of δ and Ncr which implies, for example, a scale
invariance of the problem at the point of transition, and leads to a number of surprising
consequences. For example, if N = Ncr the state becomes a zero pressure state: it costs
no energy to adiabatically change the radius of the ring, i.e. the energy of the system does
not depend on L:

E = −Ncrc
2M

6
. (5.11)

We will use this unique signature later to identify the PoT from the numerical calculations.
Further, Eq. (5.11) gives an upper bound on the exact value of the energy because the
mean-field calculation is a variational minimization of the energy. This rigorously shows
that it is energetically more favorable to bind many bosons to the impurity than simply
binding a single one. For the latter, the ground state energy is −Mc2/2. Already for
Ncr ≥ 3 Eq. (5.11) leads to an even lower energy.

5.4. Mean-field results in the zero-density limit

Here, we discuss the mean-field solution for an expanding ring size, L→ ∞, while keeping
the number of particles fixed, i.e. the limit of vanishing density, ρ→ 0 (for a discussion of
the many-body bound state solution in this limit see Refs. [169, 170] and for details of
our calculation App. C.3). This limit will support our characterization of the mean-field
solution in the previous section and give valuable insight into the related physics.
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5.4.1. Many-body bound state

We start by considering Eq. (5.4). For a vanishing density, ρ→ 0, pmbb → 1 (cf. Fig. 5.2)
and we can write Eq. (5.4) as

fmbb(x > 0) =

√︄
2ζ(2ζ + 1)

xmbb

1

(2ζ + 1)ex/xmbb − e−x/xmbb
, (5.12)

where

ζ =
Ncr −N

N − 1
, xmbb =

1

M |c|
Ncr − 1

Ncr −N

(︃
=

1

M |c|
ζ + 1

ζ

)︃
.

We define the quantity xmbb as the characteristic width of the state9. By definition,
the quantity ζ is zero for N > Ncr and we can interpret ζ as an ‘order’ parameter of our
system. ζ is positive for a many-body bound state and vanishes if we approach the point
of transition.

The corresponding chemical potential is

µmbb = − 1

2Mx2mbb

. (5.13)

Note that it is negative which implies that adding additional bosons will lower the total
energy – a typical signature of a many-body bound state. Further, we write the energy of
this state as

Embb = − N

Mx2mbbζ
2

(︃
ζ(ζ + 1)

2
+

1

6

)︃
. (5.14)

We can further investigate the mean-field wave function in this limit, Eq. (5.12), by
expanding it for large values |x|. This results in

fmbb(|x|≫ xmbb) ≃

√︄
2ζ

(2ζ + 1)xmbb
e
− |x|

xmbb . (5.15)

The exponential decaying tail with characteristic width of xmbb is yet another typical
characteristic of a bound state (see, e.g., Ref. [191]). Note that this equation only holds
for N < Ncr. At the critical particle number N = Ncr, ζ → 0, xmbb → ∞. We describe
this limit below.
9The characteristic width of the many-body bound state xmbb is proportional to the characteristic size of a
one-body bound state 1/M |c|. However, it can be considerably larger because xmbb depends also on N .
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5.4.2. Point of transition

At the PoT, ζ = 0, i.e. N = Ncr, we can write the mean-field solution as

fPoT(x) =

√︃
|c|M
2

1

M |cx|+1
. (5.16)

Now, there is still a finite probability to find a boson in the vicinity of the impurity potential
although we are at the threshold of binding. This shows that the many-body problem
is fundamentally different from the one-body system [see Eq. (5.2)] in which case this
probability would vanish in the limit L→ ∞.

The length xmbb diverges in this limit, so we shall define another quantity to characterize
the size of this state. Because the tail of the wave function decays like 1/x, the root-mean-
square radius cannot be taken. Instead, we define the size of the state as

xPoT =
1

|c|M
.

The physical meaning of this quantity is that it defines the spatial region which contains
half of the probability density: ∫︂ xPoT

−xPoT

f2PoT(x)dx = 1/2 .

Interestingly, this definition results in xPoT to be the size of a one-particle bound state
[Eq. (5.2)], which supports the physical picture we have given in Sec. 5.2.2.

Because the chemical potential is zero, no energy is gained if additional bosons are
added to the system, hence, we interpret these particles to occupy scattering states in a
free space. This also means that for low densities ρ→ 0 Eq. (5.11) gives the energy of the
system for all N ≥ Ncr. Note that since the state in Subsec. 5.3.2 is of zero pressure, its
energy is the same as for a system with a finite ring length, Eq. (5.11).

5.4.3. Scattering state

Lastly, we discuss the expansion of the scattering state, Eq. (5.5), which reads for ρ→ 0 as

fscatt(x) ≃

√︄
1

MgL2δ2(N − 1)
ln

(︃
16

1− pscatt

)︃
coth

(︃
ln

(︃
16

1− pscatt

)︃[︃
x

δL
+
δ − 1

2δ

]︃)︃
.

Interestingly, for this function, it is impossible to fulfill normalization and delta-potential
boundary conditions at the same time. If we want to fulfill the latter condition, we get a
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non-normalizable wave function for L→ ∞. On the other hand, if we start by normalizing
this function, we get a constant function in space and we cannot include any impurity-
boson boundary condition. To explain this contradiction, remember that the mean-field
solution assumes all particles to occupy the same orbital. As soon as N > Ncr, all particles
must therefore occupy scattering states which means that they distribute over the whole
system. For ρ→ 0 this means that they will not be affected by the impurity potential. It is
important to note that this state cannot be the physical ground state: The energy of a state
with Ncr bound bosons and the additional ones in scattering states is lower. Therefore,
we conclude that the MFA cannot be used to describe the state of the system in this case.

To improve the MFA, we would have to use a variational ansatz which for large (but
finite) L includes two parts: One which describes the many-body bound state and another
which contains the bosons occupying scattering states. The latter might be described by a
Tonks-Girardeau gas in the low-density limit. We leave an investigation of this ansatz to
future studies.

5.5. Flow equation results: approach to the zero-density limit

So far, our discussion was solely based on the MFA. Even though we have argued in
Subsec. 5.2.2 why it can be applied, we further test its validity by employing beyond-
mean-field ab initio calculations. For this purpose, we use the flow equation approach10,
see Sec. 2.3. Here, we only explain the used reference state and one-body basis. For the
latter, the solution of the one-body Hamiltonian in the co-moving frame is used, i.e. we
have sin/cos solutions which incorporate the impurity-boson interaction. We use a basis
with n ∈ {11, 13, 15, 17, 19, 21} basis states. To construct the reference state, we use an
iterative scheme. We start by using the lowest state of the one-body basis and calculate
the density of the system. The density is then used as a new reference. This procedure is
repeated until there is no change upon an additional iteration.

Our focus in this section is on the validity of the MFA for an increasing ring size. We
will compare the mean-field predictions for the energy and density of the system and,
furthermore, we will estimate off-diagonal phase fluctuations which are beyond-mean-field
corrections. These fluctuations can become important far from the impurity potential as
described in Subsec. 5.2.2, see also Fig. 5.1 b).

10We further benchmarked flow equation results against results obtained with the well-established ML-
MCTDHX (see e.g. Ref. [56, 57] in App. C.1.
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Figure 5.3.: Mean-field vs IM-SRG: Energy as a function of density.
Energy per particle for different particle numbers as a function of the in-
verse densityM |c|/ρ. Circles show results obtained with the IM-SRG while
the dashed-dotted curves represent mean-field results. Solid (horizontal)
lines correspond to the mean-field prediction for the zero-density limit, see
Eq. (5.14). In the left panel, we show data forN ≤ Ncr and in the right one for
N ≥ Ncr. We use a relative interaction strength of α = −5 so that Ncr = 11.
Note that the numerical error bars of the IM-SRG data are smaller than the
sizes of the markers. Figure modified from Ref. [62].

5.5.1. Energies

Let us start by comparing the energy per particle as a function of the inverse density
(1/ρ) for different values of N , see Fig. 5.3. We choose interaction strengths such that the
maximum number of bound bosons is Ncr = 11.

The IM-SRG results agree with the mean-field predictions. Small deviations are only
visible for N ≳ Ncr. These deviations are due to beyond-mean-field effects which are
included in the IM-SRG method. Furthermore, we can see that the energy per particle,
for particle numbers larger than the critical one, decreases. We expect that in the limit
ρ→ 0 all energies for N > Ncr to approach the energy of Ncr bound bosons, Eq. (5.11).
Unfortunately, the IM-SRG method starts to become inaccurate for densities lower than
M |c|/ρ ≥ 1, which means that we cannot follow this convergence. For the largest
considered particle numbers, the flow equations even diverge for larger values of L. We
interpret this as a sign that the reference state, a condensate is no longer an approximation
of the ground state, i.e. the system becomes more correlated. Therefore, the MFA is also
no longer a good approximation, see Sec. 2.3.
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We can further see that for N < Ncr the energy increases with decreasing density (with
increasing ring sizes). This is a typical signature of bound states for L→ ∞: The potential
energy dominates over the kinetic energy which means that increasing the ring size leads
to a lower binding energy as the probability of staying close to the impurity decreases.
This can be illustrated by considering a single boson bound to the impurity. In this case,
the binding energy is given by√︁

2M |E|
M |c|

tanh(
√︁
2|E|ML) = 1 ,

which results in E = −Mc2

2 − 2Mc2e−2M |c|L forM |c|L≫ 1.
For N = Ncr we can see that the IM-SRG results also display a nearly constant energy

as predicted by the zero-pressure mean-field state, Eq. (5.11). The weak dependence on
the density hints at small beyond-mean-field effects.

If the particle number is larger than the critical one, N > Ncr, we can see that the
energy decreases with a lower density. This is also a typical sign of Ncr bound bosons
with additional ones occupying scattering states. For a scattering state, the kinetic energy
dominates over the potential one. This means that increasing the system size lowers the
total energy. The kinetic energy of the bosons in scattering states decreases approximately
like ∼ 1/L2 which leads to an approximate behavior for L→ ∞

E ≃ −MNcrc
2

6
+

2π2N (N + 1)(2N + 1)

3ML2
, (5.17)

where N = (N −Ncr − 1)/2 for odd values of N −Ncr and

E ≃ −MNcrc
2

6
+

2π2N (N + 1)(2N + 1)

3ML2
− 2

N 2π2

ML2
, (5.18)

with N = (N −Ncr)/2 for even values of N −Ncr.
These expressions describe a sum of Ncr bound bosons while the remaining N −Ncr

occupy scattering states which are described in the low-density limit by a Tonks-Girardeau
gas. For this expression, we have assumed that there is no interaction between the
many-body bound state and the bosons occupying scattering states11.
11In Eqs (5.17) and (5.18) we assumed that the ring size is sufficiently large, i.e. 1/kF ≫ 1/|c|M with kF

the Fermi wavelength corresponding to the Tonks-Girardeau gas and 1/|c|M the characteristic width of
the many-body bound state. If we assume that kF = πρ, we derive the condition M |c|/ρ ≫ π. From this
condition, it follows that the ring sizes we used in Fig. 5.3 are too small to numerically confirm Eqs. (5.17)
and (5.18).
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To summarize our discussion of the IM-SRG data for the energy: The data does support
the existence of two different physical states. A many-body bound state with a critical
number and another state where additional bosons occupy scattering states. The IM-SRG
results also confirm the zero pressure characteristic of the critical state.

5.5.2. Densities and phase fluctuations

Next, we compare the predictions of the MFA and the IM-SRG method for the Bose-gas
density

ρ(x) = ⟨Φgr|
N∑︂
i=1

δ(x− xi)|Φgr⟩ , (5.19)

with |Φgr⟩ being the ground state. Furthermore, we estimate beyond-mean-field effects by
calculating phase fluctuations (also known as phase correlations), δΦxx′ , see Eq. (2.48).
As written in Sec. 2.5, this quantity can be interpreted as a measure of the off-diagonal
long-range order, which vanishes for a condensate.

We show results for these two observables in Fig. 5.4, for L = 0.1N/M |c| and L =
0.5N/M |c|. We see that for all considered parameters, the IM-SRG results for the density
are in good agreement with the MFA. Because of the attractive impurity-boson interaction,
the density is highest in the vicinity of the impurity potential.

At the same time, the calculation of phase fluctuations reveals that beyond-mean-field
effects are becoming more important for increasing ring lengths. We notice considerable
increasing phase fluctuations for the largest ring size and N ≥ Ncr, in particular in
the region with low densities. This observation supports the physical picture given in
Subsec. 5.2.2: low densities lead to strong interactions and a correlated state. We
characterize the local interaction strength by Mg/ρ(x). Surprisingly, even in regions
where the MFA is not expected to work well, e.g. ifMg/ρ(x) is at the order of one, the
mean-field and IM-SRG results are in good agreement for the density. Note that the MFA
is also valid for the smallest non-trivial many-body bound system, a two-boson artificial
atom, see App. C.4.

Further, phase fluctuations, and therefore beyond-mean-field corrections, are strongest
for the largest N . Our understanding is the following: If we have N = 15 bosons
but Ncr = 11, four bosons are not bound to the impurity. Therefore, these bosons are
distributed more evenly over the whole ring which means that there is a higher probability
of strong boson-boson interaction in the low-density region. This leads to large correlations.
In the opposite case of small particle numbers, e.g. N = 5, phase fluctuations can still be
small in regions where the density is low because the probability of finding two bosons
which interact far away from the impurity is exponentially suppressed.
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Figure 5.4.: Mean-field vs IM-SRG: Density and phase fluctuations.
Panel a) and c) show the Bose-gas density, where circles are results ob-
tained with the IM-SRG and solid curves correspond to mean-field results
(Eqs. (5.4), (5.8)). In panels b) and d) we show phase fluctuations whose
non-zero values correspond to beyond-mean-field correlations. The dashed
curves are plotted to guide the eye. The numerical error bars are calculated
according to the prescription given in Sec. 2.3. The data we show correspond
to many-body bound, critical and scattering states. We fix α = −5, thus,
the critical number of bosons supported by the bound state is Ncr = 11. In
panels a) and b) we show results for LM |c|= 0.1N (M |c|/ρ = 0.1) while in c)
and d) we have LM |c|= 0.5N (M |c|/ρ = 0.5). Figure taken from Ref. [62].
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Figure 5.5.: Mobile impurity: energy as function of the density.
Energy per particle for a mobile impurity (m =M ) as a function of the inverse
density 1/ρ for different values of N . Circles are data obtained with the IM-
SRG while dashed-dotted curves represent the mean-field results. Solid
(horizontal) lines correspond to the mean-field prediction for the zero-density
limit, see Eq. (5.14). The left (right) panel shows the energy for N ≤ Ncr

(N ≥ Ncr). We use a relative interaction strength of α = −5 which leads
to Ncr = 11. Note that the numerical error bars calculated within IM-SRG
according to Sec. 2.3 are smaller than the sizes of the markers. Figure
modified from Ref. [62].

5.6. Mobile impurity

So far, we have only considered a heavy impurity in this chapter, i.e. an impurity potential.
However, as described in the introduction, Chap. 1, a single mobile impurity atom in
a weakly interacting Bose gas is an experimentally relevant system [140, 204], which
motivated theoretical studies of a ‘Bose-polaron’, see, for example, Chap. 4 and also
Refs. [72, 94, 97, 162, 163, 166, 205]. In this section, we also consider a mobile impurity
and complement above studies by considering the many-body bound state that follows
from our results in the previous sections.
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5.6.1. Mean-field analysis

As shown in Sec. 2.4, we can transform the Hamiltonian of our system, Eq. (5.1), to the
co-moving frame because the total momentum of the system is conserved. This leads to

HP = − 1

2M

N∑︂
i

∂2

∂z2i
− 1

2m

(︄
N∑︂
i

∂

∂zi

)︄2

+
iP

m

N∑︂
i

∂

∂zi
+g
∑︂
i<j

δ(zi−zj)+c
N∑︂
i=1

δ(zi), (5.20)

where P is a quantum number – the total (angular) momentum of the system. We are
only interested in the ground state of the system and hence consider P = 0.

With this, we can also write the GPE in the co-moving frame (see also Sec. 2.5):

− 1

2κ

d2f

dz2
+ g(N − 1)f(z)3 + cδ(z)f(z) = µf(z) , (5.21)

where κ = mM/(m+M) is the reduced mass. A comparison with Eq. (5.3) shows that
the two equations are equivalent up to a change of the boson massM which is replaced
by κ. Therefore, all of our mean-field results from Secs. 5.3 and 5.4 can also be applied to
a mobile impurity12.

5.6.2. Flow equation results

To validate our MFA with the IM-SRG method, we focus on the equal mass case with
m =M . We show in Fig. 5.5, the ground-state energy as a function of the inverse density
1/ρ - equivalent to Fig. 5.3. We see that the MFA results agree well with the IM-SRG
calculation. We can also see that we have the same behavior when decreasing the density
(increasing the ring size): For N < Ncr the energy increases, for N = Ncr it remains
nearly constant and for N > Ncr it decreases. Interestingly, Eq. (5.10) suggests that the
critical number of bosons that can be bound to the impurity does not depend on the
mass of the impurity. Our numerical calculations also support this claim. Note that this
is exactly opposite to the behavior for fermions, see Ref. [200]: There, the mass ratio
between impurity and fermions determines the maximum number of bound fermions.

A comparison for density and phase fluctuations is similar to the one in Fig. 5.4 and we
therefore refrain from discussing it further.

12Because we kept the boson mass M in all equations, one simply needs to swap M with κ.

98



5.7. Conclusions

5.7.1. Summary

Let us summarize this chapter: We studied an attractive impurity in a one-dimensional
sea of repulsive bosons. We discussed that there exists a many-body bound state which we
call a one-dimensional artificial atom made of bosons. We started by analyzing the system
with the MFA for a finite ring length L. We found two solutions which, by expanding the
ring size to L→ ∞, could be identified with two different physical scenarios where the
bosons are either bound to the impurity or occupy scattering states. We also found an
analytic condition for the critical line that separates these states which depends only on the
ratio between the impurity-boson interaction strength and the boson-boson repulsion13.
We showed that at this critical particle number, the state is a zero-pressure state, i.e. its
energy is independent of the ring size.

Furthermore, we used the ab initio beyond-mean-field flow equation method to bench-
mark the validity of the MFA14. We found that the MFA is well justified to describe artificial
atoms in one dimension. Our numerical calculations also confirmed the existence of bound,
critical and scattering states. They also revealed quantum fluctuations beyond the MFA in
the tail of the wave functions. Our conclusion is that only bosons in the vicinity of the
impurity can be well described with the MFA, while bosons far away from the impurity can
interact strongly. We argued that their influence can be neglected if all particles are bound
to the impurity because then the probability of finding bosons in the strongly interacting
region vanishes15. The main focus of this chapter was on heavy impurities; however, we
also showed that our results can be easily extended to mobile ones.

5.7.2. Outlook

Our few-body results facilitate studies of many-body physics which use artificial atoms as
elementary building blocks. For example, tuning the interactions to induce a transition
from a many-body bound state to a scattering state could enable the emergence of different
phases, such as a Mott insulator or superfluid, in a lattice of heavy impurities immersed in
a Bose gas. To better understand such systems, further studies on the effective interaction
between two artificial atoms are needed.
13This means that the maximum number of bosons that can be bound to an impurity within our set of

approximations is independent of the mass ratio of the particles, exactly opposite to the result for
fermions [200].

14We further benchmarked this method against the well-established ML-MCTDHX method, see App. C.1.
15Note that we showed this even for the two-boson system where we considered boson-boson repulsion as

strong as the impurity-boson attraction, see App. C.4
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The transition towards the thermodynamic limit is interesting to study. This requires a
good understanding of the case N > Ncr. As explained in the main part of this chapter,
the MFA cannot properly describe a state whereNcr bosons are bound while the remaining
ones occupy scattering states. Therefore, we have to better understand the transition
between the many-body bound state and the scattering state. This can be done, e.g. in
few-to-many-body studies to understand beyond-mean-field effects. This transition might
also be interesting to study in the context of precursors of quantum phase transitions in
few-body systems, see e.g. Refs. [9, 42, 52, 65, 206–208]. Our results allow for important
insight into the bound state and will be helpful for such studies. We want to expand upon
these ideas below.

Transition between many-body bound state and scattering state

We want to start by showing that for large values of L|c| the state with N > Ncr exhibits
large phase fluctuations. These beyond-mean-field effects complicate many-body investi-
gations of our system. In Fig. 5.6, we show the Bose-gas density, Eq. (5.19), and phase
fluctuations, Eq. (2.48), for c/g = −10 (Ncr = 21) and for α = 13 (Ncr = 27) for the three
cases of all bosons bound, the critical state and additional bosons occupying scattering
states. As can be seen, for weaker impurity-boson interaction, the results of the MFA agree
with the IM-SRG calculation. Phase fluctuations, although increasing with larger particle
numbers, are small for all considered cases. However, for stronger attraction, we see that
the density from the MFA only agrees with the IM-SRG results for bound and critical
state. For the scattering state, the density – in particular at the position of the impurity –
deviates strongly from the IM-SRG calculation. Furthermore, we can also see that while
the phase fluctuations for the bound and critical states are small, for the scattering state
they are important. This shows, that the the MFA can no longer describe this state. For
even stronger impurity-boson interactions, the IM-SRG diverged for particle numbers
larger than the critical one, making a study of polaron properties in the thermodynamic
limit impossible with our methods.

To better understand why the MFA starts to deviate, we show phase fluctuations for
the scattering state with respect to the position of the impurity but also with respect to
x′ = L/2, the point farthest away from the impurity. For both cases, phase fluctuations
increase only slightly for points near the reference point. Roughly at x = L/4 they start to
increase more rapidly. The crucial insight from this chapter – that onlyN = Ncr bosons are
bound – suggests that a two-condensate ansatz might be necessary to describe this system
accurately. Specifically, there are bound bosons forming a condensate near the impurity
potential, leading to low phase fluctuations in the vicinity of the impurity. However, far
from the impurity potential, bosons primarily occupy scattering states, forming a separate
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Figure 5.6.: Breakdown of mean-field approximation.
We show density and phase fluctuations for particle numbers corresponding
to many-body bound, critical and scattering states (see legend) for stronger
interactions and larger particle numbers than considered in the main text.
In panels a) and b) we use α = 10 (Ncr = 21) while in c) and d) we show
results for α = 13 (Ncr = 27). We show the Bose-gas density in panels a)
and c), where symbols are results obtained with the IM-SRG and solid curves
correspond to mean-field results (Eqs. (5.4), (5.8)). In panels b) and d) we
show phase fluctuations. In panel b) all phase fluctuations are calculated
with respect to x′ = 0. In panel d), the curves connected with dashed lines
also correspond to x′ = 0 while the ones connected with dotted lines have
x′ = L/2 (see legend). The dashed/dotted curves are plotted to guide the
eye. The numerical error bars are calculated according to the prescription
given in 2.3.
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condensate. At the point where these two states mix, a significant increase in phase
fluctuations is observed16. We want to stress that the co-existence of two condensates
is a hypothesis and a systematic study with increasing impurity-boson interaction (i.e.
increasingNcr) is needed to understand the corresponding beyond-mean-field effects from
the bottom-up and to justify the two condensate ansatz. Nevertheless, using this ansatz
might allow for a better understanding of the few-to-many-body crossover for systems
with attractive impurities.

To better understand the transition from the many-body bound state to the scattering
state, one can study the excitation spectrum. This is motivated by a recent paper, Ref. [65],
where a very similar system was studied: A balanced Bose-gas mixture with interspecies
attraction and intraspecies repulsion. There, the focus was on the transition from a
homogeneous to a self-bound droplet state. It was studied by increasing particle numbers
from 2+ 2 up to 6+ 6 particles. The authors of Ref. [65] argued that the transition can be
interpreted in terms of a few-body spontaneous phase transition. Signs of this transition
were visible, e.g., in the excitation spectrum. Our system is strongly connected with the
system studied in Ref. [65]. The main difference is that instead of a balanced Bose-gas
mixture, there is a strong asymmetry in the particle numbers: We have only one attractive
particle of species “a” (the impurity) and N particles of species “b” (our bosons). However,
the basic mechanism behind the localization from a homogeneous state to a droplet state
is the same: Bosons are bound to the attractive species. Consequently, advancing the
study of our impurity system with the numerical methods of Ref. [65] will allow us to
use our insights into the binding properties of the impurity to shed more light on the
few-to-many-body crossover of this transition.

We show in Fig. 5.7 a plot of the excitation spectrum for a mobile impurity of massm =
M for different total momenta P . These data have been calculated by Lila Chergui using an
importance truncated CI calculation together with a running coupling constant approach
(see Chap. 3) [190]. We observe the same signature of a spontaneous phase transition as in
Ref. [65]: There is an excitation whose energy first decreases as a function of the impurity-
boson interaction strength and then increases again17. At the same time, we can see that
there also exist states, whose excitation energy becomes small for strong interactions and
remains nearly constant. This behavior is a typical sign of a spontaneous phase transition

16If we have weaker impurity-boson interactions, a smaller number of bosons is bound. Additionally, the
spatial extension of the bound state is larger, see Eq. (5.4.2), which means that there is an overall
lower probability of finding bound bosons. Therefore, the incorrect approximation that they also occupy
scattering states might not have an important influence on the validity of the MFA.

17Note that the flow equation method becomes unstable in the region where this excitation has its minimum:
For the flow equation method to work, there has to be a gap in the excitation energy spectrum, see e.g.
Refs. [68, 70].
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Figure 5.7.: Excitation spectrum for a mobile impurity.
We show the excitation energy spectrum, ∆E = Ei − E0, as a function of
the relative interaction strength α for N = 6 bosons with equal impurity and
boson massm =M . In this plot, we use the boson-boson repulsion to set
the units, the remaining length scale is LMg = 0.6π. Different symbols/line
styles correspond to different values of the total momentum (see legend).
We also denote which excitations we characterize as Higgs-Anderson and
Goldstone modes. The data are obtained using an importance truncated
configuration interaction method calculation with a plane wave basis and 60
one-body basis states. To improve convergence, a running coupling constant
approach was used, see Chap. 3. The data shown in this plot was calculated
by Lila Chergui [190].

where the former excitation can be related to a Higgs-Anderson mode while the latter
corresponds to Goldstone modes [9, 42, 52, 206–208]18. The interpretation of these

18Because we have a finite number of particles, the Higgs-Anderson mode minimum is non-zero and also the
Goldstone modes in the strongly attractive limit still showcase a non-zero energy.
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modes is that we have a spontaneous transition from a homogeneous superfluid to a
localized bosonic droplet, which breaks the translational symmetry of the system19.

This discussion shows that the system studied in this chapter provides important foun-
dations for future few-to-many-body studies of phase transitions, see Refs [9, 42, 52, 65,
206–208] for related works in the context of cold atoms. The results from this chapter
allow for a deeper physical insight into binding of bosons to the impurity. For example, one
can estimate the position of the Higgs-mode minimum via the critical binding condition.

19Note that this transition only occurs for a mobile impurity. For an impurity potential, the translational
symmetry is explicitly broken.
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6. Two-dimensional bosonic droplets in a
harmonic trap

In this thesis, the focus was so far on one-dimensional systems. Motivated by recent exper-
imental advances in few-to-many-body studies of two-dimensional (2D) fermions [42–44,
117], we now extend our study to 2D systems. Specifically, we investigate a system of
attractively interacting bosons. Hammer and Son showed that the ground state of this
system exhibits universal behavior when the interaction is of zero range: for a large parti-
cle number, N ≫ 1, it forms a droplet state whose binding energy depends solely on the
two-body ground-state energy and increases exponentially with each added particle [39].
Further, the shape of the ground state of the system is not changed when the particle
number is increased; there is only a change in its radius by a given factor.

As explained in the introduction, Chap. 1, typically one defines a “many-body system”
as a one in the thermodynamic limit (i.e., infinitely many particles), where the addition of
particles does not change the system’s properties. However, this definition does not hold
for two-dimensional attractive bosons, as increasing the particle number always decreases
the ground state energy. Instead, we define the system as many-body once the particle
number is large enough to show universal behavior. Further increasing the particle number
leaves relative properties of the system, such as the energy ratio, EN+1/EN , unchanged.
In Ref. [209] it is shown numerically that for more than twenty particles the universal
relations of Ref. [39] hold.

In this chapter, we investigate the influence of a harmonic trap on the results of Ref. [39].
More specifically, we focus on the transition between a trap-dominated state and an
interaction-dominated droplet state. Using a variational approach, we show that this
transition occurs abruptly at a critical interaction strength, whose value becomes universal
(when properly scaled with particle number) as the particle number increases. This
chapter addresses the second goal of the thesis “Connect many-body concepts with the
description of few-to-many systems” by using concepts from the classical description of
phase transitions to further characterize the transition. Therefore, we analyze the static
response of the Bose gas, which is related to the isothermal compressibility. Furthermore,
we add to the third goal, “Explore basic physics of few-body systems to facilitate new
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many-body research”, by performing ab initio calculations for a small number of particles
to examine the influence of finite-range effects on this transition. We find that such
interactions wash out the point of transition.

Our results pave the way for future few-to-many tests on the emergence of universality
in 2D. This applies not only to experimental realizations of this system but also to future
ab initio investigations of the transition starting from just a few particles. Such theoretical
studies will lead to a deeper understanding, for example, by further exploring the influence
of small finite-range effects or by examining precursors of quantum phase transitions,
similar to studies on 2D fermions [42, 52].

Parts of this chapter have been published in this or similar form in our manuscript “Two-
dimensional bosonic droplets in a harmonic trap” [210]. Note that the implementation of
the configuration-interaction method used in Subsec. 6.3.3 of this chapter was provided
by the Lund cold atom group, see, e.g., Refs. [8, 9].

6.1. Introduction

In their study on attractively interacting bosons in 2D, Hammer and Son utilized the
scale invariance of the 2D contact interaction to introduce a renormalization group (RG)
improved coupling constant [39]. This allowed them to describe the system employing a
mean-field ansatz, with which they showed that the system exhibits universal properties.
For a sufficiently large number of particles, the ground state of the system is completely
characterized by the two-body binding energy. Adding an additional boson to the system
simply leads to a change in the characteristic size of this state, RN+1/RN = 0.3417, while
the (negative) energy decreases by a factor of EN+1/EN = 8.567. These findings were
later confirmed by ab initio calculations [209, 211, 212], which showed that indeed the
predicted energy ratio is approached with increasing particle number.

So far, there has been no experimental verification of these results. Due to the exponen-
tially shrinking size, testing these predictions experimentally is challenging. Techniques
developed for few-to-many studies must be employed, such as increasing the particle
number one by one. As discussed in Chap. 1, cold atomic gases offer a promising platform
for realizing such investigations. Two-dimensional bosonic systems have already been
prepared, as demonstrated in Ref. [213], and recent few-to-many-body experiments in
2D have shown sufficient control over the particle number, though primarily in fermionic
setups [42–44, 117].

A key difference between standard cold-atom experiments and the system described in
Ref. [39] is the presence of harmonic confinement, which introduces an additional length
scale. As a result, the findings of Ref. [39] apply only when interactions are strong enough
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for the trapping potential to be negligible, i.e., when RN is considerably smaller than the
length scale set by the trap. In the opposite limit of weak interactions, properties of the
system must be primarily driven by the trapping potential. This chapter aims to provide
insight into the transition between these two regimes. Specifically, we show that this
transition occurs at a critical interaction strength in the many-body limit. The value of
this interaction strength becomes universal if properly scaled, revealing information about
universality in 2D. This might allow for future experimental few-to-many-body studies on
its emergence. Additionally, our results motivate further ab initio studies on attractively
interacting bosons in 2D trapped systems, see Sec. 6.4.

In this chapter, we lay the groundwork for such studies by presenting an intuitive
physical picture based on a simple variational mean-field ansatz. This ansatz incorporates
both the trapping potential and the RG improved coupling constant, allowing us to
accurately describe the two limits of the system: the harmonic oscillator ground state
and the universal many-body bound state. As we will discuss, the transition between
these two states can be induced by varying two experimentally tunable parameters: the
scattering length (e.g., through Feshbach resonances [27]) and the trapping frequency,
as illustrated in Fig. 6.1. We further characterize this transition using concepts of the
standard description of phase transitions by introducing an observable, the static response
of the Bose gas, which is closely related to the isothermal compressibility [214]. This
observable shows different behavior for the two states of the system and can be measured
by changing the trapping frequency or the scattering length [74, 215]. Furthermore, while
finite-range effects are typically small in cold atom systems [18, 23], previous studies have
shown that even small finite-range corrections can have a surprisingly large influence in
2D [216]. Therefore, we also explore the influence of finite-range effects on the transition
using ab initio methods for a few particles.

We also mention a relevant recent study, Ref. [217], which examined bosonic droplets
on the surface of a sphere. Due to the curvature of the sphere, another length scale is
introduced. Using Monte Carlo simulations, this work showed that for a large number
of bosons, an analog of a first-order phase transition occurs between a homogeneously
distributed ground state and a localized droplet state. The findings of Ref. [217] help
motivate certain aspects of the variational ansatz used in this chapter.

This chapter is structured as follows: In Sec. 6.2, we introduce the system and provide
key physical intuition, including a brief explanation of the ansatz from Ref. [39]. We
then discuss the methods used in this chapter. We present our main results in Sec. 6.3.
We start by discussing the outcome of the variational ansatz, and we compare it to
perturbation theory. Then we calculate the static response, demonstrating that it allows
one to distinguish between the two states of our system. Finally, we discuss the influence
of finite-range effects. In Sec. 6.4, we summarize our findings and outline future research
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perspectives. Additional details are provided in App. D.

6.2. Formulation and Methods

6.2.1. System

We study a system of attractively interacting bosons in a two-dimensional harmonic trap.
The system’s Hamiltonian is given by

H =

∫︂
dx⃗

[︃
1

2
|∇ψ(x⃗)|2+ω

2x⃗2

2
|ψ(x⃗)|2+W

]︃
, (6.1)

where ψ(x⃗) is the bosonic field annihilation operator, with N =
∫︁
d2xψ†(x⃗)ψ(x⃗) repre-

senting the number of bosons. The operator W describes the boson-boson interaction,
W = −

∫︁
dx⃗′ψ†(x⃗)ψ†(x⃗′)V (x⃗ − x⃗′)ψ(x⃗′)ψ(x⃗), where the positive function V defines the

interaction potential. In the main part of this chapter, we use a contact interaction,
V (x⃗− x⃗′) = gδ(x⃗− x⃗′) with g > 0. Zero-range interactions typically provide an accurate
description of ultracold gases [18, 23], however, in Sec. 6.3.3, we will also consider an
interaction potential with finite range. We show a sketch of the system in Fig. 6.1.

We use a system of units such that h̄ = m = 1. We choose to keep the trapping frequency
ω to highlight the additional length scale introduced by the trap. To present our results
in a dimensionless form, lengths are shown in terms of the harmonic oscillator length
lHO =

√︂
1
ω and energies in terms of ω.

In 2D, the effective range expansion exhibits a logarithmic dependence on the scattering
length [218], specifically on ln(ka), where a is the scattering length and k is the wave
number. This implies that the interaction strength g in 2D depends on the considered
length/momentum scales. This is used in Ref. [39], where standard RG arguments are
employed to introduce a coupling constant for the many-body problem that “runs” with
the many-body ground-state energy E, or more specifically, with the characteristic width
of the many-body bound state R (connected to E by E ∼ 1/R2):

g(R) = − 4π

ln(R2B2)
. (6.2)

Here, B2 = −E2 is the two-body binding energy in free space1. This equation implies
that for a given B2, the interaction strength is determined by the size of the many-body
1The two-body binding energy can be used to define the 2D scattering length as a = 2e−γ

√︁
1/B2 [218],

where γ is the Euler-Mascheroni constant.
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Figure 6.1.: Sketch of the system.
Blue balls represent N attractively interacting bosons in 2D. Solid curves
display the harmonic confinement. Dashed curves illustrate the density of the
bosons. For the trap-dominated regime, the density profile has a Gaussian
form while in the interaction-dominated regime, it follows the universal shape
found Ref. [39]. In particular, it has an exponentially decaying tail. The char-
acteristic size for the former case is determined by the harmonic oscillator
length lHO, while in the latter it is given by the scattering length a. As we show
in our sketch, the transition between the two regimes can be induced either
by tuning the scattering length, such that the interaction strength is increased,
or by decreasing the trapping frequency. Figure taken from Ref. [210].

bound state (equivalently, its energy), such that the size is maximized (and the energy
minimized). In the following discussion, we will use the dimensionless quantity B2/ω as
the relevant scale for the interaction.

Basic Physical Considerations

Let us now provide some physical intuition into the properties of the system. First, we
summarize the results of Ref. [39] where Eq. (6.1) was studied without an external
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trapping potential, i.e., with ω = 0. In this work, the RG improved coupling constant
was introduced, effectively replacing the bare coupling constant with the full multiple
scattering series. To describe the system, a mean-field ansatz, ψ(x⃗) ∼ Ψ(x⃗), where Ψ(x⃗)
is a single particle orbital, was used (for other applications of the mean-field ansatz in the
context of one-dimensional systems see Sec. 2.5 and Chaps. 4, 5):

Ψ(x⃗) =

√
N

Rfree

√
2πC

ffree(r/Rfree) (6.3)

with r ≡ |x⃗|. The constant C is chosen such that the particle number is conserved,
C =

∫︁
dρρf2free(ρ).

The characteristic width Rfree and shape ffree are found by minimizing the expectation
value of the Hamiltonian, H. The corresponding relation for the ground-state energy
reads

E(Rfree) =
A

2C

N

R2
free

− B

4πC2

g(Rfree)N
2

R2
free

, (6.4)

where A =
∫︁
dρρ[f ′free(ρ)]

2, B =
∫︁
dρρf4free(ρ). Note that the parameter Rfree depends

on N . We indicate this fact with a subscript N when needed. Minimization shows that
for a large number of particles, N ≫ 1, the ground state of the system is described by a
universal many-body bound state. This state has a shape ffree that is independent of the
number of particles, and its energy and width change with the addition of each particle,
following the ratios, EN+1/EN ≈ 8.567 and Rfree,N+1/Rfree,N ≈ 0.3417.

Now, let us include the harmonic trapping potential to provide an intuitive picture of
the relevant physics. This leads to the following ground-state energy

E(R) =
A

2C

N

R
− B

4πC2

g(R)N2

R2
+
R2

l4HO

ND

2C
(6.5)

with D =
∫︁
dρρ3f2(ρ). Note that now the parameters A, B and C are determined by the

unknown shape f . If the interactions are strong, the width of the universal many-body
bound state in free space is significantly smaller than the harmonic oscillator length,
Rfree ≪ lHO. In this regime, we can approximate R ≈ Rfree and, hence, the effect of
having the trapping potential, ω ̸= 0, is negligible. Thus, the system is well-described
by Eq. (6.4) and the ground state corresponds to the universal many-body bound state
found in Ref. [39]. In the opposite case of weak interactions, the size of the many-body
bound state in free space becomes considerably larger than the harmonic oscillator length,
Rfree ≫ lHO. In this regime, the interaction term is small and the ground state is primarily
dictated by the trap, i.e. R ≈ lHO and f ≈ fHO, the ground state of the 2D harmonic
oscillator. We sketch these two limits in Fig. 6.1.
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6.2.2. Methods

Variational Ansatz

Following our discussion above, we use the variational ansatz2

Ψ(x⃗) =
1

N
(αHOfHO(r) + αfreeffree(r/R)) (6.6)

to study the transition between the two limits of the system. fHO is the ground state of a
2D harmonic oscillator

fHO(r) =

√︃
1

lHOπ
e
− r2

2l2
HO . (6.7)

The variables αHO and αfree are variational parameters; N is a normalization coefficient.
The characteristic width of the state is given by R. The physical intuition discussed above
helps us to determine this width: if Rfree is smaller than the harmonic oscillator length,
we set R = Rfree; otherwise we use R = lHO. To calculate Rfree we minimize Eq. (6.4)
using the shape ffree for the calculation of A,B,C.

The values of αHO and αfree determine the properties of the ground state. To find these
parameters, we minimize the expectation value of H for a given interaction strength, i.e.,
for a given two-body binding energy in free space B2/ω. As we will show below, this
approach allows us to characterize the transition between the harmonic oscillator state
and the universal many-body bound state. A more detailed explanation of our variational
ansatz, including all relevant equations, is provided in App. D.1.

Configuration interaction method

Besides the variational study, we also perform ab initio calculations to study the influence of
finite range effects on the transition. For this purpose, we use the configuration interaction
(CI) method [8, 9], introduced in Sec. 2.2.

For our one-body basis, we use the eigenfunctions of the non-interacting system, i.e., the
eigenfunctions of the 2D harmonic oscillator (for simplicity, we set ω = 1 in this equation):

Φi(x⃗) =
1√
2π
eimiφFni,mi(ρ) =

1√
2π
eimiφ(−1)ni

√︄
2Γ(ni + 1)

Γ(|mi|+ni + 1)
e−ρ

2/2ρ|mi|L|mi|
ni

(ρ2).

(6.8)
2Note that we also used another ansatz where both shapes scale with R, Ψ(r⃗) ∼ αHOfHO(r/R) +
αfreeffree(r/R) which leads to similar results and the same conclusions. The main difference between
the two approaches is that the ansatz used in this chapter leads to a sharp transition, in agreement with
Ref. [217], while the other ansatz results in a smooth crossover. For more details, we refer to App. D.2.
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The index i is the index of the basis state while ni andmi are the corresponding radial and
angular quantum numbers. L|mi|

ni is the generalized Laguerre polynomial. The eigenenergy
of this state is

Emi,ni = (2ni + |mi|+1)ω . (6.9)

To limit the size of our one-body basis, we introduce a cutoff at n2D = 13ω, including all
one-body basis states with energy less than or equal to this cutoff. As we are only interested
in calculating the ground state properties of our system and because our interactions
conserve the angular momentum of the system, we restrict the many-body basis to a
total angular momentum of zero. Due to the attractive interaction, the ground state
is localized at the trap’s center, requiring many basis states to resolve it accurately. To
improve convergence, we use a larger trapping frequency for the one-body basis than for
the system: ωbasis = 4ωsystem, resulting in a higher “resolution” in the center of the trap.
This approach allows us to obtain converged results for stronger interactions than would
be possible if we used the same frequency.

As a finite-range interaction we use a Gaussian potential given by

V (x⃗) =
g

2πσ2
e−x⃗

2/2σ2
, (6.10)

g > 0, σ > 0, in Eq. (6.1). To compare the results obtained with this potential to those
using a contact interaction, we calculate B2 numerically. To this end, we expand the
two-body Schrödinger equation in free space using harmonic oscillator eigenfunctions
and then diagonalize the Hamiltonian matrix. Here, we can use a much larger number
of basis states (up to 500) since we effectively solve a one-body problem in the relative
coordinates.

We estimate the size of finite-range effects by calculating the scattering length and
the effective range of our Gaussian potential. For the scattering length, we use the
semi-analytical expression from Ref. [110]. To obtain the effective range, we use the
expression [216]:

B2 = − 1

r2eff
W

(︃
−2e−2γ r

2
eff

a2

)︃
, (6.11)

with reff the effective range. W is the product logarithm, also known as the Lambert
W function, defined as the solution of z = wew withW (z) = w. Then, by inserting the
scattering length, a, and the two-body ground-state energy in free space, B2, we extract
the effective range, reff .
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Figure 6.2.: Energy for N = 9 as a function of the binding energy.
The dots are obtained from the variational ansatz, Eq. (6.6). The results
obtained from perturbation theory, see Eqs. (6.12), (6.13), are shown by
dashed/dotted lines. Figure modified from Ref. [210].

6.3. Results

6.3.1. Minimization of variational ansatz

Let us begin by discussing the results of the minimization procedure applied to the
variational ansatz.

Comparison with perturbation theory

Fig. 6.2 shows typical energies calculated via minimization of our ansatz, Eq. (6.6),
as a function of the two-body binding energy B2/ω. For comparison, we also include
energies from perturbation theory, which is constructed for the two limiting cases discussed
earlier: B2/ω → 0 (weak boson-boson interactions) and B2/ω → ∞ (strong boson-boson
interaction).

For weak interactions we assume that the contact interaction is only a small perturbation
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to the Hamiltonian of a 2D harmonic oscillator, and we calculate the energy

E(B2/ω → 0) = Nω − g(R = lHO)

2
N2

∫︂
d2xfHO(x⃗)

4 . (6.12)

Note that this integral can be evaluated analytically, yielding E(B2/ω → 0) = Nω −
g(R=lHO)

4π N2. We used that the characteristic width of the ground state, R, is determined
by the harmonic oscillator length in this limit, i.e. R = lHO. In the opposite limit of strong
interaction, we treat the harmonic trapping potential as a perturbation, resulting in

E(B2/ω → ∞) = E(Rfree) +
ω2

2

ND

C
R2

free (6.13)

with E(Rfree) from Eq. (6.4) and C and D calculated using f = ffree.
As shown in Fig. 6.2, perturbation theory is in excellent agreement with our variational

ansatz. This allows us to study the ground-state energy in a simple manner. For example,
we use perturbation theory to estimate the critical interaction strength at which the state
of the system changes, i.e. the crossing of the energies in Fig. 6.2. To find this point,
we calculate the value of B2/ω where the energies given by Eqs. (6.12) and (6.13) are
equal. We find that this occurs when Rfree = lHO, consistent with the outcome of the
minimization calculation. Using Eq. (6.2) and g(Rfree) =

2πAC
NB (as found in Ref. [39] for

large N), we calculate the critical interaction strength to be
ln(B2/ω)

N
= −2.148 . (6.14)

The fact that ln(B2/ω)/N remains constant at the transition point indicates that this is
the appropriate measure of interaction strength in our study. As we will demonstrate, the
transition point converges to this value as N increases. This finding is consistent with
Ref. [217], where a Monte Carlo calculation showed that, as the particle number increases,
the transition between the non-interacting state and the universal many-body bound state
converges to ln(B2/Ẽ)/N = −2.148 +O(1/N), where Ẽ is the relevant energy scale in
that work.

An examination of the variationally optimized values of αHO and αfree reveals that for
all particle numbers and interaction strengths, one of these parameters is always zero.
This implies that, for any interaction strength, the system’s ground state is described either
by fHO or ffree (see also App. D.1). As a result, we observe a sharp transition between
the two states for all particle numbers. This behavior is an intentional feature of our
ansatz, inspired by the findings of Ref. [217] for bosons on a sphere. In reality, a sharp
transition can only occur for large particle numbers, N ≫ 1; for smaller particle numbers,
the ground-state energy is expected to be a smooth function of the parameters3.
3Here, we assume the absence of any symmetry that could cause a crossing of energy levels.
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Figure 6.3.: Ratio of the mean-square radius r2N+1/r
2
N as a function of the interaction

strength ln(B2/ω)/N .
Symbols are the results obtained from the minimization of the energy with
our ansatz, Eq. (6.6). The black dashed line is the universal prediction from
Ref. [39]. Figure modified from Ref. [210].

Ratio of the radii

Fig. 6.3 also shows the ratio of the mean-square radius r2N+1/r
2
N with4

r2N =
1

N

∫︂
d2xΨ2(x⃗)x⃗2 . (6.15)

This ratio is a key feature of the universal many-bound state in 2D found in Ref. [39].
For weak interactions, it corresponds to that of non-interacting bosons in a harmonic

oscillator, where r2N+1/r
2
N = 1. For strong interactions, we recover the universal ratio

predicted in Ref. [39], with r2N+1/r
2
N ≈ 0.116. Between these two limits, the ratio initially

increases slightly above one before decreasing rapidly. This behavior arises because the
transition from the trap-dominated to the interaction-dominated state occurs at larger
particle numbers for weaker interactions, as shown in the figure. Therefore, as long as
the N + 1 system is dominated by the interactions, the ratio of the mean-square radii
4Note that Ψ(x⃗) is dependent on N because of the normalization condition.
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decreases. The sharp increase from a ratio of one to a value slightly greater than one is
due to our ansatz: When the two-body binding energy becomes large enough such that
Rfree ≤ 1, the state becomes interaction-dominated, i.e. αHO = 0, αfree ̸= 0. We can then
compute the mean-square radius for Rfree = lHO

r2N = 2πl2HO

∫︂
dρρ3f2free(ρ) ≈ 1.2l2HO . (6.16)

This represents the maximum value of r2N+1/r
2
N observed in Fig. 6.3.

Most importantly, Fig. 6.3 confirms our estimate for the transition point using perturba-
tion theory, Eq. (6.14). For all considered particle numbers, the transition consistently
occurs around ln(B2/ω)/N ≈ −2.2. While there is a slight dependence on particle num-
ber, the transition point converges to the same interaction strength as N increases. This
showcases that indeed, as described in the introduction of this chapter, the transition point
contains information about universality in 2D and can therefore be used in future ab initio
studies to test its emergence from few-body physics.

However, given the logarithmic scaling with B2/ω, detecting the transition requires
large and precise values of the scattering length, a ∝ B

−1/2
2 . The harmonic trapping

confinement can mitigate this challenge: adjusting the trapping frequency offers another
way to tune the value of B2/ω. This added degree of freedom could make it easier to
observe the transition experimentally and thus study the emergence of universality in 2D.

6.3.2. Transition indicator: static response

Even with the ability to tune both the trapping frequency and the scattering length,
detecting the transition via the ratio of the mean-square radii (or energies) might be very
challenging: Due to the exponential scaling, there is only a small experimental window
to tune the values of B2 and ω; not only for one but for two experimental runs with
different particle numbers. However, as we will show below, the mean-square radius on
its own contains valuable information about the transition between the two states. In
the following, we will use this to calculate another observable, inspired by the standard
description of phase transitions, which relies solely on the mean-square radius for a single
particle number. Furthermore, this also illustrates the general fact that concepts developed
for the description of phases in the thermodynamic limit can be adapted for distinguishing
the two states of our system, even though we have a finite number of particles.

Recall that different phases exhibit significantly different properties, such as compressibil-
ity [15]. Using linear response theory, it can be shown that the isothermal compressibility
of a uniform system is closely related to the so-called static response (or polarizability) χ,

116



ln(B
2 /ω

)/N

−2.4

−2.2

−2.0

−1.8

−1.6

N3 5 7 9 11 13 15 17 19

χ
ω

3
/N

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4.: Static response per particle, Eq. (6.17), as a function of the interaction
strength ln(B2/ω)/N and particle number N .
All points are calculated with our variational ansatz, Eq. (6.6). Note that the
calculation of the static response close to the transition point requires a high
numerical precision for the evaluation of the derivative, see Eq. (6.17). Figure
taken from Ref. [210].

which describes how the density of a system responds to a static force field5 [214].
For a harmonically trapped system, χ can be directly calculated from the change in the

mean-square radius when the trapping frequency is varied (in this context, χ is also called
monopole compressibility) [74, 215]. Consider a small change in the trapping frequency,
ϵr2. Then, the static response χ is given by δ ⟨r2⟩ = ϵχ. It can be expressed as6

χ = −2N
∂ ⟨r2⟩
∂(ω2)

. (6.17)

This observable allows us to distinguish between the two phases without needing to
5This is known as the compressibility sum rule.
6In our practical calculations, we use a system of units where ω = 1. Thus, we need to convert the derivative
with respect to the trapping frequency to a derivative with respect to B2, our interaction strength. This
leads to the expression χ = N

(︂
B2

∂⟨r2⟩
∂B2

+ ⟨r2⟩
)︂
.
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compare different particle numbers at the same two-body binding energies, significantly
simplifying the detection of the transition point.

For weak interactions, our system is described by the harmonic oscillator ground state,
where the mean-square radius naturally scales with the trapping frequency. Hence, we
expect the static response to be χ = N/ω3. In the opposite limit of strong interactions, we
use the results of Ref. [39] to identify R2 ∝ ⟨r2⟩ so that ⟨r2⟩ ∝ 1

B2
. This indicates that

the trapping frequency does not influence the state, leading to χ = 0. Thus, the static
response should indeed exhibit distinctly different behaviors for the two states of our
system.

Fig. 6.4 shows the static response obtained from the minimization procedure as a
function of the interaction strength, ln(B2ω) and the particle numberN . The plot confirms
the expected behavior: for weak interactions, the static response remains constant at
χω3/N = 1 up to the transition point. Beyond this point, the static response drops to
zero (within our numerical accuracy). Furthermore, we can see that with increasing
particle number, the interaction strength required for this transition converges toward
ln(B2/ω)/N ≈ −2.15, in agreement with our perturbation theory estimate in Eq. (6.14).
We conclude, that this observable might not only facilitate the detection of the transition
between the two states but also allows for future few-to-many studies on the many-body
phenomenon of universality in 2D.

6.3.3. Influence of finite range effects

For the description of cold-atom systems, often zero-range potentials are employed [18,
23]. However, even small effective range corrections can significantly influence the
properties of 2D systems, see, e.g., Ref. [216] for a three-boson system in free space.
Therefore, it is important to investigate how finite range effects influence the transition7.
To this end, we employ a Gaussian potential of finite width, as defined in Eq.(6.10),
and perform an ab initio calculation using the CI method (see Sec. 6.2.2 and 2.2 for an
explanation of this method).

We consider Gaussian potentials with widths on the order of the harmonic oscillator
length: σ = lHO/2 and lHO. These values ensure substantial finite range effects, as we will
show below. The width of the potential also acts as a momentum space cutoff, allowing
us to perform ab initio calculations within the transition region. For strong attractive
interactions, such calculations become computationally expensive, preventing us from
exploring small effective range corrections8 or interactions strong enough for the trapping
7Note that for large finite range effects, the many-body bound state is no longer universal; see Ref. [39]
8The narrower the Gaussian potential, the smaller the finite range corrections. However, a more narrow
Gaussian potential also corresponds to a larger momentum space cutoff.
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Figure 6.5.: Finite range effects.
Left panel: Ratio of the effective range and the scattering length as a function
of B2/ω for a Gaussian potential with σ = lHO/2 and σ = lHO. Right panel:
Static response per particle, Eq. (6.17), calculated with a CI method as a
function of the interaction strength given by ln(B2/ω)/N . For the interaction
we use a Gaussian potential, Eq. (6.10). Squares show results for σ = lHO

while triangles are for σ = lHO/2. The dashed (dotted) lines are added to
guide the eye. Figure modified from Ref. [210].

confinement to become negligible9. Despite these limitations, comparing the two widths
enables us to assess the impact of finite range effects on the transition.

To estimate the size of finite range effects, we plot the ratio of the effective range to the
scattering length as a function10 of B2/ω in Fig. 6.5. This figure shows that the influence
of the effective range is significant for the chosen parameters; for all considered values
of B2/ω, the effective range cannot be neglected. Note that Eq. (6.11) only accounts for
finite range corrections up to the effective range. Given the large values of the effective
range, higher-order terms, such as the shape parameter, might also play a role. However,
this is not important for us as we are only interested in comparing the size of finite range
effects for different σ values. As shown in the figure, the smaller value of σ results in
a smaller effective range for the same B2/ω, indicating that finite range effects are less
9Weak attractive interactions also pose challenges, as we calculate the two-body binding energy numerically.
For weak interactions, this energy can become exponentially small, making accurate determination
difficult.

10The oscillator units enter the two-body problem via the width of the Gaussian potential which we define
with respect to lHO.
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significant.
Fig. 6.5 also shows the static response for N = 3, 4 particles with the two different

Gaussian potential widths as a function of ln(B2/ω)/N . We observe that the static response
decreases with increasing binding energy. In this ab initio calculation, we do not find a
sharp transition for small particle numbers as observed in the previous section. Instead,
the static response features a steeper decay for larger particle numbers. Note that this
is similar to the sharper transition found in Ref. [217] when the particle number was
increased for a zero-range potential. Comparing the two σ values reveals the effects of the
finite range: the larger σ shifts the decrease in the static response towards higher binding
energies. Specifically, compared to the critical interaction strength ln(B2/ω)/N ≈ −2.15,
a significantly stronger attraction is required for the static response to decrease.

Our results highlight the impact of finite range effects on the transition. However,
further ab initio calculations with larger particle numbers and smaller finite ranges are
needed to determine whether the critical interaction strength can be recovered. For future
experimental realizations, it will be essential to perform calculations using realistic cold
atom potentials to study the emergence of universality in 2D.

6.4. Conclusions

6.4.1. Summary

In this chapter, we studied the transition of attractively interacting bosons in a two-
dimensional harmonic oscillator, from the harmonic oscillator ground state at weak
interactions to a universal many-body bound state at strong interactions.

Using a physically motivated variational ansatz and perturbation theory, we determined
that for sufficiently large particle numbers (N ≫ 1), this transition occurs at a critical
interaction strength, ln(B2/ω)/N ≃ 2.15. By calculating the mean-square radius of the
system, we confirmed that the ratio ⟨r2N ⟩ /⟨r2N+1⟩ – one of the hallmarks of universality in
2D (see Ref. [39]) – shows an abrupt change in behavior, signaling the transition between
the two states when the interaction strength is varied. We observed that the interaction
strength at which this change occurs converges toward the critical value as the particle
number increases. Since the critical interaction strength depends only on the particle
number and the two-body binding energy, it demonstrates that attractively interacting
bosons in 2D exhibit universal behavior.

We argued that although very low values of the binding energy B2/ω are required,
the trapping confinement can help in inducing the transition as two experimentally
accessible parameters – the scattering length and the trapping frequency – can now be
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tuned. However, since detection remains challenging when considering ratios of radii
(or energies), we further connected this problem to the classical description of phase
transitions, which are typically described in the thermodynamic limit. This connection
allows one to study how many-body phenomena, such as the universality of the many-body
bound state, emerge from few-body physics. We showed that the static response, which
is related to the isothermal compressibility, takes on distinct values for the two states,
making it an indicator of the transition. As the particle number increases, the point at
which the static response signals the transition converges towards the critical interaction
strength.

We further examined the influence of finite range effects through few-body ab initio
calculations using the configuration interaction method. Our findings revealed that
significant finite-range effects shift the transition point to larger values of ln(B2/ω)/N in
comparison to the critical interaction strength, Eq. (6.14).

6.4.2. Outlook

Our results pave the way for future experimental few-to-many-body studies on the emer-
gence of universality in 2D. In particular, the ability to tune the interaction strength with
two parameters and the possibility of testing universality by measuring the static response
make such a study simpler than directly confirming the results of Ref. [39].

Even though we have discussed the effect of finite range interactions on the point of the
transition, more ab initio calculations are needed to better understand their impact on the
emergence of universality in 2D. Especially since Ref. [216] illustrates the strong influence
of finite range effects in a three-body system in free space. Such calculations should be
performed for realistic cold atom potentials, i.e. for smaller effective range corrections
than studied in this thesis. Techniques like renormalized interactions, discussed in Chap. 3,
can enhance convergence, potentially allowing for the exploration of stronger interactions
and/or narrower Gaussian potentials [53, 112].

Furthermore, we only considered N = 3, 4 particles; future few-to-many-body studies
need to explore finite range effects with more particles, similar to Refs. [209, 211, 212],
which have shown that only if N > 20 the universal predictions of Hammer and Son [39]
apply. For such large values of N , beyond simple CI methods such as the importance-
truncated CI (see, for example, Refs. [64, 65, 79] for applications in ultracold atoms) or
Monte Carlo methods, should be utilized.

In this thesis, we used the flow equation approach to study systems with larger particle
numbers than possible with the CI method (see Sec. 2.3 for an introduction into this
method and Chaps. 4, 5 for applications). We also attempted to apply this method to the
problem discussed in this chapter. However, we found that it could not adequately describe
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our system. We observed that the flow equation approach worked well only when the
interactions were weak enough such that the ground state was dominated by the trapping
potential. Once the interactions became stronger, the flow equation approach diverged,
signaling that the reference state of our system has too little overlap with the true ground
state of the system. We employed various reference states, such as an iterative scheme
as explained in Sec. 2.3. For this, we started with the ground state of the 2D harmonic
oscillator using varying basis frequencies. We also used the shape found in Ref. [39] as
reference state. However, we were unable to include the RG-improved coupling constant
in our ab initio calculation for the zero-range limit. As shown in Ref. [39], this coupling
constant is essential for making a mean-field approximation feasible in the interaction-
dominated regime and hence, our reference state, a condensate, cannot be used. A better
understanding of the RG-improved coupling constant is needed to incorporate it in ab
initio calculations, which will hopefully extend the computationally available parameter
space. Additionally, further development in the flow equation method, such as the use of
a multi-reference state (as applied in nuclear physics to describe open-shell nuclei [70,
219, 220]), may provide a better approximation of the highly correlated ground state and
extend the applicability of this method.

Another intriguing aspect of our system is highlighted in Ref. [217]: As briefly men-
tioned in the main text, the authors of this study observed that the transition between
a homogeneously distributed state (i.e. trap dominated) and a localized droplet (i.e.
interaction dominated) is smooth for few particles but becomes sharper when the particle
number is increased. They concluded that for a large number, a first-order phase transition
occurs. It would be worthwhile to conduct few-to-many-body studies to establish a more
rigorous criterion for the particle number at which this transition becomes a true phase
transition and to determine whether the order of this phase transition is independent of
the trapping potential. Furthermore, Ref. [217] and our work have focused exclusively on
the ground state of the system. However, excited states might also offer valuable insights
into the (phase) transition, similar to the findings in Refs. [42, 52], where excited states
in a finite system were interpreted as precursors to a Higgs mode. Such studies could
provide additional understanding into the emergence of universality in 2D.

From a methodical point of view, the results of this chapter (along with the divergence
of the flow equation approach without the RG-improved coupling constant) further em-
phasize the importance of using the RG-improved coupling constant from Ref. [39] as a
necessary tool for the mean-field description of attractively interacting bosons in 2D. More
broadly, it supports the use of modified non-linear equations, such as the Gross-Pitaevskii
equation, for describing 2D bosons. Note that this is closely related to earlier studies that
demonstrated the need for a density-dependent coupling constant in two-dimensional
systems with repulsive interactions (see, e.g., Refs. [221–223]).
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7. Summary and Outlook

In this thesis, we contributed to the field of few-to-many-body crossover in systems of
low-dimensional ultracold quantum gases by considering three goals.

1. We advanced numerical investigations of this crossover by improving theoretical
tools. In particular, we compared different renormalization methods for the one-
dimensional contact interaction.

2. Further, we connected many-body concepts with the description of few-to-many
systems for a repulsive impurity in a sea of one-dimensional bosons and for a system
of two-dimensional attractive bosons trapped by harmonic confinement.

3. Additionally, we explored basic physics of few-body systems that can facilitate new
many-body research. We investigated the bound state of an attractive impurity
in a one-dimensional Bose gas and we considered finite range interaction for the
aforementioned two-dimensional bosons in the few-body sector.

Below, we briefly summarize each chapter and present a short outlook into future research
topics. Note that each chapter presenting new research (Chaps. 3, 4, 5, 6), contains a
more detailed summary and outlook for the specific system.

In Chap. 2, we introduced the methods used in this thesis. We started with a brief
introduction into the description of many-body quantum systems. After that, we explained
the ab initio methods employed in this thesis: the configuration interaction (CI) method,
which we applied in Chap. 3 and Chap. 6, and the flow equation approach for bosons, used
in Chap. 4 and Chap. 5. Additionally, we demonstrated how a coordinate transformation
to a frame “co-moving” with the impurity simplifies the description of one-dimensional
systems with an impurity on a ring. Finally, we briefly reviewed the mean-field approach
for bosons, focusing specifically on its application within this thesis.

Further advancement of ab initio methods is essential for studies of few-to-many-body
physics. As discussed in the introduction, Chap. 1, the challenges faced by ab initio
studies of this transition are similar to the ones encountered in quantum chemistry and
nuclear structure calculations [54, 70, 76, 116]. Adaptation of tools from these fields
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could greatly benefit the cold atom community. For example, in nuclear physics, the flow
equation approach (also called in-medium similarity renormalization group method), uses
the Magnus expansion to accelerate numerical calculations and significantly reduce the
computational cost of calculating observables [224]. This approach could potentially be
applied to the bosonic formulation of the flow equation method as well. Furthermore, it is
worthwhile to extend this technique to fermionic ultracold gases. This could enhance our
understanding of the few-to-many experiments on two-dimensional fermions conducted
in Heidelberg [42–44]. These systems have been primarily studied using the CI method,
which restricts the number of particles to a 3 + 3 configuration [42]. However, recent
experimental progress has enabled the preparation of up to 21 + 21 fermions [225].
Another option to extend ab initio calculations to larger particle numbers, is to employ
more sophisticated versions of the CI method such as the importance truncated CI, see
Ref. [64] for its introduction in nuclear physics, Refs. [65, 79] for applications in cold
atom systems.

In Chap. 3, we discussed another improvement of ab initio calculations inspired by
nuclear structure studies: the renormalization of interactions to improve the convergence of
ab initio calculations [116]. Specifically, we compared different renormalization methods
for the one-dimensional contact interaction using spin-1/2 fermions in a harmonic trap.
We calculated the energy, the density, the expectation value of the one-body Hamiltonian,
and transition matrix elements using the CI method. Additionally, we discussed the
transformation of observables alongside the renormalization. The results of this chapter
can increase the accessible parameter space set by interactions and particle numbers
and are valuable for future ab initio studies. We found that a simple running coupling
constant approach, which uses the two-body ground state energy for renormalization,
can serve as a simple ‘go-to’ method to test renormalized interactions. However, the most
significant improvement was achieved by using an effective interaction approach based on
the full two-body spectrum. Although effective interaction approaches are more complex
to implement than a running coupling constant approach, they allow for a transformation
of operators alongside renormalization. We found that for some observables, this is crucial
to enhance convergence. However, for other observables, it had only a minor impact.

Further research is needed to determine for which classes of operators the transforma-
tion alongside the renormalization of interactions is needed. Furthermore, to the best of
our knowledge, the application of renormalized interactions has been limited to contact
interactions within the cold atom community. Future studies should explore whether this
approach is also useful for other types of interactions, such as dipole-dipole interactions.
Although our study focused on one dimension, we expect our conclusions to be applicable
in higher dimensions as well. We hope that renormalized interactions will eventually
become standard in ab initio studies in the cold atom community. In particular, incorpo-
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rating renormalized interactions with the many-body methods described in Chap. 1 could
significantly expand the parameter space available for studies of few-to-many systems.

Next, in Chap. 4, we considered a one-dimensional Bose gas with periodic boundary
conditions (i.e., on a ring) and a repulsively interacting impurity coupled to an Aharonov-
Bohm flux. We demonstrated that this finite system can be described using concepts
from the many-body framework of the Bose polaron, enabling few-to-many studies. This
connection allowed for an intuitive and straightforward interpretation of our results for the
energy spectrum and currents. We were able to define the effective mass of the polaron in
a finite-size system in an experimentally feasible way, which – to the best of our knowledge
– was not possible before. We used this to discuss the convergence of the effective mass
towards its thermodynamic limit. We found that, due to the high compressibility of the
Bose gas, a large number of bosons is required for convergence, with the effective mass
converging more slowly than the self-energy. Finally, we discussed the validity of the
polaron approximation and studied the impact of defects in the system.

In the future, this setup could be used to study the critical velocity of a one-dimensional
impurity. To the best of our knowledge, its value remains unknown for a finite number of
particles as well as in the thermodynamic limit. The mean-field approximation predicts a
critical velocity higher than the speed of sound, which is clearly unphysical. Therefore,
beyond-mean-field effects must account for collective many-body excitations that deter-
mine the critical velocity. This makes a few-to-many-body study particularly interesting,
as it may help identify these effects, which are crucial to obtain a deeper insight into the
dynamical behavior of impurities in one-dimensional systems.

In Chap. 5, we also examined a one-dimensional system with an impurity, however in
this case with the focus on an attractively interacting impurity. The attraction between
the impurity and bosons leads to a bound state, which complicates many-body studies of
the system. We characterized this state, which we called artificial atom of bosons. Using
mean-field calculations, we derived an analytical relation for the maximum number of
bosons in the bound state as a function of the interaction strengths between the impurity
and bosons, as well as among the bosons themselves. We validated these mean-field
results using ab initio calculations based on the flow equation method for bosons. We
found that beyond-mean-field effects are only significant far from the impurity. When
the bosons are in the vicinity of the impurity, as for the bound state, the results from the
mean-field approach can be applied.

The results of Chap. 5 pave the way for future many-body studies involving attractive
impurities. For example, if bosons occupy scattering states, beyond-mean-field effects
complicate the description of the system. Our insights into the binding properties may
help circumvent this issue by describing the system within an effective theory, using the
artificial atom and scattered bosons as the relevant degrees of freedom. This approach

125



could improve the understanding of attractive impurities in large systems. Additionally,
we presented preliminary results on the transition from the homogeneous state of the
system to the localized one driven by the interactions. We briefly discussed the excitation
energy spectrum, which showed a precursor to a Higgs mode, similar to previous studies
on the few-to-many-body crossover [42, 52, 65].

We extended our study to two-dimensional systems in Chap. 6. We investigated a system
of attractively interacting bosons, for which Hammer and Son demonstrated that it exhibits
universal behavior when the particle number is sufficiently large. For example, the system
forms a universal droplet state with a binding energy that increases exponentially with
the number of particles [39]. Due to the exponential increase, experimental verification of
these results needs to employ few-to-many-body techniques such as increasing the particle
number one by one. In this chapter, we studied the influence of harmonic confinement,
which is typical for experimental few-to-many-body studies [42–44, 117]. In particular,
we discussed the transition from a trap-dominated oscillator state (at weak interactions)
to an interaction-dominated droplet state, the universal bound state discussed in Ref. [39].
If scaled appropriately, this transition is independent of the particle number in the many-
body regime, showcasing the universal nature of two-dimensional attractive bosons.
However, since detecting the transition through ratios of radii or energies – the hallmarks
of universality discussed in Ref. [39] – can be challenging, we connected our finite system
to the classical description of phase transitions. We introduced the static response of
the system which is closely related to the isothermal compressibility and provides an
experimentally more accessible indicator of the transition. Lastly, even though cold atom
gases are typically well described by zero-range interaction, we tested the influence of
finite range corrections on this transition by considering N = 3, 4 particles with wide
Gaussian potentials and found that the point of transition is washed out.

The results of this chapter provide important groundwork for experimental few-to-
many-body tests of universality in two dimensions. In particular, the universal interaction
strength which can be tuned with two experimentally available parameters and the static
response of the Bose gas might allow for tests of the emergence of universality that are
simpler than those of Ref. [39]. Furthermore, our study motivates further theoretical
studies employing ab initio calculations. In particular, gaining insights of finite range effects
for realistic cold atom potentials is needed to better understand the limits of universality in
two dimensions. Therefore, other numerical methods should be employed. For example,
the techniques described in Chap. 3 might allow to increase the parameter space and go
to stronger interactions and/or smaller Gaussian potentials. Another interesting feature
is presented in Ref. [217], where a similar transition for a two-dimensional bubble trap
was studied. There, it was found that with increasing particle number, the transition
becomes more sharp and, for a large number of particles, can be called a “quantum phase
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transition”. It would be interesting to establish a more rigorous criterion for the particle
number at which this transition qualifies as a phase transition. Finally, our study and
Ref. [200], have focused exclusively on the ground state of the system. However, excited
states could also offer important insights into the (phase) transition starting from just a
few particles, as demonstrated in Refs. [42, 52], where excited states in a finite system
were interpreted as precursors of a Higgs mode.

To summarize: In this thesis, we contributed to the understanding of the few-to-many-
body crossover in low-dimensional quantum gases. Our study on renormalized interactions
expands the available parameter regime for ab initio studies which can provide a deeper
understanding of the few-to-many regime. Furthermore, we directly connected the polaron
concept with a finite system of an impurity coupled to an Aharonov-Bohm flux to enable
new few-to-many studies; e.g., we defined the effective mass a in finite system for the first
time. Additionally, we investigated an attractive impurity in a repulsive Bose gas, providing
a detailed characterization of the impurity-boson bound state to facilitate new many-body
research on systems with attractive impurities. Finally, we studied a two-dimensional
system of attractive bosons and explored the transition from a trap-dominated state to a
universal interaction-dominated one, paving the way for future studies on the emergence
of universality in two dimensions. We believe that our contribution to the exciting field
of the few-to-many-body crossover will help advance the understanding of many-body
quantum systems and inspire future studies.
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A. Renormalized interactions in one
dimension: Derivations, fitting analysis,
larger particle number, technical details
and alternative convergence plots

In this Appendix, we provide additional information on Chap. 3. We start by discussing the
convergence behavior of the bare contact interaction in a system with harmonic trapping
potential. Afterwards, we will provide a detailed discussion of our data using a fitting
analysis. Then, we showcase the relevant set of equations and explain our truncation
scheme for the two-dimensional harmonic oscillator discussed in the outlook of Chap. 3.
In Sec. A.4 we present results for larger particle numbers to show that the claims made
in the main part of this chapter also apply for these setups. Next, we explain how the
effective interactions used in the main part of the text can be implemented. Afterwards,
we show that the renormalization using the effective interaction framework corresponds
to a unitary transformation which means that we can also transform operators alongside
the renormalization. We also explain how this can be implemented using V rel

eff and V rel+cm
eff .

Then, we derive the running coupling constant in free space, i.e. Eq. (3.10). Afterwards,
we connect the momentum space cutoff in the unconfined system with our one-body basis
cutoff of the CI-calculation. Lastly, we provide additional convergence plots: All plots
shown in the main text are displayed as a function of 1/n and for the 1 + 1 system we
show double logarithmic plots.

A.1. Energy convergence for the bare contact interaction

Let us derive the expected convergence before of the energy if the bare contact interaction
is used. Therefore, we first expand Eq. (3.10), which defines the running coupling constant
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Figure A.1.: Energies of the 1 + 1 and 1 + 3 systems calculated with the bare contact
interaction, running coupling constant and the predicted energy conver-
gence of the bare contact interaction, Eq. (A.5), as a function of the cutoff
parameter n.
Panels a) and b) show the energy of the second excited state of the 1+1 sys-
tem; c) and d) present the ground state energy of 1 + 3. Panels a) and c) are
for attractive interactions with g = −2.5067 (corresponds to E1+1 = −1); b)
and d) are for repulsive interactions with g = 3 (corresponds to E1+1 = 1.6).
Markers are the results of our calculations. Curves in the panels are added
to guide the eye. Figure modified from Ref. [112].

in free space for attractive interaction, assuming large cutoffs λ

− 1

g(λ)
≃ 1

2
√︂

|Eunconf.
1+1 |

−
√
2

πλ

⇔ g ≃ g(λ) +

√
2g2

πλ
.

(A.1)

We have used that Eunconf.
1+1 = −g2/4 and that g(λ)

2

λ ≃ g2

λ for λ→ ∞. Next, we calculate
Eunconf.

1+1 (λ). Therefore, we insert our result for g from Eq. (A.1) in the Schrödinger
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equation for a finite cutoff λ:

Eunconf.
1+1 (λ)Ψλ(x) =

(︃
−1

2

∂2

∂x2
+

g√
2
δ(x)

)︃
Ψλ(x)

=

(︄
−1

2

∂2

∂x2
+

[︄
g(λ) +

√
2g2

πλ

]︄
√
2δ(x)

)︄
Ψλ(x)

= E
unconf.(λ→∞)
1+1 Ψλ(x) +

√
2g2

πλ
δ(x)Ψλ(x).

(A.2)

In the last line, we used that g(λ) leads (by construction) to the correct two-body energy.
Next, we treat the operator

√
2g2δ(x)/(πλ) as perturbation, which leads to

Eunconf.
1+1 (λ) ≃ E

unconf.(λ→∞)
1+1 +

√
2C

πλ
(A.3)

with the contact parameter C = g2 ⟨Ψ|δ(x)|Ψ⟩ [126]; Ψ is the wave function in the infinite
Hilbert space. Further, we estimated |Ψ⟩λ = |Ψ⟩λ→∞ + o(1) (o(1) meaning that we have
only small corrections to the wave function).

Now we adjust this calculation for a many-body system in a trap. To this end, we need
to use the connection between λ and n, Eq. (3.14). With this, we write the expectation
value of the energy Egδ(n) ≡ n⟨Ψ|H |Ψ⟩n in the following way:

Egδ(n) = n⟨Ψ|
N∑︂
i=1

−1

2

∂2

∂x2i
+

1

2
x2i + g

∑︂
i<j

δ(xi − xj) |Ψ⟩n

= n⟨Ψ|
N∑︂
i=1

−1

2

∂2

∂x2i
+

1

2
x2i +

(︃
g(n) +

g2

π
√
2n

)︃∑︂
i<j

δ(xi − xj) |Ψ⟩n .

(A.4)

If n is sufficiently large, we estimate |Ψ⟩n = |Ψ⟩n→∞ + o(1). As shown in the main text,
the energy from the running coupling constant approach, Eg(n)δ, converges fast, meaning
that for sufficiently large cutoffs it is safe to assume that Eg(n)δ is constant. Therefore, we
arrive at a 1/

√
n convergence for the many-body energy for large cutoffs n,

Egδ = Eg(n)δ +
1

π
√
2n
C ≃ En→∞ +

1

π
√
2n
C, (A.5)

where C = g2 ⟨Ψ|
∑︁
i<j

δ(xi − xj)|Ψ⟩ is the contact parameter [126].
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In Fig. A.1 we compare Eq. (A.5)1, and the energy calculated using a bare contact
interaction. Furthermore, we also plot the outcome of the running coupling constant
approach. Indeed, as described in the main text, the running coupling approach converges
fast so that the approximation, Eg(n)δ ≃ En→∞, in Eq. (A.5) is well justified. Furthermore,
we see good agreement between the prediction of Eq. (A.5) and the actual data of the
bare coupling constant. Interestingly, for repulsive interaction, the convergence in this
range of the values of n is somewhat faster than 1/

√
n, while for attractive interaction

it is slow (see also Tab. A.1 where the fitting analysis shows this quantitatively). This
observation is in agreement with the results of Ref. [59].

A.2. Analysis of convergence

In this appendix, we provide a detailed analysis of our data by fitting with the following
function

f(n) = c+
A

nσ
, (A.6)

where A, c and σ > 0 are fit parameters. The value of σ can be interpreted as the rate
of convergence: the larger σ, the faster the data approaches the result in an infinite
Hilbert space. The parameter c corresponds to the extrapolated expectation value of the
observable of interest. Note that the values of c can differ from one interaction to another
if the maximal value of n used to produce the data is not sufficiently large. However, this
difference can be used as an additional estimate of the accuracy of the numerical method.

The fitting function in Eq. (A.6) is partly inspired by the discussion of the above appendix,
App. A.1, where Eq. (A.5), shows the convergence behavior of the energy of many fermions
in a one-dimensional harmonic trap interacting via bare contact interaction (see also
Ref. [59]). Following above discussion, we expect for a bare contact interaction σ ≈ 0.5 for
the energy. In Ref. [50] a similar convergence rate was found for the density. Furthermore,
the authors of this study compared the convergence for the energy and the density at x = 0
between the effective interaction V rel

eff and the bare contact interaction. We extend their
study by also considering the running coupling constant and V rel+cm

eff . We further discuss
the convergence rates of the expectation value of the kinetic energy and of the harmonic
trapping potential as well as the transition matrix elements for a periodic modulation of
the interaction strength.

It is important to note that we do not know the convergence pattern for the data
computed using the renormalized interactions. It is possible, that these data do not follow
1Here, we calculate the contact parameter C using V rel+cm

eff with a transformed operator and a cutoff of
n = 31, which is sufficient for an accurate result.
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Eq. (A.6). Therefore, in all fitted data shown below, there is a systematic error that we
cannot estimate. Nevertheless, our fitting analysis helps us to quantify the convergence,
e.g., larger values of σ showcase faster convergence. To test the validity of our fits we
performed a χ2-test. It showed a test statistic smaller than 10−8 and a p-value of one for
all fits. This shows shows that Eq. (A.6) models our data adequately.

A.2.1. Energy

The results of fitting the energies from Fig. 3.3 are presented in Tab. A.1. For the 1 + 1
system with attractive interactions, the parameter σ is approximately 0.5 for the bare
contact interaction, in agreement with our expectation. However, for repulsive interactions,
the value of σ is higher, which indicates that the number of one-body basis states is not
large enough to effectively suppress higher-order terms, such as ∼ 1/n, in Eq.(A.5). For
1 + 1 particles, all renormalized interactions lead to values of σ significantly larger than
those for the bare contact interaction. This suggests that the data not only approach the
infinite limit more closely, as discussed in Sec. 3.4, but they also converge more rapidly.
Additionally, the extrapolated values for c in infinite Hilbert space are somewhat closer to
the exact values for renormalized interactions compared to a bare contact potential. There
are only minor differences observed between the running coupling constant approach
and V rel

eff . Since V rel+cm
eff is constant by construction, these data points were not included

in the fit.
Let us now examine the convergence of the energy for the 1+ 3 system calculated using

the bare contact interaction, gδ. For attractive interactions, we find that σ ≈ 0.78 while
for the repulsive 1 + 3 system, σ is approximately 1, again highlighting the significance
of higher-order terms in Eq. (A.5). For the energies of the 1 + 3 system calculated using
the effective interaction in relative coordinates, V rel

eff , and the running coupling constant
approach, g(n)δ, we find that σ is less than 0.5 for attractive interactions. It is important
to note that the non-monotonic behavior observed in Fig. 3.3 for V rel

eff cannot be accurately
captured by Eq. (A.6). Therefore, we only fit the data for values of n in the range of 21 to
31. For a fair comparison with the other interactions, we also used this restricted fitting
range. Nevertheless, the resulting values of c agree well with those obtained for V rel+cm

eff ,
which produces the largest value of σ and the most stable fit. For repulsive interactions, the
data based on the running coupling constant and V rel

eff show faster convergence compared
to the bare contact interaction. For V rel+cm

eff , the value of σ has a high uncertainty because
the energy results are nearly converged, leading to minimal variation in the fitted data.
This can also be seen by the small values for A ≈ 0.
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c A σ

E1+1, g = −2.5067 (corresponds to E1+1 = −1)
gδ 0.9954± 2 · 10−4 1.7566± 4 · 10−4 0.4877± 3 · 10−4

g(n)δ 1.00151± 2 · 10−5 1.836± 0.002 1.1802± 5 · 10−4

V rel
eff 0.9984± 2 · 10−4 2.14± 0.01 1.063± 0.003

V rel+cm
eff Constant by construction. Exact result: c = 1.00000

E1+1, g = 3 (corresponds to E1+1 = 1.6)
gδ 2.6124± 5 · 10−4 0.511± 0.008 0.86± 0.01

g(n)δ 2.6004± 3 · 10−4 0.226± 0.005 1.41± 0.01

V rel
eff 2.6006± 4 · 10−4 0.2636± 5 · 10−4 1.319± 0.009

V rel+cm
eff Constant by construction. Exact result: c = 2.6000

E1+3, g = −2.5067 (corresponds to E1+1 = −1)
gδ ∗ 2.119± 0.003 1.715± 0.003 0.390± 0.003

g(n)δ ∗ 2.155± 0.009 0.122± 0.004 0.25± 0.04

V rel
eff

∗ 2.183± 0.007 0.74± 0.01 0.783± 0.009

V rel+cm
eff

∗ 2.19341± 2 · 10−5 −17.9± 0.1 2.76± 0.02

E1+3, g = 3 (corresponds to E1+1 = 1.6)
gδ 6.481± 0.002 2.02± 0.05 0.96± 0.01

g(n)δ 6.4331± 1 · 10−4 1.18± 0.05 1.71± 0.02

V rel
eff 6.4338± 1 · 10−4 0.93± 0.02 1.5± 0.1

V rel+cm
eff 6.4313± 5 · 10−4 0.02± 0.02 1.0± 0.4

Table A.1.: Fits of the energies from Fig. 3.3 (the second excited state for 1 + 1 and the
ground state for 1 + 3) with the function f(n) = c + A

nσ . The values from
n = 11 to n = 31 were used for all fits except for the ones marked with ∗, there
n = 21− 31 was used. The uncertainties given are the uncertainties from the
fitting procedure.
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c A σ

ρ(0)1+1, g = −2.5067 (corresponds to E1+1 = −1)
gδ 1.4276± 3 · 10−4 −0.4137± 7 · 10−4 0.887± 0.001

g(n)δ 1.4338± 4 · 10−4 −0.83± 0.05 1.31± 0.03

V rel
eff 1.43441± 6 · 10−5 −0.72± 0.05 1.215± 0.003

V rel+cm
eff 1.43607± 2 · 10−5 −3.1± 0.1 2.47± 0.02

ρ(0)1+3, g = −2.5067 (corresponds to E1+1 = −1)
gδ 1.6001± 3 · 10−4 −0.297± 0.005 0.85± 0.01

g(n)δ 1.6069± 5 · 10−4 −0.31± 0.03 1.10± 0.05

V rel
eff 1.6076± 2 · 10−4 −0.295± 0.006 1.02± 0.01
V rel+cm
eff 1.6071± 4 · 10−4 −0.04± 0.08 2± 1

Table A.2.: Fits of the density at the origin from Fig. 3.4 with the function f(n) = c+ A
nσ .

The values from n = 11 to n = 31 were used. The uncertainties given are the
uncertainties from the fitting procedure.

A.2.2. Density

As discussed in the main text, the behavior of the energy as a function of n does not
necessarily indicate the convergence properties of other observables. Therefore, in this
subsection, we extend our analysis of convergence patterns by examining the density at
z = 0, as shown in Table A.2, see also Fig. 3.4. The conclusions we can draw are similar to
the ones for the energy: Renormalized interactions show larger values of σ, which shows
that not only are results obtained using them closer to the n→ ∞ limit but that they also
converge more quickly. The outcomes based on V rel

eff and the running coupling approach,
g(n)δ, are similar. The interaction V rel+cm

eff performs the best, i.e. it has the largest value
of σ. Moreover, the data are already nearly constant (i.e. converged), as shown by the
fact that A ≈ 0 within the error margins.

A.2.3. One-body Hamiltonian

Kinetic energy. In Table A.3 we show the results of the fitting procedure for the kinetic
energy, see also Fig. 3.5. For the attractive 1 + 1 system, the bare contact interaction
has the slowest convergence rate, characterized by the smallest value of σ. If both, the
operator and the interaction, are transformed, the convergence rate is improved: with
V rel
eff , the convergence rate nearly doubles, while for V rel+cm

eff , the calculated data remain
constant – due to the construction of the interaction matrix and the induced two-body
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c A σ

⟨T ⟩, N↑ = 1, N↓ = 1, g = −2.5067 (corresponds to E1+1 = −1)
gδ 2.31± 0.02 −2.10± 0.01 0.245± 0.004

g(n)δ 1.966± 0.002 −1.945± 0.003 0.484± 0.002

V rel
eff obs trans. 1.9527± 7 · 10−4 −1.07± 0.01 0.879± 0.007

V rel+cm
eff obs trans. Constant by construction. Exact result: c = 1.9442

V rel
eff obs non-trans. 1.975± 0.003 −1.964± 0.004 0.479± 0.003

V rel+cm
eff obs non-trans. 1.884± 0.005 −2.16± 0.02 0.599± 0.007

⟨T ⟩, N↑ = 1, N↓ = 1, g = 3 (corresponds to E1+1 = 1.6)
gδ 0.5919± 2 · 10−4 −0.261± 0.006 1.00± 0.01

g(n)δ 0.5883± 4 · 10−4 −0.323± 0.004 0.726± 0.007

V rel
eff obs trans. 0.59698± 2 · 10−5 −0.150± 0.006 1.56± 0.02

V rel+cm
eff obs trans. Constant by construction. Exact result: c = 0.59731

V rel
eff obs non-trans. 0.5887± 4 · 10−4 −0.325± 0.003 0.716± 0.007

V rel+cm
eff obs non-trans. 0.5834± 7 · 10−4 −0.43± 0.01 0.86± 0.01

⟨T ⟩, N↑ = 1, N↓ = 3, g = −2.5067 (corresponds to E1+1 = −1)
gδ Data could not be fitted by Eq. (A.6).
g(n)δ Data could not be fitted by Eq. (A.6).
V rel
eff obs trans. Data could not be fitted by Eq. (A.6).
V rel+cm
eff obs trans. 4.0187± 4 · 10−4 56± 6 2.71± 0.04

V rel
eff obs non-trans. Data could not be fitted by Eq. (A.6).
V rel+cm
eff obs non-trans. Data could not be fitted by Eq. (A.6).

⟨T ⟩, N↑ = 1, N↓ = 3, g = 3 (corresponds to E1+1 = 1.6)
gδ ∗ 2.539± 0.001 2.9± 0.1 1.22± 0.02

g(n)δ ∗ 2.531± 0.001 −1.77± 0.05 0.93± 0.01

V rel
eff obs trans. ∗ 2.5723± 1 · 10−4 −3.4± 0.2 1.92± 0.02

V rel+cm
eff obs trans. ∗ 2.575092± 9 · 10−6 −60± 20 3.9± 0.1

V rel
eff obs non-trans. ∗ 2.532± 0.002 −1.75± 0.05 0.90± 0.01

V rel+cm
eff obs non-trans. ∗ 2.525± 0.001 −2.12± 0.06 0.99± 0.01

Table A.3.: Fits of the kinetic energy from Fig. 3.5 with the function f(n) = c+ A
nσ . The

values from n = 11 to n = 31 were used for all fits except the ones marked
with ∗. There values from n = 17 to n = 31 were fitted. The uncertainties
given are the uncertainties from the fitting procedure.
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elements, see also Eq.(3.19). In the case of the repulsive 1 + 1 system, the benefits of
transforming the operator are even more visible: Without a transformation of the operator
the renormalized interactions perform worse than the bare contact interaction, gδ(x), i.e.
they have notably smaller values of σ.

For the attractive 1 + 3 system, our fitting procedure has significant systematic un-
certainties, which makes it difficult to fit all the data except when using V rel+cm

eff with
a transformed kinetic energy operator. In this case, the large value of σ indicates that
the data are nearly converged even for relatively small values of n. For the repulsive
1 + 3 system, the fitting procedure has similar results as for the 1 + 1 case discussed
earlier: Without transformation of the operator, renormalized interactions do not offer
any advantage over the bare contact interaction. However, when both the operator and
the potential are transformed, renormalized interactions show a faster convergence than
the bare contact interaction.
Harmonic trap.
Next, we discuss the second part of the one-body Hamiltonian: the harmonic trapping

confinement2. For a comparison plot of the data see Fig. 3.6 in the main text – the
results of our fitting analysis are summarized in Table A.4. As mentioned in the main text,
the trapping confinement is less sensitive to the transformation of operators compared
to the kinetic energy. For the 1 + 1 system, we observe that the convergence rates for
both attractive and repulsive interactions are similar, with the renormalized interactions
providing a slight improvement in performance.

Even if the operator of the harmonic trap is not transformed, using the interaction
V rel+cm
eff results in fast convergence. As in the cases considered above, V rel+cm

eff clearly
outperforms other interactions. Interestingly, the running coupling constant shows the
weakest performance. Specifically for the 1 + 3 system with attractive interactions, it fails
to produce data that can be fit with Eq. (A.6). Additionally, the convergence of the data
calculated with V rel

eff is slow (σ = 0.24± 0.08), comparable to the rate of the bare contact
interaction, which makes this interaction less ideal to calculate this observable. For the
repulsive 1 + 3 system, all potentials can be used in principle, as their convergence rates
are comparable. However, V rel+cm

eff still provides the most accurate result.

A.2.4. Transition matrix elements

As a last observable, we discuss the transition matrix elements shown in Fig. 3.7. The
results from the fitting analysis are shown in Table A.5. Even for the 1 + 1 system, it is
2Note that in general the confinement is not an observable quantity. However, in the case of a harmonic
oscillator, the expectation value of the trapping confinement corresponds to the mean-square radius,
which is a standard observable in cold-atom systems.
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c A σ

⟨W ⟩, N↑ = 1, N↓ = 1, g = −2.5067 (corresponds to E1+1 = −1)
gδ 0.31782± 9 · 10−5 0.219± 0.002 0.863± 0.004

g(n)δ 0.3153± 2 · 10−4 0.480± 0.003 1.295± 0.003

V rel
eff obs trans. 0.31474± 2 · 10−5 0.480± 0.001 1.191± 0.003

V rel+cm
eff obs trans. Constant by construction. Exact result: c = 0.31472

V rel
eff obs non-trans. 0.31515± 1 · 10−5 0.459± 0.003 1.233± 0.001

V rel+cm
eff obs non-trans. 0.31492± 2 · 10−5 0.377± 0.007 1.672± 0.009

⟨W ⟩, N↑ = 1, N↓ = 1, g = 3 (corresponds to E1+1 = 1.6)
gδ 0.7399± 3 · 10−4 0.302± 0.006 0.89± 0.01

g(n)δ 0.73265± 1 · 10−5 0.168± 0.005 1.66± 0.01

V rel
eff obs trans. 0.73277± 2 · 10−5 0.153± 0.004 1.41± 0.01

V rel+cm
eff obs trans. Constant by construction. Exact result: c = 0.732404

V rel
eff obs non-trans. 0.73278± 2 · 10−5 0.143± 0.004 1.42± 0.01

V rel+cm
eff obs non-trans. 0.732442± 5 · 10−6 0.088± 0.005 1.93± 0.03

⟨W ⟩, N↑ = 1, N↓ = 3, g = −2.5067 (corresponds to E1+1 = −1)
gδ ∗ 1.99± 0.02 0.26± 0.01 0.24± 0.04

g(n)δ Data could not be fitted by Eq. (A.6).
V rel
eff obs trans. ∗ 2.01± 0.03 0.17± 0.01 0.24± 0.08

V rel+cm
eff obs trans. ∗ 2.070624± 7 · 10−6 −3000± 800 5.13± 0.09

V rel
eff obs non-trans. ∗ 1.9± 0.1 0.2± 0.1 0.12± 0.09

V rel+cm
eff obs non-trans. ∗ 2.07192± 3 · 10−5 8 · 105 ± 2 · 105 6.9± 0.3

⟨W ⟩, N↑ = 1, N↓ = 3, g = 3 (corresponds to E1+1 = 1.6)
gδ ∗ 3.0307± 8 · 10−4 2.16± 0.09 1.18± 0.02

g(n)δ ∗ 3.00419± 4 · 10−5 3.09± 0.07 1.918± 0.009

V rel
eff obs trans. ∗ 3.00227± 1 · 10−5 2.21± 0.08 1.77± 0.02

V rel+cm
eff obs trans. ∗ 3.00227± 1 · 10−5 1.6± 0.4 2.66± 0.09

V rel
eff obs non-trans. ∗ 3.00460± 8 · 10−5 2.21± 0.09 1.78± 0.02

V rel+cm
eff obs non-trans. ∗ 3.00241± 2 · 10−5 2.7± 0.3 2.46± 0.04

Table A.4.: Fits of the harmonic trapping potential from Fig. 3.6 with the function f(n) =
c + A

nσ . The values from n = 11 to n = 31 were used for all fits except the
ones marked with ∗. There values from n = 17 to n = 31 were fitted. The
uncertainties given are the uncertainties from the fitting procedure.
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c A σ

M1+1
0→f , g = −2.5067 (corresponds to E1+1 = −1)

gδ 0.4367± 5 · 10−4 −0.3490± 1 · 10−4 0.377± 0.002

g(n)δ 0.4283± 5 · 10−4 −0.4348± 6 · 10−4 0.449± 0.002

V rel
eff obs trans. 0.4202± 2 · 10−4 −0.1642± 8 · 10−4 0.983± 0.003

V rel+cm
eff obs trans. Constant by construction. Exact result: c = 0.4199

g(n)δ obs non-trans. 0.4181± 5 · 10−4 −0.279± 0.001 0.544± 0.005

V rel
eff obs non-trans. 0.4271± 4 · 10−4 −0.42149± 4 · 10−4 0.448± 0.001

V rel+cm
eff obs non-trans. 0.411± 0.001 −0.485± 0.003 0.5421± 0.005

M1+1
0→f , g = 3 (corresponds to E1+1 = 1.6)

gδ 0.0982± 1 · 10−4 0.137± 0.002 0.785± 0.007

g(n)δ 0.101± 0.002 0.255± 0.002 0.744± 0.006

V rel
eff obs trans. 0.094920± 6 · 10−6 0.0209± 4 · 10−4 1.19± 0.01

V rel+cm
eff obs trans. Constant by construction. Exact result: 0.094829
g(n)δ obs non-trans. 0.0977± 1 · 10−4 0.1034± 9 · 10−4 0.695± 0.006

V rel
eff obs non-trans. 0.1014± 3 · 10−4 0.263± 0.003 0.754± 0.006

V rel+cm
eff obs non-trans. 0.1046± 4 · 10−4 0.355± 0.009 0.89± 0.01

M1+3
0→f , g = −2.5067 (corresponds to E1+1 = −1)

gδ Data could not be fitted by Eq. (A.6).
g(n)δ Data could not be fitted by Eq. (A.6).
V rel
eff obs trans. Data could not be fitted by Eq. (A.6).
V rel+cm
eff obs trans. 0.1518± 3 · 10−4 47± 7 2.92± 0.07

g(n)δ obs non-trans. Data could not be fitted by Eq. (A.6).
V rel
eff obs non-trans. Data could not be fitted by Eq. (A.6).
V rel+cm
eff obs non-trans. Data could not be fitted by Eq. (A.6).
M1+3

0→f , g = 3 (corresponds to E1+1 = 1.6)
gδ 0.1256± 2 · 10−4 1.22± 0.03 1.34± 0.01

g(n)δ 0.1265± 6 · 10−4 0.77± 0.03 1.08± 0.02

V rel
eff obs trans. 0.1124± 3 · 10−4 0.30± 0.07 1.4± 0.1

V rel+cm
eff obs trans. 0.11239± 7 · 10−5 0.2± 0.2 2.1± 0.4

g(n)δ obs non-trans. 0.1198± 5 · 10−4 0.50± 0.03 1.16± 0.03

V rel
eff obs non-trans. 0.2624± 6 · 10−4 0.77± 0.03 1.06± 0.02

V rel+cm
eff obs non-trans. 0.126± 0.001 0.95± 0.05 1.11± 0.03

Table A.5.: Fits of the transition matrix elements from Fig. 3.7 with Eq. (A.6) for n = 11
to n = 31. Uncertainties are the ones from fitting.
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advantageous to transform the operator along with the interaction. For V rel+cm
eff , the result

is exact by construction when the operator is transformed with the interaction. For V rel
eff ,

the data converges significantly faster (indicated by a larger σ) compared to the bare
contact interaction. In the case of repulsive interactions, we observe that the value of A is
small, suggesting that the expectation value of the operator for n → ∞ can be reliably
estimated using data for relatively small values of n.

For the repulsive 1 + 3 system, the importance of transforming the operator becomes
even more clear. The effective interactions with a transformed operator lead to the best
performance: Using V rel+cm

eff results in the highest convergence rate and a small value of
A, indicating that the data are nearly converged for the values of n used. Transforming
the operator along the renormalization for V rel

eff slightly enhances the convergence rate
and reduces the value of A. For attractive interactions and 1 + 3 particles, the fitting
procedure could not be used in all cases except when using V rel+cm

eff with a transformed
operator. This is likely because the convergence rate is so slow that the fitting function
introduces a significant systematic error in these cases (see also the discussion in the main
text). However, with V rel+cm

eff , the convergence rate is fast (σ = 2.92± 0.07), enabling us
to achieve accurate results.

A.3. Two-dimensional harmonic oscillator

In this appendix, we start by introducing the few-fermion problem in a two-dimensional
harmonic oscillator. Next, we explain our truncation scheme and the subsequent renor-
malization employed in our numerical calculations. Finally, we show how the interaction
matrix for the effective interaction approach, V rel

eff , is constructed.
The Hamiltonian of the system reads

H =

N∑︂
i=1

(︃
−1

2
∇i
⃗ 2

+
1

2
x⃗2i

)︃
+ g

∑︂
i<j

δ(xi⃗ − xj⃗). (A.7)

As in the main text, we consider a system of N = N↑ + N↓ fermions. The interaction
cannot flip the polarization of the spins and due to the Pauli exclusion principle only
fermions of different polarization can interact.

For the one-body basis functions, we solve the one-body part of the Hamiltonian, i.e.
we use the eigenfunctions of the two-dimensional harmonic oscillator [226, 227]

Φi(x⃗) =
1√
2π
eimiφFni,mi(ρ) =

1√
2π
eimiφ(−1)ni

√︄
2Γ(ni + 1)

Γ(|mi|+ni + 1)
e−ρ

2/2ρ|mi|L|mi|
ni

(ρ2),

(A.8)
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where i is the index of the basis state with mi the angular component of this index and
ni the radial one. We use polar coordinates with ρ and φ. L is the generalized Laguerre
polynomial. The eigenenergy of this state is

Emi,ni = 2ni + |mi|+1 . (A.9)

In the CI calculation we build the Hamiltonian matrix using the eigenfunctions as one-body
basis states up to a cutoff n2D in the one-body energy. For details on the CI-method we
refer to Sec. 2.2.

In two dimensions, the contact interaction diverges (see Ref. [51] and references
therein). We address this divergence by regularizing the contact interaction using a finite
cutoff in the one-body basis. For renormalization we use the two-body ground state energy,
i.e. this energy is our measure of interaction strength. In practice, this means that we
calculate the two-body energy for each cutoff for different values of g, together with our
desired quantities, such as the ground-state energy of systems with more particles or the
energies of higher excited states in the 1 + 1 system. This renormalization approach is
consistent with the method outlined in Ref. [51]. Note that this approach is similar to the
running coupling constant approach employed for one-dimensional systems.

For the effective interaction approach, we need to know the exact two-body spec-
trum. It can be obtained from the analytical solution [120, 121] where a regularized
pseudopotential is used [228]

VPseudo = − 2πδ(x⃗)

ln(AaΛ)

[︃
1− ln(AΛρ)ρ

∂

∂ρ

]︃
ρ→0+

(A.10)

with Λ an arbitrary constant, A = eγ/2 where γ is the Euler-Mascheroni constant, and a
is the scattering length in two dimensions.

As for the one-dimensional system, the Schrödinger equation factorizes in a center-
of-mass X⃗ = 1√

2
(x1⃗ + x2⃗) and a relative part x⃗ = 1√

2
(x1⃗ − x2⃗). As the interaction only

affects the latter, the eigenstates of the former are the solutions of the non-interacting
harmonic oscillator. Because we have s-wave interaction, only relative states with angular
momentum equal to zero are influenced by the interaction. All other states are also
the eigenstates of the non-interacting harmonic oscillator. For the states with vanishing
angular momentum, we solve the Schrödinger equation in relative coordinates(︄

−
∇2
ρ

2
+
ρ2

2
+ VPseudo

)︄
Ψi(ρ) = ϵiΨ(ρ). (A.11)

The solution depends only on the radial coordinate

Ψi(ρ) =
1√
2π

NνiΓ(−νi)e−ρ
2/2U(−νi, 1, ρ2) , (A.12)
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where U is the Tricomi function [102] and Γ is the gamma function. The values νi are
determined from the equation

ψ(−ν) = ln(2/a2)− 2γ , (A.13)

where ψ is the digamma function. The normalization constant Nν is

Nν =

√
2√︁

ψ′(−ν)
. (A.14)

Here, ψ′ is the trigamma function. The energy of these states is given by ϵi = 2νi + 1.
To build the effective interaction matrix, we can use that the Talmi-Moshinsky-Smirnov

brackets,
αij,ab =

∫︂
dx⃗1

∫︂
dx⃗2Φi(x⃗1)Φj(x⃗2)Φa(x⃗)Φb(X⃗), (A.15)

are known analytically in two dimensions [8, 229] and that the overlap integral,

Uij =

∫︂
dx⃗Φi(x⃗)Ψj(x⃗), (A.16)

can be calculated analytically. To show this we use that Ψi(x⃗) solves the Schrödinger
equation with the pseudopotential. This allows us to rewrite the integral as

Uij =

∫︁
dx⃗VPseudoΦi(x⃗)Ψj(x⃗)

ϵνj − Ti
(A.17)

with Ti = 2i+ 1 the energy of the non-interacting system. Next, we apply U(−ν, 1, ρ2) →
−(2ln(ρ) + 2γ + ψ(−ν))/Γ(−ν) in the limit ρ→ 0, and we arrive at

Uij =
√
2π

Φi(0)Nνj

ϵνj − Ti
. (A.18)

We calculate Vijkl (using orthogonality of the harmonic oscillator eigenfunctions and
that we have s-wave interaction together with momentum conservation) via

Vijkl =
∑︂

a,b,a1,b1

α†
ij,abαkl,a1b1

∫︂
dx⃗

∫︂
dX⃗Φ†

a(x⃗)Φ
†
b(X⃗)V (x⃗)Φa1(x⃗)Φb1(X⃗)

=
∑︂
a,b,a1

α†
ij,abαkl,a1bδma,0δma1 ,0

vaa1 ,
(A.19)
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where V (x⃗) is the potential we want to implement. Because we have no explicit expression
for the effective interaction in coordinate space, we rewrite it in terms of vaa1 which we
build using the effective interaction approach. Therefore, we determine vaa1 from our
effective interaction calculation

veff = Q†EQ− T , with Q =
U√
U †U

(A.20)

with Tij = δij(2ni + |mi|+1) a diagonal matrix representing the energies of the non-
interacting system and E a diagonal matrix containing the energies of the interacting
system on its diagonal. Because only matrix elements with vanishing angular momentum
contribute to the interaction, we only need to consider them, i.e. mi = 0. Therefore,
all matrices are restricted by a cutoff in the n-quantum number. Since center-of-mass
excitations can be distributed between two quantum numbers, there is an inherent
ambiguity between the cutoffs for the laboratory and center-of-mass reference frame.
Empirically, we found that choosing nrel = n2D/2 + 13 works well in our calculations.
However, this ambiguity prevents us from identifying a useful relation for the cutoffs for
the V rel+cm

eff interaction. As a result, we leave the construction of this interaction in 2D to
future studies.

A.4. Convergence of energy for larger particle number

Let us now show that the conclusions drawn in the main text also hold for larger particle
numbers, which is particularly important if one wants to study the few-to-many-body
crossover using renormalized interactions. Therefore, we present additional data for the
ground state energy of the 1 +N system, with N up six particles, and the 2 +N system,
with N up to four particles. As described in the main text of Chap. 3, the size of the
Hilbert space grows exponentially with the number of particles and therefore we have to
restrict the maximum one-body cutoff to n = 21 instead of n = 31. For the largest particle
number shown in this Appendix, this corresponds to more than one million many-body
basis states, making an even larger cutoff impossible on a standard computer. This cutoff
is insufficient in producing converged results for large particle numbers and the interaction
strengths used in the main text. However, as we show below, the main characteristics of
the convergence behavior remains the same as in the main part.

3Recall that n2D defines the maximal one-body energy, while nrel is the highest radial quantum number
used to construct the effective interaction in relative coordinates.

159



10 15 20 25 30 35 40

n

−3.5

−3.0

−2.5

E
1
+
N

0
(n

)
−
E

1
+
N

0
,n

o
n

in
te

r.

1+2

1+3

1+4

1+5

1+6

Figure A.2.: Interaction energy of the 1 +N system for different particle numbers as a
function of the one-body cutoff n calculated by diagonalizing Eq. (A.22).
Weshowdata for an attractive interaction of g = −2.5067 (which corresponds
to E1+1 = −1). Numerical data are shown with markers of different shape
for different particle numbers; lines are added to guide the eye. Figure taken
from Ref. [112].

A.4.1. Calculation in relative coordinates

Because our renormalized interactions do not lead to converged results, we employ an
additional calculation to judge the performance of the 1 + N calculations. Therefore,
we use the symmetries of our Hamiltonian, Eq. (3.1), and transform to the frame of
reference centered at the impurity (similar to the Lee-Low-Pines transformation in real
space, see Sec. 2.4). As described in Sec. 2.4, such a transformation effectively reduces the
particle number by one and allows us to implement the contact interaction as a boundary
condition of the one-body basis. The resulting Hamiltonian in center-of-mass and relative
coordinates reads:

Hcm = − h̄

2N

∂2

∂y2
+
N

2
y2, (A.21)

Hrel = −
N∑︂
i=1

∂2

∂x2i
+

1

2

N − 1

N

N∑︂
i=1

x2i +
N∑︂
i=1

gδ(xi) +
∑︂
i,j

V (xi, xj), (A.22)

where V (xi, xj) = −1
2∂xi∂xj −

1
N+1xixj . The center-of-mass part is simply solved by the

eigenstates of the harmonic oscillator. For the Hamiltonian in relative coordinates, Hrel,
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Figure A.3.: Interaction energy for 1 +N particles as a function of the one-body cutoff
n calculated with renormalized interactions.
In all panels we use attractive interactions with g = −2.5067 (which corre-
sponds to E1+1 = −1). Numerical data are shown with markers of different
shape for the different particle numbers; dashed lines are added to guide
the eye. The black solid line corresponds to an extrapolation of the data
shown in Fig. A.2 using the fitting function from Eq. (A.6). Different panels
correspond to different particle numbers. Figure modified from Ref. [112].

we employ a CI-calculation where we use the exact solution of the one-body part of the
Hamiltonian, Eq. (3.6), as one-body basis states. For more details on this approach we
refer the interested reader to Ref. [49]. For similar applications for a one-dimensional
ring we refer to Sec. 2.4 and Chaps. 5, 4.

Because we now only have to a solve a N -body problem instead of a 1 +N system, we
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Figure A.4.: Interaction energy for 2 +N particles as a function of the one-body cutoff
n calculated with renormalized interactions.
We consider attractive interactions with g = −2.5067 (which corresponds to
E1+1 = −1) in all panels. Numerical data are shown with markers of different
shape for the different particle numbers; dashed lines are added to guide
the eye. Different panels correspond to different particle numbers. Figure
modified from Ref. [112].

can use a larger one-body basis cutoff, i.e. n = 37 for the 1 + 6 system and n = 41 for
lower particle numbers. Furthermore, because the one-body basis states already include
information about the delta-interaction, we can reach nearly converged results as we
show in Fig. A.2. We further extrapolate these data to n→ ∞ using the fitting function
described above, Eq. (A.6). Below, we use these results as benchmark for our calculations
with effective interactions.

A.4.2. Energy convergence 1 +N system

We show in Fig. A.3 the interaction energy, E(g)−E(g = 0), as a function of the one-body
cutoff, n, for 1 +N systems. Because the bare contact interaction converges considerably
slower than the renormalized ones, we display only the latter. Furthermore, we plot the
extrapolated data of Fig. A.2 which we use as benchmark.
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Indeed, we see that the conclusions drawn in the main part of our work also hold for
larger particle numbers. For the 1+2, 1+3, 1+4 and 1+5 systems the V rel+cm

eff interaction
leads to results that are closest to the benchmark values. For the 1 + 6 system, at a first
glance it looks as if the running coupling constant approach, g(n)δ, outperforms the other
potentials. However, as discussed in the main part of Chap. 3 this interaction leads to
non-monotonic results, and for the cutoffs considered here, the energy is still an increasing
function of n. This means that increasing the cutoff leads to an energy farther from the
benchmark result. Only for larger cutoffs will it converge to the correct value.

A.4.3. Energy convergence 2 +N system

Furthermore, we want to show that our results also hold for configurations, for which a
transformation to the relative frame does not bring any advantage, i.e. we show results
for the ground-state energy of the 2 +N system in Fig. A.4. This figure features similar
convergence patterns and therefore shows that our conclusions also hold for systems that
cannot be represented as an impurity in a Fermi gas.

A.5. Implementation of effective interactions

A.5.1. Implementation of V rel
eff

To make this thesis self-contained, we explain in this Appendix the necessary steps to
construct the interaction matrix for the V rel

eff interaction. The discussion follows Ref. [50].
To start, we define the interaction matrix needed for the CI calculation (see Sec. 2.2)

Vijkl =

∫︂
dx1

∫︂
dx2Φi(x1)Φj(x2)V (x1 − x2)Φk(x1)Φl(x2). (A.23)

Since we employ a contact interaction, V (x1 − x2) depends only on the relative distance
between two particles. Because we have a harmonic trapping confinement, we can
factorize the two-body wavefunction in relative x = 1√

2
(x1 − x2) and center-of-mass

X = 1√
2
(x1 + x2) coordinates:

Φi(x1)Φj(x2) =
∑︂
a,b

αij,abΦa(x)Φb(X), (A.24)

where the expansion coefficients (Talmi-Moshinsky-Smirnov brackets),

αij,ab =

∫︂
dx1

∫︂
dx2Φi(x1)Φj(x2)Φa(x)Φb(X), (A.25)

163



can be calculated analytically [50, 230]. With these coefficients, we can calculate the
interaction matrix as follows:

Vijkl =
∑︂
a,a′,b

αij,abαkl,a′bvaa′ with vaa′ =

∫︂
dxΦa(x)V (

√
2x)Φa′ . (A.26)

Next, we want to use the framework of the effective interaction (see Sec. 3.3.2) to
construct the matrix vaa′ . Therefore, we solve the Schrödinger equation in relative
coordinates (see Eqs. (3.7), (3.5))

(︃
−1

2

∂2

∂x2
+
x2

2
+

g√
2
δ(x)

)︃
Ψi(x) = ϵiΨi(x). (A.27)

Now, we use the eigenenergies to build the diagonal matrix Eij = δijϵi and the eigen-
states to calculate the overlap matrix Uij =

∫︁
dxΨi(x)Φj(x):

Uij =

⎧⎪⎨⎪⎩
−gΨi(0)Φj(0)

j+1/2−ϵi for i and j even,
δij for i and j odd ,
0 otherwise.

(A.28)

Putting everything together we can construct the effective interaction matrix in relative
coordinates

veff = Q†EQ− T , with Q =
U√
U †U

, (A.29)

where we omitted the indices of the matrices for better readability. The matrix T is the
diagonal non-interacting matrix Tij = δij(i + 1/2). The dimensions of the matrices U ,
E and T are nrel × nrel with nrel = 2n. Remember: n is the one-body cutoff of our CI
calculation in the laboratory frame. To relate n and nrel we used energy conservation
between the maximal two-body energy in the laboratory frame (2n+1) with the maximal
two-body energy in relative and center-of-mass coordinates. As a last step, we use matrix
Eq. (A.26) to transform veff to Vijkl.

In App. A.6.3 we explain the transformation of operators alongside this interaction.
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A.5.2. Implementation of V rel+cm
eff

Now, we explain how to build an effective interaction matrix by including not only the
relative exact solution but also the center-of-mass excitations:

Vijkl =
[︂
QEQ†

]︂
p(i,j),t(k,l)

− (i+ l + 1)δi,kδj,l

=
∑︂
r,m

Qp(i,j),rEr,mQ
†
m,t(k,l) − (i+ l + 1)δi,kδj,l

=
∑︂
r

Qp(i,j),rEr,rQ
†
r,t(k,l) − (i+ l + 1)δi,kδj,l

(A.30)

with Er,m = δrm(ϵa(r)+ b(r)+1/2) the diagonal interacting eigenenergy matrix, with ϵa(r)
the eigenenergy of the Hamiltonian in relative coordinates and b(r)+1/2 the eigenenergy
of the corresponding center-of-mass part. The two-body indices p, t, r,m are functions of
the one-body indices i, j, k, l, a, b, e.g. p = in+ j with n the singe-body cutoff introduced
in the main text. Note that i, j, k, l, p, t are defined in the laboratory frame while a, b,m, r
operate in the space defined by relative and center-of-mass coordinates.

To efficiently construct the effective interaction matrix, we need to calculate the unitary
overlap matrix

Qpr =
∑︂
d

Upd√︂∑︁
b U

†
dbUbr

where Ur(a,b),t(k,l) =

∫︂
dx1

∫︂
dx2Ψr(a,b)(x1, x2)Φk(x1)Φl(x2),

(A.31)
where Ψr(a,b)(x1, x2) = ψa(r)(x)Φb(r)(X); ψa(r)(x) is the solution of the Schrödinger
equation in relative coordinates (Eq. (3.6)) and Φb(r)(X) is the harmonic oscillator wave
function. If a(r) is odd, the relative wave function is just a solution of the non-interacting
harmonic oscillator, ψa(r)(x) = Φa(r)(x), and the overlap matrix element is given by

Ur(a,b),t(k,l) = αab,kl. (A.32)

In case that a(r) is even, we can utilize that Ψr(x1, x2) solves the two-body Schrödinger
equation,

Ur(a,b),t(k,l) = g

∫︁
dxΨr(a,b)(x, x)Φk(x)Φl(x)

Er(a,b),r(a,b) − (k + l + 1)
. (A.33)

Now, we use
Ψr(a,b)(x, x) = ψa(r)(0)Φb(r)(

√
2x) (A.34)

and
Φk(x)Φl(x) =

∑︂
a1,b1

αkl,a1b1Φa1(0)Φb1(
√
2x) (A.35)
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to arrive at

Ur(a,b),t(k,l) = gψa(r)(0)
∑︂
b1

αkl,(k+l−b1)b1Φk+l−b1(0)

∫︁
dxΦb(r)(

√
2x)Φb1(

√
2x)

Er(a,b),r(a,b) − (k + l + 1)
, (A.36)

where we used energy conservation in the transformation from the laboratory to center-
of-mass frames, 2a1 +2b1 +1 = 2k+2l+1. We can further simplify this expression using
the orthogonality of the harmonic oscillator eigenfunctions

Ur(a,b),t(k,l) =
gψa(r)(0)√

2
αkl,(k+l−b(r))b(r)

Φk+l−b(r)(0)

Er(a,b),r(a,b) − (k + l + 1)
. (A.37)

Putting everything together, we construct the interaction matrix Vijkl. Note that all
one-body indices i, j, k, l, a, b are restricted by the cutoff n from our one-body basis and
the two-body indices by n2. Therefore the matrices E,U,Q are of dimension n2 × n2.

We discuss the transformation of operators that correspond to this interaction in
App. A.6.4.

A.6. Transformation of operators

Let us now derive the transformation of one-, Eq. (A.47) and two-body operators, Eq. (A.48),
alongside the renormalization with the effective interaction discussed in the main text.

A.6.1. Two-body system

We start by showing that the effective interaction framework is indeed a unitary trans-
formation for the two-body system described by the Hamiltonian H(2)4. Therefore, we
extend the effective two-body Hamiltonian to an infinite Hilbert space

Heff,(2) =

(︃
QTMM 0

0 I

)︃(︄
E

(2)
MM 0

0 E
(2)
high

)︄(︃
QMM 0

0 I

)︃
. (A.38)

Here, E(2)
MM describes the low-energy spectrum that we use in our calculations. Adding

the high-energy spectrum E
(2)
high allows us to introduce a unitary matrix in an infinite

Hilbert space, Q =

(︃
QMM 0

0 I

)︃
.

4In the following, the subscript (2) denotes that we work with a two-particle system.
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As a next step, we can define the diagonal matrix that contains eigenvalues of the
Hamiltonian H(2)

E(2) ≡ UH(2)UT = ˜︁H(2), (A.39)

where as before Uij = ⟨Φi|Ψj⟩, here Φ
(2)
i is a two-body basis state, and Ψi describes the

exact interacting two-body solution. Remember that the tilde shows that the matrix is
expanded in the eigenbasis of the interacting system.

With these equations we can now connectHeff,(2) withH(2) via a unitary transformation
W = QUT :

Heff,(2) = QTE(2)Q = QTUH(2)UTQ = WTH(2)W. (A.40)

With this, we have shown that the effective interaction framework does indeed correspond
to a unitary transformation for the two-particle system. This means that the matrix W
can be used to transform also other operators than the Hamiltonian.

A.6.2. Many-body system

Now, we can extend our discussion to the many-body case. Therefore, we rewrite the
interaction

V eff
ij =

(︂
WTH(2)W

)︂
ij
− Ti − Tj . (A.41)

Here, we have assumed that the operator only acts on the particles i and j. Using this
interaction, we can write the effective many-body Hamiltonian as

Heff =
∑︂
i

Ti +
∑︂
i>j

V eff
ij . (A.42)

Since increasing the cutoff means that Q converges to U , we introduce the following
approximation

W ≈ I+∆, (A.43)

where ∆ describes a small perturbation if the Hilbert space is sufficiently large. Using that
WWT = I, it follows that ∆T = −∆. Next, we insert our approximation into the effective
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many-body Hamiltonian:

Heff ≈
∑︂
i

Ti +
∑︂
i>j

{︃(︂
(I+∆)T H(2) (I+∆)

)︂
ij
− Ti − Tj

}︃

≈
∑︂
i

Ti +
∑︂
i>j

{︃
Ti + Tj + Vij −

(︂
∆H(2)I

)︂
ij
+
(︂
IH(2)∆

)︂
ij
− Ti − Tj

}︃
≈
∑︂
i

Ti +
∑︂
i>j

Vij −
∑︂
i>j

(︂
∆H(2)I

)︂
ij
+
∑︂
i>j

(︂
IH(2)∆

)︂
ij

≈ H −
∑︂
i>j

(︂
∆H(2)I

)︂
ij
+
∑︂
i>j

(︂
IH(2)∆

)︂
ij
.

(A.44)

In this calculation we have used that: H =
∑︁
i
Ti +

∑︁
i>j

Vij . As a next step, we extend ∆

such that ∆H = ∆H(2), i.e. ∆ijTk = 0 if k ̸= i, j and ∆ijVik = 0 if k ̸= j:

Heff ≈

⎛⎝I−
∑︂
i>j

∆

⎞⎠H

⎛⎝I+
∑︂
i>j

∆

⎞⎠ = WTHW, (A.45)

With this, we have shown that for sufficiently large cutoffs the transformation for the
effective Hamiltonian of the many-body system is approximately unitary.

This means, that we can apply the same transformation also to operators other than
the Hamiltonian:

Oeff = WTOW. (A.46)

For a one-body operator O(1) =
∑︁
i
Oi, this results in:

Oeff,(1,2) =

⎛⎝I−
∑︂
i>j

∆

⎞⎠O(1)

⎛⎝I+
∑︂
i>j

∆

⎞⎠
=
∑︂
i

Oi −
∑︂
ij

(︂
∆O(2)

)︂
ij
+
∑︂
ij

(︂
O(2)∆

)︂
ij

=
∑︂
i

Oi +
∑︂
ij

(︂
(I+∆)T O(2) (I+∆)

)︂
ij
−O(2)

=
∑︂
i

Oi +
∑︂
ij

(︂
QT ˜︁O(2)Q

)︂
ij
−O(2).

(A.47)
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For a two-body operator O(2) =
∑︁
i>j

Oij we derive:

Oeff,(2) =

⎛⎝I−
∑︂
i>j

∆

⎞⎠O(2)

⎛⎝I+
∑︂
i>j

∆

⎞⎠
=
∑︂
i>j

Oij −
∑︂
ij

(︂
∆O(2)

)︂
ij
+
∑︂
ij

(︂
O(2)∆

)︂
ij

=
∑︂
i>j

Oij +
∑︂
ij

(︂
(I+∆)T O(2) (I+∆)

)︂
ij
−O(2)

=
∑︂
ij

(︂
QT ˜︁O(2)Q

)︂
ij
.

(A.48)

Since we only have a finite Hilbert space in our CI-calculations, we have to restrict the
Hilbert space again by using the projection operator PM.

A.6.3. Implementation for V rel
eff

If we use the V rel
eff , we have to transform the (induced) two-body operator into relative

and center-of-mass coordinates, O(x1, x2) → O(x,X) with x = (x1 − x2)/
√
2 and X =

(x1 + x2)/
√
2, to transform the operators alongside the renormalization. In case that the

two-body operator factorizes, O(x,X) = O(x)O(X), the calculation is straightforward:
One can simply evaluate the relative part of the operator, O(x), using the exact solution
in relative coordinates and then build a matrix equivalent to E in Eq. (A.29). The next
step is then to apply the same overlap matrices Q and (in case we transform a one-
body operator) subtract the matrix build from using the non-interacting solution (T in
Eq. (A.29)). However, if the operator does not factorize, the computation can become
more involved as we have to transform O(x1, x2) to relative coordinates first.

A.6.4. Implementation for V rel+cm
eff

If we use the V rel+cm
eff interaction, we start by building a matrix equivalent toE in Eq. (A.30)

using the exact two-body solution. Then, we use the same overlap matrices Q as for the
effective interaction to transform the (induced) two-body operator. If this operator is
induced, we need to subtract the matrix which is constructed using the non-interacting
tow-body basis states. This calculation is easiest if the two-body operator O(x1, x2)
factorizes in relative and center-of-mass coordinates, O(x,X) = O(x)O(X). In this case,
only one-dimensional integrals need to be evaluated. If the operator does not factorize,
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two-dimensional integrals have to be calculated which can result in long run times if there
is no analytical expression. Still, this approach might be easier to implement than the
transformation needed for V rel

eff , see Sec. A.6.3.

A.7. Derivation of the running coupling constant gunconf.(λ) in free
space

In this Appendix, we provide a detailed derivation of Eq. (3.10):

− 1

gunconf.(λ)
=

1

π
√︂

|Eunconf.
1+1 |

arctan

⎡⎣ λ√︂
|2Eunconf.

1+1 |

⎤⎦ . (A.49)

This discussion adapts the approach for 2D systems presented in Ref. [123].
We start with the Schrödinger equation for two particles in relative coordinates inter-

acting via an attractive contact interaction, g < 0, in free space(︃
−1

2

∂2

∂x2
+

g√
2
δ(x)

)︃
Ψ(x) = Eunconf.

1+1 Ψ(x), (A.50)

where x = 1√
2
(x1 − x2) describes the relative coordinate. Because we have a one-

dimensional system with attractive interactions, there exists a bound state, Eunconf.
1+1 <

0 [124], whose energy we use for renormalization. Next, we transform this equation to
momentum space by performing a Fourier transformation

Ψ(x) =

∫︂
dk

2π
eikzφ(k) (A.51)

1

2
k2φ(k) +

g√
2
Ψ(0) = Eunconf.

1+1 φ(k). (A.52)

We write its solution as

φ(k) = −
√
2gΨ(0)

k2 − 2Eunconf.
1+1

. (A.53)

Using that Ψ(0) =
∫︁
dk
2πφ(k), we arrive at:∫︂
φ(k)dk = −

∫︂ √
2g

k2 − 2Eunconf.
1+1

dk

∫︂
φ(k′)

dk′

2π
. (A.54)
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To further simplify this, we can divide by the norm of the wavefunction in momentum
space,

∫︁
φ(k)dk:

1 = −
√
2g

2π

∫︂
1

k2 − 2Eunconf.
1+1

dk. (A.55)

As a last step, we introduce a momentum space cutoff λ and change g to gunconf.(λ):

1

gunconf.(λ)
= −

√
2

2π

∫︂ λ

−λ

dk

k2 − 2Eunconf.
1+1

= −
Arctan(λ/

√︂
|2Eunconf.

1+1 |)

π
√︂

|Eunconf.
1+1 |

(A.56)

A.8. Connecting quantum numbers to momenta

In the main text, we used the connection between the momentum space cutoff λ in the
relative coordinates with the one-body basis cutoff n to compare the running coupling
constant used for the CI calculation and gunconf.(λ) from Eq. (3.10). Here, we provide a
derivation for this connection for a general polynomial potential xk. Therefore, we use
the Wilson–Sommerfeld rule to connect the quantum number n with the energy∮︂

H(p,x)=E
p dx = 2πn, (A.57)

with H = 1
2p

2 + 1
2k−1x

k. Evaluating this integral leads to:

2πn = 2

∫︂ x=21−1/kE1/k

x=−21−1/kE1/k

√︃
2E − 1

2k−2
xk dx (A.58)

= 2
√
2Ex 2F1(−1/2, 1/k, 1 + 1/k, 21−kxk/E)|x=21−1/kE1/k

x=−21−1/kE1/k (A.59)

= 27/2−1/kE1/2+1/k

√
πΓ(1/k)

(2 + k)Γ(1/2 + 1/k)
, (A.60)

where 2F1 is the hypergeometric function [102].
As a next step, we connect the energy cutoff E in the single particle Hilbert space with

λ, the momentum space cutoff in relative coordinates. Therefore, we use that the maximal
two-body energy given by E should be equal to the maximum energy obtainable by λ

2E =
1

2
λ2 . (A.61)

Note that this expression can in principle only be used in either a harmonic oscillator or
in a system on a ring where the center of mass and relative motion factorize. However, if
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one uses other potentials and large cutoffs, this relation holds approximately. Using this
connection, we derive

2πn = 25/2−3/kλ1+2/k

√
πΓ(1/k)

(2 + k)Γ(1/2 + 1/k)
. (A.62)

Restricting k = 2, which corresponds to the harmonic oscillator discussed in the main
text, this expression can be simplified to

2πn =
π

2
λ2 ⇔ λ = 2

√
n. (A.63)

Note that for hard wall boundary conditions, which can be approximated with k → ∞,
we can derive

2πn = 25/2λ⇔ λ =
πn√
8
. (A.64)

A.9. Additional convergence plots

For the interested reader we provide a different depiction of the convergence plots.

A.9.1. Convergence plots as a function of 1/n

Here, we show the convergence plots as a function of 1/n with n the one-body basis cutoff.
Fig. A.5 shows the convergence of the energy, Fig. A.6 of the density at the trap center,
Fig A.7 of the kinetic energy, Fig A.8 of the trapping confinement and Fig. A.9 of the
transition matrix elements.

A.9.2. Double logarithmic plots

We also provide double logarithmic plots for the 1 + 1 utilizing that, in this case, we know
the exact result: The energy is shown in Fig. A.10, the density at the middle of the trap in
Fig. A.11, the kinetic energy in Fig. A.12, the expectation value of the harmonic trapping
confinement in Fig. A.13 and the transition matrix elements are shown in Fig. A.14. Note
that the results for V rel+cm

eff and transformed operators are not shown as they are exact
by construction. The double logarithmic plots showcase (by the steeper slope) that the
renormalized interactions lead to faster convergence in comparison with the bare contact
interaction.
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Figure A.5.: Energy of the system for different particle numbers and interactions calcu-
lated with the bare contact interaction, running coupling constant, V rel

eff and
V rel+cm
eff as a function of 1/n.

Panels a) and b) show the result for the second excited state of the 1 + 1
system; c) and d) present the ground state energy of 1 + 3. Panels a) and c)
are for attractive interaction with g = −2.5067 (corresponds to E1+1 = −1);
panels b) and d) are for repulsive interactions with g = 3 (corresponds to
E1+1 = 1.6). Our numerical results are presented with markers; lines are
added to guide the eye. Figure modified from Ref. [112].

173



1.325

1.350

1.375

1.400

1.425

ρ
1
+

1
(0

)

a)

g δ

g(n) δ

V rel
eff V rel+cm

eff exact

0.05 0.10 0.15 0.20

1/n

1.50

1.55

1.60

ρ
1
+

3
(0

)

b)

Figure A.6.: Ground state density at the center of the trap calculated with bare contact
interaction, running coupling constant, V rel

eff and V rel+cm
eff as a function of

1/n.
Panel a) shows results for the 1 + 1 system; panel b) is for 1 + 3. All panels
are for attractive interactions with g = −2.5067 (corresponds to E1+1 = −1).
Our numerical results are presented with markers; lines are added to guide
the eye. The exact value of the density for the 1 + 1 system is shown as a
horizontal solid line. Figure modified from Ref. [112].
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Figure A.7.: Kinetic energy for different particle numbers and interactions as a function
of 1/n.
Panels *1) show results where the operator T that has been transformed
together with V rel

eff and V rel+cm
eff , while panels *2) show results when only the

potential is renormalized but the operator T is not transformed. Panels a)
and b) are for the 1 + 1 system, while panels c) and d) are for 1 + 3. Panels
a) and c) are for g = −2.5067 (corresponds to E1+1 = −1); panels b) and d)
are for g = 3 (corresponds to E1+1 = 1.6). Data is shown with markers; lines
are added to guide the eye. Figure modified from Ref. [112].
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Figure A.8.: Expectation value of the trapping potential for different particle numbers
and interactions as a function of 1/n.
Panels *1) show results for ⟨W ⟩ when the operatorW has been transformed
together with V rel

eff and V rel+cm
eff , while panels *2) correspond to only renormal-

izing the interaction while keepingW unchanged. Panels a) and b) are for
the 1 + 1 system, while panels c) and d) are for 1 + 3. Panels a) and c) are
for g = −2.5067 (corresponds to E1+1 = −1); panels b) and d) are for g = 3
(corresponds to E1+1 = 1.6). Data is shown with markers; lines are added to
guide the eye. Figure modified from Ref. [112].
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Figure A.9.: Transition matrix elements from the ground state to the lowest-energy state
that can be excited by a periodic modulation of the interaction as a function
of 1/n.
Panels *1) showM0→f for the operator that has been transformed together
with the potential while panels *2) show results when only the potential has
been renormalized but the operator has not been modified. Panels a) and
b) are for the 1 + 1 system while panels c) and d) are for the 1 + 3 system.
Panels a) and c) are for g = −2.5067 (corresponds to E1+1 = −1); panels b)
and d) are for g = 3 (corresponds to E1+1 = 1.6). Our data are shown with
markers; lines are added to guide the eye. Figure modified from Ref. [112].
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Figure A.10.: Double logarithmic plot of the energy of the second excited state of the
1+1 system calculated with the bare contact interaction, running coupling
constant and V rel

eff .
We subtract the exact result given by the solution of Refs. [120, 121] and plot
the data on a double logarithmic graph. Panel a) is for attractive interactions
with g = −2.5067 (corresponds to E1+1 = −1); panel b) is for repulsive
interaction with g = 3 (corresponds to E1+1 = 1.6). Our numerical results
are presentedwithmarkers; lines are added to guide the eye. Figuremodified
from Ref. [112].
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Figure A.12.: Double logarithmic plot of the kinetic energy for the 1 + 1 system.
Left panels [*1)] show the results where the operator has been transformed
together with the interaction potential for V rel

eff and V rel+cm
eff while the right

ones [*2)] show results where only the potential but not the operator has
been transformed. Panel a) is for g = −2.5067 (corresponds to E1+1 = −1);
panel b) shows results for g = 3 (corresponds to E1+1 = 1.6). Note that
we have subtracted the exact result calculated as in Refs. [120, 121]. Our
numerical results are presented with markers; lines are added to guide the
eye. Figure modified from Ref. [112].
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Figure A.13.: Double logarithmic plot of the expectation value of the trapping potential
for the 1 + 1 system.
Left panels [*1)] show the results where the operator has been transformed
together with the interaction potential for V rel

eff and V rel+cm
eff while the right

ones [*2)] show results where only the potential but not the operator has
been transformed. Panel a) is for g = −2.5067 (corresponds to E1+1 = −1);
panel b) shows results for g = 3 (corresponds to E1+1 = 1.6). Note that
we have subtracted the exact result calculated as in Refs. [120, 121]. Our
numerical results are presented with markers; lines are added to guide the
eye. Figure modified from Ref. [112].
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Figure A.14.: Double logarithmic plot of the transition matrix elements from the ground
to the fourth excited states for the 1 + 1 system.
Left panels [*1)] show the results where the operator has been transformed
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eff and V rel+cm
eff while the

right ones [*2)] show resultswhere only the potential but not the operator has
been transformed. Panel a) is for g = −2.5067 (corresponds to E1+1 = −1);
panel b) shows results for g = 3 (corresponds to E1+1 = 1.6). Note that
we have subtracted the exact result calculated as in Refs. [120, 121]. Our
numerical results are presented with markers; lines are added to guide the
eye. Figure modified from Ref. [112].
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B. Aharonov-Bohm Bose polaron:
Generalization, definitions and analysis
convergence towards thermodynamic limit

In this appendix, we provide additional details to Chap. 4. In the main part of this chapter,
we have considered the Aharanov-Bohm flux coupled only to the impurity. First, we will
showcase that the more general case, where the flux is coupled also to the bosonic medium,
can also be easily incorporated into our model. After that, we will discuss the influence of
the impurity mass on our results (in the main part, we only presented results for the equal
mass case). Then, we will shortly showcase different definitions of the effective mass of a
polaron. At the end, we will discuss and contrast the convergence of the self-energy and
effective mass to the thermodynamic limit.

B.1. Coupling flux to bosons and impurity

In Chap. 4, we discussed the case where flux is coupled only to the impurity. However, as
we will show now, the more general case where flux is coupled to the bosons can also be
included in our model. The Hamiltonian now reads

H =
1

2L2

(︃
−i ∂
∂y

+ΦI

)︃2

+
1

2L2

∑︂
i

(︃
−i ∂
∂xi

+ΦB

)︃2

+ Vib + Vbb . (B.1)

Again, we first perform a transformation of the Schrödinger equation to the frame co-
moving with the impurity

[︃
− 1

2

(︄∑︂
i

∂

∂zi

)︄2

− 1

2

∑︂
i

∂2

∂z2i
+

(P +ΦI)
2

2
+
N

2
Φ2
B

+ L2Vib + L2Vbb + i(P +ΦI − ΦB)
∑︂
i

∂

∂zi

]︃
Ψ̃ = EΨ̃ .

(B.2)
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Figure B.1.: Energy spectrum as a function of the AB flux coupled to the bosons: ΦI = 0,
ΦB = Φ for different total momenta.
Blue color shows results for the Yrast line with P = 0 while orange color
corresponds to P = −2π. The parameters of the system areN = 19 and γ =
0.2. Panel a) shows results for c/g = 1 while in panel b) the impurity-boson
interaction is c/g = 5. Data are obtained with the mean-field ansatz (solid
curves) and the IM-SRG method (crosses with error bars), black triangles are
the results of Ref. [171] for Φ = 0. The dotted curves show the energy of the
non-interacting system. Figure modified from Ref. [63].

Different from the Schrödinger equation in the main text, one can no longer introduce
a single effective total momentum (cf. P) that parameterizes the energy of the system.
However, we can still rewrite Eq. (B.2) into a form similar to the one discussed in the
main part [︃

− 1

2

(︄∑︂
i

∂

∂zi

)︄2

+
1

2

∑︂
i

∂2

∂z2i
+
k2

2

+ L2Vib + L2Vbb + ik
∑︂
i

∂

∂zi

]︃
Ψ̃ = EkΨ̃,

(B.3)

where k = P +ΦI − ΦB and Ek = E − (P +ΦI)ΦB − (N − 1)Φ2
B/2. With this, we can

study the more general case with the methods and results of the main part.
To illustrate this, we show in Fig. B.1 the energy of the system for the same parameters

as in Fig. 4.4 but with ΦI = 0, ΦB > 0. Although the energies for ΦB = 0 remain
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unchanged, the spectrum looks considerably different for ΦB > 0. Now, the term NΦ2
B/2

leads to a faster increase of the energy as a function of the flux. Furthermore, there is no
longer an energy level crossing of the Yrast states with P = 0 and |P |= 2π. This can be
understood from the fact that there is no longer an effective total momentum P: Although
the spectrum must still be periodic in ΦB/2π, states with 0 < ΦB < π cannot be related
to states with P = −2π and ΦB > π.

Lastly, we want to mention the special scenario of equal fluxes ΦI = ΦB. In this case,
the energy depends on the AB flux only via a constant energy shift, i.e., the flux couples
only to the center-of-mass motion of the system leaving the relative part unchanged. This
is in agreement with previous studies, see, e.g., Ref. [137]. A simple interpretation of this
scenario is that all particles ‘rotate’ around the ring with the same ‘velocity’.

B.2. Mass imbalance

Now, we briefly discuss the influence of a mass imbalance, in the main part of Chap. 4
we only considered the equal mass case. We write the Schrödinger equation again in the
co-moving frame: [︃

− 1

2m

(︄∑︂
i

∂

∂zi

)︄2

− 1

2

∑︂
i

∂2

∂z2i
+

(P +Φ)2

2m

+ L2Vib + L2Vbb + i
(P +Φ)

m

∑︂
i

∂

∂zi

]︃
Ψ̃ = EΨ̃.

(B.4)

The corresponding Gross-Pitaevskii equation is:

− 1

2κ

∂2f

∂z2
+ i

P
m

∂f

∂z
− i(N − 1)

Pbos

m

∂f

∂z
+ g(N − 1)|f |2f = µf (B.5)

with κ = m/(m+ 1) the reduced mass1. It is important to note that only one parameter
is different from the equal mass case: the reduced mass κ. Therefore, the mean-field
solution can be found with the same approach as in the main part (see Sec. 2.5 and
Sec. 4.3.1). Therefore, the qualitative conclusions from the main part persist also for the
mass-imbalanced case.

In Fig. B.2, we showcase the quantitative changes by presenting the energies as well as
the currents for a heavy (m = 5) and a light (m = 0.5) impurity2. As mentioned before,
1Recall that we use a system of units in which h̄ = M = 1.
2The definition of the impurity current has to be modified to contain an additional factor 1/m in Eq. (4.23).
In practice, we only calculate the bosonic current, and use the momentum conservation such that
jI = P −NjB .
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Figure B.2.: Energy, impurity and bosonic current for mass imbalance.
We show Energy [a), b)], impurity current [c), d)] and bosonic current [e), f)].
Panels a), c), e) showcase results for a heavy impurity (m = 5) while b), d), f)
are for a light impurity (m = 0.5). The other parameters are N = 19, γ = 0.2
and c/g = 1. The results are obtained with the MFA (solid lines) and IM-SRG
calculations (symbols). Dotted curves in the upper panels showcase the
energies for a non-interacting impurity. Figure taken from Ref. [63].
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there is no qualitative change in the behavior of the observables. However, we can clearly
see that a light (heavy) impurity generates stronger (weaker) bosonic currents. This can
be understood from the fact that the kinetic energy of the impurity scales with the inverse
mass and is therefore large (small) for a light (heavy) impurity.

Lastly, we want to shortly remark that the heavy impurity case shows better agreement
between mean-field and IM-SRG. There are two reasons for this: First, as discussed above,
a heavy impurity carries larger impurity current and leads therefore to weaker bosonic
currents, which in turn makes the excitation of the Bose gas less important (see Sec. 4.5.2).
Second, the mean-field approximation neglects the mixed derivative terms which scale
as 1/m. Therefore, the higher the impurity mass, the better the approximation of the
Schrödinger equation by the Gross-Pitaevskii equation.

B.3. Definition of effective mass

For convenience of the reader, we shortly review and explain different equations that
define the effective mass in the thermodynamic limit with Φ = 0, cf. Refs. [94, 163].

In the polaron approximation, the ground state energy of the system grows quadratically
with the total momentum P

E = E0 +
P 2

2meff
, (B.6)

where meff is the so-called effective mass which parameterizes the quadratic increase and
depends on the interactions in the system. The velocity of the impurity (which is closely
related to the probability current) can be written as

vimp = P/meff . (B.7)

This velocity has to be equal to the velocity of the polaron and therefore vpol = vimp.
We can use this, to rewrite the energy of the system in terms of the impurity velocity

and define the effective mass via this equation

E = E0 +
meffv

2
imp

2
. (B.8)

Lastly, we want to connect the effective mass to the momentum of the bosonic medium.
Therefore, we use that the total momentum is conserved, i.e. it is distributed between the
impurity and the bosons P = Pimp +Pbos and that the impurity momentum is defined via
Pimp = mvimp. Putting everything together, we can define the effective mass via

m/meff = 1− Pbos/P. (B.9)
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All three equations, Eqs. (B.6)-(B.9), are equivalent and can be used to define and
calculate the effective mass. We noticed in our IM-SRG calculations that the last equation
is numerically the most stable one and therefore we used it in this thesis.

B.4. Convergence towards thermodynamic limit

One of the main conclusions of Chap. 4 was that the AB ring can be used to study the
convergence of the effective mass to the thermodynamic limit (N,L → ∞, N/L = ρ =
const). Here, we want to discuss the few-to-many-body crossover for the effective mass
in more detail and contrast it with the self-energy of the impurity. Note that the latter
has already been discussed in Ref. [72]. There, it was shown that the energy decays as
E − E(c = 0) = ρ2π2/(2Nκ) if the bosons are non-interacting.

First, we will use the analytic expressions of the mean-field solution of Ref. [72] to
provide further analytical insight into the convergence of the energy. After that, we
analyze the self-energy and the effective mass obtained from our semi-analytic mean-field
calculation by a fitting procedure.

B.4.1. Self-energy of the impurity

In Ref. [72] it was shown that the energy of an impenetrable impurity (c→ ∞) can be
calculated via

E − E(c = 0)

ρ2
=

8K4(p)p+ 2K2(p)κγN(N − 1)(p+ 1)

3κ2γN2(N − 1)
− γ(N − 1)

2
, (B.10)

where K is the complete elliptic integral of first kind and p is a parameter determined
from the equation:

4K(p)(K(p)− E(p))

κγN(N − 1)
= 1, (B.11)

with the complete elliptic integral of second kind, E, [102]. We can use this expression to
derive analytically the behavior of the polaron energy for large N . Therefore, we use that
in the limit of N → ∞, p→ 1 and therefore E(p) → 1. Hence, we can write

E − E(c = 0)

ρ2
=

2

κN
+

4

3κ

√︃
κγ +

1

N2
+O

(︃
1

N3/2

)︃
. (B.12)

With this we have shown that for N → ∞ the energy decays as 2/κN to the value√︁
16γ/9κ. This corresponds to the boundary energy of the Bose gas (cf. Refs. [231, 232]

for an infinitely heavy impurity with κ = 1).
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Figure B.3.: Energy for increasing particle numbers.
We show the energy as a function of N with respect to its thermodynamic
value form =M = 1, γ = 0.2. The values of c/g are given in the figures label.
Figure taken from Ref. [63].

For finite impurity-boson interaction, we fit the mean-field results of the energy with

f(N) = f∞ +
A

Nσ
. (B.13)

We show in Fig. B.3 the energy for γ = 0.2 and c/g = 0.05, 1, 5 as a function of the
particle number. Fitting of these data shows that the parameter σ is in the range of
σ = 1.065− 1.08. This suggests that also for finite impurity-boson interactions the energy
decays like 1/N . We attribute deviations to the 1/N behavior to higher than leading order
terms. We checked this statement by adjusting the number of particles.

B.4.2. Effective mass

For the effective mass, we were not able to gain analytic insight into the few-to-many-body
crossover. Instead, we directly fit the results of Fig. 4.5. Different from the energy of the
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impurity, the convergence pattern now seems to depend strongly on the impurity-boson
interaction. For the weakest considered interaction (c/g = 0.05), we find the fastest
convergence with σ = 1.07 ± 0.15. For c/g = 1, the effective mass convergences with
σ = 0.99± 0.01. For strong interactions (c/g = 5), the convergence is significantly slower
σ = 0.67± 0.03. Note that in the limit of an impenetrable impurity (c→ ∞), the impurity
acts effectively as a wall that moves through the bosons. In this case, the effective mass
should be the mass of the whole system, i.e., the effective mass should actually increase
linearly with N in this case.

Our results demonstrate that the effective mass is highly sensitive to the value of c/g,
unlike the self-energy. In particular for strong impurity-boson interactions, one needs
more bosons to observe convergence of the effective mass.
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C. Bosonic artificial atom in one dimension:
Benchmarks, mean-field derivations and
additional data for few-body limit

We provide additional details to our findings in Chap. 5. First, we benchmark the IM-
SRG method against the well-established multi-layer multi-configuration time-dependent
Hartree method for atomic mixtures. The multi-layer multi-configuration time-dependent
Hartree method for atomic mixtures simulations, shown in App. C.1, were performed by
Simeon Mistakidis. Then, we showcase the mean-field solution in a box trap. After that,
we present details on our extension of the mean-field solutions in the low-density limit.
In the end, we consider the smallest artificial atom systems.

C.1. Comparison between the ML-MCTDHX and IM-SRG

We benchmark the relatively novel method of the flow equation approach for cold gases,
see Refs. [61–63, 71, 72] against the well established multi-layer multi-configuration
time-dependent Hartree method for atomic mixtures (ML-MCTDHX) [56] (for a relevant
review of this method see Ref. [57]). The latter method is a variational approach that has
been used extensively for studying systems with impurities [21, 96, 166, 205, 233, 234].
The data from the ML-MCTDHX calculation were provided by Simeon Mistakidis.

Let us start by comparing the density, Eq. (5.19) and phase fluctuations, Eq. (2.48) for
the largest value of N considered in the main text (cf. Fig. 5.4). We show the results in
Fig. C.1. We can clearly see that both methods are in good agreement. We also compared
the energy per particle and found for IM-SRG EM/Nc2 = −0.100722± 0.000089 and with
the ML-MCDTHX EM/Nc2 = −0.097.

We further use a box potential instead of the periodic boundary conditions to explore
the formation of the artificial atom from bosons in the presence of hard-wall boundary
conditions. This gives us another benchmark in a different setup for the IM-SRG method.
We show the results for energy, density and phase fluctuations for different particle
numbers N in Fig. C.2. We use values of N which correspond to bound, critical and
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Figure C.1.: Comparison between IM-SRG and ML-MCDTHX for density and phase fluc-
tuations.
We show the Bose-gas density (left) and phase fluctuations (right) for a sys-
tem consisting of a single impurity potential and N = 15 particles. The other
parameters of the system are α = −5, LM |c|= 0.5N . Circles show results
obtained with the IM-SRG method while the solid curve corresponds to the
ML-MCTDHX result. The numerical error bars are calculated according to the
prescription given in 2.3. Figure taken from Ref. [62].

scattering state according to our discussion in the main text. Note that because we use
different boundary conditions now (hard wall instead of periodic) the properties of the
system are strongly modified if L is in the order of 1/M |c|. As an example: We need
to use stronger impurity-boson interaction than in the main text to observe significant
beyond-mean-field effects.

We can see that while the results for energy and density are in good agreement, phase
fluctuations show deviations. We noticed that although energy and density might be well
converged with a simple ML-MCTDHX calculation, the calculation of phase fluctuations
requires more involved calculations (e.g. more orbitals, see Ref. [56]). We checked this by
increasing the number of orbitals used in the ML-MCTDHX, see panel d). We can clearly
see a systematic improvement in the agreement between IM-SRG and ML-MCTDHX. The
main disagreement between the two methods is close to the boundaries of the box trap. In
this case, the calculation of the phase fluctuations becomes difficult because very precise
data of the density is needed as it approaches zero, see Eq. (2.48). We attribute the small
decrease in phase fluctuations visible from the ML-MCDTHX data to numerical artifacts.
Therefore, we also only showcase results for x < 0.35L.

Our conclusion from this comparison is that both methods are in good agreement
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Figure C.2.: Comparison between IM-SRG and ML-MCDTHX for energy, density and
phase fluctuations for a system with hard wall boundary conditions.
Energy [panel a)], density [panel b)] and phase fluctuations [panel c)] for a
Bose gas with an impurity in the middle of the trap supplemented by hard
wall boundary conditions. The parameters of the system are: α = −12.5,
LM |c|= 0.25N , and N = 15, 26, 40. [Note that the critical particle number
for these parameters in a ring is Ncr = 26]. We show results obtained with
IM-SRG (symbols) and ML-MCDTHX (solid lines). Dashed lines are added
to guide the eye. In panel d) we showcase phase fluctuations for different
numbers of orbitals in the ML-MCDTHX. Note that already for three orbitals,
the values of the energy and density are in agreement with IM-SRG. Figure
taken from Ref. [62].
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although they employ different approximation schemes to be able to go to large particle
numbers. While the ML-MCTDHX contains in general more information about the Hilbert
space of the system compared to the IM-SRG, the calculation of higher-order observables
such as phase fluctuations might be advantageous using the IM-SRG framework.

C.2. Mean-field solution for hard-wall boundary conditions

For the sake of completeness, we present shortly the mean-field solution of a Bose gas
confined by hard wall boundary conditions with an attractive impurity potential in the
middle of the trap. We found that the function given from the Jacobi-cs function [102]:

f(x) =

√︄
4K(p)2

MgL2δ2(N − 1)
cs
(︃
2K(p)

δ

[︃
|x|
L

+
δ − 1

2

]︃
, p

)︃
, (C.1)

with
µ = 2K(p)2

p− 2

Mδ2L2
, (C.2)

reproduces the correct many-body bound state in the limit L→ ∞. The parameters p and
δ are again determined from the normalization and impurity boundary condition:∫︂

|f |2(x)dx = 1,
∂f

∂x

⃓⃓⃓⃓
x=0+

= −cMf(0). (C.3)

Note that also other Jacobi-elliptic functions exist that solve the GPE with our boundary
conditions such as:

f(x) =

√︄
4K(p)2(1− p)

MgL2δ2(N − 1)
sc
(︃
2K(p)

[︃
−|x|
δL

+
1

2δ

]︃
, p

)︃
, (C.4)

with
µ = 2K(p)2

p− 2

δ2L2
. (C.5)

However, this function leads to nonsensical results in the limitL→ ∞. Additional solutions
that correspond to the scattering solution are harder to find. We leave them to future
studies.

C.3. Zero-Density Limit within Mean-field Approximation

Let us provide some technical details on the results presented in Sec. 5.4.
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C.3.1. Many-body bound state

We start by considering the many-body bound state solution, Eq. (5.4), for a finite ring.
In the limit L→ ∞, we have p→ 11:

f(x) =

√︄
1

Mg(N − 1)

ln(a)

δL
sinh

(︃
ln(a)

[︃
|x|
δL

+ b

]︃)︃−1

, (C.6)

with a :=
16

1− p
and b :=

δ − 1

2δ
. We used that K(p) → 1/2 ln(a) [102].

The boundary condition due to the impurity-boson interaction can be written as

−f ′(0+) =Mcf(0) (C.7)

⇒ x+ 1

x− 1
= coth(ln(a)b) =

−cMδL

ln(a)
, for x := a2b (C.8)

while we get

1 = lim
L→∞

L/2∫︂
−L/2

f(x)2dx (C.9)

⇒ 1 =
4

Mg(N − 1)

ln(a)

δL

[︃
1

1− a
− 1

1− x

]︃
a≫1
=

4

κg(N − 1)

ln(a)

δL

1

x− 1
(C.10)

from the normalization. We can combine both conditions to

ln(a)

δL
=
Mg(N − 1)

2
ζ , (C.11)

with
ζ = − 2c

g(N − 1)− 1
=
Ncr −N

N − 1
. (C.12)

Because x > 1 by definition, we derive the condition for the existence of the solution:

N ≤ 2
|c|
g

+ 1, (C.13)

which is in agreement with the PoT condition Eq. (5.10) from the main text.
1Note that the mean-field solution with hard wall boundary conditions, Eq. (C.1), leads to an identical
expression.
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We can also derive analytic expressions for the chemical potential:

µ = − ln(a)2

2Mδ2L2
= −Mg2(N − 1)2

8
ζ2 = − 1

2Mx2mbb

, (C.14)

with xmbb = 1
M |c|

ζ+1
ζ , the characteristic width defined in the main text, and the energy

per particle

E/N = lim
L→∞

µ− g(N − 1)

2

L/2∫︂
−L/2

dxf(x)4
a≫1
= −Mg2(N − 1)2

(︃
ζ(ζ + 1)

8
+

1

24

)︃

= − 1

Mx2mbbζ
2

(︃
ζ(ζ + 1)

2
+

1

6

)︃
.

(C.15)

We can also further simplify our mean-field solution by using Eq. (C.11)

f(x) =

√︃
Mg(N − 1)

4
ζ sinh

(︃
Mg(N − 1)

2
ζx+ ln(

√︁
2ζ + 1)

)︃−1

=

√︄
2ζ(2ζ + 1)

xmbb

1

(2ζ + 1)ex/xmbb − e−x/xmbb
,

(C.16)

Note that for N = Ncr we have ζ → 0. An expansion of this function around xζ → 0
leads to

f(x) =

√︃
|c|M
2

1

|c|Mx+ 1
. (C.17)

C.3.2. Point of transition

Let us now consider the case of N = Ncr. In this case, the mean-field solution reads

f(x) =

√︄
π2

MgL2δ2(N − 1)

1

cos
(︂
π(x−L/2)

δL

)︂ . (C.18)

We found empirically that in the limit L → ∞, we have δ → 1 and therefore πx
δL → 0.

Inserting these expressions leads us to:

f(x) ≈
√︃

|c|M
2

1

|x|+Lδ(δ−1)
2

. (C.19)
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With this, we get the following normalization condition,

MgδL(N − 1)

2π
= tan

(︂ π
2δ

)︂
, (C.20)

which we use to derive
tan

(︂ π
2δ

)︂
δ→1
≈ 2

δ − 1
, (C.21)

which leads to

f(x) =

√︃
|c|M
2

1

|c|Mx+ 1
. (C.22)

Note, that this expression is equivalent to the one we got in the previous subsection by
expanding the solution of the many-body bound state limit to the critical case. We find
for the chemical potential that it vanishes:

µ = lim
L→∞

π2

2Mδ2L2
= 0. (C.23)

C.4. Smallest artificial atom

Let us shortly discuss the smallest non-trivial artificial atom with N = 2 where we use a
relative interaction strength such that Ncr = 2 or Ncr = 3. For these small systems, it is a
priori unclear if the mean-field approximation is applicable.

If we consider only two particles, the IM-SRG method is essentially exact except for
the errors due to the finite Hilbert space, see Sec. 2.3. Therefore, we can benchmark the
mean-field approximation even for very large ring sizes. We show results for density and
phase fluctuations in Fig. C.3. A comparison of the density shows that the mean-field
approximation is in excellent agreement with the IM-SRG method. Also, the calculation
of phase fluctuations reveals that beyond-mean-field effects are small. Note that for the
largest ring size considered, LM |c|= 2.5N , the density becomes too low which renders
the definition of phase fluctuations, eq. (2.48), meaningless.

This discussion further showcases that the physical picture given in Sec. 5.2.2 is accurate
even for the smallest setups.
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Figure C.3.: Density and phase fluctuations for the smallest artificial atom.
We show in panels a) and b) show the density of the Bose gas while panels
c) and d) demonstrate phase fluctuations. All data are for N = 2 bosons.
Panels a) and c) are for systems with α = −0.5 (Ncr = 2), and panels b) and
d) for α = −1 (Ncr = 3). Circles, boxes, crosses and triangles are calculated
with IM-SRG, and the solid curves are the corresponding mean-field results
(Eqs. (5.4), (5.8)). The dashed curves are provided to guide the eye. Figure
taken from Ref. [62].
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D. Two-dimensional bosonic droplets:
Variational ansatz

In this appendix, we want to provide additional details on the variational ansatz employed
in Chap. 6. We present all relevant equations for the one used in the main part of this
chapter. Furthermore, we present results obtained with a different variational ansatz in
which both shapes, the universal from Ref. [39] and the harmonic oscillator scale with
the characteristic width of the ground state.

D.1. Details on variational ansatz

Let us start with all relevant equations for the variational approach used in Chap. 6,
Eq. (6.6). For better readability, we use here a system of units such that h̄ = m = ω = 1.
For the mean-field orbital we use:

Ψ(r⃗) =
1√︃

α2
HO + α2

free + 2αHOαfree
C
¯

√
CC2R

(︄
αHO

√
N√

2πC2
fHO(r) + αfree

√
N√

2πCR
ffree(r/R)

)︄

(D.1)
with

C2 =

∫︂
drrf2HO(r), C̄ =

∫︂
drrfHO(r)ffree(r/R).
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Inserting this ansatz into the Hamiltonian leads to an energy of:

E =
α2
HO

α2
HO + α2

free + 2αHOαfree
C
¯

√
CC2R

⎛⎝ N

2C2
A2 −

α2
HO

α2
HO + α2

free + 2αHOαfree
C
¯

√
CC2R

gN2B2

4πC2

+
1

2

ω2ND2

C2

)︃
+

α2
free

α2
HO + α2

free + 2αHOαfree
C
¯

√
CC2R

(︃
N

2C2R2
A

−
α2
free

α2
HO + α2

free + 2αHOαfree
C
¯

√
CC2R

gN2B

4πCR2
+

1

2

ω2NDR2

C

⎞⎠
+ 2

αHOαfree

α2
HO + α2

free + 2αHOαfree
C
¯

√
CC2R

(︃
N

2
√
CC2

Ã+
1

2

ω2N√
CC2

D̃

)︃

+
αHOαfree(︂

α2
HO + α2

free + 2αHOαfree
C
¯

√
CC2R

)︂2 gN2

4π

(︄
4
α2
HO√︁
C3
2C

B̃ + 4
α2
free√
C2C3

B̄ + 6
αfreeαHO√︁
C2
2C

2
B̂

)︄
(D.2)

with

A =

∫︂
drr[f ′HO(r)]

2, B2 =

∫︂
drrf4HO(r), D2 =

∫︂
drr3f2HO(r)

Ã =

∫︂
drrf ′HO(r)f

′
free(r/R), D̃ =

∫︂
drr3fHO(r)ffree(r/R)

B̃ =

∫︂
drrf3HO(r)ffree(r/R), B̄ =

∫︂
drrfHO(r)f

3
free(r/R), B̂ =

∫︂
drrf2HO(r)f

2
free(r/R).

Because it is numerically very expensive to calculate all R−dependent integrals in each
step of the minimization calculation, we assume that R = Rfree if Rfree < 1 and in all other
cases that R = 1 (see main text of Chap. 6). Next, we minimize the energy, Eq. (D.2),
with respect to αHO and αfree for each interaction strength. We show a plot of the energy
as a function of these parameters in Fig. D.1 for two different interaction strengths: Once
Rfree < 1 (right panel) and once Rfree > 1 (left panel). We can clearly see that the energy
is minimized when one of the parameters is zero, i.e., at the boundaries of the plot. For
the left panel with Rfree > 1 we can see that it is energetically favorable to have αfree = 0
while in the right one αHO = 0 is preferred. This explains the sharp transition discussed in
the main text: there is no particle number or interaction strength for which both α-values
are non-zero after the minimization of the energy.
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Figure D.1.: Energy calculated with our ansatz, Eq. (D.2) as a function of the parameters
αHO and αfree for N = 9 bosons.
In the left panel, we have a two-body interaction of ln(B2)/N = −2.05 while
in the right panel, we have ln(B2)/N = −2. Note that the α-parameters are
defined to be positive. Figure taken from Ref. [210].

D.2. Alternative variational ansatz

As briefly mentioned in the main text, we also employed a different variational ansatz to
study the system. In this approach, both shapes are scaled with the characteristic width
R:

Ψ(x⃗) = N (αHOfHO(r/R) + αfreeffree(r/R)) , (D.3)

where N is the normalization coefficient. The advantage of this ansatz, compared to the
one used in the main text, is that the energy can be minimized with respect to αHO, αfree

and R with similar numerical effort as for the previous ansatz. This eliminates the need to
rely on physical intuition to determine R. The disadvantage is that it is difficult to justify
why both shapes should scale with R; the physically more relevant scenario is presented
in the main text.

Furthermore, this ansatz does not capture the sharp transition between the two states,
which we inferred from the results of Ref. [217]. Instead, minimization of this ansatz leads
to a smooth transition between the trap dominated state and the interaction dominated
one. We show this in Fig. D.2, where we display the ratio of the mean-square radius. As
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Figure D.2.: Ratio of radii (left), r2N+1/r
2
N , and static response per particle (right), χ/N ,

calculated using the ansatz where both shapes are scaled with R, Eq. (D.3).
Left panel: Symbols are the results obtained from the minimization of the
energy with. The black dashed line in the left panel is the universal prediction
from Ref. [39] and the vertical solid grey line shows the critical interaction
strength ln(B2/ω)/N = −2.148, Eq. (6.14). Dashed lines are added to guide
the eye.

one can see, in contrast to Fig. 6.3, we now observe a smooth crossover between the two
states of the system for all particle numbers, with the transition becoming sharper as the
particle number increases. We can also see that the critical interaction strength predicted
using perturbation theory in the main text, ln(B2/ω)/N ≈ −2.15, roughly matches the
point where the system transitions between the two states using Eq. (D.3).

Additionally, we present the static response in this figure. The difference between
this ansatz and the one used in the main text becomes even more clear: instead of a
sharp transition from a static response of one to zero, we observe a smooth decrease
in compressibility. From this observable, we cannot infer an increase in sharpness with
increasing particle number. Nevertheless, this figure demonstrates that the static response
can still be used to distinguish between the trap-dominated and interaction-dominated
states.

In summary, the conclusions drawn in Chap. 6 remain valid if the ansatz discussed in this
appendix, Eq. (D.3), is employed. The primary difference is that, unlike the ansatz used
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in the main text, this one results in a smooth crossover between the two states, contrary to
the sharp transition suggested by Ref. [217]. As discussed in the outlook of Chap. 6, more
ab initio calculations are necessary to confirm the sharp transition between the two states
in our system. Additionally, incorporating density-dependent coupling constants into the
Gross-Pitaevskii equation might help determine which of the two variational approaches
is physically more accurate. Based on our current understanding, we believe that the
approach used in the main text better captures the physics of attractively interacting
bosons in a 2D harmonic trap.
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