
A H Y B R I D A P P R O A C H T O
AU T O M AT E D D R I V I N G

U N I F Y I N G
P R E D I C T I O N A N D P L A N N I N G

A dissertation submitted to
technische universität darmstadt

Fachbereich Informatik

in fulfillment of the requirements for the degree of
Doktor-Ingenieur (Dr.-Ing.)

presented by

sascha rosbach

M.Sc.

Examiner: Prof. Stefan Roth, Ph.D.

Co-examiner: Prof. Henryk Michalewski, Ph.D.

Date of Submission: October 30
th, 2023

Date of Defense: March 22
nd, 2024

Darmstadt, 2024

A Hybrid Approach to Automated Driving
Unifying Prediction and Planning

Submitted doctoral thesis by Sascha Rosbach

Examiner: Prof. Stefan Roth, Ph.D.
Co-examiner: Prof. Henryk Michalewski, Ph.D.

Date of Submission: October 30
th, 2023

Date of Defense: March 22
nd, 2024

Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2024

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-288413

URL: https://tuprints.ulb.tu-darmstadt.de/28841

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

© 2024 Sascha Rosbach.
This item is protected by copyright and/or related rights. You are free
to use this work in any way that is permitted by the copyright and
related rights legislation that applies to your use. For other uses, you
need to obtain permission from the rights-holder(s).
More information about this copyright statement is available at
http://rightsstatements.org/vocab/InC/1.0/.

https://tuprints.ulb.tu-darmstadt.de/28841
http://tuprints.ulb.tu-darmstadt.de
http://rightsstatements.org/vocab/InC/1.0/

To my parents.

A B S T R A C T

Fully automated driving is nearing a stage of large-scale deployment,
where the vehicles will interact with many traffic participants within
urban traffic environments. The success of the deployments requires
reliable decision-making that generalizes over a variety of situations.
The conventional modular architecture, encompassing perception, pre-
diction, planning, and control, has been pivotal for fully automated
driving, allowing large teams to work simultaneously on the archi-
tecture. However, the generalization remains a challenge. This thesis
proposes a hybrid approach to automated driving. It draws upon the
interpretability intrinsic to traditional modular design and combines
this with the generalization capabilities of deep learning.

The first part of this thesis examines the real-world applicability of
the direct perception paradigm. The paradigm directly ties perception
to control, striving to streamline modular architectures by focusing on
essential features to implement the desired driving behaviors rather
than explicitly modeling and evaluating the complete environment.
The approach employs multi-task learning to predict affordances for
driving that directly supply the inputs for lateral and longitudinal
controllers. However, the system’s operational domain is confined
due to rule-based behavior planning, making it infeasible to address
unexpected situations. To overcome these limitations, the subsequent
work in this thesis builds upon the modular architecture by integrating
deep learning. An environmental model and model predictive planner
are utilized, leveraging high-resolution action sampling to generate
a diverse set of driving policies. These policies have implicit behav-
iors ranging from lane-changing and emergency braking to merging
into time gaps between vehicles, eliminating the need for explicit
hierarchical behavior modeling.

The second part of this thesis is concerned with bringing the modu-
lar architecture into an offline training loop and aligning the behavior
of the model predictive planner with the preferences of human drivers.
The first proposed method automates the tedious reward function
tuning process that domain experts usually perform manually. The
sampled policies of the planner enable maximum entropy inverse rein-
forcement learning to be tractable within high-dimensional continuous
action spaces, utilizing path integral features. The succeeding method
uses deep learning to predict situation-dependent reward functions,
enabling generalization across diverse driving situations. The network
inputs all sampled driving policies to combine environment and vehi-
cle dynamics features and predicts situation-dependent weights of the
reward function. Later work proposes policy and temporal attention

v

mechanisms for the network designed to produce consistent driving
behaviors while adapting the reward function for consecutive planning
cycles.

The third part of this thesis again focuses on streamlining the mod-
ular architecture after tackling the problem of reward function genera-
tion. The proposed approach is designed to leverage deep learning-
based situation understanding. It focuses on making the explicit future
motion prediction of surrounding objects optional. This is achieved
by learning from an exhaustively sampling model predictive planner
driving in real-world situations. The method unifies prediction and
planning by predicting pixel state value sequences of the planning
algorithm that implicitly encode driving comfort, reachability, safety,
and object interaction.

This thesis provides an important step towards the scalability of
automated driving by learning what is difficult to model by hand
while preserving interpretability and the interfaces to incorporate
explicit reasoning. This hybrid approach allows joint optimization of
prediction and planning essential to implement humanlike, assertive,
and safe driving in interactive driving environments.

vi

Z U S A M M E N FA S S U N G

Das vollautomatisierte Fahren nähert sich einer Phase des großflächi-
gen Einsatzes, in der die Fahrzeuge vor die Herausforderung gestellt
werden, mit vielen Verkehrsteilnehmern im Stadtverkehr zu interagie-
ren. Eine erfolgreiche Einführung des automatischen Fahrens erfordert
ein zuverlässiges Entscheidungsfindungsmodul, das eine Vielzahl von
Situationen unterstützt. Die konventionelle modulare Architektur teilt
die Wirkkette in Wahrnehmung, Vorhersage, Planung und Regelung.
Diese Architektur spielte bisher eine entscheidende Rolle für das auto-
matische Fahren und ermöglichte es mit großen Teams parallel daran
zu arbeiten. Die Bewältigung jeglicher Verkehrssituationen und die
damit verbundenen Generalisierungsfähigkeiten des Systems bleiben
eine Herausforderung. Diese Forschungsarbeit schlägt einen hybri-
den Ansatz für das automatisierte Fahren vor. Dieser Ansatz vereint
die Interpretierbarkeit traditioneller modularer Architekturen für das
automatisierte Fahren, und kombiniert diese mit der Generalisierungs-
fähigkeit tiefer neuronaler Netze.

Im ersten Teil dieser Dissertation wird die Anwendbarkeit des di-
rekten Wahrnehmungsparadigmas in der Praxis untersucht. Dieses
Paradigma verbindet die Wahrnehmung direkt mit der Regelung,
mit dem Ziel, modulare Architekturen zu simplifizieren. Statt die
gesamte Umgebung explizit zu modellieren und zu bewerten, konzen-
triert sich der Ansatz auf wesentliche Merkmale, die das gewünschte
Fahrverhalten beeinflussen. Um Merkmale für das Fahren vorherzusa-
gen, werden Multitask-Lernverfahren genutzt, die direkte Eingaben
für Quer- und Längsregler liefern können. Der Einsatzbereich des
Systems ist jedoch aufgrund der einfachen regelbasierten Verhaltens-
planung begrenzt, was es diesem Ansatz schwer macht, unerwartete
Situationen zu addressieren. Aus diesem Grund erweitert und inte-
griert der nachfolgende Teil dieser Dissertation tiefe neuronale Netze
in die modulare Architektur. Die hierzu verwendete modulare Ar-
chitektur nutzt ein Umgebungsmodell und einen modelprädiktiven
Planer, welcher durch hochauflösendes Abtasten von Aktionen eine
Vielzahl von Fahrstrategien generieren kann. Diese Strategien haben
implizite Verhaltensweisen, die von Spurwechseln und Notbremsun-
gen bis hin zum Einfädeln in Zeitlücken zwischen Fahrzeugen reichen.
Durch die implizite Verhaltensgenerierung entfällt die Notwendigkeit
der expliziten hierarchischen Verhaltensmodellierung.

Der zweite Teil dieser Thesis beschäftigt sich damit, die modulare
Architektur in ein Offline-Trainingsverfahren zu integrieren und das
Verhalten des modellprädiktiven Planers auf die Präferenzen menschli-
cher Fahrer abzustimmen. Die erste vorgeschlagene Methode automati-

vii

siert den langwierigen Abstimmungsprozess der Belohnungsfunktion,
der in der Regel manuell von Experten durchgeführt werden muss.
Die generierten Fahrstrategien des modellprädiktiven Planers ermög-
lichen es „Maximum Entropy Inverse Reinforcement Learning“ unter
der Verwendung von Pfadintegralenmerkmalen in hochdimensionalen
kontinuierlichen Aktionsräumen anzuwenden. Die darauffolgende
Methode verwendet ein tiefes Lernverfahren, um situationsabhängige
Belohnungsfunktionen vorherzusagen, wodurch eine Generalisierung
über eine Vielzahl von Fahrsituationen hinweg ermöglicht wird. Die
generierten Fahrstrategien dienen bei dieser Methode als Eingabeinfor-
mationen für das Netzwerk, um Umgebungs- und Fahrdynamikmerk-
male zu kombinieren und mit Hilfe dieser situationsabhängige Ge-
wichte der Belohnungsfunktion vorherzusagen. In einer Erweiterung
werden strategische und zeitliche Aufmerksamkeitsmechanismen für
das Netzwerk vorgeschlagen, um ein konsistentes Fahrverhalten zu
erzeugen, während die Belohnungsfunktion für aufeinanderfolgende
Planungszyklen stetig angepasst wird.

Der dritte Teil dieser Dissertation konzentriert sich erneut auf die
Optimierung und Vereinfachung der modularen Architektur, nach-
dem das Problem der Generierung der Belohnungsfunktion behandelt
wurde. Der vorgeschlagene Ansatz ist darauf ausgelegt, das Situati-
onsverständnis mit Hilfe eines tiefen neuronalen Netzes zu erlernen.
Dabei konzentriert sich der Ansatz darauf, die expliziten Bewegungs-
vorhersagen von umgebenden Objekten zu optionalisieren. Dies wird
erreicht, indem von einer annähernd vollständigen Suche eines modell-
prädiktiven Planers gelernt wird, der in realen Situationen fährt. Die
Methode vereint Vorhersage und Planung durch das Vorhersagen von
Pixelzuständen des Planungsalgorithmus, die implizit Fahrkomfort,
Erreichbarkeit, Sicherheit und Objektinteraktion encodieren.

Diese Dissertation schlägt eine bedeutende Richtung auf dem Weg
zu einer skalierbaren Fahrfunktion ein. Die vorgeschlagenen Ansätze
lernen die Inhalte, die nur schwer von Hand zu modellieren sind, und
gleichzeitig wird die Interpretierbarkeit und Anwendbarkeit von ex-
pliziter Logik aufrechterhalten. Dieser hybride Ansatz ermöglicht eine
gemeinsame Optimierung von Vorhersage und Planung, eine entschei-
dende Kombination, um menschenähnliches, durchsetzungsfähiges
und sicheres Fahren in interaktiven Verkehrssituationen umzusetzen.

viii

P U B L I C AT I O N S

Rosbach, Sascha, Antonia Breuer, Simon Barthel, Frederik Kanning,
and Silviu Homoceanu (2019a). “Towards hybrid automated driving:
From direct imitation learning to affordance learning.” In: AAET-
Automatisiertes und Vernetztes Fahren: Beiträge zum gleichnamigen Sym-
posium, pp. 225–245.

Rosbach, Sascha, Vinit James, Simon Großjohann, Silviu Homoceanu,
and Stefan Roth (2019b). “Driving with style: Inverse reinforcement
learning in general-purpose planning for automated driving.” In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2658–2665.

Rosbach, Sascha, Vinit James, Simon Großjohann, Silviu Homoceanu,
Xing Li, and Stefan Roth (2020a). “Driving style encoder: Situational
reward adaptation for general-purpose planning in automated driv-
ing.” In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 6419–6425.

Rosbach, Sascha, Xing Li, Simon Großjohann, Silviu Homoceanu, and
Stefan Roth (2020b). “Planning on the fast lane: Learning to interact
using attention mechanisms in path integral inverse reinforcement
learning.” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5187–5193.

Großjohann, Simon, Silviu Homoceanu, Sascha Rosbach, and Vinit
James (2021). “Verfahren und Vorrichtung zum Bereitstellen einer
Fahrstrategie für das automatisierte Fahren eines Fahrzeugs.” Pat.
102019216232A1. Volkswagen AG. Germany.

Rosbach, Sascha, Stefan Leupold, Simon Großjohann, and Stefan Roth
(2023). “Pixel state value network for combined prediction and plan-
ning in interactive environments.” In: arXiv Preprint. arXiv:2310.07706

[cs.RO].

Rosbach, Sascha and Simon Großjohann (2024). “Verfahren zum au-
tomatisierten Führen eines Fahrzeugs sowie Verfahren zum Erzeu-
gen eines hierzu fähigen Modells des Maschinellen Lernens sowie
Prozessorschaltung und Fahrzeug.” Pat. DE102022131178B3. CARIAD
SE. Germany.

ix

A C K N O W L E D G M E N T S

First and foremost, I wish to thank my supervisor and mentor, Silviu
Homoceanu. He taught me the principles behind academic writing,
thinking, and conducting research. I owe my deepest gratitude to my
mentor and collaborator Simon Großjohann. He advanced my research
by continuously challenging the applicability of the approaches in
practice and debating which aspects should be learned or modeled.
I want to thank Stefan Roth for his valuable feedback and guidance
during my research. I was fortunate for the opportunity to guide
Vinit James and Xing Li as my students. Their hard work, feedback,
and support enabled valuable experiments. I would like to thank
my colleagues in the automated driving department at Volkswagen
Group Research, who developed many tools that I was able to use
during my research. I am grateful to my colleague Stefan Leupold
for his collaboration that enriched this work’s depth and quality,
particularly by working with me on the real-world application of these
approaches. Last but not least, I want to express my appreciation to
Natalia, Blair, and my family for their unwavering support throughout
this remarkable journey.

xi

D I S C L A I M E R

The results, opinions and conclusions expressed in this thesis are not
necessarily those of Volkswagen AG and Cariad SE.

xiii

C O N T E N T S

1 introduction 1

2 background 9

2.1 Markov Decision Processes 10

2.2 Prediction in Automated Driving 11

2.3 Reinforcement Learning 16

2.4 Planning in Automated Driving 17

2.5 Inverse Reinforcement Learning 20

2.6 Unified Prediction and Planning 24

2.7 Quantitative Evaluation 26

3 papers and contributions 29

3.1 Adopting a Hybrid Approach 29

3.2 Automating Reward Function Tuning 33

3.3 Predicting Situation-Dependent Reward Functions . . . 36

3.4 Transitioning Context-Dependent Reward Functions . 39

3.5 Unifying Prediction and Planning 42

4 discussion 47

4.1 Summary of Contributions 47

4.2 Potential Limitations . 49

4.3 Future Work . 50

4.4 Conclusion . 52

a appendix 55

a.1 Towards Hybrid Automated Driving: From Direct Imi-
tation Learning to Affordance Learning 55

a.2 Driving with Style: Inverse Reinforcement Learning in
General-Purpose Planning for Automated Driving . . . 78

a.3 Driving Style Encoder: Situational Reward Adaptation
for General-Purpose Planning in Automated Driving . 88

a.4 Planning on the Fast Lane: Learning to Interact using
Attention Mechanisms in Inverse Reinforcement Learning 96

a.5 Pixel State Value Network for Combined Prediction and
Planning in Interactive Environments 104

bibliography 113

xv

L I S T O F F I G U R E S

Figure 1.1 Traditional modular system architecture 2

Figure 1.2 Affordances of the direct perception paradigm 3

Figure 1.3 Example of a sampling-based planning algo-
rithm approaching a roundabout 4

Figure 1.4 Unified architecture of the hybrid approach . . 5

Figure 1.5 Example of the pixel state value prediction . . 7

Figure 2.1 Illustration of the search methodology 19

xvi

A C R O N Y M S

AV Automated Vehicle

BEV Bird’s Eye View

CNN Convolutional Neural Network

DARPA Defense Advanced Research Projects Agency

DNN Deep Neural Network

ED Expected Distance

EM Expectation Maximization

EVD Expected Value Difference

GAIL Generative Adversarial Imitation Learning

GAN Generative Adversarial Network

GPU Graphics Processing Unit

HD High Definition

IRL Inverse Reinforcement Learning

LEARCH Learning to Search

LLD Log-Likelihood of Demonstration

MDP Markov Decision Process

MMP Maximum Margin Planning

MPC Model Predictive Control

MPP Model Predictive Planner

OPD Optimal Policy Distance

OTG Object Time Gap

PSV Pixel State Value

PSVN Pixel State Value Network

RL Reinforcement Learning

RNN Recurrent Neural Network

SV Surrounding Vehicle

xvii

1
I N T R O D U C T I O N

The mass adoption of automated driving can greatly benefit our soci-
ety (Kim, 2018). It paves the way for automated on-demand transporta-
tion, which can reduce congestion in urban areas, save time, and bring
convenience to everyday life. A primary concern on the path toward
this realization is the scalability of automated driving systems. Such
systems must perceive the environment, understand where objects
are moving, and produce safe driving commands, tasks especially
demanding given the narrow margin for error when navigating close
to other road users. Ultimately, the system has to be capable of driving
in unforeseen situations and different geographical locations. A critical
open question is whether general-purpose approaches can be devel-
oped that do not rely on situation-dependent implementations and
produce consistent and humanlike decisions in all driving domains.

Surveys categorize approaches on a broader scope into modular and
end-to-end approaches (Schwarting et al., 2018; Yurtsever et al., 2020).
Approaches of the first category traditionally use manually engineered
predictive models of the environment, vehicle dynamics, and explicit
behavior models to plan trajectories. Modeling all intended aspects
enables the system to specialize in executing controlled behaviors
such as maintaining precise follow-distances to preceding vehicles
and adhering to rules such as avoiding driving in oncoming traffic.
However, it is challenging to model a sufficiently complete and ac-
curate predictive model of the environment and align the objectives
for planning algorithms to reflect humanlike driving. It necessitates
large teams working on various subproblems separately, potentially
leading to suboptimal solutions due to the lack of unity (Zeng et al.,
2019). A fundamental premise of this thesis is to explore whether
modeling all these aspects is essential and to investigate the potential
for simplification in system design.

In contrast, the second category uses deep learning (LeCun et al.,
2015) to train models end-to-end from sensor inputs to driving com-
mands (Tampuu et al., 2020). Two well-known approaches for au-
tomated driving are imitation learning and reinforcement learning.
The goal of direct imitation learning is to learn by observing the
steering angle and acceleration commands of human drivers given
large amounts of real-world driving recordings, while the scope of

1

2 introduction

Strategy, Tactic, MotionIntention, Motion

Objects

Infra.

Localization and Map

Env.
Model Policy

Prediction Planning ControlPerception

Figure 1.1. Traditional modular system architecture. The perception module
recognizes objects and infrastructure with the support of a localization system
and reference map. The prediction module forecasts the future motion of
objects employing intention prediction, providing the planning module with
an environment model. The planner makes decisions on a strategic, tactical,
and vehicle motion level using a reward function. The planner generates a
policy in the form of a trajectory for vehicle control.

reinforcement learning is to learn how to drive by interacting with
the environment. Both methodologies benefit from directly generating
driving commands using a learned context understanding that does
not require situation-dependent behavioral implementations. Yet, end-
to-end approaches lack the interpretability, reliability, and constraints
of models, and, as such, can potentially violate vehicle dynamics and
safety in the context of automated driving. This thesis aims to combine
the benefits and eliminate the downsides of modular and end-to-end
approaches by proposing a hybrid approach. A particular focus is on
using the modular architecture to leverage prior knowledge and inter-
pretability while using human driving demonstrations and simulated
experience to acquire a context understanding of situations.

Before delving into the details of the proposed hybrid approach, it is
important to introduce the conventional modular architecture, which
serves as a foundation for understanding the subsequent contribu-
tions. The modular architecture, as shown in Figure 1.1, separates the
whole driving stack into perception, prediction, planning, and control
modules (Badue et al., 2021; Yurtsever et al., 2020). The architecture
creates abstraction from raw sensory data and uses manually designed
interfaces between modules to allow the architecture to leverage prior
knowledge. The perception system perceives the environment through
sensors and generates a representation of infrastructure and objects.
State-of-the-art perception systems utilize deep learning to fuse sensor
data from multiple views to represent a bird’s eye view (BEV) of the
environment (Ma et al., 2022). High-definition (HD) maps are often
utilized with localization systems to increase the reliability of the
perceived infrastructure and provide semantic information such as
traffic rules. The prediction module often uses deep learning to encode
information about the infrastructure and object history to forecast the
future motion of surrounding vehicles (SVs). The planning module

introduction 3

Figure 1.2. Affordances of the direct perception paradigm. The figure shows
lateral affordances (left) and longitudinal affordances (right), both in green.
The road boundaries are illustrated in light blue to help visualize the situation.
Left: The curvature and the ego offset to the lane center serve as lateral
affordances. Right: Classifying whether a vehicle is in the same lane and
estimating the distance serve as longitudinal affordances.

uses a predictive model of the environment to find a safe and com-
fortable trajectory by making long-term strategic decisions about the
route, mid-term tactical decisions about the behavior, and low-level
decisions about the vehicle motion. Domain experts usually manu-
ally define the reward function and specify the desired driving style.
The planned trajectory is passed to the control module, which gener-
ates steering, acceleration, and deceleration commands to achieve the
desired behavior, even under various conditions and disturbances.

State-of-the-art fully automated vehicles use modular architectures
to drive in urban environments, requiring large teams to work on
the modules simultaneously. Despite the complexity, advanced driver
assistance systems use this architecture in constrained operational
domains, such as highways. The initial approach of this thesis sets
the stage for a series of methodologies that will be presented in Chap-
ter 3. This first approach aims to simplify the modular architecture
for driver assistance systems by removing the necessity of explicitly
modeling the complete environment and focusing on essential fea-
tures to implement the desired driving behaviors. The first approach,
originally proposed by Chen et al. (2015), is evaluated in this thesis
for its real-world applicability and potential to serve as the foun-
dation for developing further approaches. The approach uses two
deep neural networks (DNNs) that directly predict affordances using
end-to-end perception. A simple rule-based behavior model provides
interpretability by instructing the model-based controllers to imple-
ment these, unlike end-to-end approaches, which do so implicitly. The
approach separates the predictions in affordances for lane assistance
and adaptive cruise control, as depicted in Figure 1.2. For lane assis-
tance, a DNN predicts the curvature of the road and the divergence
from the lane center to control the vehicle back to the center. For cruise
control, the DNN classifies if there is a vehicle to follow and, if there
is, predicts the distance for longitudinal control. The approach can

4 introduction

Figure 1.3. Example of a sampling-based planning algorithm approaching
a roundabout. The figure depicts the explored state space of the planner
and motion predictions for the surrounding vehicles. The states are sampled
over a planning horizon of 6.6 seconds, with the color coding indicating the
cumulative reward for the states.

effectively focus on the essential elements of driver assistants, such as
adhering to a predefined reference path, defined by the lane center,
under challenging and diverse road conditions. However, defining
a priori and selecting behaviors with a rule-based system for fully
automated driving in urban environments is infeasible. Therefore, the
other approaches of this thesis leverage behavior and motion planning
algorithms that can address unexpected driving situations.

Planning algorithms in automated driving broadly fall into two main
categories: variational and search-based methods (Paden et al., 2016).
Algorithms of the first category optimize an initial trajectory until
a cost function convergences to a local minimum (Gundlach, 2020).
These methods excel in well-structured environments like highways
and race tracks, where one can derive the behavior of the initial
solution without extensively considering moving objects in relation to
the ego vehicle dynamics. Designing the features of the cost function
in complex environments poses significant challenges and necessitates
numerical approximation as these environments are formulated in
state space (Kuderer et al., 2015; LaValle, 2006). The algorithms in the
second category simulate vehicle motion states in the environment to
expand a search graph, aiming for an approximate global optimum
directly. However, the need to discretize the search space for time-
continuous search leads to discretization errors. As the search space
expands exponentially over long planning horizons, it becomes a
computationally expensive and challenging task. McNaughton (2011)
proposed an approximately exhaustive search algorithm based on
dynamic programming, which allows for real-time global search when
parallelized on a graphics processing unit (GPU).

This thesis uses a sampling-based planning algorithm that samples
densely feasible actions while expanding a search graph. Over the
last decade, the computing power of GPU has been steadily increasing,
enabling the planner to simulate millions of motion states over plan-
ning horizons of ten seconds and more. This results in thousands of
feasible trajectories covering the planning horizon in each situation, as
depicted in Figure 1.3. A reward function, with a linear combination
of weights, assigns the importance among features of motion, infras-

introduction 5

Objects

Policy Set

Reward Model

Policy

Weights

Explicit Prediction

Implicit Prediction

Infra.

PSVs

Reward Function

Env. Model

PredictionPrediction

Prediction Planning

Figure 1.4. Unified architecture of the hybrid approach. The figure gives an
overview of the prediction and planning building blocks and their interfaces.
The blocks outlined in blue resemble the modular architecture. The implicit
prediction block provides pixel state values (PSVs) for the planner. The reward
model predicts weights, adapting the importance among features in the
reward function.

tructure, and objects to determine which of the trajectories is optimal.
However, this requires tedious manual tuning to produce the desired
behavior.

The second approach in this thesis focuses on transferring the tuning
task to machine learning, a particular type called inverse reinforce-
ment learning (IRL), which evolved around finding reward functions
by observing demonstrations of the desired behavior (Ng and Russell,
2000). The IRL approach uses an energy-based model to describe the
relationship between the demonstrated behavior and reward, implying
the behavior of an experienced driver becomes exponentially more
likely with increasing reward. This methodology has been pioneered
by Ziebart et al. (2008) and is called maximum entropy IRL. Maximum
entropy IRL is often considered intractable over long planning hori-
zons because the distribution requires the calculation of all possible
trajectories (Arora and Doshi, 2021; Ziebart et al., 2008). The pro-
posed approach that is part of this work makes the imitation learning
methodology tractable for automated driving by using the above men-
tioned sampling-based planning algorithm that exhaustively searches
for feasible trajectories (Rosbach et al., 2019). This combination allows
developing novel deep learning approaches, which can, on the one
hand, use the planning system’s high-dimensional features to improve
situational context understanding and, on the other hand, use its rules
and heuristics to constrain the final trajectory selection.

6 introduction

Figure 1.4 guides the reader, showing the building blocks of the
hybrid architecture, along with their respective inputs and outputs.
The prediction and planning blocks of the previously discussed mod-
ular architecture are depicted with a blue outline. The next approach
presented in this thesis uses the IRL methodology to build a reward
model. The approach is concerned with the limited generalization
of a single reward function and proposes an approach to perform
situation-dependent predictions (Rosbach et al., 2020a). To allow a
DNN to understand the driving situation, the method uses the plan-
ner’s generated policies as input from previous planning cycles. Each
policy can be associated with its static and kinematic features of the
environment and the sequence of actions that caused it. All sampled
policies have different behaviors and concatenated provide a picture
of feasible motion in each situation, similar to a detailed textual de-
scription composed of sentences using various arguments. Thus, the
role of the DNN is to automatically find patterns from the policies to
allow a suitable reward function prediction.

The subsequent approach, also a reward model, introduces adap-
tation mechanisms that control the dynamics of the reward function
prediction to provide persistent behavior, such as interactions with
other moving vehicles (Rosbach et al., 2020b). Sudden input changes
directly trigger transitions in reward functions, an undesirable prop-
erty in smooth lane following and during lane changes, where it is
crucial to consider the overall driving context to ensure persistent
goal-directed behaviors. For this reason, this work introduces atten-
tion mechanisms for the DNN architecture (Rosbach et al., 2020b). On
the one hand, this generates focus on policies among the set having an
expert-like behavior similar to eye tracking. On the other hand, it in-
troduces a temporal attention mechanism, which allows for extracting
the driving context from a sequence of planning cycles and regulates
the adaptation of the reward function.

The last approach in this thesis and pending prediction block of
the hybrid architecture in Figure 1.4 makes the explicit future motion
prediction optional. The DNN approach implicitly provides the future
motion of objects by training the prediction block using the planning
algorithm and reward model, thereby unifying prediction and plan-
ning (Rosbach et al., 2023). This thesis argues that separating predic-
tion and planning into two distinct modules dramatically increases the
system complexity due to the modules’ interdependency in interactive
driving scenarios, where the planned behavior of the automated vehi-
cle influences the behavior of SVs. This approach aims to discriminate
states using a DNN, providing a tight integration with the planning
algorithm, going beyond the prediction of situation-dependent linear
reward function weights that act on manually defined path integral
features to discriminate policies. The DNN implicitly predicts informa-
tion about driving comfort, kinematic reachability, object interaction,

introduction 7

Figure 1.5. Example of the pixel state value prediction. The vehicle approaches
a roundabout while a faster driving vehicle passes the entry. The stacked
image sequence depicts the rendered PSVs in 1.1 second time increments over
a planning horizon of 6.6 seconds. The green pixels indicate high values,
yellow pixels present medium values, and red pixels denote low values. The
white pixels are either unreachable or colliding with SVs. Each image has a
resolution of one-megapixel.

and safety while observing the whole scene in BEV. The training task
is cast as paired image-to-image translation using a conditional gen-
erative adversarial network (GAN). The targets encompass two image
sequences; one displaying explicit visitations of other SVs, and the
other depicting PSVs rendered through an energy-based model de-
rived from the sampled policies. The planner can directly utilize the
PSVs in a reward shaping function, which implicitly encodes interac-
tion with the environment. Figure 1.5 shows the PSV target sequence
rendered by the planning algorithm that drives in the same situations
in Figure 1.3. In this situation, the automated vehicle (AV) yields and
plans to drive in the roundabout in the fourth image of the sequence.
The color-coding of the pixels corresponds to the value, while white
pixels are either unreachable or in collision with SVs. Each of the
presented images has a resolution of one-megapixel providing dense
discrimination of the environment by the planner’s reward model.

The hybrid architecture depicted in Figure 1.4 provides an impor-
tant step towards scalability in automated driving. It employs the
prediction blocks to learn what is difficult to model by hand while
retaining interpretability through explicit motion prediction and plan-
ning. The unified optimization of prediction and planning via the
aligned reward model is essential to implement assertive goal-directed

8 introduction

behaviors. In this hybrid approach, the planner can evaluate feasi-
ble driving behaviors in multiple possible futures by simultaneously
leveraging explicit and implicit motion forecasting of the behaviors
of SVs. This allows for selecting assertive behaviors with additional
model-based risk assessment. The next chapter provides the requisite
background for this thesis, facilitating a deeper understanding of the
intricacies of the proposed contributions.

2
B A C K G R O U N D

Contents

2.1 Markov Decision Processes 10

2.2 Prediction in Automated Driving 11

2.3 Reinforcement Learning 16

2.4 Planning in Automated Driving 17

2.5 Inverse Reinforcement Learning 20

2.6 Unified Prediction and Planning 24

2.7 Quantitative Evaluation 26

It is important to plan appropriate driving behavior to attain lasting
acceptance of fully automated driving. Othman (2021) reviews so-
cial and technological determinants contributing to public acceptance.
Accordingly, safety and trust in the vehicle are among the most influ-
ential factors. An effective way to establish trust and familiarity during
a drive is to behave in accordance with the passenger’s expectations.
But how can an automated vehicle learn to behave humanlike? Numer-
ous studies examine human driving behavior, especially the factors
correlated with road safety (Elander et al., 1993; Sagberg et al., 2015;
Taubman Ben-Ari and Skvirsky, 2016). The studies often distinguish
between driving skill and driving style, which combined determine
the resultant behavior.

Evans (1991) describes the ability to respond to complex traffic
situations as driving skill. What aspects contribute to these skills can
be observed in driver’s education (Evans, 1991). Students acquire
fundamental skills while learning to operate the vehicle controls and
practicing to maintain the vehicle in the lane. In the next progression,
students have to sharpen their visual search skills to process complex
situations. In a comparative study of experienced and novice drivers,
Mourant and Rockwell (1972) observe that experienced drivers are
able to make use of their peripheral vision and focus on the future
path, while novices show a large spread in fixations (Mourant and
Rockwell, 1970). However, the authors point out that acquiring these
visual search skills requires a great amount of training.

9

10 background

Other important components that determine the driving behavior
are the goals, motives, and intentions of the driver, which contribute
to the driving style. Sagberg et al. (2015) describe the driving style as
the habitual way of driving. Although it is not directly apparent, the
driving style has more influence on road safety as compared to the
skill (Evans, 1991). This is due to the fact that the driving style has a
direct influence on the driving task difficulty. As such, a chosen driving
style may require advanced driving skills to maintain control of the
vehicle (Näätänen and Summala, 1976). Traffic psychologists have
analyzed human driving behaviors and conceptualized models of the
control processes that drivers use to adapt their driving style (Fuller,
2000; Summala, 1988, 2007; Vaa, 2007). Fuller (2011) describes that an
important aspect of these models is that drivers continuously evaluate
the perceived task demand and their perceived capabilities to control
an accepted level of risk or task difficulty. Further, the accepted level
may depend on individual differences, such as the emotional state and
journey goals. However, modeling these behavioral control aspects is
difficult due to the large number of possible situations, behaviors, and
actions. This thesis aims to incorporate the modular architecture into
a training loop to adopt an appropriate driving style and gain driving
skill. The following sections introduce machine learning and planning
approaches that aim to imitate these cognitive control processes of
human drivers.

2.1 markov decision processes

Machine learning and planning algorithms often use the Markov deci-
sion process (MDP) as a mathematical decision-making framework. An
MDP (Puterman, 2014) is often described by a 5-tuple {S ,A, T, R, γ}.
The agent can visit a set of states denoted by S . A state represents
the vehicle configuration, such as the position in the environment,
the velocity, and acceleration. The description can be more detailed
by including more derivatives with respect to time or abstract de-
scribing that the vehicle is following a specific lane. A describes the
set of actions the agent can perform, such as accelerating, braking,
and steering by adjusting the wheel angle. The transition function
T(a, s, s′) describes how the agent moves over time from state s to the
next state s′ given the action a. The reward function R(s, a) assigns a
reward for applying the action a in state s. The reward function for
automated driving encodes the driving style and is very difficult to
specify manually. Planning aims to find a policy π, a function, that
maps states to actions and maximizes the cumulative reward, where
γ discounts future rewards against immediate rewards. An optimiza-
tion technique used to find an optimal policy is dynamic program-
ming (Bellman, 1966). However, dynamic programming suffers from
the curse of dimensionality (Bellman, 1961) when applied to a problem

2.2 prediction in automated driving 11

with high-dimensional state spaces, such as automated driving. The
curse of dimensionality refers to the problem of exponential growth
of dimensionality with a larger number of state dimensions. This also
implies that optimizing driving behavior over a longer time horizon
is difficult due to the growing number of states to be evaluated. The
next section will introduce methodologies to predict driving behavior
directly instead of using planning. Prediction is an important step in
the modular automated driving architecture and is often synonymous
with forecasting the future motion of SVs. This allows the planning al-
gorithm only to evaluate the ego states relative to predictions because
when planning for multiple agents simultaneously, the other agents’
states must also be considered. When every agent can visit the same
number of states, the state space grows exponentially for the num-
ber of agents. By introducing abstraction, deep learning approaches
circumvent the explicit evaluation of very large state spaces.

2.2 prediction in automated driving

Deep learning has achieved state-of-the-art results in numerous re-
search areas, including computer vision, natural language processing,
and game playing. Many successful deep learning architectures of
these research areas have been adopted to predict driving behavior.
Chen et al. (2023) survey end-to-end approaches for automated driv-
ing on a broad spectrum from imitation learning to reinforcement
learning (RL) and point out challenges and opportunities. This section
provides an overview of deep learning approaches, focusing on those
that predict ego behavior and those aimed at predicting the behavior
of SVs. Goodfellow et al. (2016) provide a background in deep learning
for further readings about modern practices and research areas.

2.2.1 Imitation Learning

Imitation learning algorithms assume experts can demonstrate the
desired driving behavior, and recording them using sensor-equipped
vehicles is feasible on a large scale. A major advantage of imitation is
that drivers participating in collection campaigns do not need domain
knowledge in automated driving but can contribute by directly speci-
fying the desired behavior by demonstration. There are two categories
of imitation learning algorithms. The first category aims to directly
clone the actions of the expert demonstrations, while the second cate-
gory strives to learn the preferences or goals of the expert instead (Osa
et al., 2018).

In 1989, the first behavior cloning approaches were proposed for
lane following, where a neural network performs lateral vehicle con-
trol (Pomerleau, 1989). The end-to-end approach is typical for behavior
cloning, jointly optimizing perception and control, using supervised

12 background

learning with a regression or classification loss contrasting the actions
of the demonstration and the agent. Conditional imitation learning
extends the simple approach by utilizing high-level inputs during
training, which also provides influence over the driving policy dur-
ing deployment (Codevilla et al., 2018). For instance, it can allow the
network to execute turns based on navigational inputs. The strengths
of behavior cloning lie in its simplicity by allowing implicit feature
learning of the environment from raw sensory data while jointly op-
timizing control. The downside is that the agent is trained only on
states the expert policy visited and, when deployed in the real-world,
might take actions leading to states that are out of the training dis-
tribution, leading to compounding errors that the agent is unable to
recover from (Ross and Bagnell, 2010). DAGGER (Dataset Aggrega-
tion) by Ross et al. (2011) propose a solution by repeatedly querying
a demonstrator on how to recover. Haan et al. (2019) describe an-
other problem of behavior cloning, related to causal confusion, where
the agent is unable to differentiate between true and misleading cor-
relations. The authors argue that robustness against distributional
shift can be achieved by relying on the true causes of expert actions.
Spencer et al. (2021) describe that both problems arise from covariate
shift, highlighting the importance of the input features. A stream of
literature addresses this problem by augmenting the training dataset.
Bojarski et al. (2016) record data with multiple cameras and use them
to simulate the appearance of drifting from the lane center by using
viewpoint transformations. Tampuu et al. (2020) provide an overview
of data augmentation and diversification techniques in their survey of
end-to-end driving training methods.

There are also imitation learning methods that first aim to learn the
reward function and then use the learned reward function to optimize
the agent’s behavior. One of these methodologies is called IRL. It is
used in the core contributions of this thesis, covered later in detail
in this background chapter. Osa et al. (2018) describe that learning
the reward function as a description of the expert behavior allows
for better generalization since the reward function is regarded as a
parsimonious description of the desired behavior. These methodolo-
gies are indirect as they necessitate planning or RL to determine the
driving behavior. IRL will be reviewed in the following sections af-
ter introducing RL and planning approaches for automated driving.
Ho and Ermon (2016) propose to directly learn the behavior without
explicitly finding reward functions using GANs (Goodfellow et al.,
2014). The approach uses a GAN, having two DNNs, one generator
network to explore actions, and a discriminator network implicitly
learning the reward function. The authors explain that the approach,
known as generative adversarial imitation learning (GAIL), has the
benefit of exploring the environment in contrast to behavior cloning
methods, allowing better generalization in new environments. Exten-

2.2 prediction in automated driving 13

sions of this approach aim to allow the agent to learn from a broader
range of experience. Lee et al. (2020) introduce a constraint reward to
the discriminator-based reward function to also be able to learn from
negative demonstrations. The constraint reward provides positive feed-
back for positive demonstrations and negative feedback for negative
demonstrations, such as collisions. Using collisions allows the agent to
also visit unsafe state-action pairs that expert demonstrations do not
cover, leading to better generalization. Often, GAIL approaches rely
on a binary classification to discriminate the expert from non-expert
behavior. Huang et al. (2023) argue that the binary classification often
does not encode essential features of the expert behavior, leading to
low-quality rewards. The authors propose using a contrastive learning
loss to learn a more meaningful representation space, differentiating
between good and bad states. Contrastive learning belongs to the
group of self-supervised learning methods, which have the ability to
learn representations from data without relying on human annota-
tions (Gui et al., 2024). Imitation learning approaches can often utilize
pseudo labels, which are derived from demonstrations, to leverage
self-supervision.

2.2.2 Affordance and Multi-Task Learning

Affordance learning approaches take a step back from end-to-end
behavior generation and instead focus on predicting features charac-
terizing the vehicle’s state that a controller can use to implement the
desired behavior, such as steering the vehicle back to the lane cen-
ter. This methodology leverages more a priori knowledge to improve
the supervision of the learning task and constrain the behavior. The
predicted features, being handcrafted, necessitate human annotation.
Nonetheless, partial automation can also contribute to creating large-
scale datasets akin to those used in imitation learning approaches,
for instance, utilizing laser range finders for annotating distances.
A benefit of leveraging features is that the vehicle does not have
to drive with an optimal policy and can purposefully explore sub-
optimal states for their annotation while recording data. The deep
learning approaches use multi-task learning to predict multiple fea-
tures simultaneously (Caruana, 1997; Zhang and Yang, 2021). Chen
et al. (2015) propose the direct perception paradigm that uses end-
to-end perception that predicts the yaw, distance to lane markings
and preceding vehicles, and whether the vehicle is on or between lane
markings. Sauer et al. (2018) propose conditional affordance learning
as an extension to include directional input to navigate intersections.
Both approaches assume that the lateral and longitudinal control can
be separated and that behaviors can be defined and selected using
rule-based behavior modeling.

14 background

A stream of research uses multi-task learning as auxiliary super-
vision while keeping the main task the behavior prediction (Bansal
et al., 2019; Ishihara et al., 2021; Mehta et al., 2018). Chauffeur Net, an
approach proposed by Bansal et al. (2019), imitates the expert behavior
using imitation losses while using additional losses to make unde-
sired behavior unlikely. The imitation losses include predicting the
heading, speed, and waypoints, and the environment losses evaluate
drifting off-road or colliding with other objects. The network predicts
waypoints that a controller optimizes to find steering and acceleration
commands. The authors render BEV input images for the network as
an intermediate representation depicting road topology, traffic lights,
speed limits, ego, and other agents. The intermediate representation
allows the use of simulated and real-world data and facilitates closed-
loop tests in simulation before deploying in the vehicle. The approach
uses trajectory perturbations of the demonstration, such as offsetting
the ego position from the lane center and fitting a new trajectory while
keeping the end state, to learn recovering behaviors.

2.2.3 Multi-Agent Motion Forecasting

The modular architecture leverages prior knowledge about the envi-
ronment. Predicting the future motion of SVs is an important aspect
that allows the downstream planning modules to evaluate the ego
motion relative to the SVs. This subsection presents a concise overview
of general methods and output modalities, drawing on insights from
several surveys that have addressed trajectory prediction in automated
driving (Bharilya and Kumar, 2024; Ding and Zhao, 2023; Huang et al.,
2022). Ding and Zhao (2023) describe output modalities of trajectory
prediction modules, categorizing them into unimodal and multimodal
methods. Unimodal methods yield a deterministic or a stochastic
trajectory for each SV. On the other hand, multimodal methods fall
into two sub-categories: implicit sampling from a probability density
heatmap and explicit mode dividing methods, where the mode often
corresponds to different driving intentions. Bharilya and Kumar (2024)
categorize methods into conventional, RL, and deep learning-based
approaches.

Conventional methods utilize physics, sampling, and probabilistic
models, offering greater computational efficiency than deep learning
methods. However, they do not capture complex interrelations be-
tween vehicle kinematics, infrastructure, and the interaction between
agents.

The following Section 2.3 introduces single-agent RL methods, show-
ing how an agent acquires experience through environment interaction.
Multi-agent trajectory prediction requires the extension of single-agent
RL formulations to account for the interaction among multiple agents.
Several surveys provide an overview of multi-agent RL (Gronauer and

2.2 prediction in automated driving 15

Diepold, 2022; Zhang et al., 2021). Notably, multi-agent RL can not sim-
ply use a simulator to evaluate the interaction with the environment
since the policies of SVs are unknown. Strategies to circumvent this
are self-play (Silver et al., 2017) and parameter sharing. Tang (2019)
uses self-play to bootstrap the environment using previously trained
models that iteratively replace other agents’ policies. Konstantinidis et
al. (2021) and Gupta et al. (2017) share the parameters of trained poli-
cies across agents to implement cooperative policies without explicit
communication.

Supervised deep learning approaches make use of large datasets of
real-world trajectory recordings. The datasets are typically processed
by offboard perception systems to partially automate high-quality
labeling (Caesar et al., 2020; Chang et al., 2019; Ettinger et al., 2021).
These approaches fall into three categories: sequential, vision-based,
and generative models (Bharilya and Kumar, 2024).

Sequential models, dating back to one of the first approaches, extract
features from the agents’ past motion using a temporal architecture
such as recurrent neural networks (RNNs) and aim to predict multi-
modal trajectories with associated probabilities for each future. Re-
cently, transformer-based architectures (Vaswani et al., 2017) secured
high positions in Waymo Open Dataset Challenges. Shi et al. (2022)
propose a transformer encoder-decoder for predicting multimodal
future motion. The authors use a vectorized representation feeding
historical trajectories and road maps as polylines. The decoder jointly
optimizes global intention localization and local movement refinement.
Improvements to the querying strategies allowed the authors to win
in the consecutive year (Shi et al., 2023).

Vision-based models use raw data or depict the input in BEV. Re-
cently, BEV perception approaches gained popularity, fusing informa-
tion from different sensors and views (Ma et al., 2022). The represen-
tation excels in spatial feature extraction using convolutional neural
network (CNN) architectures, especially when aiming to reduce the HD

map dependency. Gilles et al. (2021) propose an approach generating
a grid-based heatmap, representing the possible future position of an
agent, capitalizing on the representational advantages for multimodal
behavior. The authors propose sampling methods to derive trajecto-
ries from the heatmap. Kim et al. (2022) propose an approach that
predicts trajectories and time-dependent occupancy grids for dense
urban environments to capture group behavior, mitigating the need to
represent agent-centric trajectories. Mahjourian et al. (2022) combine
occupancy and flow prediction, addressing the shortcomings of occu-
pancy grid prediction by additionally representing the agents’ motion
and identity.

Generative models such as GANs and variational autoencoders
specifically aid in predicting multimodal trajectories. Gao et al. (2022)
survey GANs for spatio-temporal data, presenting an overview of GAN

16 background

variants. The authors note that using GAN for spatio-temporal data
is still in its infancy. Golchoubian et al. (2023) review specifically the
domain of pedestrian prediction, showing multiple applications of
generative models. Gupta et al. (2018) present an approach using
GAN to represent uncertainty in pedestrian prediction and capture
socially-accepted motion.

2.3 reinforcement learning

While the previous sections focused on using supervised learning
techniques to predict driving behavior, reinforcement learning aims
to learn how to drive by interacting with the environment (Sutton
and Barto, 2018). The interaction with the environment is typically
modeled using an MDP, where the agent aims to maximize the ex-
pected cumulative reward to find the driving policy π. Sutton and
Barto (2018) offer a comprehensive overview; the following adopts
their notation to provide intuition about the concepts. The state-value
function vπ and state-action value function qπ(s, a) are given by

vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣ St = s

]
, for all s ∈ S , (2.1)

qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣ St = s, At = a

]
, (2.2)

and provide estimates on how beneficial it is to be positioned in a
given state or respectively in a given state s and take a certain action
a to maximize cumulative reward. The discount term γ is often used
to weigh the future rewards against immediate rewards. Usually, the
reward function R(s, a) is defined a priori by the designer. The reward
function facilitates the inclusion of prior knowledge regarding the
desired behavior. However, it is difficult to find an appropriate level
of abstraction. On a high level, one could design a reward function
that rewards the agent for staying on the road while punishing the
agent for going off the road. When being more specific, one could
also reward the agent for keeping the vehicle centered between lanes.
However, when driving in curves, keeping an offset from the lane
center is often desired to minimize lateral acceleration. Being more
specific helps in distinguishing good behavior from bad, however, it
may limit generalization.

RL can use models of the environment or learn purely by interacting
with the environment and mapping observations of states, such as
raw sensory data, to actions. An important aspect to consider is the
experience the agent has to gain by interacting. The agent can not
only exploit its current knowledge of the world but has to keep ex-
ploring better ways of interacting with the environment, known as the

2.4 planning in automated driving 17

exploration and exploitation tradeoff in RL (Sutton and Barto, 2018).
Model-based methodologies are considered more sample efficient be-
cause they incorporate important a priori knowledge such as feasible
vehicle kinematics or environment features necessary to follow the
driving rules.

Kiran et al. (2021) survey deep RL approaches for automated driving.
The methods can be categorized into value-based, policy-based, and
hybrid approaches, combining both. Value-based methods derive the
policy from value estimates by maximizing the cumulative reward,
while policy-based methods directly estimate the policy without explic-
itly expressing value. DNNs serve to approximate functions in RL, such
as the policy or state-action value estimates. Numerous RL variants are
utilized for continuous state-action spaces, with Leurent (2018) provid-
ing a survey on different state-action space representations specifically
for automated driving. In automated driving, allowing an agent to
acquire experience in the real world is dangerous, and substituting
the real-world experience with a simulation poses the challenge of
modeling realistic interaction with other SVs requiring multi-agent RL

approaches. Learning can be further classified as online and offline
RL. While online learning requires constant interaction with the en-
vironment, offline learning stores interactions with the environment
in a dataset without necessarily knowing the behavior policy of the
data collection. Offline RL provides a new perspective on designing
scalable approaches that can use large datasets (Levine et al., 2020).
Offline RL methods can also be applied to imitation learning when
recording experiences from human demonstration.

The following section will briefly overview planning approaches
for automated driving. The overview focuses on general-purpose
algorithms that generate behaviors in all operational domains, from
parking to urban and highway driving. This section also positions the
planning algorithm utilized in this thesis within the context of related
work.

2.4 planning in automated driving

Much of the literature about practical deployments of planning al-
gorithms for automated driving originated from Defense Advanced
Research Projects Agency (DARPA) Challenges such as the Urban Chal-
lenge in 2007 (Buehler et al., 2009). Paden et al. (2016) survey planning
algorithms for urban environments, categorizing them into variational,
graph-search, and incremental search methods. Paden et al. empha-
size that the contestants in the DARPA Challenges often combine these
methods to use their individual advantages. Planning modules can
be decomposed into a hierarchical structure consisting of strategic,
tactical, and operational layers. The following paragraphs will briefly

18 background

outline the layers, paving the way for a subsequent discussion on the
complications that arise from explicit decomposition.

On a strategic level, a route planning module determines the path
to a target location using lane-level road networks, also referred to a
road graph, with Zheng et al. (2019) reviewing methods for generating
these networks. The path is typically computed using algorithms such
as Dijkstra’s algorithm or more sophisticated variants incorporating
additional optimization criteria, as reviewed by Bast et al. (2016) and
Delling et al. (2009).

On a tactical level, behavioral planners initiate uniquely defined ma-
neuvers, e. g., lane-changing, lane-following, and emergency-breaking.
Initial approaches during the DARPA Urban Challenge use finite-state
machines to switch between contexts such as driving in lane and
handling intersections (Montemerlo et al., 2008; Urmson et al., 2008).
Behavioral planners often have to cope with uncertainty in the situ-
ational assessment. On highways, these uncertainties are addressed
using dynamic Bayesian networks by estimating hidden state variables
such as whether a lane change is beneficial given factors such as the
number of lanes and distances to preceding vehicles (Brechtel et al.,
2011; Ulbrich and Maurer, 2015).

On an operational level, motion planners generate a feasible ref-
erence trajectory for feedback control instructed by the behavioral
layer (Huang et al., 2019; Werling et al., 2010; Yuan et al., 2019). How-
ever, the hierarchical abstraction between behavior and motion plan-
ning introduces modeling challenges, especially in dynamic traffic
situations, where maneuvers between moving objects require evalu-
ating spatio-temporal features. These features depend on the vehicle
kinematics, which the behavioral layer can not access directly. There-
fore, maneuvers may be rendered infeasible due to overestimation or
too conservative due to underestimation of the vehicle’s capabilities.
A stream of research aims to explicitly incorporate the interaction
with different agents into planning to not require external predic-
tion by using the mathematical framework of partially observable
MDPs, which do not map states directly to actions but instead map
observations of states to actions (Kaelbling et al., 1998). However,
finding an exact solution for a partially observable MDP is considered
intractable (Papadimitriou and Tsitsiklis, 1987), therefore approaches
capable of online planning use hierarchical decomposition (Ulbrich
and Maurer, 2013) or approximation methods (Galceran et al., 2017;
Silver and Veness, 2010). Alternatively, to the decomposition men-
tioned above, a growing body of research inverts the hierarchy by first
generating feasible trajectories and afterward selecting an appropriate
behavior. The following will give a brief historical overview of these
methods.

At the time of the DARPA Urban Challenge, Dolgov et al. (2008)
used an extension of the well-known heuristic graph-search algorithm

2.4 planning in automated driving 19

1 state St+0 x N actions

1.6 sec. 3.2 sec. 4.8 sec. 6.4 sec.

N states of St+1 x N actions
pruning with C cells

C states of St+3 x N actions
pruning with C cells

C states of St+2 x N actions
pruning with C cells

Figure 2.1. Illustration of the search methodology. The AV takes the first exit
in a roundabout driving situation. The state space exploration is shown by
sampling N actions in four time increments over the planning horizon. A
linear state space growth is achieved by pruning the set of sampled states St
to at most C possible survivors. The grid serves as a simplified visualization
of the cell structure utilized for pruning in high-dimensional space.

A∗ (Hart et al., 1968), called hybrid A∗. The authors point out that the
main challenge in designing a practical planning algorithm is that the
space of controls is continuous. In contrast to A∗, the vehicle’s state
during the search is 3D continuous while being represented in discrete
nodes of the search tree. The search is performed forward-directed by
simulating a vehicle model to expand nodes in the tree, providing the
kinematic feasibility of the generated paths. The cost-to-go heuristic
is used to select which nodes to expand. However, since the paths
contained unnatural swerves, the approach uses a second non-linear
optimization step to improve the solution.

McNaughton et al. (2011) introduced an exhaustive search algorithm,
pointing out that cost-to-go heuristics are difficult to implement in
dynamic driving scenarios. In the worst case, all vertex branches have
to be expanded to find the desired behavior. The algorithm yields
trajectories that respect vehicle kinematics and cover the workspace’s
spatial and temporal dimensions. To make the algorithm tractable for
real-time planning, the authors generate a partial graph before the
search having the form of a state lattice (Kelly and Nagy, 2003), which
induces a discrete search graph on a continuous state space without
considering time and velocity. The state lattice is augmented with time
and velocity dimensions to search for trajectories. The graph structure
suits itself for parallel edge evaluation on a GPU. A path between
lattice vertices is defined as a cubic polynomial spiral in the Frenét
coordinate system (Do Carmo, 2016). Under start and end boundary
constraints, the parameters of the paths are calculated using closed-
form and numerical integration under consideration of a kinematic
bicycle model. The search assigns the trajectory’s augmented state
variables having the least cost to the vertex in case multiple trajectories
reach a single lattice vertex.

This thesis uses a similar exhaustive search methodology to generate
a set of feasible trajectories for long planning horizons. Figure 2.1 gives

20 background

an intuition about the outputs of the planner. The planning horizon is
iteratively explored during a forward search using discrete transition
times. This produces layers of states that share the same time incre-
ment. In contrast to McNaughton (2011), no lattice is used. Instead, in
every time increment, a set of actions is sampled from distributions
conditioned on the vehicle kinematics. This is done in parallel for ev-
ery state in that particular time layer. The notion of time layers within
an exhaustive parallel search has been described by Heinrich (2018).
Like hybrid A∗, the tree nodes expand by simulating a kinematic vehi-
cle model. During the numerical integration of the vehicle dynamics
also, the features of the reward function are integrated. Although
McNaughton and Heinrich have referenced features concerning mo-
tion, infrastructure, and objects within urban traffic environments,
the procedures necessary for tuning those reward functions were not
addressed in their work (Rosbach et al., 2019).

Planning algorithms that use an inverted planning hierarchy first
explore the trajectory candidates and select the trajectory to be exe-
cuted afterward. The selection is either based on the highest reward or
other selection criteria. In practice, it is difficult to base the selection
entirely on the reward function since multiple objectives have to be
tuned such that the highest reward yields the desired behavior. Motion
planning experts often stage the tuning process by concentrating on
exploration first, and on selection subsequently. The features of the
reward function are also separated accordingly into exploration and
selection features (Rosbach et al., 2020a). The exploration features
implement motion, infrastructural, and object-related metrics based
on the vehicle state or action. The selection features are calculated on
the sequence of states or actions after the exploration to distinguish
between different behaviors. In this direction, Gu et al. (2016) generate
selection features by applying topological analysis to the set of sam-
pled trajectories. In the experiments of this thesis, the tuning of the
reward function incorporates both feature types. The next section de-
scribes the learning methodologies to automatically find these reward
functions.

2.5 inverse reinforcement learning

The goal of IRL involves finding the unknown reward function for
a planner or RL agent using demonstrations of the desired behavior.
Therefore, it uses an inverse formulation to RL, as indicated by the
name. The methodology is suitable for automated driving, as the
desired behavior can be cost-efficiently collected by observing human
drivers. A comprehensive overview of IRL in the broader scope of
imitation learning is given by Osa et al. (2018), and a review of IRL

methods, progress, and challenges is presented by Arora and Doshi
(2021). The following provides a brief historical overview of IRL al-

2.5 inverse reinforcement learning 21

gorithms, emphasizing challenges arising in the continuous control
domain for automated driving.

In 1964, Kalman (1964) studied the inverse optimal control problem
by recovering unknown objectives for linear control systems. Several
decades later, Ng and Russell (2000) addressed the problem for an MDP,
which is now predominantly referred to by the name of IRL. The au-
thors point out that the problem is “ill-posed” as policies may become
optimal for multiple reward functions. Abbeel and Ng (2004) proposed
matching the expected feature counts of the policy computed by the
learner and empirically calculated expectations of demonstrations.
However, multiple policies may accumulate the same expected fea-
tures. Ratliff et al. (2006) propose maximum margin planning (MMP),
a methodology that formulates the learning task as maximum margin
structured prediction over the policy space. The optimization includes
constraints that limit possible cost function weights for which the
demonstrated policies have higher expected rewards than other poli-
cies. The algorithm does this by a margin, which scales with a loss
distinguishing good from bad policies. A subgradient method is uti-
lized to optimize the convex and non-differentiable objective function.
A limitation of the approach is the assumption that the demonstrated
behavior has to be optimal and demonstrate better behavior than any
alternative policy. In practice, expert demonstrations often include
imperfect behavior.

In 2008, Ziebart et al. (2008) propose maximum entropy IRL. The
IRL approach applies the maximum entropy principle to resolve the
ambiguity introduced by sub-optimal demonstration behavior. The
information-theoretic principle of maximum entropy describes the
distribution, which makes the fewest assumptions about the demon-
strated data (Jaynes, 1957). A policy π with a higher reward is expo-
nentially more preferred in this probabilistic model. The gradient of
the log-likelihood ∇L, with respect to the reward function weights θ,
is the difference between the demonstration’s empirical feature counts
f̂D and the agent’s expected feature counts, which are calculated using
feature path integrals fπ. This can be expressed as:

∇L(θ) = f̂D − ∑
π∈Π

p(π|θ)fπ = f̂D − ∑
s∈S

Dsfs, (2.3)

where the expectation is calculated over all possible policies of a
situation, denoted by the policy set Π. This maximum entropy IRL

framework is the predominant choice for current IRL approaches
since the probabilistic methodology is differentiable and suitable for
function approximation using neural networks. Ziebart et al. (2008)
propose an algorithm similar to value iteration to calculate expected
state visitation frequencies Ds. This allows matching the mean features
of the demonstrations f̂D with the state features fs visited by the
current policy. However, the distribution calculated over all possible

22 background

policies is often intractable to compute in MDPs with long planning
horizons.

Kuderer et al. (2015) approach the problem of driving style imitation
using continuous trajectories. The authors do not model the dynamics
as an MDP. Instead, they directly compute the feature gradients of
model-based time-continuous trajectory splines. While this approxi-
mate method is suitable for trajectory optimization on highways, its
extensibility to more complex automated driving domains remains
limited. In general, it is tedious to design features manually. The
features have to describe the situation sufficiently well to generate a
unique optimal solution. In this approach, the feature gradient compu-
tation requires differentiable features that are difficult to approximate
for environments with complex infrastructure.

The first IRL approach of this thesis aims to address challenging
urban driving situations by formulating a maximum entropy IRL

approach in combination with a general-purpose planning algorithm
for automated driving (Rosbach et al., 2019). The planning approach
does not contain behavior implementations and computes feasible
trajectories in different operational driving domains. The sampling
procedure explores the high-dimensional configuration space and
yields a large set of policy rollouts with implicit behaviors, which
can be used to approximate the distribution of possible paths for
the maximum entropy IRL formulation. The methodology focuses
on tuning reward functions for a priori selected driving situation,
employing a linear combination of K features fi, each weighted by θi,
such that

∀(s, a) ∈ S ×A : R(s, a) = ∑
i∈K
−θi fi(s, a). (2.4)

In practice, this approach can be used to tune a set of reward func-
tions for different driving styles or situations to overcome the limited
generalization capabilities of a single linear reward function.

To this end, Babes et al. (2011) focus on automatically finding a
number of linear reward functions using a latent variable model. To
find these, the approach integrates the expectation maximization (EM)
algorithm by Dempster et al. (1977). During inference, a mixture of
reward functions is inferred using Bayes’ rule. This process enables
training across a variety of driving segments without requiring prior
knowledge regarding the segments (Rosbach et al., 2020a). Choi and
Kim (2012) suggest employing Dirichlet process mixture models (Neal,
2000) to overcome the limitations of EM, particularly the dependency
on a predetermined number of clusters.

Another thread of related work concentrates on finding non-linear
reward mappings for each state-action feature. Ratliff et al. (2009)
propose Learning to Search (LEARCH), an extension to MMP, which
predicts non-linear rewards for a planning algorithm in a grid repre-
sentation. The reward functions in the form of grid-based cost maps

2.5 inverse reinforcement learning 23

are used to represent traversability for an off-road planning system. Re-
cently, Wulfmeier et al. (2015) propose a deep IRL approach using DNNs

to approximate complex non-linear reward functions. The authors use
CNN architectures to learn features from raw input representations
and predict grid-based cost maps. Wulfmeier et al. (2017) apply this
methodology to autonomous navigation in urban environments. The
authors focused on predicting spatial traversability maps that can be
combined with a path planner. However, the authors did not consider
the continuous control domain, which requires embedding the agent’s
kinematics. Further in this direction, Drews et al. (2017) demonstrate
that online model predictive control (MPC) can optimize cost-map pre-
dictions from visual inputs to acquire a direct link between perception
and control for high speed autonomous driving on an oval race track.

The subsequent IRL approach of this thesis aims to address the
limited generalization of a single reward function. It proposes a deep
IRL algorithm that generates situation-dependent reward functions
for the above-mentioned sampling-based planning algorithm (Ros-
bach et al., 2020a). The structure of the approach is similar to the
work of Wulfmeier et al. (2017), who use CNNs to encode features
of the driving situation. However, in contrast to extracting features
and predicting costs on a state basis, the work on IRL in this thesis
operates within policy vector space. The sampling-based planning
algorithm generates a set of policies for which feature vectors embed
static information about the environment and kinematics of the agent.
The DNN encodes the driving context based on these policy vectors
and maps the context into reward functions for upcoming planning
cycles. Instead of predicting a grid-based cost map, a CNN network
architecture predicts reward function weight vectors that parameterize
feature path integrals in high-dimensional continuous state-action
spaces. The reward function weights adapt depending on the encoded
situation for each planning cycle of the receding horizon optimization.
In contrast to Drews et al. (2017), our planner generates an explicit
search space that facilitates the implementation of safety extensions
for automated driving. The proposed IRL methodology neglects the
temporal dependency among individual planning cycles, with each
cycle optimizing its own MDP and transitioning the optimization task
abruptly between cycles. This disregard may result in temporal incon-
sistency despite the temporal dependency of consecutive cycles. The
temporal dependency between MDPs has been modeled in previous
work regarding actions and objectives. On a level of actions, Sutton
et al. (1999) formulate semi-MDPs that introduce the concept of op-
tions. Shalev-Shwartz et al. (2016) describe options in the context of
automated driving as closed-loop policies guiding actions over a time
frame, such as merging into the left or right lane. On a level of objec-
tives, Krishnan et al. (2016) proposed hierarchical IRL. Hierarchical IRL

decomposes tasks into sub-tasks, learns their reward functions, and

24 background

takes the relationship between individual sub-tasks into account. The
authors state that modeling the sub-tasks increases the performance
on RL benchmarks regarding convergence and robustness to environ-
mental noise. Šošić et al. (2018) use Bayesian Nonparametric IRL to
learn the spatial and temporal context of demonstrations. The final
approach of this thesis adopts the concept of subgoal modeling over
a sequence of planning cycles to predict reward functions according
to learned task dependencies. The DNN uses attention mechanisms
to observe context changes and transition reward functions (Rosbach
et al., 2020b).

In contrast to model-based IRL approaches, there are also model-free
variants for imitation learning. Finn et al. (2016b) address imitation in
the continuous control domain without relying on known dynamics.
The authors propose a guided cost-learning framework combining
policy search with cost-learning from demonstrations. The cost func-
tion is trained in the inner loop of policy search. The authors use the
maximum entropy principle in which samples of the learned policy
solve the partition function. Ho and Ermon (2016) presented a model-
free imitation learning approach that directly learns a policy without
learning the cost function using GANs by Goodfellow et al. (2014). Finn
et al. (2016a) describe the connection between GANs and IRL, which
both train energy-based models of policies with maximum likelihood
gradient.

2.6 unified prediction and planning

A stream of research aims to combine the benefits of modular and
end-to-end architectures similar to the approaches presented in this
thesis. Hagedorn et al. (2023) survey design choices and architectures
aiming to integrate prediction and planning to account for the inter-
dependency between the AV and SVs. The authors contrast prediction
and planning for automated driving to motivate design choices. The
authors point out that one of the key differences is that planning is
goal-conditioned. Planning can be given objectives, long term by the
target location and short term by preferences, while prediction has
to cope with uncertainty with respect to them. Furthermore, SVs do
not necessarily need to follow the predictions, whereas the planned
trajectory has to be safe and feasible. Hagedorn et al. (2023) catego-
rize approaches into monolithic end-to-end, interpretable end-to-end,
and manual integrations. The monolithic approaches do not explicitly
consider SVs, similar to imitation learning approaches using behavior
cloning described in Section 2.2.1. Interpretable end-to-end systems
include the SV prediction as an auxiliary output. Both approaches
implicitly incorporate predictions for the planning task, therefore,
they cannot guarantee safety. Integrations that involve the manual
design of interactions between AV and SVs demand more engineering

2.6 unified prediction and planning 25

effort; however, they can leverage prior knowledge to find a desired
trajectory.

Hagedorn et al. (2023) describe the system design based on the
relationship between AV and SVs using four categories by Rhinehart
et al. (2021): AV-led planning, SV-led planning, joint planning, and
co-led planning. AV-led planning directly infers the AV’s behavior in-
dependent of the future behavior of SVs. This results in aggressive
driving behavior and collisions when SVs do not react to the AV. SV-led
planning is used by the sequential processing chain of the modular
architecture, predicting the behavior of SVs and reacting to them. Ne-
glecting the dependency of the AV’s behavior on the SVs, leads to
conservative behavior. Joint planning assumes that all agents’ behavior
can be controlled by using a joint objective to optimize, assuming that
an optimal global outcome exists. However, an SV does not necessarily
need to act according to a global optimum, thus leading to unexpected
behaviors. Co-led planning does not assume deterministic behavior of
SVs and therefore has to consider contingent plans dealing with the
uncertainty. Rhinehart et al. (2021) further separate into active and
passive contingency planning. Suppose the AV expects multiple SV

behaviors, then it implements passive contingency. If the AV can influ-
ence the contingent plans of SVs to reduce uncertainty, it is considered
active. A research stream not only integrates prediction and planning,
but also uses backbone convolutions networks to incorporate percep-
tion (Sadat et al., 2020; Zeng et al., 2019, 2020). This thesis focuses
on unifying prediction and planning, operating on an intermediate
BEV representation, leaving this as a topic for future work. The fol-
lowing reviews approaches that unify prediction and planning, where
planning includes model-based feasible trajectory generation.

Zeng et al. (2019) propose a neural motion planner, which can
be described as an interpretable end-to-end approach, producing
a space-time cost volume. The cost volume evaluates a diverse set
of feasible trajectories, capturing uncertainty and multi-modality of
possible trajectories. The method is trained using a multi-task objective
combining perception, prediction, and planning. The planning loss
minimizes a max-margin loss, where the desired behavior is given by
demonstrations of the AV, and randomly sampled trajectories present
negative and undesirable examples. The authors describe the loss as
sparse. However, combining perception and prediction loss improves
learning of the intermediate representations. The network is trained
with multi-task learning and multiple heads, which can therefore
cause inconsistencies (Sadat et al., 2020).

Zeng et al. (2020) propose DSDNet, an extension to the previous
work, that uses a deep energy-based model, explicitly modeling in-
teractions with SVs using message passing. In their previous work,
planning was independent of prediction and, therefore, can cause
inconsistencies. DSDNet aims to model the joint distribution of fu-

26 background

ture trajectories of all SVs and conditions the predictions on the cost
volume.

Cui et al. (2021) predict scene-level futures and optimize contin-
gency plans. A module scores the probability of each future, and the
planner evaluates multiple consistent futures by separately planning
for them. The solutions share a nonconservative solution that unfolds
into separate plans for the different futures.

Casas et al. (2021) propose an end-to-end model for driving without
HD maps by predicting an online map and an occupancy map of
dynamic agents. The representation is then used as a cost function
for a neural motion planner. The dynamic objects are represented
as a probabilistic motion field, where the motion modes are learned
unsupervised.

Hu et al. (2023) propose a full-stack driving network from percep-
tion, mapping, tracking, prediction, and planning. Prediction is per-
formed agent-centric and also scene-centric using occupancy forecast-
ing. The perception and prediction modules use transformer decoder
architectures, and the planner uses an attention-based architecture to
predict waypoints. Queries connect the pipeline as a unified interface.
The approach is more similar to multi-agent prediction literature, pro-
viding a prediction of the ego vehicle trajectory and additionally using
the occupancy map to check for collisions.

2.7 quantitative evaluation

The direct comparison of reward functions does not yield a quanti-
tative measure of the reward learning progress because the optimal
policy of an MDP is invariant under certain reward transformations (Ng
et al., 1999). Therefore, indirect measures have to be considered that
contrast the learned and demonstrated behavior. Nonetheless, tracing
reward function weights allows for introspection into the prediction
process. In practice, radar charts suit themselves naturally to analyze
the variance and correlations among feature categories such as motion
and infrastructure. For a limited number of situations, it is feasible to
annotate situations and compare predicted with expert tuned weights.

The design of metrics that evaluate the system’s behavior is chal-
lenging due to the situation dependence. In the evaluations of IRL,
the focus is on comparing behaviors with expert reference trajectories.
The situation complexity strongly influences the divergence to the
expert reference, and therefore situations are categorized to some
extent. The metrics themselves are calculated using the explicit state-
action and feature space available after each planning cycle of the
receding horizon optimization. The metrics can be categorized into
online and offline metrics. The online metrics require running the
planning algorithm again using the learned reward models to explore
trajectories. The offline metric calculations use a buffer of trajectories

2.7 quantitative evaluation 27

originally sampled using a different reward function initialization.
Further, a differentiation is made between random and expert-tuned
reward function initialization due to their impact on the sampling and,
therefore, policy distribution.

The first metric, presented here and described by Rosbach et al.
(2019), utilizes the odometry of expert reference trajectories to evaluate
the agent’s behavior. Given the explicit state-action space, it is feasible
to calculate the distance d(ζ, π) between the odometry ζ and a policy
π using the following integral:

d(ζ, π) =
∫ H

0
αt||ζt − πt|| dt, (2.5)

where the distance between the odometry ζ and policy π is inte-
grated from the ego state at t = 0 over the planning horizon H. The
norm uses geometrical properties from the odometry motion states,
such as the Euclidean distance in both longitudinal and lateral direc-
tions, along with the squared difference in the yaw angle. Additionally,
this metric incorporates a discount factor α, which requires manual
tuning. The next metric, the optimal policy distance (OPD) describes
the agent’s behavior. The metric quantifies the distance of the odome-
try ζ to the optimal policy π∗ calculated as d(ζ, π∗) using Equation 2.5.
This distance has a nonzero lower bound, which is a result of the dis-
cretization errors in the state-action space and the nondeterministic
nature of the planner’s optimization methodology (Rosbach et al.,
2020b). Plotting this metric for individual planning cycles indicates
the performance of the selected driving style across various situations.
In the evaluations of the papers, distributions of the distance metric
summarize the performance of the learned driving style of different
approaches either for a whole dataset or segments with annotations
of the situations.

To quantify the uncertainty of selecting a policy π, a probability
is assigned to each policy using the softmax of the reward function
weights θ and feature path integrals fπ as

p(π|θ) = 1
Z

exp(−θ⊤fπ), (2.6)

where the partition function Z necessitates summing over all possible
policies in the policy set Π:

Z = ∑
π∈Π

exp(−θ⊤fπ). (2.7)

The log-likelihood of the demonstration (LLD) evaluates how likely it is
that the selected policy reflects the characteristics of the demonstration.

The expected distance (ED) is calculated for the policy set Π gener-
ated during a planning cycle using the distance d(ζ, π) and probability
of selecting a policy p(π|θ) for each policy π as

E[d(ζ, Π)] = ∑
π∈Π

p(π|θ)d(ζ, π). (2.8)

28 background

This metric tracks the learning progress over epochs on the replay
buffers.

An alternative to this metric is the expected value difference (EVD).
This metric contrasts the expected value of the policy set Π and
corresponding set of demonstrations ΠD in a planning cycle as

E[V(Π)]−E[V(ΠD)] (2.9)

= ∑
π∈Π

p(π|θ)V(π)− ∑
πD∈ΠD

p(πD|θ)V(πD).

There could be multiple demonstrations πD in a single planning
cycle as denoted by the set ΠD. A demonstration πD is described as
the policy among the policy set, which has the least distance to the
odometry. In this thesis, a trajectory refers to a sequence of motion
states, such as those observed in the odometry of human drivers. A
policy, particularly one derived from the planner, can be used to create
a sequence of motion states. However, unlike a trajectory, the policy
has a transition function and access to the environmental model for
calculating reward function features. Projecting the odometry into
the policy set using the distance metric enables access to the path
integral features and the transition function. An alternative way to
generate reward function features for the odometry trajectory is to
directly calculate the features using the environment model based on
the observed vehicle states and actions. However, this may result in an
expert trajectory not being among the possible trajectory candidates of
the planner, necessitating the inclusion of the trajectory in the partition
function Z. Often, the scale of the weights increases during training,
which results in larger EVD over epochs. The problem is mitigated by
either scaling the weights or normalizing the EVD by the value of the
demonstration. If it is feasible to manually tune a true reward function,
the expected value can be calculated using the value under the true
reward function. An alternative metric to the EVD is the expected
feature difference. During training also the gradient can be considered
as presented in Equation 2.3.

In Chapter 3, Section 3.5, the focus shifts from behavior alignment
to learning to combine prediction and planning. An important anal-
ysis entails whether the agent can avoid other vehicles without the
necessity of explicit behavior predictions. To facilitate this, the thesis
employs a metric analyzing the gap maintained to other vehicles. The
object time gap (OTG) metric computes the time it would take for the
following vehicle to reach the position of the preceding vehicle, as-
suming the preceding vehicle remains stationary. Additionally, OTG is
often utilized to categorize behavior as comfortable or uncomfortable
when following other vehicles based on predefined thresholds.

3
PA P E R S A N D C O N T R I B U T I O N S

Contents

3.1 Adopting a Hybrid Approach 29

3.2 Automating Reward Function Tuning 33

3.3 Predicting Situation-Dependent Reward Functions . . . 36

3.4 Transitioning Context-Dependent Reward Functions . 39

3.5 Unifying Prediction and Planning 42

3.1 adopting a hybrid approach

This section summarizes the paper:

Towards Hybrid Automated Driving: From Direct Imitation
Learning to Affordance Learning
Sascha Rosbach, Antonia Breuer, Simon Barthel, Frederik
Kanning, and Silviu Homoceanu

Published in Proceedings of the Symposium AAET-Automatisiertes und
Vernetztes Fahren, Braunschweig, Germany, February 2019.

3.1.1 Motivation

The predominant approaches in automated driving can be broadly
categorized into modular and end-to-end approaches. Chen et al.
(2015) propose the direct perception paradigm, a simple hybrid that
aims to overcome the design complexity of modular approaches while
preserving interpretability. The paradigm uses end-to-end perception
to predict affordances (Gaver, 1991) such as the distances to the lane
center and preceding vehicles, and implements the behaviors using
model-based control. The affordances aim to circumvent the need for
a complete environment model, concentrating on essential features to
assist human drivers in common driving conditions. The method’s ca-
pabilities are confined to lane keeping and maintaining a safe distance
from other vehicles, where the behaviors can be a priori-defined using
independent model-based lateral and longitudinal vehicle controllers.

29

30 papers and contributions

This paper focuses on overcoming the practical hurdles of applying
the paradigm in the real world.

End-to-end approaches using behavior cloning are known to suffer
from compounding error when only trained with optimal behavior
that does not display how to recover when diverging from states of
the optimal behavior. In response to this issue, the direct perception
approach predicts affordances used as intermediate state representa-
tion, allowing model-based control to directly implement recovering
behaviors. We observed that testing affordance predictions in isolation
is insufficient to identify if a model will perform well in the real world.

The paper describes implementation details for applying the di-
rect perception paradigm in the real world. We establish an efficient
labeling process and describe details of the multi-task learning and
control approaches. This paper proposes a semi-closed loop simulator
using real-world recordings to evaluate the end-to-end perception and
lateral control approach before deploying in the vehicle.

3.1.2 Results

We recorded data in multi-lane highway driving situations, segments
with high curvature, such as exits on highways, and areas with lower
speed limits, such as suburban arterial roads. In contrast to data
collections for behavioral cloning methods, the data campaigns do
not need to demonstrate optimal driving behavior. Instead, the drives
show various states that could be encountered while driving in closed-
loop that are not optimal, such as diverse offsets to the lane center.
The dataset was then manually annotated using a partially automated
system. Perspective transformations were applied to diversify the
training dataset further.

The supervised learning tasks could be tested on validation and
test datasets using standard machine learning metrics such as mean
square error. We demonstrate the performance of the lateral and
longitudinal modules by contrasting the distance estimates of the
network to the lane center and the preceding vehicle with manual
annotations. Models that performed well in metric-based evaluations
did not necessarily perform well in closed-loop tests in the real-world.
We implemented a semi-closed loop simulator for the lateral module
and evaluated the time to failure. The simulator uses real-world data
recordings and implements feedback via perspective transformation.
The tests in the simulator focus on two aspects: firstly, evaluating the
robustness of the perception system during drives on highly curved
roads or with poor lane markings, and secondly, gauging the agent’s
capacity to execute recovering actions and realign with the lane center.

3.1 adopting a hybrid approach 31

3.1.3 Discussion

The direct perception paradigm has a clear advantage over the be-
havior cloning paradigm by using interpretable interfaces between
perception and control. The perception system directly predicts a
priori-defined affordances that are important to implement the actions.
Deep learning is used to generalize while presented with drastically
changing appearances of road markings and preceding vehicles. Noisy
predictions can lead to intermediate state representation for which
the model-based controllers cannot implement the correct behaviors.
The proposed semi-closed loop tests allow testing of the system per-
formance using unlabeled data recordings and evaluate the task per-
formance under prediction uncertainty. However, the model-based
controller and the simulator based on perspective transformation only
focus on lane-centered driving and do not scale to more complex
driving situations.

Sauer et al. (2018) propose an extension to the direct perception ap-
proach that also considers high-level directional inputs to condition the
affordance learning. This way, the authors aim to scale the approach
to driving in more complex situations beyond lane-centered driving.
On the one hand, the authors condition the affordances on high-level
inputs, and on the other hand, the model-based controllers implement
different driving modes depending on affordance thresholds. How-
ever, it is infeasible to enumerate all driving modes in urban driving
situations and implement controllers with a priori-defined behaviors.
Furthermore, more complex driving situations such as roundabouts
require active behavior planning instead of reactive control, given the
behavior of other agents.

Thus, this thesis focuses in the next sections on improving the
modular architecture for automated driving that uses active model
predictive planning instead of further pursuing affordance learning
approaches.

3.1.4 Contributions

Silviu Homoceanu introduced me to the ongoing research projects in
end-to-end driving and affordance learning, which he led. At the time,
I had to familiarize myself with the ongoing research in this direction. I
focused half of my working time on researching the possible direction
of this thesis, reviewing related work, and the other half on supporting
the ongoing research.

Simon Barthel and Frederik Kanning implemented the framework
and worked on the vehicle integration under the supervision of Silviu
Homoceanu. During the implementations, I was involved in discus-
sions with Simon Barthels and Frederik Kanning. I supported the
vehicle integration to become familiar with the framework, prototype

32 papers and contributions

vehicle, and challenges regarding real-world applicability. I structured
the paper with Antonia Breuer’s help and led the writing process. I
wrote the paper with Antonia Breuer and Simon Barthel with inputs
from Frederik Kanning.

3.2 automating reward function tuning 33

3.2 automating reward function tuning

This section summarizes the paper:

Driving with Style: Inverse Reinforcement Learning in General-
Purpose Planning for Automated Driving
Sascha Rosbach, Vinit James, Simon Großjohann, Silviu
Homoceanu, and Stefan Roth

Published in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Macau, China, November 2019.

3.2.1 Motivation

General-purpose planning algorithms combine behavior and motion
planning by sampling high-resolution actions in a forward-directed
incremental search. Embedded in an MPC architecture, the planner
yields a massive set of policies with implicit behavior after every
planning cycle. The optimal behavior depends on the reward function,
which encodes the driving style by mapping static and kinematic
features into rewards. Typically, the reward function has to be tuned
by motion planning experts to produce the desired behavior. However,
this process is very tedious and costly, especially when tuning the
behavior of a two-dimensional control optimization in a mixture of
situations.

In this paper, we concentrate on the automation of the reward func-
tion tuning process. We propose a maximum entropy IRL methodology,
where human driving demonstrations serve as examples of the de-
sired driving behavior. The gradient, based on expected feature match-
ing, facilitates the training of the approach through gradient descent.
The features of the human driving demonstrations can be generated
cost-efficiently. The training process does not require the planning
algorithm to run within the inner loop of reward learning. During
training, a small gradient implies that the learned reward function
produces expected features that match those of the demonstrations.
However, the partition function for this expectation is often intractable.
Our contribution provides details of our sampling-based planning
algorithm that approximates the expectation similar to Markov Chain
Monte Carlo methods.

3.2.2 Results

The experiments were conducted by recording manual driving demon-
strations on a set of straight and curvy roads using a prototype vehicle.
After that, the proposed offline training methodology has been per-
formed for each curvature type. The evaluation compares the results
of automated tuning against the traditional manual tuning process.

34 papers and contributions

Further, the experiments contrast different levels of a priori knowledge
about the reward function initialization, namely random and expert
initialization.

The evaluation of the training indicates a reduction of both ED and
EVD. This suggests that policies having a humanlike driving style
become more likely, as compared to other policies. A large reduction
of both metrics can be observed across situations.

After training, the learned reward functions have been tested on
dedicated test routes and compared in playback against manual hu-
man drives. All learned reward functions improve the driving style in
terms of OPD on the test segments. Even so, in the case of tuning from
random initialization, which indicates more significant improvements.
However, expert-initialized reward functions show less variance of
OPD on the test segments. The analysis of expected value and dis-
tance shows an inverse relationship with a higher rate of change in
learned reward functions. Therefore, the learned reward functions
introduce a higher degree of bias in the policy evaluation, making the
demonstrated behavior unique and preferable.

3.2.3 Discussion

Motion planning experts are able to tune reward functions. However,
feature and system parameter updates may require re-tuning, which
makes the process costly. In fact, the reward function often does not
contain more than a manageable set of features and parameters to
make manual tuning feasible. Such manual handling and conflicts
among the objectives make it difficult to produce a desired behavior
using a single reward function alone in a mixture of situations. The
automation of the tuning process, on the one hand, opens the possibil-
ity of extending the feature set and, on the other hand, allows tuning
multiple reward functions that are adjusted specifically for a certain
situation. The experiments show that situation-specific tuning exceeds
the driving performance of a single manually defined reward function.
This provides a step towards scaling over diverse driving situations.

IRL algorithms typically require running an RL or planning algo-
rithm in the inner loop of reward learning to update the policy (Osa et
al., 2018). This makes IRL difficult to work with and, generally, training
more time-consuming. Our exhaustive search-based planning algo-
rithm allows us to run planning once for all records and trace policy
sets for each situation in replay buffers. The policy sets approximate
all kinematically feasible actions and includes path integral features of
each policy, as well as the projected distances to the demonstration re-
quired for offline training. The reward function plays an important part
in generating the policy sets, hence also while generating the replay
buffers. Therefore, the experiments further examine offline training
under different reward function initializations. We show that training

3.2 automating reward function tuning 35

is even possible without prior knowledge of the reward function using
random initialization. This is a more difficult starting position than in
practice, where a reasonable initialization can be chosen, e. g., using a
reward function that performed well on straights as a seed for curvy
situations. The results show that both initializations converged. In the
direct comparison, the expert initialization produced a lower variance
of the OPD on the test track. In the future, we plan to perform small
updates of the replay buffers by running the planner again.

3.2.4 Contributions

Simon Großjohann introduced me to the existing simulation envi-
ronment, planning algorithm, and the drawbacks of the pre-existing
system. I formulated the approach and learning algorithm with input
from Vinit James. I designed the experiments and recorded real-world
driving data using an existing prototype vehicle. I implemented the
data recording and inference interface for the planning framework.
Vinit James implemented a framework to perform training of the mod-
els. I wrote the paper with the help of Silviu Homoceanu and Stefan
Roth.

36 papers and contributions

3.3 predicting situation-dependent reward functions

This section summarizes the paper:

Driving Style Encoder: Situational Reward Adaptation for General-
Purpose Planning in Automated Driving
Sascha Rosbach, Vinit James, Simon Großjohann, Silviu
Homoceanu, Xing Li, and Stefan Roth

Published in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Paris, France, June 2020.

3.3.1 Motivation

Planning algorithms for automated driving often operate in a spatio-
temporal workspace. The algorithms optimize a reward function,
which maps features of environment and vehicle kinematics into
rewards. In practice, often, a single linear reward function is tuned
to cope with anticipated situations. However, a single linear reward
function is unable to specify the optimization task across diverse
driving situations.

To overcome this limitation, we propose a deep learning approach
that predicts a situation-dependent reward function for every MPC

planning cycle. Importantly, the mapping between situations and
reward functions does not rely on annotations and is automatically
learned by a deep IRL approach. The DNN architecture encodes a latent
representation of the situation and directly outputs a set of reward
function weights. The training methodology builds on the maximum
entropy IRL approach of the previous section.

The DNN utilizes policy feature vectors generated by the planner
as input to encode the situation’s semantics in every planning cycle.
These vectors are a concatenation of actions and path integral features.
The DNN architecture uses one-dimensional convolutions over the
policy feature vectors to learn the latent features of each policy. All
latent policy vectors are combined using fully connected layers to
encode the driving situation.

The approach allows us to combine the reliability of model predic-
tive planning by evaluating geometric and kinematic models with the
generalization capabilities of deep learning, which has the ability to
learn how to imitate human behavior across mixtures of situations.

3.3.2 Results

We conduct experiments on a route in the city center of Hamburg,
Germany, and separate the situations into four groups with different
levels of complexity. The first group presents the simplest situations,
primarily characterized by lane following at constant velocity. The

3.3 predicting situation-dependent reward functions 37

second group includes traffic light scenarios, where the task is to stop
and start. The third group encompasses a set of sharp turns. The last
group combines stopping, starting, and performing a turn. The road
networks include multi-lane traffic and large intersections.

The experiments compare the proposed deep IRL approach against
latent and linear IRL. Latent IRL uses Expectation-Maximization to
automatically generate a set of reward functions and infer a mixture
using Bayes’ rule. Linear IRL is trained individually and switched
with a priori knowledge about each situation during inference. All
approaches converge in ED for the utilized feature set, which combines
static, kinematic, and high-level selection features. The reward function
weight plots indicate nuanced predictions of the deep IRL approach
with a high variance within each situation. The driving performance
is measured using OPD for each situation. The DNN performs at par
with multiple linear reward functions, trained individually for each
scenario.

3.3.3 Discussion

The situations that combine multiple tasks, such as starting and stop-
ping, introduce conflicts in the optimization objective. The deep IRL

addresses the conflicts by adapting the reward function situation-
dependently. As expected, the situation combining stopping, starting,
and turning is the most difficult and shows the largest variance of
the OPD across situations. Both deep and latent IRL predict situation-
dependent reward functions. However, deep IRL shows a larger weight
variance. The variance of the predicted reward functions of the deep
IRL approach is proportional to the situation’s complexity. It is notice-
able that deep IRL also produces higher variance within the simple
lane following situation, where latent IRL shows its predominant pa-
rameter pattern. The pattern indicates a strong prior for optimizing
lane keeping at a constant velocity. In the lane follow situation, con-
stant linear weights perform best, which produce persistent behavior.
The reward function’s temporal adaptation has been out of the scope
of this paper. The next section introduces an approach to reduce the
variance by considering a sequence of planning cycles.

The proposed approach is practical and scales well since it does
not require manual annotations to predict situation-dependent reward
functions. Furthermore, the data generation for offline learning can
be automated to train on large datasets. This study only uses fifteen
minutes of driving demonstrations across scenarios, showing that
reward prediction for static environments, though with complex in-
frastructure, can be learned without necessarily having large datasets.
However, due to MPC cycles in playback, we generate for fifteen min-
utes of driving approximately 5000 planning cycles, each having a set
of 5000 trajectories.

38 papers and contributions

In this study, we did not take moving objects into account. The
approach is not limited to static environments but requires motion
predictions of other objects to consider spatio-temporal proximity
features in the reward function. Consequently, the dynamic objects
increase the situational diversity and make the situation encoding
tasks more complex, and therefore, training requires larger datasets.

3.3.4 Contributions

I formulated the approach and learning algorithm with input from
Vinit James. Vinit James extended the training framework to experi-
ment with different neural network architectures during his master’s
thesis, which I supervised. I extended the data recording and inference
interfaces for the planning framework. I designed the experiments and
recorded real-world driving data with the help of Simon Großjohann.
Xing Li implemented the reference models with my help. I wrote the
paper with the help of Vinit James, Silviu Homoceanu, and Stefan
Roth.

3.4 transitioning context-dependent reward functions 39

3.4 transitioning context-dependent reward functions

This section summarizes the paper:

Planning on the Fast Lane: Learning to Interact using Attention
Mechanisms in Inverse Reinforcement Learning
Sascha Rosbach, Xing Li, Simon Großjohann, Silviu Homo-
ceanu, and Stefan Roth

Published in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Las Vegas, USA, October 2020.

3.4.1 Motivation

In MPC, the agent plans for a specified planning horizon and period-
ically replans to address environmental changes. Ideally, the policy
stays optimal for succeeding cycles, resulting in smooth and persistent
behavior over an extended planning horizon of multiple planning
cycles. By this means, the agent pursues and optimizes its long-term
goals. In practice, planned behaviors quickly become sub-optimal,
especially in dynamic driving situations involving multiple moving
vehicles. To drive optimally, the agent has to know when to switch the
driving task and when to be persistent to optimize long-term goals.

This paper utilizes the previous work’s deep IRL encoding and the
situation-dependent reward function prediction methodology. As an
extension, this work refines the network’s feature extraction capabili-
ties and enables capturing the driving task dynamics, which is only
observable over a sequence of planning cycles. We test the architecture
in dynamic driving situations, where the agent drives close to other
objects and interacts over different sequence lengths. In contrast to
our previous work, the chosen test setting is more difficult. The agent
must control the complete driving task by adapting its reward func-
tions. Here, without collision checking in place to select collision-free
policies; instead, we always execute the optimal policy.

Two challenges arise on the feature extraction and prediction level.
First, the sampled policy set includes non-human-like action sequences
and feature vectors that add noise when input to the neural network,
especially when using models with long input sequences. Second,
situation-dependent reward function predictions have to be persistent
and stable depending on the observable driving context. In practice,
it is difficult to tell when a new driving situation arises. Situations
and corresponding driving tasks blend into each other. A transition
dynamic governs the translation from the context to the task sequence
and regulates whether the agent must respond quickly or persist.

Previous work in machine translation and action recognition bene-
fited from incorporating attention as a mechanism built into the DNN

architecture (Bahdanau et al., 2015). We utilize attention to filter rele-
vant information from the input space and produce a low-dimensional

40 papers and contributions

context vector used in a temporal attention network to predict reward
function transitions.

3.4.2 Results

We conduct our experiments on an oval course with multiple lanes
and track exits. Driving on this track requires the evaluation of routing
involving lane-based target proximity costs. The agent’s target velocity
is set to exceed the velocities of the other vehicles to enforce an
aggressive driving style. Many vehicles close to the agent open and
close small time gaps, which lead to interaction by following, passing,
and merging.

We compare the convergence during training, which measures the
context encoding capabilities of our proposed DNN architecture against
baseline approaches using EVD. In these complex situations, all deep
IRL approaches converge to a similar EVD, whereas linear IRL does
not attain a low EVD. We perform inference on a sequential validation
dataset and calculate the ED over the training epochs.

Additionally, the trained models are evaluated on a sequential
test dataset to compare the sequential prediction performance by
measuring the OPD. The temporal attention network performs best on
the test and controls the complete driving task in closed-loop inference
in the presence of other vehicles. The temporal attention mechanism
activates reward functions and generates a mixture over the input
reward functions sequence. In contrast to our baseline approaches that
always take the mean over the history size, temporal attention can
control the variance of the predicted reward function.

3.4.3 Discussion

We choose to separate the architecture into two attention mechanisms.
Both are implemented to perform a specific task and provide introspec-
tion via attention activation. The policy attention mechanism operates
on a context encoding level by masking out misleading features and
indicating relevant policies. The temporal attention mechanism oper-
ates on reward functions and has the task of transitioning between
them based on the sequence of context vectors.

In contrast to a baseline method, the policy attention network has
eight times fewer parameters while having similar context encoding
capacities and prediction performance on the sequential validation
dataset. Our policy attention uses a single branch scaled dot product
to activate the context vector. The encoding capacities could be en-
hanced in the future by utilizing multi-head attention similar to the
Transformer attention mechanism (Vaswani et al., 2017). Ideas from
the Transformer language model can further be used to improve the
position-based encoding.

3.4 transitioning context-dependent reward functions 41

Our temporal attention network uses a two-layered RNN network to
model the temporal dependency of the planning cycles. The overarch-
ing concept aligns with EM-IRL methodologies, which infer a mixture
of reward functions. Here, the mixture is generated by the temporal
attention network in the form of an attention weight vector. This mech-
anism enables controlling the responsiveness of the mapped reward
functions for future planning cycles. The highest responsiveness is
achieved if the attention is on the last context vector.

We used a semi-supervised attention loss in addition to the maxi-
mum entropy gradient, which did not improve nor decrease the results
significantly in terms of EVD or ED. However, it allows a principled
approach for using self-generated annotations, e. g., the distance of a
policy to the demonstration combined with the IRL gradient formula-
tion.

3.4.4 Contributions

I formulated the approach and learning algorithm with help from Xing
Li. I refactored the training framework to process sequential data, im-
plemented the data recording and integration with the planning frame-
work. Xing Li extended the training framework and experimented
with neural network architectures to perform sequential prediction in
his master’s thesis, which I supervised. Xing Li researched attention
mechanisms focusing on the connection to behavior cloning resem-
bling policy attention. In discussion, we came up with the idea of
splitting the attention mechanisms. I designed the experiments and
modified the simulation environment with the help of Simon Großjo-
hann. I wrote the paper with help from Xing Li, Silviu Homoceanu,
and Stefan Roth.

42 papers and contributions

3.5 unifying prediction and planning

This section summarizes the paper:

Pixel State Value Network for Combined Prediction and Plan-
ning in Interactive Environments
Sascha Rosbach, Stefan Leupold, Simon Großjohann, and
Stefan Roth

Available as arXiv Preprint, arXiv:2310.07706 [cs.RO], October 2023.

3.5.1 Motivation

The traditional modular automated driving architecture considered
until now uses a sequential processing chain consisting of perception,
prediction, planning, and control. In this architecture, the planning
and prediction are often designed separately, meaning that the pre-
diction module lacks awareness of the downstream planning task.
Neglecting the interdependency between planning and prediction sim-
plifies the architecture yet may result in conservative driving behavior.
The defensiveness is driven by predictions that shape the optimization
features of the planner, ensuring a safe distance is kept from these pre-
dictions. However, the actions of the AV can influence the behavior of
SVs and provide an opportunity to implement assertive behavior. This
work aims to unify prediction and planning to allow for interactive
and assertive driving.

State-of-the-art deep learning approaches in multi-agent prediction
aim to predict the joint future of all traffic participants. The methodolo-
gies provide a planner with probabilistic and multimodal predictions
of SVs. However, it is difficult to implement the desired driving style
based on uncertain motion predictions. This work aims to simplify
the architecture by implicitly representing the dynamics of the en-
vironment. In contrast to related work, the proposed deep learning
methodology predicts time-dependent image sequences encoding joint
SV and AV behavior that the planner can directly use to select a driv-
ing policy. The deep learning training is posed as a general-purpose
image-to-image prediction task using BEV images of the environment
as input and two time-dependent image sequences as output. The
model predictive planner (MPP) of the previous work is used to render
the target images for offline training using a configuration that densely
samples feasible kinematics. The first sequence represents value es-
timates for the AV implicitly encoding kinematic reachability, object
dynamics, safety, and driving comfort. The second sequence contains
future pixel visitations of other agents to improve the implicit under-
standing of the environment dynamics in the value prediction. The
experiments use the pixel state values as a reward shaping function
for the planning algorithm to select a policy from a sampled set.

3.5 unifying prediction and planning 43

3.5.2 Results

The training dataset was compiled from real-world scenarios recorded
on a track in Ingolstadt, Germany. These scenarios encompass arte-
rial and urban roads featuring multi-lane traffic, intersections, and
roundabouts. A total of 34 drivers participated in the data collection
campaign, during which 24 hours of driving data were recorded. The
drivers were categorized into three groups based on their level of driv-
ing experience: chauffeurs, experienced, and novice. The test dataset
was generated through simulation on a test track in Wolfsburg, Ger-
many, reflecting similar road types as those recorded in the real-world
scenarios.

The dataset for offline training was generated by replaying real-
world situations and rendering both input and output images. These
images, with a resolution of one megapixel, provide dense discrim-
inative feedback on the AV’s reachable positions from a BEV, encom-
passing both spatial and temporal dimensions. While replaying the
situation, the AV’s starting position is adjusted to augment the dataset.
For instance, the AV is moved closer to preceding vehicles, slightly
offset from the lane center, or its starting direction is altered to en-
force recovery behavior from suboptimal states. This paper provides
qualitative and quantitative assessments of the pixel state value net-
work (PSVN). The qualitative examples demonstrate that the DNN

successfully learns dense sampling and policy evaluation from the
MPP algorithm. The quantitative evaluation compares the behavior of
the learned reward shaping function to a reward function utilizing
features of a prediction module. The evaluation examines both behav-
iors using OTG on the test dataset, utilizing a confusion matrix for
analysis. It reveals that the learned behavior does not exhibit reckless
driving, having learned where objects are moving to avoid potential
collisions. Compared to the reference reward function, the learned
behavior is more assertive, opting for smaller time gaps and making
more progress along the route.

3.5.3 Discussion

Predicting image sequences instead of trajectories facilitates the rep-
resentation of arbitrary distributions in pixel state space, effectively
capturing the interaction among multiple agents. This representation,
focused on the downstream planning task, leverages high-resolution
images to depict desired behavior and identify pixels to avoid due
to collision or reachability constraints. This formulation enables the
use of general-purpose image-to-image translation approaches, elim-
inating the need for specialized designs like graph neural networks
to model joint behavior interaction. Additionally, rendering image
sequences as channels of a single output image allows for the fusion of

44 papers and contributions

multiple prediction tasks, such as predicting explicit pixel visitations
of other agents and pixel state values.

While utilizing images offers high-resolution spatial discrimination,
the approach currently employs only six temporal layers in each se-
quence. As a result, it does not discriminate actions as effectively as
the feature path integral of the reward function within the planning
algorithm. An objective of future work could be to increment the
number of temporal layers to 30 so that the time intervals of each layer
align with the vehicle model integration time, which is currently set
to 0.2 seconds. The behavior selected entirely by the reward shaping
function lacks the consistency seen in the model-based reward func-
tion, indicating a deficiency in jerk awareness. However, merging both
the reward shaping term and state-action rewards appears promising.

Currently, the MPP algorithm employs a single linear reward func-
tion to render the target image sequences. The situation-dependent
reward function methodologies discussed in the previous section can
be applied during rendering to enhance situation-dependent discrimi-
nation further. The reward shaping term can also be viewed as a new
path integral feature for utilization in deep path integral IRL. Combin-
ing the reward shaping term and the path integral reward function
would necessitate learning the weights from human demonstration.

The rendering process employs a configuration of the MPP that
densely samples high-resolution actions and utilizes a larger state-
action space than previous approaches, as this planner configuration is
not required to run on the target vehicle platform at deployment. While
runtime-optimized planners may focus on refining solutions around
previous exploration cycles of the receding horizon, this approach
enables leveraging the learned exploration that can simultaneously
evaluate multiple adjacent lanes in its rendering configuration. Us-
ing the PSVN as an admissible heuristic could reduce the hardware
demands for vehicle deployment and accelerate the search.

Certain simplifications were accepted in the experiments. The tra-
jectories of the SVs were derived from the prediction module of the
conventional processing chain, not from real-world recordings. Con-
sequently, the explicit future pixel visitations in the target sequence
in the training dataset embodied multimodality, which would not be
present if real-world trajectories were utilized. Future work aims to
utilize ground-truth trajectories for the training dataset and further
implement the interfaces to open-source benchmark datasets.

The exploratory starts used in the training dataset augmentations
are a simple way to diversify the behavior and render state values
that show responses to suboptimal initial states such as too close
proximities to preceding vehicles. However, altering the initial position
of the ego could introduce non-realistic scenarios that fail to mirror
accurate interactions. A promising extension to this work would be to
explore the domain of combined paired and unpaired image-to-image

3.5 unifying prediction and planning 45

translation (Tripathy et al., 2019), thereby relaxing the constraint that
presumes proper interaction can always be rendered in target images.

3.5.4 Contributions

I formulated the deep learning approach and implemented the training
framework. I implemented the extension to the MPP to render the
inputs and outputs of the image-to-image translation task. Simon
Großjohann helped in discussions and provided inputs to speedup
the GPU kernels. Stefan M. Leupold encouraged to focus on image
sequences and experiment with interactive situations. He helped me
to perform evaluations against ground-truth predictions. I wrote the
paper with Stefan M. Leupold and help from Stefan Roth.

4
D I S C U S S I O N

Contents

4.1 Summary of Contributions 47

4.2 Potential Limitations . 49

4.3 Future Work . 50

4.4 Conclusion . 52

This thesis introduces a hybrid approach that synergistically fuses
the advantages of model predictive planning and deep learning while
concurrently mitigating the inherent limitations of each standalone
approach. Specifically, model predictive planning contributes to re-
liability and interpretability by evaluating geometric and kinematic
models. Additionally, deep learning facilitates continuous improve-
ment of prediction and planning by learning from human driving
demonstrations and simulated experiences. This thesis takes five in-
cremental steps toward scalability in automated driving. The initial
step examines a simplistic hybrid approach combining end-to-end
perception and model-based control in the direct perception paradigm.
The next step automates the tedious and costly work of reward func-
tion tuning. The subsequent step generalizes model predictive plan-
ning by predicting situation-dependent reward functions using deep
learning. The subsequent refinement of the neural network adapts
reward functions situation-dependently across planning cycles using
attention mechanisms to produce consistent driving behaviors. The
unifying step combines prediction and planning by directly learning
the expected cumulative rewards to evaluate trajectories in interactive
environments, making explicit object motion prediction optional.

4.1 summary of contributions

Section 3.1 examines the direct perception paradigm, which resides
between the end-to-end and modular approaches, embodying a sim-
plistic hybrid methodology. Two multi-task DNNs are employed, one
for lateral control to predict the curvature and distance to the lane
center, and another for longitudinal control, classifying the presence

47

48 discussion

of a preceding vehicle and, if present, determining its distance. The
study describes implementation details and focuses on the real-world
application. Given its inability to scale for complex driving scenarios,
this concept was set aside in favor of a modular architecture utilizing
model predictive planning.

Section 3.2 proposes a path integral maximum entropy IRL approach
that automatically finds a tuned reward function for general-purpose
planning algorithms using exhaustive search (Rosbach et al., 2019).
The approach utilizes human driving demonstrations to train offline
without running the planning algorithm in the inner loop of reward
learning. Path integrals of the planner allow the IRL approach to be
tractable for high-dimensional state spaces. The experiments show
that training yields situation-dependent reward functions for a priori-
defined situations. These reward functions enhance the driving style,
surpassing the level achieved by expert-tuned reward functions.

Section 3.3 proposes a DNN to predict situation-dependent reward
functions for the planner (Rosbach et al., 2020a). The deep learning
approach encodes the driving situation by inputting the planner’s
sampled driving policies. These include path integral features and
observations of the actions that produced them. In the experiments, we
compare reward function predictions by our proposed neural network
against multiple linear and clustered reward functions. Evaluations
on complex urban road networks show that the predictions perform
on the level of multiple linear reward functions tuned with prior
knowledge of the situation.

Section 3.4 proposes a refined deep learning architecture to inter-
act with moving vehicles and produce persistent decisions over a
sequence of planning cycles (Rosbach et al., 2020b). The DNN archi-
tecture embeds information of the driving context from a sequence
of planning cycles and predicts smooth reward transitions using two
attention mechanisms: First, a policy attention mechanism that masks
out non-expert-like behavior in policy space and generates context
vectors. Second, a temporal attention mechanism observes sequential
patterns from the context vector sequence and predicts reward func-
tions. The experiments show that the DNN architectures with attention
mechanisms outperform our baseline deep-learning approaches while
having fewer learnable parameters. The approach, while having the
autonomy to select any trajectory within the explored set, successfully
assigns the highest value to trajectories that avoid collisions, even in
the presence of moving vehicles. This selection demonstrates its inher-
ent capability to interact safely without explicit restrictive model-based
supervision on the selection.

Section 3.5 proposes a deep learning approach that predicts PSVs for
the MPP to evaluate trajectories. The PSVs implicitly encode reachabil-
ity, driving comfort, object dynamics, and safety. The network takes
BEV images as input and predicts the PSVs in an image sequence. In

4.2 potential limitations 49

the experiments, the implicit object handling is contrasted with the
modular prediction and planning architecture. The PSVN can implic-
itly predict the future motion of objects and provides state values for
diverse road types, including roundabouts, thus eliminating the need
for an external prediction module.

The hybrid decision-making approaches are still in the early stages
of development. The next section covers the potential limitations of
the approaches, which will be revisited in proposals for future work
in Section 4.3.

4.2 potential limitations

The modular architecture has strengths and weaknesses. Since the
planning module is located at the end of the processing chain, as
displayed in Figure 1.1, the planner must receive accurate informa-
tion about the perceived static and dynamic environment. In contrast
to end-to-end approaches, the deep IRL approaches rely on explicit
representations for planning and take as input sampled driving poli-
cies, which aggregate all information from the prior modules. Hence,
during inference, the errors in perception, localization, and prediction
may directly propagate. Also, our approach relies on an accurate esti-
mate of the ego-motion state to perform initialization during playback,
which is required to sample actions from this state. Errors in the initial
state estimate could lead to skewed demonstrations.

Path integrals allow the deep IRL approach to operate in a high-
dimensional state-action space. These integrals describe the obser-
vations in the static and dynamic environment for each policy. The
feature extraction in the DNN is performed on the sampled policy set.
There is no direct spatial relationship between policies on the input
level. Therefore, the networks utilize one-dimensional convolutions to
encode each policy’s latent features. We expect performance improve-
ments if higher dimensional convolutions are applied to encode the
spatial and temporal dimensions of the workspace.

The path integral state action feature vectors are mapped into re-
wards using a linear reward function for all explored states. Each state
has unique features but utilizes the same reward function weights
during a planning cycle. Thus, the reward function complexity is
directly linked to the expressiveness of the underlying features to
acquire a unique solution. A basic set of features describing the AV’s
actions and the interaction with infrastructure and moving objects
can be defined and provide interpretability. However, manually defin-
ing nuanced situation-dependent features is difficult. Our approach
aims to increase the complexity by parameterizing a large set of basic
features. Learning features and temporal decay could also increase
representational complexity and address this limitation.

50 discussion

The PSVN is designed to address certain limitations inherent in the
path integral deep IRL approaches. Unlike previous methods that were
constrained to extract features using one-dimensional convolutions
on features, actions, and states of trajectories, this approach can learn
spatial patterns from high-resolution images. The PSVN offers a novel
stream of information to the planning algorithm, implicitly encoding
the environmental dynamics. This can complement explicit motion
predictions to mitigate error propagation from the prediction module.

Unlike the work by Zeng et al. (2019) that uses max-margin loss
to train a cost volume using human demonstrations directly, this
work is trained indirectly in two steps. Instead, this approach relies
on a feature-based reward function that is defined and tuned before
rendering the target images. Retraining with different demonstrations
would result in a different reward function and requires re-rendering.
Directly optimizing with max-margin loss is more intuitive but only
provides a sparse training signal.

4.3 future work

In recent years, advances have been made in self-supervised represen-
tation learning (Gui et al., 2024; Jing and Tian, 2021). In contrast to
supervised learning, self-supervised learning does not rely on labeling
and instead utilizes naturally occurring supervision of data. This su-
pervision can be used for representation learning. The architecture can
be fine-tuned in a subsequent training step to perform the target task.
This can, for example, lead to state-of-the-art results on a set of com-
puter vision benchmark tasks (He et al., 2022; Oquab et al., 2024). This
thesis takes an initial step in that direction by using a distance metric
to the human demonstration as a pseudo label for training the policy
attention mechanism. Novel DNN architectures and self-supervised
learning techniques can be derived by transforming other geometrical
and temporal properties of the state space and corresponding feature
space. Combined with different input modalities, this can further im-
prove the network’s policy and temporal context encoding capabilities.
Pre-trained DNN from the perception stack could also provide inputs
to the reward function prediction network.

The proposed IRL architecture in this thesis relies on RNN layers to
take into account the sequential context switches. In the preceding
years, the focus has shifted away from RNNs for sequence understand-
ing to Transformer architectures (Vaswani et al., 2017). Transformer
variants have established themselves as the leading architecture in
the fields of computer vision and natural language processing (Li
et al., 2023; Lin et al., 2022). It is a promising direction of research
to derive transformer-based architectures for stable reward function
adaptation. Instead of modeling the reward function transitions using
a temporal reward function attention vector it seems promising to de-

4.3 future work 51

rive an approach using temporal regularization (Thodoroff et al., 2018)
for situation-dependent reward prediction using a transformer-based
architecture.

Planning using a sampling algorithm that evaluates high-resolution
actions can be computationally expensive. Especially if multiple pro-
cesses share the same compute resources, it can be desirable to bias the
sampling and thereby reduce the execution time and computational
cost. In future work, situation-dependent reward function predictions
could be utilized to learn a driving policy using RL algorithms. This
driving policy could bias the state-dependent action distributions
during sampling.

This thesis does not further investigate the bootstrap capabilities of
utilizing the reward shaping function based on PSVN as a new feature
for the path integral IRL approaches, which could then be utilized to
render enhanced target images for PSVN through a refined reward
function. This, in turn, could lead to a better reward shaping function.
Through this mechanism, the pixel state value could also be further
refined by human demonstrations.

Currently, this work employs two inference architectures: the deep
IRL network and PSVN. In the future, these architectures could be
merged into a single network. Initially, deep IRL could enhance the
target image rendering of PSVN. Once PSVN is trained, this network
can be the backbone for the reward function parameter prediction.
It carries the advantage of learning about environmental dynamics
and operating independently from external predictions. An added
advantage is that the BEV inputs to the network are intuitively under-
standable, unlike the policy set used as input in other architectures.

The BEV representation can also be leveraged for infrastructure-
based augmentations, for instance, dropping out the lane center or
boundaries to enhance the network’s robustness against errors propa-
gated from the perception system. A promising future direction could
be to directly utilize latent features from BEV perception as network
input. This approach might alleviate the reliance on HD maps during
inference while still employing HD maps for target image generation.
Ultimately, image-to-image translation aims to understand the driving
situation and yield similar outputs as if all relevant information from
HD maps were accessible.

As of now the PSVN performs image-to-image translation using a
conditional GAN approach by Isola et al. (2017). In recent years, the
approaches for image generation have shifted from GANs to diffusion
models, which have shown breakthrough performance (Dhariwal and
Nichol, 2021). Diffusion models are a class of deep generative models
that iteratively add noise to data in a forward process and then learn
to remove noise to restore the data (Sohl-Dickstein et al., 2015). Yang
et al. (2024) provide a survey of diffusion models and summarize
the benefits and limitations in contrast to GANs. While training GANs

52 discussion

is often instable and difficult, they hold the advantage in terms of
inference speed. This becomes particularly noticeable when compared
to most diffusion methodologies, which typically rely on multiple
time-consuming denoising steps. Diffusion models are a promising
future direction for PSVN, as their stability would facilitate training at
scale. However, for the vehicle deployment in closed-loop, the model
must be capable of inferring at a rate significantly faster than five hertz,
especially when considering planning cycles at this frequency. Parmar
et al. (2024) present an approach for image-to-image translation that
combines both methodologies by fine-tuning a one-step diffusion
model using adversarial learning methods. This approach allows
utilizing pre-trained one-step diffusion models (Sauer et al., 2023) and
performs efficient inference during deployment, and therefore could
be considered as an underlying methodology for the PSVN.

A promising next step could be to reformulate the prediction task
from image-to-image translation to image-to-video generation. For
now the PSVN uses a modified U-Net (Ronneberger et al., 2015) archi-
tecture that produces a single output image. In this setup, the channel
dimension is used to represent time. Bar-Tal et al. (2024) propose a
diffusion model for video generation, utilizing a space-time U-Net
architecture. This architecture allows the authors to generate videos at
full frame rates with coherent motion. Fine-tuning such pre-trained
models for PSV generation hold the potential to significantly improve
the temporal consistency of the predictions.

Incorporating new information sources within the modular architec-
ture enhances system dependability by facilitating hybrid operational
modes. The PSVN can be deployed alongside explicit collision checks
using the external prediction module. Leveraging the external predic-
tion module for shorter prediction horizons can be a viable strategy.
When deep IRL selects inappropriate behavior, expert-tuned parame-
ters can be a backup for driving policy selection, ensuring a safer and
more reliable operation.

4.4 conclusion

The scalability of automated driving systems remains a major con-
cern on the way toward full autonomy. Fully self-driving vehicles
are tasked with generalizing in unforeseen driving situations while
aligning with passengers’ expectations. This thesis combines model
predictive planning and deep learning in a hybrid approach, harness-
ing the advantages of reliability and interpretability while continu-
ously refining prediction and planning through feedback from hu-
man driving demonstrations and simulated experiences to generalize
across diverse situations. This thesis addresses prevailing challenges
in RL and IRL related to search in large high-dimensional state-action
spaces by formulating efficient offline learning methodologies using

4.4 conclusion 53

model predictive planning. The approaches concentrate on predict-
ing situation-dependent reward function weights and PSVs for a MPP

to address challenging interactive situations in urban driving envi-
ronments. Overall, the results demonstrate important steps towards
the scalability of automated driving by learning, which is difficult to
model.

A
A P P E N D I X

a.1 towards hybrid automated driving : from direct imi-
tation learning to affordance learning

Sascha Rosbach, Antonia Breuer, Simon Barthel, Frederik Kanning,
and Silviu Homoceanu
AAET-Automatisiertes und Vernetztes Fahren, Braunschweig, Germany,
February 2019.

Abstract

Current state-of-the-art autonomous driving systems adopt the me-
diated perception approach (Chen et al., 2015), in which the driving
decision is made based on an understanding of the scene, derived
from the current and past sensor inputs. This scene interpretation
includes the detection and recognition of surrounding objects, such as
cars and pedestrians, as well as the location of the ego-vehicle in the
scene with reference to a map.

Next to the mediated perception approach, so called end-to-end
automated driving has been proposed within recent years (Bojarski
et al., 2016). These purely data driven automated driving approaches
directly imitate human driving behavior with the help of neural net-
works. The neural networks aim to implicitly learn relevant features
which are required to predict vehicle control outputs, such as the
steering wheel angle and acceleration.

In this work, we analyze the affordance learning approach presented
by Chen et al. (2015). Affordance learning can be seen as a simplistic
hybrid approach, adopting features of both the mediated perception as
well as the end-to-end driving approaches. The end-to-end perception
system estimates the distance to the lane center, the curvature of the
lane, and the distance to the preceding vehicle. Based on this simplistic
environmental representation, a classical model-based controller is
used to compute lateral and longitudinal vehicle controls

Our contribution is twofold. First, we propose a framework for be-
havior testing of lateral control on real-world image data by utilization
of homographic transformations. The introduced playback simulator
for behavior testing allows a fast evaluation of the system behavior

55

56 appendix

once the deep learning models achieved convergence within train-
ing. A failure to perform dedicated playback scenarios disqualifies
a model from actual real-world testing in the vehicle. We observed
that training convergence, validation and testing on labeled datasets
are not a satisfactory indicator for model selection. We propose to
focus on the time to failure within the playback simulators which
enables an empirical analysis of the lateral vehicle control stability. As
a result, unlabeled data can be used to assess the performance of the
affordance estimators with particular emphasis on the influence of
compounding prediction errors. Second, we introduce a point-cloud
feature representation that enables convolutional neural networks to
distinguish between static and dynamic objects without the need of
recurrent architectures.

Copyright notice

© ITS mobility e.V. - Braunschweig, Germany. Reprinted, with per-
mission, from Andreas Redeker, Towards hybrid automated driv-
ing: From direct imitation learning to affordance learning, AAET-
Automatisiertes und vernetztes Fahren: Beiträge zum gleichnamigen
20. Braunschweiger Symposium, 2019.

Towards Hybrid Automated Driving: From
Direct Imitation Learning to Affordance

Learning

Sascha Rosbach1, Antonia Breuer 1, Simon Barthel2,
Frederik Kanning2, Silviu Homoceanu1

1Volkswagen AG, {sascha.rosbach, antonia.breuer,
silviu.homoceanu}@volkswagen.de

2Ameno GmbH, {simon.barthel, frederik.kanning}@ameno.de

Abstract

Current state-of-the-art autonomous driving systems adopt the mediated
perception approach [1], in which the driving decision is made based on
an understanding of the scene, derived from the current and past sensor
inputs. This scene interpretation includes the detection and recognition of
surrounding objects, such as cars and pedestrians, as well as the location
of the ego-vehicle in the scene with reference to a map.
Next to the mediated perception approach, so called end-to-end automated
driving has been proposed within recent years [2]. These purely data driven
automated driving approaches directly imitate human driving behavior with
the help of neural networks. The neural networks aim to implicitly learn
relevant features which are required to predict vehicle control outputs, such
as the steering wheel angle and acceleration.
In this work, we analyze the affordance learning approach presented by Chen
et al. [1]. Affordance learning can be seen as a simplistic hybrid approach,
adopting features of both the mediated perception as well as the end-to-
end driving approaches. The end-to-end perception system estimates the
distance to the lane center, the curvature of the lane, and the distance to the
preceding vehicle. Based on this simplistic environmental representation, a
classical model-based controller is used to compute lateral and longitudinal
vehicle controls.
Our contribution is twofold. First, we propose a framework for behavior tes-
ting of lateral control on real-world image data by utilization of homographic

transformations. The introduced playback simulator for behavior testing
allows a fast evaluation of the system behavior once the deep learning mo-
dels achieved convergence within training. A failure to perform dedicated
playback scenarios disqualifies a model from actual real-world testing in the
vehicle. We observed that training convergence, validation and testing on
labeled datasets are not a satisfactory indicator for model selection. We
propose to focus on the time to failure within the playback simulators which
enables an empirical analysis of the lateral vehicle control stability. As a
result, unlabeled data can be used to assess the performance of the affor-
dance estimators with particular emphasis on the influence of compounding
prediction errors. Second, we introduce a point-cloud feature representation
that enables convolutional neural networks to distinguish between static
and dynamic objects without the need of recurrent architectures.

1 Introduction

Advanced longitudinal cruise control and lateral steering pilots have great
potential of automating manual highway drives and thereby decreasing
traffic accidents caused by the lack of drivers attention. We aim for a
lateral and longitudinal vehicle control system at SAE Level 2 [3] with a
modular and low-complexity system design. Specifically, we require system
introspection for humans while using deep learning to be able to handle
drastically changing road conditions.
Within the 90s, behavior cloning approaches based on end-to-end neural
networks were analyzed within the ALVINN (Autonomous Land Vehicle In a
Neural Network) project. The neural vision enabled the ALVINN prototype
vehicle to drive, with individually trained neural networks, in a variety of
situations such as single-lane dirt roads, single-lane paved roads and two lane
highways [4]. By now, one is able to clone the behavior of human driving on
very diverse roads by training a single deep neural network [1]. Although, the
trainability and simplicity of end-to-end approaches is astonishing, behavior
cloning strongly depends on the training dataset behavior. As such, the
focus of engineering shifts towards dataset diversification in order to reduce
biases of arbitrary image features, picked up by the network. In addition,
behavior cloning of expert human drivers lacks recovering behavior, which
is necessary once false vehicle control predictions bring the system off the
optimal path. As a consequence, input space transformations are often
used to directly influence the system behavior. Compared to end-to-end

behavior cloning, we reduce the learning task to a state estimation and use
model-based feedback control to stabilize the steering on the lane center.
The strict separation of behavior and state estimation allows the dynamics
of the system to be independent of the driving demonstrations, while being
interpretable by humans. For lateral vehicle control, we estimate a distance-
based target vector from image data and use feed-back control to steer
the vehicle back to the center lane. Our longitudinal system regresses the
distance towards the preceding vehicle and controls the speed-dependent
distance. In this work, we extend the hybrid solution, called affordance
learning, first introduced by Chen et al. [1]. Our evaluation based on a
perspective transformation allows testing on unlabeled data and is our deep
learning model selection routine for real-world vehicle testing.
This publication is structured as follows: In Section 2 we discuss work
related to our approach. In the following Sections 3.1 and 3.3, the lateral
and longitudinal controller are introduced. Here, we give a brief system
overview followed by an introspection into our approach. The conducted
experiments, the labeling procedure, and the evaluation are discussed in
Section 4. At the end of this work we give an overview and an outlook into
possible future work in Section 5.

2 Related Work

Pomerleau et al. [5] studied end-to-end neural network driving functions for
lateral vehicle control. Their experiments were conducted in the NAVLAB
autonomous navigation test vehicle in the context of the ALVINN (Autono-
mous Land Vehicle In a Neural Network) project. The end-to-end approach
offers an intuitive approach for sensor fusion of video data and laser range
finders. Further, the neural network generates salient feature representa-
tions for specific driving conditions. Similar driving performance can be
achieved by traditional image and pattern recognition techniques. Here,
a priori appearance models are exploited, but they often fail to generalize
to drastically changing road appearances. Additionally, extensive manual
tuning must be performed. The approach itself is very data hungry and
bound to a consistent vehicle sensor setup during data collection. The team
developed a simulator for road data generation and trained their network
partially on real-world and simulated images. This enhanced training-set
diversity and reduced the risk of catastrophic forgetting. They emphasize

that driving demonstrations need to include recovering behavior of false
driving predictions.
Pomerleau et al. [6] continued research on the RALPH (Rapidly Adapting
Lateral Position Handler). They applied a connectivist approach for the
lateral offset relative to the lane center. Learned controllers such as RAPLH
have several shortcomings, such as the need to be retrained to new road
topologies. Secondly, similar to their previous work, this system requires
driver demonstrations for optimal driving and recovering behavior.
Jochem et al. [7] extended the capabilities of the NAVLAB vehicle by
tactical driving maneuvers such as lane changes and intersection navigation.
They transform the image to increase the data diversity and address the
recovery problems of direct imitation approaches mentioned above. Domain
specific neural networks are trained for different driving situations, such as
two-lane and one-lane driving. Which of the networks is used is based on a
rule-based evaluation of the current driving situation. In this approach, the
modelling efforts of the mediated perception approach are traded against
heavy data engineering.
With their DAVE-2 system, Nvidia [2] trains a lateral controller in an
end-to-end fashion with a single neural network. Although their system
does not require training of multiple domain specific networks, it heavily
relies on data augmentation. They try to automate the data augmentation
process by using three cameras mounted behind the wind shield. During
training, they use images of each of the cameras and augment the applied
steering wheel angle depending on the camera’s placement behind the wind
shield.
Toromanoff et al. [8] present a simulator based on perspective transfor-
mations that provides metrics for lateral end-to-end evaluation. Once the
neural net has beaten the simulator based on real-world videos, the final
model is capable of driving more than 99% of the situations on real roads
autonomously.
Chen et al. [1] decomposed the driving tasks into machine learning based
affordance prediction and learned control which can be seen as a simplistic
hybrid approach. The end-to-end perception system estimates the distance
to the lane center, the curvature of the lane, and the distance to the
preceding vehicle. Based on this simplistic environmental representation, a
classical model-based controller is used to compute lateral and longitudinal
vehicle controls.

This work expands the work of Chen et al. by describing the implementation
and labeling process in detail. We analyze the performance of our imple-
mentation directly in the vehicle, introduce a behavior testing framework
and add a critical evaluation of the more theoretic presentation done by
Chen et al..

3 System Architecture

The system architecture proposed in the following section focuses on the
prediction of driving affordance and vehicle state instead of the control
behavior. Simplifying the neural network in this way, allows us to strongly
reduce network complexity, and introduces a higher degree of introspection.
The target affordance signals and states of our networks itself support
an intuitive evaluation based on standard machine learning metrics. The
vehicle states predicted by our network are subsequently used as an input
for a simple controller.

3.1 Lateral Control

Our desired driving style for lateral vehicle control is characterized by a close
maintenance of proximity to the lane center. Further, the control model
must be able to compute steering wheel angles based on non-sequential
data from current sensor input. However, maintaining the position on the
lane center is not trivial and requires context of the vehicles movement
vector. A standard lane correction maneuver is characterized by the following
elements:

1. Due to a slight error of the applied steering wheel angle, the vehicle
diverges from the lane center.

2. The driver steers back towards the lane center.
3. Once the vehicle vector approaches the lane center again, the driver

may steer straight.
4. Before reaching the lane center, the driver must steer to the opposite

direction in order to realign the vehicle vector with the lane, and not
overshoot the lane center.

In particular, note that single camera image in situation (1) and situation
(3) can be extremely similar - the distance to the lane center may even be
equal. Only the context that in situation (1) the vehicle vector diverges from
the lane center as opposed to situation (3) makes the decision of steering
towards the lane center valid. This circumstance makes an end-to-end
system operating on non-sequential data difficult. Therefore, we want to
predict vehicle states that can be derived from a single image and use a
sequence of those states to model vehicle behaviour.
The vehicle state that we want to predict consist of two attributes: (1)
The expected divergence from the lane center Δ𝑐 and (2) the curvature
of the road 𝜅. In an hypothetical error-free scenario with no disrupting
effects, 𝜅 alone would be sufficient to implement a perfect lane following
assistant. This is due to the fact that 𝜅 can be directly correlated to a
wheel angle 𝛼𝜅 that has to be applied in order to follow the lane. However,
due to prediction inaccuracies, input as well as output latencies, and further
physical disturbances, the vehicle will diverge from the lane center with no
chance of recovery.
In this case, we explicitly do not want to predict a modified wheel angle
with an applied recovery maneuver, but continue to predict the original
curvature 𝜅. The purpose of 𝜅 is therefore the provision of a wheel angle
baseline that follows the lane center under perfect conditions.
To recover from divergence from the lane center, we use Δ𝑐 values as input
for a simple controller that generates a recovery wheel angle. Since we do
not consider the lateral controller as the main contribution of this paper, we
will only give a coarse overview of its functionality displayed in Figure 1.
The controller 𝐶 : R𝑛 → R receives a sequence of divergences from the
lane center Δ𝑛

𝑐 which is then used to determine a vehicle vector using
least-squares method. Then, a target vector is calculated that points back
to the lane center within 𝑡𝑟 seconds (tuning parameter). The recovery wheel
angle is then calculated by the difference between vehicle angle and target
angle. Figures 1c to 1e visualize the recovery maneuver, including a counter
steering maneuver to prevent overshooting the lane center.
The final wheel angle applied to the vehicle is then received by adding up
intermediate results as described in Equation 1.

𝛼𝑓𝑖𝑛𝑎𝑙 = 𝛼𝜅 + 𝐶(Δ𝑛
𝑐) (1)

(a) Sequence of Δ𝑐s
returned by neural
network.

(b) Vehicle vector
derived from Δ𝑐

sequence.

(c) Target vector
pointing to lane
center ⇒ steer left.

(d) Vehicle aligned with target vector.
Pointing to the lane center
⇒ steer straight.

(e) Vehicle near lane center. Avoid
overshooting by steering right as
implied by target vector.

Figure 1: Example of a recovery maneuver using a sequence of Δ𝑐s.

(a) Sample image from Cam2 without
perspective transformation

(b) Image (a) shifted by 0.5m using
perspective transformation.

Figure 2: Example an applied perspective transformation using a homography.

3.2 Training details

The input for the neural network origins from two cameras Cam1 and
Cam2. Cam1 has a 60∘ non-distorted lens which is located behind the rear
mirror and it sends 20 images per second in a high resolution (1920×1280).
Cam2 has a 190∘ fisheye distortion lens which is located above the shock
absorber sending 20 images per second in lower resolution (1280×800).
Due to the high view angle and the fisheye distortion lens, the view distance
of Cam2 is very limited. Thus, vehicles that are farther away than 20m-30m
away are not perceivable. On the other hand the sight at close proximity to
the vehicle is exceptionally well. In contrast to Cam2, Cam1 has opposing
attributes: The closest point that can be observed by the camera is about
5m in front of the vehicle but objects further away are well perceivable.
For both cameras a homography 𝐻𝐶 was calibrated in order to augment
produced images with a perspective transformation. The homography is
used to map an image from pixel coordinates into vehicle coordinates where
arbitrary translations and rotations can be applied in vehicle coordinates
using an affine transformation matrix 𝐴. Afterwards, the transformed image
can be mapped back to the original pixel space using the inverse homography
𝐻−1

𝐶 .
In short, the augmentation of an image frame is applied by performing a
perspective transformation using the transformation matrix (𝐻𝐶𝐴)𝐻−1

𝐶 .
A sample of an applied perspective transformation using the described
homography can be seen in Figure 2.
Additionally, the distances to the left and right boundary of the current
lane were annotated as described in Section 4. These annotations were
used to determine the value for the distance to the lane center Δ𝑐 for the
training process. For 𝜅, note that an exact value of 𝜅 is not needed but
only a value that correlates to 𝜅. We therefore used the correlating wheel

angle 𝛼𝜅 here. In order to filter correction maneuvers performed by the
driver we take the median wheel angle within the next second.
The network shown in Figure 3 was trained with training example batches
that were randomly picked among the training set. Although the training set
already contains a diversity of distances to the lane center, for each training
example a random perspective transformation was applied shifting the lateral
offset by a uniform random number between -0.25m and +0.25m and a
yaw angle between -2.5∘ to +2.5∘. These augmentation was consistently
applied to both camera images and the applied lateral shift was added to
the Δ𝑐 value in the recording. The image size of both cameras was scaled
down to 300×150 pixel grayscale images.
The network architecture defines two independent convolutional stacks
which are flattened and concatenated. After two dense layers the network
then splits up to two individuals dense branches to allow both train targets
to store individual weights. The train targets were trained interleaved in
batches of 100 for the first target and 100 batches for the second target.
The train set consists of a rather small amount of 85,000 frames which
approximately corresponds to a drive of 70 minutes.

3.3 Longitudinal Control

The purpose of the longitudinal controller is the regulation of the vehicles
acceleration, such that it will automatically accelerate up to a certain speed
limit and decelerate when obstacles are detected. Analogous to the lateral
controlling problem, it is also not possible to determine a suitable vehicle
speed based on non-sequential data. Therefore, we employ a similar strategy
to the longitudinal control and predict a state that is perceivable in the
context of a single frame, and use a sequence of such states to predict the
driving behaviour.
In Figure 4 an overview of the longitudinal control process of our proposed
method is given. The state predicted by the neural network consists of two
target features: whether there is a vehicle in the same lane in front of the
vehicle, and the distance to this vehicle. As long as our trained network
does not detect a vehicle in front of the ego vehicle for 𝑀 consecutive
frames, we use the cruise control to define the applied speed, as pictured
on the right side of Figure 4. Otherwise we switch to distance control
mode, in which the distance to the vehicle ahead and the corresponding
relative speed determine the applied speed. Here, the distance to the front

1

30
0

CAM1

24

14
8

73

24

14
4

69

36

70
33

36

66
29 36

32
14

36
30

12
48

145
48

123

1

30
0

CAM2

24

14
8

73

24

14
4

69

36

70
33

36

66
29 36

32
14

36
30

12
48

145
48

123

1024 512 128

32 1
di
st
an
ce

la
ne

ce
nt
er

32 1
cu
rv
at
ur
e

Figure 3: Multi-target neural network architecture for lane center and curvature
prediction.

Figure 4: A overview of the longitudinal control process used in the proposed
system. If our neural network detects a vehicle in front of the ego
vehicle, the cruise control system is used. Otherwise, the distance
control procedure visualized on the left is applied based on the
detected distance to the front vehicle.

vehicle computed by the neural network is filtered by a Kalman filter and
compared to the safe distance, yielding the distance error. We also use
the Kalman filter to derive the relative speed from the change of distance.
The PD controller applies this distance error, corrected by a tolerance
interval, together with the relative speed to compute the target relative
speed. The tolerance interval makes the controlled system more robust
against prediction errors from the network, it however introduces a slow
oscillation to the control loop. In a last step, the target speed of the ego
vehicle is computed from this relative speed, the absolute speed, and the
maximum speed.
The neural network infers the distance to the vehicle ahead from a LIDAR
point cloud, and also determines whether a vehicle is present at all. We
preprocess the raw data to make it more suitable for neural network training,
and to emphasize relevant characteristics. First, we project the points along
two axes to obtain two-dimensional representations with fixed size. Then,
to enable the network to discern static and moving objects, we superimpose
projections of the three most recent frames using two different methods.
Consequently, these preprocessing steps result in a total of four matrices,
which are then fed into the first convolutional layers of the network.
To project the point cloud along one axis, we first define a fixed-size grid
with finite extent on the other axes. Then, we determine the minimum

value along the projected axis for each grid cell. Here, empty cells are
defined as positive infinity. The matrix of minimum values is the result of
the projection. Using this method, we compute a bird’s eye view of the
environment in front of the vehicle with 20m width, 100m length, and
0.2m by 0.25m cell size. We also compute another projection along the
longitudinal axis with 20m width, 1.6m height, and 0.2m by 0.2m cell
size.
To obtain the final network inputs, we superimpose the projections of
the three most recent frames with one out of two methods. The first
method simply recomputes the minimum for each cell over the three frames.
Therefore static objects, such as lane markings, will appear multiple times
and slightly shifted as long as the ego vehicle is moving. By contrast, objects
with lower speed relative to the vehicle, such as other traffic participants,
will appear less blurred. The second superimposition method aims to stitch
together a consistent view of the static environment over the last three
frames. To this end, we apply a shift and rotation to each frame to revert
the ego vehicle movement. This transformation is inferred from the ego
speed and steering angle between frames. As a consequence, static objects
appear sharp, while objects with no relative movement are blurred.
In total, we have two different superimposition results along the longitudinal
axis, and another two superimposition results of the bird’s eye view. The
neural network processes each of the resulting matrices in a separate
convolutional stack. The output layers of the convolutional stacks are
first concatenated and then connected to two separate stacks of dense
layers, where one dense stack represents the classification function (i.e.,
vehicle detection) and the other stack represents the regression function
(i.e., distance to vehicle ahead). In Figure 5, we show the full network
architecture. We train both target values of the network simultaneously,
however we do not apply the loss function simultaneously when no vehicle
is present and hence no meaningful distance can be trained.

4 Experiments

In this work, we are focused on experiments that evaluate the real-world
applicability of our system architecture. Since our lateral and longitudinal
state estimates utilize deep learning, it is important to access the perfor-
mance on real-world sensor data. The system design allows the evaluation

3
10

static longitudinal view

24
10

100

24
10

100

36
10

100

36
10

100

3
10

dynamic longitudinal view

24
10

100

24
10

100

36
10

100

36
10

100
3

99

static bird’s-eye view

24
99

399

24
99

399

36
20

399

36
4

399

3
99

dynamic bird’s-eye view

24
99

399

24
99

399

36
20

399

36
20

399

1024

512 128 128 32 32 1
ve

hicl
e

cla
ss

ifi
ca

tio
n

512 128 128 32 32 1
dist

an
ce

to

pr
ec

ed
in

g

ve
hicl

e

Figure 5: Multi-target architecture for longitudinal affordance signal prediction.
Architecture combines regression task for distance estimation to
preceding vehicle with the classification of a preceding vehicle presence
within the current lane.

Figure 6: To label the distance to the lane boundary, a visualisation of the
distance is projected into the camera image. A human labeller selected
the first dot of a ”ruler” touching the lane marking, thus defining an
estimate of the distance to the lane marking in an intuitive way. The
projection of the ruler into the image has been hard coded by hand
measurements, under the assumption that the camera position is fixed.

of the control state estimates on non-sequential data by standard machine
learning metrics. Due to architectural separation of lateral and longitudinal
control, it is valid to conduct individual testing on a modular basis. The
modular tests as well as the supervised model training require an efficient
data labelling procedure which is described in Section 4.1. In order to
accelerate the system behavior testing, and preempt unsatisfactory models
we introduce a playback simulator which serves as necessary criterion for
lateral in-vehicle control testing. The lateral playback simulator is based on
a holographic transformation which imitates closed loop behavior on raw
sensor data.

4.1 Data Collection

In the following the data collection and labeling process for both the
lateral and longitudinal control part will be explained in detail. The network
computing the lateral control, described in Section 3.1, uses the distance
to the lane center and the curvature of the lane center as target features.
For the training data, the distance to the lane center was derived from the
distance to the left lane marking, which is manually labeled. The distance
to the left lane marking has been labelled using the tool shown in Figure 6.
Here, a ruler-like measurement is projected into the camera image with
fixed distances between the ruler points. In the label tool, the labeller then
selected the first point touching a lane marking, thus estimating the distance
to the lane marking. During the data collection process only lanes with a
fixed width have been driven, allowing to infer the distance to the lane
center from the labeled distance to the left lane marking. This assumption
is only important for the training of the lateral control network. During
the inference stage, no assumptions on the properties of the driven lane
need to be made, since the network learns the distance to the lane center
based on a surround view of the vehicle. To complement the hand-labeled
training data, the future curvature of the lane can be directly derived from
the recorded yaw and steering wheel angle of the car.
As described in Section 3.3, the information whether or not someone is
in the same lane, and the distance to a possible front vehicle is used as
target features for the longitudinal control. The first task is a classification
task, which can be directly labeled using the front view image. For the
latter regression task, the target feature is the distance to the preceding
car in the driven lane. The labeling procedure is simplified by the labelling
interface shown in Figure 10. Here, the labeller selects the laser scan points,
visualized in a bird’s eye view, corresponding to the front vehicle using the
front camera image as guidance. Given the corresponding laser scan points,
the distance can be directly inferred by the average return time of the laser
reflections.

4.2 Evaluation

Our system architecture consists of a lateral and longitudinal subsystems
that can be evaluated individually by standard machine learning metrics.
The distance and curvature estimates might include noisy predictions given
drastically changing environment situations such as weather, and road

(a) front view camera image (b) laser scan points

Figure 7: To label the training data for the longitudinal control, the points
corresponding to the front vehicle were selected in a bird’s eye view
projection of the laser scan points, visualized in (b). The camera image
of the front view camera, as shown in (a), was provided to the labeler
to guide the labeling process.

Figure 8: Evaluation of the lateral model on a test recording. The plot shows
two graphs. The orange graph shows the annotated values, the blue
graph the predicted values. The y axis represents the distance to the
lane center of the manual human driving.

conditions. Therefore we propose a lateral playback simulator for semi-
closed loop testing on unlabeled image recordings.

4.2.1 Distance Metric Evaluation of Controller Inputs

The separation of our system architecture into state estimates for lateral and
longitudinal control allows modular testing of the individual components
on dedicated validation datasets.

Lateral Module Evaluation Figure 8 shows a trend of predicted and
annotated lane diversions for each frame in a test recording that was recorded
on a motorway. The test drive mostly contains annotated diversions from
the lane center between -1.0m to +1.0m which were achieved by driving
between the left and right boundary of the lane. Most errors occur before
a lane change, e.g. at frame 1200, frame 5000 or 8000. At frame 6000
there is a constant error caused by a confusing construction site marking
that was misinterpreted as the lane boundary. Also the performance from
frame 10,000 drops significantly due to missing lane markings at that
section of the street. However, even with completely missing lane markings
the tendency is still correct. We are confident that the accuracy can be
significantly improved by a loner training on more diverse training data.

Longitudinal Model Evaluation A trend of predicted and annotated
distances to the front vehicle can be seen in Figure 9. The trend shows a
front vehicle that is increasing distance until frame 1200 before coming to
a stop. The ego vehicle then reduces the distance to the front vehicle until
the front vehicle re-accelerates at frame 1600. The ego vehicle then follows

Figure 9: Evaluation of the longitudinal error based on a test recording. The
orange graph shows the annotated values, the blue graph the predicted
values. The y axis represents the distance to the vehicle in front.

the front vehicle until frame 2300 where it decides to change lanes. From
that point on, the preceding vehicle is detected resulting in the jump of
the front vehicle distance.
For a majority of time instances, the predicted distance is very close to
the annotated vehicle distance. It is however noticeable that the prediction
caps at about 85m which is not sufficient for driving velocities above 40–
50 km/h. We are confident however, that this flaw can be removed by a
careful reapplication of the training on a larger dataset.

4.2.2 Lateral System Behavior Evaluation

The metric-based evaluation requires a large dataset including labeled
distances towards the lane center. Our playback simulator does not require
any labels and can be used for extended testing of pre-selected models that
performed well on metric tests.

Playback Simulator Even though the affordance perception approach
allows an evaluation of deep learning models with traditional machine
learning metrics, the margin for failure between a metrics-based test and a
closed loop test in a real world scenarios is still large. As an intermediate
step, we therefore tested our lateral model and controller in a simulation
that manipulates real recordings based on the model/controller outputs.
To achieve this, the simulator maintains a vehicle model that is able to
calculate a trajectory based on wheel angle and velocity-pairs. In this
context, given a sequence of wheel angle and velocity-pairs, the vehicle
model returns a lateral and longitudinal offset as well as a yaw angle for
each pair.

(a) Lane following in
time step t.

(b) Recovering behavior
in time step t+1.

(c) Imminent system
failure in time step
t+5.

Figure 10: The images (a)-(c) display time steps within a playback of a data
recording. While images (a) and (b) still show lane following and
recovering behavior, image (c) already displays imminent system
failure within the next consecutive time steps.

In the simulator this model is used to calculate a lateral offset between
the driven trajectory and the trajectory that was driven by the model. To
determine the lateral offset of the model to the recorded trajectory, the
velocity values provided to the vehicle model are the recorded velocity
values. The wheel angles are the difference between the recorded wheel
angle, and the wheel angle returned by the model/controller chain. The
lateral offset is then used to apply a perspective transformation on the
camera images to simulate the divergence from the recorded trajectory. The
perspective shifts applied to the camera input in the simulator can be seen
in Figure 10.
This approach allows a number of sanity checks that the model must be
able to pass before a real-world test should be performed:
∙ For normal drives where the driver was following the lane center, the

simulator must not diverge from the lane center even when occurring
lanes with bad lane markings or high steering angles.

∙ In drives where the driver was oscillating between the left and right
border of the lane, the simulator should correct those maneuvers and
not follow the trajectory of the recording.

∙ When manually setting a lateral offset during a simulation, the
simulator must find its way back to the lane center.

Only if these tests pass, a real-world test is sensible.

5 Conclusion

In this paper, we propose an automated driving architecture that utilizes
deep convolutional networks to compute affordance signals for lane-centered
longitudinal and lateral control. We relate our system architecture towards
previous research in deep driving, classical active steering, and cruise con-
trol systems. We describe the intuitive and efficient data collection that
motivates our practical data-driven control input estimates. The data dri-
ven estimates for model-based control include: Firstly, a lateral ConvNet
which computes features based on front view camera images and estimates
the distance towards the lane center. Secondly, a longitudinal ConvNet
which detects preceding vehicles within the lane and estimates the distance
based on laser range finder data. Our approach leverages the representation
learning benefits of end-to-end deep learning architectures while providing
introspection during the adjustment of the model-based control behavior.
One of these representation learning benefits is the ability to adapt to diverse
driving environments encountered by drastically changing road conditions,
and appearance diversity of preceding vehicles during detection. Due to the
prior definition of affordance metrics, the system allows a modular testing
and introspection layer, which deep driving approaches lack to provide. We
perform a modular evaluation of the distance regression tasks based on
standard machine learning performance metrics. Since prediction noise and
false estimates influence the behavior of the system, traditional machine
learning performance metrics on their own do not provide a sufficient vali-
dation of the system in real driving conditions. As a result, we introduce a
system test of the closed loop perception and model-based control system
performance on unlabeled data. Our real-world driving experiments show
that our closed loop system test on unlabeled data provides a necessary
condition for successful deployment in real-world.
For future work we plan to integrate the controller back into the neural
network using a sequence of latent states in the common dense stack. Since
the dimensionality is comparably low at that point, a recurrent network
can be applied efficiently to a sequence of latent states. An initial training
can be performed using the simple controller that was proposed in this
paper.

Literatur

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proc. of the
IEEE International Conference on Computer Vision (ICCV), ser. ICCV ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 2722–2730.
[Online]. Available: http://dx.doi.org/10.1109/ICCV.2015.312

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba,
“End to end learning for self-driving cars,” CoRR, vol. abs/1604.07316, 2016.
[Online]. Available: http://arxiv.org/abs/1604.07316

[3] Society of Automotive Engineers. (2014, Jan.) SAE J3016: Taxonomy and
definitions for terms related to on-road motor vehicle automated driving
systems. [Online]. Available: http://standards.sae.org/j1772_201001/

[4] D. A. Pomerleau, “Neural Network Vision for Robot Driving,” in Intelligent
Unmanned Ground Vehicles. Springer, 1997, pp. 53–72. [Online]. Available:
https://doi.org/10.1007/978-1-4615-6325-9_4

[5] D. A. . Pomerleau, “Alvinn: An autonomous land vehicle in a
neural network,” in Advances in neural information processing systems,
1989, pp. 305–313. [Online]. Available: https://papers.nips.cc/paper/
95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf

[6] D. Pomerleau and T. Jochem, “Rapidly adapting machine vision for
automated vehicle steering,” IEEE Expert, vol. 11, no. 2, pp. 19–27, Apr.
1996. [Online]. Available: https://doi.org/10.1109/64.491277

[7] T. Jochem and D. A. Pomerleau, “Life in the Fast Lane: The Evolution of
an Adaptive Vehicle Control System,” AI Magazine, vol. 17, no. 2, p. 41,
1996. [Online]. Available: https://doi.org/10.1609/aimag.v17i2.1221

[8] M. Toromanoff, E. Wirbel, F. Wilhelm, C. Vejarano, X. Perrotton,
and F. Moutarde, “End to End Vehicle Lateral Control Using a
Single Fisheye Camera,” in I2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, Oct.
2018, 7 pages paper accepted at IROS 2018. [Online]. Available:
https://hal-mines-paristech.archives-ouvertes.fr/hal-01861697

78 appendix

a.2 driving with style : inverse reinforcement learning

in general-purpose planning for automated driving

Sascha Rosbach, Vinit James, Simon Großjohann, Silviu Homoceanu,
and Stefan Roth
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau, China, November 2019.

Abstract

Behavior and motion planning play an important role in automated
driving. Traditionally, behavior planners instruct local motion plan-
ners with predefined behaviors. Due to the high scene complexity
in urban environments, unpredictable situations may occur in which
behavior planners fail to match predefined behavior templates. Re-
cently, general-purpose planners have been introduced, combining
behavior and local motion planning. These general-purpose planners
allow behavior-aware motion planning given a single reward function.
However, two challenges arise: First, this function has to map a com-
plex feature space into rewards. Second, the reward function has to be
manually tuned by an expert. Manually tuning this reward function
becomes a tedious task. In this paper, we propose an approach that
relies on human driving demonstrations to automatically tune reward
functions. This study offers important insights into the driving style
optimization of general-purpose planners with maximum entropy in-
verse reinforcement learning. We evaluate our approach based on the
expected value difference between learned and demonstrated policies.
Furthermore, we compare the similarity of human driven trajectories
with optimal policies of our planner under learned and expert-tuned
reward functions. Our experiments show that we are able to learn
reward functions exceeding the level of manual expert tuning without
prior domain knowledge.

Copyright notice

© 2019 IEEE. Reprinted, with permission, from Sascha Rosbach, Vinit
James, Simon Großjohann, Silviu Homoceanu, Stefan Roth, Driving
with style: Inverse reinforcement learning in general-purpose planning
for automated driving, 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2019.

Driving with Style: Inverse Reinforcement Learning in General-Purpose
Planning for Automated Driving

Sascha Rosbach1,2, Vinit James1, Simon Großjohann1, Silviu Homoceanu1 and Stefan Roth2

Abstract— Behavior and motion planning play an important
role in automated driving. Traditionally, behavior planners
instruct local motion planners with predefined behaviors. Due
to the high scene complexity in urban environments, unpre-
dictable situations may occur in which behavior planners fail
to match predefined behavior templates. Recently, general-
purpose planners have been introduced, combining behavior
and local motion planning. These general-purpose planners
allow behavior-aware motion planning given a single reward
function. However, two challenges arise: First, this function
has to map a complex feature space into rewards. Second,
the reward function has to be manually tuned by an expert.
Manually tuning this reward function becomes a tedious task.
In this paper, we propose an approach that relies on human
driving demonstrations to automatically tune reward functions.
This study offers important insights into the driving style
optimization of general-purpose planners with maximum en-
tropy inverse reinforcement learning. We evaluate our approach
based on the expected value difference between learned and
demonstrated policies. Furthermore, we compare the similarity
of human driven trajectories with optimal policies of our
planner under learned and expert-tuned reward functions. Our
experiments show that we are able to learn reward functions
exceeding the level of manual expert tuning without prior
domain knowledge.

I. INTRODUCTION

The trajectory planner in highly automated vehicles must
be able to generate comfortable and safe trajectories in
all traffic situations. As a consequence, the planner must
avoid collisions, monitor traffic rules, and minimize the
risk of unexpected events. General-purpose planners fulfill
these functional requirements by optimization of a complex
reward function. However, the specification of such a reward
function involves tedious manual tuning by motion planning
experts. Tuning is especially tedious if the reward function
has to encode a humanlike driving style for all possible sce-
narios. In this paper, we are concerned with the automation
of the reward function tuning process.

Unlike a strict hierarchical planning system, our plan-
ner integrates behavior and local motion planning. The
integration is achieved by a high-resolution sampling with
continuous actions [1]. Our planner, shown in Fig. 1, derives
its actions from a vehicle transition model. This model is
used to integrate features of the environment, which are then
used to formulate a linear reward function. During every

1The authors are with the Volkswagen AG,
38440 Wolfsburg, Germany {sascha.rosbach,
vinit.james, simon.grossjohann,
silviu.homoceanu}@volkswagen.de

2The authors are with the Visual Inference Lab, Department of
Computer Science, Technische Universität Darmstadt, 64289 Darmstadt
stefan.roth@visinf.tu-darmstadt.de

Fig. 1: This figure illustrates our general-purpose planner
for automated driving. The color coding of the visualized
state space indicates the state-action values. The z-axis
corresponds to the velocity, while the groundplane depicts a
subset of spatial features such as distance transformed lane
centers and road boundaries. There are three color coded
policies, black denotes the optimal policy of the planner,
red the odometry of a human demonstration, and green the
projection of the demonstration into the state space.

planning cycle of a model predictive control (MPC), the
planning algorithm generates a graph representation of the
high-dimensional state space. At the end of every planning
cycle, the algorithm yields a large set of driving policies
with multiple implicit behaviors, e.g., lane following, lane
changes, swerving and emergency stops. The final driving
policy has the highest reward value while satisfying model-
based constraints. The reward function, therefore, influences
the driving style of all policies without compromising safety.

Human driving demonstrations enable the application of
inverse reinforcement learning (IRL) for finding the under-
lying reward functions, i.e., a linear combination of the
reward weights. In this work, we utilize this methodology
to automate the reward function tuning of our planner. Due
to the planner’s exploration of a large set of actions, we are
able to project demonstrated actions into our graph represen-
tation. Thereby, the demonstrations and associated features
are efficiently captured. As a result, the learning algorithm
enables the imitation of the demonstrated driving style. Most
related work in IRL utilizes the state visitation frequency to
calculate the gradient in maximum entropy IRL. However,
the calculation of the state visitation is generally intractable
in this high-dimensional state space. We utilize our graph
representation to approximate the required empirical feature
expectations to allow maximum entropy IRL.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

The main contributions of this paper are threefold: First,
we formulate an IRL approach which integrates maximum
entropy IRL with a model-predictive general-purpose plan-
ner. This formulation allows us to encode a humanlike driv-
ing style in a linear reward function. Second, we demonstrate
the superiority of our automated reward learning approach
over manual reward tuning by motion planning experts.
We draw this conclusion on the basis of comparisons over
various performance metrics as well as real world tests.
Third, our automated tuning process allows us to generate
multiple reward functions that are optimized for different
driving environments and thereby extends the generalization
capability of a linear reward function.

II. RELATED WORK

The majority of active planning systems for automated
driving are built on the mediated perception paradigm. This
paradigm divides the automated driving architecture into
sub-systems to create abstractions from raw sensory data.
The general architecture includes a perception module, a
system to predict the intention of other traffic participants,
and a trajectory planning system. The planning system is
usually decomposed in a hierarchical structure to reduce
the complexity of the decision making task [2]–[4]. On a
strategic level, a route planning module provides navigational
information. On a tactic and behavioral level, a behavioral
planner derives the maneuver, e.g., lane-change, lane follow-
ing, and emergency-breaking [5]. On an operational level,
a local motion planner provides a reference trajectory for
feedback control [6]. However, these hierarchical planning
architectures suffer from uncertain behavior planning due to
insufficient knowledge about motion constraints. As a result,
a maneuver may either be infeasible due to over-estimation or
discarded due to under-estimation of the vehicle capabilities.
Furthermore, behavior planning becomes difficult in complex
and unforeseen driving situations in which the behavior
fails to match predefined admissibility templates. Starting
with the work of McNaughton, attention has been drawn
to parallel real-time planning [1]. This approach enables
sampling of a large set of actions that respect kinematic
constraints. Thereby a sequence of sampled actions can
represent complex maneuvers. This kind of general-purpose
planner uses a single reward function, which can be adapted
online by a behavioral planner without the drawbacks of a
hierarchical approach. However, it is tedious to manually
specify and maintain a set of tuned reward functions. The
process required to compose and tune reward functions is
outside the scope of McNaughton’s work. We adopt the
general-purpose planning paradigm in our approach and
focus on the required tuning process.

Reward functions play an essential role in general-purpose
planning. The rewards encode the driving style and influence
the policy selection. Recently, literature has been published
on the feature space of these reward functions. Heinrich et
al. [7] propose a model-based strategy to include sensor cov-
erage of the relevant environment to optimize the vehicle’s
future pose. Gu et al. [8] derive tactical features from the

large set of sampled policies. So far, however, there has been
little discussion about the automated reward function tuning
process of a general-purpose planner.

Previous work has investigated the utilization of machine
learning in hierarchical planning approaches to predict tacti-
cal behaviors [5]. Aside of behavior prediction, a large and
growing body of literature focuses on finding rewards for
behavior planning in hierarchical architectures [9], rewards
associated with spatial traversability [10], and rewards for
single-task behavior optimization of local trajectory planners
[11]. The IRL approach plays an import role in finding
the underlying reward function of human demonstrations
for trajectory planning [12]. Similar to this work, several
studies have investigated IRL in high-dimensional planning
problems with long planning horizons. Shiarlis et al. [13]
demonstrate maximum margin IRL within a randomly-
exploring random tree (RRT*). Byravan et al. [14] focus on a
graph-based planning representation for robot manipulation,
similar to our planning problem formulation. Compared to
previous work in IRL, our approach integrates IRL directly
into the graph construction and allows the application of
maximum entropy IRL for long planning horizons without
increasing the planning cycle time.

Compared to supervised learning approaches such as direct
imitation and reward learning, reinforcement learning solves
the planning problem through learning by experience and
interaction with the environment. Benefits of reinforcement
learning are especially notable in the presence of many traffic
participants. Intention prediction of other traffic participants
can be directly learned by multi-agent interactions. Learned
behavior may include complex negotiation of multiple driv-
ing participants [15]. Much of the current literature focuses
on simulated driving experience and faces challenges moving
from simulation to real-world driving, especially in urban
scenarios. Another challenge includes the formulation of
functional safety within this approach. Shalev-Shwartz et
al. [16] describe a safe reinforcement learning approach that
uses a hierarchical options graph for decision making where
each node within the graph implements a policy function. In
this approach, driving policies are learned whereas trajectory
planning is not learned and bound by hard constraints.

Most of the current work in IRL utilizes the maximum
entropy principle by Ziebart et al. [17] that allows training
of a probabilistic model by gradient descent. The gradient
calculation depends on the state visitation frequency, which
is often calculated by an algorithm similar to backward
value iteration in reinforcement learning. Due to the curse
of dimensionality, this algorithm is intractable for driving
style optimization in high-dimensional continuous spaces.
Our work extends previous work by embedding IRL into a
general-purpose planner with an efficient graph representa-
tion of the state space. The design of the planner effectively
enables the driving style imitation without a learning task
decomposition. As a result, we utilize the benefits of a
model-based general-purpose planner and reward learning to
achieve nuanced driving style adaptations.

III. PRELIMINARIES

The interaction of the agent with the environment is often
formulated as a Markov Decision Process (MDP) consisting
of a 5-tuple {S,A, T,R, γ}, where S denotes the set of
states, and A describes the set of actions. A continuous
action a is integrated over time t using the transition func-
tion T (s, a, s′) for s, s′ ∈ S, a ∈ A. The reward function R
assigns a reward to every action A in state S. The reward is
discounted by γ over time t.

In this work, a model of the environment M returns a
feature vector f and the resultant state s′ after the execution
of action a in state s. The reward function R is given by
a linear combination of K feature values fi with weights
θi such that ∀(s, a) ∈ S ×A : R(s, a) =

∑
i∈K −θifi(s, a).

A policy π is a sequence of time-continuous transitions T .
The feature path integral fπ

i for a policy π is defined by
fπ
i = −

∫
t
γtfi(st, at) dt. The path integral is approximated

by the iterative execution of sampled state-action sets As

in the environment model M . The value V π of a policy
π is the integral of discounted rewards during continuous
transitions V π =

∫
t
γtR(st, at) dt. An optimal policy π∗

has maximum cumulative value, where π∗ = argmaxπ V
π .

A human demonstration ζ is given by a vehicle odometry
record. A projection of the odometry record ζ into the
state-action space allows us to formulate a demonstration
as policy πD. For every planning cycle, we consider a set
of demonstrations ΠD, which are geometrically close to the
odometry record ζ. The planning algorithm returns a finite
set of policies Π with different driving characteristics. The
final driving policy πS is selected and satisfies model-based
constraints.

IV. METHODOLOGY

The planning system in Fig. 2 uses MPC to address
continuous updates of the environment model. A periodic
trigger initiates the perception system for which the planner
returns a selected policy. In the following, we give an
overview of the general-purpose planner. We use the nomen-
clature of reinforcement learning to underline the influence
of reward learning in the context of search-based planning.
Furthermore, we propose a path integral maximum entropy
IRL formulation for high-dimensional reward optimization.

A. General-Purpose Planner for Automated Driving

Our planning algorithm for automated driving in all
driving situations is based on [7], [18]. The planner is
initialized at state s0, either by the environment model or
in subsequent plans by the previous policy, and designed
to perform an exhaustive forward search of actions to yield
a set of policies Π. The set Π implicitly includes multiple
behaviors, e.g., lane following, lane changes, swerving, and
emergency stops [1]. Fig. 2 visualizes the functional flow of
the planning architecture during inference and training.

Algo. 1 formally describes our search-based planning
approach. The planner generates trajectories for a specified
planning horizon H . Trajectories for the time horizon H
are iteratively constructed by planning for discrete transition

Algorithm 1: General-Purpose Planner
Input: planning horizon H, model M ,

reward function R, reward discount factor γ
Output: policies Π, planning solution πS

1 function SearchAlgorithm(H,M,R, γ)
2 for t in H do
3 St ← get set of states
4 forall s ∈ St do
5 As ← sample set of actions
6 forall a ∈ As do
7 execute action a in M(s, a)
8 observe resultant state s′

9 observe resultant transition T
10 observe resultant features f(s, a)
11 construct labels c(T)
12 R(s, a)←∑

i∈K −θifi(s, a)
13 V (s′)← V (s) + γtR(s, a)

14 St+1 ← prune St
15 Π← get policies in S,A
16 πS ← select model-based from Π

lengths. The planner uses the parallelism of a graphics pro-
cessing unit (GPU) to sample for all states s ∈ St a discrete
number of continuous actions As, composed of accelerations
and wheel angles. The sampling distribution for each state
is based on feasible vehicle dynamics. The actions itself
are represented by time-continuous polynomial functions,
where order and coefficients are derived from actor-friendly
continuity constraints. This results in longitudinal actions
described by velocity profiles up to fifth order, and lateral
actions described by wheel angle profiles up to third order.

The search algorithm calls the model of the environment
M for all states s ∈ St to observe the resultant state s′,
transition T , and features f for each state-action tuple.
The feature vector f is generated by integrating the time-
continuous actions in the environment model. A labelling
function assigns categorical labels to transitions, e.g., a label
associated with collision. A pruning operation limits the
set of states St+1 for the next transition step t + 1 ∈ H .
Pruning is performed based on the value V (s), label c, and
properties of the reachable set St to terminate redundant
states with low value V (s). This operation is required, first to
limit the exponential growth of the state space, and second
to yield a policy set Π with maximum behavior diversity.
The algorithm is similar to parallel breadth first search
and forward value iteration. The final driving policy πS is
selected based on the policy value V (π) and model-based
constraints.

B. Inverse Reinforcement Learning

The driving style of a general-purpose motion planner is
directly influenced by the reward function weights θ. The
goal of IRL is to find these reward function weights θ
that enable the optimal policy π∗ to be at least as good

Perception Planner

Model

Label

Reward

Search

Projection IRLBuffer

Selection Control Environment

θ

fp Π πS πH

St

St+1

ζ

fΠ

f T s′

R c s

dΠ

s ∈ St, a ∈ As

dT fπ

trigger

Fig. 2: Functional flow block diagram: The left input of a block corresponds to the output of the previous function. The inputs
on top of the blocks denote intermediate outputs of previous functions. A thick solid line indicates the main flow from the
environment perception fp to the driven trajectory ζ. The vehicle control architecture is outside the scope of this work. In this
work, we focus on the dark grey blocks of the architecture that influence the reward learning. Dashed connections between
the blocks indicate the information flow during the training procedure. During data collection, we record the environment
as well as the odometry ζ of the hidden driving policy of a human πH .

as the demonstrated policy πD, i.e., V (π∗) ≥ V (πD).
Thereby, the planner indirectly imitates the behavior of a
demonstration [19]. However, learning a reward function
given an optimal policy is ambiguous since many reward
functions may lead to the same optimal policy [20]. Early
work in reward learning for A* planning and dynamic pro-
gramming approaches utilized structured maximum-margin
classification [21], yet this approach suffers from drawbacks
in the case of imperfect demonstrations [17]. Over the past
decade, most research in IRL has focused on maximizing
the entropy of the distribution on state-actions under the
learned policy, which is known as maximum entropy IRL.
This problem formulation solves the ambiguity of imperfect
demonstrations by recovering a distribution over potential
reward functions while avoiding any bias [17]. Ziebart et
al. [17] propose a state visitation calculation, similar to
backward value iteration in reinforcement learning, to com-
pute the gradient of the entropy. The gradient calculation
is adopted by most of the recent work in IRL for low-
dimensional, discrete action spaces, which is inadequate for
driving style optimizations. Our desired driving style requires
high-resolution sampling of time-continuous actions, which
produces a high-dimensional state space representation. In
the following, we describe our intuitive approach, which
combines search-based planning with maximum entropy IRL.

C. Path Integral Maximum Entropy IRL

In our IRL formulation, we maximize the log-likelihood L
of expert behavior in the policy set Π by finding the reward
function weights θ that best describe human demonstrations
πD ∈ ΠD within a planning cycle, which is given by

θ∗ = argmax
θ

L(θ) = argmax
θ

∑

πD∈ΠD

ln p(πD|θ) (1)

= argmax
θ

∑

πD∈ΠD

ln
1

Z
exp(−θfπD

), (2)

where the partition function is defined by
Z =

∑
π∈Π exp(−θfπ).

Similar to Aghasadeghi et al. [22], we optimize under
the constraint of matching the feature path integrals fπ of
the demonstration and feature expectations of the explored
policies,

∀i ∈ 1, ..., k :
∑

π∈Π

p(π|θ)fπ
i =

1

m

∑

πD∈ΠD

fπD

i = f̂ΠD

i , (3)

where f̂ΠD

i references the empirical mean of feature i
calculated over m demonstrations in ΠD. The constraint in
Eq. 3 is used to solve the non-linear optimization in Eq. 2.

The gradient of the log-likelihood can be derived as,

∇L(θ) =
∑

π∈Π

p(π|θ)fπ − f̂ΠD

, (4)

and allows for gradient descent optimization.
The calculation of the partition function Z in Eq. 2 is

often intractable due to the exponential growth of the state-
action space over the planning horizon. The parallelism of
the action sampling of the search-based planner allows us
to explore a high-resolution state representation St for each
discrete planning horizon increment t. A pruning operation
terminates redundant states having sub-optimal behavior in
the reachable set St, which is denoted by a lower value V (s).
Therefore, the pruning operation ensures multi-behavior ex-
ploration of the reachable set St that is evaluated with a
single reward function. Thereby our sample-based planning
methodology allows us to approximate the partition function
similar to Markov chain Monte Carlo methods.

Once we obtain the new reward function, the configuration
of the planner is updated. Hence, policies that have similar
features as the human demonstration acquire a higher value
assignment. This implies that they are more likely to be
chosen as driving policy.

V. EXPERIMENTS

We assess the performance of path integral maximum
entropy IRL in urban automated driving. We focus on a
base feature set for static environments, similar to the manual

tuning process of a motion planning expert. After this process
more abstract reward features are tuned relative to the base
features.

A. Data Collection and Simulation

Our experiments are conducted on a prototype vehicle,
which uses a mediated perception architecture to produce
feature maps as illustrated in Fig. 1. We recorded data
in static environments and disabled object recognition and
intention prediction. The data recordings include features of
the perception system as well as odometry recordings of
the human driver’s actions. The training of our algorithm is
performed during playbacks of the recorded data. After every
planning cycle of the MPC, the position of the vehicle is reset
to the odometry recording of the human demonstration.

B. Projection of Demonstration in State Space

The system overview in Fig. 2 includes a projection
function that transfers the actions of a manual drive into the
state-action space of the planning algorithm. The projection
metric d is calculated during the graph construction between
odometry ζ and continuous transitions T (s, a, s′) of all
policies π in the set Π:

d(ζ, π) =

∫

t

αt||ζt − πt|| dt. (5)

The norm is based on geometrical properties of the state
space, e.g., the Euclidean distance in longitudinal and lateral
direction as well as the squared difference in the yaw angle.
Further, the metric includes a discount factor αt over the
planning horizon. The policy πD has the least discounted
distance towards the odometry record. There are multiple
benefits of using the projection metric: First, the projected
trajectory includes all constraints of the planner. If the metric
surpasses a threshold limit, the human demonstrator does not
operate in the actor’s limits of the vehicle and therefore can
not be used as a valid demonstration. Second, the projection
metric allows for an intuitive evaluation of the driving style
based on the geometrical proximity to the odometry. Third,
we may augment the number of demonstrations by loosening
the constraint of the policy πD to have least discounted
distance towards the odometry. Thereby, multiple planner
policies qualify as demonstration πD ⊆ ΠD.

C. Reward Feature Representation

In this work, the reward function R(s, a) is given by
a linear combination of K reward features. The features
describe motion and infrastructural rewards of driving. The
discount factor γ is manually defined by a motion planning
expert and is not optimized at this stage of the work. Our
perception system in Fig. 2 provides normalized feature maps
with spatial information of the environment. The feature
path integral fπ of a policy π is created by transitioning
through the feature map representation of the environment.
We concentrate on a base reward set consisting of K = 12
features, which are listed in the legend of Fig. 4a. Heinrich
et al. formally described a sub-set of our features [18]. Seven

of our feature values describe the motion characteristics of
the policies, which are given by derivatives of the lateral
and longitudinal actions. They include the difference between
the target and policy velocity, and the acceleration and jerk
values of actions. The target in the velocity may change
depending on the situation, e.g., in a situation with a traffic
light the target velocity may reduce to zero. Furthermore,
the end direction feature is an important attribute for lateral
behavior that specifies the angle towards the driving direction
at the end of the policy. The creeping feature suppresses very
slow longitudinal movement in situations, where a full stop
is more desired. Infrastructural features include proximity
measures to the lane center and curbs, cost potentials for
lanes, and direction. Furthermore, we specify a feature for
conflict areas, e.g., stopping at a zebra crossing.

D. Implementation Details

During the playback of a human demonstration, the path
integral feature vectors fΠ of the policy set Π are ap-
proximated for every planning cycle and stored within a
replay buffer. By including our projection metric in the
action sampling procedure, we associate each policy π with
the distance to the odometry of the human demonstration.
During training, we query demonstrations ΠD, which are
policies with a low projection metric value, from our replay
buffer where πD ⊆ ΠD ⊆ Π. Hence, the replay buffer
contains features of demonstrations for each planning cycle
denoted as fΠD ⊆ fΠ. Fig. 2 describes the information
flow from the odometry record of the demonstration to the
feature query from the replay buffer. Due to actor constraints
of the automated vehicle’s actions, the planning cycles
without demonstrations are not considered for training. We
utilize experience replay similar to reinforcement learning
and update on samples or mini-batches of experience, by
drawing randomly from the buffered policies. This process
allows us to efficiently use previous experience, which can
be trained on multiple times. Further, stability is provided by
not altering the representation of the expert demonstrations
within the graph representation.

VI. EVALUATION

We aim to evaluate the utility of our automated reward
function optimization in comparison to manual expert tuning.
First, we analyze our driving style imitation in terms of value
convergence towards the human demonstration. Second, we
compare the driving style of our policies under random,
learned, and expert-tuned reward functions against human
driving on dedicated test route segments.

A. Training Evaluation

We analyze the convergence for different training initial-
izations and road segment types, namely straight and curvy.
Due to the linear combination of reward weights, one expects
a segment-specific preference of the reward function. As
a reference, a motion planning expert generated a tuned
reward function for general driving. We perform two drives
per training segment, one with a random and one with an

0 5 10 15

Epoch number

0.1

0.2

0.3

E
xp

ec
te

d
va

lu
e

di
ffe

re
nc

e IRLCurve(Expert tuned init)
IRLCurve(Random init)
IRLStraight(Expert tuned init)
IRLStraight(Random init)

(a) Difference between expected value of human driving
demonstration and expected value of planner policies
under learned reward functions.

0 5 10 15

Epoch number

0.04

0.05

0.06

0.07

E
xp

ec
te

d
di

st
an

ce

IRLCurve(Expert tuned init)
IRLCurve(Random init)
IRLStraight(Expert tuned init)
IRLStraight(Random init)

(b) Expected distance of planner policies towards the
human driving demonstration under learned reward
functions.

Fig. 3: Illustration of training and validation metrics for multiple segments and training initializations. Convergence of
maximum entropy IRL over training epochs. Validation of the training by indicating the reduction of the expected distance
towards the human demonstration. The probability is calculated independently for every planning cycle of the MPC, whereas
the policy set includes an average of approx. 4000 policies.

expert-tuned reward function. The policies to be considered
as human demonstrations are chosen based on our projection
metric and therefore depend on our chosen reward function
initialization. The expert initialization yields demonstrations
with a mean projection error 7% lower as compared to
random initialization. During every planning cycle on the
segments, we trace the policies of the planner in replay
buffers. We generate four tuned reward functions which are
referred to in Fig. 4a by training on our replay buffers.

The convergence of the training algorithm is measured by
the expected value difference (EVD) over training epochs
between learned and demonstrated policies. The EVD is
calculated for every planning cycle and averaged over the
segment. The EVD is given by

E[V (Π)]− E[V (ΠD)] (6)

=
∑

π∈Π

p(π|θ)V (π)−
∑

πD∈ΠD

p(πD|θ)V (πD). (7)

The performance of the random and expert-tuned reward
functions is given by the EVD at epoch zero. The initial
and final EVD differences between the straight and curvy
segment is 30% and 19% respectively. A preference of the
straight segments by both reward functions is visible in the
initial EVD difference Fig. 3. The learned reward functions
show a large EVD reduction of 67% for curvy and 63% for
straight segments at the end of training.

We can interpret the training results in the following way:
(a) The projection metric depends on the quality of the

reward function.
(b) Improved reward functions lead to improved action sam-

pling and therefore produce better demonstrations.
(c) Learning reward functions without prior knowledge is

possible, e.g. generating a replay buffer with a randomly
initialized reward function and training with a random
initialization.

(d) Unsuitable reward functions improve more significantly
during training.

Hence, continuously updating the policies in the replay buffer
generated from an updated reward function should lead to
faster convergence.

The desired driving style is given by the actions of a
human driving demonstration. Therefore, the projection error
in Eq. 5, which we use to select driving demonstrations,
extends itself as a direct validation metric of the actions. Due
to our goal of optimizing the likelihood of human driving
behavior within the policy set, we calculate the expected
distance (ED) in the policy set, given by

E[d(ζ,Π)] =
∑

π∈Π

p(π|θ)d(ζ, π). (8)

The learned reward functions in Fig. 3b show a large ED
reduction of 54% for curvy and 44% for straight segments
at the end of training. The ED reduction trends have high
similarity to the above mentioned EVD trend and therefore
this validates the premise of a high correlation between value
and distance to the demonstration. An improved expected
distance ensures a high likelihood of selecting policies which
are similar to humanlike driving demonstrations.

B. Driving Style Evaluation

In this part of the evaluation, we compare the driving style
of the random, learned, and expert-tuned reward functions
shown in Fig. 4a to manual human driving. The parameters
of the reward functions allow for introspection and reasoning
about the segment-specific preference. The reward weight is
inversely proportional to the preference of that feature value
in the policy. Learned reward functions are of two types:

(a) IRL with random initialization, hereby referred as
IRL(random). Both the training trajectory set and the
learning task are randomly initialized.

(b) IRL with expert initialization, hereby referred as
IRL(expert). Both the training trajectory set and the
learning task are initialized by expert tuning.

Lon
g.

Acce
l.

Lon
g.

Je
rk

Velo
cit

y

Cree
pin

g

Lat.
Acce

l.

Lat.
Je

rk

End
Dire

cti
on

Cen
ter

lin
e

Con
flic

tar
ea

Cur
bs

Dire
cti

on

Lan
ea

dv
ise

Features

0

2

4

W
ei

gh
t

(a) Feature weights of tested reward functions.

Expert tuned
IRLCurve(Expert tuned init)
IRLCurve(Random init)
IRLStraight(Expert tuned init)
IRLStraight(Random init)
Random

Expert tuned
IRLCurve(Expert tuned init)
IRLCurve(Random init)

IRLStraight(Expert tuned init)
IRLStraight(Random init)
Random

0.00 0.05 0.10 0.15 0.20

Distance

0

20

40

C
ou

nt

(b) Distances of the optimal policies on a curvy test
segment.

0.00 0.05 0.10 0.15 0.20

Distance

0

25

50

C
ou

nt

(c) Distances of the optimal policies on a straight test
segment.

0 100 200 300

Planning cycle

0.00

0.05

D
is

ta
nc

e

(d) Distances of the optimal policy over planning cycles
on a curvy test segment.

0 250 500 750

Planning cycle

0.00

0.05

0.10

D
is

ta
nc

e

(e) Distances of the optimal policy over planning cycles
on a straight test segment.

0.08 0.09 0.10 0.11 0.12

Expected distance

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
va

lu
e

(f) Expected value and distance under the expert tuned
reward function of every planning cycle on a curvy test
segment.

0.07 0.08 0.09 0.10

Expected distance

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
va

lu
e

(g) Expected value and distance under the expert tuned
reward function of every planning cycle on a straight
test segment.

Fig. 4: The tests contrast the driving style of random, learned, and expert-tuned reward functions. The graphs present the
results of independent playbacks on a dedicated test track. The probability is calculated independently for every planning
cycle of the MPC, whereas the policy set includes on average 4000 policies.

Using these reward functions, we run our planning algorithm
on dedicated test route segments to verify the generalized
performance of the optimal policies. We carry out multiple
drives over the test segments to generate representative
statistics. Fig. 4b and Fig. 4c present the projection metric
distribution, which is the distance of the optimal policy to the
odometry of a manual human drive for every planning cycle.
We fit a Gaussian distribution over the histogram with 200
bins of size 0.001 with 944 planning cycles for the straight
and 369 planning cycles for the curvy segment. The learned
reward functions improve the driving style on all segments
even in the case of random initialization. Our evaluation
metric, which is the mean distance of the optimal policy
to the odometry, decreases for IRLStraight(random) by 73%
and for IRLCurve(random) by 43%. In case of expert-
tuned initialization, IRLStraight(expert) decreased by 22%
and IRLCurve(expert) by 4%. The strong learning outcome
in the straight segment can be attributed to the easier learning
task as compared to the curvy segment. Even though the
expert-tuned reward functions do not improve substantially
in terms of mean distance, they show a lower variance in
distance of the optimal policy to the odometry over planning
cycles after training as is shown in Fig. 4d and Fig. 4e.
Here we indicate variance in the distance of the optimal
policy over planning cycles by one standard deviation. The
variance reduction of learned reward function depicts higher
stability over planning cycles. Hence, we are able to encode
the human driving style through IRL without applying prior
domain knowledge as done by motion planning experts.

Fig. 4f and Fig. 4g present the expected value of our evalu-
ated reward functions rA under the expert-tuned reward func-
tion rE , given by E[V (Π)] =

∑
π∈Π p(V π(rA))V π(rE).

The overall trend indicates an inverse relationship between
expected value and expected distance. The learned reward
functions have lower expected distance as compared to expert
tuned and random reward functions, while having a higher
rate of value reduction with increasing expected distance.
This ensures that the learned reward functions induce a
high degree of bias in the policy evaluation such that the
humanlike demonstrated behavior is preferred.

VII. CONCLUSION AND FUTURE WORK

We utilize path integral maximum entropy IRL to learn
reward functions of a general-purpose planning algorithm.
Our method integrates well with model-based planning algo-
rithms and allows for automated tuning of the reward func-
tion encoding the humanlike driving style. This integration
makes maximum entropy IRL tractable for high dimensional
state spaces. The automated tuning process allows us to
learn reward functions for specific driving situations. Our
experiments show that learned reward functions improve the
driving style exceeding the level of manual expert-tuned
reward functions. Furthermore, our approach does not require
prior knowledge except the defined features of the linear
reward function. In the future, we plan to extend our IRL
approach to update the reward function dynamically.

REFERENCES

[1] M. McNaughton, “Parallel Algorithms for Real-time Motion Plan-
ning,” Ph.D. dissertation, Carnegie Mellon University, 2011.

[2] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time
motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions,” Transportation Res. Part C:
Emerging Technologies, vol. 60, pp. 416–442, 2015.

[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Trans. Intelligent Vehicles, vol. 1, no. 1, pp.
33–55, 2016.

[4] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-
Making for Autonomous Vehicles,” Annu. Rev. Control Robot. Auton.
Syst., vol. 1, no. 1, pp. 187–210, 2018.

[5] S. Ulbrich and M. Maurer, “Towards Tactical Lane Change Behavior
Planning for Automated Vehicles,” in Proc. IEEE Int. Conf. Intell.
Transp. Syst. (ITSC), 2015.

[6] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2010.

[7] S. Heinrich, J. Stubbemann, and R. Rojas, “Optimizing a driving
strategy by its sensor coverage of relevant environment information,”
in IEEE Intell. Vehicles Symp., 2016, pp. 441–446.

[8] T. Gu, J. M. Dolan, and J.-W. Lee, “Automated tactical maneuver
discovery, reasoning and trajectory planning for autonomous driving,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS),
Daejeon, South Korea, 2016.

[9] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun, “Apprenticeship learn-
ing for motion planning with application to parking lot navigation,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS), 2008.

[10] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” Int. J. Robotics Research, vol. 36,
no. 10, pp. 1073–1087, 2017.

[11] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2015.

[12] S. Arora and P. Doshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” in arXiv Preprint
arXiv:1806.06877, 2018.

[13] K. Shiarlis, J. Messias, and S. Whiteson, “Inverse Reinforcement
Learning from Failure,” in Proc. Int. Conf. Autonomous Agents Multi-
Agent Syst., 2016.

[14] A. Byravan, M. Monfort, B. Ziebart, B. Boots, and D. Fox, “Graph-
Based Inverse Optimal Control for Robot Manipulation,” in Proc. Int.
Joint Conf. Artificial Intell. (IJCAI), vol. 15, 2015.

[15] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” in Learning,
Inference and Control of Multi-Agent Syst. Workshop (NIPS), 2016.

[16] ——, “On a Formal Model of Safe and Scalable Self-driving Cars,”
in arXiv Preprint arXiv:1708.06374, 2017.

[17] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maxi-
mum Entropy Inverse Reinforcement Learning.” in Proc. Nat. Conf.
Artificial Intell. (AAAI), vol. 8, 2008.

[18] S. Heinrich, “Planning Universal On-Road Driving Strategies for
Automated Vehicles,” Ph.D. dissertation, Freie Universität Berlin,
2018.

[19] A. Y. Ng and S. J. Russell, “Algorithms for Inverse Reinforcement
Learning,” in Proc. Int. Conf. Machine Learning (ICML), 2000.

[20] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proc. Int. Conf. Machine Learning (ICML).
ACM, 2004.

[21] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proc. Int. Conf. Machine Learning (ICML), 2006.

[22] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforce-
ment learning in continuous state spaces with path integrals,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS). IEEE, 2011.

88 appendix

a.3 driving style encoder : situational reward adapta-
tion for general-purpose planning in automated

driving

Sascha Rosbach, Vinit James, Simon Großjohann, Silviu Homoceanu,
Xing Li, and Stefan Roth
IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, June 2020.

Abstract

General-purpose planning algorithms for automated driving combine
mission, behavior, and local motion planning. Such planning algo-
rithms map features of the environment and driving kinematics into
complex reward functions. To achieve this, planning experts often
rely on linear reward functions. The specification and tuning of these
reward functions is a tedious process and requires significant experi-
ence. Moreover, a manually designed linear reward function does not
generalize across different driving situations. In this work, we propose
a deep learning approach based on inverse reinforcement learning that
generates situation-dependent reward functions. Our neural network
provides a mapping between features and actions of sampled driving
policies of a model predictive control-based planner and predicts re-
ward functions for upcoming planning cycles. In our evaluation, we
compare the driving style of reward functions predicted by our deep
network against clustered and linear reward functions. Our proposed
deep learning approach outperforms clustered linear reward functions
and is at par with linear reward functions with a priori knowledge
about the situation.

Copyright notice

© 2020 IEEE. Reprinted, with permission, from Sascha Rosbach, Vinit
James, Simon Großjohann, Silviu Homoceanu, Xing Li, Stefan Roth,
Driving style encoder: Situational reward adaptation for general-
purpose planning in automated driving, 2020 IEEE International Con-
ference on Robotics and Automation, 2020.

Driving Style Encoder: Situational Reward Adaptation for
General-Purpose Planning in Automated Driving

Sascha Rosbach1,2, Vinit James1, Simon Großjohann1, Silviu Homoceanu1, Xing Li1 and Stefan Roth2

Abstract— General-purpose planning algorithms for auto-
mated driving combine mission, behavior, and local motion
planning. Such planning algorithms map features of the envi-
ronment and driving kinematics into complex reward functions.
To achieve this, planning experts often rely on linear reward
functions. The specification and tuning of these reward func-
tions is a tedious process and requires significant experience.
Moreover, a manually designed linear reward function does
not generalize across different driving situations. In this work,
we propose a deep learning approach based on inverse rein-
forcement learning that generates situation-dependent reward
functions. Our neural network provides a mapping between
features and actions of sampled driving policies of a model-
predictive control-based planner and predicts reward functions
for upcoming planning cycles. In our evaluation, we compare
the driving style of reward functions predicted by our deep
network against clustered and linear reward functions. Our
proposed deep learning approach outperforms clustered linear
reward functions and is at par with linear reward functions
with a-priori knowledge about the situation.

I. INTRODUCTION

Automated driving in urban environments requires intel-
ligent decision making that scales over a variety of traffic
situations. A scalable approach needs to be able to address
both structured and un-structured traffic as experienced in
urban environments. In model-based planning, a semantic
description of the environment is encoded in the form of
static and kinematic features. The planning system has to
translate this semantic description of the environment into
safe and human-acceptable actions. The underlying planning
algorithm often relies on manually-tuned linear reward func-
tions that encode the relevance of the predefined features.
Tuning such reward functions is a tedious task and is usually
performed by motion planning experts. As a result, the
reward function is often considered to be a static external
signal that does not depend on the driving situation [1].
Manual tuning of the reward function becomes infeasible
if a planning system is applied at scale and has to adopt a
variety of driving styles. In this paper, we propose a deep
learning approach in which a neural network dynamically
predicts reward functions based on constantly changing static
and kinematic features of the environment.

Human driving demonstrations enable the application of
inverse reinforcement learning (IRL) for finding the under-

1The authors are with the Volkswagen AG, 38440 Wolfs-
burg, Germany {sascha.rosbach, vinit.james,
simon.grossjohann, silviu.homoceanu,
xing.li}@volkswagen.de

2The authors are with the Visual Inference Lab, Department of Computer
Science, Technische Universität Darmstadt, 64289 Darmstadt, Germany
stefan.roth@visinf.tu-darmstadt.de

Fig. 1: This figure illustrates our planner for automated
driving that samples policies for our path integral (PI)
IRL formulation. The visualized state space is color-coded
based on the state-action values. The z-axis corresponds to
the velocity, whereas the ground plane depicts the spatial
feature maps such as distance transformed lane centers and
road boundaries. Three color-coded policies are visualized,
namely the optimal policy (black), the odometry of a human
demonstration (green), and the projection of the demonstra-
tion into the state space (red).

lying reward functions [2], [3]. In this work, we utilize
this methodology to learn situation-dependent reward func-
tions for our planner [4]–[6]. Our planner samples a large
set of actions generating distributions of path integral (PI)
features and actions. Unlike related work in deep inverse
reinforcement learning (DIRL) that focuses on spatial reward
functions [7], [8], our approach generates driving styles by
incorporating vehicle kinematics. This is done by integrating
our deep learning approach into a model-predictive control
(MPC) planning algorithm. Sampled driving policies of the
MPC are used as inputs to our neural network. The network
learns a representation of the driving situation by matching
distributions of features and actions to reward functions
based on the maximum entropy principle.

The main contributions of this paper are threefold: First,
we formulate a deep IRL methodology that predicts situation-
dependent reward functions based on PI features and ac-
tions. Second, we propose a neural network architecture that
utilizes one-dimensional convolutions over PI features and
actions of sampled driving policies to learn a representation
of the statics and kinematics of the situation. Third, we show
the feasibility of our proposed approach in real-world traffic
environments and compare our method to linear and latent
maximum entropy IRL.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

II. RELATED WORK

As of now, the decision-making system in automated
vehicles is often decomposed into a hierarchical structure
to reduce the complexity of the model-based system. This
hierarchical decomposition, however, yields uncertainty due
to insufficient knowledge of the subsequent level. In par-
ticular, these systems are prone to failure in unforeseen
driving situations where simplified behavior models fail to
match predefined templates [6]. General-purpose planning
algorithms for automated driving aim to reduce planning-task
decompositions to enable a scalable architecture that does not
rely on behavior implementations. Starting with the work of
McNaughton [9], attention has been drawn to parallel real-
time planning that combines behavior planning and local
motion planning. This approach enables sampling of a large
set of actions that respect kinematic constraints. Thereby
a sequence of sampled actions can represent complex ma-
neuvers. This kind of general-purpose planner uses a linear
reward function to map a complex feature space into rewards.
Manual tuning of such a linear reward function is a tedious
task performed by motion-planning experts. In our previous
work, we automated the tuning process using IRL [5]. We
found that inferred reward functions for situations defined
a-priori surpass the performance of an expert-tuned reward
function. However, the tuned linear reward functions do not
generalize well over different situations as the objectives
change continuously, e.g., the importance of keeping to
the lane center in straight road segments while allowing
deviations in curvy parts. In this work, we utilize the general-
purpose planning approach and focus on situation-dependent
reward function prediction.

A naive solution to the aforementioned problem is to use
IRL with a-priori knowledge of situations and recover a set of
situation-dependent reward functions. However, the complex-
ity is limited to the number of identifiable scenarios that have
to be mapped during inference. Prior work in IRL employs
the latent maximum-entropy principle to condition reward
functions on the situation [10]. Expectation Maximization
(EM) is often used in combination with IRL to learn a prior
over the situation [11]. Training can be performed on a mix-
ture of different driving segments without a-priori knowledge
about the situation. Hence, multiple reward functions are de-
rived and a mixture is inferred during planning using Bayes’
rule. Dirichlet process mixture models have been used to
address some drawbacks of EM, specifically the reliance on
a specified number of clusters [12], [13]. Recent work in IRL
utilizes deep neural networks to extend the model capacity
of mixture models. Wulfmeier et al. [7] proposed to learn
spatial traversability by deep IRL using deep convolutional
neural networks, which generates a direct mapping from raw
sensory data to reward maps. This allows for encoding a
situation into the reward function for a planning algorithm
that operates on a grid-based representation. However, their
IRL formulation relies on state-visitation frequency updates
that do not scale to high-dimensional state-action spaces.

In contrast to our model-based IRL formulation, prior

work has also addressed high-dimensional state-spaces with
model-free approaches. Finn et al. [14] proposed a sample-
based deep IRL approach that learns the cost in the inner loop
of a model-free policy optimization. This approach is suitable
for problems with unknown system dynamics. Recent work
also includes the idea of combining generative adversarial
neural networks and imitation learning to clone the behavior
of the demonstrated policy without finding the underlying
reward functions [15].

In our work, we rely on a defined environment and vehicle
transition model to explicitly incorporate traffic rules and
provide safety [16]. We propose to couple the reliability
of a model-based planning system with the generalization
ability of deep inverse reinforcement learning. Our search-
based planning algorithm operates in large and continuous
state space and produces policies with multiple behaviors.
This enables us to approximate the partition function required
for the IRL gradient formulation with high accuracy [5]. Our
IRL formulation uses a neural network to reason about static
and kinematic features of the environment, thereby predicting
situation-dependent driving styles.

III. PRELIMINARIES

The interaction of the agent with the environment is often
formulated as a Markov Decision Process (MDP), consisting
of a 5-tuple {S,A, T,R, γ}, where S denotes the set of states
and A describes the set of actions. The reward function R
is discounted by γ and assigns a reward for every action
a ∈ A in state s ∈ S. Our planning algorithm relies on an
environment model M and an underlying vehicle transition
function T . The model consists of static features of the envi-
ronment that are derived from perception and localization, as
well as kinematic features derived from the vehicle transition
function. The planner generates a policy set Π by sampling
actions a from distributions conditioned on vehicle dynamics
for each state s. The features for each continuous action a
are integrated in the policy generation process. The reward
function R is given by a linear combination of K static
and kinematic feature values fi with weights θi such that
R(s, a) =

∑
i∈K −θifi(s, a). The value V π of a policy π is

the integral of discounted rewards during continuous transi-
tions, V π =

∫
t
γtR(st, at) dt. The PI feature fπ

i for a policy
π is defined by fπ

i =
∫
t
γtfi(st, at) dt. The demonstrations

for our IRL formulation are based on odometry records ζ
of human driving. During the training in our simulation, we
project the odometry record ζ into the state-action space and
are thereby able to formulate a demonstration from the policy
set such that πD ∈ Π.

A. Maximum entropy IRL

The goal of IRL is to find the reward function weights
θ that enable the optimal policy π∗ to be at least as good
as the demonstrated policy πD [17]. Thereby, the planner
indirectly imitates the behavior of a demonstration [2]. In
PI IRL, a probabilistic model is formulated that yields a
probability distribution over policies, p(π|θ) [18], [19]. The
model is optimized such that the expected PI feature values

Ep(π|θ)[fπ] of the policy set Π match the empirical feature
values f̂ΠD

of the demonstrations for each planning cycle of
the MPC. Ziebart et al. [20] propose to maximize the entropy
of the distribution to solve the ambiguity introduced by im-
perfect demonstrations, giving rise to the policy distribution

p(π|θ) = 1

Z
exp(−θ⊤fπ). (1)

The calculation of the partition function Z =∑
π∈Π exp(−θ⊤fπ) is often intractable due to the expo-

nential growth of the state-action space. Our planning algo-
rithm approximates the partition function similar to Markov
chain Monte Carlo methods. Maximizing the entropy of the
distribution over policies subject to the feature constraints
from demonstrated policies implies that the log-likelihood
L(θ) of the observed policies under the maximum entropy
distribution is maximized. From this hypothesis, the log-
likelihood gradient is obtained as

∇L(θ) =
∑

π∈Π

p(π|θ)fπ − f̂ΠD

. (2)

Due to the dependency of the reward function on the driving
situation, the probabilistic model p(π|θ) that recovers a
single reward function for the demonstrated trajectories does
not scale.

IV. PATH INTEGRAL LATENT IRL
Instead of a single linear reward function, we consider

that there are N different reward functions, each corre-
sponding to situation-dependent behavior. As extension of
our previous work, we incorporate latent variables in our
PI IRL formulation [5], which allows us to infer a mixture
of these reward functions during planning. In the following
derivation, we consider a single demonstration πD for every
planning cycle. We adopt the formulation of Babes et al. [11]
that utilizes Expectation Maximization (EM) in IRL, where
βπD

c is the probability that a demonstration πD belongs to a
cluster c, and ψ(c) is the the estimated prior probability of a
cluster c. The EM algorithm iteratively alternates between
an estimation step (E-step) and a maximization step (M-
step). Within the E-step, we compute the probability of a
demonstration belonging to a cluster as

βt,πD

c =
p(πD|c,θt,ψt)ψt(c)∑
c∈C p(πD|c,θt,ψt)ψt(c)

, (3)

exploiting the constraint
∑

c∈C β
πD

c = 1. In Eq. 3,
p(πD|c,θ,ψ) reduces to p(πD|θc).

Within the M-step, we compute for each iteration t the
prior probability ψ(c) as

ψt+1(c) =
1

B

∑

πD∈ΠB

βt,πD

c , (4)

where B is the number of demonstrations in a batch ΠB .
Furthermore, we compute the reward functions θc for each
cluster as

θt+1
c = argmax

θ

∑

πD∈ΠB

βt,πD

c

[
ln p(πD|θc)

]
. (5)

We obtain the log-likelihood gradient for a cluster c as

∇θc
L(θc) = β

πD

c

(∑

π∈Π

p(π|θc)fπ − fπD
)
. (6)

In contrast to the gradient formulation of IRL that finds a
single reward function for the demonstrated policies, latent
IRL finds a number of reward functions. The probability that
a demonstration belongs to cluster βπ

c influences the update
of the gradient. During training, βπ

c is inferred using Bayes’
rule on the basis of the PI features of the demonstration.
Due to the absence of features of the demonstration during
online planning, we assume that the optimal solution on the
basis of the last predicted reward function allows us to infer
a situation-dependent reward function for the next planning
cycle. In order to scale over a large number of situations,
we next formulate an alternative approach based on deep
learning.

V. PATH INTEGRAL DEEP IRL

We propose a deep learning approach for PI maximum
entropy IRL that approximates a complex mapping between
the situation and reward function. Our neural network pre-
dicts the reward function weights θk+1 based on the actions
aΠ
k and PI features fΠ

k of the policy set Πk at MPC cycle
k, given by θk+1 ≈ g(Θ,fk,ak).

The IRL problem can be formulated in the context of
Bayesian inference as MAP estimation, which entails max-
imizing the joint posterior distribution of observing expert
demonstrations ΠD. We calculate the maximum entropy
probability based on the linear reward weights θ, which are
inferred by the network with parameters Θ as

L(θ) = L(g(Θ,f ,a)) =
∑

πD∈ΠD

ln p(πD|g(Θ,f ,a)). (7)

Maximization leads to the optimal weights

θ∗ = argmax
θ

∑

πD∈ΠD

ln p(πD|g(Θ,f ,a)). (8)

The gradient calculation from PI maximum entropy IRL
from Eq. 2 lends itself naturally towards training deep neural
networks, where the gradient of the log-likelihood L(θ) can
be calculated in terms of Θ as

∂L

∂Θ
=

∂L

∂θ
· ∂θ
∂Θ

=
[∑

π∈Π

p(π|θ)fπ − f̂ΠD
]
· ∂

∂Θ
g(Θ,f ,a).

(9)

The gradient is separated into the maximum entropy
gradient in terms of θ and the gradient of θ w.r.t. the
network parameters Θ, which can be directly obtained via
backpropagation in the deep neural network.

A. Training methodology

Algo. 1 describes the training algorithm used for PI
maximum entropy deep IRL. IRL training is often very time
consuming since the MDP has to be solved with the current
reward function in the inner loop of reward learning. In

Algorithm 1: Deep IRL Training
Input: odometry of human demonstation ζ, model M , planning

horizon H, reward discount factor γ
Output: network weights Θ∗

1 function DeepIRLTraining(ΠD,M,H, γ)
2 θ0 ← init reward weights

3 Π,ΠD ← Planning(θ0,M,H, γ, ζ)
4 Θ0 ← init network weights
5 for e in Epochs do
6 for b in Batch do
7 θb ← network forward pass(Θb, fb, ab)

8 ∂Lb

∂θb
=

∑
π∈Π p(π|θb)fπb − f̂b

ΠD

9 ∂Lb

∂Θb
← network backprop(Θb, fb, ab,

∂Lb

∂θb
)

10 Θb+1 ← update weights(Θb,
∂Lb

∂Θb
)

our IRL formulation, we do not solve the MDP within the
inner loop; instead we run our planning algorithm prior to
training with a randomly initialized reward function θ0 over
training segments. Thereby, we generate a buffer of planning
cycles consisting of a set of policy sets Π with corresponding
PI features fΠ and actions aΠ. Due to the high-resolution
sampling of actions, we ensure that there are policies that
are geometrically close to human-recorded odometry and
resemble human driving styles. Therefore the task of IRL
is to find the unknown reward function that increases the
likelihood of these trajectories to be considered as optimal
policies. During the policy generation, we utilize a weighted
Euclidean distance towards human driven trajectories ζ to
generate demonstrations ΠD for each policy set Π. Similar
to the reward weights θ, the network parameters Θ are
initialized with random values before starting the training.
The training loop is run for a predefined number of epochs,
ensuring that the convergence metric, the expected value
difference (EVD), reaches the desired threshold value. For
each epoch the training dataset is shuffled and divided into
batches to perform mini-batch gradient decent.

B. Neural network architecture

In this work a deep architecture is proposed, which maps
the PI features fΠ and actions aΠ to linear reward weights
θ. The input to the network is a set of 15 PI features
fΠ and 8 actions aΠ for every policy of a planning cycle.
The continuous actions are reduced to steering angle and
accelerations at discrete control points. The network architec-
ture comprises of one-dimensional convolutions and average
pooling to extract latent variables of policies describing the
high-dimensional input space. The architecture uses one-
dimensional convolutional layers to learn the causal relation-
ship between sampled actions and resultant features of every
policy. There is no inherent relationship among policies in the
input space therefore no information is gained by performing
higher dimensional convolutions. The architecture consists
of convolutional building blocks, each comprising of two
convolutional layers followed by an average pooling layer
which performs dimension reduction. There are five such
blocks in succession followed by fully-connected layers. A
series of eight fully-connected layers at the end learn inter-
policy relationships from the resultant latent variables of the

convolutional stack. A vector of linear reward weights with
the same dimension as the no. of features, i.e. 15, is the
output of the network. All activation functions in the network
are chosen as Rectified Linear Units, except for the output
layer where no activation function is used.

C. Inference during MPC planning cycles

During real-time planning in an automated drive, the MPC
re-plans in discrete time-steps k. After receiving the features
and actions of the latest planning cycle, the neural network
infers the reward weights. To enable smooth transitions of
the reward functions, we utilize a predefined history size h
to calculate the empirical mean of weights θ̂. The weights
hence obtained are used to continuously re-parameterize the
planning algorithm for the subsequent planning cycle.

VI. EXPERIMENTS

In our experiments, we use our proposed PI deep IRL
(PIDIRL), as well as PI latent IRL (PILIRL) and PI linear
IRL (PIIRL) in real urban driving situations. We focus our
experiments on situations that introduce conflicts in driving
objectives so as to highlight the importance of situation-
dependent reward functions.

A. Data collection and simulation

Our experiments are conducted on a prototype vehicle,
which uses a mediated perception architecture to produce
feature maps of the environment. These feature maps are
depicted in the ground-plane in Fig. 1. The MPC planning
algorithm uses the feature maps to get state features and com-
putes state-values as shown in as color-coded point clouds
in Fig. 1. We gathered data on a set of streets in Hamburg,
Germany located around Messe and Congress, see Fig. 3a.
We concentrate on static infrastructure and objects while
disabling intention prediction of dynamic objects to test our
reward functions in different location-dependent situations
on this track. Three drives over this course are segmented
into train and test tracks, each of which is subdivided into
four situations. Situation 1 resembles sharp curves, situation
2 stopping, starting and turns at traffic lights, situation 3
stopping and starting at a traffic lights, and situation 4
resembles lane following. The training of our algorithm is
performed in a playback simulation of the recorded data as
depicted in Fig. 1. After every planning cycle of the MPC,
the position of the vehicle is reset to the odometry recording
of the human demonstration

B. Reward feature representation

We concentrate on a reward set consisting of K = 15
manually engineered features, which are listed in the table of
Fig. 3g. Infrastructural features are derived by a data fusion
between objects and street network [21]. The kinematic
characteristics of the policies are given by derivatives of the
lateral and longitudinal actions as well as features related
to behavior, e.g. lane change delay. In addition selection
features are designed so as to evaluate policies based on
more nuanced attributes such as maneuvers space, progress
and policy end direction toward the road.

0 50 100 150

Epoch number

0.05

0.10

0.15

0.20

0.25

E
xp

ec
te

d
di

st
an

ce

PIIRL
PIDIRL
PILIRL

Fig. 2: Expected distance over epochs of training.

VII. EVALUATION

We compare the results of the situation-dependent reward
functions from PI deep IRL (PIDIRL) against PI latent IRL
(PILIRL), and PI linear IRL (PIIRL) with and without a-
priori knowledge about the situation. First, we compare the
model training based on distance convergence toward the
human demonstration. Second, we compare the driving style
of our policies under learned reward functions against human
driving in different driving situations. Third, we analyze the
reward weights inferred on the different test segments.

A. Training evaluation

We analyze the convergence of our model training based
on a distance metric d(ζ, π) towards the human driven
demonstration ζ. This distance metric is an integral of the Eu-
clidean distance in longitudinal and lateral direction as well
as the squared difference in the yaw angle over the policy as
described in detail in [5]. Due to our goal of optimizing the
likelihood of human driving behavior within the policy set Π,
we measure our training convergence based on the expected
distance (ED), given by E[d(ζ,Π)] =

∑
π∈Π p(π|θ)d(ζ, π).

We plot ED for each IRL approach over an equal amount
of training epochs. In Fig. 2 the ED for PIDIRL, PILIRL
and PIIRL are plotted for 143 epochs. The PIDIRL shows
a large ED reduction 78% over the entire training dataset.
The starting ED is high due to the randomly initialized
network, but a high reduction of 74% is achieved in only
22 epochs. PILIRL also has a high initial ED due to higher
variance in weight initialization in order to find multiple
different clusters, it finally shows a reduction of 74%. Due
to the limited model complexity, PIIRL shows lowest ED
reduction of 60%, here trained over the entire training dataset
without a-apriori knowledge about the situations. The slight
variance in the PIDIRL plot, particular in epoch 90, can be
explained due to high learning rate and small batch size.
From the statics above we can deduce that PIDIRL has
the highest likelihood of selecting policies with humanlike
driving behavior across different driving situations.

B. Driving style evaluation

In this part of the evaluation, we compare the driving
style of PIDIRL, PILIRL, and PIIRL models against manual

human driving over different test situations. We generate
multiple PIIRL models with a-prior knowledge for each
driving situations so as to compare the situation-dependent
performance of the proposed PIDIRL. We plot the distance
of the optimal policy obtained from theses models to the
odometry of the human demonstration for different driving
situations. Our test segments contain 187 planning cycles for
segment 1, 232 for segment 2, 217 for segment 3, and 224
for segment 4. In Fig. 3c-f, we fit a Gaussian distribution
over the segment specific distance histogram with 200 bins
of size 0.0025. From our experiments we deduce that our
proposed PIDIRL method produces policies with 21% lower
mean distance as compared to PILIRL in seg. 1 and in seg.
2. In seg. 3 the mean distances from both of these methods
are comparable. Moreover, PIDIRL shows 13% lower mean
distance as compared to the segment specific PIIRL for seg.
3 and comparable results for the other segments. In seg.
4 PIDIRL produces policies with higher mean distances as
compared to PIIRL and PILIRL. This trend can be described
by the dominant prior of PILIRL and overfitting of PIIRL for
straight segments. This poses as a disadvantage for both of
theses methods as compared to our proposed PIDIRL which
has better generalization capabilities. This generalization can
be seen in the Fig. 3b, where PIDIRL has a similar mean
distance over all segments. The reward function weights
obtained from these models over the test situations are shown
in Fig. 3h-k, where the weights are inversely proportional to
the preference of that feature value in the policy. The reward
weights are plotted in logarithmic scale. In these plots, it
can be seen that PIDIRL produces nuanced reward functions
for every planning cycle in the segment. The variance of
the reward function produced by PIDIRL is proportional
to the situation complexity. In simple situations, as shown
in Fig. 3b at seg. 4, having a nuanced reward functions
prediction mechanism like PIDIRL producing high variance
as shown in Fig. 3k could lead to lower performance as
compared to simpler reward functions namely PILIRL and
PIIRL.

VIII. CONCLUSION AND FUTURE WORK

We utilize path integral (PI) maximum entropy deep IRL
to learn situation-dependent reward functions of a general-
purpose planning algorithm. We propose a method to couple
the reliability of a model-based planning system with the
generalization capability of deep inverse reinforcement learn-
ing. Our experiments show that reward function predictions
by our proposed neural network architecture are at par with
multiple PI linear IRL reward function model that are trained
with a-priori knowledge about the situation. In addition to
this, we show that our deep IRL methodology has better
generalization capabilities as compared to PI latent IRL
which uses behavioral clustering of demonstrations. In future
we plan to experiment with different network architectures in
our proposed deep IRL paradigm so as to reduce the variance
in reward functions prediction in simple driving situations.

Label Description
1 Sharp Turn
2 Stop, Start, Turn
3 Stop, Start
4 Lane follow

(a) The map depicts the training (blue) and test (red) segments
of the selected Route in Hamburg City Center.

0 200 400 600 800

Planning cycle

0.0

0.1

0.2

0.3

D
ist

an
ce

PIIRL
PILIRL
PIDIRL

1 2 3 4
Segment

(b) Distance of the opt. policies on different driving segments.

0.0 0.2 0.4

Distance

0

5

10

C
ou

nt

PIDIRL
PILIRL
PIIRL

(c) Distribution of the opt. policy distances in seg. 1.

0.0 0.2 0.4

Distance

0

5

10

C
ou

nt

PIDIRL
PIIRL
PILIRL

(d) Distribution of the opt. policy distances in seg. 2.

0.0 0.2 0.4

Distance

0

10

20

C
ou

nt

PILIRL
PIIRL
PIDIRL

(e) Distribution of the opt. policy distances in seg. 3.

0.0 0.2 0.4

Distance

0

10

C
ou

nt

PIDIRL
PIIRL
PILIRL

(f) Distribution of the opt. policy distances in seg. 4.

Label Feature

K
in

em
at

ic
s

0 Long. Acc.
1 Long. Jerk
2 Long. Velocity
3 Lat. Acc.
4 Lat. Jerk
9 Lat. Overshooting
10 Lane Change Delay

St
at

ic
s

5 Centerline
6 Direction
7 Proximity
8 Curbs

Se
le

ct
io

n 11 State Class
12 Manuver Space
13 End Direction
14 Min. Progress

(g) The table lists the considered PI features. The
parameters are plotted in logarithmic scale.

PIDIRL
PILIRL
PIIRL

0

1

2

3

4

5

6

7 8

9

10

11

12

13

14

0.0

0.5

1.0

1.5

2.0

(h) Inf. reward weights on seg. 1.

0

1

2

3

4

5

6

7 8

9

10

11

12

13

14

0.0

0.5

1.0

1.5

2.0

(i) Inf. reward weights on seg. 2.
0

1

2

3

4

5

6

7 8

9

10

11

12

13

14

0.0

0.5

1.0

1.5

2.0

(j) Inf. reward weights on seg. 3.

0

1

2

3

4

5

6

7 8

9

10

11

12

13

14

0.0

0.5

1.0

1.5

2.0

(k) Inf. reward weights on seg. 4.

Fig. 3: (a) Tests conducted on a selected Route in Hamburg City center. (b-f) Graphs compares the performance of PIDIRL
with PILIRL, and PIIRL over different driving segments. (g) Table of reward function features. (h-k) Graphs show the reward
function predictions of our methods over driving segments.

REFERENCES

[1] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.

[2] A. Y. Ng and S. J. Russell, “Algorithms for Inverse Reinforcement
Learning,” in Proc. Int. Conf. Machine Learning (ICML), 2000, pp.
663–670.

[3] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2015, pp. 2641–2646.

[4] S. Heinrich, A. Zoufahl, and R. Rojas, “Real-time trajectory optimiza-
tion under motion uncertainty using a GPU,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots and Syst. (IROS), 2015, pp. 3572–3577.

[5] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, and S. Roth,
“Driving with style: Inverse reinforcement learning in general-purpose
planning for automated driving,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots and Syst. (IROS), 2019, pp. 2658–2665.

[6] S. Heinrich, “Planning Universal On-Road Driving Strategies for
Automated Vehicles,” Ph.D. dissertation, Freie Universität Berlin,
2018.

[7] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum Entropy
Deep Inverse Reinforcement Learning,” arXiv:1507.04888 [cs], p.
1507.04888, 2015.

[8] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” in Int. J. Robotics Research, vol. 36,
no. 10, pp. 1073–1087, 2017.

[9] M. McNaughton, “Parallel Algorithms for Real-time Motion Plan-
ning,” Ph.D. dissertation, Carnegie Mellon University, 2011.

[10] S. Wang, D. Schuurmans, and Y. Zhao, “The Latent Maximum Entropy
Principle,” in Proc. IEEE Int. Symp. on Inf. Theory ISIT, 2002. pp.
131-.

[11] M. Babes, V. Marivate, K. Subramanian, and M. L. Littman, “Ap-
prenticeship learning about multiple intentions,” in Proc. Int. Conf.
Machine Learning (ICML), 2011, pp. 897–904.

[12] M. Shimosaka, K. Nishi, J. Sato, and H. Kataoka, “Predicting driving
behavior using inverse reinforcement learning with multiple reward
functions towards environmental diversity,” in IEEE Intell. Vehicles
Symp., 2015, pp. 567–572.

[13] J. Choi and K.-E. Kim, “Nonparametric Bayesian inverse reinforce-
ment learning for multiple reward functions,” in Adv. in Neural Inform.
Process. Syst., 2012, pp. 305–313.

[14] C. Finn, S. Levine, and P. Abbeel, “Guided Cost Learning: Deep
Inverse Optimal Control via Policy Optimization,” in J. of Machine
Learning Research, pp. 49–58, 2016

[15] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Adv. in Neural Inform. Process. Syst., 2016, pp. 4565–4573.

[16] C. M. Hruschka, D. Töpfer, and S. Zug, “Risk assessment for integral
safety in automated driving,” in Int. Conf. on Intell. Autonomous
Systems (ICoIAS), 2019, pp. 102–109.

[17] S. Arora and P. Doshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” in arXiv Preprint
arXiv:1806.06877, 2018.

[18] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforce-
ment learning in continuous state spaces with path integrals,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots and Syst. (IROS)., 2011. pp. 1561–
1566.

[19] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” in J. of Machine Learning
Research, vol. 11, no., pp. 3137–3181, 2010.

[20] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maxi-
mum Entropy Inverse Reinforcement Learning.” in Proc. Nat. Conf.
Artificial Intell. (AAAI), vol. 8, 2008. pp. 1433–1438.

[21] K. Homeier and L. Wolf, “RoadGraph: High level sensor data fusion
between objects and street network,” in Proc. IEEE Int. Conf. Intell.
Transp. Syst. (ITSC), 2011, pp. 1380–1385.

96 appendix

a.4 planning on the fast lane : learning to interact us-
ing attention mechanisms in inverse reinforcement

learning

Sascha Rosbach, Xing Li, Simon Großjohann, Silviu Homoceanu, and
Stefan Roth
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, USA, October 2020.

Abstract

General-purpose trajectory planning algorithms for automated driving
utilize complex reward functions to perform a combined optimization
of strategic, behavioral, and kinematic features. The specification and
tuning of a single reward function is a tedious task and does not gen-
eralize over a large set of traffic situations. Deep learning approaches
based on path integral inverse reinforcement learning have been suc-
cessfully applied to predict local situation-dependent reward functions
using features of a set of sampled driving policies. Sample-based tra-
jectory planning algorithms are able to approximate a spatio-temporal
subspace of feasible driving policies that can be used to encode the
context of a situation. However, the interaction with dynamic objects
requires an extended planning horizon, which depends on sequential
context modeling. In this work, we are concerned with the sequen-
tial reward prediction over an extended time horizon. We present a
neural network architecture that uses a policy attention mechanism to
generate a low-dimensional context vector by concentrating on trajec-
tories with a human-like driving style. Apart from this, we propose a
temporal attention mechanism to identify context switches and allow
for stable adaptation of rewards. We evaluate our results on complex
simulated driving situations, including other moving vehicles. Our
evaluation shows that our policy attention mechanism learns to focus
on collision-free policies in the configuration space. Furthermore, the
temporal attention mechanism learns persistent interaction with other
vehicles over an extended planning horizon.

Copyright notice

© 2020 IEEE. Reprinted, with permission, from Sascha Rosbach, Xing
Li, Simon Großjohann, Silviu Homoceanu, Stefan Roth, Planning on
the fast lane: Learning to interact using attention mechanisms in in-
verse reinforcement learning, 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2020.

Planning on the fast lane: Learning to interact using attention
mechanisms in path integral inverse reinforcement learning

Sascha Rosbach1,2, Xing Li1, Simon Großjohann1, Silviu Homoceanu1 and Stefan Roth2

Abstract— General-purpose trajectory planning algorithms
for automated driving utilize complex reward functions to
perform a combined optimization of strategic, behavioral, and
kinematic features. The specification and tuning of a single
reward function is a tedious task and does not generalize
over a large set of traffic situations. Deep learning approaches
based on path integral inverse reinforcement learning have
been successfully applied to predict local situation-dependent
reward functions using features of a set of sampled driving
policies. Sample-based trajectory planning algorithms are able
to approximate a spatio-temporal subspace of feasible driving
policies that can be used to encode the context of a situation.
However, the interaction with dynamic objects requires an ex-
tended planning horizon, which depends on sequential context
modeling. In this work, we are concerned with the sequential
reward prediction over an extended time horizon. We present
a neural network architecture that uses a policy attention
mechanism to generate a low-dimensional context vector by
concentrating on trajectories with a human-like driving style.
Apart from this, we propose a temporal attention mechanism
to identify context switches and allow for stable adaptation of
rewards. We evaluate our results on complex simulated driving
situations, including other moving vehicles. Our evaluation
shows that our policy attention mechanism learns to focus on
collision-free policies in the configuration space. Furthermore,
the temporal attention mechanism learns persistent interaction
with other vehicles over an extended planning horizon.

I. INTRODUCTION

To drive in complex environments, automated vehicles
plan in spatio-temporal workspaces. Sampling-based plan-
ning algorithms explore this workspace by sampling kine-
matically feasible actions. Encoding features of dynamic
objects is challenging because interaction occurs over an
extended planning horizon. Planning algorithms often rely
on object predictions to derive features. During persistent
maneuvers such as lane changes, automated vehicles mediate
between a set of rewards from kinematics, infrastructure,
behavior, and mission. A single reward function is often
unable to evaluate a large set of heterogeneous driving situ-
ations. In this work, we focus on situation-dependent reward
predictions using inverse reinforcement learning (IRL) that
enables persistent behavior over an extended time horizon.

However, two challenges arise regarding the spatial and
temporal dimensions: First, sampling a set of feasible driv-
ing policies often includes non-human-like trajectories that

1The authors are with the Volkswagen AG, 38440 Wolfsburg, Germany
{sascha.rosbach, xing.li, simon.grossjohann,
silviu.homoceanu}@volkswagen.de

2The authors are with the Visual Inference Lab, Department of Computer
Science, Technische Universität Darmstadt, 64289 Darmstadt, Germany
stefan.roth@visinf.tu-darmstadt.de

Fig. 1: Illustration of our planner for automated driving,
which samples policies for our deep inverse reinforcement
learning approach. The z-axis corresponds to the velocity,
whereas the ground plane depicts spatial feature maps such
as distances from the lane centers. A subset of policies is
visualized, where the green triangle shows the optimal policy,
and the blue triangles high-light the highest policy attention.
The color gradient corresponds to the policy value. Blue
policies show high attention activation. The cylindric objects
represent a stop barrier.

distort the assessment of the situational driving context. Sec-
ond, sequence-based reward prediction requires an efficient
context encoding over an extended time horizon. We propose
a trajectory attention network that focuses on human-like
trajectories to encode the driving context. Furthermore, we
use this context vector in a sequence model to predict a
temporal reward function attention vector. This temporal
attention vector allows for stable reward transitions for
upcoming planning cycles of a model-predictive control-
based planner.

We evaluate the behavior of our approach in complex
simulated driving situations over an oval course, including
multiple lanes. The agent has to reach checkpoints, stop at
stop signs, and has to interact by passing other vehicles
that drive at lower velocities. We compare the reward pre-
dictions of our neural network architecture against baseline
approaches using the expected value difference (EVD), ex-
pected distance (ED), and optimal policy distance (OPD) to
the demonstrations. Our experiments show that we are able
to produce stationary reward functions if the driving task
does not change while at the same time addressing situation-

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

dependent task switches with rapid response by giving the
highest weight to the reward prediction of the last planning
cycle.

II. RELATED WORK

General-purpose planning algorithms combine mission,
behavior, and local motion planning. These planning al-
gorithms generate a set of driving policies in all traffic
situations [1]. The policies are generated by sampling high-
resolution actions based on action distributions that are
derived from vehicle kinematics. A sequence of sampled
actions can produce driving policies with complex implicit
maneuvers, e.g., double lane-changes and merges in the time
gap between two vehicles. The action sampling is achieved
through massive parallelism on modern GPUs. In contrast
to classical hierarchical planning systems, these approaches
do not decompose the decision-making based on behavior
templates [2]. Thus, the planning paradigm does not suffer
from uncertain behavior planning that is often introduced due
to insufficient knowledge about the underlying motion con-
straints. However, general-purpose planning systems require
a reward function that evaluates the policy set in terms of
kinematic and environment features in all driving situations.
Specification and tuning of such a reward function is a te-
dious process that requires expert domain knowledge. Motion
planning experts often rely on linear reward functions, which
do not generalize over a large set of driving situations. The
generalization of linear reward functions can be addressed
by introducing an additional selection function of the final
driving policy based on the generated policy set. During
the selection, clustering and reasoning techniques can be
used to discover maneuver patterns and evaluate the final
policy [3]. We adopt the methodology of a sample-based
general-purpose planning algorithm and focus on predicting
local situation-dependent reward functions to scale over a
large set of driving situations. In contrast to previous work,
we do not use collision checking and features derived by
post-sampling on the policy set [4]. Instead, we challenge
the deep learning approach to predict situation-dependent
reward functions and thereby control the overall driving task.
Therefore, the interaction with infrastructure and dynamic
vehicles is based on learned context representations.

In our previous work, we proposed a deep learning ap-
proach that predicts situation-dependent reward functions for
such a sample-based planning algorithm. These planning
algorithms operate in a model-predictive framework to ad-
dress updates of the environment [4], [5]. The deep learning
approach based on IRL uses features and actions of sampled
driving policies to predict a set of linear reward function
weights. The closed loop from sampled driving policies to
reward function allows for dynamic updates of the reward
weights over discrete planning cycles. However, continu-
ous reward function switches may result in non-stationary
behavior over an extended planning horizon. The authors
found that the variance of the reward function prediction
itself is proportional to the situational changes. In this work,
we concentrate on persistent interaction with other moving

vehicles over an extended time horizon, which can only
be achieved if temporally consistent reward functions are
predicted.

Planning and reinforcement learning algorithms for auto-
mated driving often solve a Markov-Decision Process (MDP)
to find an optimal action sequence. The actions in automated
driving are often represented as a tuple of wheel angle and
acceleration. Sutton et al. introduced a temporal abstraction
to such primitive actions in semi-MDPs, which are referred
to as options [6]. Options are closed-loop policies for taking
actions over a period of time, e.g., stay on a lane, change a
lane to the left or right [7]. Similar to the temporal driving
abstraction in reinforcement learning that has been presented
by Shalev et al. [7], we utilize temporal abstraction in IRL.
Previous work has investigated this hierarchical abstraction
in IRL in terms of sub-task and sub-goal modeling using
Mixture Models [8], [9]. In contrast to this work, we utilize
sequential deep learning models to determine task transitions
automatically.

In order to interact with dynamic objects, the planning
algorithm operates on a spatio-temporal space, where a sub-
space is sampled based on kinematic feasibility. Path integral
features for a policy are approximated during the action-
sampling procedure and describe features of individual poli-
cies. In previous work, we focused on one dimensional (1D)
convolutional neural network (CNN) architectures that gen-
erate a latent representation of trajectories [4]. The situation-
dependent context description is encoded in fully-connected
layers using latent trajectory features of the 1D-CNN block.
The architecture’s parameters largely depend on the policy
set’s size, which causes slow inference in recurrent models.
The size of the policy set used to understand the spatio-
temporal scene can be significantly reduced by concentrating
on relevant policies with a human-like driving style. In this
work, we use a policy attention mechanism to achieve this
dimension reduction using a situational context vector.

Attention networks have gained significant interest in
computer vision, natural language processing, and imitation
learning [10]–[12]. Sharma et al. propose an attention-based
model for action recognition in videos, which selectively
focuses on parts of the video frames [13]. Fukui et al.
use an attention branch to allow for visual explanation and
improved performance in image recognition [14]. We utilize
the visual explanation capabilities of an attention mask to
explain which of the sampled driving policies are most
relevant in every planning cycle. Wang et al. use an attention
mechanism to learn unsupervised object segmentation [12].
They leverage the availability of affordable eye-tracking from
human gazes to annotate objects. Similar to this work, we
use odometry records as affordable labels to add supervised
conditions on our situational context vector. Thereby, high
attention on trajectories yields a proxy for closeness to expert
demonstrations.

III. PRELIMINARIES

Planning is often formulated as an MDP consisting of
a 5-tuple S,A, T,R, γ, where S denotes the set of states,

and A describes the set of actions. In the domain of con-
tinuous control, an action a is integrated over time t using
a transition function T (s, a, s′) for s, s′ ∈ S, a ∈ A. Every
action a in state s is evaluated using a reward function R
that is discounted by γ over time t. The reward function
uses features that are computed using an environment model
and a vehicle transition model. The planner explores the
subspace of feasible policies Π by sampling actions from
a distribution conditioned on vehicle dynamics for each
state s. The reward function is a linear combination of k
static and kinematic features fi with weight θi such that
∀(s, a) ∈ S ×A : R(s, a) =

∑
i∈K −θifi(s, a). The value

of a policy V π is the integral of discounted rewards during
continuous transitions. The feature path integral fπ

i for a
policy π is defined by fπ

i =
∫
t
γtfi(st, at) dt. We project

odometry records ζ of expert demonstrations into the state-
action space to formulate a demonstration policy based on a
Euclidean distance metric ensuring πD ∈ Π. To extend the
temporal planning horizon, a sequence of a-priori unknown
reward functions can be defined as Rseq = [R

(1)
seq, ..., R

(k)
seq].

Similar to options in a semi-MDP, which are a generalization
of primitive actions, a task can be decomposed into a se-
quence of subtasks, which depends on a preceding sequence
R

(k−1)
seq . Thereby planning can be described in an MDP

within a set of MDPs M = [M (1), ...,M (k)], each having
different reward functions R(k).

A. Maximum entropy PI deep IRL

IRL allows finding the reward function weights θ that
enable the optimal policy π∗ to be at least as good as the
demonstrated policy πD [15]. The behavior of a demon-
stration is thereby indirectly imitated by the planning al-
gorithm [16]. In path integral (PI) IRL, we formulate a
probabilistic model that yields a probability distribution over
policies, p(π|θ) [17], [18]. For each planning cycle, we opti-
mize under the constraint of matching the expected PI feature
values Ep(π|θ)[fπ] of the policy set Π and the empirical
feature values f̂ΠD

of the demonstrations. Imperfect demon-
strations introduce ambiguities in the optimization problem,
which Ziebart et al. [19] propose to solve by maximizing the
entropy of the distribution. The policy distribution is given
by

p(π|θ) = 1

Z
exp(−θ⊤fπ). (1)

Due to the exponential growth of the state-action space
it is often intractable to compute the partition function
Z =

∑
π∈Π exp(−θ⊤fπ). We approximate the partition

function by sampling driving policies similar to Markov
chain Monte Carlo methods. Maximizing the entropy of the
distribution over policies subject to the feature constraints
from demonstrated policies implies that the log-likelihood
L(θ) of the observed policies under the maximum entropy
distribution is maximized. In previous work, we formulated a
deep learning approach for PI maximum entropy IRL, which
approximates a complex mapping between PI features fΠ

k ,

actions aΠ
k and reward function weights θk+1 at MPC cycles

k, given by θk+1 ≈ g(Θ,fk,ak).
The IRL problem can be formulated in the context of

Bayesian inference as maximum a posteriori estimation,
which entails maximizing the joint posterior distribution
of observing expert demonstrations ΠD. We calculate the
maximum entropy probability based on the linear reward
weights θ, which are inferred by the network with parameters
Θ as

L(θ) = L(g(Θ,f ,a)) =
∑

πD∈ΠD

ln p(πD|g(Θ,f ,a)). (2)

The gradient for the log-likelihood L(θ) can be calculated
in terms of Θ as

∂L

∂Θ
=

∂L

∂θ
· ∂θ
∂Θ

=
[∑

π∈Π

p(π|θ)fπ − f̂ΠD
]
· ∂

∂Θ
g(Θ,f ,a).

(3)

The gradient is separated into the maximum entropy
gradient in terms of θ and the gradient of θ w.r.t. the
network parameters Θ, which can be directly obtained via
backpropagation in the deep neural network.

B. Open-loop reward learning

Training IRL algorithms is often time-consuming. The
MDP has to be solved with respect to the current reward
function in the inner loop of reward learning. We reduce
the time constraint by running our planning algorithm prior
to training with a randomly initialized reward function θ0.
This allows us to generate a buffer of policy sets with
corresponding features and actions. Sampling high-resolution
actions allows us to project odometry records ζ in the state-
action space. We use a weighted Euclidean distance metric
calculation in the sampling procedure to evaluate distances
of policies to the odometry of the expert trajectories [5]. The
weighted Euclidean metric was evaluated against sequence
alignment methods such as dynamic time warping and found
to be sufficient to select demonstration policies. In addition
to the path integral features fπ of a policy, we use features
of the policies at time-equidistant control points cπ . The
feature sequence includes the lateral offsets with reference
to the ego position, yaw, and progress along the route. The
progress is calculated using Dijkstra’s algorithm on the road-
network after receiving the target destination. The training
algorithm is run for a predefined number of epochs, ensuring
that the convergence metrics, the EVD and ED, reach the
desired threshold value. For each epoch, the training dataset
is shuffled and divided into batches to perform mini-batch
gradient descent.

IV. NEURAL NETWORK ARCHITECTURE

We propose a deep learning architecture for PI deep IRL.
This architecture uses inputs of PI features fΠ, actions
aΠ, and a sequence of spatio-temporal features in the form
of policy control points cΠ. Our deep IRL architecture is

1DCNN FC BN

softmax

Policy Attention Encoder

Policy Attention Encoder

Policy Attention Mechanism Temporal Attention Mechanism

F
C R(t)

F
C R(t-1)

F
C R(t-H)

R(t+1)Policy Encoder

1DCNN

Policy Encoder

Policy Encoder

F
C

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

softmax

Temporal Attention Network (TAN)Context Vectors

TAN

Policy Attention Mechanism

Policy Attention Mechanism

2500 x 40 312 x 256

312x1

256 x 1

H x 1

15 x 1

Fig. 2: Neural network architectures for situation-dependent reward prediction. Policy temporal attention architecture
consisting of policy attention and temporal attention mechanism. Inputs are a set of planning cycles, each having a set
of policies. Policy encoder generates a latent representation of individual policies. Policy attention mechanism produces
a low-dimensional context vector, which is forwarded to the temporal attention network (TAN). Policy temporal attention
mechanism predicts a mixture reward function given a history of context vectors.

separated into a policy attention mechanism and a temporal
attention mechanism, as shown in Fig. 2.

A. Policy Attention

The policy attention mechanism generates a 1D context
vector of the situation. We feed the policy sets into a
policy encoder, which relies on 1DCNN layers to generate
latent features of individual policies. The combined policy
encoder and policy attention mechanism are referred to as
policy attention CNN (PACNN). A policy attention encoder
uses combinations of 1D convolutions, average pooling,
and fully-connected layers to compute a policy attention
vector. Our attention vector is based on the soft attention
mechanism [10]. We perform a softmax operation over the
output of the attention encoder network to generate a 1D
vector. The attention vector essentially filters non-human-
like trajectories from the policy encoder. We combine the
maximum entropy IRL gradient with a semi-supervised at-
tention loss [12]. The semi-supervised loss is based on the
mean absolute distance towards the expert demonstration. To
compute the loss, we sort the policies in ascending order
of progress along the route. Sorting enables a consistent
relationship between attention loss and the sampled policy
set distribution. The output of spatial attention is multiplied
by a learned scalar [20]. The scalar learns cues in the local
neighborhood and gradually assigns more weight to non-
local evidence. The maximum entropy gradient is calculated
based on the policy set of the input distribution [4]. We use
1D average upsampling of the attention vector to match the
dimensionality of policy sets. This allows us to visualize the
trajectory attention during inference.

B. Temporal attention

In a second training step, we use context vectors of our
PACNN networks and the corresponding situation-dependent
reward functions to predict the reward functions for the next

planning cycle at time t+1. We do so by taking a sequential
history size H of context vectors and reward functions into
account. The temporal attention network consists of a two-
layered recurrent long short-term memory (LSTM) network
and a fully-connected network of four layers. The output
is a 1D weight vector computed by a softmax activation
function. The final reward function is a mixture of situation-
dependent reward functions R(t+1) =

∑
h∈H whR

(h). In
contrast to the PACNN network, the temporal attention
network PTACNN learns to predict by training with the
maximum entropy gradient of the future planning cycle
at time t + 1. This architecture allows for long sequence
lengths and fast inference during the prediction due to a low
dimensional context vector. The overall idea is similar to
expectation-maximization (EM) IRL, which uses a mixture
of clustered reward functions to infer a situation-dependent
reward function given features of the demonstrations [21]. In
contrast to the mixture model, we infer a mixture of sequen-
tial reward functions based on a latent context description of
the situations.

V. EXPERIMENTS

We conducted our experiments on complex simulated
scenarios. The driving situations on our oval course are
designed in a way that a lap completion requires continuous
task predictions. The oval map includes multiple lanes, as
depicted in Fig. 1. Four checkpoints provide a proxy for
the target locations on the course; checkpoints are toggled
from inner to outer lanes to enforce mission-oriented lane-
changes. There are multiple exits on the oval, which make
the mission evaluation a requirement. On two locations of
the oval, stop signs span over all lanes to assess stopping,
starting, and making progress along the route. At most 15
vehicles are spawned at random at a distance of 200 m from
the ego vehicle. The vehicles drive with constant velocity
if they do not interact with other vehicles or infrastructure.

The spawning velocity is selected at random in the range of
25 - 35 kph. The agent’s target velocity is set to 70 kph,
which requires constant mediation between strategic, behav-
ioral, and motion-related reward features. Due to the large
velocity difference between the agent and other vehicles, it is
expected that the agent drives aggressively. In the presence
of 15 other vehicles, this implies that the agent has to learn
how to merge into small gaps between vehicles and pass
without colliding.

A. Data collection and simulation

We collect expert driving demonstrations by recording the
optimal policies of an expert-tuned planning algorithm. The
expert-tuned planner uses a manually tuned reward function
and a model-based trajectory selection. Similar to Gu et
al. [3], the expert-tuned planner uses topological clustering
and additional features that are computed on the policy
set to derive the final driving policy. A crucial input for
the selection is the progress value of policies along the
route. This feature gets the vehicle moving and influences
mission-oriented lane-changes. Once the odometry of the
expert-tuned planning algorithm is recorded, the model-
based selection, and its additional features are disabled.
This is done to test if learned context vectors are able to
encode latent features of the policy set, which allow the
indirect expert-planner imitation. During data collection, the
odometry of the expert-tuned optimal policies are recorded.
We utilize the same data collection principle, as in [4], [5].
The odometry records are projected into the state space to
formulate geometrically close demonstrations πD for the
training, validation, and test dataset. For our training datasets,
we do not assume prior knowledge of the reward function,
therefore solve the MDP using a random reward function.
For our tests on sequential datasets, we collect policy sets
using the expert-tuned planner. By projecting the odometry
of the expert optimal policies in state space during testing,
we achieve a proxy for perfect imitation.

B. Reward feature representation

The reward function features are computed during the
action sampling procedure and describe vehicle motion,
infrastructure, and time-dependent distances to objects. We
consider 15 manually engineered features. Infrastructural fea-
tures are derived from street networks [22]. Derivatives of lat-
eral and longitudinal actions describe the vehicle kinematics.
Lane change dynamics are described by lane change delay
and lateral overshooting. The lane change delay punishes
performing lane changes at the end of the planning horizon.
Spatio-temporal proximity is calculated from object motion
predictions.

C. Baseline approaches

All of the baseline approaches use the path integral IRL
training methodology and produce a linear combination of
reward weights. We consider a linear IRL (LIRL) approach
and two non-recurrent deep IRL neural network architectures
as baseline methods. The neural networks generate a latent

TABLE I: Overview of average test performance based on
ED, and OPD. Tests are conducted on a test dataset, recorded
by an expert-tuned planning algorithm. Number of trainable
variables of the neural networks are listed and split for the
PTACNN networks into the policy (left) and temporal (right)
attention network parameters.

Approach Trainable variables ED OPD
LIRL 15 0.121 0.116
Bi1DCNN 18.7 M 0.105 0.096
1DCNN 22.6 M 0.094 0.088
PTACNN 2.94 M + 1.61 M = 4.55 M 0.092 0.086
PTACNN+S 2.94 M + 1.61 M = 4.55 M 0.091 0.081

context representation of the input policy distribution. The
1DCNN architecture uses fully-connected layers to encode
the context from latent policy features; we refer to this
architecture as 1DCNN [4]. An alternative architecture uses
1D convolutions over latent features to decrease the neu-
ral network parameters. This architecture is referred to as
Bi1DCNN.

VI. EVALUATION

We evaluate the performance of our proposed spatio-
temporal attention networks against our baseline approaches.
First, we evaluate the context encoding capabilities of the
approaches. Here, we concentrate on the convergence of our
PACNN network against neural-networks without such an
attention mechanism. The convergence is analyzed in terms
of EVD and ED on training and validation datasets over
training epochs. Second, we compare the sequential predic-
tion performance in terms of the optimal policy distance
(OPD) to the expert-demonstration on a playback test dataset.
Furthermore, our supplementary video displays the closed-
loop reward function prediction and driving performance in
challenging driving situations.

A. Comparison with expert-demonstrations

Fig. 3 depicts the training, validation, and test results
of our evaluated methods. All methods in the convergence
plot are trained using the maximum entropy gradient of the
trajectory input distribution. During validation and testing,
we calculate the EVD, ED, OPD based on the inferred reward
function using a history size H = 10 for all methods. This
means that all methods except the PTACNN use a mean of
inferred reward weights over the history size. We configured
the planning algorithm so that it yields approximately 2.500
policies during each planning cycle. Fig. 3a represents the
convergence of our training, which is measured by EVD over
epochs [5]. In the EVD calculation, the value is normalized
by the value of the demonstration, since the weights may
increase their range over the training epochs. We abort
training after achieving a high ED and EVD reduction and
observe the weight distributions over the epochs. In our
training dataset, we use one hour of driving demonstrations,
which provide approximately 17.000 planning cycles and
an equal amount of expert-demonstrations πD. We split our
evaluation dataset into validation and hold out test dataset.

0 20 40 60 80 100

Epoch number

0.1

0.2

0.3

0.4

0.5

E
x
p
ec

te
d

va
lu

e
d
i�

er
en

ce 1DCNN

Bi1DCNN

LIRL

PACNN

PACNN+S

(a) Training: Convergence on a non-
sequential training dataset based on EVD.

0 20 40 60 80 100

Epoch number

0.08

0.10

0.12

0.14

E
x
p
ec

te
d

d
is

ta
n
ce

1DCNN

Bi1DCNN

LIRL

PACNN

PACNN+S

(b) Validation: Convergence on a sequential
validation dataset based on ED.

0.0 0.1 0.2

Distance

0

20

C
ou

n
t

Bi1DCNN

PTACNN+S

LIRL

1DCNN

PTACNN

DEMO

(c) Test: Distance of policy to the demon-
stration on a sequential test dataset.

Fig. 3: Training and test results of our proposed methods in contrast to baseline approaches. (a) Convergence on a non-
sequential training dataset based on EVD. (b) Convergence on a non-sequential validation dataset based on ED. (c) Distance
distribution of optimal policies to the expert demonstrations on a sequential test dataset. The lower bound for the distance
distribution is given the distance of the demonstration (DEMO). During the sequential prediction all deep learning approaches
use a history size H = 10.

PACNN+S and PTACNN+S have been trained using an
additional semi-supervised loss based on the mean absolute
policy distance to the demonstration. We calculate the EVD
every epoch and perform validation every fifth epoch.

All deep IRL methods converge to a similar EVD, in con-
trast to LIRL, which is unable to fit a single reward function
yielding low EVD. Bi1DCNN converges after 100 epochs of
training with an ED of 0.1. PACNN, PACNN+S, and 1DCNN
converge at a close ED proximity at a value of 0.07. Using
a semi-supervised loss in addition to the maximum entropy
gradient did not improve nor decrease the training results in
terms of EVD significantly. All deep IRL approaches show a
similar peak in the OPD distribution, akin to the demonstra-
tion, as depicted in Fig. 3c. The distance distribution of the
demonstration is the lower bound for the OPD. The nonzero
lower bound is caused by discretization errors of the state-
action space and the planner’s nondeterministic optimization
methodology and can be regarded as a proxy for perfect
imitation. In addition to the distribution, we summarize the
test results in Table I. PTACNN+S is trained in a second
stage using the context vector and reward predictions of
PACNN+S. The generalization of a single reward function is
not achieved, as shown in the ED reduction and OPD on the
test set. The performance of 1DCNN and Bi1DCNN models
on the validation set is proportional to the trainable variables
after latent feature extraction using 1DCNNs. 1DCNN uses
fully-connected layers to learn a context representation. In
contrast to PACNN, Bi1DCNN learns a set of filters over
latent variables of policies. The attention networks stand
out, having fewer parameters and a low-dimensional context
vector while yielding similar performance as compared to
larger neural network architectures. PACNN uses eight times
less trainable variables than 1DCNN and six times less
trainable variables than Bi1DCNN. PTACNN performs best
on the test dataset, yet the evaluation of persistent reward
predictions using temporal attention requires a closed-loop
inference.

B. Visualization of attention mechanisms

During inference, the attention mechanisms can be visu-
alized, as depicted in Fig. 1. The blue trajectories show the
trajectories with the highest policy attention activation. A
color gradient is assigned to the policy value that ranges
from green (high) to red (low). Only a subset of all feasible
policies is visualized. Our video shows the driving perfor-
mance during closed-loop inference of our proposed method.
In the video, we display two additional figures. A radar chart
depicts the predicted reward function weights, and a bar chart
shows the temporal attention activation. PTACNN is able to
control the complete driving task and interacts with other
vehicles without relying on model-based collision checking.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a deep network architecture that
is able to predict situation-dependent reward functions for
a sample-based planning algorithm. Our architecture uses a
temporal attention mechanism to predict reward functions
over an extended planning horizon. This is achieved by
generating a low dimensional context vector of the driving
situation from features and actions of sampled-driving poli-
cies. Our experiments show that our attention mechanisms
outperform our baseline deep learning approaches during
comparisons against expert-demonstrations. In closed-loop
inference, our approach is able to control the complete
driving task in challenging situations while only learning
from one hour of driving demonstrations. In future, we plan
to train the algorithm on a large scale dataset and use it
in combination with model-based constraints in real-world
driving situations. Furthermore, we want to integrate raw
sensory data into the deep inverse reinforcement learning
approach so as to learn relevant features of the environment
automatically.

REFERENCES

[1] M. McNaughton, “Parallel Algorithms for Real-time Motion Plan-
ning,” Ph.D. dissertation, Carnegie Mellon University, 2011.

[2] S. Heinrich, “Planning Universal On-Road Driving Strategies for
Automated Vehicles,” Ph.D. dissertation, Freie Universität Berlin,
2018.

[3] T. Gu, J. M. Dolan, and J.-W. Lee, “Automated tactical maneuver
discovery, reasoning and trajectory planning for autonomous driving,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS),
Daejeon, South Korea, 2016.

[4] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, X. Li, and
S. Roth, “Driving style encoder: Situational reward adaptation for
general-purpose planning in automated driving,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), Paris, France, 2020.

[5] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, and S. Roth,
“Driving with style: Inverse reinforcement learning in general-purpose
planning for automated driving,” in Proc. IEEE/RSJ Int. Conf. Intel-
ligent Robots and Syst. (IROS), Macau, China, Nov 2019, pp. 2658–
2665.

[6] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[7] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” in Learning,
Inference and Control of Multi-Agent Syst. Workshop (NIPS), 2016.

[8] S. Krishnan, A. Garg, R. Liaw, L. Miller, F. T. Pokorny, and K. Gold-
berg, “Hirl: Hierarchical inverse reinforcement learning for long-
horizon tasks with delayed rewards,” arXiv preprint arXiv:1604.06508,
2016.

[9] A. Šošić, A. M. Zoubir, E. Rueckert, J. Peters, and H. Koeppl, “Inverse
reinforcement learning via nonparametric spatio-temporal subgoal
modeling,” The Journal of Machine Learning Research, vol. 19, no. 1,
pp. 2777–2821, 2018.

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Int. Conf. Learning
Representations ICLR, Y. Bengio and Y. LeCun, Eds., San Diego,
USA, 2015. [Online]. Available: http://arxiv.org/abs/1409.0473

[11] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learn-
ing,” in Adv. in Neural Inform. Process. Syst., 2017, pp. 1087–1098.

[12] W. Wang, H. Song, S. Zhao, J. Shen, S. Zhao, S. C. Hoi, and
H. Ling, “Learning unsupervised video object segmentation through
visual attention,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 3064–3074.

[13] S. Sharma, R. Kiros, and R. Salakhutdinov, “Action recognition using
visual attention,” arXiv preprint arXiv:1511.04119, 2015.

[14] H. Fukui, T. Hirakawa, T. Yamashita, and H. Fujiyoshi, “Attention
branch network: Learning of attention mechanism for visual explana-
tion,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 10 705–10 714.

[15] S. Arora and P. Doshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” in arXiv Preprint
arXiv:1806.06877, 2018.

[16] A. Y. Ng and S. J. Russell, “Algorithms for Inverse Reinforcement
Learning,” in Proc. Int. Conf. Machine Learning (ICML), 2000.

[17] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforce-
ment learning in continuous state spaces with path integrals,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS). IEEE, 2011.

[18] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” in Int. J. Machine Learn-
ing Research, vol. 11, no. Nov, 2010, pp. 3137–3181.

[19] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maxi-
mum Entropy Inverse Reinforcement Learning.” in Proc. Nat. Conf.
Artificial Intell. (AAAI), vol. 8, 2008.

[20] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” arXiv preprint arXiv:1805.08318,
2018.

[21] M. Babes, V. Marivate, K. Subramanian, and M. L. Littman, “Ap-
prenticeship learning about multiple intentions,” in Proc. Int. Conf.
Machine Learning (ICML), 2011, pp. 897–904.

[22] K. Homeier and L. Wolf, “RoadGraph: High level sensor data fusion
between objects and street network,” in Proc. IEEE Int. Conf. Intell.
Transp. Syst. (ITSC), 2011, pp. 1380–1385.

104 appendix

a.5 pixel state value network for combined prediction

and planning in interactive environments

Sascha Rosbach, Stefan Leupold, Simon Großjohann, and Stefan Roth
Available as arXiv Preprint, arXiv:2310.07706 [cs.RO], October 2023.

Abstract

Automated vehicles operating in urban environments have to reli-
ably interact with other traffic participants. Planning algorithms often
utilize separate prediction modules forecasting probabilistic, multi-
modal, and interactive behaviors of objects. Designing prediction and
planning as two separate modules introduces significant challenges,
particularly due to the interdependence of these modules. This work
proposes a deep learning methodology to combine prediction and
planning. A conditional GAN with the U-Net architecture is trained to
predict two high-resolution image sequences. The sequences represent
explicit motion predictions, mainly used to train context understand-
ing, and pixel state values suitable for planning encoding kinematic
reachability, object dynamics, safety, and driving comfort. The model
can be trained offline on target images rendered by a sampling-based
model predictive planner, leveraging real-world driving data. Our
results demonstrate intuitive behavior in complex situations, such as
lane changes amidst conflicting objectives.

Pixel State Value Network for Combined Prediction and Planning in
Interactive Environments

Sascha Rosbach1,2, Stefan M. Leupold1, Simon Großjohann1 and Stefan Roth2

Abstract— Automated vehicles operating in urban environ-
ments have to reliably interact with other traffic participants.
Planning algorithms often utilize separate prediction modules
forecasting probabilistic, multi-modal, and interactive behaviors
of objects. Designing prediction and planning as two separate
modules introduces significant challenges, particularly due to
the interdependence of these modules. This work proposes a
deep learning methodology to combine prediction and planning.
A conditional GAN with the U-Net architecture is trained to
predict two high-resolution image sequences. The sequences
represent explicit motion predictions, mainly used to train con-
text understanding, and pixel state values suitable for planning
encoding kinematic reachability, object dynamics, safety, and
driving comfort. The model can be trained offline on target
images rendered by a sampling-based model-predictive planner,
leveraging real-world driving data. Our results demonstrate
intuitive behavior in complex situations, such as lane changes
amidst conflicting objectives.

I. INTRODUCTION

State-of-the-art automated driving functions utilize a se-
quential processing chain consisting of perception, predic-
tion, planning, and control. In this chain, the interdependence
of prediction and planning presents a major challenge. It
is often neglected that the actions of the automated vehicle
influence the behavior of other traffic participants. This work
concentrates on the joint prediction of both object behavior
(other agents) and ego behavior (the automated vehicle).

Due to inherent uncertainty in real-world driving sit-
uations, it would be required to provide a planner with
probabilistic multi-modal predictions that jointly provide a
coherent future. However, implementing the desired driving
style based on uncertain motion predictions is difficult and
an error-prone task. In contrast to related work in motion
prediction, we do not predict trajectories but, instead, focus
on predicting two time-dependent image sequences implicitly
encoding joint object and ego behavior. High-resolution
image sequences allow us to represent arbitrary distributions
over a pixel state space. The first sequence contains future
pixel visitations of other agents. We use it as a training target
to force the network to form a coherent world view but we
do not utilize it for planning. The second sequence encodes
the value of a position for the automated vehicle in space and
time and can be directly used by a planner. The deep learning
task is posed as paired image-to-image prediction task [1]

1The authors are with CARIAD SE, 38440 Wolfsburg,
Germany {sascha.rosbach, stefan.leupold,
simon.grossjohann}@cariad.technology

2The authors are with the Visual Inference Lab, Department of Computer
Science, Technische Universität Darmstadt, 64289 Darmstadt, Germany
stefan.roth@visinf.tu-darmstadt.de

Pixel State Value Network

Selected
Policy

Sequential PredictionsBEV Input Images

Targets

Object Predictions

Policy
Set

Object Predictions

Objects

ObjectsObjects

Infrastructure

Infrastructure

Values

Values

Values

Reward Function

Planning

Rendering

GAN

Fig. 1: Shows the proposed architecture comprised of pixel
state value network (PSVN), planning, and rendering mod-
ule. The rendering module uses policy sets and object pre-
dictions to generate targets for offline training of the PSVN.
The PSVN infers pixel state values for the planning module.
Object predictions and the rendering module (dashed lines)
are not required during inference.

and uses four bird’s eye view images as input that depict
information about road infrastructure and the current state of
objects and ego vehicle in the environment. The architecture
is depicted in Fig. 1.

In this work, we propose a novel imitation learning
methodology that is able to scale in terms of experience
and resolution of the state evaluation. The approach can
be divided into two stages: The first stage is concerned
with rendering image pairs and the second stage focuses
on training the network offline. In the first stage, we create
our dataset by replaying 24 hours of real-world driving data
and use our ’exhaustive’ model-predictive planner to render
megapixel-sized value images using inputs from perception,
localization, and predictions from queried object motion. In
the second stage, we train a conditional GAN offline on the
dataset (approx. 700 k images).

We perform a qualitative evaluation of the image-to-image
translation in challenging scenarios. Further, we perform a
quantitative evaluation of collision avoidance and desired
trajectory selection by contrasting the implicit object han-
dling via predicted pixel state values against a traditional
processing chain relying on explicit object predictions.

II. RELATED WORK

Traditionally, planning algorithms rely on prediction mod-
ules providing the future motion of traffic participants in
the form of trajectories. State-of-the art motion forecasting
approaches perform multi-modal predictions of agents using
deep learning yielding a set of trajectories [2]–[5]. A number

of public benchmark datasets [6]–[9] have been proposed,
setting the primary focus on the task of trajectory prediction
with performance measured against ground truth. Planning
algorithms use predictions to check for collisions [10] and
derive features such as proximities and time gaps over the
planning horizon [11]. These features are used in the reward
function to minimize risk and optimize the desired behavior.
However, deriving such features based on uncertain behavior
predictions is difficult. In this work, we train a deep model
that directly provides state values for planning in dynamic
environments to produce the desired driving behavior. This
circumvents the problem of generating interactive explicit
object predictions by learning through observation of these
features computed on recorded behaviors.

Inverse Reinforcement Learning (IRL) is a methodology
that concentrates on finding the unknown reward function
for planning and Reinforcement Learning (RL) agents. Max-
imum Entropy Deep IRL (MEDIRL) predicts a reward map
encoding the spatial traversability for path planning [12].
Lee et al. propose an extension to MEDIRL for trajectory
planning by predicting multiple time-dependent maps [13].
This allows to anticipate the behavior of moving objects
implicitly without manually specifying a cost-function rep-
resentation. However, reward maps generated by MEDIRL
suffer from noise and artifacts due to utilized pixel state
visitation frequency matching between demonstrations and
model. This fundamental problem gets more severe when
demonstrations are distributed on multiple target maps. Lee
et al. propose a penalty loss for unvisited pixels to overcome
these shortcomings [13]. However, the dimensionality of the
observable space is limited, because the higher the spatio-
temporal resolution, the less feedback received from the
expert demonstrations. Wulfmeier et al. suggest first using
human priors such as handcrafted reward maps to pretrain
the model and then fine-tune using MEDIRL to address this
issue [14]. Our work addresses these problems and proposes
a new methodology to discriminate states in a high-resolution
spatio-temporal pixel space. Furthermore, we address the
shortcoming of IRL being time-consuming to train because
learning a representation for the reward function requires
planning in the inner loop of reward learning. This gives
our approach characteristics of value equivalence learning in
Model-based Reinforcement Learning [15]–[18]. However,
our aim is to utilize learned state values to perform reward
function shaping and later tune the influence using path
integral IRL [19].

A stream of literature aims to learn a holistic end-to-
end model for driving by predicting a spatio-temporal cost
volume for planning [20], [21]. The authors train the ap-
proach using real-world driving data and define a max-
margin planning loss function using the ground-truth ego
trajectory as positive example and 100 randomly sampled
trajectories as negative examples [21]. This allows them to
discriminate good from bad trajectories. We do not utilize
demonstrations of the ego vehicle but, instead, ’exhaustively’
sample kinematically feasible actions leading to trajectories
having different behaviors (approx. 14 k trajectories per

situation) and utilize the cost function of our planner to dis-
criminate trajectories and also give our model the possibility
to learn about reachability and collision avoidance.

III. METHODOLOGY

In this work, we propose a deep learning methodology
for the combined prediction of both object behavior (other
agents) and ego behavior (the automated vehicle). The train-
ing is formulated as a paired image-to-image translation task
based on bird’s eye view images of the environment. We first
explain the image generation process that uses an exhaustive
model-predictive planner at its core which is able to generate
megapixel-sized target images. Furthermore, we propose a
conditional GAN [1] using the U-Net architecture [22] to
translate the image inputs to a sequence of images covering
space and time. Last, we outline a hybrid mode of operation
that combines value inference and sample-based planning.

A. Image Pair Generation

Our approach allows using real-world data recordings.
As of now, we chose to insert a layer of abstraction from
raw sensory data. We assume access to a perception, a
localization, and a road graph module to create bird’s eye
view input images. All images are rendered with one-
megapixel resolution. The input consists of four images
with a single channel each, stacked together as can be
seen in Fig. 2. The first layer contains road infrastructure
and velocity information for all objects including the ego
vehicle. Road infrastructure is drawn with 10 pixel wide lines
depicting the centerlines. Its color values correspond to speed
limits and precomputed maximal velocities depending on
road curvature and acceptable lateral acceleration. The ego
vehicle is highlighted by an outline in the first three layers.
The second layer depicts the direction of centerlines and all
objects relative to the ego vehicle’s orientation. The third
layer contains accelerations of all objects and centerlines that
are reachable by the ego vehicle. Centerlines are enumerated
by color and the navigational target lane is highlighted. The
fourth layer contains static vehicles and obstacles such as
road boundaries classified as, e.g., dashed, solid, or curb.
The deep neural network receives square images of size
512×512. We resize the images without distortion by always
rotating onto the diagonal to maintain the highest possible
resolution in a square image.

Target image generation can be separated into two algo-
rithms: planning and rendering. Planning is performed at
approximately 5 Hz frequency on inputs of real-world driving
recordings. Based on reprocessed data using perception,
localization, and tracking, the planning algorithm generates
a set of policies Π and their corresponding values V Π. These
are used by the rendering algorithm to produce images that
approximate a value function over pixel coordinates.

1) Planning algorithm: The planning algorithm is based
on massively parallel search and runs on a graphics pro-
cessing unit (GPU) [11], [23]. Its pseudo code is given in
Algo. 1. Implementation details of the planning algorithm
have been published in our previous work on path integral

(a) Velocity (b) Direction

(c) Target Lane (d) Boundaries

Fig. 2: Depictions of the input representation for the neu-
ral network: (a) Velocities of objects and speed limits of
centerlines. (b) Directions of objects and centerlines. (c)
Accelerations of objects and target lane. (d) Static objects
and boundaries.

IRL [19], [24], [25]. The algorithm starts by sampling a
discrete number of continuous actions As (combining wheel
angles and accelerations) for all states s ∈ St. For each
action, a transition is set up that uses fourth-order time-
continuous polynomial functions for velocity and wheel
angle profiles. The sampling distribution for each state is
conditioned on feasible vehicle dynamics and the coefficients
of the polynomials are derived from actor-friendly conti-
nuity constraints. The planner can generate diverse driving
behavior by combining transitions of one to two seconds
over the planning horizon of six seconds and more. This
allows the policy set Π to includes multiple behaviors, e.g.,
lane following, lane changes, swerving, and emergency stops.
To address the curse of dimensionality, a pruning opera-
tion removes redundant states that are evaluated based on
state similarity, kinematic, and infrastructure based features.
Our work makes use of a reward function with K = 25
handcrafted features that can be categorized into motion,
infrastructure, and object related components [19], [24], [25].
The planning algorithm yields a policy set Π and computes
a value V π =

∫
t
γtR(st, at) dt for each π ∈ Π. We increase

the state action space during the target image generation
phase compared to deployment. This allows generating a
large set of approx. 14 k policies (with a planning horizon
of 6.6 sec. and vehicle model integration steps of 0.2 sec.
this provides each situation with approx. 450 k states) that
can be utilized to render dense pixel state value images.

2) Rendering algorithm: The rendering algorithm gener-
ates a sequence of images by drawing each of the planner’s
policies. The color of the pixels is derived from the policy
value V π and discriminates pixels on the interval of [0,1]
in each situation. The red, yellow, green coloring in Fig. 3
can be seen as an example. The images have a resolution of
one megapixel and the same aspect ratio as the input images.

The scaling and aspect ratio are determined by optimizing
a convex hull around all object positions at time zero, the
ego position, and a safety corridor around the reachable set
of the last planning cycle. This provides situation adjusted,
high-resolution pixel state value readings during inference.

A sequence of images has six temporal layers l for a
planning horizon of 6.6 seconds with intervals Tl as follows:

Tl =](l − 1)× 1.1, l × 1.1], l ∈ {1, . . . , 6}. (1)

Before rendering, we calculate the probability P of selecting
a policy π using the Maximum Entropy principle [26] based
on the value V π as P (V π) = Z−1exp(−βV π), where the
partition function is defined by Z =

∑
π∈Π exp(−βV π) and

the temperature parameter β. The planner acts as an approx-
imation method to the partition function similar to Markov
chain Monte Carlo methods [19]. We discard collisions in the
calculation of the distribution to focus on the kinematically
feasible, non-colliding set for which the features of the
reward function provide a coherent ranking. We manually
tune the temperature β to balance the planner solution bias
and uncertainty of the distribution in the reachable set.

Each pixel in each layer image receives the maximal value
of any policy passing through that pixel at any time. The
resulting function for each pixel’s color value can be written
as

V (px, py, l) = max
π∈Π,t∈Tl

Pπ(px, py, t) (2)

px ∈ {1, . . . ,width}, py ∈ {1, . . . , height}. (3)

We calculate pixel coordinates from Cartesian coordinates
of the policy every 0.2 seconds, which provides start and
end points for a Bresenham [27] line drawing algorithm
connecting the pixels. The rendering algorithm is explained
in Algo. 2.

B. Image-to-Image Prediction

We propose a conditional Generative Adversarial Network
(GAN) training methodology to perform image-to-image
prediction. The deep neural network architecture utilized
is based on an Encoder-Decoder U-Net architecture as in
Pix2Pix [1]. The network is modified to take input images
of size 512 × 512 × 4 and produce images of size 512 ×
512 × 12 in contrast to the original architecture using a
spatial resolution of 256× 256. Target images are scaled to
the interval [0, 1] with a cut-off at 0.1 for the lowest possible
reachable values. The generator is trained using hard sigmoid
activation functions to assign values of zero to pixels out of
the time-dependent non-colliding reachable set and values of
one to the best pixels of the set.

The capacity of the generator is increased by using an ad-
ditional down- and upsampling layer, each having 512 filters
resulting in a total of 67 M parameters. The discriminator
has an additional downsampling layer with 512 filters with
a total of 7 M parameters. We resize the 512 × 512 square
output images again to the target aspect ratio, resulting in a
resolution of one megapixel. The neural network must adapt
to various scaling factors due to the planning algorithm’s

Algorithm 1: Planning Algorithm
Input: planning horizon H, model M , reward function R, discount γ
Output: policy set Π

1 function planning(H,M,R, γ)
2 S0 ← initial state
3 for t ∈ H do
4 St ← get set of states at time t
5 forall s ∈ St do
6 As ← sample set of actions
7 forall a ∈ As do
8 s′ ← integrate transition T (s, a)
9 f(s, a)← observe features

10 R(s, a) = −θ⊤f(s, a)
11 V (s′)← V (s) + γR(s′, a)
12 St′ ← St′ ∪ {s′}

13 St′ ← prune St′
14 Π← get policies in S,A
15 return policies Π

Algorithm 2: Rendering Algorithm
Input: policies Π with access to states S and transitions T
Output: value images I

1 function rendering(Π)
2 I ← init value image sequence
3 forall π in Π do
4 pπ ← get probability of policy P (V π)
5 for T ∈ π do
6 integrate transition T with integation step ∆t
7 foreach integration step from sa to sb do
8 ca ← get pixel coordinate of I(sa)
9 cb ← get pixel coordinate of I(sb)

10 max bresenham from ca to cb with value P (V π)

11 return I

situation-dependent choices regarding the meters-to-pixel
scale and image aspect ratio.

C. Planning with the PSVN

When using the PSVN the infrastructure and objects
are provided in bird’s eye view representation as depicted
in Fig. 1. The PSVN directly provides pixel state values
V (px, py, l) in a sequence of images encoding values for
planning, replacing explicit object predictions that are usually
required to plan in interactive environments. Recall that
pixel values are represented in the scaled interval [0, 1],
where a value of 0 represents unreachable or colliding pixel
states and 1 pixels being part of the optimal policy having
received the maxπ∈Π,t∈Tl

Pπ(px, py, t) pixel update. This
work uses the pixel values to perform reward shaping for
our planning algorithm listed in Algo. 1 to improve the
optimal policy selection [28]. Therefore supplementing the
missing behavioral information in features f(s, a) of the
reward function that only depend on s and action a with the
PSVN values encoding the preference of following a desired
behavior in a situation. The new reward function of the
planner is given by R′ = R+ F , where the reward shaping
function F is obtained by reading and integrating pixel values
encountered on the continuous transition from state s to
s′ using log(V (px, py, l)). The continuous transitions are
integrated using a vehicle model, and at every intermediate
step, the Cartesian state coordinates are converted into pixel
coordinates. The new reward function R′ combines prior

knowledge such as vehicle kinematics and distances to in-
frastructure in R with situation-dependent abstract behavioral
information given by the reward shaping function F such as
how the ego vehicle has to behave with respect to other
objects.

IV. EXPERIMENTS

We show experiments that exhibit the combined prediction
and planning capabilities of the proposed network in inter-
active driving environments. Our experiments are divided
into a qualitative analysis of the predicted image sequences
and a quantitative evaluation of the policy selection. The
quantitative evaluation contrasts the performance of a tradi-
tional architecture separating prediction and planning with
the proposed approach combining PSVN with planning. The
training dataset contains 24 hours of real-world driving data
from 35 different drivers on a predetermined route. The
driving data includes mostly urban situations with a short
rural road section. Following the route requires multiple
lane changes, left and right turns at traffic lights, and
roundabouts covering each exit possibility. The datasets are
filtered discarding situations having less than one other
vehicle involved. In the following experiments, we perform
a simplification of the implementation by using an object
prediction module as described in the traditional sequential
chain to render the training dataset targets. This allows us to
disregard perception and tracking uncertainties at this stage
of this work. Furthermore, this simplifies the quantitative
evaluation allowing a direct comparison of the separated
prediction and planning architecture with the proposed ap-
proach combining PSVN with planning. We augment the
data by shifting the ego vehicle forward, closer to preceding
vehicles, increasing the ego state velocity, and randomizing
the position and orientation relative to the centerline. All
other input information remains unmodified. The training
dataset is rebalanced based on the aspect ratio of the target
images, which provide a proxy to different situations, e.g.,
squared images in roundabouts and rectangular in straights.
Inputs for tests are generated in a simulation in separate geo-
graphical locations compared to the training dataset covering
similar situations. The test dataset contains a roundabout
and multi-lane road segments. Lane changes are required to
follow the route and adhere to user inputs such as preference
for adjacent lanes. Setting the preference for neighboring
lanes in the presence of other moving vehicles allows us
to generate difficult scenarios with conflicting objectives
between route navigation and object interaction.

A. Qualitative Examples

First, we show qualitative examples of the combined
prediction of object motion and ego vehicle behavior in
interactive urban traffic environments. The images contrast
the model’s prediction with rendered target images. Both
prediction and target are depicted including overlays of
ground-truth object positions (black rectangles), infrastruc-
ture, and the selected trajectory in black passing through
all time layers. We show a few selected situations with

6
tim

e
la

ye
rs

in
1.

1
se

c.
in

te
rv

al
s

(a) Straight Target (b) Straight Prediction (c) Roundabout Target (d) Roundabout Prediction

(e) Straight Target (f) Straight Prediction (g) Merge Target (h) Merge Prediction

Fig. 3: Displays targets (a,c,e,g) and predictions (b,d,f,h) for straights, roundabout and merge situations. Motion predictions
of objects are displayed in blue color. State values are depicted in red, yellow, and green colors. Multiple overlays are
displayed in grey (boundaries, target lane, ground-truth objects). The trajectories passing through time layers are drawn in
black. The trajectories in (a,c,e,g) are selected based on the predicted state value images and in (b,d,f,h) are based on the
trajectory values.

parallel and merging lanes, as well as a roundabout, which
require particular emphasis on object motion prediction and
timing of the interactive behavior. Figs. 3a and 3b display
an often encountered situation with two parallel lanes, where
the ego vehicle has to follow a preceding vehicle. The
preceding vehicle might take the exit or continue heading
in the same direction as the ego vehicle. Both prediction
and target provide multi-modal behavior in state values and
object motion and both choose to follow the vehicle in the
current lane instead of an unnecessary lane change. Figs. 3e
and 3f depict a similar situation with both lanes occupied
by preceding vehicles. The network correctly distinguishes
objects based on their driving direction and predicts the
oncoming traffic. However, the timing of the explicit motion
predictions do not match the ground truth; specifically, the
network estimates objects to move slower. The optimal policy
selected sorely on predicted values performs a lane change,
which is feasible in this situation to gain more progress
along the route. Figs. 3g and 3h depict a merging situation,
where the ego vehicle has to judge the velocity and direction
of the moving vehicle in order to determine whether to
move behind or in front of the vehicle. Our network is
able to generate a similar motion prediction as the target
until 3.3 sec., as depicted in the third time-dependent image.

Thereafter, the proposed network generates two hypotheses
for the motion prediction and positions itself behind. Figs. 3c
and 3d demonstrate a roundabout with the object taking the
first exit. The predicted state values focus around the center-
line of the roundabout, displaying that arbitrary geometries
can potentially be predicted. The solution candidate of the
prediction shows preference for not entering the roundabout
until more information is revealed of the objects’ intention.

B. Quantitative Evaluation

In our quantitative evaluation, we contrast the policy
selection of the planner using the training setup with object
predictions available against the inference setup only using
the PSVN as input. After sampling a policy set for each
situation while neglecting object related features, we select
two policies by computing the maxπ∈Π V π . The first policy
is selected by using the reward function R′ = R that includes
explicit object prediction features (the traditional chain). The
second policy is selected by solely using the reward shaping
function R′ = F (the output of the PSVN). We purposefully
neglect all state and action rewards R(s, a) of R′ to analyze
the encoding capabilities of the inferred pixel state values
and focus on object interaction. Metrics that compare against
ground truth trajectories are problematic for evaluation of

interactive behavior as in most situations multiple behaviors
are valid. Therefore we propose to use a different evaluation
metric that is termed object time gap (OTG). It is defined
for a policy π as

OTG(π) = min
obj∈O

tobj∈[0,H]
tπ∈[0,H]

|tπ − tobj | s.t.
∥∥∥∥
(
xtπ − xtobj

ytπ − ytobj

)∥∥∥∥
2

< 2,

where O is the set of all objects in that scenario, x
and y are the Cartesian coordinates of an object or the
ego vehicle at that time t. An object time gap of 0 sec.
represents the ego vehicle and an object reaching the same
place at the same time (collision). A 3 sec. time gap means
that one object and the ego vehicle reach the same place
with a 3 sec. time difference. If no path overlap exists, the
object time gap results in a value of ∞. Fig. 4a shows
in the upper right corner that in most scenarios both the
trajectory selected by the planner reward function and the
trajectory selected by the predicted values never overlap
with objects. It can be seen in our supplementary video
that there are always vehicles present in the situations. This
means that the selected policies do not display reckless
behaviors such as driving into vehicles on parallel lanes.
Many scenarios fall into the diagonal where both selected
trajectories display correlating OTG. Another accumulation
can be seen on the first row, where the reward function
based selection correctly avoids objects but the predicted
value map produces more aggressive behavior. The second
confusion matrix (see Fig. 4b) displays the travel distance
of a trajectory relative to the initial position. Values are
accumulated slightly below the diagonal. It visualizes that
in many scenarios the prediction based selection results in
a further progressing trajectory in comparison to the reward
function based selection. This shows that trajectories selected
by our prediction value successfully leave large enough
object time gaps or completely avoid collisions while not
trivially standing still.

V. LIMITATIONS AND FUTURE WORK

As of now, this work assumes access to an a-priori defined
reward function with features encoding information about
ego motion, infrastructure, and dynamics of the environment.
The reward function for planning is a linear weighing of the
relevance of these features. We aim to increase the quality of
rendered target images by using situation-dependent reward
function parameters [24], [25]. We see a lot of potential in
substituting the segmentation focused network architecture
with a recurrent architecture that is more capable of capturing
dynamics. We have shown that our training methodology
is able to generate high-resolution situation-dependent state
values and motion predictions for a diverse set of environ-
ments. We see a lot of potential when using our methodology
to pretrain a network to generate an encoding of the situation
and fine-tune the network for other tasks such as predicting
actions or reward functions. We proposed using PSVN for
reward shaping, however aim to incorporate predicted pixel

<1 <2 <3 <4 <5 <6 <7 ∞

∞
<7

<6

<5

<4

<3

<2

<1

58 59 205 160 149 132 31 2473

0 0 1 1 2 0 0 8

0 1 1 4 13 19 1 47

4 6 9 6 33 15 2 33

17 23 45 51 47 10 2 41

76 166 175 32 10 7 1 35

65 112 68 17 5 0 0 21

100 26 45 16 6 5 0 35

selected by PSVN

se
le

ct
ed

by
re

w
ar

d
fu

nc
tio

n

(a) Object Time Gap [s]

<10<20<30<40<50<60<70>70

>70

<70

<60

<50

<40

<30

<20

<10

0 0 35 67 76 71 125 820

0 1 6 4 7 3 10 45

0 0 6 8 6 12 8 25

1 3 14 20 32 21 46 272

4 10 91 92 82 106 161 673

12 31 54 56 66 70 74 117

56 101 142 175 168 134 95 79

163 79 43 36 13 3 2 0

selected by PSVN

se
le

ct
ed

by
re

w
ar

d
fu

nc
tio

n

(b) Progress of Trajectory [m]

Fig. 4: Confusion matrices contrasting optimal policy of
planner using the reward function and PSVN for 4732 test
scenarios that each contain objects.

state values as admissible heuristic to accelerate search and
reduce the GPU memory requirements for the set of states
and actions when deploying in vehicle.

VI. CONCLUSION

This work proposes a methodology for combined pixel
state value and object motion prediction. A conditional GAN
is trained to predict both a sequence of value and object
motion images given a bird’s eye view of the environment.
The proposed planning and rendering algorithms make the
generation of one megapixel-sized pixel state value image se-
quences tractable. This allows training the generative model
with large image pair datasets. Our training algorithm uses
consumer grade hardware and does not require interaction
with the environment, which allows us to utilize real-world
driving recordings. The results demonstrate confident multi-
modal pixel state value and object predictions in situations
requiring moderate timing capabilities amidst a large set of
moving objects and a promising outlook for complex inter-
active situations such as roundabouts and merging situations.

ACKNOWLEDGMENTS

This research was supported by Federal Ministry for Eco-
nomic Affairs and Climate Action in the national research
project RUMBA under grant number 19A20007L.

REFERENCES

[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Transla-
tion with Conditional Adversarial Networks,” arXiv:1611.07004 [cs],
Nov. 2018.

[2] W. Luo, C. Park, A. Cornman, B. Sapp, and D. Anguelov, “JFP:
Joint future prediction with interactive multi-agent modeling for au-
tonomous driving,” in Conference on Robot Learning (CoRL). PMLR,
2023, pp. 1457–1467.

[3] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti,
A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov et al.,
“Multipath++: Efficient information fusion and trajectory aggregation
for behavior prediction,” in 2022 International Conference on Robotics
and Automation (ICRA), 2022, pp. 7814–7821.

[4] S. Shi, L. Jiang, D. Dai, and B. Schiele, “MTR-A: 1st place solution
for 2022 Waymo open dataset challenge–motion prediction,” arXiv
preprint arXiv:2209.10033, 2022.

[5] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“Thomas: Trajectory heatmap output with learned multi-agent sam-
pling,” arXiv preprint arXiv:2110.06607, 2021.

[6] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 8748–8757.

[7] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal,
B. Pan, R. Kumar, A. Hartnett, J. K. Pontes et al., “Argoverse 2: Next
generation datasets for self-driving perception and forecasting,” arXiv
preprint arXiv:2301.00493, 2023.

[8] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan,
Y. Chai, B. Sapp, C. R. Qi, Y. Zhou et al., “Large scale interactive
motion forecasting for autonomous driving: The Waymo open motion
dataset,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (CVPR), 2021, pp. 9710–9719.

[9] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kum-
merle, H. Konigshof, C. Stiller, A. de La Fortelle et al., “Interaction
dataset: An international, adversarial and cooperative motion dataset
in interactive driving scenarios with semantic maps,” arXiv preprint
arXiv:1910.03088, 2019.

[10] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[11] M. McNaughton, Parallel algorithms for real-time motion planning.
Carnegie Mellon University, 2011.

[12] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” IJRR, vol. 36, no. 10, pp. 1073–1087,
Sep. 2017.

[13] K. Lee, D. Isele, E. A. Theodorou, and S. Bae, “Spatiotemporal
costmap inference for MPC via deep inverse reinforcement learning,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3194–3201,
2022.

[14] M. Wulfmeier, D. Rao, and I. Posner, “Incorporating human domain

knowledge into large scale cost function learning,” arXiv preprint
arXiv:1612.04318, 2016.

[15] C. Grimm, A. Barreto, S. Singh, and D. Silver, “The value equivalence
principle for model-based reinforcement learning,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, pp. 5541–5552,
2020.

[16] C. Grimm, A. Barreto, G. Farquhar, D. Silver, and S. Singh, “Proper
value equivalence,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 7773–7786, 2021.

[17] J. Oh, S. Singh, and H. Lee, “Value prediction network,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

[18] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering Atari, Go, chess and Shogi by planning with a learned
model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[19] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, and S. Roth,
“Driving with Style: Inverse Reinforcement Learning in General-
Purpose Planning for Automated Driving,” 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 2658–
2665, Nov. 2019.

[20] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun,
“End-to-end interpretable neural motion planner,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 8660–8669.

[21] W. Zeng, S. Wang, R. Liao, Y. Chen, B. Yang, and R. Urtasun,
“DSDNet: Deep structured self-driving network,” in Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXI 16. Springer, 2020, pp. 156–172.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Pro-
ceedings, Part III 18. Springer, 2015, pp. 234–241.

[23] S. Heinrich, Planning universal on-road driving strategies for auto-
mated vehicles. Springer, 2018, vol. 119.

[24] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, X. Li, and
S. Roth, “Driving style encoder: Situational reward adaptation for
general-purpose planning in automated driving,” in 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA). Paris,
France: IEEE, May 2020, pp. 6419–6425.

[25] S. Rosbach, X. Li, S. Großjohann, S. Homoceanu, and S. Roth, “Plan-
ning on the fast lane: Learning to interact using attention mechanisms
in path integral inverse reinforcement learning,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 5187–5193.

[26] B. D. Ziebart, A. L. Maas, J. Bagnell, and A. Dey, “Maximum entropy
inverse reinforcement learning,” in AAAI, 2008.

[27] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[28] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Icml,
vol. 99, 1999, pp. 278–287.

B I B L I O G R A P H Y

Abbeel, Pieter and Andrew Ng (2004). “Apprenticeship learning via
inverse reinforcement learning.” In: Proceedings of the International
Conference on Machine Learning (ICML), p. 1.

Arora, Saurabh and Prashant Doshi (2021). “A survey of inverse
reinforcement learning: Challenges, methods and progress.” In:
Journal of Artifical Intelligence 297, p. 103500.

Babes, Monica, Vukosi Marivate, Kaushik Subramanian, and Michael
Littman (2011). “Apprenticeship learning about multiple inten-
tions.” In: Proceedings of the International Conference on Machine Learn-
ing (ICML), pp. 897–904.

Badue, Claudine, Rânik Guidolini, Raphael Carneiro, Pedro Azevedo,
Vinicius Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thi-
ago Paixao, Filipe Mutz, Lucas de Paula Veronese, Thiago Oliveira-
Santos, and Alberto De Souza (2021). “Self-driving cars: A survey.”
In: Expert Systems with Applications 165, p. 113816.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015).
“Neural machine translation by jointly learning to align and trans-
late.” In: International Conference on Learning Representations (ICLR).

Bansal, Mayank, Alex Krizhevsky, and Abhijit Ogale (2019). “Chauf-
feurNet: Learning to drive by imitating the best and synthesizing the
worst.” In: Proceedings of the Robotics: Science and Systems Conference
(RSS).

Bar-Tal, Omer, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss,
Shiran Zada, Ariel Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj,
Yuanzhen Li, Michael Rubinstein, Tomer Michaeli, Oliver Wang,
Deqing Sun, Tali Dekel, and Inbar Mosseri (2024). “Lumiere: A
space-time diffusion model for video generation.” In: arXiv Preprint.
arXiv:2401.12945 [cs.CV].

Bast, Hannah, Daniel Delling, Andrew Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and
Renato Werneck (2016). “Route planning in transportation net-
works.” In: Algorithm Engineering - Selected Results and Surveys.
Vol. 9220. Springer, pp. 19–80.

Bellman, Richard (1961). Adaptive control processes: A guided tour. Prince-
ton University Press.

– (1966). “Dynamic programming.” In: Science 153.3731, pp. 34–37.

113

114 bibliography

Bharilya, Vibha and Neetesh Kumar (2024). “Machine learning for au-
tonomous vehicle’s trajectory prediction: A comprehensive survey,
challenges, and future research directions.” In: Vehicular Communica-
tions 46, p. 100733.

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol
Zieba (2016). “End-to-end learning for self-driving cars.” In: arXiv
Preprint. arXiv:1604.07316 [cs.CV].

Brechtel, Sebastian, Tobias Gindele, and Rüdiger Dillmann (2011).
“Probabilistic MDP-behavior planning for cars.” In: IEEE Transactions
on Intelligent Transportation Systems, pp. 1537–1542.

Buehler, Martin, Karl Iagnemma, and Sanjiv Singh (2009). The DARPA
urban challenge: Autonomous vehicles in city traffic. Vol. 56. Springer.

Caesar, Holger, Varun Bankiti, Alex Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and
Oscar Beijbom (2020). “Nuscenes: A multimodal dataset for au-
tonomous driving.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 11621–11631.

Caruana, Rich (1997). “Multitask learning.” In: Machine Learning 28,
pp. 41–75.

Casas, Sergio, Abbas Sadat, and Raquel Urtasun (2021). “MP3: A
unified model to map, perceive, predict and plan.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14403–14412.

Chang, Ming-Fang, John Lambert, Patsorn Sangkloy, Jagjeet Singh,
Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey,
Deva Ramanan, and James Hays (2019). “Argoverse: 3D tracking and
forecasting with rich maps.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8748–8757.

Chen, Chenyi, Ari Seff, Alain Kornhauser, and Jianxiong Xiao (2015).
“Deepdriving: Learning affordance for direct perception in au-
tonomous driving.” In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pp. 2722–2730.

Chen, Li, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas
Geiger, and Hongyang Li (2023). “End-to-end autonomous driv-
ing: Challenges and frontiers.” In: arXiv Preprint. arXiv:2306.16927

[cs.RO].

Choi, Jaedeug and Kee-Eung Kim (2012). “Nonparametric bayesian
inverse reinforcement learning for multiple reward functions.” In:
Advances in Neural Information Processing Systems (NeurIPS), pp. 305–
313.

bibliography 115

Codevilla, Felipe, Matthias Müller, Antonio López, Vladlen Koltun,
and Alexey Dosovitskiy (2018). “End-to-end driving via conditional
imitation learning.” In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pp. 4693–4700.

Cui, Alexander, Sergio Casas, Abbas Sadat, Renjie Liao, and Raquel
Urtasun (2021). “Lookout: Diverse multi-future prediction and plan-
ning for self-driving.” In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 16107–16116.

Delling, Daniel, Peter Sanders, Dominik Schultes, and Dorothea Wag-
ner (2009). “Engineering route planning algorithms.” In: Algorithmics
of Large and Complex Networks. Springer, pp. 117–139.

Dempster, Arthur, Nan Laird, and Donald Rubin (1977). “Maximum
likelihood from incomplete data via the EM algorithm.” In: Journal
of the Royal Statistical Society (Series B) 39.1, pp. 1–22.

Dhariwal, Prafulla and Alexander Nichol (2021). “Diffusion models
beat gans on image synthesis.” In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 8780–8794.

Ding, Zhezhang and Huijing Zhao (2023). “Incorporating driving
knowledge in deep learning based vehicle trajectory prediction: A
survey.” In: IEEE Transactions on Intelligent Vehicles 8.8, pp. 3996–
4015.

Do Carmo, Manfredo (2016). Differential geometry of curves and surfaces:
revised and updated second edition. Courier Dover Publications.

Dolgov, Dmitri, Sebastian Thrun, Michael Montemerlo, and James
Diebel (2008). “Practical search techniques in path planning for
autonomous driving.” In: Ann Arbor 1001.48105, pp. 18–80.

Drews, Paul, Grady Williams, Brian Goldfain, Evangelos Theodorou,
and James Rehg (2017). “Aggressive deep driving: Combining con-
volutional neural networks and model predictive control.” In: Con-
ference on Robot Learning (CoRL), pp. 133–142.

Elander, James, Robert West, and Davina French (1993). “Behavioral
correlates of individual differences in road-traffic crash risk: An
examination of methods and findings.” In: Psychological Bulletin
113.2, p. 279.

Ettinger, Scott, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang
Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp, Charles Qi, Yin
Zhou, Zoey Yang, Aurelien Chouard, Pei Sun, Jiquan Ngiam, Vijay
Vasudevan, Alexander McCauley, Jonathon Shlens, and Dragomir
Anguelov (2021). “Large scale interactive motion forecasting for
autonomous driving: The waymo open motion dataset.” In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9710–9719.

116 bibliography

Evans, Leonard (1991). Traffic safety and the driver. Science Serving
Society.

Finn, Chelsea, Paul Christiano, Pieter Abbeel, and Sergey Levine
(2016a). “A connection between generative adversarial networks,
inverse reinforcement learning, and energy-based models.” In: arXiv
Preprint. arXiv:1611.03852 [cs.LG].

Finn, Chelsea, Sergey Levine, and Pieter Abbeel (2016b). “Guided cost
learning: Deep inverse optimal control via policy optimization.” In:
Proceedings of the International Conference on Machine Learning (ICML),
pp. 49–58.

Fuller, Ray (2000). “The task-capability interface model of the driving
process.” In: Recherche-Transports-Sécurité 66, pp. 47–57.

– (2011). “Driver control theory: From task difficulty homeostasis to
risk allostasis.” In: Handbook of Traffic Psychology. Elsevier, pp. 13–26.

Galceran, Enric, Alexander Cunningham, Ryan Eustice, and Edwin
Olson (2017). “Multipolicy decision-making for autonomous driv-
ing via changepoint-based behavior prediction: Theory and experi-
ment.” In: Autonomous Robots 41, pp. 1367–1382.

Gao, Nan, Hao Xue, Wei Shao, Sichen Zhao, Kyle Qin, Arian Prabowo,
Mohammad Rahaman, and Flora Salim (2022). “Generative adver-
sarial networks for spatio-temporal data: A survey.” In: ACM Trans-
actions on Intelligent Systems and Technology (TIST) 13, pp. 1–25.

Gaver, William W (1991). “Technology affordances.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 79–84.

Gilles, Thomas, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanci-
ulescu, and Fabien Moutarde (2021). “HOME: Heatmap output for
future motion estimation.” In: Proceedings of the IEEE International
Conference on Intelligent Transportation Systems (ITSC), pp. 500–507.

Golchoubian, Mahsa, Moojan Ghafurian, Kerstin Dautenhahn, and
Nasser Azad (2023). “Pedestrian trajectory prediction in pedestrian-
vehicle mixed environments: A systematic review.” In: IEEE Transac-
tions on Intelligent Transportation Systems 24.11, pp. 11544–11567.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep
learning. MIT press.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio
(2014). “Generative adversarial nets.” In: Advances in Neural Informa-
tion Processing Systems (NeurIPS), pp. 2672–2680.

bibliography 117

Gronauer, Sven and Klaus Diepold (2022). “Multi-agent deep rein-
forcement learning: A survey.” In: Artificial Intelligence Review 55.2,
pp. 895–943.

Gu, Tianyu, John Dolan, and Jin-Woo Lee (2016). “Automated tac-
tical maneuver discovery, reasoning and trajectory planning for
autonomous driving.” In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5474–5480.

Gui, Jie, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun, Hao Luo,
and Dacheng Tao (2024). “A survey on self-supervised learning:
Algorithms, applications, and future trends.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Gundlach, Ingmar (2020). “Zeitoptimale Trajektorienplanung für au-
tomatisiertes Fahren bis in den fahrdynamischen Grenzbereich.”
PhD thesis. Technische Universität Darmstadt.

Gupta, Agrim, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexan-
dre Alahi (2018). “Social gan: Socially acceptable trajectories with
generative adversarial networks.” In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 2255–
2264.

Gupta, Jayesh, Maxim Egorov, and Mykel Kochenderfer (2017). “Co-
operative multi-agent control using deep reinforcement learning.”
In: Autonomous Agents & Multiagent Systems Workshops, pp. 66–83.

Haan, Pim de, Dinesh Jayaraman, and Sergey Levine (2019). “Causal
confusion in imitation learning.” In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 11698–11709.

Hagedorn, Steffen, Marcel Hallgarten, Martin Stoll, and Alexandru
Condurache (2023). “Rethinking integration of prediction and plan-
ning in deep learning-based automated driving systems: A review.”
In: arXiv Preprint. arXiv:2308.05731 [cs.RO].

Hart, Peter, Nils Nilsson, and Bertram Raphael (1968). “A formal basis
for the heuristic determination of minimum cost paths.” In: IEEE
Transactions on Systems Science and Cybernetics 4.2, pp. 100–107.

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and
Ross Girshick (2022). “Masked autoencoders are scalable vision
learners.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 16000–16009.

Heinrich, Steffen (2018). “Planning universal on-road driving strategies
for automated vehicles.” PhD thesis. Freie Universität Berlin.

Ho, Jonathan and Stefano Ermon (2016). “Generative adversarial imita-
tion learning.” In: Advances in Neural Information Processing Systems
(NeurIPS), pp. 4565–4573.

118 bibliography

Hu, Yihan, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou
Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai Wang, Lewei Lu,
Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, and Hongyang Li
(2023). “Planning-oriented autonomous driving.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 17853–17862.

Huang, Jialei, Zhao-Heng Yin, Yingdong Hu, and Yang Gao (2023).
“Policy Contrastive Imitation Learning.” In: Proceedings of the Inter-
national Conference on Machine Learning (ICML), pp. 14007–14022.

Huang, Yanjun, Jiatong Du, Ziru Yang, Zewei Zhou, Lin Zhang, and
Hong Chen (2022). “A survey on trajectory-prediction methods for
autonomous driving.” In: IEEE Transactions on Intelligent Vehicles 7.3,
pp. 652–674.

Huang, Yanjun, Hong Wang, Amir Khajepour, Haitao Ding, Kang
Yuan, and Yechen Qin (2019). “A novel local motion planning frame-
work for autonomous vehicles based on resistance network and
model predictive control.” In: IEEE Transactions on Vehicular Technol-
ogy 69.1, pp. 55–66.

Ishihara, Keishi, Anssi Kanervisto, Jun Miura, and Ville Hautamaki
(2021). “Multi-task learning with attention for end-to-end autonomous
driving.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2902–2911.

Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei Efros (2017).
“Image-to-image translation with conditional adversarial networks.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1125–1134.

Jaynes, Edwin (1957). “Information theory and statistical mechanics.”
In: The Physical Review 106, pp. 620–630.

Jing, Longlong and Yingli Tian (2021). “Self-supervised visual feature
learning with deep neural networks: A survey.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 43.11, pp. 4037–4058.

Kaelbling, Leslie Pack, Michael Littman, and Anthony Cassandra
(1998). “Planning and acting in partially observable stochastic do-
mains.” In: Artificial Intelligence 101.1-2, pp. 99–134.

Kalman, Rudolf (1964). “When is a linear control system optimal?” In:
ASME Journal of Basic Engineering 86.1, pp. 51–60.

Kelly, Alonzo and Bryan Nagy (2003). “Reactive nonholonomic tra-
jectory generation via parametric optimal control.” In: International
Journal of Robotics Research 22.7-8, pp. 583–601.

Kim, Jinkyu, Reza Mahjourian, Scott Ettinger, Mayank Bansal, Brandyn
White, Ben Sapp, and Dragomir Anguelov (2022). “StopNet: Scalable

bibliography 119

trajectory and occupancy prediction for urban autonomous driving.”
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 8957–8963.

Kim, Tschangho (2018). “Automated autonomous vehicles: Prospects
and impacts on society.” In: Journal of Transportation Technologies 8,
pp. 137–150.

Kiran, Ravi, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad
Al Sallab, Senthil Yogamani, and Patrick Pérez (2021). “Deep rein-
forcement learning for autonomous driving: A survey.” In: IEEE
Transactions on Intelligent Transportation Systems 23.6, pp. 4909–4926.

Konstantinidis, Fabian, Moritz Sackmann, Oliver De Candido, Ulrich
Hofmann, Jörn Thielecke, and Wolfgang Utschick (2021). “Parame-
ter sharing reinforcement learning for modeling multi-agent driving
behavior in roundabout scenarios.” In: Proceedings of the IEEE Interna-
tional Conference on Intelligent Transportation Systems (ITSC), pp. 1974–
1981.

Krishnan, Sanjay, Animesh Garg, Richard Liaw, Lauren Miller, Florian
Pokorny, and Ken Goldberg (2016). “HIRL: Hierarchical inverse re-
inforcement learning for long-horizon tasks with delayed rewards.”
In: arXiv Preprint. arXiv:1604.06508 [cs.RO].

Kuderer, Markus, Shilpa Gulati, and Wolfram Burgard (2015). “Learn-
ing driving styles for autonomous vehicles from demonstration.”
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 2641–2646.

LaValle, Steven (2006). Planning algorithms. Cambridge University
Press.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep
learning.” In: Nature 521.7553, pp. 436–444.

Lee, Gunmin, Dohyeong Kim, Wooseok Oh, Kyungjae Lee, and Songh-
wai Oh (2020). “MixGAIL: Autonomous driving using demonstra-
tions with mixed qualities.” In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 5425–
5430.

Leurent, Edouard (2018). “A survey of state-action representations for
autonomous driving.” In: HAL Preprint. HAL: hal-01908175.

Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu (2020).
“Offline reinforcement learning: Tutorial, review, and perspectives
on open problems.” In: arXiv Preprint. arXiv:2005.01643 [cs.LG].

Li, Wenzhe, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu,
and Deheng Ye (2023). “A survey on transformers in reinforcement
learning.” In: Transactions on Machine Learning Research.

hal-01908175

120 bibliography

Lin, Tianyang, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu (2022).
“A survey of transformers.” In: AI Open 3, pp. 111–132.

Ma, Yuexin, Tai Wang, Xuyang Bai, Huitong Yang, Yuenan Hou, Yam-
ing Wang, Yu Qiao, Ruigang Yang, Dinesh Manocha, and Xinge Zhu
(2022). “Vision-centric BEV perception: A survey.” In: arXiv Preprint.
arXiv:2208.02797 [cs.CV].

Mahjourian, Reza, Jinkyu Kim, Yuning Chai, Mingxing Tan, Ben Sapp,
and Dragomir Anguelov (2022). “Occupancy flow fields for motion
forecasting in autonomous driving.” In: IEEE Robotics and Automation
Letters (RA-L) 7.2, pp. 5639–5646.

McNaughton, Matthew (2011). “Parallel algorithms for real-time mo-
tion planning.” PhD thesis. Carnegie Mellon University.

McNaughton, Matthew, Chris Urmson, John Dolan, and Jin-Woo Lee
(2011). “Motion planning for autonomous driving with a confor-
mal spatiotemporal lattice.” In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 4889–4895.

Mehta, Ashish, Adithya Subramanian, and Anbumani Subramanian
(2018). “Learning end-to-end autonomous driving using guided
auxiliary supervision.” In: Proceedings of the Indian Conference on
Computer Vision, Graphics and Image Processing (ICVGIP), pp. 1–8.

Montemerlo, Michael, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp,
Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoff-
mann, Burkhard Huhnke, Doug Johnston, Stefan Klumpp, Dirk
Langer, Anthony Levandowski, Jesse Levinson, Julien Marcil, David
Orenstein, Johannes Paefgen, Isaac Penny, Anna Petrovskaya, Mike
Pflueger, Ganymed Stanek, David Stavens, Antone Vogt, and Se-
bastian Thrun (2008). “Junior: The Stanford entry in the urban
challenge.” In: Journal of Field Robotics 25.9, pp. 569–597.

Mourant, Ronald and Thomas Rockwell (1970). “Visual information
seeking of novice drivers.” In: International Automotive Safety Confer-
ence Compendium.

– (1972). “Strategies of visual search by novice and experienced drivers.”
In: Human Factors 14.4, pp. 325–335.

Näätänen, Risto and Heikki Summala (1976). “Road-user behaviour
and traffic accidents.” In: Publication of: North-Holland Publishing
Company.

Neal, Radford (2000). “Markov chain sampling methods for Dirichlet
process mixture models.” In: Journal of Computational and Graphical
Statistics 9.2, pp. 249–265.

Ng, Andrew, Daishi Harada, and Stuart Russell (1999). “Policy in-
variance under reward transformations: Theory and application to

bibliography 121

reward shaping.” In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 278–287.

Ng, Andrew and Stuart Russell (2000). “Algorithms for inverse rein-
forcement learning.” In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 663–670.

Oquab, Maxime, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc
Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Fran-
cisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Woj-
ciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan
Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu,
Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and
Piotr Bojanowski (2024). “DINOv2: Learning robust visual features
without supervision.” In: Transactions on Machine Learning Research.

Osa, Takayuki, Joni Pajarinen, Gerhard Neumann, Andrew Bagnell,
Pieter Abbeel, and Jan Peters (2018). “An algorithmic perspective
on imitation learning.” In: Foundations and Trends® in Robotics 7.1-2,
pp. 1–179.

Othman, Kareem (2021). “Public acceptance and perception of au-
tonomous vehicles: A comprehensive review.” In: AI and Ethics 1.3,
pp. 1–33.

Paden, Brian, Michal Cáp, Sze Yong, Dmitry Yershov, and Emilio Fraz-
zoli (2016). “A survey of motion planning and control techniques
for self-driving urban vehicles.” In: IEEE Transactions on Intelligent
Vehicles 1.1, pp. 33–55.

Papadimitriou, Christos and John Tsitsiklis (1987). “The complexity of
Markov decision processes.” In: Mathematics of Operations Research
12.3, pp. 441–450.

Parmar, Gaurav, Taesung Park, Srinivasa Narasimhan, and Jun-Yan
Zhu (2024). “One-step image translation with text-to-image models.”
In: arXiv Preprint. arXiv:2403.12036 [cs.CV].

Pomerleau, Dean (1989). “Alvinn: An autonomous land vehicle in
a neural network.” In: Advances in Neural Information Processing
Systems (NeurIPS), pp. 305–313.

Puterman, Martin (2014). Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons.

Ratliff, Nathan, Andrew Bagnell, and Martin Zinkevich (2006). “Maxi-
mum margin planning.” In: Proceedings of the International Conference
on Machine Learning (ICML), pp. 729–736.

Ratliff, Nathan, David Silver, and Andrew Bagnell (2009). “Learning
to search: Functional gradient techniques for imitation learning.” In:
Autonomous Robots 27.1, pp. 25–53.

122 bibliography

Rhinehart, Nicholas, Jeff He, Charles Packer, Matthew Wright, Rowan
McAllister, Joseph Gonzalez, and Sergey Levine (2021). “Contingen-
cies from observations: Tractable contingency planning with learned
behavior models.” In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pp. 13663–13669.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-Net:
Convolutional networks for biomedical image segmentation.” In:
Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), pp. 234–241.

Rosbach, Sascha, Vinit James, Simon Großjohann, Silviu Homoceanu,
Xing Li, and Stefan Roth (2020a). “Driving style encoder: Situational
reward adaptation for general-purpose planning in automated driv-
ing.” In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 6419–6425.

Rosbach, Sascha, Vinit James, Simon Großjohann, Silviu Homoceanu,
and Stefan Roth (2019). “Driving with style: Inverse reinforcement
learning in general-purpose planning for automated driving.” In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2658–2665.

Rosbach, Sascha, Stefan Leupold, Simon Großjohann, and Stefan Roth
(2023). “Pixel state value network for combined prediction and plan-
ning in interactive environments.” In: arXiv Preprint. arXiv:2310.07706

[cs.RO].

Rosbach, Sascha, Xing Li, Simon Großjohann, Silviu Homoceanu, and
Stefan Roth (2020b). “Planning on the fast lane: Learning to interact
using attention mechanisms in path integral inverse reinforcement
learning.” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5187–5193.

Ross, Stéphane and Drew Bagnell (2010). “Efficient reductions for
imitation learning.” In: Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 661–668.

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell (2011). “A re-
duction of imitation learning and structured prediction to no-regret
online learning.” In: Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 627–635.

Sadat, Abbas, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan,
and Raquel Urtasun (2020). “Perceive, predict, and plan: Safe mo-
tion planning through interpretable semantic representations.” In:
Proceedings of the European Conference on Computer Vision (ECCV),
pp. 414–430.

bibliography 123

Sagberg, Fridulv, Selpi, Giulio Piccinini, and Johan Engström (2015).
“A review of research on driving styles and road safety.” In: Human
Factors 57.7, pp. 1248–1275.

Sauer, Axel, Dominik Lorenz, Andreas Blattmann, and Robin Rom-
bach (2023). “Adversarial diffusion distillation.” In: arXiv Preprint.
arXiv:2311.17042 [cs.CV].

Sauer, Axel, Nikolay Savinov, and Andreas Geiger (2018). “Condi-
tional affordance learning for driving in urban environments.” In:
Conference on Robot Learning (CoRL), pp. 237–252.

Schwarting, Wilko, Javier Alonso-Mora, and Daniela Rus (2018). “Plan-
ning and decision-making for autonomous vehicles.” In: Annual
Review of Control, Robotics, and Autonomous Systems 1, pp. 187–210.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua (2016).
“Safe, multi-agent, reinforcement learning for autonomous driving.”
In: Neural Information Processing Systems (NeurIPS) Workshop on Learn-
ing, Inference and Control of Multi-Agent Systems. arXiv: 1610.03295

[cs.AI].

Shi, Shaoshuai, Li Jiang, Dengxin Dai, and Bernt Schiele (2022). “Mo-
tion transformer with global intention localization and local move-
ment refinement.” In: Advances in Neural Information Processing Sys-
tems (NeurIPS), pp. 6531–6543.

– (2023). “MTR++: Multi-agent motion prediction with symmetric
scene modeling and guided intention querying.” In: arXiv Preprint.
arXiv:2306.17770 [cs.CV].

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis (2017). “Mastering chess and shogi by self-play
with a general reinforcement learning algorithm.” In: arXiv Preprint.
arXiv:1712.01815 [cs.AI].

Silver, David and Joel Veness (2010). “Monte-Carlo planning in large
POMDPs.” In: Advances in Neural Information Processing Systems
(NeurIPS), pp. 2164–2172.

Sohl-Dickstein, Jascha, Eric Weiss, Niru Maheswaranathan, and Surya
Ganguli (2015). “Deep unsupervised learning using nonequilibrium
thermodynamics.” In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 2256–2265.

Šošić, Adrian, Abdelhak M Zoubir, Elmar Rueckert, Jan Peters, and
Heinz Koeppl (2018). “Inverse reinforcement learning via nonpara-
metric spatio-temporal subgoal modeling.” In: Journal of Machine
Learning Research 19.1, pp. 2777–2821.

124 bibliography

Spencer, Jonathan, Sanjiban Choudhury, Arun Venkatraman, Brian
Ziebart, and Andrew Bagnell (2021). “Feedback in imitation learn-
ing: The three regimes of covariate shift.” In: arXiv Preprint. arXiv:
2102.02872 [cs.LG].

Summala, Heikki (1988). “Risk control is not risk adjustment: The zero-
risk theory of driver behaviour and its implications.” In: Ergonomics
31.4, pp. 491–506.

– (2007). “Towards understanding motivational and emotional factors
in driver behaviour: Comfort through satisficing.” In: Modelling
Driver Behaviour in Automotive Environments. Springer, pp. 189–207.

Sutton, Richard and Andrew Barto (2018). Reinforcement learning: An
introduction. Vol. 2. MIT Press.

Sutton, Richard, Doina Precup, and Satinder Singh (1999). “Between
MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning.” In: Artificial Intelligence 112.1-2, pp. 181–
211.

Tampuu, Ardi, Tambet Matiisen, Maksym Semikin, Dmytro Fishman,
and Naveed Muhammad (2020). “A survey of end-to-end driving:
Architectures and training methods.” In: IEEE Transactions on Neural
Networks and Learning Systems 33.4, pp. 1364–1384.

Tang, Yichuan (2019). “Towards learning multi-agent negotiations via
self-play.” In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops (ICCVW), pp. 2427–2435.

Taubman Ben-Ari, Orit and Vera Skvirsky (2016). “The multidimen-
sional driving style inventory a decade later: Review of the literature
and re-evaluation of the scale.” In: Accident Analysis & Prevention 93,
pp. 179–188.

Thodoroff, Pierre, Audrey Durand, Joelle Pineau, and Doina Precup
(2018). “Temporal regularization for markov decision process.” In:
Advances in Neural Information Processing Systems (NeurIPS), pp. 1784–
1794.

Tripathy, Soumya, Juho Kannala, and Esa Rahtu (2019). “Learning
image-to-image translation using paired and unpaired training
samples.” In: Proceedings of the Asian Conference on Computer Vision
(ACCV), pp. 51–66.

Ulbrich, Simon and Markus Maurer (2013). “Probabilistic online POMDP
decision making for lane changes in fully automated driving.” In:
Proceedings of the IEEE International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 2063–2067.

bibliography 125

– (2015). “Situation assessment in tactical lane change behavior plan-
ning for automated vehicles.” In: IEEE Transactions on Intelligent
Transportation Systems, pp. 975–981.

Urmson, Chris, Joshua Anhalt, Drew Bagnell, Christopher Baker,
Robert Bittner, M. N. Clark, John Dolan, Dave Duggins, Tugrul
Galatali, Chris Geyer, Michele Gittleman, Sam Harbaugh, Mar-
tial Hebert, Thomas Howard, Sascha Kolski, Alonzo Kelly, Maxim
Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson, Brian
Pilnick, Raj Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo
Seo, Sanjiv Singh, Jarrod Snider, Anthony Stentz, William Whit-
taker, Ziv Wolkowicki, Jason Ziglar, Hong Bae, Thomas Brown,
Daniel Demitrish, Bakhtiar Litkouhi, Jim Nickolaou, Varsha Sadekar,
Wende Zhang, Joshua Struble, Michael Taylor, Michael Darms, and
Dave Ferguson (2008). “Autonomous driving in urban environ-
ments: Boss and the urban challenge.” In: Journal of Field Robotics
25.8, pp. 425–466.

Vaa, Truls (2007). “Modelling driver behaviour on basis of emotions
and feelings: Intelligent transport systems and behavioural adap-
tations.” In: Modelling Driver Behaviour in Automotive Environments.
Springer, pp. 208–232.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “At-
tention is all you need.” In: Advances in Neural Information Processing
Systems (NeurIPS), pp. 5998–6008.

Werling, Moritz, Julius Ziegler, Sören Kammel, and Sebastian Thrun
(2010). “Optimal trajectory generation for dynamic street scenarios
in a frenet frame.” In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pp. 987–993.

Wulfmeier, Markus, Peter Ondruska, and Ingmar Posner (2015). “Maxi-
mum entropy deep inverse reinforcement learning.” In: arXiv Preprint.
arXiv:1507.04888 [cs.LG].

Wulfmeier, Markus, Dushyant Rao, Dominic Zeng Wang, Peter On-
druska, and Ingmar Posner (2017). “Large-scale cost function learn-
ing for path planning using deep inverse reinforcement learning.”
In: International Journal of Robotics Research 36.10, pp. 1073–1087.

Yang, Ling, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng
Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang
(2024). “Diffusion models: A comprehensive survey of methods and
applications.” In: ACM Computing Surveys 56.4, pp. 1–39.

Yuan, Kang, Hong Shu, Yanjun Huang, Yubiao Zhang, Amir Khajepour,
and Lin Zhang (2019). “Mixed local motion planning and tracking
control framework for autonomous vehicles based on model pre-

126 bibliography

dictive control.” In: IET Intelligent Transport Systems 13.6, pp. 950–
959.

Yurtsever, Ekim, Jacob Lambert, Alexander Carballo, and Kazuya
Takeda (2020). “A survey of autonomous driving: Common practices
and emerging technologies.” In: IEEE Access 8. pp. 58443–58469.

Zeng, Wenyuan, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio
Casas, and Raquel Urtasun (2019). “End-to-end interpretable neural
motion planner.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8660–8669.

Zeng, Wenyuan, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang,
and Raquel Urtasun (2020). “DSDNET: Deep structured self-driving
network.” In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 156–172.

Zhang, Kaiqing, Zhuoran Yang, and Tamer Başar (2021). “Multi-agent
reinforcement learning: A selective overview of theories and algo-
rithms.” In: Handbook of Reinforcement Learning and Control. Springer,
pp. 321–384.

Zhang, Yu and Qiang Yang (2021). “A survey on multi-task learn-
ing.” In: IEEE Transactions on Knowledge and Data Engineering 34.12,
pp. 5586–5609.

Zheng, Ling, Bijun Li, Bo Yang, Huashan Song, and Zhi Lu (2019).
“Lane-level road network generation techniques for lane-level maps
of autonomous vehicles: A survey.” In: Sustainability 11.16, p. 4511.

Ziebart, Brian, Andrew Maas, Andrew Bagnell, and Anind Dey (2008).
“Maximum entropy inverse reinforcement learning.” In: Proceedings
of the National Conference on Artificial Intelligence (AAAI), pp. 1433–
1438.

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Disclaimer
	Contents
	List of Figures
	Acronyms
	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Prediction in Automated Driving
	2.3 Reinforcement Learning
	2.4 Planning in Automated Driving
	2.5 Inverse Reinforcement Learning
	2.6 Unified Prediction and Planning
	2.7 Quantitative Evaluation

	3 Papers and Contributions
	3.1 Adopting a Hybrid Approach
	3.2 Automating Reward Function Tuning
	3.3 Predicting Situation-Dependent Reward Functions
	3.4 Transitioning Context-Dependent Reward Functions
	3.5 Unifying Prediction and Planning

	4 Discussion
	4.1 Summary of Contributions
	4.2 Potential Limitations
	4.3 Future Work
	4.4 Conclusion

	A Appendix
	A.1 Towards Hybrid Automated Driving: From Direct Imitation Learning to Affordance Learning
	A.2 Driving with Style: Inverse Reinforcement Learning in General-Purpose Planning for Automated Driving
	A.3 Driving Style Encoder: Situational Reward Adaptation for General-Purpose Planning in Automated Driving
	A.4 Planning on the Fast Lane: Learning to Interact using Attention Mechanisms in Inverse Reinforcement Learning
	A.5 Pixel State Value Network for Combined Prediction and Planning in Interactive Environments

	 Bibliography

