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Abstract

The human liver is capable of regenerating after partial surgical resection. While driven
by rapid cell division at the microscale, tissue growth associated with liver regeneration
significantly affects the liver’s meso- and macroscale perfusion capability, which liver
functionality critically depends on. In this thesis, a computational framework is pre-
sented that integrates three models associated with physics at multiple spatial scales
to simulate the effect of liver tissue regrowth on the perfusion capability of a full-scale
liver. This includes (1) a discrete vascular tree approach representing blood supply and
drainage at the organ scale, (2) a multi-compartment homogenized flow model represent-
ing perfusion at the lower levels of the hierarchical tree network and the liver lobules, and
(3) an isotropic growth model of a poroelastic medium representing hyperplasia of liver
lobules. Appropriate coupling mechanisms are provided and discussed to ensure physi-
ological interaction between these components. Additionally, an empirical driving force
is motivated, initiating compensatory growth of liver tissue until a physiological blood
flow rate is achieved at each point of the liver domain. This driving force is calibrated
based on available liver data. Using a patient-specific liver geometry, it is demonstrated
that the multiscale-multiphysics model correctly predicts the typical perfusion outcome
associated with common surgical cut patterns.



Zusammenfassung

Die menschliche Leber besitzt die Fähigkeit, sich nach einer chirurgischen Resektion
zu regenerieren. Während dieses Wachstum auf mikroskopischer Ebene durch schnelle
Zellteilung angetrieben wird, beeinflusst es auf meso- und makroskopischer Ebene die
Perfusionsfähigkeit der Leber, von der ihre Funktionalität maßgeblich abhängt. In dieser
Arbeit wird ein Berechnungsmodell vorgestellt, das drei Modelle aus unterschiedlichen
physikalischen Skalen integriert, um den Einfluss des Lebergewebewachstums auf die Per-
fusionsfähigkeit einer vollständig skalierbaren Leber zu simulieren. Diese Modelle um-
fassen (1) einen diskreten Gefäßbaumansatz, der die Blutversorgung und -drainage auf
Organebene darstellt, (2) ein homogenisiertes Multikompartment-Flussmodell, das die
Perfusion auf den unteren Ebenen des hierarchischen Gefäßnetzes und der Leberläppchen
repräsentiert, sowie (3) ein isotropes Wachstumsmodell eines poroelastischen Mediums,
das die Hyperplasie der Leberläppchen beschreibt. Geeignete Kopplungsmechanismen
werden bereitgestellt und diskutiert, um eine physiologische Interaktion zwischen diesen
Komponenten zu gewährleisten. Darüber hinaus wird ein empirischer Wachstumsmech-
anismus motiviert, der das kompensatorische Wachstum des Lebergewebes initiiert, bis
an jedem Punkt des Leberbereichs eine physiologische Blutflussrate erreicht wird. Dieser
Wachstumsmechanismus wird anhand verfügbarer Leberdaten kalibriert. Anhand einer
patientenspezifischen Lebergeometrie wird gezeigt, dass das Multiskalen-Multiphysik-
Modell das typische mit gängigen chirurgischen Resektionsschnitten verbundene Perfu-
sionsergebnis korrekt vorhersagt.
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1 Introduction

1.1 Motivation

Liver cancer poses a significant global health challenge and is the seventh most commonly
diagnosed cancer and the third leading cause of cancer mortality worldwide [1]. The
burden of this disease and the incidence of liver cancer is increasing in aging societies,
leading to an increasing demand for partial liver resection, or partial hepatectomy (PHx),
a surgical procedure that involves the removal of diseased portions of the liver [2]. The
liver’s unique ability to regenerate, capable of restoring up to 70 % of its original mass,
allows for such procedures to be performed without complete loss of liver function.
However, the success of liver regeneration, and consequently the functionality of the
remaining liver tissue, depends on a multitude of critical factors. This includes the
remaining liver volume, the adequacy of blood supply and drainage, and the impairment
of the micro- and macrocirculation due to the individual cut pattern [3].
The process of liver regeneration is intricately linked to the organ’s vascular archi-

tecture. The liver is highly vascularized, with a complex network of blood vessels that
serve vital physiological functions. The effectiveness of liver regeneration and thus, the
long-term success of the surgical intervention depends on the ability of the remaining
liver tissue to maintain sufficient blood perfusion. However, the growth of new tissue
during regeneration can significantly alter perfusion dynamics, potentially compromising
liver function [4]. Therefore, the patient-specific assessment of the postoperative success
of partial liver resection prior to the operation remains a challenge for surgeons [4].

Computational models can help predict the impact on blood perfusion and determine
the amount of liver tissue that can be removed safely while functionality is maintained.
However, patient-specific modeling of surgical liver resection requires adequate modeling
of the liver’s hierarchical vasculature. Additionally, modeling of liver growth is strongly
linked to modeling perfusion, and therefore requires an appropriate patient-specific rep-
resentation of the hierarchical liver vasculature. While medical imaging technologies
have advanced considerably, they still fall short of capturing the full complexity of the
liver’s vasculature, particularly at smaller scales. Given the limited resolution of in-vivo
imaging, reconstruction from imaging data is generally only possible for the few largest
vessels in the hierarchy. Consequently, it becomes necessary to generate these vascu-
lar structures synthetically using computer-based methods built on energy minimization
principles [5]–[9].
While there are methods to create realistic vascular networks, which are largely based

on optimization principles, these synthetic trees are often limited in their ability to
interface directly with models of tissue mechanics and deformation. Blood perfusion
within the liver is closely linked to the mechanical properties of the tissue, including

1



its ability to deform under physiological conditions. To enhance the predictive capabili-
ties of computational liver models, it is essential to incorporate both vascular structure
and tissue mechanics. This requires a coupling of discrete vascular tree models with
continuum-based approaches. One solution is to resort to homogenization and the theory
of poromechanics, replacing the complex heterogeneous medium by a fictitious homo-
geneous medium with equivalent macroscale behavior. In this work, it is demonstrated
that the two modeling approaches, i.e., discrete synthetic vascular trees and continuum
poroelasticity, can be synergistically combined to better visualize changes in perfusion
at the organ scale, for example, due to partial resections.
Despite advances in these areas, the interplay between liver regrowth and perfusion,

particularly at multiple scales, remains inadequately addressed in current models. This
thesis aims to address this gap by developing a multiscale-multiphysics framework that
integrates vascular tree generation, liver perfusion modeling, and simulation of liver
tissue growth. By integrating these components, the proposed framework is intended to
provide a more accurate and comprehensive analysis for predicting the outcomes of liver
resection surgery, ultimately supporting surgeons in planning.
As the field of computational biomechanics advances, there is an increasing impor-

tance of developing models that can seamlessly integrate different scales of biological
processes, ranging from the cellular levels to the tissue and organ scales. The liver’s re-
markable ability to regenerate, combined with its intricate vascular architecture, makes
it a particularly challenging candidate for such multiscale modeling. Conventional mod-
els that target only one scale or specific aspect of liver physiology often fail to capture the
full complexity of the organ’s behavior, especially when it undergoes surgical procedures
like liver resections. A multiscale-multiphysics approach, as presented in this thesis,
is crucial to understanding the interplay between tissue regeneration, blood perfusion,
and mechanical forces in the liver, thereby offering a more comprehensive analysis of
postoperative liver function.
Moreover, accurately modeling liver regeneration and perfusion has crucial clinical

significance. Liver surgeries, especially resections, pose a risk of postoperative liver
failure, frequently due to insufficient tissue regeneration or impaired blood supply in
the remaining liver tissue. A comprehensive whole-organ model, that connects liver
regrowth and the associated change in perfusion capability across the relevant scales
is still lacking. The development of a model that integrates vascular tree generation,
tissue growth simulation, and perfusion analysis aims to offer surgeons critical insights
for both preoperative planning and postoperative care. This framework could help in the
identification of the most effective resection strategy for each patient, thereby reducing
the risk of complications and enhancing overall surgical outcome. Ultimately, this study
aims to integrate computational modeling with clinical practice.

2



1.2 Previous work in the field

1.2.1 Macroscopic scale

One commonly employed approach to generate hierarchical vascular trees is constrained
constructive optimization (CCO), which builds on Murray’s law [10] to optimize the
relationship between vessel radii and flow [5], [6]. The CCO method constructs vascular
trees by progressively adding segments and adjusting their geometry locally to enhance
blood flow efficiency. Building on the CCO method, organ-specific vascular systems have
been generated for various organs, including the liver [7], [11], heart [12], stomach and
brain [13].
More advanced models, such as those developed by Jessen et al. [14]–[16], reformu-

late the generation of vascular trees as a nonlinear optimization problem, enabling the
generation of an optimal global tree geometry. This approach allows for more flexibility
in adjusting boundary conditions and constraints and generates trees that are optimal
both in topology and geometry. Additionally, this approach produces synthetic trees
that more closely match physiological data compared to traditional CCO methods [14].
Several models have been developed to simulate liver perfusion. Some models describe

perfusion in the whole organ, either based on synthetically generated vascular trees [17] or
experimentally determined trees [18], [19]. Other models have been developed to account
for the vascular features across multiple spatial scales by partitioning the vasculature
into spatially coexisting compartments and homogenizing them using Darcy’s law [20].
This is also known as the multi-compartment Darcy approach, which models perfusion
as a Darcy porous-media flow, using effective permeability obtained from anatomical
vascular structures. Each compartment captures specific spatial scales and interactions
between compartments are modeled through distributed sources and sinks that account
for mass exchange. This model has been successfully applied to simulate perfusion in
various organs, including the heart [21], [22] and the liver [17].
Various models based on continuum mechanics have been proposed to model the

growth of biological tissues [23]–[31], including heart [32]–[34], brain [35], [36], tumor
tissue [37], arterial wall growth [38], [39], cardiovascular modeling [40] or vein graft
growth [41]. A major focus lies on specifying individual growth laws and identifying
factors that drive growth for each specific application. These models can simulate the
volumetric growth of tissue stimulated by mechanical forces without the necessity of
resolving the underlying processes at the cell level [3]. To the best of our knowledge,
there is currently no continuum mechanics model that addresses liver regrowth after
partial hepatectomy.
Only a few models exist that represent liver regeneration at the organ scale. They are

primarily phenomenological and mostly based on ordinary differential equations (ODE),
and focus on the temporal evolution of the regeneration process, integrating risk factors
for postoperative liver failure [3]. Phenomenological models predicting postoperative
liver volume regeneration and assessing whether the liver will fully recover or suffer
irreversible size reduction based on preoperative physiological factors and surgical pa-
rameters are published in [42]–[45].
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1.2.2 Mesoscopic scale

On the mesoscopic scale, models exist that focus on the perfusion of idealized liver lob-
ules. In [46], a model has been introduced that simulates blood distribution within
lobules by depicting the liver’s blood flow architecture as a combination of tree-shaped
networks and porous systems. In [47], the authors developed a mathematical model to
investigate blood flow dynamics within liver lobules, treating them as a porous medium.
This approach examines the effects of pressure variations after liver resection, and the
consequent impact on blood flow and tissue deformation. In [48], the authors devel-
oped a 3D image-based model of liver microcirculation to simulate blood flow through
reconstructed human liver sinusoids. Their findings indicate that permeability in the
liver lobules is directionally dependent, with higher permeability along the central vein
compared to the radial and circumferential directions. This underscores the necessity
of incorporating sinusoidal anisotropy into liver perfusion models. In [49], the authors
extended existing liver lobule models by integrating vascular septa and anisotropic per-
meability, improving the representation of microcirculatory dynamics. Their results
suggest that including vascular septa leads to more homogeneous perfusion patterns
that more accurately represent physiological conditions.
Liver lobule models have also been extended to simulate the relationship between

liver function and perfusion. For example, a two-scale continuum model was proposed
to describe liver perfusion and cell metabolism, combining a porous medium approach
for blood flow in lobules and a model for cell-level metabolism [50]. The framework
integrates perfusion and metabolic processes through a coupled system of partial and
ordinary differential equations (PDE–ODE), accounting for key components like glucose,
lactate, and glycogen. In [51], [52], a computational model was introduced to study fat
distribution within liver lobules, integrating microperfusion, oxygen gradients, and fat
metabolism. The model simulates the interactions between perfusion and metabolic pro-
cesses, predicting fat accumulation patterns based on various factors such as perfusion,
oxygen levels, and free fatty acid concentrations. In [53], a multi-component, tri-phasic,
bi-scale model was proposed to explore the coupled effects of perfusion, metabolism, and
fat deposition.
A model for liver remodeling processes has been developed within the framework of

continuum porous media theory, focusing on two-dimensional liver lobules. For example,
in [54], a biphasic mechanical model was used to investigate how pressure gradients drive
vascular remodeling after liver resection, particularly the formation of new sinusoidal
canals to restore venous drainage.
In [55], an efficient reduced-order model was introduced for simulating blood perfusion

in liver lobules, using Darcy’s equation. This approach employs a mapping technique to
avoid meshing for each lobule geometry, incorporates proper orthogonal decomposition
and discrete empirical interpolation, which demonstrates high accuracy and computa-
tional efficiency.
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1.2.3 Cell scale

At the cell scale, discrete models, e.g., based on cellular automata, have been developed
to represent the proliferation of cells that occur during tissue growth [56].
In [57], the authors developed a cellular automaton-based model to simulate liver

tissue damage and repair, focusing on the dynamics of hepatocyte proliferation, necrosis
and injury propagation. The model predicts tissue outcomes based on key parameters
such as cell proliferation and death rates, identifying critical thresholds that determine
whether tissue will survive or undergo irreversible damage.
Additionally, agent-based models have gained traction for simulating mechanical and

physiological phenomena in cells and tissues [58]. In this context, agent-based models
have been used to explore tissue mechanics by capturing the behavior of individual
cells and their interactions. These models range from lattice-based approaches (e.g.
cellular automata) [59] to off-lattice models (e.g. deformable cell models) [59] and hybrid
discrete-continuum models [60], [61], each offering different capabilities and limitations
depending on the biological processes under study [58], [62].
A model that integrates cell-scale dynamics within a lobule-scale framework is pub-

lished in [63]. The model operates primarily at the cell scale and focuses on individual
hepatocytes and their behaviors during the regeneration process. Key parameters in-
clude cell division probability, coordinated cell orientation, cell cycle duration, migration
activity, and cell polarity.
In another study [64], a single-cell-based biophysical model has been developed to

investigate the spatio-temporal growth dynamics of two-dimensional tumor monolayers
and three-dimensional tumor spheroids. The model allows for an analysis of how nutrient
availability and biomechanical forces influence individual cell behavior and overall tumor
properties.
In [65], the authors developed a mathematical model to predict the mechanism of

hepatocyte-sinusoid alignment during liver regeneration. The model captures the regen-
eration process and demonstrates that the alignment of daughter hepatocytes along the
orientation of the nearest sinusoids is essential for restoring tissue architecture.
A separate study [66] introduced a model that focuses on the overall kinetic processes of

hepatic glucose metabolism, integrating multiple metabolic pathways (glycolysis, gluco-
neogenesis, glycogen metabolism) and their hormonal regulation in human hepatocytes.
Another approach at the cell scale is based on Monte Carlo simulations, which offer

a stochastic framework for modeling the dynamics of tissue-cell populations and inves-
tigating complex processes such as pattern formation and tissue repair [67], [68].

1.3 Aims and outline

The primary aim of this thesis is to develop such a multiscale-multiphysics framework
that integrates models associated with different physics at multiple spatial scales, en-
abling the simulation of the effect of liver tissue regrowth on the perfusion capability
of a full-scale liver. The simulations will address several spatial scales, ranging from
the lobular level to the organ level, providing a comprehensive view of liver regrowth.
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This framework will integrate several key components, which are published in [14]–[16],
[69]–[71]. My contributions as a first author are published in [69], [70]:

� Synthetic vascular tree generation: In [14], an alternative method to CCO
for generating synthetic vascular trees was developed. This method is based on
rigorous mathematical optimization. Unlike CCO, it enables the generation of a
tree that optimizes both the tree geometry and its topology. The algorithmic com-
plexity of this framework was improved, while complex physiological effects such as
the non-Newtonian behavior of blood were investigated up to the microcirculation
[15]. In [16], the approach to synthetic tree generation was extended to multiple
non-intersecting vascular trees within non-convex organs, allowing for consistent
representation of both supplying and draining vasculature simultaneously. The
generation of vascular trees is crucial for accurately simulating blood flow in the
liver after resection.

� Poroelasticity-based perfusion modeling: The core of the perfusion simu-
lation is a continuum poromechanics-based approach that represents liver tissue
as a deformable, poroelastic medium. A liver perfusion model will be extended
by incorporating a poroelastic framework capable of simulating the coupled ef-
fects of blood flow and tissue deformation. This will allow for the consideration
of changes in liver perfusion as the liver regenerates and grows. In [69], a first ap-
proach to a whole-organ perfusion model was presented, based on the coupling of
a discrete synthetic vascular tree framework (macroscale vasculature) and poroe-
lasticity (meso- and lobule-scale vasculature). This model will be extended using a
multi-compartment approach to account for vascular features across various spatial
scales [70].

� Liver regrowth framework: A continuum mechanics-based model for liver re-
growth will be introduced and coupled with a multiscale perfusion model to predict
changes in liver perfusion and deformation characteristics over time. Through this
framework, the growth of liver tissue at the organ level will be modeled, incorpo-
rating interactions between regenerating tissues and their mechanical environment.
The accuracy of the liver regrowth simulations will be ensured by calibrating and
validating the model against experimental data. This process involves comparing
synthetic vascular trees with data of real trees and calibrating the growth evolution
equation using experimental data.

The structure of the thesis is as follows:
In Section 2, the multiscale mechanisms of hepatic vasculature and perfusion, perfusion-

related factors that drive liver growth, different liver resection procedures and basic
concepts for their modeling are explained.
In Section 3, the concepts of continuum poroelasticity at finite strains are introduced,

and the kinematics, balance laws, and constitutive equations of the poroelastic model
are provided in terms of a two-phase pressure-displacement formulation.

Section 4 reviews the method for synthetically generating vascular trees based on
mathematical optimization. Existing approaches from the literature are first reviewed,
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followed by the introduction of a new method published in [14]–[16]. The section includes
explanations of the method’s improvements and advantages over existing approaches,
along with validation of its results against real data from human liver trees.
In Section 5, the continuum poroelastic and discrete vascular tree models are con-

nected through suitable interface assumptions regarding geometry and boundary condi-
tions. Additionally, the weak formulation of the poroelastic model is derived. The char-
acteristic behavior of the poroelastic model is first discussed through a two-dimensional
test problem, and subsequently applied to a three-dimensional liver resection. The ap-
proach is critically assessed, and improvements to be applied in the following sections
are discussed.
In Section 6, the framework is developed by successively combining three model

components. First is a discrete vascular tree approach, which represents blood supply
and drainage at the organ scale. This is followed by a multi-compartment homogenized
flow model for perfusion at lower levels of the hierarchical tree network and liver lobules,
and an isotropic growth model of a poroelastic medium to represent hyperplasia of
liver lobules. Coupling mechanisms and boundary conditions are also discussed, and
the driving force that initiates compensatory liver tissue growth is motivated. The
characteristics of each modeling step are briefly illustrated using a two-dimensional test
problem.
In Section 7, the capabilities of the computational framework are demonstrated for

a full-scale patient-specific liver example, with the typical perfusion outcome associated
with a common surgical cut pattern. This also includes a statistical analysis to better
assess the effects of liver resection on volumetric blood flow rates.
In Section 8, the thesis concludes with a discussion of the results, potential clinical

impact, and directions for future research.
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2 Liver regrowth: biological mechanisms,
anatomy, and functional insights

We start by describing the general characteristics and the function of the human liver.
We then dive into the multiscale anatomy of the liver, with a particular focus on its
vasculature that determines liver perfusion. After, we explain different liver resection
procedures. We then describe the perfusion-related factors that drive regrowth. We
focus on the mechanisms from the lobule scale upwards, which are the ones relevant for
the current modeling framework. We close this section by outlining the causes of liver
failure.

2.1 General characteristics and liver function

The liver is the main site of metabolization and detoxification of xenobiotics in the
human body and is the largest internal organ, located in the upper right quadrant of
the abdomen (Fig. 2.1). It is located just below the diaphragm, with partial protection
from the lower ribs. In adults, it typically weighs around 1.4 kg and measures about 15
cm in width [4].

Figure 2.1: The human liver 1.

1Source: https://en.wikipedia.org/wiki/Liver
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The liver consists of two primary lobes: the right lobe (lobus dexter) and the left
lobe (lobus sinister) (see Fig. 2.2). The right lobe is significantly larger, being roughly
six times the size of the left lobe. Additionally, two smaller lobes, the caudate lobe
(lobus caudatus) and the quadrate lobe (lobus quadratus), are located on the underside
of the liver. The liver is generally described as wedge-shaped, with a smooth and glossy
surface.
The liver is encased in a thin, fibrous layer called Glisson’s capsule, which serves as

a protective covering. It is also secured in place by various ligaments, including the
falciform ligament, which connects the liver to the abdominal wall and diaphragm. This
ligament also separates the larger right lobe from the smaller left lobe.

Figure 2.2: Human liver with its lobes 2.

The liver plays a crucial role in maintaining numerous physiological processes, with
its functions broadly categorized into metabolic, storage, detoxification, synthetic and
immunological roles [72].

� Metabolic functions: The liver is essential for the body’s metabolic processes, sig-
nificantly influencing carbohydrate, lipid, and protein metabolism. It maintains
blood glucose homeostasis by transforming glucose into glycogen for storage (glyco-
genesis), breaking down glycogen into glucose (glycogenolysis), or synthesizing glu-
cose from non-carbohydrate sources (gluconeogenesis). In lipid metabolism, the
liver produces cholesterol and triglycerides, and it also transforms carbohydrates
and proteins into fatty acids and triglycerides. Regarding protein metabolism, the
liver deaminates amino acids and produces ammonia, which is subsequently con-
verted into urea for excretion. Additionally, it synthesizes various plasma proteins
and non-essential amino acids.

2Source: https://commons.wikimedia.org/wiki/File:Liver_Diagram.svg
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� Storage functions: The liver serves as a storage for various vital substances. For
example, it stores glycogen as a quick energy reserve to help regulate blood glucose
levels during fasting. Additionally, the liver stores fat-soluble vitamins (A, D, E,
and K), vitamin B12, and minerals such as iron, to meet the body’s needs during
periods of deficiency.

� Detoxification functions: The liver serves as the body’s main detoxification organ,
essential for processing drugs and toxins through various chemical reactions. These
processes transform harmful substances into less toxic, water-soluble forms that can
be more easily eliminated. It also detoxifies ammonia, a toxic byproduct of protein
metabolism, by converting it into urea, which is then excreted by the kidneys.

� Synthetic functions: The liver synthesizes several vital substances necessary for
the proper function of the body. It produces bile, stored in the gallbladder and
released into the small intestine to aid in digestion. The liver also produces key
plasma proteins, including albumin, which supports blood pressure regulation, and
clotting factors essential for blood coagulation. Additionally, the liver produces
and regulates hormones and growth factors, which are essential for growth and
development.

� Immunological functions: The liver with its immunological functions is crucial in
sustaining overall health. For instance, Kupffer cells can eliminate up to 99% of
bacteria from portal vein blood. Additionally, the liver produces cytokines and
other factors which help to maintain immune homeostasis.

The liver’s diverse functions are crucial for sustaining overall health and balance in
the body. Its involvement in metabolism, synthesis, storage, detoxification, and immune
regulation underscores its significance as a vital organ of the body. Understanding these
functions is key to recognizing how liver dysfunction can influence health and contribute
to a range of diseases.

2.2 Multiscale vasculature and liver perfusion

Liver functions rely on its vasculature that enables the perfusion of the complete liver
with blood [73]. Understanding this vascular architecture is crucial for comprehending
the liver’s role in nutrient processing, detoxification, and metabolic regulation. Figure
2.3 illustrates the multiscale nature of liver vasculature.

2.2.1 Macroscopic hepatic vasculature

At the organ (or macro-) scale, the liver receives a unique dual blood supply from the
hepatic artery and the portal vein, each with diameters up to 1 cm, and blood exits
through the hepatic veins. The hepatic artery originates from the heart and carries
oxygen-rich blood, and the portal vein stems from the digestive tract and carries nutrient-
rich blood.
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The human liver has an overall blood flow supply of about 1.5 l/min, which translates
to approximately 100-130 milliliters per minute per 100 grams of tissue [74].
The liver’s arterial blood supply constitutes roughly 25% of its total blood flow but

delivers about 50% to 80% of the organ’s oxygen. This inflow is pulsatile, averaging
350-400 ml/min at a pressure of 100 mmHg. The hepatic artery divides into left and
right branches, which further branch into smaller arterioles that enter the liver lobules,
supplying oxygen to hepatocytes to sustain their high metabolic activity.
In contrast, venous blood makes up about 75% of the liver’s blood flow. The portal

vein provides a steady flow of around 1.1 l/min at a pressure of 7-10 mmHg. It branches
extensively within the liver, initially splitting into left and right branches, and then
further into segmental branches, which deliver blood into the hepatic sinusoids where
nutrients and other substances are processed.
In the liver, the vessels of the hepatic artery and portal vein are generally arranged

in parallel and run within structures known as portal triads. Alongside these vessels,
the portal triads also include ducts from the biliary tree, which run parallel to both the
hepatic artery and portal vein.

Organism 

scale

Organ

(macro)-scale

(cm)

Lobule

(meso)-scale

(mm)

Sinusoid

(micro)-scale

(μm)

Figure 2.3: Multiscale liver vasculature (organism- and lobule-scale pictures from [4]) and sinusoid-scale
picture from [75] (Licence: CC BY 2.5).

After circulating through the liver’s intricate microvasculature, blood collects in the
central veins of the lobules. These central veins converge to form the major hepatic veins
(right, middle, and left hepatic veins) which drain deoxygenated blood from different liver
regions into the inferior vena cava. From there, the blood returns to the heart. The liver
maintains a steady outflow with an average rate of about 1.5 l/min and a pressure range
of 3 to 5 mmHg [74].
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2.2.2 Microscopic hepatic vasculature

At the lobule (or micro-) scale, the blood is driven through sinusoids, small capillaries
with a diameter of approximately 10 µm. The organ-scale vessels and the sinusoid
microcirculation are connected by a hierarchical vascular tree that consists of up to 20
levels of bifurcations [76]. The sinusoids are uniformly distributed throughout the entire
liver volume, forming a three-dimensional network around rows of hepatocytes that are
responsible for the metabolic liver functions. The sinusoids are arranged in lobules with
a characteristic size of 1.5 mm, forming the fundamental building blocks of the liver.
Each lobule is classically idealized as a prismatic volume of hexagonal cross section with
a supplying triad made of a hepatic artery, a portal vein and a bile duct at each of the six
hexagon corners, and a draining central vein along the axis of the lobule. Liver lobules
are organized in a structure similar to hexagonal cells found in bee honeycombs.
Some blood from the portal triads enters the vascular septa, which are shared vascular

boundaries between adjacent lobules, bordered by portal triads on either side [76]. These
vascular septa deliver blood to the tissue between the portal triads via a network of small
microvessels known as septal branches, which extend from the portal triads. The blood
then moves from the portal triads and vascular septa into the intricate network of hepatic
sinusoids. Blood flow through these sinusoids can originate from the portal vein, the
hepatic artery, or a combination of both.
Sinusoids lie between rows of hepatocytes and are lined with endothelial cells that

have thin extensions perforated with small pores called fenestrae. These fenestrations
allow nutrients, toxins, and other solutes from the blood to pass into the space of Disse,
a narrow region between the endothelial cells of the sinusoids and the hepatocytes. This
space also permits the movement of proteins and plasma. The sinusoids maintain a low
pressure of 2-5 mmHg and slow blood flow, allowing hepatocytes to process and interact
with the circulating blood [76]. At the center of each lobule is a central vein, where
blood from the sinusoids drains before eventually flowing into the hepatic vein and then
the inferior vena cava.
The unique liver’s dual blood supply, comprising oxygenated blood from the hepatic

artery and nutrient-rich blood from the portal vein, ensures a continuous and ample
flow to sustain its vital functions. This efficient blood circulation allows hepatocytes
to process nutrients and detoxify harmful substances before they enter the systemic
circulation.
A thorough understanding of the liver’s vascular structure is essential in clinical prac-

tice, especially for procedures like liver surgery and transplantation, as well as in the
management of conditions such as cirrhosis and portal hypertension.

2.2.3 Liver cells

The liver contains a variety of specialized cells, each contributing uniquely to its com-
plex functions. Key cell types include hepatocytes, Kupffer cells, hepatic stellate cells
and endothelial cells (see Fig. 2.3). Grasping the roles of these cells is essential for
understanding liver physiology.

12



Hepatocytes are the liver’s primary cells, making up roughly 70-80% of its cellu-
lar mass. These large, polygonal cells are crucial for various liver functions, including
metabolism, detoxification, and the synthesis of vital substances.
Kupffer cells are unique macrophages located within the liver sinusoids, forming the

body’s largest group of stationary immune cells. They are essential for the liver’s immune
defense.
Hepatic stellate cells, or Ito cells, lie in the space of Disse, positioned between hepato-

cytes and the endothelial cells of sinusoids. They play crucial roles in both the normal
functioning and pathological changes of the liver.
The hepatic sinusoids are lined by specialized endothelial cells with fenestrations,

facilitating the exchange of nutrients and waste between the blood and liver cells. These
unique cells are vital for the liver’s filtration and metabolic processes.
The liver’s diverse functions depend on the interplay between its various cell types.

This coordination is essential for maintaining liver health and understanding its response
to damage, highlighting the organ’s critical role in overall physiological balance.

2.3 Liver resection

Liver resection, or hepatectomy, is a surgical procedure performed to remove a portion of
the liver. This procedure is primarily performed to address liver malignancies, including
primary tumors like hepatocellular carcinoma (HCC) and metastatic tumors from can-
cers such as colorectal cancer [77]. It is also performed for the removal of symptomatic
benign liver tumors like hemangiomas, hepatic adenomas, and focal nodular hyperpla-
sia, particularly when they lead to complications [78]. Liver resection might also be
required for substantial or problematic liver cysts and abscesses that fail to improve
with alternative therapies.
The liver possesses the remarkable ability to regenerate itself after resection or follow-

ing injuries [79], [80], which enables the removal of a large portion of its tissue while still
permitting full recovery and restoration of function. The liver’s remarkable ability to
regenerate itself after resection or injury has been a subject of fascination for centuries.
This regenerative capacity is not only a critical aspect of liver physiology but also a
cornerstone of various medical treatments, including liver surgery and transplantation.
This unique characteristic of the liver is famously depicted in Greek mythology, where
Prometheus’s liver would regrow overnight after being eaten by an eagle daily, signifying
the organ’s extraordinary regenerative ability (Fig. 2.4).
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Figure 2.4: Prometheus with the eagle3.

This regenerative capacity supports the effectiveness of liver resection as a viable treat-
ment option. Various surgical approaches are used for liver resection, chosen according
to the tumor’s size, its position, and the patient’s general condition.

2.3.1 Surgical approaches

Traditional open liver resection involves a large abdominal incision (laparotomy) to
access the liver directly, providing a thorough view of the liver and nearby organs, which
is particularly advantageous for complex cases [81]. However, this approach typically
results in longer recovery periods, and a higher risk of complications like infections and
significant blood loss and increased postoperative pain.
On the other hand, laparoscopic liver resection is a minimally invasive procedure that

uses small abdominal incisions to insert a laparoscope (a slender tube with a camera)
and specialized tools [78]. This technique offers benefits such as reduced postoperative
pain, shorter hospital stays, quicker recovery, and less visible scarring. Nevertheless,
laparoscopic resection requires advanced surgical skills and may not be feasible for larger
or challenging tumors, limiting its applicability for some patients.
Robotic-assisted liver resection is an advanced surgical approach that utilizes robotic

technology to improve precision, control, and visualization during minimally invasive
procedures [82]. This technique enhances the advantages of laparoscopic surgery by
offering greater maneuverability and potentially superior results. However, the use of
robotic systems comes with higher costs, extended surgical durations, and the necessity
for specialized training and expertise.
Beyond traditional surgical methods, ablation therapies like radiofrequency ablation

(RFA), microwave ablation, and cryoablation provide non-invasive options for treating
liver tumors by targeting and destroying cancerous cells without the need for tissue
removal [83]. These techniques can be applied either through the skin or via laparo-
scopic approaches, making them viable for patients who may not qualify for conventional

3Source: https://de.wikipedia.org/wiki/Prometheus
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surgery. Despite their advantages, these methods are typically effective only for smaller
tumors and may present challenges such as incomplete treatment and the possibility of
tumor regrowth.

2.3.2 Preoperative planning and postoperative recovery

Effective and successful liver resection requires thorough preoperative preparation [84].
Comprehensive imaging techniques like computed tomography (CT), magnetic resonance
imaging (MRI), and ultrasound are vital for assessing the tumor’s size, location, and its
proximity to critical blood vessels. Assessing liver function through blood tests and other
diagnostics is crucial to ensure adequate liver performance after surgery. Furthermore,
evaluating the patient’s overall health and any existing comorbidities is essential for
selecting the optimal surgical method and mitigating potential complications.
Postoperative management and recovery play critical roles in the liver resection process

[85]. Close monitoring in the initial recovery phase is essential to identify and address
complications like bleeding, infection, or liver dysfunction. Pain control is important for
recovery and reducing the risk of complications, while nutritional support helps foster
liver regeneration and overall healing. Ongoing follow-up is necessary to track liver
function, check for potential cancer recurrence, and handle any long-term issues that
may arise.

2.3.3 Anatomical versus non-anatomical resection

Resections of the liver can involve various cutting planes depending on the location and
extent of the tumor, as well as the patient’s overall health. Besides the size of the
pathology, the choice of cutting plane is also determined by the goal of preserving as
much liver tissue as possible. These factors are carefully considered by surgeons in order
to preserve sufficient liver function while achieving the best possible outcome [3].
In practice, there exist two ways of carrying out a resection [86]. One is anatomical

resection, which involves removing portions of the liver along anatomical boundaries.
The liver is partitioned into eight functionally independent segments, where each segment
is supplied by its own larger branch of the supplying tree, which splits into smaller
vessels within the segment, and is connected to a larger branch of the draining tree (see
Fig. 2.5). This is also known as the Couinaud classification, which enables segmental
resections without affecting other segments [87]. Examples include left hepatectomy,
right hepatectomy, and segmental resections. The second option is a non-anatomical cut
which involves removing a part of the liver that does not strictly follow the anatomical
boundaries, for instance, when the tumor is distributed over multiple segments. In this
case, the surgeon is faced with the decision between the risk of tumor recurrence and
the risk of liver failure [3].
In this context, assessing changes in perfusion, flow redistribution and the mechanical

response of the resected liver has clinical relevance [79]. An insufficient blood supply can
result in ischemia, where the tissue does not receive enough oxygen and nutrients. Pro-
longed ischemia can cause tissue damage and death. Therefore, the liver’s regenerative
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capacity can be impaired if a significant part of the tissue does not receive prolonged
sufficient blood supply. The parts of the associated isolated vasculature which are cut
off and no longer supplied with blood, are often denoted as orphans.

Figure 2.5: Division of the human liver into eight segments corresponding to the portal vein and inferior
vena cava (anterior view). From [88] (Licence: CC BY).

2.4 Liver regeneration and driving mechanisms at the
microscale

Since blood from the portal vein cannot easily bypass the liver to return to the heart,
almost the same volume of blood needs to flow through the smaller liver remnant after
PHx. As a consequence, massive hemodynamic changes occur immediately after PHx.
To enable the same blood flow through a reduced cross section, the portal pressure needs
to increase (portal hypertension). In contrast to the portal vein, blood from the hepatic
artery can continue to flow through the aorta to other parts of the gastrointestinal tract
and legs. Therefore, the hepatic artery contracts when the portal pressure increases
(hepatic arterial buffer response). As a result of hypertension, a larger difference in
pressure occurs between the portal venules on the one hand and the central veins on
the other hand. Therefore, the flow increases in the remaining vasculature, leading to a
larger blood velocity and therefore increased shear stresses within the sinusoids [89], as
illustrated in Fig. 2.6. This state is called hyperperfusion.
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1: Hyperperfusion of remaining liver results

in higher blood velocity and thus higher

shear stress.

2: Shear stress elevation triggers hepatocyte

proliferation.

3: Enlargement of lobules.

Figure 2.6: Influence of segmental resection on blood flow.
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The liver can reach its original size within a few weeks. The restoration of liver mass
primarily occurs through the rapid cell division of hepatocytes (proliferation) [89]. There
is consensus that hyperperfusion is the central stimulus that triggers liver regeneration.
Within the biomedical literature, there are different models that connect hyperperfusion
and hepatocyte proliferation at the cell level, see e.g. [90], [91]. In order to provide the
interested reader with a flavor of the underlying complexity, we briefly outline the model
by [92], [93], illustrated in Fig. 2.7.

Release of cytokines Release of angiocrine signals VEGF activation

Hepatocyte proliferation LSEC proliferation

Liver regrowth Angiogenesis

β1 integrin activation

Vasodilation

Hyperperfusion

Nitric oxide (NO)

Mechanical streching of

sinusoidal endothelial cells

Early phase of

liver regeneration

Delayed phase of

liver regeneration

Vascular endothelial 

growth factor (VEGF)

Vascular remodeling with

capillarization of sinusoids

Mass expansion to

compensate for lost tissue

Liver sinudoidal

endothelial cells (LSEC)

Figure 2.7: Liver size regulation after surgical resection (picture adapted from [93]).

Immediately after PHx, the increase in blood flow through the remaining sinusoids and
the associated increase in shear stress at the vessel walls stimulates sinusoidal endothe-
lial cells to release vasodilators such as nitric oxide (NO). The dilation of the sinusoids
enables a larger flow of blood at a given pressure level and therefore limits portal hy-
pertension, blood velocity and wall shear stress. Vasodilation requires the mechanical
stretching of the endothelial cell layer, resulting in the release of growth-promoting an-
giocrine signals and mechanoresponsive ´1 integrin. Angiocrine signals constitute the
main stimulus for hepatocyte proliferation, and hence are essential for liver regrowth.
Integrin activation results in the reorganization of the components of the extracellular
matrix, triggering the release of cytokines. Both integrin and cytokines contribute to
the release of further growth factors to support hepatocyte proliferation.
The proliferation of hepatocytes increases the volume of the remaining lobules (hy-
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perplasia), where the hepatocyte plates are up to twice as thick as they initially are [79].
Thus, the remaining liver expands in mass to compensate for the lost tissue (compen-
satory growth), but does not restore its original shape and the excised parts do not grow
back [94]. To guarantee liver function, the added hepatocyte cells need to be supplied
with blood in the same way as before, which requires the formation of new vessels (an-
giogenesis), primarily at the level of microcirculation. Angiogenesis is primarily based on
the proliferation of sinusoidal endothelial cells. It is driven by endothelial growth factor
(VEGF) released by proliferating hepatocytes and the mechanically stretched endothe-
lial cells themselves. The resulting vascular expansion process leads to the formation of
an extended vascular network of sinusoids (lobular remodeling).
The rate of regeneration depends on several factors, including the extent of the re-

section, the general physical condition and health of the patient, and any pre-existing
liver diseases [89], [95]–[97]. In general, hepatocyte proliferation starts immediately and
heavily after partial liver resection (early phase of liver regeneration). Angiogenesis and
lobular remodeling starts after a few days (delayed phase of liver regeneration). For
instance, following a two-thirds removal, the normal liver weight is restored within 8 to
15 days in humans, followed by several weeks of slow lobular remodeling [79].
Once the lost tissue mass and the vascular network is restored, hyperperfusion ceases,

as enhanced blood flow and pressure is not required in the hepatic vasculature to guaran-
tee the required volume of blood to pass through the liver. Therefore, all cell proliferation
processes stop and liver regeneration is complete.

2.5 Liver failure

Postoperative liver failure is a critical risk following liver resection, influenced by factors
such as the extent of the surgery, pre-existing liver conditions, and potential surgical
mistakes [98]. Addressing these elements is therefore essential for mitigating the risk of
liver failure and achieving the best possible outcomes for patients.
Posthepatectomy liver failure (PHLF) arises when the liver’s residual tissue cannot

adequately perform vital metabolic, synthetic, and detoxification roles [99]. The like-
lihood of PHLF rises with more extensive resections, particularly in individuals with
pre-existing liver conditions like cirrhosis or fatty liver disease. If the remaining liver
mass falls below critical thresholds—approximately 20-35% in healthy livers and 40%
in compromised livers—the liver may fail to maintain necessary functions [100]. Addi-
tionally, accidental injury to the hepatic artery, portal vein, or hepatic veins can result
in significant blood loss and compromised liver blood flow, potentially triggering liver
failure.
The success of liver regeneration and function following resection heavily depends on

the integrity of the hepatic vasculature and perfusion. Disruptions in hepatic blood flow
can lead to PHLF, a serious and potentially fatal condition.
For preoperative evaluation, advanced imaging techniques like CT or MRI angiogra-

phy are employed to examine the liver’s vascular network and strategize the resection.
However, these images may not always clearly reveal all blood vessels due to resolu-
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tion limitations. A thorough understanding of the liver’s vascular anatomy is crucial to
prevent unnecessary injury to vital blood vessels during surgery.
Effective postoperative care requires close monitoring of liver hemodynamics and func-

tion to detect any abnormalities. Maintaining a careful fluid balance is crucial to pre-
serving proper liver perfusion. In this context, ischemia also plays an important role, as
inadequate blood flow can severely impact liver recovery.
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3 Continuum poroelasticity

In order to study the mechanical properties of the liver, we treat it as a porous medium,
which reflects its highly vascularized and structurally complex nature. The liver’s
sponge-like structure, characterized by a dense network of blood vessels and sinusoids,
supports efficient fluid flow and substance exchange. The porous structure of the liver is
crucial for the liver’s function and has a significant impact on its mechanical properties.
Using continuum poroelasticity principles enables us to understand the liver’s response
to different physiological conditions and its notable regenerative capacity.
Therefore, in this section, we review poroelasticity at large strains and provide the

balance laws and the constitutive laws of the poroelastic model that we will use in the
following.

3.1 Introduction to poromechanics

Poromechanics is a field that involves studying how the mechanical behavior of materials
with internal pores is influenced by the fluids that saturate these spaces. Since porome-
chanics has potential applications in a variety of engineering fields ranging from civil
[101], chemical [102] and geotechnical [103] engineering to biological [104] or medical
[105] sciences it has been subject of many theoretical and numerical studies over the last
few decades [106]–[111].
The theory originated in the pioneering work of Terzaghi in soil mechanics [112]. Later,

Biot extended the work by applying the elasticity theory to describe the mechanical
behavior of the solid phase and Darcy’s law for fluid flow through porous media [113],
[114].
The key characteristic explored in poromechanics is the interaction between their

solid components and the fluids that occupy their pore spaces. This interaction leads to
coupled processes such as hydro-diffusion, swelling, shrinkage, drying, heating, as well as
cracking. The main objective of poromechanics is to provide a framework for analyzing
the interconnected processes occurring in porous materials. This requires integrating
continuum mechanics principles with the microscopic discontinuities inherent in porous
materials. For that, the porous medium is treated as a superposition of several continua,
each having different kinematic characteristics but interacting with one another.

3.1.1 The porous medium

A fluid-saturated porous medium is a material containing a solid skeleton and pores
which are filled with fluid. Examples include substances that can be found in both
nature, e.g. hard or soft biological tissues [115]–[120], and engineering [121], e.g. soil
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[103], concrete [101] and wood [104]. In Biomechanics, hard and soft tissues can be
considered as deformable, permeable and porous media [115]–[120].
In poromechanics, the porous medium is viewed as the superposition of two continuous

phases: the solid skeleton and the fluid. Within the porous medium, an infinitesimal
portion of the porous medium can be considered as comprising both a solid skeleton
particle and a fluid particle. The skeleton particle includes the solid matrix and the
interconnected empty pore spaces, whereas the fluid particle includes the fluid filling
these pores along with the space not occupied by the solid matrix. The so-called porosity
denotes the ratio of interconnected pore volume to the entire volume of the porous
medium.
To accurately model a medium with microscopic heterogeneity, a macroscopic scale

is selected. This approach averages out the microscopic heterogeneity, allowing for the
examination of larger-scale physical phenomena. Porosity is therefore related to a volume
element that is adequately large to represent the filtration process comprehensively.
Therefore, a representative volume element is key to preserving the continuity of physical
properties within the porous medium.
The continuity assumption in a porous medium considers that its properties change

smoothly across the domain. This also means that the deformation of the skeleton is
continuous, ensuring that nearby particles remain in their relative positions over time.
This continuity is essential for understanding how porous media behave under different
physical conditions.

3.1.2 Homogenization and Representative Volume Element

In porous media theory, the principles of homogenization and the Representative Volume
Element (RVE) are used to calculate effective properties that capture the medium’s be-
havior across a range of physical processes [122]–[125]. Homogenization is a conceptual
and mathematical approach to bridge the gap between microscale and macroscale prop-
erties of heterogeneous materials. The primary idea behind homogenization is to replace
the complex, detailed microscopic structure with a simplified homogeneous medium that
effectively represents the macroscopic behavior of the initially heterogeneous material.
In porous media, it helps in determining effective macroscopic properties by averaging
the complex behavior at the microscopic level over a sufficiently large volume. Therefore,
it simplifies the material’s analysis by treating it as a uniform continuum, regardless of
its underlying heterogeneous characteristics. The effective properties obtained through
homogenization, including permeability, porosity, and stiffness, can then be incorporated
into macroscopic models and simulations for analysis.
In the context of homogenization, the RVE plays a crucial role. An RVE is a small

volume of material that statistically captures the characteristics of the entire medium.
It includes enough microscopic heterogeneities, like pores, ensuring that the averaged
properties of this volume accurately reflect those of the entire material and that the
material’s porosity and permeability are accurately represented.
The RVE size needs to be precisely determined: it should be large enough to capture

a representative range of the material’s microstructural details, yet small enough to be
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effectively treated as a point in macroscopic terms. A RVE that is too small may fail to
capture the complete range and intricacy of the microstructure, resulting in inaccurate
homogenized properties. On the other hand, an excessively large RVE can make analysis
computationally burdensome.

3.2 Kinematics

Classical poromechanics is rooted in continuum mixture theory [126]. Continuum mix-
ture theory is a general mathematical theory that provides a framework for deriving
(simplified) continuum mechanics models for a large number of multi-physics problems.
For an extensive review on poromechanics we refer to [127]–[129], and note a number of
important theoretical and numerical studies in the field of poromechanics [115], [130]–
[135].

3.2.1 Deformation of porous medium and deformation gradient

The core principle in poromechanics is that the porous material is composed of multiple
constituent bodies that simultaneously occupy a common region in space. In this work,
we rely on the common assumption that the Lagrangian configuration of the constituent
bodies coincides. This means that we work with a single Lagrangian description.
At the initial time t = 0, the mixture is considered to be in the reference configuration

Ω0. In this configuration, a particle is identified by its Lagrangian position vectorX ∈ Ω0.
The spatial position (motion) of a particle is given by the (invertible) deformation map:

x = Ç(X, t), (3.1)

where x ∈ Ω denotes the spatial position and Ω is current domain of the mixture.
The relationship between these positions can be described by the displacement vector

u. We use the standard notation for the displacement of the mixture, given by

u = x −X. (3.2)

Furthermore, we denote the Lagrangian velocity as v = u̇, where the dot represents the
material derivative.
We define the deformation gradient F which relates the initial and current configura-

tions through the displacement field:

F =
∂x

∂X
= I +∇u, (3.3)

where I represents the identity matrix and ∇u denotes the spatial gradient of the dis-
placement vector.
Any infinitesimal volume element dV in the deformed configuration is related to the

22



corresponding infinitesimal initial volume element dV0 by the expression

dV = JdV0, (3.4)

with J = det(F ) representing the Jacobian of the deformation gradient.
The transformation of any infinitesimal material surface element dA in the undeformed

state into the deformed surface element da is given by Nanson’s formula [136]

nda = JF −T ⋅NdA, (3.5)

where N and n are the unit normal vectors in the undeformed and deformed configura-
tion, respectively.

Given any vector z in the deformed configuration, its corresponding vector Z in the
reference configuration can be determined such that the flux of z through the current
surface element da is equal to the flux of Z through the initial surface element dA. This
can be expressed as

z ⋅nda = Z ⋅NdA. (3.6)

This then results in the following relationship:

Z = JF −1 ⋅ z. (3.7)

3.2.2 Mixture constituents and porosity

In this work, we consider a heterogeneous mixture composed of a single fluid and a sin-
gle solid constituent, where superscripts f and s refer to quantities associated with the
fluid and the skeleton phase, respectively. We denote the volume fraction of the fluid
and solid (skeleton) constituents respectively as ϕf and ϕs. Since the skeleton is a de-
formable macroscopic structure, its deformation changes the structure of its pores. As a
consequence, the volume fractions are time-dependent (and obviously space-dependent),
i.e. ϕf

= ϕf(x, t) and ϕs
= ϕs(x, t). We assume that void spaces are absent, i.e.

ϕf(x, t) + ϕs(x, t) = 1, (3.8)

for all x ∈ Ω and t g 0. As a consequence, the composition can be described by the
porosity ϕ = ϕ(x, t):

ϕf
= ϕ, (3.9a)

ϕs
= 1 − ϕ. (3.9b)

The porosity is a key characteristic of porous materials, defined as the ratio of the
volume of the pore space to the overall volume of the material. This property quantifies
the material’s ability to contain fluids and is essential in understanding the behavior of
porous structures across various applications.
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The porosity ϕ can be mathematically expressed as

ϕ =
dΩf

dΩ
, (3.10)

where dΩf is the volume of the pore spaces and dΩ is the total volume of the mixture.
The role of porosity in porous materials is critical as it directly influences various

properties of the material. For example, it directly controls the volume of fluid that can
be stored within a mixture, therefore impacting its overall storage capacity. Additionally,
the porosity is crucial for determining the effective properties of the material, such as
its permeability or mechanical behavior. For example, increased porosity typically leads
to higher permeability, allowing fluids to move more “freely” through the medium.

Furthermore, porosity directly affects various mechanical properties of a porous medium,
including its strength, elasticity, and deformation behavior. Typically, as porosity in-
creases, mechanical strength tends to decrease. Additionally, porosity also affects the
efficiency of heat and mass transfer within the material, which is important for various
practical applications.

At the macroscopic level, the solid-fluid mixture is typically considered a homogenized
medium. We visualize our model in Fig. 3.1.

poroelastic medium

skeleton with
volume fraction (1−φ)

fluid with volume
fraction φ

homogenized medium

with porosity φ

homogenization

Figure 3.1: Continuum (homogenized) poroelastic mixture consisting of a skeleton and fluid constituent.

The partial mass densities of the fluid and solid constituents denote Ä̃f = Ä̃f(x, t)
and Ä̃s = Ä̃s(x, t), respectively. These densities represent the mass of the associated
constituents per infinitesimal mixture volume. The partial mass densities may be de-
composed as:

Ä̃f = Äfϕ, (3.11a)

Ä̃s = Äs(1 − ϕ). (3.11b)

In this paper, we assume that both constituents are incompressible, i.e.

Äf = const, (3.12a)

Äs = const. (3.12b)
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The assumption of incompressible constituents is common in biomechanics, since the
fluid pressure and solid stresses are typically negligible in comparison to the bulk modulus
of the material [133].

3.2.3 Strain tensor

In the field of continuum mechanics, strain tensors are essential for capturing how mate-
rials deform under stress and provide a quantitative measure of the amount by which a
material is stretched or compressed. In this section, we introduce various strain tensors,
including their definitions and practical applications.
First, we introduce the right Cauchy-Green deformation tensor, defined as

C = F TF . (3.13)

The right Cauchy-Green tensor C is a symmetric and positive-definite tensor, with non-
negative eigenvalues.
The Green-Lagrange strain tensor, also known as Lagrangian finite strain tensor or

Green–St-Venant strain tensor, is Lagrangian based and measures the strain relative to
the undeformed configuration. It is directly defined as a function of the right Cauchy-
Green tensor C and given by

E =
1

2
(F TF − I). (3.14)

The Green-Lagrange strain tensor is a quadratic measure of strain. It is particularly
useful in the context of finite deformation problems, especially those that involve large
strains (geometrically nonlinear) and hyperelastic material models.
The Almansi strain tensor, also known as the Eulerian strain tensor, is used to describe

the deformation in the current configuration. It is defined as

e =
1

2
(I − b−1), (3.15)

where b = FF T describes the left Cauchy-Green deformation tensor. The Almansi strain
tensor evaluates the strain of a material in its deformed state, proving particularly useful
in fluid mechanics and other scenarios where the current deformation is more relevant
than the initial condition.
In the context of small deformations, the linearized version of the strain tensor can be

used, which is given by

ϵ =
1

2
(∇u + (∇u)T ). (3.16)

The linearized strain tensor provides a simplified approximation for small deformations
by ignoring higher-order terms. It is extensively utilized in elasticity and structural
analysis, where the deformations are small, and the linearity assumption is valid.
In certain applications that require strain to be additive across a series of deformations,
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the Hencky strain tensor, or logarithmic strain tensor, is utilized. It is expressed as

H =
1

2
ln(C) = ln(U). (3.17)

Here, the tensor U denotes the right stretch tensor, which is obtained through the polar
decomposition F = V R. The Hencky strain tensor is particularly suited when dealing
with materials that demonstrate a logarithmic strain response, such as metal forming
processes.

3.3 Balance laws

In agreement with the continuum theory of mixtures, each constituent may be considered
in isolation and its motion involves terms that model the interaction with the other
constituents. The motion of the mixture is then a consequence of the individual evolution
equations. In the scope of this work, we focus directly on the evolution equations relevant
for the final poroelastic model, assuming quasi-static conditions.

3.3.1 Mass balance

The balance of fluid mass takes the form:

∂t(Äfϕ) +∇ ⋅ (Äfϕvf) = Äf¹, (3.18)

where vf denotes the velocity of the fluid and ¹ describes a mass source term (¹ g 0) or
a sink term otherwise [115].
Next, we introduce the added mass quantity m and the perfusion velocity w as:

m = Ä̃fJ − Ä̃
f
0 , (3.19a)

Ä̃
f
0 = Äfϕ0, (3.19b)

w = ϕ(vf
− v), (3.19c)

where ϕ0 = ϕ0(X) = ϕ(Ç−1(X,0),0) represents the porosity in the reference configura-
tion. The added mass m represents the variation in fluid mass content per unit volume
of the undeformed skeleton. A straightforward calculation reveals that the evolution of
the added mass is given by:

1

J
ṁ +∇ ⋅ (Äfw) = Äf¹. (3.20)

We relate the perfusion velocity w to the fluid pressure p in the pores using Darcy’s law:

w = −
k

¸
∇p, (3.21)

where the quantity k describes the symmetric second order permeability tensor of the
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mixture and ¸ is the dynamic viscosity. We restrict ourselves to the isotropic case, i.e
k = kI with k = const and rewrite K = k

η
. We note that Darcy’s law as constitutive

relation is a standard choice in the literature. Considering the steady-state case and
substitution of (3.21) into (3.20) provides

−K∇2p = ¹ in Ω, (3.22a)

−K (F −T∇0)F −T∇0p = ¹ in Ω0, (3.22b)

where we have used the pull-back operation ∇ = F −T∇0 for the mapping of (3.22a) to
the reference configuration Ω0 with ∇0 denoting the material gradient.

3.3.2 Momentum balance

We conclude this section with the balance of momentum written in the spatial form as

∇ ⋅Ã + Äs(1 − ϕ) (b̂ − as) + Äfϕ (b̂ − af) = 0, (3.23)

where Ã = J−1FSF T denotes the Cauchy stress tensor for the mixture, b̂ describes the
body force per unit volume, as and af represent the accelerations of the skeleton and
fluid phase and S is the second Piola-Kirchhoff stress tensor. A pull-back operation to
the reference configuration provides

∇0 ⋅ (F ⋅S) + JÄs(1 − ϕ) (b̂ − as) + JÄfϕ (b̂ − af) = 0. (3.24)

The balance of linear momentum in the reference configuration may also be written
as

∇0 ⋅ (FS) = 0 in Ω0, (3.25)

where we have considered a quasi-static setting with no internal forces, i.e. as
= 0 and

af
= 0 and neglected body forces, i.e. b̂ = 0.

3.4 Constitutive equations

Before defining the constitutive equations, we begin by introducing various stress mea-
sures and explaining their relevance.

3.4.1 Stress measures

The symmetric Cauchy stress tensor Ã is a fundamental measure in stress analysis,
representing the force applied per unit area on an infinitesimal element within the current
configuration of the material. Therefore, when examining forces in the material’s current
state, the Cauchy stress tensor is particularly useful as it provides a direct depiction of
physical forces applied per unit area. This makes it the most intuitive measure of stress.
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The first Piola-Kirchhoff stress tensor P links forces in the deformed configuration
and the corresponding areas in the undeformed reference state. It is in general not
symmetric and is particularly advantageous for studying large deformation problems
that involve both reference and current configurations. The first Piola-Kirchhoff stress
tensor is defined as

P = JÃF −T . (3.26)

The second Piola-Kirchhoff stress tensor S is another important stress measure. It
is a symmetric tensor that relates forces and areas within the reference configuration,
providing a consistent stress description in the reference configuration. It is defined as

S = F −1P . (3.27)

The second Piola-Kirchhoff stress is particularly useful in constitutive models of hypere-
lastic materials with a strain energy density function defined in the undeformed reference
state.
Another key stress measure is the Kirchhoff stress tensor Ä , which is connected to the

Cauchy stress tensor through the Jacobian of the deformation gradient and is given by

Ä = JÃ. (3.28)

The Kirchhoff stress tensor is particularly relevant in plasticity and especially in scenarios
where significant volume changes occur.

3.4.2 Terzaghi decomposition

In porous media theory, the interstitial fluid within the pores significantly influences the
mechanical behavior of the material. To account for this, we introduce the concept of
effective stress, often referred to as Terzaghi decomposition. Effective stress separates
the total stress into contributions from the solid skeleton and the pore fluid pressure.
The relationship is expressed as follows:

Ã = Ã′ − pI, (3.29)

where Ã′ denotes the effective stress. The deformation of the skeleton is now determined
by the effective stress Ã′.

To model the mechanical behavior of the porous skeleton under the influence of effec-
tive stress, we define the following constitutive relations

S = S′ − pJC−1, (3.30a)

S′ =
∂Ψs(E, Js)

∂E
, (3.30b)

p = −
∂Ψs(E, Js)

∂Js
, (3.30c)
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where Ψs
= Ψs(E, Js) is the Helmholtz free energy density and Js

= J(1−ϕ) the Jacobian
weighted by the volume fraction of the skeleton phase [134]. The first constitutive
equation defines the second Piola-Kirchhoff stress tensor S as a function of the strain
energy potential Ψs and incorporates the influence of pore fluid pressure. The last
equation relates the pore pressure p to the derivative of the strain energy potential with
respect to the weighted Jacobian Js.
These constitutive relations are derived from thermodynamic principles, ensuring that

the mechanical behavior of the porous medium is consistent with the laws of thermody-
namics. They provide a macroscopic description of poroelasticity, linking the stress and
deformation of the solid skeleton with the fluid pressure within the pores.
For a more detailed examination of poroelasticity from a microscopic perspective,

including the derivation of constitutive relations through a micro-macro approach, we
refer to [135]. This approach provides insight into how the microscopic interactions and
properties of the porous medium influence its macroscopic mechanical behavior.

3.4.3 Helmholtz free energy

To complete the system of equations governing the behavior of the porous medium, it is
essential to specify the Helmholtz free energy function. We choose to work with a free
energy that decomposes as

Ψs(E, Js) = Ψskel(E) +Ψvol(Js), (3.31)

where Ψskel(E) is the hyperelastic potential of the skeleton and Ψvol(E) accounts for
macroscopic volume change due to interstitial fluid pressure. For the skeleton’s hypere-
lastic potential, a Neo-Hookean material model is employed. This model is expressed in
terms of the first and third invariants of the right Cauchy-Green tensor:

Ψskel
=
1

8
¼ln2(I3) + 1

2
µ[I1 − 3 − ln(I3)], (3.32)

where I1 = tr C and I3 = det C are the first and third invariants, respectively. The
coefficients ¼ and µ describe the Lamé parameters. For the volumetric contribution of
the free energy function, we choose

Ψvol
= »( Js

1 − ϕ0
− 1 − ln( Js

1 − ϕ0
)) , (3.33)

where » = E/(3(1− 2¿)) is the bulk modulus of the skeleton, E is the Young’s modulus,
¿ is the Poisson’s ratio, and ϕ0 is the initial porosity [134]. With that choice, the
constitutive equations can be rewritten as

S = 2
∂Ψskel

∂C
− pJC−1, (3.34)

p = −
∂Ψvol

∂Js
. (3.35)
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Equation (3.35) relates Js to p, and thus the porosity ϕ to the fluid pressure p. Inserting
(3.33) into (3.35) we obtain
By substituting the expression for Ψvol (3.33) into the constitutive relation for the

fluid pressure (3.35), we obtain

p = »(− 1

1 − ϕ0
+

1

Js
) . (3.36)

This equation links the fluid pressure p to the Jacobian of the solid phase Js, highlighting
the dependency of fluid pressure on the porosity and volume change of the skeleton.

3.5 System of equations

In summary, the poroelastic model is given by the following system of equations in the
reference configuration Ω0:

∇0 ⋅ (FS) = 0 in Ω0, (3.37a)

−K (F −T∇0)F −T∇0p = ¹ in Ω0, (3.37b)

S = 2
∂Ψskel

∂C
− pJC−1, (3.37c)

p = −
∂Ψvol

∂Js
, (3.37d)

where the displacement u and the fluid pressure p are the two primary variables. The
system needs to be complemented with suitable boundary conditions. We will specify
these in Section 5.
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4 Discrete vascular tree model

Modeling the poroelastic response of liver tissue with its corresponding perfusion model
necessitates a detailed description of the vascular trees inside the liver. Since in-vivo
imaging methods are limited in resolution, we generate these trees synthetically. The
tree generation framework is published in the work of Jessen et al. [14]–[16]. In this
thesis, the tree framework is used and integrated into the overall model. Therefore, in
this section, we will provide a summary of the tree framework and describe the model
assumptions and generation of vascular trees based on a set of physiological constraints.

4.1 Constrained constructive optimization

The best-known generation method for discrete vascular trees is constrained construc-
tive optimization (CCO) [5], [6]. Therefore, we first describe CCO in more detail and
illustrate its key properties. Its core is a local optimization approach, directly based on
Murray’s minimization principles [10]. The key principle of CCO lies in constructing a
vascular tree by progressively adding segments, one at a time. Each segment is attached
at the optimal location in the tree, with its bifurcation geometry adjusted to maximize
the efficiency of blood flow and distribution. Once a new segment is added, the entire
tree undergoes a rescaling process to ensure that boundary conditions, including termi-
nal pressure and flow, are consistent. The generation of vascular trees consists of three
key steps (see Fig. 4.1):

1. Terminal point sampling: The method begins by generating a new terminal point
within the perfusion region, making sure it is adequately spaced from the existing
tree segments according to a predetermined threshold, thus maintaining compat-
ibility with the tree’s structure and ensuring a balanced distribution of terminal
points. As more segments are added, the threshold is decreased to adapt to the
growing complexity of the tree.

2. Connection to existing tree: The sampled terminal point is attached to an existing
segment, resulting in the formation of a new bifurcation. To reduce computational
complexity, the process evaluates only a limited selection of nearby segments.

3. Optimization and rescaling: To minimize the overall volume of the tree, the newly
created bifurcation point undergoes geometric optimization. The tree’s segments
are rescaled after each connection to compensate for changes in hydrodynamic
resistance, ensuring that boundary conditions remain consistent. The rescaling
involves a recursive process that fine-tunes the radii from the new terminal segment
back to the tree’s root.
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Figure 4.1: Key steps of tree generation with CCO [14]. (a) Terminal point sampling, (b) Connection to
existing tree, (c) Optimization of new bifurcation.

CCO, while effective in generating vascular trees, has several limitations that impact
its overall performance and applicability:

1. Local optimization: CCO aims to optimize segment connections locally which may
result in tree structures that are not globally optimal. Therefore, this localized
approach may not always result in the most effective overall tree arrangement.

2. Limited flexibility: The inability to produce asymmetric bifurcations, often seen
in natural vascular systems, poses a challenge for the method, restricting CCO’s
ability to faithfully reproduce the complexity and variety of real vascular networks.
Another major drawback of CCO is its limited ability to integrate specific geomet-
ric boundary conditions into the optimization process. For example, when creating
multiple vascular trees, it is essential to prevent vessel intersections.

3. Sample dependence: The final tree’s structure is heavily influenced by the sequence
of terminal point sampling and connection. This dependence on the sampling
sequence introduces variability in the tree structure results, making them sensitive
to initial conditions and random seeds.

4. Computational complexity: The iterative optimization and rescaling processes be-
come more computationally demanding as the vascular tree grows. Consequently,
the method may prove impractical for modeling more extensive and complex vas-
cular structures.

In the following section, we present our approach to addressing and overcoming the
limitations of CCO.
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4.2 Discrete non-intersecting vascular trees for blood supply

and drainage

The generation framework is based on previous work of Jessen et al. [14], [15], which re-
cently was extended to generate multiple non-intersecting trees inside the same perfusion
domain [16]. In the following, we review and summarize the mathematical formulation
and algorithmic framework.

4.2.1 Mathematical formulation

A discrete vascular tree is represented as a directed graph T = (V,A) with nodes u ∈ V
and segments a ∈ A. Each segment a = uv of A is defined by the geometric locations of
its proximal and distal node xu and xv, its length ℓa = ∣∣xu − xv ∣∣, volumetric flow Q̂a

and radius ra. Thus, a vessel is simplified to a rigid and straight cylindrical tube. A
tree has a single root node 0 and (multiple) leaves v ∈ L, which are the distal nodes of
terminal segments. The blood flow through the tree is assumed to be laminar with blood
simplified to an incompressible, homogeneous Newtonian fluid. The pressure drop over
a segment is described by Poiseuille’s law with

∆pa = RaQ̂a ∀a ∈ A, (4.1)

where the hydrodynamic resistance Ra of each segment a is

Ra =
8¸

Ã

ℓa

r4a
∀a ∈ A. (4.2)

We set the dynamic blood viscosity ¸ to a (constant) value of 3.6 cP and further assume
a homogeneous flow distribution of our (given) root flow Q̂perf to all N leaves, leading

to the terminal flow Q̂term = Q̂perf/N . At intermediate branching nodes, the flow can be
computed using Kirchhoff’s law with

Q̂uv = ∑
vw∈A

Q̂vw ∀v ∈ V 8 (0 ∪L) . (4.3)

We note that complex viscosity laws and different flow distributions can also be incor-
porated into the framework, see [15].
The tree can be generated to obey various goal functions and constraints, as described

in [15]. Here, we choose to minimize the total power of the tree, which consists of the
power to maintain blood inside the vessels Pvol and the (viscous) power to move blood
through vessels Pvis. The cost function for the vascular tree thus becomes

fT = Pvol + Pvis = ∑
a∈A

mbÃℓar
2
a +

8¸

Ã

ℓa

r4a
Q̂2

a, (4.4)

where mb is the metabolic demand factor of blood, which we set to 0.6 µWmm−3. Since
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we pre-compute all flow values using (4.3), we can rewrite (4.4) to

fT = ∑
a∈A

waℓa, (4.5)

where weight wa is defined for each segment a with

wa =mbÃr
2
a +

8¸

Ãr4a
Q̂2

a. (4.6)

Our formulation does not include global constraints between nodes and each summand
in (4.5) is decoupled. As shown in [16], the (optimal) radius of each segment a can then
be independently computed with

ra =
6

√
16¸

mbÃ2

3

√
Q̂a. (4.7)

The problem of finding the optimal geometry of a tree now only consists of finding the
optimal nodal positions x and corresponding lengths ℓ.

For the liver, we combine the hepatic artery and portal vein into a single supplying
tree, as their vessels are mostly aligned after a few generations, see [49]. Our goal is
to generate one supplying tree (hepatic artery and portal vein) and one draining tree
(hepatic vein), which do not intersect and are optimal both in topology and geometry
regarding (4.5). We achieve the optimality requirement for the geometry of a single
tree by optimizing the global geometry (position of all branch nodes) using a nonlinear
optimization problem (NLP) [137], [138]. We include the nodal positions x and the
lengths ℓ of all segments inside the vector of optimization variables y = (x, ℓ). With
physical lower bounds ℓ− and numerical upper bounds ℓ+, the best geometry is found in

Y = R3∣V∣
× [ℓ−, ℓ+]A, (4.8)

and our NLP reads:

min
y∈Y

∑
a∈A

waℓa, (4.9)

s.t. 0 = xu − x̄u, u ∈ V0 ∪L, (4.10)

0 = ℓ2uv − ∣∣xu − xv ∣∣2, uv ∈ A. (4.11)

where (4.10) fixes the position of terminal nodes and (4.11) ensures consistency between
nodal positions and segment lengths.
To ensure that our supplying tree T

1 and draining tree T
2 do not intersect, we need

to introduce coupling constraints between both trees. As described in [16], this involves
two main steps. The first step is to introduce a set of (virtual) connections A12 between
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neighboring nodes of both trees, defined by

A
12
= {(v1, v2)∣ v1 ∈ V

1, v2 ∈ V
2, ∣∣xv1 − xv2 ∣∣ < 1.25(ru1v1 + ru2v2)}. (4.12)

The second step is to introduce a set of excursion nodes E, which includes all nodes
with exactly one proximal and one distal node. These nodes are added to each set of
intersecting vessels, which is described in more detail in [16]. Consequently, the set of
optimization variables y12 = (y1, y2) now consists of both trees and the best geometry is
found in

Y 12
= Y 1

× Y 2
×A

12. (4.13)

Our extended NLP then reads

min
y12∈Y 12

2

∑
i=1
∑

ai∈Ai

ℓaiwai (4.14)

s.t. 0 = xu1
− xu1

, u1 ∈ V
1
0 ∪L

1 (4.15)

0 = xu2
− xu2

, u2 ∈ V
2
0 ∪L

2 (4.16)

0 = ℓ2u1v1
− ∥xu1

− xv1∥2, u1v1 ∈ A
1 (4.17)

0 = ℓ2u2v2
− ∥xu2

− xv2∥2, u2v2 ∈ A
2 (4.18)

0 = ℓ2v1v2 − ∥xv1 − xv2∥2, v1v2 ∈ A
12 (4.19)

ℓv1v2 > (ru1v1 + ru2v2) + ϵ, v1v2 ∈ A
12 (4.20)

ℓu1v1 > ℓu1v1 , v1 ∈ E
1 (4.21)

ℓv1w1
> ℓv1w1

, v1 ∈ E
1 (4.22)

ℓu2v2 > ℓu2v2 , v2 ∈ E
2 (4.23)

ℓv2w2
> ℓv2w2

, v2 ∈ E
2. (4.24)

Here, (4.19) and (4.20) ensure that the distance between two nodes (of trees 1 and
2) is at least their vessel radii plus a threshold ϵ. By using (4.21)-(4.24), we prohibit
excursion nodes from moving along the path between their proximal and distal nodes.
After the extended NLP is solved, both trees are checked for intersections. New excursion
nodes are subsequently created at newly identified intersections. The process of adding
excursions and solving the extended NLP is repeated until no further intersections are
found.

4.2.2 Algorithmic framework and computer implementation

We use the framework described in [14], [16] to generate each tree with a (locally)
optimal topology. First, we sample N terminal nodes x̄ for each tree inside the (non-
convex) perfusion volume (liver) and connect them to the manually set root positions.
From these initial (fan) shapes, new topologies are explored by swapping segments. Each
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swap changes the parent nodes between a sampled pair of nodes. The new topology is
accepted based on a Simulated Annealing approach with probability

P = exp{(−∆fT

T
)}. (4.25)

∆fT is the change in cost induced by the swap and T is the SA temperature, which is
decreased (’cooled down’) after each iteration. After a fixed number of swaps, the global
geometry is optimized and intersections are resolved as previously explained.
With both trees generated, we fix all nodal positions and prescribe a constant pressure

drop ∆p between all terminal nodes and the root node for each tree, respectively. For
each segment a, we can now retrieve the length ℓa, the radius ra, and the volumetric flow

Q̂a. Further parameters such as the mean blood velocity v̄a =
Q̂a

πr2a
can now be computed

for each segment.
For illustration purposes, we consider a simple two-dimensional circular domain with

a radius of 10 mm, where we specify one root and randomly distributed terminal points
for the supplying and draining trees. The specific numbers and parameters are listed in
Table 4.1. Figure 4.2 illustrates the resulting supplying and draining tree in the circular
domain. We observe that although both sets of terminal points are located within the
plane of the circular domain, the two trees are not intersecting each other, using the
third dimension to let their vessels move around each other.

Table 4.1: Characteristic numbers and parameters of the discrete vessel network based on Poiseuille flow
for the simple example of a 2D circular domain.

Nvessel Nterm proot [
kg

mms ] Q̂perf [
mm3

s ]

Supplying tree 43,981 21,991 0.4 80.0
Draining tree 43,857 21,929 0.0 80.0

4.2.3 Validation

To determine if synthetically generated vascular trees accurately represent real biological
structures, it is essential to validate them against real data. Non-invasive imaging tech-
niques, particularly CT and MRI, are essential tools for obtaining in vivo (within a living
organism) patient-specific vascular data. Despite significant technological advancements
in the past decades, the resolution of these imaging techniques remains insufficient for
visualizing the tree structures down to the smallest blood vessels, such as arterioles and
venules.
For a more thorough examination of vascular structures down to the smallest vessels,

ex vivo (outside a living organism) methods are necessary. These techniques, though
highly effective, are often labor-intensive, require specialized equipment, and can be
costly. For instance, examining an ex vivo liver tree structure requires connecting it to
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Figure 4.2: Synthetic vascular trees for the two-dimensional benchmark problem. Supplying vascular
tree on the left and draining vascular tree on the right. The bottom figure highlights how
both trees are not intersecting each other.

a machine perfusion system to maintain the vascular network.
One notable ex vivo technique for obtaining vascular data is vascular corrosion casting

(see Fig. 4.3). This approach involves filling the blood vessels with resin, which solidifies
to create a cast of the vascular network [76]. Initially, blood is drained from the vessels
to prevent clotting-related blockages. Once the vessels are empty, the vessels are filled
with resin, and clamps are applied to the inlet and outlet vessels to prevent leakage.
The resin then cures for approximately two hours, creating a solid plastic replica of the
vascular system.
The next step involves dissolving the surrounding tissue with a corrosive chemical

bath, which usually takes approximately two days. The corrosion process is designed to
affect only the tissue, while preserving the resin. Additionally, incorporating contrast
agents into the resin allows for differentiation between arterial and venous vessels. The
final cast provides a three-dimensional representation of the blood vessels down to 0.5
mm, which can subsequently be scanned using a high-resolution micro-CT scanner.
In Fig. 4.4, we present the synthetically generated full portal and hepatic vein trees

with the generation method presented in 4.2, while Fig. 4.5 and Fig. 4.6 display the
pruned versions of these trees alongside the corresponding ones obtained from the corro-
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Figure 4.3: Vascular corrosion cast of the full human liver and a mesocirculation sample [76].

sion cast. When comparing the results from generated vascular trees with those obtained
experimentally, one can see that both types of trees exhibit not only bifurcations but
also trifurcations. Qualitatively, the synthetic trees are in good agreement with the
experimental data, confirming their realistic representation.

(a) Portal vein (b) Hepatic vein

Figure 4.4: Synthetically generated trees (full).

4.2.4 Improved framework for generating synthetic vasculature

Compared to existing methods like CCO, the improved framework for generating syn-
thetic vascular trees offers several advantages:
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(a) Synthetic tree (b) Corrosion cast

Figure 4.5: Synthetically generated portal vein (pruned) versus corrosion cast tree as obtained in [76].

(a) Synthetic tree (b) Corrosion cast

Figure 4.6: Synthetically generated hepatic vein (pruned) versus corrosion cast tree as obtained in [76].

� Global geometry and topology optimization: Unlike CCO, which primarily focuses
on local optimization, this improved framework optimizes the entire vascular tree’s
geometry and topology on a global scale. This leads to more efficient and realistic
tree structures.

� Repeatable results: By reducing variability linked to different random seeds or
sampling orders, the new framework produces more consistent and repeatable re-
sults, overcoming a significant limitation of CCO.

� Enhanced computational efficiency: The refined computational approach of the
new framework decreases the time and complexity of vascular tree generation,
improving its feasibility for modeling larger and more sophisticated structures.

� Multiple trees in non-convex volumes: The method allows for the generation of
multiple vascular trees in non-convex volumes, accommodating complex anatomi-
cal features and enhancing the precision of modeling interconnected vascular net-

39



works.

� Investigation of complex phenomena: The framework enables the investigation of
more complex physiological and pathological phenomena, offering deeper insights
into the development and functioning of vascular systems across different scenarios.

� Incorporation of physiological constraints: The framework integrates physiological
constraints effectively and can account for the varying properties of blood flow
through vessels, such as changing viscosity, which is critical for accurate simula-
tions.

� Scalability for large-scale simulations: The framework is suitable for the generation
of large and complex vascular networks without significant loss of accuracy or
computational feasibility. This scalability is particularly important for simulations
that require modeling the entire circulatory system, making it useful for a wide
range of research and clinical applications.

� Versatility across different biological systems: The framework’s flexibility supports
its application to a wide range of vascular systems across different organs or species.
Initially developed for human vascular networks, it can be modified to simulate the
blood vessels of other animals or organs.

� Integration with imaging data: The framework can be seamlessly integrated with
imaging data, such as MRI or CT scans, to create patient-specific vascular models,
where it is also possible to incorporate patient-specific vessel data if and up to the
resolution available. Such integration is crucial for patient-specific modeling, as
it provides a detailed view of an individual’s vascular structure, which enhances
diagnostic and treatment strategies.

In summary, the improved framework for generating synthetic vasculatures represents
a considerable advancement, offering greater accuracy, scalability, and flexibility for a
broad spectrum of biomedical applications.
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5 Connecting continuum poroelasticity with
discrete synthetic vascular trees

In this section, we describe the coupling of the vessel trees to the poroelastic model
derived in the previous sections. First, we describe the interaction of the poroelastic
domain with surrounding tissues by nonlinear displacement boundary conditions. After,
we introduce modeling assumptions in terms of source terms for the inlets and boundary
conditions for the outlets to enable the perfusion of the poroelastic domain. We study
numerical examples in 2D to demonstrate the behavior of our modeling framework based
on the connection of the poroelastic model and the synthetic vascular trees. We close
this section by providing results for the simulation of three-dimensional liver resection
scenarios. The results shown in this section are published in [69].

5.1 Modeling the interaction with surrounding tissues

To arrive at a closed boundary value problem, we need to complement the system (3.37)
by appropriate boundary conditions. In our case of application, we would like to take into
account the interaction of the liver with surrounding organs, with which the liver is con-
tinuously in contact. Motivated by a penalty approach known from contact mechanics,
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Figure 5.1: Modeling the resistance of surrounding tissues. The spring stiffness β is a function of the
normal displacement uN.
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we model the resistance of the surrounding organs by adding the following contribution:

Wc(uN) = ´uN, (5.1)

supported on Γouter to the left-hand side the balance of momentum. This term can be
interpreted to mimic the effect of nonlinear springs at the outer boundary as illustrated in
Fig. 5.1, where ´ corresponds to the spring stiffness. In hyperelastic tissue-like materials,
the stiffness changes with the deformation. We therefore model ´ as a function of the
boundary displacement uN in the normal direction:

´(uN) = 2³

1 + e−cuN/u0
− ³, (5.2)

in which ³ corresponds to the maximum value of the spring stiffness and c is the steepness
of the curve. The parameter u0 = 1 mm is a non-dimensional reference displacement.
We choose c = 15 for all computations. Analogous to nonlinear springs, the stiffness
saturates towards a constant value with increasing displacement.

5.2 Augmenting the poroelastic model with discrete tree
feature

The poroelastic domain, representing the tissue, is supplied with fluid from the vessels
of a supplying tree and returns fluid through the vessels of a draining tree (see Fig.
5.2). Therefore, the poroelastic domain can be interpreted as a connector between the
supplying and draining trees. We now address the question of how to connect the
poroelastic model to the vessel trees by specifying appropriate boundary conditions to
induce flow from the inlets to the outlets.
To bridge the gap between the macroscopic (homogenized) medium and the discretely

resolved levels of the vascular tree, we assume circular areas (or spherical areas in 3D),
whose radii are of the same order as the radii of the vessels at the terminal vessel points
(see Fig. 5.2). We cannot model the physiological mechanisms in these areas directly,
and therefore depict them as void. In the following, we describe corresponding modeling
assumptions in terms of source terms for the inlets and boundary conditions for the
outlets.

5.2.1 Bell-shaped source terms to model flow from the supplying tree

We induce flow from the discrete supplying tree into the poroelastic domain through the
source quantity ¹ in the mass conservation equation (3.37b) by a summation over all n
terminal vessels of the supplying tree:

¹ =
n

∑
i=1

¹i, (5.3)
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draining tree

supplying tree

outer boundary Γouter
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poroelastic
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Figure 5.2: Coupling of the vascular trees with the porous medium. The red tree represents the vessels
of the supplying tree while the blue ones are the vessels of the draining tree. Circular voids
represent the interface area between the continuum model and the discrete draining tree.

where ¹i refers to the source term of the i-th terminal vessel of the supplying tree.
We transfer the volumetric flow from each terminal vessel i of the supplying tree into
the source term in the mass conservation equation (3.37b) in the form of a bell-shaped
distribution:

¹i(x) = µi exp(−∥(x −xi)∥22(bri)2 ) , (5.4)

where µi is the amplitude of the i-th function, ∥⋅∥2 is the Euclidean norm, xi is the
position vector of the i-th inlet terminal point, ri is the radius of the corresponding i-th
inlet terminal vessel and b is a scaling factor of the radius. The radii ri, the locations
xi, and the volumetric flow Q̂i = ∫ ¹idx are extracted from the supplying vascular tree
data described in section 4.2. The assumption of a incompressible, steady-state setting
implies that the inflow must match the outflow. Furthermore, drainage occurs exclusively
through the terminal outlet vessels, and we have set an impermeable boundary condition
along the outer boundary. Under these circumstances, we require that the total flow that
enters the domain, 3i Q̂i, matches the total flow that leaves the draining tree.
The bell-shaped function possesses several advantages that justify this choice. The

symmetric, smooth and continuous nature of the bell-shaped function distributes the
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inflow, modeling the effect of the interface area that is not represented in the discrete
and continuum models. It allows for a simple and effective control of the overall shape
and magnitude of the inflow profile. The bell-shaped function also has a well-defined
peak that represents the highest flow rate. Moreover, the bell-shaped function can be
employed to simulate the spread of the fluid as it enters the domain. By adjusting the
amplitude of the bell-shaped function, the magnitude of the inflow can be controlled.
The bell-shaped function has a simple mathematical form and an analytical solution that
allows for efficient and accurate computation in numerical simulations. In particular, the
amplitude µi is determined from the known i-th volumetric flow Q̂i via µi = Q̂i/(Ãb2r2i )
(two dimensions) and µi = Q̂i/((Ãb2r2i ) 32 ) (three dimensions).

5.2.2 Boundary conditions to model flow into the draining tree

We induce flow from the poroelastic domain into the discrete draining tree by imposing
Dirichlet boundary conditions for the pressure at the circular boundaries of these void
areas (denoted by Γoutflow). The radii and locations of the terminal outlet points are
extracted from the draining vascular tree data described in section 4.2. It is convenient
to set a reference pressure level of p = 0 here. To guarantee the conservation of mass, we
model the outer boundary (denoted by Γouter) of the domain as impermeable by inducing
the Neumann boundary condition

∇p ⋅ n = 0, (5.5)

which guarantees that no fluid is leaving the poroelastic domain through its outer bound-
ary.

5.3 Numerical examples in 2D

To illustrate the functionality of our modeling framework, we start with two-dimensional
numerical examples. This framework combines the poroelastic model with synthetic
vascular trees, allowing us to observe and analyze how they interact and influence each
other.

5.3.1 Weak formulation and discretization

We utilize the standard finite element method [139] for the discretization of the poroe-
lastic model in the Lagrangian description (3.37) augmented with the interaction term
presented in section 5.1. Multiplication of the momentum equation (3.37a) with dis-
crete test function vh and the pressure equation (3.37b) with discrete test function qh,
and subsequently integrating over the reference domain Ω0, and applying integration by
parts leads to the weak statement: Find u ∈ Vh and p ∈ Wh,0 such that for all vh ∈ Vh
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and qh ∈Wh,0:

+
Ω0

(FS) ∶ ∇0vh dΩ0 + +
Γouter

´ (u ⋅N) (vh ⋅N) dΓouter = 0, (5.6)

+
Ω0

(KF
−T
∇0p) ⋅ (F−T∇0qh) dΩ0 + +

Γouter

(K∇0p ⋅N) qh dΓouter = +
Ω0

¹qh dΩ0, (5.7)

where N is the normal vector in the reference configuration. The discrete function spaces
Vh and Wh,0 consist of linear and quadratic Lagrange basis functions of degree P = 1
and P = 2, and are applied to discretize the displacements and the pressure, respectively
[22]. Homogeneous Dirichlet boundary conditions on Γoutflow are strongly enforced in
Wh,0:

Wh,0 = {qh ∈Wh ∶ qh = 0 onΓoutflow}, (5.8)

with Wh being the unrestricted function space for the pressure. We implemented the
framework in FEniCS, where we utilized a standard Newton-Raphson method, the iter-
ative solver GMRES and the preconditioner Hypre Euclid [140].

Equation (3.37b), also referred to as the reduced Darcy formulation [22], is solely
written in terms of pressure, as we have eliminated the velocity upon substituting (3.21)
into (3.20). Not substituting (3.21) into (3.20) leads to a two-field formulation (velocity
and pressure), also referred to as the full Darcy system in literature [22]. In that case, the
poroelastic equations have a saddle point structure and the discrete pressure and velocity
spaces must therefore satisfy the inf-sup condition [141], [142]. One stable combination
of mixed finite element pairs is, for example, a Taylor-Hood element with a pressure
approximation that is one order lower than the one for the velocity. Disadvantages of the
full Darcy formulation are the increased number of degrees of freedom or the imposition
of a condition on the normal velocity component of the boundary (impermeable domain).
For a comparison of the full and reduced Darcy model in terms of solution time, memory
requirements and accuracy we refer the interested reader to [22].

5.3.2 Poroelastic circular disk coupled to planar trees

We first consider a poroelastic circular domain that is perfused by a fluid provided by
a planar supplying tree and returned into a planar draining tree (see also Fig. 5.2).
Both trees consist of 1,000 terminal vessels. We emphasize that the objective of the two-
dimensional simulations is to study the model behavior and its sensitivity with respect to
model parameters. It is not intended to represent the liver tissue itself. The simplified
geometry, with a limited number of terminal branches, serves as a computationally
inexpensive starting point and permits examination of key aspects (inflow parameters,
vessel tree depths, contact boundary conditions) without introducing further complexity.
For the poroelastic disk, we choose the parameters in SI units summarized in Tab.
5.1. We have chosen standard values for the material parameters E = 1 kg/(ms2) and
K = k/¿ = 1 kgm/s and a simple geometry for the proof of concept. The purpose is
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Table 5.1: Model parameters for the poroelastic disk.

Skeleton-related parameters Flow-related parameters

Disk radius r = 0.01 m Initial porosity ϕ0 = 0.5

Young’s modulus E = 1 kg
ms2

Permeability k = 3.6 ⋅ 10−3m2

Poisson’s ratio ¿ = 0.3 Dynamic viscosity ¸ = 3.6 ⋅ 10−3 kg
ms

Perfusion flow (at root) Q̂perf = 80 ⋅ 10
−9 m3

s

to study the influence of the model parameters (inflow parameters, vessel tree depths
and contact boundary condition) qualitatively. Modifying E and K changes the solution
fields only quantitatively, no qualitatively. Instead of a spring-type condition, we fix the
outer boundary for the moment, so that u = 0 at the outer circular boundary. Each
tree consists of 50 terminal vessels. For the bell-shaped source terms in (5.4), we choose
b = 3.
We discretize the circular domain with a mesh of 36,826 triangular elements. We first

obtain the solutions for the primary field variables u and p. With the pressure p known,
we can compute the porosity field ϕ from (3.36) and the velocity from Darcy’s law (3.21).
The solution of the pressure p is depicted in Fig. 5.3. The white streamlines indicate
the flow direction. One can observe higher pressure levels close to the inlet vessels. We
also observe large pressure values in the area on the top near the boundary. These drive
the fluid to an outlet further away. We note that these high pressure values are the
result of an accumulation of inlet and the non-existence of outlet vessels in the area.
The influence of the boundary effects is negligible in this regard. Increasing the number
of outlet points would eliminate the high pressure values. The displacement solution u

and the porosity field ϕ are plotted in Figs. 5.4a and 5.4b. Higher displacement values
can be observed in the areas of high pressure values. The porosity field ϕ fluctuates
around the initial porosity value of 0.5.

5.3.3 Model sensitivity with respect to bell-shaped source term

Figure 5.5 depicts the pressure field p for two different values of the scaling factor b of
the bell-shaped function (5.4). In the case of b = 1 (see Fig. 5.5a), the resulting pressure
values are centered on a smaller area. Therefore, the maximum values also exceed the
ones obtained with b = 3 (see Fig. 5.5b). Nevertheless, global behavior is in both cases
equivalent. For all further computations, we proceed with b = 3.

5.3.4 Model sensitivity with respect to stiffness of surrounding tissue

Figure 5.6 plots the displacement solution for a stiffer (³ = 5 ⋅ 102) and softer resistance
(³ = 1 ⋅ 101) in equation (5.2). In the stiff case (see Fig. 5.6a), the displacement field
is virtually indistinguishable from the solution with a fixed boundary depicted in Fig.
5.4a. In the soft case, the boundary can deform, leading to a significantly different
displacement pattern, plotted in Fig. 5.6b. Due to the weakening of the constraint in
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Figure 5.3: Solution for the pressure field p [ kg

ms2
]. The depicted tree is the supplying tree. The stream-

lines illustrate the flow from the inlets to the outlets.

the soft case, the maximum displacement value decreases compared to the one in the
stiff case.

5.3.5 Model sensitivity with respect to hierarchical tree depth

We finally investigate the model behavior at two different tree depths with 250 and 1,500
terminal vessels for both trees. In order to resolve the circular voids adequately, we refine
the mesh with 114,320 elements in the former case to a mesh with 353,344 triangular
elements in the latter case. The results of the pressure field p are presented in Fig. 5.7.
It is evident that the pressure drop between inlets and outlets is smaller in the case of
a finer tree hierarchy (see Fig. 5.7a and 5.7b). When the trees are resolved to a larger
depth, the outlet and inlet points seem to be more homogeneously distributed from a
global perspective, resulting in shorter distances between the inlet and outlet. Thus,
global behavior leads to a pressure solution that shows a more fine-grained distribution.
If we characterize a certain number of inlets or outlets with a representative volume
element (RVE), we observe that the relative pattern of the solution with respect to such
an RVE does not change. It is easy to verify from the plots that one can find similar
patterns of the pressure field of the coarser tree in the pressure field of the finer tree.
The velocity field in Fig. 5.8 shows similar behavior as that of the pressure field. For

the finer trees, the maximum flow resulting from the pressure fields decreases. Addi-
tionally, the relative pattern of the solution does not change when representing a certain
number of inlets or outlets with an RVE. Both plots show similar patterns of flow fields
with respect to such an RVE.
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(a) Displacement u (b) Porosity φ

Figure 5.4: Solution for displacement field u [m] with a fixed outer boundary and solution for porosity
field φ.

(a) Solution for b = 1 (b) Solution for b = 3

Figure 5.5: Solution for pressure field p [ kg

ms2
] with different scaling factors b of bell-shaped function.

5.4 Towards simulation based assessment of liver resection

Since the liver is characterized by a high degree of vascularization, the regeneration pro-
cess of the liver is dependent on the perfusion and redistributed flow after resection,
which affects important functions such as blood supply or metabolism [79]. In the fol-
lowing, we will employ our modeling framework to evaluate cut patterns and investigate
blood flow redistribution after surgical resection.

5.4.1 Patient-specific liver geometry and discretely resolved vascularization

We generate a patient-specific liver model based on imaging data obtained from CT
scans [143]. For the segmentation of the liver, we use the open source software package
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(a) Stiff contact with α = 5 ⋅ 102 (b) Soft contact with α = 1 ⋅ 101

Figure 5.6: Solution for displacement field u [m] for different stiffness values in the contact boundary
conditions.

(a) Pressure p for 250 inlets/outlets (b) Pressure p for 1500 inlets/outlets

Figure 5.7: Solution for pressure field p [ kg

ms2
] obtained with two different tree resolutions.

3D Slicer4 and the free software Autodesk Meshmixer5. A 2D slice of the 3D voxel model
and the segmentation mask of the liver domain (green colour) are shown in Figs. 5.9a.
and 5.9b, respectively. The resolution of the CT scan is 0.977 x 0.977 mm within each
image, with a spacing of 2.5 mm between the slices.
Figure 5.10 illustrates the segmented liver with the synthetic supplying tree (hepatic

artery and portal vein) and the synthetic draining tree (hepatic vein). For both trees
we choose 1,000 terminal vessels to model the flow of blood into the poroelastic domain
in an accurate manner, while still maintaining computational efficiency. We note that
we recently improved the efficiency of the vascular generation algorithm described in
section 4.2, which allows us to generate full scale vascular trees with around 1,000,000

4https://www.slicer.org/
5https://meshmixer.com/

49



(a) Velocity w for 250 inlets/outlets (b) Velocity w for 1500 inlets/outlets

Figure 5.8: Solution for velocity field w [m
s
] obtained with two different tree resolutions.

(a) 2D slice (b) Segmentation mask with liver in green

Figure 5.9: Abdominal CT scan containing the liver with a resolution of 0.977 x 0.977 mm and a slice
thickness of 2.5 mm.

terminal vessels [15].
After creating the liver geometry, we assume spherical voids at the terminal points of

the outlets where we impose zero pressure as a reference level. We then generate a mesh
which contains 7,385,996 tetrahedral elements.

5.4.2 Anatomical vs. non-anatomical resection

Detecting areas with insufficient blood supply and locally quantifying the perfusion ef-
ficiency is helpful for the assessment of the post-operative outcome. We first show the
results of the liver model before resection. The physiological parameters that have been
used for all liver computations are listed in Tab. 5.2. The stiffness value ³ = 5 ⋅ 103

has been chosen based on the elastic properties of the surrounding organs [145]. The
results for the velocity and pressure are depicted in Fig. 5.11 and Fig. 5.12. We will
later see that the full liver model shows a more homogeneous blood supply to the liver
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(a) Anterior view (b) Inferior view

Figure 5.10: Patient-specific 3D liver model with the supplying (purple) and draining (blue) vascular
tree structures.

Table 5.2: Simulation parameters for the liver problem [17], [49], [144].

Tissue deformation-related parameters Perfusion-related parameters

Young’s modulus E = 5000 kg
ms2

Initial porosity ϕ0 = 0.15
Poisson’s ratio ¿ = 0.35 Permeability k = 2 ⋅ 10−14 m2

Dynamic viscosity ¸ = 3.6 ⋅ 10−3 kg
ms

Inflow (at root) Q̂perf = 20 ⋅ 10
−6 m3

s

tissue than the resected livers. We observe low disparities of the pressure field (see Fig.
5.12) on a global scale, and an area of pressure accumulation in the upper right part of
the unresected liver. This is the consequence of (i) the modeling choices of the inflow
and outflow, and (ii) the homogenization over a wide range of length scales of vessels
[22]. Later in this section we will observe a significant change of these disparities when
performing a resection.
We now assume that the left lateral section of the liver is affected by a tumor. We

use our framework for modeling perfusion to investigate the behavior of the liver after
resection. In particular, we consider two options for potential cuts that are illustrated
in Fig. 5.13. Figure 5.14 illustrates the remaining domain of the liver and the remaining
vascular tree after resection for both cut options in the inferior view. The first cut option
in Fig. 5.14a corresponds to an anatomical resection of the left lateral section in which
the liver segments 2 and 3 are removed (see Fig. 2.5). The discretization of the remaining
liver domain after anatomical resection consists of a mesh with 5,882,171 tetrahedral
elements. The second cut option in Fig. 5.14b corresponds to a non-anatomical resection
with a diagonal cut. The discretization of the remaining liver domain consists of a mesh
with 6,107,676 tetrahedral elements.
We note that vessels resolved in the vascular tree structure which are cut must be

closed during surgery to prevent blood loss. In our simulations, we therefore do not
allow blood flow through any vessel that is cut, and the blood flow of all cut vessels is
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(a) Outer boundary (b) Interior slices

Figure 5.11: Solution for velocity w [m
s
] of full liver model (inferior view).

(a) Visualization with vessel trees (b) Visualization without vessel trees

Figure 5.12: Solution for pressure field p [ kg

ms2
] of full liver model (inferior view).

redistributed over the remaining portion of the intact tree.
The simulation results, shown in Fig. 5.15, clearly outline the difference in blood

supply for the two cuts. While the anatomical resection in Fig. 5.15a causes a homoge-
neously distributed perfusion of the domain, the non-anatomical resection in Fig. 5.15b
leads to a part of liver tissue with insufficient blood supply and a part of tissue with
lower blood supply compared to the same region in the unresected liver shown in Fig.
5.11. We hence conclude that the diagonal cut would suffer from uneven blood supply
in the post-operative regenerative process.
In Fig. 5.16 and 5.17, we compare the corresponding pressure fields. We observe that

both cut options lead to higher pressure levels in the liver after resection compared to
the unresected liver shown in Fig. 5.12. This phenomenon is physiological and known
as hyperperfusion. It occurs because the same amount of blood must now pass through
a smaller remaining liver domain. Moreover, the non-anatomical resection in Fig. 5.17
exhibits more areas with pressure accumulation (plotted in red) and higher disparities
in the pressure distribution than the anatomical resection in Fig. 5.16.
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tumor-affected
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Figure 5.13: Two cutting planes for the resection of liver tissue. The blue sphere represents the tumor-
affected region.

(a) Anatomical resection of the left lateral section
(segments 2 and 3) (b) Non-anatomical resection

Figure 5.14: Model representation of the resected liver.

5.4.3 Statistical analysis

In order to further compare the different results, it is useful to work with statistical
quantities. For this purpose, we use the standard deviation (SD), variance (V) and
coefficient of variation (CV). The latter, which is defined as the ratio of the SD to the
mean. Tab. 5.3 and 5.4 show the statistical quantities based on nodal values of the
pressure and velocity field of both the full and resected liver models. We observe that
for both resections the mean and maximum values of pressure and velocity significantly
increase. Additionally, the SD, V and CV of the resected livers are higher. This indicates
that the distribution of the pressure and velocity is less homogeneous. Comparing those
values of the anatomical and the non-anatomical resection shows that the non-anatomical
resection causes a less homogeneous distribution. In Fig. 5.18 we plot the histogram
for the nodal values of the pressure. The zero values for the pressure correspond to the
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(a) Anatomical resection

part of tissue with

insufficient blood

supply

lower blood supply

compared to same

region in healthy state

(b) Non-anatomical resection

Figure 5.15: Solution for velocity w [m
s
] after resection.

(a) Visualization with vessel trees (b) Visualization without vessel trees

Figure 5.16: Solution for pressure field p [ kg

ms2
] after anatomical resection.

boundary condition at the outlet vessels. Comparing the histogram for all three models
shows the same phenomena as described before. Namely, the mean value shifts, which
indicate hyperperfusion, and the deviation from the mean values for the resected models
is higher, which indicates a less homogeneous distribution.

Table 5.3: Statistical quantities for the velocity field (nodal values)

Max. [ms ] Mean [ms ] Min. [ms ] SD [ms ] V [m
2

s2
] CV

Full liver 7.87 ⋅ 10−2 0.33 ⋅ 10−2 1.7 ⋅ 10−6 0.59 ⋅ 10−2 0.35 ⋅ 10−2 1.79
Anatomical resection 10.96 ⋅ 10−2 0.45 ⋅ 10−2 1.2 ⋅ 10−5 0.85 ⋅ 10−2 0.73 ⋅ 10−2 1.89
Non-anatomical resection 11.62 ⋅ 10−2 0.48 ⋅ 10−2 7.8 ⋅ 10−7 0.95 ⋅ 10−2 0.9 ⋅ 10−2 1.98
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(a) Visualization with vessel trees (b) Visualization without vessel trees

Figure 5.17: Solution for pressure field p [ kg

ms2
] after non-anatomical resection.

Table 5.4: Statistical quantities for the pressure field (nodal values).

Max. [ kg
ms2

] Mean [ kg
ms2

] Min. [ kg
ms2

] SD [ kg
ms2

] V [ kg2

m2 s4
] CV

Full liver 48.98 18.56 0 6.41 41.1 0.345
Anatomical resection 76.85 27.2 0 10.42 108.64 0.38
Non-anatomical resection 84.35 30.39 0 12.52 116.66 0.41

Figure 5.18: Distribution of pressure (nodal values).

5.5 Critical assessment

Modeling blood perfusion through the presented poroelastic framework of the liver has
proven valuable for understanding the implications of various surgical resection scenarios
on liver function. With a recent publication [69] we demonstrated the efficacy of this
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approach. However, several critical issues have emerged that necessitate a reevaluation
and enhancement of the modeling framework to better capture the complexities of liver
perfusion.
While the results obtained from modeling liver perfusion through a poroelastic model

have been promising, there are notable challenges. A significant issue arises from the im-
plementation of Dirichlet boundary conditions, which are essential for simulating fluid
flow through the draining tree. The necessity of defining boundaries for these condi-
tions leads to the introduction of voids within the model, which can complicate the
computational process. These voids, while intended to represent areas without vascu-
lar structures, introduce additional layers of complexity that affect the accuracy of the
simulations.
From a computational point of view, the presence of voids necessitates intricate mesh-

ing around these regions. This increased discretization effort leads to a substantial rise
in computational costs. For instance, in the case of the liver perfusion problem, the
model required approximately 7.4 million elements for discretization. This level of com-
plexity can significantly hinder the feasibility of large-scale patient-specific simulations,
especially when the primary goal is to model liver growth in conjunction with perfusion.
Moreover, from a modeling point of view, the existing framework combines the lower

levels of the vascular tree and microcirculation without adequately accounting for their
distinct physiological characteristics. The physiological behaviors of blood flow and
tissue interaction at various scales are inherently different, necessitating a multiscale
approach to ensure accurate representation in simulations.
Therefore, in the following, we will introduce a modeling framework for modeling liver

regrowth which consists, among other concepts, of a multiscale perfusion model. This
model considers more physiological realism. By accounting for distinct characteristics
across various scales within the vascular system, the model more accurately represents
the complexities of liver perfusion. Additionally, the elimination of voids in the new
model results in a less complex meshing requirement, significantly reducing computa-
tional costs. This makes it feasible to conduct large patient-specific simulations without
excessive resource demands.
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6 A modeling framework for liver tissue
regrowth

In this section, we present a framework to address hyperperfusion-driven liver tissue
regrowth. To address the issues with regard to the perfusion model, we propose a
refined modeling framework that integrates a multiscale perfusion model and accounts
for the distinct characteristics of the vascular system across different scales. Additionally,
we present a framework to model hyperperfusion-driven volumetric growth based on a
growth evolution equation. The results shown in the following sections are published in
[70].

6.1 Fundamental concepts for modeling hyperfusion-driven
liver regrowth

A. Multiscale perfusion model

Supplying

vessel tree

Homogenized flow

distribution at the

macroscale

B. Growth evolution

C. Volumetric growth model
Connection of flow field with

growth parameters

Microcirculation
Draining

vessel tree

Figure 6.1: Modeling framework of liver regrowth.
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Building upon our understanding of the multiscale driving mechanisms behind liver
regrowth, we develop the following fundamental modeling concept, illustrated in Fig.
6.1:

A. Multiscale perfusion model: As the key stimulus for liver regrowth is hyperper-
fusion in the microcirculation, understanding the current state of blood perfusion
at the lobule scale is the key prerequisite for assessing liver regrowth. We there-
fore require a detailed perfusion model, based on suitable scale-bridging concepts,
which is able to separate the overall liver perfusion into macro- and mesoscale blood
distribution and collection, and microscale blood flow through the functional units
of the liver at the lobule scale. We can then use the corresponding model rep-
resentation of microscale blood flow to obtain a measure of hyperperfusion in a
particular region of the liver.

B. Growth evolution model: Once a multiscale perfusion model is established that
can assess hyperperfusion at the lobule scale at each point of the liver domain,
we can set up a (phenomenological) growth evolution equation that relates an
increased level of blood flow to a growth rate of homogenized liver tissue, which
represents the effect of hepatocyte proliferation. An important requirement is that
the growth evolution equation is based on parameters that can be calibrated by
available experimental data.

C. Organ-scale growth model: Once the growth evolution model for homogenized
liver tissue is known, it can be integrated into an organ-scale growth model, for
which well-established concepts exist in continuum poroelasticity. It represents
macroscale growth, locally driven by the growth evolution equation, which de-
pends on the local state of hyperperfusion in the microcirculation. We assume
that lobular remodeling in the microcirculation takes effect immediately, such that
macroscale growth of liver tissue also implies an increase in volume of the vascu-
lature. In turn, growth of the liver tissue enlarges the microcirculatory domain of
the perfusion model, such that hyperperfusion can be regulated at each point of
the liver.

6.2 Modeling of blood flow through hierarchical vascular
networks

In this section, we describe our multiscale perfusion model that corresponds to part
A of our modeling framework illustrated in Fig. 6.1. It consists of two fundamental
components: (a) a synthetic discrete model that represents the upper levels of the hi-
erarchical vasculature for blood distribution and collection which has been introduced
in section 4.2, and (b) a homogenized flow model that is divided into multiple compart-
ments to individually represents the lower levels of the hierarchical vasculature for blood
distribution and collection, and the microcirculation at the lobule scale.
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6.2.1 Multi-compartment homogenized flow equations

The characteristic size of vessel diameters across the hierarchy of the supplying and
draining trees ranges from several millimeters for the macro-scale arteries and veins to
100 micrometers for the smallest arterioles and venules [4]. With the vascular tree ge-
ometry provided by the discrete model presented above, direct flow modeling over the
complete vascular tree is possible, see e.g. the technologies reviewed in [146], but requires
a significant computing effort, especially within an iterative solution procedure. In order
to find a compromise between resolution accuracy and computational effort, we follow
a different approach that still takes into account the hierarchically complex structure of
the tissue and vessels. To this end, we use the lower hierarchies of the discrete vascular
trees to calibrate a porous medium, where flow can be homogenized in a continuum
sense. To separately represent homogenized flow in different parts of the vascular tree,
we compartmentalize the vasculature into spatially co-existing compartments and asso-
ciate only those vessels to each compartment that belong to the selected (supplying or
draining) tree and the selected range of spatial scales [17], [20]–[22].
To set up the model, we divide the discrete vessel structure (or parts of it) into N

compartments, assigning to each compartment i = 1, ...,N its own (positive definite)
permeability tensor Ki, pore pressure pi, mass source term ¹i, and homogenized flow
velocity wi. We consider the system of first-order differential equations that is governed
by Darcy’s law and the continuity equation

wi +Ki∇pi = 0 in Ω, (6.1a)

∇ ⋅wi +Qi = ¹i in Ω, (6.1b)

in each compartment i, in an open bounded region Ω ¢Rd, with space dimension d and
impermeable outer boundary Γ. The quantities Qi denote the pressure-dependent mass
exchange between compartment i and all other compartments and are given by:

Qi =

N

∑
k=1

´i,k(pi − pk), (6.2)

where ´i,k g 0 denotes the perfusion coefficient for coupling compartments i and k. As
such, mass exchange is absent in pressure equilibrium. We assume ´i,k = ´k,i which is
consistent with the mass balance 3iQi = 0. Due to the assumption of an incompressible
fluid, we use the terms mass flow and volumetric flow interchangeably. Furthermore,
the strict hierarchy of the vessels in the synthetically generated vessel tree implies that
mass exchange only occurs between neighboring compartments: ´i,k = 0 when k < i − 1
or i + 1 < k.
Summation of (6.1b) over the compartments i = 1, ...,N shows that the model (6.1)

locally conserves mass:

N

∑
i=1

∇ ⋅wi =

N

∑
i=1

¹i in Ω, (6.3)
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where we have invoked the identity:

N

∑
i=1

Qi =

N

∑
i,k=1

´i,k(pi − pk) = 0. (6.4)

Substituting (6.1a) into (6.1b) converts the first-order system into an equivalent system
of one second-order differential equation per compartment:

−∇ ⋅ (Ki∇pi) +Qi = ¹i in Ω. (6.5)

Here, the pressure pi is the sole unknown variable, and the compartment velocities wi, i =

1, ...,N follow from Darcy’s law in 6.1a. We supplement the model with a Neumann
boundary condition to account for the impermeability:

−(Ki∇pi) ⋅ n = 0 on ΓN = Γ. (6.6)

The model is equipped with the following global properties:

N

∑
i=1
+
Ω
¹i dΩ = 0, (6.7a)

N

∑
i=1
+
Ω
¹ipi dΩ g 0. (6.7b)

The property (6.7a) shows that global mass is conserved, whereas (6.7b) is a global
energy stability property. The global mass conservation follows from:

N

∑
i=1
+
Ω
¹i dΩ =

N

∑
i=1
+
Ω
∇ ⋅wi dΩ = −

N

∑
i=1
+
Ω
∇ ⋅ (Ki∇pi) dΩ = − N

∑
i=1
+
Γ
(Ki∇pi) ⋅ n dΓ = 0,

(6.8)

where the first identity results from (6.3). To see (6.7b) we first note the identity:

N

∑
i=1

Qipi =
N

∑
i,k=1

´i,k(pi − pk)pi = 1

2

N

∑
i,k=1

´i,k(pi − pk)2 g 0, (6.9)

in which we have utilized the symmetry of ´i,k. A straightforward substitution now
provides the result:

N

∑
i=1
+
Ω
¹ipi dΩ =

N

∑
i=1
+
Ω
Qipi dΩ −

N

∑
i=1
+
Ω
∇ ⋅ (Ki∇pi)pi dΩ

=

N

∑
i,k=1
+
Ω

1

2
´i,k(pi − pk)2 dΩ +

N

∑
i=1
+
Ω
(Ki∇pi) ⋅ ∇pi dΩ − ...

... −
N

∑
i=1
+
Γ
pi(Ki∇pi) ⋅ n dΓ g 0, (6.10)
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where the boundary term vanishes due to (6.6).

6.2.2 Calibrating model parameters from the vessel network

In the next step, we describe the computation of the model parameters directly from the
vessel network, particularly the permeability tensors Ki for each compartment and the
intercompartmental perfusion coefficients ´i,k, using averaging procedures [20], [147]–
[149]. In the following, the index set Ki(x) contains all indices of the vessels of compart-
ment i that are located at least partially within an Averaging Volume (AV) of spatial
position x. Furthermore, the index set Iik contains all indices of the vessels within the
AV that belong to compartment i but share a node with one or more vessels of compart-
ment k. As a consequence of the hierarchical structure of the compartments without
skipped compartments, it follows that Ii,k = ∅ if ∣i − k∣ ≠ 1 and Ii,k ¦ Ki(x) if ∣i − k∣ = 1.

The components of the permeability tensor at spatial position x for a network of
straight rigid tubes subject to Poiseuille’s law can be computed according to

Kij(x) = Ã

8¸VAV
∑

a∈Ki(x)

(ra)4∆xa,i∆xa,j

la
, (6.11)

with VAV the volume of the AV, ¸ the dynamic viscosity, ra the vessel radius, la the
vessel length, and ∆xa,i and ∆xa,j the components of the spatial vessel segment vector
of vessel a (see Fig. 6.2). Note that only the segment of the vessel that actually intersects
the AV is considered for ∆xa and la.

∆xa,1

∆xa,2

la

e1

e2

x

Averaging volume Vessel a

Compartment i

Upper compartment k

Connecting node

Intercompartmental flow

Figure 6.2: Averaging volume at spatial position x.

Unlike the permeability tensor, which in combination with a given (and constant)
dynamic viscosity can be determined solely based on geometry, the perfusion coeffi-
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cients require flow quantities [20]. The synthetically generated vessel trees are based on
Poiseuille’s flow, providing the flow in each vessel and the pressure at each node. Using
the same AV as above, we obtain the perfusion coefficient via

´i,k =

⎧⎪⎪⎨⎪⎪⎩
Qi,k(x)

∣pi(x)−pk(x)∣
if ∣pi(x) − pk(x)∣ ≠ 0,

0 else,
(6.12)

where Qi,k(x) is the bulk-volume-average for the intercompartmental flow and can be
obtained by division with the volume of the AV

Qi,k(x) = 1

VAV
∑

a∈Ii,k(x)

Q̂a, (6.13)

where pi(x) is the real-volume-average of the pressure in compartment i. For straight
vessels with a constant diameter, pi can generally be determined by

pi(x) = 3a∈Ki(x) paVa

3a∈Ki(x) Va

, (6.14)

where Va = Ãd
2
ala/4 is the volume of the vessel a and pa represents the average pressure

within the vessel. Since the pressure in the vessel varies linearly (see Poiseuille’s flow),
the average pressure can be determined as

pa =
pu + pv

2
, (6.15)

where pu and pv are the known pressures at the proximal and distal node, respectively.
When determining the mean pressure, all vessels whose end nodes are within the AV of
the spatial point x can be considered in their entire length. To circumvent the need to
determine the mean pressure of a segment section, we assume that this is true even if
the starting point of the vessels lies outside this volume. For computing the perfusion
coefficients coupling the lowest hierarchy of the vascular trees with the microcirculation,
we use the constant and prescribed reference pressure pmicro = proot −∆p.

Remark 1. The case ∣pi(x) − pk(x)∣ = 0 in (6.12) is not relevant for a hierarchical struc-
tured network as the pressure decreases continuously from the root segment to the
terminals within the supplying tree and from the terminals to the root segment within
the draining tree.

6.2.3 Compartmentalization strategy

In micromechanics, the suitability for homogenization is related to the existence of a
RVE, which is defined as a partial volume of material that is statistically homogeneous
from a macroscopic point of view, is not unique in its choice and is selected based on the
assumption of a periodic microstructure [122]. Homogenization relies on the separation
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Figure 6.3: Compartmentalization of vascular tree structure.

of scales

dj lj L, (6.16)

where d, l, and L denote the characteristic length of the structure of the porous medium,
the averaging volume (in this sense the RVE), and the macroscopic process under con-
sideration, see e.g. [123]–[125]. It is obvious that scale separation cannot be guaranteed
for the upper hierarchies of the vascular tree structure, which therefore need to remain
a network of resolved individual vessels.
We assume that vessel segments with radii below or equal to an appropriate threshold

of rthresh are suitable for homogenization. Therefore, we categorize the vessels a ∈ A

of the vascular tree T(V,A) in two groups: the lower hierarchies Alower, suitable for
homogenization, and the upper hierarchies Aupper, unsuitable for homogenization and
which therefore must remain as a network of resolved vessels. We define

Aupper = {a ∈ A ∶ ra > rthresh}, Aupper ¦ A, (6.17)

Alower = {a ∈ A ∶ ra f rthresh}, Alower ¦ A, (6.18)
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where we can also define the respective subsets of nodes

Vupper = {u, v ∈ a = uv ∶ a ∈ Aupper}, Vupper ¦ V, (6.19)

Vlower = {u, v ∈ a = uv ∶ a ∈ Alower}, Vlower ¦ V. (6.20)

With that, we introduce the sets

Vconn = Vupper ∩Vlower, (6.21)

Aconn = {a = uv ∈ Alower ∶ u ∈ Vconn}, (6.22)

where Vconn denotes the set of nodes connecting the upper with the lower hierarchies
and Aconn denotes the set of vessels of the lower hierarchies with proximal node in Vconn.
Note that Alower and Vlower can be further divided into several compartments. In

the scope of the present study, we will focus on the following simple compartmental-
ization strategy, illustrated in Fig. 6.3 for the model problem of the circular domain:
One compartment for each of the lower hierarchies of the respective vascular tree (com-
partment supply and compartment drainage) and the microcirculatory compartment:
labeled supply, micro and drain.
Due to the symmetry of the perfusion coefficient and the absence of intercompart-

mental flow between compartment supply and drainage, i.e. ´1,3 = 0, two perfusion
coefficients remain, and we write ´1,2 = ´supply and ´2,3 = ´drain. The permeability ten-
sors of compartments supply and drainage as well as the perfusion coefficients ´supply

and ´drain are determined using the averaging procedure described in Section 6.2.2. For
the microcirculation, we use the isotropic permeability parameter kmicro = 2 × 10

−8 mm2

determined in [48] and set an isotropic and homogeneous permeability Kmicro = kmicro/¸ =
1/180 mm3 s kg−1.

At the microscale, permeability is intrinsically anisotropic. However, when modeling
perfusion characteristics at the lobular (meso-) scale, this anisotropy tends to average
out across multiple lobules, yielding an effectively isotropic behavior. This homogeniza-
tion is a necessary simplification for mesoscopic modeling. It is important to note that
the compartment microcirculation of our model and its permeability represents the re-
sistance of the sinusoid network at the microscale, see the illustration in Fig. 2.3. It
cannot represent the flow patterns in the lobular structures at the mesoscale, as for in-
stance the model in [150]. In this sense, our model can be interpreted as the averaged
flow redistribution across the microcirculation, which occurs through the network of the
smallest-scale venules and arterioles.
The respective resolved vascular tree structure (upper hierarchies) and the lower hier-

archy compartments can be connected by deriving suitable inflow and outflow conditions
at the connecting nodes Vconn. This can be achieved via suitably calibrated source and
sink terms ¹in and ¹out in the continuity equation (6.1b) [69]. For the inflow into com-
partment supply, we compute for each node u ∈ Vconn the net flow Q̂u,in that enters from

64



the resolved part of the supplying tree into compartment supply:

Q̂u,in = ∑
a=uv

a∈Aconn

Q̂a . (6.23)

To avoid singularities in the homogenized flow results due to point-wise inflow, we set
up the following source function

¹in(x) = ∑
u∈Vconn

Q̂u,in

(2ÃÃ2)d2
exp{(−1

2

∥x − xu∥2
Ã2

)}, (6.24)

where we spatially distribute the net flow Q̂u,in at each node u ∈ Vconn in a symmetric
way in the form of a weighted multivariate Gaussian distribution [69]. We note that
d = dim(Ω) is the spatial dimension of the problem and Ã2 is the variance of the radially
symmetric distribution that controls the effective spread of the source distribution. In
the sense of homogenization, we choose the variance to be sufficiently small with respect
to the AV radius such that the distributed inflow Q̂u,in from the supplying vascular tree
lies well within the range of the AV.

Remark 2. Due to mass conservation, the following relation should hold:

+
Ω
¹in(x)dV = Q̂perf , (6.25)

where Q̂perf is the inflow at the root of the supplying vascular tree. Due to the Gaussian
distribution, which has unbounded support, this relation will in general not be exactly
satisfied. In this paper, we assume that the corresponding mass error is sufficiently small
for our application. As an alternative, one could also scale the Gaussian distribution such
that its integration over the finite domain Ω yields one.

For the outflow, a pressure-dependent sink term ¹out is imposed in compartment
drainage. Similar to the intercompartmental mass exchange, ¹out is introduced as a
pressure-dependent outflow

¹out = −´out(pdrain − pout) in Ωoutflow, (6.26)

where Ωoutflow ¦ Ω with Ωoutflow ≠ ∅ denotes the region of outflow. The penalty param-
eter ´out enforces the prescribed outflow pressure pout acting in a similar way as the
intercompartmental perfusion coefficient and must be chosen sufficiently large.
Note that the overall outflow

Q̂out = +
Ω
¹out(x)dΩ = −Q̂perf , (6.27)
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is regulated by global mass conservation

N

∑
i=1
+
Ω
¹i dΩ =

N

∑
i=1
+
Ω
∇ ⋅wi dΩ = −

N

∑
i=1
+
Ω
∇ ⋅ (Ki∇pi) dΩ = − N

∑
i=1
+
Γ
(Ki∇pi) ⋅ n dΓ = 0,

(6.28)

which results from summation of (6.1b).
Finally, the system of equations (6.5) for our compartmentalization strategy reads

−∇ ⋅ (Ksupply∇psupply) +Qsupply = ¹in in Ω, (6.29a)

−∇ ⋅ (Kmicro∇pmicro) +Qmicro = 0 in Ω, (6.29b)

−∇ ⋅ (Kdrain∇pdrain) +Qdrain = ¹out in Ω, (6.29c)

with the intercompartmental flow rate densities

Qsupply = ´supply(psupply − pmicro), (6.30a)

Qmicro = ´supply(pmicro − psupply) + ´drain(pmicro − pdrain), (6.30b)

Qdrain = ´drain(pdrain − pmicro). (6.30c)

6.2.4 Prototypical model problem in 2D

We further illustrate the concepts of our multi-compartment perfusion model via the
model problem of a 2D circular disk with a radius of 10 mm. We use the supplying and
draining tree structures described by Fig. 4.2 and Tab. 4.1 and apply our compart-
mentalization strategy illustrated in Fig. 6.3. Furthermore, we discretize the circular
domain into a mesh of 459 standard six-noded triangular elements (see Fig. 6.4a).
The material parameters are determined by assigning a circular AV at the center of the

respective mesh element. On the one hand, the AV size must be chosen sufficiently large
to ensure that scale separation holds and homogenization can be applied. On the other
hand, the AV size cannot be too large such that macroscale variations in the material
parameters are not lost by averaging. The optimal choice of AV size is always task-
specific and ideally should be validated through a sensitivity study. A sensitivity study
in this regard has been performed in [20]. A suitable AV dimension in the range of about
1/10 of the domain dimension has been proposed based on finding a suitable balance
between increasing the smoothness of the Darcy pressure and minimizing its deviation
from the Poiseuille pressure. We specify the dimension of each AV by choosing its
radius one order of magnitude smaller than the characteristic length of the domain, i.e.
1mm. The resulting permeability tensors and perfusion coefficients are assigned to the
corresponding element, where it is assumed to be constant in that element. We choose
the threshold for separation to rthresh = 0.1mm, one order of magnitude smaller than
the AV size.

Remark 3. The statement on the size of the AV, according to which its characteristic
length should be chosen sufficiently large to ensure an adequate continuum represen-
tation of all (discontinuous) properties of the microstructure, and sufficiently small to
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avoid smoothing macroscopic variations of these properties throughout the domain can
also be seen as the restriction to (6.16). It should be ensured that a sufficient number of
vessels from the considered compartment are present in the AV, thereby guaranteeing a
homogenized and continuous representation of the microscopic structure with a desired
level of smoothness. Additionally, the AV size should be chosen sufficiently small to pre-
vent the smoothing of macroscopic heterogeneities across the entire domain. Accordingly,
in the sense of practicability of modeling the vessel tree as a multi-compartment Darcy
model, the strict constraints of scale separation (6.16) should be replaced by a weakened
condition on the dimensional relations of the structure

r < l < L, (6.31)

where r denotes the largest vessel radius within the compartment (0.1 mm), l is the
radius of the circular AV (1 mm) and L corresponds to the radius of the circular domain
(10 mm). Therefore, with the present choice of AV size and the separation criterion
rthresh, the classical requirements of scale separation for homogenization are not fully
met. However, in terms of efficient computation with the given trees, the scale separation
of one order of magnitude each is considered sufficient.

We illustrate homogenized material parameters by plotting the perfusion coefficient
´supply component in Fig. 6.4 and the permeability in Fig. 6.5. We can observe in
Figs. 6.4a and 6.5a that for an AV radius of 1 mm, geometry and topology of the
resolved larger vessels is reflected in the material parameters of the supply and drainage
compartments. This result is intuitively clear, as the presence of a (resolved) larger
vessel implies the absence of smaller vessels (to be homogenized), which directly leads to
a decrease in the corresponding permeability tensor and perfusion coefficient. In our case,
we would like to maintain this mechanism to (a) implicitly represent the flow obstacle
due to the resolved larger vessels in the homogenized compartments, and (b) mitigate
intercompartmental flow from the compartment supply into the microcirculation and
from the microcirculation into compartment drainage. Hence, we conclude from Figs.
6.4a and 6.5a that the AV radius size must be appropriately chosen in the sense that
macroscopic heterogeneities of the material parameters are not smoothed too heavily
over the entire domain. This observation does not apply to a larger AV radius, such as
5 mm, as demonstrated in Figs. 6.4b and 6.5b. We note that unlike in the current 2D
case, blood can flow around the obstacles in a 3D liver representation by using the third
dimension.
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(a) AV radius of 1 mm (b) AV radius of 5 mm

Figure 6.4: Perfusion coefficient βsupply [mm s kg−1] for coupling compartment supply and compartment
microcirculation.

(a) AV radius of 1 mm (b) AV radius of 5 mm

Figure 6.5: Permeability component Kyy [mm3 s kg−1] for compartment supply.

We solve the associated coupled boundary value problems (6.5) and (6.6) of the com-
partmentalized model via the open-source finite element framework FEniCS [140], using
standard quadratic nodal basis functions on the triangular mesh shown in Fig. 6.4a.
The averaged outflow pressure pout is enforced by a sufficiently large penalty parameter
´out = 10

5.
We utilize the Bubunov-Galerkin finite element method [139] for the discretization of

the reduced multi-compartment Darcy model in (6.5). Multiplication with discrete test
functions qh,i, integrating over the domain Ω, and subsequently applying integration by
parts leads to the weak statement: Find ph,i ∈Wh,i such that for all qh,i ∈Wh,i:

+
Ω

(Ki∇ph,i) ⋅ (∇qh,i) dΩ ++
Ω

qh,i

N

∑
k=1

´i,k(ph,i − ph,k)dΩ = +
Ω

¹iqh,i dΩ, (6.32)

where subscript h denotes the discretized version of the quantity. The discrete function
space Wh,i consists of Lagrange basis functions of degree P = 2. Selecting the weighting
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functions as qh,i = 1 and qh,i = ph,i shows that the discretization inherits the conservation
and energy-stability properties (6.33):

N

∑
i=1
+
Ω
¹i dΩ = 0, (6.33a)

N

∑
i=1
+
Ω
¹iph,i dΩ g 0. (6.33b)

Note that (6.33b) implies coercivity of the associated bilinear form:

B({ph,i}i=1,...,N ,{ph,i}i=1,...,N) g 0, (6.34)

where the bilinear form is given by:

B({ph,i}i=1,...,N ,{qh,i}i=1,...,N) = +
Ω

(Ki∇ph,i) ⋅ (∇qh,i) dΩ + ...

... ++
Ω

qh,i

N

∑
k=1

´i,k(ph,i − ph,k)dΩ. (6.35)

The results of the pressure fields for all three compartments are shown in Fig. 6.6.
We observe that compartments supply and drainage exhibit pronounced pressure dif-
ferences, following the structure of the resolved supplying and draining trees. In the
microcirculation, in contrast, we can see an almost uniform pressure field. In particu-
lar, the pressure in compartment supply decreases from the root to the terminals. In
compartment drainage, we observe that the pressure decreases from the terminals to the
root.
Figure 6.7 presents the velocity magnitudes across all three compartments. The

streamlines indicate that flow consistently moves away from upper hierarchy vessels
within the compartment supply and towards them within the compartment drainage.
The observed flow directions agree with the orientations of the vessels in the lower hier-
archies of the corresponding vascular tree, as depicted in Fig. 4.2.
In the compartment microcirculation, the velocity magnitudes are three orders of mag-

nitude lower than those observed in the compartments supply and drainage. Therefore, a
flow redistribution through the compartment microcirculation does not occur. This ob-
servation is in agreement with our interpretation that the compartment microcirculation
represents the flow resistance of the microscale sinusoids, but cannot involve significant
flow redistribution at the macroscale, as the lobular structure would not allow that.
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Compartment supply Microcirculation Compartment drainage

Figure 6.6: FE solution of the pressure fields pi [kg mm−1 s−2] for the model problem of the circular
domain.

wsupply wmicro wdrain

Figure 6.7: FE solution of the homogenized velocity magnitude fields wi [mm s−1] for the model problem
of the circular domain with streamlines indicating the directions of flow.
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Qsupply Qmicro -Qdrain

(a) (b) (c)

Figure 6.8: FE solution of homogenized intercompartmental flow fields Qi [s−1] for the model problem
of the circular domain representing (a) the supply and (c) the drainage of compartment
microcirculation. In (b) the difference between supply and drainage is depicted, representing
the redistribution of fluid within compartment microcirculation.

Figure 6.8 shows the intercompartmental flow rate densities, computed from (6.30a),
(6.30b) and (6.30c). The patterns for supply into and drainage from the microcircu-
lation do not show large variations across the domain. The difference between supply
and drainage confirms that a significant fluid redistribution at the macroscale within the
compartment microcirculation does practically not occur, as its magnitude is two orders
lower than supply and drainage. In other words, the fluid flowing into the microcircula-
tion at a particular location also flows out at the same location.

6.3 A hyperperfusion-driven poroelastic growth model

In this section, we present our model for compensatory liver regrowth driven by hyper-
perfusion at the lobule scale. It is based on a flow dependent evolution equation that
corresponds to part B of our modeling framework, illustrated in Fig. 6.1. We extend
the multi-compartment perfusion model by a poroelastic growth model that is defined
at the lobule scale, but provides a growth map for the resolved vessel trees and the
compartments 1 (supply) and 3 (drainage). Additionally, we discuss how our model rep-
resents lobular remodeling at the microcirculation as well as remodeling in the vascular
tree. The poroelastic growth model corresponds to part C of our modeling framework,
illustrated in Fig. 6.1.
The coupling of tissue deformation and fluid flow can naturally be achieved within the

framework of poroelasticity as introduced in section 3, which can be rigorously based
on continuum mixture theory [126]. For a comprehensive review, we refer the interested
reader to [127]–[129], [132], and particularly for large deformation formulations to [69],
[131], [133], [134]. Models to describe growing poroelastic media have also been proposed
[151], [152], including tissue growth [150], [153], biomass growth [154] or tumor growth
[155]–[157].

71



6.3.1 Homogenization and porosity

We start by focusing on the liver lobule scale, as described in Section 2.2.2 and illustrated
in Fig. 2.3. In line with our discussion on perfusion in Section 6.2, we idealize the lobule
scale as a porous material in the sense of a heterogeneous mixture. In our model, it
consists of two constituents: a skeleton phase that includes all cells, the extracellular
matrix and the interstitial fluid, and one perfusion phase that represents the blood
moving through the sinusoids. Corresponding quantities are indexed by skel and perf,
respectively.
We recall the notion of an averaging volume (AV), discussed in Section 6.2.2. The

two-constituent porous material is illustrated at the micro- and macroscale in Fig. 6.9.
Following averaging over a representative AV at the microscale, the volume fraction of
the perfusion phase can be described by the porosity ϕ = ϕperf. The porosity can be
expressed at the macroscale as

ϕ(x, t) = dV perf

dV
(6.36)

where dV perf is the incremental volume of the perfusion phase after homogenization and
dV is the incremental total volume. In a two-phase mixture under the assumption of
absent void spaces (full saturation), one can express the volume fracture of the skeleton
as ϕskel

= 1−ϕ. We note that the corresponding total mass at each point of the macroscale
domain is

dm = (Äperfϕ + Äskel(1 − ϕ))dV (6.37)

where Äperf and Äskel are the true densities of the perfusing blood and the tissue skeleton,
respectively. We recall that Äperf is constant based on our incompressibility assumption
for blood, and in addition, we assume Äskel to be constant as well.

6.3.2 Kinematics of growth

Analogous to section 3.2.1, we assume that the Lagrangian configuration of the con-
stituents coincides and that each of the two constituents of the porous material simulta-
neously occupies a common spatial region. Accordingly, the deformation map x = Ç(X, t)
describes the spatial position of a particle of the liver lobule (see Fig. 6.9).
To incorporate growth into the framework, the deformation map is decomposed into

two components, illustrated in Fig. 6.9. A material point is first mapped into an
intermediate, incompatible growth configuration Ωg. This state is considered stress-
free, and only mass generation occurs between Ω0 and Ωg. To ensure compatibility of
the domain, elastic deformations are then applied to the intermediate configuration [23].
The split of the deformation map into two consecutive mappings leads to a multiplicative
decomposition of the deformation gradient

F = FeFg, (6.38)
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Figure 6.9: Kinematics of finite growth of a poroelastic medium.

into a purely elastic part Fe and a growth deformation gradient Fg [23], analogous to
the decomposition of the deformation gradient in elastoplasticity [158]. Accordingly, we
introduce the elastic part of the right Cauchy-Green strain tensor

Ce = F
T
e Fe. (6.39)

6.3.3 Balance laws and constitutive equations

Liver regeneration is a dynamic and multiscale process that occurs over various scales in
space and time. As our growth model is formulated at the macroscale, where the time
scale consists of days or weeks, we can describe liver growth within this time window
by a sequence of quasi-static growth processes, within which we can neglect any time-
dependent effects.
We then introduce the momentum balance, assuming a quasi-static setting and the

absence of body forces, in reference configurations as

∇0 ⋅ (FS) = 0 in Ω0. (6.40)

Analogous to the idea in section 5.1, we augment the balance of momentum with an
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interaction term

Wc(uN) = ·uN, (6.41)

with · representing the nonlinear stiffness of the spring element. This term is supported
on the outer boundary of the liver ΓN,0 and accounts for the contact of the liver with
surrounding organs (see Fig. 6.9). The contact contribution is applied in the normal
direction, where N denotes the outward unit normal vector on the boundary ΓN,0, and
uN = u ⋅N is the normal component of the displacement vector. The effect of spring
elements at the boundary is best included variationally in the weak formulation of the
balance of linear momentum. For details, we refer the interested reader to [69], [159]
and the references therein.
The nonlinear deformation-dependent stiffness ·(uN) is given by equation (5.2) where

we set c = 2.
We recall the pressure equation in (6.5), which we obtained upon substituting Darcy’s

law (6.1a) into the balance of fluid mass (6.1b). These relations also arise in the theory
of poroelasticity and are therefore also applicable for compartment microcirculation,
where coupling with compartments supply and drainage is ensured by the mass exchange
term Qmicro, see (6.29b). We use the pull-back operation ∇ = F−T∇0 and the identity
∇ ⋅w dΩ = ∇0 ⋅ (JF−1w)dΩ0 for the mapping of (6.5) to the reference configuration Ω0

−∇0 ⋅ (Ki,0∇0pi) + N

∑
k=1

´i,k,0(pi − pk) = ¹i,0 in Ω0, (6.42)

with ∇0 denoting the material gradient and Ki,0, ´i,k,0 = J´i,k, ¹i,0 = J¹i denoting the
permeability tensor, the perfusion coefficient, and the source term in the reference con-
figuration, respectively. The pull-back operation for the permeability tensor is defined
by

Ki,0 = JF
−1KiF

−T . (6.43)

For compartments supply and drainage we can find simple update relation for the per-
meability tensors and perfusion coefficients based on the assumption that the perfusion
properties of the vascular network are maintained during growth. Given the deformation
field for each quasi static iteration step, the update formulations read

Ki = J
−1FKi∣t=0FT , i = supply, drain (6.44)

´i,k = J
−1´i,k∣t=0, i = supply, drain (6.45)

where Ki∣t=0 and ´i,k∣t=0 denote the permeability and perfusion coefficient in the initial
state, respectively. Using these relations, we avoid the computationally expensive rede-
termination of the model parameters in each iteration step. Inserting (6.44) into (6.43)
shows constancy of the permeability tensor in the reference configuration, whereby the
same applies to the perfusion coefficient.
For compartment microcirculation, we assume that lobular remodeling preserves the
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permeability of the microcirculation, i.e. the permeability remains isotropic and, in
the current configuration, equal to the initial value. Therefore, equation (6.44) is not
applicable, and Kmicro,0 is determined using (6.43).

Remark 4. Equations (6.42) describe the mass balance equations of the fluid constituents.
The skeleton mass balance equations are not explicitly part of the proposed modeling
framework since the skeleton partial density Äskel(1−ϕ) does not appear in both the fluid
mass balance laws (6.42) and the total momentum equation (6.40).

Similiarly to section 3.4.2, we work with the concept of effective stress and decompose
the Cauchy stress as

Ã = Ã′ − pmicroI, (6.46)

where pmicro is now the interstitial fluid pressure in the liver microcirculation. Consid-
ering this and incorporating the split of the deformation gradient F = FeFg lead to the
following updated constitutive relations:

S = S′ − JpmicroC
−1, (6.47a)

S′ = 2JgF
−1
g

∂Ψskel

∂Ce

F−Tg , (6.47b)

pmicro = −
∂Ψvol

∂Js
, (6.47c)

where Jg is the determinant of the growth deformation gradient and Ψskel and Ψvol are
given by equations (3.32) and (3.33), respectively.

6.3.4 Isotropic compensatory growth

Following our exposition in section 2.4, we recall that hepatocyte proliferation is the
central mechanism by which the liver regains its mass. Growth factors and cytokines
that drive hepatocyte proliferation at the cell level can quickly spread with the blood flow
due to the thorough vascularization of the liver, ensuring that regenerative signals reach
all parts of the liver. Additionally, lobular remodeling supports the even distribution of
blood flow through the regenerating lobule tissue. Therefore, we assume that hepatocytes
proliferate uniformly, leading to a consistent increase in liver mass in all directions
At the microscale, growth might still occur orthotropically, as hepatocyte proliferation

might differ along the sinusoid axis in flow direction and perpendicular to the sinusoid
axis. We can assume, however, that even in this case, liver regrowth can be regarded
as isotropic from a macroscopic viewpoint, so that any potential direction dependence
would be averaged out in the homogenization process.
We therefore consider compensatory volumetric growth to occur isotropically, ex-

pressed in the following classical form:

Fg = ϑ
1/3 I, (6.48)
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where the growth factor ϑ denotes the volumetric change due to growth [25]. It corre-
sponds to the determinant of the growth deformation tensor

ϑ = det Fg = Jg =
dV g

dV 0
(6.49)

which denotes the ratio between the volume increase in the intermediate configuration
and the initial volume in the reference configuration at each point of the macroscale
domain. In the context of our quasi-static poroelastic model, we assume that we can
keep the same porosity when we map each AV from the initial to the intermediate
configuration. Hence, we can write for the change in mass at the macroscale:

dmg
= (Äperfϕ + Äskel(1 − ϕ))dV g

= ϑ (Äperfϕ + Äskel(1 − ϕ))dV 0 (6.50)

= ϑdm0.

We emphasize that in (6.50), the growth factor is not only applied to the tissue skeleton,
but also to the perfusing blood. In the context of our quasi-static model, the associated
“growth“ of the fluid, ϑÄperfϕdV 0, represents the added mass of the blood that occupies
additional sinusoid space. We also refer to the discussion in terms of lobular remodeling
in Section 6.3.7 below.
Following (6.50), the interpretation of the growth factor ϑ in terms of the change in

homogenized mass under consistent microstructure is straightforward:

ϑ =
dmg

dm0
. (6.51)

We note that depending on the growth stimulus, the growth factor ϑ can take different
forms [24], [26], e.g. strain-driven [27], [32], [33], stress-driven [33], [38], [160] or nutrient-
driven [27], [37].

6.3.5 Hyperperfusion as the main stimulus

Growth evolution laws describe how living tissues alter their shape in response to external
stimuli. These laws establish a relationship between the growth tensor Fg and mechanical
fields, chemical fields, or biological signaling [24]. There have been a number of attempts
to derive universal growth laws from fundamental physical principles. Several of these
are based on thermodynamic considerations. However, there is no consensus on the
primary drivers of growth processes [24], [161].
Following our exposition in Section 2.4, we identified hyperperfusion in the microcir-

culation as the starting stimulus for liver regrowth. Our perfusion model, derived in
the previous section, explicitly captures the local blood flow into and out of the micro-
circulation at each point within the liver domain. The corresponding quantity is the
intercompartmental flow Qmicro, given by (6.30b), which represents the homogenized vol-
umetric flow rate per volume between the compartments supply and draininage and the
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microcirculation. Due to the compartmentalized structure of the perfusion model, the
local blood flow into and out of the microcirculation naturally separates from the flow
that occurs within the supply and drainage trees.
In the scope of the current work, we choose to adopt the inflow rate into the mi-

crocirculation, which is the first part of Qmicro in (6.30b) as an effective measure of
(hyper-)perfusion in the microcirculation. Due to mass conservation, the inflow rate is
equivalent to the outflow rate Qsupply, given in (6.30a), from the compartment supply
into the compartment microcirculation, which we will use in the following.

We will establish a measure for compensatory volumetric growth, described through
an evolution equation, through a data-based phenomenological relationship to (hyper-
)perfusion, measured by the homogenized inflow rate field into the microcirculation. The
complex cell-scale mechanisms briefly touched upon in Section 2.4 and sketched in Fig.
2.7 are not explicitly represented in this model, but incorporated implicitly through data
calibration.
Motivated by existing growth models for other biological tissues [27], we adopt the

following form of the evolution equation for the growth factor ϑ that results from the
multiplication of a growth scaling factor with a mechanism-specific growth criterion:

ϑ̇(X) = ⎧⎪⎪⎨⎪⎪⎩
kϑ(ϑ) µg(Qsupply) for µg(Qsupply) > 0,
0 for µg(Qsupply) f 0. (6.52)

which is defined at each point of the macroscale domain. The specific form (6.52)
enables the separation of the dependence on the size of the growth factor ϑ itself and
the mechanism-specific field variable Qsupply into two separate variables kϑ and µg, which
can then be considered one at a time.
We begin with the liver-specific growth criterion µg. Following our discussion on

hyperperfusion-driven growth, we propose the following new growth criterion µg,

µg =
∣Qsupply∣ − ∣Q̃equi∣

∣Q̃equi∣ . (6.53)

which depends on the current homogenized blood flow rate into the microcirculation
(after resection). It is related to Q̃equi, which denotes the homogenized blood inflow
rate at each point before resection. The growth criterion thus represents the relative
increase of the current homogenized blood flow at each macroscale point with respect to
the healthy equilibrium state before resection.
We observe that our growth criterion (6.53) is designed to mitigate hyperperfusion

by driving growth only at the location where a discrepancy between the current and
the preferred flow exists. In other words, growth is activated only if the current local
flow rate into the microcirculation exceeds a physiological equilibrium value. In the
scope of this work, we assume the physiological equilibrium Q̃equi simply as the flow rate
into the liver’s microcirculation before resection. This choice automatically accounts for
potential patient-specific perfusion characteristics of a simulation model that is set up
by including patient-specific data such as overall liver geometry or the location of large
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vessels.
The growth scaling coefficient kϑ is commonly used for preventing unbounded growth

and enabling the calibration of a specific growth curve. For the growth scaling coefficient,
we choose the following form [25]:

kϑ(ϑ) = k+ϑ [ϑ
+
− ϑ

ϑ+ − 1
]m

+

ϑ

. (6.54)

It has three well-defined material parameters, which can be adjusted based on experi-
mental data. The parameter ϑ+ is the limiting value of growth and can be determined
based on clinical observations with regard to the maximum size of lobules after growth.
The parameter k+ϑ represents the growth speed, which allows calibration of the growth
model with respect to time. Additionally, the parameter m+ϑ allows the adjustment of
the nonlinearity of the growth process.

6.3.6 Calibration based on experimental data

Experimentally determined graphs of liver volume regeneration typically show a rapid
initial increase in volume due to the high regeneration rate, followed by a slower increase
as the resected liver approaches its original volume [89], [95]–[97]. We can now fit the
parameters of the growth scaling coefficient (6.54) to match growth curves observed in
experimental measurements.
Available data refer to growth of a complete liver, and do not feature local growth in

a particular region. We therefore assume that the local growth process with respect to
the AV sizes that we will choose for the simulation scenarios in the following does not
differ from the growth process averaged over the complete organ. In addition, we make
the simplified assumption that during calibration of the growth scaling coefficient, we
set the growth criterion µg = 1. By doing so, we treat µg as a growth driver that merely
indicates whether growth is activated or not, without specifying its intensity in different
regions of the liver. This allows us to focus on calibrating the free parameters of the
growth scaling function (6.54), so that the overall growth curves produced by the model
match the global trends observed in the experimental data available.
In the first step, we set the limiting value of growth ϑ+ = 2.0 for all examples, as

experimental measurements show that the grown lobules can increase to double their
original size [162]. In the next step, we conduct a sensitivity study for the remaining
two parameters by numerically integrating the evolution equation (6.52) with a simple
forward Euler method and a time step ∆t = 2 h. In Fig. 6.10a, we plot the resulting
evolution of the growth factor ϑ versus time for different m+ϑ and a fixed k+ϑ = 0.01. We
see that the nonlinearity of the growth process is influenced by the parameter m+ϑ. In
Fig. 6.10b, we plot the evolution of the growth factor for different values of the growth
speed k+ϑ and a fixed m+ϑ = 1.
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(a) For different nonlinearity parameters m+
ϑ

(b) For different growth speed parameters k+
ϑ

Figure 6.10: Evolution of the growth factor ϑ over time.

To calibrate the growth factor, we use the data reported in [95] which comes from
experimental measurements conducted on mice. These experiments involved PHx, where
70 % of the liver was surgically removed. The recovery of liver mass over time was
monitored, and the remnant liver weight was measured at different time steps to assess
the regeneration process (see Fig. 6.11a).
Next, we use the remnant liver weight (mass data) in Fig. 6.11a to determine the

corresponding growth factor ϑ, which is defined in equation (6.51) and is directly linked
to the mass. The determined growth factor (see blue curve in Fig. 6.11b) ranges between
1.0 and 2.0, where ϑ = 1.0 corresponds to the initial mass (30%) and ϑ = 2.0 corresponds
to the fully regenerated liver mass (100%) due to the previously determined limiting
value of growth ϑ+ = 2.0.
Based on this data and the sensitivity study above, we choose the nonlinearity pa-

rameter of the growth process to be m+ϑ = 1.0 and the growth speed to be k+ϑ = 0.01. In
Fig. 6.11b, we plot the resulting evolution of the modeled growth factor alongside the
growth factor derived from the experimental mass data in [95]. We observe a very good
fit for our choice of parameters. In addition, we observe that the duration of the growth
process of 300 h (12.5 days) also matches clinical data available [95], [96].

6.3.7 Volumetric growth vs. lobular remodeling

According to our discussion in section 2.4, we recall that the central mechanism by which
the liver restores lost mass is hepatocyte proliferation, enabling the liver to resume its
metabolic, detoxification, and synthetic activities. In addition, liver regeneration also
involves changes across the hierarchical vascular tree. Part of the existing vasculature,
in particular the smaller vessels in areas where liver growth occurs, must expand to ac-
commodate the increased blood flow. In addition, these vessels undergo remodeling and
angiogenesis to guarantee the optimal supply and drainage of the regenerating lobular
tissue.
In this work, we focus on a growth model that represents the effect of compensatory
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(a) Remnant liver weight recovery reported in [95] (b) Numerical results vs. experimental-derived data

Figure 6.11: Evolution of the modeled growth factor (numerical results) vs. the growth factor derived
from experimental mass data reported in [95].

growth at the lobular level. We do not explicitly incorporate the additional complex-
ity associated with vascular adaptation and angiogenic processes. We assume that the
resected vascular trees undergo solely geometric changes rather than changes in their
topology when the liver grows. For the largest hierarchy of vessels that we keep fully
resolved, we assume that they maintain their supply and drainage activity in the same
way as before, essentially scaling up their initial contribution. The higher hierarchies
dictate the direction of blood flow and ensure that tissue segments are adequately sup-
plied by the larger branches of the vascular tree. We assume a constant outflow from
these upper hierarchies during growth to maintain a consistent fluid distribution into
the tissue segments. To achieve this, the vessels must be able to change their diameter
and position. Moreover, we assume that the vessels remain straight cylindrical tubes
during growth (see Fig. 6.12). This allows the vessels still to be described by the spatial
position of the proximal and distal nodes and the new position is determined by the
applied deformation field of the tissue.
The medium- and smaller-sized vessels in the intrahepatic branches are homogenized

into two compartments for supply and drainage. These vessels also undergo angiogenesis
and remodeling to connect new tissue areas with the existing vascular network. These
changes improve blood distribution within the liver, ensuring that all regenerating re-
gions receive sufficient nutrients and oxygen, thus maintaining uniform perfusion and
supporting efficient metabolic activity across the liver. We assume that these reorgani-
zation effects are reflected through geometric updates during homogenization. Geometric
changes can be achieved by updating the material parameters of the homogenized model
as defined in equations (6.44) and (6.45) using the geometric-related quantities F and
J .
Liver regeneration is a dynamic and multiscale process that occurs over various scales

in space and time. Hepatocyte proliferation in the liver lobules begins within hours after
liver injury or partial hepatectomy. During the first week, other liver cell types, such as

80



Growth

Figure 6.12: Vessel tree in growing medium.

sinusoidal endothelial cells, Kupffer cells, and stellate cells, also start to proliferate and
contribute to tissue repair and remodeling at the scale of the microcirculation. Within
two weeks, the liver mass significantly increases, often approaching its pre-resection size.
After four weeks, most of the hepatocyte proliferation has subsided. The increase in
tissue mass requires the remodeling and adjustment of the vascularization, which occurs
within three months after liver injury or partial hepatectomy. This stage also includes
angiogenesis and the maturation of newly formed vessels, ensuring proper integration of
the enlarged liver tissue and the vascular network. Within a year, the stabilization and
restoration of the liver’s structure and function is complete.
Our growth model focuses on the representation of the effect of compensatory growth

at the lobular level that occurs within the first few weeks. Our first key assumption is
that we can describe liver growth within this time window by a sequence of quasi-static
growth processes, within which we can neglect any time-dependent effects. Therefore,
the multiscale perfusion model presented in 6.2 captures the steady-state distribution
of blood flow within the tissue, while the finite growth model at the microcirculation
accounts for the temporal evolution of tissue growth and therefore involves a time com-
ponent. By coupling these models, the system is viewed as a sequence of steady-state
processes, where at each time stage, the perfusion distribution is assessed in order to
drive the growth of the tissue. Please note, that we solely consider compensatory growth
in equation (6.52). After the initial phase of regeneration, during which the liver rapidly
regrows to compensate for the lost tissue, there may be a period of slower remodeling
as the liver undergoes structural changes to optimize its function [79]. The liver may
gradually shrink over time once the process of compensatory growth is completed. This
process of liver shrinkage typically occurs gradually over a period of weeks to months.
Therefore, shrinkage, which is part of the remodeling process and occurs at a larger time
scale than the compensatory growth, is not considered in this work.
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6.4 Integration of poroelastic growth model within the

multi-compartment perfusion model

The final system of equations for the multi-compartment poroelastic growth model takes
the form:

0 = ∇0 ⋅ (FS) in Ω0, (6.55a)

¹i,0 = −∇0 ⋅ (Ki,0∇0pi) + N

∑
k=1

´i,k,0(pi − pk) in Ω0, (6.55b)

S = 2JgF
−1
g

∂Ψskel

∂Ce

F−Tg − JpmicroC
−1, (6.55c)

pmicro = −
∂Ψvol

∂Js
, (6.55d)

F = FeFg, Fg = ϑI, Ce = F
T
e Fe, (6.55e)

ϑ̇(X) = ⎧⎪⎪⎨⎪⎪⎩
kϑ(ϑ) µg(Qsupply) for µg(Qsupply) > 0,
0 for µg(Qsupply) f 0. (6.55f)

6.5 Prototypical model problem in 2D

We utilize the same two-dimensional test problem of a circular disk with planar trees
described in Section 6.2.4 to study the multi-compartment poroelastic growth model.
The only difference is the addition of the poroelastic growth model presented in 6.3,
while the rest of the setup (perfusion-related parameters, discretization, supplying and
draining tree structures, compartmentalization and homogenization procedure) remains
identical to the example above (Section 6.2.4).
Additionally, for the poroelastic growth model, we introduce tissue deformation-related

parameters, such as the Young’s modulus E and Poisson’s ratio ¿, which are crucial for
describing the mechanical behavior of the tissue during growth. The perfusion-related
parameters along with representative liver values of E and ¿ [144] used for the simulation
are listed in Table 6.1. For the contact boundary condition on the outer surface of the
circular disk, we require a parameter in the nonlinear stiffness relation (5.2), which we
choose as ³ = 5 × 10−3. This choice is based on the elastic properties of the surrounding
organs of the liver, see [145] for details.

Table 6.1: Simulation parameters for the circular disk problem.

Tissue deformation-related parameters Perfusion-related parameters

Young’s modulus E = 5 kg mm−1 s−2 Permeability Kmicro = 1/180 mm3 s kg−1

Poisson’s ratio ¿ = 0.35 Blood viscosity ¸ = 3.6 × 10−6 kg mm−1 s−1

In this study, we select the equilibrium physiological flow Q̃equi to be the same as the
supply flow, Qsupply, illustrated in Fig. 6.8 (a). The solution field Qsupply results from
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t = 0 h t = 300 h

AC = 314.16 mm2 AC = 626.02 mm2

Figure 6.13: Displacement magnitude ∥u∥ [mm] for the grown circular disk at time instant t = 300 h.
The quantity AC corresponds to the area of the disk.

the parameters provided in Tab. 4.1, which define the baseline physiological state of the
system. To simulate and induce growth within the model, we introduce a perturbation
by doubling the flow through the supplying vascular tree. This increase in flow rate
serves as a stimulus, pushing the system out of its equilibrium state and mimicking
tissue growth driven by hyperperfusion.
We employ the standard Galerkin finite element method [139] to discretize the poroelastic-

growth model in the Lagrangian (reference) configuration Ω0. Multiplication of the
momentum equation (6.55a) with discrete test function vh and the pressure equation
(6.55b) with discrete test function qh,i, subsequently integrating over the reference do-
main Ω0, and applying integration by parts leads to the weak statement: Find uh ∈ Vh

and ph,i ∈Wh,i such that for all vh ∈ Vh and qh,i ∈Wh,i:

0 = +
Ω0

(FhSh) ∶ ∇0vh dΩ0 + +
ΓN,0

· (uh ⋅N) (vh ⋅N) dΓN,0, (6.56)

+
Ω0

¹i,0qh,i dΩ0 = +
Ω0

(Ki,h,0(∇0ph,i)) ⋅ (∇0qh,i) dΩ0 + ...

... ++
Ω0

qh,i

N

∑
k=1

´i,k,0(ph,i − ph,k)dΩ0. (6.57)
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t = 0 h t = 300 h

Figure 6.14: Homogenized volumetric flow rate Qsupply [s−1] for the grown circular disk at time instant
t = 300 h.

The discrete function spaces Vh andWh,i consist of linear and quadratic Lagrange basis
functions of degree P = 1 and P = 2, and are applied to discretize the displacements and
the pressures, respectively.
We apply a forward Euler method for incremental updates of the growth factor ϑ at

each pseudo time step:

ϑn+1
= ϑn

+∆t ϑ̇n
= ϑn

+∆t

⎡⎢⎢⎢⎢⎣
k+ϑ [ϑ

+
− ϑn

ϑ+ − 1
]
m+

ϑ ⎛
⎝
∣Qn

supply∣ − ∣Q̃equi∣
∣Q̃equi∣

⎞
⎠
⎤⎥⎥⎥⎥⎦
. (6.58)

Since the system of equations (6.55) is defined in the reference configuration, the per-
meability tensors and perfusion coefficients are independent of the time step. We adopt
the FEniCS finite element libary in combination with the standard Newton-Raphson
method for linearization [140].
We present the growth results of the circular disk in Fig. 6.13. It’s evident that the

disk undergoes nearly uniform expansion, with no noticeable areas exhibiting dispro-
portionate growth. This aligns with our expectations as the full circular disk receives a
uniform blood supply from the vascular network. We also observe that the fully regrown
circular disk has doubled in size after 300 hours, which aligns with the fact that we
introduced a perturbation by doubling the flow through the supplying vascular tree.
Additionally, we compare the homogenized blood flow rate Qsupply of the fully regrown

state after 300 hours to the initial state of the circular disk in Fig. 6.14. It is evident
that as the disk grows, the blood flow rate becomes more homogeneous and in areas with
the highest flow, the intensity decreases. In the following section, we will examine these
observations for the liver problem in further detail and perform a statistical analysis.
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7 Towards simulation based assessment of
liver growth

Liver resection triggers a complex regenerative process that is heavily influenced by the
organ’s vascular architecture and the redistribution of blood flow. The close relationship
between liver regeneration and blood perfusion is well-known, as the liver’s highly vas-
cularized nature plays a crucial role in maintaining essential functions like metabolism
and detoxification [79].
In the previous sections, we established a multiscale modeling framework for simulating

tissue growth and blood flow, which is driven by hyperperfusion. These serve as the basis
for the following investigation into liver growth after surgical resection. Therefore, this
section focuses on the simulation-based analysis of liver growth in response to a surgical
intervention, particularly a partial liver resection.
The primary aim of this section is to apply the simulation-based framework to model

and predict liver growth following surgical resection. By integrating a patient-specific
liver geometry and vascular architecture, we aim to understand how blood flow redis-
tribution influences the regenerative processes of the liver. Through the calibration of
physiological parameters and the simulation of perfusion, this section aims to provide
insights into the mechanisms driving liver regeneration, ultimately contributing to im-
proved surgical planning in clinical settings.
In the first part of this section, we detail the patient-specific liver geometry model

used in this study, along with the associated vascular geometry. The second part of
the section explores simulations of liver perfusion, which are essential for calibrating the
parameters of the growth evolution model. In particular, we compare the results of the
full and resected liver via a statistical analysis. Finally, we present numerical examples
that illustrate liver growth and its temporal evolution following resection.

7.1 Model generation

For the liver geometry, we use the same model as presented in section 5.4.1.
We then generate the vasculature of the liver synthetically as described in Section

4, using the patient-specific liver domain as a boundary and locations of the patient-
specific root locations. We emphasize again that we lump the portal vein and the hepatic
artery into one supplying tree, as their trees run largely in parallel. Figure 7.1 shows
the patient-specific liver domain with the synthetic supplying tree (hepatic artery and
portal vein) and the synthetic draining tree (hepatic vein). The generated supplying and
draining trees consist of 24,247 and 23,201 terminal vessels, respectively. The underlying
parameters for synthetic tree generation are summarized in Table 7.1.
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(a) Anterior view (b) Inferior view

Figure 7.1: Patient-specific liver model containing the supplying (purple) and draining (blue) vascular
tree structures.

Table 7.1: Model parameters for synthetic tree generation of the liver.

Nvessel Nterm proot [
kg

mms ] Q̂perf [
mm3

s ]

Supplying tree 48493 24247 0.17 20000.0
Draining tree 46401 23201 0.0 20000.0

7.2 Model results for liver (hyper-)perfusion

We first focus on simulating liver perfusion in the unresected liver, assuming a healthy
state. We divide the synthetic vascular network generated in the previous section into
spatially co-existing compartments. To this end, vessels with a radius exceeding 0.5
mm belong to the upper hierarchies that are kept resolved, while those with a radius
of 0.5 mm or less are assigned to the lower hierarchies. The compartmentalization of
the liver perfusion tree is illustrated in Fig. 7.2. We then generate a finite element
mesh, illustrated in Fig. 7.3a, that consists of 16,495 tetrahedral elements. For our
multi-compartment model, we use the model parameters, summarized in Tab. 7.2. For
the computation of the homogenized material parameters, we choose the radius of the
spherical AV to 20 mm.

Table 7.2: Simulation parameters for the liver problem [48], [49], [144].

Tissue deformation-related parameters Perfusion-related parameters

Young’s modulus E = 5 kg mm−1 s−2 Permeability Kmicro = 1/180 mm3 s kg−1

Poisson’s ratio ¿ = 0.35 Blood viscosity ¸ = 3.6 × 10−6 kg mm−1 s−1
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Figure 7.2: Compartmentalization of vascular trees for the liver.

(a) Full liver (b) Resected liver

Figure 7.3: Finite element meshes.
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7.2.1 Full liver before resection

Compartment supply Microcirculation Compartment drainage

Figure 7.4: Homogenized pressure fields pi [kg mm−1 s−2] of the full liver.

Compartment supply Microcirculation Compartment drainage

Figure 7.5: Magnitude of the homogenized velocity fields ∥wi∥ [mm s−1] of the full liver.

We first consider the results for the full liver before resection. Figure 7.4 shows the
homogenized pressure fields for the compartment supply with the upper hierarchies of
the supplying tree, for the microcirculation and for the compartment drainage with the
upper hierarchies of the draining tree. We observe that in the compartments supply and
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Inferior view View with slices

Figure 7.6: Homogenized volumetric flow rate Qsupply [s−1] of the full liver.

drainage, distinct pressure differences along the vessel tree structures are clearly visible,
whereas the microcirculation exhibits a much more uniform pressure field.
In Fig. 7.5, we show the corresponding magnitudes of the homogenized velocities. In

compartments supply and drainage, we can observe a larger flow along vessel segments
of both supplying and draining trees. In the compartment microcirculation, we observe
velocity magnitudes that are three to five orders of magnitude lower than those in the
compartments supply and drainage. This confirms that the compartment microcircula-
tion connects the compartments supply and drainage by representing the resistance of
the sinusoids, and does not redistribute flow across the macroscale domain.
Figure 7.6 shows the homogenized volumetric flow rate density Qsupply of the full liver.

We can observe an almost uniform blood supply to the liver which is to be expected in
a healthy state.
In the following section, we will see that performing a resection will result in significant

changes in flow disparities. In particular, we will observe that in the case of the full liver,
the blood supply is more homogeneously distributed compared to the resected liver.

7.2.2 Liver after partial resection

We now consider a scenario where a tumor is located in the left lateral section of the
liver as illustrated in Fig. 7.7a. The partial resection required to remove the tumor-
affected region involves a standard surgical cut that removes liver segments two and three
according to the Couinaud classification. The cut also implies cutting the vasculature,
and the remaining vascular tree model is shown in Fig. 7.7b. We note that we only plot
the “active” vessels that are still connected to the root of the corresponding tree, and
remove all orphan vessels that lost this connection. The resected supplying tree now
consists of 35,760 vessel segments and 17,857 terminal nodes and the resected draining
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tumor-affected region

Cutting plane of anatomical 

resection

(a) Position of pathology and cutting plane. (b) Cut synthetic vasculature.

Figure 7.7: Liver geometry and synthetic vasculature after resection (inferior view).

tree consists of 35,362 vessel segments and 17,630 terminal nodes.
Vessels that are cut are sealed during surgery to prevent blood loss. In our simulations,

we thus assume that blood flow through any cut segment does not occur. The blood flow
associated with cut segments is then redistributed evenly across the remaining portion
of the intact tree, in line with our assumptions discussed in Section 6.3.7. We note
that after partial resection, the cardiovascular system tries to reduce the overall blood
flow rate in the liver by reducing the flow in the hepatic artery. In the scope of the
present study, this effect is not considered. The resected liver domain is discretized by
a finite element mesh of 14,746 tetrahedral elements, which is illustrated in Fig. 7.3b.
The homogenization procedure described above is repeated based on the cut synthetic
vasculature and the perfusion simulation is re-run.
Figure 7.8 plots the resulting homogenized volumetric flow rate density of the resected

liver before regrowth. On the one hand, we can clearly see a much higher overall flow
rate as compared to the results for the full liver in Fig. 7.6. The increased flow rate
density represents the state of hyperperfusion, as in our model, the same amount of
blood needs to pass through a smaller domain after partial liver resection. On the other
hand, we see a significantly lower flow rate density in the bottom left corner. This is due
to the existence of orphans in this area that do not receive blood supply. In Fig. 7.7,
we can see that in the corresponding region, there are no active vessels of the supplying
tree.

7.2.3 Statistical analysis of liver flow rate distributions

In this section, we conduct a statistical analysis to assess the effects of liver resection
on the homogenized flow rate Qsupply within the liver. The purpose of this analysis is to
evaluate how the model represents the impact of the surgical procedure on changes in
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Inferior view View with slices

Figure 7.8: Homogenized volumetric flow rate Qsupply [s−1] of the resected liver.

perfusion characteristics.
To this end, we construct histograms to compare the distributions of the homogenized

flow rate Qsupply before and after partial resection. The histograms, along with the mean,
the standard deviation and the coefficient of variation, illustrate the variability of the
physical quantities across the liver domain, and how this variability changes after partial
resection. By comparing histograms of the full and resected liver, we can identify shifts
in the distribution and assess our model’s ability to represent hyperperfusion.

For constructing histograms for the full and resected liver, we assume that we have
sample data for both cases taken at points that cover each domain sufficiently close to
an equal distribution. For simplicity, we choose the nodal points of the two tetrahedral
meshes shown in Figs. 7.3a and 7.3b. For both cases, we group the values into the
same 75 flow rate bins, which we found suitable to clearly visualize the underlying
distribution patterns. To account for the difference in the number of nodes in the two
cases, we normalize the frequency in each bin by the total number of nodes multiplied
by one hundred, such that the histogram reports the percentage of nodes in each bin.

Using our simulation results for the full and resected liver sampled at the nodes of the
corresponding finite element meshes, we arrive at the histograms plotted in Fig. 7.9 for
the homogenized volumetric flow rate Qsupply of the full liver (in blue) and resected liver
(in orange).
The histograms clearly exhibit a marked increase in the mean flow rate in the case

of the resected liver, demonstrating the state of hyperperfusion compared to the normal
homeostatic conditions in the case of the full liver. We can observe that there is also a
significant rise in the variability and dispersion of the blood supply Qsupply in the case
of the resected liver. The larger standard deviations observed in the histograms of the
resected liver suggest a more heterogeneous distribution of homogenized flow rate. This
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variability is likely due to the altered flow dynamics and uneven blood supply following
the partial resection. Additionally, we notice that the histogram for the resected liver
shows an increased concentration of flow values near zero, reflecting the significantly
lower flow rate in the bottom left corner and the effect of orphans in the vasculature
that practically lead to the inhibition of perfusion.
The results demonstrate that our model is able to represent hyperperfusion as a conse-

quence of partial resection. In addition, they reflect how the surgical procedure disrupts
normal perfusion patterns, leading to increased flow variability. The pronounced spread
in the data underscores the need for a localized growth criterion to accommodate the
hyperperfusion in different regions of the liver when modeling liver regrowth.

Figure 7.9: Histograms of homogenized volumetric flow rate Qsupply [s−1] of the full and resected liver.

7.3 Model results for liver regrowth

In the next step, we focus on the modeling of liver regrowth after partial resection.
The results are crucial for understanding how well our modeling framework represents
characteristic phenomena associated with liver regeneration at the organ scale. Our
growth criterion (6.53) requires a measure for the homeostatic perfusion state, which
we have chosen to express via homogenized blood flow inflow rate Q̃equi of the full liver
before resection. We also set a stiffness parameter, ³ = 5×10−3, for the contact boundary
condition on the liver’s surface according to the elastic properties of the surrounding
organs [145]. Otherwise, we use the same parameters as specified in Section 6.5 and
Table 7.2. We integrate with respect to time using a standard explicit forward Euler
method with a time step of ∆t = 15 hours, up to a final time of t = 300 hours after
resection.
Figure 7.10 compares the growing liver, including two selected planes (see Fig. 7.11), at

different time instants of the simulated regeneration process. We also state the associated
volume of the deformed liver VL at each time instant. Referring these volumes to the
volume of the full liver before resection (VL = 2,403,749 mm3), we see that directly
after resection, the liver is reduced to 77.6% of its original volume, but after 300h has
recovered 99.2% of its original volume.
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t = 0 h t = 150 h t = 300 h

(a) (b) (c)

VL = 1,867,160 mm3 VL = 2,222,143 mm3 VL = 2,384,121 mm3

Figure 7.10: Displacement magnitude ∥u∥ [mm] of the growing liver at different time instants [h], plotted
on the deformed configuration. The quantity VL corresponds to the current volume of the
liver at each time instant.
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plane A

plane B

plane A

plane B

Figure 7.11: Plane sections of the resected liver labeled as plane A and B.

To elucidate this observation further, we first plot the minimum and maximum values,
the mean and the standard deviation of the local growth factor, monitored at the nodal
points of the finite element mesh during regrowth (see Fig. 7.12). We observe that on
average, each volume element of the resected liver eventually increases its volume by a
factor of approx. 1.28, which agrees well with the global volume increase from 77.6% to
99.2% of the original volume of the unresected liver. The growth factor, however, ranges
from 1.6 (twice the average growth factor) to 1.0 (no growth at all). The minimum
growth factor of 1.0 is likely to occur in the bottom left corner, where the flow was
observed to be very low (see Fig. 7.8).

Figure 7.12: Variability of the growth factor ϑ across the growing liver domain over time [h].

Additionally, we compare the homogenized blood flow rate density of the regrown
state after 300 hours to the initial state of the resected liver before growth in Fig. 7.13.
Comparing these results to the results of the full liver in Fig. 7.6, we observe that the
flow rate density reduces over time to the level of the homeostatic state in the unresected
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full liver. On the one hand, the intensity of the flow rate decreases in areas that initially
experienced the highest increase. On the other hand, the flow rate does not recover in
the area where the flow rate dropped due to orphans in the supplying tree.

(a) Resected liver (b) Regrown liver at t = 300 h

Figure 7.13: Homogenized volumetric flow rate Qsupply [s−1] of the resected liver and the regrown liver
at time instant t = 300 h.

7.3.1 Local hyperperfusion vs. local hypoperfusion

The results reported in the histograms above suggest a pronounced variability in the
local perfusion state across the growing liver domain. In particular, they indicate that
after resection, we do not only encounter hyperperfusion, but also a reduction of blood
flow (hypoperfusion) in some regions of the compartment microcirculation. We would
like to further investigate this variation in local perfusion behavior in our liver model, as
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it underscores the need for a localized growth criterion. Capturing variations in perfusion
during regrowth is likely a key component for potential applications in simulation-based
diagnosis and prediction, e.g., for hypoperfusion-driven ischemia.
We first focus on the region in the upper region shown in Fig. 7.13, where the simulated

homogenized flow rate density indicates hyperperfusion. To quantify local hyperperfu-
sion, we restrict our selection of nodal points to this region and plot the local variability
of the homogenized flow rate density Qsupply during regrowth. Figure 7.14 illustrates the
local region as well as the flow rate density plots over time.
We observe that on average, the flow rate density decreases from around 0.0095 to

0.0069 s−1, which corresponds inversely to the average growth factor of 1.28 reported
in Fig. 7.12 for the complete liver. We also observe a significant variability in the flow
rate density in this region, with the maximum value at t = 0 as large as 0.018 s−1 and
the minimum value as low as 0.005 s−1. This variability results from the variation in
permeability and the inhomogeneous distribution of inflow source terms in the multi-
compartment model, which both directly reflect properties of the synthetic vascular tree.
It is important to note that all curves - average, minimum and maximum - still exhibit

the same relative decrease in flow rate density over time. It is straightforward to infer
from our definitions of the evolution equation (6.52) and the growth criterion (6.53) that
at the locations of low flow rate density, the homeostatic reference Q̃equi in (6.53), taken
from the full unresected liver, must have also been low - for instance, due to the existence
of a larger resolved vessel at that location. We can therefore conclude that Figure 7.14,
including the curve of the minimum value, does not reflect a state of hypoperfusion.
We then focus on the region in the lower left part shown in Fig. 7.13. We repeat the

same procedure, illustrated in Fig. 7.14, for this region. We then plot the variability of
the local homogenized flow rate density during regrowth in Fig. 7.15. We now observe
that only the curve for the maximum value shows a slight decrease over time, while
the average and minimum curves remain constant. We therefore infer from (6.52) and
(6.53) that the homeostatic reference Q̃equi in the unresected liver must have been larger
in this region, such that an increase in the growth factor (6.52) is excluded. We can
therefore conclude that Figure 7.15 does reflect a state of hypoperfusion, which indicates
the existence of orphans in the supplying tree. The plot of the active vasculature in Fig.
7.7b indeed confirms the existence of orphans in this region.

7.3.2 Flow rate variability before, during and after regrowth

The histograms plotted in Figs. 7.16 and 7.17 compare the variability of the homogenized
volumetric flow rate Qsupply in the resected liver at the beginning of the regrowth process
and after 45, 150 and 300 hours (in orange). As the homeostatic reference, we also
show again the variability in the full unresected liver (in blue). Table 7.3 also reports
the maximum and minimum values, the mean, the standard deviation (SD) and the
coefficient of variation (CV) at the beginning and after 45, 150 and 300 hours.
We observe that the mean and the standard deviation of the flow rate density reduces

during regeneration. When we compare the histogram of the fully regrown state after
300 hours to the initial state of the full liver, we observe that the regrown liver exhibits
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Figure 7.14: Local hyperperfusion: variability of the homogenized volumetric flow rateQsupply [s−1] across
the selected region (red box) over time [h]. The white dots show the selected nodal points,
where the flow rate density is evaluated.

a flow rate variability and distribution close to the initial homeostatic state. We also see
that the minimum flow rate, which is practically zero, remains and does not recover. The
slightly increased mean and the slight shift towards larger flow rates in the histogram
are likely due to the presence of regions with zero perfusion, which the remaining regions
need to compensate for. In general, our results demonstrate again that our model is able
to account for the reduction of hyperperfusion towards a homeostatic perfusion state in
the regrown liver.
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Figure 7.15: Local hypoperfusion: variability of the homogenized volumetric flow rate Qsupply [s−1] across
the selected region (red box) over time [h]. The white dots show the selected nodal points,
where the flow rate density is evaluated.

(a) Resected liver at t = 0 h (b) Regrown liver at t = 45 h

Figure 7.16: Histograms of homogenized volumetric flow rate Qsupply [s−1] at the beginning of the re-
growth process and after 45 hours.
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(a) Regrown liver at t = 150 h (b) Full liver and regrown liver at t = 300 h

Figure 7.17: Histograms of homogenized volumetric flow rate Qsupply [s−1] of the growing liver at time
instants t = 150 h and t = 300 h. As a homeostatic reference, we also include the results
for the full liver before resection.

Table 7.3: Variability measures for the homogenized volumetric flow rate Qsupply at different liver states.

max. [1s ] mean [1s ] min. [1s ] SD [1s ] CV

Full liver (homeostatic reference) 1.44 ⋅ 10−2 5.36 ⋅ 10−3 2.32 ⋅ 10−4 1.91 ⋅ 10−3 0.356
Resected liver 1.89 ⋅ 10−2 7.59 ⋅ 10−3 9.93 ⋅ 10−9 5.78 ⋅ 10−3 0.762
Regrown liver at t = 45 h 1.75 ⋅ 10−2 6.99 ⋅ 10−3 9.44 ⋅ 10−9 4.17 ⋅ 10−3 0.597
Regrown liver at t = 150 h 1.57 ⋅ 10−2 6.38 ⋅ 10−3 9.35 ⋅ 10−9 3.07 ⋅ 10−3 0.481
Regrown liver at t = 300 h 1.47 ⋅ 10−2 6.19 ⋅ 10−3 9.41 ⋅ 10−9 2.63 ⋅ 10−3 0.425
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8 Conclusions and outlook

8.1 Conclusions

In the first part of the thesis (Sections 2-5), we presented a modeling framework that
connects continuum poroelasticity and discrete vascular tree structures to model liver
tissue in terms of perfusion and deformation. The connection is achieved through a series
of modeling assumptions and decisions. Firstly, we used bell-shaped functions as source
terms in the pressure equation to impose inflow at the interfaces of the terminal vessels of
the supplying tree and the poroelastic domain. Secondly, we introduced void regions that
model the interface between the terminal vessels of the draining tree and the poroelastic
domain, where pressure boundary conditions could be applied accordingly. The rationale
behind this approach to draining vessels is rooted in establishing boundary conditions
that mimic physical behavior. The most intuitive way to achieve this is by applying a
reference pressure as a Dirichlet boundary condition. Implementing a Dirichlet condition
necessitates a boundary, which led to the introduction of voids. Obviously, the primary
drawback is the required computational discretization effort, which would be significantly
less in the absence of these voids.
Additionally, we took into account contact with surrounding tissue, using nonlinear

springs at the boundary of the poroelastic domain. We demonstrated the numerical
behavior and versatility of our modeling framework via a poroelastic circular disc con-
nected to planar trees. We performed a series of sensitivity studies to test the model
behavior with respect to source term parameters, stiff and soft contact and hierarchical
tree depth.
We then investigated our modeling framework for a liver problem that consisted of

two different resection scenarios of a patient-specific liver geometry. We used a patient-
specific liver geometry model based on imaging data obtained from CT scans. The vessel
trees themselves are not patient-specific in the sense that they are segmented directly
from imaging data. However, they have a patient-specific component in its connection
to the geometry. We then computed the flow redistribution after the two different cuts.
As expected, the numerical results indicate a difference in blood supply for the two
resection scenarios, in which the anatomically resected liver performed satisfactorily
and the non-anatomically resected liver exhibited parts with insufficient blood supply.
Regardless of the depth we choose for the tree structure, an observable relative difference
in pressure and flow is always present. The main purpose of the model, however, is to
visualize changes in perfusion at the organ scale, e.g. due to resections. This does
not qualitatively change when increasing the number of vessels. The current number
seems appropriate to assess redistributed flow and pressure disparities on a global organ
scale. The model is not intended to depict a physiological response with respect to
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local perfusion characteristics, metabolism or any other physiological function. It is also
evident that the finer the tree is, the more homogeneous the pressure and flow fields
become. Of course, the quantitative results of framework would change when adopting
a finer tree (and computational mesh).
In summary, our results demonstrate that the combination of poromechanics and

synthetic vascular trees can be a useful tool for modeling liver perfusion and constitutes
a first step towards assessing the redistributed flow characteristics after a liver resection.
Our results demonstrate that the framework has the potential of a first step towards
guiding suitable cut patterns for liver resection surgery. In this approach, we incorporate
different length scales from the vascular trees and the lobule scale. Indeed, we agree that,
from a physiological point of view, one usually considers these scales separately. However,
in this framework, the relative pressure and flow differences play a major role. It should
be noted that the model does not cover further processes in the liver, e.g. growth or
metabolism. Moreover, the model is not intended to depict local effects concerning
perfusion but instead captures perfusion characteristics regarding redistributed flow. It
offers a better visualization of perfusion changes on the organ scale, e.g. due to resection.
Although a robust validation study with clinical data is still lacking, we can already
observe that the presented approach has the potential to aid in assessing and optimizing
different surgical resection scenarios regarding the perfusion.
Furthermore, deformation and stresses play an important role in the further devel-

opment towards modeling liver regrowth after surgical resection. This is the reason for
adopting a poroelastic model rather than a porous medium model; mechanical behavior
of the tissue is indispensable.
At the end of Section 5, we performed a critical assessment of the modeling frame-

work, highlighting its limitations. While the framework successfully connects continuum
poroelasticity and discrete vascular trees to simulate liver perfusion and deformation,
several challenges emerged. One key issue is the introduction of voids required for ap-
plying Dirichlet boundary conditions on the draining vessels, which significantly increases
computational complexity and cost due to intricate meshing. This limits the feasibil-
ity of large-scale, patient-specific simulations when extending this framework with a
growth model. Additionally, the model’s current representation of lower vascular tree
levels does not fully capture their distinct physiological behaviors, necessitating more ad-
vanced modeling approaches. This led to the development of a new multiscale modeling
framework, which was discussed and applied in subsequent sections.
In the second part of the thesis (Sections 6 and 7) we presented a novel framework for

modeling liver regrowth on the organ scale. It combines the following three main model
components:

(A) a multiscale perfusion model that combines synthetic vascular tree generation with
a multi-compartment homogenized flow model, including a homogenization proce-
dure to obtain effective permeabilities and intercompartmental perfusion coefficients
from the lower hierarchies of the synthetic tree structure.

(B) a poroelastic finite growth model that is defined in the compartment microcircu-
lation, but acts also on the other compartments and the synthetic vascular tree
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structure by transfer of the resulting finite kinematics.

(C) an evolution equation for the local volumetric growth factor, driven by the homog-
enized flow rate density into the compartment microcirculation that we identified
as a measure for local hyperperfusion.

Unlike the previous approach, the new model eliminates the need for voids and ac-
counts for the distinct characteristics of the vascular system across different scales, im-
proving both accuracy and computational efficiency.
Our framework is based on a series of modeling assumptions and interpretations. The

most important are summarized here:

(1) We assumed that the hierarchical vascular structures of the liver can be approxi-
mated by straight vessel segments, where blood is a Newtonian fluid and Poiseuille’s
law holds. We then synthesized the vascular tree structure of the liver via non-
intersecting directed graphs that minimize a combination of the metabolic demand
and the hydrodynamic resistance [16]. We combined the vascular trees of the portal
vein and the hepatic artery into one synthetic supplying tree.

(2) We divided the synthetic supplying and draining trees in larger vessel segments that
are kept resolved, and smaller vessel segments that are replaced by two homogenized
flow compartments, one for the lower hierarchies of the supplying tree and one for
the lower hierarchies of the draining tree. We used the smaller vessel segments to
find compartmental permeability and intercompartmental perfusion coefficients via
a homogenization procedure, based on a scale separation of one order of magnitude
between macroscale (full organ), representative averaging volume, and radii of the
vessels to be homogenized.

(3) We assumed that the compartments supply and drainage are connected via a com-
partment microcirculation, whose permeability represents the resistance of the capil-
lary network of sinusoids at the microscale. The compartments supply and drainage
are coupled to the outlets of the resolved vessel segments via suitably calibrated
source and sink terms in the continuity equation.

(4) The characteristic time scale of our regrowth model formulated in the compartment
microcirculation is days. We therefore describe liver regrowth by a sequence of quasi-
static growth processes. We also assumed that liver regrowth can be regarded as
isotropic from a macroscopic viewpoint.

(5) We assumed that we can keep the same porosity during regrowth. Hence, the growth
factor is not only applied to the tissue skeleton, but also to the perfusing blood,
representing the added mass of the blood that occupies additional sinusoid space.

(6) We postulated a phenomenological link between the evolution equation for the
growth factor, representing volumetric growth, and the inflow rate density into the
compartment microcirculation, measuring (hyper-)perfusion. We then proposed a
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growth criterion that represents the relative increase of the current homogenized
blood flow at each macroscale point with respect to the (supposedly healthy) home-
ostatic state before resection in the same liver. This homeostatic reference automat-
ically accounts for potential individual perfusion characteristics in a patient-specific
simulation model.

(7) For the largest vessels of the resected vascular tree structure, we assumed that
remodeling solely involves adaptations in length and position. Furthermore, their
supply and drainage activity is scaled up after resection via a corresponding change in
diameter (vasodilation). For medium- and smaller-sized vessels homogenized in the
compartments supply and drainage, we assumed that remodeling is reflected through
geometric updates of the homogenized permeability and perfusion coefficients. At
the capillary level, we assumed that remodeling is effective instantly, so that the
resistance of the sinusoid network in terms of the permeability in the compartment
microcirculation always corresponds to the same (healthy) tissue.

We calibrated our regrowth model with experimental liver data, adjusting parameters
for the growth speed, nonlinearity, and maximum growth factor, to match observed liver
volume regeneration curves. We then applied the resulting modeling framework to a full-
scale patient-specific liver example, for which we assumed a common surgical resection
cut. The cut also involved orphan vessels that lose their connection to the root of the
supplying tree and hence inducing local insufficient blood supply of the microcirculation
(hypoperfusion). We conducted finite element simulations of the perfusion behavior of
the unresected full liver and the regeneration of the resected liver, with a focus on how
well our modeling framework represents characteristic phenomena at the organ scale.
We observed that the resection reduced our example liver to 77.6% of its original vol-

ume, but after 300h it recovered to 99.2%. The overall regrowth dynamics of our model
thus corresponds well with common clinical observations. We furthermore observed that
the homogenized flow rate density significantly increased after resection and reduced over
time to the level of the the homeostatic state in the unresected full liver. These results
demonstrate that our model is able to represent hyperperfusion as a consequence of par-
tial resection and to account for the reduction of hyperperfusion towards a homeostatic
perfusion state in the regrown liver.
Furthermore, the simulation results suggest a pronounced variability in the local perfu-

sion state across the growing liver domain, demonstrated via histograms and distribution
parameters. The growth factor observed ranges from 1.6 (twice the average) to 1.0 (no
growth at all), the homogenized flow rate density from 0.018 to 0.001 s−1. Hence, we
do not only capture hyperperfusion, but also the expected local hypoperfusion in the
vicinity of the orphan vessels. Capturing variations in perfusion during regrowth is likely
a key component for potential applications in simulation-based diagnosis and prediction,
e.g., for hypoperfusion-driven ischemia or for the preoperative identification of suitable
cut patterns for partial liver resection. These observations emphasize the need for a
localized growth criterion such as the one proposed in this work.
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8.2 Potential impact in the broader field of computational

biomechanics

The development and application of the proposed modeling framework for liver perfusion
and regrowth hold potential impacts across several domains.
The ability to predict how different surgical resection scenarios affect liver perfusion

and subsequent regrowth can enhance clinical decision-making. By providing insights
into the redistribution of blood flow and its influence on tissue growth, the model could
guide surgeons in planning resection strategies that optimize blood supply and support
effective liver regrowth. This could lead to more precise and individualized surgical
approaches, improving patient outcomes and reducing complications associated with
inadequate perfusion.
The framework’s ability to simulate changes in liver perfusion and tissue growth could

also be utilized for postoperative monitoring. By comparing simulated outcomes with
real-time clinical data, surgeons could better assess the effectiveness of surgical interven-
tions and adjust treatment plans accordingly. This could lead to improved monitoring
protocols and more responsive care, enhancing patient recovery and reducing the risk of
postoperative complications.
The hyperperfusion-driven liver growth model provides a framework for further inves-

tigating liver regeneration processes. Extending this framework to include physiological
responses (e.g. considering metabolism, liver functions, pathological changes) could facil-
itate research into the mechanisms underlying liver regrowth, helping to identify factors
that promote or hinder regeneration. Insights gained from such research could lead to
new therapeutic strategies for liver diseases.
The integration of synthetic vascular trees and a compartmentalized perfusion model

with continuum poroelasticity growth represents an advancement in computational mod-
eling. The techniques developed in this framework could be adapted and applied to other
biological tissues or complex physiological systems. This interdisciplinary approach could
drive further progress in the field of computational biomechanics and tissue engineering,
contributing to a broader understanding of tissue mechanics in health and disease.

8.3 Future work

The current model offers a framework for understanding liver perfusion and hyperperfusion-
driven tissue regrowth but leaves several areas for further research and refinement. Here
are some key areas for future exploration:

� Integration of liver functions and pathological changes: While our model
provides insights into perfusion and growth dynamics, it does not account for liver
functions, metabolism, or pathological changes, as this is beyond the scope of this
work and is not essential for the current application. However, future investiga-
tions could integrate these aspects into the model to capture a more comprehensive
understanding of liver regeneration processes. One approach to achieve this could
involve the integration of ODEs that incorporate various risk factors associated
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with postoperative liver failure. Incorporating these aspects is essential in advanc-
ing the proposed model towards a more evidence-based physiological simulation
tool suitable in clinical practice. For example, including metabolic activity could
enhance predictions of liver regeneration in the context of different metabolic con-
ditions or diseases.

� Parameter sensitivity analysis: To better understand the impact of parameter
variations on model outcomes, a detailed sensitivity analysis (e.g. for the multi-
compartment model) is needed. This may involve systematically varying model
parameters (RVE size, number of compartments, separation criterion for macro-
scopic and microscopic vasculature) to identify how changes affect predictions of
liver regrowth and perfusion. Such analyzes will help in identifying critical factors
influencing liver recovery and guide more accurate model calibration.

� Personalization and validation: The current model would benefit from further
personalization to reflect individual patient characteristics more accurately. This
includes refining material parameters such as elasticity, permeability, and porosity
based on patient-specific data. At the current stage of development of our modeling
framework, comprehensive validation studies against experimental and clinical data
have not been conducted yet, but constitute a crucial next step. For the current
model, our plans include the monitoring of tissue growth rates and changes in
the vascular system, based on available experimental and clinical CT data [163].
We also plan to assess our results in comparison with existing simpler ODE-based
regrowth models [3], [96].

� Refinement of growth model: The current approach assumes isotropic growth,
but liver regrowth may exhibit anisotropic behavior. Future research could explore
anisotropic growth models to provide a possibly more realistic representation of
liver regeneration. This involves defining preferred directions for growth based on
local mechanical or biological factors.

� Incorporation of a lobule-level perfusion model: Extending our current
framework to include a liver lobule-level perfusion model can offer more accurate
predictions at the microscale. Incorporating an efficient reduced-order model for
simulating blood perfusion in liver lobules as introduced in [55] into our framework
could refine the representation of microcirculation and improve the overall multi-
scale predictions of liver perfusion. Specifically, the perfusion characteristics, such
as flow fields, from the supply and drainage compartments in our current compart-
mentalized model could serve as inputs to the lobule model. This would enhance
the coupling between the macroscale vascular tree structures and microscale lobule
dynamics, allowing for more physiologically accurate predictions of flow distribu-
tion and liver function during regeneration.
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[141] I. Babuška, “Error-bounds for finite element method,” Numer. Math., vol. 16,
pp. 322–333, 1971.

[142] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point prob-
lems arising from lagrangian multipliers,” Publications mathématiques et infor-
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