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Abstract

This dissertation proposes and investigates solution approaches to two
problems in urban air mobility, considering the different perspectives of
many stakeholders, including societal interests. The many-objective path
planning problem seeks Pareto-optimal, three-dimensional, and smooth
paths connecting two given locations in the city. The multi-objective traf-
fic network optimization problem searches for Pareto-optimal and three-
dimensional transportation networks that can be constructed from a given
set of paths. Since this work also explicitly considers social objectives
within these problems, it has both a societal and a practical relevance.
This thesis analyzes both stated problems and proposes a new framework
to solve the first problem efficiently. Then, it shows how the optimized
paths can be combined into a three-dimensional traffic network. After-
ward, this dissertation presents another new framework to optimize the
obtained traffic network in terms of multiple objectives. It tests the influ-
ence of integrating social criteria on the economic costs of the networks
obtained.

Using geospatial data from four different cities, paths and networks were
optimized to evaluate the efficiency of the path planning framework against
current methods and to compare the network solutions with conventional
strategies. The developed path planning framework showed a significant
advantage over comparable approaches. When traffic networks were op-
timized, including social criteria, their social acceptance increased much
more than the monetary costs. An essential finding of this work is that
the many-objective path planning problem can be solved efficiently in the
three-dimensional operation space by an intelligent combination of existing
algorithms and the inclusion of three new algorithmic features. Beyond
that, it is beneficial to integrate social criteria into optimization prob-
lems when the solutions obtained are the basis for decisions in the area of
conflict between the economy and human welfare.
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Kurzfassung

In dieser Arbeit werden Lösungsansätze für zwei Probleme im Bereich
der urbanen Luftverkehrsmobilität vorgeschlagen und untersucht, wobei
die unterschiedlichen Perspektiven vieler Interessengruppen, einschließlich
sozial-gesellschaftlicher Interessen, berücksichtigt werden. Das multikri-
terielle Pfadplanungsproblem sucht nach Pareto-optimalen, dreidimensio-
nalen und glatten Pfaden zwischen zwei gegebenen Punkten in der Stadt.
Das multikriterielle Verkehrsnetzoptimierungsproblem sucht nach Pareto-
optimalen und dreidimensionalen Transportnetzen, die aus einer gegebe-
nen Menge an Pfaden konstruiert werden können. Da diese Arbeit auch
explizit soziale Kriterien in diesen Problemen berücksichtigt, besitzt sie
neben der praktischen auch eine sozial-gesellschaftliche Relevanz. Diese
Arbeit analysiert die beiden Probleme und stellt zunächst eine neue Me-
thode vor, das erste effizient zu lösen. Es wird weiterhin aufgezeigt, wie
die optimierten Pfade zu einem dreidimensionalen Verkehrsnetz kombiniert
werden können. Anschließend wird ein zweites neues Framework präsen-
tiert, um das entstandene Netzwerk hinsichtlich mehrerer Kriterien zu op-
timieren. Dann wird untersucht, welchen Einfluss die Integration sozialer
Kriterien auf die ökonomischen Kosten der erhaltenen Netzwerke hat.

Anhand von Geodaten aus vier verschiedenen Städten wurden Pfade und
Verkehrsnetze optimiert, um die Effizienz des Pfadplanungsframeworks im
Vergleich zu aktuellen Methoden zu bewerten und im Weiteren die er-
haltenen Verkehrsnetzwerke mit denen herkömmlicher Strategien zu ver-
gleichen. Das entwickelte Pfadplanungsframework zeigte einen deutlichen
Vorteil gegenüber vergleichbaren Ansätzen. In den unter Einbeziehung
sozialer Kriterien optimierten Verkehrsnetzen stieg die soziale Akzeptanz
deutlich stärker als die monetären Kosten. Eine wichtige Erkenntnis der
Arbeit ist, dass das multikriterielle Pfadplanungsproblem im dreidimen-
sionalen Planungsraum durch eine intelligente Kombination bestehender
Algorithmen und unter Einbeziehung von drei neuen Algorithmen effizient
gelöst werden kann. Darüber hinaus ist es vorteilhaft, immer dann soziale
Kriterien in Optimierungsprobleme zu integrieren, wenn die erhaltenen
Lösungen die Grundlage für Entscheidungen im Spannungsfeld zwischen
Ökonomie und menschlichem Wohlergehen bilden.
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1 Introduction

Path planning is the generic term for many sub-disciplines that deal with
where an agent should go or can move. In a defined environment, the
path planning problem generally searches for a path leading an agent from
a given start point to a given endpoint while optimizing some cost func-
tion(s). Depending on the problem domain, the representations of a path
can differ [1]. In the upper part of Fig. 1.1, two typical representations are
visualized, which can be seen as the two ends in a spectrum of degree of
abstraction.

x

z

y

x

z

y

Figure 1.1: The two edge cases of path representations, which are 1) continuous
paths in less-abstracted environments (left) and 2) discrete paths in abstracted
environments (right), are fused to obtain a three-dimensional, and spatially con-
tinuous aerial corridor network (bottom) to approach path planning and routing
problems in unstructured and occupied environments.

• In a less abstracted world, the agent’s environment is a continuous
space of possible spatial locations. A path is then a sequence of spa-
tial points that could be fed to an agent’s controller to let it move
in its real environment. The advantage of this continuous path rep-
resentation is that it allows agents to move smoothly in complex
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and irregular, i.e., unstructured environments. The disadvantage is
that the higher computational complexity of the continuous repre-
sentation makes it difficult to operate multiple agents in a shared
environment [2].

• In a more abstracted world, the agent’s environment is a graph con-
sisting of nodes, which do not necessarily represent spatial positions,
and edges, which connect the nodes logically. A path is a sequence of
nodes instructing the agent how to traverse the graph. Most often,
this abstract path can not directly be used to move an agent in its
real environment. The abstract view is instead used to find possible
routes for an agent in a graph (i.e., routing). The advantage of the
discrete path representation is that its abstracted structure provides
an efficient approach to path planning in occupied environments, i.e.,
environments with many agents. However, the discretized, and thus
less precise, path resolution makes navigation in complex environ-
ments difficult.

Depending on the structuredness (structured vs. unstructured) and occu-
pancy (occupied vs. unoccupied) of the environment, many application-
related path planning problems can be solved by choosing only one of the
described representation schemes.

For example, consider a single autonomous Unmanned Aerial Vehicle
(UAV) flying through a dense forest [3], [4]. It must avoid trees while
maintaining a smooth and feasible path. Here, the environment is unoccu-
pied (i.e., no other agents are around), but highly unstructured, so that a
continuous path representation is used. In contrast, a group of warehouse
robots must navigate through a structured grid of shelves to pick up and
deliver items [5]. Here, the grid-like layout of the warehouse allows for
a discrete path representation that facilitates path planning for multiple
agents in the occupied environment [6].

When it comes to an occupied and unstructured environment, a combi-
nation of both representation schemes becomes reasonable. Such a com-
bined representation may be obtained by assembling continuous smooth
paths into a discrete aerial corridor network, as shown in lower Fig. 1.1.
At its graph level, this network representation allows path planning for
multiple agents in occupied environments. At the same time, at the edge
level, it allows for the complex and smooth motions required to traverse
unstructured environments.

For mobility applications on the ground, we find such a combined repre-
sentation in the road network for cars and other traffic participants. Every
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intersection can be seen as a node of the road network, whereas the courses
of the streets build the edges. Since most road networks on the ground
have grown historically, the question of how to design them from scratch
has not played an important role so far [7]. In the new field of Urban Air
Mobility (UAM), however, it is necessary to design infrastructure concepts
from scratch. Moreover, in urban air traffic, just as in road traffic, one
also faces the dual problem of many agents moving in an unstructured
space. Therefore, it seems reasonable to set up aerial corridor networks,
as indicated in the lower Fig. 1.1, in urban air spaces, similar to the road
networks for cars.

This new need for the design of an aerial infrastructure that ideally com-
bines locally optimized spatial paths (i.e., aerial corridors) into a complete
transportation network ultimately leads to two main problems, which are:

Problem One

Given a start and an endpoint, the Multi-objective Path Plan-
ning (MOPP) problem asks to place a flight corridor in the ur-
ban airspace accommodating all parties involved. That includes
the question of the criteria by which the path should be optimized.
This problem deals with the individual design of the smooth paths
that eventually form the edges of the new aerial corridor network.

Problem Two

Given a set of paths, the Multi-objective Traffic Network Opti-
mization (MONO) problem asks how to merge the paths to form
an aerial corridor network, and how this network can be further
optimized concerning various criteria that again meet the needs
of all stakeholders involved. This problem is about the intelligent
combination of the individual paths obtained by solving Problem
One multiple times into the final aerial corridor network.

This thesis deals with the solution to these two main problems and
the sub-problems, always following the scheme of problem formulation,
problem analysis, solution approach, solution evaluation, and evaluated
solution improvement.

After a motivational introduction in the following Section 1.1, the con-
tributions of this work are highlighted in Section 1.2, before the outline of
the dissertation is presented in Section 1.3.
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1.1 Motivation
Why is studying urban air mobility, particularly air paths and transport
networks over cities, worthwhile? The so-called last-mile delivery is a
bottleneck in modern transportation systems [8]. Especially in congested
urban areas, delivering packages or passengers from an intermediate stop
to their final destination (i.e., last-mile problem) is resource-intensive and
costly.

Therefore, the problem has spawned a variety of different optimization
approaches [9] and ideas for new modes of transportation. Unmanned
Aerial Vehicles (UAVs) have sparked the interest of companies in logis-
tics [10] and mobility [11] as they open a whole new dimension of local
transportation possibilities.

Start-ups like Wingcopter [12] already utilize UAVs to carry out impor-
tant or urgent deliveries.

The market for UAV deliveries is expected to increase with a growth rate
of approximately 20% in the next 12 years to a market value of 4 billion
US$, and the number of delivery UAVs is rising rapidly from 7 thousand
in 2020 to approximately 125 thousand in 2035 [11]. So, there is a market
for urgent last-mile air deliveries. But what about the necessary transport
infrastructure?

Today, the prevalent modes of operation for aircraft are airspace-based
operations in controlled airspace and free flight operations within the visual
line of sight in uncontrolled airspace [13]. However, with the anticipated
densities of UAV flights in urban airspaces, both concepts will likely be-
come inefficient, unsafe, or even infeasible [14].

Alternative approaches propose some form of structural traffic regula-
tion for aerial near-ground operations in urban areas, e.g., flight corri-
dors [15], [16].

So, there is a need for air transport infrastructure, which motivates the
question about optimal flight path placement and optimal aerial corridor
network design above the city. The first problem in answering this question
arises as soon as it is formulated. What does optimal mean?

In the SESAR 3 Joint Undertaking [17], a partnership between the Eu-
ropean Union and other private and public partners to advance aerial
mobility in Europe, they state:

”Further to the two first principles on safety and economic
growth, drone operators [...] should consider that the flight
of drones at low altitudes can disturb the people and nature on



1.2 Contributions 5

the ground nearby. The aim [...] is to balance the commercial
pressure for growth of drone use with the preservation of na-
ture, people’s health, personal privacy and European security.
Consideration of social acceptance from the start of drone op-
erations is likely to produce a better result in the long term than
a brief boom in drone use followed by a public backlash.”

The term optimality is always relative. It depends on the specific perspec-
tive and context in which it is evaluated. Especially in cities, where many
different interest groups meet, the design of a new transportation system
has to satisfy many demands, e.g., the legal and safety requirements of the
aviation authority, the economic interests of logistics companies, and the
social factors among the city residents.

In this thesis, the term social factors describes all negative influences
that the introduction of UAVs in the city entails. This could be 1) the haz-
ard of air crashes that may harm people underneath, 2) the noise pollution
generated by a propeller-driven aircraft, or 3) privacy concerns induced by
camera-equipped aircraft.

Bauranov et al. [14] point out that the consideration of social factors like
noise pollution has been neglected in many recent approaches to urban air
mobility, even though it is one of the most crucial factors for scaling an
urban air mobility application.

Quite often, the different demands on a transportation system conflict,
calling for some trade-off solutions. Therefore, the solutions for optimizing
air corridors and networks presented in this thesis are designed as multi-
criteria optimization frameworks, and the conducted studies also consider
a social perspective.

1.2 Contributions
The two main problems whose solution is the subject of this thesis have
already been presented in the introduction to this chapter. The motivation
section 1.1 emphasized that the solutions to these problems should be
approached not only from an economic perspective but also from a human-
centered one.

Two frameworks were developed in this area of tension that can together
derive a continuous, three-dimensional aerial corridor network for UAM
applications by 1) optimizing single paths regarding multiple objectives
and 2) merging them into optimized corridor networks. In summary, the
contributions that emerged from this work are the development of a
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Multi-objective Path Planning (MOPP) framework

that is able to . . .

• optimize three-dimensional smooth paths on large urban sce-
narios,

• integrate arbitrarily many constraints and objectives that
may be functions or black-box-simulators,

• boost the optimization by a pre-processing step that adheres
to the formulated objectives and constraints,

• work with real-world data from OpenStreetMap (OSM) and
OpenCelliD (OCID),

and the development of a

Multi-objective Traffic Network Optimization (MONO) framework

that is capable of . . .

• merging multiple optimized paths into a network,

• optimizing the three-dimensional spatial network structure,

• with various objectives and constraints, including social ones,

• showing the importance and economic costs of social perspec-
tives.

1.3 Outline of this Dissertation
The structure of this work is closely aligned with the two frameworks
described. From Chapter 2 until Chapter 5, we consider various aspects of
the MOPP framework. First, Chapter 2 deals with essential preliminaries
necessary for the upcoming sections and related work in the field of path
planning. In the following chapters 3 to Chapter 5, the MOPP framework
is then presented, evaluated and improved for more general problems.

In detail, the MOPP problem is initially approached in Chapter 3 by
keeping its complexity as low as possible. Only two criteria are included,
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and neither boundary conditions nor the third dimension of the operating
space are considered, asking:

Q1: How can the Pareto-based bi-criteria path planning
problem with continuous smooth path representation be ef-

ficiently solved in the two-dimensional planning space?

The complexity of the problem is then increased in stages. Chapter 4
deals with the questions:

Q2: What are the challenges that need to be considered in the
three-dimensional planning space, and how can they be addressed?

and

Q3: How can constraints be integrated
into the optimization problem effectively?

Then, more than two objectives are included into the MOPP problem
in Chapter 5, which is answering the question:

Q4: Are there problems with integrating more than two objec-
tive functions into the problem, and how can they be solved?

Additionally, this chapter analyzes the resulting trade-off solutions (i.e.,
paths) in more detail - especially concerning social criteria.

Chapter 6 then deals with the MONO framework. First, related work
is presented. Then, the framework for the solution of the problem is in-
troduced:

Q5: How to get from a set of optimized paths to a
Pareto set of optimized aerial corridor networks?

Finally, we analyze the obtained solutions (i.e., networks), focusing on
their social compatibility. Here, the pursued research question is:
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Q6: How much higher are the economic costs in a
more socially acceptable network, and how much so-
cial acceptance is gained for these additional costs?

Finally, Chapter 7 summarizes the work and gives an outlook on poten-
tial future research questions.

The Appendix A contains on the one side a tabular categorized literature
overview on multi-objective path planning approaches, and on the other
side, visualizations of all scenarios that were considered as part of the
studies carried out.
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2 Path Planning Problem
This chapter introduces preliminaries and related work regarding the path
planning problem. We will only briefly discuss long-established approaches
by referring to relevant literature and otherwise limit ourselves to a de-
tailed presentation of the basics needed for the following chapters.

Thereby, Section 2.1 deals with different possibilities for environment
and path representations. Then, in Section 2.2, multi-objective optimiza-
tion is introduced in general, particularly the path planning problem. Fi-
nally, we discuss related work on multi- and many-objective path planning
in Section 2.3.

2.1 Representations
2.1.1 Environment
Grid Maps

As a two-dimensional grid map, we define a scalar function

G2D : {1, . . . , X} × {1, . . . , Y }| ︷︷ ︸
D2D

d

→ R, (i, j) 7→ gij

that maps each cell of a two-dimensional discrete domain to a real value.
Respectively, a three-dimensional grid map is a scalar function

G3D : {1, . . . , X} × {1, . . . , Y } × {1, . . . , Z}| ︷︷ ︸
D3D

d

→ R, (i, j, k) 7→ gijk

that assigns real values to a three-dimensional discrete domain. It is worth
pointing out that only positive grid values are meaningful when optimizing
paths on grids. Otherwise, the optimization would converge to infinite
undesired path cycles over non-positive cells. Therefore, the grid maps
G3D presented in this thesis are always mapped to positive values without
the restriction of generality

Ĝ3D = G3D + | min(0, min(G3D) − 1)|. (2.1)
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Two-dimensional grid maps can be seen as a matrix, as visualized on the
left side in Fig. 2.1, three-dimensional grid maps can be represented by
tensors of order three.

Grid Graphs

A general graph G = {N̊ , E̊} consists of a set of nodes N̊ , and a set of edges
E̊. The number of nodes and edges in the respective sets is denoted by
|N̊ | and |E̊| in the following. An edge eij = (ni, nj) connects two nodes ni

and nj and may be undirected or directed, indicating some (information)
flow direction. Moreover, an edge can be weighted, meaning it is assigned
a vector of weights that could, for example, represent different costs to
traverse the edge.

In this thesis, when discussing graphs in the context of path planning
environment representations, usually spatial grid graphs are meant. Spatial
means that the graph’s nodes are located within a metric space, in our case,
the Euclidean space. Grid means that the graph’s nodes are arranged in
a regular structure, in our case, a rectangular tiling.

Grid graphs are a generalization of grid maps. Every grid map envi-
ronment representation can be transferred into a grid graph environment
representation, as visualized in Fig. 2.1. Therefore, each cell in the grid
map corresponds to a node in the grid graph. The cell’s value is a weight
for all directed edges that point to the node. The connectivity informa-
tion, i.e., the information about which nodes are linked in the graph, is
an additional piece of information that makes the graph representation
more potent than the grid representation. Moreover, the grid graph al-
lows edges leading to a specific node to have different weights, which can
not be mapped into the grid map. Nevertheless, in the following, when
connectivity information is unimportant and different edge weights are not
necessarily needed, the two terms grid map G and grid graph G are used
interchangeably.

2.1.2 Path
A path Π connects a start point πs ∈ RnD and an endpoint πg ∈ RnD with
a sequence of nD-dimensional points πi ∈ RnD

Π = [π0 = πs, π1, . . . , π|Π|−1 = πg],

where |Π| is the path’s number of waypoints. The path points can lie
equidistantly at a distance ∆π from each other, but generally, they are
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Figure 2.1: A 3 × 3 grid map visualization with exemplary cell entries and the
corresponding generalized grid graph. Due to the connectivity information, the
grid graph contains more information.

not.
Here, the notation distinguishes the generally continuous path repre-

sentation Π from a discrete path representation Πd, which, for example,
consists of a sequence of neighboring cell positions in the grid map G or
neighboring node positions in the grid graph G.

An advanced continuous path representation used throughout this thesis
is presented in the following.

Non-uniform Rational B-Splines

A Non-uniform Rational B-Spline (NURBS) is a mathematical descrip-
tion for a parametrized curve (or surface). Adapting the notion of
Piegl et al. [18], a NURBS curve of order d + 1 is described as

C(u) =

nCP−1∑
i=0

Ni,d(u)wiPi

nCP−1∑
i=0

Ni,d(u)wi

0 ≤ u ≤ 1,

where

• d is the degree of the basis function Ni,d,

• Pi =
[
xi yi zi

]
is the ith so-called control point whose position

influences the shape of the curve (here assumed to be 3D),

• wi ∈ R+ is the ith control point’s weight and

• nCP is the number of control points with

nCP ≥ d + 1. (2.2)
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A knot vector U must be defined with the mentioned parameters. The
knot vector is a monotone sequence of m + 1 entries (i.e., knots), with
m = nCP + d, and can be written as

U =
[
u0 = 0 u1 . . . um−1 um = 1

]
.

The basis functions Ni,d(u) are dependent on the parameter u and can be
calculated recursively following the De-Boor-Cox formulas [19], [20], [21]

Ni,0(u) =
{

1 if ui ≤ u ≤ ui+1

0 otherwise

Ni,d(u) = u − ui

ui+d − ui
Ni,d−1(u) + ui+d+1 − u

ui+d+1 − ui+1
Ni+1,d−1(u).

For a particular u = ut, the knot vector U defines the intervals (i.e., knot
spans) ut ∈ [ui, ui+1[, in which the zero-degree basis function Ni,0(ut)
influences the recursive calculation of basis function Ni,d(ut) of degree d.
Outside the interval [ui, ui+1[, the zero-degree basis function Ni,0(ut) = 0
is zero.

If the first and the last knots in the knot vector U are repeated with
multiplicity d + 1

u0 = u1 = . . . = ud = 0 and um−d = . . . = um−1 = um = 1,

the NURBS curve C(u) is clamped, which means that it starts in the first
and ends in the last control point

C(0) = P0 and C(1) = PnCP−1.

An exemplary two-dimensional clamped NURBS curve is visualized in
Fig. 2.2. To finally obtain the path Π from the NURBS representation,
the curve C(u) is evaluated at all points of a parameter vector u ⊂ [0, 1],
whose elements can be freely selected between zero and one

Π = C(u).

For later calculations, it is beneficial if the resulting path points

πi =
[
πi,x πi,y πi,z

]
∈ Π ⊂ R3

are spatially equally spaced, i.e., ∆π = const. However, the standard
uniform, i.e., equidistant, sampling in the curve’s parameter space

u = uU =
[
0 · · · 1

|Π| − 1k · · · 1
]

with k = 1, . . . , |Π| − 2
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P0 P1

P2

P3

P4

P5

P6

Figure 2.2: An exemplary (clamped) NURBS curve with degree d = 3, number of
control points nCP = 7, weights

[
w0 . . . w6

]
=
[
1 1 1 3 1 1 1

]
, and

the knot vector U = [0 0 0 0 0.25 0.5 0.75 1 1 1 1]. The blue rectangles
denote the control point positions. The black dots show the waypoints obtained
for setting u = 0.25, u = 0.5, and u = 0.75 respectively. Due to the relatively
greater weight w3, the curve moves closer to the control point P3.

(i.e., uniform/equidistant parametrization) does not result in an equidis-
tant sampling in the operation space. This can also be seen by looking at
the black dots in Fig. 2.2, which are not equidistant, although the corre-
sponding parameters u are equidistant.

To achieve a spatially equidistant sampling, a chordal parametrization
uC is needed [22], where the curve parameter intervals ui+1−ui are selected
proportional to the Euclidean distance between consecutive path points
∆π = |πi+1 − πi|. The path is then traversed approximately at constant
velocity.

To calculate uC, we start with an uniform NURBS parameter vector uU
of fixed size |uU| = 1001, yielding a path ΠU of non-equally spaced way-
points πU,i. Next, the cumulative sum of this path’s waypoint distances
is calculated, resulting in the cumulative chord length vector

ΠCL
U =

[
0 · · ·

k∑
i=0

|πU,i − πU,i+1| · · · l̃

]
with k = 0, . . . , |ΠU| − 3,

where the last element l̃ approximates the true arc length l of the curve
C(u).

The goal is a spatially equidistant path ΠC and thus a (chordal) cumu-
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lative chord length vector

ΠCL
C =

[
0 · · · ∆πk · · · l̃

]
with k = 1, . . . ,

⌊
l̃

∆π

⌋
− 1,

with ∆π being the desired constant distance between two waypoints, i.e.,
the path resolution. The corresponding chordal parameter vector uC can
finally be calculated as linear interpolation L of (ΠCL

U , uU) at the points
ΠCL

C

u = uC = L(ΠCL
U , uU, ΠCL

C ).

Piegl et al. [18] give a detailed look into the definition of non-uniform
rational B-spline curves and their properties. This thesis will address
three properties that will play an important role in the following.

• The convex hull property denotes that the NURBS curve C(u) lies
within the convex hull spanned by the control points Pi of the curve.

• Local approximation means that a slight change in a control point’s
position Pi or its weight wi will affect the curve’s shape only locally
around this control point in the knot span [ui, ui+d+1[.

• The curve C(u) is infinitely differentiable within its knot spans. It
is d − c times differentiable at its knots, with c being the knot’s
multiplicity.

2.2 Optimization
2.2.1 General Optimization Problem

In a general formulation, an optimization problem denotes the minimiza-
tion of E objective functions

fi(v), i = 1, . . . , E, (2.3)

that are subject to Fineq inequality constraints

gj(v) ≥ 0, j = 1, . . . , Fineq, (2.4)

and to Feq equality constraints

hk(v) = 0, k = 1, . . . , Feq. (2.5)
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We differentiate between a multi-objective (E ≤ 3) and a many-objective
(E > 3) optimization problem depending on the number of objectives
E [23]. However, if it is irrelevant whether E ≤ 3 or E > 3 applies, the
more common formulation multi-objective is used in the following.

The D-dimensional optimization vector v =
[
v1 . . . vD

]
is a solution

to the problem. Each entry of v can be limited by a lower and an upper
bound

v
(L)
l ≤ vl ≤ v

(U)
l , l = 1, . . . , D. (2.6)

The totality of all solutions v forms the search space V. A set of solutions
in the search space is denoted V ⊂ V. We call a solution v feasible if it
satisfies all constraints (2.4), (2.5) and variable bounds (2.6). All feasible
solutions make the so-called feasible region. The objective functions (2.3)
map a solution v ∈ V to a point o in the objective space O. Here, O ⊂ O
is a set of solutions in the objective space. The solutions[

vex,1 = arg min
v∈V

f1 . . . vex,E = arg min
v∈V

fE

]
that minimize the objective functions (2.3) separately are called extreme
solutions in the search space, and extreme points

[
oex,1 . . . oex,E

]
in

the objective space. A visualization can be found in Fig. 2.3 Generally, we
try to find a solution that minimizes all E objective functions together.
This desired point in the objective space is called utopia point

oU =
[
e⊤

1 oex,1 = min f1 . . . e⊤
Eoex,E = min fE

]
that can be composed of the extreme points and the unit vectors ei of
the objective space. The corresponding utopia solution usually does not
exist or is not feasible for practical problems. Instead, a good solution
regarding one objective function is often bad regarding another and vice
versa. Therefore, the optimization community introduced the concept of
Pareto dominance.

A solution v1 Pareto-dominates another solution v2 (v1 ≼ v2) if v1 is
not worse than v2 for all objectives and v1 is strictly better than v2 in
at least one objective. All solutions v not Pareto-dominated by another
solution form the set of non-dominated solutions VNDS ⊂ V. If we map
the set of non-dominated solutions into the objective space, we obtain the
Pareto set ONDS ⊂ O. The ideal Pareto set containing all non-dominated
solutions to a problem is called Pareto front OPareto.
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The counterpart to the utopia point is the nadir point oN that consists
of the worst separate objective function values

oN =
[
max f1 . . . max fE

]
.

The output of a multi-objective optimization algorithm is usually a
Pareto set. It is then up to a decision maker to select a solution from
this Pareto set that will ultimately be used for further purposes. This
process is called decision making and can be done based on Pareto set
metrics or preference-based algorithms that go beyond the scope of this
work [24]. A simple decision making procedure, which will also be used in
this thesis, is the selection of the so-called knee point as a solution from
the Pareto set. There are several ways to calculate the knee point [24]. In
this thesis, the method by Sun et al. [25] is adopted calculating the knee
point

oknee = arg min
o∈ONDS

||o − oU||2

as the solution o that has the smallest Euclidean distance to the utopia
point oU. It often realizes a suitable compromise between the different
objective functions.

oU

f1

f2 oN

oknee

oex,1

oex,2

Figure 2.3: Exemplary two-dimensional Pareto set ONDS (blue elements) with
annotated knee point and extreme points, as well as the corresponding utopia
and nadir point.

Metrics for Pareto Front Evaluation

There are various metrics to evaluate the quality of a multi-objective op-
timizer. Usually, the quality of the Pareto set generated by the solver is
used for this purpose. Three common metrics are applied in this thesis:
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Hypervolume (HV) The HV metric was first used by Zitzler et al. [26]
under the name ”Size of the space covered” [27] to quantify the qual-
ity of Pareto sets. It measures the E-dimensional volume between the
E-dimensional solution set O ⊂ O and a user-defined reference point
oHV,ref ∈ O and can be defined as [28]

mHV(O, oHV,ref) = A

 ⋃
o∈O

o≤oHV,ref

[o, oHV,ref ]

 ,

the Lebesgue measure A of the union of all boxes
[o, oHV,ref ] = {p ∈ O| o ≤ p ∧ p ≤ oHV,ref} spanned by o and oHV,ref .

If a set of solutions in the objective space has a higher hypervolume than
another for the same reference point, this indicates a better convergence
towards the Pareto front OPareto.

Generational Distance (GD) The GD metric by Van Veld-
huizen et al. [29] can be expressed as

mGD(O, OR) =

√∑
o∈O minoR∈OR ||o − oR||22

|O|
,

and measures the distance of the elements o in a set O of examined solu-
tions towards the nearest solutions oR of a reference set OR. The lower the
GD metric, the closer in the objective space are the solutions of the exam-
ined set of solutions to the reference set. Thus, a lower GD value indicates
a better convergence to the reference set, ideally the Pareto front.

Inverted Generational Distance (IGD) As the name suggests, the
IGD indicator is the counterpart to the GD metric. Introduced by
Coello et al. [30] as

mIGD(O, OR) =
∑

oR∈OR
mino∈O ||o − oR||2

|OR|
,

the IGD metric sums up the distances of all reference solutions oR to the
nearest examined solution o in the objective space. The lower the Inverted
Generational Distance (IGD) indicator, the closer in the objective space
are the solutions of a reference set into the examined set. Thus, a lower
IGD value shows better diversity and convergence towards a reference set,
ideally the Pareto front.
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2.2.2 General Path Planning Problem
In a specific1 formulation, a path planning problem is defined by a given
operation space D ⊂ RnD , an obstacle region Dobs ⊂ D, a start point
πs ∈ D, a goal point πg ∈ D, E objective functions fi(Π), and F constraint
functions gj(Π), which measure the quality and feasibility of a path. The
path planning problem aims to find a path Π that optimizes the given
objectives fi and satisfies the given constraints gj .

2.2.3 Path Planning Algorithms
As the name suggests, E = 1 applies to single-objective path planning
problems. They have been well-studied for mobile robotic applications
in the last decades [31]. Solution approaches often account for finding
the shortest and collision-free path for a single robot known as the only
agent in a cluttered environment. The problem’s only objective function
is a distance function in the Euclidean space (e.g., Euclidean distance or
Manhattan distance). The only constraint of the problem is the collision
avoidance. A selection of classic path finding algorithms for solving such
problems is given by potential field approaches [32], the Probabilistic Road
Map (PRM) [33], or the Rapidly-exploring Random Tree (RRT) [34]. The
interested reader is referred to the comprehensive overview by LaValle [35].

A rising interest in Multi-objective Path Planning (MOPP) approaches
has been developing with the increasing integration of autonomous agents
into human living and working spaces, where different robots and humans
act in the same environment. Such human-machine systems must not only
minimize Euclidean distances and avoid obstacles. They lead to more
complex path planning problems with additional criteria describing, for
example, human interests in the robot’s environment (e.g., safety).

This need to evaluate and optimize paths from the perspective of differ-
ent stakeholders has given rise to the research field of multi-criteria path
planning, to which the first part of this thesis also belongs. The following
Section 2.3 gives an overview of various solution methods.

In the following, the principles of two different classes of algorithms are
presented, which will play an essential role in this work.

1In the following, the path planning environment is notably more extensive than the
agent size. Moreover, the paths represent corridors in which the agents can move
freely. Therefore, the spatial extent and dynamics of the agents are neglected.
Agents are assumed to be omnidirectional moving points. The obstacle region is
expanded accordingly.
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Evolutionary Algorithms

The first class of algorithms that play an important role in this thesis
are Evolutionary Algorithms (EAs) [36]. They are not only tailored to
path planning problems but are general optimizers. Particularly, EAs are
randomized search heuristics, which makes them belong to the class of
metaheuristic optimization algorithms. Two classes of EAs are the Ge-
netic Algorithm (GA) and the Evolution Strategy (ES), which have his-
torically been sharply differentiated but whose boundaries are becoming
increasingly blurred today. Before looking at one main difference, their
common basic functionality is first briefly outlined and visualized in the
flowchart diagram in Fig. 2.4 For a detailed introduction, please refer to
relevant literature [37]. As their name suggests, the GA and the ES both

Initialization

Evaluation

MutationSelection

RecombinationTermination?
Yes

No

Exit

Figure 2.4: Flowchart diagram of a typical Genetic Algorithm (GA) or an Evo-
lution Strategy (ES)

find inspiration in the concepts of evolutionary theory in order to speed
up the iterative search process. The search starts (initialization) with a
set of randomized candidate solutions (population). This set is updated
in every iteration (generation). The update consists of three processes.
First, solutions (individuals) from the old solution set are randomly mod-
ified (reproduction), either by combining two solutions to build a new
one (recombination) or by slightly adapting a single solution (mutation).
This process allows for a volatile change in the solution vector and an ex-
ploratory search behavior. Second, the objective function (fitness) value
(for E = 1) or vector (for E > 1) for all newly created individuals is deter-
mined (evaluation) according to the optimization problem. Third, some
solutions are chosen in a sampling process (selection) to form the new
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solution set for the next iteration. During selection, solutions that have
better fitness are preferably selected. This preference for better solutions
allows for an exploitative search behavior.

One way to distinguish between a Genetic Algorithm and a Evolution
Strategy is to look at the parameters to be optimized. In a GA, these
usually only consist of the optimization vector v of the optimization prob-
lem to be solved. In an ES, hyperparameters of the algorithm, so-called
strategy parameters σ, are also optimized together with the optimization
vector v and are, therefore, also subject to the evolutionary recombina-
tion and mutation process. This is illustrated by the following exemplary
design of an ES for multi-objective optimization, which is also used and
evaluated later in Chapter 3 and Chapter 4.

Exemplary Evolution Strategy (ES)

1. The ES starts in generation a = 0 by initializing a population
consisting of spar parent individuals. Each initial individual
v0 is accompanied by an initial strategy parameter vector σ0
of the same size dim v0 = dim σ0 = D. Here, the strategy
parameter vector σ =

[
σ1 . . . σD

]
contains the mutation

step sizes of the respective entry in v =
[
v1 . . . vD

]
.

2. The following variation routine is applied until the resulting
offspring population reaches the size soff .

a) A step size crossover averages the strategy parameter
vectors σa,i and σa,j of two randomly selected individ-
uals va,i and va,j at generation a yielding

σa′,i = σa′,j = 1
2 (σa,i + σa,j) .

b) Then, a mutation operator is applied to both in-
dividuals based on the extended log-normal rule by
Beyer et al. [38]. Each individual’s strategy parameter
vector is adapted first, following

σa+1 = eτ0ξ0
[
σa′,1eτξ1 . . . σa′,DeτξD

]
.
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Here, all ξl ∼ N (0, 1), l = 0, . . . , D are different ran-
dom numbers drawn from the standard normal distri-
bution. Furthermore, the default hyperparameters [38]
τ0 = 1/

√
2D and τ = 1/(2

√
D)0.5 are used. Second, the

optimization vector is adapted

va+1 =
[
va,1 + σa+1,1ξ1 . . . va,D + σa+1,DξD

]
,

where ξl ∼ N (0, 1), l = 1, . . . , D holds again.

3. All newly created individuals are evaluated, i.e., their fitness
vectors are determined.

4. The population of the a + 1 generation’s parent population
is selected from the union of the current parent and offspring
population. For this purpose, the non-dominated sorting se-
lection scheme as introduced by Deb et al. [39] is applied,
which is specifically tailored to select among individuals with
multiple fitness values, i.e., to multi-objective optimization
problems.

5. The steps 2-4 are repeated until a termination criterion is
met.

The general, problem-detached formulation of EAs (as of metaheuristics
in general) has advantages and drawbacks. The randomized nature of
metaheuristics requires many objective function evaluations, which means
high computational resources. Therefore, given an understanding of the
optimization problem (e.g., gradients of the objective functions), dedicated
optimizers that use this domain knowledge are always preferable. However,
metaheuristics are often the only practical alternative to a brute force
approach in all other cases - e.g., if only a calculation rule, a simulation
output, or a black box model is available as an objective ’function’.

It is in the nature of any randomized search that, given sufficient calcu-
lation time, it finds the global optimum of a problem, which means that it
can escape the local optima of multi-modal problems. However, it is never
possible to say what sufficient means. In other words, metaheuristics can
never guarantee that they have found the optimum2.

In multi-objective problems, the desired solutions lie on the Pareto front.
2Unless they have covered the entire search space.
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However, two neighboring solutions on the Pareto front (i.e., in the ob-
jective space) can be very far apart in the search space. In general, there
is no knowledge to infer the position of one solution in the search space
from that of the other. Therefore, evolutionary optimization methods are
especially well-suited for multi-objective optimization problems. For more
detailed information on evolutionary algorithms in multi-objective opti-
mization, the reader is referred to the respective literature [40], [41].

Shortest Paths in Graphs

The operations research community developed the second type of algo-
rithm that plays a vital role in this thesis, finding the shortest paths in
graphs. Depending on the properties of the graph (e.g., (un)weighted,
(un)directed, (a)cyclic), there is an algorithm specifically designed for the
problem. For example, the Dijkstra Algorithm (DA) is well-suited to find-
ing shortest paths in directed graphs with positive edge weights.

By being tailored to the specific problem of finding shortest paths in
graphs, these specialized algorithms come with advantages and disadvan-
tages. No better solution is known if the optimization problem meets the
algorithm’s structural assumptions. In addition, optimality guarantees
can usually be made. However, applying the structural assumptions to
real-world problems (i.e., breaking down the operational space to a graph
structure) usually leads to errors due to the necessary simplifications made.

In addition, the complexity, and thus, the necessary computational re-
sources of any shortest path on graph algorithm, always depend on the
number of edges and nodes. In the context of real problems, this causes a
conflict between the accuracy of the solution and computing time.

Dijkstra Algorithm The Dijkstra Algorithm (DA) [42] plays a decisive
role in this work and is briefly introduced. Given a graph G = {N̊ , E̊}
consisting of a set of nodes N̊ and positively weighted edges E̊, the Dijk-
stra algorithm guarantees to find the shortest path in G from a given start
node in the graph ns ∈ N̊ to a given goal node ng ∈ N̊ . Starting at node
ns, the Dijkstra algorithm iteratively 1) adds unvisited neighboring nodes
to a search set, 2) calculates the sum of edge costs from every node in the
search set to ns, and 3) makes a step to the node n with the minimal sum
of costs. The algorithm terminates when step 2) has been performed on
ng. For more information, please refer to the original publication by Di-
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jkstra [42] or the illustrative introduction to the A* algorithm3 by Russell
and Norvig [44].

Multi-Criteria Shortest Paths The extension of the shortest path
problem to multiple objectives is a long-standing challenge in the opera-
tions research community [45], which has produced standard algorithms
such as the label-setting algorithm by Martins [46] or the label-correcting
algorithms by Gurriero et al. [47]. However, due to their high computa-
tional complexity, the direct application of such optimal multi-objective
path planning algorithms, or improved (i.e., accelerated) adaptations of
these [48],[49], is not feasible for the problem dimensions, i.e., the opera-
tion space sizes tackled in this thesis4. So, we will not go into any more
detail about them here.

2.3 Related Work
In the following section, we will review related literature in the field of
multi-objective and many-objective path planning for Unmanned Aerial
Vehicles (UAVs). Publications in this research field are classified into six
criteria (C1 - C6) introduced in the following.

1. First, there is the UAV’s environment (C1) that can be rural or
remote terrain with few to no people being present or an urban
environment.

2. Then, the spatial dimension (C2) for the UAV path planning is either
simplified to two dimensions or set to a complete three-dimensional
path representation.

3. Third, the chosen path representations (C3) can be defined differ-
ently. Adjacent line segments placed in the continuous planning
space and grid-based, i.e., discrete representations, are commonly
used. Alternatively, researchers use spline or polynomial functions.

4. Besides, each approach presents different formulated objectives and
constraints (C4) ranging from path length, energy consumption, and

3The A* algorithm [43] is a generalization of the Dijkstra algorithm that adds a heuris-
tic to the cost function. The Dijkstra algorithm is equivalent to the A* algorithm
with the zero heuristic function h(n) = 0.

4The graph sizes that are handled in Chapter 5 are on the order of 1 million nodes.
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travel time to safety and risk-related objectives and turning angle or
flight height optimization.

5. Furthermore, the strategy to handle multiple objectives (C5) can dif-
fer. Many approaches either propose a weighted aggregation of mul-
tiple objectives to obtain a single-objective optimization problem or
choose a Pareto-based approach.

6. Finally, there is the type of algorithm (C6) utilized to tackle the
formulated path planning problem.

In the following literature review, we discuss selected articles in more
detail, based on which decisions are made to design the presented path
planning framework in the following chapters. Moreover, a complete
categorization of all reviewed papers is provided in the Tables A.1 and
A.2 in the Appendix A.1.

One early approach for many-objective path planning was proposed by
Nikolos et al. [50], who optimize UAV paths for flights over rough terrain
(C1). They use a three-dimensional (C2) B-spline path representation
(C3) and optimize the paths concerning four optimization goals (C4),
which are collision avoidance, path length minimization, safety distance
assurance, and compliance with a minimum curvature radius. However,
the objective functions are aggregated to simplify the problem into a single-
objective optimization (C5) problem, which is then solved by an adapted
single-objective Genetic Algorithm (GA) (C6). Thus, the approach de-
pends on the weighting of the objectives and, therefore, is limited to find-
ing only one solution within the Pareto set of possible solutions. Moreover,
only convex parts of the Pareto front can be identified with a linear ag-
gregation of the objectives.

In a later approach, Rubio-Hervas et al. [51] adopt an urban setting in
Singapore (C1) to plan three-dimensional (C2) paths for UAVs. They
propose a special path representation (C3) composed of the distance and
the angle between waypoints and a straight line connecting the path’s start
and goal point. To optimize a path regarding its length and risk (C4),
they make us of the NSGA2 algorithm [39] (C6), which is a state-of-the-art
evolutionary algorithm for multi-objective optimization capable of calcu-
lating a Pareto set (C5). On the downside, they need large computational
resources and are unable to guarantee optimality.

For an urban setting (C1), Ghambari et al. [52] propose a 3D path plan-
ning (C2) approach that adopts a grid-based path representation (C3).
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The objectives are to minimize the UAV’s energy consumption and to
maximize the distance to obstacles (C4). They propose a detailed energy
model that assumes a larger energy consumption for higher flight altitudes
due to the decreasing atmospheric density. To solve the path planning
problem, Ghambari et al. utilize different multi-objective evolutionary al-
gorithms (C6) to obtain a Pareto set of paths (C5). Using a grid-based
path representation by design results in sharp ninety-degree or at least 45-
degree turns and thus in possibly inefficient jagged paths, unsuitable for
UAVs. This disadvantage can be remedied by increasing the resolution of
the grid, but only at the expense of increasing the optimization problem’s
complexity.

In a recent study, Sadallah et al. [53] present an urban environment
(C1) to do path planning of two-dimensional (C2) paths concerning travel
time and obstacle avoidance (C4). In their approach, a cost distribution
map is computed by applying a Fast Marching Method (FMM) twice
on an obstacle map. Then, a gradient descent operation (C6) calculates
the discrete grid-based path (C3) in an offline search. A graph-based
A* algorithm is used in a subsequent online search to avoid dynamic
obstacles. The variation of the saturation weight for the input map
assures the calculation of different Pareto solutions (C5). Nevertheless,
changing the weights of a weighted grid map does not necessarily result
in non-dominated solutions in the objective space, as shown later in
Chapter 3. Moreover, the utilized path representation is two-dimensional,
which may lead to unsolvable problems in complex and highly occluded
urban environments. However, the use of graph-based solvers, which are
interesting due to their optimality guarantee, is acknowledged.

For the sake of completeness, the path planning framework developed
in this thesis is already classified into the established categories here. The
classification can also be traced using the blue highlighted features in Table
A.1 and Table A.2 in the Appendix A.1. The conclusions drawn from all re-
viewed studies are incorporated into the design of the proposed framework
for solving a many-objective path planning problem in a city environment
(C1).

We begin with a two-dimensional path representation in Chapter 3.
Then, the approach is extended to a three-dimensional (C2) path repre-
sentation in Chapter 4. The extension compensates for the complex spatial
restrictions of the city and enables more degrees of freedom to address de-
manding requirements (e.g., noise restrictions).

The utilized spline curve representation (C3) is smooth by definition
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and thus provides paths suitable for UAVs without the need for a post-
smoothing step.

The optimization framework is tested with four designed criteria (C4).
In addition to minimizing energy consumption and the risk for residents,
two additional criteria are proposed. Due to the urban setting, it makes
sense to minimize radio link interference. Special attention is paid to social
needs by introducing a noise minimization criterion. In addition, the flight
path is restricted by a minimum flight altitude and collision avoidance with
static obstacles.

In this work, all objectives should be fulfilled independently using a
Pareto-based approach (C5).

For an adequate sampling (of also concave parts) of a Pareto set of
paths, a hybrid approach (C6) is pursued in this thesis. A metaheuristic
optimizer is adopted, often used for multi-objective path planning, and
compensates for its disadvantages by coupling it with an exact graph-
based search.
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3 Multi-objective Two-dimensional
Path Planning without Constraints

3.1 Introduction
In this chapter, we will first consider a simplified variant of the Multi-
objective Path Planning (MOPP) problem addressed later in the thesis.
The problem is simplified by planning only two-dimensional flight paths,
which may be sufficient, for example, for operation spaces (i.e., cities)
in which all buildings are lower than the specified minimum flight alti-
tude. An Unmanned Aerial Vehicle (UAV) climbs to the minimum flight
altitude, flies along a two-dimensional flight path, and lands again. A
three-dimensional path planning algorithm would be too complex for this
problem. Moreover, boundary conditions considered later, such as col-
lision avoidance with static obstacles, are irrelevant and ignored in this
chapter. To summarize, in this chapter we focus on the two-dimensional
multi-objective path planning problem without constraints, which is ex-
tended to three dimensions and the inclusion of constraints in Chapter 4
and to more than two objectives in Chapter 5.

The literature overview on path planning in the last Chapter 2.3 showed
that different classes of optimizers exist that solve the MOPP problem.
Conventional path planning techniques rely on gradient-based or exact
optimizers. They are fast and nearly or, under some assumptions [54],
completely optimal in solving single-objective optimization problems. Nev-
ertheless, they show drawbacks in optimizing multiple objectives or mul-
timodal problems. In recent years, especially metaheuristic path planning
approaches, like Evolutionary Algorithms (EAs), have spread [55]. EAs
have been shown to perform very well on MOO problems, identifying a
well-diversified Pareto set for multimodal problems. However, EAs have
disadvantages as they usually need more computational resources and are
not able to guarantee optimality. The following chapter proposes a new
hybrid path planning framework that combines the benefits of both classes
of optimizers.

Motivated by Tovey’s criticism of the isolated research on metaheuris-
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tics [56], in this thesis, the ambition is set to benchmark the approach not
only exclusively within the research area of nature-inspired algorithms but
also within the area of exact and gradient-based solvers. Therefore, in Sec-
tion 3.4, the proposed Multi-objective Path Planning (MOPP) framework
is compared to the state-of-the-art multi-objective Non-dominated Sorting
Genetic Algorithm 2 (NSGA2) [39], as well as to the gradient-based opti-
mizer Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
Bounds (L-BFGS-B) [57] and to the graph-based Dijkstra algorithm [42].
The different approaches’ performance on the formulated MOPP problem
is evaluated on a real-world UAV path planning scenario in the German
city of Darmstadt.

In good conscience, this is the first time such a diverse set of benchmark
solvers has been used to investigate the MOPP problem. This chapter
demonstrates that the new hybrid method outperforms current EAs while
circumventing the limitations associated with graph-based and gradient-
based solvers.

Parts of this chapter have already been published in:

• [N1] N. Hohmann, M. Bujny, J. Adamy, and M. Olhofer, ”Hy-
brid evolutionary approach to multi-objective path planning for
UAVs“, in 2021 IEEE Symposium Series on Computational Intel-
ligence (SSCI), IEEE, 2021, pp. 1–8. doi: 10.1109/SSCI50451.
2021.9660187

• [N2] N. Hohmann, S. Brulin, J. Adamy, and M. Olhofer, ”Three-
dimensional urban path planning for aerial vehicles regarding many
objectives“, IEEE Open Journal of Intelligent Transportation Sys-
tems, vol. 4, pp. 639–652, 2023. doi: 10.1109/OJITS.2023.3299496

3.2 Problem Formulation
In Section 2.2.2, the general path planning problem was already defined.
Following this, the multi-objective two-dimensional path planning problem
will be introduced. Section 3.2.1 presents the chosen environment and
path representation. Section 3.2.2 presents all objectives used throughout
this thesis. Finally, the formalized multi-objective two-dimensional path
planning problem is presented in Section 3.2.3.

https://doi.org/10.1109/SSCI50451.2021.9660187
https://doi.org/10.1109/SSCI50451.2021.9660187
https://doi.org/10.1109/OJITS.2023.3299496
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3.2.1 Representations
Environment

In this chapter, we assume a two-dimensional, rectangular operation space

D2D
c =

[
xmin xmax

]
×
[
ymin ymax

]
⊂ R2,

where xmin < xmax and ymin < ymax are the bounding coordinates of
the operational space. Furthermore, a grid-based representation of the
environment is used. Therefore, the operation space D2D

c is discretized
with resolution

[
δx δy

]
, yielding D2D

d = {1, . . . , X} × {1, . . . , Y }, with

X =
⌊

|xmax − xmin|
δx

⌋
, and Y =

⌊
|ymax − ymin|

δy

⌋
respectively.

Path

A parametrized curve called Non-uniform Rational B-Spline (NURBS) in-
troduced in Section 2.1.2 is used throughout this thesis to represent a path
Π in the continuous operation space Dc. A clamped and uniform [58] knot
vector

U =
[
0 · · · 0| ︷︷ ︸

d

· · · 1
nCP − p

k · · · 1 · · · 1| ︷︷ ︸
d

]
,

where k = 0, . . . , nCP − p is used, ensuring that the curve is clamped to
the first and last control point, which equal the start point P0 = πs and
the endpoint PnCP−1 = πg of the path.

With a fixed degree d and a fixed knot vector U, the curve’s shape is
solely affected by the position of the curve’s control points Pi =

[
xi yi

]
with i ∈ {1, . . . , nCP − 2} and the weights wi with i ∈ {0, . . . , nCP − 1}.
The number of control points nCP is a hyperparameter that is either set
by the user or automatically determined by an algorithm, which is later
presented in Section 3.5.

Thus, the vector of optimization variables for the optimization problem
that is given in Section 3.2.3, is given by

v =
[
w0 x1 y1 w1 . . . xnCP−2 ynCP−2 wnCP−2 wnCP−1

]
.(3.1)

When solving the path planning problem, the optimizer changes the po-
sitions of control points and, thus, the curve’s shape. The NURBS curve
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representation, in the following denoted Π(v) = C(u)|v, is advantageous
as paths of different shapes and lengths can be represented without chang-
ing the size D of the optimization vector and thus the complexity of the
optimization problem. Furthermore, especially three NURBS properties
are useful that were introduced in Section 2.1.2:

• The convex hull property guarantees that the path lies within the
operation space Dc if all Pi ∈ Dc. Therefore, the control point
positions are bounded by the size of the design domain xmin ≤ xi ≤
xmax, ymin ≤ yi ≤ ymax, and later also zmin ≤ zi ≤ zmax, with

i = 1, . . . , nCP − 2.

• During the path optimization process, the local approximation prop-
erty ensures that changing one element in the optimization vector v
will only affect the path’s shape locally at a specific section. There-
fore, to guide a path around local maxima, the optimizer only needs
to adjust specific elements in the vector v.

• The infinite differentiability property ensures the smoothness of the
path up to desired derivatives. Mellinger et al. [59] show that the
dynamics of a UAV (quadrotor) can be modeled as differentially
flat allowing an analytical calculation of the quadrotor’s states and
control inputs from the desired flight path (including the desired yaw
angle) and its derivatives [60]. The motor commands of the designed
flatness-based controller are proportional to the fourth derivative of
the UAV’s position (i.e., snap) [59]. To avoid discontinuous steps
in the control inputs and thus to decrease the chances of the system
running into actuator saturation, the desired flight trajectory should,
therefore, be four times differentiable [3]. Apart from the first and
last control point of a clamped NURBS curve, this desired forth-
order differentiability can be achieved using NURBS curves of degree
d = 5. Note that from this desired degree and equation (2.2), for
the number of control points nCP ≥ 6 follows. Contrary to highly
aggressive quadrotor control as in [59], [60], this thesis focuses on
urban large-scale path planning. We, therefore, assume the resulting
paths to be used by drones without aggressively-tuned controllers.
Not concerning actuator saturations, more emphasis is placed on a
minimal path representation with only nCP = 3 control points (two
fixed, one optimizable). Then, the degree of the curve must be set
to d = 2, which will be the default value from now on.
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3.2.2 Objectives
In path planning problems, the objectives for evaluating flight paths may
differ depending on the use case, a stakeholder’s specific requirement, char-
acteristics of the environment, or the time (day or night, winter or sum-
mer). Therefore, the solution framework presented later in Section 3.3 is
designed to incorporate arbitrary objectives. In the following, exemplary
evaluation procedures for four objectives are specified to be able to test the
framework. This chapter covers two-dimensional path planning. However,
for completeness, all objectives are already defined in their generalized,
three-dimensional formulation. These will be used later in chapters 4 and
5. Since the main focus in this part of the thesis is on solving the path
planning problem and not on designing quality criteria, the objectives are
designed to be realistic but relatively simple and easy to implement. If
necessary, more advanced models can easily replace the proposed objec-
tives. In the following, grid-based and non-grid-based objectives are dis-
tinguished. Grid-based objectives can be calculated on two-dimensional
grid maps G2D or on three-dimensional grid maps G3D.

In general, all grid-based objective functions f(v) integrate over a grid
map G3D along the path Π(v). This is formalized as trapezoidal integral

f(Π(v)) =
|Π|−1∑

i=1

I(G3D, πi−1) + I(G3D, πi)
2 |πi − πi−1|, (3.2)

along the path Π, with I(G3D, π) being the tri-linear regular grid inter-
polation [61] of the grid map G3D at the path point π, and |π| being the
Euclidean norm of π.

Every objective that can not be described by (3.2) belongs to the cate-
gory of non-grid-based objectives.

Definition We define the Euclidean Distance Transform (EDT) [62] T
on a two-dimensional binary grid map B2D : {1, . . . , X} × {1, . . . , Y } →
{0, 1}, (i, j) 7→ bij as

T : {0, 1}X×Y → RX×Y , bij 7→ gij (3.3)
with gij = min

k,l

√
(i − k)2 + (j − l)2, s.t. bkl = 1,

with (k, l) ∈ {1, . . . , X} × {1, . . . , Y }.

The EDT T calculates the distance from every cell in B2D to its nearest
cell containing the value one.
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In the following, four objective functions (three grid-based and one non-
grid-based) are introduced, all of which are to be minimized. Visualiza-
tions for all grid maps are in the Appendix A.2.

Risk of Injury

Formally speaking, risk is defined as the product of damage and probability
of occurrence. If the latter is assumed to be constant, we can model risk
as the damage that a UAV can do to a human if it crashes. In case of a
quadrotor’s severe malfunction that leads to a crash, we assume a forced
landing on a roof or over a water surface to be less risky than in other
areas of a city. The three-dimensional continuous space D3D

c where we
want to plan paths is discretized to the discrete space D3D

d containing cells
with different risk values assigned. Consequently, spaces with little risk
are defined as those over water surfaces and buildings (excluding special
education buildings, hospitals, military and railway buildings, and places
of worship). According to the risk objective function, the UAV is supposed
to fly through low-risk cells.

The process of deriving the risk grid map starts with a two-dimensional,
binary building grid map B2D

B that consists of one-valued cells, where a
building is located in the cell’s spatial position, and of zero-valued cells,
where no building is located. Then, the two-dimensional risk grid map
G2D

R is calculated by applying the Euclidean Distance Transform (EDT)
(3.3) to the building grid map.

G2D
R = T (B2D

B ).

Thus, the risk map contains zero-valued cells where buildings are located
and obtains a gradient towards those low-risk cells. Furthermore, cells
of the risk grid map located in water areas are set to zero. In contrast,
cells with special buildings like hospitals are replaced with values inclined
towards the highest risk value at the center of special buildings. Then,
the mapping (2.1) is applied to obtain a positive grid map. An exemplary
two-dimensional risk grid map is visualized in Fig. A.16 in the Appendix
A.2.

For the three-dimensional risk grid map G3D
R , the risk values for the

z-dimension of the grid map need to be calculated. The uncertainty in
determining the impact position of a crashing drone increases with the
flight altitude of the UAV. Therefore, we derive the three-dimensional risk
grid map G3D

R : D3D
d → R+ by applying a two-dimensional maximum filter

with a 3 × 3-window to G2D
R layer by layer.
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By calculating the line integral (3.2) over G3D
R along the path Π(v), we

obtain the risk objective function fR(v).

Noise Immission

Torija et al. [63] show that city residents perceive noise generated by aerial
vehicles as less annoying if their flight paths lead over the city streets as the
flight noise then vanishes in the traffic noise. Therefore, the noise violation
objective function is modeled to favor paths that lead over streets. The
starting point is a street grid map B2D

S consisting of one-valued cells, where
a street is located at the cell’s spatial position, and zero-valued cells, where
no street is located. Then, the Euclidean Distance Transform (EDT) (3.3)
is applied to the street grid map

G2D
N = T (B2D

S ).

Thus, the resulting noise grid map contains zero-valued cells along the city
streets and, apart from those, a gradient towards the city roads. Addition-
ally, the noise grid map cells located in water areas or industrial regions
are set to zero. In contrast, cells in the center of parks or residential areas
are set to the highest noise value. From there, the noise values gradually
decline towards the streets. Then, the mapping (2.1) is applied to obtain
a positive grid map. A visualization of an exemplary noise grid map is
given in Fig. A.17 in the Appendix A.2.

To calculate the three-dimensional noise grid map, we assume G2D
N to be

a layer of the three-dimensional noise grid G3D
N : D3D

d → R+ at the UAV’s
minimum flight height zF,min. Perceived noise decreases quadratically with
distance. To derive the remaining layers of G3D

N , we apply the inverse
square law

G3D
N (z) =

G2D
N , if ∆z ≤ 0

G2D
N

(∆z + 1)2 , else

with ∆z = z − zF,min. Finally, calculating the line integral (3.2) over the
noise grid map G3D

N along the path Π(v) yields the noise objective function
fN(v).
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Radio Signal Disturbance

The ability to continuously track the operating status (e.g., battery level)
and the sensor measurements (e.g., pose, velocity) of the UAV, and the
option to set a new flight trajectory, if necessary, enable safe flight oper-
ations. Therefore, we assume the need for a permanent radio connection
between the aerial vehicle and a ground station, which makes a stable con-
nection to a cell tower essential. We assume the radio signal disturbance at
the position pR of a cell tower to attain an arbitrarily chosen best value of
D0 = −100. The signal disturbance increases following the inverse square
law. Dependent on the position of a single radio cell tower pR ∈ D3D

c ,
the radio signal disturbance at a point p ∈ D3D

c is qualitatively calculated
according to

D(p) = D0

(ρr + 1)2 ,

with r = |pR − p| being the Euclidean distance between the point p and
the radio cell tower position, and ρ ∈ R+ being a scaling factor that is
arbitrarily set to ρ = 0.01 in this thesis. This results in a three-dimensional
grid map for a single cell tower. Next, the grid maps for all cell towers in
the area are merged by a minimum operator. Applying the mapping (2.1)
yields a three-dimensional radio disturbance map G3D

D : D3D
d → R+. An

example of a radio disturbance grid map G3D
D at the height of the radio

tower cells z = zR, set to zR = 80 m in this thesis, is provided in Fig. A.18
in the Appendix A.2.

When planning a path through the radio disturbance map, we prefer
to fly through cells with lower signal disturbance. Thus, we compute the
radio disturbance objective function fD(v) by calculating the trapezoidal
integral (3.2) over G3D

D along the path Π(v).

Energy Consumption

The energy consumption model used in this thesis for a UAV following
a path Π is based on the physical energy consumption considerations for
drones by Reid [64]. He considers energy models for the different flight
states of a quadrotor, which are climbing, hovering, and forward motion.
We assume that the UAV flies at a reduced speed vz,↑ during climb com-
pared to its speed vxy at level flight. Furthermore, the aerial vehicle must
even fly at a slower speed vz,↓ during descent to avoid air turbulence un-
derneath the rotors, which leads to an unstable flight.
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Table 3.1: Vehicular and physical parameters for the energy consumption model

Parameter Symbol Value
Horizontal cruise velocity vxy 14 m/s
Ascending velocity vz,↑ 2 m/s
Descending velocity vz,↓ 1 m/s
UAV mass m 1.2 kg
Drag coefficient cd 0.6
Drag area Ad 0.1 m2

Number of rotors nr 4
Rotor radius rr 0.1 m
Air Density ρair 1.225 kg/m3

Constant of gravitation g 9.81 m/s2

From Reid’s [64] energy models and arbitrarily but realistically cho-
sen remaining drone parameters, shown in Table 3.1, a simplified energy
consumption model can be derived. For this purpose, the UAV’s smooth
flight path Π in the three-dimensional space is projected into the xy-plane
resulting in a two-dimensional path Πxy. Furthermore, the path’s projec-
tion onto the z-axis is divided into the segments that point upwards Πz,↑
and those that point downwards Πz,↓. Assuming that a drone with the
given parameters and velocities flies off from a standstill along these path
projections results in the energy consumption model

fE(v) = 1
2mvxy

2 + cE (|Πxy| + 10|Πz,↑| + 15|Πz,↓|) , (3.4)

where | · | is the Euclidean length of the path projections, m is the UAV
mass, and cE = 9.12 J/m denotes a vehicle-specific energy parameter.

Grid Transformation Later in this thesis, it becomes apparent that
a grid-based representation of an objective is useful for optional pre-
processing steps. It makes sense to specify a grid transformation for non-
grid-based objectives.

For an accurate grid transformation of the energy consumption objective
(3.4), a three-dimensional energy grid map has to be created, whose cell
entries should be dependent on the direction of movement of the UAV.
In a grid map, this dependency on the direction of movement can not be
modeled. Instead, a grid graph G is used to generalize the grid.
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To derive an energy graph G3D
E that approximates the energy model

(3.4) the directed edges (nijk, ni′j′k′) of a three-dimensional grid graph
G3D with 18-neighborhood are weighted accordingly. All edges pointing
in positive z-direction are weighted with

ωijki′j′k′ = 10, ∀ i′ = i, j′ = j, k′ = k + 1.

Edges pointing in negative z-direction are weighted
ωijki′j′k′ = 15, ∀ i′ = i, j′ = j, k′ = k − 1.

The weights of edges along x and y direction are set to
ωijki′j′k′ = 1, ∀ i′ = i ± 1, j′ = j ± 1, k′ = k.

The weights of all remaining diagonal edges are calculated accordingly. An
exemplary graph section is visualized in Fig. 3.1.

3.2.3 Optimization Problem
For the design of a multi-objective planning problem in two dimensions,
it seems helpful to choose objective functions that favor conflicting path
configurations in the two-dimensional planning space. The improvement
of one objective should then lead to a high probability of the deterioration
of the other objective, preventing the problem from degenerating into a
pseudo-multi-objective problem as it can happen with correlated objective
functions. Consequently, solving the problem should result in a broad
Pareto set.

The Risk of Injury objective function fR(v), introduced in Section 3.2.2,
favors paths over buildings, while the Noise Immission objective function
fN(v) introduced in Section 3.2.2 rewards paths over roads (i.e., absence of
buildings). Therefore, both are good candidates for satisfying the require-
ment of non-correlated objective functions. The vector v of optimization
variables (3.1) has already been introduced in Section 3.2.1. The opti-
mization problem discussed in this chapter is then modeled as

min
v∈V

{
fR(v),
fN(v),

(3.5)

where the search space
V = [D2D

c ] × . . . × [D2D
c ]| ︷︷ ︸

nCP−2

× [R+] × . . . × [R+]| ︷︷ ︸
nCP

(3.6)

has dim(V) = 2(nCP − 2) + nCP dimensions.
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Figure 3.1: According to the energy model (3.4), the costs for traveling along an
edge in the energy graph depend on the movement direction of the UAV.

3.3 Solution Approach
3.3.1 Problem Analysis
A simple example will illustrate the complexity of the optimization prob-
lem. For this purpose, the number of control points is set to nCP = 3, and
all weights to wi = 1, resulting in a two-dimensional optimization problem
with v =

[
x1 y1

]
. We assume an exemplary two-dimensional grid map

as shown in Fig. 3.2, where lower (i.e., better) objective function values
are visualized in dark blue, and higher values in yellow. The first and last
control points, i.e., the start and endpoints of the path, are fixed in two
corners of the operation space, respectively. As shown in the figure, the
path’s shape changes depending on the middle control point’s x- and y-
coordinates. The paths are marked as solid lines, and dashed lines connect
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the control points. If we push the variable control point over the entire
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Figure 3.2: The shape of the three visualized paths (solid lines) depends on the
position

[
x1 y1

]
of the variable middle control point (the dot that is connected

by dashed lines with the start end endpoint of the path).

operation space and compute the objective function, in this case, the line
integral (3.2) over the given grid map along the respective path, we obtain
the optimization landscape shown in Fig. 3.3. The objective function val-
ues of the three example paths are visualized as colored dots accordingly.
If we look at the blue path, it is longer than the others and leads through
an area with high grid values (yellow), resulting in the maximum (blue
dot) in the optimization landscape. The orange path does cross a yellow
area at

[
300 200

]
, but it is very short and forms a local minimum (orange

dot) in the cost landscape. Although the green path bypasses the yellow
region at

[
300 200

]
, it is longer. It passes through another yellow region

at
[
590 580

]
, resulting in a higher line integral and a local maximum

(green dot) in the cost landscape.
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The cost landscape of the exemplary optimization problem already re-
veals local extrema. Accordingly, the tackled multi-dimensional optimiza-
tion problem (3.5) is not to be considered multi-objective alone, but also
multi-modal and thus non-convex.
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Figure 3.3: The optimization landscape for the described two-dimensional path
planning problem is multi-modal and thus non-convex. The objective function
values f(Π(v)) − min(f(Π(v))) of the three exemplary paths are visualized as
colored dots and amount to fblue = 9.7, fgreen = 5.1, and forange = 4.2.

3.3.2 Solution
To solve the presented multi-objective and multi-modal path optimization
problem, the Multi-objective Path Planning (MOPP) framework proposed
in this thesis utilizes the advantages of two different solution methods,
namely an Multi-objective Evolutionary Algorithm (MOEA) and the Di-
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jkstra Algorithm (DA) [42]. Both approaches are combined in one hybrid1

approach. The idea is that the two different solution methods complement
each other and compensate for each other’s disadvantages:

Evolutionary Algorithms (EAs) are particularly effective in solving non-
convex multi-objective optimization problems since the randomized search
is well suited to approximate Pareto fronts [65]. At the same time, how-
ever, this search method requires many computational resources. In or-
der to simplify the search, the Dijkstra Algorithm (DA) will be built in
front of the randomized search algorithm. The DA efficiently solves single-
objective shortest path problems with guaranteed optimality. The disad-
vantage of the DA is its restriction to graph-based environments and thus
to graph-based path representations.

In the proposed hybrid MOPP framework, the DA calculates nWS
weighted solutions to the multi-objective problem (3.5) that is beforehand
transformed into a weighted and aggregated single-objective optimization
problem

fA(v) = λ1f1(v) + . . . + λEfE(v), (3.7)

where
∑E

i=1 λi = 1 holds. Assuming that the resulting solutions form good
initial solutions for an MOEA despite a different representation, the graph-
based solutions Πd are converted into the desired path representation Π.
Conversion errors are corrected by the MOEA2, and at the same time, the
pre-processing step facilitates the sampling of a good Pareto front.

The complete solution pipeline will be presented in the following.

Pipeline

The start point πs and goal point πg of the path and all grid maps used
to calculate the E objectives are input into the framework. The Dijk-
stra Algorithm (DA) [42] and a Multi-objective Evolutionary Algorithm
(MOEA), which the user can choose, constitute the two main steps (S1,
S2) in the pipeline as it is visualized in Fig. 3.4. The pipeline consists of
the following steps:

1Wherever the term hybrid is used in this thesis, it refers to the Multi-objective Path
Planning (MOPP) framework proposed here.

2Within the proposed hybrid framework, any Multi-objective Evolutionary Algorithm
(MOEA) can be used. In the following evaluation in Section 3.4, several state-of-
the-art algorithms are tested either individually or within the hybrid framework.
The latter will always be denoted as hybrid or with the prefix H.
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1. In the Grid Transfer step, non-grid-based objectives are, if possible,
converted into a grid or graph representation as it was done in Section
3.2.2 for the energy objective. Hence, the grid conversion step also
makes the DA applicable for non-grid-based objectives. If the grid
transfer is impossible, this step can be omitted for the respective
objective. It is, therefore, not used in the Dijkstra step S1.

2. In the Weighted Aggregation, the original multi-objective optimiza-
tion problem is converted into the single-objective optimization prob-
lem (3.7). Note that the subsequent DA is by design not suited to
solve (3.7) directly. Instead, it is applied to the weighted aggrega-
tions of the grids (or grid transfers) G3D belonging to the respective
objective functions f(v). Thus, the problem can be formulated as

G3D
A = λ1G3D

1 + . . . + λEG3D
E . (3.8)

Here, the generalized graph notation of the grid maps is used, as we
have already seen in Section 3.2.2 that grid conversions exist that
can only be expressed as graphs and not as grids anymore.

3. Then, in the first main step S1, the DA [42] is applied nWS times,
which provides nWS optimal solutions (i.e., paths) for the weighted
and aggregated single-objective problem (3.8). The calculated paths
are discrete, meaning that the path can only run precisely along the
edges of the underlying graphs G3D.

4. In the Smoothing & Approximation step, these discrete paths are
transformed into continuous NURBS curves. This step will be deep-
ened in the following section.

5. The splines are the initial solutions in a MOEA, the second main step
S2 of the pipeline, which solves the actual multi-objective problem
(3.5) regarding the original (i.e., not grid-transferred) non-grid-based
objectives. It results in a set of trade-off solutions that form the E-
dimensional Pareto set. This set allows the user to select an optimal
solution depending on preferences.

Smoothing & Approximation

At this point, we will briefly discuss the Smoothing & Approximation step
of the pipeline. Its input is a three-dimensional discrete path Πd that
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Figure 3.4: Diagram of the proposed hybrid optimization framework. Depending
on the objective class (grid-based or non-grid-based), the corresponding grids are
pre-processed before the Dijkstra Algorithm (DA) finds nWS optimal solutions
for the weighted aggregation of the multi-objective optimization problem. Then,
the obtained solutions are smoothed and approximated by NURBS curves. Fi-
nally, the different smooth paths serve as initial solutions for a Multi-objective
Evolutionary Algorithm (MOEA) set by the user, which generates a Pareto set
of trade-off paths for the original multi-objective optimization problem.
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should be represented, i.e., approximated by a NURBS curve, yielding
a continuous path Π. For a more robust approximation, the discrete
path is therefore smoothed by applying a Gaussian filter with kernel
K =

[
1 2 1

]
three times. Then, a NURBS curve approximates the

smoothed path [66]. For this operation, the crucial parameter is the num-
ber of control points nCP of the resulting NURBS curve. If nCP is too
small, the approximation error becomes too large. The resulting path has
nothing in common with the original Dijkstra path, which makes the Di-
jkstra calculation obsolete. Whereas, if nCP is too large, this will increase
the size of the optimization vector v and, therefore, the search space in
the multi-objective optimization step.

The number of control points nCP is thus an important hyperparameter
set by the user. Later in Section 3.5, a procedure is shown to determine
the parameter adaptively.

3.4 Evaluation
This section evaluates the hybrid Multi-objective Path Planning (MOPP)
framework proposed in this thesis for solving the multi-objective two-
dimensional path planning problem. The following Section 3.4.1 presents
the test scenario, algorithms for comparison, and their parameters before
the evaluation results are presented and discussed in Section 3.4.2. Finally,
Section 3.4.3 discusses an identified problem.

3.4.1 Setup
Scenario

The evaluation is based on OpenStreetMap (OSM) [67] data of a map
section of the city of Darmstadt, which is visualized in Fig. A.1. The OSM
data is used to sample different low-level grid maps, representing, e.g., the
city’s road network, semantic information as displayed in Fig. A.2, or the
height of buildings shown in Fig. A.3. The derived high-level grid maps for
risk G2D

R and noise G2D
N with the resolution

[
δx δy

]
are shown in figures

A.4 and A.5 and form the basis for the calculation of the two objective
functions fR(v) and fN(v) as presented in Section 3.2.2. A summary of
all parameters concerning the scenario setup and the representation of the
environment and the paths can be found in Table 3.2.

For the evaluation, the proposed pipeline is tested on a set of 30 different
start πs and goal πg positions that are randomly distributed over the op-
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eration space D2D
c such that the start/endpoint pair are evenly distributed

in space as well as in distance. Their positions can be taken from Fig. A.1,
where a straight line connects every start and goal point.

Table 3.2: Scenario Parameters

Parameter Symbol Value

Scenario

Origin latitude Lat 49.8705°N
Origin longitude Lon 8.6585°E

Scenario dimensions xmin, xmax 0 m, 1124 m
ymin, ymax 0 m, 948 m

Environment Discretization res. δx, δy 4 m, 4 m

Path

Num. of control points nCP 15
Basis function degree d 2

Parametrization uniform
Number of path points |Π| 150

Initial weights wi 1

Solvers

In the following, the performance of different standard Multi-objective
Evolutionary Algorithms (MOEAs) solving the multi-objective two-
dimensional path planning problem (3.5) is compared to their performance
when embedded in the hybrid Multi-objective Path Planning (MOPP)
framework proposed in this thesis. The first utilized MOEA is a Ge-
netic Algorithm (GA) called Non-dominated Sorting Genetic Algorithm
2 (NSGA2) [39] that is specially designed for multi-objective optimiza-
tion problems. When this algorithm is embedded in the proposed hybrid
MOPP framework, it is called Hybrid Non-dominated Sorting Genetic Al-
gorithm 2 (H. NSGA2) in the following. The Evolution Strategy (ES) that
has been introduced in Section 2.2.3 is considered as second MOEA in the
evaluation. Its hybrid embedding in the proposed framework is named
Hybrid Evolution Strategy (H. ES). For the two hybrid methods, in stage
S1 of the framework, the number of solution runs nWS of the aggregated
objective function (3.7) was arbitrarily set to nWS = 5. The weights were
set to[

λ1 λ2
]

∈
{[

0 1
]

,
[
0.05 0.95

]
,
[
0.5 0.5

]
,
[
0.95 0.05

]
,
[
1 0

]}
.
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A more detailed exploration of how the determination of the weights λi

affects the framework’s performance follows in Section 5.4 of this thesis.
Furthermore, the problem is also solved with the gradient-based opti-

mizer L-BFGS-B [57], a variant of the widely-used L-BFGS algorithm [68],
which is capable of incorporating bound constraints. Moreover, the devel-
oped hybrid framework is compared with the Dijkstra Algorithm (DA) [42].
As the discrete path solution of the DA does not allow a meaningful com-
parison to the continuous NURBS path solutions of the other approaches,
another algorithm is included in the evaluation that combines the stan-
dard DA [42] with an a posteriori NURBS curve approximation3 step.
This approach will be called Approximated Dijkstra Solution (ADS) in
the following.

It should be noted that the DA and the L-BFGS-B algorithm are not
capable of handling more than one objective at once. Therefore, to main-
tain comparability, they solve the weighted and aggregated single-objective
optimization problem (3.7) or (3.8) instead. A Pareto set can then be ob-
tained by running nWS optimizations for different values of the aggregation
weights

[
λ1 λ2

]
. The nWS weights are chosen equally distributed on a

two-dimensional straight line intersecting the axes of the coordinate sys-
tem at 1.

The hyperparameters to all described solution approaches are given in
Table 3.3, with all algorithms developed in this work marked in blue. Pa-
rameters that are not listed are set to standard values from the literature.
Next, we want to discuss the initialization of all utilized algorithms. With-
out prior knowledge, the optimization vector for any problem is usually
initialized with uniformly distributed random values drawn from the search
space V. With this method, the control points would be scattered in the
operation space due to the control-point-based path representation (3.1).
Thus, the obtained curves would be potentially meaningless and highly
sub-optimal.

This is why, for initializing all non-hybrid optimizers, the control points
are sampled equidistantly on a straight line segment between start point
πs and goal point πg. The control points’ weights are initialized with
wi = 1. Then, the optimization vectors of all but one initial solution
are imposed componentwise with Gaussian noise N (0, σi), with standard
deviations that were set to σx = σy = 5 m for x- and y-coordinates of the
control points and to σw = 0 for the control points’ weights.

3The NURBS approximation runs with the same number of control points nCP as in
the other approaches.
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Table 3.3: The parameters for all evaluated solvers are listed. The algorithms
developed in this work are highlighted in blue. The abbreviations stand for
Evolution Strategy (ES), Hybrid Evolution Strategy (H. ES), Non-dominated
Sorting Genetic Algorithm 2 (NSGA2), Hybrid Non-dominated Sorting Genetic
Algorithm 2 (H. NSGA2), Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm with Bounds (L-BFGS-B), Dijkstra Algorithm (DA), and Approxi-
mated Dijkstra Solution (ADS).

Method Parameter Symbol Value

ES
Initial step size σ0

[
1 m 1 m 0 . . .

]
Parent population size spar 15

Offspring population size soff 100
H. ES Num. of weighted sols. nWS 5

NSGA2

Crossover crowding deg. ηx 20
Crossover probability px 0.9

Mutation crowding deg. ηmut 20
Mutation probability pmut 1
Individual mut. prob. pmut,ind 1/D

Population size spop 100
H. NSGA2 Num. of weighted sols. nWS 5
L-BFGS-B
DA
ADS

Num. of weighted sols. nWS 65

For the initialization of all hybrid solvers, nWS of all initial solutions
come from the Dijkstra [42] pre-processing step of the framework. Another
initial solution is a straight-line path. To obtain the remaining initial
solutions, these nWS + 1 solutions are also applied with Gaussian noise, as
described before.

The solvers’ different performances are compared based on the Multi-
objective Optimization (MOO) performance metrics introduced in Sec-
tion 2.2.1 that are Hypervolume (HV), Generational Distance (GD), and
Inverted Generational Distance (IGD), as well as the number of non-
dominated solutions nNDS. All four metrics measure the quality of the
Pareto set that each solver generates. Since the optimal Pareto set (i.e.,
Pareto front) is not known, the Pareto set with the highest hypervolume
is used as the reference set in the calculation of the two metrics GD, and
IGD. The calculated Hypervolume (HV) of a Pareto set obtained by a
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solver is normalized to the best and worst hypervolumes of all solvers for
a particular scenario, yielding the normalized HV.

The time-sensitive part of the evolutionary and the gradient-based
solvers is the objective function evaluation for all generated solutions. Ac-
cordingly, for a fair basis of comparison, the number of objective function
evaluations is fixed to nFE = 18800 ± 3% for the ES, H. ES, NSGA2, and
H. NSGA2 approach. DA and ADS do not use function evaluations during
the optimization phase. Therefore, the number of optimizations for DA
and ADS is set to nWS = 65 so that their measured calculation time lies
within the same range of tC = 92 s ± 11% compared to the other solvers.

3.4.2 Results
Observation

The results of the statistical analysis are presented in Table 3.4. It should
be noted that the scores generated by DA are highlighted in gray, as its
solutions only serve as a reference set. They are optimal in the sense of
a discrete path representation in a discrete environment but do not meet
the requirement of a smooth continuous path.

Looking at the number of non-dominated solutions nNDS in Table 3.4, it
is interesting to see that the DA produces only nNDS = 28 non-dominated
solutions from nWS = 65 optimization runs with differently weighted ob-
jectives. Furthermore, by the smoothing step in the ADS approach, the
hypervolume drops from mNHV(DA) = 98% to mNHV(ADS) = 72%, los-
ing another 11 non-dominated solutions. All evolutionary approaches find
substantially more non-dominated solutions.

Looking at the other metrics, the hybrid methods H. ES and H. NSGA2
in particular perform well. They achieve normalized hypervolumes, which
are significantly4 better than the normalized hypervolume results gen-
erated by the ADS approach in the time. For further analysis, the
boxplot for the examined hypervolume metric can be seen in Fig. 3.5.
When comparing the H. ES and the H. NSGA2 approaches, the first
achieves a median of M(mNHV(H. ES)) = 88%, the latter a median of
M(mNHV(H. NSGA2)) = 82%. Both solvers outperform their non-hybrid
counterparts and the gradient-based solver by far. Among themselves, by

4Applied Mann-Whitney U-Test with ν1 = ν2 = 30, p < 0.05 and
medians of M(mNHV(H. ES)) = 88%, M(mNHV(ADS)) = 75% and
M(mNHV(H. NSGA2)) = 82% yielding U(mNHV(H. ES), mNHV(ADS)) = 732 and
U(mNHV(H. NSGA2), mNHV(ADS)) = 609.
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Table 3.4: The mean results for evaluating 30 scenarios are given. The algo-
rithms developed in this work are highlighted in blue. The results of the Dijk-
stra Algorithm (DA) highlighted in gray cannot be compared with the others
because the Dijkstra algorithm works on a discrete instead of a continuous path
representation. Each column’s best value is bold. The abbreviations stand for
Evolution Strategy (ES), Hybrid Evolution Strategy (H. ES), Non-dominated
Sorting Genetic Algorithm 2 (NSGA2), Hybrid Non-dominated Sorting Genetic
Algorithm 2 (H. NSGA2), Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm with Bounds (L-BFGS-B), Approximated Dijkstra Solution (ADS),
and Dijkstra Algorithm (DA).

µ(nNDS) µ(mNHV) µ(mGD) µ(mIGD)
ES 64 49% 353 461
H. ES 79 87% 191 196
NSGA2 81 3% 489 719
H. NSGA2 170 80% 206 245
L-BFGS-B 18 29% 547 606
ADS 17 72% 217 284
DA 28 98% 9 14

applying the Mann-Whitney U-Test5, it can be found out that the nor-
malized hypervolume distributions differ significantly for both solvers.

Meanwhile, the gradient-based L-BFGS-B solver performs poorly gen-
erating only nNDS = 18 non-dominated solutions. At the same time, these
are mostly dominated by the solutions of the other solvers, which is re-
flected in the low normalized hypervolume mNHV(L-BFGS-B) = 29%.

Looking at Table 3.4 again and comparing the Approximated Dijkstra
Solution (ADS) with the hybrid approaches, the convergence GD improves
by 12% for the H. ES and by 5% for the H. NSGA2 approach as well as
the IGD measure by 31% and 15%, respectively. This result indicates a
better convergence and diversity for the hybrid solvers compared to the
ADS approach.

In Fig. A.1, two of the examined 30 scenarios are colored red (left: Sce-
nario A; right: Scenario B). For these two scenarios, the Pareto set plots for
all solvers are provided in Fig. 3.6 and Fig. 3.8 respectively. The Pareto set
plots visualize and confirm the observations made. The Pareto set of the
DA solver used as reference is shown in gray. Next, the solutions of H. ES

5ν1 = ν2 = 30, p < 0.05, two-tailed, U(mNHV(H. ES), mNHV(H. NSGA2)) = 609
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Figure 3.5: The boxplots for the different solvers regarding the normalized hy-
pervolume metric are visualized in different colors. One box spans from the
data’s first quartile q1 to the data’s third quartile q3. The black line indicates
the median. The whiskers enclose all data points between the lower bound
2.5q1 − 1.5q3 and the upper bound 2.5q3 − 1.5q1. The abbreviations stand for
Evolution Strategy (ES), Hybrid Evolution Strategy (H. ES), Non-dominated
Sorting Genetic Algorithm 2 (NSGA2), Hybrid Non-dominated Sorting Genetic
Algorithm 2 (H. NSGA2), Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm with Bounds (L-BFGS-B), Approximated Dijkstra Solution (ADS),
and Dijkstra Algorithm (DA).

in blue and H. NSGA2 in red come close to it. Then follows the Pareto
set of Approximated Dijkstra Solutions (yellow), which is most notable for
its low number in non-dominated solutions. The solutions of ES (green),
NSGA2 (orange), and L-BFGS-B (violet) are also visually dominated by
the solutions of the other solvers in Fig. 3.6.

In Fig. 3.7, the path representations of the Pareto set’s risk extreme
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Figure 3.6: Pareto sets obtained by different solvers for one of the test set sce-
narios (Scenario A). The abbreviations stand for Evolution Strategy (ES), Hy-
brid Evolution Strategy (H. ES), Non-dominated Sorting Genetic Algorithm 2
(NSGA2), Hybrid Non-dominated Sorting Genetic Algorithm 2 (H. NSGA2),
Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with Bounds
(L-BFGS-B), Approximated Dijkstra Solution (ADS), and Dijkstra Algorithm
(DA).

point of Scenario A are visualized for all solvers in the corresponding colors.
It should be emphasized that the paths of L-BFGS-B (violet), as well as
the non-hybrid solvers ES (green), and NSGA2 (orange) deviate little from
the straight path between start and goal point that was used to initialize
the search. The Dijkstra Algorithm (DA) finds another path (gray) that
has a very small risk value but uses a discrete path representation. When
approximating a continuous path in the ADS approach, the good risk value
(yellow) deteriorates, which can be seen in Fig. 3.6. The hybrid approaches
H. ES and H. NSGA2 succeed in improving the minimum risk value again.
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As shown in Fig. 3.7, the corresponding path representations ’follow’ the
path of the ADS approach for a long time but then take different turns
towards the end of the path.
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Figure 3.7: The best paths regarding the risk objective function fR calculated
by all optimizers for Scenario A are visualized in the respective same colors as
in Fig. 3.6.

Accordingly, the minimum noise paths in the Pareto sets (Fig. 3.8) ob-
tained for Scenario B are visualized in Fig. 3.9. The hybrid solvers find a
new path alternative (blue and red) to the Approximated Dijkstra Solution
(ADS) path in yellow. A look at the Pareto set plots in Fig. 3.8 reveals
that these found alternative paths are considerably less noisy than the
paths obtained by ADS and even almost as good as the reference solution
of the DA.
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Figure 3.8: Pareto sets obtained by different solvers for one of the test set sce-
narios (Scenario B). The abbreviations stand for Evolution Strategy (ES), Hy-
brid Evolution Strategy (H. ES), Non-dominated Sorting Genetic Algorithm 2
(NSGA2), Hybrid Non-dominated Sorting Genetic Algorithm 2 (H. NSGA2),
Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with Bounds
(L-BFGS-B), Approximated Dijkstra Solution (ADS), and Dijkstra Algorithm
(DA).

Discussion

The first important finding is that single-objective optimizers are of limited
use when solving the problem. Aggregating weights and applying a single-
objective solver multiple times generates dominated solutions in more than
50% of all cases. Consequently, the weighted aggregation (3.7) is not
sufficient to efficiently sample a diversified Pareto set for the non-convex
problem (3.5).

A second important insight is that for the multi-modal problem, both
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Figure 3.9: The best paths regarding the noise objective function fN calculated
by all optimizers in Scenario B are visualized in the respective same colors as in
Fig. 3.8.

classical gradient-based optimizers and standard evolutionary methods
reach their limits. As seen in Fig. 3.3, the problem of dimensionality
dim(V) = 2 already comprises lots of local minima. The experiments
have shown that the gradient-based solver L-BFGS-B, as well as ES and
NSGA2, quickly get stuck in local optima that are not far away from the
initial solutions in the search space V.

A third insight is that the subsequent smoothing of an optimized discrete
path has non-negligible effects on its quality. Consequently, smoothing as
a post-processing step after a discrete path optimization is not desirable
when aiming for a Pareto set of smooth continuous paths.

Finally, the proposed hybrid approach combining evolutionary and Di-
jkstra algorithms seems to be a reasonable answer to the addressed multi-
objective and multi-modal problem. Compared to weighted aggregation
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approaches, the evolutionary search scheme allows the computation of a
diversified Pareto set. At the same time, the Dijkstra optimization stage,
unaffected by locality minima, provides good convergence towards better
non-dominated solutions.

On the downside, the hybrid approach is tailored to grid-based or at
least grid-transferable cost functions. For objectives that do not fulfill this
restriction, the Dijkstra stage S1 must be skipped.

3.4.3 Problem in the MOPP Framework
As indicated in Section 3.3.2, the choice of the number of NURBS control
points nCP plays a crucial role. It sets the degrees of freedom of the path
and, therefore, should not be chosen too small depending on the scenario.
In one scenario, a straight path, e.g., across an industrial area, realized by
a few control points might be sufficient. In another scenario, a residential
area must be crossed by a curvy path, requiring more control points to be
realized.

At the same time, nCP should not be chosen too large as it is directly
proportional to the complexity of the optimization problem (3.6). Hence,
there is a scenario-dependent optimal number of control points. The sce-
nario dependence is problematic as correctly setting nCP requires a priori
knowledge of the planning space or a preceding hyperparameter optimiza-
tion for each new scenario.

So far in this chapter, no thought has been given to the specification
of nCP. It was set to nCP = 15 in Table 3.2, which, on average, was a
good fit empirically obtained for the scenarios treated. In the following,
such pre-processing steps or the assumption of prior domain knowledge are
eliminated by determining the number of control points nCP adaptively,
i.e., scenario-dependent within the framework. In the further course of
the work, this feature is referred to as Adaptive Number of Control Points
(ANCP).

3.5 Improvement (ANCP)
3.5.1 Explanation

The Adaptive Number of Control Points (ANCP) feature developed in
this work is involved in the Smoothing & Approximation step during the
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transition from the Dijkstra Algorithm (DA) in step S1 to the Multi-
objective Evolutionary Algorithm (MOEA) in step S2 of the framework
shown in Fig. 3.4. Here, the path representation changes from a discrete
path Πd to a continuous path Π. The applied NURBS approximation [66]
takes the path Πd and a number of control points nCP as input.

The optimal number of control points n∗
CP is determined in an iterative

Adaptive Number of Control Points (ANCP) process. It starts with the
minimum possible value of ñCP = 3. In every iteration, the discrete path
Πd is approximated by a NURBS curve with ñCP control points. Then,
the approximation error ε between the discrete path Πd and its NURBS
approximation Π is determined. As error term ε, an adjusted Chamfer
distance metric

ε(Π, Πd) = max
(∑

π∈Π
min

πd∈Πd
|π − πd|2,

∑
πd∈Πd

min
π∈Π

|π − πd|2
)

can be used. As long as the error ε exceeds a given threshold τA = 7 m, the
current number of control points ñCP is increased by one, and the process
is repeated. When the error falls below the threshold, the found continuous
path Π approximates Πd well enough, and we have found a suitable number
of control points. Note that this process is carried out for each of the
nWS pre-processed solutions Πd,i separately producing potentially different
optimal numbers of control points nA

CP,i. We finally obtain the optimal
number of control points with n∗

CP = max
i∈{1,...,nWS}

(nA
CP,i).

3.5.2 Evaluation
Observation

The proposed ANCP feature is evaluated in the following. For 100 scenar-
ios separately, a path optimization runs with an optimal parameter n∗

CP.
Then, the optimization runs again for 100 scenarios separately with differ-
ent numbers of control points reaching from ñCP = 5 to ñCP = 30 control
points. This makes 27 optimization runs per scenario. For each scenario,
the obtained hypervolumes are normalized to the best and worst. Figure
3.10 shows the mean and the standard deviation (as symmetric errorbar)
of the normalized hypervolumes plotted over the difference ñCP − n∗

CP. If
ñCP lies in the range around the optimal parameter (i.e., ñCP − n∗

CP = 0
on the x-axis), the mean normalized hypervolume reaches its maximum
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value of µ(mNHV) = 0.96. Apart from this, the mean normalized hypervol-
ume values decrease visibly while their standard deviations increase. If ten
more control points are used for the approximation, µ(mNHV) decreases
by 4.2%. If ñCP is reduced by ten control points, µ(mNHV) even decreases
by 10.4%.
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Figure 3.10: Evaluation results for the Adaptive Number of Control Points
(ANCP) feature tested on 100 scenarios. The difference between the number
of control points evaluated for this test ñCP and the previously calculated opti-
mal number of control points n∗

CP is plotted on the x-axis.

Discussion

The test of the ANCP feature results in two insights. First, the number
of control points nCP has a strong influence on the hypervolumes and,
therefore, the quality of the obtained Pareto sets, as we can deduce from
the curve’s incline in Fig. 3.10. If nCP is too small, the NURBS curve no
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longer approximates the pre-processed Dijkstra path well enough, and the
resulting path is very likely to produce worse objective function values,
resulting in a smaller hypervolume. Thus, the advantage of pre-processing
is lost. On the contrary, if nCP is increased further, the approximation
stagnates, i.e., the approximation error no longer decreases. There is no
quality improvement for the continuous path anymore. At the same time,
the optimization vector becomes unnecessarily large, which increases the
complexity of the optimization problem and, thus, the chances of a stag-
nating optimizer.

Second, using the optimal parameter n∗
CP consistently leads to high

hypervolumes independently of the chosen scenario. The nWS discrete
path solutions computed in the pre-processing step S1 can already give a
reasonable estimate for the final path’s characteristic (i.e., curviness) on
the scenario. The curviness of the path determines the number of control
points nCP needed to adequately represent it as a NURBS curve. A good
NURBS approximation results in better Pareto sets as described in the
first insight. This explains the better solution quality achieved with the
ANCP feature.

In summary, the advantage of the ANCP feature lies in the applicabil-
ity of the hybrid path planning framework to unknown scenarios without
hyperparameter tuning as the crucial parameter nCP is adaptively deter-
mined. However, this generalization is achieved by making the size of the
optimization vector D and thus the optimization problem’s complexity
dependent on the curviness of the path.

3.6 Summary & New Results
This chapter covered the formulation, evaluation, and improvement of a
method to solve the Multi-objective Path Planning (MOPP) problem for
continuous two-dimensional paths. Grid-based and non-grid-based objec-
tives were introduced as two general classes of objective functions. For
both classes, exemplary but realistic objective functions were formulated.
They include minimizing the risk and noise for people underneath the
planned paths and minimizing the UAV’s energy consumption and radio
disturbance on its flight.

Including at least two objective functions, the problem is not only multi-
objective but was also identified to be multi-modal and thus non-convex.

In the further course of the chapter, a hybrid Multi-objective Path Plan-
ning (MOPP) framework was proposed, which was designed to combine the
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advantages of 1) an efficient and optimal, but ’discrete-represented’ and
single-objective shortest path algorithm, with 2) a multi-objective and con-
tinuously represented but computation-intensive metaheuristic optimizer.

The proposed framework was benchmarked against state-of-the-art evo-
lutionary, gradient-based, and graph-based (path planning) algorithms on
several realistic path planning scenarios using geospatial data from Open-
StreetMap (OSM).

Summarizing, the statistical results of the comparison revealed the ad-
vantages of the proposed hybrid frameworks. The Dijkstra Algorithm
(DA) alone efficiently calculates optimal solutions for single-objective and
discrete path problems. However, applying it in a weighted and aggre-
gated formulation to the multi-objective problem is inefficient as it leads
to comparably sparse solutions unequally distributed in the objective
space. Multi-objective evolutionary algorithms are known to overcome
those drawbacks but require more computational resources. Combining
both fuses the strengths of exact (i.e., Dijkstra) and metaheuristic algo-
rithms. The hybrid framework is faster and converges better towards a
high-quality Pareto set than randomly initialized evolutionary approaches.
Compared to the developed approach (previously called ADS) that a pos-
teriori approximates Dijkstra solutions with continuous NURBS curves,
the hybrid framework gains efficiency in generating non-dominated solu-
tions and thus diversity.

Last, the number of control points influencing the complexity of the
path’s shape was identified as a crucial hyperparameter of the framework.
This parameter is usually pointless to set without a hyperparameter tuning
or domain knowledge gathered from the UAV’s environment. However, the
use of the Dijkstra step enables efficient hyperparameter tuning. This was
exploited in the design of an Adaptive Number of Control Points (ANCP)
determination scheme, which was presented, evaluated, and found to work
well at the end of this chapter.

The contributions presented in this chapter are
• the idea of combining methods from two different optimization do-

mains that have so far been kept separate in the scientific community,

• the proposal of a new Multi-objective Path Planning (MOPP) frame-
work that is applicable to arbitrary geographic areas and allows the
integration of any new objectives, and

• the large-scale statistical analysis of the framework in a cross-domain
comparison with existing methods.
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4 Multi-objective Three-dimensional
Path Planning with Constraints

4.1 Introduction
In the previous chapter, the multi-objective path planning problem for
two-dimensional paths was solved using a new hybrid Multi-objective
Path Planning (MOPP) framework. However, UAVs move in the three-
dimensional space. Also, including a third path dimension in the optimiza-
tion problem can be helpful, for example, in collision avoidance maneuvers.
Moreover, climbing and descending flights consume lots of energy, which is
another reason for integrating movement in height into path optimization.
In addition, no constraints have yet been considered in the optimization
problem.

These two shortcomings will be addressed in the following chapter. For
this purpose, two constraint formulations are introduced into the path
optimization problem, and the path representation is extended to three
dimensions. Approaching this extended problem with the proposed MOPP
framework reveals new challenges, e.g., the increase in dimensionality. In
order to solve these new problems, the framework requires extensions that
are presented and tested in a statistical analysis on an example scenario
in New York City.

Parts of this chapter have already been published in:

• [N3] N. Hohmann, M. Bujny, J. Adamy, and M. Olhofer, ”Multi-
objective 3D path planning for UAVs in large-scale urban scenarios“,
in 2022 IEEE Congress on Evolutionary Computation (CEC), IEEE,
2022, pp. 1–8. doi: 10.1109/CEC55065.2022.9870265

• [N2] N. Hohmann, S. Brulin, J. Adamy, and M. Olhofer, ”Three-
dimensional urban path planning for aerial vehicles regarding many
objectives“, IEEE Open Journal of Intelligent Transportation Sys-
tems, vol. 4, pp. 639–652, 2023. doi: 10.1109/OJITS.2023.3299496

https://doi.org/10.1109/CEC55065.2022.9870265
https://doi.org/10.1109/OJITS.2023.3299496
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4.2 Problem Formulation
In the following, the multi-objective path planning problem introduced in
Section 3.2 is extended to a three-dimensional path representation. Ac-
cordingly, in Section 4.2.1, the changes in the environment and the path
representation are shown.

Furthermore, the problem is now extended with constraints, which are
formulated in Section 4.2.2. Then, the multi-objective three-dimensional
path planning formulation is presented in Section 4.2.3.

4.2.1 Representations
Environment

We extend the operation space to three dimensions

D3D
c =

[
xmin xmax

]
×
[
ymin ymax

]
×
[
zmin zmax

]
⊂ R3,

with the bounding coordinates xmin < xmax, ymin < ymax, and zmin <
zmax. Discretizing the continuous operation space with resolution[

δx δy δz

]
, yields the three-dimensional discrete operation space D3D

d .

Path

For the path representation, the same Non-uniform Rational B-Spline
(NURBS) curve formulation C(u) like in the previous chapter can be used,
with all curve’s control points Pi =

[
xi yi zi

]
now having dimension

three.
Changing the position of a control point and changing the weight of a

control point have a similar effect on the shape of the curve and, thus,
the quality of the path represented. In order to not increase the com-
plexity of the optimization problem unnecessarily, the weights wi of the
control points are removed from the optimization vector and set to fixed
values wi = 1 with an exception described together with the constraint
formulation in the following Section 4.2.2.

The path’s start point πs ∈ D3D
c being identical to the first control point

P0, and the path’s goal point πg ∈ D3D
c being identical to the last control

point PnCP−1 are input into the path planning problem. The remaining
nCP − 2 non-fixed control points Pi with i ∈ {1, . . . , nCP − 2} are the
variables

v =
[
x1 y1 z1 . . . xnCP−2 ynCP−2 znCP−2

]
(4.1)
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of the optimization problem that is stated later in Section 4.2.3.
Evaluating the NURBS curve for respective parameters uU like de-

scribed in Section 2.1.2 leads to the path

Π(v) = C(u)|v = [π0 = πs, π1, . . . , π|Π|−1 = πg]

with waypoints πi =
[
πi,x πi,y πi,z

]
⊂ D3D

c .

4.2.2 Constraints
Inequality constraints gj(v) and equality constraints hk(v), which were
generally introduced in Section 2.2.1, can be included as so-called soft
constraints into a multi-objective optimization problem. To that, they are
added as penalty terms to every objective function fi(v) as similarly done
by Coello [69] and Hoffmeister et al. [70]. This results in the constrained
objective functions

fi,C(v) = fi(v) +
Fineq∑
j=1

ξj

√
H(−gj(v))gj(v)2 +

Feq∑
k=1

ξk|hk(v)|, (4.2)

with the Heaviside function H and the penalty weights ξ that are cho-
sen arbitrarily large to ensure that fi,C(v) ≫ fi(v) if the constraints are
violated.

In the following, two inequality constraints are introduced. They are
designed to be realistic for UAV applications but principally are exem-
plary to evaluate the path planning framework’s performance concerning
constraint handling.

Minimum Flight Height

Except for the take-off and landing phase, the UAV’s path is supposed to
lie above a minimum flight height zF,min. Introducing the height inequality
constraint

gH,i(v) = zi − zF,min ≥ 0, ∀i ∈ {1, . . . , nCP − 2} (4.3)

we make sure that the z-components zi of the curve’s control points will
not decrease below zF,min. Note that the convex hull property of NURBS
curves, which was described in 2.1.2, guarantees that no path point π
will fall below zF,min if there is no control point Pi =

[
xi yi zi

]
below

zF,min.
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If the path’s fixed start control point P0 =
[
x0 y0 z0

]
or endpoint

PnCP−1 =
[
xnCP−1 ynCP−1 znCP−1

]
lie below zF,min, the second and

second last control points are additionally locked in position. Their com-
ponents are set to P1 =

[
x0 y0 zF,min

]
with weight w1 = 100, as well

as PnCP−2 =
[
xnCP−1 ynCP−1 zF,min

]
with weight wnCP−2 = 100. Dur-

ing the take-off and landing phase of the aerial vehicle, this guarantees a
completely vertical flight movement as long as the aircraft is below the
minimum flight altitude.

Obstacle Collision Avoidance

The UAV’s path must not go through static obstacles like buildings. A
twofold approach enables a three-dimensional path to be pushed out of
static obstacles by using two two-dimensional grid maps instead of a three-
dimensional grid map.

A first inequality constraint formulation is designed to influence the z-
component of waypoints within an obstacle. Therefore, a two-dimensional
height grid map G2D

H is introduced. Each cell of the height grid map
contains the height value of the tallest building in the respective cell. An
exemplary height grid map is visualized in Fig. A.15 in the Appendix A.2.
Suppose a waypoint πi =

[
πi,x πi,y πi,z

]
of the path Π lies below the

height of the respective height map value. In that case, it is stored in
a set of unsafe waypoints Π×. All objective functions are subject to a
penalty term according to (4.2) and the following zenith collision inequality
constraint for all i ∈ {0, . . . , |Π| − 1}

gZ,i(v) = πi,z − I(G2D
H , (πi,x, πi,y)) ≥ 0, (4.4)

with I(G2D
H , (πi,x, πi,y)) being the bi-linear regular grid interpolation of the

height grid map at point (πi,x, πi,y). Consequently, the unsafe waypoints
are pushed out of static obstacles in the direction of the z-axis.

A second inequality constraint formulation is designed to create a drift
that moves unsafe waypoints out of static obstacles in the xy-plane. There-
fore, the building grid map B2D

B , already introduced in Section 3.2.2, is
used. By inverting the building grid map, and applying the Euclidean
Distance Transform (EDT) (3.3), an obstacle grid map is obtained

G2D
O = T (B̄2D

B )

with gradients that point away from the centers of buildings and toward
the nearest free-space cells. This obstacle grid map is used to calculate a
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plain collision inequality constraint for all i ∈ {0, . . . , |Π×| − 1}

gP,i(v) = −I(G2D
O , (π×

i,x, π×
i,y)) > 0, (4.5)

with I again being the grid interpolation function. This con-
straint function ensures that during optimization unsafe waypoints
π×

i =
[
π×

i,x π×
i,y π×

i,z
]

∈ Π× are pushed in the direction of cells in the
obstacle grid map that equal zero, i.e., are no obstacles.

4.2.3 Optimization Problem
As it has already been described in Section 3.2.3, we again want to sat-
isfy the requirement of non-correlated objective functions for the design of
the multi-objective three-dimensional path planning problem. When plan-
ning paths in the third dimension, especially the Noise Immission objec-
tive function fN(v) presented in Section 3.2.2, which prefers high-altitude
flight paths, as well as the Energy Consumption objective function fE(v)
presented in Section 3.2.2, which favors low-altitude flight paths, take op-
posite optimization goal roles and thus appear suitable.

The vector v of optimization variables (4.1) has already been given
in Section 4.2.1. Eventually, the optimization problem with constraints
considered in this chapter can be described as

min
v∈V

{
fN(v),
fE(v),

s.t.


gH,i(v) ≥ 0, ∀i ∈ {1, . . . , nCP − 2}
gZ,i(v) ≥ 0, ∀i ∈ {0, . . . , |Π| − 1}
gP,i(v) > 0, ∀i ∈ {0, . . . , |Π×| − 1}

where nCP is the number of control points in the NURBS path represen-
tation, |Π| is the number of waypoints of the path Π, and |Π×| is the
number of waypoints of the path Π that lie within a static obstacle. Here,
the search space

V = [D3D
c ] × . . . × [D3D

c ]| ︷︷ ︸
nCP−2

has dim(V) = 3(nCP − 2) dimensions.
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4.3 Solution Approach
4.3.1 Problem Analysis
The runtime of the Dijkstra algorithm depends on the number of edges
|E̊| and nodes |N̊ | in the underlying graph G. More precisely, the time
complexity is bounded from above by O(|N̊ |log(|N̊ |) + |E̊|) [71]. As it
can be seen from Fig. 4.1, the transition from a two-dimensional to a
three-dimensional environment representation and thus the change from
2D to 3D graphs comes at the cost of a massively increasing number of
edges and nodes in the used objective functions’ grid graph representations
G3D. Consequently, the runtime of the Dijkstra algorithm in step S1 of
the presented Multi-objective Path Planning (MOPP) framework quickly
becomes computationally infeasible for growing operation spaces D3D

c .

4.3.2 Solution
To face the presented curse of dimensionality, it makes sense to not use the
same resolution

[
δx δy δz

]
for the graphs in the Dijkstra step S1 as for

the grid maps in the grid-based objective function evaluations (3.2) in the
evolutionary step S2. Instead, the original graphs are resized according to
a new resolution

[
δ̃x δ̃y δ̃z

]
. Details about the extensions of the pipeline

are described in the following section.

Pipeline

The MOPP framework’s extensions are visualized blue in Fig. 4.2. Next to
the path’s start and end point and the E objectives, now F = Feq + Fineq
constraints are also input into the framework. Moreover, the framework
has been extended by the following steps:

1. In the Grid Resizing step, the grids G3D of all grid-based objectives
are scaled from their original resolution

[
δx δy δz

]
to a coarser

resolution
[
δ̃x δ̃y δ̃z

]
for the Dijkstra algorithm. These scaled

grids are denoted

G̃3D : {1, . . . , X̃} × {1, . . . , Ỹ } × {1, . . . , Z̃}| ︷︷ ︸
D̃3D

d

→ R+, (i, j, k) 7→ gijk,
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Figure 4.1: Comparison between a 2D (8-neighborhood) and a 3D (18-
neighborhood) square grid graph with 30 z-layers regarding the number of
edges |E̊|, the number of nodes |N̊ |, and the upper time complexity bound
O(|N̊ |log(|N̊ |) + |E̊|) of the Dijkstra algorithm finding a shortest path in the
respective graphs.

with

X̃ =
⌊

|xmax − xmin|
δ̃x

⌋
and accordingly for the other dimensions. The generalized graph
representations are designated by G̃3D. The choice of a suitable
resolution depends on the scenario size and is a trade-off. A less
coarse resolution would increase the solution quality of the follow-
ing Dijkstra algorithm but could be too slow or consume too much
computational resources. A coarser resolution would make the Dijk-
stra algorithm need less computational time but could lead to poor
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solutions, which could not serve as adequate initial solutions in step
S2.

2. Domain knowledge from the constraints formulations can be used in
the Grid Resizing and Grid Transfer steps to reduce the size of the
resized graphs G̃3D further. More details on that follow in the next
section.

3. Including constraints as soft constraints (4.2) into the framework
opens a new problem, which requires an adjustment in the multi-
objective optimization step S2. This is described at the end of the
chapter in Section 4.5.

Integration of Constraints

Minimum Flight Height The minimum flight height constraint can
be perfectly incorporated into the Dijkstra stage S1 of the solution frame-
work. Waypoints πi should generally be above the minimum flight height
πi,z > zF,min, except for takeoff and landing phases where a vertical flight
occurs. Thus, before the DA in step S1 repeatedly solves the weighted,
aggregated, and transformed problem (3.8), the start and endpoints for
the Dijkstra searches can be projected to the minimum flight heights
πs =

[
x0 y0 zF,min

]
and πg =

[
xnCP−1 ynCP−1 zF,min

]
. Eventu-

ally, in the aggregated grid map G̃3D
A , where the Dijkstra algorithm looks

for solutions, all cells (i, j, k) ∈ D̃3D
d with kδ̃z < zF,min can be marked as

occupied so that the DA does not look for solutions here at all. The search
space of the Dijkstra algorithm is thus reduced. Further advantages will
be discussed in the next section.

Obstacle Collision Avoidance Also, the two described obstacle col-
lision avoidance constraints can already be considered in the Dijkstra al-
gorithm stage S1. Waypoints are supposed to lie outside of static ob-
stacles. In the aggregated grid map G̃3D

A , all cells (i, j, k) ∈ D̃3D
d with

kδ̃z < G̃2D
H (i, j) that are below the height value of the corresponding cell

in the scaled height grid map G̃2D
H can be set to an occupied status, being

ignored by the Dijkstra Algorithm (DA). Consequently, the search space
for the Dijkstra algorithm becomes smaller again.

However, this integration of constraints into the step S1 is only an ap-
proximation of the real constraint formulations (4.3), (4.4), and (4.5). Due
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Figure 4.2: Diagram showing the changes in the hybrid optimization framework
that allow for the incorporation of constraints and a three-dimensional path rep-
resentation. The grids of grid-based objectives are resized, obtaining a coarser
resolution suitable for the Dijkstra algorithm. Moreover, if possible, the con-
straint formulations can also be considered in the grids that are input into the
weighted aggregation. Also, the multi-objective evolutionary algorithm must be
adapted due to constraints in the hybrid framework. This is explained at the
end of this chapter.
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to the change to a continuous path representation in the Smoothing & Ap-
proximation step of the framework and the usage of the original grid graphs
G3D, the derived initial solutions in step S2 do not necessarily satisfy the
constraints anymore. Nevertheless, the described approximation errors
are expected to be acceptably small. Hence, the solutions derived after S1
should already be close to the feasible region of the original optimization
problem in step S2.

4.4 Evaluation
The introduced MOPP framework extension for solving the multi-objective
three-dimensional path planning problem with constraints is evaluated in
the following. Therefore, the following Section 4.4.1 presents the test sce-
nario, comparative algorithms, and their parametrization used for the eval-
uation. The evaluation’s results and discussion follow in Section 4.4.2.
Lastly, a new problem that emerged by the framework extension is dis-
cussed in Section 4.4.3.

4.4.1 Setup
Scenario

The evaluation is based on OpenStreetMap (OSM) [67] data of a map sec-
tion from New York City that is visualized in Fig. A.7. The corresponding
semantic data is visualized in Fig. A.8 in the Appendix A.2. Visualizations
of the derived height grid map G2D

H , and a cross-section through the noise
grid map G3D

N at height z = 0 m can be seen in Fig. A.9, and Fig. A.11,
respectively. These grid maps are used to calculate the noise objective
function fN(v), the height constraint gH,i, the zenith collision constraint
gZ,i, and the plain collision constraint gP,i introduced in Section 4.2.2. A
summary of all parameters concerning the scenario setup and the repre-
sentation of the environment and paths can be found in Table 4.1.

The tests were conducted on 30 different start πs and goal πg pairs that
are uniformly distributed over the operation space D3D

c and the distance
space. In order to be more realistic, the z-components of all start and
endpoints were projected onto the height grid map G2D

H . The x-y-positions
of all start and goal point pairs are visualized in Fig. A.7.
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Table 4.1: Scenario Parameters

Parameter Symbol Value

Scenario

Origin latitude Lat 40.7417°N
Origin longitude Lon -73.9953°E

Scenario dim.
xmin, xmax 0 m, 2280 m
ymin, ymax 0 m, 1500 m
zmin, zmax 0 m, 300 m

Min. flight height zF,min 50 m

Environment Discr. resolution δx, δy, δz 4 m, 4 m, 10 m
Resizing resolution δ̃x, δ̃y, δ̃z 15 m, 15 m, 10 m

Path

Num. control pts. nCP 201

Basis func. degree d 2
Parametrization uniform

Num. of path pts. |Π| 150
1 Although the ANCP feature has already been introduced, it was not

yet implemented at the time of this experiment setup, which is why
the number of control points is still static here.

Solvers

In order to evaluate the extended Multi-objective Path Planning (MOPP)
framework for the multi-objective three-dimensional path planning prob-
lem with constraints, different Multi-objective Evolutionary Algorithms
(MOEAs) are chosen as optimizers in step S2 of the hybrid framework
proposed in this thesis. Like in the previous chapter, the resulting ap-
proaches are again denoted with the H. prefix. The results are com-
pared to the solvers’ performances outside the developed hybrid frame-
work. The Evolution Strategy (ES) and the Non-dominated Sorting Ge-
netic Algorithm 2 (NSGA2), which were already used in Chapter 3, are
again employed as solution methods. In addition, another standard solver
for multi-objective optimization problems, Multi-objective Covariance Ma-
trix Adaptation Evolution Strategy (MO-CMA-ES) [72], is evaluated.

Furthermore, beyond these metaheuristic approaches, the single-
objective gradient-based optimizer L-BFGS-B is now also tested as a solver
in step S2 within the framework (H. L-BFGS-B). Since this algorithm is
not capable of handling more than one objective at once, the Pareto set
generated by the L-BFGS-B approach is derived by a weighted aggregation
of the objectives (3.7). This time, the necessary weights λi are not chosen
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uniformly distributed, like described in Section 3.4.1, but are derived by
an Adaptive Weight Determination Scheme (AWDS) [73].

For all hybrid solution methods, the number of weighted solutions gen-
erated in step S1 of the framework was set to the number of objectives1

nWS = E = 2 with the weights being[
λ1 λ2

]
∈
{[

0 1
]

,
[
1 0

]}
.

In Table 4.2, an overview of the hyperparameters for each approach
is given, with all approaches developed in this work marked in blue.
Parameters not introduced there are set to standard values from liter-
ature [39], [72]. Similar to the method in Chapter 3, all non-hybrid ap-
proaches are initialized with straight line paths, whereby the control points
are applied with Gaussian noise N (0, σi), with standard deviations that
were set to σx = σy = 3 m for x- and y-coordinates and σz = 5 m for the
z-component of the control points. Additionally to the nWS pre-processed
solutions, all hybrid approaches are initialized with a straight line path.
If more than nWS + 1 initial solutions are needed, these are applied with
Gaussian noise.

The metrics that are used to evaluate the different approaches are the
same as those used in Chapter 3.

During the optimization, using evolutionary and gradient-based solvers,
the cost function evaluations need the most computational resources in
each iteration. Accordingly, for a fair basis of comparison, the number of
objective function evaluations is limited to nFE = 40000 for all optimizers,
corresponding to an evolution of a = 400 generations for the evolutionary
approaches.

4.4.2 Results
Observation

The results obtained for evaluating 30 scenarios can be seen in Table 4.3.
The mean values for the optimizers’ normalized HV, GD, and IGD metrics
are given after nFE = 1000 and nFE = 40000 function evaluations, respec-
tively. Additionally, Fig. 4.3 gives a more detailed look at the development
of the normalized HV, which is averaged over all runs and plotted over the
number of function evaluations.

1The benefit of a larger number of weighted solutions nWS in step S1 is discussed
under the name Multiple Weighted Start Points (MWSP) in the following Chapter
5.4 of the thesis.
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Table 4.2: The parameters for all evaluated solvers are listed. The algorithms de-
veloped in this work are highlighted in blue. The abbreviations stand for Evolu-
tion Strategy (ES), Hybrid Evolution Strategy (H. ES), Non-dominated Sorting
Genetic Algorithm 2 (NSGA2), Hybrid Non-dominated Sorting Genetic Algo-
rithm 2 (H. NSGA2), Multi-objective Covariance Matrix Adaptation Evolution
Strategy (MO-CMA-ES), Hybrid Multi-objective Covariance Matrix Adaptation
Evolution Strategy (H. MO-CMA-ES), and Hybrid Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm with Bounds (H. L-BFGS-B).

Method Parameter Symbol Value

ES
Initial step size σ0

[
3 m 3 m 5 m . . .

]
Parent pop. size spar 10

Offspring pop. size soff 100
H. ES Num. weighted sols. nWS 2

NSGA2

Crsvr. crowding deg. ηx 20
Crossover probability px 0.9
Mut. crowding deg. ηmut 20

Mutation probability pmut 1
Individual mut. prob. pmut,ind 1/D

Population size spop 100
H. NSGA2 Num. weighted sols. nWS 2

MO-
CMA-ES

Initial step size σ 1
Parent pop. size spar 100

Offspring pop. size soff 100
H. MO- Num. weighted sols. nWS 2CMA-ES
H. L- Num. weighted sols. nWS 2BFGS-B

The low final normalized HV µ(mNHV) = 31% of the L-BFGS-B solver is
particularly noticeable. By applying the Mann-Whitney U-Test2, it can be
shown that by embedding the gradient-based solver into the hybrid frame-
work (i.e., H. L-BFGS-B), the performance of the L-BFGS-B algorithm
can be increased significantly by 129%.

The same effect can be observed for the other optimizers: by utiliz-
2The parameters of the test are ν1 = ν2 = 30, p < 0.05, two-tailed, medi-

ans M(mNHV(L-BFGS-B)) = 0%, M((mNHV(H. L-BFGS-B))) = 75% yielding
U(mNHV(L-BFGS-B), mNHV(H. L-BFGS-B)) = 822.
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ing the hybrid approach, the means of the solvers’ achieved final normal-
ized HVs can be increased by 41% (MO-CMA-ES), 26% (NSGA2), and
17% (ES), respectively. The overall best results can be achieved by the
H. NSGA2 algorithm. Looking at the development of its mean normalized
HV in Fig. 4.3 (orange curve) in comparison to NSGA2 without hybrid
framework (red curve), it can be observed that the hybridization has the
biggest impact in the beginning of the optimization, leading to a huge
difference in the initial means of normalized HV of both solvers. In order
to further examine characteristics of the solvers after only a few function
evaluations, the boxplot for the normalized HV after nFE = 1000 func-
tion evaluations is shown in Fig. 4.4. Regarding the normalized HV, the
NSGA2 and H. NSGA2 algorithms differ significantly3.

All hybrid evolutionary approaches show the same beneficial charac-
teristic regarding the GD metric. Looking in Table 4.3, we observe that
after nFE = 1000 evaluations, the hybrid evolutionary optimizers achieve
a smaller and, therefore, better generational distance measure than their
standard counterparts. Again, the best performing algorithm is H. NSGA2
that performs significantly4 better than the standard NSGA2 algorithm.
Finally, a look at the performances regarding the IGD metric will be taken.
From Table 4.3, it can be observed that after nFE = 1000 evaluations the
H. ES approach achieves the best mean IGD value, differing significantly5

from the standard ES.
Next, we look at paths that were calculated after nFE = 1000 function

evaluations by each optimizer for the scenario that is depicted by the red
line in Fig. A.7 in the Appendix A.2. In Fig. 4.5, the paths with the min-
imal noise values determined by each solver are visualized. Whereas the
non-hybrid optimizers (blue, red, brown and gray paths) only find solu-
tions at lower altitude, the hybrid optimizers found paths (green, orange,
violet and gold) with lower noise values at higher flight altitudes. Simi-
larly, the same approaches benefit from the hybrid framework regarding
the calculated paths that achieved the lowest energy consumption values.
They are visualized in Fig. 4.6. It can be seen that the paths that were

3Applied Mann-Whitney U-Test with ν1 = ν2 = 30, p < 0.05, and me-
dians M(mNHV(NSGA2)) = 37%, M(mNHV(H. NSGA2)) = 95% yielding
U(mNHV(NSGA2), mNHV(H. NSGA2)) = 843

4Applied Mann-Whitney U-Test with ν1 = ν2 = 30, p < 0.05,
M(mGD(NSGA2)) = 0.009, M(mGD(H. NSGA2)) = 0.003 yielding
U(mGD(NSGA2), mGD(H. NSGA2)) = 155

5Applied Mann-Whitney U-Test with ν1 = ν2 = 30, p < 0.05, me-
dians M(mIGD(ES)) = 0.047, M(mIGD(H. ES)) = 0.0 yielding
U(mIGD(ES), mIGD(H. ES)) = 7.5
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Table 4.3: The mean results for evaluating 30 scenarios are given. The algo-
rithms developed in this work are highlighted in blue. Each column’s best value
is bold. The abbreviations stand for Hybrid Multi-objective Covariance Matrix
Adaptation Evolution Strategy (H. MO-CMA-ES), Multi-objective Covariance
Matrix Adaptation Evolution Strategy (MO-CMA-ES), Hybrid Non-dominated
Sorting Genetic Algorithm 2 (H. NSGA2), Non-dominated Sorting Genetic Algo-
rithm 2 (NSGA2), Hybrid Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm with Bounds (H. L-BFGS-B), Limited-memory Broyden-Fletcher-
Goldfarb-Shanno algorithm with Bounds (L-BFGS-B), Hybrid Evolution Strat-
egy (H. ES), and Evolution Strategy (ES).

µ(mNHV) µ(mGD) (·102) µ(mIGD) (·102)
nFE 1000 40000 1000 40000 1000 40000
H. MO-CMA-ES 75% 96% 1.4 1.6 0.7 1.0
MO-CMA-ES 23% 68% 4.2 2.5 4.3 2.7
H. NSGA2 75% 98% 0.3 0.3 2.5 1.9
NSGA2 37% 78% 1.0 0.6 5.6 3.9
H. L-BFGS-B 58% 71% 1.3 3.0 3.5 3.8
L-BFGS-B 13% 31% 0.6 2.0 6.5 5.9
H. ES 80% 90% 0.9 1.3 0.2 1.1
ES 36% 77% 4.1 1.3 4.3 2.3

generated by the standard optimizers still lead through static obstacles.
In contrast, the paths that were generated by the hybrid algorithms are
already nearly collision-free.

Discussion

Again, the results indicate the weakness of the standard gradient-based
L-BFGS-B approach. The reason for that could be the multimodal charac-
ter of the objective functions. The L-BFGS-B solver pushes the paths into
local optima and then terminates. This time, the L-BFGS-B algorithm
was plugged into the hybrid framework, showing that the Dijkstra pre-
processing improved the obtained Pareto set’s quality significantly. Nev-
ertheless, both L-BFGS-B and H. L-BFGS-B lag behind the hybrid meta-
heuristic approaches. Those, i.e., H. ES, H. MO-CMA-ES, and H. NSGA2,
show by far the best performances.

The focus of this chapter lies in extending the hybrid framework to
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Figure 4.3: For each scenario, the optimizers’ achieved hypervolumes are
normalized to the best and worst achieved hypervolumes. The normal-
ized hypervolumes are averaged over all 30 scenarios and shown depen-
dent on the number of cost function evaluations. The abbreviations stand
for Hybrid Multi-objective Covariance Matrix Adaptation Evolution Strategy
(H. MO-CMA-ES), Multi-objective Covariance Matrix Adaptation Evolution
Strategy (MO-CMA-ES), Hybrid Non-dominated Sorting Genetic Algorithm 2
(H. NSGA2), Non-dominated Sorting Genetic Algorithm 2 (NSGA2), Hybrid
Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with Bounds
(H. L-BFGS-B), Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
with Bounds (L-BFGS-B), Hybrid Evolution Strategy (H. ES), and Evolution
Strategy (ES).

three-dimensional operation spaces and including constraints. Thereby,
the questions should be answered on how to deal with the dimension in-
crease of the search space and the constraints, especially in step S1 of the
framework. With the Grid Resizing step, it was possible to ensure that
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Figure 4.4: The boxplots for the normalized hypervolumes after a = 1000 iter-
ations for 8 optimizers on 30 scenarios are visualized in different colors. One
box spans from the data’s first quartile q1 to the data’s third quartile q3.
The black line indicates the median. The whiskers enclose all data points
between the lower bound 2.5q1 − 1.5q3 and the upper bound 2.5q3 − 1.5q1.
The abbreviations stand for Hybrid Multi-objective Covariance Matrix Adapta-
tion Evolution Strategy (H. MO-CMA-ES), Multi-objective Covariance Matrix
Adaptation Evolution Strategy (MO-CMA-ES), Hybrid Non-dominated Sort-
ing Genetic Algorithm 2 (H. NSGA2), Non-dominated Sorting Genetic Algo-
rithm 2 (NSGA2), Hybrid Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm with Bounds (H. L-BFGS-B), Limited-memory Broyden-Fletcher-
Goldfarb-Shanno algorithm with Bounds (L-BFGS-B), Hybrid Evolution Strat-
egy (H. ES), and Evolution Strategy (ES).

the Dijkstra algorithm remains applicable to the three-dimensional search
spaces.

On the downside, the efficient pre-computation of initial solutions with
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Figure 4.5: The optimal paths calculated by all solvers concerning the minimum
noise criterion are shown in the colors corresponding to the previous figures.
While the optima found by the non-hybrid solvers are not far from the straight-
line initializations, the paths of the hybrid methods are more noise-optimized at
higher flight altitudes.

Figure 4.6: Accordingly, the optimal paths calculated by the different solvers
concerning the energy consumption objective are shown here. As can be seen,
the non-hybrid methods do not succeed in generating collision-free paths.

the Dijkstra algorithm depends on the size of the grid maps and thus
on map dimensions and the discretization resolution. Thus, for larger
scenarios, the grid resolution must be reduced, or the scenario has to be
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decomposed into sub-problems.
Furthermore, constraints can also be considered in step S1. This has a

decisive advantage because the initial solutions are already close to or even
in the feasible region of the optimization problem. The benefit can be seen
in Fig. 4.6. The paths of the non-hybrid approaches still go through static
obstacles, while the hybrid methods have found a way around them.

By extending the framework with a resizing functionality and con-
straints, new tasks are assigned to step S2 of the framework, i.e., the
metaheuristic optimization. In step S2, the grid-based objectives are op-
timized based on their original resolution

[
δx δy δz

]
and the non-grid-

based objectives based on their original non-transferred formulation (e.g.,
the energy consumption model (3.4)). By removing the simplifications
made for step S1, there is new potential for improvement in step S2 of
the framework. Furthermore, even if in step S1, all boundary conditions
can be safely satisfied for the discretized environment and path represen-
tation, after the smoothing and approximation step (i.e., the change in
the path representation), there may be constraint violations again. The
metaheuristic algorithm needs to remove these in step S2. Here, a problem
arises, which will be explained and solved in the following.

4.4.3 Problem in the MOPP Framework
The problem originates in the presence of constraints. To explain this fur-
ther, we look at an example. Let us assume that the Dijkstra algorithm
has found two differently shaped discrete paths for the E = 2 objectives of
a path planning problem. Nevertheless, after the Smoothing & Approxima-
tion step, one of the two obtained continuous paths violates the obstacle
collision constraint, whereas the other does not. This might happen due to
the NURBS approximation error, causing the first path to slightly touch
a building. In contrast, the remaining parts of the path are nearly opti-
mal regarding one objective. Consequently, this solution’s cost functions
are assigned a high penalty term. The path is likely Pareto-dominated
by the second path that satisfies all constraints. Thus, the metaheuristic
algorithm removes the first path from its solution set in the first itera-
tion. This means that the Dijkstra calculation of the first path had no
purpose. However, after only minor adaptations to the path’s shape, it
would probably satisfy the constraints and become a good solution.

To summarize, it is possible that the presence of constraints will under-
mine some computations in step S1 of the hybrid framework.



78 4 Multi-objective 3D Path Planning with Constraints

4.5 Improvement (Niching)
4.5.1 Explanation
We want to solve this problem by introducing Niches. Niching is the
generic term for a class of techniques commonly used in evolutionary
multimodal optimization [74]. By dividing the set of solutions into sub-
populations, Niching aims to preserve the solution diversity during op-
timization to find multiple (local) optima. The similarity of different
state-of-the-art Niching approaches lies in utilizing a distance metric to
assign solutions to different sub-populations [75]. The Niching approach
introduced in the following differs from others [76]–[78] in that it neither
needs any additional computations nor extra parameters to build sub-
populations. Instead, we can directly use the pre-processed candidate
solutions as the origin of a sub-population:

The Niching approach proposed for the hybrid MOPP framework is
part of the metaheuristic optimization step S2 in the framework shown in
Fig. 4.2. During the initialization phase of the Multi-objective Evolution-
ary Algorithm (MOEA), a separate niche is created for each of the nWS
pre-processed Dijkstra solutions. The evolutionary algorithm then applies
the reproduction and selection process within each niche separately instead
of applying it to the complete population of solutions. The iterative, evo-
lutionary optimization process continues within the niches until at least
one candidate solution in every sub-population satisfies all constraints.
When this happens, the niches are dissolved into one population, and the
evolutionary process continues.

In addition to the nWS regular niches, we also introduce a niche for the
initial straight-line solution. This niche is treated the same way as the
others, except that the ’constraint satisfaction condition’ does not have to
be valid for the transition to the entire population.

4.5.2 Evaluation
Observation

Next, the introduced Niching feature is evaluated. For 100 scenarios (i.e.,
start and endpoint pairs) separately, two separate path optimization runs
are executed with the same hybrid framework. The difference is that in
the first run, the Niching feature is switched off, i.e., at the beginning of
step S2, all pre-processed solutions are directly put into one population.
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In contrast, in the second run, the feature is switched on, i.e., all pre-
processed solutions at the beginning of step S2 live in separate niches
and are optimized independently. In both runs, the hypervolumes of the
generated Pareto sets are measured after every function evaluation. The
hypervolume values are normalized to the best and worst hypervolumes
achieved throughout all function evaluations. In Fig. 4.7, the mean of the
normalized hypervolumes for all scenarios is plotted over the number of
cost function evaluations.

Initially, the mean values of the hypervolumes of both strategies increase
similarly. After about nFE = 100 evaluations, the curves diverge strongly
and reach a difference of 0.19 after nFE = 5000 evaluations. Finally,
the method with the applied Niching strategy is 29% better than the
one without the Niching strategy. In other words, the Niching strategy
requires ∆nFE = 2300 fewer function evaluations to achieve the same
hypervolume as the approach without Niching.
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Figure 4.7: Performance test results for the evaluation of the Niching feature
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Discussion

The results of the described experiment demonstrate the positive effect
that Niching has on the proposed path planning framework under the
presence of constraints. The problem that is solved with the Niching fea-
ture lies in the different grid scaling and path representation in both stages
S1 and S2 of the hybrid framework. This causes good Dijkstra solutions to
potentially violate the constraints in stage S2. The better performance of
the framework with the Niching feature is due to the initial preservation
of all pre-processed solutions, constraint-violating or not, assuming that
within a few iterations, the constraints are potentially resolved.

Summarizing, Niching allows to integrate constraints into the hybrid
optimization framework while ensuring that no pre-processed solution will
initially be rejected for constraint violation. However, the framework user
must ensure that the defined constraints are satisfiable. Otherwise, the
niches will never migrate into the complete population, and the intended
many-objective optimization will fall back into E single-objective opti-
mizations.

4.6 Summary & New Results
This chapter was about formulating, evaluating, and improving a method
to solve the constrained, multi-objective, three-dimensional path planning
problem. First, the path planning problem presented in Chapter 3 was
extended to a three-dimensional planning space. The resulting increase in
complexity was presented.

Two exemplary but realistic constraints were formulated that penalize
flying below the minimum flight altitude and colliding with static obstacles
in the three-dimensional planning space.

In the next section of the chapter, the hybrid Multi-objective Path
Planning (MOPP) framework for the unconstrained, multi-objective, two-
dimensional path planning problem from Chapter 3 was extended by mod-
ules that can cope with the new challenges.

The new extended MOPP framework was evaluated together with state-
of-the-art optimizers on a three-dimensional urban real-world scenario.

To sum up, the statistical results of the comparison revealed the effec-
tiveness of the extended hybrid MOPP framework. The hybrid embed-
ding consistently achieved significantly better results than the standard
approaches for all examined metrics. The advantages already observed in
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Chapter 3 can now be further enhanced by the fact that constraints are
already being taken into account in the Dijkstra optimization stage S1.

Finally, it could be shown that the presence of constraints can, however,
in some cases, also hinder the idea of the hybrid method. In order to solve
this problem, the integration of a Niching process into the metaheuristic
optimization stage has been proposed. This feature was evaluated and
shown to increase the performance of the path planning framework. In
conclusion, this chapter contained the following contributions:

• The computationally realizable extension of the Multi-objective Path
Planning (MOPP) framework to the three-dimensional planning
space.

• Leveraging the MOPP framework’s design and using evolutionary
Niches, a concept borrowed from the nature-inspired multi-modal
optimization community, to enable the efficient integration of con-
straints into the optimization problem.

• The large-scale statistical analysis of the extended MOPP framework
in a cross-domain comparison with existing methods.
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5 Many-objective Three-dimensional
Path Planning with Constraints

5.1 Introduction
The hybrid Multi-objective Path Planning (MOPP) framework for mul-
tiple objectives introduced in Chapter 3 and extended in Chapter 4 has
produced promising results in the examinations made for two objectives.
Since the number of objective functions was until now E ≤ 3, the term
multi-objective optimization was used. However, real-world problems of-
ten consist of more than just two optimization criteria. As shown, for ex-
ample, by Bauranov et al. [14], planning flight paths for unmanned aerial
vehicles in urban areas requires the consideration of 1) safety, 2) legal, and
3) economic aspects. In addition, attention to 4) social factors for gaining
public acceptance becomes increasingly essential. Nevertheless, scientists
have rarely considered this crucial social component in their Urban Air
Mobility (UAM) applications [14].

Thus, this chapter focuses on investigating the MOPP framework for
optimizing paths concerning four criteria. Because E > 3 now applies to
the number of criteria, we are talking about many-objective optimization.
The optimization criteria tackled in the following can be seen as repre-
sentatives for the stated areas of interest, including social acceptability:
The paths should be optimized such that 1) residents are exposed to the
lowest possible risk of injury (safety requirement), 2) there is minimal sig-
nal interference between UAVs and base stations (legal requirement), 3)
the energy consumption is minimized (economic requirement), and 4) the
noise received by residents is as low as possible (social requirement). The
already introduced minimum flight height and collision constraints still
apply. We now have a many-objective path planning problem, which will
be defined in Section 5.2. The new problem is solved utilizing the devel-
oped MOPP framework and evaluated in Section 5.3 based on exemplary
scenarios set in San Francisco. This chapter pays special attention to ana-
lyzing and interpreting the generated Pareto sets. The following questions
will be addressed:
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• How risky, noisy, and illegal is the (energetically) cheapest path?

• How high are the (energy) costs for a less risky, quieter, and more
legal path?

So far, the number of weighted solutions nWS that are initially computed in
step S1 of the MOPP framework has been kept small, e.g., set to nWS = E.
In Section 5.4, we will discuss the benefits of computing many initial so-
lutions, i.e., nWS > E.

Parts of this chapter have already been published in:

• [N2] N. Hohmann, S. Brulin, J. Adamy, and M. Olhofer, ”Three-
dimensional urban path planning for aerial vehicles regarding many
objectives“, IEEE Open Journal of Intelligent Transportation Sys-
tems, vol. 4, pp. 639–652, 2023. doi: 10.1109/OJITS.2023.3299496

5.2 Problem Formulation
The three-dimensional representations for the planning environment and
the path correspond to those in Section 4.2.1. The utilized objective func-
tions have already been presented in Section 3.2.2, and the applied con-
straints in Section 4.2.2. Therefore, we now proceed directly with the
formal description of the problem.

5.2.1 Optimization Problem
Applying the Risk of Injury objective function fR(v), the Noise Immis-
sion objective function fN(v), the Energy Consumption objective function
fE(v), and the Radio Signal Disturbance objective function fD(v), which
was introduced in Section 3.2.2, the constrained many-objective three-
dimensional path planning problem can be described as

min
v∈V


fD(v),
fR(v),
fE(v),
fN(v),

s.t.


gH,i(v) ≥ 0, ∀i ∈ {1, . . . , nCP − 2}
gZ,i(v) ≥ 0, ∀i ∈ {0, . . . , |Π| − 1}
gP,i(v) > 0, ∀i ∈ {0, . . . , |Π×| − 1}

(5.1)

https://doi.org/10.1109/OJITS.2023.3299496
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where gH is the height constraint, gZ is the zenith collision constraint, and
gP is the plain collision constraint. Again, the search space

V = [D3D
c ] × . . . × [D3D

c ]| ︷︷ ︸
nCP−2

has dim(V) = 3(nCP − 2) dimensions.

5.3 Evaluation
In order to evaluate the Multi-objective Path Planning (MOPP) frame-
work for a many-objective path planning problem, the experiment’s setup
is described in Section 5.3.1 and used metaheuristic solvers in Section
5.3.1. Then, the obtained results are presented in Section 5.3.2, empha-
sizing a discussion of social considerations. Finally, another improvement
for the MOPP framework is introduced in Section 5.3.3 that facilitates the
generation of many-dimensional Pareto sets.

5.3.1 Setup
Scenario

A section of San Francisco, which is visualized in Fig. A.13 in the Appendix
A.2, serves as an example city for the following evaluation. Based on data
from OpenStreetMap [67], grid maps are generated that contain semantic
data (see Fig. A.14) and information about the height of buildings (see
Fig. A.15). Different grid maps are derived using this information, which
is necessary for modeling the problem’s objective functions. The risk grid
map G3D

R is visualized as a cross-section at height z = 0 m in Fig. A.16,
and the noise grid map G3D

N is displayed as cross-section at height z = 0 m
in Fig. A.17.

A table summarizing all necessary scenario parameters is given in Table
5.1.

Moreover, the rendered city map A.13 is overlaid with lines, which indi-
cate the 100 random start and end positions for the statistical evaluation.
Moreover, the positions of 4G radio masts, indicated by gray circles in the
same Fig. A.13, are extracted from OpenCelliD (OCID) [79]. They are
used for the calculation of the radio disturbance map G3D

D , whose cross-
section at height z = zR is shown in Fig. A.18.
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Table 5.1: Scenario Parameters

Parameter Symbol Value

Scenario

Origin latitude Lat 37.7902°N
Origin longitude Lon -122.4193°E

Scenario dimensions
xmin, xmax 0 m, 2000 m
ymin, ymax 0 m, 2000 m
zmin, zmax 0 m, 300 m

Min. flight height zF,min 50 m

Envir. Discr. resolution δx, δy, δz 4 m, 4 m, 10 m
Resizing resolution δ̃x, δ̃y, δ̃z 10 m, 10 m, 10 m

Path

Num. control points nCP ANCP
Basis function degree d 2

Parametrization chordal
Waypoint res. ∆π 25 m

Solvers

For the metaheuristic optimization step S2 in the hybrid framework, sev-
eral state-of-the-art many-objective evolutionary algorithms are utilized
that are the Non-dominated Sorting Genetic Algorithm 3 (NSGA3) [23],
the Reference Vector Guided Evolutionary Algorithm (RVEA) [80], and
the S-Metric Selection Evolutionary Multiobjective Optimization Algo-
rithm (SMS-EMOA) [81] with their default parameter settings. The three
algorithms differ primarily in their selection operator, which significantly
affects the result’s quality (i.e., the Pareto set’s convergence and diversity).

In the following evaluation, the performance of the standard metaheuris-
tic solvers NSGA3, RVEA, and SMS-EMOA is compared to their respec-
tive performance in the proposed hybrid Multi-objective Path Planning
(MOPP) framework (H. NSGA3, H. RVEA, H. SMS-EMOA). Any impor-
tant parameters are given in Table 5.2, with all algorithms developed in
this thesis marked in blue. The same initializing procedure as in Chapter 4
is applied. Moreover, the known metrics Hypervolume (HV), Generational
Distance (GD), and Inverted Generational Distance (IGD) are utilized to
compare the approaches.

For all solvers, the optimization runs terminate after nFE = 5000 func-
tion evaluations.
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Table 5.2: The parameters for all evaluated solvers are listed. The algorithms
developed in this work are highlighted in blue. The abbreviations stand for
Non-dominated Sorting Genetic Algorithm 3 (NSGA3), Reference Vector Guided
Evolutionary Algorithm (RVEA), S-Metric Selection Evolutionary Multiobjec-
tive Optimization Algorithm (SMS-EMOA), Hybrid Non-dominated Sorting Ge-
netic Algorithm 3 (H. NSGA3), Hybrid Reference Vector Guided Evolutionary
Algorithm (H. RVEA), and Hybrid S-Metric Selection Evolutionary Multiobjec-
tive Optimization Algorithm (H. SMS-EMOA).

Method Parameter Symbol Value

NSGA3
RVEA
SMS-EMOA

Crossover crowding deg. ηx 20
Crossover probability px 0.9

Mutation crowding deg. ηmut 20
Mutation probability pmut 1
Individual mut. prob. pmut,ind 1/D

Population size spop 100
H. NSGA3
H. RVEA
H. SMS-EMOA

Num. weighted solutions nWS 2

5.3.2 Results
Observation

For each of the 100 test scenarios, the Pareto sets’ hypervolumes obtained
by all solvers are normalized to the best and worst hypervolume over all
iterations. In Fig. 5.1, the mean of the normalized hypervolumes for all
scenarios is plotted over the number of cost function evaluations. Note
that a cost function evaluation evaluates one candidate solution regarding
all four objective functions. The large initial performance difference of
∆µ(mNHV) = 0.986 between hybrid and standard solvers is striking. In
the further course of the optimization runs, the mean values of the three
standard approaches increase and converge towards values in the range
between µ(mNHV) = 0.76 and µ(mNHV) = 0.8, but do not reach the
initial performance of the hybrid approaches. The best hybrid approach is
H. NSGA3, which achieves a mean normalized hypervolume of µ(mNHV) =
0.998.

Furthermore, over all scenarios, the mean and the standard deviation
of the normalized hypervolume, GD, and IGD values of the final obtained
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Figure 5.1: The performance of the hybrid and standard algorithms is indicated
by the obtained hypervolumes that are normalized regarding the best and worst
hypervolume per scenario and averaged over 100 scenarios. The abbreviations
stand for Hybrid Non-dominated Sorting Genetic Algorithm 3 (H. NSGA3), Ref-
erence Vector Guided Evolutionary Algorithm (RVEA), Non-dominated Sorting
Genetic Algorithm 3 (NSGA3), Hybrid S-Metric Selection Evolutionary Mul-
tiobjective Optimization Algorithm (H. SMS-EMOA), Hybrid Reference Vector
Guided Evolutionary Algorithm (H. RVEA), and S-Metric Selection Evolution-
ary Multiobjective Optimization Algorithm (SMS-EMOA).

sets of non-dominated solutions are computed for all six solvers. The
numeric values can be taken from Table 5.3. Note that the hypervolume is
normalized to the worst and best hypervolumes of the last iteration. The
set of non-dominated solutions with the highest hypervolume is chosen
as a reference set for calculating the GD and IGD metrics. The best
GD and IGD values are achieved by the H. SMS-EMOA method, which
are 77% and 89% better than those of the best standard method RVEA.



88 5 Many-objective 3D Path Planning with Constraints

Table 5.3: The performance comparison of the six optimizers is given. The al-
gorithms developed in this work are highlighted in blue. Each column’s best
mean value is bold. The abbreviations stand for Hybrid Non-dominated Sorting
Genetic Algorithm 3 (H. NSGA3), Non-dominated Sorting Genetic Algorithm 3
(NSGA3), Hybrid Reference Vector Guided Evolutionary Algorithm (H. RVEA),
Reference Vector Guided Evolutionary Algorithm (RVEA), Hybrid S-Metric Se-
lection Evolutionary Multiobjective Optimization Algorithm (H. SMS-EMOA),
and S-Metric Selection Evolutionary Multiobjective Optimization Algorithm
(SMS-EMOA).

mNHV mGD mIGD
µ σ µ σ µ σ

H. NSGA3 99% 0.00 0.034 0.00 0.046 0.10
NSGA3 23% 0.17 2.641 25.10 2.77 25.13
H. RVEA 96% 0.10 0.075 0.00 0.109 0.00
RVEA 5% 0.14 0.132 0.00 0.244 0.14
H. SMS-EMOA 98% 0.10 0.031 0.00 0.027 0.00
SMS-EMOA 17% 0.14 2.628 25.09 2.773 25.12

For a statistical comparison of each hybrid approach with its state-of-the-
art counterpart respectively, the two-tailed Mann-Whitney U-Test with
ν1 = 100, ν2 = 100, and p < 0.05 is used. The results indicate that the
samples of the normalized hypervolume, the GD, and the IGD metric differ
significantly between hybrid and standard approaches.

The influence of the Dijkstra initialization step S1 compared to the
standard straight-line initialization will be examined further. Therefore,
in Fig. 5.2, the four-dimensional Pareto sets obtained by the NSGA3 and
the H. NSGA3 solver are visualized. A red line in Fig. A.13 indicates the
corresponding scenario. For the visualization, the function values of both
solvers were normalized to a maximum and minimum per objective. The
area enclosed by the dominated solutions of all generations is shown in dark
yellow, and that enclosed by the last iteration’s non-dominated solutions is
gray. In particular, the extreme points of the Pareto sets for all objectives
are highlighted, as is the knee point solution. In the lower Fig. 5.2, we also
see the objective function values of the approximated Dijkstra solutions in
black, which serve as initial values in the H. NSGA3. It is noticeable that
these are very close to the extreme points finally reached.

Comparing the Pareto sets of the standard and the hybrid approach,
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the differences in the extreme values in the upper and the lower Fig. 5.2
are in order ∆fD = 0.284, ∆fR = 0.008, ∆fE = 0.002, and ∆fN = 0.022.
Here, a comparatively larger difference in the noise immission and radio
disturbance objectives can be observed, and we will take a closer look at
these two objectives in the following.

Let us first consider the noise immission objective. The corresponding
initial solution in the lower Fig. 5.2 (black line with a dot in the lower
right corner) differs only slightly from the noise immission extreme point
of the standard method in the upper Fig. 5.2 concerning the noise immis-
sion fitness. This solution achieves a significantly worse fitness than the
standard method regarding the other objectives. This solution might not
be useful for a decision maker because of the high-risk value. However,
during the optimization, this solution is likely to be responsible for finding
other non-dominated solutions (gray lines with fE(v) ≈ 0.4 in the lower
Fig. 5.2), which could be interesting for the decision maker. Thus, the
hybrid approach creates more diversity in the computed Pareto set, giving
the decision maker more flexibility in choosing an appropriate path.

Second, let us consider the radio signal disturbance objective. In this
case, the Dijkstra step S1 provides a much better solution (black line in
the lower left corner of the lower Fig. 5.2) than the standard approach.
Around this solution, the evolutionary algorithm subsequently provides a
high density of non-dominated solutions in the objective space, as seen
from the many gray lines in the immediate neighborhood. Also, the knee
point solution (violet line), often chosen as a good trade-off solution, is
among these.

Discussion

Regarding the many-objective path planning problem examined, we ob-
served that the hybrid framework achieves significantly better results than
the standard methods. The reason for this is the pre-processing step. The
Dijkstra algorithm finds good approximations for the final Pareto set’s
extreme points, which can be seen by the initial solutions’ objective val-
ues (black points) in the lower Fig. 5.2. They almost correspond to the
final extreme points. The critical insight is that pre-processing increases
the quality of the final extreme points even though the Dijkstra algorithm
searches on a different grid scaling and with another path representation
than the evolutionary algorithm.

Providing good initial extreme points, the second-stage evolutionary al-
gorithm does not need to excessively search in unknown areas of the search
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Figure 5.2: Pareto set comparison for a selected scenario
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space (exploration) but instead finds non-dominated solutions that com-
promise the already pre-computed extreme point solutions (exploitation).
In other words, although the extreme points of a Pareto front are unlikely
to play an essential role in real applications, making them available to the
optimizer is advantageous. Thus, the boundaries of the meaningful search
space (i.e., the part of the search space where one can expect to find non-
dominated solutions) are already better known. Consequently, this im-
proves the chances of the evolutionary algorithm finding non-dominated
solutions in highly diverse parts of the search space more efficiently.

We observed from Fig. 5.1 that without those pre-computed extreme
point solutions, the standard metaheuristic algorithms need considerably
more iterations to explore the search space and find comparably reasonable
solutions. During this exploration, the evolutionary algorithm can most
likely get stuck in local optima due to the highly multimodal character of
the optimization problem and, therefore, achieves a worse convergence to
the true Pareto Front, as the higher (i.e., worse) GD values in Table 5.3
suggest.

Moreover, the higher (i.e., worse) IGD values in the same table show
that the standard evolutionary algorithms fail to achieve a comparably
good diversity of the Pareto set.

To sum up, the hybrid approach for many-objective path planning prob-
lems shows several advantages in comparison to standard many-objective
optimization approaches, which are the quality of the obtained Pareto sets
and the number of iterations (i.e., the computation time) needed to calcu-
late them. The decision maker obtains more diversified paths that satisfy
the needs of multiple stakeholders differently.

Social Considerations

In the following section, we will examine the paths obtained by the
H. NSGA3 algorithm for the exemplary scenario that is indicated by the
red line in Fig. A.13. The focus here is on interpreting the trade-offs made
between the four objectives. The motivation for this study lies in the as-
sumption that companies want to maximize their profits in addition to
legal and safety criteria, while social criteria are of secondary importance.
Here, we want to investigate how expensive it would be for a company to
consider social components.

We have already seen the Pareto set for this scenario in lower Fig. 5.2.
With corresponding colors, the matching path representations of the
Pareto set’s extreme points and its knee point are visualized in Fig. 5.3.
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Figure 5.3: For an exemplary scenario, the plot shows the paths belonging to
the Pareto set’s extreme points (radio: green, risk: blue, energy: orange, noise:
red) and the knee point solution (violet) in the three-dimensional height map.

The visible paths have different qualities. The Pareto set’s extreme point
paths are optimized regarding the respective objective. However, they
can achieve sub-optimal function values for the remaining objectives. For
example, a noise-optimal path runs at higher altitudes above the city, re-
sulting in high energy consumption (i.e., higher costs for a company).

The first four rows of Table 5.4 approve this coherence. The value in
each cell indicates the percentage by which the solution specified in the
first column differs from the solution specified in the first row regarding
the respective objective. For example, the fourth row and third column
of Table 5.4 reads: ’The best noise path is 512% worse than the best
energy path in terms of energy consumption’. The fictional UAV delivery
company would probably not use this socially acceptable path due to the
high monetary costs.

If the company were purely energy-cost-driven, it would choose the
energy-optimal path. This, in turn, means a noise increase of 3094% for
the residents compared to their favored solution and thus is far from so-
cially acceptable.

From this example, it quickly becomes clear that the endpoints of the
Pareto front are usually not reasonable realistic solutions. Instead, a prac-
tical compromise solution should be found. For example, a suitable trade-
off solution could be the knee point of the Pareto set. The fifth row in
Table 5.4 depicts the relative deviations of the knee point solution to the
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Table 5.4: The deviation from the best-obtained fitness value is shown.

Deviation
between

Best radio
solution

Best risk
solution

Best energy
solution

Best noise
solution

Best radio sol. 0% 212% 32% 22%
Best risk sol. 204% 0% 20% 2143%
Best energy sol. 210% 0% 0% 3094%
Best noise sol. 349% 920% 512% 0%
Knee point sol. 11% 103% 35% 17%

respective best solutions. If the fictional company chooses the knee point
as a path, this would mean a 35% cost increase to fly a path that is only
17% worse than the noise optimal path in terms of noise. The company’s
decision maker can also choose from many other compromise solutions
using the finely sampled Pareto set visualized in lower Fig. 5.2.

5.3.3 Problem in the MOPP Framework
The example in the last section showed the high relevance of many-
objective optimization problems for real-world applications. The goal is a
densely sampled Pareto set from which a solution can be chosen freely.

The next section will investigate whether the quality of the Pareto sets
computed in the hybrid framework can be further improved by more initial
solutions computed in the Dijkstra step S1 of the proposed path planning
framework.

5.4 Improvement (MWSP)
5.4.1 Explanation
We recall that during step S1 of the hybrid Multi-objective Path Plan-
ning (MOPP) framework shown in Fig. 4.2 a Dijkstra Algorithm (DA)
calculates nWS initial solutions from differently weighted aggregations of
all objective functions that are grid-based or grid-transferable. This grid
aggregation has been described by equation (3.8). So far, in Chapter 4 and
Chapter 5, the number of weighted solutions has equaled the number of
objectives (nWS = E) without any further explanation. Thus, the aggrega-
tion weights λi have either been one or zero, resulting in the approximate
calculation of the Pareto set’s extreme points.
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Now provided that the grid maps are of the same size and resolution, it
is possible to perform a finer weighted aggregation to obtain more solutions
on the convex subset [82] of the Pareto front. In the following, we call this
approach Multiple Weighted Start Points (MWSP). How can we calculate
the different weight combinations?

• When having an optimization problem with E objectives, a simple
approach is to choose nWS uniformly distributed weight vectors on
the E-dimensional hyperplane that is spanned by all E-dimensional
unit vectors. The weights λi then add up to one.

• In an alternative approach, called Adaptive Weight Determination
Scheme (AWDS) [73], the weights are generated and refined online
while calculating the Pareto set. Due to the iterative process of the
AWDS approach, Ei new weight combinations are created in the
ith iteration depending on the number of objectives E. In order to
handle this exponential increase in combinations, Barth et al. [83]
suggests sorting out certain weight combinations based on a similar-
ity measure of the generated paths.

Since the aim is to investigate whether the MWSP approach has any effect
at all on the path planning framework, uniformly distributed weights are
used for the reason of simplicity1.

Each increase of nWS and thus each additional initial solution also means
another Dijkstra run and thus an increased computational effort. A com-
promise must be made.

In the following Section 5.4.2, we want to investigate how the number
of weighted solutions nWS affects both the quality of the Pareto sets and
the computational effort. However, before that, we need to look closer at
the design of the MWSP feature in the following paragraph.

Weighting grids problem So far, grid maps whose cell entries were of
arbitrary magnitude have been used. Using only weights λi ∈ {0, 1} in the
aggregation (3.8), this has not been a problem. When using finer weight
resolutions, grid maps with entries of different magnitudes should only be
added up in a weighted aggregation with prior normalization. Otherwise,
the Dijkstra path search would be biased towards the grid maps of higher

1Note that there exist advanced techniques to choose the weights and calculate a
convex Pareto set, e.g., [84], which are not applicable to the problem dimensions
(i.e., grid sizes) tackled in this thesis.
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magnitude, superseding the MWSP approach. Accordingly, we want to
look at three possibilities for the needed normalization step.

1. The first and most obvious approach would be a standard normal-
ization of all entries of a grid map G into a value range between
a and b

Gnorm = (G − min(G)) · b − a

max(G) − min(G) + a.

However, the use of this normalization is not meaningful since adding
a constant to all weights of a graph (i.e., to the entries of a grid)
affects the shortest path calculation of the Dijkstra Algorithm (DA)2.
Multiplying all edge weights with a constant is solution invariant,
which is why two further normalization techniques are proposed in
the following.

2. Dividing the grid entries of a grid G by the sum of all grid entries

Gnorm = G · 1∑
(i,j,k)∈Dd

G(i, j, k) ,

in the following called Divide By Sum (DBS) normalization, yields to∑
Gnorm = 1 and thus assures that all grid map entries lie between

zero and one Gnorm : Dd → [0, 1]. With all grid map values having
the same magnitude, the described bias is expected to be diminished.

3. Lastly, we want to apply the normalization

Gnorm = G · 1
γ

,

and calculate the grid normalizing constant γi for every objective’s
grid map Gi in dependence on the other involved grid maps. To quan-
tify γi, we look at a small artificial example of two grid maps (i.e.,
a two-objective path optimization) with two cells each. Let there
be two optimal paths, which only cross one cell between their start
and endpoint. The optimal path A regarding objective f1, of course,

2Think of a path A from start to goal consisting of two edges with weight w = 2
respectively and a path B from start to goal consisting of three edges all assigned
with weights w = 1. Thus, the shortest path is path B with costs of 3. Now, adding
100 onto all edges, the shortest path is A with costs of 204 vs. path B now costing
303.
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leads through the minimum min(G1) of the first grid, and we assume
that it also leads through the maximum max(G2) of the second grid.
The same applies to the optimal path B regarding objective f2. Re-
member that the grid value’s magnitudes are arbitrary. Ideally, the
costs of both paths on an equally weighted (i.e., λ1 = λ2 = 0.5)
aggregation of both normalized grid maps are supposed to be equal,
leading to the relationship

0.5 · min(G1)
γ1

+ 0.5 · max(G2)
γ2| ︷︷ ︸

costs for path A

!= 0.5 · min(G2)
γ2

+ 0.5 · max(G1)
γ1| ︷︷ ︸

costs for path B

.

If we set γ2 to an arbitrary positive value, we obtain γ1 to be

γ1 = max(G1) − min(G1)
max(G2) − min(G2) · γ2.

This principle can be applied to an arbitrary number of objectives
E by assuming that the optimal path regarding objective f i leads
through the minimum of the grid map Gi and through the maxima
of all E − 1 remaining grid maps. For all two-pair combinations of
all objectives, this leads to the relationship

1
γi

(max(Gi) − min(Gi)) − 1
γj

(max(Gj) − min(Gj)) = 0.

The resulting system of 1
2 E(E−1) linear equations is well determined

for E = 3 and over-determined for E > 3 and can be solved for the
solution vector

[
γ1 · · · γE

]
with a least square optimizer and the

non-zero constraint γi > 0. We call this approach Least Square (LS)
normalization in the following.

Figure 5.4 shows the evaluation results for a comparison between the DBS
normalization, the LS normalization, and no applied normalization on the
100 test scenarios located in San Francisco whose setup had already been
discussed earlier in this chapter. The dominance of the LS normalization
can be seen.

5.4.2 Evaluation
Observation

Now, the introduced MWSP feature is evaluated. For all 100 start and end-
point configurations of the already presented San Francisco scenario, the
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Figure 5.4: Performance test results for the evaluation of different grid map
normalization techniques

four-objective optimization problem (5.1) is solved with different numbers
of weighted solutions nWS in the pre-processing step of the path plan-
ning framework. Using the proposed equidistant weights sampling on a
four-dimensional hyperplane, the number of weighted solutions for differ-
ent sampling resolutions is nWS = {4, 10, 20, 35, 56, 84}. The grid maps
are normalized before the weighted aggregation using the proposed Least
Square (LS) normalization. The problem is solved using H. NSGA3 with
the ANCP and the Niching feature enabled. The mean of the normalized
hypervolumes for all scenarios is plotted over the number of cost function
evaluations in Fig. 5.5. The evaluation results indicate that increasing the
number of weighted solutions from nWS = 4 to nWS = 10 improves the
mean normalized hypervolume by 21%. Furthermore, using a number of
weighted solutions of nWS = 20 or higher achieves an even better mean



98 5 Many-objective 3D Path Planning with Constraints

0 1000 2000 3000 4000 5000
Number of function evaluations nFE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
of

no
rm

al
iz

ed
hy

pe
rv

ol
um

es
µ

(m
N

H
V

)

nWS = 4
nWS = 10
nWS = 20
nWS = 35
nWS = 56
nWS = 84

Figure 5.5: Performance test results for the evaluation of the Multiple Weighted
Start Points (MWSP) feature

normalized hypervolume, an improvement of 34% compared to nWS = 4.
It is also worth noting that increasing the number of weighted solutions
from nWS = 20 onward does not considerably increase the performance
anymore. We investigate potential reasons for this in the following.

Discussion

Figure 5.6 shows the number of distinct (i.e., unique) Dijkstra solutions
ñWS for each scenario as colored horizontal lines. The gray bar illustrates
the potential number of distinct solutions (i.e., nWS). For example, among
the 100 test scenarios, there were two scenarios where nWS = 84 different
weightings resulted in ñWS = 39 unique Dijkstra paths as visualized by
the upper brown bar in Fig. 5.6. The remaining 45 weightings resulted in
Dijkstra paths that have already been calculated.
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This shows that increasing the resolution of the weighted aggregation
has no effect beyond a certain number of weighted solutions. On the con-
trary, additional unnecessary computations increase required computing
resources, as can be seen in Fig. 5.7. Thus, the user must trade between
computation time and performance gain. Ideally, the number of distinct
Dijkstra solutions ñWS equals the number of weighted solutions nWS, and
each additional weighted aggregation leads to an already calculated Di-
jkstra path. Figure 5.6 has shown that the number of distinct Dijkstra
solutions depends on the chosen scenario and, thus, on the start and end-
point of the path. The characteristics of the grid maps seem to be of
crucial importance for the choice of an appropriate weighting resolution.

The generalization of this finding leads to the problem of identifying
a correlation between the grid maps’ textures and an optimal weighting
resolution, which is beyond the scope of this thesis. Therefore, we restrict
ourselves to an empirical hyperparameter tuning of nWS. For the San
Francisco scenario, one could choose the number of weighted solutions
nWS between 20 and 35, which seems to be a suitable compromise between
performance maximization and reasonably utilized computation time.

To sum up, given the requirement of all objective’s grid maps having
the same size and resolution, the use of Multiple Weighted Start Points
(MWSP) in the pre-processing step proves to be helpful, where the number
of weighted solutions nWS is a hyperparameter to be set by the user in
dependence on the scenario at hand.

5.5 Summary & New Results
This chapter examined the hybrid Multi-objective Path Planning (MOPP)
framework’s performance in solving a many-objective optimization prob-
lem with constraints. It was shown that the Pareto sets obtained by the
hybrid approaches significantly outperform the results achieved by the
standard many-objective optimizers.

Special attention was given to the study of four-dimensional Pareto
fronts. The four criteria represented real-world requirements of a UAM
system. Legal, safety, economic, and social aspects were included. The
results of a huge statistical analysis based on an exemplary city showed
that most economic paths are generally socially unacceptable. It could be
shown that the hybrid MOPP framework generates reasonable compro-
mise solutions, which entail acceptable monetary costs while considering
social criteria.
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Figure 5.6: Number of distinct weighted solutions ñWS in comparison to all pre-
processed weighted solutions nWS on 100 test scenarios. The gray bar visualizes
the number of weighted solutions. Ideally, they would all lead to a distinct
Dijkstra path. In reality, many weight combinations result in the same Dijkstra
paths, which means an unnecessary calculation overhead. The number of distinct
Dijkstra paths ñWS is plotted for each scenario as a thin colored line.

Finally, the usefulness of using several weighted start solutions in the
Dijkstra step S1 was demonstrated, and several methods for the necessary
normalization of the grid maps were presented and compared.

The contributions of this chapter can be summed up as

• The demonstration of the hybrid Multi-objective Path Planning
(MOPP) framework to be applicable to four-objective optimization
problems.

• The consideration of social factors in an optimization problem that
is often only considered economically.
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Figure 5.7: Pre-processing step calculation times for different numbers of
weighted solutions nWS on 100 test scenarios

• The derivation of an effective normalization method for the weighted
aggregation of grid maps to be used in single-objective shortest path
search.

• The demonstration of an upper performance bound in weighted ag-
gregation approaches with finer resolved weights.

The presented hybrid MOPP framework for many-objective three-
dimensional path planning allows to efficiently find paths that connect
a given start and endpoint regarding different objectives. However, aerial
transportation services in a city are expected to require more than one
single path but rather a complete transportation network. The next chap-
ter concerns generating such connected aerial corridor networks from the
optimized single paths.
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6 Multi-objective Traffic Network
Optimization

6.1 Introduction
So far, only paths were optimized, with each path always connecting ex-
actly two spatial points, i.e., vertiports. This seems reasonable as early
UAM projects are likely only to realize single routes due to governmental
approval processes and the gradual gaining of acceptance by the public.
Then, these individual routes could successively be expanded to include
more vertiports and new connections. However, if the number of verti-
ports increases, the airspace will be traversed by many paths, the union
of which could be seen as a dense network. It then makes sense to iden-
tify frequently used airspace areas, i.e., joint air corridors, and connect
them while neglecting less critical routes. Ultimately, this would lead to a
transportation network. The following questions arise when deriving such
a traffic network from a given set of paths.

1. How can we identify and merge joint paths into a network? In the
following, this problem is called Path-merging.

2. Which of this network’s edges should be kept and which should be
discarded to save costs? This problem is referred to as Network Opti-
mization in the following. The term cost is intentionally kept general
here and can be interpreted differently depending on the stakeholder,
leading to a multi-criteria Network Optimization problem.

The combination of these questions is called a Multi-objective Traffic Net-
work Optimization (MONO) problem whose analysis and solution are the
subject of this chapter.

The applicability of the proposed solution is demonstrated by a study
conducted for the city of Frankfurt, Germany. The evaluation analyzes
the trade-off solutions between social and economic aspects.

The content of this chapter has partly been published in:
• [N4] N. Hohmann, S. Brulin, J. Adamy, and M. Olhofer, ”Multi-

objective optimization of urban air transportation networks under
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social considerations“, IEEE Open Journal of Intelligent Transporta-
tion Systems, vol. 5, pp. 589–602, 2024. doi: 10.1109/OJITS.2024.
3443170

6.2 Related Work
A transportation network consisting of air corridors is only one of the
different concepts for urban air infrastructure proposed in the literature.
First, Section 6.2.1 presents other approaches. Subsequently, in Section
6.2.2 and 6.2.3, related work is presented that deals with the sub-problems
of Path-merging and Network Optimization. Finally, Section 6.2.4 intro-
duces the findings from the literature research, which form the basis for
evaluating the solution framework.

6.2.1 Urban Air Mobility Infrastructure Design
The range of concepts for Urban Air Mobility (UAM) infrastructure design
is broad. Over the last years, several different ideas and proposals have
emerged from both government-supported (FAA [85], NASA [16], SESAR
U-SPACE [86], DLR [87]) and industrial (Airbus [88], Embraer [89],
Uber [90]) stakeholders. A good overview is provided in the review paper
by Bauranov et al. [14].

Jang et al. [16] consider three types of airspace structures in their con-
cept: sky-lanes, sky-tubes, and sky-corridors, each with varying degrees
of freedom for the aerial vehicles. These structures aim to ensure safety
while reducing the need for heavy investment in technology and infras-
tructure. Tests conducted on various structures demonstrate that a more
structured environment increases safety and simplicity at the expense of
throughput. Geister et al. [87] argue that the greater the number of vehi-
cles in an aerial mobility system, the stronger the requirement for adhering
to pre-determined flight paths. Sunil et al. [15] propose different types of
air spaces that are 1) full mix, 2) layers, 3) zones, and 4) tubes, ranging
from entirely unrestricted to fully restricted. Their simulation results show
that a moderate separation, like in the layer concept, shows a better overall
performance than the others regarding capacity, safety, and efficiency.

Other approaches from the literature examine especially flight corridor
concepts in more detail. Denham et al. [91] investigate different corri-
dor structures (i.e., line segment, intersection, roundabout) geometrically
and in simulation concerning their capacity. Cummings et al. [92] exam-

https://doi.org/10.1109/OJITS.2024.3443170
https://doi.org/10.1109/OJITS.2024.3443170
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ine different corridor network configurations on two scenarios concerning
a throughput metric. Fedrigo [93] introduces three urban air traffic flow
models. He considers the flow through a corridor structure, through a
corridor with tracks, and the traffic flow while entering or exiting a cor-
ridor. Pang et al. [94] introduce the so-called AirMatrix concept that is
a separation of the three-dimensional space into cubes. The cubes can
be of different sizes, allowing for a denser sampling in crowded low-speed
airspace and a sparse sampling in open high-speed airspace. Corridors
connect areas of different resolutions.

6.2.2 Path-merging
Trajectory clustering is a subdomain of the broad field of trajectory data
mining. For a good overview, the interested reader is referred to the pa-
per of Zheng [95]. The trajectory clustering problem searches for common
movement patterns in (segmented) trajectory data, groups them into clus-
ters of similar features, and - in some cases - eventually generates a repre-
sentative trajectory for a found cluster. The term trajectory is not equally
defined in all publications. For some, a trajectory is equivalent to a path,
which is two or three-dimensional spatial point data. Others use it to re-
fer to a path with time information. Researchers use trajectory clustering
algorithms, for example, to analyze aircraft trajectories near airports [96],
[97].

One famous trajectory clustering algorithm is TRACLUS by
Lee et al. [98]. They propose a three-step approach that consists of a
segmentation step, a clustering step, and a representation step. First,
they partition paths into sub-paths by splitting them apart at designated
characteristic points while smoothing the path segments. They minimize
the approximation error between path and smoothed sub-paths and the
number of sub-paths. A heuristic solves this two-objective optimization
problem. Then, the line segments are grouped into clusters by applying
a density-based clustering algorithm (adapted DBSCAN [99] algorithm).
Last, a representative for each group of line segments is found by a geo-
metrical approach that builds a representative path by computing aver-
age coordinates of intersected line segments when sweeping a vertical line
alongside the cluster’s major axis. However, the TRACLUS algorithm does
not apply to the problem at hand, as deriving a graph from the clustered
trajectories still requires work.

An example of a trajectory-to-graph conversion is the approach by
Chen et al. [100] to find the most popular route between two locations
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by observing historical GPS data. In the first step, they calculate a trans-
fer network from the trajectory data. The nodes of the transfer graph
represent intersections in the trajectory data. The edges of the graph are
then assigned transfer probabilities that increase with the edge’s frequency
of use for a given destination. Finally, the obtained weighted graph can
be used to find the most popular route in a breadth-first search.

The map construction problem [101] can be seen as another application-
related field of trajectory data mining. Given the GPS data of a vehicle
traversing an unknown traffic map, it aims to reconstruct the graph of
the underlying traffic map. Trajectory-to-graph conversion and map con-
struction algorithms handle two-dimensional noisy path data to construct
a graph. Thus, these approaches use two-dimensional geometric calcula-
tions that can not be applied to three-dimensional spatial paths handled
here. Nevertheless, the developed Path-merging strategy introduced in
Section 6.4.2 found inspiration in the presented approaches.

6.2.3 Network Optimization
A good overview of the literature in the domain of network optimization
can be found in the article by Ding et al. [102]. However, they emphasize
urban ground traffic networks. For example, Gastner et al. [103] take a set
of initial logistic hub positions as given and create two-dimensional traffic
networks by minimizing the average distance between all node pairs sub-
ject to a restricted budget. Li et al. [104] also assume a set of initial node
positions that are additionally structured in a lattice graph. They exam-
ine how the insertion of edges between non-neighboring nodes improves
the overall travel time through the network. Instead of the network struc-
ture, Chen et al. [105] optimize the flow through the network by adapting
the edge capacities in a bi-objective optimization problem regarding total
travel time and construction costs as objectives.

In all conscience, there is little research on aerial traffic network op-
timization. Related work can be found with He et al. [106], who build
multiple dependent air traffic routes by sequentially running a shortest
path algorithm for different start and endpoints. When planning a new
path, they consider the previously planned paths to avoid interfering with
them. The paths are optimized regarding UAV energy consumption, risk,
and airspace occupancy, which means that the algorithm tries to overlap
different air corridors’ buffer zones. However, there is no optimization on
the network level: A pair of vertiports will always be connected by an
isolated path. There is no feature to merge spatially shared path seg-
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ments of two paths into a combined air corridor. This work aims for a
Pareto-optimal network structure instead of a set of unconnected paths,
which has several advantages. First, by identifying common flight paths
between several vertiports and replacing direct connections, the aerial cor-
ridor length of the complete network and, thus, the infrastructure costs
can be reduced. Second, adding a new vertiport to the UAM system does
not require planning many new paths for every existing vertiport. Rather,
the new vertiport must only be connected to the nearest corridor in the
existing traffic network.

In the research area of multi-agent navigation, Mai et al. [107] optimize
a two-dimensional network. Instead of assuming logistic hubs as starting
points, they aim for a homogeneous coverage of the entire design space.
As there is no cost for the presence of an edge, the network they generate
does not represent a physical transportation network but rather virtual
connection possibilities. Here, the design principle of considering the entire
airspace as a design space applies.

6.2.4 Findings from the Literature Review
The examination of recent literature about UAM infrastructure design
reveals two important observations.

1. The social is secondary to the economic: Bauranov et al. [14] notice
that most evaluated airspace concept studies use idealized network
representations that commonly evaluate the proposed airspace struc-
tures concerning economic quality criteria. In most cases, the aim is
to increase capacity or throughput to allow as many vehicles as pos-
sible to fly simultaneously. In some cases, the studies are extended to
include the aspect of safety, which leads to trade-off considerations
between economic efficiency and safety aspects. Bauranov et al. crit-
icize that social factors are subordinate in the examined urban air
mobility infrastructure concepts. However, the noise produced by
drones constitutes the major acceptance threshold for UAM trans-
portation systems and thus for their success [108].

2. Straight-line connections are a biased standard: In network optimiza-
tion, traffic networks are mostly modeled as graphs, with their edges
representing (air)ways. Consequently, the (air)ways are usually as-
sumed to be straight-line connections between logistic hubs [109].
Straight-line networks could be assumed energy-optimal. They are
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a sufficient assumption when networks are optimized regarding eco-
nomic objectives. However, they are biased as soon as a social ob-
jective is introduced.

This work considers not only economic aspects but also social requirements
in the design of aerial traffic networks. Therefore, three requirements are
identified, each of which assesses the traffic network from a different point
of view:

• The traffic network provider wants to minimize the maintenance
costs of the traffic network.

• The traffic network users prefer short travel times.

• The residents living underneath only accept low-noise traffic net-
works.

The questions addressed in this chapter are twofold and based on the two
stated observations.

1. First, a social objective function is integrated into the network opti-
mization process to investigate the trade-off costs of networks that
fulfill economic and social objectives.

2. Secondly, a traffic network is represented as a graph, not exclusively
consisting of straight-line corridors but also socially pre-optimized
and, therefore, in general, curved paths. The performance of this
more detailed representation modeling is examined, especially re-
garding the newly introduced social objective.

6.3 Problem Formulation
The following formally defines the Multi-objective Traffic Network Opti-
mization (MONO) problem. Section 6.3.1 proposes representations for the
environment and network structures. Then, the Path-merging problem is
presented in Section 6.3.2. In Section 6.3.3 and 6.3.4, the objectives and
constraints for the subsequent Network Optimization are introduced before
the optimization is formally defined in Section 6.3.5.
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6.3.1 Representations
Environment

We assume a cubic space

D =
[
xmin xmax

]
×
[
ymin ymax

]
×
[
zmin zmax

]
⊂ R3.

where xmin < xmax, ymin < ymax, and zmin < zmax are the bounding
coordinates of the operational space.

Path

A path Π is a sequence of |Π| three-dimensional points πi ∈ D

Π = [π1, π2, . . . , π|Π|].

Set of Paths

A set of paths P contains |P | unique paths Πi

P = {Π1, Π2, . . . , Π|P|}.

Network

A traffic network is represented utilizing a three-dimensional spatial graph
representation G = {N̊ , E̊} visualized as a two-dimensional projection in
Fig. 6.1. A graph G consists of a set of |N̊ | nodes N̊ = {n1, . . . , n|N̊ |} and
a set of |E̊| edges E̊ = {eij}. Every node ni is assigned information

• about its three-dimensional spatial position pi =
[
xi yi zi

]
∈ D,

• whether it represents a vertiport

ti =
{

1, if vertiport,
0, else,

• and whether it represents a crossing in the network

ci =
{

1, if crossing,

0, else.
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An edge eij = (ni, nj) is undirected and connects two nodes. Every edge
holds information

• on a path Πij that connects pi and pj

Πij = [π1 = pi, π2, . . . , π|Πij | = pj ],

• and on a social cost weight sij .

There may exist more than one edge between two nodes. Furthermore,
the Euclidean distance between two adjacent nodes ni and nj is denoted
as |eij | = ||pi − pj ||2, whereas the length of the underlying path Πij is
labeled

lij =
|Πij |∑
k=2

||πk − πk−1||2.

In general |eij | 6= lij yields. Unless otherwise stated, the term edge length
refers to lij in the following.

6.3.2 Path-merging
A set of vertiport positions N̊T = {pT,1, . . . , pT,|N̊T|} determines where
transport agents can take off and land in the network. Defining all
|C| =

(|N̊T|
2
)

vertiport pair combinations (without repetition) as C =
{(nk, nl) ∀ nk 6= nl ∈ N̊T}, the MOPP framework presented in Chapter 5
can be used to optimize paths Πi between every vertiport pair (nk, nl) ∈ C.
Each path already has an assigned social attribute that quantifies its so-
cial compatibility. All paths are contained in the initial set of paths P .
Path-merging is the problem of transferring this set of paths into a net-
work representation that is a graph G0 = {N̊0, E̊0}. Thereby, the following
aspects must be considered.

• All vertiports should appear as nodes in the graph N̊T ⊆ N̊0.

• Intersecting paths should be broken up into segments and repre-
sented as separate edges in the graph.

• Path points of two paths close to each other should be combined to
belong to a single edge.
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Figure 6.1: Visualization of the graph structure G = {N̊ , E̊} used as traffic
network representation. All nodes ni ∈ N̊ of the graph are shown as large
circles, with vertiport nodes (ti = 1) in orange and crossing nodes (ci = 1) in
red. Moreover, each node is assigned a three-dimensional spatial position pi.
The edges eij ∈ E̊ of the graph are gray. The 3D path information Πij stored
in each edge is shown in black. Each path has a length lij and a social attribute
sij . The small black dots represent the waypoints πh of the paths.

• The number of edges |E̊0| in G0 ultimately determines the size of the
optimization vector and, therefore, the complexity of the subsequent
Network Optimization problem. It should, therefore, be as small as
possible but as large as necessary to 1) represent all paths from the
initial path set P and 2) be the union of all reasonable transport
networks that sub-graphs of G0 can represent.

6.3.3 Objectives
The objective functions for evaluating a traffic network during Network
Optimization are introduced in the following. They are designed to assess
the quality of a traffic network from the perspective of a traffic network op-
erator (maintenance), a traffic network user (travel cost), and the residents
living underneath the traffic network (social cost). Beforehand, definitions
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are given that are needed to normalize the objective functions. The sum
of edge lengths in the initial graph G0 is denoted as

L0 =
∑

eij∈E̊0

lij ,

and the sum of social cost weights as

S0 =
∑

eij∈E̊0

sij .

Furthermore, given a set of terminal nodes N̊τ ⊆ N̊ in a graph G =
{N̊ , E̊} with a set of weighted edges E̊, a Steiner tree [110] GST = {N̊ST ⊆
N̊ , E̊ST ⊆ E̊} is a connected subset of G that contains all terminal nodes
N̊τ ⊆ N̊ST and minimizes the sum of its edges’ weights min

∑
eij∈E̊ST

ωij .
When setting the set of vertiport nodes as terminal nodes N̊τ = N̊T,
the initial graph’s Steiner tree regarding edge length is denoted GST,L =
{N̊ST,L, E̊ST,L}. Summing its edges’ length attributes, yields

LST,L =
∑

eij∈E̊ST,L

lij .

Moreover, R{·}(G, nk, nl) is an operator (e.g., Dijkstra’s algorithm [42])
that finds the shortest route from nk to nl regarding an edge attribute
{·} ∈ {l, s, |e|} in a graph G, resulting in a sequence of edges RG,nk,nl,{·}.

Maintenance cost

A UAM traffic network equipped with monitoring and potentially also
navigation technology allows the operation of UAVs with few sensors of
their own. Therefore, a larger network means more maintenance and oper-
ating costs for the network operator. Consequently, the maintenance cost
objective function that evaluates a graph G = {N̊ , E̊} is defined as

fM(G) =
∑

eij∈E̊ lij − LST,L

L0 − LST,L
. (6.1)

The normalization constants L0 and LST,L guarantee that 0 ≤ fM(G) ≤ 1
applies.
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Travel cost

To assess the network’s capability to route traffic efficiently, a well-known
metric from the graph domain is adopted [111]: The route factor (also
detour index) between two nodes nk and nl in a graph can be expressed
as the quotient of the shortest route cost through the graph

r|e|(G, nk, nl) =
∑

eij∈RG,nk,nl,|e|

|eij |

and the direct Euclidean distance between nk and nl yielding

Q(nk, nl) =
r|e|(G, nk, nl)
||pk − pl||2

. (6.2)

Thus, there is an efficient (i.e., direct) connection between the two nodes
if Q(nl, nl) = 1 applies. The longer the detour, the greater the route
factor. The considered traffic networks generally do not have straight
connections between two nodes but curved paths. Therefore, the Euclidean
distance between nk and nl in the denominator of (6.2) is replaced by the
shortest route cost between both in the initial graph G0. Furthermore,
by forming the negative reciprocal of (6.2) and adding one, we obtain an
objective function having its best value in zero and its worst in one. For
the final travel cost objective function, the adapted route factor definitions
are averaged for all connections C, yielding the final travel cost objective
function

fT(G) = 1
|C|

∑
(nk,nl)∈C

rl(G, nk, nl) − rl(G0, nk, nl)
rl(G, nk, nl)

(6.3)

which ensures 0 ≤ fT(G) ≤ 1. The function

rl(G, nk, nl) =
∑

eij∈RG,nk,nl,l

lij

sums the length attributes of the shortest path’s edges from nk to nl

through G. The smaller the travel cost values fT(G) of a graph G, the
shorter the established connections between all vertiport pairs compared
to the shortest connections in the initial graph G0.

Social cost

The design of the social cost objective function is similar. For each con-
nection (nk, nl) ∈ C, the most socially acceptable route through G is
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compared with the social optimum through the initial graph G0 resulting
in

fS(G) = 1
|C|

∑
(nk,nl)∈C

rs(G, nk, nl) − rs(G0, nk, nl)
rs(G, nk, nl)

, (6.4)

with

rs(G, nk, nl) =
∑

eij∈RG,nk,nl,s

sij

being the totalized social cost values of the most social path from nk to
nl through G. The relationship 0 ≤ fS(G) ≤ 1 also applies here. A
decreasing social cost value fS(G) means that the graph G establishes
connections between vertiport pairs perceived as less noisy. The social
cost weight sij , which is the core of the objective function, can generally
be seen as a placeholder for any quantifiable social criterion such as privacy
or safety [112]. In this model, sij represents the aviation noise that city
residents perceive near a flight path. For every path Πij , its social attribute

sij = fN(Πij)

with the noise objective function fN that has been introduced in Section
3.2.2. To repeat briefly: a flight path has a lower (i.e., better) social cost
weight if it tends to run at higher altitudes or over ground traffic roads as
the drone noise then vanishes in the ground traffic noise.

6.3.4 Constraints
As the optimizer will delete edges from the initial graph G0 to create
new traffic networks, this might result in graphs G that do not meet the
requirements of a reasonable transportation network. These requirements
are formulated using the following equality constraint functions.

Connectivity

A connected component H is a subset of an undirected graph G with a
path between any pair of nodes. A graph can thus be written as a union of
its |H| connected components G = H1 ∪H2 ∪ . . .∪H |H|. The connectivity
of the traffic networks at hand is ensured by defining the connectivity
equality constraint

hC(G) = |H| − 1 = 0. (6.5)
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Vertiport Inclusion

When edges are deleted from a graph during optimization, the resulting
graph may no longer include important nodes (i.e., vertiport nodes) while
still being connected. A binary variable bi is defined for every node ni ∈ N̊0
indicating whether the node is included in the graph G (i.e., bi = 1) or not
(i.e., bi = 0). Then, the |N̊T| equality constraint functions

hT,j(G) = bj − 1 = 0, ∀ arg nj ∈ N̊T (6.6)

ensure that all vertiport nodes are part of the traffic network.

6.3.5 Optimization Problem
For the optimization, the initial graph G0 is encoded into a binary opti-
mization vector

E(G0) = v0 =
[
v1 = 1 v2 = 1 . . . v|E̊0| = 1

]
(6.7)

of length |E̊0|. Inversely to the encoding operator E , any solution v can
again be decoded into the respective graph by applying the decoding op-
erator G = D(v) = E−1(v).
In order to obtain a new network G, the optimizer can either delete an
edge eij by setting the corresponding vk = 0 or adding a previously deleted
edge again by setting vk = 1 again. The search space is thus defined by
V = {0, 1}|E̊0|. The complete optimization problem tackled in this chapter
can be described as

min
v∈V


fM(v),
fT(v),
fS(v),

s.t.
{

hC(v) = 0,

hT,j(v) = 0, ∀ arg nj ∈ N̊T,
(6.8)

with dim(V) = |E̊0|. For the sake of simplicity, the notations f(v) and
f(G) are used interchangeably in the following without explicitly mention-
ing decoding.
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6.4 Solution Approach
As already teased in this chapter’s introduction, the Multi-objective Traffic
Network Optimization (MONO) problem is divided into a Path-merging
and a Network Optimization problem, which are solved one after the other
and independently of each other. The complete solution pipeline will be
presented in Section 6.4.2. Before, the actual Network Optimization prob-
lem is analyzed.

6.4.1 Problem Analysis
The optimization problem (6.8) generally belongs to the class of multi-
objective combinatorial optimization problems [113]. The second and third
objective functions fT and fS contain shortest path calculations. As a re-
sult, the presence or absence of an edge in the graph does not add a static
weight to the cost function. Instead, the contribution of an edge to the
cost function must constantly be recalculated for each network configura-
tion depending on the presence or absence of all other edges. This makes
the optimization problem non-linear. The number of possible network
configurations |V| is finite. The feasible set could, therefore, theoretically
be determined offline and the cost functions calculated, but this is com-
putationally infeasible for realistic networks. The problem is, therefore,
effectively a black box or derivative-free optimization problem.

In the following, an evolutionary metaheuristic algorithm is used to solve
the Network Optimization problem [114].

6.4.2 Solution
Given the set of optimized paths P = {Π1, . . . , Π|C|}, a two-fold approach
is pursued in this work to solve the complete MONO problem.

Pipeline

The pipeline visualized in Fig. 6.2 constitutes a Path-merging step and the
Network Optimization.

1. During Path-merging, the single paths are combined into a graph
that models the traffic network. The graph’s nodes represent in-
tersections and vertiports in the traffic network, whereas the edges
represent aerial corridors. The detailed steps are described in the
next Section 6.4.2.
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Set of paths P

Network
Opti-
mization

Path-
merging

E-dimensional
Pareto Front
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Intersection Finding

Graph Conversion

Node Contraction

Graph Reduction

Graph Finalizing

E Objectives F Constraints

Edge Removal
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Figure 6.2: Diagram of the proposed network optimization framework. The Path-
merging stage performs several steps to merge the set of single paths P into an
initial graph G0. Based on this graph, the actual Network Optimization stage
starts. Here, a multi-objective evolutionary algorithm can remove edges from
the graph and add already removed edges again to optimize the graph regarding
E objectives. The network repair ensures a proper network structure subject to
F constraints. The result is a Pareto set of trade-off networks.
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2. By construction, this graph contains redundant connections that
might be unnecessary depending on someone’s requirements for a
traffic network. In the Network Optimization step, the traffic net-
work is optimized regarding multiple formulated objectives by re-
moving edges from the graph (or adding already deleted edges). Fi-
nally, this results in a Pareto set of traffic networks that satisfy
the formulated objectives to varying degrees. A decision maker can
then choose a traffic network configuration depending on preference.
Details of the optimization routine are given after the following in-
troduction to the Path-merging procedure.

Path-merging

The given input set of three-dimensional spatial paths P , as visualized
in Fig. 6.3a, consists of connections between all vertiport pairs. Since the
paths in P have already been optimized, we see that they often overlap
and form a network structure, at least visually (see the red, blue, and
brown paths in Fig. 6.3a). From this set of paths, the graph representa-
tion G shown in Fig. 6.1 is derived in five steps explained in the following
paragraphs. We denote paths in the initial path set Πi ∈ P with a single
index, not to be confused with the path segments Πij (double index) in
the derived graph G.

The paths are assumed to form the centerlines of cylindrical tubes (i.e.,
corridors) of diameter dP in which UAVs can move.

Intersection Finding The input is an initial set of paths P as shown in
Fig. 6.3a. Where two paths intersect, the later network should be nested.
Therefore, the intersection points pij ∈ D between all paths Πi and Πj

in P are calculated. Two paths are assumed to intersect when the closest
distance between both falls below dP, meaning that their cylindrical shells
intersect. If two paths intersect, the intersection point pij is included in
both paths as a waypoint π, and the two intersecting paths are split up
into four separate paths as visualized in Fig. 6.3b.

Graph Conversion In the next step, the resulting path set P is trans-
ferred into a graph structure by introducing a node nh with ph = πh for
every waypoint πh. Only one node is created if several paths share the
same waypoint (e.g., at a vertiport position). Also, the vertiport flags ti

and crossing flags ci are set accordingly. An edge eij is created for every
pair of neighboring waypoints πi and πi+1 for every path in P , whereas
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the edge information Πij and sij remains empty for now. Figure 6.3c
shows the resulting graph.

Node Contraction The graph structure, as shown in Fig. 6.3c, may
contain nodes that were assigned to two separate path segments before the
graph conversion but whose distance is less than the corridor diameter dP.
Thus, the nodes can be assigned to the same corridor and are, therefore,
merged (i.e., contracted). For example, this is visualized by the nodes ni

and nj in Fig. 6.3c. Two nodes ni and nj collapse into a single one nk,
when ||pi − pj ||2 < dP applies. If one of the nodes to be contracted is a
vertiport node or a crossing node, the position of the new node nk becomes
that of the vertiport or crossing node. Otherwise, pk is calculated by the
means of

pk = X̄, where X = {pl ∀ nl ∈ G[ni] ∪ G[nj ]},

and G[n] denotes the neighborhood of n in G. The exemplary graph
after node contraction is visualized in Fig. 6.3d with the contracted nodes
marked in blue.

Graph Reduction The graph, as in Fig. 6.3d, now contains sequences
of nodes where each inner node n has only two adjacent edges, i.e., de-
gree d(n) = 2. Such a sequence is called linear chain GC = {N̊C, E̊C}
with E̊C = {(nC,1, nC,2), (nC,2, nC,3), . . . , (nC,k−1, nC,k)} in the following.
An exemplary linear chain is visualized with pink nodes in Fig. 6.3d. The
optimizer will later remove single, gray visualized edges from the graph.
However, removing an edge from a linear chain would result in the unneces-
sary creation of two dead-ends in the transport network. Instead, it would
be meaningful if the optimizer removes a complete linear chain. Therefore,
linear chains are resolved into a single new edge eij = (nC,1, nC,k). This
means the linear chain’s nodes (and thus edges) are deleted. However, it is
important to note that the position information of the linear chain’s nodes
is stored in the new edge’s path Πij = [pC,1, pC,2, . . . , pC,k] of length lij

and is thus still available. Reducing all linear chains in the exemplary
graph in Fig. 6.3d ultimately leads to the desired graph structure shown
in Fig. 6.1. Its gray-colored edges eij are subject to the later Network Op-
timization. Its paths’ spatial information Πij (black lines) can be used to
retrieve the ’original’, i.e., non-reduced, curved network after the Network
Optimization.
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πh

Π1

pT,1

pT,2

(a) Exemplary colored paths Πi be-
tween all pairs of vertiport positions
pT,k (black circles). The paths build
the initial set of paths P , which is input
into the Path-merging process. A path
consists of several waypoints πh shown
as black dots.

πh

Π1

Π2

Π3

Π4

p12

(b) The same set of paths P after the
intersection finding step of the Path-
merging process. Paths have been cut
apart at identified crossing positions pij

marked as red crosses.

ni

nj

n1p1
t1 = 1

n2p2
c2 = 1

ph

nh

(c) The graph G after the graph conver-
sion step. All round elements are nodes.
Every node nh stores the position infor-
mation of the former waypoint πh in ph.
Orange circles visualize vertiport nodes
(ti = 1), and red circles show crossing
nodes (ci = 1).

nC,k

nC,1

nk

(d) The graph G after the node contrac-
tion step. Nodes that are too close to-
gether (e.g., ni and nj in Fig. 6.3c) have
been contracted and now build a new
node (e.g., nk) visualized in blue. One
exemplary linear chain from node nC,1
to node nC,k is highlighted in pink.

Figure 6.3: The Path-merging process is applied on an exemplary set of paths.
Vertiport positions are visualized as black circles, and intersection positions are
red crosses. In the set of paths ((a) and (b)), the single paths are colored
differently. Their waypoints are black dots. Generally, in graphs ((c) and (d)),
vertiport nodes are visualized as orange circles, crossing nodes as red circles. All
other nodes are orange dots. The graphs’ edges are gray lines.
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Graph Finalizing Each path Πk in the input set of paths P originally
had a social attribute sk. However, the paths were spatially modified in
the steps 1) until 4) of the Path-merging procedure, so the social attributes
sij of each path segment Πij must be recomputed. The calculation has
already been explained earlier in Section 6.3.3. In the following, we call
the final network, i.e., the output of the Graph-merging, initial graph G0 =
{N̊0, E̊0} because it serves as input into the Network Optimization. The set
of vertiport positions can now be expressed as N̊T = {pi ∀ ni ∈ N̊0 | ti = 1}.

Network Optimization

An evolutionary algorithm is applied for the Network Optimization stage.
The design of its initialization routine, mutation, and repair operator is
tailored to the given problem and presented in the following. With the
selected binary traffic network encoding (6.7), a crossover operator gen-
erates non-feasible solutions (e.g., unconnected networks with dead ends)
with a very high probability. These solutions would have to be repaired
with high computational effort. As those repaired solutions can also be
calculated with the mutation operator, a crossover operation is bypassed,
setting its probability of occurrence to px = 0.

Initialization The optimization is initialized with five solutions
{v1, . . . , v5} with vi = E(Gi) that are expected to be (near-)optimal for
at least one objective:

1. The Steiner tree regarding the length attribute G1 = GST,L obtains
optimal values for the maintenance objective function fM(G1) = 0.

2. The Steiner tree regarding the social attribute G2 = GST,S is ex-
pected to be an attractive initial solution as it contains only socially
favored edges while being characterized by small maintenance costs.

3. To obtain the Pareto set’s extreme point regarding travel cost (i.e.,
fT = 0), a graph is introduced that unites the shortest paths
(regarding l) between all vertiport pair combinations C, yielding
G3 = {N̊3, E̊3} with E̊3 =

⋃
(nk,nl)∈C

RG0,nk,nl,l.

4. In the same way, the union of all connections’ shortest paths through
G0 regarding the social attribute is added to the initial solutions
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G4 = {N̊4, E̊4} with

E̊4 =
⋃

(nk,nl)∈C

RG0,nk,nl,s.

This results in the extreme point regarding social cost fS(G4) = 0.

5. Last, another non-dominated solution can be calculated by taking
the union of G3 and G4 as an initial solution, being G5 = {N̊5, E̊5}
with E̊5 = E̊3 ∪ E̊4. This solution is characterized by fT(G5) =
fS(G5) = 0, but consists of more edges than G3 and G4 and is,

therefore, worse regarding the maintenance cost.

Mutation The mutation process consists of two parts.

1. Firstly, an individual (i.e., a solution v) is subject to a delete muta-
tion with a probability of pmut,del. The delete mutation removes an
edge eij from D(v) with a probability of pmut,ind. The probability of
deleting an edge is set inversely proportional to the number of edges
in the network pmut,ind = 1/

∑
v

vk. This is a reasonable choice,

as each additional edge deletion means a larger jump in the search
space, potentially overshooting a desired minimum in the objective
space.

2. Secondly, an add mutation is applied to an individual with a prob-
ability of pmut,add. This mutation randomly draws from the set of
connections (nk, nl) ∈ C and then randomly either adds the short-
est path RG0,nk,nl,l or the best path regarding the social attribute
RG0,nk,nl,s to the graph D(v).

Repair operator During optimization, the evolutionary algorithm cre-
ates solutions that may be improved or made feasible by incorporating
domain knowledge. This can be done by defining a repair operator. It
repairs infeasible solutions or solutions that must have an obvious (in-
duced from the graph structure) similar solution that Pareto dominates
the solution to be repaired.

1. First, dead-ends that emerge in the traffic network during optimiza-
tion are repaired. Any node ni in the graph G that is a dead-end
(i.e., its degree is d(ni) = 1) but no vertiport (ti = 0) is deleted
together with the connected linear chain.
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2. Then, solutions that do not satisfy the connectivity constraint (6.5)
are repaired by determining the biggest connected component H0
in terms of number of contained vertiports. Every other connected
component Hi is connected to H0 by choosing a random vertiport
node ni in Hi (or if there is none, any random node) and connecting
it via the shortest possible path to the nearest vertiport in H0. The
terms shortest and nearest apply with a probability of 50% concern-
ing the length or the social attribute of the graph’s edges.

3. Finally, solutions that violate the vertiport inclusion constraint (6.6)
are repaired. For that to happen, any vertiport that is not part of
the current graph D(v) is again connected to the graph by either
the length-related or socially shortest path to the nearest vertiport
in D(v).

6.5 Evaluation
This section describes the experiments conducted to answer the research
questions 1) and 2) presented in Section 6.2.4. Therefore, the scenario
setup is explained in Section 6.5.1. Then, the different experiments are
described in Section 6.5.1. Section 6.5.2 presents and discusses the results
of the experiments.

6.5.1 Setup
Scenario

A section of the city of Frankfurt, Germany, visualized in Fig. A.19 in
the Appendix A.2, serves as an example for the evaluation. The |N̊T|
vertiports, visualized as orange circles, were randomly distributed over the
entire area, excluding water areas as possible locations. Any specifications
considering the chosen scenario can be drawn from Table 6.1.

Solvers

The metaheuristic evolutionary algorithm NSGA3 [23] is considered one of
the state-of-the-art techniques for many-objective optimization problems.
The customized mutation and repair operators extend the implementation
provided by the pymoo framework [115]. The algorithm’s parameters are
given in Table 6.2.
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Table 6.1: Scenario Parameters

Parameter Symbol Value

Scenario

Origin latitude Lat 50.1002°N
Origin longitude Lon 8.666°E

Scenario dimensions
xmin, xmax 0 m, 3010 m
ymin, ymax 0 m, 3000 m
zmin, zmax 0 m, 300 m

Min. flight height zF,min 50 m

Envir. Discr. resolution δx, δy, δz 10 m, 10 m, 10 m
Resizing resolution δ̃x, δ̃y, δ̃z 14 m, 15 m, 10 m

Path

Num. control points nCP ANCP
Basis function degree d 2

Parametrization chordal
Waypoint res. ∆π 5 m

Corridor diameter dP 5 m

Network Num. vertiports |N̊T| 16
Vertiport pair comb. |C| 120

Table 6.2: Solver parameters

Parameter Symbol Value
Add mutation probability pmut,add 0.5
Delete mutation probability pmut,del 0.5
Individual delete mutation probability pmut,ind 1/

∑
v

vk

Crossover probability px 0
Population size spop 100
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Experiments

For the same given vertiport locations, three experiments are conducted
that are three independent Path-merging and Network Optimization runs
with varying settings. The network optimizations in all three experiments
run for a = 2000 iterations, but the optimizations converge earlier. The
termination criterion from Blank et al. [116] is used to determine conver-
gence. Table 6.3 gives an overview of the different runs and the number
of iterations until they converge, respectively.

1. In the first experiment, abbreviated S2 in the following, the initial
path set P , which is input into the Path-merging, mainly consists of
straight-line connections between the vertiports. Figure 6.4a shows
a two-dimensional projection of the complete path set after Path-
merging. The paths were derived by |C| independent energy-optimal
path optimizations in the MOPP framework1. The curves of some
paths are caused by flying around static obstacles (i.e., higher build-
ings).
During the Network Optimization step, the aerial traffic networks
are only optimized regarding the two economic objectives fM (main-
tenance cost) and fT (travel cost).

2. In the second experiment S3, the Path-merging is conducted on the
same set of straight paths. However, the Network Optimization step
includes the social criterium fS as a third objective function. The
additional dimension in the objective space results in an expected
increase in convergence time, which is 15 % in this case.

3. In the third experiment SC3, the Path-merging is initialized with
2|C| paths, namely the |C| straight paths as used before and addi-
tional |C| paths that had been optimized regarding the social cost
weight2 by the MOPP framework introduced earlier in this thesis in
Chapter 5. To differentiate these pre-optimized paths from straight
paths, we refer to them as social or curved paths. A two-dimensional
projection of the set of curved paths after Path-merging is visualized
in Fig. 6.4b. Due to the larger search space compared to the experi-
ment S3, the optimization takes 33 % longer to converge.

1Each path optimization resulted in a Pareto set of paths from which the energy
extreme point was selected.

2Each path optimization resulted in a Pareto set of paths from which the noise extreme
point was selected.
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Table 6.3: Overview of the experiments carried out and the duration until con-
vergence

Exp. Initial path set E Objectives Iterations until
Convergence

S2 Straight 2 fM, fT 705
S3 Straight 3 fM, fT, fS 809

SC3 Straight & Curved 3 fM, fT, fS 1074
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(a) The projected straight-path net-
work obtained after applying the Path-
merging process to the set of paths
that connects all vertiports with straight
lines while circumventing static obsta-
cles.
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(b) The projected curved-path net-
work obtained after applying the Path-
merging process to the set of paths that
was pre-optimized regarding social cost
weights based on the city map shown in
Fig. A.19.

Figure 6.4: The two types of networks that were used to initialize the Network
Optimization
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6.5.2 Results
Comparing the results from the three experiments, we now want to obtain
answers to the research questions posed in Section 6.2.4. For a fair cross-
experiment comparison, the unnormalized objective functions fM,u, fT,u,
and fS,u must be used. These correspond to the objective functions (6.1),
(6.3), and (6.4) without the normalization constants. All three of these
unnormalized cost functions are given in meters since fM,u is the sum of all
path lengths, fT,u adds up the path lengths of the shortest paths between
all vertiport pairs, and fS,u sums edge attributes sij that originate from a
path integral over a unitless grid map.

Economic vs. socio-economic network optimization

Observation First, we want to investigate the effects of including the
social objective function fS in the multi-objective network optimization
problem. This social factor is often neglected in related work. What effect
does this have on the Pareto sets of traffic networks that were obtained?
We compare the traffic networks obtained in S2 with those in S3. As this
means comparing a two-dimensional Pareto set with a three-dimensional
Pareto set, the solutions of S2 are evaluated a posteriori regarding fS,u.
The obtained three-dimensional objective space for S2 and S3 is visual-
ized as two projections in Fig. 6.5. The upper figure shows the objectives
that were used in both experiments. We qualitatively observe that for
maintenance costs of fM,u < 0.3 × 105 the solutions of S2 dominate those
of S3 while otherwise the solutions lie on top of each other. Looking at
the second projection in lower Fig. 6.5, we see a large gap between the so-
lutions obtained by both experiments. The S3 approach has found better
solutions regarding the social costs fS,u than the S2 approach. We want to
quantify the differences between the visualized solutions from S2 (green)
and from S3 (blue). Therefore, we compare every network obtained in S2
with every network calculated in S3 regarding their respective travel and
social costs by calculating their relative differences (S2 is the baseline).
The resulting boxplot is shown in Fig. 6.6a. On average (dashed line), the
approach S3, which includes the social objective, produces solutions that
are 13 % worse than those of S2 regarding travel costs, and 27 % better
regarding social costs. In Fig. 6.6a, the left (green) box range indicates
that three-quarters of all networks from S3 are only at most 16 % more
expensive, one-fourth of the networks are even less expensive than the net-
works from S2. The right (blue) box of Fig. 6.6a shows that 75 % of the
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networks calculated in S3 are at least 20 % more social, and a quarter of
the networks is even at least 42 % more social than the networks from S2.

Discussion What are the benefits and costs of integrating social criteria
into network optimization? First, we get solutions that are socially more
acceptable. On average, the obtained networks achieve a 27 % reduction in
noise. However, we also note a 13 % increase in monetary costs, assuming
that time and money are proportional. By integrating a further objec-
tive function, differently shaped transport networks are created, which, on
average, establish longer flight corridors between two vertiports than the
shortest possible connection. On the one hand, this causes longer travel
times for the network users. On the other hand, these longer corridors
are then spanned over areas of the city where they are perceived as less
annoying by the residents living underneath.
Choosing a solution from the Pareto set is a crucial decision that can
significantly impact social attractiveness and monetary costs. The final
decision ultimately lies in the hands of the responsible authorities (i.e.,
the decision maker). Often, decision makers select the knee point (black-
colored markers in Fig. 6.5) as the preferred solution from the Pareto set.
When we compare the S3 knee point with the S2 knee point (baseline),
the travel costs get 6.6 % worse, while the social attractiveness increases
by 26.3 %.

Economic vs. socio-economic pre-optimization

Observation Secondly, we want to investigate the influence on network
optimization if we deviate from the restriction of straight connections, as
is often done in the literature. Initializing with straight connections is
an intuitive way to find good economic solutions. However, this strategy
tends to neglect the social aspect. What happens when we calculate social
paths beforehand and make them available during Path-merging? We will
compare the resulting networks of experiment S3 (three-objective opti-
mization on the set of straight paths) with those of SC3 (three-objective
optimization on the set of straight and curved paths) to find an answer.
The Pareto set projections of both experiments are visualized in Fig. 6.5
in different colors for S3 (blue) and SC3 (orange). Qualitatively, the
lower figure already shows the large difference in the social costs of the
networks obtained by the two experiments. The quantitative comparison
between the networks generated by both approaches results in the boxplot
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Figure 6.5: The projections of the three Pareto sets obtained by the experiments
S2 (without social objective), S3 (with social objective), and SC3 (with social
objective and including socially pre-optimized paths).



6.5 Evaluation 129

Trav
el

co
st

So
cia

l co
st

−60

−40

−20

0

20

40

R
el

at
iv

e
D

iff
er

en
ce

(%
)

(a) Results for the comparison between
the traffic networks from the optimiza-
tion run S2 (two objectives) without the
social objective and the traffic networks
from the run S3 (three objectives) in-
cluding the social objective.
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(b) Results for the comparison be-
tween the traffic networks from the opti-
mization run S3 without pre-optimized
paths (straight-path network) and the
traffic networks from the run SC3
with pre-optimized paths (straight and
curved-path network) paths.

Figure 6.6: Results for the two inter-experiment comparisons S2 vs. S3, and
S3 vs. SC3. The traffic networks from the respective first experiment are
compared to those from the second experiment in terms of travel and social
costs. The relative differences are visualized using boxplots, with the respective
first experiment as the baseline. The box spans from the data’s first quartile q1
to the third quartile q3. The black straight line within the box represents the
median, and the dashed line represents the data’s mean. The whiskers enclose
all data points between the lower bound 2.5q1 − 1.5q3 and the upper bound
2.5q3 − 1.5q1. Since we are comparing the results of a minimization problem,
’the lower, the better’ applies here.
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in Fig. 6.6b. The experiment S3 is the baseline for calculating the relative
differences between all traffic networks of S3 and all traffic networks of
SC3. The results indicate that on average (dashed line), the solutions
found on the combined straight-and-curved-path network are 7 % worse
regarding travel cost and 29 % better regarding social cost than the solu-
tions found within the only straight-path network. On the one hand, the
range of the left (green) box in Fig. 6.6b visualizes that 75 % of all net-
works from SC3 are only at most 16 % more expensive than the networks
from S3. On the other hand, the right (blue) box of Fig. 6.6b shows that
three-quarters of the networks calculated in SC3 are at least 27 % more
social, while 25 % are even at least 51 % more social than the networks
obtained in S3.

Discussion Extra effort is necessary to optimize a traffic network fol-
lowing approach SC3. This includes the a priori optimization of paths
between all vertiports regarding social costs. In addition, the network op-
timization itself requires more time to converge (Table 6.3). In terms of
social acceptability, the extra effort is worth it, as the increase in social
acceptance is greater than the increase in monetary costs. The difference
becomes evident when comparing the knee point solutions from both ap-
proaches. The knee point solution of approach SC3 requires 1.7 % more
travel time but is 47.7 % better regarding the social criterion than the knee
point solution of S3 (baseline).
In order to provide a comprehensive analysis, the results of the compar-
ison between S2 and SC3 are also given: On average, the solutions of a
three-criteria optimization with an initial set of both straight and curved
paths are 17 % more expensive but 51 % more socially beneficial than the
networks obtained with a two-criteria optimization on a set of only straight
paths.

Visualization and further examination of SC3

Figure 6.7 shows the visualization of some selected solutions obtained from
approach SC3. Only solutions {v | fM(v) < 0.05 · fM(v5)} are considered
whose maintenance costs are less than 5 % of the initial solution v5, other-
wise the high number of edges would make it difficult to recognize anything
in the networks plotted on top of each other. The solution with the least
maintenance costs is visualized in violet, the solution with the best travel
costs in black, the solution with the best social costs in green, and the
knee point as a trade-off solution in blue. In addition, a video file [117]
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visualizing the respective networks (same color coding) is provided in the
digital supplementary material of the corresponding publication [N4]. Ta-

Figure 6.7: Visualization [118] of different aerial traffic networks obtained by se-
lecting differently preferenced solutions from the Pareto set of solutions obtained
by SC3. The network with the least maintenance costs is displayed in violet, the
one with the smallest travel costs in black, the network with the largest social
acceptability is shown in green, and the knee point (trade-off between all three
objectives) network is visualized in blue.

ble 6.4 illustrates how the (near-)optimal solutions for one objective may
not perform optimally regarding the other objectives. It is shown how
the traffic networks specified in each row deviate from the best-obtained
solution determined by the column. Moreover, the observed correlation
between economic investment and social benefit is displayed. For exam-
ple, we look at the least maintenance cost network, visualized in violet
in Fig. 6.7, which equals the Steiner tree GST,L. It connects all 16 verti-
ports by a set of edges of minimal maintenance costs (i.e., edge length).
Consequently, between any two vertiports, only one route is generally not
the shortest or most social one available in the initial graph G0. Looking
at Table 6.4, we thus observe that its objective function value regarding
travel time is 56 % worse than this of the least travel cost network, and its
social cost value is 672 % worse than that of the best social cost network.
Based on this solution, increasing the allowed maintenance costs by 5 %
results in an 8 % improvement in social acceptance. Thus, if a decision
maker accepts additional maintenance costs of 15 %, the resulting network
is 24 % more social than the least maintenance cost network.
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Table 6.4: Deviation from the best obtained objective function value and the
relation between additional economic effort and resulting social benefit

Solution fM,u fT,u fS,u
Least maintenance cost network 0 % 56 % 672 %

+5 % -8 %
+10 % -16 %
+15 % -24 %
+20 % -32 %

Least travel cost network 180 % 0 % 303 %
+5 % -22 %
+10 % -44 %
+15 % -66 %
+20 % -74 %

Best social cost network 155 % 94 % 0 %
Knee point solution 123 % 53 % 4 %

The best travel cost network, depicted in black in Fig. 6.7, consists mainly
of straight edges that connect the vertiports directly, allowing for the
quickest possible travel between the hubs. However, as these fast lanes are
located near the ground, this comes at the expense of social acceptance,
which is 303 % worse than the best social cost network. If a decision maker
were to cause network users to have 10 % higher travel costs, the resulting
network would be 44 % quieter than the network with the lowest travel
costs.
The best social cost network, visualized in green in Fig. 6.7, mainly in-
cludes high-altitude transportation corridors that avoid areas of high so-
cial aversion. Due to the longer corridors and the detours taken, both the
maintenance and travel costs increase by 155 % and 94 % respectively.
The knee point network, shown in blue in Fig. 6.7, is a possible solution
that realizes a balance between the competing objectives. The twelfth row
in Table 6.4 displays the relative differences between the knee point solu-
tion and the respective best solutions. The knee point traffic network com-
bines straight direct connections and curved corridors at higher altitudes,
thus achieving a compromise between established objective functions.
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6.6 Summary & New Results
This chapter dealt with developing a framework to find Pareto-optimal
three-dimensional urban air traffic networks given a set of vertiport posi-
tions and a set of paths connecting them. The assumed given set of paths
can, for example, be generated by applying the path planning framework
as introduced in the previous Chapter 5.

The literature review at the beginning of this chapter revealed that so-
cial aspects have been understudied in related Urban Air Mobility (UAM)
infrastructure concepts [14]. Therefore, the focus was on investigating
the feasibility and impact of integrating a social perspective into the net-
work design. In the problem formulation of the network optimization
problem, particular emphasis was placed on integrating a social objective
function, i.e., minimizing the noise that residents are exposed to due to the
aerial traffic network. In addition, two further economic objective func-
tions were presented, which evaluate the network from the perspective of
traffic participants and network operators. Then, a solution framework
was proposed that consists of two parts. The Path-merging step generates
a three-dimensional graph representation from a set of individual paths,
and a Network Optimization step optimizes the graph (i.e., the traffic net-
work) by removing edges. This results in a Pareto set of traffic networks
that minimize the objective functions to varying degrees. The subsequent
evaluation section’s main focus was examining the effects of 1) giving a
set of socially pre-optimized paths into the framework and 2) integrat-
ing a social objective function into the optimization problem. A study
based on a real-world scenario in Frankfurt, Germany, has shown that
both approaches increase the social attractiveness of a transportation net-
work more than the economic costs. To summarize, this chapter described
the following contributions:

• The proposal of an optimization framework for three-dimensional
spatial networks based on the conjunction of pre-optimized paths.

• The capability to use non-straight spatial paths as network edges.

• The introduction of a social criterion in network optimization.

• The finding that it is advantageous to integrate social objective func-
tions into Urban Air Mobility (UAM) infrastructure optimization as
the gains in social acceptability have shown to be higher than the
average increases in economic expenses.
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7 Conclusions

7.1 Summary
This work was motivated by the need to develop optimal air transportation
infrastructure for urban air mobility to address the challenges of last-mile
delivery in congested cities. Due to the involvement of various stakeholders
in the city, the requirement to balance objectives like safety, economic
interests, and social factors such as noise is central.

However, the study of related work showed that the social point of view,
i.e., the human-centered perspective, needs to catch up to economic per-
spectives. Therefore, the questions in this thesis were always examined in
the light of social compatibility.

From a research perspective, several optimization problems need to be
addressed on the way to an urban air transportation network [119] includ-
ing the facility (i.e., landing hub) location problem, optimal infrastructure
(i.e., path and corridor network) planning, the seamless integration with
existing ground transportation, routing and scheduling, and real-time traf-
fic management and collision avoidance.

In this thesis, two successive questions within the infrastructure opti-
mization were answered. The first problem was to find a Pareto-optimal
path between two given vertiport locations in the city. The ultimate prob-
lem was to obtain a Pareto-optimal urban aerial corridor network, given
several paths in the city.

To sum up, this thesis found its niche in Multi-objective Path Plan-
ning (MOPP) and Multi-objective Traffic Network Optimization (MONO),
both with the inclusion of social criteria. The answers to the subordinate
research questions of both domains initially presented in the outline of this
dissertation in Section 1.3 can be summarized as follows.

First in Chapter 3, a simplified version of the MOPP problem was solved.
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Answer to Question Q1

The two-objective path planning problem was solved in the two-
dimensional operation space using a combination of multiple Dijk-
stra shortest-path searches and a multi-objective evolutionary al-
gorithm. The drawbacks of each approach were compensated by
the other respectively: The evolutionary search, utilizing a smooth
Non-uniform Rational B-Spline (NURBS) curve representation in
the continuous operation space, was initialized with Dijkstra solu-
tions. Although the Dijkstra paths were calculated on a grid, i.e.,
a discretized, thus abstracted representation of the environment,
they still served the evolutionary algorithm as a reasonable initial
basis for further search. In addition, the Dijkstra searches could
adaptively and problem-dependently adjust an important hyper-
parameter of the continuous path representation - the number of
control points. Moreover, the evolutionary optimizer corrected ap-
proximation errors of the Dijkstra searches, which inevitably arose
due to the grid discretization of large operation spaces.
Altogether, in a statistical analysis the presented hybrid framework
was shown to be an efficient multi-objective path finding approach,
capable of sampling a better Pareto set in less computation time
than comparable approaches.

Then, in Chapter 4, the problem was extended by a third dimension for
the UAV operation space.
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Answer to Question Q2

Increasing the dimension of the planning space is a challenge for
both Dijkstra searches and the evolutionary optimizer. The practi-
cal feasibility of the Dijkstra algorithm depends on the number of
nodes and edges of the environment graph. It increases consider-
ably in three dimensions if the resolution remains the same. There-
fore, a coarser resolution for the grid discretization of the planning
space had to be chosen, and thus, more considerable approxima-
tion errors had to be accepted. These larger errors provided an
even stronger argument for using the downstream evolutionary al-
gorithm that could correct the approximation errors of the Dijkstra
searches.
Additionally, the dimension of the optimization vector in the evo-
lutionary search also increased by 50 %, which is why it is all the
more important to set the number of control points as low as possi-
ble but as high as necessary. This is where the developed Adaptive
Number of Control Points (ANCP) feature was really at its best,
automatically adapting the optimization problem’s dimension to
the optimization landscape’s complexity.

Moreover, in Chapter 4, also constraints were introduced into the MOPP
problem.

Answer to Question Q3

Constraints were introduced as soft constraints into the path plan-
ning problem. This integration caused a severe drawback in the
framework at hand. The initial Dijkstra solutions were sorted out
in the evolutionary search if they did not fulfill all constraints from
the beginning. In order to prevent this unintended behavior, the
idea of evolutionary niching was successfully integrated into the
MOPP framework. Its functionality was statistically proven.

Chapter 5 examined the challenges of including more objective functions
into the MOPP problem.
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Answer to Question Q4

The search for Pareto-optimal solutions becomes more complex
with more objective functions. An increased number of Dijkstra
searches on weighted and aggregated grid graphs was used to com-
pensate for the increased complexity. In addition, different ways of
normalizing grid maps to be aggregated were investigated, and the
effects of an increasing number of Dijkstra searches on the problem
were considered.
One of the introduced objective functions was a social criterion to
minimize noise pollution for the population. Based on real-world
data, it was investigated how energy-consuming, risky, and signal-
jamming the obtained social, i.e., low-noise, paths are. A good
compromise was found in the knee points of the calculated Pareto
sets.

Chapter 6 dealt with the derivation of a network representation from
the output of the MOPP output and the subsequent optimization of trans-
portation networks. The corresponding questions posed in Section 1.3 can
be answered as follows.

Answer to Question Q5

An initial network could be calculated by applying a geometric
merging procedure to the set of paths. In a subsequent multi-
criteria evolutionary optimization process, this network was then
thinned out, i.e., corridors were removed to find a Pareto set of
aerial corridor networks for three opposing parties. The objectives
were designed to juxtapose the different economic perspectives of
network users and network providers, and the social perspectives
of the residents.

A literature review revealed that optimizing three-dimensional trans-
portation networks considering social aspects fills a research gap. There-
fore, the question of the influence of social criteria on the economic eval-
uation of transport networks was answered:
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Answer to Question Q6

A study based on actual data showed that the consideration of
social criteria in optimizing urban aerial corridor networks results
in networks that are 51 % quieter than conventional aerial corridor
networks. At the same time, these more social networks are only
17 % more expensive.
Thus, it seems worthwhile to include a social criterion in the opti-
mization as the social acceptance increases more than the monetary
costs.

At this point, it is worth recalling Fig. 1.1. The figure visualized the
fusion of a discrete path representation to leverage planning tasks in oc-
cupied environments and a continuous path representation allowing for
navigation in unstructured environments into a combined transportation
network. The development and investigation of software frameworks for
creating and optimizing such an aerial corridor network considering differ-
ent objectives have emerged as the ultimate goal of this work. This thesis
has shown how path planning and network optimization can be brought
together to solve the new challenges posed by the era of urban air mobility.

Given the vertiport locations in the city and a set of arbitrary cost func-
tions and boundary conditions, we are now able to optimize the structure
of an air corridor network, addressing and optimizing both the course of
the curved corridors themselves and their presence in the overall network.

That leaves one to wonder: What comes next?

7.2 Outlook
Looking at optimization techniques from a methodological point of view,
all efforts that either increase the quality of a solution or reduce the con-
sumption of computational resources are worthwhile.

In the MOPP framework, rethinking the environment representation
could lead to potential improvements. So far, a regular grid structure has
been chosen for the Dijkstra search. An adaptive grid size [120] could help
to keep the discretization error small and make the Dijkstra computation
faster.

Learning as much as possible about a problem before optimizing makes
sense. This potential knowledge can be integrated into the optimization
algorithm to obtain better solutions more efficiently. So far, we have used
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domain knowledge in the optimization, but only in the upstream opti-
mization step (Dijkstra), which has always been separated from the meta-
heuristic optimization. It would be interesting to explore the benefits of
breaking down this separation. It could be done by integrating a local op-
timization into the evolutionary algorithm if information about gradients
is available in the grid maps. Or the integration of the Dijkstra algorithm
into the evolutionary optimization cycle, e.g., as a repair operator. To
what extent does this mixture of continuous and discrete representation
make sense? This remains to be investigated.

From a more strategic point of view, one can ask whether the pure sep-
aration of the operational space into free space and obstacle space makes
sense. In reality, regulations often prohibit flying in certain free space ar-
eas. As long as these can be modeled as static no-fly zones, the MOPP
framework can handle them. However, let us talk about temporal restric-
tions (e.g., differences in day and night flights) or legal restrictions for par-
ticular agents (e.g., different flight clearances for different flight licenses).
We enter the realm of flight operations and mission design. Within ur-
ban air mobility, these are adjacent problems to the problems discussed
in this thesis, and it makes sense to transport information across their
interfaces. For example, information about legal or time restrictions could
be used to drastically reduce the planning space for the path and network
optimization problems.

When talking about dynamic, i.e., time-dependent optimization, the
following methodological extension of the MONO framework could be in-
teresting: So far, the initial set of paths used for the path-merging and
network optimization were obtained by statically selecting solutions from
the Pareto set of paths obtained by several MOPP runs with different start
and endpoints. Changes in flight operations may now make it necessary to
select different paths for network optimization. In this case, a completely
new network optimization process must start from scratch. However, it
might be interesting to identify a geometric relationship between the old
path set and the derived old network, e.g., by graph morphing. This morph
information and the coherence between the old path set and a new path
set could be used to generate a new network more efficiently or provide a
good initial solution for the new network optimization.
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A Appendix

A.1 Literature Review: Multi-objective Path
Planning for UAVs

In the following two tables, literature from the field of multi-objective
and many-objective path planning for UAVs is classified into six defined
categories. The features that are also - among others - integrated into
the Multi-objective Path Planning (MOPP) framework developed in this
thesis are marked in blue.
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Table A.1: Part I: Classification of related work in the field of MOPP problems for UAVs

Category Feature Publications
C1: UAV

environment
Rural terrain [50], [121]–[125]

Urban [51], [53], [126]–[128]
C2: Spatial
dimension

2D [53], [126], [127], [129]
3D [50], [52], [121]–[125], [128], [130]

C3: Path
representation

Grid-based
(i.e., discrete) [52], [53], [126], [129]–[134]

Line segments
(i.e., continuous) [51], [121], [122], [125], [127], [128], [135]–[137]

Polynomial [123]
Spline (e.g., NURBS) [50], [123], [124], [138]–[141]

C4: Objectives
& constraints

Path length [50]–[52], [121]–[125], [127]
[128], [130]–[132], [134], [136]–[141]

Safety, Risk [50]–[53], [122], [124]–[127], [129], [130], [139]
Danger zone clearance [122], [131]–[133], [136]–[138], [140], [141]

Path feasibility (e.g. altitude,
smoothness, curvature) [122], [123], [132], [137], [140], [141]

Vision & Visibility [123], [138]
Energy cost [52], [122], [126], [130], [134], [135], [137]
Travel time [53], [123], [126], [129], [133], [135]

Turning angle [50], [121], [125], [128]
Flight height [121]–[125], [128]
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Table A.2: Part II: Classification of related work in the field of MOPP problems for UAVs

Category Feature Publications

C5: Multi-objective
handling

Objective selection and SOO [123]
Cascaded SOO [140]

Weighted aggregation [50], [122], [124]–[129], [133], [141]
Pareto-based [51]–[53], [121], [130]–[136], [138], [139]

C6: Optimization
algorithm

ACO [126]
PSO [121], [125], [136], [137]

MILP [135]
FMM [53]

Gradient descent [53]
Graph-based (SOO)(e.g., Dijkstra [42],

Bellman-Ford [142], [143], A* [43]) [123], [133], [140]

Graph-based (MOO)
(i.e., NAMOA* [144]) [134]

CFO [128]
SOO EA (e.g., GA) [50], [122], [124], [126], [141]

MOO EA (e.g., NSGA2) [51], [52], [127], [130]–[132], [138], [139]
RRT [129]
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A.2 City Maps and Grid Maps
Darmstadt

Figure A.1: The OpenStreetMap (OSM) map of the city of Darmstadt, Ger-
many [145] that was used to derive the grid maps given in the following. The
lines indicate the start and endpoints of the paths (i.e., scenarios) that were used
for the evaluation of the MOPP framework in Section 3.4. Especially for the
paths marked in red, Pareto sets of different optimizers and 2D visualizations of
the optimized paths are presented in Section 3.4.2.
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Figure A.2: A visualization of the semantic information extracted from OSM for
the Darmstadt map section. This serves as the basis for deriving the grid maps
of different objectives given in the following.
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Figure A.3: Height grid map visualization of the Darmstadt map extract derived
from OSM data. It contains information on the position of buildings, which is
used to derive the risk grid map.
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Figure A.4: Risk grid map that was generated with underlying OSM data. Ac-
cording to this risk model, grid cells visualized with yellow/red colors indicate
a higher risk, i.e., greater damage, in case of a failure if the particular grid cell
belongs to the path. On the contrary, blue/white colored cells indicate a lower
risk for residents.
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Figure A.5: Noise grid map that was generated with underlying OSM data. Ac-
cording to this noise model, grid cells visualized with yellow/red colors indicate
a higher noise immission on humans if a planned path goes through the partic-
ular grid cell. On the contrary, blue/white colored cells indicate a lower noise
immission on the residents.
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Figure A.6: The radio disturbance information of the Darmstadt map at height
z = zR that was derived from OpenCelliD (OCID) [79] data. Blue/white areas
indicate low radio disturbance values around radio masts, and yellow/red areas
indicate high radio disturbance values.
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New York

Figure A.7: The OpenStreetMap (OSM) map extract of New York, US [146] that
was used to derive the grid maps given in the following. The lines indicate the
start and endpoints of the paths (i.e., scenarios) that were used for the evaluation
of the MOPP framework in Section 4.4. For the point configuration indicated
by the red line, three-dimensional plots of the optimized paths are given in
Section 4.4.2. The gray circles denote the positions of radio masts determined
by OpenCelliD (OCID) data.
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Figure A.8: A visualization of the semantic information extracted from OSM for
the New York map section. This serves as the basis for deriving the grid maps
of different objectives given in the following.
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Figure A.9: Height grid map visualization of the New York map extract derived
from OSM data. It contains information on the position of buildings used to
derive the risk grid map and the building heights used to calculate the obstacle
collision avoidance constraint.
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Figure A.10: The risk information of the New York map at height z = 0 m that
was derived from OSM data. Blue/white areas indicate low-risk values over
normal buildings and water surfaces, light-blue/gray areas indicate medium-risk
areas over streets, and yellow/red areas indicate high-risk values over educa-
tional, medical, railway, military, and worship buildings.
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Figure A.11: The noise sensitivity information of the New York map at height z =
0 m that was derived from OSM data. Blue/white areas indicate low noise values
over streets, industrial areas, and water surfaces, light-blue/gray areas indicate
medium-noise values over normal buildings, and yellow/red areas indicate high-
noise values over residential areas and parks.
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Figure A.12: The radio disturbance information of the New York map at height
z = zR that was derived from OpenCelliD (OCID) [79] data. Blue/white areas
indicate low radio disturbance values around radio masts, and yellow/red areas
indicate high radio disturbance values.
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San Francisco

Figure A.13: The OpenStreetMap (OSM) map extract of San Francisco, US [147]
that was used to derive the grid maps given in the following. The overlying lines
denote the start and endpoints of the paths (i.e., scenarios) that were used for
the evaluations in sections 3.5.2, 4.5.2, and Chapter 5. For the red path, more
detailed information is provided regarding the calculated paths in Section 5.3.2.
The gray circles denote the positions of radio masts.
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Figure A.14: A visualization of the semantic information extracted from OSM
for the San Francisco map section. This serves as the basis for deriving the grid
maps of different objectives given in the following.
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Figure A.15: Height grid map visualization of the San Francisco map extract
derived from OSM data. It contains information on the position of buildings
used to derive the risk grid map and the building heights used to calculate the
obstacle collision avoidance constraint.
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Figure A.16: The risk information of the San Francisco map at height z = 0 m
that was derived from OSM data. Blue/white areas indicate low-risk values over
normal buildings and water surfaces, light-blue/gray areas indicate medium-risk
areas over streets, and yellow/red areas indicate high-risk values over educa-
tional, medical, railway, military, and worship buildings.
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Figure A.17: The noise sensitivity information of the San Francisco map at height
z = 0 m that was derived from OSM data. Blue/white areas indicate low noise
values over streets, industrial areas, and water surfaces, light-blue/gray areas
indicate medium-noise values over normal buildings, and yellow/red areas indi-
cate high-noise values over residential areas and parks.
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Figure A.18: The radio disturbance information of the San Francisco map at
height z = zR that was derived from OpenCelliD (OCID) [79] data. Blue/white
areas indicate low radio disturbance values around radio masts, and yellow/red
areas indicate high radio disturbance values.
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Frankfurt

Figure A.19: The OpenStreetMap (OSM) map extract of Frankfurt, Ger-
many [148] that was used to derive the grid maps given in the following. The
orange points denote the vertiport positions that were randomly sampled within
the map for evaluating the MONO framework in Section 6.5. The z-component
of the vertiport positions corresponds to the height of the building at the respec-
tive location.
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Figure A.20: A visualization of the semantic information extracted from OSM
for the Frankfurt map section. This serves as the basis for deriving the grid
maps of different objectives given in the following.
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Figure A.21: Height grid map visualization of the Frankfurt map extract derived
from OSM data. It contains information on the position of buildings used to
derive the risk grid map and the building heights used to calculate the obstacle
collision avoidance constraint.
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Figure A.22: The risk information of the Frankfurt map at height z = 0 m that
was derived from OSM data. Blue/white areas indicate low-risk values over
normal buildings and water surfaces, light-blue/gray areas indicate medium-risk
areas over streets, and yellow/red areas indicate high-risk values over educa-
tional, medical, railway, military, and worship buildings.



A.2 City Maps and Grid Maps 165

0 1000 2000 3000
x position (m)

0

500

1000

1500

2000

2500

3000

y
po

sit
io

n
(m

)

Figure A.23: The noise sensitivity information of the Frankfurt map at height z =
0 m that was derived from OSM data. Blue/white areas indicate low noise values
over streets, industrial areas, and water surfaces, light-blue/gray areas indicate
medium-noise values over normal buildings, and yellow/red areas indicate high-
noise values over residential areas and parks.
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Figure A.24: The radio disturbance information of the Frankfurt map at height
z = zR that was derived from OpenCelliD (OCID) [79] data. Blue/white areas
indicate low radio disturbance values around radio masts, and yellow/red areas
indicate high radio disturbance values.
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