
Materials and Earth
Sciences Department
Mechanics of Functional
Materials

Phase-field modeling of
thermal fracture and its
applications to additive
manufacturing
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Hui Ruan aus Anhui, China
Tag der Einreichung: 18.09.2024, Tag der Prüfung: 18.11.2024

1. Gutachten: Prof. Dr. Bai-Xiang Xu
2. Gutachten: Prof. Dr. Dietmar Gross
Darmstadt, Technische Universität Darmstadt



Phase-field modeling of thermal fracture and its applications to additive manufacturing

Accepted doctoral thesis by Hui Ruan

Date of submission: 18.09.2024
Date of thesis defense: 18.11.2024

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-288999
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/28899
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

https://tuprints.ulb.tu-darmstadt.de/id/eprint/28899
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Pursue the wind and moon, do not stay;
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Abstract

Modeling and prediction of fracture processes remain challenging problems in compu-
tational mechanics, particularly in a multiphysics environment. In various practical
applications, fracture is coupled with other involved physics which in turn severely in-
fluences the damage progression inside the material. Thermal fracture is universal in
many branches of engineering applications, and is one of the most devastating defects in
the metal additive manufacturing process. Due to the interactive physics involved, the
computational simulation of such a process is challenging. This thesis is dedicated to
understanding the fracture mechanism of such a complex material system, in particular
the thermal cracking mechanisms of the additive manufacturing process, and the fracture
behaviors of additively manufactured parts.
This thesis presents a thermodynamically consistent framework for thermo-elastic

coupled brittle fracture at small strains using the phase-field model. The coupling mecha-
nisms such as damage-informed thermomechanics and heat conduction, and temperature-
dependent fracture properties, as well as different phase-field fracture formulations, are
discussed. Numerical examples show that the proposed model is capable of simulating
thermal brittle fracture, and the coupling mechanisms are indispensable to the accurate
prediction of the thermal fracture process. Moreover, the phase-field model for thermal
ductile fracture in thermo-elasto-plastic materials undergoing finite deformation is devel-
oped. Thereby the intercoupling mechanisms among elastoplasticity, phase-field crack
and heat transfer are considered comprehensively. The finite element implementation of
the coupled phase-field model is validated by comparing simulation results of a tensile test
of an I-shape specimen, encompassing elastoplasticity, hardening, necking, crack initiation
and propagation with experimental results.
The validated models are further employed to simulate the multiphysics hot cracking

phenomenon in additive manufacturing in the context of an interpolated temperature
solution, the phenomenological model, and the powder-resolved model of powder bed
fusion. Thereby not only the classical thermal strain but also the solidification shrinkage
are considered to calculate the thermal stress. Simulation results reveal certain key
features of hot cracking and its dependency on process parameters like laser power and
scan speed. A higher laser power and a lower scanning speed are favorable for keyhole
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mode hot cracking while a lower laser power and a higher scanning speed tend to form the
conduction mode cracking. These findings provide valuable insights into the fundamental
understanding of crack formation mechanisms and process optimization.
Furthermore, a multiscale framework using the cohesive phase-field fracture method

is presented to investigate the anisotropic fracture of additively manufactured parts.
Herein, the anisotropic properties including anisotropic elasticity and anisotropic fracture
resistance are considered, with both effects on crack patterns studied separately and
combined. The orientation-dependent elastic moduli are calculated by the computational
homogenization approach, while the stress-based spectral decomposition method of stress
and strain energy is adopted as a result of anisotropic elasticity. A direction-dependent
structural tensor which relates to the printing process is introduced to the phase-field
fracture model to include the anisotropic fracture toughness. The simulation results
show that it is necessary to consider both anisotropic elasticity and anisotropic fracture
properties to accurately capture the fracture behaviors of additively manufactured parts.
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Zusammenfassung

Die Modellierung und Vorhersage von Bruchvorgängen ist nach wie vor ein schwieri-
ges Problem in der Computermechanik, insbesondere vor einem multiphysikalischem
Hintergrund. In verschiedenen praktischen Anwendungen ist der Bruchmechanik mit
anderen beteiligten physikalischen Vorgängen gekoppelt, die ihrerseits den Verlauf der
Schädigung im Material stark beeinflussen. Thermischer Bruch ist in vielen Bereichen
des Ingenieurwesens allgegenwärtig und gehört zu den verheerendsten Defekten bei
der additiven Fertigung von Metallen. Aufgrund der interaktiven Physik ist die rechne-
rische Simulation eines solchen Prozesses eine Herausforderung. Diese Arbeit widmet
sich dem Verständnis der Bruchmechanismen eines solch komplexen Materialsystems,
insbesondere der thermischen Rissmechanismen des additiven Fertigungsprozesses und
des Bruchverhaltens von additiv gefertigten Teilen.

In dieser Arbeit wird ein thermodynamisch konsistenter Rahmen für thermoelastisch ge-
koppelten Sprödbruch bei kleinen Dehnungen unter Verwendung des Phasenfeldmodells
vorgestellt. Es werden die Kopplungsmechanismen wie schädigungsinformierte Ther-
momechanik und Wärmeleitung und temperaturabhängige Brucheigenschaften sowie
verschiedene Phasenfeld-Bruchformulierungen diskutiert. Numerische Beispiele zeigen,
dass das vorgeschlagene Modell in der Lage ist, thermischen Sprödbruch zu simulie-
ren, und dass die Kopplungsmechanismen für die genaue Vorhersage des thermischen
Bruchprozesses unerlässlich sind. Darüber hinaus wird das Phasenfeldmodell für ther-
misch duktilen Bruch in thermoelasto-plastischen Materialien, die einer endlichen Verfor-
mung unterworfen sind, entwickelt. Dabei werden die Kopplungsmechanismen zwischen
Elastoplastizität, Phasenfeldbruch und Wärmetransport umfassend berücksichtigt. Die
Finite-Elemente-Implementierung des gekoppelten Phasenfeldmodells wird durch den
Vergleich der Simulationsergebnisse eines Zugversuchs an einer I-förmigen Probe, der
Elastoplastizität, Verfestigung, Einschnürung, Rissinitiierung und -ausbreitung umfasst,
mit experimentellen Ergebnissen validiert.

Die validierten Modelle werden weiter eingesetzt, um das multiphysikalische Heißriss-
phänomen in der additiven Fertigung im Kontext einer analytischen Temperaturlösung, des
phänomenologischen Modells und des pulveraufgelösten Modells der Pulverbettschmelze
zu simulieren. Dabei wird nicht nur die klassische thermische Dehnung, sondern auch
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die Erstarrungsschrumpfung berücksichtigt, um die thermische Belastung zu berechnen.
Die Simulationsergebnisse zeigen bestimmte Schlüsselmerkmale der Heißrissbildung und
ihre Abhängigkeit von Prozessparametern wie Laserleistung und Scangeschwindigkeit.
Eine höhere Laserleistung und eine geringere Scangeschwindigkeit begünstigen die Heiß-
rissbildung im Keyhole-Mode, während eine geringere Laserleistung und eine höhere
Scangeschwindigkeit eher zur Bildung von Rissen im Conduction-Mode führen. Diese
Ergebnisse liefern wertvolle Einblicke in das grundlegende Verständnis der Rissbildungs-
mechanismen und der Prozessoptimierung.
Darüber hinaus wird ein multiskaliger Rahmen unter Verwendung der kohäsiven

Phasenfeld-Bruchmethode vorgestellt, um den anisotropen Bruch von additiv gefertig-
ten Teilen zu untersuchen. Dabei werden die anisotropen Eigenschaften einschließlich
der anisotropen Elastizität und der anisotropen Bruchfestigkeit berücksichtigt, wobei
beide Auswirkungen auf die Rissmuster sowohl getrennt als auch kombiniert untersucht
werden. Die orientierungsabhängigen Elastizitätsmodule werden mit dem Ansatz der
rechnergestützten Homogenisierung berechnet, während die spannungsbasierte spektrale
Zerlegungsmethode der Spannungs- und Dehnungsenergie als Ergebnis der anisotropen
Elastizität übernommen wird. Ein richtungsabhängiger struktureller Tensor, der sich auf
den Druckprozess bezieht, wird in das Phasenfeld-Bruchmodell eingeführt, um die an-
isotrope Bruchzähigkeit zu berücksichtigen. Die Simulationsergebnisse zeigen, dass es
notwendig ist, sowohl die anisotrope Elastizität als auch die anisotropen Brucheigenschaf-
ten zu berücksichtigen, um das Bruchverhalten von additiv gefertigten Teilen genau zu
erfassen.
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1 Introduction

1.1 Motivation and background

In recent decades, additive manufacturing (AM) has garnered significant attention due
to its flexibility and ability to freely design and produce complex geometries, facilitating
the rapid transformation of 3D digital prototypes into final components. The widespread
adoption of AM has fundamentally altered the design and fabrication of mechanical parts,
including the development of functionally graded and heterogeneous materials. Conse-
quently, AM has become increasingly popular in industries such as aerospace, automotive,
and energy. Among the various AM techniques, powder bed fusion (PBF) stands out as a
prominent method for fabricating metal, polymer, and ceramic components. This process
involves the precise deposition of thin layers of powder, which are selectively fused by
laser or electron beams according to the digital prototype.
AM techniques have their advantages over other traditional manufacturing methods

like casting or forging. However, they also suffer from challenges and bottlenecks. Various
defects during the process of AM undermine the mechanical properties of additively
manufactured components and thus limit their applications, such as porosity, inclusion,
unmelting, lack-of-fusion and cracking [1, 2]. Hot cracking, occurring during the period
of solidification or liquation of certain alloy systems is one of the most detrimental ones
[3, 4]. As shown in Fig. 1.1, hot cracking phenomenon has been observed experimentally
in aluminium alloys [5, 6, 2], nickel alloys [1, 7, 8] and steels [9]. The occurrence of
hot cracking is a serious challenge for laser powder bed fusion (LPBF) when producing
non-weldable nickel-base superalloys or aluminum. For example, while high specific
strength series Al alloys are of interest in the aerospace and automotive industries, these
alloys are susceptible to hot cracking issues during AM. Therefore, suitable manufacturing
processes of LPBF that combine desirable fine microstructure and mechanical properties
together with a low cracking susceptibility are a promising way to produce defect-free
structures [10].

Hot cracking refers to the cracking phenomena associated with the presence of liquid in
the interdendritic spaces during the solidification shrinkage (SS) [14, 15] and is localized
in the fusion zone and partially-melted zone region of the heat-affected zone. Hot cracking
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Figure 1.1: Experimental observations of hot cracking in metal additive manufacturing.
(a) and (b) cracking in single layer AM process [11]. (c) and (d) for multilayer
AM processes [12, 13].

takes two primary forms in metal AM, namely solidification cracking and liquation cracking.
In the metal AM process, dendrites form between the molten pool and solid materials. Due
to the fast heating and cooling during complex cyclical thermal history, the molten metal
is in non-equilibrium solidification condition, prompting the formation of segregation and
precipitates at the front of the solidification interface [5, 16]. These elements at the grain
boundaries (GBs) decrease the fraction of the solid and form films enriched with solute
elements in these regions. As the solidification process proceeds, the stress accumulates
in films until the tensile stresses from solidification shrinkage and thermal contraction
exceed the strength of the films, as residual stress can be transmitted via solids but not
liquids. The lack of sufficient backfilling of liquid metal results in pronounced cracks,
often characterized by dendritic protrusions on the crack surface [16, 17, 18]. In contrast,
liquation cracking occurs directly outside the fusion zone in the partially melted zone.
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The partially melted zone is subjected to temperatures between the liquidus and eutectic
temperatures, resulting in localized melting of eutectic and GBs [17].
A lot of research into the hot cracking mechanism during the AM process has been

performed in the literature. Chauvet et al. [19] studied the mechanism of cracking
in a non-weldable Ni-based superalloy fabricated by selective electron beam melting
and concluded that the presence of films is required and the hot cracking susceptibility
depends on the GBs misorientation. Similarly, Chandra et al. [20] proposed a hot cracking
criterion that considers various process parameters along with the GB inclination for Ni-
based superalloys. Therein they concluded that the cracking occurred during the terminal
stages of solidification in the form of solidification cracks due to the combined action of
thermal strains and solidification shrinkage during rapid solidification. Recently, Li et al.
[21] drew a similar conclusion by investigating the cracking initiation mechanism of the
LPBF process, and showed that the solidification and thermal shrinkage of adjacent grains
are the direct causes of cracking, which are crisscrossed horizontally and propagated
through multilayers along the building direction. See also the works [11, 22] on the hot
cracking mechanism of aluminum alloys and the influence of process parameters.

Based on the cracking mechanism, several potential strategies have been proposed to re-
duce or eliminate hot cracking. The first established approach is to modify the composition
of the fabricated alloy to increase the amount of eutectic or lower the solidification range
or high-temperature brittleness range (HTBR) [2, 10, 23]. In particular, the addition of
Silicon to the alloy reduces the melting temperature and the solidification range, thus
leading to decreased hot cracking. For example, most studies on AM of aluminum alloys
were carried out with casting aluminum alloy (AlSi10Mg, AlSi12, AlSi7Mg0.3) which
contains high levels of Silicon and limited HTBR and is thus less susceptible to hot cracking.
Similarly, the addition of Nickel can mitigate cracking as well [24]. Meanwhile, grain
refinement by the addition of nucleating agents results in better strain accommodation
and higher resistance to cracking [5, 25]. Martin et al. [5] showed the addition of Sc
and Zr in aluminum alloys enhanced its mechanical properties and reduced the cracking
by promoting the formation of an equiaxed microstructure. Recently, David et al. [26]
investigated the influence of the TiB2 additions and process parameters on hot cracking
and melt track formation during multi-layer LPBF of Al-2139 using high-speed in-situ
synchrotron radiography coupled with synchrotron X-ray computed tomography, SEM
imaging and EDS analysis of the as-built samples. Though the addition of TiB2 reduces
the volume fraction and average length of hot cracks, it increases the pore volume. See
also similar works with other additions [27, 28, 29, 30, 31]. Moreover, the mitigation of
hot cracking is potentially realized by adjustments of the process or pre-/post-treatment
parameters, which help lower the thermal gradient and cooling rate. Soffel et al. [32]
showed that the increasing substrate temperature by laser preheating and the reducing
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specimen size leads to crack-free deposited structures. Recently, Cui et al. [33] employed
a novel methodology to mitigate internal stresses and the formation of the films through
the control of grain structure via an alternately reduced cooling method, rather than the
linear reduction cooling method. Liu et al. [34] combined LPBF and post-hot isostatic
pressing to effectively eliminate the crack density and enhance the high-temperature
mechanical properties.

Figure 1.2: Overview of cracking behavior of AMalloys showing the categories of cracking
(inner layer), strategies (intermediate layer) and possiblemethods (outer layer)
to inhibit cracking [17].

While extensive studies on hot cracking of AM have been performed, understanding of
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cracking mechanisms remains insufficient. Fig. 1.2 shows a comprehensive overview of
the cracking behaviors in AM, strategies and possible methods to inhibit cracking [17].
Most research works focus on experimental observations via advanced optical equipment,
which lacks transferability to other AM processes and requires high experimental effort
and costs [13]. Therefore, to reduce the experimental effort and to achieve a physically
based understanding of this phenomenon, a predictive model and effective simulation of
the cracking process during AM are needed. Various crack criteria have been proposed for
hot cracking, often first for traditional manufacturing methods, e.g., casting and welding.
These criteria are mainly classified into two categories: mechanical and nonmechanical
criteria [35, 36]. The former type involves stress-based [3, 37], strain-based [3, 38], and
strain rate-based criteria [39, 40], while the latter deals with the vulnerable temperature
range, phase diagram, and process parameters. Due to the complicated interplay between
metallurgical and mechanical factors that influence the cracking, the physical phenomena
associated with cracking are not explicitly described in most of these criteria [41, 42].
Recently, Suyitno et al. [43] proposed a micro porosity-related hot tearing criterion called
SKK criterion. This criterion works well in considering the change in the deformation rate,
cooling rate, grain size, casting speed, and casting recipe. Kou et al. [44] proposed a
susceptibility criterion for cracking in a columnar dendritic structure, which only considers
the events occurring at grain boundaries. Liu et al. [45] developed a solidification cracking
model that incorporates solid-bridge fracture mechanisms and enables quantification of
cracking susceptibility under various grain sizes and thermal conditions. Several works
couple granular mechanics with the thermomechanical behavior of the solidifying alloys
[46, 47, 48, 49], which highlight the hot tearing mechanism at a more microscopic scale.
Computational modeling of fracture has been studied extensively using different ap-

proaches. In the last decade, the regularized phase-field modeling of fracture has gained
wide interest and tremendous attention in the engineering and applied mathematics
communities, establishing itself as a robust, efficient, and versatile tool. In the framework
of the phase-field method, the sharp interface is replaced by a continuous field variable,
i.e., order parameter to differentiate multiple phases smoothly. Therefore, PFF describes
the crack interface continuously and no additional tracking of the surface is needed in
the fracture process including crack nucleation, propagation, merging, and branching.
It does not need an ad-hoc failure criterion, and is also relatively simple to implement
computationally with the advantage of no need to track crack topology explicitly. Moreover,
based on the variational framework, it’s easy to incorporate multiphysics (e.g. thermal
field) in a straightforward manner.

Despite the previously mentioned research effort of numerical investigations of cracking
in AM, they mainly focus on the microstructure formation and residual stress/strain
and deformation, while do not directly relate the cracking behaviors to the AM process.
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Furthermore, the relation between hot cracking and process parameters during AM is
not clear. Therefore, it’s of interest to develop an effective and efficient physical model to
perform reliable numerical simulations of hot cracking during AM. On the other hand, the
thermodynamic consistency of the fully coupled cohesive phase-field model for thermal
fracture is not investigated in detail. One of the first goals of this work is to discuss the
point by taking into account various coupling aspects between different fields. Moreover,
the research into phase-field modeling of ductile fracture in a multiphysics environment
is still in the early stage, especially when it comes to the coupling between damage,
plasticity, and other physics under a multiphysics setting. Specifically, the applications
of the phase-field model of thermal fracture are mainly limited to brittle fracture with
small strain assumption, while the applications to ductile fracture with large deformation
are also of great interest. Therefore, another contribution of this thesis is to extend the
previous work to thermo-elasto-plastic coupled ductile fracture at finite strain, so that it
can also apply to simulate the fracture process of a broad spectrum of metals/alloys and
AM process of metals/alloys.

1.2 Objectives and outline

Based on the reviewed literature, the objectives of the dissertation are to develop a ther-
modynamically consistent phase-field fracture model to study the thermo-mechanical
coupled fracture, including a thermo-elastic coupled brittle fracture model at small strains
and thermo-elasto-plastic coupled ductile fracture model at finite strains. Thereafter,
the models are used to investigate the hot cracking phenomenon in the AM process
with the temperature field obtained from an interpolated temperature solution, a phe-
nomenological PBF model and a non-isothermal phase-field model, respectively. Lastly, the
homogenization-based anisotropic phase-fieldmethod is developed to study the anisotropic
fracture behaviors of AM parts.

The outline of the thesis is organized as follows:
In Chapter 2, the foundations of the continuum mechanics and fracture mechanics are

briefly introduced, including kinematics, strain and stress measures, thermodynamical
principles, as well as several core concepts of linear elastic fracture mechanics, elastic-
plastic fracture mechanics and phase-field modeling of fracture.

In Chapter 3, a thermo-elastic coupled cohesive phase-field (CPF) brittle fracture model
at small strains is developed, and several numerical examples are studied. The coupling
effects between displacement, heat transfer, and fracture are all taken into account. The
length-scale insensitivity of CPF in a multiphysics environment is investigated.
In Chapter 4 the brittle fracture model is extended to thermo-elasto-plastic coupled
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ductile fracture at finite strains. The model is validated by the experimental results of
the tensile test of an I-shape specimen, and the influence of the model parameters on the
fracture process is quantitatively compared.

The applications of the proposed models to study the hot cracking in AM are conducted
in Chapter 5. Temperature profiles computed in three different ways including an interpo-
lated temperature profile, the phenomenological model of PBF, and the powder-resolved
model of PBF are utilized. The process parameters like the laser power and the scanning
speed on the final crack pattern are investigated.
In Chapter 6, the anisotropic phase-field fracture model is developed to study the

orientation-dependent fracture behaviors of additively manufactured parts. Thereby both
the anisotropic elasticity and anisotropic fracture toughness are considered.
Chapter 7 presents the conclusions and outlook of the thesis.
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2 Theoretical background

This thesis studies in the framework of continuum mechanics. Well-known continuum me-
chanics are used to describe the proposed model. To make the description self-contained
and for the sake of clarity, the fundamentals of continuum mechanics and fracture me-
chanics are formulated in this Chapter.

2.1 Kinematics

Consider a body B occupying a region Ω with a regular boundary ∂Ω in the three-
dimensional Euclidean space R3. Let Ω0 ⊂ R3 be the reference configuration with external
boundary ∂Ω0 and Ωt ⊂ R3 be the current configuration with current boundary ∂Ωt at
time t.

Figure 2.1: Finite deformation of a continuous body.
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The deformation of the body, as shown in Fig. 2.1, is described by the deformation
mapping

ϕ(X, t) : X → x, (2.1)

which maps the reference material points X ∈ Ω0 at time t ∈ [0, τ ] onto the current
material points x ∈ Ωt such that

x = ϕ(X, t), (2.2)

where the position vector of a material point of the reference and current configuration
can be expressed as

X = [X1 X2 X3]
T , x = [x1 x2 x3]

T . (2.3)

The deformation gradient is defined as

F = ϕ,X =
∂ϕ(X, t)

∂X
, (2.4)

where F characterizes the deformation in the neighborhood of material point dX, linearly
mapping infinitesimal line element dX in the reference configuration into an infinitesimal
line element dx in the current configuration. The mapping is unique and reversible, thus
the determinant of F satisfies

J = detF ̸= 0. (2.5)

The displacement of the point X is given as

u(X, t) = ϕ(X, t)−X. (2.6)

Consider the length ds of line dx in the deformed configuration,

ds2 = dxT · dx = (F dX)T · (F dX) = dXTF TF dX = dXTCdX, (2.7)

where
C = F TF (2.8)

is the right Cauchy–Green deformation tensor.
Likewise, in the undeformed configuration,

dS2 = dXT · dX = (F−1dx)T · (F−1dx) = dxTF−TF−1dx = dxTb−1dx, (2.9)

where the left Cauchy–Green deformation tensor is defined as

b = FF T . (2.10)
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Associated with the undeformed configuration, a measure of the stretch of the line is given

ds2 − dS2 =dxT · dx− dXT · dX = dXTCdX − dXT · dX
=dXT (C − I)dX = dXT (2E)dX,

(2.11)

where
E =

1

2
(C − I). (2.12)

E is the Green-Lagrangian strain tensor. Substituting Eq 2.4 and 2.8 into Eq 2.12 give

E =
1

2
(F TF − I) =

1

2

(︄[︃
∂u

∂X
+ I

]︃T [︃ ∂u
∂X

+ I

]︃
)− I

)︄

=
1

2

(︄
∂u

∂X
+

(︃
∂u

∂X

)︃T
+

(︃
∂u

∂X

)︃T ∂u

∂X

)︄
.

(2.13)

Similarly, relative to the current configuration, the Euler-Almansi strain tensor reads

e =
1

2
(I − F−TF−1) =

1

2

(︄
I −

[︃
I − ∂u

∂x

]︃T [︃
I − ∂u

∂x

]︃
)

)︄

=
1

2

(︄
∂u

∂x
+

(︃
∂u

∂x

)︃T
−
(︃
∂u

∂x

)︃T ∂u
∂x

)︄
.

(2.14)

In the case of infinitesimal deformation, the displacement ∥u∥ ≪ 1, the reference and
the current configurations are considered to be identical. Hence, the position vector of
material point X is identical to that of x, which implies

Ωt ≈ Ω0, x = X + u ≈X, (2.15)

and the displacement gradients are infinitesimal,⃓⃓⃓⃓
∂u

∂x

⃓⃓⃓⃓
≪ 1, (2.16)

the second-order term can be ignored, and Eq 2.13 and 2.14 reduce to

E ≈ e ≈ ε =
1

2

(︄
∂u

∂x
+

(︃
∂u

∂x

)︃T)︄
, (2.17)

where ε is the infinitesimal strain tensor.
In this thesis, Chapter 3 assumes small deformation, while Chapter 4 is in the context of

finite deformation.
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2.2 Stress measure and momentum balance

2.2.1 Stress measure

Consider the configuration Ω of the body B subject to external forces, internal forces will
be caused inside the body. A fictitious cross-section cutting the body into two parts is
assumed, as schematically shown in Fig. 2.2(a). Let ∆f denote the force acting on an
infinitesimal area element ∆A at point x.

Figure 2.2: Stress vector, and Cauchy stress tensor and its components.

The Cauchy stress vector of a point is defined as

t = lim
∆A→0

∆f

∆A
=

∆f

∆A
. (2.18)

The stress vector t depends on the orientation of the normal vector of the surface n.
According to Cauchy’s theorem, which establishes that the traction vector in a point

of a body depends linearly on the normal of the surface, i.e., there exists a second-order
tensor field σ(x) such that

t(x, n) = σ(x) · n, (2.19)

where σ(x) is called Cauchy’s stress tensor, and referred to as the true stress tensor. Using
an orthonormal basis {e1, e2, e3}, the Cauchy stress reads

σ = σijei ⊗ ej , (2.20)
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where the components σij given by

σij = (σei) · ej . (2.21)

As illustrated in Fig. 2.2(b). The first index i of σij represents the direction of the nor-
mal vector of the section, while the second index j indicates the direction of the stress
component itself. The Cauchy stress is written in matrix form as,

σ =

⎡⎣σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤⎦ , (2.22)

where σii(i = 1, 2, 3) are the normal stress, and σij(i ̸= j, i, j = 1, 2, 3) are the shear
stress. The stress tensor fully characterizes the stress state at a point in the body, i.e., it
uniquely determines the stress vector for an arbitrary section through the material point.
The Cauchy stress is symmetric.

The counterpart stress in the reference configuration is the first Piola-Kirchhoff stress
(PK1) P , which describes the current force with respect to the surface element in the
reference configuration,

P = JσF−T . (2.23)

In general, P is non-symmetric. Further, the second Piola-Kirchhoff stress (PK2) S is
defined solely within the reference configuration,

S = F−1P = JF−1σF−T , (2.24)

which relates the stress in the reference configuration with areas in the reference configu-
ration, and it’s a symmetric tensor.

2.2.2 Balance of linear momentum

Subject to body forces bi which is distributed over the whole volume V and the surface
traction ti acting on the surface S, according to the balance of linear momentum,∫︂

S
tidA+

∫︂
V
bidV = 0. (2.25)

In view of Eq. 2.19 and by applying Gauss’ theorem, Eq. 2.25 reaches∫︂
V
(σij,j + bi)dV = 0. (2.26)
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Eq. 2.26 holds for any arbitrary volume, and thus,

σij,j + bi = 0, (2.27)

or in the form of tensor notation

∇ · σ + b = 0. (2.28)

2.3 Thermodynamic principles and constitutive relations

2.3.1 Thermodynamic principles

Energy conservation law

The first law of thermodynamics represents a detailed balance describing the interplay
between the internal energy, the kinetic energy, the rate at which power is expended, and
the heat transferred to the solid Ω, which is expressed by

d

dt
(E +K) =W +Q, (2.29)

where E , K, W and Q denote the net internal energy, the kinetic energy, the external
power, and the heat flow, respectively.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E =
∫︁
Ω ρedV

K =
∫︁
Ω

1

2
ρu̇2dV

W =
∫︁
∂Ω t · u̇dS +

∫︁
Ω b · u̇dV

Q = −
∫︁
∂Ω q · ndS +

∫︁
ΩQdV

, (2.30)

where ρ denotes the material density, e internal energy per unit mass, u̇ is the time
derivative of displacement, t denotes the surface traction, and b the generalized body
force, q is the heat flux, n the outward unit normal to ∂Ω and Q internal heat supply.

Substituting the equations in Eq. 2.30 into energy balance Eq. 2.29 yields

d

dt

∫︂
Ω
ρ

(︃
e+

1

2
u̇2

)︃
dV = −

∫︂
∂Ω

q · ndS +

∫︂
Ω
QdV +

∫︂
∂Ω

t · u̇dS +

∫︂
Ω
b · u̇dV. (2.31)
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By integrating the balance equation of linear momentum (i.e. Newton’s law), multiplied
by the derivative of displacement over the domain, one can get

−
∫︂
Ω
σ : ε̇dV +

∫︂
∂Ω

t · u̇dS +

∫︂
Ω
b · u̇dV =

d

dt

∫︂
Ω

1

2
u̇2dV. (2.32)

Substituting Eq. 2.32 into Eq. 2.31 and applying the divergence theorem, we obtain the
following energy equilibrium equation∫︂

Ω
(ρė− σ : ε̇+∇ · q −Q)dV = 0. (2.33)

The identity in Eq. 2.33 is valid for any region, thus the local energy balance equation
is obtained

ρė = σ : ε̇−∇ · q +Q. (2.34)

In thermo-mechanical phase-field fracture analysis, besides the temperature θ and the
total strain ε, the state variables also include the crack phase-field d. Correspondingly,
the external powerW is reformulated as

W =

∫︂
∂Ω

(t · u̇+H · ∇ḋ)dS +

∫︂
Ω
(b · u̇+Kḋ)dV, (2.35)

where H is micro-traction on crack surfaces and K denotes the internal micro-forces,
which will be discussed later in the following derivation. Thus the energy balance equation,
which accounts for thermal diffusion and power produced by the micro and macro forces,
is given

ρė = σ : ε̇+Kḋ+H · ∇ḋ−∇ · q +Q. (2.36)

Energy dissipation inequality

The second law of thermodynamics postulates that the rate of net entropy production ṡ in
any convecting spatial region Ω is always nonnegative

ṡ =

∫︂
Ω
ρη̇dV − (−

∫︂
∂Ω

q

θ
· n+

∫︂
Ω

Q

θ
)dV ≥ 0, (2.37)

where η is the specific entropy per unit mass, θ is the temperature. The first term on the
right hand denotes the internal entropy and the second term denotes entropy flow, which
is the rate at which entropy is transferred to Ω.
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This inequality is valid for any region of the body and using the divergence theorem
leads to the following local form of the irreversibility of the entropy production rate,

ρη̇ +∇ · (q
θ
)− Q

θ
≥ 0. (2.38)

The fundamental inequality containing the first and second principles is obtained by
replacing Q with the expression resulting from Eq. 2.36 of conservation of energy:

ρη̇ +∇ · (q
θ
)− 1

θ

(︂
ρė− σ : ε̇−Kḋ−H · ∇ḋ+∇ · q

)︂
⩾ 0. (2.39)

Note that
∇ · (q

θ
) =

1

θ
∇ · q − 1

θ2
∇θ · q, (2.40)

thus,
ρ(θη̇ − ė) + σ : ε̇+Kḋ+H · ∇ḋ− 1

θ
∇θ · q ≥ 0. (2.41)

Here we introduce the specific free energy ψ defined by the Legendre transform

ψ = e− θη, (2.42)

where ψ is the Helmholtz free energy per unit mass, which measures the amount of
obtainable work in a closed thermodynamic system. The rate form of the internal energy
e is given by

ψ̇ = ė− θ̇η − θη̇. (2.43)

Substituting Eq. 2.43 into Eq. 2.41, the internal energy can be eliminated from the energy
balance equation, and the local Clausius-Duhem inequality is obtained.
The second law of thermodynamics, expressed in the form of local Clausius-Duhem

inequality, is utilized here to derive the thermodynamically consistent constitutive laws
of the model. For this thermoelastic coupled problem, the local dissipated energy D
considering the power produced by the micro and macro forces, is given as

D = σ : ε̇+Kḋ+H · ∇ḋ− ρ(ψ̇ + θ̇η)− 1

θ
∇θ · q ≥ 0. (2.44)

Here, σ is the Cauchy stress tensor, ε is the total strain, ψ denotes the Helmholtz free
energy, η denotes the entropy, H is micro-traction on crack surfaces, K is the internal
micro-forces, and ρ is the material density.
Depending on the specific definition of Helmholtz free energy, the thermodynamic

relations are determined. A detailed description of the thermo-elastic brittle fracture at
small strains and thermo-elastoplastic ductile fracture at finite strains are presented in
Chapter 3 and Chapter 4, respectively.
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2.3.2 Constitutive laws

Elasticity

The constitutive laws are one of the core concepts in continuum mechanics, which are
used to relate the stress and the strain measures. In general elastic material modeling in
a small strain context, assuming the existence of the elastic strain energy, the constitutive
equations can be given

ψ =
1

2
ε : C : ε, (2.45)

where C is the fourth-order elasticity tensor. According to the definition of the Cauchy
stress from the thermodynamic derivation in Sec. 2.3.1, the Cauchy stress can be obtained
such that

σ =
∂ψ

∂ε
. (2.46)

The elasticity tensor is defined as

C =
∂2ψ

∂ε∂ε
. (2.47)

Thus, the constitutive law (generalized Hooke’s law) reads

σ = C : ε. (2.48)

For isotropic elastic material, the elasticity tensor, expressed in Lamé constant λ and µ
takes the form

C = λI ⊗ I + 2µI, (2.49)

where I and I are the second-order unit tensor and fourth-order symmetric unit tensor,
respectively.
The linear elastic material model is the most simplified one, among many others, for

example, the thermo-elastic material model is used in Chapter 3 in the thesis.

Plasticity

Materials obey Hooke’s law only in a limited range of small strains. When strained
beyond an elastic limit, Hooke’s law no longer applies, and the material starts to yield and
deform plastically. To characterize the elastic-plastic response, the total strain is additively
decomposed into an elastic part εe and a plastic part εp,

ε = εe + εp, dε = dεe + dεp. (2.50)
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The constitutive law is thus given

σ = C : (ε− εp). (2.51)

Let f be a yield function such that the yield criterion can be expressed by

f(σ) = 0, (2.52)

where α is the hardening variable. Eq. 2.52 defines a surface called yield surface in stress
space. A stress state on the yield surface (f = 0) means yielding while within the surface
(f < 0) represents an elastic state. Hence, the yield criterion defines any admissible stress
state. The yield criterion takes the form,

f = ∥σ̄∥ − σy(α) = 0, (2.53)

where σ̄ is the effective stress, σy(α) is the yield stress.
The yield surface may evolve with the plastic deformation, where its shape or location

can change. Isotropic hardening characterizes the case where the yield surface is assumed
to maintain its shape while its size changes with plastic deformation. The yield criterion
is given as

f(σ, α) = ∥σ̄∥ − (σy +Hα) = 0, (2.54)

where H is the hardening modulus. If the yield surface does not change either shape or
size but translates its position, this hardening manner is called kinematic hardening. The
yield criterion is

f(σ, α) = |∥σ̄∥ − σr| − σy = 0, (2.55)

where σr is called back stress.
According to Drucker’s stability postulate, the rate of work done by the stresses during

plastic deformation at a point in the material, over a closed cycle involving loading and
unloading, is non-negative. It can be expressed as

(σ − σ0) : dεp ≥ 0. (2.56)

After materials yield comes plastic flow. The associated flow rule assumes that the
increment of the plastic strain is normal to the yield surface at the loading point, i.e.,

dεp = dλ
∂f

∂σ
, or ε̇p = λ̇

∂f

∂σ
, (2.57)

where λ is the plastic multiplier which is non-negative.
In this thesis, the thermo-elasto-plastic constitutive relations are considered in Chapter 4.
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2.4 Fracture mechanics

In this section, the basis of classical fracture mechanics including linear elastic fracture
mechanics and elasto-plastic fracture mechanics are sketched. The part is referred to the
books, e.g., D. Gross [50], T.L. Anderson [51], C.T. Sun [52], et.al.

2.4.1 Griffith’s theory

The advent of fracture mechanics is well credited to the pioneering work of Alan Griffith
on brittle fracture of glass [53], where he adopted an energy description of the fracture
process. He claimed that a crack can form or an existing crack can grow only if the process
causes the total energy to decrease or remain constant, and the energy decrease equals
the surface energy of the newly created surfaces.

Figure 2.3: An infinite plate with a central crack under tension.

Consider a plate subject to a constant stress σ which contains a predefined crack 2a
long, as shown in Fig. 2.3. Assume that the plate width≫ 2a and plane stress conditions
prevail. For an incremental increase of the crack area dA, the Griffith energy balance can
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be expressed as:
dE
dA

=
dΠ

dA
+
dW

dA
= 0, (2.58)

or

−dΠ
dA

=
dW

dA
, (2.59)

where E denotes the total energy of the system, Π the potential energy andW the work
required to create new surfaces. Given the formation of a crack needs to create two
surfaces,W is given as

dW

dA
= 2γs, (2.60)

where γs is the specific surface energy of the material.
Irwin [54] further defined energy release rate G to measure the energy available for an

increment of crack growth

G = −dΠ
dA

. (2.61)

For an infinite plate with a crack length 2a shown in Fig. 2.3, G is given by

G =
πσ2a

E
. (2.62)

In view of Eq. 2.60, crack grows only if G reaches a critical value, i.e.,

Gc =
dW

dA
= 2γs, (2.63)

where Gc is the critical energy release rate to measure the fracture toughness of the
material. The G criterion for crack growth is written as

G = Gc. (2.64)

2.4.2 Stress intensity factor

Depending on different local loading conditions, there are three types of crack openings,
as shown in Fig. 2.4. Mode I, where the load is applied normal to the crack plane, tends
to open the crack. Mode II loading denotes in-plane shear and tends to slide the crack
surfaces. Mode III refers to out-of-plane shear and tends to tear the crack surfaces apart.
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Figure 2.4: Schematic of three crack modes.

For each mode in a linear elastic solid, the stress field at the crack tip in a polar
coordinate system {r, ϕ} shown in Fig. 2.3 has the 1/

√
r singularity and can be described

by
σIij(r, ϕ) =

KI√
2πr

f Iij(ϕ),

σIIij (r, ϕ) =
KII√
2πr

f IIij (ϕ),

σIIIij (r, ϕ) =
KIII√
2πr

f IIIij (ϕ),

(2.65)

where KI ,KII ,KIII denote the stress intensity factor for Mode I, II, and III, respectively
[55]. fij(ϕ) is a function of ϕ. For a mixed-mode crack, the stress field is superposed

σij(r, ϕ) = σIij(r, ϕ) + σIIij (r, ϕ) + σIIIij (r, ϕ). (2.66)

The stress intensity factor stipulates the magnitude of the stress singularity at the crack
tip, i.e., stresses at the crack tip increase proportional to K, and it completely defines the
crack-tip fields. The K fracture criterion assumes that the crack propagates when the
stress intensity factor reaches a critical value, e.g., for mode I fracture,

KI = KI c, (2.67)

where KI c is the fracture toughness of the material, which depends on the geometry of
the specimen and the loading conditions. KI for crack in Fig. 2.3 is given by

KI = σ
√
πa. (2.68)
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The stress intensity factor is a local parameter characterizing the stresses near the crack
tip, while the energy release rate describes global behavior. Interestingly, for linear elastic
materials, they are uniquely related. In view of Eq. 2.62 and Eq. 2.68, the relation between
KI and G for plane stress is

G =
K2
I

E
. (2.69)

2.4.3 J-integral

In elasto-plastic fracture mechanics, J -integral is a widely used fracture parameter. Rice
[56] presented a contour integral (J-integral) from the potential energy variation with
crack extension, and showed that the J-integral equals the energy release rate for nonlinear
elastic materials.

Figure 2.5: Arbitrary contour around the crack tip.

Consider an arbitrary counterclockwise path Γ around the crack tip, as shown in Fig. 2.5.
The J integral is expressed as

J =

∫︂
Γ
(Wdy − Ti

∂ui
∂x

ds), (2.70)

whereW denotes the strain energy density, Ti components of the traction vector, ds an
length increment on the contour Γ. It showed that the value of J integral is independent
of the contour path around the crack tip. Thus, J integral is a path-independent integral.
J is a generalized version of the energy release rate. In the case of a linear elastic material,

J = G. (2.71)
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2.5 Phase-field modeling of fracture

The phase-field modeling of brittle fracture originated from the work by Francfort and
Marigo [57], where a phase-field fracture model from the variational approach to brittle
fracture by reformulating Griffith’s energy criterion [53]. By incorporating a length scale
parameter ℓ0, the sharp crack interface is smeared by a diffusive crack, where the crack
phase-field smoothly changes from the broken state to the unbroken state, as shown in the
schematic Fig. 2.6. When ℓ0 approaches zero, the sharp crack topology is recovered and
the energy functional Γ-converges to the original energy functional [58]. Followed by the
work of Bourdin et al. [59, 60, 61], Amor et al. [62], and Miehe et al. [63, 64], to name
but a few, phase-field fracture model was exploited in a broad spectrum of materials and
scenarios, for example, dynamic fracture [65, 66], hydraulic fracture [67, 68], viscoelastic
fracture [69], anisotropic fracture [70, 71] and multiphysics fracture problems [72, 73,
74].

Figure 2.6: (a) Sharp crack and (b) diffusive crack modeling at x = 0.

Particularly, phase-field modeling of fracture has been extended to ductile fracture for
elastoplastic materials. For brittle materials, in view of Griffith’s theory crack growth
comes as a result of the competition between bulk elastic energy and crack surface energy.
In the case of ductile fracture, however, the dissipation mechanism resulting from plastic
deformations comes into play [75]. Correspondingly, the coupling between damage and
plasticity plays a crucial role in the fracture process. To date, some phase-field models
of ductile fracture have been reported. Notably, the extension from phase-field brittle
fracture to ductile fracture was first performed in [76, 77] where the plastic work was
introduced to the energy functional in elastoplastic solids. Depending on whether the
plastic deformation was additionally included to drive the evolution of crack phase-field,
brittle fracture or ductile fracture in elastoplastic solids were investigated, respectively,
see the work [78, 79, 80]. The plastic contribution was chosen to be a function of the
accumulated plastic strain, the hardening modulus and the material strength. The phase-
field ductile fracture was further extended to finite strain, see [81, 82, 83, 84]. Based on
the interaction between theoretical models and material response, the phase-field ductile
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model can also be classified into uncoupled and coupled categories [85]. In the uncoupled
models, the yield surface does not change with damage accumulation. In the coupled
approach, however, damage accumulation is incorporated into the yield surface function,
which is able to capture the softening behavior experimentally observed. Borden et al.
[83] incorporated the damage accumulation into the yield surface function to compensate
for the contribution of plastic deformation in the fracture process. Different coupling
mechanisms between damage and plasticity have been proposed for various applications.
Interestingly, in the work [86], a novel phase-field ductile model was developed based on
a characteristic degradation function that couples damage to plasticity. This degradation
facilitates fracture where plastic deformation is prominent, in line with the experimental
observations. Degradation of fracture toughness with accumulated plastic strain was
performed as well, see the works [87, 88, 89]. Recently, Zhang et al. [90] proposed a
double-phase-field fracture model for coupled spall and adiabatic shear banding based on
a new form of energy decomposition into deviatoric, tensile volumetric and compressive
volumetric parts. Mattey et al. [91] developed an anisotropic phase-field fracture model
for 3D printed thermoplastics and short fiber reinforced composites.
Phase-field fracture models have also been widely employed to deal with fracture in

multiphysics environments, like hydrogen-embrittlement fracture [92, 93], chemical
fracture [72, 94] or thermal fracture [95, 96, 97]. When coupled with temperature,
the material exhibits thermal softening with the increase of temperature, in addition to
the degradation of the damage effect. In particular, for brittle materials like ceramics,
concrete or glass, thermal stress induced by non-uniform thermal expansion results in
rupture, which is known as thermal shock. This phenomenon has been studied via the
phase-field fracture model, see [98, 99]. On the one hand, the thermo-elasto-plastic
coupling serves as an additional heat source for the energy balance equation. Ulmer et al.
[77] showed temperature rise due to the evolution of plastic strain, see also [79, 100].
On the other hand, the damage influences the heat flux distribution [101, 96], where
thermal conductivity is degraded so that no heat flux can pass the fully damaged regions.

The phase-field modeling of brittle fracture originated from the work by [57], where a
phase-field model from a variational approach to brittle fracture reformulating Griffith’s
energy criterion [53] was proposed. They treated the brittle fracture as an energy mini-
mization problem, i.e., the crack area Γ(t) is the minimizer of the total energy functional
E ,

(u(t),Γ(t)) = Arg{minE(u,Γ)}, (2.72)

where E is the summation of internal energy including elastic energyΨe(ε(u)) and fracture
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surface energy Ψc, and external potential energy,

E(u,Γ) =
∫︂
Ω
ψdV =

∫︂
Ω
ψe(ε(u),Γ)dx+Gc

∫︂
Γ
dA−

∫︂
Ω
b · udV −

∫︂
∂Ω

t · udA. (2.73)

To numerically implement the model, the regularized form based on elliptic regulariza-
tion image segmentation [102] was proposed [59]. Therein, the sharp crack interface is
diffused within a finite width ℓ0 in a localized band B, as shown in Fig. 2.6,

Γ ≈ Γ(d) =

∫︂
B
γ(d,∇d)dV, (2.74)

where γ(d,∇d) is the crack surface density function. Therefore, the energy functional
takes the form

E(u, d) =
∫︂
Ω
ψe(ε(u), d)dx+

∫︂
B
Gcγ(d,∇d)dV −

∫︂
Ω
b · udV −

∫︂
∂Ω

t · udA. (2.75)

The displacement field and crack phase-field (u, d) are determined by solving the mini-
mization problem as,

(u(t), d(t)) = Arg{minE(u, d)} subject to ḋ ≥ 0, d ∈ [0, 1]. (2.76)

Crack geometric function

Consider a diffusive representation of a 1D crack by the following exponential equation
[63, 64],

d(x) = exp(−|x|
ℓ0

), (2.77)

which fulfills the properties

d(x = 0) = 1, d(x)→ 0 : x→ ±∞. (2.78)

Fig. 2.7 shows the phase-field profile d(x) for different length scale parameter ℓ0. Clearly,
Eq. 2.77 is a solution to the ordinary differential equation

1

ℓ0
d(x)− ℓ0d′′(x) = 0. (2.79)

Consistent with the variational approach to fracture, a crack surface functional which
yields Eq. 2.79 by minimization can be given as

Γ(d) =

∫︂
1

2

(︃
1

ℓ0
d2 + ℓ0d

′2
)︃
dx =

∫︂
γ(d, d′)dx. (2.80)
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Figure 2.7: Diffusive crack interface with different length scale parameter ℓ0.

Therefore, the generalized form of crack surface density is defined as,

γ(d,∇d) = 1

2

(︃
1

ℓ0
d2 + ℓ0∇d · ∇d

)︃
. (2.81)

This leads to a standard phase-field fracture model.
However, there are other models available depending on the definition of crack surface

density, which can be generalized as,

γ(d,∇d) = 1

c0

(︃
1

ℓ0
ω(d) + ℓ0∇d · ∇d

)︃
, (2.82)

where α(d) is the crack geometric function, and c0 = 4
∫︁ 1
0

√︁
ω(β)dβ is the scaling parame-

ter. As the name suggests, the crack geometric function defines the profile of the phase-field
crack. The commonly used ones are summarized in Table. 2.1 and schematically shown in
Fig. 2.8.

Energetic degradation function

To couple the displacement field and the crack phase-field, an energetic degradation
function g(d) is added to Eq. 2.75. The evolution of the crack phase-field results in the
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Table 2.1: Different crack geometric function ω(d) and the phase-field profile d(x).
ω(d) c0 d(x)

d2 2 exp(−|x|
ℓ0

)

d
8

3

(︃
1− |x|

2ℓ0

)︃2

2d− d2 π 1− sin
(︃
|x|
ℓ0

)︃

Figure 2.8: Crack phase-field profile d(x) with different crack geometric function ω(d).
For ω(d) = d2, the crack phase-field has infinite support, and for ω(d) = d and
ω(d) = 2d− d2, the phase-field has finite support.

degradation of the elastic strain energy. Thus,

E(u, d) =
∫︂
Ω
g(d)ψe(ε(u))dx+

∫︂
B
Gcγ(d,∇d)dV −

∫︂
Ω
b · udV −

∫︂
∂Ω

t · udA. (2.83)
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The degradation function has the following properties,

g(d) ∈ [0, 1], g(0) = 1, g(1) = 0, g′(d) < 0, g′(1) = 0. (2.84)

These conditions ensure g(d) is a monotonically decreasing function, and does not take
effect in the intact state (d = 0) while degrading elastic energy when the materials are
fully cracked (d = 1). For the standard phase-field fracture model, i.e., AT1 and AT2
model [59], the degradation function takes the quadratic from as

g(d) = (1− d)2. (2.85)

In [83], a cubic degradation function is proposed to address the nonlinear elastic response
prior to yielding in ductile materials,

g(d) = (m− 2)(1− d)3 + (3−m)(1− d)2, (2.86)

where m > 0 is a constant determining the slope of g(d) at d = 0. [103] proposed a
quartic form of g(d) as.

g(d) = 4(1− d)3 − 3(1− d)4. (2.87)

The diagram of these functions is shown in Fig. 2.9.
More detailed discussions between different phase-field fracture models are presented

in Chapter 3.

Energy decomposition method

The elastic strain energy density in Eq. 2.75 for an undamaged solid,

ψe(ε) =
1

2
ε : C : ε =

1

2
λtr 2(ε) + µtr (ε2), (2.88)

and the undamaged stress

σ =
∂ψ

∂ε
= λtr (ε)I + 2µε. (2.89)

To prevent crack interpenetration and avoid unphysical crack under compression, the
tension/compression split is often applied to the total strain energy ψe(ε(u)), where only
the tensile/positive part is degraded with crack phase-field. That is,

ψe(ε(u)) = g(d)ψ+
e (ε(u)) + ψ−

e (ε(u)). (2.90)
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Figure 2.9: Plots of quadratic, cubic and quartic degradation function.

Consequently, the stress is also decomposed,

σ = g(d)σ+ + σ−. (2.91)

Thus, the fracture behavior between tension and compression is distinguished. Two typical
approaches to the split are briefly summarized here.

Strain spectral decomposition [63]. The definition is based on the spectral decompo-
sition of the strain tensor,

ε = ε+ + ε−, ε± =

3∑︂
i=1

⟨εi⟩±ni ⊗ ni. (2.92)

where εi=1,2,3 are the principal strains and ni=1,2,3 the principal strain directions. The

bracket operators are defined as ⟨x⟩+ =
x+ |x|

2
, ⟨x⟩− =

x− |x|
2

, respectively. The positive
and negative parts of the energies and stress tensor are defined,

ψ+
e =

λ

2
⟨tr ε⟩+

2 + µtr ⟨ε⟩2+, ψ−
e =

λ

2
⟨tr ε⟩2− + µtr ⟨ε⟩2−, (2.93)

σ+ = λ⟨tr ε⟩+I + 2µ⟨ε⟩+, σ− = λ⟨tr ε⟩−I + 2µ⟨ε⟩−. (2.94)
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Volumetric-deviatoric decompoistion [62]. The elastic energy is additively decom-
posed into volumetric and deviatoric contributions, and crack only evolves due to positive
volumetric (i.e., tr ε ≥ 0) and shear parts.

ψ+
e (ε) =

1

2
κ⟨tr ε⟩2+ + µεD : εD, ψ−

e =
1

2
κ⟨tr ε⟩2−. (2.95)

Accordingly, the strain is decomposed into volumetric and deviatoric parts,

ε = εV + εD, εV =
1

3
tr εI, εD = ε− 1

3
tr εI. (2.96)

The stress tensor is thus given as,

σ+ = κ⟨tr ε⟩+I + 2µεD, σ− = κ⟨tr ε⟩−I, (2.97)

where κ = λ+
2µ

3
is the bulk modulus.

Governing equations in strong form

Having defined the energy contribution of ψe and ψc, the governing equations for the
phase-field model can be derived by applying the Euler-Lagrange approach (variational
derivative) with respect to the displacement field u and the crack phase-field d on the total
energy functional E . Note that other approaches, like balance of microforce momentum,
can also be used to derive the governing equations.
Considering the general form defined in Eqs. 2.90-2.91, one can obtain the partial

differential equations for the displacement field which are basically the same as the
balance of linear momentum,

δuψ = ∂uψ −∇ · (∂∇uψ)⇒

⎧⎨⎩
∇ · σ + b = 0 in Ω,

σ · n = t on ∂Ω.
(2.98)

Considering Eq. 2.82, the following equations for the crack field are obtained.

δdψ = ∂dψ −∇ · (∂∇dψ)⇒

⎧⎪⎪⎨⎪⎪⎩
Gc
c0ℓ0

ω′(d)− Y − 2Gcℓ0
c0
∇2d = 0 in Ω,

∇d · n = 0 on Γ,

(2.99)

where Y is the crack driving force which is defined as,

Y = −g′(d)H. (2.100)
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To enforce the irreversibility condition of crack upon unloading, the history variable H is
introduced to store the maximum value of the undamaged elastic energy [64], i.e.,

H = max
t

(ψ+
e (t)). (2.101)

The history variable H ensures that the crack does not heal when the strain energy
decreases as the fracture proceeds.
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3 Thermo-elastic Phase-field Brittle Fracture
at Small Strains

3.1 Thermo-elastic phase-field brittle fracture model

This thesis work focuses on the thermo-elastic coupling and its impact on hot cracking
during PBF. To single out the phenomenon, we assume first small deformation, elasto-
statics and brittle fracture behavior. Such assumptions are applicable to brittle materials,
e.g. ceramics or brittle glass. For metallic materials, plasticity and ductile fracture should
be addressed. However, it should be noted that in any case, they share some common
thermo-mechanical coupling mechanisms, which is the objective of this chapter. After
these mechanisms are understood in the linear and brittle scenario, the extension of this
framework to the nonlinear deformation and the elastoplastic ductile fracture is presented
in Chapter. 4. For thermo-elastic coupled brittle fracture, the primary field variables consist
of the displacement field u(x, t), the damage field d(x, t) and the temperature field θ(x, t).

3.1.1 Energy dissipation inequality

The second law of thermodynamics, which is expressed in the form of local Clausius-
Duhem inequality, is utilized here to derive the thermodynamically consistent constitutive
laws of the model. For this thermoelastic coupled problem, the local dissipated energy D
considering the power produced by the micro and macro forces, is given as

D = σ : ε̇+Kḋ+H · ∇ḋ− ρ(ψ̇ + θ̇η)− 1

θ
∇θ · q ≥ 0. (3.1)

Here, σ is the Cauchy stress tensor, ε is the total strain, ψ denotes the Helmholtz free
energy, η denotes the entropy, H is micro-traction on crack surfaces, K is the internal
micro-forces, and ρ is the material density.

The Helmholtz free energy ψ is decomposed into elastic energy ψe, fracture energy ψc
and thermal energy ψθ parts, as follows

ψ = ψ(ε, d,∇d, θ) = ψe(ε, d, θ) + ψc(d,∇d, θ) + ψθ(θ). (3.2)
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The specific energy terms will be explained in the following subsections. For the above
equation, the rate of the free energy change is given by

ψ̇ = ψ̇e + ψ̇c + ψ̇θ, (3.3)

where for the rate of each component we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̇e =
∂ψe
∂ε

: ε̇+
∂ψe
∂d

ḋ+
∂ψe
∂θ

θ̇

ψ̇c =
∂ψc
∂d

ḋ+
∂ψc
∂(∇d)

· ∇ḋ+ ∂ψc
∂θ

θ̇

ψ̇θ =
∂ψθ
∂θ

θ̇

(3.4)

Substituting Eq. 3.4 into Eq. 3.3 and regrouping terms, the total free energy rate reads:

ψ̇ =
∂ψe
∂ε

: ε̇+

(︃
∂ψe
∂d

+
∂ψc
∂d

)︃
ḋ+

∂ψc
∂(∇d)

· ∇ḋ+ (
∂ψe
∂θ

+
∂ψc
∂θ

+
∂ψθ
∂θ

)θ̇. (3.5)

Therefore, the Clausius-Duhem inequality (Eq. 3.1) is rewritten as(︃
σ − ρ∂ψ

∂ε

)︃
: ε̇+

(︃
K − ρ∂ψ

∂d

)︃
ḋ+

(︃
H − ρ ∂ψ

∂(∇d)

)︃
·∇ḋ−

(︃
ρη + ρ

∂ψ

∂θ

)︃
θ̇− 1

θ
∇θ ·q ≥ 0.

(3.6)
Note that here elastostatic and quasi-static fracture are adopted. The inequality in

Eq. 3.6 must hold for any arbitrary thermodynamic processes. Hence, the coefficients
of the dissipative terms are non-negative while the coefficients of the non-dissipative
terms must vanish. Following the Coleman-Noll procedure [104] for a thermodynamically
consistent model the thermoelastic laws are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Elastic stress tensor: σ = ρ
∂ψ

∂ε
= ρ

∂ψe
∂ε

Micro-traction equation: H = ρ
∂ψ

∂(∇d)
= ρ

∂ψc
∂(∇d)

Internal micro-force equation: K = ρ
∂ψ

∂d
= ρ

∂ψe
∂d

+ ρ
∂ψc
∂d

Entropy equation: η = −∂ψ
∂θ

(3.7)
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Following the above assumptions for the thermodynamic forces, the remaining part of
the dissipation inequality reads:

−∇θ · q ≥ 0. (3.8)

The above relation is also referred to as heat conduction inequality.

3.1.2 Damage informed thermoelasticity

The balance of the linear momentum equation in the tensorial notation and in the absence
of the body force reads

∇ · σ = 0, (3.9)

where ∇· is the divergence operator. The total strain ε is additively decomposed into the
elastic part and the thermal part:

ε = εe + εθ = ∇su :=
1

2

(︁
∇u+∇Tu

)︁
, (3.10)

where εe denotes the elastic strain. The thermal strain εθ follows a linear expansion law:

εθ = αt(θ − θ0)I, (3.11)

where αt is the thermal expansion coefficient, θ0 is the initial temperature and I is the
second-order identity tensor. The total elastic free energy density for an undamaged body
can be expressed as

ψe =
1

2
εe : Ce : εe =

λ

2
(tr εe)2 + µtr(ε2e). (3.12)

The fourth-order elastic stiffness tensor is denoted by Ce, and is expressed for isotropic
elastic materials in terms of Lame constant λ and µ as

Ce = λI ⊗ I + 2µIS , (3.13)

where IS is the symmetric fourth-order identity tensor, ⊗ denotes the dyadic product of
two second-order tensors. In the indicial notation, the symmetric fourth-order identity
tensor is expressed (IS)ijkl =

1

2
(δikδjl + δilδjk), where δij is the Kronecker symbol, and

the second-order identity tensor is defined as Iij = δij .
To differentiate degradation in tension from compression, we additively decompose elas-

tic strain energy density ψe into a positive (tensile) part ψ+
e and a negative (compressive)

part ψ−
e :

ψe = ψ−
e + f(d)ψ+

e . (3.14)
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Here the function f(d) is the so-called degradation function, which has the following
properties:

f(d) ∈ [0, 1], f(0) = 1, f(1) = 0; f ′(d) < 0, f ′(1) = 0. (3.15)

The choice of f(d) will be discussed in detail in the following. For the decomposition
method, the spectral decomposition of the strain tensor is utilized:

εe = ε+e + ε−e , ε±e =

3∑︂
i=1

⟨εi⟩±ni ⊗ ni. (3.16)

Here, εi=1,2,3 are the principal strains and ni=1,2,3 denote the principal strain directions.

The bracket operators are defined as ⟨x⟩+ =
x+ |x|

2
, ⟨x⟩− =

x− |x|
2

, respectively.
Therefore, for the different parts of the elastic energy we have

ψ±
e =

λ

2
(⟨tr εe⟩±)2 + µtr ⟨εe⟩±

2
. (3.17)

In this formulation, only the tensile component contributes to fracture. Similarly, the
degraded stress tensor can be derived as

σ =
∂ψe
∂ε

= f(d)
∂ψ+

e

∂ε
+
∂ψ−

e

∂ε
= f(d)σ+ + σ−, (3.18)

where the stress tensile part σ+ and the compressive part σ− are expressed as

σ± = λ⟨tr εe⟩± + 2µ⟨εe⟩±. (3.19)

In this chapter, we explore also the applicability of the very promising cohesive phase-
field (CPF) fracture model [105, 106, 66], which characterizes itself by two main features:
the threshold for damage initiation and insensitivity to the length scale ℓ0. Thereby the
degradation function for elastic energy is defined as

f(d) =
(1− d)2

(1− d)2 + a1d(1 + a2d+ a3d2)
. (3.20)

In the equation above, a1 =
4 lch
πℓ0

, a2 = −1

2
and a3 = 0 are selected to represent the

cohesive nature of fracture in the process zone. Furthermore, lch =
EGc
σ2u

is Irwin’s length

of isotropic materials which measures the size of the fracture process zone. The smaller
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this length scale is, the more brittle the material behaves. The parameters a2 and a3 are
the shape parameters and can be tuned to represent the different softening curves [106].
To prevent cracks from healing when ψ+

e decreases, the irreversibility condition is
enforced. A history variable H is introduced [64], which must satisfy the Karush-Kuhn-
Tucker (KKT) conditions:

ψ+
e −H ≤ 0, Ḣ ≥ 0, Ḣ

(︁
ψ+
e −H

)︁
= 0. (3.21)

Thus, the history variable can be written as

H = max{max
t∈[0,τ ]

ψ+
e (εe, t), ψth}. (3.22)

where the damage threshold ψth is defined as

ψth =
σ2u
2E

. (3.23)

where σu denotes the material tensile strength and E the Young’s modulus. Eq. 3.22
implies that before the onset of any damage the material is characterized by an elastic
domain, until ψth is reached.

3.1.3 Temperature-dependent phase-field fracture model

Consider a cracked solid Ω with an external boundary denoted by ∂Ω and a crack set Γ,
as shown schematically in Fig. 3.1. Starting from Griffith’s theory in fracture mechanics,
the total fracture energy is given by

Ψc =

∫︂
Γ
Gc(θ)dA =

∫︂
Ω
Gc(θ)γ(d,∇d)dV. (3.24)

In the above relation, the surface integral is substituted with a volumetric integral which
yields an approximation of the fracture energy [62, 64]. Here, γ is the crack surface
density function and is defined as

γ(d,∇d) = 1

c0
(
1

ℓ0
ω(d) + ℓ0|∇d|2), c0 = 4

∫︂ 1

0

√︁
ω(β)dβ. (3.25)

In the above equation, the geometric function ω(d) characterizes the homogeneous evolu-
tion of the phase-field crack, which has the properties

ω(d) ∈ [0, 1], ω(0) = 0, ω(1) = 1;ω′(d) > 0. (3.26)
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Figure 3.1: (a) Sharp interface and (b) diffusive interface of a crack in a cracked body.

ℓ0 is the length scale parameter regularizing the sharp crack, which is related to the
diffusive crack width, and finally, c0 > 0 is a scaling parameter (see also [64, 106]).

Different choices of the geometric function and degradation function result in different
phase-field fracture models. The three most commonly used models are listed in Table 3.1.
In the following session, the AT2 model is chosen to compare with the CPF model.

Table 3.1: Different phase-field fracture models.

Features
Models AT1 AT2 CPF

ω(d) d d2 2d− d2
c0 8/3 2 π

f(d) (1− d)2 (1− d)2 (1− d)2

(1− d)2 + a1d(1 + a2d+ a3d2)

For the AT2 model, the geometric function and degradation function take the quadratic
form, with which the predicted material strength shows a strong dependence on ℓ0 [107].
In the work of Lorentz et al. [107, 105] and Wu et al. [106], a rational degradation func-
tion was proposed. It is shown that the material response for this formulation converges to
the sharp interface behavior (cohesive zone) as ℓ0 decreases [108]. The specific form of the
length-scale insensitive model is taken in this chapter. One advantage thereby lies in the
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fact that it allows to prescribe the ultimate strength σu, in addition to the fracture energy
value Gc. As a result, the model takes the cohesive nature of the fracture into account
and can produce numerical results which converge with respect to the internal length
scale parameter. The latter point can be an interesting option for problems containing
multiphysics fracture since the influence of the length scale on the results can be omitted.
For quasi-static fracture assuming that micro-inertia is negligible, the micro-force mo-

mentum balance equation is given by

∇ ·H = K, (3.27)

where H and K are defined in Eq. 3.7. Employing the micro-force balance equation and
using the fracture free energy given in Eq. 3.24, the phase-field governing equation reads:

Gc
c0ℓ0

ω′(d)− Y − 2Gcℓ0
c0
∇2d = 0, (3.28)

where the driving force of the phase-field is defined as

−Y =
∂ψe
∂d

= f ′(d)H. (3.29)

A simple one-dimensional bar analysis is carried out for clarification of the damage
threshold. Consider the situation before the onset of any damage (d = 0) and a uniform
distribution for the damage variable (∂d/∂x = 0) in the bar, the governing equation for
phase-field crack Eq. 3.28 simplifies to

Gc
πℓ0

(2− 2d) + f ′(d)H = 0. (3.30)

Thus, damage takes the value one if there is no damage threshold ψth, which is not physical.
However, by introducing ψth in H = max{max

t∈[0,τ ]
ψ+
e (εe, t), ψth}, one can simplify Eq. 3.28

to
Gc
πℓ0

(2− 2d)− a1
σ2u
2E

= 0. (3.31)

With a1 =
4 lch
πℓ0

, one can guarantee that the damage value remains zero before the

threshold is met. After passing the threshold (i.e. max
t∈[0,τ ]

ψ+
e (εe, t) > ψth)), the history

parameter H in Eq. 3.28 is replaced by ψ+
e (εe, t) which derives the damage to further

develop.
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In thermo-mechanical problems, the temperature range can be considerable. Conse-
quently, the variation of Gc with the temperature near the crack tip cannot be ignored,
which affects both the initiation of crack onset for a non-isothermal quasi-brittle fracture
and the dynamics of crack propagation [109]. Thus the temperature-dependency of Gc
needs to be taken into account to capture the crack patterns more accurately. For brittle
materials, the dependency of Gc on temperature in this work is based on the description
in [110]. For quasi-brittle materials, the experimental relations of Gc with temperature
can be found in [111]. In this work, Gc is considered temperature-dependent and takes
the form as

Gc = Gc0[1− b1
θ − θref
θmax

+ b2(
θ − θref
θmax

)2]. (3.32)

Here, b1 and b2 are constant model parameters, θref and θmax are the reference tem-
perature and the maximum temperature, respectively, and Gc0 is the value of Gc at θref .
In this work, b1 = 1.80, b2 = 1.10, θref and θmax are 300 K and 1000 K, respectively.

Note that incorporating temperature-dependent elastic properties like Young’s modulus
into the model can be more physical. For the current work, the main focus is to investigate
the temperature influence on fracture, thus we neglect the temperature-dependent Young’s
modulus for now. However, the simulation with temperature-dependent elastic properties
can readily be done within the developed framework. The readers are also referred to
[112] for studies on the temperature-dependent Young’s modulus.

Interestingly enough, the temperature-dependency of the material properties affects not
only the elastic performance but also the fracture behavior. Notice that in the degradation

function in Eq. 3.20, a1 =
4 lch
πℓ0

. When E, Gc and σu are all treated as temperature-
dependent as,

E(θ) = φ1(θ)E0, Gc(θ) = φ2(θ)Gc0, σu(θ) = φ3(θ)σu0, (3.33)

where φi (i = 1, 2, 3) is the generic degradation function, then lch becomes

lch :=
EGc
σ2u

= βl(θ)lch0 with βl(θ) =
φ1(θ)φ2(θ)

φ23(θ)
. (3.34)

Therefore, a1 in the degradation function in Eq. 20 becomes

a1(θ) = βl(θ)
4lch0
πℓ0

. (3.35)

Then, different choices of the degradation function result in a constant or temperature-
dependent Irwin’s internal length lch or a1, which further affects the fracture behavior of
the materials. See also the work of [113] on hydrogen-assisted cracking with hydrogen-
dependent material properties.
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3.1.4 Damaged informed heat conduction

The energy balance equation, derived from Eq. 2.36 is written as

ρė = σ : ε̇+Kḋ+H · ∇ḋ−∇ · q +Q. (3.36)

Given the relation e = ψ + θη one can write:

ė = ψ̇ + θ̇η + θη̇. (3.37)

Considering ψ = ψ(ε, d,∇d, θ) and the thermodynamic relations obtained in Eq. 3.7, we
can obtain

ψ̇ =
1

ρ

(︂
σ : ε̇+Kḋ+H · ∇ḋ− ρθ̇η

)︂
. (3.38)

Substituting Eq. 3.38 into Eq. 3.37, we have

ρė = σ : ε̇+Kḋ+H · ∇ḋ+ ρθη̇. (3.39)

Comparing Eqs. 3.36 and 3.39, one can conclude

ρθη̇ = −∇ · q +Q. (3.40)

Note that η(ε, d,∇d, θ) = −∂ψ
∂θ

. Therefore for the specific entropy rate we have

η̇ = −
(︃
∂2ψ

∂θ∂ε
: ε̇+

∂2ψ

∂θ∂d
ḋ+

∂2ψ

∂θ∂(∇d)
· ∇ḋ+ ∂2ψ

∂θ2
θ̇

)︃
= −1

ρ

(︃
∂σ

∂θ
: ε̇+

∂K

∂θ
ḋ+

∂H

∂θ
· ∇ḋ− ρ∂η

∂θ
θ̇

)︃
.

(3.41)

Next, we consider the Fourier’s law by means of which the inequality relation in Eq. 3.8 is
automatically satisfied:

q = −k(d)∇θ. (3.42)

Here k(d) is the degraded thermal conductivity affected by the phase-field d and it is
expressed as

k(d) = g(d)k0. (3.43)

In the above relation, k0 is the thermal conductivity of the undamaged material, and
g(d) is a thermal degradation function which ensures that no heat flux exists across the
crack. Though there are other forms of thermal degradation proposed in the work of [101,
96], an isotropic conductivity degradation g(d) = (1− d)2 + ξ is adopted here, where ξ is
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a small number for numerical and physical purposes. Substituting Eq. 3.41 into Eq. 3.40
we have

−θ
(︃
∂σ

∂θ
: ε̇+

∂K

∂θ
ḋ+

∂H

∂θ
· ∇ḋ− ρ∂η

∂θ
θ̇

)︃
= k(d)∇2θ +Q. (3.44)

By introducing the specific heat defined as

c = θ
∂η

∂θ
, (3.45)

the complete form of the heat equation reads:

ρcθ̇ = k(d)∇2θ + θ

(︃
∂σ

∂θ
: ε̇+

∂K

∂θ
ḋ+

∂H

∂θ
· ∇ḋ

)︃
+Q. (3.46)

Eq. 3.46 can degenerate to the conventional heat conduction equation for heat con-
duction with an internal heat source. At this point, we adopt the formulation for the
quasi-static crack propagation where the transient coupling terms ε̇ and ḋ vanish. Thereby,
in the current implementation, the heat equation takes the form as

ρcθ̇ = k(d)∇2θ +Q. (3.47)

3.1.5 Summary of governing equations

With the energy terms of the multiphysics problem being defined, the strong form of
the quasi-static fracture problem, following the balance laws and constitutive relations
described above, can be summarized as follows

Momentum balance: ∇ · σ = 0 (3.48a)

Phase-field equation:
Gc
c0ℓ0

ω′(d)− 2Gcℓ0
c0
∇2d− Y = 0 (3.48b)

Heat equation: ρcθ̇ = k(d)∇2θ +Q (3.48c)

with the Dirichlet boundary conditions and the Neumann boundary conditions⎧⎨⎩
u(x, t) = u∗(x, t) x ∈ ∂Ωu,
d(x, t) = d∗(x, t) x ∈ Γ,
θ(x, t) = θ∗(x, t) x ∈ ∂Ωθ.

(3.49)

{︃
σ · n = t∗ x ∈ ∂Ωt,
q · n = q∗ x ∈ ∂Ωq.

(3.50)
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Here, the boundary is partitioned into Dirichlet and Neumann-type conditions. Specifically,
the boundary is split as follows

∂Ω = ∂Ωu ∪ ∂Ωt, ∂Ωu ∩ ∂Ωt = ∅, ∂Ω = ∂Ωθ ∪ ∂Ωq, ∂Ωθ ∩ ∂Ωq = ∅, (3.51)

where ∂Ωu, ∂Ωt, ∂Ωθ and ∂Ωq are the parts of boundary on which the prescribed displace-
ment u∗, traction t∗, temperature θ∗ and heat flux q∗ are imposed, respectively. Lastly, the
governing equations are supplemented with the following initial conditions. The initial
state of the system is considered to be undeformed, undamaged, and unstressed with
temperature θ0(x). ⎧⎨⎩

u(x, 0) = 0 x ∈ Ω,
d(x, 0) = 0 x ∈ Ω,
θ(x, 0) = θ0(x) x ∈ Ω.

(3.52)

3.2 Numerical implementation

3.2.1 Finite element discretization

This section presents the finite element implementation of the model. The weak form is
constructed by multiplying the equations in Eq. 3.48(a-c) by a corresponding arbitrary
test function and integrating them over the domain of the problem. With integration by
parts, the corresponding weak forms are:∫︂

Ω
σ : ∇δudV −

∫︂
Ωt

t∗δudS = 0, (3.53a)∫︂
Ω

Gc
ℓ0c0

ω′(d)δddV +

∫︂
Ω

2Gcℓ0
c0
∇d · ∇δddV +

∫︂
Ω
g′(d)HδddV = 0, (3.53b)∫︂

Ω
k∇θ · ∇δθdV −

∫︂
Ωq

k∇θδθdS +

∫︂
Ω
ρcθ̇δθdV −

∫︂
Ω
QδθdV = 0. (3.53c)

Utilizing the standard finite element method, the displacement field u, the phase-field
d and the temperature field θ, as well as their first spatial derivatives, are approximated as⎧⎨⎩

u =
∑︁
N i
uui = Nuue, ε =

∑︁
Bi
uui = Buue,

d =
∑︁
N i
ddi = Ndde, ∇d =

∑︁
Bi
ddi = Bdde,

θ =
∑︁
N i
θθi = N θθe, ∇θ =

∑︁
Bi
θθi = Bθθe.

(3.54)

Here, ui, di and θi are the nodal values of the displacement, damage and temperature
fields of node i of element e, respectively. Nu, Nd, Nθ and Bu, Bd, Bθ denote the shape
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functions and their derivatives for the displacement, damage field and temperature,
respectively. Nu, Nd, N θ andBu, Bd, Bθ are the corresponding shape function matrices
and derivatives. For a quadrilateral 2D element they are written as

Nu =

[︃
N1 0 · · · N4 0
0 N1 · · · 0 N4

]︃
, Bu =

⎡⎣N1,x 0 · · · N4,x 0
0 N1,y · · · 0 N4,y

N1,y N1,x · · · N4,y N4,x

⎤⎦ , (3.55)

Nd =
[︁
N1 · · · N4

]︁
, Bd =

[︃
N1,x · · · N4,x

N1,y · · · N4,y

]︃
, (3.56)

N θ =
[︁
N1 · · · N4

]︁
, Bθ =

[︃
N1,x · · · N4,x

N1,y · · · N4,y

]︃
. (3.57)

With the above finite element discretization, we obtain the following equations for the
residuals of different fields:

ru =

∫︂
Ω
[Bu]

TσdV −
∫︂
Ωt

[Nu]
T t∗dS, (3.58a)

rd =

∫︂
Ω

Gc
ℓ0c0

ω′(d)[Nd]
TNddV +

∫︂
Ω

2Gcℓ0
c0

[Bd]
TBddV +

∫︂
Ω
g′(d)[Nd]

THdV, (3.58b)

rθ =

∫︂
Ω
[Bθ]

TkBθdV −
∫︂
Ωq

[Bθ]
TkN θdS +

∫︂
Ω
ρcθ̇[N θ]

TdV −
∫︂
Ω
[N θ]

TQdV. (3.58c)

3.2.2 Staggered solution scheme

In general, the energy functional of the thermal fracture problem is non-convex with respect
to its variables when all the field variables are considered simultaneously. Therefore it is
challenging to solve all the unknown variables at the same time utilizing the conventional
Newton-Raphson method. However, the problem is convex with respect to the variables
u and d separately when the other is fixed. The approach which is also known as the
staggered minimization algorithm improves the convergence of the numerical solver.
In this work, the thermo-elastic coupled problem is first solved in a monolithic way

with a fixed crack field. Then, the phase-field fracture problem is solved with the updated
displacement and temperature values. For the (n+ 1)th time step, first, we solve for the
nodal displacements and temperature fields from the coupled thermo-elastic problem. At
this point, the crack is fixed as dn obtained in the previous time step n. Therefore, we
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first solve for

{︄
ru,n+1 =

∫︁
Ω[Bu]

TσdV −
∫︁
Ωt
[Nu]

T t∗dS,

rθ,n+1 =
∫︁
Ω[Bθ]

TkBθdV −
∫︁
Ωq
[Bθ]

TkN θdS +
∫︁
Ω ρcθ̇[N θ]

TdV −
∫︁
Ω[N θ]

TQdV,

(3.59)
where σ = σ(un+1, dn, θn+1), k = k(dn) and Gc = Gc(θn+1). This standard thermo-
elastic problem can be solved by the Newton method, with the letter i denoting the
iteration number.

[︄
K

(i+1)
uu,n+1 K

(i+1)
uθ,n+1

K
(i+1)
θu,n+1 K

(i+1)
θθ,n+1

]︄[︄
u
(i+1)
n+1 − u

(i)
n+1

θ
(i+1)
n+1 − θ

(i)
n+1

]︄
=

[︄
R

(i+1)
u,n+1

R
(i+1)
θ,n+1

]︄
. (3.60)

Next, we solve the nodal unknowns for the fracture problem with the updated nodal
displacement and nodal temperature u

(i+1)
n+1 , θ

(i+1)
n+1 i.e,

rd,n+1 =

∫︂
Ω

Gc
ℓ0c0

ω′(d)[Nd]
TNddV +

∫︂
Ω

2Gcℓ0
c0

[Bd]
TBddV +

∫︂
Ω
g′(d)[Nd]

THdV. (3.61)

The linearization of the above relation yields

K
(i+1)
dd,n+1(d

(i+1)
n+1 − d

(i)
n+1) = R

(i+1)
d,n+1. (3.62)

In Eq. 3.60 and 3.62, Ru, Rθ and Rd denote the assembled global residual vectors for
each variable; Kuu, Kθθ, Kuθ and Kdd denote the assembled global stiffness matrix,
respectively. The total assembled global residual is denoted by R = [Ru;Rθ;Rd].

Based on the above explanations, the algorithm for the phase-field thermal fracture
model is summarized in Algorithm 1.
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Algorithm 1 Staggered minimization algorithm at time interval [tn, tn+1]
1: Inputs: solutions of temperature field θn, displacement field un, crack phase-field dn

at former time step tn.
2: Outputs: temperature field θn+1, displacement field un+1, crack field dn+1 at current

time step tn+1.
3: Set i = 0, Tolerance = 1e-8.
4: Set θ(0)n+1 ← θn, u

(0)
n+1 ← un, d

(0)
n+1 ← dn

5: repeat
6: Compute θ(i+1)

n+1 , u(i+1)
n+1 and fix d(i)n+1

7: Compute d(i+1)
n+1 and fix θ(i+1)

n+1 , u(i+1)
n+1

8: subject to irreversibility constraint d(i+1)
n+1 ≥ dn

9: i← i+1
10: until | R(i+1)

n+1 −R
(i)
n+1 | ≤ Tolerance

11: Update solutions θn+1 ← θ
(i+1)
n+1 , un+1 ← u

(i+1)
n+1 , and dn+1 ← d

(i+1)
n+1

The model is numerically implemented by the Finite Element Method within the frame-
work of Multiphysics Object-Oriented Simulation Environment (MOOSE) [114]. It is
worth noting that the Automatic Differentiation (AD) capabilities in MOOSE are utilized
here, which is a symbolic differentiation method [115]. It applies the chain rule and
propagates derivatives to elementary operations at every step. AD offers a very accurate
Jacobian at a relatively small overhead cost. Thus, there is no need to compute Jacobian
by hand which is arduous and prone to errors in the context of multiphysics problems.
Therefore, it helps shift the burden of computing the derivatives of the complex known
expressions for the free energies from the user to the software. MOOSE employs the
DualNumber class from the MetaPhysicL package to enable forward-mode AD capabilities
[116]. The staggered solution scheme is implemented by the MultiApp system in MOOSE.
For transient problems, the TransientMultiApp is utilized, which performs coupled simula-
tions with sub-applications that progress in time and iterate with the main application.
Within each iteration, the applications are required to transfer data from and to the others.
In this case, the main application computes θ and u in a monolithic way, then transfers
the results to the sub-application which calculates d. After d is updated, it’s transferred
back to the main application for further steps.
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3.3 Single-edge notched tension test

We start by investigating the single-edge notched tension test, which has become canonical
in the phase-field models for fracture. Consider a square plate of 1mm × 1mm with an
initially horizontal edge crack extending to the middle of the specimen. The geometry and
boundary conditions are shown in Fig. 3.2(a). The bottom edge is fixed while a vertical
displacement is applied to the top edge. To include the temperature field in the thermal
fracture model, the initial temperature of the plate is set as 300 K. The outer boundaries
are treated as adiabatic. The domain is discretized into the unstructured mesh, and the
mesh is refined along the anticipated crack path to ensure the fracture phase-field variable
in the localized band is well resolved. This point is essential to accurately capture the
evolution of the crack phase-field in the simulations.

Table 3.2: Material parameters for single edge notched tension test
E (GPa) ν Gc0 (J/m2) σu (MPa) ρ (kg/m3) k (W/mK) cp (J/kgK) α

340 0.22 42.47 180 2450 300 0.775 8e-6

To compare the difference between the AT2 model and the CPF model and the ℓ0
insensitivity of the latter model, three different length scale parameters ℓ0 = 0.010 mm,
0.015 mm, and 0.020 mm are used, both for the AT2 model and the CPF model. The
refined mesh size is set to be 0.005 mm. Thus the ratio of length scale to mesh size is 2, 3,
and 4 respectively. The fixed time step is 0.010 ms and the total simulation time is 1.0 ms.
The material properties used for these examples are listed in Table. 3.2.

The AT2model and CPFmodel are compared here to check the convergence of the results
concerning the length scale parameter ℓ0. In Fig. 3.2(a), the crack patterns calculated
using the CPF model and AT2 model with ℓ0 = 0.020 mm are shown, respectively. As ℓ0
controls the width of the diffusive zone, with the increase of ℓ0 the damaged zone becomes
wider. Fig. 3.2(a) also shows that the damaged zones of the CPF model are more compact
compared with the AT2 model, as the half bandwidth of the former model is πℓ0/2 while
for the latter is infinity [106, 117]. This result also verifies there is a threshold of damage
initiation for the CPF model. The corresponding load versus displacement curves are
plotted in Fig. 3.2(b). The results show that the global responses of the CPF model
are almost independent of ℓ0 while for the AT2 model the peak load decreases with the
increase of the length scale. The former observation confirms the insensitivity of the results
from the CPF model concerning the length scale parameter under thermo-mechanical
conditions.
We further study the effect of thermal loading on crack patterns and temperature
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CPF: lc = 0.020 mm

AT2: lc = 0.020 mm

(a) (b)

u
   

A

A

Figure 3.2: Results of single-edge notched tension test under thermo-mechanical bound-
ary conditions. (a) Comparison of damage level and (b) Reaction force-
displacement curve of the AT2 model and the CPF model with different ℓ0.

distributions. Three cases are considered here. In case 1, we keep the temperature of
the bottom and the top edges at 300 K. In case 2, we cool down the top edge from the
beginning to 0.25 ms at a ratio of 1.0e5 K/s to 275 K and then keep the temperature
constant. Finally, in case 3, we heat up the top edge with the same speed to 325 K and then
keep it constant. Other settings of the simulations are the same as before. The comparisons
of these results are shown in Fig. 3.3. It is observed that compared with case 1 where the
constant thermal loading is included and the crack propagates horizontally to the right
edge of the specimen, the crack develops slightly downwards when the temperature is
increased on the top edge, while upwards when the temperature is decreased.

Take case 3 for illustration here. Fig. 3.3(a) and (b) show the crack patterns of case 3
with degraded and constant thermal conductivity. The reaction force-displacement curves
are plotted in Fig. 3.3(e). From the curves, it is apparent the onset of the crack is delayed
when the top edge is heated up compared with the fixed temperature while the crack
propagates earlier when cooling down the top edge. When the temperature goes up, the
specimen expands and the thermal strain is positive, which leads to a smaller elastic strain
with fixed displacement and a smaller driving force for crack propagation compared with
a uniform temperature field.

48



1

0
325 K

300 K

D
am

ag
e

Te
m

pe
ra

tu
re

k = g(d) k0 k =  k0
（e） （f）

（c）

(a)

u
   

A

A
T0

T1

（b）

（d）

Figure 3.3: Single-edge notched tension test under thermo-mechanical loading. Crack
patterns and temperature profiles for case 3 with (a and c) and without (b
and d) thermal conductivity degradation. (e) Reaction force-displacement
curves for different thermal loading and (f) Temperature profiles along A-A for
different thermal loading with and without thermal conductivity degradation.
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In case 3, the temperature of the top region is higher than that of the bottom region,
thus Gc is lower at the top. Though Gc is temperature-dependent, its value does not
change much in the temperature range of interest [275 K, 325 K], according to Eq. 3.32.
At the same time, the thermal expansion at the top also takes effect during the tensile
test, and it in fact takes a dominant role. The phenomenon can also be demonstrated in
case 2 (∆θ = −25 K) as well. Compared with the uniform temperature field (∆θ = 0 K)
and the crack propagates horizontally, in case 2 we cool down the top edge and the crack
propagates slightly upwards, just contrary to case 3 (∆θ = +25 K). These results are also
seen in the work of [118].
Meanwhile, according to Griffith’s theory [53], the fracture strength of material for

plane strain problem is defined as

σf =

√︄
2Eγs

πl(1− ν2)
=

√︄
EGc

πl(1− ν2)
, (3.63)

where γs is the fracture surface energy density. Therefore, the decreasing Gc also leads
to the decreasing σf for case 3. However, the value changes very slightly and cannot
compensate for the influence of thermal strain. Therefore, a larger displacement is needed
for the onset of crack initiation. While for case 2 with decreasing temperature, the
contraction of the specimen results in negative thermal strain. Correspondingly, the elastic
strain and the driving force are greater. Therefore the onset of the crack only needs a
smaller displacement, despite that Gc and σf increase slightly.
Note that the thermal conductivity is degraded as the crack develops. This effect is

considered to avoid non-physical heat transfer happening in the fully-cracked region. The
comparisons of the temperature profile of case 3 with degraded and constant thermal
conductivity are depicted in Fig. 3.3(c) and (d). It shows that when there is no thermal con-
ductivity degradation with the phase-field crack, the temperature field changes smoothly
even in the cracked regions. However, as the thermal conductivity is degraded with
cracks, the temperature is not continuous across the cracked regions. The phenomenon
can also be observed in Fig. 3.3(f), the temperature profiles along the line segment A-A
at the final time step for the three cases are depicted. Interestingly enough, when the
thermal conductivity is degraded with the phase-field crack, a sharp temperature jump is
observed for case 2 and case 3. For case 1, because the temperature at the top edge and
bottom edge are both fixed at 300K, the temperature does not change. In contrast, the
smooth temperature field change is observed when no thermal conductivity degradation
is considered.
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(c)  AT2: k = g(d) k0 (d)  AT2: k =  k0

Heat Flux                      Damage0 20000 W/m2 0 1

(a)  CPF: k = g(d) k0 (b) CPF:  k =  k0

Figure 3.4: Snapshots of heat flux for cases with degraded (left column) and constant
(right column) thermal conductivity for CPF model (a and b) and AT2 model
(c and d).

To further illustrate the influence of the degraded thermal conductivity, Fig. 3.4 depicts
the heat flux magnitudes and directions for case 3 with degraded and constant thermal
conductivity. The initial heat flux directions are identical for the two scenarios. Because of
the temperature gradient between the top edge and the bottom edge, heat flux goes from
high-temperature regions to lower-temperature regions. In the right half of the specimen
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containing no crack, the heat flux goes almost vertically downwards and perpendicular
to the pre-crack direction, while for the other half the heat flux tries to bypass the notch
tip. However, with different thermal conductivity being considered, the heat flux becomes
different when the crack propagates forward, as shown in Fig. 3.4(a) and (b). It is
observed that when thermal conductivity is degraded with the crack (see Eq. 3.43), the
heat flux directions change at the crack tip while it is still perpendicular to the crack for
the constant thermal conductivity case. Because of the cohesive nature of the CPF model,
the damage level at the crack tip is more diffusive. And also the residual conductivity still
exists for the parameter ξ, so the thermal conductivity is not fully degraded. Thus there
is still some residual heat flux crossing the crack tip. This degradation phenomenon is
also observed when the AT2 model is used, see Fig. 3.4(c) and (d). When the degraded
thermal conductivity is considered, its value approaches zero as soon as the crack is fully
developed, meaning the material is not continuous physically. Thus there is no heat
transfer happening in the fully cracked regions, and no heat flux across these regions
either. Instead, the heat flux arrows circumvent the crack tip (Fig. 3.4(a) and (c)). On the
contrary, when the thermal conductivity is not degraded with crack, i.e. constant crack,
the heat flux directions don’t change at all and the flux still crosses the cracked regions (Fig.
3.4(b) and (d)), which is not physically correct. It is also observed that the magnitudes of
the heat flux increase at the crack tip since the flux concentrates at this region. Note that
one can also consider other sources of heat transfer (e.g. convection or even radiation) at
the damaged zone or where we have the discontinuity in the displacement field. In the
current work, we are first restricted to heat transfer through conduction in solids.

3.4 Quenching test

In this section, the quenching tests are presented to further verify the phase-field fracture
model. In the experimental side of this test, a ceramic plate with an initially high temper-
ature is subjected to a cool water bath, and a series of parallel cracks are formed in the
ceramics [119, 120].
In the numerical example, a ceramic slab of 50 mm × 10 mm with a high initial tem-

perature θ0 is considered. The ambient temperature θa is lower, so there is a temperature
difference ∆θ. For computational efficiency, only a quarter of the whole rectangle plate
is modeled here. The symmetry boundary conditions are therefore applied on the cor-
responding edges, where the adiabatic condition is applied (i.e. no flux goes through
these edges). The horizontal displacement is fixed on the right edge and the vertical
displacement on the top edge is fixed, respectively. The remaining edges are subjected to
quenching through heat conduction. The material properties are taken from [98] and are
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listed in the Table. 3.3. In this quenching test, θ0 = 300 ◦C, θa = 20 ◦C and thus ∆θ =
280 ◦C. The length scale here ℓ0 = 0.10 mm with the fine mesh size h = ℓ0/4. The fixed
time step is ∆t = 0.10 ms and the total simulation time is 200 ms.

Table 3.3: Material parameters used for the quenching test.
E (GPa) ν Gc0 (J/m2) σu (MPa) ρ (kg/m3) k (W/mK) cp (J/kgK) α

370 0.3 42.47 180 3980 31 880 7.5e− 6

The temperature field and crack development of the quenching test are simulated. At
the beginning of quenching, the outer boundaries of ceramics are suddenly cooled down
and tend to contract due to high temperature variations, which leads to tensile stress on
the surface, while the inner materials are in compression for balance. When the thermal
stress exceeds the fracture strength, damage starts to initiate. Following the direction
of the temperature gradient, cracks initiate and propagate almost perpendicularly to
the boundaries, and uniformly with equal spacing. Initially, the cracks propagate quite
rapidly. As they propagate to the inner of the specimen, the propagation speed decreases
gradually with the release of the thermal stress. Some cracks get arrested at a short
length because the declining strain energy is unable to support all the cracks to further
propagate simultaneously. Therefore, the remaining cracks gain more driving force to
keep propagating further. The process repeats once again until the final crack pattern
forms. For a more detailed description of the experimental quenching process, readers
are referred to [120].

The comparison between the numerical result and experimental result of the quenching
test for the whole specimen with an initial temperature of 300 ◦C is shown in the first
row in Fig. 3.5. The crack pattern for the whole ceramic specimen is obtained by using
symmetry conditions at the top edge and right edge of the quarter plate in post-possessing.
From the comparison, it is apparent that the results obtained from the proposed thermal
fracture model show good agreement with the experiment results.

To further study the influence of the initial temperature of the ceramics on the final crack
pattern, more quenching tests with different initial temperatures, i.e. 350 ◦C, 400 ◦C, 500
◦C and 600 ◦C are conducted. The material parameters and model settings are the same as
before. The comparison of the simulation results with the experimental observations [120]
with different initial temperatures θ0 is shown in Fig. 3.5. To quantitatively compare the
results of the quenching test, we calculate the cracks that are approximately longer than
the 10% of the width of the specimen. According to the work of [120], the regions within
10mm to the ends are excluded in order to remove the effects of the end boundaries. The
number of cracks and the average crack spacing under different initial temperatures θ0
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Figure 3.5: Quenching tests with different initial temperatures θ0. Comparison of crack
patterns between numerical and experimental results. Reprinted from [120]
with permission.

are summarized in the Table. 3.4. Note that for θ0 = 500◦C and 600◦C, because a large
amount of diffusive damage accumulates near the boundaries which cannot be clearly
detected, they are not compared here. Also one should note that the PF fracture model is
by nature a smeared approach to fracture. As a result, by choosing a finite length scale
parameter, we might end up with a continuous damage zone when there are so many
cracks near each other. In other words, the continuous damage zone near the boundary
can also be physically interpreted as many micro-cracks which are not easily visible in the
experimental picture.

Table 3.4: Quantitative comparison of the quenching test under different initial tempera-
tures.

θ0 (◦C)
Numerical Experimental

Number Spacing Number Spacing
300 21 1.42 18 1.66
350 26 1.15 25 1.20
400 30 1.00 32 0.94

From the comparison, the thermal shock crack patterns (spacing, height hierarchy, and
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periodicity) are similar for different initial temperatures θ0. The crack mechanism like
crack initiation and propagation follows the same pattern as described before. However,
the crack pattern still keeps evolving with the increase of θ0. The crack number increases
with the higher initial temperature, and the crack becomes denser. The boundaries of the
ceramics have a higher level of damage with increasing θ0. More cracks at the boundaries
are formed as a result of higher thermal stress. In addition, the crack spacing also gets
smaller and the longer cracks propagate even longer to the central part of the specimen.
The experimental observations can also be reflected by the simulation results.
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4 Thermo-elasto-plastic Phase-field Ductile
Fracture at Finite Strains

4.1 Thermo-elasto-plastic phase-field ductile fracture model at
finite strains

In this work, the framework for finite strain elastoplasticity based on the multiplicative
decomposition of the deformation gradient and the principle of maximum plastic dissipa-
tion developed by [121] is adopted. Well-known continuum mechanical formalisms are
used to describe the proposed model. To make the description self-contained and for the
sake of clarity, we will formulate it in detail here. For the thermo-ductile problem, the
primary field variables are the displacement field u(x, t), the damage field d(x, t) and the
temperature field θ(x, t). The coupling mechanisms of the proposed model are shown in
Fig. 4.1.
We use the notation common in continuum mechanics. Scalars, first-order tensors,

second-order tensors and fourth-order tensors are represented by a, a, A, A, respectively.
Single and double contractions between two tensors are denoted as AB and A : B. The
operators ∇(·) and ∇ · (·) denote the gradient and divergence, and tr(A), dev(A), ∥A∥
represent the trace, the deviatoric part and the norm of second-order tensors, respectively.

4.1.1 Kinematics

Let Ω0 ⊂ Rd(d ∈ {2, 3}) be the reference configuration with external boundary ∂Ω0

and Ωt ⊂ Rd be the current configuration with current boundary ∂Ωt at time t. The
deformation of the body is described by the deformation mapping ϕ(X, t) : X → x,
which maps the reference material points X ∈ Ω0 at time t ∈ [0, τ ] onto the current
material points x ∈ Ωt such that x = ϕ(X, t). The deformation gradient is defined as

F = ϕ,X =
∂ϕ(X, t)

∂X
, (4.1)
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Figure 4.1: Schematic of the coupling mechanism among elastoplasticity, crack phase-
field and heat transfer.

and the displacement of the point X is given as

u(X, t) = ϕ(X, t)−X. (4.2)

For finite strain plasticity, the stress-free intermediate configuration is assumed. The
multiplicative decomposition of total deformation gradient F into its elastic part F e and
plastic part F p is assumed as F = F eF p. For thermo-mechanical problems, a third
configuration is introduced accounting for the thermal deformation. To this end, the total
deformation gradient is multiplicatively decomposed as

F = FmF θ = F eF pF θ, (4.3)

where Fm and F θ represent the mechanical and thermal part of the deformation gradient.
For a general anisotropic thermal expansion, the corresponding thermal deformation
gradient is defined as

F θ = I +αt(θ − θ0), (4.4)

where θ0 is the reference temperature, and αt = diag(α1, α2, α3) is a diagonal tensor of
anisotropic thermal expansion coefficients with αi (i=1,2,3) being the thermal expansion
coefficients along the principal crystallographic directions. By assuming isotropic thermal
expansion, F θ is simplified to be

F θ = (1 + αt(θ − θ0)) I. (4.5)
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The right Cauchy–Green deformation tensor and the plastic right Cauchy–Green deforma-
tion tensor are defined as

C = F TF , Cp = F pTF p. (4.6)

Similarly, associated with the current configuration, the total left Cauchy-Green strain
tensor and the elastic left Cauchy-Green strain tensor are given as

b = FF T , be = F eF eT . (4.7)

In view of Eq. 4.3 and Eq. 4.6,

be = FmCp−1FmT , (4.8)

with its Lie derivative as
Lvbe = FmĊp−1

FmT . (4.9)

4.1.2 Thermodynamics: Dissipation inequality

To derive the constitutive equations in a thermodynamically consistent manner, the second
law of thermodynamics, expressed in the form of local Clausius-Duhem inequality with
respect to the reference configuration is shown in Eq. 4.10. The extension of the microforce
balance acting on the fracture surface is incorporated.

D = S :
1

2
Ċ − πḋ+ ξ · ∇ḋ− (ψ̇ + θ̇η)− 1

θ
∇θ · q ≥ 0, (4.10)

where S is the second Piola-Kirchhoff stress, π is the internal microforce and ξ is the
microstress, ψ and η are the free energy and the entropy, respectively, q is the heat flux.

For the thermo-mechanically coupled fracture problem, the energy functional is assumed
as a functional of the variables ψ = ψ(C,Cp, α, d,∇d, θ), and decomposed as the following
parts

ψ(C,Cp, α, d,∇d, θ) = ψe(C,C
p, θ)⏞ ⏟⏟ ⏞

elastic energy

+ ψp(α,∇α, θ)⏞ ⏟⏟ ⏞
plastic hardening

+ ∆p(α, θ)⏞ ⏟⏟ ⏞
plastic dissipation

+ψc(d,∇d, θ)⏞ ⏟⏟ ⏞
fracture energy

+ ψθ(θ)⏞ ⏟⏟ ⏞
thermal energy

(4.11)
where the specific expressions of these energy terms are to be discussed later. According
to the energy balance, the internal energy e per unit reference volume is defined as

ė = S :
1

2
Ċ − πḋ+ ξ · ∇ḋ−∇q +Q, (4.12)
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where Q is the external heat source. Using the Legendre transformation, the internal
energy expressed by the Helmholtz free energy and entropy η as

e = ψ + θη. (4.13)

Substituting Eq. 4.11 - Eq. 4.13 into Eq. 4.10 yields(︃
S − 2

∂ψ

∂C

)︃
:
1

2
Ċ− ∂ψ

∂Cp : Ċp−∂ψ
∂α

α̇−
(︃
π +

∂ψ

∂d

)︃
ḋ+

(︃
ξ − ∂ψ

∂∇d

)︃
∇ḋ−

(︃
η +

∂ψ

∂θ

)︃
θ̇−1

θ
q·∇θ ≥ 0

(4.14)
The inequality must hold for arbitrary thermodynamic processes, which leads to the
following thermodynamic relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Second Piola-Kirchhoff stress: S = 2
∂ψ

∂C

Microstress: ξ =
∂ψ

∂∇d

Internal microforce: π = −∂ψ
∂d

Entropy: η = −∂ψ
∂θ
.

(4.15)

The Fourier’s law reads,

q = −k∇θ. (4.16)

The specific expression of the terms above will be present in the following sections,
according to the choice of the energy functional. Then the Clausius-Duhem inequality is
reduced to

− ∂ψ

∂Cp : Ċp − ∂ψ

∂α
α̇ ≥ 0, (4.17)

which is satisfied on the condition of appropriate choice of evolution functions.

4.1.3 Damage informed Elastoplastiy

Consistent with the assumption of isotropy and the notion of an intermediate stress-
free configuration, for the compressible Neo-Hookean hyperelastic material model, the
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damaged elastic strain energy is decomposed as [83, 122, 123]

ψe = g(d, α)W+ +W−

W+ =

{︄
U (Je) + W̄

(︁
b̄
e)︁
, Je ≥ 1

W̄
(︁
b̄
e)︁

Je < 1

W− =

{︄
0, Je ≥ 1

U (Je) Je < 1,

(4.18)

where U (Je) and W̄
(︁
b̄
e)︁ are the volumetric and deviatoric parts of ψe, and expressed as

U (Je) =
1

2
κ(θ)

[︃
1

2

(︁
Je2 − 1

)︁
− ln Je

]︃
W̄
(︁
b̄
e)︁

=
1

2
µ(θ)

(︁
tr
[︁
b̄
e]︁− 3

)︁
.

(4.19)

Here, κ(θ) and µ(θ) are the temperature-dependent bulk modulus and shear modulus,
respectively.
Assuming the plastic flow is isochoric, we have

detF p = 1⇒ Jm = Je = detF e. (4.20)

The volume-preserving left Cauchy-Green strain is defined as

b
e
: = Je−2/3F eF eT ≡ Je−2/3be. (4.21)

Then, the second Piola-Kirchhoff stress tensor is derived from Eq. 4.15

S = 2g(d, α)
∂W+

∂C
+ 2

∂W−

∂C
= g(d, α)S+ + S−, (4.22)

and the Kirchhoff stress tensor is

τ = F eSF eT = g(d, α)τ+ + τ−

τ+ =

{︄
JepI + s Je ≥ 1

s Je < 1

τ− =

{︄
0 Je ≥ 1

JepI Je < 1,

(4.23)
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where Jep1 and s are the volumetric and deviatoric part of the Kirchhoff stress and are
defined as follows,

p : = U ′ (Je) =
κ(θ)

2

(︁
Je2 − 1

)︁
/Je

s : = dev[τ ] = µ(θ)dev
[︁
b̄
e]︁
.

(4.24)

Finally, the Cauchy stress tensor is obtained by the push-forward of the second Piola-
Kirchhoff stress from the intermediate stress-free configuration to the current configuration

σ = g(d, α)σ+ + σ−

σ+ =

{︄
pI + Je−1s Je ≥ 1

Je−1s Je < 1

σ− =

{︄
0 Je ≥ 1

pI Je < 1.

(4.25)

Considering the body force b, the momentum balance equation reads

∇ · σ + b = 0. (4.26)

The degraded Mises-Huber yield surface function is

f(τ , d, α, θ) = ∥s∥ − g(d, α)
√︃

2

3
Hp(α, θ), (4.27)

where α is the hardening variable, Hp(α, θ) is the hardening function, the commonly-used
ones are

Hp(α, θ) =

{︄
σY(θ) (Perfect plasticity)
σY(θ) +H(θ)α (Linear hardening)

(4.28)

where σY(θ) and H(θ) are the temperature-dependent yield strength and hardening
modulus. Note that for the materials with a strong hardening effect, like steel 1.0553, the
saturation-type hardening function is often used [122, 87].

Hp(α, θ) = σY(θ) +H(θ)α+ (σ∞(θ)− σY(θ)) (1− exp(−δα)), (4.29)

where σ∞(θ) is the temperature-dependent ultimate tensile strength, and δ is the satu-
ration coefficient. For thermal fracture problems, the thermal softening effect plays a
significant role. In line with [100, 124], the temperature-dependency of the material
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parameters is considered as f(θ) = (1 − ω(θ − θ0)), where ω and θ0 are the softening
parameter and reference temperature, respectively. Then it leads to

σY(θ) = σY0(1− ω0(θ − θ0)),
σ∞(θ) = σ∞0 (1− ωh(θ − θ0)) ,
H(θ) = H0 (1− ωh(θ − θ0)) .

(4.30)

For the general plastic hardening, ψp takes a complex form, here only the linear hard-
ening contribution is considered

ψp(α, θ) =
1

2
H(θ)α2. (4.31)

The plastic dissipation can be expressed as

∆p(α, θ) = σY(θ)α. (4.32)

The elastoplastic constitutive model is completed by the plasticity flow rule. The
associative flow rule, defined by the principle of maximum plastic dissipation, takes the
form as

dev [Lvbe] = −
2

3
γ̇ tr [be]n

n =
s

∥s∥
.

(4.33)

Note that Eq. 4.33 only defines the deviatoric part of [Lvbe]. The evolution of the spherical
part is determined by the isochoric assumption Eq. 4.20.
For isotropic hardening, the evolution of internal hardening variable α follows

α̇ =

√︃
2

3
γ̇, (4.34)

where γ̇ is the plastic multiplier that follows the principle of maximum plastic dissipation
and is subject to the standard Karush-Kuhn–Tucker (KKT) loading/unloading conditions

γ̇ ≥ 0, f(τ , d, α, θ) ≤ 0, γ̇f(τ , d, α, θ) = 0. (4.35)

The discrete form of KTT conditions is discussed in Sec. 4.2.2.
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4.1.4 Phase-field modeling of ductile fracture

Consider a cracked solid Ω with an external boundary denoted by ∂Ω and a crack set Γ.
Starting from Griffith’s theory in fracture mechanics, the total fracture energy is given by

ψc =

∫︂
Γ
Gc(α, θ) dA =

∫︂
Ω
Gc(α, θ)γc(d,∇d)dV, (4.36)

where Gc(α, θ) is the critical energy release rate. In the relation above, we substitute the
surface integral with a volumetric integral which yields an approximation of the fracture
energy [62, 64, 106]. Here, γc is the crack surface density function defined as

γc(d,∇d) =
1

c0
(
1

ℓ0
ω(d) + ℓ0|∇d|2), c0 = 4

∫︂ 1

0

√︁
ω(β)dβ, (4.37)

where the length scale parameter ℓ0 is used to regularize the sharp crack to the diffusive
crack width. The crack geometric function ω(d) characterizes the homogeneous evolution
of the phase-field crack, which has the properties

ω(d) ∈ [0, 1], ω(0) = 1, ω(x)→ 0 : x→ ±∞, (4.38)

and it takes the form as
ω(d) = 2d− d2. (4.39)

To include the plastic contribution to the fracture process, the degradation function is
modified to be [122]

g(d, α) = (1− d)2
α

αcp + η, (4.40)

where αcp is the threshold value for the equivalent plastic strain, η is a small parameter to
guarantee a residual stiffness even in fully-cracked regions to avoid numerical convergence
issues.
For quasi-static fracture assuming that micro-inertia is negligible, the microforce mo-

mentum balance equation is given by

∇ · ξ + π = 0, (4.41)

where ξ and π are defined in Eq. 4.15. Employing the microforce balance equation and
substituting the fracture energy given in Eq. 4.36, the governing equation of the phase-field
evolution is obtained

2Gc(α, θ)ℓ0
c0

∇2d− g′(d, α)H− Gc(α, θ)

c0ℓ0
ω′(d) = 0, (4.42)
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where H is the history variable introduced in [64] to enforce the irreversibility of the
crack field, and expressed as

H = max
t∈[0,τ ]

W+(C,Cp). (4.43)

It is worth noting that to include the contribution of the plastic work in ductile fracture,
the driving force can be modified to be [83]

H = max
t∈[0,τ ]

(︁
βeW

+(C,Cp) + βp(ψp − ψp0)
)︁
, (4.44)

where βe ∈ [0, 1] and βp ∈ [0, 1] are used to weigh the contribution to the crack field from
elastic energy and plastic work, respectively. Moreover, ψp0 is the threshold for plastic
work, introduced to control the point when the plastic work starts to take effect.

To incorporate the influence of the plastic flow on the ductile fracture process, here the
fracture toughness is degraded by the plastic internal variable, where the relation fc(α)
has the properties as,

0 < fc(α) ≤ 1; ∂αfc(α) ≤ 0. (4.45)

As the plasticity is irreversible, the degradation function decreases monotonically with
the increase of the plastic variable. The degradation mechanism is often utilized in the
phase-field modeling of fatigue fracture [125, 126, 127]. In line with [89], the following
form is adopted.

Gc = fc(α)Gc0

fc(α) =

⎧⎪⎨⎪⎩
1, α < αcf

1− b
a2

(α− αcf − a)2 + b, αcf ≤ α < αcf + a

b, α ≤ αcf + a,

(4.46)

where αcf is the threshold of plasticity from which the degradation mechanism is triggered,
a and b are the softening parameters defining the profile of the degradation function.

4.1.5 Heat transfer

Derived in a thermodynamically consistent manner from the energy balance, the heat
transfer equation is given as

cθ̇ = k(d)∇2θ+θ

(︃
∂S

∂θ
:
1

2
Ċ +

∂π

∂θ
ḋ+

∂ξ

∂θ
∇̇d+ ∂2ψ

∂α∂θ
α̇+

∂2ψ

∂Cp∂θ
Ċp
)︃
+
∂ψ

∂α
α̇+

∂ψ

∂Cp Ċ
p,

(4.47)
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where c is the heat capacity. The derivative terms in Eq. 4.47 are due to thermo-elasto-
plastic coupling and dissipation mechanism, which serve as the additional heat source
generation. By assuming quasi-static crack propagation, the heat equation reduces to

cθ̇ = k(d)∇2θ, (4.48)

where the thermal conductivity is considered to be degraded by damage such that

k(d) = ((1− d)2 + η)k0. (4.49)

This form ensures that there is no heat flux across the crack to avoid nonphysical phenom-
ena. The thermal contribution to the energy functional takes the following form

ψθ(θ) = c

(︃
θ − θ0 − θ ln

(︃
θ

θ0

)︃)︃
, (4.50)

where θ0 is the reference temperature.

4.1.6 Summary of the coupled model

With the introduction of the previous sections, the formulations of the initial/boundary
value problem (IBVP) are presented. The governing equations and related constitutive rela-
tions are summarized in Table. 4.1, with intercoupling mechanisms among elastoplasticity,
phase-field crack and heat transfer being comprehensively considered. The schematic of
them is shown in Fig. 4.1. Notably, the damage-plasticity coupling is threefold, which
exhibits the yield surface Eq. 4.27, the degradation function Eq. 4.40, and the fracture
toughness Eq. 4.46, respectively.
As formulated in the sections above, there are complex coupling mechanisms for this

thermo-elastoplastic-ductile fracture model. To make it clear, the coupling terms between
different physics in this work are summarized below.

• elasticity with phase-field crack

ψe = g(d, α)W+ +W−

σ = g(d, α)σ+ + σ− (4.51)

• plasticity with phase-field crack

g(d, α) = (1− d)
2α
αcp + η

f(τ , d, α) = ∥s∥ − g(d, α)
√︃

2

3
H(α)

Gc = f(α)Gc0

(4.52)
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Table 4.1: Summary of the phase-field model of thermo-ductile fracture at finite strains

Variables Governing
equations

Constitutive relations Coupled parameters

Crack phase-
field

∇ · ξ + π = 0

ξ =
2Gc(α, θ)lc

c0
∇d

π = −g′(d, α)H−
Gc(α, θ)ω′(d)

c0l0

H = max
t∈[0,τ ]

(︁
βeW

+ + βp (ψp − ψp0)
)︁

g(d, α) = (1− d)
2 α
αcp + η

ω(d) = 2d− d2

c0 = 4

∫︂ 1

0

√︁
(ω(β)dβ

Gc(α, θ) : plast. & temp.-dependent
fracture toughness

g(d, α) : damage & plast.-dependent
degradation function

Displace-
ment

∇ · σ + b = 0

F = ϕ,X = F eF pF θ

σ = g(d, α)σ+ + σ−

σ+ =

{︄
pI + Je−1s

Je−1s,
σ− =

{︄
0, Je ≥ 1

pI, Je < 1

p =
κ(θ)

2

(︁
Je2 − 1

)︁
/Je, s = µ(θ) dev

[︁
b̄
e]︁

Je = detF e, be = F eF eT

f(τ , d, α, θ) = ∥s∥ − g(d, α)

√︃
2

3
Hp(α, θ)

Hp(α, θ) = σY(θ) +H(θ)α+

(σ∞(θ)− σY(θ))(1− exp(−δα))

dev [Lvb
e] = −

2

3
γ̇ tr [be]n

α̇ =

√︃
2

3
γ̇, n =

s

∥s∥

γ̇ ≥ 0, f ≤ 0, γ̇f = 0

κ(θ) : temp.-dependent
bulk modulus

µ(θ) : temp.-dependent
shear modulus

σY(θ) : temp.-dependent
yield strength

σ∞(θ) : temp.-dependent
ultimate strength

H(θ) : temp.-dependent
hardening modulus

Tempera-
ture

∇ · q + cθ̇ = 0
q = −k(d)∇θ

k(d) = (1− d)2 + η

k(d) : damage-dependent
thermal conductivity
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• heat transfer with elastoplasticity

Hp(α, θ) = σY(θ) +H(θ)α+ (σ∞(θ)− σY) (1− exp(−δα))
σY(θ) = σY0(1− ω0(θ − θ0))
σ∞(θ) = σ∞0 (1− ωh(θ − θ0))
H(θ) = H0 (1− ωh(θ − θ0))

F = F eF pF θ

(4.53)

• heat transfer with phase-field crack

k(d) = g(d)k0 (4.54)

4.2 Numerical implementation

4.2.1 Finite element discretization

In this session, the finite element implementation of the model is presented. The spatial
discretization is formulated using the Galerkin method. According to the strong form of
the governing equations in Table. 4.1, by multiplying corresponding arbitrary test functions
and considering the divergence theorem and the boundary conditions, the weak form is
established.∫︂

Ω
σ : ∇δudV −

∫︂
Ωt

t∗δudS = 0, (4.55a)∫︂
Ω

Gc
ℓ0c0

ω′(d)δddV +

∫︂
Ω

2Gcℓ0
c0
∇d∇δddV +

∫︂
Ω
g′(d)HδddV = 0, (4.55b)∫︂

Ω
cθ̇δθdV +

∫︂
Ω
k∇θ∇δθdV −

∫︂
Ωt

k∇θδθdS = 0. (4.55c)

With the standard finite element method, the field variables u, d and θ, as well as their
first spatial derivatives, are approximated as⎧⎨⎩

u =
∑︁
N i
uui = Nuue, ε =

∑︁
Bi
uui = Buue,

d =
∑︁
N i
ddi = Ndde, ∇d =

∑︁
Bi
ddi = Bdde,

θ =
∑︁
N i
θθi = N θθe, ∇θ =

∑︁
Bi
θθi = Bθθe.

(4.56)

Here, ui, di and θi are the nodal values of the displacement, damage and temperature field
of node i of element e, respectively. Nu,Nd,Nθ and Bu, Bd, Bθ denote the shape functions
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and their derivatives for the displacement, damage field and temperature, respectively.
Nu,Nd,N θ andBu,Bd,Bθ are the corresponding shape function matrix and derivatives.
For a quadrilateral 2D element they are written as

Nu =

[︃
N1 0 · · · N4 0
0 N1 · · · 0 N4

]︃
, Bu =

⎡⎣N1,x 0 · · · N4,x 0
0 N1,y · · · 0 N4,y

N1,y N1,x · · · N4,y N4,x

⎤⎦ , (4.57)

Nd = N θ =
[︁
N1 · · · N4

]︁
, Bd = Bθ =

[︃
N1,x · · · N4,x

N1,y · · · N4,y

]︃
. (4.58)

Similarly, the test functions and their spatial derivatives are discretized as⎧⎨⎩
δu = Nuδ

i
u, ∇δu = Buδ

i
u,

δd = Ndδ
i
d, ∇δd = Bdδ

i
d,

δθ = N θδ
i
θ, ∇δθ = Bθδ

i
θ.

(4.59)

Inserting the discretization relations above, we obtain the following equations for the
residuals of different fields

ru =

∫︂
Ω
BT
uσdV −

∫︂
Ωt

NT
u t

∗dS, (4.60a)

rd =

∫︂
Ω

Gc
ℓ0c0

ω′(d)NT
dNddV +

∫︂
Ω

2Gcℓ0
c0

Bd
TBddV +

∫︂
Ω
g′(d)NT

dHdV, (4.60b)

rθ =

∫︂
Ω
cθ̇N θdV +

∫︂
Ω
BT
θ kBθdV −

∫︂
Ωt

BT
θ kN θdS. (4.60c)

For this thermo-elasto-plastic coupled fracture problem, the energy functional is non-
convex with respect to the two unknowns displacement and crack phase-field simulta-
neously. Therefore it is challenging to solve all the unknown variables at the same time
utilizing the conventional Newton-Raphson method. However, the energy functional is
convex with respect to each of the two variables separately when the other is fixed, which
is the so-called staggered or alternative minimization algorithm.

The theoretical model is numerically implemented by the Finite Element Method within
the framework of Multiphysics Object-Oriented Simulation Environment (MOOSE) [128].
The coupled sets of partial differential equations (PDEs) of the bulk element are solved
by Portable, Extensible Toolkit for Scientific Computation (PETSc)
[129]. The staggered solution scheme is implemented with the MultiApp [130] system
in MOOSE, by which individual physics systems can be solved simultaneously. For transient
problems, TransientMultiApp is utilized, which performs coupled simulations with
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sub applications that progress in time and iterate with the main application. Within
each iteration, the applications are required to transfer data from and to the others. In
this work, the thermo-elasto-plastic couple problem is solved monolithically as the main
application while keeping the phase-field crack frozen. Sequentially, the phase-field crack
evolution equation is solved in the sub application with the updated displacements and
temperature. The irreversibility constraint ḋ ≥ 0 is enforced during this calculation. After
the phase-field crack is updated, it is transferred back to the main application for further
steps until the simulation ends.

4.2.2 Return-mapping algorithm

The procedure of the return-mapping scheme for the finite-strain elastoplasticity using the
backward Euler scheme is summarized in this section. The algorithm follows the algorithm
proposed by [121] for elastoplasticity and modified by [83] for fracture problems. Readers
interested are referred to them for more details.

For the current time interval [tn,tn+1], assume the states ϕn, F n, ben, αn, dn, θn at the
previous timestep are known. The configuration at the current timestep tn+1 is updated
by the incremental displacement field un as

xn+1 = ϕn+1(X) = ϕn(X) + un [ϕn(X)] . (4.61)

Then, the deformation gradient and the relative deformation gradient are obtained as

F n+1 = [1+∇xnun]F n, (4.62)

fn+1 = F n+1F
−1
n = 1+∇xnun. (4.63)

From Eq. 4.63, the volume-preserving part reads

f̄n+1 = det [fn+1]
−1/3 fn+1. (4.64)

Assuming a pure elastic trail response and no plasticity evolution, i.e., αtrialn+1 = αn, the
trial deformation is given as

b
e trial
n+1 = fn+1b

e
nf

T
n+1, (4.65)

with the trial damaged deviatoric part of Kirchhoff stress as

strialn+1 = g(dn, αn)µ(θn)dev
[︂
b
e
n+1

]︂
. (4.66)

The discrete Karush-Kuhn-Tucker loading/unloading conditions are

f (τn+1, dn, αn+1, θn) ≤ 0, ∆γ ≥ 0, ∆γf (τn+1, dn, αn+1, θn) = 0. (4.67)
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The yield function at the trail stress state is defined as

f trialn+1 = f
(︂
τ trial
n+1, dn, αn, θn

)︂
=
⃦⃦⃦
strialn+1

⃦⃦⃦
− g(dn, αn)

√︃
2

3
Hp(αn). (4.68)

If f trialn+1 ≤ 0, then the trial elastic state with ∆γ = 0 satisfies conditions, Thus, the trial
elastic step is the solution at time tn+1,

(·)n+1 = (·)trialn+1. (4.69)

Alternatively, if f trialn+1 > 0, it means the trial state is not admissible, and ∆γ > 0 needs to
be updated to satisfy f trialn+1 = 0.

b
e
n+1 = b

e trial
n+1 −

2

3
∆γ tr

[︂
b
e
n+1

]︂
nn+1, (4.70)

αn+1 = αn +

√︃
2

3
∆γ, (4.71)

nn+1 = sn+1/ ∥sn+1∥ . (4.72)

Then, the stress is updated as

sn+1 = strialn+1 − 2µ̄∆γnn+1, (4.73)

where
µ̄ =

1

3
g(dn, αn)µ tr

[︂
b
e trial
n+1

]︂
. (4.74)

Then the ∆γ is obtained by solving the scalar-type yield function

f(∆γ) =
⃦⃦⃦
strialn+1

⃦⃦⃦
− g(dn, αn)

√︃
2

3
Hp

(︄
αn +

√︃
2

3
∆γ

)︄
− 2µ̄∆γ = 0. (4.75)

4.3 I-shape specimen tensile test

In this section, one of the canonical benchmark examples, i.e., the tensile test of the I-shape
specimen is simulated. The simulation results are compared with experimental ones to
validate the proposed model. Afterward, the influence of the characteristic parameters of
the model and the temperature are studied.
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Figure 4.2: Tensile test of I-shape flat Steel-1.0553 specimen. (a) Geometry and boundary
conditions, (b) experimental observations during tensile test [81] and (c) FE
discretized mesh with a refined zone in the central regions.

4.3.1 Benchmark example: tensile test of I-shape specimen

In this section, the phase-field ductile fracture model is validated with the experimental
tensile test of an I-shape specimen made of steel 1.0553. The geometry of the I-shape
specimen (unit: mm) with 3mm-thickness is shown in Fig. 4.2(a). In the test, the lower
end is fixed while the upper end is clamped and subject to external displacement. The
experimental observations of the tensile test [122] are shown in Fig.4.2(b). The mesh
used in the simulation is shown in Fig.4.2(c). In the central regions where the plastic
strain is expected to accumulate and the necking and cracking are expected to initiate and
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propagate, the meshes are refined so that the phase-field is well-resolved. The material
properties of Steel-1.0553 and numerical parameters used in the simulations in this section
are listed in Table. 4.2. Note that Steel-1.0553 is a material with a strong hardening effect.
Thus, the saturation-type hardening function Eq. 4.29 is adopted.

Table 4.2: Material/numerical parameters used in the simulations

symbol material/numerical parameters value

K bulk modulus 150 (GPa)
G shear modulus 73.255 (GPa)
σY0 yield strength 343 (MPa)
σ∞ ultimate strength 680 (MPa)
H hardening modulus 300 (MPa)
Gc0 fracture toughness 1000 (KJ/m2)
θ0 reference temperature 293 (K)
ℓ0 length scale parameter 0.5 (mm)
δ saturation coefficient 26
αcp threshold in g(d, α) 1.0
αcf threshold in fc(α) 1.0
ω0 softening parameter 2e-3
ωh softening parameter 1e-3
a profile parameterf(α) 0.1
b profile parameterf(α) 1e-6

To validate the elastoplastic constitutive model, the crack phase-field is deactivated
first, and the pure mechanical response of the tensile test at constant temperature is
simulated. The load-displacement curve of the elastoplastic response is shown in Fig. 4.3.
Fig. 4.4 depicts the evolution of the equivalent plastic strain and the Von-Mises stress of
loading stages (p1) - (p4) at displacement u= [10.0, 12.0, 14.0, 15.0] mm. The specimen
behaves purely elastically till the yield point is reached. As the deformation progresses,
the plasticity starts to accumulate in the necking regions. The load-displacement curve
agrees with the experiment in the elastoplastic scope.
Afterward, the crack phase-field is activated and the complete ductile fracture model

is simulated. The evolution of the displacement along the loading direction, the crack
phase-field, the equivalent plastic strain and the Von-Mises stress of loading stages (q1) -
(q4) at displacement u = [11.0, 12.0, 12.5, 12.9] mm are shown in Fig. 4.5. The response
behaves similarly to the pure elastoplastic one at the beginning. At the plastic state, as
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Figure 4.3: Comparison of load-displacement curves of tensile test of I-shape specimen
between simulation and experimental results [122]. The snapshots of simula-
tions of the labeled points (p1) - (p4), (q1) - (q4) are shown in Fig. 4.4 and 4.5,
respectively.

a result of large deformation and corresponding crack drive force in the middle of the
specimen, damage accumulates and concentrates in the regions. With the increase of the
plastic deformation, the threshold for equivalent plastic strain is reached. Consequently,
the fracture toughness is degraded and accelerates the crack propagation till the final
fracture.

The load-displacement curve of the process is compared to the experimental results in
Fig. 4.3. From the comparison, the simulation result agrees well with the experiment result
[122] in the elastic regime and the initial plastic hardening regime. As the externally ap-
plied displacement further increases, the damage accumulates, and the coupling between
elasto-plastic-damage plays a more significant role. The experimental load-displacement
exhibits a stronger softening behavior than the numerical counterpart. The deviation
can be attributed to multiple reasons. One reason could be that the specimen in the
experiment is not perfect, which undermines the properties of the specimen. Moreover, as
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Figure 4.4: Elastoplastic response of tensile test of I-shape steel-1.0553 specimen with-
out damage of points (p1) - (p4). Evolution of (a1) - (a4) equivalent plastic
strain and (b1) - (b4) Von-Mises stress at displacement u = [10.0, 12.0, 14.0,
15.0] mm.

expressed in Eq. 4.47, the couplings between elastoplasticity-damage serve as an addi-
tional heat source, resulting in the thermal softening of the material parameter. However,
this softening behavior is neglected for quasi-static assumption in the current model. The
coupling between damage and plasticity is still an open question, and more potential
damage-plasticity coupling mechanisms are worthy of further study. Nevertheless, the
overall response of the ductile fracture process of the simulation agrees well with the
experimental results. It demonstrates that the proposed model is able to capture the whole
ductile fracture process, including elastoplasticity, yielding, necking, crack initiation, and
propagation.

4.3.2 characteristic parameters study of the model

For the phase-field model, the length-scale parameter ℓ0 plays an important role. For the
standard phase-field model for brittle fracture, i.e., AT1 and AT2 models, the fracture
process is significantly dependent on the length-scale parameter [65]. For example, the
peak stress of the load-displacement curve of the pure tensile test is decreasing with the
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Figure 4.5: Fracture process of tensile test of I-shape steel-1.0553 specimen at points
(q1) - (q4). Evolution of (a1) - (a4) displacement, (b1) - (b4) damage, (c1) - (c4)
equivalent plastic strain and (d1) - (d4) Von-Mises stress at displacement u =
[11.0, 12.0, 12.5, 12.9] mm.
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Figure 4.6: Influence of length scale parameter on load-displacement curves of tensile
test.

increase of ℓ0. For the cohesive-phase-field model, it incorporates material parameters
like Young’s modulus, yield strength and fracture toughness into the degradation function,
so the response is relatively insensitive to ℓ0. For the proposed ductile fracture model,
the simulations with different ℓ0 are performed to study the influence, and the load-
displacement curves are compared in Fig.4.6. It shows that with different ℓ0 the peak load
of the curves keeps almost the same, but the crack develops earlier when bigger ℓ0 is used.
As described in Eq. 4.44, the driving force for ductile fracture can be varied from

the brittle fracture considering the contribution of the plastic work and the threshold.
Herein, the influence of different driving forces is also studied, with the results shown in
Fig. 4.7. Compared with pure elastic energy, the inclusion of the plastic contribution to the
driving force facilitates the fracture process. The larger threshold of plastic contribution
corresponds to the larger effective plastic strain from which the plastic contribution is
triggered. Consequently, the fracture process is relatively delayed. In the case that the
threshold is too large to exceed, the plastic energy cannot exceed and then the plastic
part would not make any contribution to the crack driving force throughout the fracture
process.

Moreover, the comparison of the fracture process at different temperatures is performed,
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Figure 4.7: Influence of crack driving force on load-displacement curves of tensile test.

showing the influence of the temperature. Because of the thermal softening effect Eq. 4.30,
the initial yield strength decreases with increasing temperature, as shown in Fig. 4.8. The
hardening effects are also relatively weaker as the ultimate strength and the hardening
modulus are also smaller compared with those at room temperature. These simulations
show the capability of the proposed model to predict thermo-ductile fracture in the
thermo-elasto-plastic solids.
To study the influence of the critical threshold for the effective plastic strain in the

degradation function g(d, α) and f(α) on the fracture process, a series of simulations are
conducted.
In Eq. 4.40, αcp controls from which point the plasticity has a more significant effect

in the degradation function of the fracture process. The smaller αcp is, the easier for the
effective plastic strain to overpass the threshold, thus the earlier severe degradation takes
effect, and eventually the earlier fracture happens. The analysis corresponds to the trend
shown in Fig. 4.9.
Meanwhile, the parameter αcf in Eq. 4.46 controls when the fracture toughness starts

to be degraded by the plastic flow. The comparison of the influence of αcf on the load-
displacement curve is shown in Fig. 4.10. It is apparent that fracture happens earlier with
a smaller αcf.
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Figure 4.8: Influence of temperature on load-displacement curves of tensile test.

Figure 4.9: Influence of the threshold for the effective plastic strain αcp in g(d, α) on load-
displacement curves of tensile test of I-shape specimen
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Figure 4.10: Influence of the threshold αcf on load-displacement curves of tensile test.

Figure 4.11: Influence of the parameter a on load-displacement curves of tensile test.

80



Likewise, the influence of a in Eq. 4.46 is shown in Fig. 4.11. a determines the interval
of the equivalent plastic strain where the fracture toughness is degraded from the initial
value to the degraded value b. The bigger a means the fracture toughness is degraded
more smoothly after the effective plastic strain exceeding αcf. Therefore, the fracture
happens more slowly in a bigger interval of the effective plastic strain, compared with
counterparts with a smaller value of a.
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5 Thermal Cracking in Additive
Manufacturing

In this chapter, the numerical study of the hot cracking phenomenon during the AM
process, as schematically shown in Fig. 5.1, using the proposed phase-field model for
thermal fracture is presented.

Figure 5.1: Schematic of AM process and hot cracking phenomenon. Different hot crack-
ing patterns in the melting pool for conduction mode and keyhole mode hot
cracking with the increase of energy density

During AM processes, specifically Powder Bed Fusion (PBF), different hot cracking
patterns are observed in the different processes. Typically for the conduction mode AM
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process, the hot cracking shows as a circumferential crack, while for the keyhole mode
AM process, it shows up as a combination of circumferential crack and central crack. The
two different patterns are thereby termed the conduction mode hot cracking and keyhole
mode hot cracking, respectively.

5.1 Solidification shrinkage

To introduce the simulation setup, the solidification shrinkage is introduced first. In PBF,
the solid-state powders melt when the temperature exceeds the melting temperature.
Afterwards, it resolidifies when the temperature drops below the liquidus temperature.
Most metals and alloys contract on solidifying, and the liquid-solid contraction leads to
volume change, which adds the phase transformation strain to the total strain calculation,
as shown in Fig. 5.2. Therefore, the mechanism of the solidification shrinkage is different
from that of thermal strain induced by temperature change [131]. Meanwhile, the
contribution of solidification shrinkage is relatively significant and has to be considered
in the calculations. For example, the solidification shrinkage for aluminum is 6.6%,
equivalent to 2.2% of the linear contraction, which is about 50% greater than the thermal
contraction of cooling from the melting temperature to room temperature (about 1.5%)
[132]. Therefore, the solidification shrinkage plays a significant role in the strain and
stress field, particularly in the vicinity of the melting pool. Interestingly enough, this
phenomenon is usually overlooked by researchers in numerical simulations of the AM
process.

In this thesis, the solidification shrinkage strain εSS is simulated utilizing the effective
thermal expansion coefficient. Solidification happens within a certain temperature range
for alloys, i.e., the liquidus temperature θL and solidus temperature θS . The shrinkage
is proportional to the change of solid fraction. Therefore, it is assumed to be linearly
distributed in the temperature range and can be treated as an additional thermal expansion
term caused by temperature changes [132]. Here, we assume the effective thermal
expansion coefficient α̃(θ) takes the following form:

α̃(θ) =

⎧⎪⎨⎪⎩
αt θ ≤ θS ,
αt + αSS θS ≤ θ ≤ θL,
αt, θL ≤ θ,

(5.1)

where αSS =
εSS

θL − θS
. Correspondingly, the thermal strain is obtained via:
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Figure 5.2: Volume change with temperature [131] and solidification shrinkage between
θS and θL.

εθ = α̃(θ)(θ − θ0) =

⎧⎪⎨⎪⎩
αt(θ − θ0), θ < θS

αt(θ − θ0) + αSS(θ − θS), θS ≤ θ < θL

αt(θL − θ0) + εSS , θL ≤ θ
(5.2)

5.2 Hot cracking with interpolated elliptic temperature profile

As the initial condition of θ, we first apply a simple interpolated solution for the thermal
profile around the melt pool, and then the numerically calculated thermal profiles by a
phenomenological PBF model and powder-resolved model of LPBF, respectively. The latter
allows a more high-fidelity temperature field during the PBF process and the parameter
study on different process parameters.

We start with the interpolated elliptic solution of the temperature profile in the vicinity
of the melting pool [133], half of which is shown in Fig. 5.3(a). For a specific point (x, y)
in Cartesian coordinates within the cross-section perpendicular to the scanning direction,
x and y are the distance from the current location to the center line and the top surface
of the melting pool, respectively. The point can also be represented by polar coordinates
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Figure 5.3: (a) Schematic of the elliptic temperature field approximation. (b) Linear
interpolation of temperature profile.

(r, φ), which are calculated by

r =
√︁
x2 + y2, φ = tan−1

⃓⃓⃓⃓
y − y0
x− x0

⃓⃓⃓⃓
, (5.3)

where r denotes the distance to the center of the ellipses (x0, y0), and φ is the angle
starting from the top surface to the current position, as shown in Fig. 5.3(b). The
temperature is calculated by linear interpolation between liquidus temperature θL and
solidus temperature θS as

θ(x, y) = θ(r, φ) = θL + c(θS − θL)
r − rL(φ)

rS(φ)− rL(φ)
. (5.4)

Here, rL(φ) and rS(φ) indicate the respective of θ = θL and θ = θS elliptical isolines.
They are functions of φ and are calculated by

rL(φ) =

√︄
(lLdL)

2

(dL cos(φ))2 + (lL sin(φ))2
,

rS(φ) =

√︄
(lSdS)

2

(dS cos(φ))2 + (lS sin(φ))2
.

(5.5)
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The length parameters (lL, lS) and the depth parameters (dL, dS) correspond to liquidus
and solidus isotherms, respectively. As there is a large temperature gradient in the vicinity
of the melting pool, a coefficient c is included in Eq. 5.4. The approximated temperature
field is schematically shown in Fig. 5.3(b).
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Figure 5.4: Hot cracking of single track of PBF with an aspect ratio of 1.0. (a) Normalized
temperature field obtained by linear interpolation approximation, Hot cracking
patterns with increasing solidification shrinkage strain, (b) αSS=0, (c) 4αt and
(d) 26.7αt, respectively.

In this example, a cross-section of 10 mm×10 mm perpendicular to the scanning
direction is simulated. Since it is mechanically constrained along the scanning direction,
the plane strain assumption is taken. The liquidus and solidus temperatures are assumed to
be 890 K and 900 K, respectively, and the reference temperature is 1000 K. The coefficient
c is set to 10. The aspect ratio of the melting pool equals 1.0, with parameters lL , lS ,
dL and dS to be 3.5 mm, 4.0 mm, 7.0 mm and 8.0 mm. All material properties for the
simulations are listed in Table. 3.3. The normalized temperature field obtained from the
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interpolated solution is shown in Fig. 5.4(a), with the two lines indicating the liquidus and
solidus temperatures, respectively. The predicted hot cracking patterns with the increasing
solidification shrinkage strain are presented in Fig. 5.4(b)-(d). When the solidification
shrinkage strain is not considered (αSS = 0), a low level of damage is observed only in
the central region of the melting pool where the temperature is quite high. Outside these
regions, there is no damage, as shown in Fig. 5.4(b). As the value of solidification shrinkage
increases (αSS = 4αt), as shown in Fig. 5.4(c), a circumferential crack starts to form. This
type of crack is mainly localized in the regions where the temperature is between the
interval of the liquidus and solidus isotherms (see also the temperature field profile). As
illustrated above, the material goes through a phase transformation in this temperature
range, which causes volume change and relatively larger solidification shrinkage strain,
when compared with thermal strain in other regions. When the solidification shrinkage
strain is significant enough (αSS = 26.7αt), the circumferential crack is more prominent,
as shown in Fig. 5.4(d). The latter observation is coherent with experimental results
observed in the laser PBF process of alloys [134], as shown in Fig. 5.5.
To study the influence of the shape of the melting pool resulting from different AM

process parameters, two more melting pools with larger (1.2) and smaller (0.5) aspect
ratios are studied. For the former, the melting pool is deeper, which results from the
larger energy density and it is often referred to as keyhole mode in AM [135]. For the
latter where the energy density is smaller and thereby the melting pool is shallower, it
is called conduction mode. The temperature field is obtained by the same method in
Eq. 5.4, and the results are shown in Fig. 5.6. The crack patterns resemble those shown
in Fig. 5.4(d), and only a circumferential crack is shown near the melting pool. From the
results, it is obvious that solidification shrinkage is responsible for the circumferential hot
cracking pattern. In this case, the central cracking is barely visible, which is attributed to
the inaccuracy of the interpolated thermal profile introduced previously. The formation of
a central crack due to a high energy density and the corresponding high thermal gradient
will be further detailed in the following.

At this point, the result of the keyhole mode differs considerably from the experimental
result observed in Fig. 5.5(a). Note that for this case, in addition to the circumferential
crack, one observes a central crack as well. The disagreement of the crack pattern is the
result of the way the temperature field is approximated, where the coefficient c = 10 in
Eq. 5.4 for all cases. To investigate the influence of the temperature gradient near the
melting pool, further studies with different values for the parameter c (c = 20, 25) are
conducted. The approximated normalized temperature profiles and corresponding crack
patterns are shown in Fig. 5.7.

Compared with the results of the temperature field and crack pattern in Fig. 5.4(a) and
(d) with c = 10, it becomes clear that by increasing the parameter c, the temperature
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Figure 5.5: Hot cracking of single track of PBF with different power densities in experi-
mental observations. The image is reprinted from [134] under the terms of
the Creative Commons CC-BY license.

field has a similar distribution with the temperature gradient increasing accordingly. As a
result, the crack pattern also changes. The damage level near the center of the melting
pool increases, meaning that a central crack begins to show apart from the circumferential
crack. However, because of the simple linear interpolation of temperature, the central
region has the same relatively larger temperature gradient in all directions, contributing
to cracks showing up in a very diffusive region. Again, the latter observation does not
fully agree with the experimental results in Fig. 5.5. This implies the necessity of having a
more accurate temperature profile, which will be considered in the following subsection.

5.3 Hot cracking in Powder Bed Fusion model

5.3.1 Hot cracking in the phenomenological model of PBF

The interpolated thermal profile has limited accuracy and does not allow parameter
study on process conditions. In this subsection, the numerical thermal profile calculated
from the phenomenological thermal PBF model developed in [136, 137] is utilized as
the initial temperature distribution before it cools down to room temperature. In the
phenomenological thermal PBF model, the effective thermal properties of the powder bed
and the resolidified phase are regarded explicitly. A phase indicator φ is introduced to
indicate the state of the material, i.e.,φ = 1 for the fused state and φ = 0 for the power
bed. Readers are referred to[136, 137] for more details. Considering the phase-dependent
thermal properties and the beam energy deposition, the heat transient problem is solved
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Figure 5.6: Hot cracking patterns of a single track of PBF with different shapes of the
melting pool. (a) Keyhole mode with an aspect ratio of 1.2. (b) Conduction
mode with an aspect ratio of 0.5.

using the finite element method.
In this simulation, the domain has a volume of 1000 mm×400 mm×200 mm, with a

50-mm-thick powder bed layer and a 150-mm-thick substrate layer made of the same
solid materials as the powder, as shown in Fig. 5.8. All the outer surfaces except the
bottom surface of the powder bed are subject to convection and radiation boundary
conditions, while the Dirichlet boundary condition is applied to the bottom surface, i.e.,
the temperature is fixed. Meanwhile, the displacements in the x, y and z directions of the
bottom surface are fixed, while all other surfaces are traction-free. The laser power (P ) is
P0 = 200 W and the scanning speed (v) is v0 = 2000 mm/s. The material used for the
LPBF process is SS316L, and its material properties are listed in Table. 5.1 [136]. The
other parameters used for this part are referred to the work [136].

Table 5.1: Temperature-dependent mechanical properties of SS316L

θ(K) 298 873 1073 1473 1623 ≥ 1773

E(MPa) 2.0×105 1.35×105 7.75×104 1.21×104 6.14×103 200
ν 0.33 0.35 0.36 0.38 0.39 0.40

σY(MPa) 345 212 199 100 50 5
H(MPa) 6.07×103 1.72×103 1.43×103 101 10 1
α(1/K) 1.2×10−5 1.3×10−5 1.32×10−5 1.36×10−5 1.38×10−5 1.40×10−5

In Fig. 5.8, the snapshots of the temperature field and the phase indicator evolution
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Figure 5.7: Normalized temperature profiles and hot cracking patterns of a single track
of PBF with different temperature gradients c. (a) c = 20. (b) c = 25.

of the 3D phenomenological PBF model are shown. As the heat source (laser beam)
moves forward (z) like a laser beam, the temperature near the beam increases to the
melting temperature, and the powders melt and solidify to the substrate. This process is
reflected by the phase indicator φ changing from blue (0) to red (1). The snapshots of
the temperature field and the phase indicator evolution of the slice along the scanning
direction are also shown in Fig. 5.8. As the laser approaches this slice, the temperature
increases and the powders melt. As the beam moves away, the temperature drops while
the materials remain in the fused state.
After obtaining the steady-state cross-sectional thermal profile and also the phase

indicator distribution around the melt pool perpendicular to the scanning direction (z),
they are transferred as the initial conditions for the subsequent hot cracking simulation.
In the hot cracking simulation, a 2D plane strain case is assumed as the cross section is
more or less mechanically constrained along the scanning direction. The bottom edge is
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Figure 5.8: The temperature field and phase indicator evolution of the 3D phenomeno-
logical PBF model (top) and the cross-section perpendicular to the scanning
direction (bottom).

fixed in the vertical direction (y), while the other edges are assumed to be traction-free.
Similar to the previous subsection, the solidification shrinkage is also considered.

To study the influence of process parameters like laser power and scanning speed on the
hot cracking pattern, some parameter analyses are conducted. Fig. 5.9 shows the different
temperature profiles and the corresponding hot cracking patterns with varying laser power
P and fixed v0. When the laser power is low (P = P0), with the solidification shrinkage
considered in the current model, only circumferential crack forms near the melting
pool. In addition, a relatively low level of damage is also observed in the central region.
Interestingly, this conduction mode hot cracking pattern predicted by numerical simulation
is confirmed by the experimental observation of the conduction mode hot cracking, as
shown in Fig. 5.5(b). With the laser power increased to 2P0, the damage level of the
central region increases, and the central crack also arises, shifting the hot cracking pattern
from the conduction mode to the keyhole mode. Meanwhile, the circumferential crack
expands outwards. The reason is the increase in the maximum and overall temperature
of the melting pool, and the temperature interval of the solidus and liquidus temperature
gets off the center. When the laser power is further increased (P = 3P0), the damage level
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Figure 5.9: Hot cracking patterns of a slice of PBF with different laser powers.
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Figure 5.10: Hot cracking patterns of s slice of PBF with different scanning speeds.

in the central region becomes even larger, and the central crack also shows up. Note that
the simulations with temperature-dependent elastic modulus under different laser powers
were also performed and the results are provided. A similar phenomenon is observed in
the cases of constant elastic modulus and a similar conclusion can be drawn.

The influence of the scanning speed v is also studied, with fixed P0, the results of which
are depicted in Fig. 5.10. As discussed in the last paragraph, only the circumferential
crack shows up in the melting pool when v = v0. As the scanning speed decreases from v0
to 0.5v0, more energy is input into the domain, causing the temperature and its gradient
to increase. Therefore, the damage level in the central region is increased, and a central
crack also appears, apart from the expanded circumferential crack, leading to the keyhole
mode hot cracking. However, the hot cracking pattern tends to be the conduction mode
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when the scanning speed increases. The reason is that the material absorbs less energy
with high scanning speed. Accordingly, the temperature field and its gradient are reduced,
and the damage level in the central region also decreases. Therefore, only the contracted
circumferential crack forms near the melting pool.
In the current literature on AM process simulation, especially with the focus on the

calculation of stress and displacement field, the widely-used method to simulate mate-
rial behavior during melting and solidification is using temperature-dependent material
properties, for example, see [138, 139, 140]. The material properties like elastic modulus
normally decrease with the temperature. When the temperature is above the melting
temperature, it’s assumed to be degraded as a constant value to avoid numerical con-
vergence issues. Another possible way to deal with this issue is to forcefully remove the
thermal expansion or set the strain to zero when the phase becomes liquid. However,
there are also some works that use constant material properties for simplicity, see [133,
141]. In this Chapter, the constant material properties are first assumed. Meanwhile, the
extension to the temperature-dependent properties doesn’t have a significant influence
on the simulation results. The current work focuses on thermo-mechanical coupling and
explores its preliminary application on hot cracking during PBF. While it’s true that the
elastic framework doesn’t hold when the temperature exceeds the liquidus temperature,
it should be noted that in any case, they share some common thermo-mechanical coupling
mechanisms, which is the objective of this work.
To illustrate this point, the simulations with temperature-dependent properties under

different laser power are performed here. Based on the dependence of Young’s modulus
on the temperature in the work of [112], here we take the form as Eq. 5.6, and after
melting temperature, a residual value still exists.

E = E0[1− c1
θ − θref
θmax

− c2(
θ − θref
θmax

)2]. (5.6)

where c1 = 0.2 and c2 = 0.25, θref and θmax are the reference temperature and the
maximum temperature, respectively. Moreover, E0 is the value of E at θref .
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Figure 5.11: Hot cracking patterns of a slice of PBF with temperature-dependent mechan-
ical properties under different laser powers.
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The result in Fig. 5.11 shows that with the increase of the laser power, the hot cracking
pattern changes from conduction mode to keyhole mode. This is in line with the conclusion
that is reached for the cases with constant material properties. Compared with Fig. 5.9,
the simulation results with/without temperature-dependent mechanical properties are
quantitatively different. Nevertheless, the trend of the influence of the process parameter,
i.e. laser power remains as before. In other words, with larger laser power and slower
scanning speed, the hot cracking pattern tends to be the keyhole mode, and with smaller
laser power and quicker scanning speed, the hot cracking pattern tends to be the conduction
mode.

The reasons for different hot cracking patterns under different process parameters are
related to energy deposition and thus to the thermal gradients. The laser power and the
scanning speed determine the linear energy density EL = P/v, which further determines
the input energy to the PBF system. With larger laser power and slower scanning speed,
EL becomes larger, and the temperature gradient near the melting pool is enhanced as
well. Therefore, a larger thermal strain is formed and drives the crack to develop. The
hot cracking pattern tends to be the keyhole mode. On the contrary, with smaller laser
power and quicker scanning speed, EL becomes smaller, and the temperature gradient
is lower. Correspondingly, the hot cracking pattern tends to be the conduction mode.
These results are also in agreement with previous discussions. The comparisons between
the numerical and experimental results above demonstrate that the currently proposed
modeling strategy has the potential to predict hot cracking in the PBF and other AM
processes. This study also provides some basic instructions on AM practices to eliminate
the hot cracking of AM products.

For the 3D simulation, a domain of 1000 × 400 × 200 µm3 with a 50-µm-thick powder
bed layer, and a 150-µm-thick substrate made of the same material is considered. The
material used for the LPBF process is SS316L with its material properties listed in Table. 5.1.
The powder bed is pre-heated to a preheating temperature θ0 = 0.4θM = 680 K. Both the
mechanical and thermal material properties are linearly interpolated between the fused
solid and the powders temporally and spatially. All the outer surfaces except the bottom
surface of the powder bed are subject to convection and radiation boundary conditions.
In contrast, the bottom surface is applied with the Dirichlet boundary condition, i.e., the
temperature is fixed. For the mechanical boundary conditions, the bottom surface is fixed,
and all other surfaces are traction-free.

Fig. 5.12 presents the evolutions of temperature and phase indicator of two phenomeno-
logical LPBF processes. The process parameters are P = 200W, v = 1000 mm s−1 and P =
100 W, v = 2000 mm s−1, respectively. As the laser beam moves forward, the temperature
of the powder near the beam increases to the melting temperature θM , and the powders
melt. After the beam moves away, these regions cool down below θM and then resolidify
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Figure 5.12: Temperature (top) and phase indicator (bottom) evolution of two phenomeno-
logical LPBF processes. (a) P = 200 W, v = 1000 mm s−1; (b) P = 100 W, v
= 2000 mm s−1. The melting pool and fused zone are enlarged with higher
laser power and slower scanning speed.

Figure 5.13: Hot cracking patterns of two phenomenological LPBF processes with (a) P
= 200 W, v = 1000 mm s−1 and (b) P = 100 W, v = 2000 mm s−1.

to the substrate. This process is reflected by the phase indicator φ changing from blue (0)
to red (1). The materials remain as fused solid after the laser moves away. With larger
laser power and slower scanning speed, more energy is absorbed into the system so that
the temperature of more powders exceeds the melting temperature, therefore the melting
pool is enlarged.

The hot cracking patterns at the terminal stage of the process for the two LPBF processes

96



are shown in Fig. 5.13. With higher laser power and slower scanning speed, the energy
input into the system is higher, according to the linear energy densityEL = P/v. Therefore,
the melting pool size is enlarged with higher EL. At the terminal stage of solidification,
hot cracking occurs in the vicinity of the melting pool as a result of the solidification
shrinkage.

5.3.2 Hot cracking in the powder-resolved model of PBF

Simulation setup of thermal fracture in LPBF

Utilizing the phenomenological LPBF model is both easy to implement numerically and
computationally efficient. However, it neglects the complex morphology of the powder bed
and assumes homogenized material properties. The thermo-microstructural interaction is
not considered for simplicity, and thus the thermal field and microstructural evolution is
not very precise. Therefore, applying the proposed thermal fracture model to a more high-
fidelity powder-resolved LPBF model can deliver unique results that the phenomenological
LPBF model cannot, based on the non-isothermal phase-field model proposed in [142,
143, 144]. For this model, heat transfer is strongly coupled with microstructure evolution
driven by diffusion and grain growth, while the mechanical influence on the thermal field
is trivial. Therefore only one-way coupling is considered here, i.e., we assume the heat
conduction is not influenced by mechanics.
The workflow of the hot cracking simulation in the LPFB process is summarized in

Fig.5.14, which consists of three procedures. First, the powders subject to the gravita-
tional force are deposited on the substrate within a certain simulation domain based on
the discrete element method (DEM). Then, the non-isothermal phase-field simulations
under particular process parameters are performed, from which the coupled thermo-
microstructural evolution during the LPBF process is obtained. Upon scan completion
of one layer, the resulting microstructure is voxelized and reimported back to the DEM
program for the deposition of the next layer of powders until the final layer is deposited.
Finally, the thermo-elasto-plastic coupled ductile fracture simulations are performed to
investigate the evolution of the mechanical and damage field of the thermo-microstructures
by mapping the nodal values of the transient temperature and the order parameters of
each calculation step from the previous procedure. The transient thermal field is imported
as the thermal load, and the order parameter is to indicate the chronological-spatial
distribution of the material phases and the interpolation of mechanical properties. This
mapping is achieved by the SolutionUserObject and associated functions embedded
in MOOSE. The detailed descriptions of the non-isothermal phase-field model of LPBF are
skipped here for the brevity of this work. The interested readers are referred to the work
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Figure 5.14: Workflow of hot cracking simulations in non-isothermal phase-field model
for LPBF, including the powder deposition, the non-isothermal phase-field
simulation and the thermo-elasto-plastic ductile fracture simulation.

[142] for more details.

For the simulations in this section, a 250 × 250 × 250 µm3 domain containing 100
µm-thick substrate and a layer of powders is considered. LPBF processes of a single layer
and single scanning pass are simulated. The process parameters, including laser beam
diameter, beam power P and a scanning speed v are kept constant throughout one LPBF
process. Both the powders and the substrate are SS316L, with the melting temperature
θM = 1700 K. The processing window with P ∈ [25, 30] W and v ∈ [75,100] µm s−1 is
selected.

For the non-isothermal phase-field simulations, the powder bed is pre-heated to a
preheating temperature θ0 = 0.4θM = 680 K, which is embodied by temperature initial
condition and boundary condition. ∂ΩT and ∂ΩB are the top and bottom boundaries of
the simulation domain, respectively, and ∂ΩS is the set of all surrounding boundaries,
as ∂Ω = ∂ΩT ∪ ∂ΩB ∪ ∂ΩS . The BCs are imposed as follows: ∂ΩT ∪ ∂ΩS are subject to
the heat convection and heat radiation, while ∂ΩB is enforced with Dirichlet conditions
θ0. For the thermo-elasto-plastic ductile fracture simulations, the displacements along
the normal direction of all but the top boundaries are restricted while the top surface is
traction-free. The mechanical properties are linearly interpolated between the fused solid
materials and the pores temporally and spatially.
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Figure 5.15: Evolution of thermal-structure morphology during two non-isothermal phase-
field models of LPBF. (a) P = 30 W, v = 75 mm s−1 at t = [3.11, 3.40, 3.70]
ms and (b) P = 25 W, v = 100 mm s−1 at t = [2.13, 2.40, 2.67] ms. The upper
rows show the temperature profiles and the lower rows show structural
morphology.
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Thermal fracture in LPBF

Following the simulation scheme, the non-isothermal phase-field simulations of LPBF
are first performed. In Fig. 5.15, the simulation results of the thermal-microstructural
evolution during LPBF with P = 30 W, v = 75 mm s−1 at t = [3.11, 3.40, 3.70] ms and
P = 25 W, v = 100 mm s−1 at t = [2.13, 2.40, 2.67] ms are shown, respectively. The
laser beam spot is consistently positioned along the scan direction.
It shows that powders undergo complete or partial melting in the overheated regions

where the temperature exceeds the melting temperature (θ ≥ θM ), which prompts molten
materials to flow from convex to concave regions and form the fusion zone. Meanwhile, in
regions where the temperature is lower than the melting point (θ ≤ θM ), the temperature
is high enough to cause diffusion as the necking behaviors arise among neighbouring
powders. Interestingly, the temperature profiles demonstrate a strong sensitivity to the
local morphology. The concentrated temperature isolines are observed in the vicinity of
the necking regions, which indicates a high level of temperature gradient. This thermal
inhomogeneity induced by stochastic transient morphology can hardly be resolved by the
phenomenological model in the previous work.

Figure 5.16: Hot cracking patterns for two powder-resolved non-isothermal phase-field
models of LPBF (a) P = 30 W, v = 75 mm s−1 and (b) P = 25 W, v = 100
mm s−1. Crackings are located near the melting pool boundaries due to the
solidification shrinkage.

The thermo-structural evolution of the powder bed is significantly affected by the process
parameters, as shown by the profiles with varying beam power and scan speed. Comparing
the two rows, it is apparent that heat accumulation is intensified, and the melting pool is
enlarged with higher laser power and lower scan speed. A more detailed description of
the thermo-structural evolution process is referred to [142].

After the non-isothermal phase-field simulations are completed, the thermo-microstructural
evolution results are imported into the present thermo-ductile fracture model. To model

100



the mechanical behavior of the powders after melting, the fracture simulation starts when
the materials have cooled down to the melting temperature. Fig. 5.16 shows the hot
cracking patterns with different laser power and scanning speed during LPBF.
The hot cracking patterns are in line with those of Sec.5.3.1. In the regions near the

melting pool boundaries, the powders cool down from maximum temperature to tem-
perature below melting temperature. The solidification shrinkage takes effect during
the liquid-solid phase transition and leads to hot cracking near the boundaries. Inter-
estingly, the cracks are more likely to initiate in the necking regions between powders,
corresponding to the thermal profiles.
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6 Phase-field Anisotropic Fracture of
Additively Manufactured Parts

6.1 Introduction

AM has emerged as a revolutionary manufacturing technology and gained widespread
applications in many fields in recent decades. However, it is susceptible to process-induced
defects, notably pores and microcracks, which compromise the integrity of the final prod-
ucts. These defects, as outlined by [145], can be categorized into three main types:
porosities, melting-related defects, and cracks, each with distinct characteristics stemming
from the intricate layer-by-layer fusion process. Experimental investigations of LPBF have
identified various forms of porosity, including lack-of-fusion, keyhole, and gas porosities,
while cracks are primarily attributed to rapid cooling, the induced sharp thermal gradi-
ents and thermal stresses, and solidification shrinkage. Consequently, an inadequately
optimized combination of the process parameters often yields porous components, un-
dermining their mechanical properties and overall performance. A detailed review of the
effects of the process-induced defects on the mechanical properties is referred to [146].

Due to the layered heterogeneous microstructure induced by the building process, the
AM parts exhibit anisotropic responses in the overall material behaviors. Their mechanical
properties and performances depend significantly on the AM process, e.g., the way the
parts are placed and the loading conditions, as illustrated in Fig. 6.1. Zou et al.[148]
elucidated the anisotropic elasticity and yielding of 3D-printed acrylonitrile butadiene
styrene (ABS) with different printing orientations. The anisotropic fracture patterns are
shown in Fig. 6.2. Though many experiments to characterize the anisotropic mechanical
behaviors of AM parts have been performed, there is still limited numerical research to
study the anisotropic fracture behaviors.

Phase-field modeling of fracture has established itself as a robust, efficient, and versatile
tool to solve fracture problems in the recent decade. The phase-field modeling of brittle
fracture originated from the work by Francfort and Marigo [57]. They proposed a phase-
field fracture model from the variational approach to brittle fracture by reformulating
Griffith’s energy criterion [53]. It aimed to get the displacement field and fracture field
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Figure 6.1: Effect of internal defects on the crack propagation of AM samples. (a) and
(c) Influence of orientations of specimens on the interlayer pore distribution,
(b) and (d) Defects distribution in 90◦ and 45◦ samples, respectively. Figure
adapted from [147].

simultaneously by minimizing the total potential energy as the sum of the fracture energy
and elastic energy of the crack system. Karma et al. [149] proposed a conceptually similar
phase-field approach to brittle fracture based on the classical Ginzburg-Landau evolution
equation. The numerical implementation of the brittle fracture model was developed in
[57] and [59], see also [61, 62]. Phase-field fracture model has the flexibility to simulate
crack initiation, propagation, merging as well as branching, and thereby has been extended
to various fracture problems, such as ductile fracture [81, 83, 150], anisotropic fracture
[70, 71] and multiphysics fracture problems [94, 99, 151].

Most existing phase-field fracture models assume crack evolution within isotropic solids.
However, this assumption does not apply to many materials and structures that exhibit
orientation-dependent mechanical behavior, like AM parts. Therefore, taking anisotropy
into the fracture model is necessary to capture the fracture patterns in these scenarios
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Figure 6.2: Experimental testing of anisotropic fracture of additively manufactured parts.
The crack patterns with layer orientations 0◦, 30◦, 45◦, 60◦, 90◦ [148]. Figure
reproduced from [148].

accurately. Phase-field modeling of anisotropic fracture was first introduced in [152] by
combining the classical variational phase-field model of brittle fracture with the extended
Cahn-Hilliard framework. However, the contribution of compressive stress to crack was also
considered in this model. Teichtmeister et al. [153] included anisotropy into the phase-
field fracture model by pure geometrical approach and structural tensors, separately, see
[154, 155, 156, 157] as well for structural tensor approach. Further, phase-field modeling
of anisotropic fracture for polycrystal materials was extended by, e.g.,[158, 159, 160, 161]
using single damage variable, and multi-phase-field variables [162, 163, 164, 165] where
every variable is associated with a preferential cleavage direction. Likewise, investigations
on phase-field models for anisotropic fracture in composite materials are performed [166,
167].

However, all the models above only consider the anisotropic fracture energy density
and ignore the anisotropic elasticity. In the work [168], a phase-field fracture model was
developed in the general framework of anisotropic elasticity. Nevertheless, anisotropic
elasticity alone is not capable of well capturing anisotropic fracture behaviors [169, 170].
Zhang et al. [171] proposed a phase-field model of brittle fracture that accounts for any
elastic anisotropy using spectral decomposition of the stress and avoids the impact of
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compressive stress on crack propagation. Further, Zhang et al. [172] developed a model
that includes single-crystal anisotropy in both the elastic constants and the fracture energy.
Scherer et al. [173] proposed a similar framework where an anisotropic degradation of
the elasticity stiffness tensor is also considered. See also the works [174, 175].

Interestingly enough, though the phase-field modeling of anisotropic fracture has been
investigated extensively in the materials system aforementioned, the applications to
AM parts that show significant anisotropy experimentally [148] are still rather scanty.
Khosravani et al. [70] studied the anisotropic fracture behaviors of polylactic acid material
(PLA) fabricated via extrusion-based 3D printing both numerically and experimentally.
However, the printed specimens are treated as homogenized solids in the numerical
formulation. Li et al. [176] proposed a phase-field model for anisotropic fracture of 3D
printed materials with two phase-field variables representing bulk damage and microscale
interfacial damage, respectively, but the contribution of compressive stress on crack
propagation was not excluded, and the effects of anisotropic elasticity and anisotropic
fracture property were not discussed as well. Based on the literature reviewed, this
Chapter aims to develop an anisotropic phase-field model for AM materials based on the
computational homogenization and spectral decomposition of stress and strain energy.
The model considers both anisotropic elastic and fracture properties, with their influences
on fracture behaviors of AM parts compared comprehensively.

6.2 Phase-field modeling of anisotropic fracture

To analyze the anisotropic material behaviors of AM parts, a phase-field anisotropic
fracture model is proposed. To this end, the elastic properties are constructed by the
computational homogenization method, while the stress-based spectral decomposition
method of stress and strain energy is utilized as a result of anisotropic elasticity. A
structural tensor is introduced, which entails direction-dependent fracture energy to the
phase-field fracture model. Note that the temperature is assumed to be fixed, thus the
model is purely mechanical and no thermo-mechanical coupling is considered in this
Chapter.

6.2.1 Phase-field model of anisotropic brittle fracture

Consider a cracked solid Ω with an external boundary denoted by ∂Ω and a crack set
Γ. Starting from Griffith’s theory [53] in fracture mechanics, the total fracture energy is
given by

ψc =

∫︂
Γ
GcdA =

∫︂
Ω
Gcγ(d,∇d)dV, (6.1)
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Figure 6.3: Schematic of the additively manufactured specimens with different orienta-
tions. The scanning direction in the x-z plane is isotropic, and the building
direction is along y axis. Figure adapted from [148].

where Gc is the critical energy release rate. In the relation above, the surface integral is
substituted with a volumetric integral, which approximates the fracture energy. Here, γ is
the crack surface energy density defined as

γ(d,∇d) = 1

c0

(︃
1

ℓ0
ω(d) + ℓ0∇d ·A · ∇d

)︃
, (6.2)

where c0 = 4
∫︁ 1
0

√︁
ω(α)dα is the scaling parameter dependent on the crack topology

function ω(d). The second-order structural tensor A is based on the orientation vector a,
and takes the form as

A = I + βa⊗ a, a = [cosφ, sinφ]T , (6.3)

where I is the second-order unit tensor, the printing direction φ is defined as the angle
between the principal axis of the specimen and the axis y of the printing platform, as
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shown in Fig. 6.3. a is the unit vector normal to φ. The scalar parameter β represents the
degree of anisotropy and penalizes damage along the direction normal to a. In the case
of β=0, the anisotropic fracture recovers to the isotropic case.
In this work, the cohesive regularized phase-field fracture (CPF) model [106, 99] is

employed to get rid of the length scale sensitivity of the fracture process. The crack
geometric function and the degradation function are defined respectively as:

ω(d) = 2d− d2,

g(d) =
(1− d)2

(1− d)2 + a1d(1 + a2d+ a3d2)
,

(6.4)

where a1 =
4 lch
πℓ0

, a2 = −1

2
and a3 = 0 are selected to represent the cohesive nature

of fracture in the process zone. Furthermore, lch =
EGc
σ2u

is Irwin’s length of isotropic

materials which measures the size of the fracture process zone. The smaller this length
scale is, the more brittle the material behaves. The parameters a2 and a3 are the shape
parameters and can be tuned to represent the different softening curves.
To differentiate degradation in tension from compression, the elastic strain energy

density ψe is additively decomposed into a positive (tensile) part ψ+
e and a negative

(compressive) part ψ−
e , and only the positive part serves as the crack driving force.

ψe = g(d)ψ+
e + ψ−

e . (6.5)

Here, g(d) is the degradation function defined in Eq. 6.4. To avoid cracks healing when ψ+
e

decreases, the irreversibility condition is enforced. According to [64], a history variable is
defined following the Karush-Kuhn-Tucker (KKT) conditions

ψ+
e −H ≤ 0, Ḣ ≥ 0, Ḣ

(︁
ψ+
e −H

)︁
= 0. (6.6)

Thus, the history variable can be written as

H = max
t∈[0,τ ]

ψ+
e (εe, t). (6.7)

Employing the micro-force balance equation, the phase-field governing equation reads,

2Gcℓ0
c0
∇2d− g′(d)H− Gc

c0ℓ0
ω′(d) = 0. (6.8)

The tensile and compressive parts of the elastic strain energy are defined as,

ψ+
e =

1

2
σ+ : ε, ψ−

e =
1

2
σ− : ε, (6.9)
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where σ+ and σ− are the tensile and compressive parts of the damaged stress.
The intact stress is calculated as

σ0 = C : ε, (6.10)

where C is the symmetric fourth-order elasticity tensor. In the context of anisotropic be-
haviors of the AM part, C is calculated by a computational homogenization scheme, which
is introduced in the following. Different ways of decomposition are utilized for isotropic
materials, i.e., strain spectral decomposition [63], and strain volumetric-deviatoric de-
composition [62]. For materials with anisotropic elasticity, neither method is applicable.
Stress spectral split is used here to account for the anisotropic elasticity [171]. The intact
stress is further decomposed as

σ0 = QΛQT , (6.11)

where Λ = diag(σ1, σ2, σ3) is a diagonal tensor containing the three eigenvalues of the
stress tensor (or the principal stress tensor), andQ = [n1,n2,n3] is the eigenvector tensor.
From the principal stress tensor, the tensile and compressive parts are calculated as

σ± = QΛ±QT , (6.12)

where Λ± = diag(⟨σ1⟩±, ⟨σ2⟩±, ⟨σ3⟩±). The two parts can also be expressed as

σ± = P±σ0, (6.13)

where the projection tensors are calculated from the spectral decomposition of the intact
stress.

P+ =
∂σ+

∂σ0
, P− = I − P+. (6.14)

Therefore, the full fourth-order elasticity tensor is included. The cracked Cauchy stress
reads

σ = g(d)σ+ + σ−, (6.15)

The equation of the linear momentum balance, ignoring the body force is thus given,

∇ · σ = 0. (6.16)

6.2.2 Effective elastic moduli based on computational homogenization

The effective elastic moduli of the heterogeneous materials are computed by computational
homogenization. To make the Chapter reasonably self-contained and for the sake of clarity,
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the procedure of computational homogenization with periodic boundary conditions is
recapitulated here.
Essentially, a representative volume element (RVE) is extracted from a large domain,

where an average displacement gradient or equivalently an average strain tensor is pre-
scribed, and the elasticity partial differential equations are solved within the domain
under periodic boundary conditions. The stress and strain fields are used to compute
the average stress and strain values of the domain, and the effective elastic moduli are
obtained. The elastic strain field can be decomposed into a constant macroscopic strain
field ε̄ and a microscopic fluctuation ε̃,

ε = ε̄+ ε̃, (6.17)

where by definition ∫︂
Ω
ε̃ = 0. (6.18)

By periodic boundary condition, the displacement field u(x) over the boundary takes the
form,

u(x) = ε̄x+ ũ(x), (6.19)

where the fluctuation ũ(x) is periodic, indicating the constraint for two homologous nodes
on opposite boundaries of the RVE,

u+ − u− = ε̄(x+ − x−). (6.20)

To fully determine the effective stiffness matrix, three loading conditions with the
following strain fields for 2D problems are prescribed.

ε
(1)
ij =

[︃
a 0
0 0

]︃
, ε

(2)
ij =

[︃
0 0
a 0

]︃
, ε

(3)
ij =

[︃
0 a
a 0

]︃
, (6.21)

where a is a constant strain value. For each loading case, one column of the effective
stiffness tensor C̄ is obtained

⟨σ⟩(1)ij =C̄ijkl⟨ε⟩
(1)
kl ⇒ C̄ij11 =

1

a
⟨σ⟩(1)ij ,

⟨σ⟩(2)ij =C̄ijkl⟨ε⟩
(2)
kl ⇒ C̄ij22 =

1

a
⟨σ⟩(2)ij ,

⟨σ⟩(3)ij =C̄ijkl⟨ε⟩
(3)
kl ⇒ C̄ij12 =

1

2a
⟨σ⟩(3)ij .

(6.22)
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Thus, C̄ has the form

C̄ =

⎡⎣C̄1111 C̄1122 C̄1112

C̄2211 C̄2222 C̄2212

C̄1211 C̄1222 C̄1212

⎤⎦ . (6.23)

For any arbitrary coordinate system x
′ − y′ rotating from the reference coordinate system

x− y with angle θ, the effective stiffness tensor is given

C̄′ = QC̄QT , (6.24)

where

Q =

⎡⎣ cos2θ sin2θ 2cosθsinθ
sin2θ cos2θ −2cosθsinθ

−cosθsinθ cosθsinθ cos2θ − sin2θ

⎤⎦ . (6.25)

6.3 Numerical example: fracture of single-edge notched
specimen

Figure 6.4: Single-edge notched tension test. (a) Geometry and boundary conditions of
the specimen, (b) Geometry of RVE, (c) Mesh of specimen.

The proposed model is first validated to show its capability to model anisotropic brittle
fracture. To show the influence of the anisotropic elasticity and/or fracture properties
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on fracture behaviors, several numerical examples are performed with the canonical
single-edge notched tension test.

6.3.1 Mode I fracture with isotropic elasticity

To compare the influence of anisotropic properties, a phase-field fracture simulation of
isotropic materials is performed first. As mentioned in Eq. 6.3, the isotropic fracture
model is recovered by setting β = 0. The geometry and boundary conditions are shown
in Fig. 6.4(a), where the bottom edge is fixed while a vertical displacement is applied to
the top edge. Fig. 6.4(b) presents the chosen RVE which contains pores and microcracks.
The domain is discretized into the unstructured mesh with refined regions (h=0.005
mm) where the cracks are expected to propagate to ensure the phase-field variable is well
resolved, as shown in Fig. 6.4(c). The material properties used for the simulations are
Young’s modulus E = 340 GPa, Poisson’s ratio ν = 0.22, fracture toughness Gc = 4.247
J/m2. The length scale parameter lc is 0.015 mm.

Figure 6.5: Crack evolution of Mode I fracture of isotropic materials at timesteps 186µs,
187µs, 188µs.

The crack evolution at time 186µs, 187µs, 188µs for mode I fracture are shown in
Figs. 6.5(a)-(c), respectively. Due to the isotropic material properties and boundary
conditions, the crack initiates at the notch tip and propagates horizontally till fully broken.

6.3.2 Mode I fracture with anisotropic elasticity

In this section, the single-edge notched tension tests are performed with anisotropic
elasticity, while the fracture property remains isotropic. Following the homogenization
procedure in Section. 6.2.2, the effective elastic moduli, i.e., Young’s modulus and Poisson’s
ratio are computed and shown in Figs. 6.6(a1) and (a2), respectively.
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Figure 6.6: Mode I fracture with anisotropic elasticity. (a1)-(a2) Homogenized Young’s
modulus and Poisson’s ratio. (b1)-(b5) Crack patterns with orientation-
dependent elasticity tensor. (c) The corresponding load-displacement curves.

The simulated crack patterns with different preferential directions (0◦, 30◦, 45◦, 60◦, 90◦)
are shown in Figs. 6.6(b1)-(b5). The cracks develop horizontally similar to Sec. 6.3.1. The
simulations show that the anisotropic elasticity alone does not change the crack trajectory.
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With orientation-dependent elasticity, the stress perpendicular to the loading direction
remains dominant and drives the damage to accumulate at the notch tip, and then drives
cracks to propagate horizontally. However, the anisotropic elasticity has an influence on
the crack process, as can be seen from the load-displacement curves in Figs. 6.6(c). From
Fig. 6.6(a1), Young’s modulus reaches the maximum value in the orientation of φ = 0◦,
therefore the slope of the curve is steepest. Contrarily, the slope of the curve is small when
φ = 90◦. Meanwhile, a steeper slope of the load-displacement curve corresponds to a
smaller fracture displacement and vice versa, due to the isotropic fracture toughness.

6.3.3 Mode I fracture with anisotropic fracture toughness

This section considers the anisotropic fracture property and keeps elasticity tensor isotropic.
Fig. 6.7 shows the crack patterns with different preferential orientations (φ = 0◦, 30◦, 45◦,
60◦, 90◦) and different degree of anisotropy (β = 5, 10, 20).
With anisotropic fracture toughness, the cracks deviate from the notch direction and

are not necessarily perpendicular to the loading direction. With the increase of the angle
of orientation from φ = 0◦ to 60◦, the crack angle increases accordingly, as can be seen
from Figs. 6.7(a1)-(a4). The corresponding load-displacement curves with anisotropy
degree β = 5 are plotted in Fig. 6.7(d). It shows that with a bigger preferential angle,
the system needs more energy to initiate cracks and propagate. The influence of the
anisotropy degree is shown in Fig. 6.7(e) for comparison of different anisotropy degree β
with the same orientation φ = 0◦. For the same preferential orientation, the peak load
where the crack starts to propagate is enhanced with stronger anisotropy. Moreover, with
a stronger anisotropy degree, the crack angles increase and are closer to the preferential
orientation of the specimen.
Interestingly enough, the crack direction does not increase monolithically with the

preferential direction. When φ further increases to 90◦, the crack returns back to the
horizontal direction, perpendicular to the loading direction, as shown in Fig. 6.7(a5). The
same conclusion is observed regardless of the degree of anisotropy, as Figs. 6.7(b1)-(b5)
and (c1)-(c5) show. To take a closer look at this behavior, a series of simulations with
finer increments of the orientation is performed, and the relation between the preferential
direction and the crack direction is plotted in Fig. 6.8. A transition behavior of the crack
direction with respect to the preferential orientation is observed. When the preferential
orientation angle is small, the cracks follow its orientation while the cracks tend to recover
to a horizontal direction when the angle is large enough. A reasonable explanation for
such behavior can be the competition between the crack driving force and the fracture
toughness.
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Figure 6.7: Mode I fracture of single-edge notched tension test with anisotropic fracture
toughness. Crack patterns of specimens with different preferential directions
(φ = 0◦, 30◦, 45◦, 60◦, 90◦) and degree of anisotropy (a1)-(a5) for β = 5, (b1)-
(b5) for β = 10, c1-c5 for β = 20. (d) Load-displacement curves with different
preferential orientation with β = 5 , and (e) different β with same orientation
φ = 0◦.
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Figure 6.8: Relation of preferential direction and crack direction for single-notched tension
test with anisotropic fracture toughness.

Figure 6.9: Stress fields at the crack tip.

According to the linear fracture mechanics [50], the stress field at the crack tip for
mode I crack, with the origin of the coordinate system (r, ϕ) located at the crack tip, can
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be written as ⎧⎨⎩
σxx
σyy
σxy

⎫⎬⎭ =
KI√
2πr

cos(ϕ/2)

⎧⎨⎩
1− sin(ϕ/2) sin(3ϕ/2)
1 + sin(ϕ/2) sin(3ϕ/2)
sin(ϕ/2) cos(3ϕ/2)

⎫⎬⎭ , (6.26)

where KI is the stress intensity factor for mode I crack. The stress field is plotted in
Fig. 6.9.
When φ = 0, the energetically preferential orientation is aligned with the pre-notch

direction. By applying tensile loading on the specimen, the stress field and the correspond-
ing crack driving force (strain energy) are along the pre-notch orientation. Therefore, the
crack propagates horizontally. When φ increases, the energetically preferential orienta-
tion no longer aligns with pre-notch. Crack propagation along the pre-notch direction
requires more energy than that of the preferential angle. As a result, the cracks follow the
energetically preferential direction and deviate upwards. When φ increases further, even
though the energy required for the cracking along the preferential angle is relatively lower,
the stress field and the crack driving force are not sufficient to support crack propagation
in that direction. Therefore, the cracks develop following the maximum strain energy
field. Take the extreme case φ = 90◦ for example, the energetically preferential angle is
perpendicular to the pre-notch direction, and the crack tends to propagate along it as
it is energetically weakest. However, the crack develops horizontally due to the given
boundary conditions. Note that the damage zone of φ = 90◦ is more diffuse than that
of φ = 0◦. Compared to Figs. 6.7(a5), (b5) and (c5), it is observed that with a stronger
anisotropy degree, the damage zone is more diffuse, which could be a result of a stronger
competition between crack driving force and the fracture toughness.

6.3.4 Mode I fracture with anisotropic elasticity and fracture toughness

Based on the discussion of the previous two sections, this section considers both anisotropic
elasticity and fracture properties. The homogenized elastic moduli are input to the
anisotropic phase-field fracture model. The crack patterns with different preferential
orientations (φ = 0◦, 30◦, 45◦, 60◦, 90◦) and different degree of anisotropy (β = 5, 10, 20)
are depicted in Fig. 6.10. With anisotropic elastic and fracture properties, the cracks
deviate from the pre-notch direction. Similar to Section. 6.3.3, with the increase of the
preferential orientation, the crack angle increases in a certain range. A transition behavior
is observed as well. When φ is bigger enough, the crack angle decreases and the crack
goes back to the horizontal direction.
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Figure 6.10: Mode I fracture of single-edge notched tension test with anisotropic elasticity
and fracture toughness. Crack patterns of specimens with different preferen-
tial directions (φ = 0◦, 30◦, 45◦, 60◦, 90◦) and degree of anisotropy (a1)-(a5)
for β = 5, (b1)-(b5) for β = 10, (c1)-(c5) for β = 20. (d) Load-displacement
curves with different preferential orientation with β = 5 , and (e) different β
with same orientation φ = 0◦.
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Moreover, the load-displacement curves are also plotted in Fig. 6.10(d). Different from
Section. 6.3.2 and Section. 6.3.3, therein not only the slope but also the area below the
curves are different, which is the result of anisotropic elastic modulus and anisotropic
fracture toughness, respectively. The influence of the anisotropic degree is also shown.
It shows that a stronger anisotropy degree results in a bigger crack angle when φ is not
large enough, compared to Figs. 6.10(a1)-(a4), (b1)-(b4) and (c1)-(c4) with the same
φ. Moreover, a larger degree of anisotropy leads to a higher peak load, as plotted in
Fig. 6.10(e) for different β with the same orientation φ = 0◦.

6.4 Anisotropic fracture simulations of additively manufactured
parts

In this section, the proposed anisotropic phase-field fracture model is applied to study
the anisotropic fracture behavior of additively manufactured parts. Herein, both the
anisotropic elasticity and fracture properties are incorporated simultaneously.

Figure 6.11: Tensile test of I-shape specimen with porous structures. (a) Geometry and
(b) mesh of I-shape specimen, (c) a porous RVE of AM parts, and (d1)-(d2)
Homogenized Young’s modulus and Poisson’s ratio.
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6.4.1 Homogenization of elastic properties

The I-shape specimens are used to study the effect of building direction and porous layers.
Figs. 6.11(a) and (b) show the geometry, boundary conditions and mesh of the specimen,
respectively. Given the inherent porosity of additively manufactured parts and different
microstructures resulting from different process parameters, a porous RVE containing
certain densities of porosities and microcracks between layers is adopted, as shown in
Figs. 6.11(c). The material properties used in this section are shown in Table. 6.1.

Following the computational homogenization scheme in Section. 6.2.2, the effective elas-
tic moduli of the RVE, i.e., Young’s modulus and Poisson’s ratio are shown in Figs. 6.11(d1)
and (d2), respectively. Due to the porous layer structure, the effective properties are
orientation-dependent. Due to the chosen RVE which contains a low density of pores and
microcracks, the anisotropy degree of elastic properties is not quite pronounced.

Table 6.1: Material parameters for I-shape specimen tensile test
E (GPa) ν Gc (J/m2) σu (MPa)
340 0.22 42.47 180

6.4.2 Anisotropic fracture of additively manufactured parts

With the anisotropic elasticity and anisotropic fracture property, the simulations of
the tensile test of the additively manufactured I-shape specimen with different layer
orientations are performed. The results for specimen with preferential orientations
(0◦, 30◦, 45◦, 60◦, 90◦) using RVEare shown in Figs. 6.12(a1)-(a5), respectively.

It shows that the fracture behavior of the additively manufactured part would preferably
follow the layers’ orientation in a certain range when the orientation is not so large.
Otherwise, the crack would propagate perpendicular to the loading direction. As can
be seen from the load-displacement curves for both cases in Figs. 6.12(b). In view of
Figs. 6.11(c), the slope of the load-displacement curves depends on the effective Young’s
modulus. For this RVE, Young’s modulus is smallest when φ = 90◦, and reaches its peak
when φ = 0◦. Correspondingly, the slope of φ = 90◦ is the smallest and φ = 0◦ the most
steep. The obtained crack patterns for all orientations are in good agreement with the
experimental measurements reported in Fig. 6.2.
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Figure 6.12: Simulation results of anisotropic fracture of additively manufactured parts.
(a1)-(a5) the crack patterns with layer orientation 0◦, 30◦, 45◦, 60◦, 90◦, respec-
tively. (b) the corresponding load-displacement curves.
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6.5 Conclusions and outlook

In this chapter, a phase-field model for anisotropic fracture based on computational
homogenization is developed to study the anisotropic fracture behavior of additively
manufactured parts. Herein, not only the anisotropic elasticity but also the anisotropic
fracture properties are considered. Due to the various defects like pores, microcracks, etc.,
resulting from the AM process, the AM-built parts tend to be porous, especially between
different layers. The varied building directions and/or scanning directions contribute
to the direction-dependent porous layers microstructure of the AM parts. Therefore,
their mechanical properties are not isotropic and instead orientation-dependent. To
characterize the anisotropy, the orientation-dependent elastic moduli are computed using
the computational homogenization scheme. As a result of the elastic anisotropy, a stress-
based split method, i.e., the stress spectral decomposition approach is adopted. To account
for the direction-dependent fracture toughness of AM parts, a second-order structural
tensor which is dependent on the preferential direction is introduced to the crack energy
density and the phase-field fracture model. A series of benchmark examples are performed
to show the influence of the anisotropic elasticity and/or anisotropic fracture properties
on the fracture process, qualitatively and quantitatively. The results show the anisotropic
elasticity alone does not change the crack path but affects the load-displacement curve.
On the other hand, the anisotropic fracture toughness has a significant effect on the crack
patterns. The crack angle follows the trend of preferential direction and a transition
zone exists. Beyond that region, the crack develops back horizontally. Furthermore,
considering anisotropic elasticity and anisotropic fracture properties simultaneously results
in different crack patterns and load-displacement responses at the same time. The
presented model is then applied to investigate the anisotropic fracture of AM parts.
Bigger porosity would cause stronger anisotropy, and the crack path differs with different
preferential directions. The simulation results of AM parts with different orientations
agree well with the experimental observations.

Future studies can be performedwhen it comes to the extension of the current anisotropic
brittle fracture model to anisotropic ductile fracture, where plasticity and yielding behav-
iors play an important role so that the model can be used to predict a broader spectrum of
material systems. The RVE chosen in the work is based on rough experimental observation.
However, a more accurate description of RVE from AM parts is needed to better compute
the effective elastic properties. More detailed comparisons with the experimental results
are worthy of investigation as well, so that a more solid numerical model can be calibrated
and validated.
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7 Conclusions and Outlook

7.1 Conclusions

In this thesis, the phase-field modeling of thermo-mechanical coupled fracture and
anisotropic fracture are presented to study the thermal cracking in the additive manu-
facturing process and the anisotropic fracture phenomenon of additively manufactured
parts, respectively. The contributions of this work are summarized as follows.

• A thermodynamically-consistent framework for thermo-elastic coupled brittle frac-
ture using the cohesive phase-field model is developed. Derived from the basic
principles of thermodynamics, the coupling effects among mechanics, heat transfer,
and fracture are all taken into account. Particularly, the influence of temperature-
dependent fracture properties and the degradation of thermal conductivity with
the crack field are studied to capture the temperature field and the crack pattern
more accurately. The degraded thermal conductivity can avoid nonphysical heat
transfer in the fully-cracked regions. The insensitivity of the CPF model, which is
adopted in the multiphysics framework, with respect to the incorporated length
scale parameter is also studied.

• A multiphysics phase-field model for thermo-ductile coupled fracture in thermo-
elasto-plastic solid in the context of large deformation is developed. The theoretical
framework comprises three parts: degraded elastoplasticity by damage, phase-field
model of ductile fracture based on microforce balance, as well as damaged heat
transfer. The intercoupling mechanisms among elastoplasticity, phase-field crack
and heat transfer are considered comprehensively. Among them, threefold plasticity-
damage coupling mechanisms are considered here. The proposed fracture model
is benchmarked with simulation results of a tensile test of an I-shape specimen
encompassing elastoplasticity, hardening, necking, crack initiation and propagation,
and validated with the experimental observations and results regarding the whole
ductile process. Multiple characteristic parameters of the proposed model are
investigated for their influence on the fracture process.
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• A validated numerical workflow to study thermal cracking in the additive manufac-
turing process, particularly powder bed fusion is developed. To accurately capture
the cracking behaviors, not only the thermal strain but also the solidification shrink-
age strain are considered simultaneously. To input the thermal evolution history,
three different methods are utilized. Firstly, an analytic temperature solution is used
to obtain the temperature field near the melting pool. Therein, different AM process
is modeled via the simple modification of the thermal gradient. Subsequently, the
phenomenological PBF model is utilized to obtain a more accurate temperature field,
specifically for a slice of the whole powder bed model. The process parameters like
the laser power and the scanning speed on the final crack pattern are investigated.
Lastly, a higher-fidelity model of the PBF process, the non-isothermal phase-field
model is adopted to better characterize the chronological-spatial distribution of the
complex morphology of the PBF process.

• A phase-field model for anisotropic fracture based on computational homogenization
is developed to study the anisotropic fracture behavior of additively manufactured
parts. Herein, not only the anisotropic elasticity but also the anisotropic fracture
properties are considered. To characterize the anisotropy, the orientation-dependent
elastic moduli are computed using the computational homogenization scheme. As a
result of the elastic anisotropy, a stress-based split method, i.e., the stress spectral
decomposition approach is adopted. To account for the direction-dependent fracture
toughness of AM parts, a second-order structural tensor which is dependent on the
preferential direction is introduced to the crack energy density and the phase-field
fracture model.

Studies of the thesis are dedicated to understanding the fracture mechanism of com-
plex material systems, especially in a multiphysics environment, the thermal cracking
mechanisms of AM process, and the fracture behaviors of AM-built parts. The following
conclusions can be drawn from these numerical investigations.

• The cohesive phase-field fracture model holds the length-scale insensitivity in thermo-
mechanical settings. In other words, the material’s response is independent of the
length scale parameter used in the model. Meanwhile, the damage zone of the CPF
model is more compact than that of the AT2 model.

• The heat-damage coupling is important to accurately capture the heat flux distribu-
tion and the temperature jump at cracked regions in thermo-mechanical problems.

• With a higher initial temperature, the number of thermal-induced cracks and the
crack density are increased in the quenching test.
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• The damage-plasticity coupling plays an important role in the fracture process of
ductile materials.

• The solidification shrinkage strain is indispensable to accurately predict the thermal
cracking phenomenon in the additive manufacturing process.

• The cracking patterns depend on the process parameters. Higher laser power and
slower scanning speed result in higher liner energy density, and a combination of
keyhole mode cracking. On the other hand, lower laser power and faster scanning
speed lead to lower liner energy density and conduction mode cracking pattern.

• The anisotropic elasticity and anisotropic fracture toughness should be considered
simultaneously to model the anisotropic fracture behaviors of AM parts.

7.2 Outlook

Based on the studies of this work, further investigations can be performed when it comes
to the following two main aspects. First, as for the phase-field fracture models,

• Assumption that the quasi-static fracture process in both the phase-field brittle
fracture model and ductile fracture model is made. Thus, extension to the transient
dynamical fracture process is of great interest.

• The additional heat source terms in the heat equation induced by the coupling
mechanisms between heat and other physics are ignored. Accounting for all the
coupling terms in the heat equation contributes to a more precise prediction of the
temperature field and heat flux distribution.

• More physical phenomena of the ductile fracture process can also be incorporated
to the ductile fracture model, like void growth and coalescence. Different hardening
functions should also be customized for different materials for more accurate pre-
diction. Further, systematic experimental tests under varying temperatures can be
performed to benchmark and validate the capability of the present model.

• Alternative methods to introduce the anisotropy into the phase-field model for
anisotropic fracture are worthy of investigation, e.g., the arbitrary anisotropy. Mean-
while, the precise construction of the RVE of the AM parts resorts to the experiment
characterization.

Moreover, as for the numerical modeling of the AM process,
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• Different ways to obtain the temperature profile of the AM process have been
utilized in this work. However, given that the metal AM like LPBF is a highly
localized complex process involving multiphysics across length and time scales, it
is challenging to develop a sound model to capture all the physics. In this work,
the interpolated elliptic solution, a phenomenological model, and a non-isothermal
phase-field model are employed, but only the thermal diffusion and grain growth
are considered, and all other complex physics occurring in AM are not in the scope
for now. For example, after materials melt, thermal fluid dynamics comes into play
in the melting pool, which captures the solid-liquid transition and is crucial in the
terminal stage of solidification shrinkage and hot cracking. With very high energy
input into the small-scale melting pool, the materials can even evaporate. The
evaporation leads to the formation of voids or keyholes where stress concentration
inhabits and crackings are prone to develop. Moreover, it is also worth exploring
the combination of the dendrite growth model with the fracture model to study the
influence on hot cracking.

• Single-layer and single-pass AM process is considered for simplicity. However, multi-
layer multipass manufacturing is needed for real production, where the cracking
healing phenomenon occurs. The laser scanning of the next layer causes the previ-
ously solidified materials to re-melt, and possible cracking of the existing cracking to
heal. A more accurate yet complex model is required for such a complicated process.

• The AM process studied in this work is confined to the LPBF. However, other AM
techniques, like direct energy decomposition which shares similarities with LPBF
but has its own features like materials decomposition are also widely employed.
Therefore, the extension of the current thermal cracking study of LPBF to DED would
also be of great interest.
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