
Computer Science
Department
Fachgebiet Simulation,
Systemoptimierung und
Robotik

Localization, Mapping and
Exploration with Mobile
Ground Robots in Disaster
Environments
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation im Fachbereich Informatik von Kevin Daun
Tag der Einreichung: 26.02.2024, Tag der Prüfung: 08.04.2024

Erstreferent: Prof. Dr. Oskar von Stryk
Korreferent: Prof. Dr. Andreas Nüchter (Universität Würzburg)
Darmstadt, Technische Universität Darmstadt



Localization, Mapping and Exploration with Mobile Ground Robots in Disaster Environments

Accepted doctoral thesis in the department of Computer Science by Kevin Daun

Date of submission: 26.02.2024
Date of thesis defense: 08.04.2024

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-289121
URL: https://tuprints.ulb.tu-darmstadt.de/28912
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

https://tuprints.ulb.tu-darmstadt.de/28912
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Abstract

Responding to disasters and threatening situations is a major challenge for first responders, authorities, and
the public. The use of rescue and response robots can help to overcome the challenges by improving overall
response capabilities, e.g., by providing valuable insights on dangerous areas through gathering data and
creating 3D maps of the environment or performing remote physical actions while enabling first responders to
maintain a safe distance from potential dangers.
However, the operating conditions for robots in disasters and threatening situations such as fire, flooding,

collapse, or CBRNE are very difficult. Environmental conditions are usually very harsh, with challenging
ground characteristics, versatile and irregular obstacles, and potentially disturbed visual conditions due to
smoke, fog, and dust. Moreover, compared to industrial robot applications, missions, and environments have
large variations and low repeatability and offer little prior knowledge and lead time, making applying common
methods and approaches from mobile robot autonomy and artificial intelligence (AI) particularly challenging.
At the same time, these conditions pose a challenge for remote teleoperation, as they increase the likelihood
of fatal errors and mission failures for human operators.
This thesis focuses on developing mobile rescue robots with assistance functions motivated by advancing

disaster response efficiency and safety, e.g., by contributing to autonomous robot exploration, that account
for the specific requirements and challenges to support first responders and civil forces. Therefore, this work
presents specific approaches for localization, mapping, and exploration with mobile ground robots in disaster
response, addressing crucial challenges in three distinct areas.
Firstly, understanding the full range of specific requirements for (autonomous) assistance functions in rescue

robots is crucial for research and development towards practical applicability. Previous analyses have primarily
focused on general aspects, leaving a gap in the specific understanding of requirements for (autonomous)
assistance abilities. We address this gap by deriving a novel model for an integrated function capability
from established models for technology acceptance and derive a comprehensive, evidence-driven analysis of
application requirements and research challenges for (autonomous) assistance abilities.
Secondly, sufficiently accurate and robust simultaneous localization and mapping (SLAM) in unknown

environments without relying on GNSS support are essential for (semi-)autonomous operation. In particular,
traversing uneven ground can lead to abrupt robot motions that existing SLAM methods cannot model
accurately or efficiently enough. Furthermore, relevant environments are often unstructured and potentially
visually degraded by smoke, dust, or fog. Therefore, we investigate new methods for robustly registering lidar
scans, accurately estimating the trajectory in rough terrain, and efficiently mapping large-scale environments
online on a mobile rescue robot system. The proposed approach gains accuracy and robustness by registering
lidar data in a multi-resolution Truncated Signed Distance Function (TSDF) with a continuous-time trajectory
representation. It enables the efficient mapping of large-scale environments by transferring a branch-and-
bound-based loop closure detection approach for TSDF. Furthermore, we investigate extensions of the approach
for the operation in visually degraded conditions with radar.
Thirdly, in response missions, robots might need to fulfill various tasks in a single mission. In such dynamic

and versatile environments, first responders often have prior knowledge and better high-level decision-making
skills than AI methods for the perception and reasoning of autonomous mobile robots. However, an operator’s
cognitive load is limited, and direct operator control is potentially error-prone, often inefficient, and not
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always possible. Therefore, we investigate a new, efficient, and flexible method for multi-goal exploration
that combines AI methods for perception with operator capabilities by extending a hierarchical planning
approach for multi-goal scenarios and facilitating flexible operator assistance with an actionable environment
representation based on affordances.
The innovations, methods, and implementations presented in this work have been successfully evaluated

in various complex simulated and real-world robot experiments, demonstrating accuracy, robustness, and
efficiency. Parts of the real-world evaluation are performed under the conditions of various international
robotics competitions (RoboCup Rescue Robot League, EnRicH, World Robot Summit), demonstrating better
accuracy and robustness than related approaches. In addition, the results from this thesis were used for their
application in real missions and as input for two German consortium standards (DIN SPEC), which underline
their impact in the field of disaster robotics.
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Zusammenfassung

Die Bewältigung von Katastrophen und Gefahrenlagen stellt eine immense Herausforderung für Einsatzkräfte,
Behörden und die Öffentlichkeit dar. Der Einsatz von Rettungsrobotern mit Assistenzfunktionen kann dazu
beitragen, diese Herausforderungen zu mindern, indem sie die allgemeine Einsatzfähigkeit verbessern. Dies
geschieht beispielsweise durch Aufklärung und die Erstellung von 3D-Karten der Umgebung sowie die
Durchführung von Aktionen aus der Ferne. Damit tragen sie auch zur Sicherheit der Einsatzkräfte bei, indem
sie diesen ermöglichen, einen sicheren Abstand zu potenziellen Gefahren zu wahren.
Die Einsatzbedingungen für Rettungsroboter in Szenarien wie Feuer, Überschwemmungen, Einstürzen oder

CBRNE sind äußerst anspruchsvoll. Die Umweltbedingungen sind in der Regel sehr widrig, gekennzeichnet
durch schwierige Bodenverhältnisse, vielfältige und unregelmäßige Hindernisse sowie potenziell eingeschränk-
te Sichtverhältnisse aufgrund von Rauch, Nebel und Staub. Im Vergleich zu industriellen Robotereinsätzen
sind die Einsatzszenarien und Umgebungen äußerst variabel und wiederholen sich selten. Dies erschwert
den Einsatz gängiger Methoden und Ansätze aus den Bereichen der autonomen mobilen Roboter und der
künstlichen Intelligenz (KI) erheblich. Gleichzeitig stellen diese Bedingungen auch eine Herausforderung
für die Fernsteuerung dar, da sie die Wahrscheinlichkeit erhöhen das Operatoren schwerwiegenden Fehler
machen.
Diese Dissertation zielt darauf ab, mobile Rettungsroboter mit Assistenzfunktionen zu entwickeln, die

die Effizienz und Sicherheit bei der Katastrophenhilfe verbessern sollen. Hierbei liegt ein besonderer Fokus
auf der Entwicklung neuer Methoden zur autonomen Erkundung, welche den spezifischen Anforderungen
und Herausforderungen bei Rettungseinsätzen gerecht werden. In dieser Arbeit werden daher Ansätze für
die Lokalisierung, Kartierung und Exploration mit mobilen Bodenrobotern im Kontext der Bewältigung von
Katastrophen und Gefahren vorgestellt und Forschungsthemen in drei verschiedenen Bereichen untersucht.
Erstens ist ein umfassendes Verständnis der spezifischen Anforderungen an (autonome) Assistenzfunktionen

von Rettungsrobotern entscheidend für die Forschung und Entwicklung hin zur praktischen Anwendbarkeit.
Bisherige Analysen haben sich in hauptsächlich auf allgemeine Aspekte konzentriert, sodass eine Lücke
im spezifischen Verständnis der Anforderungen für (autonome) Assistenzfähigkeiten besteht. Diese Lücke
adressieren wir, indem wir ein neus Modell für eine integrierte Funktionsfähigkeit aus etablierten Modellen zur
Technologieakzeptanz ableiten und eine umfassende, evidenzbasierte Analyse der Anwendungsanforderungen
und Forschungsherausforderungen für (autonome) Assistenzfähigkeiten erstellen.
Zweitens ist eine präzise und zuverlässige gleichzeitige Lokalisierung und Kartierung (SLAM) in unbekannten

Umgebungen ohne GNSS-Unterstützung für den (teil-)autonomen Betrieb unerlässlich. Insbesondere das
Überqueren von unebenem Gelände kann zu abrupten Roboterbewegungen führen, die mit typischen SLAM-
Methoden nicht genau oder effizient modelliert werden können. Zudem sind relevante Umgebungen oft
unstrukturiert und möglicherweise visuell beeinträchtigt. Daher untersuchen wir neue Methoden zur robusten
Registrierung von Lidar-Scans, zur präzisen Schätzung der Trajektorie in unebenemGelände und der effizienten
Kartierung großer Umgebungen mit mobilen Rettungsrobotern. Der Ansatz erzielt hohe Genauigkeit und
Robustheit durch die Registrierung von Lidar-Scans in einer multi-resolution Truncated Signed Distance
Function (TSDF) mit zeitkontinuierlicher Trajektoriendarstellung und ermöglicht die effiziente Kartierung von
großen Umgebungen durch die Übertragung eines branch-and-bound-basierten Ansatzes zur Erkennung von
Loop Closures für TSDF. Darüber hinaus untersuchen wir Erweiterungen für die Anwendung mit Radar.
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Drittens müssen Roboter bei Einsätzen möglicherweise verschiedene Aufgaben in einer einzigen Mission
erfüllen. In solch dynamischen und vielseitigen Umgebungen verfügen Rettungskräfte oft über Vorwissen und
potentiell bessere Entscheidungsfähigkeiten als KI-Methoden für die Perzeption und Logik von autonomen
Robotern. Die kognitive Belastung des Bedieners ist jedoch begrenzt, und die direkte Kontrolle durch den
Bediener ist fehleranfällig, potentiell ineffizient und nicht immer möglich. Daher präsentieren wir eine neue,
effiziente und flexible Methode für die Multi-Ziel-Exploration vor, die KI-Methoden mit den Fähigkeiten des
Operators kombiniert. Die geschieht durch die Erweiterung eines hierarchischen Planungsansatz für Multi-
Ziel-Explorationund die Bereitstellung flexiblee Bedienerunterstützung durch eine Umgebungsrepräsentation
auf der Grundlage von Affordanzen ermöglicht.
Die in dieser Arbeit vorgestellten Innovationen, Methoden und Implementierungen wurden in verschiedenen

komplexen simulierten und realen Roboterexperimenten erfolgreich evaluiert, wobei Genauigkeit, Robustheit
und Effizienz demonstriert wurden. Teile der realen Evaluierung wurden unter den Bedingungen verschie-
dener internationaler Robotikwettbewerbe (RoboCup Rescue Robot League, EnRicH, World Robot Summit)
durchgeführt und zeigten eine bessere Genauigkeit und Robustheit als konkurrierende Ansätze. Darüber
hinaus flossen Ergebnisse dieser Arbeit in zwei deutsche Konsortialnormen (DIN SPEC) ein und wurden bei
einem Katastropheneinsatz eingesetzt, was die Bedeutung der Arbeit für den Bereich der Rettungsrobotik
unterstreicht.
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1 Introduction

This chapter gives a general introduction to the topics and contents of this thesis. We first outline the motivation
and goals of this work and give a compact overview of the proposed approaches for localization, mapping,
and exploration in disaster environments.

1.1 Motivation

Responding to disasters and threatening situations is a major challenge for first responders, authorities, and
the public. For example, in the United States in 2016, 69 firefighters died on duty, and 62085 suffered injuries
requiring medical attention [17]. The authorities are faced with the challenge of making decisions while
information is scarce, especially in the early phase of a disaster. Individuals can be affected directly by the
disaster and be injured, trapped, or otherwise in need of urgent support. The use of rescue and response
robots can help overcome the challenge by improving overall response capabilities. For example, they can
provide valuable insights into a dangerous area by gathering data and creating 3D maps of the environment or
performing remote physical actions while enabling first responders to maintain a safe distance from potential
dangers.
In such situations, rescue and response robots can provide versatile abilities for a comprehensive situational

overview, such as real-time data, including images and measurements. With assistance capabilities, these
sensor modalities can be processed to generate insights from the data, such as semantic analyses (e.g., detecting
a fire in a thermal image) or generating maps and 3D models. This can help in short- and long-term planning
of further reaction measures. Furthermore, the robots can support the responders by initiating coping steps
to limit the extent of a disaster (e.g., shutting down a machine or closing a valve) or directly supporting the
responders (e.g., carrying a load). More complex assistance functions such as (semi-)autonomous navigation
and exploration can further support the operator during the stressful and challenging task of remotely
controlling a robot and even enable the operation in environments where no direct communication to the
robot is possible.
While ground robots are already commonly applied in manufacturing, logistics, and inspection environments,

this is not the case for rescue robotics. The tasks in the first three domains can be very complex, such as
coordinating groups of logistic robots. However, the environment can typically be controlled, at least to
some extent, and the tasks share a high repetitiveness. In contrast, disaster operations and environments are
complex, vary widely, and have low repeatability with little prior knowledge and lead time. Furthermore, the
environmental conditions are usually very harsh, with little structure in the environment, challenging ground
characteristics, versatile and irregular obstacles, and potentially disturbed visual conditions due to smoke,
fog, and dust. These conditions make the real-world application of disaster robots very challenging. Dealing
with these challenges motivates various research fields such as system design, human factors, algorithms for
sensing, planning and acting, and artificial intelligence.
While the application of ground robots in disaster response is still rare, several successful deployments

include the reactions to the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in 2011 and the
Notre Dame fire in Paris in 2019. In Fukushima, one of the multiple ground robots was deployed under
teleoperation to perform multiple tasks such as radiation and temperature measurements, collecting air
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samples, investigating damaged piping by taking images and installing water measurement gauges [177].
In Paris, a teleoperated robot entered areas with high heat and risk of structural collapse of Notre Dame,
extinguishing fires and removing debris1. However, both deployments also indicate the limitations of the
applied robotic systems. The Fukushima deployment had a long preparation lead time, and the operators
needed to be trained extensively. Finally, the robot was lost in the nuclear plant during the sixth mission due
to teleoperation errors. In the Notre Dame deployment, the operators needed direct visual contact with the
robot and the scene for the teleoperation of the robot, and the operation in an area without visual contact
would not have been possible.

1.2 Goals and Content of this Work

This thesis focuses on the development of mobile rescue robots with assistance functions motivated by
advancing disaster response efficiency and safety, e.g., by contributing to autonomous robot navigation, that
account for the specific requirements and challenges to support first responders and civil forces in disaster
environments. Therefore, this work presents specific approaches for localization, mapping, and exploration
with mobile ground robots in disaster response relief, addressing crucial challenges in three distinct areas.

1.2.1 Requirements, Guidelines, and Challenges for Autonomous Capabilities and Assistance
Functions for Ground Rescue Robots in Reconnaissance Missions

The remote operation of complex ground robots in disaster conditions is very demanding for human opera-
tors [116]. When deploying ground robots, state-of-the-art today is direct teleoperation of the robots [116].
Complex mission conditions can lead to operation errors and oversights, which can be catastrophic for the
mission result. 50% of mission failures are directly related to human errors, with workload overload as a
main factor [116]. This emphasizes the need for assistance in robot operation.
The focus on teleoperation provides a large gap to the academic community, where competitions, trials, and

experiments [92, 31, 87] demonstrate various autonomous assistance abilities, from assisted manipulation to
large-scale autonomous exploration and mapping, that can help to improve performance, extend functionality
and reduce workload overload of the operator. This gap indicates a potential lack of understanding of the full
spectrum of application requirements and research challenges for assistance abilities and autonomy, which has
so far not been fully addressed by the academic community. However, understanding the specific requirements
for (autonomous) assistance abilities is crucial for research and development toward practical applicability.
To address this gap, we analyze application requirements, guidelines and scientific challenges for autonomy

and assistance abilities in a holistic response mission context in Chapter 4. As part of the analysis, we derive
a novel model for an integrated function capability from established models for technology acceptance,
performed evaluations in disaster deployments as part of The Robotics Task Force established by the German
Rescue Robotics Center DRZ and performed multiple requirements workshops as part of research projects
with first responders from various emergency services.

1.2.2 Robust Simultaneous Localization and Mapping in Challenging Environments

A key challenge in supporting human operators with useful assistance abilities is the development of assistance
abilities able to deal with the harsh environmental conditions at a disaster site. To enable (semi-)autonomous
operation or support the operator with localization and mapping in an unknown environment, the robot must
be able to sufficiently accurately localize itself in unknown environments without global navigation satellite

1https://spectrum.ieee.org/colossus-the-firefighting-robot-that-helped-save-notre-dame, accessed 16.01.2024
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system (GNSS) reception, even on difficult terrain, and generate a map of the environment. In particular,
traversing uneven ground can lead to abrupt robot motions that existing simultaneous localization and mapping
(SLAM) methods cannot model accurately or efficiently enough. Furthermore, relevant environments are
often unstructured and potentially visually degraded by smoke, dust, or fog.
In Chapter 5, we investigate novel methods for robustly registering scans, accurately estimating the trajectory

in rough terrain, and efficiently mapping large space environments online on a mobile rescue robot system in
disaster response conditions Furthermore, we investigate extensions for the operation in visually degraded
conditions with radar.

1.2.3 Exploration and Data-Acquisition in Shared-Autonomy Multi-Goal Missions

In response missions, robots might need to fulfill various tasks in a single mission, such as creating a 3D map of
an environment and also taking dose rate measurements for an accurate radiation map. Furthermore, during
the mission, information dynamics can change. For example, hints of a missing person or the detection of a
hazard might require immediate attention and modifications to the mission procedure. In such dynamic and
versatile environments, first responders often have prior knowledge (e.g., rough location of missing persons),
highly relevant context knowledge, and potentially better scene understanding and high-level decision-making
skills than current Artificial Intelligence (AI) methods for perception and reasoning of autonomous mobile
robots. However, the operator’s cognitive load is limited, and direct operator control is error-prone, potentially
inefficient, and often not possible (e.g., bandwidth, latency).
With current methods, fully autonomous robot operations are typically not possible due to the large

complexity and variations in missions. Therefore, we investigate a new, efficient, and flexible method for
multi-goal exploration that flexibly combines AI methods with operator abilities in Chapter 6. We investigate
the aspects of efficient large-scale exploration for multi-goal missions, actionable environment representations,
radiation mapping, and the embedding into a shared autonomy approach facilitating flexible operator
assistance.

1.2.4 Approach Overview and Thesis Structure

In this thesis, we consider the topics of localization, mapping, and exploration with mobile ground robots in
disaster response. Figure 1.1 provides an overview of the relation of the aspects. The approaches aim to enable
a human operator with a mobile robot with assistance functions to efficiently perform reconnaissance or
mitigation missions and tasks. Therefore, disaster conditions and operator needs and properties are analyzed
in the Requirements, Guidelines and Challenges for Autonomous Capabilities and Assistance Functions for Ground
Rescue Robots in Reconnaissance Missions in Chapter 4. Aspects of the resulting requirements and challenges are
addressed in the approaches for Robust Simultaneous Localization and Mapping in Challenging Environments
in Chapter 5, which covers novel approaches for registering lidar scans, accurately estimating the trajectory
in rough terrain, and efficiently mapping large space environments, and Exploration and Data-Acquisition in
Shared-Autonomy Multi-Goal Missions in Chapter 6, where we investigate a novel method for exploration and
data acquisition in shared autonomy multi-goal missions. The robot with these assistance abilities provides
the operator with abilities and assistance, while the operator can control the robot with these functions and
perform supervision. The approaches are comprehensively evaluated in Chapter 7. Furthermore, we outline
the background of this thesis and give a general overview of the state of the research in Chapter 2. Chapter 3
presents the robots with integrated function modules that were partly developed, integrated, and used in this
thesis. Chapter 8 covers a final conclusion of the proposed approach and an outlook on future work.
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Figure 1.1: Overview of the relations of the proposed approaches for Localization, Mapping and Exploration
with Mobile Ground Robots in Disaster.

1.2.5 Evaluation and Transfer

We perform comprehensive evaluations to investigate the performance and properties of the proposed methods
in Chapter 7. We combine the use of simulation, benchmark data sets, and evaluations as part of a fully
integrated robot system under conditions of multiple international robotic competitions. As typical benchmark
data sets do not address the challenging motion characteristics when traversing obstacles or uneven terrain,
we also introduce a novel data set.
Finally, we demonstrate the successful transfer of the proposed approach for practical applications such as

evaluation as part of an actual disaster deployment and the contribution to the implementation of the German
consortial standards (DIN SPEC) for robots in hazardous environments.
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2 Background and State of Research

This chapter gives a general overview of the background and state of the art and research for topics discussed
in this thesis. We first give a general introduction to the topic of robots and assistance capabilities for disaster
response, simultaneous localization and mapping, and exploration. Each section also relates to design decisions
made for the proposed approach and to the research questions addressed in Chapters 4 - 6. This chapter serves
to give a general introduction to the topics. Additionally, Chapters 4 - 6 each cover a section providing a more
focused and in-depth analysis and distinction to the related research publications of the proposed approach.

2.1 Robots and Assistance Capabilities for Disaster Response

This thesis considers rescue robots as robots that support first responders and other civil stakeholders in
disasters or extreme situations. This covers the aspects of "sense and act at a distance from the site of a disaster
or extreme incident" [116] but also the operation in direct, close collaboration with first responders, such as
support in transportation. As such extreme events, we also consider deployments for civilian forces such as
police operations with the potential presence of Chemical, Biological, Radiological, Nuclear, and Explosives
(CBRNE) threats.
Emergency and disaster management can be split into the phases of prevention, preparation, response, and

recovery [13]. This work focuses on the application in the response phase, although the developed concepts
and methods can also find applicability in the other phases.
Mobile robots can be classified based on the modality where they operate - maritime, aerial, and ground.

2.1.1 Aerial Robots

Aerial robots are an established and widespread tool in disaster response, e.g., in wilde fire prevention and
response [109] or the search for missing persons1. A common use case is to provide improved situation
awareness for fire brigades with live video of a color and/or thermal camera from an aerial perspective. Such
systems are easy to deploy, cost-efficient (e.g., 2100 Euro for a DJI Mavic 3 Pro2), and provide a direct benefit
by improving the situation awareness to the operation teams. Systems with complex and advanced sensing
modalities such as light detection and ranging (LiDAR) [135] or manipulation capabilities [110] are currently
more common in academic research. While the advantages of aerial robots are rapid deployment, data from
an aerial perspective, low weight, easy transportation, and cost-effectiveness, there are also limitations. The
limited payload restricts the type and amount of sensors that can be carried. Especially in indoor environments,
the applicability is limited as navigation in narrow spaces is inherently difficult, the need for direct radio
communication cannot be guaranteed, and the potential need for object interaction, such as opening doors, is
not possible. Furthermore, the application is sensitive to weather conditions and the regulatory environment.

1https://www.flyhound.com/, accessed 25.11.2023
2https://store.dji.com/, accessed 25.11.2023
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(a) AeroVironment telemax EVO Hybrid (Image: © AeroVi-
ronment, Inc.)

(b) Rosenbauer RTE Robot with a fire fighting monitor
(Image: © Rosenbauer International AG)

Figure 2.1: Examples of ground robots applicable in disaster environments.

2.1.2 Ground Robots

The application of ground robots in disaster response is less widespread than aerial robots. Ground robots
need to locomote over the ground structure, which can be very challenging with ground structures such as
rubble and debris, potentially mud and water. In urban environments, the traversal of steps or stairs might be
necessary. To account for this, ground robots, such as the Telerob Telemax or the Rosenbauer RTE Robot (see
Figure 2.1), are typically larger and heavier than their aerial counterparts, requiring additional efforts for
deployment logistics. Ground robots offer significant advantages, including the ability to transport larger
and heavier payloads. Additionally, they allow direct interaction with the environment, such as manipulating
objects with a robotic arm, e.g., opening doors, turning valves, taking samples, or removing debris. Ground
robots are regularly applied when there are very high risks for first responders, such as the handling of
potential explosive threats3 or the handling of critical chemical containers4. In extreme environments they are
also deployed for reconnaissance [117, 177], structural inspection [93] or manipulation tasks [177]. However,
the operation mode in such environments is typically still in direct teleoperation, which leads to errors and
oversights [116]. Further challenges are that radio connectivity in indoor environments cannot be guaranteed,
requiring cables, sufficient repeaters, or autonomous operation capabilities. Overall, these conditions are also
very hostile to human first responders and emphasize the need for robotic technologies to release human
responders from such risk-intensive tasks.

2.1.3 Assistance Capabilities and Autonomy

The operation of rescue robots in disaster environments is very challenging. A large focus of the academic
community is to develop autonomous and assistance capabilities for ground robots, which enable them to
automate complex behaviors (e.g., autonomously exploring an environment) or single tasks (e.g., climbing
stairs, opening a door). Such that an operator gains support in the control or does not need to control the
robot at all.
In accordance with [47], we classify the control interaction as teleoperated, semi-autonomous, or au-

tonomous:

3https://www.avinc.com/ugv/telemax-evo/, accessed 25.11.2023
4https://www.basf.com/global/de/who-we-are/organization/locations/europe/german-sites/

ludwigshafen/neighbor-basf/environment-and-safety/fire-department/about_us/fleet.html, accessed
25.11.2023
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• Teleoperated: "Continuous, direct control of a robot by an operator using a user interface; assistance
capabilities may be available and used to support operation" [47]

• Semi-Autonomous: "Control of the robot under continuous specification of intermediate goals with limited
complexity by an operator using a user interface" [47]

• Autonomous: "Ability of a robot to independently fulfill a function, possibly defined by an operator, without
the need for human intervention during execution" [47]

Similar to the typical sense-plan-act-cycle of robotic systems [91], assistance capabilities also cover these
three aspects. The sensing part covers using the sensor to measure internal (e.g., joint angle, orientation,
battery voltage) or external (e.g., camera image, LiDAR scan, radiation dose rate, temperature) quantities.
The plan part covers the fusion and reasoning from the sensor data. Depending on the function, this typically
means maintaining a model of the robot’s state and environment and reasoning about relevant actions. The
act part then covers the execution of the planned actions, such as actuating a motor or providing the operator
with a visualization.

2.1.4 Requirements and Challenges

To ensure that developed robotic systems apply to real-world needs, it is necessary to understand relevant
requirements. The gathering of requirements and challenges started with the first deployments of rescue
robots. The report on the deployment for the exploration of voids after the World Trade Center collapse in
2001 [117] discusses recommendations for rescue robot systems and autonomous control. The subsequent
deployments [115] lead to a seminal and comprehensive analysis in [116] and [119] covering an overview of
past robot deployments and provide insights on lessons learned, challenges, and practical guidelines. The
authors emphasize the high maturity level required to operate successfully in the challenging conditions of
actual disasters. They point out that with the given "operation envelopes" (operation conditions in disasters),
robot control is very challenging and error-prone due to high cognitive load, perceptual impoverishment,
and the choice of user interfaces and system designs. Further analyses focus on specific aspects such as
human-robot interaction [118, 137] or general system design [49, 144].
Complementary are the insights from competitions that simulate aspects of a disaster deployment, such

as the DARPA Robotics Challenge (DRC) or the DARPA Subterranean (SubT) Challenge. An analysis of the
performances at the DRC [5] concludes that operator errors explain a large fraction of the overall errors and
indicate the importance of human-robot interaction and early detection of errors in the robot or operator
commands. Furthermore, they identify the need that the robots themselves need to be safe to operate in an
environment close to humans. The authors also indicate the importance of using available sensing systems to
support task execution. The evaluation of the team performances at the SubT Challenge [31] confirms the
role of the human operator as a critical performance limiter and emphasizes the need for improved situational
understanding, integrated interfaces, and reliable autonomous functions.
The works on requirements and challenges cover general deployment aspects and indicate the need for

assistance capabilities. However, the understanding of requirements and challenges for the application of
assistance capabilities is often anecdotal, and a comprehensive understanding is missing. We address this
limitation and contribute to the understanding of challenges and requirements for the application of assistance
capabilities for mobile rescue robots with a comprehensive analysis and share insights from evaluations in the
scope training with first responders and deployments of a preliminary robotics task force in Chapter 4.
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2.2 Simultaneous Localization and Mapping

A fundamental problem serving as an assistance capability itself and a prerequisite for many assistance
capabilities is to estimate the location of the robot in an unknown environment and to provide a map of the
environment.
Estimating the location requires a map to register the sensor data, and mapping requires the robot’s

location to integrate the sensor data consistently. Due to this cyclic dependency, localization and mapping are
tightly coupled, and the problem is referred to as simultaneous localization and mapping (SLAM). Resolving
the mutual dependency makes the SLAM problem a hard task and requires searching for a solution in a
high-dimensional space.
As a fundamental capability in robotics, SLAM is an established research problem that has gained a lot of

attention in the research community, resulting in various methods with varying assumptions and approaches.
In the following subsections, we give a formal definition of the SLAM problem and subsequently discuss sensor
types and map representations.

2.2.1 The SLAM Problem

Following [151], we define the SLAM problem as follows. We assume a mobile robot is operating in an
unknown environment and perceiving its environment with noisy sensors. The goal is to estimate the robot’s
trajectory x0:t = {x0,x1, ...,xt}, where each xi is a pose at time i, and the map of the environmentm. The
map can have various representations, such as landmarks, objects, or surfaces.
Available data are relative motion estimates ui for the motion between time i and i − 1 as u1:t =

{u1,u2, ...ut}, e.g., from integrating wheel encoders, and a sequence of measured pose observations relative
to the environment z1:t = {z1, z2, ...zt}, e.g., by detecting landmarks or matching laser scans. These estimates
are suspect to uncertainty and measurement noise.
We follow the probabilistic formulation [151] to model the uncertainty and formulate the full SLAM

problem as determining the posterior over the mapm and the whole trajectory x0:t given the sequences of
observations z1:t and controls u1:t

p(x0:t,m|z1:t,u1:t). (2.1)

However, for many applications, we are only interested in the most recent pose xt of the robot, which is called
online SLAM. Then the problem reduces to estimating the posterior over the mapm and the latest pose xt

p(xt,m|z1:t,u1:t). (2.2)

Approaches to solving the full SLAM problem typically first need to gather data from the whole trajectory
and then process it as a whole. Therefore, these approaches are referred to as offline methods. In contrast,
approaches solving the online SLAM problem process the data as it is arriving. They can give an estimate of
the current robot pose and map at runtime and are called online methods.
This general definition of the SLAM problem indicates various aspects that need to be considered. Depending

on the application domain, choosing the right sensor type is crucial and has strong implications for the design
of a suitable method. Furthermore, the SLAM problem covers two main aspects – estimating the robot’s
trajectory and mapping the environment. This requires suitable techniques to model the trajectory and the
environment, which influence the choice of methods to optimize the trajectory and the map.

2.2.2 Sensor Types

An essential consideration is the choice of sensor to observe the environment to perform SLAM. Common
choices are LiDAR [147], radio detection and ranging (radar) [74], monocular [114] or stereo vision [53], and
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thermal stereo vision [113, 52]. Additionally, SLAM systems often incorporate internal sensors to support the
state estimation such as an inertial measurement unit (IMU) or an odometer. Absolute reference sensors such
as GNSS or external localization systems are typically not available in unknown indoor disaster environments
and are, therefore, not considered in the scope of this work.

External Sensing

LiDAR ("light detection and ranging") sensors measure the distance to a surface by emitting laser beams and
measuring the time for the reflected light to return. Advantages of LiDAR-based sensing, with state-of-the-art
sensors for mobile applications, such as the Velodyne VLP-16 Puck5 or the Ouster OS-06, are high-frequent
and precise distance readings, large measurement range, wide horizontal field of view (FOV), average vertical
FOV and average density, robustness to light conditions. Disadvantages are sensitivity to degraded visual
conditions (smoke, fog, dust), sensitivity to reflective surfaces, and high price.
Radar ("radio detection and ranging ") sensors measure the distance and relative velocity to a surface

by transmitting electromagnetic waves in the radio or microwave domain. The received reflections are then
processed to estimate the surface’s distance and relative velocity. Advantages are robustness to degraded visual
conditions (smoke, fog, dust), obstacle penetration, observing surface velocity, and average cost. Disadvantages
are low range and angular precision, interference of other radars, and multi-path return signals.
The experimental comparison of LiDAR and radar sensors by Gim et al. [64] also indicates the advantages of

LiDAR with respect to measurement precision and coverage, while radar systems provide better environmental
robustness and lower cost.
Monocular vision approaches use a sequence of images from a single camera to estimate the motion and

3D geometry of the environment. In contrast, stereo vision approaches typically use two cameras and
leverage the disparity between the two images to reason about the 3D structure of the environment. A general
challenge for vision-based sensing is that the sensor data does not provide direct range readings, and therefore,
depth information needs to be inferred from a series of images in monocular approaches or by leveraging
the image disparity for stereo approaches. The advantages are simple and cost-efficient hardware and color
information. Disadvantages include sensitivity to lighting and visual conditions.
Stereo vision can also be performed with thermal cameras [113, 52], which improves the robustness to

lighting conditions at the cost of an increased price, the lack of color information, and reduced resolution.

Internal Sensing

It is common to fuse an internal sensor, such as an IMU, which observes linear accelerations and angular
velocities. Estimating the position and orientation from IMU observation requires a double integration of the
linear acceleration and a single integration of the angular velocity [58]. Both the angular velocities and linear
accelerations are suspect to noise and slowly varying biases. Therefore, the estimation of the position drifts
strongly after short integration sequences. The linear acceleration allows for observation of the direction of
gravity, which allows for filtering of the linear and angular observations and provides an accurate estimation of
roll and pitch components even over longer periods. However, the yaw component cannot be observed by the
direction of gravity and is still bound to drift, although as it incorporates only one instead of two integrations,
the drift is much slower than for the position [160].

Odometers, which count the revolution of wheels or tracks, enable observation of components of the linear
and angular velocity. As the odometer does not observe the slippage of the wheels/tracks, the accuracy is
limited, and the estimates become very inaccurate on loose ground and rough terrain.

5https://velodynelidar.com/products/puck/, accessed 29.11.2023
6https://ouster.com/products/hardware/os0-lidar-sensor, accessed 29.11.2023
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Sensor Choice for the Proposed Approach

To achieve a high accuracy and robustness in both the accuracy of the map and the pose estimate, we base the
proposed approach in Chapter 5 on LiDAR fused with IMU and odometer readings. To account for degraded
visual conditions, we investigate the incorporation of radar.

2.2.3 Map Representations for Lidar-based SLAM

As the accuracy of the map and the pose are tightly coupled in SLAM the choice of the map representation is
crucial for the overall performance of the method. In the following, we first outline requirements and aspects
that need to be considered for SLAM in disaster environments. Subsequently, we outline and discuss existing
map representations.

Requirements

The accuracy of the environment representation is a crucial property, as it directly relates to the fidelity of the
map and the accuracy of the localization. For LiDAR-basedmethods, this typically means the geometric accuracy
of the surface representation or features and an estimate of the uncertainty, which directly relates to the
accuracy of the registration of a LiDAR scan. For usage of the map for operator assistance or further assistance
capabilities such as obstacle avoidance or path planning, it is important to achieve a dense representation
of the environment with accurate surface representations and potentially additional information such as
indications of free space, distance to surfaces or translucency. Especially for the application in disaster scenarios,
robustness is crucial. Robustness, in this sense, means the property to achieve accurate representation even
with noisy sensor data and to enable an accurate registration of LiDAR scans even with poor priors. We
consider functions that operate online on a mobile robot with limited compute, therefore memory and
computational efficiency are crucial for applicability. Accuracy, dense representation, and robustness are
often properties that conflict with memory and computational efficiency. Therefore, finding representations
that allow a sufficient trade-off between these aspects is essential for an overall well-performing approach.

Representations

Volumetric approaches sample the map at a given resolution to allow a reconstruction of the environment.
Resulting in an usually high-dimensional map. Examples of volumetric maps are occupancy grid maps or
Truncated Signed Distance Functions (TSDFs). Feature-based approaches extract sparse features from the
sensor data and use these features as environment representation. Due to the reduced dimensionality, compu-
tation complexity is reduced, and feature-based methods tend to be more efficient. However, the extraction of
sufficient, robust, and unique features is a hard problem. If the number of features in the environment is not
sufficient, these methods are prone to mismatches, leading to inconsistent maps. Furthermore, they do not
directly provide a dense 3D model of the environment that can be used for operator assistance. Therefore, we
primarily focus on volumetric approaches.
Point Clouds are sets of typically 3D points from the range observations of LiDAR sensors. Naively

accumulating all incoming scan observations into a single point cloud quickly leads to intractable models.
Therefore, often only selected and/or filtered LiDAR scans are stored as so-called keyframes. The iterative
closest points algorithm [10] enables accurate point cloud registration. With the availability of high-density
and high-FOV LiDAR sensors such as the Ouster OS-0, Iterative Closest Points (ICP)-based LiDAR odometry
methods gained again increased attention in the last years [163, 28, 171].
Occupancy Grids [69, 86, 71], also known as Probability Grids, represent the space as a 2D-pixel grid or

3D-voxel grid, where each cell stores the probability of being occupied. Maps can be updated by performing
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a ray cast from the sensor origin to a range observation and using an inverse-sensor model to update the
probability of all cells along the ray. The representation has the advantages of providing a sound probabilistic
framework and an efficient map update scheme. The probabilities can be translated to free, occupied, and
unknown space, are usable for planning with mobile robots, and are easily readable by humans. Disadvantages
are that the accuracy is limited by the map resolution, and the computation of gradients is only possible
directly at the surface. The flexible probabilistic framework enabled various successful applications such as
GMapping [69], Hector SLAM [86], Cartographer [71] and Octomap [75].

Truncated Signed Distance Functions, also Truncated Signed Distance Fields, represent the space as a
2D-pixel grid or 3D-voxel grid, where each cell stores two values - the signed distance to the next surface and a
weight indicating the confidence in the value. To gain efficiency, the distance function is only evaluated until a
truncation threshold is reached. Thereby, values are only stored close to surfaces. The surface can be extracted
by computing the zero isocontour, e.g., using the marching cubes algorithm [101]. Therefore, the surface
accuracy is higher than the cell resolution and more accurate than for occupancy grids at the same resolution,
enabling higher quality environment models and more accurate scan registration. A further advantage is the
availability of gradients in the direction of the surface within the truncation distance. Disadvantages are that
the map update induces more complexity than occupancy grids, projection errors for small angles are more
notable, and thin objects cannot be represented without significant extensions [149]. While TSDF approaches
typically apply some form of projective distance, Euclidean Distance Functions store the Euclidean Distance
without truncation. This induces an increased computational cost but also enables efficient applications for
motion planning [125]. ESDFs can be efficiently computed from TSDFs [125].
TSDFs gained popularity in the application with Red Green Blue-Depth (RGB-D) cameras with KinectFu-

sion [120, 167]. However, applying these methods to laser scanners is challenging, as sensors also provide
distance readings under highly slanted angles and are less dense, which leads to poor surface reconstructions.
Initial works for applying TSDFs for 2D LiDAR SLAM are 2D SDF SLAM [59] and Ohm TSD SLAM [84].

Normal Distribution Transform (NDT) [12] and Surface Elements (surfels) [51, 168, 9] are two closely
related methods which discretize space in a grid. Each cell stores a normal distribution of the 3D point
measurements. NDTs represent this distribution as a mean and covariance matrix, whereas Surfels represent it
by mean and the normal as the Eigenvector of the distribution. Such methods achieve high alignment accuracy
and provide a direct estimate of the uncertainty. However, scan registration requires repeated alignment, and
the representation does not provide direct gradients. The representation has been successfully applied to
achieve highly accurate and large-scale 3D SLAM methods, such as ElasticFusion [168] or the approach by
Behley and Stachniss [9].
Deep Learning-based environment representations have become more common in the last years, mainly

for visual SLAM approaches [111]. Such systems either use Convolutional Neural Network (CNN) to extract a
traditional environment representation, such as an Signed Distance Function (SDF) [173] or learn an implicit
representation, such as implicit SDF encodings [130, 179] or Neural Radiance Fields (NeRFs) [107, 142]
which produce high-quality visual results in room-scale environments.
However, due to the scale and diversity of scenes and the sparsity of LiDAR data, the applicability for

LiDAR-based approaches is still an open research question. Recent results [46] indicate promising potentials
with high-quality maps in urban environments. However, the proposed approach is not yet capable of real-time,
and the performance in very unstructured disaster environments requires further investigation. Applications
are loop closure detections [4] or object-based representations [166]. Approaches generating an implicit
SDFs from point clouds, such as [54], produce high-quality results but are computationally intense and, until
recently, limited to the extent of single objects. Recent results [183] demonstrate computationally expensive
but memory-efficient mapping of large-scale environments.
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Representation choice for the proposed approach

As discussed in this section, various environment representations can be utilized to enable accurate and
efficient SLAM systems with dense maps. TSDFs directly provide accurate gradients within the truncation
distance and are, therefore, well-suited for optimization approaches and robust registrations. Furthermore,
the surface reconstruction is robust to noisy sensor integrations. Therefore, we focus on the application of
TSDFs in the proposed approach. However, to enable the application of TSDFs for robust large-scale SLAM
systems, various open research challenges remain. These cover the investigation of update schemes for 3D,
robust and accurate scan registration in rough terrain, and efficient loop closure detection for large-scale
SLAM. We propose solution strategies to these challenges in Chapter 5.

2.3 Robotic Exploration

In the exploration of initially unknown areas with mobile ground robots, the robots traverse the environment,
aiming to fulfill a predefined exploration goal. Such goals can be versatile, for example, the creation of a 2D or
3D map of the environment, the coverage of the surface or space with a sensor to locate CBRNE threats such
as radioactive materials or chemical hazards, or in the search for victims or objects of interest. Depending on
the problem focus and scope, various terms are used to denote this problem. Common is the reference as
active SLAM, where the SLAM problem is extended by the search for a control policy that aims to minimize
the uncertainty in the map [26].
Exploration approaches typically need to solve three subproblems: "1) Identification of potential actions,

2) Utility computation and 3) Action selection and execution" [132]. The identification phase covers the
representation of the progress towards the goal(s). For a spatial exploration, this is often a metric map
split into the covered area, the uncovered area, and the frontiers. Potential actions can be derived from this
representation, such as driving to a specific frontier. In the utility computation step, the identified actions are
evaluated for the expected cost and gain, such as the size of the frontier and distance. Finally, in the action
selection and execution step, a set of actions aiming at maximizing the utility is selected and executed.
For each of the steps, various approaches have been proposed. Comprehensive overviews are provided

in the recent surveys by Placed et al. [132], Azpúrua et al. [6] and Ahmed et al. [3]. Based on the surveys,
the following sections provide a brief and introductory overview of variations of approaches to solve the
subproblems of the exploration problem. This serves to provide a general understanding related to the
proposed approach in Chapter 6.

2.3.1 Identification of Potential Actions

The identification of potential actions typically covers two aspects: First, the creation of a map of the
environment which is in a second step utilized to identify potential goal locations. Maps (see also Section 2.2.3)
can be represented in various ways. Common is the representation as metric maps, such as occupancy grids,
which allow a representation of the covered area, uncovered area, and the extraction of frontiers. Metric maps
can also store other relevant quantities, such as the distance to obstacles, relevant measured quantities, sensor
coverage, or semantic information. However, for complex and large-scale environments, the handling of naive
metric maps can become computationally infeasible for update and planning. In contrast, topological maps
represent the environment as a graph, which enables efficient planning even in large-scale environments.
However, the generation and maintenance of a topological structure is a non-trivial task. To leverage the
advantages of both representations hybrid and hierarchical maps combine both approaches. Such as small
local metric maps connected by a global topological graph [25] or the combination of metric, semantic, and
topological maps as 3D scene graphs [142].
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The next step requires the identification of a set of potential actions. Typically, the potential navigation goal
positions are identified, and the related actions are the navigation to the identified goal positions. Common
are frontier-based approaches [172], which identify reachable positions at the border of known and unknown
space. The naive evaluation of the whole map for frontiers becomes computationally infeasible for large-scale
environments. Therefore, various approaches aim to find frontiers efficiently by applying incremental update
schemes [82] or search-based strategies such as rapidly exploring random trees [159]. Other approaches aim
to reduce the uncertainty in the map by identifying potential loop closure locations and adding these as goal
positions [150]. Closely related to the frontier-based approaches are coverage-based approaches that identify
positions that provide sensor coverage of areas of a model that are not sufficiently observed [25].

2.3.2 Utility Computation

To enable efficient exploration behaviors, it is necessary to not only identify potential actions but also predict the
expected utility. Various utility estimates have been proposed, such as considering the Euclidean distance [172]
to the goal, the size of the frontier [66], or the expected coverage [25]. A large class of approaches base the
utility estimation on information theory and approximate the reduction of entropy of the map and the pose
estimate by performing an action [15]. Furthermore, Theory of Optimal Experimental Design (TOED)-based
approaches aim to minimize the expected covariance of the posterior state [57].
As the planning step can be computationally expensive and to achieve efficient global behaviors, it can be

beneficial to extract not just a single action but a sequence of actions. However, actions are not independent
as the execution of an action can influence the utility of other actions, e.g., by overlapping sensor coverages.
This can be accounted for by predicting the gain of the selected action and updating the utility for all other
action candidates [25].

2.3.3 Action Selection and Execution

Finally, an action or a sequence of actions needs to be selected from a set of identified and evaluated actions
and be executed.
When the set of potential actions is discrete, the action with the highest utility can be selected. If a sequence

of actions is considered, the interplay with the utility reduction, as outlined in the last section, needs to be
accounted for.
Alternatively, methods that do not optimize for separate goal positions but directly optimize a whole

trajectory can account more accurately for the submodularity in the problem. Examples are, belief-space
planning approaches [7], optimal control formulations [98] or reinforcement learning-based appraoches [154].
However, enabling the applicability of these methods in versatile, complex, and previously unseen real-world
environments online on systems with limited computing is still an ongoing research topic.

2.3.4 Relation to Proposed Approach

As we discussed in the last sections various approaches exist to enable efficient exploration of unknown spaces
with mobile robots. In the proposed approach for shared-autonomy exploration in Chapter 6, we base the
method on a coverage-based goal identification with a hierarchic environment representation [25] to enable
the handling of multiple sensors in multi-goal missions. We formulate a modular utility computation and
compute dense local and coarse global action sequences to achieve accurate and efficient exploration of
large-scale environments.
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3 Robots Used in this Thesis

This chapter presents the robots developed and used as evaluation and application platforms for the proposed
approaches. We first provide a general overview of the considerations for the robots and then discuss the
specific robots in detail.

3.1 Overview

The research and development of integrated assistance capabilities for mobile disaster robots requires suitable
robots to integrate and evaluate the methods. However, commercially available platforms typically are either
focused on direct teleoperation (e.g., Telerob Telemax) or do not have the required sensors and computing or
sufficient open interfaces (e.g., Boston Dynamics Spot). Designing and constructing new robots is a challenging
and time-consuming task. Therefore, most systems in this thesis are based on commercial platforms equipped
with integrated modules developed at TU Darmstadt. These modules combine the required hardware (sensors,
compute, electronics) and software.
In this thesis, mainly, three robots (see Figure 3.1) with varying locomotion, manipulation, and sensing

capabilities are considered. The capabilities are summarized in Table 3.1.
The main navigation modules of all robots incorporate a LiDAR, an IMU, an Omni-Camera, and a computing

unit. A key design consideration is the externally actuated spinning 3D-Lidar (see Figure 3.2) on Asterix and
DRZ Telemax. The used sensor is a Velodyne VLP-16, which provides dense and comprehensive horizontal
coverage of 360◦ with 0.1◦ resolution. In contrast, the vertical coverage is only 30◦ with a sparser resolution of
2◦. As the sensor is mounted tilted on a spinning axis, the overall vertical range increases by two times the
tilting angle while also enabling dense coverage. On Asterix the mount is tilted by 45◦ yielding 120◦ effective
FOV on Telemax the mounting angle is 30◦ yielding 90◦ effective FOV. However, the increased time of 1 s - 2 s
for the coverage of a full accumulated scan leads to distortion in the scan due to the ego-motion of the robot,
similar to the motion distortions in rolling shutter cameras. Therefore, the distortion needs to be considered
and compensated in the state estimation and environment modeling. With the introduction of the Ouster

Table 3.1: Robot Capability Overview
DRZ Telemax KIARA Telemax Asterix eC Scout

Locomotion 4 adjustable tracked flippers Whole-body tracks,
pairwise adjustable
flippers

4 wheels, skid steer

Manipulation 6-DoF Arm 6-DoF Arm none
Perception
Lidar Actuated (360◦×90◦) Static (360◦×90◦) Actuated

(360◦×120◦)
Static (360◦×90◦)

Cameras RGBD, Tele, Omni,
Wide, Thermal

RGBD, Tele, Omni,
Thermal

RGBD, Omni, Thermal RGBD, Tele, Omni,
Thermal

Additional IMU, GNSS, Radiation IMU, GNSS, Radiation,
Hazard Gas

IMU, GNSS, CO2 IMU, GNSS, Radiation,
Radar
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(a) DRZ Telemax (b) KIARA Telemax

(c) Asterix (d) emergenCITY Scout

Figure 3.1: Robotics platforms equipped with the developed integrated modules used in the development
and evaluation of this thesis. (Images: Team Hector, TU Darmstadt)
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(a) Static Velodyne VLP-16 (b) Actuated Velodyne VLP-16 (c) Static Ouster OS0-128

Figure 3.2: Lidar vertical FOV comparison schematic. a) Static Velodyne VLP-16 with 30◦ opening angle and
2◦ sampling resolution. b) Actuated and tilted mounted Velodyne VLP-16. The coverage increases
by two times the tilting angle, yielding an effective 120◦ coverage for a mounting angle of 45◦. c)
Static Ouster OS0-128 with 90◦ opening angle and 1.4◦ sampling resolution.

OS0-128, which has a vertical coverage of 90◦ with an angular resolution of 1.4◦, no external actuation is used
on KIARA Telmeax and eC Scout. However, even though the capture of a single scan takes only 0.05 s - 0.1 s,
scan distortions are notable for fast motions and need to be compensated.

3.2 DRZ and KIARA Telemax

The Telerob Telemax is a remote-controlled mobile search and rescue robot that combines high mobility and a
highly accurate and strong manipulation arm manufactured by the "Telerob Gesellschaft für Fernhantierung-
stechnik mbH". The four independently controllable flippers enable the robot to traverse obstacles in urban
environments, such as stairs, steps, or debris. The precise arm has a reach of 1.5m and can carry 7.5 kg at
maximum reach. This enables versatile and accurate manipulation capabilities such as opening doors or
manipulating valves in real-world environments. The robot is owned by the "German Recue Robotics Center"
(DRZ), which aims to encourage the development and transfer of robotic systems to assist in the rescue and
protection of people and property. Within the scope of the research projects, "Development of the German
Rescue Robotics Center" (A-DRZ) [94] and "AI assistance for robot-assisted reconnaissance and defense against
acute radiological hazards" (KIARA) interacted function modules were developed to enable (autonomous)
assistance functions and mapping capabilities in disaster environments.
The DRZ Version was continuously developed and improved in the period of 2018-2022, mainly by Marius

Schnaubelt, with conceptual contributions of the author, and features two integrated modules. A main
perception and navigation module is on the back side of the robot, with a tilted, spinning Velodyne VLP-16
PUCK 3D-Lidar, closely above a 360◦ Omnidirectional Camera. Inside the module is an XSENS MTi 100
inertial sensor and two compute units. LiDAR and IMU are the main sensors used for localization and
mapping. The omnidirectional camera enables assistance functions with colored point clouds and supporting
camera projections [124]. At the end-effector, the robot is equipped with a module to support inspection and
manipulation containing multiple cameras (RGB-D, tele, wide-angle, thermal) and a low-power computer
for processing the data. Additionally, the robot is equipped with a GNSS sensor at the elbow to enable a
pose estimate with global reference in outdoor environments and a front-facing RGB-D camera for obstacle
avoidance.
The KIARA Version was continuously developed and improved in the period of 2022-2023, mainly by the
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author, Jonas Süß, and the TU Darmstadt Feinmechanik Werkstatt. It also features two integrated modules.
The overall concept is similar to the DRZ Version with updated hardware components. The increased angular
FOV and resolution of the Ouster OS0-128 resolves the need for the actuation of the sensor, allowing a more
compact construction.

3.3 Asterix

Asterix is a mobile rescue robot designed to combine good sensor coverage, high mobility, and manipulation
capabilities, enabling versatile autonomous assistance functions [143]. The movable flippers can be used to
climb obstacles and stairs. The low center of mass enables the traversal of complex and uneven terrain. The
compact arm enables basic manipulation tasks such as closing valves or opening doors in simple environments.
The robot is used by Team Hector1 for rescue robotics research and participation in the RoboCup Rescue Robot
League [79].
In large parts, the robot follows a functional setup similar to DRZ Telmax, with a spinning 3D LiDAR, closely

located IMU, omnidirectional camera, and RGB-D cameras. On the back side, the robot is equipped with
a small pan-tilt sensor head with RGB-D and a thermal camera to provide sensor coverage even in narrow
environments.

3.4 emergenCITY Scout

emergenCITY Scout is a wheeled mobile robot for research on assistance functions as part of the emgergenCITY
research center [73]. The design is focused on the fast exploration of urban environments. The wheels enable
faster locomotion than the tracked vehicles. However, the mobility is limited to simple steps, and the robot
does not have manipulation capabilities.
The sensor setup follows a function setup similar to KIARA Telemax, with a static 3D lidar, IMU, omnidi-

rectional camera, and RGB-D cameras. In the front, the robot is equipped with a large pan-tilt head with
a thermal camera, zoom camera, and through-wall radar. The sensor-head enables various inspection and
detection tasks, including the vital sign detection of people behind closed doors [145].

1https://www.teamhector.de/, accessed 16.01.2024
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4 Requirements, Guidelines, and Challenges for
Autonomous Capabilities and Assistance Functions
for Ground Rescue Robots in Reconnaissance
Missions

While rescue robots are becoming more established as part of disaster response, they are typically teleoperated
in actual disasters. (Autonomous) assistance functions can improve performance, extend functionality, and
reduce operator overload. It is necessary to understand relevant requirements to ensure that developed
capabilities apply to real-world needs. Previous analyses focused on general aspects of rescue robots, leaving a
gap in understanding requirements for (autonomous) assistance functions, which this chapter addresses.
This chapter provides a detailed, evidence-driven analysis of application requirements and guidelines, and

research challenges for (autonomous) assistance functions for rescue robots in reconnaissance missions. The
chapter is structured as follows: We first outline the related work and the key contributions of the approach,
then we provide an overview of the proposed method, and we first investigate past deployments before
investigating general and then capability-specific requirements and challenges.
As the case studies in Section 4.4 show, the deployment conditions, goals, and robotic capabilities are highly

diverse. This also means that specific requirements for different robotic capabilities in diverse environments
with different use cases strongly vary. Therefore, we provide a general understanding of the requirements on
a functional level instead of quality requirements or attributes. Furthermore, we address multiple aspects by
defining guidelines that cover concepts derived from successful deployments and studies but are less strict
than the requirements.
This chapter is an extended and revised version of [41]. Insights from and concepts for training and mission

deployments were published in [94] and [153].

4.1 Related Work

4.1.1 Rescue Robotics and Requirements

A comprehensive overview of the application, experiences, and requirements for rescue robotics is provided
in [116] and [119]. The authors define classifications and characteristics of disasters and disaster robots,
cover an overview of past robot deployments (until 2014), and provide insights on lessons learned, challenges,
and practical guidelines. The authors emphasize the high maturity level required to operate successfully in the
challenging conditions of actual disasters. They point out that with the given "operation envelopes" (operation
conditions in actual disaster), robot control is very challenging and error-prone due to high cognitive load,
perceptual impoverishment, and the choice of user interfaces and system designs. [118] focuses on interfaces
for human-robot interaction, splitting the users into end-users, developers, and stakeholders / general public,
and defines respective requirements.
The International Forum to Advance First Responder Innovation (IFAFRI) provides an analysis of ten
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common global capability gaps for first responders1. Key gaps related to this work are "Remote Acquisition
of Information," "Remote Operations," and "Actionable Intelligence." The authors mention the requirements
of easy operation, operation in multiple environments, economic aspects, integration of data with response
systems, and real-time visualization, analysis, extrapolation, and contextualization of data.
Delmerico et al. [45] survey the current state of the art in rescue robot systems and human-robot control

interfaces, with statements of emergency response stakeholders and an assessment of technologies for future
real-world disaster response and recovery. The authors consider robots as tools deployed by responders,
which brings a benefit when they can be used to improve efficiency, perform a task that humans cannot
perform (or only with intensive training, such as scuba diving), or allow them to operate remotely in high-risk
environments. Regarding autonomy, it is emphasized that a human in the loop (a semi-autonomous mode in
contrast to full autonomy) is strongly desired.
Doroftei, Matos, and Cubber [49] define requirements for rescue robots focusing on mechanical and struc-

tural aspects for teleoperated systems in realistic operation conditions. The requirements are gathered within
the scope of the ICARUS project, which focuses on robots for data gathering. Schneider and Wildermuth [144]
define various use cases for rescue robots and identify general requirements for robotic systems. The authors
emphasize that robots should protect and expand the capability spectrum and should not introduce new
potential hazards.
These works provide valuable insights into general requirements for rescue robots, which we build upon

and extend for assistance functions and autonomy.

4.1.2 Standards and Norms

The IEEE Standard for Transparency of Autonomous Systems 7001 [169] outlines the need for transparency
for autonomous systems for adjusting expectations, building confidence as a part of verification and validation,
and ensuring accountability. The standard introduces a framework to measure and test transparency in six
levels for five stakeholder groups: users, the general public and bystanders, safety certification agencies,
incident/accident investigators, and lawyers/expert witnesses.
Resulting from the project for the "Establishment of the German Rescue Robotics Center (A-DRZ)" [94] a

German consortium standard for the application of robots in hazardous applications [47] was introduced. The
section on autonomy and assistance functions covers the aspects of transparency (by IEEE 7001), robustness
to disturbances, safe operation, monitoring, and communication.

4.1.3 Technology Acceptance

Understanding why new technology is used and accepted is an established research field in cognitive science
and information system theory.
An early established model is the Technology Acceptance Model (TAM) [42] by Davis. Based on the

social-psychological "Theory of Reasoned Action," it postulates that the Attitude Towards Using a technology, is
mainly influenced by its Perceived Usefulness and its Perceived Ease of Use. Based on the Attitude and Perceived
Usefulness, an Behavioral Intention to Use is formed, leading to actual system use. In the subsequent years,
more models were postulated, considering additional aspects.
A condensed model was created by Venkatesh et al. as the Unified Theory of Acceptance and Use of

Technology (UTAUT) [161] (see Fig. 4.1) to explain and predict the acceptance of technology in organizational
contexts.
UTAUT also assumes that system use is determined by a behavioral intention but explicitly models facilitating

conditions as a dependency. It directly considers multiple predictors to form the behavioral intention:
1https://www.internationalresponderforum.org/services/capability-gaps
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Figure 4.1: The ”Unified Theory of Acceptance and Use of Technology” (UTAUT) model predicts the ac-
ceptance and use of technology based on Performance Expectancy, Effort Expectancy, Social
Influence and Facilitating Conditions moderated by Gender, Age, Experience and Voluntariness of
Use. Image is based on [161].

• Performance expectancy: "the degree to which an individual believes that using the system will help
him or her to attain gains in job performance" [161]

• Effort expectancy: "the degree of ease associated with the use of the system" [161]

• Social Influence: "the degree to which an individual perceives that important others believe he or she
should use the new system" [161]

The effect of the predictors is moderated by the aspects of age, gender, experience, and voluntarines of use.
As the model has been successfully applied to explain the acceptance and application of technology in various
domains, we will apply it to the context of rescue robotics and use it as a basis for deriving requirements.

4.2 Contribution

While establishing rescue robots in disaster response is an ongoing process, multiple works identify primarily
general requirements for rescue robots [116, 119, 45, 49, 144]. However, these analyses focus on general
aspects of rescue robots, leaving a gap in understanding the full range of specific requirements for (autonomous)
assistance functions. In this work, we address this gap and complement these analyses by providing a detailed,
evidence-driven analysis of application requirements and guidelines, and research challenges for (autonomous)
assistance functions for rescue robots in reconnaissance missions.
We base our reasoning on a general model for technology acceptance and propose to consider assistance

functions together with their surrounding conditions holistically as integrated function capabilities. We define
We define an integrated function capability as a capability that executes a specific function, implemented
through software together with the necessary physical components (e.g., sensors, actuators, power sources,
computing hardware) integrated into the robotic system to perform the function effectively.
We relate the requirements to the current state of the art and address challenges, limitations, needs, and

recommendations to enable more functionality and efficiency in mobile rescue robotics. The key contributions
are:

• Evidence-driven analysis of requirements and challenges for autonomy and assistance functions for
rescue robots in reconnaissance missions
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Figure 4.2: We base our analysis on a comprehensive model for technology acceptance and consider re-
ports of past deployments, related analyses, our own deployment experience, and insights from
workshops with first responders. We define relevant aspects of an integrated function capability
and identify requirements and challenges.

• Analysis of rescue robot deployments on requirements and challenges for autonomy and assistance
functions

• Recommendations for research, development, transfer, and application of (autonomous) assistance
functions.

4.3 Overview

For our analysis (see Figure 4.2), we take into account:

• A condensed review of related analyses and standards

• A derivation of requirements from reports of past deployments

• Results from requirements workshops with first responders as part of the research projects "A-DRZ" [94]
and "KIARA"2

• Insights and experience from the author as ”expert operators” and observers in the deployments as part
of a trial German Robotic Task Force [153]

4.4 Case Studies

To understand the needs of first responders and the conditions in actual disasters, we investigate three different
deployments: World Trade Center Collapse, Fukushima Daiichi Response, and Residential Complex Fire Essen.

2https://www.tu-darmstadt.de/kiara
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The deployments were chosen based on the availability of sufficiently detailed reports and variances in the
scenarios, conditions, and tasks.

4.4.1 Case Study: World Trade Center Collapse, 2001

On September 11, 2001, terrorists crashed two airplanes into the World Trade Center Twin Towers in New
York, United States of America. The damage from the impact of the airplanes and the subsequent fires lead to
the collapse of both skyscrapers within less than two hours.
The reaction to this incident is the first known application of robots for urban search and rescue [117].

Based on the report of Murphy [117], the Center for Robot-Assisted Search and Rescue utilized multiple
rescue robots from September 11 until October 2, 2001, for searching for victims, searching excavation paths
through the rubble, structural inspection and detection of hazardous material. In this period, the robots were
on four deployments inspecting eight voids. A major challenge was the exploration of void spaces in the rubble
pile. At this time, the default options were to use a camera on up to 2m long pole or to send humans or dogs
inside. In contrast to the pole, robots could go up to 20m into the voids and, in contrast to humans or dogs,
could also explore places with ongoing fires or risks of structural collapse.
The authors report on multiple challenges for the application of robots. A major difficulty was the lack

of depth perception in all three dimensions in a heavily confined environment. This led to misjudgments of
obstacles in front of the robot and the robot rolling over, as well as difficulties in judging the clearances to the
sides and the top, and led to the robot getting stuck. Direct usage of odometry readings was not helpful as the
readings were erroneous due to the rough terrain.
The post-analysis of camera footage revealed various robot operation errors and missed remains by the

operators. The authors hypothesize that unaided human perception may not be sufficient for successful robot
search and rescue.

4.4.2 Case Study: Fukushima Daiichi Response, 2011

On March 11, 2011, a devastating earthquake and subsequent tsunami hit eastern Japan, leading to a nuclear
accident at the Fukushima Daiichi Nuclear Power Plant, resulting in very high radiation levels in and around
the disaster site.
Following the report of Yoshida et al. [177], an iRobot Packbot was deployed on April 17, 2011, to perform

a reconnaissance mission which confirmed very high levels of radiation in the building making human
access impracticable. However, the system’s operational readiness was strongly limited as the radio-based
communication system only covered parts of the first floor, and the robot could not climb stairs. To perform
further explorations, a joint research group from Tohoku University, Chiba Institute of Technology, and
Kogakuin University built a new robot focused on reliability for hardware, communication, and radiation and
the capability to perform multiple measurements. Another focus was the development of a system for easy
teleoperation, as the operation had to be performed by a novice operator from the operator of the plant. From
June 24, 2011, to October 20, 2011, the robot was deployed for six missions, performing multiple tasks such
as radiation and temperature measurements, collecting air samples, investigating damaged piping by taking
images, and installing water measurement gauges.
The authors report multiple challenges to the robot operation. The most severe limitation was a failure in

the usage of a communication cable. The cable got jammed during the sixth mission, leading to the mission’s
failure and the loss of the robot. Furthermore, the terrain was rough, covering various obstacles such as
steps, debris, and cables. Some environment conditions were not covered by tests, such as strong changes
in illumination and high air temperature, which led to an overheating of motor drivers, almost leading to
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the failure of the second mission. Furthermore, requirements such as additional sensors only came up after
performing the first missions and had the be adopted at the site.
Regarding team integration, it was crucial to allow an easy operation for novice operators. The mission

planning was challenging as there were differences between construction plans and the actual site (e.g., width
of stairs).

4.4.3 Case Study: Residential Complex Fire Essen, 2022

On February 22, 2022, a residential apartment building in Essen, Germany, experienced a severe fire. As a
result, 39 apartments on four floors were burned, and an entry ban was imposed for parts of the building.
To assess the situation and gather information for the investigation of the fire’s cause, the German Center
for Rescue Robotics (DRZ)3 deployed ground and air robots to create a 3D model and capture images of the
interior.
Following the report by Surmann et al. [153] after an initial exploration with small unmanned aerial vehicles

(UAVs), the terrain was evaluated to be suited for applying ground robots. A ground robot was deployed for
three inspections the following day. For the first two missions on ground level, a person had visual contact
with the robot and communicated with the operator. This was not feasible for the third mission at the upper
level due to the entry ban. Therefore, a UAV was deployed to support the operator with visual support from
the outside.
The authors report on challenging terrain conditions, with very narrow passages and loose debris on the

ground. Visualizing registered point clouds with the 3D robot model helped the operator navigate through
narrow environments. The usefulness of this assistance was limited by the availability of the WiFi network,
which was only available in sufficient quality for an estimated 70% of the mission time. The operator did not
deploy more complex assistance functions (like waypoint control) due to concerns about the control system’s
performance in loose ground. The authors also emphasize the role of joint training of the academic staff with
first responders for successful and efficient missions.
Overall, the authors conclude that rescue robots must provide robust functionalities that can be quickly

deployed. These functionalities need to be exercised in joint training with first responders for value in disasters.

4.4.4 Case Studies Conclusion

The case studies show that perception and navigation are key capabilities described as difficult for the
operators and motivate respective assistance functions. The challenging environments define implicit technical
requirements for assistance functions to be able to handle the effects of robots operating in such conditions.
Furthermore, the scenarios indicate the strong variance in potential scenarios, tasks, and environments in
disasters, often unknown until the mission starts, inducing further challenges, especially for autonomous
functions. Overall, assistance functions need to be integrated into an intuitive and easy-to-use/-learn user
interface and trained together with first responders.

4.5 Analysis of Requirements, Guidelines and Challenges

In this section, we define application requirements and guidelines and identify research challenges for
(autonomous) assistance functions as part of robotic capabilities for reconnaissance missions in disasters. We
first discuss technology acceptance in the context of the UTAUT model and integrated function capabilities.
Subsequently, we discuss human-robot interfaces, analyze assistance functions in general, and investigate
specific assistance functions in detail.

3The first author was part of the ground robot response team.
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Figure 4.3: To fulfill the concept of effort expectancy of the UTAUT model, the application capability needs to
be perceived as easy to learn and use. An assistance function will only be applied if it is expected
to bring a benefit and is sufficiently easy to apply.

4.5.1 Technology Acceptance and Requirements for Integrated Robotic Capabilities in Disasters

Following the UTAUT model (see Section 4.1.3), central indicators for the acceptance and application of
new technology are Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI) and Facilitating
Conditions (FC). These aspects align well with the statements in the expert interviews in [45], where it is
stated that robots need to provide capabilities better than established tools (PE) and should be simple with
low training requirements (EE/FC).
PE and EE can be directly controlled by the design and communication of the robot and its capabilities (see

Fig. 4.3), whereas SI and FC are environment conditions that need to be facilitated in communication and
when introducing technology to first responders.
We consider rescue robots to be deployed as tools for first responders [45] that provide a set of capabilities

relevant to the disaster response. To fulfill the aspects of PE and EE, this tool needs to provide a benefit
compared to existing and established solutions. For example, in the deployment of the World Trade Center
Collapse, robots provided a significant improvement in PE in comparison to a camera on a stick by being able
to explore up to 20m instead of 2m into a void. As robot and assistance functions are deployed as part of a
disaster response in a disaster response team and to include the aspects of the UTAUT model, we propose to
consider the robot with its assistance functions as an integrated function capability(see Fig. 4.4), for which the
following aspects need to be considered holistically:

• Robotic capabilities - the robot operating in the disaster site and providing capabilities ("operational
envelope"[116]) (PE/EE)

• Operator - the operator controlling the robot with a human-robot interface at the control position
("operator’s environment"[116]) (PE/EE)

• Mission integration - the integration in mission procedures with bidirectional communication of goals,
states, and results to the operator and response team/organization (PE/EE/FC)
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Figure 4.4: We propose to consider the robot with its assistance functions as an Integrated Function Capability,
covering robot-, operator-, mission integration-, logistics- and organization-related aspects.

• Logistics - logistics of bringing robot and equipment to the disaster area and points of ingress and egress;
maintenance; charging; decontamination and repairs (PE/EE/FC)

• Organization - purchase; regulation/standardization; training; communication and education (EE/SI/FC).

As we show in the following sections, robotic capabilities, operator, and mission integration provide various
open research challenges. We see the role/potential (and ongoing success) in academic research to develop
concepts, methods, and solutions as demonstrators with a medium Technology Readiness Level (TRL).
Although the structures worldwide vary, we generally consider the hardening of these solutions to products
(with relevant development, production, distribution, and support structures) at a higher TRL and the definition
of logistics and organization structures rather suited for application-oriented organizations and companies,
which emphasizes the need for cooperation of academic organizations, application-oriented organizations,
companies, and first responders.

4.5.2 Human Robot Interaction, Training, and Mission Integration

An essential aspect for acceptance and performance is the interaction between robot and operator with a
human-robot interface (HRI) [137]. The HRI should enable the operator to operate with the robot as a
tool, providing the operator with good situation awareness and efficient robot control. A sufficient level of
autonomous assistance can enable the operator and robot to perform like interdependent teammates [80].
There are in-depth analyses for requirements and limitations of HRI [118, 137]. [137] emphasizes a focus
on user-driven design, which should be part of the whole development process, not just evaluation at the
end. The HRI should reduce cognitive load for building and maintaining situation awareness. As robots
often can be equipped with more sensors than an operator can simultaneously monitor, it is important to
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provide the right information at the right time at the right level of abstraction instead of providing too much
simultaneous information ("Add another camera syndrome" [116]) [137]. Rescue robots can be very complex
to control, e.g., driving, arm movements, flippers, movable cameras..., and the HRI can help to simplify control
complexity by reducing the control space the operator needs to think about [137]. Especially in the context of
(semi-)autonomous assistance functions, the requirements of coactive design [80] observability, predictability,
and directability are essential.
We consider the user-centered development of HRIs and the design of HRIs that enable synergies between

the complementary capabilities of operator and robot as key challenges to enable the potential for efficient
support of rescue robots with intelligent assistance functions in disasters.
Another aspect of human-robot interaction is learning to use the robot. Although an intuitive HRI can help

to reduce the amount of training necessary, there is still the need for training for operators on learning how to
control the robot and for training on general procedures to integrate the robot into disaster response missions.
From the feedback of first responders, we learned that time and options for training are strongly limited due
to a generally high work-load for first responders and a limited amount of available robots.
This motivates the need for efficient training and education concepts. To address the limit of available

robots and reduce the effort for training, virtual training environments provide high potential [1]. Simulations
have reached a high quality of realism (e.g., NVIDIA Isaac Sim4) and have become an established method
in developing assistance functions. We consider concepts with empirical validation for efficient initial and
regular training of first responders on robots with assistance functions as an open research question. Closely
related is the investigation of metrics for the assessment of operator proficiency. An established framework
for bench-marking the performance of operators and rescue robots are capability-focused test methods by
National Institute of Standards and Technology (NIST) [79], which are also used in the RoboCup Rescue
Robot League. For single capabilities, such as localization and mapping, complex data sets and evaluation
methods are available [182]. However, we identify a need for performance measures for new autonomous
functions, multi-modal perception and mapping tasks, and the consideration of mission integration and,
therefore consider these as open research challenges.
Lastly, there is the aspect of mission integration and procedures. [116] covers guidelines on conducting

fieldwork for disaster response and the organization of robots and team members. However, there is limited
work on procedures for efficiently communicating goals and tasks from mission control to the operator/robot
and status and results (maps, detections, measurements, ...) back to mission control in a meaningful and
useful way. Furthermore, the robot might share its operation space with first responders. Therefore, it needs
to indicate the robot’s status (e.g., sound or light signals) to people operating in its vicinity.

4.5.3 General Requirements and Challenges for Assistance Functions and Autonomous Robot
Capabilities

Assistance functions can enable additional functional capabilities, for instance, the automatic creation of maps
and 3D models, thereby increasing the performance expectancy. Furthermore, assistance functions can help
make the complex task of remote robot operation simpler and safer, for instance, by increasing situational
awareness or by providing collision avoidance assistance as well as highly, thereby increasing the performance
expectancy and reducing the effort expectancy.
We differ between perception assistance, which can support the operator and mission without exercising

direct and active control of the robot, such as the creation of a map, and (autonomous) control assistance, which
actively controls and moves the robot and thereby supports robot operation and provides (semi-)autonomous
capabilities. In this section, we define requirements and challenges that generally apply to assistance functions,

4https://developer.nvidia.com/isaac-sim
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which we extend for perception assistance in the next section and subsequently for (autonomous) control
assistance.
Following [169], transparency is an integral requirement for adjusting expectations, building confidence for

verification and validation, and ensuring accountability. In general terms, transparency means that it is always
possible to understand why and how the robot behaves in a particular way presented in a meaningful level of
abstraction. Furthermore, the operator should be able to understand the system’s status and the principles by
which decisions are made. This covers "relevant goals; progress to those goals; models of its past, current and
potential future environmental context (from sensors and other information)"; and relevant information about its
current performance, such as reliability and error messages" [169]. We also consider transparency a crucial
aspect in expectation management to asses under which conditions assistance methods are expected to work
and what limitations are.
Nevertheless, due to disasters’ non-repetitive and chaotic nature, tools must be expected to be used in

untested environments or conditions. This emphasizes the need for robustness and modularity. Both, on the
level of a single function and the overall system. Assistance functions should be designed to work as well as
possible with other components failing. For example, we consider the HeRO state estimation [112], which
fuses multiple odometry estimates and achieves robustness through redundancy.
Compute on mobile platforms is limited, and the need for computing directly affects the size and power

requirements of the physical systems. Therefore, we consider it imperative to aim for computationally efficient
solutions.
We consider it a good practice to develop algorithms in an environment agnostic way, such that no to little

manual scenario- or environment-specific parameter adaptation is necessary. KISS-ICP [163], which allows
robust odometry with various sensors in various environments with the same parameters, is a positive example.
To provide value, the robot needs to perform the desired task at sufficient speed. From the statements

by first responders, this was considered strongly task-specific. Typically, a reduction in speed compared to
human responders was accepted when the task would impose a high risk to the responder, and no potential
victim was assumed to be in imminent danger. Furthermore, the robots are expected to act safely, avoiding
actions inducing unnecessary risks. While taking actions involving risks might be necessary, e.g., traversing an
obstacle, this risk should be transparent to the operator.
As disaster scenarios are very complex, dynamic, and non-repetitive, with high levels of uncertainty, they

are very challenging for high levels of autonomy. Human Operators can have extensive experience in disaster
response and a good semantic understanding of the environment. However, they are not able to process all
data at once, might have additional information (e.g., reports about the last known position of a missing
worker) not directly available to the robot, and might have skills such as operating the robot to safely traverse
unstructured obstacles or perform complex manipulation tasks highly accurate. The need for approaches for
combining robot and operator skills was addressed in multiple workshops with different applicants. Therefore,
we consider the efficient combination of the complementary operator and assistance functions, especially in the
context of autonomous assistance functions, as an essential research challenge for developing efficient and
useful rescue robots. This is especially relevant for complex behaviors such as (semi-)autonomous exploration
or manipulation and closely related to the concept of coactive design [80]. Current research approaches
often focus on high levels of autonomy, and there is a lack of focus on the efficient incorporation of operator
capabilities.

4.5.4 Requirements and Challenges for Perception Assistance

We consider Perception Assistance as background capabilities, which can support the disaster response without
exercising direct and active control of the robot. Such capabilities can support the operator in controlling
the robot by providing supporting visualizations, guidance, or alerts. Furthermore, they can also support
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the operator in reaching the mission goal safely and efficiently by providing mission-related information
(robot pose, map, trajectory, points of interest). The provision of information (E.g., image, (live) video, (live)
measurement, map) during the mission can be of direct value to first responders, enable decision-making
for the next steps, and serve as part of the mission documentation. Additionally, high-fidelity maps and 3D
models available during and after the mission can help with damage assessment or further planning of the
general disaster response and recovery.
Real-Time Feedback and Visualization: The capability to provide real-time feedback and visualization

of relevant, potentially processed, and fused sensor data to assist the operator in remote robot control. The
requirements for human-robot interfaces (see Section 4.5.2) apply. Furthermore, communication aspects
(bandwidth, latency) need to be considered to decide which data modalities (at which quality/resolution and
frequency) are transmitted.
Status Monitoring: The capability to monitor the status of the robotic system and provide relevant

information, guidance and alerts to the operator. This covers the state of the power supply/ battery, health
of sensors, sensor data, actuators, communication, algorithms, and environment conditions [47], as well
as monitoring (autonomous) assistance functions. An open research challenge is detecting if the required
environment conditions of assistance functions are not met anymore. If needed, the methods should request a
reduction in autonomy level or the operator to take over control [47].
Contextual Guidance and Alerts: The capability to provide contextual guidance and alerts based on

detections in the environment, e.g., victims, hazards, thermal anomalies, relevant objects, or structures. As
conditions in a disaster usually differ from conditions in training, detections should be linked to the data
leading to detection (e.g., the assistance method detects a victim and adds an entry to a map, the operator
should be provided with functions to see the data that led to the detection). The operator should be notified
about the detections, if necessary, be provided with relevant guidance, and be able to discard or add their
own detections.

Control/Navigation Guidance and Alerts: The capability to provide guidance and alerts for navigation and
controlling the robot. E.g., automated alerts when a control input would lead (potentially/close) to an unstable
state or a collision with the robot itself or the environment. As this might sometimes be intended, the operator
should be able to suppress the alerts. Depending on the importance of the alert (e.g., imminent collision), this
can also adhere to a stop or limit of control until cleared or suppressed by the operator. Guidance functions
can help, e.g., by providing recommendations for trajectories or optimized robot configurations, e.g., for
safe traversal of obstacles. We consider the stability assessment and pose guidance in disaster environments,
considering both geometric and semantic aspects, an open research challenge.

State Estimation / SLAM: The capability to estimate the robot’s pose. This is often tightly coupled to the
simultaneous creation of a map of an unknown environment and the robot’s location in the map (Simultaneous
Localization and Mapping, SLAM). Such methods need to be robust to deal with the challenging environmental
characteristics of disaster scenarios. Typically, GNSS is not or is only partially available. The operation in rough
terrain and the traversal of obstacles can induce fast and abrupt rotational motions. Parts of the environment
can be dynamic with other response actors operating in the vicinity. The scale of the environment can vary
from narrow and small-scale environments to wide and open areas. Also, the overall scale can be large,
inducing the need to account for loop closures. Illumination can change quickly and intensely, from well-lit
rooms to dark rooms with no light and potentially dark walls. Dust, fog, smoke, dirt, and mud can obstruct
sensors. A comprehensive study on open challenges is provided in [20]. For this work, we consider the robust
fusion of multiple sensor modalities, the robustness against failures in data alignments and hardware failures,
and the reduction of manual, environment-specific parameter tuning as highly relevant challenges.

Mapping: The capability to create a 2D/3D map or model of an environment. The map can cover single or
multiple fused modalities. Maps should generally be easy to understand and interpret and consistent with
domain-specific established guidelines (e.g., units, scale, representation, format). The coherence to established
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formats is especially crucial for further usage and transfer. The shown quantities should be transparent, e.g.,
make model assumptions explicit, show measured values, and quantify uncertainties. Depending on the
mapped modality and the intended utilization, requirements for accuracy vary. To ensure the success of
the data captures for model generations that are not real-time capable, a lower quality preview provided in
real-time can help to ensure that relevant data was captured.

4.5.5 Requirements and Challenges for (Autonomous) Control Assistance

We consider control assistance as capabilities that can help simplify the control of the robot, reduce the
operator’s cognitive load, reduce the amount of training needed, and improve safety, thereby improving the
chance for a successful operation during a mission. Furthermore, they can enhance the operation space (e.g.,
areas with poor or no radio connection) or complex motions (e.g., traversal of an obstacle with simultaneous
control of multiple joints), which would not be possible with direct teleoperation.
Locomotion Assistance The capability provides locomotion assistance by ensuring the safe locomotion

of the robot given a continuous control input by the operator. While the operator provides a command goal
(e.g., a direction by deflection of a joystick), the assistance function moves the robot in the general direction
but modifies it locally to improve the trajectory (e.g., avoiding obstacles or instabilities or optimizing the
robot configuration). Deviations from the command should be visualized to the operator and be able to
be overwritten by the operator. We consider stability assessment and optimal trajectory design in disaster
environments, taking into account both geometric and semantic aspects, as an open research challenge.

Navigation Assistance The capability to autonomously drive to a (or multiple) navigation goal(s) provided
by the operator (e.g., a waypoint in a map), ensuring traversability along the path and avoiding obstacles.
The planned trajectory should be visualized to the operator and be modifiable. Similar challenges as for
locomotion assistance apply.

(Supervised-)Autonomous Exploration The capability to autonomously explore an area with a goal defined
by the operator. The goal can vary depending on the use case and cover various aspects, such as creating a
complete geometric map or searching for potential victims, dangerous goods, or heat sources. Termination
conditions (e.g., quality, distance, area) and technical limits (e.g., min. battery, distance, time) need to be
defined. As the robot might move out of areas with radio coverage, handling for connection losses needs to be
considered, such as a return-to-home functionality. The current exploration goal (and potential sub-goals),
the queue of considered goals, and the planned trajectory should be visualized for the operator. The operator
should be able to add, modify, and prioritize the goals. [20] identifies the fast and accurate prediction of
future state and performance guarantees as open research questions. As detailed in Sec. 4.5.3, we consider
synergies between assistance functions and operator a key challenge.

Manipulation Assistance The capability to assist with manipulation tasks such as opening a door or taking
a sample. Manipulation can be very versatile, with various levels of assistance, from moving the arm close to an
object where the operator performs the object interaction to full autonomous task execution. As manipulation
potentially involves direct interaction with the environment (for touching objects), a close feedback loop with
the operator is necessary, such as a visualization of the planned motion, which needs to be confirmed by the
operator or suited HRIs providing force feedback. Technical details, such as inverse kinematics or singularities,
should be hidden from the operator. As detailed in Sec. 4.5.3, we consider synergies between assistance
functions and operators a key challenge.
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5 Robust Simultaneous Localization and Mapping in
Challenging Environments

To perform missions within unknown, degraded, and GNSS-denied environments, autonomous mobile rescue
robots need to localize themselves in such environments and create a map of it using a simultaneous localization
and mapping (SLAM) approach. The capability to create accurate maps and precisely locate the robot’s pose in
the map are key prerequisites for many higher-level autonomous functions, such as navigation or exploration,
while also directly providing operator assistance. During search and rescue missions, the motion characteristics
can be highly challenging. For example, traversing uneven ground or obstacles induces aggressive roll-pitch
motions and poor odometry estimates as tracks/wheels slip. Environments are typically unstructured and
might contain narrow indoor transits in addition to wide, open outdoor spaces with translucent vegetation.
Smoke, dust, and fog can further impair the data quality of visual sensors such as cameras or LiDAR. These
characteristics make both state estimation and mapping highly challenging.
In this chapter, we introduce a novel continuous-time-based approach for robust and efficient SLAM in

challenging terrain to address the key challenges of robustly registering scans, accurately estimating the
trajectory in rough terrain, and consistently mapping large space environments online on a mobile rescue
robot system.
The chapter is structured as follows. We first outline the related work and the key contributions of the

approach. Then, we provide an overview of the proposed method before investigating the wheel-inertial
odometry, lidar-inertial odometry, and the large-scale SLAM with pose graph back-end and loop closure
detection. Finally, we transfer and extend the proposed approach for the application of radar in visually
degraded environments. An overview of experiments, applications, and results is provided in Chapter 7.

This chapter extends, revises, and combines multiple publications. The wheel-inertial and lidar-inertial odometry
(Section 5.3 to Section 5.5) have been published in [39], the large-scale SLAM approach (Section 5.6) has been
published in [37, 39] and the extension for visually degraded environments (Section 5.7) summarizes [157]. An
earlier version for lidar-inertial odometry and the large-scale SLAM have been published in the author’s Master
Thesis [36]. Therefore, the formulation of the large-scale SLAM (Section 5.6) is in parts also based on [36].

5.1 Related Work

This section discusses the related work with respect to the aspects relevant to the proposed approach. A
general introduction and background on SLAM is provided in Section 2.2. The SLAM problem covers two
aspects – estimating the robot’s trajectory and mapping the environment. This requires suitable techniques to
model the trajectory and the environment, which influence the choice of methods to optimize the trajectory
and the map.

Discrete- and Continuous-Time SLAM Discrete-time SLAM approaches represent the estimate of the
trajectory by sampling estimates at discrete times, whereas continuous-time SLAM (CT-SLAM) approaches
represent the estimate of the trajectory as a continuous function defined by a discrete set of control points.
In contrast to discrete approaches, continuous approaches easily enable fusing high-frequency data as the
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dimensionality of the state only depends on the number of control points and is independent of the frequency
of the sensor data. Therefore, CT-SLAM approaches are well suited for modeling rough motions, which we
observe with mobile robots in disaster environments.
Early work towards CT-SLAM approaches was introduced by Bosse and Zlot [14], who propose a linear

interpolation-based registration scheme to estimate the continuous trajectory of spinning 2D LiDARs by
matching the geometric structure of local point clusters. Thereby, they are able to compensate for distortions in
the scan cloud induced during the scan acquisition. Following up, LOAM [181] proposes a two-fold approach:
one part continuously performs a low accuracy registration to achieve a high-frequency velocity update
while another part performs a less frequent higher accuracy registration to correct for drift and update the
map. Point clouds are matched by extracting edge and plane features to perform efficient scan registration.
LeGO-LOAM [146] extends the LOAM approach by separating the ground for scan matching and gaining
further efficiency by splitting the optimization in solving different components of the six-degree-of-freedom
transformation separately. LIO-SAM [147] applies the LOAM registration scheme in a smoothing and mapping
context, which fuses preintegrated IMU measurements [58] and LiDAR registration jointly in a pose graph
framework.
Elastic LIDAR Fusion [129] uses a linear interpolation scheme to correct for scan distortions Instead of

linear interpolation, various works leverage more complex trajectory representations such as B-Splines [102,
50, 134]. Nüchter et al. [122] apply a global continuous time formulation to improve the registration results
of Cartographer [71].
Recent time-discrete approaches demonstrate efficient, accurate, and robust results for modern 3D-LiDAR

systems by performing ICP-based registrations. KISS-ICP [163] leverages a combination of adaptive thresh-
olding for correspondence matching, a robust kernel, motion compensation approach, and point cloud
subsampling, demonstrating accurate results over various configurations in real-world scenarios without the
need for specific parameter adaptations. FAST-LIO2 [171] maintains the map as an iterative kd-tree as a
map and an iterative Kalman Filter for sensor fusion. Chen et al. [28] use an efficiency-optimized variant of
the generalized ICP-approach with adaptive keyframe sampling to achieve efficient and accurate results in
complex real-world environments. In [29], the authors extend the approach by a continuous-time motion
correction, yielding more accurate results than the initial approach, which is especially significant for fast
motions.
Aiming to provide robust localization in uncertain settings, LOCUS [126] proposes to leverage a multi-stage

scan matching scheme fusing multi-modal odometry sources to achieve robust SLAM in cave exploration
scenarios.
We build upon the registration concept of registering range data against linearly interpolated poses by [14],

transfer it for multi-resolution TSDF, and stabilize it by incorporating fused inertial-odometry observations.

TSDF as Map Representation in SLAM Representing the environment using TSDFs, a volumetric environ-
ment representation storing the truncated signed distance to the next surface in each cell was introduced
in the seminal work of Curless and Levoy [34]. TSDF gained further attention with the introduction of
KinectFusion [120], a method for live 3D tracking and mapping of room-scale environments. By performing
a point-to-plane ICP optimized for efficient usage of GPU parallelization, they were able to generate high-
resolution 3D maps in real-time. Bylow et al. [19] propose an alternative optimization scheme by directly
minimizing the depth error of the RGB-D image on the TSDF. Thereby improving the accuracy of the tracked
pose. Complementing the previous works, Slavcheva et al. [148] propose representing the RGB-D Image as
TSDF and performing direct TSDF to TSDF registration. This yields further improvements in the size of the
convergence basin, rotational motion estimation, and reconstruction quality. However, explicit representation
of the scan as TSDF requires significant computation operations. Therefore, [178] extends the approach and
overcomes the need for an explicit representation by introducing a pseudo point set.
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May et al. [105] generalize the KinectFusion approach to jointly register 2D and 3D data. In [123], the
approach is integrated into a mobile mapping solution that can be carried as a back-pack.
LiDAR systems differ from RGB-D cameras, as the range and field of view are significantly larger, leading to

more measurements with steep incident angles, which induce projection errors in TSDFs. To correct these
errors, Fossel, Tuyls, and Sturm [59] compute regression lines in the scan. In contrast, we estimate scan
normals to approximate the Euclidean distance. Koch et al. propose Ohm TSD SLAM [84, 85] a 2D TSDF-based
SLAM pipeline for combined mapping with multiple robots.
Conventional TSDF approaches suffer from overwriting artifacts when objects are thinner than the truncation

distance. Splietker and Behnke [149] overcome this issue by storing the SDF value for multiple surface
orientations separately.
An established technique to improve the scalability and robustness of grid-based methods is multi-resolution

approaches. Hector SLAM [89] performs robust 2D scan-to-map matching against a pyramid of occupancy
grids, starting at the coarsest resolution and forwarding each result as initialization for the next finer resolution.
Quenzel and Behnke [134] apply an adaptive resolution selection scheme to perform efficient surfel-based
scan registration. Chen, Bautembach, and Izadi [27] leverage a hierarchical data structure reconstruction
of large-scale scenes with fine geometric details from depth cameras on GPUs. Vespa et al. [162] adaptively
choose the octree-resolution based on depth image resolution and the distance to the object for SLAM in
room-scale environments and demonstrate up to six-fold execution speed-ups to single resolution grids.
To achieve robust and accurate scan registration, we build upon the direct registration scheme of [19] and

extend it for a direct multi-resolution scheme in a continuous time registration formulation.

Large-scale SLAM and Loop Closure Detection Noise in sensor measurements and inaccuracies in the
environment representation induce uncertainties in the registration of range data, leading to the accumulation
of errors in the pose estimate and the map, which become notable over large distances. The error can be
bound by fusing absolute references, such as GNSS [127] or local reference systems. However, such systems
are typically not available in unknown indoor disaster environments.
The error can also be bound by detecting the revisit of areas, creating a geometric constraint between

the respective poses, and leveraging this information to correct the past trajectory estimate. This process
is commonly referred to as Loop Closure. The representation and optimization of the trajectory is a well-
investigated research problem with established, efficient, and robust solution strategies, such as sparse factor
graphs [68, 44, 43]. However, detecting loop closures is a challenging research problem. With increasing
uncertainty in the pose, the search space can become large and, due to self-similarities in the environment,
highly non-convex with many local optima. While for small search areas, ICP-based approaches can be
feasible [147], they become computationally intractable for larger areas. To reduce the computational cost,
approaches to extract geometrical descriptors [97, 104] or to perform histogram-based matching [72] have
been proposed. Wang, Wang, and Xie [165] improve the efficiency and precision by incorporating intensity
readings in global descriptors. Hess et al. [71] propose a branch-and-bound scheme to efficiently match scans
in Occupancy Grids.
Recently, learning-based approaches gained increased focus [4], such as using a CNNs for scan associ-

ation [30, 100, 176] or the application of deep descriptors yielding robust results [184]. However, the
application and evaluation of such systems require dedicated hardware, and they are often limited to room-
scale environments [184] or focused on autonomous driving-focused datasets [30], which are less complex
and less degraded than the disaster environments this work is focusing on.
To achieve robust and accurate loop closure detections on mobile systems with limited computing, we build

upon the branch-and-bound scheme proposed in [71] and transfer it to the application with TSDF.
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Relation to Cartographer, Hector SLAM and the author’s Master Thesis The proposed approach is related
to Hector SLAM [89] and Cartographer [71]. Hector SLAM [89] is a robust 2D LiDAR SLAM system based
on scan-to-map matching with a pyramid of occupancy grids. The system gained popularity and enabled
various applications [88], such as 2D localization and mapping in the RoboCup Rescue Robot League [87].
However, the system does not incorporate loop-closure detection, so the applicable environment size is limited.
Cartographer [71] builds upon the occupancy grid-based registration scheme, but instead of matching against
a grid pyramid, it simultaneously matches against a coarse and a fine grid by summing the respective residual
terms in the optimization process. Furthermore, Cartographer extends the optimization problem for 3D and
large-scale mapping by introducing an efficient branch-and-bound-based loop closure detection with a pose
graph back-end. Additionally, it extends the approach to support multi-robot trajectories.
Within the author’s master thesis [36], a discrete-time optimization-based lidar-odometry and TSDF as map

representation were investigated building on the Cartographer implementation. Furthermore, a generalized
formulation of the loop closure detection was proposed.
The proposed approach in this thesis builds upon the Cartographer implementation. It extends it by

a continuous-time registration scheme with a multi-resolution TSDF to achieve robust SLAM in disaster
environments. In contrast to the formulation in Cartographer, the proposed approach does not sum the
residuals but uses the highest resolution information available, thereby combining the benefits of high
accuracy of the high resolution and robustness of the coarse resolution. Furthermore, the loop closure
detection formulation is transferred for the application with TSDF as a specific implementation of the general
formulation in [36].

5.2 Contribution

Dealing with these harsh conditions in disasters requires SLAM methods that are robust to the fast motions
and potentially poor initialization induced by them, robust to degraded visual conditions, accurate to enable
autonomous robot navigation, and efficient to run on mobile robot systems with limited compute. We propose
multiple methodological novelties to improve the performance of SLAM methods for these requirements.
As localization and mapping are tightly coupled, we investigate suited environment representation and

inference methods. We base our approach on TSDFs, where every cell models the distance to the nearest
object surface, enabling sub-pixel accuracy. As TSDF provide gradients around the surface, they are naturally
suited for optimization-based approaches. The representation provides gradients towards the surface in a
larger area than, e.g., Occupancy Grids, leading to larger convergence basins and enabling scan matching
with robustness to poor initialization. TSDF-based approaches became popular with RGB-D cameras [120],
but so far, their utility for laser-based SLAM has not been fully exploited. A main challenge in applying these
methods to laser scanners is that those sensors also provide distance readings under highly slanted angles,
which leads to poor surface reconstruction. To overcome this issue, we investigate novel update and inference
schemes. Another established environment model is occupancy grids. We perform detailed comparisons of
TSDF and Occupancy Grids for LiDAR scan registration and demonstrate that TSDFs yield improvements in
the accuracy and robustness of the registration.
Discrete trajectory representation limits the accuracy of fast and abrupt motions, which occur when traversing

rough terrain or obstacles. Continuous-time SLAM approaches represent the pose as a time-continuous estimate
that provides high accuracy and allows correcting for distortions induced by motion during the scan capture.
We propose to combine continuous-time pose estimation and robust scan registration based on multi-resolution
signed distance functions to achieve robust, accurate, and efficient SLAM.
Efficient loop closure detection approaches are missing for TSDF, limiting the applicability of TSDF-based

methods for large-scale mapping. Therefore, we propose to transfer an efficient branch-and-bound-based loop
closure detection for Occupancy Grids [71] for TSDFs.
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The proposed approach is implemented based on Cartographer [71], and available open source as HectorG-
rapher [39]. In Chapter 7, we evaluate the proposed methods in multiple publicly available real-world data
sets, own data sets, and under conditions of robotic competitions, demonstrating improvements in accuracy
and robustness compared to related approaches. Furthermore, the approach was a core element for achieving
the Best-in-Class "Exploration and Mapping" Award at the RoboCup 2021 Rescue Robot League with Team Hector.
Lidar-based methods achieve robust and accurate results in complex environments but require sufficiently

good visual conditions. As visually degraded conditions need to be considered for various applications in
disasters, such as fire or building collapse, it is crucial to enable mobile robots to localize and navigate
in degraded visual conditions. In contrast to LiDAR sensors, radar sensors provide reduced accuracy and
density and have a lower signal-to-noise ratio under good visual conditions but are less affected by degraded
visual conditions. Therefore, radar sensors are well suited for navigation in environments with degraded
visual conditions. Key challenges for the successful adaptation of the proposed LiDAR approach for radar
are achieving accurate scan registration despite the reduced signal-to-noise ratio and enabling an accurate
map update, although radar can return observations from behind walls. We address these challenges and
extend the proposed lidar-based approach for visually degraded conditions to radar. Covering a novel forward
sensor model for TSDF map update and robust scan registration scheme, enabling the navigation in room-size
environments even in degraded visual conditions such as dense smoke.

5.3 System Overview

The proposed pipeline for solving the SLAM problem consists of three main components: wheel-inertial
odometry, lidar-inertial odometry, and the pose graph back-end with loop closure detection. The wheel-inertial
odometry fuses wheel odometry and IMU observations to gain a low latency and high frequency pose estimate.
The result is forwarded to lidar-inertial odometry, where LiDAR point clouds are registered in multi-resolution
TSDF submaps to achieve accurate and robust lidar-inertial odometry. Lidar-inertial odometry still induces
small errors, leading to drift in the pose estimate over time. To maintain large-scale consistency of the map,
the poses from the lidar-inertial odometry are stored in a pose graph, where we perform loop-closure detection
and large-scale optimization. Optimizing the large-scale pose graph yields a large-scale consistent map and
pose estimate.

5.4 Wheel-Inertial Odometry

Track and wheel encoders enable a high-frequency, low-latency estimate of the current robot motion state.
Due to slippage and model errors, this estimate is only a rough approximation. Such errors are particularly
strong for rotational motions in slippage-based drive kinematics such as skid-steer-kinematics. Inertial sensors
provide high-frequency estimates of the linear acceleration and the rotational velocity. Estimating the position
requires a double integration of the acceleration, which amplifies even small errors and induces unbound drift
after short periods. In contrast, integration of the angular components requires only a single integration and
only induces a small drift.
To reach an accurate motion estimate at a high frequency, we fuse inertial and wheel odometry measurements

in an optimization problem, which can be stated as a pose graph, as shown in Fig. 5.2. Given the last known
state xi = {pi,vi,Ri, bi} in the IMU frame, with the position vector pi, linear velocity vector vi, orientation
matrix Ri and the IMU biases bi, and the unknown state xj at τj we apply the IMU preintegration method
introduced in [58] to estimate the changes in state∆vpre

ij ,∆ppre
ij and∆Rpre

ij in the time interval∆τij to define
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Figure 5.1: SLAM System Overview. The arrows indicate the direction of data flow.

xi ∆xpre
ij

xj

venc
j

Figure 5.2: We fuse preintegrated IMU measurements ∆xpreij and linear velocity estimates vencj from track or
wheel encoders in a small factor graph to compute a high-frequency, low-latency estimate of the
robot motion.
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the residuals:

rvij = RT
i (vj − vi − g∆τij)−∆vpre

ij (5.1)

rpij = RT
i (pj − pi − vi∆τij −

1

2
g∆τ2ij)−∆ppre

ij (5.2)

rRij = ∆Rpre
ji RT

i Rj (5.3)

rbij = bj − bi (5.4)

with the gravity vector g. Additionally, we add the estimated linear velocity from the track/wheel odometry
converted into the IMU frame venc

j as unary constraints

rvj = venc
j − vj . (5.5)

The residuals of Equation (5.1) - Equation (5.5) are added to a non-linear least squares problem which we
solve using the Levenberg-Marquardt implementation in GTSAM1. Furthermore, we assume to be in a steady
state when both IMU and odometry indicate no motion, which improves the estimate of the biases.

5.5 Lidar-Inertial Odometry

In the next step, the lidar-inertial odometry registers LiDAR point clouds in multi-resolution TSDF submaps to
achieve an accurate and robust estimate of the local trajectory and map. In the following, we first outline the
notation, then discuss the multi-resolution TSDF approach, and finally describe the optimization scheme for
time-continuous trajectories.

5.5.1 Notation

We model the robot state as a time-continuous trajectory, similar to the formulation in [129]. The trajectory
is represented by a linear Lie-group valued spline, which is defined by a set of timestamped control points
C. Each control point ci = [T i, τi] is given by a rigid transformation T i ∈ SE(3) = [R|p] at time τi, which
transforms from the robot body frame into the map frame. For simplicity, we assume that the IMU frame,
robot body frame, and LiDAR frame coincide. Poses at time τ between two consecutive control points ci and
cj with τi < τ < τj are evaluated by linear interpolation

α = (τ − τi)/(τj − τi)

p = (1− α)pi + αpj

R = slerp(α,Ri,Rj)

with the spherical linear interpolation operator slerp. We denote the interpolated transform as T (τ) = [R|p].
We denote the observations of single structured LiDAR scanH = {hi}i=1,...,N consisting of N timestamped

range observations h = (hx, hy, hz, ht) in the scan coordinate frame with the sensor pose as the origin of the
scan frame.

5.5.2 Environment Representation as Truncated Signed Distance Function

We model the map as a multi-resolution TSDF. In the following, we first outline the principle of a single-
resolution TSDF and then extend it to the multi-resolution formulation in the next section.

1https://gtsam.org/
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Figure 5.3: 1D- and 2D-TSDF examples. The underlying surface of the scene is indicated by the dashed lines.
Undefined cells are marked in gray.
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Figure 5.4: To update the TSDF with a scan observation hi we evaluate two distance methods. (a) updates
the cells in the direction of measurement hi to origin x. (b) updates the cells in the direction of
the scan normal ni.

The Signed Distance Function [34] Φ : R3 → R maps from for each position in space to the scalar, signed
distance to the nearest surface as shown in Figure 5.3. Φ is positive outside of objects and negative inside of
objects. Therefore, object surfaces are encoded as the zero isocontour (Φ = 0). As an exhaustive evaluation of
Φ quickly becomes computationally intractable, TSDFs evaluate Φ only close to the surface. Each evaluation
of a position further away from the closest surface than the truncation distance τ is truncated

Φτ (x) =

⎧⎪⎨⎪⎩
−τ, if Φ(x) < −τ

Φ(x), if |Φ(x)| ≤ τ

τ, if Φ(x) > τ.

(5.6)

To represent a 3D scene as a TSDF, space is discretized into a regular grid. Each grid cell c contains the
current estimate of the TSDFMΦ(c), and a scalar weightMw(c) indicating the confidence in the TSDF value.
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Projective Distance Update

Estimating the proper Euclidean distance for every cell is computationally intense. Therefore, most approaches
approximate it. A common approach for updating the TSDF from depth images is the projective distance cell
updates [120] (see Fig. 5.4a). To update a TSDF from a new range observation, we model each measurement
as a ray from the sensor origin located at the origin of the sensor frame to the position of the measurement hi.
Thus, the direction is ĥ = hi

||hi|| . We parameterize the scan based on an interpolation parameter u as a ray

vprojective(u) = hi + uĥ. (5.7)

All cells c along the ray v(u) with u ∈ [−||hi||, τ ] are updated by taking a weighted moving average of the
distance measurements

MΦ(c) :=
MW (c)MΦ(c) + ω(u)Φτ (u)

W (c) + ω(u)
(5.8)

MW (c) := MW (c) + ω(u) (5.9)

with the update weighting function ω(u). In 2D, we apply an exponential weighting function as proposed
in [19]. Additionally, we reduce the weight outside the truncation distance in front of the observation to
reduce overwriting effects when the ray passes by close to other obstacles

ω(u) =

⎧⎪⎨⎪⎩
e−σ(u+ϵ)2 , if u ≤ −ϵ

1, if u ≤ τ andu > −ϵ

wfree, u > τ.

(5.10)

In our 2D experiments, values in the range of 0.1 ≤ wfree ≤ 0.5 yielded accurate tracking results. In 3D, we
did not observe significant improvements in the exponential weighting function in comparison to the constant
weighting function ω(u) = const. Therefore, we apply the constant weighting function in our 3D applications,
as it reduces computational complexity and the number of parameters that need to be adapted.

Approximate Euclidean Distance Update

The projective distance function is only accurate for observations with viewing angles orthogonal to the
surface or exactly at the surface.
The less orthogonal the viewing angle becomes, the more inaccurate the update distances. To compensate

for the distance biases induced by using the projective distance, we leverage scan normals to approximate the
Euclidean distance to the surface, see Figure 5.4b. Therefore, instead of directly using the projective distance,
we propose to approximate the distance along a ray from the observation along the scan normal n:

veuclidean(u) = hi − un. (5.11)

Note that veuclidean ≈ vprojective if the angle of incidence is large, which is typically the case for RGB-D
cameras as they cannot observe surfaces at oblique angles. However, laser scanners have a high signal-to-noise
ratio, which leads to observations even under small angles.

Update Rule Comparison

To qualitatively compare the TSDF update rules (for an in-depth quantitative analysis, see Chapter 7), we
simulate a long, narrow hallway with a square and a circle obstacle inside. The robot is a simulated Pioneer
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(a) Projective Distance Update

(b) Approximated Euclidean Distance Update

Figure 5.5: Comparison of TSDFmaps with different update rules in a simulated environment. Red indicates a
positive TSDF value, and blue encodes negative values. The reconstructed surfaces are indicated
by black lines.

3DX with a LiDAR with 180◦ FOV and a measurement noise with a standard deviation σ2 = 0.01m2. The
robot drives a trajectory similar to an eight around the two obstacles. Therefore, the outer ends of the
hallways are mainly observed from skewed angles. Fig. 5.5 shows TSDF maps with projective distance and the
approximated Euclidean distance updates.
The projective approach shows artifacts modeling the square, which is reconstructed more consistently with

the Euclidean approximation. In the top right corner, the surface reconstruction with the Euclidean approach
shows small jittering.
The projective approach shows a strong overestimation of the absolute distance values close to the corners

on the upper and lower edges of the outer rectangle and provides only a narrow truncation band. These errors
are to be expected as these cells have only been observed under oblique angles. In contrast, the approximate
Euclidean update yields a more consistent estimation of the Euclidean distance within the truncation band
around the surface.

5.5.3 Optimization

We register the LiDAR scans and wheel-inertial odometry in a joint optimization. For registering scans in
TSDFs, two paradigms are prevalent: ICP-based registration [120] and direct optimization of the pose on the
TSDF [19]. As [19] indicates benefits in accuracy and efficiency for the direct optimization, we use the direct
formulation as a basis and extend it by the multi-resolution registration and wheel-inertial odometry terms.
For the original direct optimization approach, the convergence basin is limited by the truncation distance,

as outside the truncation distance, the gradient is constant. Furthermore, it requires an interpolation of the
discrete TSDF grid to compute gradients, which might not be possible if the scan data is sparse. Finally,
expressiveness and, thereby, accuracy depend on the grid resolution.
To leverage the precision of the high grid resolution and the robustness of a lower resolution, we apply a

multi-resolution scan matching approach (see Fig. 5.6). We maintain two TSDF grids with different resolutions,
a high-resolution gridMhigh

Φ and a low-resolution gridM low
Φ , both with the same relative truncation distance

with respect to the resolution. For scan matching, we evaluate SDF at the highest resolution, providing a valid
gradient. This leads to coarse and robust gradients in large areas around the surface and precise gradients
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Figure 5.6: We maintain two grids, a high-resolution grid and a low-resolution grid with the same relative
truncation distance. During scan matching, for each point, we evaluate the SDF at the highest
resolution, providing a valid interpolation.

close to the surface.
Following the derivations in [19], we phrase the registration as a Nonlinear Least Squares Problem

min
C

N∑︂
i=1

(︁
ΦMR
I (T (τi)hi)

)︁2
+

|C|−1∑︂
i=1

(r(T−1
i+1Ti∆T odom

i;i+1 ))
2, (5.12)

r(T i) := [p|RPY (R)] (5.13)

ΦMR
I is the tri-linear interpolation of the highest resolution grid available, providing a valid interpolation.
We consider an interpolation to be valid when none of the eight neighboring cells is uninitialized. RPY (R)
is the extraction of the Cardanian angles from the rotation matrix R. We solve the optimization with the
Levenberg-Marquardt method using the Ceres Solver [2] and compute gradients with automatic differentiation.

5.6 Large-scale SLAM

Scan matching induces small registration errors, resulting in an accumulation of errors over large distances
and leading to global inconsistencies in the pose estimate and the map. To correct these errors, we follow the
approach of Cartographer [71] and generate many small, locally consistent submaps. The spatial relation
of the submaps is represented as a pose graph, where each node represents a location and edges relate to
constraints between poses, which are derived from sensor observations. If sufficient valid constraints have
been found, solving an optimization problem to minimize the constraint violations yields consistent pose
estimates and allows the combination of the submaps into a consistent map.
The pose graph is constructed by two types of constraints - odometry constraints and loop closure constraints.

Odometry constraints are relative constraints between two scan matches and are added for each new optimized
pose of the lidar-inertial-odometry. Loop closure constraints are relative constraints between poses that
are geometrically close but temporally distant and arise when a previous location is revisited, e.g., after
performing a loop. The detection of such constraints, in the following referred to as "constraint search", is
typically computationally intense, as it involves the search in a large and highly non-convex space with many
local optima. Therefore, it is a key challenge to efficiently and accurately identify loop closure constraints
online on mobile systems.
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Figure 5.7: Topology and notation of a pose graph, with the scan nodes ξsi (white circles), the submap
nodes ξmi (gray circles) and the constraints ξij . The solid lines indicate lidar-inertial odometry
constraints, and the dashed lines indicate loop closure constraints. The trajectory is marked by
the dotted line.

Cartographer [71] proposes an efficient branch-and-bound-based approach to compute loop closure con-
straints for occupancy grids, enabling the search for loop closures on mobile systems in large areas in real-time.
Comparable efficient methods are lacking for TSDFs. We address this gap and extend the Cartographer method
to efficiently detect loop closures in TSDFs by transferring the scan matching problem and bounding function
for TSDFs. For the overall formulation and implementation of the pose graph and its optimization, we use
Cartographer, which builds upon [68] and [90].

5.6.1 Pose Graph Optimization

We use the pose graph formulation and implementation proposed in Cartographer [71]. The pose graph (see
Figure 5.7) is constructed iteratively by adding each scan match pose as a node and the relative pose to the
matched submap as odometry constraints. Furthermore, all scans are considered candidates for loop closures.
Whenever a submap is finished, a subset of the scans inserted in the finished submap is matched with all other
submaps within a search window around the finished submap. If a good match is found (see Section 5.6.2),
the corresponding relative pose is added to the pose graph as a loop closure constraint.
The pose graph optimization follows [90] and is formulated as a Nonlinear Least Squares Problem. Given

the the submap poses Ξm = {ξmi }i=1,...,m, the scan poses Ξs = {ξsi}i=1,...,n, the respective constraints for a
pair of a submap i and a scan j as the relative poses ξij and the corresponding covariance matrices Σij , the
pose graph optimization problem can be formulated as

argmin
Ξm,Ξs

1

2

∑︂
ij

ρ(E2(ξmi , ξsj ;Σij , ξij)). (5.14)

The residual E for a constraint computes as

E2(ξmi , ξsj ;Σij , ξij) = e(ξmi , ξsj , ξij)
TΣ−1

ij e(ξmi , ξsj , ξij), (5.15)
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e(ξmi , ξsj , ξij) = ξij −

(︄
R−1

ξmi
(tξmi − tξsj )

ξmi;r − ξsj;r

)︄
(5.16)

with ξmi;r and ξsj;r denoting the rotational components of ξmi and ξsj . Furthermore, Huber loss ρ is applied to
improve the robustness against incorrect constraints. The problem is solved with the Levenberg-Marquardt
method using Ceres [2] with automatic differentiation.

5.6.2 Efficient Constraint Search with Branch and Bound Scan Matching

The detection of loop closure constraints between scans and submaps requires the search for an optimal scan
match ξ⋆ within a large search windowW. If the search window is smaller than the accumulated error in the
pose estimate, the constraint will be missed. A naive, exhaustive search of the search window is theoretically
possible. However, for large search windows, it is computationally intractable.
The efficient branch-and-bound-based approach proposed in Cartographer [71] enables to solve this problem

on mobile systems in large areas in real-time for occupancy grids. Comparable efficient methods are lacking
for TSDFs. We address this gap and extend the Cartographer method to efficiently detect loop closures in
TSDFs by transferring the scan matching problem and bounding function for TSDFs. In the following, we first
present the constraint detection problem for TSDF, then summarize the Branch and Bound approach [71],
and finally formulate the TSDF specific bounding function proposed in [37].

Constraint Detection Scan Matching for TSDF

To detect pose graph constraints, we search a match ξ⋆ for a scanH within the search windowW. This can
be formulated by transferring the Occupancy Grid-based formulation of [71] for TSDF as:

ξ⋆ = argmin
ξ∈W

K∑︂
k=1

|ΦN (T ξhk)| (5.17)

s.t.

K∑︂
k=1

|ΦN (T ξhk)| < emax. (5.18)

ΦN is the nearest neighbor interpolation of the TSDF grid mapMΦ. The nearest neighbor interpolation allows
an efficient evaluation of the bounding function.
As we are only interested in good matches, we require the solution to have an alignment error smaller than

emax. If no solution satisfies this requirement, no constraint is added to the pose graph.

Branch and Bound

The constraint detection problem can be efficiently solved by utilizing branch and bound approaches, which
are optimization methods that represent the discretized search space as a tree, with each node corresponding
to a subspace of the search space. Efficiency in the evaluation of the optimal solution is gained by estimating
bounds for the optimal solution within the subtrees. Thereby, the evaluation of large parts of the tree can be
omitted, and only a small part of the search space has to be evaluated.
The formulation of a branch and bound approach requires a branching rule, a node selection strategy, and a

bounding function. The branching rule defines how to represent the discretized search space as a tree. The
node selection strategy defines how to traverse the tree efficiently, and the bounding function provides a bound
on the best obtainable solution in a subtree. The branch and bound algorithm then performs a search over
the tree for the best solution, omitting subtrees if their bounding function is worse than the currently best
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candidate or a required score threshold. Therefore, a good bounding function is crucial for the overall method
performance.
Cartographer [71] proposes strategies for each of the steps. The approach discretizes the search space

in fixed rotations and separate translations for the location of each map cell in the search windowW. For
thebranching rule, the approach combines in each node eight neighboring translations and a single rotation.
Thereby, a node at height h combines up to 2h × 2h × 2h translations while representing a single rotation. As
node selection strategy, the approach uses a depth-first strategy to reach a good solution candidate early in the
search for omitting further subtrees.

Bounding function for TSDF

As a bounding function, we transfer the Occupancy Grid-based formulation of [71] for TSDF. An accurate and
efficient evaluation of a lower bound of the optimal solution at an inner node c is crucial to prune large parts
of the tree. Approximating the optimal solution within the search window by the optimal match for each scan
point within the potential maximum size of the search window yields the bounding function bound(c) as

min
ξc∈Wc

K∑︂
k=1

|ΦN (T ξchk)| (5.19)

≥
K∑︂
k=1

min
ξc∈Wc

|ΦN (T ξchk)| = bound(c). (5.20)

The bounding function can be efficiently precomputed as a grid Φh
precomp for each height h

Φh
precomp([x, y, z]

T ) = min
x′∈[x,x+r(2h−1)]

y′∈[y,y+r(2h−1)]

z′∈[z,z+r(2h−1)]

|ΦN ([x′, y′, z′]T )|. (5.21)

Each cell in the precomputed grid contains the minimum values of the 2h × 2h × 2h cube around it.
With the precomputed gridMh

precomp we can evaluate the bounding function efficiently as

bound(c) =
K∑︂
k=1

Φch
precomp(T ξchk). (5.22)

5.7 SLAM in Degraded Visual Conditions

Lidar-based methods achieve robust and accurate results in complex environments but require sufficiently
good visual conditions. Dense smoke, dust, and fog impair the quality of LiDAR sensor measurements and can
lead from a reduction in performance up to complete failure (see Figure 5.8). As such conditions need to be
considered for various applications in disasters, such as fire or building collapse, it is crucial to enable mobile
robots to localize and navigate in degraded visual conditions.
In contrast to LiDAR sensors, radar sensors provide reduced accuracy and density and have a lower signal-

to-noise ratio under good visual conditions but are less affected by degraded visual conditions. Therefore,
radar sensors are well suited to enable navigation in environments with degraded visual conditions.
Key challenges for the successful adaptation of the proposed LiDAR approach for radar are achieving

accurate scan registration despite the reduced signal-to-noise ratio and enabling an accurate map update,
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(a) Camera image at fog insertion start. (b) Lidar cloud at fog insertion start.

(c) Camera image in a fog-filled room. (d) Lidar cloud in a fog-filled room.

Figure 5.8: Lidar and camera data degrade in poor visual conditions such as fog or smoke and are not
suitable for navigation. a) and b) show camera and LiDAR data in a smoke chamber at the start
of the insertion of disco fog. c) and d) show the same environment after it is filled with fog.

although radar can return observations from behind walls. In [157], we address these challenges and extend
the proposed lidar-based approach for visually degraded conditions by extending it to radar. The author’s main
contributions are work on the general conceptualization of the robust scan registration, map update model,
and evaluation. Most of the detailed work, especially for implementation and evaluation, was performed by
Moritz Torchalla and Marius Schnaubelt and builds on the author’s implementation in [37].
The proposed approach covers three main aspects radar processing, a forward sensor model for TSDF map

update and robust scan registration.

Radar Processing

To optimize the quality of the final radar signal, the raw radar data is processed by a flexible and modular
processing pipeline covering multiple Fast Fourier Transformations to gain accurate distance and velocity
estimates and Constant False Alarm Rates detection to enable the extraction of discrete range observations,
similar to a point cloud.

TSDF Map Update

In contrast to lidar, radar can also penetrate objects and yield range observations for multiple stacked surfaces.
While TSDF map update approaches often assume free space between each observation and the sensor origin,
this does not hold true for radar. Therefore, we propose an adapted method that only updates free space up
to the first detection. The method gains efficiency by leveraging angular binning for the range observations.
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Robust Scan Registration

The increased number of outliers in the scan processing makes the registration infeasible for a native non-linear
least squares formulation. The outliers induce high residuals, reducing the overall accuracy of the optimization.
Therefore, the optimization is adapted for the robust optimization method Graduated Non-Convexity [175],
which reduces the impact of outliers during the optimization and thereby increases the robustness and accuracy
of the solver for high outlier ratios.

Application Example

As an application example, we evaluated the performance of the radar SLAM in comparison to LiDAR SLAM
in the DRZ challenge in the DRZ Living Lab. The chamber is S-shaped with drywalls and can be filled with
artificial fog. Figure 5.9 shows comparisons for LiDAR and radar SLAM without fog. Both methods accurately
estimate the trajectory of the robot. While the LiDAR map is very sharp and consistent, the radar map is more
noisy but also overall consistent, and walls can be distinctly indicated. When fog is added, the radar SLAM
generates results of similar quality, while the LiDAR SLAM fails. A visual comparison of the radar and LiDAR
data in the fog environment in Figure 5.9c also indicates that radar provides sensor reading relating to the
geometry of the environment, while this is not the case for the LiDAR data. Overall, the quality of the map
and trajectory estimation indicate the applicability for navigation in degraded visual conditions.
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(a) LiDAR SLAM without fog.

(b) Radar SLAM without fog.

(c) Radar SLAM with smoke. The sample point clouds indicate the sensor quality. The radar
cloud (orange) accurately captures the environment characteristics, whereas the LiDAR
cloud (rainbow) is strongly impaired by the fog.

Figure 5.9: Comparison of maps and trajectories created by LiDAR and radar SLAM with the Asterix robot in
the DRZ challenge. Green: Odometry, Blue: radar trajectory, Pink: LiDAR trajectory. One square
corresponds to 1 m2. (Images: [157] ©2021 IEEE)
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6 Exploration and Data-Acquisition in
Shared-Autonomy Multi-Goal Missions

Exploration and data-acquisition missions with mobile ground robots in disaster response missions often
involve multiple goals with versatile and dynamically changing situations. As a stable radio connection to the
robot can often not be guaranteed and the operator’s cognitive capacity is limited, enabling (semi-)autonomous
assistance for such missions is important. However, the low repetitiveness, high complexity, and situation
dynamics are challenging for current autonomous methods.
While related state-of-the-art methods often focus on fully autonomous approaches for single-goal mis-

sions [25], this chapter proposes a shared-autonomy approach for multi-goal missions, which allows fully
autonomous operation but strongly benefits and incorporates by design the capabilities of the operator for
scene understanding and decision making. Key elements of the framework are the coverage-based multi-goal
exploration, which enables the efficient exploration of large-scale environments, and the affordance-based
actionable environment representation, which enables complex object interaction and planning sequences.
The chapter is structured as follows: we first outline the related work and the key contributions of the

approach, then we provide an overview of the proposed method before investigating the aspects of environment
representations, exploration planning, operator interaction, and model generation in detail. An overview of
experiments and results is provided in Chapter 7.
Parts of this chapter have been previously published. The affordance-based actionability concept has been

published in [8], and the radiation mapping approach in [152].

6.1 Related Works

Exploration and Active SLAM methods typically need to solve three subproblems: 1) the identification of the
potential actions, 2) the estimation of the action utility, and 3) the selection and execution of actions [132].
A general introduction to the Exploration and Active SLAM problem is provided in Chapter 2. This section
focuses on the related works directly related to the proposed method. We first outline related approaches
for exploring large-scale environments, then discuss the approaches for multi-goal exploration, and finally,
discuss actionability and user interaction.

6.1.1 Exploration in Large-Scale Environments

With the introduction of the first concepts for efficient exploration of unknown environments, such as frontier-
based [172] approaches for metric maps, the efficient exploration of large-scale environments became a major
research interest. Challenges include planning efficient trajectories and action sequences and efficiency in the
planning methods themselves, as naive planning and mapping schemes can quickly become computationally
infeasible for large-scale environments.
Therefore, various approaches aim to find frontiers efficiently by applying incremental update schemes [82]

or search-based strategies such as rapidly exploring random trees [159]. Other approaches aim to reduce the
uncertainty in the map by identifying potential loop closure locations and adding these as goal positions [150].
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Furthermore, topological and hybrid map representations improve planning efficiency for large-scale
environments. Various recent approaches for the exploration of complex, large-scale 3D environments have
been proposed and successfully evaluated in the context of the DARPA SubT Challenge.
Cao et al. propose the TARE planner [24] focusing on the efficient surface coverage-based exploration of

large-scale environments. The approach gains computational efficiency through a hierarchical framework with
dense local planning and coarse global planning. Efficient routes are computed by frequently solving traveling
salesperson problems over high-utility viewpoints. In [25], the authors extend the approach in an integrated
planning and exploration system together with a planning approach for unknown environments [174].
Furthermore, in [23], the authors extend the approach for multi-robot exploration. Overall, the approach is
evaluated in various simulated environments and in complex underground environments by application by
the CMU Team in the DARPA SubT Challenge, achieving the "Most Sectors Explored Award."
Dang et al. propose GBPlanner [35], a graph-based exploration approach for aerial and legged robots.

Similar to TARE, they also use a combined local and global planning architecture. The local planner is based
on a rapidly exploring random graph, which optimizes a local exploration gain based on volumetric coverage
while accounting for dynamic feasibility, traversability, and collision avoidance. Globally, the approach utilizes
a sparse graph to maintain large-scale relations and global goals. In contrast to TARE, the global graph is
only utilized when a local exploration goal is completed. In [95], the approach is extended for heterogeneous
multi-robot exploration. The approach is successfully evaluated in various complex environments and applied
by Team CERBERUS in the DARPA SubT Challenge, enabling the team to win the overall competition [158].
Best et al. [11] propose an approach for exploration with a team of aerial robots leveraging both range

and vision sensing modalities in confined environments focusing on resilience. The approach is based on a
behavior tree architecture, which switches between different behaviors, including exploration or the response
to adverse events, such as degraded perception due to dust. The approach combines a local and global planner.
The global planner plans coarse global graph-based trajectories related to the current behavior. Whereas, the
local planner performs motion-primitive-based local planning to the next subgoal of the global trajectory. The
author proposes combining lidar and camera coverage to estimate the utility of potential viewpoints. The
approach is successfully evaluated in complex real-world environments by Team Explorer in the DARPA SubT
challenge.
To enable efficient exploration assistance for large-scale environments, the proposed approach follows the

dense local and coarse global paradigm proposed by the previous methods [24, 35, 11]. To enable globally and
locally efficient trajectories, the proposed approach is based on the overall structure of the TARE planner [24]
but differs in the specific approaches for local planning, graph generation, and environment coverage mapping
and extends for multi-goal exploration by incorporating spatial coverage.

6.1.2 Multi-Goal Exploration

While common exploration approaches often focus on maximizing a single goal, such as covering a map with a
single sensor, multi-goal approaches focus on combining multiple goals, such as covering multiple modalities,
or considering constraints, such as staying close to relevant agents in the environment.
Mandischer et al. [103] propose a novel approach for finding moving operators in firefighting operations

under the constraint of staying close to human firefighters in 2D. The authors propose a next-best view-based
exploration method that combines multiple modalities, covering prior information, detected targets, the
direction of the operator, and progress. The overall utility is determined by multiplying factors for each utility.
Calisi et al. [22] combine the creation of a map and victim detection. The authors propose to use Petri nets to
model behaviors that switch between mapping and investigating victim hypotheses.
Butzke and Likhachev [18] consider multi-robot exploration with an extended frontier-based exploration

approach that combines utility terms for information gain, per-robot regions, and distance to other robots. The
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results demonstrate efficient distributed exploration with multiple robots. Bramblett, Peddi, and Bezzo [16]
also addresses the coordination of multiple robots for exploration and incorporates the aspect of robot-to-robot
communication by explicitly modeling behaviors for exploration, rendevous, and task allocation. Further
approaches incorporate energy consumption [136] or the availability of communication links [32].
The proposed approach combines multiple sensor modalities in the coverage-based exploration. Furthermore,

the proposed approach allows the switch between different behaviors, similar to [16]. However, the switches
are initiated by a human operator instead of an autonomous agent.

6.1.3 Actionability and Operator Interaction

It is crucial to consider actionability in the environment representation to enable meaningful operator
interactions and complex planning sequences. Common approaches model the semantics of the environment
by maintaining a 3D model of the environment and assigning instances and semantic classes to geometric
segments [140, 67]. Such structures can be embedded in 3D scene graphs, which are hierarchical mixed
topological graph structures, allowing for reasoning on spatial and semantic relations in scenes [141]. An
example of the real-time creation of 3D scene graphs is the Hydra framework [77], which combines a semantic
3D mesh with a hierarchical topological graph structure of objects and places, rooms, and buildings. Semantic
classes can also be assigned to exploration-related instances. Gomez, Hernandez, and Barber [65] propose to
assign semantic classes to exploration frontiers, incorporating the information in the utility estimation.
Semantic 3D scene graphs enable reasoning about the environment. To allow the planning of complex

actions on such data structures requires additional information such as a knowledge base [61]. Alternatively,
actionability can be achieved by directly modeling potential actions in the environment representation.
A concept to describe actions that can be performed on an object is affordances [180]. The concept

is common in the object manipulation context, e.g., to model grasps [139], to model supportability and
leanability [81], or for object recognition by combining visual appearance and grasp affordances [63]. The
representation is less common in the navigation context. Qi et al. [133] describe the navigability of surfaces
with spatial affordances.
In the proposed approach, we consider a combination of topological graph-based environment representa-

tion [141], with object affordances [180] for object interaction tasks to allow flexible interactions with the
environment.

6.2 Contribution

While related state-of-the-art methods often focus on fully autonomous approaches for single-goal missions [24,
35], we propose an operator-related approach for multi-goal missions, which allows fully autonomous operation
but strongly benefits and incorporates by design the capabilities of the operator for scene understanding and
decision making. We base the proposed method on the concept of the hierarchical surface-coverage-based
approach by TARE [24] and extend it by a novel formulation to allow for combined spatial (e.g., radiation or
hazard sensor) and surface coverage goals missions. We embed the approach in a proposed shared-autonomy
framework that follows the shared autonomy principle and allows flexible changes in the autonomy level from
assisted teleoperation to full autonomy. The interaction concept follows the ideas of coactive design [80]
and ensures observability, predictability, and directability. The operator can request complex environment
interaction with a novel, integrated, actionable, affordance-based environment representation, which enables
complex object interaction and planning sequences. Furthermore, we propose a novel method to accurately
map dose rates in 2D and 3D based on Gaussian Processes.
The evaluation in Chapter 7 demonstrates the efficiency of the proposed planner and demonstrates im-

proved efficiency and coverage compared to a frontier-based planner in complex simulation environments.
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Figure 6.1: Overview of the shared-autonomy exploration approach. The approach combines hierarchical
coverage-based mapping and planning with actionable object representations. The arrows in-
dicate the directions of the main information flow. Although most components directly provide
information to the HRI, for clarity, this is only indicated for a subset.

Furthermore, we demonstrate the capability to perform complex missions with autonomous and interactive
interactions.

6.3 System Overview

Dealing with the challenging application conditions of low repetitiveness and high complexity makes the
application of fully autonomous systems currently infeasible for complex real-world disaster conditions. On the
other hand, direct teleoperation leads to errors in control, resulting in mission failures and oversights [116].
Therefore, we propose a shared-autonomy exploration concept that creates synergies between the capabilities
of autonomous assistance functions and the scene understanding and decision-making skills of a human
operator. The multi-goal exploration framework follows the principle of shared autonomy and allows flexible
changes in the autonomy level from assisted teleoperation to full autonomy. The interaction concept embeds
the ideas of coactive design [80] by ensuring observability, predictability, and directability.
Key elements of the framework (see Figure 6.1) are the coverage-based multi-goal exploration, which

enables the efficient exploration of large-scale environments, and the affordance-based actionable environment
representation, which enables complex object interaction and planning sequences.
For the exploration assistance function, we apply a hierarchical approach with dense local and coarse global

planning. The overall concept is inspired by the TARE planner [24] but differs in the several representations
of the components, the extension for multi-goal exploration, the focus on shared autonomy, and the operator
interaction concept.
For the coverage-based exploration, we follow the hierarchical environment representation paradigm of [25]

and segment the environment into equally sized segments. Potential exploration goals are evaluated frequently
and densely for the segments in the vicinity of the robot. For all other segments, we maintain the status of
observed, partially observed, or unobserved. The observation goals for partially observed segments are stored
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Figure 6.2: For efficiently exploring large areas, we use a hierarchical approach. The environment is divided
into equal-sized segments, with those in close proximity to the robot being densely and frequently
sampled. All relevant viewpoints of these segments are added to the planning problem. Distant
segments are only reevaluated when alterations occur. For partially explored segments (yellow),
only the viewpoint with the highest score is added to the planning problem. Fully explored
segments (green) are no longer considered for the planning problem.

in a global topological graph. The trajectory planning accounts for the local and global goals by repeatedly
solving a Traveling Salesperson Problem (TSP) to compute the optimal exploration path. The operator can
directly interact with the exploration approach and prioritize exploration regions or modify the coverage
accuracy for regions. The visualization of the explored and unexplored areas and the proposed exploration
route can also serve as assistance for the mission procedure planning in a teleoperated control mode.
To allow the incorporation of object interactions in the planning, objects are stored with affordances

representing potential actions. Thereby, they are incorporated for direct operator interactions or complex
planning queries with multi-stage requirements. As shown in [8], the operator can provide a complex and
abstract goal, and the assistance function can automatically deduct the respective steps to reach the goal.

6.4 Environment Representations for Multi-Goal Exploration

Enabling efficient planning and exploration assistance functions for large-scale environments requires suitable
environment representations. A crucial component of the exploration algorithm is accurately and efficiently
predicting the utility of an action.
In the environment representation, we apply amodular formulation and account for both surface coverage (see

Section 6.4.1), the observation of surface coverage of the 3D environment, such as a geometric representation
of a 3D map based on lidar observations and spatial coverage (see Section 6.4.2), the observation of locally
measured scalar quantities in the 2D-constrained observation space, such as radiation dose rate, radio
connectivity, or temperature. Furthermore, we maintain a topological graph for efficient planning in large-
scale environments (see Section 6.4.3) and affordance-based instance representations (see Section 6.4.4) to
allow flexible interactions with the environment.
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(a) 3D surface coverage map. The fully observed cells are
indicated in green, and the partially observed cells are
indicated in yellow.

(b) 2D spatial coverage map. The rainbow scheme indi-
cates the coverage score, with magenta indicating full
coverage and red/white indicating no coverage.

Figure 6.3: We use 3D and 2D map structures to monitor the progress of the coverage mapping and the
basis for predicting the viewpoint utility.

6.4.1 3D Surface Coverage Mapping

A common exploration goal is to create a dense, geometric 3D map of the environment by accumulating range
measurements, e.g., from a LiDAR or an RGB-D camera. Range sensors allow the observation of surfaces from
a distance, which makes predictions about the coverage from an unvisited viewpoint non-trivial as the sensor
FOV and occlusions constrain the observation space of a given surface segment. Therefore, efficient surface
coverage approaches need to estimate the expected surface coverage for potential viewpoints. Furthermore,
the position can impact the quality of the surface observation. Lidar measurements close to the robot can be
assumed to be more accurate than far-away readings. Uncertainties in the calibration or the orientation of the
pose estimate propagate over long distances and induce larger modeling errors further away from the robot.

Coverage Mapping We maintain a 3D coverage grid G (see Figure 6.3a) to store the observation status of
the 3D environment. As naively storing dense 3D data for large environments induces infeasible memory
requirements, we store the 3D coverage grid as a spatially hashed 3D map [121, 83]. Each cell stores a floating
value representing the observation score for the cell. A higher score indicates a better coverage and more
accurate observation of the part of the environment. Each cell is initialized with zero and increased for each
LiDAR point observation falling into the cell. Therefore, cells with a value of zero indicate unknown segments,
cells with a value larger than zero and smaller than a threshold value τobserved indicate partially observed
segments, and cells surpassing τobserved indicate a fully observed segment.
To update the coverage grid with a SLAM registered point cloud H = {h1,h2, . . . ,hn} with the scan points

hi ∈ R3 in the map coordinate frame, we increase the coverage score for each point falling into a cell. To
account for the depth uncertainty, we apply an update scheme that reduces the coverage gain with increasing
distance between observation and sensor. With a minimum and maximum distance thresholds dmin and dmax,
the updated value for the cell G(h) enclosing the scan point h can be computed as

G(h) :=

⎧⎪⎨⎪⎩
G(h), range(h) > dmax

G(h) + dmin
range(h) , dmin < range(h) < dmax

G(h) + 1, else
(6.1)

with range(h) indicating the distance between the sensor and the observation. The update scheme is applied

52



Figure 6.4: The approximated lidar visibility estimation considers the field of view α and the maximum range
rmax of the sensor to predict which parts of the coverage grid can be observed from a viewpoint.
The observable cells are indicated in green, and the unobservable cells are indicated in orange.

for all points in the point cloud.

Utility Estimation We apply an approximated lidar-visibility estimation to predict the utility uv of visiting
a viewpoint v. The visibility estimation accounts for the vertical sensor field of view α and the maximum
visibility distance threshold rmax. The locations of all partially observed cells P are stored in a kd-tree, which
allows efficient range-based queries, such as a radius search, which gives all cells within a radius around a
query position. Furthermore, we define a value nmax, the number of cells in the range needed to achieve
the maximum utility score. We first use the radius search to compute the subset of cells P r within visibility
distance rmax to the sensor origin psensor as

P r = {p ∈ P | || p− psensor ||< rmax}. (6.2)

In the second step, we remove all points outside the vertical field of view and perform a simplified occlusion
test for neighboring cells to remove occluded cells. We denote the remaining points as P̂ . The raw utility
score urawv for the viewpoint computes as the ratio between the expected number of perceived cells and the
maximum number of perceived cells threshold nmax as

urawv =| P̂ | /nmax. (6.3)

To avoid repeatedly visiting the same position, we apply a penalty factor to viewpoints close to the position
already visited. For each visited position in the distance, we apply a penalty proportional to the distance to
the visited viewpoint. We denote the penalty distance dpenalty and the robot trajectory T = {t1, t2, . . . , tn}
as a set of discrete positions ti ∈ R3 sampled with constant time intervals. The penalty factor cpenalty for a
viewpoint location pv computes as:

T v = {t ∈ T | || t− pv ||< dp}, (6.4)

cpenalty =
∏︂

ti∈T p

||ti − pv||
dp

. (6.5)

The term is zero if the viewpoint was exactly visited, which leads to zero utility, and therefore, the viewpoint
will not be considered for planning anymore. If there is no viewpoint within the penalty distance, no discount
is applied. The expected surface coverage utility uv of a viewpoint v computes as

uv = cpenaltyu
raw
v . (6.6)
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6.4.2 2D Spatial Coverage Mapping

Another common goal is the creation of maps with sensors observing quantities directly at the sensor location,
such as a dosimeter measuring the dose rate at the sensor location. We assume a sensor is rigidly mounted at
a robot. Therefore, the observable space is locally 2D-constrained by the ground surface.
For applications such as dose rate monitoring or the search for hazardous substances, it is crucial to sample

space at a sufficient spatial density.

Coverage Mapping We maintain a 2D-grid map to store the observation status of the environment. Each
grid cell contains a floating value indicating the truncated distance to the closest observation. We define the
truncation distance dτ . We choose the target distance between two sensor observations as the truncation
distance.
For each measurement, we update all cells in the truncation distance around the measurement location pm

to compute the minimum truncated distance to a sensor reading as

M(pc) :=

{︄
M(pc), range(pm) >= M(pc)

range(pm), else.
(6.7)

Utility Estimation The utility of a viewpoint can be directly inferred from the coverage map distance value
at the viewpoint location. Given the target sampling distance ds. We assign no score to all viewpoints with a
map value smaller than ds

2 . Between
ds
2 and ds, we apply a linear relation to the utility. All viewpoints with a

distance large ds yield the maximum utility score, leading to the following formula for the computation of the
spatial utility uv of a viewpoint v at position pv

uv :=

⎧⎪⎪⎨⎪⎪⎩
0, M(pv) <= ds

2
2(M(pv)−

ds
2
)

ds
, ds

2 <= M(pv) <= ds

1, else.

(6.8)

6.4.3 Topological Graph

Efficiently planning over large distances requires a suitable abstraction of traversable space. Topological
graphs represent the traversability of the environment as a sparse graph structure (see Figure 6.5), with nodes
indicating positions and the edges indicating a connection to another node typically annotated with a distance
metric.
An established method to compute such graphs is the usage of Voroni diagrams [156, 170]. We use a 2D

traversability map [56] to derive the graph by applying a series of image operations.
Given the 2D traversability map represented as a binary 2D image, perform the following operations:

• Inflation: Inflate the occupied space by the radius of the robot to only account for traversable space.

• Distance Transform: Compute the distance transform, indicating the distance to the next surface, for
the free space

• Skeletonization: Skeletonize the binarized distance transform image to gain a sparse representation of
the environment.

• Graph extraction: Iterate over the skeletonized image to extract nodes and edges.

The result is a sparse graph of the environment, which allows efficient planning of trajectories even over
large distances with standard graph search algorithms.
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(a) 2D traversability grid map (b) Distance Transform

(c) Skeletonized Binarized Distance Transform (d) Topological graph (blue) overlaying the occupancy
grid map

Figure 6.5: Topological graph generation process. We compute a distance transform (b) from the 2D
traversability map (a). Then, we skeletonize the binarized traversibility map (c) and extract
the topological structure (d).
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6.4.4 Actionable Instance Representation

During an exploration mission, the robot might encounter objects that allow for interaction, such as a door
that can be opened or stairs that can be traversed. Such interactions can also require dependencies, such as
a detected fire can be extinguished, but in order to perform the fire extinguishing action, the robot needs
to acquire this capability first by picking up a fire extinguishing device. This requires a suitable, actionable
representation of the environment semantics.
To allow complex interactions, we maintain a 3D map of semantic object instances and inscribe the instances

with affordances. An affordance represents an action that can be performed on an object instance (e.g., the
action pick-up on an object instance of a tool in the environment). We define an affordance by its requirements
and effects. As we show in [8], additionally, taking priorities and costs into account allows the autonomous
planning and execution of complex missions.
To generate the semantic 3D map, we follow the approach implemented in hector_worldmodel [106]. The

point clouds registered by the SLAM system are accumulated in an Occupancy Grid represented as Octree.
Camera images are semantically segmented (e.g., by using YOLO [164]). The masks of relevant objects are
then projected onto the occupancy grid and either merged with existing object instance observations or added
as a new object instance. The affordances are pre-defined per class and added to each instance.
The overall method was initiated and high-level conceptualized by the author. Most of the detailed work,

especially for detailed conceptualization, implementation, and evaluation, was performed by Frederik Bark [8].
The author’s main contributions are work on the general conceptualization of affordance-based mapping and
planning approach and the integration into the exploration concept proposed in this thesis.

6.5 Online Multi-Goal Exploration

The proposed approach for efficient online multi-goal exploration is based on the hierarchical coverage
exploration approach TARE [25]. Similar to TARE, we perform a hierarchical approach that samples viewpoints
in the vicinity of the robot, selects the best viewpoints according to the utility function, and then solves a TSP
problem over the local and global viewpoints.

6.5.1 Local Viewpoint Sampling

We sample the segment containing the robot and the adjacent segments with a regular grid pattern in equal
distance dvp viewpoints. Each viewpoint is checked for reachability with the distance transform map used
for the topological graph generation. All unreachable points are sorted out. For each reachable view point v,
we compute the utility function scores u(v) = (u1(v), u2(v)...) as the element-wise minimum of the spatial
and surface coverage utilities and maintain the maximum utility as viewpoint score u∗(v) = maxu(v). We
assume a maximum number of points nmax to consider in the planning and a minimum utility threshold umin

required to add a point in the planning. We add the viewpoint with the highest score to the planning horizon.
Then, reduce the score of the remaining viewpoints to account for the expected coverage as

u∗(v) :=

{︄
u∗(v), ||v − vinserted|| > ddropoff
||v−vinserted||

ddropoff
u∗(v), else

(6.9)

The insertion and utility reduction are repeated until the maximum number of points nmax is reached or
no point surpasses the minimum utility threshold umin. In the case that none of the initial utility scores
surpass umin, the local area is considered fully explored, and only global waypoints from other segments are
considered for the current planning step.
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6.5.2 Global Viewpoint Sampling

For each segment that is not part of the local search horizon, the viewpoints are sampled similarly to the
local sampling. However, only the best viewpoint for each segment is added to the global planning horizon,
presuming it surpasses the minimum utility threshold umin. If no viewpoint surpasses the utility threshold, no
viewpoint is added, and the segment is considered to be fully explored. As the results for each segment only
change when new observations are added, we cache the result and only reevaluate it after new observations
have been added to the segment.

6.5.3 Route Planning

Given both the local viewpoints from the local sampling and the global viewpoints from the global sampling, we
are looking for the fastest route to cover all viewpoints. This is an instance of the NP-hard TSP. Following [128],
we formulate the problem as an integer linear programming problem such as in the Miller–Tucker–Zemlin
formulation [108]. Given the set of viewpoint indices V = {v1, v2, . . . , vn} ∈ Rn referencing to n viewpoints v
and the distance matrixD ∈ Rn×n with each scalar entry dij indicating the distance between the ith and jth
viewpoint the problem can be formulated as

min

n∑︂
i=1

n∑︂
j ̸=i,j=1

dijxij i, j = 1, . . . , n; (6.10)

s.t.
n∑︂

i=1,i ̸=j

xij =1 j = 1, . . . , n; (6.11)

n∑︂
j=1,j ̸=i

xij =1 i = 1, . . . , n; (6.12)

ui − uj + 1 ≤ (n− 1)(1− xij) 2 ≤ i ̸= j ≤ n; (6.13)
2 ≤ ui ≤ n 2 ≤ i ≤ n. (6.14)

With xij ∈ {0, 1} indicating whether the edge between i and j is part of the solution and the helper
variables u indicating the order of the viewpoints and guaranteeing a single route as a solution. We solve the
problem with the guided local search method implemented in the Google OR-Tools Routing Library [60]. We
approximate the cost of traveling from one viewpoint to another by the shortest path between the points in
the topological graph. The distance matrixD containing the shortest path distance between all viewpoints
can be efficiently precomputed with the Floyd-Warshall algorithm [33].

6.6 User-Interaction Concepts for Efficient Exploration and Data-Acquisition

The proposed approach is based on the concept of shared autonomy (see Figure 6.6), where an operator
can flexibly choose and switch the degree of autonomy of the robot. As the default setting, we consider an
operator controlling the system in supervised autonomy mode. The operator provides a high-level goal, such
as exploring an environment, with further specifications that should be considered, such as the coverage of
the environment’s surface for creating a 3D model or the spatial coverage with a sensor, e.g., for creating a
map of the dose rate or thermal distribution in the environment. The system then transparently represents
the state towards these goals and the currently planned action sequence. At all times, the operator can
switch continuously between autonomy levels. In a semi-autonomous control mode, for example, to provide a
waypoint navigation goal, the operator considers relevant or switches to assisted teleoperation and commands
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Figure 6.6: The user-related exploration and data-acquisition approach follows the shared autonomy principle.
Allowing the operator to choose the level of autonomy and switch as needed flexibly.

the system via joystick commands, e.g., for difficult obstacle traversals or manipulation tasks. Afterward, the
operator can always switch back to an increased autonomy level and continue the autonomous exploration.
This allows a trade-off between the operator’s cognitive load and the system’s safety and action space.
The implementation into a User Interface is shown in Figure 6.7. The interface is based on RViz1 and the

QML-based user interface (UI) tools [55] by Fabian and Stryk. Transparent cuboids visualize the segments and
provide interactions via context menus to prioritize or ignore a segment in the exploration. The color indicates
the exploration status. Furthermore, the operator can set the quality requirements for spatial and surface
mapping per segment. This allows scenarios with varying coverage requirements, such as a general search
of the building with a more detailed search of a room of interest. The current path and the selected local
and global viewpoints are visualized as 3D markers. The coverage exploration can be paused and resumed
by a large play/pause button. When the operator manually starts a behavior, such as driving to a waypoint,
performing an object affordance action, or providing a joystick input, the coverage exploration is paused
automatically. In pause mode, the coverage assistance still provides updated visual assistance. The operator
can then continue in assisted teleoperation or semi-autonomous operation. Pressing the play/pause button
can activate the autonomous operation of the coverage exploration at any time, which also accounts for the
progress during the pause. Detected objects are indicated by markers, and potential affordance-related actions
are indicated by context menus.

6.7 Online Model Generation

To accumulate sensor data and transfer it in a readable and understandable depiction, we consider three
different types of models, which can be directly generated online on the robot.

6.7.1 2D and 3D Radiation Mapping

Monitoring potential radiation sources with mobile robots requires the creation of accurate maps of the dose
rate distribution. Shadowing, multi-source environments, and sensor errors can lead to implausible results for
mapping methods, which make strong model assumptions. In [152], we propose a Gaussian Processed-based
method that requires only weak model assumptions and gains efficiency by leveraging pre-sampling and
local map update schemes. The author’s main contributions are work on the general conceptualization of the
mapping scheme, sensor modeling, and evaluation. Most of the detailed work, especially for implementation
and detailed evaluation, was performed by Jonas Süß and Martin Volz. The resulting method can predict the

1http://wiki.ros.org/rviz
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Figure 6.7: Visualization of the UI integration of the user interaction concept.

dose rate distribution in complex indoor environments with multiple sources and quantify the uncertainty in
their estimates.

6.7.2 Point Cloud Accumulator

3D point cloud models of the environment provide accurate assessments of the geometric relation of the
environment. However, with modern lidar sensors providing 5.2 million points per second2, naively accu-
mulating the registered point cloud observations quickly becomes computationally infeasible. Therefore, we
use pointcloud_accumulator3 developed by Jasper Süß, which uses an incremental kd-tree [21] to compute a
globally voxel-grid filtered point cloud efficiently.

6.7.3 Panorama Tour Generator

While 3D point clouds can provide accurate geometric representations of the environments, camera images
can often capture higher-resolution visual information about the environment. Furthermore, camera images
are easy to interpret for human operators. Therefore, we automatically create panorama tour models of the
environment. The overall method was initiated and high-level conceptualized by the author. Most of the
detailed work, especially for implementation and evaluation, was performed by Jonas Süß. The method uses a
created 2D map of the environment and combines it with panorama images taken by the robot. The images are
filtered for quality measures such as brightness and sharpness. The web-based user interface allows flexible
and natural interactions between the viewpoints.

2Ouster OS0-128, https://ouster.com/products/hardware/os0-lidar-sensor, accessed 18.02.24
3https://github.com/tu-darmstadt-ros-pkg/pointcloud_accumulator, accessed 18.02.24
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7 Evaluation and Transfer

This chapter provides an overview of the proposed methods’ evaluation results and their transfers to practical
applications.
The reproducible evaluation of capabilities for mobile robots is challenging, as mobile robots are complex

systems containing many hardware and software components that interact with each other. This introduces
many potential sources for measurement uncertainties and errors and requires large integration efforts. There-
fore, we consider versatile evaluation techniques with different levels of realism. We combine evaluation with
external and own benchmark data sets, simulations, and trials under the conditions of robotics competitions
to reach a comprehensive result on the performance of the proposed approach with respect to the targeted
application and related approaches. In the following, this chapter provides a comprehensive overview of
evaluations of the proposed SLAM approach, followed by evaluations of the proposed exploration approach. It
concludes with examples of practical transfer of the research results.

Parts of this chapter have been previously published. The evaluations of the proposed SLAM approach have been
published in [37, 39] and have been revised for the presentation in this chapter.

7.1 Evaluation - Robust Simultaneous Localization and Mapping in Challenging
Environments

To comprehensively evaluate the developed SLAM system, we consider a wide variety of environments, data
sets, and applications. We first investigate the 2D SLAM accuracy in large-scale environments on two data sets
of the Radish dataset [76], comparing the proposed approach to related methods. Subsequently, we analyze
the accuracy and robustness of the 3D mapping in rough terrain with aggressive motions in the ground truth
annotated set data of the created DRZ Living Lab Motion Capture Dataset. Then, we investigate the behavior
of large-scale 3D mapping in a challenging mixed indoor-outdoor environment. Afterward, we evaluate the
applicability of the SLAM system under the conditions of operation in robotic competitions. Finally, in the last
section of this chapter, we provide an outlook on evaluation as a transfer for an actual disaster deployment of
the preliminary robotic task force of the German Center of Rescue Robotics.

7.1.1 Radish Dataset - 2D Large Scale SLAM

To evaluate the large-scale mapping capability in 2D environments and compare the proposed approach to
other methods, we evaluate on benchmarks from the radish data set [76] using the relative displacement
error metric suggested in [96]. The measure compares the error in relative poses with respect to manually
annotated ground truth relations. We choose two data sets with different characteristics. The MIT Killian
Court provides more than two hours of data with loop closures over large distances and long hallways, whereas
the Freiburg Bldg. 79 is a more narrow and cluttered environment with loop closures on smaller scales.
As the data sets differ in sensor configurations and characteristics, we adjust the parameters for each data set

individually. For MIT Killian Court we use a grid resolution r = 0.075m and a truncation distance τ = 0.15m.
For Freiburg Bldg. 79 we use r = 0.1m and τ = 0.15m. On both data sets, we use odometry information
additional scan matcher with an angular search window of 0.1 rad to improve the scan matching initialization.
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Table 7.1: Radish Dataset - Quantitative Error Comparison
TSDF Projective TSDF Euclidean Cartographer GraphMapping [96]

MIT Killian Court
Absolute transla-
tional [m]

0.0276 ± 0.0232 0.0276 ± 0.0235 0.0324± 0.0270 0.050± 0.056

Squared transla-
tional [m2]

0.0013 ± 0.0089 0.0013 ± 0.0095 0.0018± 0.0099 0.006± 0.029

Absolute rotational
[◦]

0.2807± 0.2462 0.2802 ± 0.2435 0.3183± 0.2883 0.5± 0.5

Squared rotational
[deg2]

0.1394± 0.26865 0.1378 ± 0.2591 0.1844± 0.4912 0.9± 0.9

Freiburg Bldg. 79
Absolute transla-
tional [m]

0.0382 ± 0.0292 0.0391± 0.0298 0.0395± 0.0306 0.056± 0.042

Squared transla-
tional [m2]

0.0023 ± 0.0044 0.0024± 0.0045 0.0025± 0.0048 0.005± 0.011

Absolute rotational
[◦]

0.4245± 0.4610 0.4204 ± 0.4606 0.4333± 0.4735 0.6± 0.6

Squared rotational
[deg2]

0.3926± 1.2308 0.3887 ± 1.1806 0.4118± 1.2475 0.7± 1.7

Table 7.2: Radish Dataset - Runtime Comparison
TSDF Projective TSDF Euclidean Cartographer

MIT Killian Court
Wall Clock Time [s] 81.0 74.8 103.5
CPU Time [s] 177.6 162.4 220.8
Memory [MB] 1201.4 1171.2 886.0
Freiburg Bldg. 79
Wall Clock Time [s] 20.7 18.9 19.1
CPU Time [s] 68.1 107.3 71.7
Memory [MB] 228.6 245.8 215.9
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As we were able to achieve better results with the current occupancy grid implementation in Cartographer
than the results in the original publication, we use the current cartographer implementation performance, as
measured by us. We choose the same settings for resolution and the additional scan matcher for occupancy
grids as for TSDF.
Table 7.1 shows the results of our TSDF approach in comparison to the occupancy grids in Cartographer and

Graph Mapping [96]. The two TSDF approaches achieve similar accuracy on both benchmarks. In comparison
to occupancy grids, the TSDF approaches reduce the absolute translational error by 13.6%, the squared error
by 27.8% and the rotational errors by similar margins in the MIT Killian Court data set. In the Freiburg Bldg.
79 data set, the TSDF approaches perform slightly better than the occupancy grids with margins between 1%
and 5%.
A potential reason for the small improvement in the Freiburg data set is that it contains many small objects.

TSDFs suffer from overwriting effects, which degrade the map fidelity when objects smaller than the truncation
distance are observed from multiple viewpoints. This is a known issue also described in [84], a solution
strategy to store multiple distances for multiple normal orientations per cell is outlined in [149].
A comparison of the runtimes and memory loads is shown in Table 7.2. For the MIT Killian Court data

set, the TSDF requires less run time than the occupancy grid. In contrast, Cartographer is slightly faster on
the Freiburg Bldg. 79 data set. Overall, the TSDF is faster in scan matching, but the map update requires
more computations and the bounds for the loop closure branch-and-bound are slightly worse, yielding an
overall similar runtime. For both data sets the TSDF approach needs 10% to 20% more memory. An increase
in memory is to be expected as TSDF maps store two values, signed distance, and weight, per grid cell instead
of one for occupancy grids.

7.1.2 DRZ Living Lab Motion Capture Dataset - Aggressive Motions on Rough Terrain

To evaluate the performance of the proposed approach in challenging terrains, we captured four sequences on
challenging terrain. Each is tracked with a high-performance Qualisys optical motion capture system. We
use the data of the motion capture as ground truth for the evaluation. The four sequences (see Figure 7.1)
contain 1) double pitch ramps, which induce a fast pitch motion when traversing 2) a loose woodpile that slips
when traversed 3) the RoboCup Rescue Robot League "Maneuvering 3 - Traverse" lane which contains a 2.4m
long 30◦ incline and 4) the RoboCup Rescue Robot League "Mobility 4 - Elevated Ramps" lane containing a
diagonal hill terrain consisting of 60 cm ramps with sloped tops. The sequences are between 59 s and 149 s in
duration. The dataset is published in [38].
We compare the accuracy of the proposed HectorGrapher and Cartographer[71] with reference to the

measurements from a visual motion capture system. Other state-of-the-art systems, such as LIO-SAM[147],
are not included as, to our best knowledge, and after unsuccessful integration attempts, they do not support
the spinning lidar configuration. We use the relative displacement benchmark measure suggested in [96],
splitting the motion capture trajectory in 0.5 s sequences and comparing the errors for the translation and
rotation component of each sequence.
The error metrics are shown in Figure 7.2. For the rotation component, both methods achieve comparable

results, with outliers in the same value region. HectorGrapher performs slightly worse for small errors. In
contrast, for the translation, significant differences are notable. The median error of Cartographer is more
than two times the median error of Hectorgrapher in the woodpile and elevated ramps scenarios, and even in
the continuous ramps and traverse scenario 40%-60% larger. Notable are also the outliers with high errors
with 12 cm-14 cm in three scenarios, whereas the errors for HectorGrapher are no larger than 6 cm. Both
HectorGrapher and Cartographer are able to generate qualitatively comparable maps of the environment
for moderate motions. For fast motions, such as pitching when traversing ramps, the improved localization
accuracy can also be observed in the scan registration quality. Figure 7.3 shows the registered point clouds for
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(a) Continuous Ramps (b) Woodpile

(c) RoboCup Rescue Robot League: Maneuvering 3 - Tra-
verse

(d) RoboCup Rescue Robot League: Mobility 4 - Elevated
Ramps

Figure 7.1: Overview of the evaluation scenarios with ground truth data.
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Figure 7.2: Quantitative Error Comparison of Cartographer (Carto) and HectorGrapher (Hector) in the four
evaluation scenarios.

(a) Cartographer (b) HectorGrapher

Figure 7.3: Comparison of the registered point clouds (colored by height) in the "Continuous ramps" scenario.
The Cartographer result shows shift artifacts at the pallet stack and the wall (marked by the black
boxes), which are less notable in the HectorGrapher result.

64



(a) X-Ray of 3D Point Cloud (b) 3D Point Cloud

Figure 7.4: Map, trajectory and point cloud for the DRZ Living Lab Loops scenario.

the "Continuous ramps" scenario. While the Cartographer result shows shift artifacts at the pallet stack and
the wall, such artifacts are less notable in the HectorGrapher result.
Runtimes for HectorGrapher were 4-5.5 times higher than for Cartographer, which seems plausible as the

optimization problem becomes significantly larger and the update of the TSDF requires more computation
than the update of the occupancy grid in Cartographer.

7.1.3 Scout DRZ Loops - 3D Large Scale SLAM

To evaluate the proposed approach for large-scale mapping capabilities, we captured a mixed indoor-outdoor
dataset with three loops at the DRZ Living Lab in Dortmund with the emergenCITY Scout robot. In contrast
to the previous evaluations, this dataset also covers three loops and outdoor terrain, including an unpaved
path through a scrapyard and an unpaved trail through a small forest. The unstructuredness and translucency
of these environments make scan registration and mapping challenging. The dataset covers 704 s of data and
a distance of approx. 920m.
As the data set is large in scale, we run the full SLAM pipeline with lidar odometry, loop closure detection,

and pose graph optimization. emergenCITY Scout is equipped with an Ouster OS-0 128 scanner capturing
data at more than 10x the rate of the Velodyne VLP-16. To keep computations manageable, we downsample
the point cloud and only insert 10% of the points in the TSDF.
The resulting map, trajectory, and point cloud are shown in Figure 7.4. The map overall shows a high

consistency, with all three loops closed accurately. Geometry inside the building and outdoors on the scrapyard
are sharp, and the forest track is mapped consistently. Minor registration artifacts are notable in the lower left
side of the DRZ Living Lab building, indicating a small angular offset in the submap registration.
While setting up the configuration for the data set, we noted the tendency of the lidar odometry to erroneous

rotational motions in the forest part, leading to a warping of the map. This issue could be resolved by increasing
the weight of the wheel-inertial odometry rotation component in lidar-odometry optimization.
We performed the computations with an AMD Ryzen 7 3800X processor, taking 648.7 s wall time and

1832.6 s CPU time. In comparison to the RoboCup dataset, the increased point cloud data leads to increased
time of the map update, while the loop closure detection is executed in separate threads and thereby mainly
increases the CPU time but not the wall time. The peak memory usage was 2.03GB, and the real-time factor
was 1.09, demonstrating the real-time capability of the proposed approach with current hardware.
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Competition Results

RoboCup 2018 Best in Class Exploration, Outdoor CarryBot and Small Robot Awards
World Robot Summit 2018 1st place in the Plant Disaster Challenge
RoboCup 2019 German Open 2nd place, Best in Class Exploration
EnRicH 2019 Radiation Mapping Award
RoboCup 2019 3rd place, Best in Class Exploration and Outdoor CarryBot
RoboCup 2021 Best in Class Dexterity and Best in Class Exploration and Mapping
RoboCup 2021 German Open 1st place and Best in Class Exploration
EnRicH 2021 3D Mapping and Radiation Mapping Award
RoboCup 2022 German Open 1st place and Best in Class Autonomy Award
RoboCup 2022 3rd place, Best in Class Exploration
AIRA Challenge 2022 4th place
RoboCup 2023 German Open 1st place, Best in Class Autonomy and Mobility
EnRicH 2023 Radiation Mapping Award
RoboCup 2023 2nd place, Best in Class Autonomy, Technology Challenge Award, and

Best Team Description Paper

Table 7.3: Evaluations of the proposed SLAM system in competitions with Team Hector in chronological
order. No competitions took place in 2020 due to the COVID-19 pandemic.

7.1.4 Evaluation in Robotic Competitions

Evaluations with data sets, such as in the previous sections, provide comparability as different methods can
be evaluated with the same input. However, such data sets are limited in validity for real applications for
multiple reasons. Biases can be induced by the selection of considered data sets, as the authors can choose
which data sets to use for their evaluation and try their methods multiple times until they reach a satisfying
result. Furthermore, published data sets are often cleaner than actual missions, where calibrations might not
be optimal, operators might make errors, tasks might vary, the environment location and conditions cannot be
chosen beforehand, and other processes might be running on the computer during the same time. In many
aspects, evaluations under competition conditions are closer to real-world applications than evaluations with
data sets, as the competition organizers create an environment with only limited knowledge by the operating
team. Furthermore, there is typically only one or a few runs where the method needs to work with no or only
limited chances for repetitions, emphasizing the focus of robustness on the approach as part of an overall
integrated system.
The proposed SLAM system has been successfully evaluated by Team Hector in various development stages

in a wide variety of competitions, enabling autonomous functions and mapping capabilities. An overview of
the competitions and the team results is provided in Table 7.3.

RoboCup Rescue Robot League

At the RoboCup Rescue Robot League competitions, the robot needs to perform multiple tasks from the
categories of maneuvering, mobility, dexterity, and exploration, which are derived from capabilities needed
for actual disasters. While some tasks, such as exploration, require an autonomous operation (depending
on the rule version), other tasks gain a score bonus for autonomous operation. In the exploration tasks, the
submitted 2D and 3D maps are the main evaluation criteria. In the nine RoboCup (4x German Open, 5x
World Championship) participations, the proposed SLAM system was applied in all competitions as the main
SLAM system, enabling autonomous and semi-autonomous functions. The proposed system provided reliable
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localization and accurate mapping even in narrow exploration arenas and on challenging terrain. Thereby, it
played a crucial role in achieving high scores for good overall results and Best in Class prices for exploration
and autonomy. A detailed evaluation of the data of the RoboCup Rescue Robot League 2021 follows in the
next section.

European Robotics Hackathon (EnRicH)

The European Robotics Hackathon (EnRicH) takes place every two years at the inactive Nuclear Power Plant
(NPP) Zwentendorf in Austria. The competition mimics nuclear accidents with active radiation sources. The
robots need to search a part of the NPP and perform multiple tasks: 1) create a 3D map of the environment, 2)
locate the radiation sources and create a map of the dose rate distribution, 3) perform manipulation tasks, and
4) find a missing worker and take him to a safe position. In 2023, the rule to autonomously explore at least
parts of the environment was introduced. In the three participations, the proposed SLAM system enabled the
team to create accurate 3D maps of complex, real-world environments and provided exploration assistance
for the operator. The resulting artifacts were rewarded with the Award for Best 3D Mapping in 2021 and Best
Radiation Mapping in all years, where the SLAM system provided the localization reference and geometric
3D map. Therefore, the proposed SLAM system was successfully evaluated and played a crucial role in the
successful competition participation.

World Robot Summit and AIRA Challenge

The Plant Disaster Challenge at World Robot Summit 2018 and the AIRA Challenge 2022 evaluated the
performance of mobile robots in industrial settings. In contrast to RoboCup or EnRicH, the exact structure
of the environment with the location of relevant objects was known beforehand. Therefore, a map of the
environment could be captured before the competition, allowing the SLAM system to operate in a localization
mode against a static map. This allowed us to perform autonomous behaviors at the World Robot Summit,
although during the competition, the operator teleoperated the robot using the localization estimate for
assistance, as this was faster than the autonomous operation. At the AIRA challenge, it was required that the
robot perform the mission fully autonomously. The localization information enabled the successful deployment
of assistance functions to drive to waypoints and traverse stairs at predefined positions.

7.1.5 Evaluation at RoboCup Rescue Robot League 2021

We evaluated the proposed SLAM system for the RoboCup Rescue Robot League 2021, winning the best-in-class
"Exploration and Mapping" award. Each team had to set up a scenario following the same rules, following
the NIST guidelines for evaluation of rescue robots1, distributing 10 barrels at two different heights as visual
fiducials. The fiducials appear as circles in the 2D projection of the map and are utilized to measure accuracy
and completeness. To make the terrain challenging, every 4.8m had to contain a small obstacle (see Figure
7.5a), such as a wooden bar or a ramp. As part of the scenario we traversed the RoboCup German Open - "EXP
1 Map on Continuous Ramps" Arena (see Figure 7.5b) which is a narrow, 1.2m wide corridor in waveform in
a 7.2m×2.4m area continuously paved with ramps. The ramps induce fast roll-pitch motions. In combination
with the narrow environment, both tasks - navigation and mapping - are challenging.
The data set covers 622 s of data. As the data set is rather small in scale and does not cover large loops, we

only perform the lidar odometry part and do not need to check for loop closures.
The resulting map, trajectory, and point cloud are shown in Figure 7.6. The map overall shows a high

consistency, even in the narrow parts such as the EXP1 arena. The fiducials are clearly visible in the 2D

1https://rrl.robocup.org/forms-guides-labels/
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(a) Every 4.8m the scenario contains an obstacle such as a
pallet, ramp or wooden bar. (b) Aerial Photo of the EXP1 Arena with barrel fiducials.

Figure 7.5: The RoboCup Rescue Robot League 2021 scenario contains multiple small obstacles and the
EXP1 exploration arena.

(a) X-Ray of 3D point cloud with the estimated trajectory
indicated in blue (b) 3D point cloud - Roof removed for better visibility

Figure 7.6: Map, trajectory, and point cloud for the RoboCup 2021 scenario.
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Figure 7.7: Workshop exploration scenario. The scenario simulates a workshop exploration with the search
for a potential radiation source. In the scenario, the simulated KIARA Telemax starts at the top
left corner, the radiation source is placed on the rear table at the right end, and the door to the
small room in the rear can be opened for further investigation. The scenario mimics an actual
workshop and training area at the Kerntechnische Hilfsdienst GmbH in Karlsruhe, Germany.

projection and demonstrate accuracy and coverage. On a desktop computer with an AMD Ryzen 9 3900X
processor, computations took 193.4 s wall time and 191.9 s CPU time on a single core with a peak memory
usage of 321.39MB yielding a real-time factor of 3.24. The low computational cost makes the approach
well-suited for localization and mapping on mobile robots with limited hardware.

7.2 Evaluation - Operator-related Exploration and Data-Acquisition in Multi-Goal
Missions

To investigate the proposed exploration concept, we consider two complex simulated scenarios. The first
scenario mimics a workshop and investigates the approach in the context of the shared autonomy concept. The
second scenario covers a large-scale environment and investigates the large-scale exploration performance.

7.2.1 Workshop Scenario - Shared autonomy exploration for radiation source localization

To investigate the suitability of the proposed approach for explorations in complex missions with operator
interactions, we consider the scenario of an investigation of a workshop with a presumed radiation source.
Figure 7.7 shows an overview of the scenario environment.
In the presumed scenario, the goal is to capture a 3D model of the environment and a 2D map of the dose

rate with the simulated KIARA Telemax robot. As part of that, the radiation source should be localized as
accurately as possible. Furthermore, potential environmental interactions such as a detailed investigation of
relevant objects or a door opening to reach the rear room are required to explore the environment.
The overall workshop, which mimics an actual workshop and training area at the Kerntechnische Hilfsdienst

GmbH in Karlsruhe, Germany, has a size of 23m × 10m and covers various objects and obstacles. In the
scenario, the robot starts at the top left corner, the radiation source is placed on the rear table at the right
end, and the door to the small room in the rear can be opened for further investigation. The environment is
simulated with the Webots simulator, which provides accurate modeling of physics and sensor data. To focus
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on the exploration aspect, the ground truth data provided by the simulator is utilized for localization and
semantic analysis of images.

Scenario Procedure

An example scenario procedure is shown in Figure 7.8a and the respective operator interactions and autonomy
levels in Figure 7.8b. The robot starts in the rear-left corner. The remote operator initiates an autonomous
exploration of the environment. During the exploration, the progress is visualized by remaining viewpoints and
the coverage indication of the submaps. Furthermore, the environment model is continuously updated, and
relevant semantic objects such as hazard signs or doors are added to the environment model. As the radiation
dose rate increases in the right part of the scenario, the operator chooses an increased spatial coverage
resolution by clicking on the marker for the respective submaps. Close to the first table, the measurements
reach a high level and decrease again after the robot diverges from the table. Therefore, the operator decides
to take manual control of the robot, driving close to the table and inspecting it in detail with the arm. The
operator identifies the radiation source and continues the autonomous exploration assistance of the right part
to check for additional sources. The exploration assistance continues to cover the right part of the workshop.
The exploration assistance terminates, and there is no indication of further radiation sources. The operator
decides to explore a door that was passed. Therefore, the operator clicks on the door marker and chooses the
go to action. At the door, the operator takes manual control and uses the manipulator to open the door. As the
room behind is very narrow, the operator manually navigates the robot through the room. The room does not
contain suspicious objects or notable dose rate readings. Therefore, the operator manually drives the robot
out of the room and sets a waypoint at the starting position, using the navigation assistance to drive back to
the initial position.
Resulting maps of the dose rate and the room are shown in Figure 7.9. The radiation map clearly indicates

the position of the radiation source. The localization error of the estimated radiation source 3D position with
respect to ground truth is 0.052m. This clearly indicates where the source is located on the table and allows
detailed planning for further reaction measures. The visual of the 3D map is complete, indicating a good
surface coverage of the environment.
The scenario demonstrates the proposed approach’s applicability to a scenario with flexible switches between

operator and autonomous capabilities.

Exploration Strategy Comparison

To investigate the effect of different exploration strategies on the source localization accuracy, duration, and
covered distance, we consider an autonomous exploration of the main hall of the workshop environment. As
the arm is not used in the autonomous exploration and the exploration algorithm uses the robot body as a
reference link, we simulate the radiation sensor at the center of the robot body. We consider four exploration
strategies: 1) only surface coverage - "surface," 2) surface and coarse spatial coverage - "default," 3) surface
and dense coverage - "dense" and 4) surface and coarse coverage in the left half and dense in the right half,
similar to the previous scenario - "adaptive."
For each strategy, the scenario is repeated five times. The resulting radiation source localization errors,

exploration durations, and covered distance are shown in Figure 7.10. The mean errors in position for the
surface strategy are 2.6m, 1.8m for default, 1.18m for dense, and 1.26m for adaptive. Thereby, dense and
adaptive show comparable results, while default and surface each significantly worsen the source localization
estimate. A denser spatial coverage should enable a more accurate estimate of the radiation source position,
which is supported by the results. As the surface strategy does not directly define spatial sampling constraints,
the spatial coverage is the coarsest, leading to the highest error. Exploration duration and covered distance
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(a) Scenario procedure schematic. Simplified robot trajectory indicated by white dashes.

(b) Autonomy levels during the scenario procedure.

Figure 7.8: Workshop scenario procedure. Robot locations for relevant environment interactions are indicated
by the numbers. (1) Initiation of the exploration. (2) Increase the spatial coverage resolution
for the right half. (3) Pause of the autonomous exploration and manual inspection of the table.
(4) Continuation of autonomous exploration (5) Exploration terminates, operator command to
navigate to door. (6) Manual opening of the door and inspection of the small room. (7) Waypoint
navigation to start. (8) End of mission.
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(a) Captured 3D point cloud of the scenario. The roof was
removed for better visibility.

(b) 2D Radiation map with estimated source location. The
white line indicates the sensor trajectory.

Figure 7.9: Resulting 3D point cloud and 2D radiation map of the workshop scenario procedure.

(a) Source localization error (b) Exploration duration (c) Covered distance

Figure 7.10: Evaluation of the source localization error, duration, and covered distance for different exploration
strategies. Mean and standard deviation of 5 runs per strategy.
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Figure 7.11: CMU indoor scenario. The scenario covers outer dimensions of 130m×100m.

show very comparable results. The surface approach covers a distance of 25.2m in 69.3 s, default 41.5m in
101.3 s, dense 109.7m in 356.8 s and adaptive 56.0m in 191.9 s. For surface, default, and dense, the results are
reversed to the localization error. The dense approach is slower, by a factor of 5.1, compared to the surface
approach and 3.5 to the default approach. The adaptive approach is still slower than the surface and default
approach but 1.9 times faster than the dense approach, achieving a similar localization accuracy as only the
part relevant to the source localization is densely mapped. The adaptive approach compromises between high
localization accuracy and exploration duration, leading to increased exploration efficiency.

7.2.2 CMU Scenario - Autonomous exploration in large-scale environments

To investigate the behavior of the exploration assistance in large-scale environments, we consider the large-
scale "Indoor Corridors" environment of the CMU Autonomous Exploration Development Environment [23]
as shown in Figure 7.11. The scenario is large-scale with outer dimensions of 130m×100m and covers a
convoluted environment with obstacles and thin structures.
We are considering a fully autonomous exploration with the emergenCITY Scout robot simulated in

Gazebo. For the exploration, we consider three strategies: the proposed method with only surface coverage
"surface_only," the proposed method with combined surface and spatial coverage "combined" and a frontier-
based exploration approach [88] "frontier." To measure spatial coverage, we integrate the visited area with a
distance of maximum 2m to the robot trajectory by maintaining a coverage grid map with 0.1m resolution.
For the surface coverage, we maintain a 3D coverage grid with 0.1m resolution and count the number of fully
observed cells, which approximate the covered 3D surface of the environment.
For each strategy, the spatial and surface coverage during the exploration for three samples per strategy

are shown in Figure 7.12. The combined approach achieves the highest spatial coverage of 3954m2, the
surface_only strategy follows with 3648m2, 7.7% less and lastly the frontier-based approach with 3140m2,
20.6% less. For surface coverage, the result is similar, with smaller relative margins of 4.2% and 10.5%,
respectively. For the required time, the order is reversed: explorations with surface_only are the quickest,
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(a) Spatial Coverage (b) Surface Coverage

Figure 7.12: Coverage over time for the CMU Indoor scenario with three exploration strategies: the proposed
method with only surface coverage "surface_only," the proposed method with combined surface
and spatial coverage "combined" and a frontier-based exploration approach "frontier." For each
strategy, three samples are depicted.

taking an average 1599 s, frontier takes on average 1848 s, additional 15.6% and combined 2088 s, additional
30.6%.
For both coverages, the frontier strategy explores slightly faster in the first approx. 700 s, when the surface

strategy takes a slight lead. Notable are plateaus in the coverage for the frontier-based approach starting at
1400 s - 1500 s, where the method catches up on small remaining frontiers. The combined approach explores
slightly slower than the other approaches in the early phase, with small plateaus in the surface coverage,
and then it consistently continues until small plateaus arise before termination. The combined approach also
accounts for the spatial coverage, so the slightly slower coverage is reasonable, as the other approaches only
optimize for direct coverage of the surface. Conversely, this also explains the better coverage of the combined
approach. The faster and better coverage of the surface_only strategy in comparison to the frontier approach
indicates improved efficiency of the viewpoint-based approach with global planning. Cao et al. [25] observe
even larger margins for their approach in comparison to a frontier-based approach, indicating the need for
further investigations.

7.3 Transfer

Concepts, insights, and systems developed in this thesis were transferred to contribute to practical applications.
In the following, we outline the contribution of requirements to German consortial standards (DIN SPEC)
for robotic systems for use in hazardous applications and the application of the robotic demonstrator DRZ
Telemax with the developed SLAM system for inspection and mapping in response to a residential complex
fire.
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(a) DRZ Telemax robot in front of the building ruins. (b) The operator teleoperates the robot
with SLAM localization and registered
point cloud as assistance.

Figure 7.13: Residential Complex Fire Deployment in Essen in February 2022. (Images: Nils Heidemann)

7.3.1 German consortial standards - DIN SPEC 91477 Robotic systems for use in hazardous
applications

The creation of two German consortial standards (DIN SPEC) for robotic systems for use in hazardous
applications was initiated by a consortium originating from the creation of the German Center for Rescue
Robotics. The final consortium also included multiple other companies and research organizations. The goal
of the first standard DIN SPEC 91477-1:2023-05 Robotic systems for use in hazardous applications - Part 1:
General requirements [47] was to provide developers and applicants with a categorization of robotic systems
and a definition of general requirements. The second standard DIN SPEC 91477-2:2023-05 Robotic systems for
use in hazardous applications - Part 2: Requirements for firefighting robots [48] provided further specifications
specifically for firefighting robots. Parts of the identified requirements served as input for the implementation
of the first standard, with specific input to standard chapters on environmental conditions and requirements
for autonomy and assistance functions. Further specific requirements for autonomy and assistance functions
for firefighting robots were contributed to the second standard.

7.3.2 Disaster Deployment - Residential Complex Fire Essen

As described in Section 4.4.3, on February 22, 2022, a residential apartment building in Essen, Germany,
experienced a severe fire. As a result, 39 apartments on four floors were burned, and an entry ban was imposed
for parts of the building. To assess the situation and gather information for the investigation of the fire’s cause,
the German Center for Rescue Robotics (DRZ)2 deployed ground and air robots to create a 3D model and
capture images of the interior.
The DRZ Telemax ground robot was deployed for three inspections the following day. For the first two

missions on ground level, a person had visual contact with the robot and communicated with the operator.

2The author was part of the ground robot response team and teleoperated the robot.
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This was not feasible for the third mission at the upper level due to the entry ban. Therefore, a UAV was
deployed to support the operator with visual support from the outside.
During all missions, the robot was teleoperated by the operator. The navigation was challenging as the

environment covered very narrow passages, where the robot could collide with the walls and loose debris on
the ground, which led to track slippage and ground contact with the lower part of the chassis. Visualizing the
robot’s position and state with registered point clouds with the 3D robot model helped assess distances to
the environment and navigate through narrow environments. First, 3D models could already be computed
live during the deployment missions with the proposed SLAM approach. To further improve the quality, the
data was post-processed after the deployment, and the final models were transmitted one week after the
deployment.
After inspecting the data, the investigators expressed the need not only for geometric data but also for

high-quality visual models. This request led to the development of the automatic panorama tour tool outlined
in Chapter 6. Experiences, observations, and derived requirements are accounted for in Chapter 4.
Overall, the deployment demonstrated the suitability of the proposed SLAM approach for the targeted

applications in disaster response. However, the deployment also indicated that for practical applicability, not
only research questions need to be addressed, but also robust, practical integrated systems and streamlined
processing workflows are necessary.
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8 Conclusion

This thesis investigates novel approaches for localization, mapping, and exploration as assistance abilities for
mobile ground robots in disaster environments, aiming to advance disaster response efficiency and safety by
contributing, e.g., to autonomous robot navigation, that account for the specific requirements and challenges
to support first responders and civil forces.

8.1 Summary of Contributions

Requirements and Challenges for Autonomy and Assistance Functions for Ground Rescue Robots in
Reconnaissance Missions Understanding the specific requirements for (semi-)autonomous assistance
functions in rescue robots is crucial for research and development toward practical applicability. Previous
analyses have primarily focused on general aspects, leaving a gap in the specific understanding of the full
spectrum of requirements for (autonomous) assistance functions. In Chapter 4, we address this gap by deriving
a novel model for an integrated function capability from established models for technology acceptance and
derive a comprehensive, evidence-driven analysis of application requirements and research challenges for
(autonomous) assistance abilities.
The analysis of requirements and challenges has been published in [41], which was nominated as Best Paper

Award Finalist. Insights from training and deployments have been published in [153] and [94]. Parts of the
identified requirements served as input for the implementation of the German consortial standards DIN SPEC
91477-1:2023-05 Robotic systems for use in hazardous applications - Part 1: General requirements [47] and DIN
SPEC 91477-2:2023-05 Robotic systems for use in hazardous applications - Part 2: Requirements for firefighting
robots [48].

Robust Simultaneous Localization and Mapping in Challenging Environments Sufficiently accurate and
robust SLAM in unknown environments without relying on GNSS support are essential for (semi-)autonomous
operation. In particular, traversing uneven ground can lead to abrupt robot motions that existing SLAM
methods cannot model accurately or efficiently enough. Furthermore, relevant environments are often
unstructured and potentially visually degraded by smoke, dust, or fog. To account for these properties, we
present novel approaches to improve the accuracy, robustness, and efficiency of position estimation and map
generation. Additionally, we propose extensions to transfer the approach for the operation in visually degraded
conditions with radar.
The evaluation results in Chapter 7 demonstrate improvements in accuracy and robustness with respect

to a state-of-the-art method. We successfully evaluated the approach in various international competitions
as part of integrated robot systems (RoboCup Rescue Robot League, World Robot Summit, EnRicH, AIRA),
demonstrating more robust and accurate results than competing approaches. The approach enabled the
creation of accurate maps and the execution of complex autonomous behaviors, such as autonomous obstacle
traversal. Moreover, we demonstrated the applicability in the evaluation in an actual disaster environment as
part of a deployment of the Robotic Task Force established by German Rescue Robotic Center DRZ after a
large building complex fire.
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The developed approach for robust 3D mapping is published as HectorGrapher [39], the large-scale loop
closure and pose graph approach in [37], the extension for degraded visual conditions in [157] and insights
on the evaluation in the Essen disaster in [153]. The implementation is available as open source1 and the
created DRZ Living Lab data set as open data2.

Operator-related Exploration and Data-Acquisition in Multi-Goal Missions In response missions, robots
might need to fulfill various tasks in a single mission. In such dynamic and versatile environments, first
responders often have prior knowledge and potentially better high-level decision-making skills than existing
AI methods for the perception and reasoning of autonomous robots. However, an operator’s cognitive load is
limited, and direct operator control is often error-prone, inefficient, and not always possible.
While related state-of-the-art methods often focus on fully autonomous approaches for single-goal missions,

we propose a shared-autonomy approach for multi-goal missions, which allows fully autonomous operation
but strongly benefits and incorporates by design the capabilities of the operator for scene understanding and
decision-making. We propose a novel method to allow for spatial (e.g., radiation or hazard sensor) and surface
coverage goals missions. The method is embedded in a proposed framework that follows the shared autonomy
principle and allows flexible changes in the autonomy level from assisted teleoperation to full autonomy. The
operator can request complex environment interaction with a novel, integrated, actionable, affordance-based
environment representation, which enables complex object interaction and planning sequences. Furthermore,
we propose a novel method to efficiently and accurately map dose rates in 2D and 3D based on Gaussian
Processes.
The evaluation in Chapter 7 demonstrates the proposed planner’s efficiency and improved efficiency

and coverage compared to a frontier-based planner in complex simulation environments. Furthermore,
the evaluation demonstrates the capability to perform complex missions with autonomous and interactive
interactions.
The actionability concept has been published in [8], and the radiation mapping approach in [152] together

with a data set with multiple radiation sources [40].

Evaluation and Transfer We performed comprehensive evaluations to investigate the performance and
properties of the proposed methods in Chapter 7. We evaluated the proposed SLAM method on established
benchmark data, demonstrating improvements in accuracy for large-scale 2D mapping compared to related
methods. As typical benchmarks do not address the challenging motion characteristics when traversing
obstacles or uneven terrain, we introduce the DRZ Living Lab dataset [38]. Our evaluation of that data set
demonstrates improvements in accuracy and robustness for 3D mapping to a related method. Furthermore,
we evaluated the proposed SLAM method as part of a fully integrated robot system under conditions of
multiple international robotic competitions, contributing to multiple prices and demonstrating better accuracy
and robustness than competing methods. We evaluated the exploration method in two complex simulated
environments, demonstrating improved efficiency and coverage compared to a frontier-based planner and the
capability to perform complex missions with autonomous and interactive interactions.
Finally, we demonstrate the successful transfer of the proposed approach for practical applications such

as evaluation as part of an actual disaster deployment and the contribution to implementing the German
consortial standards (DIN SPEC) for robots in hazardous environments.

1https://github.com/tu-darmstadt-ros-pkg/hectorgrapher
2https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3973
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8.2 Outlook

The advancements and contributions presented in this thesis lay a solid foundation for further research
and development in the field of disaster robotics and provide versatile aspects for future exploration and
improvements toward capabilities for real-world disasters.
A key challenge is robustness, resilience, and reliability under adverse disaster conditions, encompassing all

components from hardware to control, perception, reasoning, operator interaction, and novel robotic assistance
abilities. The proposed SLAM approach addresses different sensing modalities, lidar, and radar, demonstrating
robustness to fast motions and degraded visual conditions. While these sensors are considered separately,
combined approaches incorporating further sensors, such as color or thermal cameras, have the potential to
yield accurate and robust results across various conditions. Initial works for such a system are proposed by the
NeBula framework [112], considering separate sources and fusing them subsequently. However, achieving a
flexible and computationally efficient approach with a unified environment representation is an open research
question.
Scaling from a single robot to a fleet of heterogeneous cooperating robots can enhance the capabilities

significantly. Results from the DARPA SubT Challenge demonstrate large potentials for the cooperative
exploration of large-scale environments [31] but also indicate limitations in the function capabilities and
robustness. Concepts such as sparse robot swarms indicate the potential to enable versatile distributed
capabilities [155].
Another key challenge is the robot-operator interaction. The shared autonomy framework proposed in

this thesis represents a step towards effective collaboration between humans and robots in disaster response
tasks. Further investigation into intuitive and efficient user interfaces and interaction paradigms combining
the operator and assistance functions is essential to facilitate seamless collaboration and enhance overall
efficiency.
Learning-based approaches demonstrate impressive results in many relevant tasks, such as environment

modeling [107], and semantic understanding [164], control [78], enabling complex behaviors [99] and
skills [131]. Recent progress [70] towards the robustness and safety of reinforcement learning-based ap-
proaches indicates promising directions to enable easier object interactions with complex robots. These
approaches provide a large potential for further powerful robotic assistance functions. However, the combi-
nation of typically low training data, generalization, transparency, potential out-of-distribution data during
deployment, limited computing power, and real-time requirements on mobile robotics systems pose versatile
research and application challenges for successful transfer and application.
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