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Abstract

Active matter consists of particles which consume energy to convert it into directed motion. Due
to this local energy conversion, active matter is intrinsically out of equilibrium. This manifests
in striking collective phenomena. For example, active particles can phase separate into a dense
and a dilute phase without any attractive interactions by motility-induced phase separation,
or they can form stationary or moving patterns. In stark contrast to systems in thermodynamic
equilibrium, active particles can even self-assemble into clusters in which they feature a persistently
lower kinetic temperature, i.e., mean kinetic energy, compared to particles in their environment.
This phenomenon requires inertia and raises the general question of how inertia influences
collective behavior in active matter. In particular, the influence of inertia on the emergence
of coexisting temperatures is not fully understood. More generally, it is under debate how to
define temperature in an active system at all. The aim of this thesis is to provide fundamental
insights into these questions. As a key non-equilibrium phenomenon, we explore the emergence
of coexisting temperatures in inertial active Brownian particles, which undergo motility-induced
phase separation, by using Brownian dynamics simulations. First, we show that the effect of
inertia on the phase transition line and the emergence of coexisting kinetic temperatures allows
designing a mechanism of a “refrigerator” for active particles. Without requiring any isolating
walls, it is able to decrease their kinetic temperature by two orders of magnitude compared
to the environment. Second, we observe coexisting kinetic temperatures even in mixtures of
overdamped active and inertial passive particles, when they undergo motility-induced phase
separation. We show that the liquid-like phase can be not only colder but also hotter than the
gas-like phase. Finally, we show that these results are robust against the used “thermometer”.
In particular, we compare different possibilities to calculate temperature in active systems by
applying well-established thermodynamic relations. This comparison yields the existence of two
temperature classes. In both classes, we identify methods that are independent of tracer properties
or external confinements, and hence, are suited for measuring the temperature of active matter.
We further investigate control mechanisms for particle self-assembly by developing a minimal
model for assembling colloidal particles in the trail of an ion-exchange resin bead. Our simulations
describe the experiments well, both qualitatively and quantitatively. The numerical investigation
of the explored systems requires a wide range of data analysis tools. Thus, we developed the
Active Matter Evaluation Package for the analysis of the simulation data. This Python library
allows for quickly calculating observables which provide insights into the structural and dynamical
properties of the investigated systems. It is the first tool that is specifically designed for the analysis
of active matter systems. The results of this thesis provide routes to control self-assembly and
temperature in active systems, and the detailed comparison of different temperature definitions
can serve as a starting point towards a thermodynamic theory for active matter. The explored
colloidal self-assembly could be applied as a new technique to write lines and letters into water,
and finally, the developed Python library is publicly available as open-source software and provides
essential tools to study phase separation, pattern formation, and critical phenomena in active
matter systems and beyond.
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Zusammenfassung

Aktive Materie besteht aus Teilchen, die Energie aufnehmen und in eine gerichtete Bewegung um-
wandeln. Aufgrund dieser lokalen Energieumwandlung befinden sich aktive Systeme intrinsisch im
Nichtgleichgewicht. Dies äußert sich in eindrucksvollen kollektiven Phänomenen. Aktive Teilchen
können beispielsweise ohne jegliche anziehende Wechselwirkung in eine dichte flüssige und eine
gasartige Phase separieren (Motility-Induced Phase Separation, MIPS) oder sie können stationäre
oder bewegte Muster bilden. Im Gegensatz zu Systemen im thermodynamischen Gleichgewicht
können sich aktive Teilchen sogar selbst zu Clustern zusammenschließen, in denen sie im Vergleich
zu Teilchen in ihrer Umgebung eine dauerhaft niedrigere kinetische Temperatur, d.h. mittlere
kinetische Energie, aufweisen. Letzteres setzt voraus, dass die Teilchen träge sind und wirft die
allgemeine Frage auf, wie Trägheit das kollektive Verhalten aktiver Teilchen beeinflusst. Insbeson-
dere ist der Einfluss der Trägheit auf die Entstehung koexistierender Phasen mit unterschiedlichen
Temperaturen nicht vollständig geklärt. Ganz allgemein wird außerdem diskutiert, wie man Tem-
peratur in einem aktiven System überhaupt definieren kann. Ziel dieser Arbeit ist es, grundlegende
Erkenntnisse zu diesen Fragen zu gewinnen. Als zentrales Nichtgleichgewichtsphänomen wird die
Entstehung koexistierender Temperaturen in Systemen aus trägen aktiven Brownschen Teilchen,
die MIPS zeigen, mit Brownschen Dynamik-Simulationen untersucht. Zunächst wird gezeigt, dass
die Auswirkung der Trägheit auf die Phasenübergangslinie und das Auftreten koexistierender
kinetischer Temperaturen die Entwicklung eines Mechanismus für einen “Kühlschrank” für aktive
Teilchen ermöglicht. Ohne isolierende Wände zu benötigen, ist dieser in der Lage, die kinetische
Temperatur der aktiven Teilchen im Vergleich zur Umgebung um zwei Größenordnungen zu sen-
ken. Zweitens wird gezeigt, dass koexistierende kinetische Temperaturen sogar in Mischungen aus
überdämpften aktiven und trägen passiven Teilchen auftreten, wenn sie in eine flüssige und eine
gasartige Phase separieren. Hierbei kann die flüssige Phase nicht nur kälter, sondern auch heißer
sein als die koexistierende gasartige Phase. Schließlich wird gezeigt, dass diese Ergebnisse robust
gegenüber der Art des verwendeten “Thermometers” sind. Insbesondere werden verschiedene
Methoden zur Berechnung der Temperatur in aktiven Systemen, die auf etablierten thermody-
namischen Beziehungen basieren, systematisch miteinander verglichen. Dieser Vergleich zeigt
die Existenz von zwei Temperaturklassen. In beiden Klassen können Temperaturen identifiziert
werden, die unabhängig von den Eigenschaften eines Testteilchens oder von externen Potentialen
sind und sich daher für die Messung der Temperatur aktiver Materie eignen. Darüber hinaus
werden Kontrollmechanismen für die Selbstorganisation von Partikeln untersucht. Dazu wird
ein Minimalmodell für das Ansammeln kolloidaler Partikel in der Spur eines Ionenaustauschers
entwickelt. Die numerischen Ergebnisse beschreiben die Experimente sowohl qualitativ als auch
quantitativ gut. Die numerische Untersuchung der betrachteten Systeme erfordert eine breite
Palette von Datenanalysewerkzeugen. Daher wurde das Active Matter Evaluation Package für die
Analyse der Simulationsdaten entwickelt. Diese Python-Bibliothek ermöglicht die schnelle Berech-
nung von Observablen, die Aufschluss über die strukturellen und dynamischen Eigenschaften der
untersuchten Systeme geben. Sie ist die erste Python-Bibliothek, die speziell für die Analyse aktiver
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Materie entwickelt wurde. Die Ergebnisse dieser Arbeit zeigen, wie die Bildung von Clustern und
deren Temperatur in aktiven Systemen kontrolliert werden kann und der detaillierte Vergleich
verschiedener Temperaturdefinitionen liefert einen Ausgangspunkt für die Entwicklung einer ther-
modynamischen Theorie für aktive Materie. Die erforschte Selbstorganisation kolloidaler Partikel
kann als neue Technik eingesetzt werden, um Linien und Buchstaben in Wasser zu schreiben und
die entwickelte Python-Bibliothek ist als Open-Source-Software öffentlich zugänglich und bietet
wesentliche Werkzeuge zur Untersuchung von Phasenseparation, Musterbildung und kritischen
Phänomenen in aktiver Materie und darüber hinaus.
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1 Introduction

Active matter consists of “agents” which consume energy to propel themselves. Such
agents are an essential component of our ecosystem. For example, molecular motors help
to assemble the cytoskeleton and drive cell division processes,1–3 bacteria self propel to
search for nutrients and to avoid toxins in order to survive,4–6 and cells migrate to build
up the human body during embryogenesis or to control our immune response.7–9 Also
on larger scales, living organisms collectively perform certain tasks. Ant colonies build
up giant anthills or underground nests,10,11 locusts self-organize in swarms,12 fishes and
birds collectively move in form of flocks and schools, respectively,13–17 and even human
crowds are representatives of active matter systems.18,19 All these active agents have in
common that they consume energy from their environment and convert it into work,
which allows them to propel themselves.20–22 This local energy conversion leads to the
breakdown of detailed balance on the level of the individual agents, and hence, active
systems are intrinsically out of equilibrium.23–25
The research on active matter has become a popular branch of soft matter physics over

the last two decades. This is also reflected in the high number of publications in that field,
which has amounted to more than 500 review articles in the last ten years.26 These cover
a broad field of research that ranges from biology, medicine, and ecology to statistical
physics.21,22,27–32 This highly interdisciplinary research has helped to understand the
motion of bacteria,21 the swarming and flocking of insects and birds, respectively,12,16,17,33
as well as to develop efficient vaccination and disease mitigation strategies.34–36 It opens
the route to many future applications such as swarming drones,37,38 microrobots,39–44
bacteria-drivenmicrogears,45–47 or smart materials.48,49 In contrast to equilibrium systems,
active matter shows a large variety of non-equilibrium collective phenomena. These range
from dynamic clustering and non-equilibrium phase separation as observed for bacteria
and active colloids50–59 to the formation of stationary and moving patterns as found in
actin filaments driven by molecular motors,60,61 bacteria,62,63 or nematodes.64 These
collective phenomena can be controlled by the interactions between the active agents, their
possibilities to communicate with each other, and their self-propulsion speed for example.
They made active matter to a prime example of non-equilibrium systems.15,65–75 To
understand the underlying mechanisms in detail, one can exploit various minimal models
for active matter.76–79 These are typically studied using numerical simulation techniques
such as Brownian dynamics simulations.80–82 Such simulations allow us to systematically
modify the interactions between the active agents as well as system parameters such as
the self-propulsion speed or the number density. Accordingly, they provide fundamental
insights into structural and dynamical properties of active matter systems and allow
us to systematically investigate their state diagrams.31,78,83,84 In addition, theoretical
approaches like a systematic coarse-graining of the underlying Langevin equations,85–89
dynamical density functional theory,90–92 mode-coupling theories,93,94 and theories which
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explicitly account for hydrodynamic interactions27,95–98 have been frequently used to
provide a deep understanding of active matter systems.
Beside dynamic clustering and the formation of stationary or moving patterns, it has

been found that active particles can undergo a phase separation into a dense and a dilute
phase even without any attractive interactions. This phenomenon is known as motility-
induced phase separation (MIPS) and constitutes a prime example of non-equilibrium
phenomena in active matter.83,85,86,99–102 This is also reflected in the remarkable finding
that the active particles feature persistently lower kinetic temperatures, i.e., mean kinetic
energies, in the dense phase compared to the dilute phase if they are inertial.103 While
simulation studies of active matter systems have beenmostly focused on overdamped active
particles during the last decades of research,21,31,53,72,76,99,104–118 the influence of inertia is
currently under debate.119–161 The example of a persistent kinetic temperature difference
in coexisting phases in particular shows that MIPS is fundamentally different from a liquid-
gas phase separation in equilibrium. Especially, it demonstrates that inertial active particles
show a collective behavior that is fundamentally different from equilibrium physics. These
results raise the general question how inertia influences collective behavior in active
matter. How does inertia influence the emergence of coexisting temperatures? More
generally, they raise the question of how we can understand the concept of temperature
in the framework of non-equilibrium active matter. While the kinetic temperature is
commonly used as a measure for the temperature of active systems,103,123,162–168 other
possibilities to define temperature exist.123,169–171 In contrast to systems in thermodynamic
equilibrium, these possibilities typically lead to different temperature values when they
are applied to active matter.172–174 Accordingly, the universality of temperature, which
allows us to measure temperature with different types of thermometers, applies exclusively
in thermodynamic equilibrium but not to systems far from equilibrium such as active
matter.175–177
The aim of this thesis is to develop a fundamental understanding of the role of inertia

for collective behavior in active matter systems. To reach this goal, we split this thesis
into several parts that cover different aspects: As a key non-equilibrium phenomenon, we
explore the emergence of coexisting temperatures in systems that undergo MIPS. First,
the observation of different kinetic temperatures in coexisting phases raises the question
of how we can control the self-assembly of cold active-particle clusters. To answer this, we
exploit Brownian dynamics simulations of inertial active Brownian particles and explore
their state diagram in terms of activity and particle density. We show that these insights
allow us to design a “refrigerator” for inertial active particles, which exploits MIPS to cool
down active particles in a predefined cooling domain. Inertia is a key ingredient for their
design, but common active matter experiments are based on microswimmers that move
at low Reynolds numbers, and hence, are overdamped. Accordingly, as a second part, we
explore temperature differences in mixtures of overdamped active and inertial passive
particles that undergo MIPS. This also requires the analysis of their state diagram in
terms of activity and composition. The results are highly beneficial for designing related
experiments based on microswimmers. Third, we discuss the fundamental question of how
to define temperature in active systems. We systematically compare different possibilities
to define temperature in order to explore their relevance for measuring temperature in
inertial active systems. To reach these objectives, we need to develop tools to analyze
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collective phenomena in inertial active systems. Therefore, we develop the Active Matter
Evaluation Package (AMEP), which is a Python library for the analysis of structural and
dynamical properties from simulation data. We then use these tools to analyze a colloidal
system in which self-assembly is used to write into water.
This thesis is organized as follows: In Chap. 2, we introduce the considered active-

particle models and explain the mechanism leading to MIPS and coexisting temperatures
in inertial active matter. Next, in Chap. 3, we introduce AMEP, which has been developed
as part of this thesis and provides all observables used to analyze the Brownian dynamics
simulations. In Chap. 4, we explore different possibilities to define temperature in active
systems, and we present design principles of a refrigerator for active particles in Chap. 5.
In Chap. 6, we present our study of mixtures of overdamped active and inertial passive
Brownian particles. Finally, in Chap. 7, we show how colloidal particles can be assembled
in a fluid to write lines and letters into water, and we summarize the main results of this
thesis and its future perspectives in Chap. 8.
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2 Scientific Background

Fig. 2.1 Active Brownian par-
ticle model. Sketch of an ac-
tive Brownian particle (ABP) in
two spatial dimensions with par-
ticle index i at position ri sur-
rounded by two other ABPs. It’s
self-propulsion direction p̂i and
orientation angle θi are indicated.

The following chapter provides an overview of the field
of active matter physics and introduces all models used
in this PhD thesis. A central and commonly-used model
for active particles is the active Brownian particle (ABP)
model as sketched in Fig. 2.1 and introduced in Sub-
sec. 2.2.1. Most of the paragraphs and figures which are
related to the modeling of active matter are taken ver-
batim from my publication “An Introduction to Modeling
Approaches of Active Matter” published as a preprint on
arXiv (2021) and licensed under CC BY 4.0.77 For this
publication, I have created all new figures related to con-
tinuum theories, I wrote the original draft for all sections
about the continuum theories and hydrodynamic models,
and I contributed to the writing of the sections about
particle-based models.

2.1 What is active matter?

By active matter we mean systems which consist of
“agents” that consume energy to convert it into mechanical work resulting in directed
motion or so-called self propulsion.21,22,28,178 Such self-propelling agents can be found
across scales from the microscale to the macroscale in the form of living and syn-
thetic agents. For instance, microscopic entities comprise bacteria, algae, and synthetic
microswimmers,4,59,74,179–185 while active agents on the macroscale comprise fishes, birds,
sheep, drones, and human crowds.12,14,15,17,19,34,186–189 Therefore, the field of active mat-
ter covers multiple disciplines ranging from biology, medicine, and ecology to soft-matter
and statistical physics.21,27–29 For example, research in active matter investigates how
biological cells such as bacteria perform directed motion to search for nutrients or to
avoid toxins,21 how the swarming of insects can be described,12 or how a flock of birds
forms.16,17,33 Accordingly, research in active matter helps to control and design swarming
drones and robots that can perform tasks such as cargo delivery, area exploration, or
surveillance.37,38 However, these are dual-use applications that could also be used for
military purposes with all its advantages and disadvantages.190 Active matter research
is also relevant for controlling the movement of human crowds, and therefore, it helps
to develop efficient evacuation strategies for mass events.18,19 On the microscale, under-
standing the self-propulsion mechanisms of biological microswimmers such as bacteria
or algae allows designing robotic microswimmers.191 These could be used to remove
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contaminants from liquids or to monitor the quality of water for instance.192 Such robotic
microswimmers may also be used for therapeutic applications such as targeted drug
delivery in the future.39–42 Related to medical applications, investigating active matter
systems has also helped to develop efficient vaccination and disease mitigation strategies
as recently relevant for combating the Covid-19 pandemic.34–36
From a more fundamental viewpoint, active matter systems have become a prime

example for non-equilibrium systems over the last decades. Due to the local energy
conversion of each agent, detailed balance is broken at the level of the individual agents
and the system is intrinsically in a non-equilibrium state, i.e., the trajectories of each
agent are irreversible.23–25,193 Such breakdown of time-reversal symmetry can be mea-
sured by entropy production.24,25,194 The fact that detailed balance is broken can lead
to striking collective phenomena that have been studied in experiments, simulations,
and theory over the last two decades.4,21,27,28,31–33,43,76,78,83,195–200 Examples are non-
equilibrium phase separations,53,54,72,83,85,86,152,201–203 the formation of patterns with
a characteristic length scale,112,196,204–208 or ordering transitions such as flocking char-
acterized by a (long-range) orientational order.16,120,187,209 Nowadays, analytical and
numerical approaches used to understand and model active matter are frequently com-
plemented with machine-learning techniques.210 Examples range from solving optimal
navigation problems,211–213 extracting partial differential equations from particle-based
simulations and experiments,210,214–217 and investigating bacterial foraging strategies218
to quantifying entropy production,219 efficiently sampling state points for generating
phase diagrams,220 or classifying phases and predicting phase transitions.221,222
In this PhD thesis, we use minimal models to simulate the dynamics of active matter

systems. Figure 2.2 shows some examples of biological and artificial active matter systems
ranging from the microscale to meter-sized active agents by which these minimal models,
which we will introduce below, are inspired.

2.2 Modeling active matter

To describe the motion of active agents, various mathematical models have been developed.
Particle-based models define an equation of motion for each individual particle. In
contrast, continuum models describe an active system on coarse-grained scales and
provide equations of motion for the particle density and orientation field for example.76–78
These models can be classified into “wet” models, which include an explicit model of a
solvent in addition to the equations of motion of the active agents, and “dry” models,
which consider the active agents only. In the latter class, the impact of the solvent is
modeled effectively. The solvent provides
(i) fluctuations and dissipation: Active particles are typically orders of magnitude larger
than the molecules of the surrounding solvent and are subject to collisions with the
latter. This leads to fluctuations in their motion, analogously to Brownian motion
of passive colloids in equilibrium (cf. trajectory in Fig. 2.3a). The trajectory of an
isolated active particle is then typically given by the combination of ballistic motion
due to self propulsion and fluctuations due to collisions with the solvent molecules.
As can be seen in Fig. 2.3b, the motion of an active particle is not straight because the
collisions of the solvent molecules with the active particles feature both a radial and a
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Fig. 2.2 Examples of active matter ordered by the agent size. a Sketch of a kinesin motor
protein moving along a microtubule (reprinted with permission of Annual Reviews, Inc. from Ref.
[223]; permission conveyed through Copyright Clearance Center, Inc.). b Silica Janus nanoparticle
half coated with platinum (reprinted from Ref. [224]. © 2018, with permission from Elsevier).
c Sketch of the enzyme urease self-propelling due to a catalytic reaction leading to chemotaxis
(reprinted with permissions of Annual Reviews, Inc. from Ref. [225]; permission conveyed through
Copyright Clearance Center, Inc.). d Artificial microswimmer made of a glass screw and driven
by a magnetic field (reprinted with permission from Ref. [226]. © 2009 American Chemical
Society). e Sketch of a self-propelling Escherichia coli bacterium (reprinted with permission
from Ref. [21]. © 2016 by the American Physical Society). f Micrometer-sized Janus colloid
made of a silica sphere half-coated with gold (reprinted with permission of the Royal Society of
Chemistry from Ref. [227]; permission conveyed through Copyright Clearance Center, Inc.). g,h
Self-propelling Chlamydomas alga and bull spermatozoa, respectively (reprinted with permission
from Ref. [228]). i Millimeter-sized vibrot self-propelling on a vibrated plate (reprinted from
Ref. [229], licensed under CC BY 3.0. © 2016, IOP Publishing Ltd and Deutsche Physikalische
Gesellschaft). j Centimeter-sized vibration-driven vehicle (reprinted with permission from Ref.
[156]. © 2017 by the American Physical Society). k Ants collectively forming clusters (reprinted
from Ref. [230], licensed under CC BY 4.0). l Centimeter-sized robot (reprinted with permission
from Ref. [231]. © 2021 by the American Physical Society). m–q Marching locusts, a swarm of
fish, a flock of birds, a human crowd, and a herd of sheep, respectively, are examples of active
matter at large length scales (reprinted from Ref. [13]. © 2012, with permission from Elsevier).

tangential component. The latter induces a stochastic turn of the particle orientation,
and hence, reorientation of the self-propulsion direction, which is called rotational
Brownian motion or rotational diffusion. Following the fluctuation-dissipation
theorem, these fluctuations are necessarily linked to dissipation occurring, e.g., in
the form of Stokes drag for spherical particles. For microswimmers, i.e., for active
particles at the microscale, dissipation normally dominates over inertia. Hence, the
motion is overdamped. These effects of the solvent, namely translational diffusion,
rotational diffusion, and dissipation, are the only effects of the solvent which are
typically taken into account in “dry” models such as the active Brownian particle
(ABP) model, which we will introduce further below.
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(ii) momentum conservation: Physically, in the absence of external fields or boundaries,
the overall momentum of an active system has to be conserved. For example, when
a microorganism or an active Janus colloid moves forward, there is necessarily a
counter-propagating solvent flow such that the overall momentum of the active par-
ticle and the surrounding solvent is conserved (swimming in vacuum is impossible).
Thus, the solvent not only acts as a bath providing fluctuations and drag but also
ensures momentum conservation.

(iii) hydrodynamic interactions: The solvent mediates hydrodynamic interactions among
different active particles. These arise because the flow pattern induced by each active
particle as a consequence of its swimming acts onto all other particles in the system.
These solvent-mediated interactions are often long-ranged. In particular, in the
absence of external forces, they often decay as 1/r2 for force-dipole swimmers such
as various bacteria or algae (explicit measurements of the flow field exist, e.g., for E.
coli bacteria),232 and as 1/r3 for source-dipole swimmers such as Paramecium233 or
(idealized) Janus colloids with a uniform surface mobility.234,235 However, they can
be weakened or decay faster in the presence of a substrate or other boundaries.236

(iv) hydrodynamic boundary effects: If the active particles are in contact with boundaries
such as a glass substrate, which is frequently used in experiments with active colloids,
or another liquid-solid or liquid-air interface, the solvent can lead to additional
interesting effects. An example of these is constituted by osmotic flows at fluid-solid
interfaces such as those induced by auto-phoretic particles237 or by some modular
swimmers involving ion-resins.238,239 At fluid-air interfaces, active particles can
cause Marangoni flows,195,240–242 which act on all particles in the system and can
elicit interesting collective behaviors.243–246

In the following, we introduce commonly used models for active systems. We focus on
“dry” particle-based and continuum models in Subsecs. 2.2.1 and 2.2.2, respectively, and
we briefly discuss how to model a solvent explicitly in Subsec. 2.2.3.

2.2.1 Particle-based models

Particle-based models are commonly used as a minimal model to describe the motion
of an active particle, i.e., a particle that features a generic self-propulsion mechanism,
which drives the particle forward. Motivated by Brownian motion, these models are
typically based on a Langevin equation for each particle, in which the solvent is treated
as a bath that provides fluctuations and drag only without accounting for momentum
conservation (and usually without accounting for hydrodynamic interactions). Therefore,
particle-based models typically belong to the class of “dry” models. They are based on the
Langevin equation of a passive Brownian particle (PBP) of mass mp, whose position ri
evolves according to dri(t)/dt = vi(t), and its velocity vi evolves as247,248

mp
dvi(t)

dt = −γtvi(t)−
N∑︂

j=1
j ̸=i

∇riu (rij) +
√︁

2kBTbγtηi(t). (2.1)
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Fig. 2.3 Exemplary trajectories. Exemplary trajectory obtained from simulations in the over-
damped regime: a passive Brownian particle (PBP; Eq. (2.1)), b active Brownian particle (ABP;
Eqs. (2.4) and (2.5)), c run-and-tumble particle (RTP; Eqs. (2.9) and (2.10)), d active Ornstein-
Uhlenbeck particle (AOUP; Eq. (2.11)), and e chiral active particle (CAP; Eq. (2.12)). Note that
an isolated AOUP is equivalent to an inertial PBP with mp/γt = τp (see Subsec. 2.2.1).

Here, i denotes the particle index, γt the translational drag coefficient, and u(rij) with
rij = |ri − rj | represents a pairwise interaction potential. The fluctuations are represented
by a Gaussian white noise process ηi with zero mean and unit variance, whose strength
is given by the bath temperature Tb, and kB is the Boltzmann constant.

Active Brownian particle model

The active Brownian particle (ABP) model is one of the simplest and most popular models
to describe active particles that self propel in a certain direction, which smoothly changes
due to rotational diffusion.77,103,110,119,133,146,152,249–251Within this model, each particle is
represented by a (slightly soft) disk/sphere of diameter σ, massm, and moment of inertia
I. The ABP model does not explicitly describe the mechanism leading to self propulsion.
In contrast, it simply replaces it with an effective self-propulsion force FSP,i = γtv0p̂i(θi),
where the self-propulsion direction is represented by p̂i(t) = (cos θi(t), sin θi(t)) in two-
dimensional space, and v0 denotes the self-propulsion speed (Fig. 2.1). Microscopically,
this is not correct because, as discussed above, microswimmers are force free, but it leads to
a simple generic model for the dynamics of active particles, which stays agnostic on many
details of the specific underlying realization. The interactions between the particles are
governed by an excluded-volume repulsive interaction potential u. The evolution of the par-
ticles’ positions ri and orientations θi adheres to the Langevin equations103,119,133,165,252

m
d2ri(t)

dt2
= −γt

dri(t)

dt
−

N∑︂

j=1
j ̸=i

∇riu (rij) + γtv0p̂i(t) +
√︁
2kBTbγtηi(t), (2.2)

I
d2θi(t)

dt2
= −γr

dθi(t)

dt
+
√︁
2kBTbγrξi(t). (2.3)

Here, ηi and ξi denote Gaussian white noise with zero-mean and unit variance, Tb
represents the bath temperature, γt and γr denote the translational and rotational drag
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coefficients, respectively, kB is the Boltzmann constant, and N denotes the total number
of active particles. The overdamped limit can be obtained using m/γt → 0 and I/γr → 0
and leads to the well-known overdamped ABP model

dri(t)
dt = v0p̂i(t)−

1

γt

N∑︂

j=1
j ̸=i

∇riu (rij) +
√︁
2Dtηi(t), (2.4)

dθi(t)
dt =

√︁
2Drξi(t). (2.5)

Here, Dt = kBTb/γt and Dr = kBTb/γr denote the translational and rotational diffusion
coefficients, respectively.
It is instructive to first consider a single overdamped ABP, i.e., Eqs. (2.4) and (2.5) with

u = 0. Different from an overdamped PBP (Fig. 2.3a), the trajectory of an overdamped ABP
is characterized by an initial period of directed motion followed by a randomization of the
self-propulsion direction due to rotational diffusion (Fig. 2.3b). The initial directed motion
persists for a time τp = 1/Dr (persistence time) over a distance lp = v0τp (persistence
length). Accordingly, the average displacement of an overdamped ABP reads21,119,253

⟨ri(t)− ri(0)⟩ = lp
(︂
1− e−t/τp

)︂
p̂i(0). (2.6)

Therefore, an ABP moves, on average, over a distance lp along its initial orientation p̂i(0)
before its orientation is randomized. Additionally, the mean square displacement (MSD)
of an overdamped ABP (in two-dimensional space) reads21,119,181,253

⟨︁
(ri(t)− ri(0))

2
⟩︁
= 2l2p

(︃
t

τp
− 1 + e−t/τp

)︃
+ 4Dtt, (2.7)

which provides valuable insight into the different dynamical regimes of the ABP model.
Three regimes are observed when expanding Eq. (2.7) for short, intermediate, and long
times. The motion of an overdamped ABP is initially diffusive with diffusion coefficient Dt
for t≪ Dt/v20. For Dt/v20 ≪ t≪ τp, a ballistic regime, which represents directed motion
due to the activity of the particle comes about. Finally, for t ≫ τp, the motion is again
diffusive with effective diffusion coefficient Deff = Dt + l2p/(2τp). These three regimes are
shown in Fig. 2.4. The relative importance of activity in comparison with diffusion can be
characterized by the Péclet number Pe = v0/

√
2DrDt, which is one of the main control

parameters for a system of multiple ABPs.21
In this thesis, we primarily use the ABP model and solve the system of Langevin

equations numerically by using LAMMPS.254,255 The interaction between two particles i
and j is modeled by the purely repulsive Weeks-Chandler-Anderson (WCA) potential256

u(rij) =

⎧
⎨
⎩
4ϵ

[︃(︂
σ
rij

)︂12
−

(︂
σ
rij

)︂6
]︃
+ ϵ, rij/σ ≤ 21/6

0, else
, (2.8)

with rij = |ri − rj |, particle diameter σ, and strength ϵ.
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Fig. 2.4 Mean-square displacement of an active Brownian particle. Mean-square displacement
MSD(t) = ⟨︁

(ri(t)− ri(0))
2
⟩︁ of an overdamped ABP (blue; Eqs. (2.4) and (2.5)) and an inertial

ABP (red; Eqs. (2.2) and (2.3)) of mass m/(γtτp) = 0.05 at Pe = 20. The inertial ABP features an
additional ballistic regime at short times.

Alternatives to the ABP model

Several alternative models have been designed that have a similar scope to that of the
ABP model in the sense that they also treat the solvent as a bath which only provides fluc-
tuations and drag rather than accounting for momentum conservation and hydrodynamic
interactions. We introduce some of these alternative models in the following.

Run-and-tumble particle model: The run-and-tumble particle (RTP) model was origi-
nally introduced to describe the characteristic motion patterns of certain bacteria such
as E. coli,6,257,258 but it has now advanced to a standard model for the description of
active particles.99,259–261 In fact, the first theory for motility-induced phase separation
was formulated for RTPs.259 In contrast to ABPs, RTPs alternate running periods, during
which the self-propulsion direction remains unchanged, with idealized tumbling events, in
which the orientation of the particles is randomized (Fig. 2.3c). The equations of motion
for an RTP with particle index i read

dri(t)
dt = v0p̂i(t)−

1

γt

N∑︂

j=1
j ̸=i

∇rju (rij) , (2.9)

dθi(t)
dt =

∑︂

n

∆θnδ(t− Tn). (2.10)

The values of ∆θn are uniformly distributed between 0 and 2π, with tumbling events
taking place at discrete times Tn.261 In practice, the times Tn are chosen either randomly
with ⟨Tn+1−Tn⟩ = λ−1

t (and, e.g., tumbling events following a Poisson distribution, which
leads to exponentially distributed times between tumbling events, as originally found for
E. coli)262 or equally spaced. In any case, the (mean) tumbling rate λt is fixed, yielding a
persistence time τp = 1/λt, which plays the role of the (mean) time between tumbling
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events. Remarkably, the many-particle dynamics following from the RTP and the ABP
models turn out to be equivalent at coarse-grained scales if (d− 1)Dr = λt, where d > 1
is the spatial dimension.99,260

Active Ornstein-Uhlenbeck particle model: Another alternative to the ABP model is the
active Ornstein-Uhlenbeck particle (AOUP) model,263–266 which has certain advantages
compared with the ABP model regarding the theoretical description of the many-body
dynamics of dry active particles. This is due to the fact that the AOUP model avoids the
strongly nonlinear dependence of the center-of-mass motion on the particle orientation,
which is present in the ABP model, by using colored noise to generate self propulsion. In
particular, the translational degrees of freedom still follow Eq. (2.2), but the orientation
vector p̂i is replaced by a vector pi (without the “hat”), which evolves in time through an
Ornstein-Uhlenbeck process:158,267

dpi

dt = −pi

τp
+

√︄
1

τp
ξi(t). (2.11)

Here, τp is the persistence time and ξi is Gaussian white noise with unit variance and
zero mean. In contrast to the ABP model, where p̂i is a unit vector with fixed modulus,
pi has a fluctuating modulus. Consequently, the velocity components of an isolated AOUP
are represented by colored noise. However, both the ABP and the AOUP model share
the same autocorrelation function of the orientation vectors p̂i and pi, respectively, with
an exponential shape, i.e., ⟨p̂i(t) · p̂i(0)⟩ = ⟨pi(t) · pi(0)⟩ = exp(−t/τp), and thus, also
the same equal-time second moment ⟨p̂2

i ⟩ = ⟨p2
i ⟩ = 1.263,267 The difference between the

two models is visible in the higher-order moments and the full-shape of the active-force
distribution. Indeed, the latter is Gaussian in the case of AOUPs, but it is characterized by
a constant modulus in case of ABPs.267 Note that a single overdamped AOUP, i.e., u = 0
and m = 0 in Eq. (2.2), is formally identical to an inertial PBP with mp/γt = τp.
Since it involves colored noise, the AOUP model does not permit formulation of an

exact Fokker-Planck equation for the corresponding probability distribution. However,
it is still possible to derive an approximate Fokker-Planck equation for the many-body
dynamics, which does not depend on the particle orientation but only on the particle
positions.263,265,266,268 Motility-induced phase separation has also been reported for the
AOUP model suggesting that it provides a useful alternative for the description of the
many-body dynamics of active particles although the single-particle properties significantly
differ from those of the ABP and RTP model.264,266

Chiral active particles: A further class of models describes chiral active particles
(CAPs),82,118,119,205,269–274 which experience an additional effective torque arising from
an anisotropy in their shape or propulsion mechanism. For an isolated CAP, this leads to
circular trajectories in the limit of zero noise. In the presence of noise, the orientation
angle θi of the i-th CAP moving in two spatial dimensions evolves according to

dθi(t)
dt = ω +

√︁
2Drξi(t) (2.12)
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in the overdamped limit. Here, ω is a constant angular velocity. As in the ABP model,
the position ri of the i-th CAP generally evolves with time according to Eq. (2.4) in the
overdamped regime. An exemplary trajectory of a CAP is shown in Fig. 2.3e. Examples of
such circle swimmers include E. coli bacteria near surfaces and interfaces,275,276 sperm
cells,277,278 and artificial microswimmers such as L-shaped particles,279 “spherical-cap
particles” near a substrate,280 and asymmetric Quincke rollers.281

Models with explicit alignment interactions: Thus far, we have focused our discussion
on active particles without explicit alignment interactions. The most popular model for
describing dry active particles with polar alignment interactions is the Vicsek model,282,283
which accounts for self-propelled particles that align their orientation with that of their
neighbors such as observed for birds.187 A generalized continuous-time variant of the
Vicsek model comprising overdamped CAPs with alignment interactions can be defined by

dri(t)
dt = v0p̂i(t) +

√︁
2Dtηi(t), (2.13)

dθi(t)
dt = ω +

K

πR2
0

∑︂

j∈S(i)
R0

sin(θj − θi) +
√︁
2Drξi(t), (2.14)

where ω is an angular velocity, K is the strength of the alignment interactions (for K = 0
this model reduces to the CAP model) and the sum is calculated over all particles within a
circle S(i)

R0
of radius R0 centered at the position of particle i.204,205,284,285 The hallmark of

this model is that particles tend to follow the orientation of their neighbors, which can
induce polar order, e.g., in the form of the traveling bands shown in Fig. 2.5a for ω = 0.
When considering CAPs with polar interactions (Eq. (2.14) with ω > 0), one finds two
remarkable phenomena: The formation of rotating macrodroplets with late-time sizes
comparable to the system size, which is indicative of phase separation, at low angular
velocity (Fig. 2.5b), and a pattern of rotating microflocks exhibiting phase synchronization
and a self-selected length scale at high angular velocity (Fig. 2.5c).
Another class of models with alignment interactions accounts for nematic alignment

interactions,27,286–288 which arise in systems of head-tail symmetric particles such as
(self-propelled) rods featuring apolar interactions.31

Applicability regime of “dry” active particle models

The ABP model and its alternatives are commonly used to perform particle-based simu-
lations of active particles and also as a starting point for the formulation of continuum
theories, as we shall discuss hereunder. These models have proven useful when applied
to, e.g., the following problems concerning active particles:

(i) When we are concerned with the dynamics of a single active particle, the ABP model
has been very successful, e.g., to predict correlation functions in close agreement
with experiments of Janus colloids.185

(ii) When hydrodynamic interactions play a minor role such as for certain active colloids,
their many-body behavior is reasonably well described by ABPs.53 Similarly, when
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Fig. 2.5 Active particles with alignment interactions. Simulation snapshots of active particles
with alignment interactions (cf. Eqs. (2.13) and (2.14)) for Dt = 0 and a ω = 0 (smooth variant
of the Vicsek model) and b, c ω > 0 (chiral active particles). Colors represent particle orientation
angles such that equally colored particles are aligned or phase-synchronized (reprinted with
permission from Ref. [205]. © 2017 by the American Physical Society).

hydrodynamic interactions are dominated by other interactions such as phoretic
interactions of autophoretic colloids with a near-uniform surface mobility, the ABP
model serves as a useful starting point for the derivation of simple models with
effective phoretic pair interactions.235

(iii) When a solvent is absent but fluctuations are still relevant as, e.g., for granular
particles on vibrating plates, where quasi-deterministic chaos arises and leads to
effective randomness, which can be described as Brownian noise, the ABP model
can be used as a numerical model.289,290

(iv) The ABP model is also useful for fundamental theoretical explorations, e.g., when
we are more interested in the fundamental consequences of activity on the col-
lective behavior of active particles rather than in the specific link to experimental
realizations.

Advantages and limitations

Compared with most “wet” models, a key advantage of the ABP model and its alternatives
is their simplicity from both a conceptual and a computational viewpoint. In particular,
these models allow one to simulate very large ensembles of active particles (state-of-the-art
simulations often use 105 − 107 particles).72,103,110,291–293 One key limitation of these
models regarding the description of soft active matter systems is that they do not account
for momentum conservation and often not for hydrodynamic interactions either. This can
be particularly relevant for the description of collective behavior or for describing single
microswimmers near walls. The ABP model is popular when simulating the collective
behavior of autophoretic active colloids as well. Here, beside hydrodynamic interactions,
also phoretic interactions can play a crucial role and are also neglected by the standard
ABP model,235 which can however be extended to take them into account.74,112,115,294–297

2.2.2 Continuum models

To understand the collective behavior of (dry) active particles, one often uses continuum
models, which can be used for a purely theoretical analysis or a numerical analysis based

14



on continuum simulations. In general, one can distinguish between (i) phenomenological
and (ii) microscopic theories:

(i) Phenomenological theories: This class is often based on an identification of the
relevant “slow variables” (e.g., the density field ρ(r, t) in the case of isotropic active
systems with particle number conservation or the density field and polarization
density for polar active systems with polar alignment interactions) and on writing
down all terms which are allowed by symmetry and conservation laws up to a certain
order. Accordingly, these theories are sometimes called Landau theories. A key
advantage of phenomenological theories is that they predict the structure of the field
equations essentially based on symmetry, conservation laws, and dimensionality of
the system without requiring any reference to the details of the underlying particle
system (such as the precise form of the interactions). Thus, these field theories are
sometimes called “generic” in this sense and can even be formulated (and numerically
solved) if no underlying particle-based model is known. However, phenomenological
field theories do not provide information about the values of the coefficients. Thus,
one often treats all occurring coefficients as independent parameters and studies the
phenomenology of the field equations as a function of all these parameters. A related
important drawback of this approach is that it then remains unclear if there is an
underlying particle-based model or realization which leads to the corresponding
parameter values. A specific example of a phenomenological theory is discussed
further below.

(ii) Microscopic theories: In contrast to phenomenological theories, microscopic theories
involve a systematic derivation of the field equations typically from the underlying
equations of motion for the individual active particles. This approach yields equations
of motion for the relevant fields, which directly follow from the underlying particle-
based model. Thus, in contrast to the former class of theories, one advantage of this
second approach is that one obtains, in addition to the structure of equations, an
explicit link between the coefficients of the particle-based model and the continuum
theory. This typically leads to a (much) smaller number of independent parameters
than one would obtain from phenomenological approaches. Another advantage is
that, following the microscopic approach, terms which are allowed by symmetry
cannot be missed, which has happened for various standard models of active matter
in the past when following the phenomenological approach.

In the following, we will illustrate both approaches based on specific examples for
isotropic and polar active systems.

Phenomenological theory for isotropic active matter — the active model B+

Collective phenomena of isotropic active matter such as phase separation can be described,
e.g., by the phenomenological active model B+ (AMB+), which is based on the common
model B that describes phase separation in equilibrium systems.298 Here, the density field
ρ(r, t) is assumed to be the only slow variable of the system and the order parameter ϕ is
related to it by the linear transformation ϕ = (2ρ− ρH − ρL)/(ρH − ρL), where ρH and ρL
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Fig. 2.6 Numerical results of the active model B+. a Coexistence of a liquid phase (yellow to
red colors) comprising continuously created vapor bubbles and a gas phase (black and purple). b
Phase separation into a dense (yellow to red colors) and a dilute phase (black and purple). Dense
clusters stabilize at a certain cluster size in the steady state (reprinted from Ref. [300] licensed
under CC BY 4.0).

denote the density at the low-density and the high-density critical point, respectively.76,299
The active model B+ is given by the equations300

∂ϕ

∂t
=−∇ ·

[︃
−M∇

(︃
δF
δϕ

+ λ|∇ϕ|2
)︃
+ ζM

(︁
∇2ϕ

)︁
∇ϕ+

√︁
2kBTMΛ

]︃
, (2.15)

F [ϕ] =

∫︂
d3r

[︃
a

2
ϕ2 +

b

4
ϕ4 +

K

2
|∇ϕ|2

]︃
. (2.16)

Here, the free-energy functional F is approximated up to the order ϕ4 and up to square-
gradient terms, andΛ(r, t) denotes Gaussian white noise with zeromean and unit variance.
The mobility is denoted byM , the temperature is given by kBT with Boltzmann constant
kB, and a, b,K, ζ, λ are free parameters of the model. Equation (2.15) has the form of a
continuity equation, and hence, it ensures particle number conservation, whereas reaction
terms are not allowed in Eq. (2.15). For active particles, the time-reversal symmetry (TRS)
is broken locally. This fact is included in the AMB+ by the additional terms proportional
to λ and ζ. The AMB+ describes the phase separation behavior of isotropic active matter
and predicts two types of patterns apart from MIPS: The first one is characterized by
phase separation into a dense and a dilute phase and the additional occurrence of vapor
bubbles inside the dense phase, which are continuously created and move to the surface
of the dense phase (Fig. 2.6a). The second pattern is characterized by the emergence
of dense clusters that do not grow beyond a certain characteristic size (Fig. 2.6b). The
coefficients a, b,K, λ, ζ are not known in this phenomenological approach and are treated
as parameters of the model. Thus, there is no obvious connection to particle-based models
such as the ABP model, whereas in microscopic theories all parameters are directly related
to the underlying particle-based model, as we will discuss next.

16

https://creativecommons.org/licenses/by/4.0/


Microscopic theories for isotropic active matter

There are several approaches to developing microscopic theories. To exemplify one of
them, we consider a system of N active particles without alignment interactions. Then,
we write down the Smoluchowski equation for the N -particle probability density and
integrate out variables to obtain the one-particle density field. This approach has been
used, for instance, to formulate a microscopic theory of MIPS for overdamped ABPs with
positions ri and orientations θi.301 Let X = {r1, ..., rN , θ1, ..., θN} denote the state of the
N -particle system. The corresponding Smoluchowski equation for the joint probability
distribution ψN (X, t) reads302

∂ψN

∂t
=

N∑︂

k=1

∇rk ·
[︃
(∇rkU)

γt
− v0p̂k +Dt∇rk

]︃
ψN +Dr

N∑︂

k=1

∂2ψN

∂θ2k
, (2.17)

withU =
∑︁

k<k′ u (|rk − rk′ |), interaction potential u(r), and self propulsion along p̂k with
self-propulsion speed v0. The Smoluchowski equation ensures probability conservation and
its physical interpretation is illustrated in Fig. 2.7. Starting from Eq. (2.17), one usually
derives an equation of motion for the one-particle probability distribution ψ1(r1, θ1, t)
by integration. Due to the pair interactions, the resulting equation still contains terms
which include the two-particle probability distribution. Similarly, one can derive an
equation for the two-particle probability distribution, which then includes the three-
particle distributions, and so on, leading to a hierarchy of coupled differential equations
that has to be closed by a suitable closure scheme.303,304 Afterward, an equation of motion
for the particle density ρ(r, t) can be derived by integrating over the orientation θ, which
typically couples again to higher moments and leads to a second hierarchy of equations,
which has again to be closed using a suitable closure scheme. To study phase separation,
one possible approximation to avoid the first type of hierarchy is to assume that the
density varies slowly in space such that the local density is constant within the range of
the interaction potential resulting in an effective self-propulsion speed v(ρ) = v0 − ζρ
with constant ζ. This density-dependent self-propulsion speed effectively accounts, to
some extent, for the net effect of the repulsive interactions, namely the slowdown of active
particles in regions of high density. The result of this microscopic approach fits well to
computer simulations of ABPs and predicts MIPS in overdamped ABPs.301
An alternative approach, sometimes called the “Dean approach”,305 is based on an

explicit coarse-graining of the Langevin equations for the individual particles. This
approach has been applied in several works, e.g., to describe MIPS in systems of RTPs,259
pattern formation in self-propelled particles with alignment interactions,204 collective
phenomena in systems of CAPs,205, pattern formation in systems of phoretically interacting
active colloids,294 or active systems showing nematic order.306 Here, one uses Itô calculus
to deduce a stochastic differential equation, which involves multiplicative noise, for the
(fluctuating) combined probability f(r, θ, t) = ∑︁N

i=1 δ(ri(t)−r)δ(θi−θ) to find one particle
with orientation θ at position r at time t.305,307,308 To derive the one-particle density field
ρ(r, t), one can then, for example, choose to neglect the multiplicative noise term (mean
field) and derive a hierarchy of equations in a similar way to the Smoluchowski approach.
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→ translational
     diffusion

→ rotational
     diffusion

→ drift term

Probability conservation → Smoluchowski equation:

Contribution of particle k to the probability current:

Fig. 2.7 Interpretation of the Smoluchowski equation. Interpretation of Eq. (2.17) as probability
conservation law. The contribution of each particle to the probability current can be decomposed
into a translational and a rotational current. The former includes translational diffusion and a
drift term due to the interaction potential as well as the self-propulsion velocity, whereas the latter
considers rotational diffusion. The Smoluchowski equation can then be interpreted as a continuity
equation ensuring probability conservation.

Microscopic theories for polar active matter

The aforementioned continuum theories for dry active matter were focused on isotropic
active matter that can be described by only considering the density field. However, if
the particles feature alignment interactions such as in the Vicsek model, polar order
can arise. Thus, describing these systems additionally requires the consideration of
the mean local orientation of the particles by means of a polarization density P(r, t).
Corresponding theories for the density field and the polarization density can be derived
based on the Smoluchowski approach or the Dean approach. Another approach, which
is aimed at describing the collective behavior of the Vicsek model (which is discrete in
time in its original formulation) and is given by Ref. [309], is based on the Liouville
equation for the N -particle probability density ψN (X, t) and applied to the well-known
Vicsek model.282 Within this model, the particles only interact during a collision event by
aligning their orientation to that of their next neighbors and the orientation is subject to
Gaussian white noise. Under the assumption that the particles are uncorrelated prior to a
collision, the N -particle density is written as a product of one-particle densities, which is
a good approximation if the noise strength is large and if the mean-free path between
two collisions is larger than the interaction radius. Then, the one-particle probability
distribution is obtained by integration. However, the solution contains complicated
collision integrals that are approximated using the Chapman-Enskog expansion,310 which
takes the stationary state as a reference and expands around it in powers of the gradients.
Finally, this leads to a set of two coupled differential equations for ρ and P. This set of
equations is similar to that of the phenomenological Toner-Tu model except for additional
gradient terms, which occur only in the microscopic approach.16
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Independently of whether a theory is phenomenological or microscopic, the relevant
field equations can then be studied based on various analytical and numerical techniques
ranging from perturbation theories, linear stability analyses, or dynamical renormalization
group calculations in the presence of additional noise terms to explicit numerical solutions
based on, e.g., finite difference, finite volume, or finite element methods.

2.2.3 Modeling hydrodynamics of microswimming

The ABP model and its alternatives do not resolve the self-propulsion mechanism, but
instead, they involve an effective force to phenomenologically model the resulting directed
motion. To understand and describe the self-propulsion mechanism of a microswimmer,
one has to explicitly model the flow field produced by the microswimmer and its interaction
with the body of the swimmer.

Microhydrodynamics

Let us now briefly discuss the basic equations which are involved in the modeling of a
single microswimmer. While swimming at the macroscale involves inertia and leads to
flow fields which are described by the Navier-Stokes equation, microswimmers have to
employ swimming mechanisms which work even in the absence of inertia since viscous
effects dominate over inertial effects at the microscale. This is quantified by the Reynolds
number, which measures the relative importance of inertial and viscous forces and is
given by Re = (ρLv)/η, where the numerator represents the product of the fluid density
ρ, a characteristic length scale L, and a typical flow speed v, whereas the denominator
contains the solvent viscosity η. For microswimmers, Re ≪ 1: For E. coli bacteria in
water, for example, we have L ∼ 3µm, v ∼ 30µm/s, η = 0.001Pa s, and ρ = 1 g/cm3.21
Thus, Re ∼ 10−5 − 10−4 ≪ 1 and inertial effects can safely be neglected. For comparison,
phenomena occurring at high Reynolds numbers such as turbulence often occur at Re ∼
103 − 104.311
At low Reynolds number, the Navier-Stokes equation reduces to the Stokes equation,

which describes “creeping flow” and reads
η∇2u−∇p+ f = 0, (2.18)

where u(r, t) and p(r, t) are the solvent velocity field and the pressure field, respectively,
and f(r, t) is the force density representing the forces exerted by the microswimmers
on the solvent. The Stokes equation is typically complemented by the incompressibility
condition∇ · u = 0 leading to a complete set of equations to determine u(r, t) and p(r, t)
for a given f(r, t) and given boundary conditions. Notably, the Stokes equation does not
contain any time derivatives, and therefore, the solvent responds instantaneously to the
applied forces (no motion would take place once the forcing term is switched off), which
reflects the absence of inertia. Accordingly, the swimming mechanism of scallops, which
move by periodically opening and closing their shells, would not work at low Reynolds
number (Fig. 2.8a). Likewise, any other mechanism based on reciprocal motions would
not lead to directed motion. This is Purcell’s scallop theorem.312
The general procedure to model microswimmers which move by body-shape deforma-

tions (or squirmers) at low Reynolds numbers consists in solving the Stokes equation
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Fig. 2.8 Self-propelling at low Reynolds number. a Motion of a scallop. By quickly closing
and slowly opening the two shells, the scallop produces a net flow and starts moving. At low
Reynolds number, the net displacement is zero for this reciprocal motion (reprinted from Ref.
[313] licensed under CC BY 4.0, © 2014 Macmillan Publishers Limited). b Schematic of the
non-reciprocal motion of an E. coli bacterium (reprinted from Ref. [314], by Nicolle Rager Fuller,
National Science Foundation). c Electron microscope image of Chlamydomonas reinhardtii algae
showing the flagella producing self propulsion by non-reciprocal motion (reprinted from Ref.
[315], by Louisa Howard, Dartmouth College).

with appropriate boundary conditions for the solvent velocity field u on the surface
of the microswimmers. This yields the solvent velocity field u, from which the stress
tensor σ = η

(︁
∇⊗ u+ (∇⊗ u)T

)︁ can be obtained, where ⊗ denotes the dyadic prod-
uct. The latter allows one to calculate the total force F =

∫︁
S dS σ(r, t)n̂ and the torque

T =
∫︁
S dS r × (σ(r, t)n̂) which act on the microswimmer, where S and dS denote the

surface of the microswimmer and a differential element of it, respectively. Then, for a
solid particle, the rigidity condition

u(r) = v +ω× r, r ∈ S (2.19)

is typically assumed to apply at the surface S of the particle and links the particle velocity
v and angular velocity ω to F and T. Finally, the torque-free (T = 0) and force-free
(F = 0) conditions allow one to solve for v andω.21,32 Since microswimmers often deform
in a cyclic way, the net displacement during one cycle of period T is given by ∫︁ T

0 dtv(t),
which is zero for reciprocal movement in the regime of low Reynolds numbers.236 Thus,
non-reciprocal body-shape deformations are required to produce directed motion. Two
examples of biological microswimmers that self propel by non-reciprocal motion are
demonstrated in Fig. 2.8b,c. A minimal microswimmer model can be constructed, e.g.,
based on three spheres connected by two arms, which periodically change their length
(three-sphere swimmer)316–320 or based on two spheres which can contract or expand
radially and are connected by an elastic arm.317,321,322

Modeling hydrodynamics at the many-particle level

In ensembles of microswimmers, each of them generates a specific flow pattern which
typically decays slowly in space and leads to long-ranged hydrodynamic cross interactions
among different microswimmers as well as to hydrodynamic (self) interactions with walls
and interfaces. These hydrodynamic interactions are typically not included in models
of dry active matter such as the ABP model and its alternatives. One way of simulating
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several interacting microswimmers is to explicitly model the detailed self-propulsion
mechanism of each microswimmer, i.e., to alternately solve the Stokes equation with
the microswimmer-solvent boundary conditions for all swimmers simultaneously and to
propagate the swimmers based on the force- and torque-free conditions. While such an
approach is conceptually relatively simple and accurate in principle, it creates a huge
numerical effort and typically becomes unfeasible even for moderately largemicroswimmer
ensembles. In the following, we briefly discuss some alternative approaches, which allow
for more efficient numerical descriptions of microswimmer ensembles.

Minimal models and hydrodynamic far-field interactions: To model the dynamics of
large microswimmer ensembles, an explicit modeling of the solvent flow including the
detailed particle-solvent boundary conditions occurring in real microswimmers is often
numerically so demanding that very large system sizes remain unreachable. Therefore,
one often looks for a compromise between the ABP model, which neglects hydrodynamic
interactions and momentum conservation altogether, and an explicit modeling of the
self-propulsion mechanism of all interacting microswimmers in a given ensemble. One
common approach involves formulating hydrodynamically consistent minimal models
for the collective behavior of microswimmers, where one does not explicitly describe the
self-propulsion mechanism of each microswimmer but replaces each microswimmer with
a simpler representative that creates a similar (far-field) flow pattern. To this end, one
uses a multipole expansion of the flow field (similar to that used, e.g., in electrodynamics)
and only considers the leading-order terms.96,323–325 In the simplest case, these are the
so-called “singularity solutions” of the Stokes equation (e.g., the flow field of a force
dipole), which are then used to replace the flow field created by each microswimmer
and are equivalent to the far-field flow pattern generated by the actual microswimmer
to be modeled. For example, it is well known that E. coli bacteria produce essentially
the same far-field flow pattern as a force dipole (pusher)232 and Chlamydomonas algae
produce a far-field flow pattern which can be represented by the flow field produced by
an oscillatory force dipole.326 Let us briefly discuss three common singularity solutions of
the Stokes equation:
(i) Point force (“Stokeslet”): The flow generated by a point force fp = f êδ(r−r0) placed
at position r0 and pointing along the direction ê is similar to the far-field flow of
a particle that is driven by an external force.32,324 By setting f = fp in the Stokes
equation (cf. Eq. (2.18)), the resulting velocity field reads

uPF(r) =
f

8πηr
[ê+ (r̂ · ê) r̂] , (2.20)

where r = |r|, r̂ = r/r, and η denotes the viscosity of the solvent. The velocity field is
shown in Fig. 2.9a. Since microswimmers are force free (momentum conservation),
the Stokeslet solution alone is unsuitable to represent them.

(ii) Force dipole: The far-field solution of the Stokes equation in the presence of two
point forces f+ = f êδ(r− r0 − (l/2)ê) and f− = −f êδ(r− r0 + (l/2)ê), which are
separated by a distance l, reads

uFD(r) =
fl

8πηr2

[︂
3 (ê · r̂)2 − 1

]︂
r̂ (2.21)
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a Point force b Force dipole c Source dipole

Fig. 2.9 Singularity solutions of the Stokes equation. Illustration of the velocity field u(r) of a
a point force, b a force dipole, and c a source dipole. The black arrows indicate the direction of
the flow field and the background color indicates its magnitude, where yellow denotes a large
magnitude and (dark) red a small magnitude. The blue arrows represent the point forces and the
filled and empty blue circles a source and sink, respectively.

in the limit l → 0 or at distances r ≫ l, and it is represented in Fig. 2.9b for
f > 0.32,324 These force dipoles push fluid molecules in the forward and backward
directions. Hence, microswimmers that show this kind of far-field flow pattern are
called “pushers”, whereas the case of f < 0, where all flow field lines are reverted,
corresponds to a “puller”.

(iii) Source dipole: The point-force and force-dipole solutions are obtained by solving
the Stokes equation together with the incompressibility condition∇ · u = 0. In the
presence of sources of solvent molecules, the Stokes equation is unchanged, but
the incompressibility condition changes to∇ · u(r) = s(r), where s(r) denotes the
source density.324 While a point source is of limited relevance (it would lead to a
net flow of solvent molecules entering or leaving the domain), the source dipole is
an important singular solution to the Stokes equation. Its source density consists
of two point sources s+(r) = Qδ(r − r0 − (l/2)ê) (source of solvent molecules)
and s−(r) = −Qδ(r− r0 + (l/2)ê) (sink of solvent molecules) that are separated
by a distance l, where Q > 0 denotes the magnitude of the source densities. The
corresponding solution to the Stokes equation in the limit l → 0 reads324

uSD(r) =
Ql

4πr3
[3 (ê · r̂) r̂− ê] (2.22)

and its velocity field is demonstrated in Fig. 2.9c.
Since self-propelled particles are force free, the simplest representation of active parti-

cles by singularity solutions of the Stokes equation is given by source and force dipoles.
Examples of simulations of microswimmer models based on these singularity solutions
comprise, e.g., studies of motile suspensions of active rod-like particles,327 of the dynam-
ics of a single molecule composed of microswimmers,328 of RTPs with hydrodynamic
interactions,329 or of microswimmers near boundaries.330
To simulate microswimmers based on singularity solutions of the Stokes equation, one

often models the external fluid velocity field u as a sum of all microswimmer singularity
solutions and applies certain boundary conditions on the surface of each microswimmer.
The velocity v of eachmicroswimmer is then calculated using the force-free and torque-free
conditions based on the stress tensor, as previously discussed for a single microswimmer,
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via numerical integration. To obtain self propulsion, one shifts the force or source dipole
away from the center of the particles.327,328Moreover, one can also combine the singularity
solutions with numerical solvers such as the Lattice-Boltzmann method discussed below.331
Beside simulations, the force and source dipole models are used to develop continuum
theories for active matter with hydrodynamic interactions, which we will briefly discuss
in the last part of this section.

Squirmer models: An alternative (not necessarily unrelated) approach to formulate
hydrodynamically consistent models of microswimmers is to consider squirmers, i.e.,
spherical particles with a prescribed solvent flow along the surface (without explicitly
modeling the origin of the latter).201,323,332–340 On the surface of the squirmer particle,
the vertical fluid velocity is set to zero and the tangential surface velocity is prescribed
by a series of first derivatives of Legendre polynomials, which can be used, e.g., to
model the net effect of autophoresis, which leads to a slip velocity across the surface of
Janus particles.341 The squirmer model has been used in several works, e.g., in combi-
nation with the lattice-Boltzmann method338,342,343 or multi-particle collision dynamics
simulations.201,332,333,335–337,339,340
In contrast to the ABP model and its alternatives, microswimmer models based on com-

binations of singularity solutions of the Stokes equation or on squirmers are momentum
conserving and can correctly describe hydrodynamic interactions at large inter-particle
distances for a given active system. However, they do not necessarily account for the
correct hydrodynamic near-field interactions and are therefore mainly useful to model
active systems at low density (squirmer models may serve as an exception when they are
used to representing Janus particles; they are expected to correctly describe hydrodynamic
interactions down to distances on the order of the slip length).341 These effective models
are often used also as a starting point for continuum theories as briefly discussed further
below.

Explicit simulations of the solvent: In the following, we briefly introduce several
numerical methods which are frequently used in active matter physics to explicitly deter-
mine the flow field and to simulate hydrodynamic interactions, often beyond the far-field
approximation.

(i) Lattice-Boltzmann method: One popular method to solve fluid dynamics problems is
the lattice-Boltzmann method (LBM), where one solves the Boltzmann equation
instead of the (Navier-)Stokes equation and exploits the fact that the latter equation
can be derived from the former.98,338,344–349 Interestingly, the Boltzmann equation is
numerically often more convenient when combined with suitable approximations. It
describes the particle distribution function f(r,v, t), which is the density of particles
with velocity v at position r and time t. With the so-called collision operator Ω(f),
the Boltzmann equation reads345,350

∂f

∂t
+ v ·∇rf +

F

m
·∇vf = Ω(f), (2.23)

wherem denotes the mass of the particles and F is the external force field acting on
them. The second term on the left-hand side describes advection of the particles with
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velocity v, whereas the third term describes external forces acting on the solvent
particles and affecting their velocity. The source term on the right-hand side of Eq.
(2.23) describes the local redistribution of the solvent particles due to collisions. This
collision operator is often approximated by Ω(f) = −(f − feq)/τ , which describes
the relaxation of the distribution f towards the equilibrium distribution feq on the
timescale τ and is known as the Bhatnagar–Gross–Krook (BGK) collision operator.351
In the LBM, the continuous Boltzmann equation (i.e., Eq. (2.23)) is discretized in
position, velocity, and time and numerically solved on a lattice with spacing ∆x
at discrete times with time step ∆t. The velocity v can only take discrete values
ci, which are given by a discrete set {ci, wi} with weights wi. The discretized
Boltzmann equation is then solved numerically as discussed, e.g., in Ref. [345].
To simulate microswimmers that, e.g., create directed motion through body-shape
deformations, one often describes the microswimmer surface as a set of boundary
links that define a closed surface and solves the discretized Boltzmann equation
together with suitable boundary conditions.345

(ii) Multi-particle collision dynamics: Another popular approach to simulate the dynamics
of microswimmers is based on multi-particle collision dynamics (MPCD), where, in
contrast to the LBM, the solvent is represented by point-like particles which have
continuous positions and velocities.352–358 To model active particles, one usually
combines the MPCD method for the solvent molecules with molecular dynamics
(MD) simulations of the active particles, which are coupled to the solvent and
are represented either as a single particle or by a quasi-continuous distribution of
particles which are connected with (time-dependent) springs and represent the
surface of a (deformable) microswimmer.359 The MPCD method has been used in
several works to investigate, e.g., chemotactic Janus colloids,360 active particles with
phoretic interactions,361 dynamics of active particles in chemically active media,362
the motion of squirmers,333,337,339 the influence of hydrodynamic interactions on
phase separation in systems of microswimmers,201 collective behavior of sperm
cells,67 and active particles in filament networks.182

(iii) Dissipative-particle dynamics: Another coarse-grained approach to modeling the
solvent is given by dissipative-particle dynamics (DPD) simulations. Here, each DPD
particle represents a small solvent region and, similar to the MPCD simulations,
the positions and velocities of the DPD particles take continuous values. The DPD
particles interact via three types of effective forces: A weak conservative force
models the soft repulsion of the solvent molecules, a dissipative force models the
friction, and a random force accounts for thermal fluctuations. Knowing these
forces, Newton’s equation of motion is solved for the DPD particles to obtain the
hydrodynamics of the solvent.363–365 This model has been adapted, e.g., to active
suspensions366 and to model the self-propulsion of Janus colloids.367

(iv) Microscopic solvent simulations: Finally, beside the previously discussed mesoscale-
simulation methods, particle-based simulations of the solvent molecules based on
direct MD simulations, which allow one to resolve very small spatial and temporal
scales, are possible. Nevertheless, these simulations are computationally very intense,
which makes it impossible to study systems of the microscale over time scales
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of seconds, which are relevant to most active matter systems. Still, this explicit
modeling of the solvent has been successfully used to model a self-propelled particle
in a Lennard-Jones solvent.368

Overall, the LBM, MPCD, and the DPD methods are mesoscale simulation methods,
which can be applied to many hydrodynamic problems in soft and active matter physics
and beyond. Since the DPD method is based on particles moving in continuous space,
it avoids lattice artifacts and allows simulations capturing much larger length and time
scales than typically possible in MD simulations. However, DPD simulations include many
parameters in order to model the different forces, which have to be chosen carefully. The
MPCD method, on its part, which models the net effect of individual collisions rather than
accounting for every collision event, is computationally very efficient and can be efficiently
parallelized. This applies also to the LBM, which numerically solves the Boltzmann
equation and is well suited, e.g., for implementing complex (moving) boundaries.345

Continuum theories of microswimmers with hydrodynamic interactions

Based on the previously discussed effective microswimmer models, continuum theories for
large ensembles of particles can be formulated which explicitly account for hydrodynamic
interactions at least at low density. These theories describe wet active matter and can be
formulated, e.g., based on the puller and pusher solutions of the Stokes equation. One
popular approach to account for hydrodynamic far-field interactions is to write down the
(overdamped) equations of motion for the position and orientation of each microswimmer,
which couple with the overall fluid velocity field. The contribution of each microswimmer
to the overall velocity field is modeled by singularity solutions of the Stokes equation
such as force or source dipoles (which can be superimposed due to the linearity of the
Stokes equation). One then derives a continuity equation for the N -particle probability
density, which typically takes the form of a Fokker-Planck equation.206,369–371 From here,
one can proceed similarly to microscopic theories for dry active matter in order to derive
an equation of motion for the one-particle density. Since the described approach to
formulate continuum theories for wet active matter is based on the singularity solutions
of the Stokes equation, which only describe the far-field flow pattern of active particles,
near-field hydrodynamic effects are not included in this approach. However, although
complicated in practice, one can go beyond the far-field regime in principle, e.g., by
using superimposed singularity solutions to represent the near-field flow pattern of each
swimmer or by starting with squirmer models.
Let us finally mention that one can alternatively formulate phenomenological minimal

models of wet active matter. Following a similar spirit to the case of dry active matter, these
models are generic in the sense that they are largely based on considerations of symmetry,
conservation laws, and dimensionality, and they do not refer to details such as the specific
self-propulsion mechanism, which is employed by the microswimmers. One example of
such a minimal model for wet active matter is given by the phenomenological active model
H,97 which accounts for momentum conservation. It is based on the active model B299 and
is closely related to the model H for equilibrium systems.298 The active model H addresses
the phase separation behavior of wet active matter and couples the generalized density
field ϕ(r, t) to the velocity field u(r, t) of the solvent. The general idea is that diffusive
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Fig. 2.10 Examples of motility-induced phase separation. Evolution of motility-induced phase
separation in a Myxococcus xanthus bacteria (reprinted with permission from Ref. [59]. © 2019
by the American Physical Society), b diffusiophoretic Janus particles (reprinted with permission
from Ref. [53]. © 2013 by the American Physical Society), and c in millimeter-sized bristle bots
(reprinted from Ref. [373]. © 2022 IEEE).

dynamics of the active particles take place in the moving frame of the solvent and the
velocity field of the solvent is given by the corresponding Navier-Stokes equation. There
are also phenomenological models for specific phenomena such as bacterial turbulence,
which are based on phenomenological equations to describe the fluid velocity field.372
More generally, there are also many alternative approaches to formulating continuum
theories such as discussed in Refs. [27, 236, 323].

2.3 Motility-induced phase separation

The fact that active matter systems are intrinsically out of equilibrium manifests in striking
collective phenomena. Besides phenomena such as flocking or pattern formation, motility-
induced phase separation (MIPS) denotes a remarkable example of non-equilibrium
phenomena: Active particles with purely repulsive interactions can phase separate similar
to a liquid-gas phase separation. For passive particles, this is impossible unless they
have attractive interactions. The mechanism that leads to this phase separation in active
systems is known as MIPS. The motility of the individual particles leads to the formation
of small clusters that coarsen over time leading to the formation of a dense phase that
is surrounded by a dilute gas of active particles. This phenomenon can be observed in
different experimental systems such as bacteria,59 Janus colloids,53 or millimeter-sized
bristle bots (Fig. 2.10).373
On the level of the particles, MIPS can be understood as the formation of small clusters

that grow and coarsen over time until the system has formed a single dense cluster that is
surrounded by a dilute gas. The formation of small clusters is visualized in Fig. 2.11e.
Here, three particles block each other. This configuration can be resolved if at least one
particle changes its orientation due to rotational diffusion. This typically happens on a
timescale of the persistence time τp. If the mean time between collisions is smaller than τp,
small clusters can grow. This situation appears if the active particles are fast (large Péclet
number) and if the particle density is large enough (high packing fraction). Then, the
time between collisions becomes small, and the uniform state loses stability. The clusters
move, merge, and coarsen such that they finally lead to a dense liquid-like phase that
coexists with a dilute gas-like phase. This process is visualized in the snapshots shown in
Fig. 2.11a–d. On coarse-grained scales, MIPS can be understood as a consequence of a
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Fig. 2.11 Mechanism of motility-induced phase separation. a–d Evolution of motility-induced
phase separation for an ensemble of N = 39 200 overdamped ABPs (Eqs. (2.4) and (2.5)) at
packing fraction φtot = 0.47 and Pe = 200/

√
2. The ABPs interact purely repulsively via the

Weeks-Chandler-Anderson potential as defined in Eq. (2.8) with strength ϵ = 10 kBTb. e Sketch of
the mechanism leading to MIPS. A self-trapped configuration (top) can be resolved after a typical
time τp, after which the orientation changes due to rotational diffusion. Yellow arrows denote the
self-propulsion direction.

positive feedback: First, active particles tend to accumulate in regions where their directed
motion is restricted. On coarse-grained scales, they move more slowly within these regions.
Second, active particles move more slowly on coarse-grained scales where the local particle
density is large. Accordingly, a positive feedback between the accumulation, which is
induced by slowly moving particles, and the accumulation-induced slowdown finally leads
to MIPS.83,259
In the overdamped limit, it has been shown that on coarse-grained scales, MIPS can be

mapped onto equilibrium liquid-gas phase separation in passive particles with attractive
interactions.83,110,374 Correspondingly, the length scale L(t) of clusters coarsens in time as
L(t) ∝ t1/3 similar to a passive phase-separating system undergoing diffusive coarsening.83
In contrast, when we consider inertial active particles, the system also undergoes MIPS,
but the coarsening process is slower. In particular, it follows L(t) ∝ t1/5.103 Additionally,
the dense and the dilute phase feature different kinetic temperatures (defined as the
mean kinetic energy per particle; Fig. 2.12b). This kinetic temperature difference persists
even in the steady state, which would not be possible in equilibrium systems.103,119,123
As a consequence, systems of inertial active particles cannot be mapped on an effective
equilibrium system on coarse-grained scales.103
To explain the emergence of the kinetic temperature difference between the dense and

the dilute phase, we have to understand what happens when two active particles collide.
In the overdamped limit, the two particles block each other and their directed motion
stops immediately (Fig. 2.12c). The blocked configuration is resolved after a typical
time τp, after which the particles change their self-propulsion direction due to rotational
diffusion. However, their instantaneous speed is still dominated by the self-propulsion
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Fig. 2.12 Motility-induced temperature difference. Snapshots of BD simulations of ABPs a in the
overdamped limit (m/(γtτp) = 5× 10−5) and b with m/(γtτp) = 5× 10−2 at Pe = 200/

√
2. The

colors denote the kinetic temperature kBTkin = 0.5m⟨v2⟩ of the particles. c Sketch of a collision
between two repulsively interacting overdamped ABPs moving towards each other along the x
direction in two spatial dimensions. The visualized trajectories (black dashed lines) show their
position in x direction over time. The frontally colliding overdamped ABPs stay almost touching but
maintaining an instantaneous speed of v0 until they reorient due to rotational diffusion after a time
τp. Then, they glide past each other. d Same sketch as in panel c but for two repulsively interacting
inertial ABPs. The particles bounce back multiple times and do not reach their self-propulsion
speed v0 anymore before they reorient and glide past each other. Accordingly, they slow down.
Yellow arrows denote the direction of the self-propulsion velocity.

speed v0. Consequently, even though the particles in the cluster are densely packed,
both the dense and the dilute phase have the same kinetic temperature. In contrast,
inertial active particles bounce back elastically when they collide (Fig. 2.12d). After
each collision, they move back against their self-propulsion force to a turning point at a
decreased distance. From this turning point, they accelerate again until they touch each
other again, but they have less space to accelerate. Consequently, the particles are not
able to reach their self-propulsion speed v0 anymore unless they reorient due to rotational
diffusion and move away from each other. In the dilute phase, collisions are rare and the
particles can reach their self-propulsion speed v0 between two subsequent collisions. In
the dense phase, frequent collisions slow down the particles. Especially, when an inertial
active particle enters the dense phase, it slows down due to successive collisions with
other particles. Accordingly, the self-propulsion power is significantly smaller in the dense
phase compared to the dilute phase.103 This leads to the kinetic temperature difference
between the two phases. The temperature difference is maintained by the continuous
energy conversion of the active particles that leads to their self propulsion.
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3 Active Matter Evaluation Package

AMEP

Fig. 3.1 Active Matter Evaluation
Package (AMEP) logo.

To gain detailed insights into the dynamics and the struc-
ture of systems simulated using particle-based or contin-
uum simulations as described in the previous chapter, var-
ious observables can be calculated from simulation data
to gain insights into dynamical and structural properties
of the investigated system. Examples especially relevant
for active matter systems range from the mean-square
displacement and the structure factor to cluster-size dis-
tributions, binder cumulants, and growth exponents. To
analyze the simulation data used in this PhD thesis and
to provide a powerful and simple interface for calculating
and visualizing a broad variety of observables that are
relevant to active matter systems, we created the Active
Matter Evaluation Package (AMEP; Fig. 3.1), which is a
Python library for analyzing simulation data of particle-
based and continuum simulations. AMEP is written in pure Python and it is based on
powerful libraries such as NumPy,375,376 SciPy,377 Matplotlib,378 and scikit-image.379 It
provides the first unified framework for handling both particle-based and continuum
simulation data and therefore, it can also be used to analyze simulations that combine
particle-based and continuum techniques such as used to study the motion of bacteria in
chemical fields or for modeling particle motion in a flow field for example.
This chapter gives an overview about the design and the features of AMEP and defines

the observables used in this PhD thesis. The code examples are based on AMEP version
1.0.0. The content of this chapter is taken from my publication “AMEP: The Active
Matter Evaluation Package for Python” published as a preprint on arXiv (2024),380 and
the majority of this chapter is taken verbatim from it. For this publication, I wrote
the majority of the first version of the software, created most of the simulation data,
contributed to acquiring funding for computational resources, coordinated and managed
the data analysis, and wrote the original draft with input from all co-authors.

3.1 Introduction

Computer simulations are a powerful method to investigate and understand the physical
properties of soft matter and biological systems. In particular, molecular dynamics (MD)
simulations stand out as an indispensable tool to determine the microscopic dynamics
and structural properties of molecular systems comprising bio-molecules,381–383 polymer
electrolytes,384–386 liquid crystals,387–389 or confined liquids for example.390–393 These
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systems exhibit notable relevance in both industrial and medical applications.394–396
Expanding beyond atomistic and systematically coarse-grained MD simulations involving
suitable force fields, Brownian dynamics (BD) simulations have extensively been used
over the past two decades especially also for modeling active matter systems. In such
systems, the individual constituents consume energy from their environment and use
it to self propel and navigate through complex surroundings.21,397 Examples of active
matter systems can be observed across scales from microscopic entities such as bacteria,
algae, and synthetic microswimmers4,59,74,179–185 to fishes, birds, drones, and human
crowds on the macroscale.12,14,15,17,19,34,186–188 These out-of-equilibrium systems exhibit
striking collective phenomena such as phase separation (where the system selects a
density),53,54,72,83,85,86,152,201–203 non-equilibrium pattern formation (where the system
selects a length scale),112,196,204–208 or other ordering transitions such as flocking showing
(long-range) orientational ordering.16,120,187,209
To effectively model active matter systems, different computational approaches provide

distinct advantages.76,77 Particle-based models such as the active Brownian particle (ABP)
model as introduced in Eqs. (2.2) and (2.3),249 solved numerically using BD simulations
for example, have proven valuable for investigating collective phenomena such as motility-
induced phase separation (MIPS; cf. Sec. 2.3)72,83,103,110,165,259,374,398–405 as well as the
dynamics and local order of the involved individual particles.4,142,143,146,162,250,406–408
Conversely, continuum models such as the active model B+ (Eq. (2.15))300 enable us to
understand collective phenomena over larger length and time scales by studying the evolu-
tion of particle densities.97,112,120,207,292,300,374,409–411 Therefore, it is a common approach
to start from a particle-basedmodel and subsequently derive a continuummodel via coarse-
graining techniques.66,90,205,209,259,293,302,305,412–414 Moreover, the integration of particle-
based and continuum models has emerged as a promising approach,68,74,75,204,294,415–417
especially for scenarios such as modeling the interaction of active particles with a sur-
rounding fluid or another medium that is quasi-continuous on the scale of the consid-
ered particles, as exemplified by the motion of bacteria or synthetic Janus colloids in a
self-produced concentration field.75,294–296,416–418 These approaches are also particularly
important for modeling artificial microswimmers such as active colloids in the presence
of chemical fields,65,78 exhibiting phenomena such as chemotaxis.79,410,417,419
To gain physical insights from the data resulting from numerical solutions, a com-

prehensive array of analysis techniques is required. The mean-square displacement
and time correlation functions such as the orientational autocorrelation function are
popular observables to achieve insights into the dynamical aspects,133,143,148,158,420–426
while spatial correlation functions such as the radial/pair distribution function and
the structure factor are frequently considered to provide information about spatial
structures.203,427–430 Other observables such as entropy production and kinetic temper-
ature are also considered frequently to analyze the collective behavior of the system
under investigation,24,103,125,144,162,163,165,166,252,431–441 and together with statistical anal-
ysis tools such as binder cumulants used in finite size scaling analyses72,442–445 and
cluster analyses including cluster growth exponents,55,103,146,152,291,293,299,446 these ob-
servables allow us to characterize the non-equilibrium phase diagram and critical dy-
namics of active matter systems. Additionally, local order analyses such as local density
and bond orientational order parameters offer insights into the system’s local structure
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and symmetries.72,110,250,398,447–450 While existing analysis packages such as freud,451
MDAnalysis,452,453 VMD,454 MDTraj,455 Ovito,456 Pytim,457 LOOS,458,459 and MMTK460 of-
fer the possibility to calculate such observables, they are mostly inspired by and optimized
for the MD simulation community and fall short in capturing all relevant observables for
active matter systems in a single package. Additionally, they lack the possibility to handle
continuum simulation data. Therefore, a new library is required that (i) consolidates the
essential observables needed to analyze active matter simulation data, (ii) provides a
unified platform for analyzing both particle-based and continuum simulation data, and
(iii) seamlessly integrates data formats widely-used in computational physics through an
application programming interface (API).
In this chapter, we introduce the Active Matter Evaluation Package (AMEP), a unified

framework for analyzing MD simulation, BD simulation, and continuum simulation data
with a specific focus on soft and active matter systems. AMEP provides an optimized
framework for loading, storing, and evaluating simulation data based on particle tra-
jectories and the time evolution of continuum fields. This framework is based on an
optimized HDF5 file format461,462 which is optimal for long-term storage purposes and
for handling data of large-scale simulations.462–464 Computationally expensive methods
are parallelized and AMEP selectively loads only the data into the main memory which is
necessary for the current computational step. This ensures efficient operation on high-
performance computing architectures, workstations, and laptops. AMEP is written in
pure Python and provides a user-friendly, easy-to-learn Python API that interfaces with
common tools used in computational physics via NumPy arrays.375,376 Based on common
Python libraries such as NumPy,375,376 SciPy,377 Matplotlib,378 and scikit-image,379 AMEP
provides a powerful toolbox for calculating spatial and temporal correlation functions,
visualizing and animating simulation results, and coarse-graining particle-based simu-
lations, which makes it possible to easily analyze the dynamics and structure of both
particle-based and continuum simulation data.
This chapter is organized as follows: We first demonstrate a minimal example on how

to use AMEP to load, analyze, and visualize simulation data in Sec. 3.2. Second, we give
a brief overview on the structure and design of AMEP in Sec. 3.3. Finally, in Secs. 3.4
and 3.5, we apply a selection of analysis functions provided by AMEP to particle-based
simulations of the ABP model and to continuum simulations of the active model B+,
respectively, and briefly discuss the results.

3.2 How to use AMEP

AMEP is designed with a user-focused mindset to simplify the access to simulation data
within a few lines of Python code. Before discussing the general design of AMEP and
various examples on how to apply it to particle-based and continuum simulation data, we
will demonstrate its general usage with a minimal example. For a quick start with AMEP,
we recommend downloading the demo files at https://github.com/amepproject/amep/
tree/main/examples and to run them part by part while reading this section.
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3.2.1 Installing AMEP

AMEP is a Python library that requires Python 3.10 or higher. To use AMEP, we recom-
mend installing Python via Anacondaa. If Anaconda is installed, one can create a new
environment, activate it, and install AMEP through the terminal (Linux/macOS) or the
Anaconda Prompt (Windows):

1 conda create -n amepenv python=3.10
2 conda activate amepenv
3 conda install conda-forge::amep

Alternatively, AMEP can also be installed via pip install amep. Now, one can start
the Python interpreter to import and use AMEP:

4 python
5 >>> import amep
6 >>>

Alternatively, we recommend to use Jupyter notebooks.b

3.2.2 Analyzing simulation data using AMEP

Now, we use AMEP to calculate the mean-square displacement (MSD), the diffusion
coefficient, and the orientation autocorrelation function (OACF) of a single ABP and the
radial distribution function (RDF) of multiple interacting ABPs using the ABP model as
introduced in Subsec. 2.2.1 and solved numerically using LAMMPS.255 At the end of
this section, we visualize the results in a combined plot. Exemplary code and data of
the relevant BD simulations is available at https://github.com/amepproject/amep/tree/
main/examples.
First, we import AMEP and load the simulation data of non-interacting overdamped

ABPs:
1 import amep
2 t r a j _non i n t = amep . load . t r a j (
3 " / path / to / non_ in t e ra c t ing_ABPs " ,
4 mode = " lammps "
5 )

The function amep.load.traj creates an HDF5 file (traj.h5amep) in the background that
contains all the simulation data and returns a ParticleTrajectory object which allows to
easily access the data for further processing. Since the data has been produced using
LAMMPS,255 we load it using mode = "lammps". To save useful information for long-term
storage, we add the author to the trajectory object, which will save this information within
the linked HDF5 file:

6 t r a j _non i n t . add_author_info (
7 " Lukas Hecht " ,
8 " a f f i l i a t i o n " ,
9 " T e chn i c a l Un i v e r s i t y o f Darmstadt "

aSee https://docs.anaconda.com/free/anaconda/install/index.html for instructions on how to install Ana-
conda.

bFor more information about Jupyter notebooks, see https://jupyter.org/.
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10 )
11 t r a j _non i n t . add_author_info (
12 " Lukas Hecht " ,
13 " emai l " ,
14 " lukas . hecht@pkm . tu−darmstadt . de "
15 )

This information can be accessed by calling traj_nonint .get_author_info("Lukas Hecht"), re-
turning
{’affiliation’: ’Technical University of Darmstadt’,
’email’: ’lukas.hecht@pkm.tu−darmstadt.de’}

while traj_nonint .authors returns a list of all authors. AMEP provides several methods
to add more information to trajectory objects ( ParticleTrajectory or FieldTrajectory) such
as software information, simulation scripts, log files, or simulation parameters for a
comprehensive and reproducible set of information about the simulation (see online
documentation available at https://amepproject.de and Fig. 3.2).
Next, we calculate the MSD, which is defined as

MSD(t) = 1

N

N∑︂

i=1

[ri(t)− ri(0)]
2 , (3.1)

where ri(0), ri(t) denote the position of particle i at time 0 and t ≥ 0, respectively. For a
single overdamped ABP, it can be shown analytically that the MSD can be written as (cf.
Eq. (2.7))

MSD(t) = 2l2p

(︃
t

τp
− 1 + e−t/τp

)︃
+ 4Dtt

t≫τp−−−→ 4Defft (3.2)

with effective diffusion coefficient Deff = Dt+ l2p/(2τp).77,181,253 Here, τp = 1/Dr denotes
the persistence time, which signifies the time after which the directed motion of an ABP
is randomized due to rotational diffusion, and lp = v0τp denotes the persistence length,
which is the distance an ABPmoves on average before its direction of motion is randomized.
Dt = kBTb/γt and Dr = kBTb/γr are the translational and rotational diffusion coefficients,
respectively, and v0 is the self-propulsion speed of the ABP. To calculate the MSD with
AMEP, we create a MSD object via

16 msd = amep . eva lua te .MSD(
17 t r a j _non i n t
18 )

which calculates the MSD for all frames and performs the average over all particles. The
MSD object contains all information about the MSD, and we can access the times via msd.
times and the value for each individual frame via msd.frames for example. The returned
objects are NumPy arrays and can therefore easily be used also elsewhere in Python.
To get the effective diffusion coefficient Deff from the MSD in the late time limit, we

define the fit function f with the fit parameters as keyword arguments and create a
corresponding Fit object:
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Fig. 3.2 AMEP flow chart: Schematic of the design of AMEP. The first layer “Data Storage”
represents the loading and storage of data from particle-based or continuum simulations, which is
stored in HDF5 files (.h5amep) together with various metadata the user can add. The central
part of the Python interface (layer “Data Analysis”) is the Trajectory object which acts as a list
of Frame objects and gives access to the data stored in the HDF5 file. The Trajectory object
can be used with the evaluate classes (module evaluate) which give simple access to many
observables calculated over whole trajectories. Alternatively, the data can be returned as NumPy
array through the Frame objects and can be analyzed using the individual AMEP modules, also in
combination with self-written Python code to perform additional operations beyond AMEP. The
plot module allows visualizing analysis results and simulation data in form of figures or videos.
Finally, the results can be stored in an HDF5-based data format again (layer “Result Storage”).
It is possible to save and load one or more results in one HDF5 file. Later, the results can be
imported as DataBase (for multiple results) or EvalData objects (one result in a file or one
result selected from a DataBase object). The red arrows follow the path of our first minimal
example as discussed in Sec. 3.2. The design itself is explained in more detail in Sec. 3.3.
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19 def f ( t , D = 1 . 0) :
20 return 4*D* t
21 D f i t = amep . func t i on s . F i t ( f )

By calling the object’s fit method, which uses the scipy .odr package in the background,
with the data to fit and an initial guess (using the p0 keyword), we obtain the optimal
parameters. Here, we only want to fit the long-time behavior, and hence, we only consider
data for t > 101τp. The optimal parameters and their errors can then be retrieved from
the Fit object:

22 mask = msd . t imes > 1e1
23 D f i t . f i t (
24 msd . t imes [mask ] ,
25 msd . frames [mask ] ,
26 p0 = [900]
27 )
28 p r i n t (
29 f "D={D f i t . params [0] :0 .2 f } , " \
30 f "D−e r r o r={D f i t . e r r o r s [0 ] :0 .2 f } "
31 )

D=885.32, D−error=0.59

This is fairly close to the expected value of Deff = 883 as obtained from Eq. (3.2) for
overdamped ABPs with lp = 1.0, τp = 1.0, v0 = 42, and Dt = 1.0 as used in this example.
Next, we use the same simulation data to calculate and fit the OACF, which is given by

⟨p̂(0) · p̂(t)⟩ = 1

N

N∑︂

i=1

p̂i(0) · p̂i(t) (3.3)

and is equal to e−Drt for overdamped ABPs.133 Here, p̂i is the orientation vector of
the effective self-propulsion force of particle i. Again, by creating the corresponding
evaluate and fit objects, we can analyze the OACF in a few lines of Python code. For the
correct normalization, we specify the plane in which the OACF is to be calculated with
direction = "xy":

32 oacf = amep . eva lua te .OACF(
33 t r a j _non in t ,
34 d i r e c t i o n = " xy "
35 )
36 def f ( t , Dr = 1 . 0) :
37 return np . exp(−Dr* t )
38 T f i t = amep . func t i on s . F i t ( f )
39 T f i t . f i t ( oacf . t imes , oacf . frames )
40 p r i n t (
41 f " Dr={T f i t . params [0] :0 .4 f } , " \
42 f " Dr−e r r o r={T f i t . e r r o r s [0 ] :0 .4 f } "
43 )

Dr=0.9890, Dr−error=0.0021
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Again, we obtain a value close to the expected one of Dr = 1.0.
Next, we calculate the RDF. For that, we load simulation data of N = 105 interacting

overdamped ABPs moving in a two-dimensional periodic simulation box with a total
packing fraction of φ = 0.5 and create a RDF evaluate object. Note that a corresponding
exemplary dataset is available at https://github.com/amepproject/amep/tree/main/
examples. Here, we only want to consider frames that are in the steady state. Therefore,
we skip the first 90% of frames using skip = 0.9. Additionally, we specify the total number
of frames to average over (time average) equally spaced in time over the last 90% of the
trajectory using the nav keyword, which is inherited from the BaseEvaluation class and is
short for “number of averages”. Due to the large number of particles, it is worth to use
multiprocessing, to set a maximum distance until which the RDF is calculated, and to use
a large number of bins using the njobs, rmax, and nbins keywords, respectively:

44 t r a j _ i n t = amep . load . t r a j (
45 " / path / to / i n t e r a c t i n g_ABP s " ,
46 mode = " lammps "
47 )
48 rd f = amep . eva lua te .RDF(
49 t r a j _ i n t ,
50 sk ip = 0 . 9 ,
51 nav = 100 ,
52 nbins = 20000 ,
53 rmax = 300 ,
54 njobs = 128
55 )

Before visualizing the results, we save them in HDF5 files. For that, AMEP offers two
possibilities: One can store the result of either a single evaluate object (as done for the
RDF) or multiple evaluate objects (as done for the MSD and the OACF) in one HDF5 file:

56 msd . save (
57 " nonint−r e s u l t s . h5 " ,
58 database = True
59 )
60 oacf . save (
61 " nonint−r e s u l t s . h5 " ,
62 database = True
63 )
64 rd f . save (
65 " r d f . h5 "
66 )

These can later be loaded by callingmsd = amep.load.evaluation("nonint−results.h5", database
= True).msd and rdf = amep.load.evaluation("rdf.h5") for example. Finally, the data and
fits can be visualized with the Matplotlib wrappers provided by AMEP (Fig. 3.3):

67 f i g , axs = amep . p l o t . new(
68 (6 . 5 ,2) , nco l s = 3 , wspace = 0 . 1
69 )
70 # p l o t msd
71 axs [0 ] . p l o t (
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72 msd . times , msd . frames ,
73 " r−" , l a b e l = " data "
74 )
75 axs [0 ] . p l o t (
76 msd . times , D f i t . generate (msd . t imes ) ,
77 " k−−" , l a b e l = " f i t "
78 )
79 axs [0 ] . s e t _ x l a b e l ( " Time " )
80 axs [0 ] . s e t _ y l a b e l ( "MSD" )
81 axs [0 ] . l og log ()
82 axs [0 ] . legend ()
83
84 # p l o t oa c f
85 axs [1 ] . p l o t (
86 oacf . t imes , oacf . frames ,
87 " r−" , l a b e l = " data "
88 )
89 axs [1 ] . p l o t (
90 oacf . t imes , T f i t . generate ( oacf . t imes ) ,
91 " k−−" , l a b e l = " f i t "
92 )
93 axs [1 ] . s e t _ x l a b e l ( " Time " )
94 axs [1 ] . s e t _ y l a b e l ( "OACF" )
95 axs [1 ] . semilogx ()
96 axs [1 ] . axh l ine (1/np . e , c = " k " )
97 axs [1 ] . axv l i ne (1 , c = " k " )
98 axs [1 ] . legend ()
99
100 # p l o t r d f
101 axs [2 ] . p l o t ( rd f . r , rd f . avg , " r−" )
102 axs [2 ] . semilogx ()
103 axs [2 ] . s e t _ x l a b e l ( " D i s t an c e " )
104 axs [2 ] . s e t _ y l a b e l ( "RDF " )
105
106 # p l o t boxes
107 amep . p l o t . draw_box (
108 f i g , [0 , 0 , 0 . 68 , 1 . 01 ] ,
109 edgecolor = " tab : b lue " , l i n e s t y l e = "−−" ,
110 t e x t = " S i n g l e ABP " , c = " tab : b lue "
111 )
112 amep . p l o t . draw_box (
113 f i g , [0 . 69 , 0 , 0 . 31 , 1 . 01 ] ,
114 edgecolor = " tab : orange " , l i n e s t y l e = "−−" ,
115 t e x t = " I n t e r a c t i n g ABPs " , c = " tab : orange "
116 )
117 # save f i g u r e in f i l e
118 f i g . s a v e f i g ( " how_to_use_amep . pdf " )

The whole workflow of this minimal example is marked with red arrows in the flowchart
shown in Fig. 3.2 and its code is available at https://github.com/amepproject/amep/
tree/main/examples.
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Fig. 3.3 How-to-use-AMEP example. a Mean-square displacement of a single overdamped
ABP calculated with amep.evaluate.MSD. The black dashed line is a fit of Eq. (3.2) done
with amep.functions.Fit. b Orientation autocorrelation function of a single overdamped
ABP calculated with amep.evaluate.OACF. The black dashed line is a fit of e−Drt done with
amep.functions.Fit and the black dotted lines mark the point (1, 1/e). The results in panels a
and b are averaged over 4×103 particles. c Radial pair distribution function ofN = 105 repulsively
interacting overdamped ABPs calculated using amep.evaluate.RDF and averaged over time in
the steady state. The plot has been created using the amep.plot module and the corresponding
code is available at https://github.com/amepproject/amep/tree/main/examples.

3.3 Design

In the previous section, we introduced a short example of how to use AMEP. We will now
give an overview of the design of the AMEP package. A more detailed description can be
found in the online documentation available at https://amepproject.de.

3.3.1 Modules

AMEP contains a plethora of pre-implemented functions to analyze particle-based and
continuum simulation data. In Tab. 3.1, the modules are listed with a short description
and a few exemplary functions. The functions contained in these modules take NumPy
arrays and native Python data types as input, and therefore, they can also be used without
the data-handling framework provided by AMEP. In addition to the modules shown in
Tab. 3.1, AMEP has a plot module to visualize simulation data and results as well as an
evaluate module, which provides various evaluation methods that use a full trajectory as
input data. The plot and the evaluate module will be described in more detail below.

3.3.2 Visualization

For visualizing simulation data and analysis results, AMEP provides the plot module,
which is a wrapper for the Matplotlib library.378 The plot module includes functions to plot
particles and continuum fields (cf. Figs. 3.4 and 3.9), to create insets and colorbars (cf.
Fig. 3.4), and to animate plots and simulation data. For example, a video of a trajectory
traj can be created via traj .animate("video.mp4"). By varying the file extension, also other
data formats can be used such as GIFs (Graphics Interchange Formats). Additionally, the
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Tab. 3.1 Module overview. The shown AMEP modules take NumPy arrays and native Python
data types as input. The description of each module is complemented with a few exemplary
functions (italic text). AMEP additionally provides the modules plot and evaluate as described
in Sec. 3.3. A detailed description of all modules and the contained functions can be found in the
AMEP online documentation available at https://amepproject.de.

Module: Description:
cluster cluster identification and properties

identify clusters (particles)
radius of gyration

continuum field data analysis and coarse-graining
identify clusters (fields)
create field from particles

functions mathematical functions and fitting
Gaussian
general fit class

order functions to characterize spatial order
local density
k-atic bond order parameter

pbc handling of periodic boundary conditions
create periodic images
fold coordinates back into the box

spatialcor spatial correlation functions
radial distribution function
isotropic structure factor

statistics methods for statistical analysis
binder cumulant
distribution (histograms) 1d, 2d

thermo thermodynamic observables
kinetic temperature
kinetic energy

timecor time correlation functions
mean squared distance
autocorrelation function

utils utility methods
averaging methods (running mean, ...)
Fourier transform

plot module provides useful functions to format the axis of a figure. All visualization
functions are optimized to create figures and videos that can be directly used for a
publication in various journals. Most figures within this thesis are created with AMEP.

3.3.3 Evaluate module

We already introduced the different modules of AMEP, which contain a plethora of
functions relevant for the analysis of active matter simulation data. The evaluate module
is a special module in the sense that it uses functions from all other modules to calculate
certain observables for a whole trajectory. In our first example in Sec. 3.2, we already
used the MSD, OACF, and RDF classes, which are part of the evaluate module. We will now
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introduce the concept of these classes, which will be referred to as “evaluate classes” in
the following.
While the functions of the modules discussed above take NumPy arrays as input data,

evaluate classes take a whole trajectory as an input. One example is the amep.evaluate.RDF
class used in Sec. 3.2. To initialize an object of an evaluate class, the trajectory as well as
certain parameters are supplied. The evaluate classes offer the functionality to average
over multiple frames automatically (the keyword nav, which is an abbreviation for “number
of averages”, allows specifying the number of frames to average over) as well as to skip a
certain amount of frames at the beginning of the trajectory (in percent) by specifying the
skip keyword. The resulting data can be returned as NumPy arrays. Furthermore, one or
more evaluate objects can be stored in HDF5 files using their .save("filename.h5") method
and can be read again with amep.load.evaluation("filename.h5"). The evaluate classes are a
crucial part in the user-focused design of AMEP and make it possible to achieve results
within a few lines of code.

3.3.4 File format

Based on the Hierarchical Data Format version 5 (HDF5),461,462 AMEP introduces a new
file format h5amep to store simulation data and additional metadata. This format is used
in the backend of AMEP. The HDF5 files are structured into groups and datasets. The
h5amep format has the following groups, subgroups, and attributes:
h5amep root
\amep
\info

\authors
\software

\scripts
\params
\type
\particles or \fields
\frames

\steps
\times
\[frame0]

\coords
\velocities
\...

\[frame1]
\...

\...

The group amep contains information about the AMEP version that has been used to
create the h5amep file. The group info contains the saved information about authors (cf.
Sec. 3.2) and software. The scripts group gives the possibility to save text files such as
simulation scripts and log files that correspond to the simulation data. In the params
group, AMEP stores parameters such as the simulation timestep for example. Additional
simulation parameters can be added. The attribute type contains a flag about the type
of data stored in the h5amep file. This can be either " particle " or " field ". The groups
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particles and fields contain user-defined information about the particles and the
fields used in the simulation, respectively. Finally, the group frames contains multiple
datasets and subgroups with the simulation data. The dataset steps stores a list of all the
frame numbers (i.e., the number of timesteps for each frame) and the dataset times the
corresponding (physical) time, while the individual frames of the simulation are stored in
subgroups of frames named by their simulation step. Within an individual frame, the
simulation data is stored, e.g., coordinates and velocities for particle-based simulations or
density and concentrations for continuum simulations, as separate datasets.

3.3.5 Trajectories and frames

The h5amep file is connected to Python via the amep.load module with which the simu-
lation data is imported to a ParticleTrajectory or FieldTrajectory object. Saved evaluation
objects can also be imported with the amep.load module. Because a ParticleTrajectory
or FieldTrajectory object works as a reader for the h5amep file, the simulation data (co-
ordinates, velocities, density, concentration,...) is not stored in the main memory all
the time but only the portion that is requested for the specific analysis. The simulation
data can be accessed via BaseFrame or BaseField objects for particle-based and continuum
data, respectively, which will be referred to as “frame” in the following. Technically, the
ParticleTrajectory or FieldTrajectory object acts as a list of frames, i.e., frame = traj[0] re-
turns the first frame of the trajectory traj . The data of one frame can be accessed through
various methods. For example, the coordinates and velocities of particles can be accessed
via frame.coords() and frame. velocities (). Other data can be accessed via the frame.data
method, e.g., frame.data("mass") returns the mass of each particle and frame.data("rho")
the density field of a continuum simulation. A list of all available keys can be accessed via
frame.keys. All these methods return NumPy arrays for efficient calculations and simple
integrity to other Python packages (see also Fig. 3.2).

3.4 Analyzing particle-based simulation data with AMEP

We will now use AMEP to analyze simulation data of large-scale simulations of ABPs. After
introducing the simulation details, we demonstrate how to calculate certain observables
using AMEP and briefly discuss the results. The code examples demonstrate the workflow
of AMEP and serve as a guide for using AMEP. Further observables that are available in
AMEP but which are not discussed in this section are exemplarily shown in Fig. 3.12.

3.4.1 Brownian dynamics simulations of active Brownian particles

As a first detailed example, we analyze particle-based simulation data obtained with
the active Brownian particle (ABP) model as introduced in Subsec. 2.2.1 as Eqs. (2.2)
and (2.3). The repulsive interaction is modeled by the Weeks-Chandler-Anderson (WCA)
potential (Eq. (2.8)).256 For the simulations here, we have chosen a persistence length
lp = 100σ, repulsion strength ϵ/(kBTb) = 1.0, and for simplicity, γt = γr/σ2 unless
otherwise stated (note that in experiments of active granulates, the Stokes-Einstein
relation does not apply).157 We define the Péclet number as Pe = v0/

√
2DtDr, which
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quantifies the strength of self-propulsion relative to diffusive motion. Here, Dt = kBTb/γt
and Dr = kBTb/γr are the translational and rotational diffusion coefficients, respectively.
Note that all simulations are done in the overdamped regime, i.e., we choose a small
mass m/(γtτp) = 5× 10−5. Since it has been found in previous works that the influence
of the moment of inertia I on the simulation results is rather unimportant,103 it is held
constant at I/(γrτp) = 0.33 unless otherwise stated. All simulations are done within a
two-dimensional quadratic box of length L with periodic boundary conditions and up to
N = 1.28× 106 particles with a time step of ∆t/τp = 10−5–10−6 using LAMMPS.255 We
choose Pe = 70.7 and a packing fraction of φ = 0.5 with φ = Nπσ2/(4L2) and start each
simulation from uniformly distributed particle positions unless otherwise stated.
AMEP can load the common LAMMPS plain text format in which LAMMPS stores one

snapshot of the simulation per text file named as dump*.txt for example, where the *
is a placeholder for the current time step. These files are formatted as follows:
ITEM: TIMESTEP
20000
ITEM: NUMBER OF ATOMS
1280000
ITEM: BOX BOUNDS pp pp pp
0.0000000000000000e+00 1.5000000000000000e+03
0.0000000000000000e+00 1.5000000000000000e+03
-5.0000000000000000e-01 5.0000000000000000e-01
ITEM: ATOMS id type x y z fx fy mux muy radius mass
1 1 26.206 44.939 0 95.5607 9.87064 0.99913 0.04168 0.5 0.00005
2 1 45.187 24.985 0 -94.141 -33.726 -0.9414 -0.3373 0.5 0.00005
3 1 53.126 32.953 0 -86.024 12.4595 -0.9831 0.18303 0.5 0.00005
...

Here, id denotes a unique identifier for each particle, type denotes the particle type,
x,y,z denote the position of each particle, fx,fy denote the forces acting on each
particle, mux,muy are the components of the orientation vector p̂, radius denotes the
radius σ/2 of each particle, and mass their mass m. Note that z is zero for all particles
because the simulation is done in two spatial dimensions. An exemplary dataset is available
at https://github.com/amepproject/amep/tree/main/examples. AMEP reads all data
from each text file and converts it into the h5amep format. Each item from the ATOMS
section in the LAMMPS text file can then be accessed with the .data() method of the
corresponding BaseFrame object, e.g., the force in x direction of frame 5 can be returned
as NumPy array by calling

1 import amep
2 t r a j = amep . load . t r a j (
3 " / path / to / data " ,
4 mode = " lammps "
5 )
6 f x = t r a j [5 ] . data ( " f x " )

For many standard quantities such as coordinates, forces, or velocities, AMEP provides
further commands exemplarily shown below:c
cSee online documentation at https://amepproject.de for further details.
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Fig. 3.4 Plotting snapshots with amep.plot.particles. a–c Snapshots of ABPs undergoing
MIPS starting from a uniform distribution for three different times as given in the key. The
particles are colored with respect to their local area fraction φloc as obtained from a Voronoi
tesselation calculated using amep.order.voronoi_density (see Subsec. 3.4.3 for further
details). The insets show the indicated extract of the simulation box and have been plotted using
amep.plot.add_inset. Parameters: m/(γtτp) = 5 × 10−5, I/(γrτp) = 0.33, N = 1.28 × 106,
φ = 0.5, Pe = 70.7.

7 coords = t r a j [5 ] . coords ()
8 f o r c e s = t r a j [5 ] . f o r c e s ()
9 mu = t r a j [5 ] . data ( "mux" , "muy" )

3.4.2 Motility-induced phase separation

For large enough packing fraction φ and large enough Péclet number Pe, ABPs can
phase separate into a dense and a dilute phase. This phenomenon is well-known as
motility-induced phase separation (MIPS; cf. Sec. 2.3)72,83,103,110,259,374,398–401,465 and
can be understood as follows: If two ABPs collide, they can block each other due to their
effective self-propulsion force. The collision can be resolved if the ABPs reorient their
self-propulsion direction due to rotational diffusion and the self-propulsion direction of
one ABP deviates from the other (cf. Fig. 2.11). Small clusters can form if more ABPs
collide with the two ABPs blocking each other. Roughly, if now the mean time τc between
collisions is smaller than the mean time τp a particle randomly reorients its self-propulsion
direction, small clusters tend to grow, which finally results in a phase separation where an
active gas coexists with a dense liquid.83,86,99,204 This process is exemplarily visualized
by the snapshots shown in Fig. 3.4, which have been created using the amep.plot.particles
function. In the following, we will mainly focus on the analysis of the simulation visualized
in Fig. 3.4.

3.4.3 Voronoi diagrams and local order

Whether a simulation undergoes MIPS can be quantified by calculating the distribution
of the local density or local area fraction, which is unimodal in the uniform regime
and becomes bimodal in the MIPS regime.71,72,152,398 AMEP provides multiple functions
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Fig. 3.5 Analyzing local order with the amep.order and amep.evaluate modules.
a Same extract of the simulation box as shown in the inset of Fig. 3.4c now with the
corresponding Voronoi diagram obtained from amep.order.voronoi and plotted with
amep.plot.voronoi. The black circles denote the particle positions, the orange lines the border
of each Voronoi cell. b Distribution of the number of next neighbors obtained from the Voronoi di-
agram using amep.order.next_neighbors and amep.statistics.distribution. c
Distribution of the local area fraction obtained from the areas of the Voronoi cells using
amep.evaluate.LDdist. The results in panels b and c are averaged over five independent
ensembles as exemplary demonstrated in the code examples in Subsec. 3.4.3. Parameters are the
same as in Fig. 3.4.

to calculate the local density or area fraction: amep.order.local_number_density, amep.
order.local_mass_density, and amep.order.local_packing_fraction determine the local number
density, mass density, and area/volume fraction, respectively, from averages over circles
of radius R, which can be written as

φloc(ri) =
N∑︂

j=1

σ2jH(R− |ri − rj |)
4R2

(3.4)

in case of the local area fraction. Here, H is the Heaviside step function and σj is the
diameter of particle j. Alternatively, amep.order.voronoi_density calculates the local mass
density, number density, or area/volume fraction based on a Voronoi tesselation. Here,
we will use the latter for calculating the distribution of (i) the local area fraction and (ii)
the number of next neighbors.
The Voronoi diagram serves as a method for modeling the structures of materials

across various disciplines, including crystallography, ecology, astronomy, epidemiology,
geophysics, computer graphics, and more.466–470 In essence, when given a set of points
in the plane, the Voronoi diagram divides the plane based on the nearest neighbor rule,
associating each point with the region of the plane closest to it. The mathematical
definition extends to N -dimensions, often referred to as Voronoi tessellation.471,472 For
a set of finite points P = {p1, p2, · · · , pn} in a subspace Λ in the Euclidean space, the
Voronoi cell is formed through the division of the plane into regions, where each region
encompasses all points that are closer to each pi. Points equidistant from at least two
points in set P are not part of the Voronoi cell. Instead, they constitute the Voronoi edges.
The compilation of all Voronoi cells forms the Voronoi tessellation associated with Λ.
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The Voronoi tesselation is included in the order module of AMEP as function amep.order
.voronoi. It calculates the Voronoi diagram for a given set of particle coordinates using the
scipy . spatial .Voronoi class of the SciPy package.377 Here, we use the Voronoi tesselation
to calculate the number of next neighbors and the local area fraction. Let us first calculate
the Voronoi diagram of the last frame ( traj [−1]) via

1 import amep
2 # load the s imu la t i on data
3 t r a j = amep . load . t r a j (
4 " / path / to / data " ,
5 mode = " lammps "
6 )
7 # c a l c u l a t e the Voronoi diagram
8 vor , i d s = amep . order . voronoi (
9 t r a j [−1 ] . coords () ,
10 t r a j [−1 ] . box ,
11 pbc = True
12 )

The obtained Voronoi diagram is demonstrated in Fig. 3.5a for the simulation snapshot
shown in Fig. 3.4c. It can be easily visualized using amep.plot.voronoi. Next, we calculate
the number of next neighbors from the Voronoi diagram and its distribution via

13 # number o f nex t ne i ghbor s f o r each p a r t i c l e
14 nnn , _ , _ , _ , _ = amep . order . next_neighbors (
15 t r a j [−1 ] . coords () ,
16 t r a j [−1 ] . box ,
17 vor = vor ,
18 i d s = ids ,
19 pbc = True
20 )
21 # d i s t r i b u t i o n o f the number o f nex t ne i ghbor s
22 nndist , b ins = amep . s t a t i s t i c s . d i s t r i b u t i o n (
23 nnn
24 )

As we can see in Fig. 3.5b, the distribution of the number of next neighbors attains its
highest point atNnn = 6. This observation indicates the existence of a hexagonal structure
within the dense phase, as we will discuss in more detail below. Finally, we calculate the
local area fraction using the Voronoi areas and evaluate its distribution:

25 # l o c a l area f r a c t i o n o f each p a r t i c l e
26 ld = amep . order . vorono i_dens i ty (
27 t r a j [−1 ] . coords () ,
28 t r a j [−1 ] . box ,
29 rad ius = t r a j [−1 ] . rad ius () ,
30 mode = " pack ing " ,
31 vor = vor ,
32 i d s = id s
33 )
34 # d i s t r i b u t i o n o f the l o c a l area f r a c t i o n
35 l dd i s t , b ins = amep . s t a t i s t i c s . d i s t r i b u t i o n ( ld )
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If one would like to calculate the distribution of the local area fraction averaged over
several frames of a trajectory, i.e., using a time average, one can simply create an amep.
evaluate.LDdist object which is directly performing the time average and allows us to store
the results in an HDF5 file. Additionally, multiple results can be stored in the same HDF5
file using AMEP’s database feature: As an example, we calculate the distribution of the
local area fraction for five independent simulation runs (ensembles) stored in directories
/path/to/data/do00–/path/to/data/do04 and store them together in one HDF5
file ld.h5:

1 import amep
2 # load a l l t r a j e c t o r i e s
3 t r j s = [
4 amep . load . t r a j (
5 f " / path / to / data /do{ i :02} " ,
6 mode = " lammps "
7 ) for i in range (5)
8 ]
9 for i , t r a j in enumerate ( t r j s ) :
10 # d i s t r i b u t i o n o f the l o c a l area f r a c t i o n
11 ld = amep . eva lua te . LDdis t (
12 t r a j ,
13 nav = t r a j . nframes ,
14 use_voronoi = True ,
15 mode = " pack ing "
16 )
17 # s e t name under which the data
18 # i s s t o r e d in the HDF5 f i l e
19 ld . name = f " do{ i :02} "
20
21 # save a l l in f i l e l d . h5
22 ld . save ( " l d . h5 " , database = True )

Now, we can calculate the ensemble average:

23 # load the a na l y s i s r e s u l t s
24 l d s = amep . load . eva lua t ion (
25 " l d . h5 " , database = True
26 )
27 # ensemble average
28 ensavg = 0 . 0
29 for i in range (5) :
30 ensavg += lds [ f " do{ i :02} " ] . avg/5

The ensemble-averaged result is shown in Fig. 3.5c. As expected, the distribution of the
local area fraction shows two peaks indicating that the system is phase-separated into a
dense and a dilute phase. Note that the high-density peak is located at φloc > 1.0 due to
the softness of the particles.
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Fig. 3.6 Analyzing the hexagonal order using the amep.order, amep.spatialcor, and
amep.evaluate modules. a–c Extracts from the simulation box of an ABP system at high area
fractionφ = 0.8 for Pe = 2, 25, 48, respectively. The particles are colored with respect to their hexag-
onal order parameter as defined in Eq. (3.5) and calculated with amep.order.psi_k. Here,
the simulations started from a hexagonal crystal as initial condition. d Spatial correlation function
g6(r) as defined in Eq. (3.6) for the three snapshots shown in panels a–c averaged over three
independent ensembles and over time in the steady state using amep.evaluate.HexOrderCor.
The black dashed line shows an algebraic decay of the form r−ν with exponent ν = 0.11 as a
guide for the eye. e Snapshot of one cluster of the simulation shown in Fig. 3.4c with Pe = 70.7
and φ = 0.5. Again, the particles are colored with respect to their hexagonal order parameter.
f Distribution of the hexagonal order parameter corresponding to the snapshot shown in panel
e calculated with amep.evaluate.Psi6dist and averaged over five independent ensembles.
Parameters: I/(γrτp) = 5× 10−6, N = 100 000, φ = 0.8, and ϵ/(kBTb) = 10 (a–d), and (e–f) as in
Fig. 3.4.

3.4.4 Hexagonal order

In the last paragraph, we saw that on average, each particle has six next neighbors,
indicating that a hexagonal order dominates the local order of the particles. To quantify
the local order in more detail, we calculate the hexagonal order parameter

ψ6(ri) =
1

6

6∑︂

j=1

exp {i6ϕij} (3.5)

of each particle, where the sum goes over the six nearest neighbors of particle i and ϕij
is the angle between the connection line from ri to rj and the x-axis.72,473,474 In two
spatial dimensions, the particles within the dense phase typically show local hexagonal
order while they are disordered in the dilute phase. Therefore, the distribution of ψ6 can
also be used to assess whether a system is phase separated similarly to the local area
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fraction.72,447,474,475 Calculating the distribution of the hexagonal order parameter can
be easily done using AMEP’s evaluate module:

1 import amep
2 # load the s imu la t i on data
3 t r a j = amep . load . t r a j (
4 " / path / to / data " ,
5 mode = " lammps "
6 )
7 # ps i6 d i s t r i b u t i o n ( f o r a l l f rames )
8 p6 d i s t = amep . eva lua te . P s i 6 d i s t (
9 t r a j ,
10 nav = t r a j . nframes
11 )
12 # save r e s u l t s in HDF5 f i l e
13 p6 d i s t . save ( " p6d i s t . h5 " )
14
15 # p l o t the r e s u l t o f the l a s t frame
16 f i g , ax = amep . p l o t . new()
17 ax . p l o t (
18 p6 d i s t . p s i 6 ,
19 p6 d i s t . frames[−1 ,0]
20 )
21 f i g . s a v e f i g ( " p6d i s t . png " )

The result is demonstrated in Fig. 3.6f, where we have averaged over five independent
ensembles. The broad peak at small values corresponds to the dilute phase while the
sharp peak at |ψ6| = 1 corresponds to the hexagonally packed dense phase as shown in
Fig. 3.6e. It is also common to analyze the spatial range of the hexagonal order to check
whether there exists a short-range or (quasi) long-range hexagonal order like in a crystal.
To this end, one can calculate the spatial correlation function of the hexagonal order
parameter

g6(r) =
⟨ψ∗

6(ri)ψ6(rj)⟩
⟨|ψ6(ri)|2⟩

(3.6)

with r = |ri − rj |.72,474 Here, we calculate g6(r) for ABP simulations with ϵ/(kBTb) = 10,
N = 100 000 particles, and at φ = 0.8 starting from a hexagonal lattice instead of a
uniform distribution (Fig. 3.6a–c) and average over multiple frames in the steady state:

1 import amep
2 # load s imu la t i on data
3 t r a j = amep . load . t r a j (
4 " / path / to / data " ,
5 mode = " lammps "
6 )
7 # c a l c u l a t e g6
8 g6 = amep . eva lua te . HexOrderCor (
9 t r a j ,
10 nav = t r a j . nframes ,
11 njobs = 16 ,
12 rmax = 100 . 0 ,
13 sk ip = 0 . 5
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14 )
15 # save r e s u l t s in an HDF5 f i l e
16 g6 . save (
17 " g6 . h5 "
18 )
19 # p l o t average
20 f i g , ax = amep . p l o t . new()
21 ax . p l o t (
22 g6 . r ,
23 g6 . avg
24 )
25 f i g . s a v e f i g ( " g6 . png " )

Since this calculation is computationally expensive, we speed it up using parallelization
by specifying the number of jobs that should run in parallel with the njobs keyword.
Additionally, we give a maximum distance up to which the correlation function should
be calculated, and we skip the first 50% of the trajectory to ensure that only the second
half of the trajectory, which is in the steady state, is used for the calculation. The result
is shown in Fig. 3.6d together with the corresponding snapshots in Fig. 3.6a–c for three
different Pe. In accordance to Ref. [72], we observe a constant g6 at small Pe and an
algebraic decay of the form r−ν with exponent ν at higher Pe.

3.4.5 Structure factor and coarsening

To further probe the order of an active system, one can exploit the radial distribution
function g(r), which we have exemplarily calculated in Sec. 3.2 using amep.evaluate.RDF.
From an experimental viewpoint, it is easier to obtain the structure factor S(q, t), which
is defined as303

S(q, t) =
1

N

⟨︄
N∑︂

i=1

N∑︂

j=1

exp {iq · [ri(t)− rj(t)]}
⟩︄
. (3.7)

Here, q represents the wave vector, ri(t) and rj(t) denote the positions of particles
i and j at time t, respectively, and N is the total number of particles. For isotropic
systems, the structure factor only depends on the magnitude q = |q| of the wave vector.
It gives information about the density response to an external perturbation of wave
length 2π/q and can be probed experimentally via scattering experiments. Note that
S(q, t) is directly related to g(r, t) via Fourier transform. However, in practice, it is often
preferable to calculate S(q, t) directly to achieve good numerical results in the low q
regime. Within AMEP, S(q, t) can be directly calculated with amep.evaluate.SF2d and the
isotropic structure factor S(q, t) with q = |q| (i.e., S(q, t) averaged over the direction of
q) with amep.evaluate.SFiso. Here, we use S(q, t) to analyze the coarsening process of the
clusters forming when the ABPs undergo MIPS. To this end, we deduce a characteristic
length scale L(t) based on the first moment of S(q, t) given by292,293,299,476,477

L(t) =

∫︁ qcut
2π/L S(q, t)dq∫︁ qcut
2π/L qS(q, t)dq

, (3.8)

49



0 10 20

qσ

0

5

10

15

20

25

30

S
(q

)
a

10−1 100 101

qσ

101

104

S
(q

)
t/τp

0.1
4.2
800

100 101 102 103

t/τp

101

102

103

L
/
σ

b
∼ t1/3

data
fit

Fig. 3.7 Structure factor from amep.evaluate.SFiso and corresponding domain length
from amep.utils.domain_length. a Isotropic structure factor obtained from the three simu-
lation snapshots shown in Fig. 3.4 using amep.evaluate.SFiso. The data is smoothed using
a running average over seven points with the amep.utils.runningmean function. The inset
shows the same data but with logarithmic axes. b Length scale L(t) over time derived from the first
moment of the structure factor as defined in Eq. (3.8) using the amep.utils.domain_length
function. The data has been averaged over five independent ensembles and the black dashed
line is a power-law fit of the form L(t) = L0t

α done with amep.functions.Fit resulting in an
exponent α = 0.324± 0.001.

where L is the length of the simulation box. We set the upper limit qcutσ = 0.3, i.e., we only
consider length scales larger than 2π/qcut ≈ 21σ. Notably, under suitable conditions, over-
damped ABPs undergoing MIPS exhibit an effective mapping onto a suitable equilibrium
system at coarse-grained scales, as established in the literature.374 This mapping explains
why the coarsening dynamics follows the universal law L(t) ∼ t1/3 – a characteristic
scaling behavior observed in equilibrium systems.
To visually elucidate this process, we present instances of S(q, t) at distinct times

t/τp = 0.1, 4.2, 800.0 (Fig. 3.7a) corresponding to the snapshots shown in Fig. 3.4. These
results can be obtained using the following code example:

1 import amep
2 import numpy as np
3 # load s imu la t i on data
4 t r a j = amep . load . t r a j (
5 " / path / to / data " ,
6 mode = " lammps "
7 )
8 # c a l c u l a t e S(q)
9 s f = amep . eva lua te . SFiso (
10 t r a j ,
11 nav = t r a j . nframes
12 )
13 # p l o t S(q) o f the l a s t frame
14 f i g , axs = amep . p l o t . new()
15 axs . p l o t ( s f . q , s f . frames[−1][0 ])
16 f i g . s a v e f i g ( " s f . pd f " )
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We can now subsequently compute L(t) by using the amep.utils.domain_length function
and fit a power-law of the form L(t) = L0t

α to it using amep.functions.Fit:
17 # c a l c u l a t e domain l eng th
18 L = np . zeros ( len ( s f . frames ) )
19 for i , frame in enumerate ( s f . frames ) :
20 l ength = amep . u t i l s . domain_length (
21 frame [0 ] , s f . q , qmax = 0 . 3
22 )
23 L[ i ] = length
24
25 # f i t growth exponent
26 def f (x , L0 = 1 , alpha = 1) :
27 return L0*x** alpha
28 f i t = amep . func t i on s . F i t ( f )
29 mask = s f . t imes > 10
30 f i t . f i t ( s f . t imes [mask ] , L[mask ])
31
32 # p l o t data and f i t
33 f i g , axs = amep . p lo t . new()
34 axs . p l o t ( s f . t imes , L , l a b e l = " data " )
35 axs . p l o t (
36 s f . t imes [mask ] ,
37 f i t . generate ( s f . t imes [mask ]) ,
38 marker = " " , l s = "−−" ,
39 l a b e l = " f i t "
40 )
41 axs . legend ()
42 f i g . s a v e f i g ( " domain−l e ng th . pd f " )

The result is illustrated in Fig. 3.7b and we obtain a growth exponent of α = 0.324±0.001
in accordance with the literature.103,291,293

3.4.6 Cluster analysis

Finally, we analyze the clustering of ABPs when undergoing MIPS by using AMEP’s cluster
module. For particle-based simulation data, we define a cluster as a collection of particles
in which each particle has an interparticle distance smaller than rmax to some other particle,
where the cut-off distance rmax can be chosen by the user. Particle i and j with position
coordinates ri and rj , respectively, belong to the same cluster if |ri − rj | ≤ rmax. To find
the distance between different particle pairs and identify the neighboring particle pairs
that satisfy this distance criterion, we use the KDTree algorithm (scipy . spatial .KDTree)
from the SciPy library.377,478 In the following, we will first show how to identify clusters
using AMEP and afterward analyze the coarsening of the clusters as well as their radius
of gyration and fractal dimension.
Let us consider the last frame of a simulation showing MIPS (Fig. 3.4c). The clusters

can be identified using the amep.cluster. identify function:
1 import amep
2 import numpy as np
3 # load s imu la t i on data
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4 t r a j = amep . load . t r a j (
5 " / path / to / data " ,
6 mode = " lammps "
7 )
8 # ge t the l a s t frame
9 frame = t r a j [−1]
10
11 # c l u s t e r d e t e c t i o n
12 c l u s t e r s , idx = amep . c l u s t e r . i d e n t i f y (
13 frame . coords () ,
14 frame . box ,
15 pbc = True ,
16 rmax = 1 . 122
17 )

It takes the coordinates of all particles (frame.coords()) and the boundaries of the sim-
ulation box (frame.box) as an input and returns a list ( clusters ) of all clusters, sorted
in descending order of their size, with each list element containing the indices of the
particles belonging to the respective cluster. It also returns the array idx which stores the
cluster indices assigned to each particle. The optional argument pbc is used to consider
periodic boundary conditions and the cut-off distance rmax is set to the cut-off distance
of the WCA potential (i.e., the contact distance). The algorithm works not only with
simulation data of particles of the same size but can also identify clusters comprising
particles of different sizes, which requires different values of the cut-off distance rmax
depending on the pair of particles. In the latter case, the user can provide the sizes of
the particles (diameter) through the additional keyword sizes in amep.cluster. identify . In
Fig. 3.8a, we show the same snapshot as in Fig. 3.4c, but with the particles of the eight
largest clusters colored according to their cluster ids.
Based on the identified clusters, one can calculate various properties of the different

clusters using the cluster module. One of them is the cluster size, defined as the number of
particles within a cluster, the distribution of which often provides an insight into coexisting
phases in a system.50,53,117,118,479–482 We can calculate the cluster sizes and masses by
using the amep.cluster.sizes and amep.cluster.masses functions:

18 s i z e s = amep . c l u s t e r . s i z e s (
19 c l u s t e r s
20 )
21 masses = amep . c l u s t e r . masses (
22 c l u s t e r s , frame . data ( " mass " )
23 )

Based on sizes , we can now calculate the cluster size distribution p(s) = Ns/ (
∑︁

sNs),
where Ns is the number of clusters with size s. Since we are interested in the coarsening
behavior of the large clusters, but their number is relatively small, it has been proven to
be beneficial to analyze the weighted cluster size distribution

pw(s) =
sNs∑︁
s sNs

, (3.9)
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where each cluster is weighted with its size s.483,484 Here, we use the amep. statistics .
distribution function with logarithmic bins:

24 # weighted c l u s t e r s i z e d i s t r i b u t i o n
25 h i s t , b ins = amep . s t a t i s t i c s . d i s t r i b u t i o n (
26 s i z e s , l ogb in s = True ,
27 nbins = 50 , dens i t y = Fa l se
28 )
29 h i s t = h i s t * b ins /np . sum( h i s t * b ins )
30
31 # p l o t r e s u l t
32 f i g , axs = amep . p lo t . new()
33 axs . bar (
34 bins , h i s t , width = 0 . 2* b ins
35 )
36 axs . l og log ()
37 f i g . s a v e f i g ( " s i z e−d i s t . pd f " )

The result is shown in Fig. 3.8b and exhibits two distinct peaks at small and large cluster
sizes suggesting that the system is phase separated into two distinct phases. Large clusters
characterize the dense liquid-like phase whereas the dilute gas-like phase comprises
smaller clusters.53,483,484
The cluster sizes can also be used to study the average growth rate of the clusters,

which is a commonly used measure of the coarsening kinetics of phases in soft matter
and biophysics.110,146,291,293 Here, we use amep.evaluate.ClusterGrowth to calculate the
weighted mean cluster size ⟨s⟩w and the mean cluster size ⟨s⟩ defined as

⟨s⟩w =
∑︂

s

spw(s) =
∑︁

s s
2Ns∑︁

s sNs
(3.10)

⟨s⟩ =
∑︂

s

sp(s) =

∑︁
s sNs∑︁
sNs

(3.11)

over time (Fig. 3.8c). Similar to the domain length L(t) obtained from the structure
factor above, we will deduce a growth exponent from the growing mean cluster sizes.
Note that for L(t), we only considered qσ < qmaxσ = 0.3, i.e., length scales larger
than lmin = 2π/qmax ≈ 21σ, which resulted in a growth exponent of α ≈ 1/3 (where
L(t) ∝ tα). Since the cluster size measures the number of particles within a cluster, which
is proportional to the area of the cluster, we can define a cluster length as l/σ =

√︁
⟨s⟩ that

is expected to also scale as l ∝ t1/3. However, this holds true only if we either disregard
very small clusters that do not grow over time or assign greater importance to larger
clusters by calculating the weighted mean cluster size. Therefore, additionally to the
weighted mean cluster size, we also compute the mean cluster size considering all the
clusters (i.e., having at least two particles) and only the large clusters with at least 400
particles (in accordance to lmin ≈ 21σ used for the calculation of L(t)).

38 # mean c l u s t e r s i z e (>2)
39 mean_2 = amep . eva lua te . ClusterGrowth (
40 t r a j ,
41 mode = "mean " ,
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Fig. 3.8 Cluster analysis for particle-based simulation data with the amep.cluster and the
amep.evaluate modules. a Same snapshot as in Fig. 3.4c showing the eight largest clusters
identified with the amep.cluster.identify function and colored with respect to their cluster
index. The centers of mass of the clusters calculated with amep.cluster.center_of_mass
are marked with black crosses. The black solid and dashed circles have radii equal
to the radius of gyration and half the linear extension of the largest cluster (yellow)
as obtained from Eqs. (3.12) and (3.13) using amep.cluster.radius_of_gyration
and amep.cluster.linear_extension, respectively. b Weighted cluster size distribu-
tion as defined in Eq. (3.9) corresponding to the snapshot in panel a as obtained from
amep.evaluate.ClusterSizeDist averaged over five independent ensembles. c Cluster
length l/σ =

√︁
⟨s⟩ calculated from the weighted mean cluster size ⟨s⟩w (Eq. (3.10)) and mean

cluster sizes ⟨s⟩>400 and ⟨s⟩>2 (Eq. (3.11)) averaged over all clusters larger than 400 and 2
particles, respectively, calculated using amep.evaluate.ClusterGrowth as function of time.
The data has been averaged over five independent ensembles. The dashed, dotted, and dash-dotted
lines are fits to l(t) = l(0)tβ done with amep.functions.Fit. d Radius of gyration Rg and
linear extension le as function of the cluster size s for the simulation shown in panel a. A fit to
Rg(s) ∝ s1/df results in a fractal dimension of df = 1.99± 0.03.
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42 min_size = 2
43 )
44 # mean c l u s t e r s i z e (>400)
45 mean_400 = amep . eva lua te . ClusterGrowth (
46 t r a j ,
47 mode = "mean " ,
48 min_size = 400
49 )
50 # weighted mean c l u s t e r s i z e
51 weighted_mean = amep . eva lua te . ClusterGrowth (
52 t r a j ,
53 mode = " we ighted mean "
54 )

We now use amep.functions.Fit to obtain the growth exponent from l(t) ∝ tβ (here, exem-
plarily done for the weighted mean in the logarithmic domain):

55 # de f i n e f i t f un c t i o n
56 def f ( l , beta = 1 . 0 , l 0 = 1 . 0) :
57 return np . log ( l 0) + beta * l
58
59 # c r e a t e f i t o b j e c t
60 f i t = amep . func t i on s . F i t ( f )
61
62 # f i t f un c t i o n to data at l a r g e t imes
63 # in l o ga r i t hm i c domain
64 mask = weighted_mean . t imes > 3e1
65 f i t . f i t (
66 np . log (weighted_mean . t imes [mask ]) ,
67 np . log (weighted_mean . frames [mask ]) /2
68 )
69 p r i n t ( f i t . r e s u l t s )
70
71 # p l o t data and f i t
72 f i g , axs = amep . p lo t . new()
73 axs . p l o t (
74 weighted_mean . times ,
75 np . s q r t (weighted_mean . frames )
76 )
77 axs . p l o t (
78 weighted_mean . t imes [mask ] ,
79 np . exp ( f i t . generate (
80 np . log (weighted_mean . t imes [mask ])
81 ) )
82 )
83 axs . l og log ()
84 f i g . s a v e f i g ( " c l u s t e r−growth . pdf " )

{’beta’: (0.297, 0.004), ’l0’: (64.6, 1.1)}

The results are demonstrated in Fig. 3.8c. Consistent with the established ∝ t1/3 growth
of the characteristic domain length L(t) of such ABP clusters,293 we obtain an exponent
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β ≈ 1/3 for the cluster length calculated from the weighted mean and the mean over all
clusters that are larger than 400 particles (Fig. 3.8c). For the mean over all clusters larger
than two particles, the growth rate is significantly smaller because very small clusters do
not grow.
To demonstrate the versatility of the cluster module, we present two additional cal-

culable quantities using AMEP: the radius of gyration Rg and the linear extension le of
the clusters. For a cluster composed of s particles of masses mi, i = 1, 2, . . . , s, located
at fixed distances di from the cluster’s center of mass, the radius of gyration is defined
as479,485

Rg =

√︄∑︁s
i=1mid2i∑︁s
i=1mi

. (3.12)

The linear extension (also known as the end-to-end length) of a cluster is defined as the
maximal distance between two particles in the cluster, i.e,

le = max
{i,j}

|ri − rj | , (3.13)

with ri denoting the position vector of the i-th particle and i, j = 1, 2, . . . , s.479,486 The
mean linear extension along with the mean size of the largest cluster is commonly used
as an order parameter to characterize isotropic percolation phase transitions in different
systems.479,486,487 On the other hand, the dependence of the radius of gyration on the
cluster size s (or mass) allows us to understand the (possibly fractal)488 geometry of
the clusters and calculate their fractal dimension df according to the relation Rg ∝
s1/df .479,488–495 With AMEP, we can calculate such cluster properties easily by using its
cluster module (here exemplarily done for the largest cluster):

85 # id s o f p a r t i c l e s in l a r g e s t c l u s t e r
86 i d s = c l u s t e r s [0]
87
88 # c en t e r o f mass
89 com = amep . c l u s t e r . center_of_mass (
90 frame . coords () [ i d s ] ,
91 frame . box ,
92 frame . data ( " mass " ) [ i d s ] ,
93 pbc = True
94 )
95 # geome t r i c c e n t e r
96 gmc = amep . c l u s t e r . geometr i c_center (
97 frame . coords () [ i d s ] ,
98 frame . box ,
99 pbc = True
100 )
101 # rad iu s o f g y ra t i on
102 rg = amep . c l u s t e r . r ad iu s_o f _gy ra t i on (
103 frame . coords () [ i d s ] ,
104 frame . box ,
105 frame . data ( " mass " ) [ i d s ] ,
106 pbc = True
107 )
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108 # l i n e a r e x t e n s i on
109 l e = amep . c l u s t e r . l i n ea r _ex t en s i on (
110 frame . coords () [ i d s ] ,
111 frame . box ,
112 frame . data ( " mass " ) [ i d s ] ,
113 pbc = True
114 )

To handle periodic boundary conditions, AMEP uses the method proposed in Ref. [496].
The radius of gyration and the linear extension of the largest cluster are visualized in
Fig. 3.8a. Additionally, we plotted Rg and le as function of the cluster size s in Fig. 3.8d to
obtain the fractal dimension using amep.functions.Fit to fit the function Rg(s) ∝ s1/df . We
obtain df = 1.99± 0.03, i.e, essentially the same as the spatial dimension of the system,
which is expected here since the clusters are compact.

3.5 Analyzing continuum simulation data with AMEP

Let us now discuss some examples on how to analyze continuum simulation data with
AMEP. To this end, we will use numerical solutions of the active model B+ (AMB+),
which is a corresponding continuum model for active Brownian particles.

3.5.1 Numerical solutions of the active model B+

Here, we use the AMB+ as introduced in Subsec. 2.2.2 as Eqs. (2.15) and (2.16). It
describes a system of active Brownian particles featuring a generic self-propulsion mecha-
nism and models the time evolution of the scalar field ϕ. Here, we set the free parameters
of the model to a = −0.25, b = 0.25, K = 1.0, ζ = 1.0, λ = −0.5, kBT = 0.2, and
M = 1.0 corresponding to a parameter regime showing phase separation.300 We start
from a uniform initial condition with ϕ0 = −0.4 disturbed with weak fluctuations. To
solve Eq. (2.15) numerically, we used an in-house finite-volume solver written in C++
using a grid of 256 × 256 grid points with a grid spacing of ∆x = ∆y = 1.0 and time
step ∆t = 0.001. All simulations run for 108 time steps. To load the resulting data
with AMEP, the data has to be stored in a certain data format as discussed in Sub-
sec. 3.5.5 and as exemplified in the exemplary dataset which can be downloaded from
https://github.com/amepproject/amep/tree/main/examples.

3.5.2 Motility-induced phase separation

Similar to the particle-based simulations of ABPs, the AMB+ also undergoes MIPS in
a certain parameter regime.300 Whether the system is phase separated can again be
determined by evaluating the local density distribution. In case of continuum data, one
can simply calculate the distribution of the density at each grid point, as done by the
amep.evaluate.LDdist class:

1 import amep
2 # load the data
3 t r a j = amep . load . t r a j (
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Fig. 3.9 Plotting snapshots with amep.plot.field and density distributions using
amep.evaluate.LDdist. a–c Snapshots of numerical solutions of the active model B+ as
given in Eqs. (2.15) and (2.16) plotted with amep.plot.field at three different times given in
the key. d–f Corresponding density distributions calculated with amep.evaluate.LDdist.

4 " / path / to / data " ,
5 mode = " f i e l d "
6 )
7 # l o c a l d e n s i t y d i s t r i b u t i o n o f each frame
8 l d d i s t = amep . eva lua te . LDdis t (
9 t r a j ,
10 nav = t r a j . nframes ,
11 xmin = −1 . 5 ,
12 xmax = 1 . 5 ,
13 f t ype = " phi "
14 )
15 # save r e s u l t s in HDF5 f i l e
16 l d d i s t . save ( " l d d i s t . h5 " )
17
18 # p l o t f o r the l a s t frame
19 f i g , axs = amep . p l o t . new()
20 axs . p l o t ( l d d i s t . ld , l d d i s t . frames[−1 ,0 ])
21 axs . s e t _ x l a b e l ( r " $\ phi$ " )
22 axs . s e t _ y l a b e l ( r " $p (\ phi )$ " )
23 f i g . s a v e f i g ( " l d d i s t . pd f " )

The results are demonstrated in Fig. 3.9 at different times together with the corresponding
snapshots. While the distribution is unimodal at the beginning of the simulations (which
start with a uniform distribution), it becomes bimodal at long times showing that the
system phase separates into a dense and a dilute phase by forming dense clusters that
coexist with a surrounding gas-like phase.
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3.5.3 Coarsening processes

Let us now analyze the coarsening behavior of the clusters based on the isotropic structure
factor. For a continuum field, the (two-dimensional) structure factor can directly be
calculated from the numerical Fourier transform of the scalar field ϕ as299,303,497

S(q, t) = ⟨ϕ(q, t)ϕ(−q, t)⟩ =
⟨︁
|ϕ(q, t)|2

⟩︁ (3.14)

using the amep.continuum.sf2d function. Here, ϕ(q, t) is the spatial Fourier transform of
ϕ(r, t). To obtain the isotropic structure factor, the resulting two-dimensional structure
factor must be averaged over the direction of q, i.e., (using polar coordinates)

S(q, t) =
1

2π

∫︂ 2π

0
dφS((q cos(φ), q sin(φ)), t) (3.15)

which can be done in AMEP with the amep.utils.sq_from_sf2d function:
1 import amep
2 import numpy as np
3 # load data
4 t r a j = amep . load . t r a j (
5 " / path / to / data " ,
6 mode = " f i e l d "
7 )
8 # ge t l a s t frame
9 frame = t r a j [−1]
10
11 # 2d s t r u c t u r e f a c t o r
12 s f 2d , qx , qy = amep . continuum . s f 2d(
13 frame . data ( " phi " ) ,
14 * frame . g r id
15 )
16 # i s o t r o p i c s t r u c t u r e f a c t o r
17 s f i s o , q = amep . u t i l s . sq_from_sf2d(
18 s f 2d , qx , qy
19 )

AMEP’s evaluate module allows to calculate the isotropic structure factor directly from the
traj object and also performs a time average:

20 # i s o t r o p i c s t r u c t u r e f a c t o r
21 # fo r a l l f rames ( t ime average )
22 s f = amep . eva lua te . SFiso (
23 t r a j ,
24 nav = t r a j . nframes ,
25 f t ype = " phi "
26 )

Here, we can specify which field of the given trajectory should be used via ftype. From the
structure factor, we can then again calculate the domain length as defined in Eq. (3.8) via

27 # domain l eng th over t ime
28 L = np . zeros ( t r a j . nframes )
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29 for i , f in enumerate ( s f . frames ) :
30 L[ i ] = amep . u t i l s . domain_length (
31 f [0 ] , f [1]
32 )

Note that we do not specify qmax here because we integrate over all q up to its largest
possible value qmax = π/∆x given by the grid spacing ∆x. The results are demonstrated
in Fig. 3.10, which shows three exemplary curves of the structure factor at three different
times and the domain length over time. From the domain length, we extract the growth
exponent by fitting a power law to the domain length at long times in the logarithmic
domain:

33 # de f i n e f i t f un c t i o n
34 def f ( t , L0 = 1 . 0 , alpha = 1 . 0) :
35 return np . log (L0) + alpha* t
36 # c r e a t e f i t o b j e c t
37 f i t = amep . func t i on s . F i t ( f )
38
39 # f i t at l a r g e t imes
40 mask = t r a j . t imes > 1e1
41 f i t . f i t (
42 np . log ( t r a j . t imes [mask ]) ,
43 np . log (L[mask ])
44 )
45 p r i n t ( f i t . r e s u l t s )

{’L0’: (4.168, 0.085), ’alpha’: (0.2702, 0.0029)}

Interestingly, for our continuum simulations of the AMB+, we obtain α ≈ 0.27, which
is smaller than the value α ≈ 1/3 as obtained in our particle-based simulations. Such
subdiffusive scaling has been obtained in previous studies of active field theories as well
and is typically expected to be an intermediate scaling regime that leads to a t1/3 scaling
at longer times.292,293,299

3.5.4 Cluster analysis

Next, we will analyze the clusters forming at late times in more detail by performing
a similar cluster analysis as done in Subsec. 3.4.6. For the continuum data, a cluster
is defined as a connected region of similar and higher density than the surroundings.
AMEP provides two algorithms to detect clusters in continuum data (i.e., discretized
density fields). The standard algorithm is dividing up pixels according to their values
relative to a threshold value, i.e., for a scalar continuum field ϕ, a zero is assigned to all
pixels with ϕ ≤ athres(ϕmax − ϕmin) and a one to all pixels with ϕ > athres(ϕmax − ϕmin).
Here, athres ∈ [0, 1] denotes the relative threshold and ϕmin, ϕmax are the minimum
and maximum values of the continuum field. On the resulting two-valued image, all
connected regions are then labeled as a cluster using skimage.measure.label.379,498,499
Within AMEP, this algorithm is called " threshold ". An alternative way for cluster detection
is the watershed algorithm.500 It is more stable against slowly varying background fields
but needs more fine-tuning of parameters to work. Therefore, the watershed algorithm is
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Fig. 3.10 Structure factor from amep.evaluate.SFiso and corresponding domain length
from amep.utils.domain_length for continuum simulation data. a Isotropic structure
factor obtained from the three simulation snapshots of the AMB+ shown in Fig. 3.9 calculated
with amep.evaluate.SFiso. Note that the upper limit for the wave vector q is given by the
resolution of the discretized grid, i.e., qmax = π/∆x. b Length scale L(t) as obtained from Eq.
(3.8) using the amep.utils.domain_length function. The data has been averaged over five
independent ensembles and the black dashed line is a power-law fit of the form L(t) = L0t

α done
with amep.functions.Fit and resulting in a growth exponent of α = 0.270± 0.003.

not the first choice for detecting clusters over time, i.e., for multiple frames of a trajectory,
because the parameters may need to be adjusted for each frame individually. In AMEP, the
skimage.segmentation.watershed function is used for the "watershed" cluster detection.379
Clusters within a continuum field can be identified with AMEP using the amep.continuum

.identify_clusters function. In the following example, we detect the clusters in the last
frame of a continuum simulation using the " threshold " method:

1 import amep
2 # load data
3 t r a j = amep . load . t r a j (
4 " path / to / data " ,
5 mode = " f i e l d "
6 )
7 # ge t the l a s t frame
8 frame = t r a j [−1]
9
10 # i d e n t i f y c l u s t e r s
11 ids , l a b e l s =\
12 amep . continuum . i d e n t i f y _ c l u s t e r s (
13 frame . data ( " phi " ) ,
14 pbc = True ,
15 th re sho ld = 0 . 1 ,
16 method = " t h r e s h o l d "
17 )

Here, frame.data("phi") returns an array of values of field "phi" at each point of the under-
lying discretized grid, the pbc keyword can be set to True to apply periodic boundary con-
ditions, and threshold specifies the relative threshold athres. The keyword method chooses
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between the " threshold " or "watershed" method. The amep.continuum.identify_clusters func-
tion assigns a unique identifier to each detected cluster returned as NumPy array (ids
in the example above), and it returns an array of the same shape as the underlying
discretized grid denoting which grid point belongs to which cluster ( labels in the example
above). The result is examplarily visualized in Fig. 3.11a.
As a next step, the amep.continuum.cluster_properties function can be used to calculate

certain properties of the detected clusters such as their sizes, masses, centers, or radii of
gyration:

18 s , gmc , com , rg , le , gt , i t =\
19 amep . continuum . c l u s t e r _ p r o p e r t i e s (
20 frame . data ( " phi " ) ,
21 * frame . gr id ,
22 ids ,
23 l abe l s ,
24 pbc = True
25 )

Here, s , gmc, com, rg, le , gt , it denote the size, geometric center, center of mass, radius of
gyration, linear extension, gyration tensor, and inertia tensor of each cluster, respectively.
The size of cluster i within a field ϕ is defined as the integral over its area Ai, i.e.,
si =

∫︁
Ai
d2r ϕ(r). All other cluster properties are calculated with the same methods as

used for the particle-based simulation data by treating each grid point (i, j) as a particle
at position rij with “mass” ϕ(rij). The radius of gyration and the linear extension of the
largest cluster are visualized in Fig. 3.11a.
Similarly to the cluster analysis for particle-based data, we can now calculate the

weighted cluster-size distribution, the growth exponents, and the fractal dimension of the
clusters exploiting AMEP’s evaluate module. Let us first calculate the weighted cluster-size
distribution as defined in Eq. (3.9):

26 # weighted c l u s t e r s i z e d i s t r i b u t i o n
27 cd = amep . eva lua te . C l u s t e r S i z eD i s t (
28 t r a j ,
29 nav = t r a j . nframes ,
30 f t ype = " phi " ,
31 method = " t h r e s h o l d " ,
32 th re sho ld = 0 . 1 ,
33 use_dens i ty = False ,
34 nbins = 50 ,
35 l ogb in s = True ,
36 xmin = 1e0 ,
37 xmax = 1e4
38 )

Here, the keyword use_density allows specifying whether the integrated density si as
defined above (use_density = True) or area Ai (use_density = False) should be used as size
of cluster i. Furthermore, we have used the " threshold " method and logarithmic bins and
the result is shown in Fig. 3.11b. Next, we analyze the cluster growth by calculating
the average cluster size over time using the weighted mean and mean as defined in Eqs.
(3.10) and (3.11), respectively:
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39 # mean c l u s t e r s i z e s
40 mean = amep . eva lua te . ClusterGrowth (
41 t r a j ,
42 f t ype = " phi " ,
43 method = " t h r e s h o l d " ,
44 mode = "mean " ,
45 th re sho ld = 0 . 1 ,
46 use_dens i ty = Fa l se
47 )
48 # mean c l u s t e r s i z e over a l l c l u s t e r s
49 # with s i z e l a r g e r than 20
50 mean_20 = amep . eva lua te . ClusterGrowth (
51 t r a j ,
52 f t ype = " phi " ,
53 method = " t h r e s h o l d " ,
54 mode = "mean " ,
55 th re sho ld = 0 . 1 ,
56 use_dens i ty = False ,
57 min_size = 20
58 )
59 # weighted mean c l u s t e r s i z e
60 weighted_mean = amep . eva lua te . ClusterGrowth (
61 t r a j ,
62 f t ype = " phi " ,
63 method = " t h r e s h o l d " ,
64 mode = " we ighted mean " ,
65 th re sho ld = 0 . 1 ,
66 use_dens i ty = Fa l se
67 )

Again, we define the cluster length as l =
√︁
⟨s⟩ and use amep.functions.Fit to obtain

the growth exponent from l(t) ∝ tβ as already demonstrated in Subsec. 3.4.6. Consis-
tently with the growth exponent α ≈ 0.27 obtained from the domain length L(t) (see
Subsec. 3.5.3), we obtain β ≈ 0.26 (Fig. 3.11c). Additionally, we plotted the radius of
gyration Rg as function of the cluster size s in Fig. 3.11d to obtain the fractal dimension
using amep.functions.Fit to fit the function Rg(s) ∝ s1/df . We obtain df = 1.99± 0.01, i.e,
the same as the spatial dimension of the system, which is expected here since the clusters
are compact.

3.5.5 Continuum data format
Continuum simulation data as analyzed within this thesis has to be stored in a specific
format such that it can be loaded with AMEP. In the following, we briefly introduce the
basic format requirements. In AMEP, field data is internally stored using the h5amep file
format, similar to the particle-based simulation data. Converting field data to an AMEP
dataset is done by use of a reader class (amep.reader.ContinuumReader). This data reader
expects the following format: The standard file structure for field data is inspired by the
LAMMPS dump file format, i.e., all relevant data is stored in one base directory which
contains (i) a file named grid.txt and (ii) multiple files named field_<index>.txt.
The former is of the form
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Fig. 3.11 Cluster analysis for continuum simulation data with the amep.continuum
and the amep.evaluate modules. a Same snapshot as in Fig. 3.9c showing the eight
largest clusters identified with the amep.continuum.identify_clusters function and
colored with respect to their cluster index. The centers of mass of the clusters calculated
with amep.continuum.cluster_properties are marked with white crosses. The white
solid and dashed circles have radii equal to the radius of gyration and half the linear ex-
tension of the largest cluster (yellow) as obtained from Eqs. (3.12) and (3.13), respec-
tively, using amep.continuum.cluster_properties. b Weighted cluster size distribu-
tion as defined in Eq. (3.9) corresponding to the snapshot in panel a as obtained from
amep.evaluate.ClusterSizeDist averaged over five independent ensembles. c Cluster
length l =

√︁
⟨s⟩ obtained from the weighted mean cluster size ⟨s⟩w (Eq. (3.10)) and mean cluster

sizes ⟨s⟩ (Eq. (3.11)) and ⟨s⟩>20 averaged over all clusters and over all clusters larger than an
area of 20∆x∆y, respectively, calculated using amep.evaluate.ClusterGrowth as function
of time. The data has been averaged over five independent ensembles. The dashed, dotted, and
dash-dotted lines are fits to l(t) = l(0)tβ done with amep.functions.Fit. d Radius of gyration
Rg as function of the cluster size s for five independent simulations as exemplarily shown in panel
a. A fit to Rg(s) ∝ s1/df results in a fractal dimension of df = 1.99± 0.01.
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BOX:
<X_min> <X_max>
<Y_min> <Y_max>
<Z_min> <Z_max>
SHAPE:
<nx> <ny> <nz>
COORDINATES: X Y Z
<X_0> <Y_0> <Z_0>
<X_1> <Y_0> <Z_0>
...
<X_N> <Y_0> <Z_0>
<X_0> <Y_1> <Z_0>
<X_1> <Y_1> <Z_0>
...

and contains all information about the simulation box and the underlying discrete grid.
The values in the BOX category define the borders of the simulation box, which is assumed
to be rectangular, the SHAPE category contains the shape of the grid, and COORDINATES
contains the coordinates of all grid points. If the data is based on an evenly spaced
rectangular grid and the grid points are given in rising order, the SHAPE category tells
AMEP in what kind of multidimensional array the data should be cast for representation.
The files named field_<index>.txt contain all data that varies in time. The index
should rise in time and could be chosen as the number of timesteps for example. The
data files should be of the following form:
TIMESTEP:
<Simulation timestep>
TIME:
<Physical time>
DATA: <name 0> <name 1> <name 2> <name 3>
<field 0 0> <field 1 0> <field 2 0> <field 3 0>
<field 0 1> <field 1 1> <field 2 1> <field 3 1>
<field 0 2> <field 1 2> <field 2 2> <field 3 2>
...

Here, the names describe the scalar field written to the column beneath, e.g., density.
The columns are then filled by the values of the respective field at each grid point in the
same order as in grid.txt. The columns can be separated by spaces, tabs, commas,
semicolons, colons, or a vertical bar. The TIMESTEP category contains the number of
timesteps corresponding to the contained data and the TIME category the corresponding
(physical) time. If we have data of this type in the directory /path/to/data, it can be
loaded with AMEP via

1 f i e l d _ t r a j e c t o r y = amep . load . t r a j (
2 " / path / to / data " ,
3 mode = " f i e l d " ,
4 de l im i t e r = " " ,
5 dumps = " f i e l d _ * . t x t " ,
6 re load = True
7 )

The mode keyword tells AMEP to expect field data, delimiter specifies the delimiter used
for the columns in the data files, dumps takes a regular expression that matches the name
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Fig. 3.12 Further observables calculated with AMEP. a Snapshot of MIPS plotted with
amep.plot.particles. b–d Corresponding coarse-grained local density φloc, hexago-
nal order parameter ψ6 (Eq. (3.5)), and orientation angle θ, respectively, calculated with
amep.continuum.gkde. e Two-dimensional pair correlation function of the snapshot shown
in panel a calculated with amep.evaluate.PCF2d. f Two-dimensional structure factor
of the snapshot shown in panel a calculated with amep.evaluate.SF2d. g Snapshot of
MIPS in the active model B+ plotted with amep.plot.field. h Two-dimensional struc-
ture factor of the field shown in panel g calculated with amep.evaluate.SF2d. i,j Dis-
tribution of the velocity vx in x direction and the magnitude |v| from a particle-based
simulation in two spatial dimensions calculated with amep.evaluate.VelDist. The
black dashed lines are fits obtained with amep.functions.NormalizedGaussian and
amep.functions.MaxwellBoltzmann, respectively. k Velocity autocorrelation function cal-
culated with amep.evaluate.VACF. l Snapshot of a simulation with particles of different sizes
plotted with amep.plot.particles.

format of the variable data files, and the keyword reload tells AMEP whether to look
for an existing h5amep file and use it if it exists or to create a new one from the raw
data. This should be used when your base data has changed between analysis runs. An
exemplary dataset can be downloaded from https://github.com/amepproject/amep/tree/
main/examples.
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3.6 Conclusion

AMEP is a powerful Python library for analyzing simulation data of active matter systems. It
provides a unified framework for handling both particle-based and continuum simulation
data and combines it with an easy-to-learn Python API. With AMEP, one can quickly
analyze and plot simulation results and develop new analysis methods utilizing AMEP’s
features and its seamless integrability to powerful scientific Python libraries through
NumPy arrays. While its collection of analysis methods is primarily targeted at the active
matter community, AMEP’s general design allows applying AMEP to almost any particle-
based or continuum simulation data as obtained from classical molecular dynamics and
Brownian dynamics simulations, or any kind of numerical solutions of partial differential
equations.
We have exemplarily shown the potential of AMEP by analyzing particle-based systems

of more than 106 particles and continuum simulations with up to 105 grid points as typically
used in active matter research. AMEP enables the analysis of a broader class of simulation
data compared to most other analysis libraries. Such simulation data comprises “dry”
particle-based models such as the active Brownian particle model and its various relatives,
“wet” models that explicitly model surrounding fluids including particles that are coupled
to flow fields, and continuum models such as the active model B+, the Keller-Segel model,
or the Cahn-Hilliard model. Applied to such models, AMEP can provide essential insights,
e.g., into phase separation, pattern formation, and critical phenomena in active matter
systems. In addition to the presented observables, many more observables will be included
in the future, for instance, entropy production using the method introduced in Ref. [431],
finite-size scaling analysis, and cluster tracking.
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4 Defining Temperature in Active Systems

ABP
tracer

Fig. 4.1 Using a passive tracer par-
ticle (black) as a thermometer for
the temperature of active parti-
cles (green), which collide with
the tracer particle (black arrows).
Its velocity distribution could pro-
vide a measure for the tempera-
ture of the active particles. The
yellow arrows denote their self-
propulsion direction.

When we measure the temperature of a room, different
types of thermometers show the same temperature. This
universality applies in thermodynamic equilibrium. In
particular, the different phenomena which are exploited
by different types of thermometers are evidently linked
by a global thermodynamic temperature. In contrast, in
active systems, which are intrinsically out of equilibrium,
this universality of temperature does not apply. Therefore,
we now pose the general question of how to define tem-
perature in active systems. To provide essential insights
into this fundamental question, we systematically apply
different possibilities to define temperature to active sys-
tems. One possibility is examplarily outlined in Fig. 4.1.
In this chapter, we show that different temperatures typi-
cally lead to different values by using BD simulations and
theory for inertial ABPs. However, we find that there are
parameter regimes even far from equilibrium in which
several definitions lead to very similar temperature val-
ues. In particular, we show that the kinetic temperature
and the configurational temperature form one class of
temperatures while temperatures exploiting the virial
theorem, the Stokes-Einstein relation, or a harmonic con-
finement form a second class of temperatures whose values strongly differ from those of
the first temperature class. We find that the two classes are linked by the particle mass as
a scaling parameter. Finally, we discuss the advantages and disadvantages of the different
possibilities to define temperature for measuring the temperature of active systems. The
content of this chapter is taken from my publication “How to define temperature in active
systems?” published in The Journal of Chemical Physics (2024) under the CC BY 4.0
license,501 and the majority of this chapter is taken verbatim from it. For this publication,
I wrote the original draft with input from all co-authors, performed all simulations, and
created all final figures.

4.1 Introduction

“Temperature is a physical quantity that expresses quantitatively the attribute of hotness
or coldness. Temperature is measured with a thermometer.”502 This is the temperature
definition reported in the leading encyclopedia of our times.503 Clearly, this notion of
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temperature is rather imprecise. Indeed, our sensation of hotness and coldness not only
depends on temperature but also on the heat conductivity of the material we are touching.
As an example, this can be experienced by touching a cold piece of wood and recognizing
that it feels hotter than a piece of metal at the same temperature.172
There are many different ways to define temperature more precisely, and before we

are taught thermodynamics, it may come as a surprise that in everyday life, different
types of thermometers all essentially lead to the same result across a broad variety of
environmental conditions. In particular, we may wonder why the reading of a liquid
thermometer measuring the extension of a liquid agrees with the reading of an infrared
thermometer that measures thermal radiation and even with that of a vapor-pressure
thermometer that measures temperature through the vapor pressure of a liquid (exploiting
the Clausius-Clapeyron equation). When learning statistical mechanics, we are in a
position to understand that the universality of temperature and the link between different
phenomena which are exploited by different types of thermometers exclusively hold true
in thermodynamic equilibrium. In fact, the thermodynamic temperature can be linked
to different observables in equilibrium systems.170,176 This leads to different equivalent
possibilities to define temperature which exploit the equipartition theorem,504,505 the
virial theorem,506 or fluctuation-dissipation relations for example.169,507–509 Alternatively,
tracer particles can be used as a thermometer such that their properties can be linked to the
thermodynamic temperature of the system in which the tracer particles are immersed.177
In principle, these and other definitions of temperature can all be generalized to non-

equilibrium systems. In particular, classical irreversible thermodynamics grounds on the
local-equilibrium hypothesis assuming that thermodynamic concepts like temperature may
still be applied locally in non-equilibrium states.510 However, when we are no longer near
equilibrium and the local equilibrium hypothesis is invalid, the reading of a thermometer
may (and typically will) depend on the details of the system under consideration (and
may even be time-dependent).123,511 Such a situation is generally expected for systems
where the relaxation times of certain degrees of freedom are long or if large persistent
fluxes are present in the system, in particular, also for the large class of active matter
systems containing self-propelled particles.123,170,172,264,440
For such systems, we may wonder if it is sensible to define and speak of temperature at

all. First, when touching a piece of glass or when putting our finger into a non-equilibrium
liquid containing swimming bacteria, there is of course still a perception of hotness or
coldness, and accordingly, it is tempting to introduce a measure to quantify our experience.
Second, it may be instructive to explore when and by how much the different possibilities
to define temperature, which we may use to quantify our experience, may deviate from
each other. In particular, we may wonder if there are subsets in parameter space for which
the reading of different thermometers would coincide. One might expect that different
temperatures in active systems lead to strongly different temperature values for a system
far from equilibrium, which can be quantified by measuring the total entropy production
for example.264,268,512
In this chapter, we comparatively explore different possibilities to define temperature for

inertial active Brownian particles such as used in Refs. [103, 106, 123, 125, 142, 165, 406,
513–518]. As expected, we find that different temperatures lead to results that depend
on the details of the considered non-equilibrium system, and in general, that all obtained
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temperature values deviate from each other. However, perhaps surprisingly, we identify
parameter regimes where different temperatures provide consistent results even far from
equilibrium. This applies in particular to regimes in which the active particles are heavy
or in which their rotational diffusion is fast, and it has been previously found that within
these regimes, an active system behaves as an effective equilibrium system.140,142,158
Indeed, we find that within this regime, also the considered temperatures lead to similar
temperature values independently of the values of all other dimensionless parameters
that control the dynamics of the active particles. Interestingly, we find that the different
temperatures which we have compared can be sorted in two classes: The first one shows
a strong mass dependence (and scales linearly with the mass in a wide parameter regime)
and the second one is almost mass independent. We show that these two classes can
approximately be matched by rescaling with the particle mass. This finding has important
consequences for the calculation of temperature in active systems, as we shall see.

4.2 Possibilities to define temperature

Let us first discuss the different possibilities under consideration to define temperature.
In general, we can distinguish three different approaches to define temperature: First,
one can define temperature based on the fluctuations of the particle velocity, which is a
very common approach in the field of granular particles.519–522 Second, it is possible to
define temperature based on fluctuations in particle positions.518 The third approach takes
inspiration from glassy systems and exploits fluctuation-dissipation relations.523–525 In the
following, we briefly introduce the different possibilities to define temperature as used in
this work and summarize some known analytical results. The considered temperatures
are summarized in Tab. 4.1.
Before introducing the different possibilities to define temperature, let us recap some

general concepts known from equilibrium physics. In particular, let us consider an
equilibrium system of N particles in three spatial dimensions and let Γ = (Γ1, ...,Γ6N ) =
(p1, ..., p3N , q1, ..., q3N ) be the phase-space vector representing the spatial coordinates
qi and the conjugate momenta pi. Furthermore, let the system be described by the
Hamiltonian H(Γ) =

∑︁
i p

2
i /(2m) + V ({qj}), where m denotes the mass of the particles

and V the potential energy of the system. Based on the standard thermodynamic relation
1/T = dS(E)/dE with entropy S(E) and energyE, one can show that the thermodynamic
temperature can be calculated as176

kBT =
⟨∇H ·B(Γ)⟩
⟨∇ ·B(Γ)⟩ , (4.1)

where B(Γ) is an arbitrary vector field with 0 < |⟨∇H ·B(Γ)⟩|, |⟨∇ ·B(Γ)⟩| <∞ and∇
is the gradient operator in the 3N -dimensional space. Furthermore, ⟨∇H ·B(Γ)⟩ must
grow slower than eN in the thermodynamic limit.176 Note that for B(Γ) = (0, ...,Γi, ..., 0),
we obtain the generalized equipartition theorem kBT = ⟨Γi∂H/∂Γi⟩. If Γi = pi, we
recover the equipartition theorem kBT = ⟨p2i /m⟩,505 which we will exploit for some
temperature definitions below. In turn, if Γi is a coordinate qi, we obtain the Clausius
virial theorem kBT = −⟨qiFi⟩.506 From the general expression in Eq. (4.1), we can directly
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derive different temperatures such as the kinetic temperature and the configurational
temperature as shown below.
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Tab. 4.1 Temperature definitions. Summary of different possibilities to define temperature for a system of (inertial) ABPs in d spatial dimensions.
Symbol Name Definition References Comments
Velocity-based definitions
Tkin kinetic 1

2Nd

∑︁N
i=1m

⟨︂
(vi − ⟨v⟩)2

⟩︂
[103, 123, 162–168] Eq. (4.3)

Tkin4 fourth-moment kinetic 1
2m

√︃
4

Nd(d+2)

∑︁N
i=1

⟨︂
(vi − ⟨v⟩)4

⟩︂
Eq. (4.6)

TMB Maxwell-Boltzmann
√︂

mT
2πkBTMB

exp
{︂
− mTv2i

2kBTMB

}︂
, i = x, y, z [516] Eq. (4.9)

Position-based definitions
Tvir virial γt lim

t→∞
∂tMSD(t)− 1

2Nd

∑︁N
i=1

⟨︂∑︁
j<i rij · Fij + γtv0ri · p̂i

⟩︂
Eq. (4.11)

Tosc oscillator k
⟨︁
x2

⟩︁ [165] Eq. (4.12)
Tconf configurational ⟨(∇Utot)2⟩

⟨∇2Utot⟩ [174, 406] Eq. (4.14)
Dynamics-based definitions
TEin Einstein γtDeff Eq. (4.15)
Teff effective lim

t≫1

MSD(t)
2dχ(t) [123, 125, 526] Eq. (4.18)
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4.2.1 Velocity-based definitions

Velocity fluctuations can be used to define temperature either based on the velocities of
the active particles themselves or based on the velocity distribution of tracer particles that
are suspended in a bath of active particles. Here, we consider the following possibilities
to define temperature based on velocities:
(1) Kinetic temperature: Starting from Eq. (4.1), we can derive the kinetic temperature

by choosing B(Γ) = (0, ..., 0, p1, ..., p3N ), which yields527,528

kBT =

⟨︄
1

3N

3N∑︂

i=1

p2i
m

⟩︄
, (4.2)

where pi = mvi is the momentum. When we consider the average translational
kinetic energy Ekin = 1

2

∑︁N
i=1mi (vi − ⟨v⟩) · (vi − ⟨v⟩) (subtracting any possible

drift velocity ⟨v⟩), we can write the kinetic temperature as

kBTkin :=
1

Nd

N∑︂

i=1

m ⟨(vi − ⟨v⟩) · (vi − ⟨v⟩)⟩ , (4.3)

where d is the spatial dimension. The kinetic temperature is commonly used in
the field of granular particles173,529–536 and complex plasmas,537,538 and it is equal
to the thermodynamic temperature in equilibrium systems where ⟨v⟩ = 0 and
Eq. (4.3) coincides with Eq. (4.2).504 It has also been frequently used as a well-
defined temperature definition in active systems.103,123,162–168 Note that the kinetic
temperature is proportional to the mass of the particles. This has an important
implication for the kinetic temperature of (inertial) active particles: Free non-
interacting active particles move with their self-propulsion speed v0 in the steady
state independently of their mass. Therefore, their kinetic temperature strongly
depends on their mass as demonstrated in Fig. 4.2.
For the kinetic temperature in active systems, some analytical results are known.
For example, the kinetic temperature of free non-interacting ABPs (u = 0 in Eq.
(2.2)) and similarly of active Ornstein-Uhlenbeck particles (AOUPs; see Appx. A)
can be written as158

kBTkin = kBTb +mv20α, (4.4)
where m is the mass of the particles and the dimensionless coefficient α is given by

α =
τpγt/m

1 + τpγt/m
. (4.5)

The first term in Eq. (4.4) is the bath temperature that determines the strength of the
Brownian noise. The second term has a pure non-equilibrium origin and disappears
in equilibrium. Note that Eq. (4.4) can be obtained based on the AOUP model
as defined in Eq. (2.11) leading to similar results as for ABPs (cf. Subsec. 2.2.1).
Further analytical results are shown in Appx. A.
The previous definition of kinetic temperature is based on the second moment of
the velocity distribution. Similarly, one can use higher moments to define a variant
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Fig. 4.2 Kinetic temperature. Schematic visualization of the kinetic temperature of active
particles moving with a self-propulsion speed v0. a Heavy active particles feature a large kinetic
temperature and b light active particles have a low kinetic temperature. The color denotes the
kinetic temperature, the black arrows the velocity of the particles.

of the kinetic temperature. Exemplarily, we introduce a temperature based on the
fourth moment. In particular, we obtain

kBTkin4 :=
1

2
m

⌜⃓
⎷⃓ 4

Nd(d+ 2)

N∑︂

i=1

⟨︂
(vi − ⟨v⟩)4

⟩︂
, (4.6)

where d = 1, 2, 3 is the spatial dimension. This temperature is again equal to the
bath temperature in equilibrium, i.e., for v0 = 0 in Eq. (2.2). Note that Tkin = Tkin4
if the velocity distribution P(vi), i = x, y, z is Gaussian, i.e., if P(|v|) follows the
Maxwell-Boltzmann distribution.

(2) Maxwell-Boltzmann temperature: For free non-interacting particles of mass m in
a classical equilibrium gas at temperature T , the Maxwell-Boltzmann distribution
reads539,540

P(vx, vy, vz) =

(︃
m

2πkBT

)︃3/2

exp

{︄
−
m(v2x + v2y + v2z)

2kBT

}︄
, (4.7)

i.e., each velocity component vi, i = x, y, z is Gaussian distributed:

P(vi) =

√︃
m

2πkBT
exp

{︃
− mv2i
2kBT

}︃
. (4.8)

Within an equilibrium system, the Maxwell-Boltzmann distribution can be exploited
to determine the temperature of the system by measuring the velocity distribution
of the particles. However, since the velocity of active particles is generally not
Maxwell-Boltzmann distributed, this procedure is not directly applicable to active
systems. In turn, one could use passive tracer particles as a thermometer (Fig. 4.3).
While passive particles immersed in an active bath can be out of equilibrium, there
are some parameter regimes, in which their velocity distribution approximately has
a Maxwell-Boltzmann shape.541,542 Therefore, their velocity distribution provides
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Fig. 4.3 Maxwell-Boltzmann temperature. a A passive tracer particle (black) that interacts with
the surrounding active particles (gray) is used as a thermometer for the active particles. b Velocity
distribution (black dots) of passive tracer particles in a bath of active particles. The Maxwell-
Boltzmann temperature TMB is obtained from the variance of a Gaussian (yellow line) fitted to the
tracer velocity distribution. The inset shows the velocity distribution for the passive particles in
a mixture of overdamped ABPs (m/(γtτp) = 5× 10−5) and inertial PBPs (m/(γtτp) = 5× 10−2)
at Pe = 100, φtot = 0.5, and xa = 0.9, where xa denotes the fraction of active particles. In this
parameter regime, the velocity distribution is clearly non-Gaussian, and therefore, the Maxwell-
Boltzmann temperature cannot be sensibly calculated. The data has been taken from Ref. [542].

an approximate measure for the temperature of the active particles. We name this
the Maxwell-Boltzmann temperature TMB (Fig. 4.3b), which is defined via

P(vi) =

√︃
mT

2πkBTMB
exp

{︃
− mTv2i
2kBTMB

}︃
, i = x, y, z (4.9)

wheremT denotes the mass of the tracer particle. Note that the Maxwell-Boltzmann
temperature depends on the tracer mass and on the interactions between the active
particles and the tracer. In fact, the tracer should follow the slow dynamics of the
active system, which is only guaranteed if the tracer is sufficiently heavy.516 In
addition, the tracer has to be small enough to not affect the structure of the active
system. Note that there are parameter regimes in which the velocity distribution
is not Gaussian anymore,542 and therefore, the Maxwell-Boltzmann temperature
cannot be calculated (see inset in Fig. 4.3b). Hence, we do not show the Maxwell-
Boltzmann temperature in the numerical results below.

4.2.2 Position-based definitions

We now introduce different possibilities to define temperature based on the positions of
active particles and tracers.

(3) Virial temperature: The virial theorem connects the average kinetic energy of a
system to its average potential energy by∑︁N

i=1m ⟨vi · vi⟩ = −1
2

∑︁N
i=1 ⟨ri · Fi⟩ and

was first introduced by R. Clausius in 1870.506 Here, Fi denotes the total force acting
on the i-th particle. In equilibrium, the average virial ⟨V⟩ = −1

2

∑︁N
i=1 ⟨ri · Fi⟩ can

be connected to the thermodynamic temperature T of the system by applying the
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equipartition theorem as already done for the definition of the kinetic temperature.
This leads to the virial temperature defined as

kBTvir :=
2

Nd
⟨V⟩, (4.10)

where d denotes the spatial dimension of the system and N is again the number of
active particles.543 For inertial ABPs (Eqs. (2.2) and (2.3)) in the steady state, the
virial temperature can be written as (see Appx. A for details)

kBTABPvir = γt lim
t→∞

∂tMSD(t)−
1

2Nd

N∑︂

i=1

⟨︄∑︂

j<i

rij · Fij + γtv0ri · p̂i

⟩︄
(4.11)

with the mean-square displacement MSD(t) = ⟨ri(t)2⟩ (assuming ri(0) = 0), inter-
action force Fij , and spatial dimension d. Hence, the virial temperature does only
require information about the positions and the forces but not about the velocities
of the particles. Therefore, it is also applicable to simulations in the overdamped
limit. Note that for free ABPs, the first term is equal to γtDeff, where Deff is their
effective diffusion coefficient, which we obtain from their long-time MSD. All other
contributions are directly calculated from the particle trajectories by averaging over
time in the steady state.

(4) Oscillator temperature: Let us now consider a particle that is confined in an
external potential with a minimum at r = 0. In equilibrium, the position fluctuations
⟨r2⟩ are directly related to the thermodynamic temperature (see Appx. A). For
simplicity, let us consider a harmonic confinement, i.e., Uext(r) = kr2/2, which
leads to an additional force Fext,i = −∇riUext(ri) that is added on the right-hand
side of Eq. (2.2).154,171,544–546 For non-interacting particles in equilibrium, i.e.,
v0 = 0 and u = 0 in Eq. (2.2), one can show that ⟨r2i ⟩ = kBT/k with i = x, y, z. It is
tempting to generalize this equilibrium result to define an oscillator temperature.
Therefore, assuming that the system is isotropic, we define the oscillator temperature
as171,547

kBTosc := k
⟨︁
r2i
⟩︁
, i = x, y, z. (4.12)

There are two possibilities to measure the oscillator temperature: First, one can
place the active particles themselves in the harmonic potential (Fig. 4.4a). Second,
one can use a passive tracer particle trapped in a harmonic potential and interacting
with surrounding non-trapped active particles (Fig. 4.4b). In terms of a general
temperature definition, the tracer-based scenario has the drawback that the obtained
temperature values depend on the mass of the tracer and its size, and defining
a suitable tracer-based thermometer is only possible when choosing sufficiently
small and heavy tracers.165,516 Furthermore, it has been shown that the position
distribution of the tracer becomes non-Gaussian for certain k.548 Also in the former
scenario, the strength k of the harmonic potential has to be adjusted to the self-
propulsion speed of the active particles such that they can still reach most positions
inside the harmonic potential but cannot leave it across the periodic boundaries of
the simulation box (see below). We remark that the dependence on the potential
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Fig. 4.4 Oscillator temperature. a Schematic illustration of active particles in a harmonic potential
U activeext (r) = kr2/2, r =

√︁
x2 + y2 of strength k. The inset shows an exemplary distribution of the

particle positions in x direction p(xactive) from which Tosc can be determined from the variance of
a Gaussian that is fitted to the data. b Schematic visualization of a passive tracer particle trapped
in a harmonic potential U tracerext (r) = kr2/2, r =

√︁
x2 + y2 of strength k and subject to a bath of

non-trapped active particles, which can collide with the tracer particle (white arrows).165 The
inset shows an exemplary distribution of the tracer position in x direction p(xtracer) from which
Tosc can be determined analogously as in panel a.

strength makes the use of this temperature questionable. Additionally, the use of the
oscillator temperature causes problems when we consider interacting particles that
repel each other and fill up the trapping potential from the center towards higher
and higher potential values, as we shall see in more detail below. For simplicity, we
only calculate Tosc without using immersed tracer particles.
For non-interacting ABPs (and AOUPs), the oscillator temperature has been calcu-
lated analytically and reads158

kBTosc = kBTb +
1 + τpγt/m

1 + τpγt/m+ τ2pk/m
v20τpγt (4.13)

This expression is obtained from the AOUP model and coincides with the results for
ABPs. It reflects the dependence of Tosc on the strength k of the harmonic potential
and shows that it also depends on the ratio τpγt/m.

(5) Configurational temperature: The configurational temperature provides another
possibility to define temperature independently of the particle momenta. It can be
derived from Eq. (4.1) by choosingB(Γ) = −∇Utot({ri}), where Utot({ri}) denotes
the total potential energy of the systems. This yields527,528

kBTconf =
⟨∇Utot ·∇Utot⟩

⟨∇2Utot⟩
. (4.14)

Here,∇ is again the gradient operator in the 3N -dimensional space. Recently, Saw
et al. used the configurational temperature to measure the temperature of an active
system.174,406 In the special scenario of non-interacting particles in an external
harmonic potential Uext(r) = kr2/2, we get Utot = Uext and Tconf = Tosc.
As shown in Fig. 4.5, the configurational temperature measures how far a particle
can ramp up the interaction potential. It is large if the forces (∇Utot) are large
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Fig. 4.5 Configurational temperature. a,b Exemplary harmonic potential U(r) = 0.5kr2 and
the corresponding contributions to the configurational temperature as defined in Eq. (4.14) as
function of the distance r from the potential minimum, respectively. c Exemplary Weeks-Chandler-
Anderson (WCA) potential as defined in Eq. (2.8) and as used for the simulations in this chapter.
d Corresponding contributions to the configurational temperature as defined in Eq. (4.14) as
function of the inter-particle distance r.

and if the curvature of the potential (∇2Utot) is small. Therefore, contributions to
Tconf from particles residing near the minimum of the external potential and near
the equilibrium distance for interacting particles are small, i.e., if all particles are
placed in the potential minimum, Tconf = 0 (Fig. 4.5b).

4.2.3 Dynamics-based definitions

All previous possibilities to define temperature directly exploit either the velocities or
the positions of the particles. However, one can also exploit dynamical properties of an
active system to measure its temperature. In particular, we present two approaches, one
based on the Einstein relation and one following Cugliandolo and Kurchan based on linear
response theory.125,523

(6) Einstein temperature: Let us again consider free non-interacting PBPs, i.e., u =
0 in Eq. (2.1). Then, the translational diffusion coefficient Dt is connected to
the bath temperature via the Einstein relation: Dt = kBTb/γt.549 We can now
define a temperature for active particles based on their effective long-time diffusion
coefficient Deff, which can be calculated from the mean-square displacement (MSD)
of the active particles (Fig. 4.6), by exploiting the Einstein relation. In particular,
we define the Einstein temperature TEin as

kBTEin := γtDeff. (4.15)
If the active particles interact with each other, i.e., u ̸= 0 in Eq. (2.2), γt has to be
replaced by an effective drag coefficient γeff that is calculated from the response of
a tracer particle to a constant force F = F êx (exemplarily in x-direction with unit
vector êx) in the presence of the considered active system, i.e.,

γeff = F/ lim
t→∞

⟨vx(t)⟩ . (4.16)

Note that for sufficiently low density, we have γeff ≈ γt.
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Fig. 4.6 Einstein temperature. a Exemplary trajectories of free non-interacting ABPs. Arrows
denote the self-propulsion directions. b Mean-square displaced (MSD) of the active particles in
double-logarithmic representation and long-time effective diffusion coefficient Deff yielding the
Einstein temperature as defined in Eq. (4.15). c Alternative calculation of the long-time diffusion
coefficient Deff from the integral of the velocity auto-correlation function (VACF) of the active
particles.

For free non-interacting inertial ABPs, the effective diffusion coefficient has been
calculated analytically and reads133,157,550

DABPeff = Dt +
v20τp
2
eSRS1−SR

R Γ(SR, 0, SR), (4.17)

where Dt = kBTb/γt denotes the translational diffusion coefficient, SR = I
τpγr , and

Γ(a, b, c) =
∫︁ c
b dq qa−1e−q. Here, I denotes the moment of inertia of the active

particles. In the overdamped limit SR → 0, we obtain the following popular result
for the active diffusion coefficient: Deff = Dt + v20τp/2,77,181,253 yielding kBTEin =
kBTb + γtv20τp/2.

(7) Effective temperature: Inspired from glassy systems507,508 and following Refs.
[123, 125, 437, 526], we now define the so-called effective temperature of an active
system. This expression is inspired by linear response theory and is defined as the
ratio between the MSD (Eq. (3.1)) and the susceptibility χ in the long-time limit,
i.e.,

kBTeff(t) := lim
t≫1

MSD(t)
2dχ(t)

, (4.18)

where d is the number of spatial dimensions. To calculate the susceptibility, one
can use the Malliavin weights sampling (MWS), as used in Refs. [123, 125], or
approaches that are based on the simulation of a perturbed and an unperturbed
system with the same noise realizations (Fig. 4.7).264,551,552 Here, will we use the
latter approach to numerically determine Teff (see Appx. A for details). Note that the
calculation of the effective temperature requires to average over many independent
ensembles, which is computationally expensive. In particular, we average over 100
independent simulation runs for each data point and over time in the diffusive
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Fig. 4.7 Effective temperature. Schematic visualization of the calculation of the effective temper-
ature Teff as defined in Eq. (4.18). Starting from a snapshot of the system of active particles in the
steady state (panel a), a copy of the system is created and perturbed by a small perturbing force
at a fixed time t = t0 (orange arrows in panel e). The original system (panel b) and the perturbed
system are then simulated with the same noise realizations up to a time t≫ t0 (panels c and f).
From the unperturbed system, the mean-square displacement (MSD, panel d) is calculated and
from the comparison of both systems, the susceptibility χ(t) is obtained. Finally, this leads to Teff
following Eq. (4.18).

long-time regime of the MSD. Due to the high computational costs, we calculated
the effective temperature exemplarily for some parameter regimes, and we only
consider data points with reasonably good statistics, i.e., data points with a standard
deviation that is at least smaller than the value itself.

4.3 Simulation Results

To systematically compare the introduced possibilities to define temperature, we perform
Brownian dynamics (BD) simulations of systems of N = 2×104 inertial ABPs as described
by Eqs. (2.2) and (2.3). The interaction between the ABPs is modeled by the Weeks-
Chandler-Anderson (WCA) potential as defined in Eq. (2.8). We fix the interaction
strength to ϵ/(kBTb) = 10 or to ϵ = 0 for non-interacting particles. For simplicity, we
choose γt = γr/σ2, where σ is the particle diameter. As free parameters, we vary the
dimensionless mass M = m/(γtτp) = τm/τp (and accordingly, the moment of inertia
I), the Péclet number Pe = v0/

√
2DrDt, and the area fraction φ = Nπσ2/(4A), where

A = L2 is the area of the two-dimensional quadratic simulation box of box length L.
Here, Dt = kBTb/γt is the translational diffusion coefficient and τm = m/γt is the inertial
timescale. The Langevin equations (Eqs. (2.2) and (2.3)) are solved numerically with
LAMMPS255 using a time step ∆t/τp = 10−5 and periodic boundary conditions. We run
the simulations first for a time of 200 τp to reach a steady state and afterward for a time
of 800 τp for computing time averages of observables in the steady state. For simulations
in a harmonic confinement, we have chosen k ∝ 2γtv0/L such that the resulting external
force due to the harmonic confinement fulfills |Fext(L/2)| = γtv0. This ensures that the
active particles are able to reach each position in the harmonic potential but cannot leave
it across the periodic boundaries of the simulation box. In the following, we present our
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Fig. 4.8 Péclet number dependence. Temperature as function of Péclet number Pe for three
different masses M = m/(γtτp) as given in the key. a–c Results for non-interacting ABPs and
d–f for interacting ABPs at total packing fraction of φtot = 0.025. For the non-interacting case,
analytical expressions are shown for the kinetic temperature (Eqs. (4.4) and (4.5); Tkin,analytic), for
the oscillator temperature (Eq. (4.13); Tosc,analytic), and for the Einstein temperature (Eqs. (4.15)
and (4.17); TEin,analytic).

main results. In particular, we show how the obtained temperature values depend on the
Péclet number and the mass of the active particles.

4.3.1 Péclet dependence

Let us first discuss the Pe dependence of the considered temperatures. For simplicity,
we only consider parameter regimes in which the system does not phase separate72 and
study two scenarios: non-interacting ABPs and interacting ABPs at total area fraction
φtot = 0.025. To scan all regimes from the near-equilibrium case to the strongly active
regime, we vary Pe from Pe = 0.125 to Pe = 256. To also explore different regimes from
the strongly inertial regime to the overdamped regime, we determine the temperatures for
three different massesM ∈ {0.0004, 0.1, 6.25}. The results are shown in Fig. 4.8 together
with the corresponding analytical expressions for non-interacting ABPs as discussed above.
These expressions perfectly match with the numerical results obtained from the BD
simulations (Fig. 4.8a–c). As expected, all temperatures increase with increasing Pe. For
very low Pe, the system essentially behaves as an equilibrium system and all temperatures
coincide (except for the oscillator temperature for interacting ABPs as we discuss below).

Non-interacting active particles: Let us now first focus on the non-interacting case.
Here, for large massM (Fig. 4.8a), all temperatures lead to the same value and the curves
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collapse to one master curve. In this case, the persistence time τp is small compared to
the inertial time τm, which leads to a vanishing entropy production rate such that the
system approaches an effective equilibrium state.140,142,158 When decreasing the mass,
i.e., τm/τp ≪ 1, different temperatures generally lead to different values (Fig. 4.8b,c).
Notably, the two kinetic temperatures Tkin and Tkin4 lead to very similar temperature
values suggesting that the velocity distributions are approximately Gaussian. Remarkably,
also Tosc and TEin lead to very similar temperature values even for very large Pe, where
they significantly differ from Tkin and Tkin4. In fact, we find Tosc ≥ Tkin in accordance
with previous literature.171 Note that Tosc and Tkin might coincide after renormalizing the
forces as demonstrated in Ref. [141]. The difference to the kinetic temperatures further
increases when decreasing the mass of the active particles (Fig. 4.8b,c). This indicates that
velocity-based definitions strongly depend on the dimensionless particle massM while
Tosc and TEin do not. The effective temperature Teff is similar to Tosc and TEin (Fig. 4.8a,b).
Note that we show only a few data points for Teff because its computation is numerically
rather costly.

Interacting active particles: If we now consider interactions between the active parti-
cles, we qualitatively obtain the same results. Again, all temperature values obtained with
the different possibilities to define temperature except the oscillator temperature coincide
for large masses and lead to the bath temperature at small Pe (Fig. 4.8d). However, the
oscillator temperature Tosc saturates at a temperature larger than the bath temperature.
This is because (i) the confining potential pushes the particles together such that the
particles may form a dense cluster around the minimum of the confining potential and
(ii) not all particles can be placed in the potential minimum in the initial state of the
simulation. The latter adds some additional potential energy to the particles. As a conse-
quence, particles at the border of the cluster have a large potential energy and lead to a
large contribution to the position fluctuations ⟨r2⟩. Hence, the oscillator temperature can
reach values higher than the bath temperature even for passive particles and is therefore
considered as unsuitable to measure temperature. At large Pe, another deviation is visible:
The Einstein temperature TEin and the virial temperature Tvir lead to smaller temperature
values at large Pe compared to the other temperature values especially in the case of large
particle mass (Fig. 4.8d). This is because collisions slow down the particles and lead to a
smaller diffusion coefficient. This effect is stronger at large Pe due to a higher collision
rate, and it is also stronger for heavier active particles because they need a comparatively
long time to reach their self-propulsion speed v0 after each collision. However, similar to
the non-interacting scenario, the Einstein temperature TEin and the oscillator temperature
Tosc almost coincide at intermediate and small masses and for large Pe (Fig. 4.8d–f).
This is because they both effectively measure position fluctuations, and therefore, they
approximately coincide. Note that TEin, Tvir, and Tosc do not coincide with the other
temperatures because they have a weaker mass dependence as we will discuss further
below. Remarkably, the configurational temperature Tconf coincides with Tkin and Tkin4
for all parameters (Fig. 4.8d–f). It measures how far an active particle can ramp up
the interaction potential, and therefore, it is directly related to the kinetic energy of the
particles that is converted into potential energy during collisions for example. Hence,
Tconf leads to very similar temperature values as Tkin and Tkin4.
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Fig. 4.9 Mass dependence. Temperature as a function of the particle mass M = m/(γtτp) for
three different values of Pe as given in the key. a–c Results for non-interacting ABPs and d–f for
interacting ABPs at total packing fraction of φtot = 0.025. For the non-interacting case, analytical
expressions are shown for the kinetic temperature (Eqs. (4.4) and (4.5); Tkin,analytic), for the
oscillator temperature (Eq. (4.13); Tosc,analytic), and for the Einstein temperature (Eqs. (4.15) and
(4.17); TEin,analytic).

4.3.2 Mass dependence

To obtain further insights into the parameter dependencies of the different temperatures,
we now analyze the mass dependence in more detail. We varyM = m/(γtτp) from 0.0004
to 6.25 for Pe ∈ {0, 16, 64}. The results are shown in Fig. 4.9 again together with the
analytical results for non-interacting ABPs. For the latter, the numerical results perfectly
coincide with analytical expressions discussed above (Fig. 4.9a–c). As expected from equi-
librium thermodynamics, all temperatures lead to the same temperature values, namely
the bath temperature Tb, for Pe = 0. For Pe > 0, the different temperatures again lead
to different temperature values and exhibit an important mass dependence: While the
oscillator temperature Tosc does not depend onM and the Einstein temperature TEin, the
effective temperature Teff, and the virial temperature Tvir only show a weak mass depen-
dence, both kinetic temperatures Tkin and Tkin4 as well as the configurational temperature
Tconf feature a strong mass dependence (Fig. 4.9). In the absence of interactions, this is
because the particles move with their self-propulsion speed ⟨|v|⟩ ≈ v0, and accordingly,
we have Tkin ≈ mv20/2 ∝ m for large Pe. Thus, for m → 0 (i.e, M → 0), the active
contribution to Tkin vanishes and we have Tkin ≈ Tb. In turn, TEin, Teff, Tvir, and Tosc only
slightly depend on M (Fig. 4.9b,c): Their calculation is based on position fluctuations
which depend only weakly onM in some parameter regimes if the particles (on average)
move with their self-propulsion speed v0. The observed trends are robust and still apply
in the presence of interactions (Fig. 4.9d–f).
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Fig. 4.10 Péclet number dependence of rescaled temperatures. Temperature as a function of
Pe for two different masses M = m/(γtτp) as given in the key. All temperatures with a strong
mass dependence are rescaled with M . a,b Results for non-interacting ABPs, i.e., u = 0 in Eq.
(2.2). c,d Results for interacting ABPs at total packing fraction φtot = 0.025.

Mass scaling: From Fig. 4.9, we see that some temperature definitions strongly depend
on the mass of the active particles. Inspired by the proportionality to m of the kinetic
temperatures for large Pe, where ⟨v⟩ ≈ v0 (Eqs. (4.3) and (4.6)), we divide all tem-
peratures that show a strong mass dependence (Tkin, Tkin4, and Tconf) byM = m/(γtτp)
(Figs. 4.10 and 4.11). From the Pe-dependence, we see that now all definitions lead to
similar temperatures at large Pe for both non-interacting and interacting ABPs (Fig. 4.10).
Note that the regime in which the (rescaled) temperatures coincide is larger if the active
particles are heavier. This is reflected by the analytical expressions discussed above, which
show that for low or moderate Pe, the kinetic temperature is not simply proportional tom
but has a more complicated mass dependence encoded in the factor α for example (cf. Eq.
(4.5)). This becomes visible in Fig. 4.11, which reflects that the different temperatures do
of course not fully match even if rescaled withM .

4.3.3 Effect of the packing fraction

Finally, we exemplarily analyzed the effect of the total packing fraction on the values of the
kinetic temperatures Tkin and Tkin4, the configurational temperature Tconf, and the Einstein
temperature TEin. We have chosen the total packing fraction as φtot ∈ {0.025, 0.05, 0.1, 0.2}
such that the system is still uniform and does not undergo MIPS72,124,165 and fixed an
intermediate mass of M = 0.1. As shown in Fig. 4.12, increasing the packing fraction
decreases the temperature values but the overall Pe dependence is the same. This is
because increasing the total packing fraction leads to an increased collision rate. The
collisions tend to slow down the active particles and hinder the particles to reach their
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self-propulsion speed v0. Hence, increasing the packing fraction opposes the effect of
activity on the average speed of the particles and reduces the values of the considered
temperatures. Close to equilibrium, all temperatures are equal to the bath temperature for
all packing fractions except for the Einstein temperature (Fig. 4.12d). Here, we have used
the same drag coefficient γt for all packing fractions to calculate TEin. However, increasing
φtot reduces the MSD, and hence, also TEin. In particular, the resulting diffusion coefficient
becomes smaller for larger packing fraction. Hence, also TEin decreases with increasing
φtot. This also happens close to equilibrium and leads to an Einstein temperature slightly
smaller than the bath temperature. One could compensate for this effect by calculating
the effective drag coefficient as shown in Eq. (4.16).
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4.4 Conclusions

Our analytical and numerical results show that different possibilities to define temperature
typically lead to different temperature values. However, close to equilibrium, all tempera-
tures coincide. In active systems, one can approach (effective) equilibrium states in two
ways: First, in the limit Pe→ 0, activity vanishes and the system forms an equilibrium
system made of passive Brownian particles, for which all temperatures coincide with the
bath temperature. Second, in the limitM → ∞, the persistence time τp becomes small
compared to the inertial time τm = m/γt. Then, the motion of the active particles is
dominated by (rotational) diffusion, and the system reaches an effective equilibrium state
at a larger temperature than the bath temperature. This is also indicated by a vanishing
entropy production rate in the limit 1/M = τp/τm → 0.140,264
It is now tempting to distinguish between “good” and “bad” temperature definitions:

A “good” temperature definition should provide consistent temperature values that are
independent of details of the thermometer and the confining potential. Therefore, we
conclude that the oscillator temperature and any tracer-based temperature definition
generally can be considered as a comparatively “bad” definition of temperature in active
systems. This is because the oscillator temperature strongly depends on the potential
strength k and bears the risk of not agreeing with the bath temperature in the equilibrium
limit for interacting particles because it does not appropriately account for interaction
forces compared to the virial temperature for example. In turn, any tracer-based definition
requires heavy and small tracer particles such that they (i) follow the slow dynamics of the
active system and (ii) do not affect its structure.165,516 Furthermore, some temperatures
are computationally demanding such as the effective temperature. In contrast, all other
temperatures can be considered as comparatively “good” in the sense that they do not
suffer from these drawbacks. While their values of course depend on details of the
considered system (dimensionless parameters such as the reduced mass, Péclet number,
and packing fraction), we found that several temperatures approximately coincide even
far from equilibrium. Concretely, the kinetic temperature Tkin, the fourth-moment-based
kinetic temperature Tkin4, and the configurational temperature Tconf constitute a class
of temperatures that all assume very similar temperature values over a wide parameter
range. Notably, the virial temperature Tvir, the Einstein temperature TEin, the oscillator
temperature Tosc, and the effective temperature Teff form a second class of temperatures
whose values approximately coincide with each other but which strongly differ from those
of the first class. Beyond that, we found that the two different classes of temperatures
can be matched in the far-from equilibrium regime where the system is dominated by
activity (large Pe, small mass) by rescaling temperatures with the particle mass.
Overall, regarding the question of “How to define temperature in active systems?”, we

note that our numerical results reflect the general expectation that far from equilibrium,
different temperatures lead to different temperature values. This is because the particle
positions and velocities are non-trivially coupled in active systems, and in general, they
often follow different non-Boltzmann distributions. This implies that it is impossible to
uniquely quantify fluctuations in active systems based on a single temperature parameter.
However, beyond this generic fact, we found that certain possibilities to define temperature
are advantageous over others in the sense that they are (i) easy to calculate from numerical
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(or experimental) data, (ii) do not depend on properties of the used “thermometer” such as
tracer size and mass or a confining potential, and (iii) mutually lead to similar temperature
values over a wide parameter regime. In particular, the kinetic temperatures Tkin, Tkin4
and the configurational temperature Tconf have these advantages.
The results of this chapter serve as a starting point towards a systematic classification and

unification of different possibilities to define temperature in active systems. They invite
further studies to generalize the suggested temperature definitions and to fundamentally
explain and exploit the identified temperature classes that lead to similar temperature
values. Of course, alternatively, for non-homogeneous systems, one can choose to give
up the definition of a global temperature altogether in far-from-equilibrium systems and
to define a local temperature instead, which can be done by calculating the presented
temperature definitions in a subdomain of the considered system.
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5 Active Refrigerators

Fig. 5.1 Sketch of an active refrigera-
tor. The active particles undergo MIPS
in the cooling domain (blue) leading to
a smaller kinetic temperature compared
to the environment (red).

Now, we explore the kinetic temperature in sys-
tems of inertial ABPs that undergo MIPS. Based on
the observation that inertial ABPs show different
kinetic temperatures in the dense and the dilute
phase when undergoing MIPS (see Sec. 2.3 for
details), we now pose the question how we can
use this effect to create a refrigerator for active
particles, i.e., to cool active particles in a prede-
fined spatial region. In this chapter, we present the
refrigerator’s operational principle, which is illus-
trated in Fig. 5.1. It exploits the peculiar but so-far
unknown shape of the phase diagram of inertial
ABPs to initiate MIPS in the targeted cooling domain only. This allows us to reduce the
kinetic temperature of the active particles by up to two orders of magnitude below the
environmental temperature. The main content of this chapter is taken from my publi-
cation “Active Refrigerators Powered by Inertia” published in the Physical Review Letters
(2022) and reprinted with permissions from Ref. [165],© 2022 by the American Physical
Society, and the majority of this chapter is taken verbatim from it. In this publication, I
have performed all simulations, analyzed all simulation data, wrote the initial draft, and
created all figures.

5.1 Introduction

Many processes in nature allow to readily heat up an isolated system. Examples include the
release of heat in chemical reactions occurring, e.g., when burning wood or gas, inelastic
collisions occurring within resistors when exposed to electric currents, and mass-energy
conversion processes in nuclear power plants and helium-burning stars. Following the
second law of thermodynamics, none of these processes can be reverted, making us believe
that it is impossible to cool down an isolated physical system. Accordingly, cooling down
a target domain such as the inside of a refrigerator or atoms in a magneto-optical trap
requires that the relevant domain is in contact with an external bath to which heat can be
transferred via conduction, convection, radiation, or evaporation. Accordingly, developing
sophisticated techniques to transfer heat from a target system to the environment has
been a great challenge of twenties century physics.504,553–556
For active systems,4,21,27,28,65,83,557,558 which consist of self-propelled particles and are

intrinsically out of equilibrium, the second law does not apply to the active particles
but only to the overall system, as we discuss further below. Therefore, in this chapter,
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we ask if it is possible to cool down a system of active Brownian particles (ABPs)21,249
in a certain target region (refrigerator, Fig. 5.2a) in terms of their kinetic temperature
without requiring a mechanism to transfer energy to particles in the (spatially separated)
environment.
To achieve this, we exploit the previous finding that ABPs can spontaneously phase

separate into a dense and a dilute phase via MIPS, as explained in Sec. 2.3.72,83,110,259,293
While MIPS behaves similarly to an equilibrium phase transition at large scales in the
overdamped limit,110,111,559,560 in the presence of inertia, as relevant for, e.g., activated
dusty plasmas561,562 or vibrating granular particles,121,154,156,157,229,290,563–566 the coex-
isting phases feature different temperatures, which is, in contrast to clustering in granular
gases caused by inelastic collisions,567–571 a consequence of self propulsion and elastic
collisions.103,123 However, this finding alone is not sufficient to design an active refriger-
ator, because it leads to a dense and cold phase which occurs as randomly distributed
clusters which move, merge, and coarsen, and ultimately lead to a uniform temperature
profile when averaging over many realizations or a long time (Fig. 5.3a).
Thus, to create an active refrigerator, we need to meet the challenge of finding a

mechanism allowing us to initiate MIPS in the targeted cooling domain only and to
localize the dense phase in that region. To achieve this, one naive approach could be to
implement a nonuniform motility572,573 (e.g., through controlling the laser intensity in
light-fueled swimmers)237,574–576 such that particles in the targeted cooling domain show
a (large) Péclet number beyond the critical value for the MIPS phase transition, whereas
particles in the environment feature a (small) sub-critical Péclet number (Fig. 5.2b, regime
(I)). However, this does not work because Pe and density essentially behave inversely
to each other83,293 such that locally increasing Pe decreases the density in the same
spatial region and does not result in a significant temperature difference (Fig. 5.3b).
Remarkably, however, the opposite strategy turns out to work in a carefully selected
portion of the phase diagram (Fig. 5.2b, regime (II)): We find that reducing Pe in the
targeted cooling domain by less than 5% as compared to the environment reduces the
kinetic temperature of the ABPs by two orders of magnitude. This surprising finding
exploits a remarkable difference between the phase diagram of inertial ABPs and the
well-known phase diagram of overdamped ABPs: While MIPS occurs in overdamped ABPs
when both Pe and the density are sufficiently large, in underdamped ABPs, it occurs
at sufficiently large density and intermediate Pe. Thus, when choosing values of Pe
within this intermediate regime in the targeted cooling domain and higher values in
the environment, the density further increases in the former region bringing the system
deeper into the MIPS regime and further away from it outside. That is, inertia is required
twice: First, to induce the two-temperature coexistence and second, to create the required
shape of the phase diagram.
The resulting active refrigerator exemplifies a fundamentally new way to locally cool

down a physical system. Like ordinary refrigerators, it can be used to cool down other
objects. However, as opposed to ordinary cooling devices, active refrigerators use a self-
organized cooling domain such that no isolating walls are required to separate the cooling
domain from its environment. As a consequence, active refrigerators can in principle also
be used as a device to absorb particles from the environment and to store them for a long
time, as we shall see.
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Fig. 5.2 Active refrigerator and schematic phase diagram. a Schematic of the active refrigerator,
which exploits the peculiar shape of the phase diagram schematically shown in panel b. The blue
region represents phase coexistence (MIPS), the white solid line the newly discovered transition
line for inertial ABPs in comparison with the well-known transition line for overdamped ABPs
(dashed line). Boxes and arrows refer to relevant parameter regimes discussed in the text.

5.2 Results

We consider Brownian dynamics simulations of the inertial ABP model in two spatial
dimensions as introduced in Subsec. 2.2.1. In the following, we first briefly discuss
simulation details and the refrigerator setup. Then, we present an exemplary realization
of the refrigerator, and we explore the MIPS phase diagram to identify suitable parameter
regimes for its design. Based on the phase diagram, we develop a design rule and explore
the underlying mechanism in detail. Afterwards, we show how the operational principle
of the refrigerator depends on system parameters such as the system size, the size of the
targeted cooling domain, the Péclet number, and the mass of the active particles. Finally,
we demonstrate the use of an active refrigerator to trap and cool passive tracer particles.

5.2.1 Simulation details

All simulations are performed with LAMMPS255 using the ABP model with inertia (Eqs.
(2.2) and (2.3)). Note that the ABP model does not explicitly describe the self-propulsion
mechanism, the underlying energy source, or how energy is dissipated into the bath.77,249
We develop a thermodynamically consistent picture in Sec. 5.3. Here, we fix m/(γtτp) =
5×10−2, ϵ/(kBTb) = 10, and σ/

√︁
Dt/Dr = 1with the persistence time τp = 1/Dr. We use

the moment of inertia of a rigid sphere, i.e., I = mσ2/10, leading to I/(γrτp) = 5× 10−3.
For simplicity, we choose γt = γr/σ2 (note that in experiments of active granulates,
the Stokes-Einstein relation does not apply)157 and vary Pe and the total area fraction
φtot = Nπσ2/(4A), where A = LxLy, Ly/Lx = 0.05, denotes the area of the simulation
box. The Langevin equations are solved for up to N = 105 particles using periodic
boundary conditions and a time step ∆t/τp = 10−5.
The refrigerator setup is illustrated in Fig. 5.2a: The simulation area is divided into two

regions, in which the particles have different Péclet numbers Pe(xi) = v0(xi)/
√
2DrDt,

i.e., the self-propulsion speed of each particle depends on its position according to

v0(xi) =

{︄
v0,in, −x0 < xi < x0

v0,out, else
, (5.1)

with x0 ≪ Lx. Note that our results are robust with respect to changes of x0, N , m,
v0,in, and v0,out and in particular apply to values of m/(γtτp) used in previous works (Figs.
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Fig. 5.3 Kinetic temperature profiles. Kinetic temperature profiles kBTkin(x) = m⟨|v|2⟩y/2 in
the steady state averaged over the y coordinate and 20 realizations with N = 16 000 particles for
a uniform Pe and b–c nonuniform Pe and parameters shown in the key. The yellow dashed line
is a fit of f(x) = a(2 − tanh(b(x + c)) + tanh(b(x − c)))/2 + d, where a, b, c, and d are free fit
parameters.

5.8–5.11).103,123,124,138,152,577 Initially, all particles are uniformly distributed in the whole
simulation area.

5.2.2 Cooling active particles in a certain spatial region

The goal is now to find Pein and Peout such that (i) MIPS occurs in the targeted cooling
domain only and (ii) the resulting dense phase stays in that region. Notice first, that
when choosing Pein = Peout, in each individual realization, we find different kinetic
temperatures in coexisting phases, but the ensemble-averaged (or time-averaged) kinetic
temperature profile is uniform (Fig. 5.3a). If we choose φtot = 0.5 and Pein > Peout
(regime (I) in Fig. 5.2b) to trigger MIPS in the target domain only, however, we obtain
only a weak temperature difference, which even goes in the wrong direction (Fig. 5.3b).
Here, the particle density compensates the difference in Pe because the residential time of
a particle in a small volume element scales inversely to its speed. This effect is indicated
by the gray arrows in Fig. 5.2b. Note that the arrow length depends on the density of
both phases and thus, is not obvious. More generally, when choosing other combinations
Pein > Peout and density in the left part of the phase diagram (Fig. 5.2b, regime (I)), we do
not observe any relevant cooling in the target domain. Remarkably, however, if we choose
a comparatively low area fraction of φtot = 0.35 and Pein = 105 < Peout = 110 (regime (II)
in Fig. 5.2b), we observe that the system undergoes MIPS exclusively in the target domain
and the dense phase remains in that region (see also Fig. B1 in Appx. B). This results in
a striking cooling effect by more than two orders of magnitude in the cooling domain
from kB⟨T (out)kin ⟩/ϵ ≈ 23.4 to kB⟨T (in)kin ⟩/ϵ ≈ 0.147 (Fig. 5.3c), which is further enhanced
when choosing larger Pe differences and complemented by a significantly lower entropy
production rate in the cooling domain and an inward flow of kinetic energy as discussed
further below.
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5.2.3 Phase diagram of inertial active Brownian particles

To understand the possible parameter choices for constructing active refrigerators in
detail, we now explore the phase diagram of inertial ABPs in the Pe-φtot-plane, which has
remained unknown to date. The key control parameters of the system are ϵ, Pe, and φtot
for fixed m and I. We additionally fix ϵ and vary Pe and φtot. To determine the phase
diagram, we used a quadratic simulation area with periodic boundary conditions and
N = 20 000 particles. We scanned the parameter ranges φtot ∈ [0.1, 0.9] in steps of 0.01 in
the vicinity of to the transition line and in steps of 0.1 otherwise, and Pe ∈ [0, 300] in steps
of 2 for Pe < 60 and in steps of 20 for Pe ≥ 60. We averaged over 3–10 realizations for each
parameter combination resulting in about 4 770 simulations in total. The phase transition
line between the uniform and the coexistence (MIPS) regime was obtained based on the
distribution of the local area fraction p(φloc), which is unimodal in the uniform regime
and bimodal in the coexistence regime.71,72,152 We calculated p(φloc) based on averages
over circles of radius 5σ and 3–10 realizations using Eq. (3.4). The results are exemplarily
shown in Fig. 5.4 for Pe = 100. Interestingly, the resulting transition line shown in Fig. 5.5
does not follow the well-known relation Pe ∝ 1/φtot, which was found in the overdamped
regime.99,259 In striking contrast, we find that Pe ∝ φtot in the large Pe regime (green part
of the transition line in Fig. 5.5). This relation serves as a crucial ingredient to construct
an active refrigerator. Intuitively, it can be understood to occur as a direct consequence
of inertial effects: The particles bounce back when they collide with each other, and the
rebound is much stronger for large Pe than for moderate Pe. Therefore, to slow down
locally, more collisions are necessary. Hence, a larger area fraction is required at larger Pe
to initiate MIPS.

5.2.4 Design rule for active refrigerators

Based on the transition line, we can formulate the following strategy to realize an active
refrigerator: First, we want to initiate MIPS in the target domain. This can be achieved

93



Fig. 5.5 Phase diagram. Phase diagram of N = 20 000 inertial ABPs (background images are
steady-state snapshots) showing parameter regimes in which the system undergoes MIPS and
in which it stays uniform. The solid line shows the transition line obtained from the analysis of
the local packing fraction (cf. Subsec. 5.2.3). In the vicinity of its green part, parameters can be
chosen to construct active refrigerators.

by choosing (Pein, φin) inside the MIPS region of the phase diagram for the target domain.
Second, we do not want the system to undergo MIPS outside the target domain. Hence,
we choose (Peout, φout) outside the coexistence region. Third, we want the particle flux
which emerges as a consequence of choosing two different Pe to bring the system deeper
into the coexistence regime within the target domain but further away from it outside.
Clearly, based on the obtained detailed knowledge of the phase transition line, the first
two criteria can be easily met by fixing a suitable area fraction φin = φout = φtot and
choosing two Péclet numbers on both sides of the transition line. However, the third
criterion can only be met by choosing parameter combinations in the vicinity of the green
marked part of the transition line in Fig. 5.5 (regime (II)). To see this, we will next discuss
the particle current which emerges when choosing two different Pe.

5.2.5 Mechanism: Supportive and counteracting feedback

Let us first recall that the mean speed of an ABP decreases with increasing φtot and
increases with increasing Pe. To show this relation explicitly, we exemplarily evaluated the
dependence of the mean speed ⟨|v|⟩ on the total area fraction φtot for Pe ∈ {10, 20, 30, 40}
(Fig. 5.6). When we have no MIPS (small Pe) at low enough area fractions, a linear
dependence similar to the overdamped regime is observed,83,292,293 which breaks down
at large area fractions. For higher Pe and especially in the MIPS regime, the linear
dependence also breaks down as already found for overdamped ABPs,292 but ⟨|v|⟩ is still
decreasing with increasing φtot. Consequently, when we have two regions with different
Pe, a lower density will emerge in the high-Pe region and a larger one in the low-Pe
region. Therefore, the gray arrows in Fig. 5.2b always point to lower φtot at the high-Pe
point and vice versa.
In regime (I) and more generally, in the vicinity of the white part of the transition

line in Fig. 5.5, we need to choose Pein > Pecritical > Peout to initiate MIPS in the target
domain only. Consequently, the density initially decreases in that region (Fig. 5.7a).
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Fig. 5.7 Mechanism. a Area fraction φ calculated
using Eq. (3.4) in inner and outer regions over time
for regime (I) and (II) (parameters as in Fig. 5.3).
The dashed horizontal line shows the critical area
fraction φcrit. ≈ 0.39 for Pe = 27. A b counteracting
(c supportive) feedback loop decreases (increases)
the particle density in the target region.

Interestingly, the area fraction in the target domain typically decreases to values below
the transition line even for a relatively small Pe difference, which fully prevents MIPS
in the target domain. This surprisingly strong decrease can be viewed as the result of a
positive feedback loop: The decrease of the particle density in the target domain increases
the mean speed of the particles in that region, which further decreases the particle density
in the target domain. Thus, no cooling occurs within that region (but rather the opposite,
see Fig. 5.3). In stark contrast, following the peculiar shape of the phase transition line at
large Pe (Fig. 5.5), the initial particle flux points into the right direction and gives rise
to the enormous cooling effect for only tiny differences in Pe. More specifically, when
choosing Pein < Pecritical < Peout (as in regime (II)), the particles are initially faster in the
environment, which enhances the density inside the target domain where MIPS occurs
and further slows down the particles, which further supports the particle flux from the
environment.

5.2.6 Robustness

To see how robust this mechanism is, we now explore the influence of four system
parameters on the temperature difference between the targeted cooling domain and its
environment. These parameters are the refrigerator size x0, the system size N , the Péclet
number Pe, and the mass m of the active particles.

Role of the refrigerator size

The length x0 defines the size of the targeted cooling domain (cf. Fig. 5.2a). The role of
x0 for our proposed cooling mechanism and the regimes (I) and (II) (see Fig. 5.2b) can
be understood as follows:
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Regime (I): Due to the counteracting feedback loop, the density inside the refrigerator
region decreases below φtot and prevents the particles from undergoing MIPS. Simulta-
neously, the density outside the refrigerator region increases. The steady-state density
in the environment of the refrigerator region strongly depends on the value of x0: For
x0 comparable to the system size Lx, the number of particles which can leave the refrig-
erator region due to the counteracting feedback loop is large and vice versa. Thus, the
steady-state density outside the active refrigerator increases with increasing x0. Due to
the linear dependence of the mean speed on the area fraction, the kinetic temperature
outside the refrigerator decreases with increasing x0 and causes a (weak) cooling of the
environment.

Regime (II): Here, the cooling is triggered by MIPS inside the targeted cooling domain.
For x0 small compared to Lx, the dense cluster fills the whole target domain. Thus,
particles are cooled in the whole cooling domain (black solid line in Fig. 5.8). However, if
x0/Lx ≲ 0.05, the dense cluster might occupy a spatial region larger than the refrigerator
domain. Furthermore, the localization is less effective in this case such that the dense
phase moves around the refrigerator domain (and eventually leaves it partially). As a
consequence, the ensemble-averaged kinetic temperature inside the refrigerator is slightly
larger as shown with the dashed orange line in Fig. 5.8. For x0/Lx ≳ 0.15, the dense
cluster might not fill the whole domain anymore and it will be placed at a random position
inside the domain, which finally decreases the cooling effect when taking the ensemble
average (see, e.g., dash-dotted purple line in Fig. 5.8). In the limit of very large x0,
i.e., x0/Lx → 1, the dense cluster is placed at a random position inside the cooling
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domain causing the ensemble-averaged temperature profile to be approximately uniform
(Fig. 5.3a).

Robustness against changes of the system size

To ensure that our results are not affected by finite-size effects, we performed additional
simulations with N = 32 000, 64 000, and 100 000 particles by keeping the total area
fraction and the ratio x0/Lx constant. As we show in Fig. 5.9, we obtain the same
results for all studied system sizes resulting in a well-defined refrigerator domain with
a temperature difference of about two orders of magnitude. Thus, our setup is robust
against changes of the system size and our observations are not affected by finite-size
effects.

Role of the Péclet number

As long as the requirements of regime (II) (see Fig. 5.2b) are met, the cooling effect is
robust against variations of the choice of Péclet numbers. As we show in Fig. 5.10a, the
(kinetic) temperature difference between the refrigerator domain and its environment is
approximately invariant under variations of ∆Pe = Peout − Pein with Peout = 110 fixed
and Pein varied. Remarkably, increasing ∆Pe decreases the (kinetic) temperature in the
refrigerator domain close to the lower limit of kBTkin/ϵ = 0.1, which is given by the
strength of the translational noise, as shown in Fig. 5.10b. Thus, the active refrigerator
can be realized for very small differences in Péclet numbers but is still stable and even
more efficient when the difference in Pe is increased. As a side remark, notice that even
for choices of ∆Pe (and x0) which result in a left gray arrow in Fig. 5.2b (regime (II))
which is long enough to cross the upper transition line, we observe a significant cooling
effect.
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Role of Inertia

Up to this point, we fixed the value of the mass m/(γtτp) = 5 × 10−2. However, our
results are valid even in a broader range of inertia as demonstrated in Fig. 5.11: While for
m/(γtτp) ≳ 0.09 MIPS breaks down (see Ref. [103] for a detailed discussion of the break
down at large inertia), the temperature difference between the refrigerator domain and
its environment decreases with decreasing inertia and finally vanishes when we are close
to the overdamped regime at m/(γtτp) = 10−5. Although a temperature difference exists
within the red region caused by the different Péclet numbers and different steady-state
densities in the refrigerator domain and its environment, MIPS enhances the cooling
effect significantly. Thus, both activity and inertia are crucial for the construction of an
active refrigerator, and a local maximum of the temperature difference can be observed
for values of m close to the breakdown of MIPS.

5.2.7 Absorbing, trapping, and cooling tracers with active refrigerators

One unique feature of the proposed refrigerators is that they cool down colloidal particles
in a certain region in space without requiring any isolating walls separating the cooling
domain from the environment. Since the kinetic temperature differences are much
larger than the temperature differences in the underlying bath, active refrigerators can
also be used to absorb sufficiently large substances from the environment and to trap
them for times longer than 100 τp (Fig. 5.12). To demonstrate this, we have performed
simulations of inertial ABPs (parameters as in Fig. 5.3c) and additional passive tracer
particles (modeled as passive Brownian particles with the same size σ and mass m as the
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Fig. 5.12 Absorbing, trapping, and cooling tracers with active refrigerators. a Kinetic temper-
ature of passive tracers inside and outside the cooling domain. b Position (inside or outside the
cooling domain) of four exemplary passive tracers over time (parameters as in Fig. 5.3c but with
Pein = Peout = 0 for passive tracers and Npassive/N = 0.02).

ABPs, see Eq. (2.1)), which may represent, e.g., certain toxic substances and are randomly
distributed outside the cooling domain. Remarkably, the active refrigerator systematically
absorbs tracers from the environment and cools them by two orders of magnitude below
the kinetic temperature of tracers outside the refrigerator domain (Fig. 5.12a). Note that
it can take a long time before a tracer enters the cooling domain, but once it is deep inside
this region it stays there for a very long time, as indicated by the exemplary trajectories
in Fig. 5.12b and Fig. B2 in Appx. B.

5.3 Discussion

The active particles considered here are intrinsically out of equilibrium, and hence,
the second law of thermodynamics only applies to the overall system (particle plus
fluid/substrate) but not to the particle subsystem alone. However, the finding of a
persistent temperature gradient for the active particles does of course not contradict
thermodynamics: Heat always flows from hot to cold within the bath (solvent/gas)
which surrounds the active particles. This heat flow persists in the steady state and
is maintained by the (external) energy source driving the system. Therefore, from a
microscopic viewpoint, cooling down the active particles locally without transferring heat
to an external (spatially separated) bath means that heat is transported from the active
particles to the surrounding solvent. The latter has a comparatively large number of
degrees of freedom and would heat up only very little (or very slowly) while the active
particles cool down by orders of magnitude. In the following, we discuss the energy flow
within the surrounding bath and the flow of kinetic energy within the particle subsystem in
detail. The discussion is further complemented with the analysis of the entropy production
rate and the demonstration of a possible thermometer for active particles.

5.3.1 Energy flow

Let us imagine light-powered Janus colloids in a liquid21 or a complex plasma,561,562
where inertia is important. Clearly, in steady state, when neglecting temperature changes
of the particle material, essentially all the energy which is absorbed by the active particles
from the external light source is ultimately transferred to the bath. That is, for a uniform
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Pe (defocused laser), the particles act as identical heat sources for the bath. When
realizing active refrigerators with a slightly nonuniform Pe (Peout ≳ Pein), we obtain
a significantly enhanced particle density within the refrigerator region and hence, a
comparatively hot solvent. Thus, Tb is large in regions where Tkin is low, leading to a
persistent bath-energy-flow from hot to cold (see below). Note that changes in Tb are
small compared to changes in Tkin since the bath has many degrees of freedom. Hence,
in our simulations, we keep Tb constant (as typical for ABP models).21 This argument is
of course not restricted to light-powered swimmers but essentially applies also to, e.g.,
chemically powered swimmers when considering the fuel as an external energy source.
In the following, we discuss the flow of kinetic energy at the level of the active particles
and the energy flow within the bath (liquid/gas) that surrounds the particles in more
detail. As we will see, completely consistent with the basic thermodynamic fact, energy
naturally flows from hot to cold regions both at the level of the active particles and within
the bath. This energy flow persists in steady state and is maintained by the driving (e.g.,
due to a laser).

Bath temperature and bath energy flow

We now use a minimal model for the bath temperature Tb, which explicitly shows that the
energy persistently flows from hot to cold within the bath in the steady state. We begin
with the heat equation

∂Tb
∂t

= α∇2Tb + g(r, t) (5.2)

with bath temperature field Tb(r, t), thermal diffusivity α, and heat source or sink
g(r, t).578–581 Here, for simplicity, we assume that heat diffusion dominates over heat
advection and neglect the latter. Describing each ABP as a point-like heat source in 3D
(which is confined to a 2D interface/substrate) for simplicity with strength proportional to
its self-propulsion speed v0 (reasonable for laser-powered Janus particles for example),575
we can write g(r) = g0

∑︁N
i=1 v0,iδ(r−ri) with self-propulsion speed v0,i of the i-th particle

and a suitable constant g0. Here, we assume that all the energy which is absorbed by an
active particle from the (external) energy source is ultimately transferred to the bath if we
neglect temperature changes of the particle material. The corresponding solution of Eq.
(5.2) in the steady state (∂tTb = 0) can be written in terms of a Green’s function as79,582

Tb(r) =
g0
4πα

N∑︂

i=1

v0,i
|r− ri|

. (5.3)

Based on this minimal model, we estimate the steady-state temperature field of the bath
by inserting the coordinates of the active particles into Eq. (5.3) and averaging over 20
snapshots in the steady state. In Fig. 5.13 we show that for a uniform Pe or a small Pe
difference, regions of high ABP density feature a higher bath temperature (yellow) than
regions of low ABP density (blue, see Fig. 5.13a). Consequently, we observe an energy flow
from the dense region to the dilute region within the bath (Fig. 5.13b), which is related
to the temperature field by Fourier’s law.578–580,583,584 That is, in Fig. 5.13b, we have an
energy current pointing to the left for x < 0 (where −∂xTb < 0) and an energy current
pointing to the right for x > 0 (where −∂xTb > 0). The direction of the bath-energy-flow
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Fig. 5.13 Bath temperature field at small Pe difference. a Estimated steady-state bath tempera-
ture field and b its negative gradient in x direction averaged over the y coordinate for a small Pe
difference Peout − Pein = 5. The color denotes the reduced temperature from dark blue (cold) to
yellow (hot). Parameters: Pein = 105, Peout = 110, ατp/σ2 = 1.0, g0/(Tbσ2) = 10−4.

can also be spatially reverted: For a large Pe difference (Peout ≫ Pein), the bath heats up
stronger outside the refrigerator region because the light absorption grows faster than
the particle density inside, which cannot exceed close packing. Then, heat flows into the
refrigerator region within the bath but still from hot to cold (Fig. 5.14).
While we have discussed the minimal model for a finite number of particles so far, in

the thermodynamic limit, one needs to take into account that heat would be absorbed by
boundaries or would ultimately be radiated off the system, which we need to take into
account to obtain a converged temperature field. A minimal way to achieve convergence
is to introduce a loss term −kdTb with some suitable loss coefficient kd. For convenience,
we also introduce the spatially dependent self-propulsion speed v0(r) and the steady-state
particle density ρ(r). Then, the heat source reads g(r) = g0v0(r)ρ(r) and the steady-state
heat equation reads

0 = α∇2Tb + g(r)− kdTb. (5.4)
It’s solution can again be written in terms of a Green’s function as585

Tb(r) =
g0
4πα

∫︂
d3r ′ v0(r ′)ρ(r ′)

exp

{︃
−
√︂

kd
α |r− r ′|

}︃

|r− r ′| . (5.5)

This shows that the bath temperature is high in regions where the product v0(r ′)ρ(r ′) is
large. That is, for a small Pe difference, Tb is large in regions of high particle density and
hence, according to Fourier’s law, heat is flowing away from such regions within the bath
(Fig. 5.13). In contrast, heat will flow from the dilute to the dense region within the bath
for Peout ≫ Pein (Fig. 5.14).
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Fig. 5.14 Bath temperature field at large Pe difference. a Estimated steady-state bath tempera-
ture field and b its negative gradient in x direction averaged over the y coordinate for a large Pe
difference Peout − Pein = 360. The color denotes the reduced temperature from dark blue (cold) to
yellow (hot). Parameters: Pein = 40, Peout = 400, ατp/σ2 = 1.0, g0/(Tbσ2) = 10−4.

Kinetic temperature gradient and energy flow of the active particles

Next, let us discuss the flow of kinetic energy at the level of the active particles. We
calculate the current density of the kinetic energy at the boundary of the dense phase,
which can be defined by

Jkin(r) =
1

2
m⟨v(r)⟩2ρloc(r)⟨v(r)⟩, (5.6)

where ρloc(r) denotes the (local) particle number density and v(r) the velocity of the
ABPs (averaged over a small area of size ∆x∆y with ∆x = ∆y = 5σ). The result is
demonstrated in Fig. 5.15a: As expected, an inward flow of kinetic energy is observed
at the boundary of the dense phase, which is mainly caused by a local alignment of the
effective self-propulsion force as demonstrated by the coarse-grained polarization field ⟨p̂⟩
shown in Fig. 5.15b. This kind of alignment has already been observed for overdamped
ABPs in a motility gradient.586,587
Furthermore, Fourier’s law can be used to relate the current density of the kinetic

energy to a (kinetic) temperature gradient:

JFourier = −κ∇Tkin, (5.7)

where κ denotes an effective thermal conductivity.583 The temperature gradient must
be compensated by a particle current in the steady state in the presence of a density
gradient530,588 and the condition

−κ∇Tkin − µ∇ρ = 0 (5.8)

with a positive transport coefficient µ and particle density ρ must hold. In particular, the
(kinetic) temperature and density gradients are opposite at the border of the refrigerator
domain and Eq. (5.8) is fulfilled in our simulations once we set µ/κ ≈ 23 (see Fig. 5.16).
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fraction, the vertical black dotted line denotes the border of the refrigerator domain at −x0. All
data are averaged over time in the steady state and over 20 realizations. Parameters: N = 16 000,
φtot = 0.35, Pein = 105, Peout = 110, m/(γtτp) = 5 × 10−2, I/(γrτp) = 5 × 10−3, ϵ/(kBTb) = 10,
σ/

√︁
Dt/Dr = 1, x0/Lx = 0.1.
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Fig. 5.16 Kinetic temperature and particle density gradients. Gradient of the kinetic tem-
perature Tkin and the particle density ρ at the border of the cooling domain in the steady state
(averaged over the y direction and over 20 realizations). The gradient of the particle density
is scaled with a factor µ/κ ≈ 23, and the vertical black dotted line denotes the border of the
refrigerator domain at −x0 (parameters as in Fig. 5.15).
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5.3.2 Entropy production

The entropy production rate measures how strongly detailed balance is broken and thus,
how far the state of a system deviates from an equilibrium state.23,24,194,264,589 Therefore,
entropy production is required to observe a temperature difference between coexisting
phases in a steady state (however, the opposite is not true).103,431 Therefore, we now
explore the entropy production rate of the active particles inside and outside the targeted
cooling domain. The entropy production rate for inertial ABPs can be calculated as
follows: Let Γ denote one trajectory of the system, i.e., the set of positions, velocities, and
orientation angles for all particles over a time interval [0, t]. Furthermore, we denote the
corresponding time-reversed trajectory by Γ̃. The entropy production is defined by25

∆s = ln

[︃
p(Γ)

p(Γ̃)

]︃
, (5.9)

where p(Γ) denotes the probability density of the trajectory Γ, which is given by the
Onsager-Machlup functional.590 For inertial ABPs, we obtain

p(Γ) ∝ exp

⎧
⎨
⎩− γt

4kBTb

N∑︂

i=1

t∫︂

0

dτ
[︃
m

γt
v̇i + vi − v0pi −

1

γt
Fint,i

]︃2
⎫
⎬
⎭ , (5.10)

where Fint,i =
∑︁N

j=1,j ̸=i∇riu (rij) denotes the interaction force due to the WCA potential
with rij = |ri − rj | (see Eq. (2.8)). Following Refs. [25, 432, 438, 591–593], positions,
velocities, orientations, and forces transform under time reversal as r(t) = r(−t), v(t) =
−v(−t), p(t) = p(−t), and Fint(t) = Fint(−t), respectively. Therefore, we finally obtain
the total entropy production

∆s =
1

Dt

N∑︂

i=1

t∫︂

0

dτ
[︃
v0pi · vi +

1

γt
vi · Fint,i −

m

γt
vi · v̇i

]︃
, (5.11)

with Dt = kBTb/γt. Since the last term obeys 2vi · v̇i = ∂tv
2
i and the mean kinetic energy

⟨mv2/2⟩ is constant in the steady state, this term vanishes. Thus, we finally have two
contributions: one from the self propulsion and one from pair interactions. Hence, the
mean entropy production rate is given by

⟨∆ṡ⟩ = 1

NDt

N∑︂

i=1

[︃
v0pi · vi +

1

γt
vi · Fint,i

]︃
. (5.12)

Its time evolution is shown in Fig. 5.17a: Once the steady state is reached, the entropy
production rate in the refrigerator domain is about two orders of magnitude smaller
than in the environment. The distribution of the entropy production rate is narrow and
centered around a small positive value for particles inside the refrigerator and broad for
particles in the environment (Fig. 5.17b). The two contributions are demonstrated in
Fig. 5.17c confirming our observations.
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Fig. 5.17 Entropy production rate. a Mean entropy production rate inside and outside the
refrigerator domain over time. Time-averaged probability density b of the entropy production
rate and c of the entropy production rate separated in the self-propulsion (sp) contribution and
the interaction (int) contribution. Parameters: N = 64 000, φtot = 0.35, Pein = 105, Peout = 110,
m/(γtτp) = 5× 10−2, I/(γrτp) = 5× 10−3, ϵ/(kBTb) = 10, σ/

√︁
Dt/Dr = 1, x0/Lx = 0.1.

5.3.3 Thermometer for Active Particles

Thus far, we defined the temperature of the active particles in terms of their (translational)
kinetic energy. In equilibrium, this kinetic temperature is equal to the thermodynamic
temperature as long as the Hamiltonian of the system is quadratic in the momentum
coordinates (equipartition theorem).504 Note that a temperature based on fluctuation-
dissipation relations (FDRs) can only be defined by generalizing the equilibrium FDR,
which is violated in active systems.106,123,125,170,516,518,594 However, as an alternative
temperature measure, one can construct a “thermometer” that measures an effective
temperature of the active-particle subsystem and follows the idea of the oscillator tem-
perature introduced in Subsec. 4.2.2: We assign a temperature to the active particles
based on passive tracer particles trapped in a harmonic potential Uharm.(r) = kr2/2 of
strength k. These tracer particles are modeled as passive Brownian particles following
Eq. (2.1) with mass mp and diameter σtracer. We choose the effective diameter for the
interaction between the ABPs and the passive tracers as σ̃ = (σ + σtracer)/2. As we will
see, the temperature measured by this thermometer behaves analogously to the kinetic
temperature. Compared to a standard thermometer, which would measure the temper-
ature of the surrounding bath, the tracer-based thermometer exclusively measures the
temperature of the active particle subsystem. In particular, the tracer particles could
be made semi-permeable experimentally as in Refs. [595, 596], so that they essentially
interact only with the active particles. The distribution of tracer displacements ∆x along
the x-axis is expected to be Gaussian and is found to be Gaussian in our simulations
(similar results are obtained for the displacements ∆y along the y axis). Its variance
⟨(∆x− ⟨∆x⟩)2⟩ is used to estimate an effective temperature

kBTAP(k) = k
⟨︂
(∆x− ⟨∆x⟩)2

⟩︂
, (5.13)

of the active particles similar to the oscillator temperature defined in Eq. (4.12), which
generally depends on the strength k of the harmonic potential.545,597–599 Obtaining a
consistent measurable value for TAP is however not completely straight forward as already
discussed in Chap. 4: First, the tracer particles should be small because in the dense
phase, large tracers would be trapped by surrounding active particles. Second, the
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Fig. 5.18 Passive tracer displacement distribution. Displacement distribution of passive tracers
with mass mp/(γtτp) = 1.0 and radius R/σ = 0.005 trapped in a harmonic potential of strength
kσ2/ϵ = 60 inside and outside the cooling domain averaged over 40 realizations. Black dashed
lines are Gaussian fits yielding kBT (in)AP /ϵ ≈ 2.65 and kBT (out)AP /ϵ ≈ 11.03. Parameters: N = 16 000,
φtot = 0.35, Pein = 105, Peout = 110, m/(γtτp) = 5 × 10−2, I/(γrτp) = 5 × 10−3, ϵ/(kBTb) = 10,
σ/

√︁
Dt/Dr = 1, x0/Lx = 0.1.

tracer particles should also be sufficiently heavy such that they do not slow down too
much between subsequent collisions. Third, k has to be large because especially a tracer
particle in the dense phase should only move within the cage of the surrounding active
particles. Accordingly, we use tracer particles with mass mp/(γtτp) = 1.0 and diameter
σtracer = 0.01σ and place one tracer in the middle of the cooling domain and one in the
dilute phase. For an exemplary value kσ2/ϵ = 60 we obtain a low effective temperature
kBT

(in)
AP /ϵ ≈ 2.65 inside the cooling domain and a high temperature kBT (out)AP /ϵ ≈ 11.03

outside the cooling domain (see Fig. 5.18). Importantly, a lower temperature is measured
inside the cooling domain for all values of k. This is consistent with our findings based on
the kinetic temperature.

5.4 Conclusion

In this chapter, we have proposed a mechanism for a refrigerator to cool active particles
in a targeted cooling domain. This mechanism requires inertia not only to create a
temperature difference across coexisting phases but also to induce the peculiar shape
of the MIPS phase transition line, which we exploit to localize the cooling domain in
a predefined region of space. As their key feature, the proposed refrigerators create a
self-organized cooling domain, in which active particles feature a much lower kinetic
temperature compared to their environment. As they do not require any isolating walls
to separate the cooling domain from its environment, the proposed refrigerators prove a
route towards possible future applications, e.g., to trap and absorb large (toxic) molecules
or viruses. Overall, we found that the active-particle subsystem alone does not behave
as one might expect from the laws of thermodynamics but makes the bath pay the
thermodynamic bill for a self-organized cooling domain which does not decay. This
could be further explored within microscopic theories167,600 as well as experiments with
self-propelled particles which feature significant inertia and elastic collisions such as
activated micro-particles in a plasma,561,562 mesoscopic propellers such as vibrated gran-
ular particles,121,154,156,157,229,290,563–565 drones,37,566,601 and mini-robots,602 and dense
animal collections.186,603
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6 Coexisting Temperatures in Mixtures of
Active and Passive Brownian Particles

Fig. 6.1 Boundary of a dense cluster
in a system of overdamped ABPs (blue)
and inertial PBPs (gray) as studied in
Chap. 6. The white arrows denote the
self-propulsion direction of the ABPs.

In the previous chapter, we have shown that tem-
perature differences in inertial ABPs can be used
to design refrigerators for active particles. As a
key ingredient, these refrigerators require that the
ABPs are sufficiently heavy. However, for most ex-
perimental realizations of active particles such as
bacteria, algae, or synthetic Janus colloids, iner-
tial effects are negligible, i.e., they move in the
overdamped limit, and therefore, these systems
alone would not feature different temperatures in
coexisting phases. Hence, we now ask if such tem-
perature differences can be realized in systems that
contain overdamped active particles. In particular,
we consider mixtures of overdamped active and
inertial passive Brownian particles and show that
when they phase separate into a dense and a dilute
phase, the passive particles have different kinetic
temperatures in both phases. Surprisingly, we find
that the dense phase (liquid) cannot only be colder
but also hotter than the dilute phase (gas). The
main content of this chapter is taken from my publication “Motility-Induced Coexistence
of a Hot Liquid and a Cold Gas” published in Nature Communications (2024) under the
CC BY 4.0 license,542 and the majority of this chapter is taken verbatim from it. For this
publication, I helped with the supervision of a related bachelor thesis, performed all final
simulations, analyzed all final simulation data, wrote the initial draft, and created all
figures.

6.1 Introduction

We are all used to the experience that a gas is often hotter than a liquid of the same
material. For example, to evaporate water from a pot in our kitchens, we need to increase
its temperature. Then, at some point, vapor molecules rapidly escape from the liquid and
distribute in the surrounding air. This experience that vapor emerges when increasing the
temperature of a liquid has played a key role throughout human history: It was an essential
ingredient, e.g., for the development of the steam engine,604 and it is key to technological
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applications like distillation techniques605,606 or physical vapor deposition607,608 as well
as to natural spectacles such as geysers.609 The central exception from the experience
that gases are hotter than liquids of the same material occurs when two phases, e.g., a
gas and a liquid, coexist at the same time. Then they share the same temperature. This is
guaranteed by the fundamental laws of statistical mechanics and thermodynamics for all
equilibrium systems, and it also applies to some non-equilibrium systems.103,110,111,559,560
Intuitively, this is plausible since any type of temperature gradient seems to evoke an
energy flow evening out an initial temperature gradient.
Despite this, very recently, it was found that at phase coexistence in certain active

systems consisting of active particles which consume energy from their environment
to propel themselves,21,22,27 the dilute (gas-like) phase is hotter by up to one or two
orders of magnitude compared to the dense (liquid-like) phase in terms of the kinetic
temperature.103,123,165 While this complies with our intuition that gases are often hot-
ter than liquids, it is in stark contrast to the situation in equilibrium systems and the
expectation that any temperature difference should evoke an energy flux that balances
it out. By now, such a temperature difference across coexisting phases has been shown
to occur for a variety of temperature definitions that all coincide in equilibrium. It has
been observed, e.g., for the kinetic temperature,103 the effective temperature123 as well
as for tracer-based temperature definitions165,598 in systems undergoing motility-induced
phase separation (MIPS)53,72,83,92,109–111,119,124,129,152,259,292,443,559,610, i.e., in systems
of particles that self-organize into a dilute (gas) and a coexisting dense (liquid) phase
(see Sec. 2.3 for details). The mechanism underlying the emergence of a temperature
difference across coexisting phases hinges on the consumption of energy at the level of
the active particles when undergoing frequent collisions within the dense phase. This
mechanism crucially requires inertia,103,123,165 whereas overdamped active particles show
the same kinetic temperature in coexisting phases (see also Sec. 2.3). The requirement
of inertia restricts the observation of different coexisting temperatures to a special class
of active systems and precludes its experimental observation in generic microswimmer
experiments.
In this chapter, we explore the possibility to achieve a kinetic temperature difference

across coexisting phases in mixtures of two components that on their own would not
lead to a temperature difference: an ordinary equilibrium system made of inertial passive
Brownian tracer particles such as granular particles or colloidal plasmas and overdamped
active Brownian particles like bacteria or synthetic microswimmers. Our exploration leads
to the following central insights: First, we show that when the mixture undergoes MIPS,
the passive particles in the dense and the dilute phase indeed can have different kinetic
temperatures (and different Maxwell-Boltzmann temperatures, which are defined based
on the width of the velocity distribution; cf. Eq. (4.9)). This demonstrates that kinetic
temperature differences in coexisting phases can occur in a broader class of systems than
what was anticipated so far. Second, we find that not only the gas can be hotter —but,
counterintuitively— also the dense phase can be hotter than the dilute phase. This appears
particularly surprising since the current understanding of the mechanism leading to differ-
ent temperatures across coexisting phases in pure active systems hinges on the idea that
frequent directional changes due to collisions lead to a local loss of kinetic energy (simi-
larly as inelastic collisions do in granular systems).530–535,567–571,611,612 Such collisions are
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more frequent in dense regions suggesting that the dense phase is always colder than the
dilute one, which coincides with all previous observations.103,123,165,530–535,567–571,611,613
We find that this mechanism also applies to the passive tracers of the active-passive mix-
tures studied here in a certain parameter regime in which the tracers are trapped within
dense clusters by surrounding active particles leading to low tracer temperatures in dense
regions analogously as in the single-species case of inertial active particles. However,
surprisingly, we find that this effect can also be reverted in mixtures of active and passive
particles. This is because for strong self-propulsion, the active particles persistently push
passive ones forward even within the dense phase, which can overcompensate the slowing
of the latter ones due to (isotropic) collisions with other particles. Hence, the passive parti-
cles can achieve a higher (kinetic) temperature in the dense phase than in the surrounding
gas, where correlated active-passive motions occur less frequently and last shorter. Our
results pave the route towards the usage of microswimmers such as bacteria,4,52,184,614,615
algae,616,617 or Janus particles and other synthetic microswimmers21,53,181,185,618 for con-
trolling the kinetic temperature profile and hence, the dynamics of fluids and other passive
materials.

6.2 Results

The active and passive particles in the mixtures considered here are modeled with the ABP
and the PBP model as introduced in Subsec. 2.2.1, and the Langevin equations are solved
numerically using BD simulations. In the following, we first discuss the simulation setup
in more detail before we present the main results. Following the latter, we investigate the
underlying mechanism in detail. Finally, we explore the non-equilibrium state diagram
and the influence of particle sizes and inertia on the observed temperature differences.

6.2.1 Simulation details

Now, we study a mixture of active and passive Brownian particles, which are represented
by the ABP and the PBP model as introduced in Eqs. (2.2) and (2.3) as well as Eq. (2.1),
respectively. Similar to the previous chapter, the particles are represented by (slightly
soft) spheres that interact via the WCA potential as defined in Eq. (2.8). The dynamics of
the active particles is made overdamped by choosing a very small mass ma and a small
moment of inertia I = maσ2a/10 (corresponding to a rigid sphere), where σa denotes
the diameter of the active particles. That is, we explicitly account for inertia for the
active particles to have access to a well-defined instantaneous particle velocity, but we
choose a very small mass to stay in the overdamped regime. Notice that using overdamped
Langevin equations instead (ma = 0) essentially yields the same results (Fig. C1, Appx. C).
The passive particles feature a comparatively large mass mp and their velocity vj evolves
according to Eq. (2.1), where j = Na + 1, Na + 2, ..., Na +Np denotes the index of the
passive particles. Na denotes the number of active particles and Np denotes the number of
passive particles. For simplicity, we consider active and passive particles with the same size
and drag coefficients γt but different material density,619 i.e., we choose σa = σp, where
σp denotes the diameter of the passive particles (unless otherwise indicated). However,
note that the key effects which we discuss in the following are similar for particles with
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significantly different sizes and drag coefficients, as we shall see. For these simulations,
the effective diameter for the interaction between the active and passive particles is chosen
as σap = (σa + σp)/2.
In all simulations, we fix ma/(γtτp) = 5 × 10−5, I/(γrτp) = 5 × 10−6 to recover over-

damped dynamics for the active particles.103 For the passive particles, we fix mp/(γtτp) =
5× 10−2 (unless otherwise indicated) with the persistence time τp = 1/Dr. Furthermore,
we set ϵ = 10 kBTb and σa = σp = σ =

√︁
Dt/Dr (unless otherwise indicated), and we

use systems with N = Na + Np particles. Again, we choose γt = γr/σ2 and vary the
Péclet number Pe and the fraction xa = Na/(Na +Np) of the active particles. The total
area fraction φtot = (Na + Np)πσ2/(4A) is set to φtot = 0.5, where A denotes the area
of the simulation box. The Langevin equations (Eqs. (2.2), (2.3), and (2.1)) are solved
numerically in a quadratic box with periodic boundary conditions, with initially uniformly
distributed particle positions, and with a time step ∆t = 10−6 τp using LAMMPS255 first
for a time of 100 τp to reach a steady state and afterward for a time of 900 τp for computing
time averages of observables in the steady state.
As a key observable, we calculate the kinetic temperature as defined in Eq. (4.3) for

passive particles in the dense and the dilute phase separately. We distinguish between
passive particles in the dense and the gas phase by identifying the largest cluster in the
system using the criterion that two particles belong to the same cluster if their distance to
each other is smaller than the cutoff distance rc = 21/6σ of the WCA potential (see also
Subsec. 3.4.6). Then, all particles in the largest cluster are considered as the dense phase
and all other particles as the gas phase (Fig. C2, Appx. C). Finally, the kinetic temperature
of the passive particles in the dense and the gas phase is obtained by averaging over all
passive particles in the dense phase and all passive particles in the gas phase, respectively.

6.2.2 Coexistence of a hot gas and a cold liquid

Let us first consider an initially uniform distribution of an overdamped mixture of active
and passive particles.450,619,620 In our simulations with Péclet number Pe = 100, an area
fraction of φtot = 0.5, and a fraction of xa = 0.6 active particles, we observe that the active
and passive particles aggregate and form persistent clusters despite the fact that they inter-
act purely repulsively. These clusters aremotility induced53,72,83,111,124,129,152,292,443,559,610
and continuously grow (coarsen), ultimately leading to a phase separated state comprising
a dense liquid-like region that coexists with a dilute gas phase (Fig. 6.2a–d), which is
in agreement with previous studies.450,619 As for systems of active overdamped particles
alone,103 we find that the active and passive particles in both phases have the same kinetic
temperature (shown in Fig. 6.2d for the passive particles). Here, following Refs. [103, 163–
165], we define the temperature of the particles based on their kinetic energy as shown in
Subsec. 4.2.1 (Eq. (4.3)), which is well-defined also in non-equilibrium systems.170 Note
that the phenomena which we report occur similarly if using other temperature definitions
such as the Maxwell-Boltzmann temperature defined in Eq. (4.9), as further discussed
below. Let us now explore if the situation found for the overdamped mixture changes
when replacing the overdamped tracers with (heavier) underdamped ones (Fig. 6.2e–h).
Then, at the level of the structures that emerge, not much changes in our simulations: We
still observe the formation of small clusters, which is followed by coarsening, ultimately
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Fig. 6.2 Kinetic temperature and area fraction at coexistence. From left to right we show a
snapshot of the particle positions in the steady state (a, e, and i), the local area fraction of active
(b, f, and j) and passive (c, g, and k) particles, and the coarse-grained kinetic temperature field
of the passive tracer particles (d, h, and l) averaged over time in the steady state, respectively.
Panels i–l are slightly zoomed in and the black and white solid lines are guides to the eye denoting
the border of the dense phase. Parameters: xa = 0.6, Pe = 100, mp/(γtτp) = 5 × 10−5 (a–d);
xa = 0.6, Pe = 100, mp/(γtτp) = 5× 10−2 (e–h); xa = 0.9, Pe = 400, mp/(γtτp) = 5× 10−2 (i–l);
Na +Np = 20 000, φtot = 0.5.

leading to complete phase separation. However, when exploring the kinetic temperature
of the passive particles within the steady state, we find that, remarkably, the passive
particles in the dense phase are colder than in the dilute phase. The temperature ratio
of the two phases is highly significant and is approximately 2.5 (Fig. 6.2h). While this
temperature difference is similar to what has previously been seen in underdamped active
particles103,123,165 and driven granular particles,530–535,567–571,611,613 its emergence in the
present setup is surprising since it is well known that neither the overdamped active
particles103 nor the underdamped tracers alone504,621 would result in a kinetic tempera-
ture difference across coexisting phases. Accordingly, the temperature difference must
arise from the interactions of the two species. To understand this in detail, it first might
be tempting to start from the common understanding of kinetic temperature differences
in granular systems or purely active systems made of inertial ABPs such as Janus colloids
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Fig. 6.3 Velocity distribution. Distribution of the x component of the velocities of the passive
particles a in the uniform state at Pe = 10 and in the MIPS state at Pe = 100 b in the dense
phase and c in the gas phase for different values of xa as given in the key. The black dashed
lines are Gaussian fits showing that the distributions are clearly non-Gaussian in the MIPS state.
Parameters: ma/(γtτp) = 5× 10−5, mp/(γtτp) = 5× 10−2, φtot = 0.5, Na +Np = 20 000.

in a plasma,562 microflyers,157 or beetles at interfaces,603 which relates the emergence
of a temperature difference to an enhanced energy dissipation in the dense phase at the
level of the particles. The latter could occur due to inelastic collisions as for granular
particles531 or due to multiple collisions between which drag forces transfer energy from
the particles to the surrounding liquid as for active particles (cf. Sec. 2.3).103,165 However,
in the present case of a mixture, collisions between active and passive particles have a
different effect in the dense and in the dilute phase. In the dense phase, the motion of the
passive particles is constricted by the surrounding clustered ABPs (see, e.g., Fig. 6.2e),
which accumulate mostly at the border of the clusters, similarly as in completely over-
damped mixtures,450,619 and which cause an effective attraction between the passive
tracers by pushing them together (see also Subsec. 6.3.3).52,203,622 Therefore, the passive
particles cannot move much in the dense phase and have a lower kinetic energy there
compared to the dilute phase. This is also visible in the velocity distribution of the passive
particles, which narrows for increasing xa in the dense phase (Fig. 6.3). In contrast, in
the dilute phase, when active particles collide with passive particles, they can persistently
push passive particles forward and accelerate them such that their kinetic energy increases
above the energy they would have due to the surrounding heat bath. Such a correlated
active-passive dynamics heats up the passive particles in the dilute phase and leads to a
broader velocity distribution at intermediate Pe such as Pe = 100 (see below).

6.2.3 Hot liquid-like droplets in a cold gas

Since the observed temperature differences are activity induced, one might expect that
the temperature gradient further increases when enhancing the self-propulsion speed of
the active particles, i.e., when increasing Pe. Surprisingly, however, in many cases, the
opposite is true. For example, for fractions xa = 0.3, 0.6, or 0.9 of ABPs, we find that the
kinetic temperature difference is largest for some intermediate Pe and then decreases
essentially monotonously with increasing Pe (Fig. 6.4) before it even reverts and we obtain
dense liquid-like droplets that are hotter than the surrounding gas. As time evolves, these
droplets grow (coarsening) leading to larger and larger clusters, ultimately resulting
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in a single hot and dense cluster that persists over time. Exemplarily, we show typical
snapshots for the case Pe = 400, xa = 0.9 in Fig. 6.2i–l (see also Fig. C3, Appx. C). In
panel l, one can clearly see that the liquid in the center of the figure is hotter than the
surrounding gas. Such a coexistence of a hot liquid-like droplet and a cold gas —in terms
of the kinetic temperature— is in stark contrast to what has been found for underdamped
active particles103,123,165 and for driven granular particles.530–535 Note that for very large
liquid-like droplets containing significantly more than about 104 particles, it may happen
that not the entire droplets are hot but only a certain layer at their boundaries. The
emergence of a hot dense droplet also contrasts with the intuitive picture given above
that hinges on the idea that active particles can efficiently push forward and accelerate
passive particles only in low density regions. Therefore, the key question that guides our
explorations in the following is: What is the mechanism allowing for a coexistence of hot
liquid-like droplets and a colder gas?

6.2.4 Mechanism: Correlated active-passive dynamics heats tracers in the
dense phase

We now explore the mechanism underlying our previous observations that in mixtures of
overdamped ABPs and inertial PBPs dense liquid-like droplets are persistently hotter than
the surrounding gas at large Pe. To this end, we first analyze the velocity distribution
of the PBPs in the uniform regime at xa = 0.2 and in the phase-separated regime at
xa = 0.8, which broadens as Pe increases (Fig. 6.5a–c). Strikingly, if and only if the ABPs
are sufficiently fast (Pe ≳ 200), the velocity distribution broadens more in the dense phase
than in the dilute phase (Fig. 6.5b–d). This means that increasing the speed of the ABPs
(i.e., increasing Pe) has a much stronger effect on the speed of the PBPs in the dense
regime (where collisions are more frequent) than in the dilute regime, which ultimately
leads to hot liquid-like droplets. What remains open at this stage is why the velocity
distribution broadens faster for passive particles in the dense regime than in the dilute
regime (only) if the Péclet number is large.
To answer this question, we now explore the power balance of the passive particles in

the dense and the dilute phase. As we will see, this power balance points us to correlations
between active and passive particles which lead to hot liquid-like droplets at large Pe. To
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obtain a power balance equation for the PBPs, we first multiply Eq. (2.1) by vj and take
the ensemble average. With kBTkin = mp⟨v 2

j ⟩/2, this leads to

2γt
mp

kBTkin =
2γt
mp

kBTb + ⟨vj · Fint,j⟩ (6.1)

in the steady state, where Fint,j = −∑︁N
n=1
n̸=j

∇rju (rjn) is the total interaction force on
particle j and rjn = |rj − rn|. If we now compare the power balance for particles in the
dense and in the gas phase, we can express the kinetic temperature difference as (we
omit the index j from now on)

kB
(︂
T
gas
kin − T densekin

)︂
=
mp
2γt

[︁
⟨v · Fint⟩gas − ⟨v · Fint⟩dense

]︁
, (6.2)

where ⟨·⟩dense and ⟨·⟩gas denote the average over all particles in the dense and the gas
phase, respectively. This central equation leads to two important conclusions: First, the
kinetic temperature difference between the dense and the gas phase is proportional to
mp/γt, which vanishes if the PBPs are overdamped in accordance with our simulations (see
Fig. 6.2d and Subsec. 6.2.6). Interestingly, the same proportionality has also been observed
for a single-component system consisting of inertial ABPs, where it has been observed
that the dense phase is always colder than the gas phase.103 Second, the temperature
difference depends on the interaction between the particles given by the term ⟨v · Fint⟩,
which measures how strongly interactions push the PBPs forward in their direction of
motion. From the probability distribution of the individual values v · Fint that contribute
to the mean (Fig. 6.6a,e), we obtain significant differences between the dense and the gas
phase at large values of v · Fint, which determine the sign of the temperature difference:
At intermediate Pe, e.g., Pe = 80 (Fig. 6.6a), large values of v · Fint are more frequent
in the gas phase than in the dense phase (see also Fig. 6.6d). That is, events in which
the interaction force and the velocity of the PBPs are aligned and large (e.g., if an ABP is
pushing a PBP forward)623 are more frequent in the gas phase than in the dense phase,
in which the particles have significantly less space to move and accelerate. In contrast,
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and blue solid line, respectively), where the active particle pushes the passive particle forward
such that v and Fint are aligned and v ·Fint is large. f Exemplary trajectory of a passive particle in
a liquid-like droplet pushed forward as a result of correlated dynamics of the active particles. c,g
Snapshots of the corresponding simulations in the steady state. d,h Corresponding coarse-grained
values of v · Fint. The black and white solid lines in panels c,d,g, and h indicate the border of the
dense phase. Parameters: Pe = 80 and xa = 0.7 (a,c, and d), Pe = 100 and xa = 0.6 (b), Pe = 400
and xa = 0.9 (e–h); other parameters as in Fig. 6.4.

at large Pe, such events are more frequent in the dense phase finally leading to the
coexistence of hot liquid-like droplets with a colder gas (Fig. 6.6e,h). Intuitively, this
is because at very large Pe, ABPs can (collectively) push PBPs forward over relatively
long periods of time even in the dense phase without being stopped by collisions with
other particles due to the strong effective self-propulsion force. These correlated particle
dynamics are exemplarily shown in Fig. 6.6b,f and schematically visualized in Fig. 6.7.
The correlated dynamics of active and passive particles also lead to a long ballistic regime
in the mean-square displacement of the passive particles at intermediate times (similar as
for a completely overdamped mixture)450 before the dynamics of the passive particles
becomes diffusive again (Fig. C5f, Appx. C). The corresponding long-time diffusion
coefficient increases with Pe and xa (Fig. C5c,g, Appx. C). Finally, we can ask why the
temperature difference between the hot liquid-like droplets and the cold gas is larger
at large fraction xa of active particles. This is because at large xa, the active particles
accumulate in the dense phase and induce stronger collective motions in that place when
they are many (see also Fig. C6, Appx. C). Conversely, the fraction of active particles in
the surrounding gas does not depend much on xa, and hence, the collision rate in the gas
does not increase with xa.
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Fig. 6.7 Schematic illustration of the mechanism. a At low Pe, passive particles are trapped in
the dense phase and have no space to speed up. Long correlated trajectories where active particles
push passive ones forward occur only in the dilute phase. Thus, passive particles are faster in
the dilute phase. b At large Pe (fast self-propulsion), long correlated trajectories where active
particles push passive ones forward occur even in the dense phase (and are supported by collective
motion of the active particles). The more frequent collisions in combination with the collective
motion of the ABPs in the dense phase lead to faster PBPs in liquid-like droplets compared to the
surrounding gas.

6.2.5 Non-equilibrium state diagram

The coexistence of hot liquid-like droplets and a cold gas requires sufficiently fast self
propulsion of the ABPs, i.e., large Pe. For this reason, we now examine the parameter
dependence more systematically. Therefore, we explore the non-equilibrium state diagram
by varying Pe ∈ [0, 400] and xa ∈ [0.0, 1.0] at a constant area fraction φtot = 0.5. The
transition line between the uniform and the MIPS regime is obtained by analyzing
the local area fraction calculated from averages over circles of radius R = 5σ (see Eq.
(3.4)). Its distribution is unimodal in the uniform regime and bimodal in the coexistence
regime allowing to distinguish between the uniform and the MIPS regime (Fig. C4, Appx.
C).71,72,152,398 We distinguish between the passive particles in the dense and the dilute
phase in the steady state and calculate their mean kinetic temperature (see Subsec. 6.2.1
and Fig. C2, Appx. C, for details). The system phase separates for large enough fraction
of active particles xa and large enough Pe (Fig. 6.8). At small Pe, the transition line
approximately follows the transition line of a purely overdamped mixture, which reads
x(critical)a ∝ 1/(φtotPe).619 However, at large Pe, the partially underdamped system requires
a larger fraction of active particles to undergo MIPS than the purely overdamped system,
which can be understood as a consequence of inertial effects: At large Pe, the PBPs are
typically fast when they collide with an ABP. Due to their inertia, the PBPs slow down
only gradually and sometimes even push aggregated ABPs apart, which can destroy small
aggregations. This effect is particularly pronounced for large Pe and opposes the onset of
MIPS. Hence, compared to a completely overdamped system, a larger fraction of active
particles is required to initiate MIPS at large Pe.
The different kinetic temperatures in the dense and the dilute phase are indicated

by the colors in Fig. 6.8. It can be seen that the temperature difference between the
dense and the dilute phase strongly depends on both xa and Pe: In accordance to the
mechanism which we have discussed in Subsec. 6.2.4, we find that for intermediate Pe,
the dense phase shows a lower kinetic temperature than the dilute phase with a maximum
temperature difference around (Pe, xa) ≈ (80, 0.7) (red circle in Fig. 6.8). For large Pe
and large xa, the kinetic temperature difference changes its sign, indicated by the squares
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Fig. 6.8 Non-equilibrium state diagram for 2 × 104 particles. a (I) uniform state, (IIa) hot
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for a purely overdamped mixture. Panel b shows a zoomed version of panel a and the red circle
denotes the maximum temperature difference in regime IIa. All data is averaged over a time
interval ∆t = 900 τp in the steady state (parameters as in Fig. 6.4).

in Fig. 6.8a, i.e., hot liquid-like droplets coexist with a cold gas. The latter occurs at
lower Pe for increasing xa because the overall energy transfer from the active to the
passive particles is larger for large xa only in the dense phase, where the active particles
increasingly accumulate as xa increases (see also Figs. C5 and C6, Appx. C). This can
also be seen from the parameter dependence of the kinetic temperature of the passive
particles (Fig. C7, Appx. C): The kinetic temperature increases with increasing xa (and
increasing Pe) in the dense phase but shows a maximum at intermediate xa in the gas
phase, where the fraction of active particles hardly increases when increasing xa beyond
a certain point.

6.2.6 Role of inertia

Inertia of the PBPs is a key ingredient to observe coexisting temperatures. This can be
seen in Fig. 6.9 and from Eq. (6.2): The temperature difference is proportional to the ratio
mp/γt. Thus, in the overdamped limit mp/γt → 0, the temperature difference vanishes
(Fig. 6.2d) because the PBPs react instantaneously to acting forces. Thus, their motion, and
hence, also their kinetic temperature, is dominated by diffusion.103 In contrast, sufficiently
heavy (inertial) PBPs can store the energy gained during collisions with active particles as
kinetic energy such that their kinetic temperature is not determined by diffusion alone,
which is fully consistent with our simulation data and previous literature.103,123,165,530–535
Increasing inertia does also lead to a significant violation of the equipartition theorem
both in the dense and the gas phase (see Subsec. 6.3.2), which indicates that the system
is increasingly far away from equilibrium when increasing inertia of the PBPs.

117



10−4 10−3 10−2

mp/(γtτp)

0.0

0.2

0.4

0.6

(T
(g

)
k
in
−
T

(d
)

k
in

)/
T

(g
)

k
in

Pe = 100

Fig. 6.9 Effect of inertia. Normalized difference of the kinetic temperature of the passive particles
in the dense and in the gas phase as function of their mass mp. Parameters: xa = 0.6, Pe = 100,
ma/(γtτp) = 5× 10−5 (other parameters as in Fig. 6.4).

6.2.7 Role of the particle size

For simplicity, we have considered active and passive particles with the same size and
the same drag coefficients so far but with significantly different material density. Now,
we show that persistent temperature differences also occur when the passive particles
are significantly larger than the active ones. We have varied the size ratio s = σp/σa ∈
{1, 2, 3, 4, 6, 8, 10} keeping σa as well as mp, ma, and φtot fixed. The fraction xa is chosen
such that the area fraction of active particles is approximately 0.5 for small size ratios.
For large size ratios, we kept xa = 0.99 fixed to ensure that enough passive particles
are inside the system. For the drag coefficient of the passive particles, we now choose
γ̃t = σpγt/σa. Our results are exemplarily shown in Fig. 6.10 for Pe = 100. Here, we
observe a persistent kinetic temperature difference between the passive particles in the
dense and the gas phase even for significantly different particle sizes (Fig. 6.10h). This
temperature difference is also visible in the velocity distributions, which are broader in
the gas phase compared to the dense phase (Fig. 6.10e,f). Hence, the observation of a
cold dense phase that coexists with a hotter surrounding gas persists even for large size
ratios. The opposite case, i.e., hot liquid-like droplets coexisting with a colder gas, is also
robust and leads to a temperature difference of T (dense)kin −T (gas)kin ≈ 196.0Tb for σp/σa = 10
at Pe = 400, xa = 0.99, and φtot = 0.70 for example. Notice however, that very large PBPs
tend to accumulate in the dilute phase especially at large Pe making it challenging to
calculate a precise value of the temperature difference. Interestingly, this is in contrast
to purely overdamped mixtures, where large size ratios support the formation of large
passive-particle clusters.52,203
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their kinetic temperature (Eq. (4.3)). e,f Velocity distribution of the passive particles in the dense
and the gas phase, respectively, for different size ratios as indicated in the key. g Mean-square
displacement of the active (dashed lines) and passive (solid lines) particles. h Corresponding
kinetic temperatures of passive particles in the dense and the gas phase. Parameters: Pe = 100,
γ̃t = σpγt/σa, φtot = 0.7, Na + Np = 2 × 104 for σp/σa = 1, 2, 3, 4 and Na + Np = 5 × 104 for
σp/σa = 6, 8, 10 (other parameters as in Fig. 6.4).

6.3 Discussion

The results presented above show that a kinetic temperature difference across coexisting
phases can occur even in equilibrium systems (inertial PBPs) when adding overdamped
self-propelled particles (ABPs). They represent a striking non-equilibrium phenomenon
for collective behavior in active systems and answer the fundamental question if a non-
equilibrium gas can be colder than a coexisting liquid. The temperature difference
between the coexisting phases is maintained by the implicit energy source that drives
the active particles. As a consequence, the system is intrinsically out of equilibrium.
In equilibrium, the equipartition theorem would imply that the kinetic temperature
of the active and passive particles are the same. Here, the emergence of a persisting
temperature difference is directly related to the violation of the equipartition theorem,
which we discuss in Subsec. 6.3.2. To measure the temperature difference, we have used
the kinetic temperature as defined in Eq. (4.3). However, this definition is sensitive to
collective movements of the particles, which are present especially in the dense phase.
Since a suitable temperature definition should measure the fluctuations only as already
discussed in Chap. 4, we discuss the effects of this sensitivity on our results in the following
subsection. In particular, we show that our results are qualitatively the same even for other
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temperature definitions that are not sensitive to collective movements. In the scenario
of a cold liquid coexisting with a hot gas, passive particles are trapped by surrounding
active ones. To discuss this effect in more detail, we calculate the effective force at the
interface between the dense and the dilute phase in Subsec. 6.3.3.

6.3.1 How representative is the kinetic temperature?

So far, following Refs. [103, 163–165], we have used the kinetic energy of the particles to
define a kinetic temperature as a measure for the temperature (cf. Eq. (4.3)). The kinetic
temperature has frequently been used for granular systems173,529–536 and is also well-
defined in non-equilibrium systems.170 In equilibrium, the kinetic temperature is equal to
the thermodynamic temperature.504 In the binary mixtures of active and passive particles
studied in the present chapter, the kinetic temperature of the PBPs, which measures
the velocity fluctuations, has two contributions: one from the thermal Brownian motion
and one originating from collisions with surrounding active and passive particles. From
the previously discussed results, we know that the latter causes the kinetic temperature
difference between PBPs in the dense and the gas phase. Additionally, we analyzed the
velocity distribution of the PBPs in the dense and the gas phase. Its variance exhibits
the same behavior as the kinetic temperature (Fig. 6.5d). Remarkably, the velocity
distributions are approximately Gaussian for sufficiently large Pe (Fig. 6.5a–c). We exploit
this to calculate the Maxwell-Boltzmann temperature TMB as defined in Eq. (4.9). For the
data shown in Fig. 6.5b,c at Pe = 400 we obtain TMB/Tb = 3.6× 102 (liquid-like droplets)
and TMB/Tb = 1.9× 102 (gas). This shows that mixtures of inertial PBPs and overdamped
ABPs can lead to self-organized hot liquid-like droplets that coexist with a colder gas also
in terms of the Maxwell-Boltzmann temperature.
A sensible measure for the temperature of the particles should measure their indepen-

dent motion. Since both the kinetic temperature and the Maxwell-Boltzmann temperature
are sensitive to local collective motion patterns of the particles, we now explore if spatial
velocity correlations of the passive tracer particles are crucial for the emergence of a
temperature difference. For that we calculate the spatial velocity correlation function577

Cv(r) =
⟨v(r) · v(0)⟩

⟨v(0)2⟩ . (6.3)

As shown in Fig. 6.11b, velocity correlations are indeed present between the PBPs in the
dense phase over a significant spatial range indicating that collective motion might strongly
influence the kinetic temperatures. In fact, we find that the mean distance between the
PBPs in the dense phase calculated from a Voronoi tessellation (cf. Subsec. 3.4.3) is given
by approximately 4.6σ for the case shown in Fig. 6.11a–c and therefore, much smaller
than the length scale of the velocity correlations (Fig. 6.11b). To exclude that such
collective motions are required to achieve a coexistence of a hot liquid and a cold gas,
we have performed simulations with a very low fraction of passive particles such that
their typical distances to each other are significantly longer than the velocity correlations
within the dense phase. Concretely, we did a simulation with 105 particles and xa = 0.996
at Pe = 400, which again shows MIPS and a significant temperature difference between
the passive particles in the dense droplets and the surrounding gas (Fig. 6.11d–f and
Tab. 6.1). In contrast to the previous scenario shown in Fig. 6.11a–c, the correlations
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Fig. 6.11 Spatial velocity correlations. a–c Snapshot in the steady state, spatial velocity correla-
tion function of passive particles (Eq. (6.3)), and velocity distribution of passive particles in the
dense and the gas phase, respectively, for a simulation of N = 20 000 particles at xa = 0.90. The
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respectively. d–f Same as a–c but for a simulation of N = 100 000 particles at xa = 0.996. The
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d̄ ≈ 41σ (liquid) and d̄ ≈ 21σ (gas), respectively. All data has been averaged over time in the
steady state. Simulation parameters: Pe = 400 (other parameters as in Fig. 6.4).

between the PBPs are now significantly reduced, and the mean distance between the PBPs
in the dense phase is approximately 41σ, i.e., larger than the length scale of the velocity
correlations (Fig. 6.11e). Hence, in this parameter regime, the temperature calculation
is not much influenced by local collective motion of the PBPs, but remarkably, the PBPs
in the dense phase still have a higher temperature than the PBPs in the gas phase. This
is shown in Fig. 6.11f and in Tab. 6.1. Hence, the coexistence of hot liquid-like droplets
with a colder gas should also occur when using other (fluctuation-based) temperature
definitions that are not sensitive to collective movements of the passive particles.
To explicitly see this, we additionally calculate a relative kinetic temperature by using

the relative velocity of each particle to the mean velocity of particles in the vicinity

kBTkin, rel =
mp
2

⟨︂
(v − ⟨v⟩R)2

⟩︂
, (6.4)

where ⟨v⟩R denotes the mean velocity of all particles in a circle of radius R = 5σ around
the tagged particle. As shown exemplarily in Tab. 6.1, the temperature difference is also
visible for the relative kinetic temperature, and thus, it is not only a consequence of the
observed collective motion but rather a pure effect of the particle interactions. As a result,
the key phenomenon —the coexistence of hot liquid-like droplets and a cold gas— is
robust with respect to the choice of the definition of the particle temperature.
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Tab. 6.1 Temperature definitions. Exemplary temperature values of the passive particles in the
dense and the gas phase obtained from the different temperature definitions. The values for A and
B correspond to the two simulations shown in Fig. 6.11a–c and d–f, respectively. For the latter,
the velocity distribution is not Gaussian, and therefore, TMB cannot be determined.

Tkin/Tb Tkin, rel/Tb TMB/Tb

A (Fig. 6.11a–c) dense 4.4× 102 2.8× 102 4.3× 102

gas 2.2× 102 2.2× 102 1.7× 102

B (Fig. 6.11d–f) dense 6.6× 101 6.2× 101 -
gas 5.0× 101 4.9× 101 -

6.3.2 Violation of the equipartition theorem

The different persisting temperatures are accompanied by a violation of the equipartition
theorem, which holds for classical systems in equilibrium (cf. Sec. 4.2). It states that
each degree of freedom (which is quadratic in the (momentum) coordinates) contributes
on average with kBT/2 to the total energy of the system.504,505 This would imply that
the kinetic temperature of the active and passive particles are the same, which is in fact
the case for a completely overdamped system (Fig. 6.12). In contrast, increasing inertia
leads to a significant violation of the equipartition theorem both in the dense and the gas
phase, as shown in Fig. 6.12. This indicates that the system is increasingly far away from
equilibrium when increasing inertia of the PBPs. Irrespective of this, the equipartition
theorem applies for small Pe, where the dynamics of the system is dominated by thermal
diffusion and the system is near equilibrium (Figs. C8 and C9a,b, Appx. C). However, the
ratio T passivekin /T activekin of the kinetic temperature of the passive and active particles increases
significantly with increasing Pe both in the uniform regime and in the coexistence regime
(Figs. C8 and C9a,b, Appx. C). Note that the ratio T passivekin /T activekin is largest at large xa
(and large Pe) in the dense phase (Figs. C8 and C9a,c, Appx. C), whereas in the dilute
phase, it reaches its maximum at intermediate (small Pe) or small (large Pe) xa (Fig. C9d,
Appx. C), which is in line with our analysis leading to the transition between the scenarios
hot-liquid–cold-gas and hot-gas–cold-liquid.
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Fig. 6.13 Effective force on passive particles. a Snap-
shot of the binary mixture in a thin rectangular box show-
ing MIPS. The box shape ensures that the border of the
dense phase is approximately stationary allowing for long-
time averages. Here, we show an extract from the simu-
lation showing one interface and a part of the dense and
the dilute phase in its vicinity. b Corresponding coarse-
grained force field of the interaction force from the WCA
potential acting on the passive particles. The color and
arrow length represent its strength, the orientation of
the white arrows its direction. A strong effective force is
pushing passive particles towards the dense phase (yel-
low region). Parameters: Pe = 100, xa = 0.6, Lx = 784σ,
Ly = 40σ (other parameters as in Fig. 6.4).

6.3.3 Effective forces on passive particles

At low and intermediate Pe, we have shown that the PBPs are colder in the dense phase
compared to the dilute phase in terms of their kinetic temperature. As described in
Subsec. 6.2.2, the mechanism of this phenomenon is based on a trapping of inertial
PBPs within the dense phase. In contrast, in the dilute phase, ABPs can push the PBPs
forward and persistently speed them up. One key ingredient of this mechanism is that
the PBPs remain trapped and are densely packed within the dense phase. To explore
this in more detail, we have calculated the effective force acting on the PBPs depending
on their position. To this end we made a simulation in a slit geometry in which the
border of the dense phase is approximately stationary and does not move much, which
allows us to perform a long-time average. In particular, we use a simulation box of
length Lx = 784σ and Ly = 40σ. We calculate the interaction force acting on each
passive particle and coarse-grain the forces by using Gaussian-kernel density estimation
using the amep.continuum.gkde function provided by AMEP with Gaussians of width 5.0σ
(bandwidth=5.0). As shown in Fig. 6.13b, the effective force always points to the dense
phase at its border, i.e., the passive particles are pushed inside the dense phase. This
effective force finally ensures that the passive particles remain densely packed within the
dense phase.
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6.4 Conclusion

Mixing overdamped active Brownian particles and inertial passive Brownian particles
leads to a persistent kinetic temperature difference between the dense and the dilute
phase when the system undergoes motility-induced phase separation. This temperature
difference emerges despite the fact that each of the two components on their own would
show a uniform temperature profile. Counterintuitively, the dilute gas-like phase is not
always hotter than the dense liquid-like phase but at large Péclet numbers and fractions
of active particles, hot liquid-like droplets can coexist with a cold gas. This temperature
reversal results from the competition of two effects: The trapping of passive particles in
the dense cluster provokes a cold liquid whereas the emergence of persistent correlated
active-passive particle trajectories in the dense phase primarily heats up the liquid. While
the latter effect has not been known in the literature so far, we have shown that it can even
overcome the previously discussed trapping effect such that active particles collectively
push and heat up passive ones primarily within the dense phase. This leads to the
coexistence of a cold gas and hot liquid-like droplets and shows that a non-equilibrium gas
can be colder than a coexisting liquid. The observed phenomenon is robust with respect
to the choice of definition of particle temperature and particle-size effects at least up to a
size ratio of 10. For even larger size ratios, it can happen that all inertial passive particles
remain in the gas phase, and hence, no temperature difference can be observed. Besides
their conceptual relevance, our results open a route to create a persistent temperature
profile in systems like dusty plasmas or passive granulates by inserting overdamped active
particles like bacteria, algae, or synthetic colloidal microswimmers.
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7 Writing into Water
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Fig. 7.1 Illustration of the experimental
setup (top) and two exemplary writing
results from experiments (mid) and simu-
lations (bottom).

Up to this point, we have discussed self-assembly
phenomena of particles in purely active systems
and in mixtures of active and passive particles
leading to particle clusters that have significantly
different kinetic temperatures compared to the
particles in their environment. This self-assembly
is driven by motility-induced phase separation, a
prime example for non-equilibrium phase separa-
tion in active systems. Self-assembly of particles
can also be achieved in purely passive systems
such as colloidal particles dispersed in a liquid
medium. Here, hydrodynamic effects can lead to
collective particle movements, hydrodynamic in-
teractions, and assembly of particles. In this chap-
ter, we address the question of whether we can
use self-assembly phenomena in colloidal systems
to “write” lines, letters, and complex patterns into
a liquid medium.
As an ancient communication technique, writing is typically based on solid surfaces

on which letters are engraved or on which ink is deposited. However, to write into a
liquid medium, fundamentally different approaches are required. In this chapter, we
demonstrate a new technique to write lines, letters, and complex patterns in water by
assembling lines of colloidal particles. The written lines are fully reconfigurable and do
not require any fixation onto a substrate. The corresponding experiments are based on
an ion-exchange resin bead (pen) that rolls on a substrate across a layer of sedimented
colloidal particles (ink). The pen produces a hydrodynamic flow that collects ink particles
along its trajectory, as illustrated in Fig. 7.1. With sophisticated pen-steering techniques,
we can draw and write with durable, high-contrast lines. We developed a minimal model to
theoretically predict the ink assembly along the trajectory of the pen. Based on numerical
simulations, the model predicts the observed parameter dependence for writing lines
in a liquid medium and exposes the key ingredients required for writing letters into
water: long-ranged (hydrodynamic) attractions between the pen and the ink particles,
low diffusivity, and programmable steering of the pen.
The main content of this chapter is taken from my joint publication with Nadir Möller

“Writing into Water” published in Small (2023) with permission from John Wiley & Sons,
Inc. (Ref. [624], © 2023 The Authors. Small published by Wiley-VCH GmbH.), and
the majority of this chapter is taken verbatim from it. The study has been performed in
collaboration with Nadir Möller and co-workers from the group of Prof. Thomas Palberg
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at Johannes Gutenberg-Universität Mainz. They did all the experimental work. In turn,
I performed all simulations, analyzed all simulation data, and created all figures that
include data from simulations. In the following, the main focus is on the theoretical model
and numerical simulations. The experiments are explained in detail in the PhD thesis of
Nadir Möller in Ref. [625].

7.1 Introduction

Traditional writing techniques comprise carving and engraving as well as printing and
writing with ink. Earliest human drawings date back around 30 000 years, possibly even
much longer.626 As visible language, writing appeared in the Middle East between 3 400
and 2 600 before the Common Era.627,628 These techniques continue to coexist as means
of storing and transporting information, nowadays accompanied by various multimedia
techniques for displaying.629 In addition, various novel techniques extend and complement
these traditional techniques, including (electron) lithography, optical tweezers, direct
printing, or force microscopic manipulation.630–637 Remarkably, the size of glyphs and
letters covers the range from a few hundred meters638 down to the atomic scale639 and
even below.640 In the more classical approaches, one creates a local, line-shaped variation
of the material density in or on an extended substrate acting as background: A line is
carved out or some ink is deposited. A solid substrate stabilizes the density variation by
strong inter-molecular forces, keeping it in shape. The same principle has been applied
to write on surfaces submerged in a fluid. For instance, scanning probe lithography
was used to carve or deposit lines within or onto self-assembled monolayers submerged
in fluids containing suitable chemicals.641,642 In addition, sophisticated micron-sized
structures have been printed using two-photon polymerization.643,644 UV-polymerization
and crosslinking was also used to write on a solid surface within a liquid starting from a
dispersion of reactive chemicals to manufacture patterns with superb thermoresponsive
mechanical properties.645 There are now even commercial scuba diver slates available
for under-water writing on a substrate. Importantly, however, all these approaches still
rely on a substrate (i) for fixing the written structures and (ii) for providing mechanical
support. In contrast, writing into a fluid requires a mechanism that does not depend on
such localization measures. The mechanism must also be intrinsically robust against rapid
line dispersion, which would cause short lifetimes of any drawn lines. In fact, even in a
quiescent (convection-free) fluid, the moving pen would transfer kinetic energy to the
fluid, provoking line dispersion by locally created eddies. While such local eddies are
rather unimportant when the pen is much smaller than the written letters, as, e.g., in
skywriting,646 the creation of fine, durable, and freely-floating lines remains challenging.
In fact, to write fully reconfigurable lines into a liquid at the microscale, an approach
fundamentally different from underwater ink deposition or line carving and a new type
of micro-pen are required. To develop such an approach, we exploit the following ideas.
Incidentally, a mobile fluid offers an alternative way of writing lines by particle transport

towards a prescribed pattern. Imagine to start from a homogeneous density of ink particles
in a quiescent fluid and to use a pen which attracts the ink particles towards itself and/or
its trajectory. If the resulting accretion process is sufficiently efficient and fast as compared
to the subsequent dispersion of the ink particles, an increase of ink density may result
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past the pen and a line is written. As key ingredients, this approach requires a sufficient
range of the particle-transporting attraction, a slow line dispersion, and a suitable way of
pen steering.
To meet the first requirement, directed transport of colloidal particles by chemical,

thermal, or light-intensity gradients can be exploited. A key example are phoretic effects,
where, in general, the imposed gradient leads to a difference in chemical potential along
a particle surface and drives a slip flow of the adjacent fluid along the surface, which,
in turn, evokes directed motion of the particle.647–651 By using a large chemical-loaded
“beacon” falling under gravity, Banerjee et al. created a colloidal over-density evolving
along the trajectory within a few minutes.652 Here, colloidal motion relied on the local
strength and direction of the gradient of electrolyte concentration. While these pioneering
experiments demonstrate the possibility of writing freely buoyant lines within a fluid,
they lack the option of deliberate pen steering.
In this chapter, we demonstrate a generic method for writing lines and letterings into a

liquid rather than onto a solid. This method uses an ion-exchange resin bead (IEX) as fully
steerable micro-pen and exploits the presence of a solid substrate only for line assembly
but not for fixing the ink. Instead, lines are written near a substrate but are not attached to
it yielding freely floating long-lived lines which can be reconfigured and allow us to recycle
the ink for writing new lines before optionally fixing them to the substrate.645,653,654 To
achieve this, we exploit an effective way to transport colloids along extended surfaces: The
IEX (pen) evokes a so-called diffusio-osmotic (DO) flow.647,655,656 Such a flow emerges
because the ion-exchange process induces a nonuniform concentration profile which
causes a stress (force) on the solvent within the interfacial layer of the substrate resulting
in a solvent flow towards the IEX.657 This flow then advects colloidal tracers towards the
IEX, which can be viewed as an effective attraction between the IEX and the tracers.658
In the past, DO flows have been successfully employed with fixed sources,657–663 self-
propelling sources,664,665 and combinations of sources and sinks666 to create centrally
symmetric or asymmetric assemblies of tracer particles at the source. Here, we exploit
this mechanism to dynamically assemble a line of tracer particles (ink) in the wake of
a moving IEX. Once assembled, those tracers will disperse only very slowly by thermal
diffusion in the eddy-free fluid. Moreover, the ongoing pen-induced DO flows focus ink
particles towards the center of the written lines supporting their durability and sharpness.
Our results exemplify a generic pathway for writing and drawing fine, free-floating but

durable lines in a liquid medium. Our approach is modular and allows combinations of
different inks, drives, steering, and, optionally, fixation techniques. This could be used in
the future for structuring liquids with deliberate line-based patterns, decorate and thus
visualize chemical tracers, or create desired initial states for future colloid experiments.
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7.2 Experimental results

The following experimental results have been obtained from Nadir Möller and co-workers
in the group of Prof. Thomas Palberg at Johannes Gutenberg-Universität Mainz. We
discuss the experimental results here to put our numerical results in perspective and
to compare them to experimental data. For completeness, experimental details are
summarized in Appx. D. The experimental methods are explained in detail in Nadir
Möller’s dissertation.625

7.2.1 Experimental setup and writing of straight lines

The experimental approach is sketched in Fig. 7.2a: Samples are placed on a pro-
grammable, motorized stage, allowing for tilting by ϑ and rotation around the optical axis
(OA) by β, and are observed at moderate magnification (10× or 20×) using an inverted
microscope. A dilute suspension of weakly charged, micro-sized silica spheres (Si832,
tracers, T), is left to settle under gravity in a slit cell of 500µm height onto a charged
glass substrate. To this dilute homogeneous monolayer, we add a larger bead of cationic
ion-exchange resin (C-IEX45, IEX). It exchanges residual cations (c ≈ 10−8mol L−1)
for protons, and thus, it acts as mobile proton source (see also Tab. D1 in Appx. D for
details about the used tracers and IEXs).657 The high proton mobility quickly establishes
a large-scale pH-field.667 Tilting the substrate in x-direction by an angle ϑ causes the IEX
to roll straight across the substrate with a velocity vIEX = (gV∆ρ/γ) sinϑ (red arrow in
Fig. 7.2a and Fig. D10, Appx. D).625,668 Here, g is the gravitational acceleration, and V ,
∆ρ, and γ are the volume, density mismatch, and the drag coefficient of the IEX. Tracers
also roll, but at negligibly small velocities. The rolling IEX (pen) remains embedded
in its self-generated, co-moving pH-field,667 and the corresponding DO flow along the
substrate points towards the low pH region (green arrows). It accretes tracers towards
the pen,647,648,664 from where they are expelled to the back leaving a trail of enhanced
ink-particle density. In principle, the same mechanism could be exploited to co-assemble
other small objects, e.g, initiator, (macro-)monomers, and cross-linker molecules, which
could later be used to fix line centers containing high tracer density by ultraviolet (UV)
curing. Note that in all figures regarding experiments, the substrate is tilted such that
IEX and tracers move from right to left.
Samples are studied either in dark field (Fig. 7.2b, see also Fig. D10, Appx. D) or

bright field (Fig. 7.2c). In the stationary state depicted in Fig. 7.2c, the line drawn at
vIEX = 7.7µms−1 first narrows and then broadens again. We identify a line focus (red
arrow) separating an initial formation zone of length lf = vIEXtf (where tf ≈ 60–70 s
denotes the time elapsing between the passage of the IEX and the line focus) from
a subsequent decay zone. To quantify the underlying mechanisms, we show the co-
moving, height averaged pH-field recorded in bright field using 3-channel photometry
in Fig. 7.2d.667,669 The arrows denote the local pH-gradient directions. We observe a
stationary, elliptically distorted, and rather diffuse pH distribution. From this, we calculate
the pH variation at the substrate height following Möller et al. (Fig. 7.2e).667 Note that at
this height, the gradients driving the DO flow are much more pronounced. Figure 7.2f
shows the resulting trajectories of individual tracers relative to the IEX. Tracers in the line
of the IEX motion approach from the front and leave at the back. Tracers to the sides show
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Fig. 7.2 Writing of straight lines. a Sketch of the experimental situation. The sample is placed
on a stage allowing for tilting by ϑ and rotation around the optical axis (OA) by β. The IEX (large
sphere) rolls under gravity (large red arrow) through settled tracer particles (small spheres),
rolling at much smaller speed (short red arrow). Tracers are swept towards the IEX by the co-
moving solvent flow field (green arrows) and are assembled in the back of the IEX into a line of
positive density contrast, which is left behind and disperses slowly by diffusion. b Dark field image
of C-IEX45 rolling on an inclined glass substrate (ϑ = 3.1◦, substrate ζ-potential ζS = −105mV,
vIEX = 7.7µms−1) in a suspension of Si832 at c = 0.1wt% (tracer ζ-potential ζT = −68mV).
Scale bar: 200µm. c The same but in bright field b/w and at c = 0.02wt%. The red arrow denotes
the location of the line focus. d Height averaged pH field in lab coordinates as determined by
3-channel micro-photometry for the experiment shown in panel b. The pH-values are color coded
as indicated in the key. Arrows denote the local gradient direction. e Ground pH-field as derived
from panel d. f Map of tracer approach trajectories in IEX-relative coordinates for C-IEX45 rolling
at vIEX = 1.6µms−1. The red arrow denotes the rolling direction. g Tracer velocity field in lab
coordinates as determined from Particle Image Velocimetry for the situation in panel c. Local
velocities are color coded according to the key.

bent trajectories as they are swept towards the IEX. We depict the instantaneous lateral
solvent flow field in Fig. 7.2g in lab coordinates and with color-coded flow strength. Note
the striking similarity with Fig. 7.2e. Solvent flows towards the IEX but moreover also
towards and along the lateral pH-minimum extending in the wake of the IEX. Due to its
incompressibility, the solvent has to flow upward at the IEX.657
To explore the influence of the IEX speed on line writing, we varied the tilt angle ϑ to

change vIEX (Fig. D10b–d, Appx. D). To good approximation, the IEX speed increases
linearly with sinϑ (Fig. D10a, Appx. D). For IEX speeds in the range of 1.5µms−1 <
vIEX < 11µms−1, straight single lines of long extension are obtained, with maximum
contrast observed for 6µms−1 < vIEX < 10µms−1. At lower vIEX, tracers become trapped
in asymmetric assemblies close to the IEX. At larger vIEX, lines get rather faint and
occasionally a short-lived line split is observed, with the two lines merging by diffusion
(Fig. D10b–d, Appx. D).
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Fig. 7.3 Line evolution past the formation zone. a Dark field images of a line written by C-IEX45
in 0.1wt% Si832 for different times after IEX passage, as indicated. Scale bar: 100µm. b Line
profiles (symbols) in lab coordinates for three selected times as indicated in the key. The solid
lines are fits of Gaussians with an offset corresponding to the background scattering intensity. c
Full Width at Half Maximum (FWHM) as determined from fits to line profiles taken at different
times t after IEX passage. Data are taken after the passage of the line focus. The increase in
linewidth slows with time. d Line profiles in IEX-relative coordinates obtained at different tracer
concentrations and IEX speeds as indicated in the keys. These averages over 50 individual line
profiles sampled over 100µm along the lines were recorded at t = 80 s. All profiles are well
described by fits of a Gaussian with an offset corresponding to the background scattering intensity.
e Scaling analysis: We separately determined the c-dependence and the v-dependence of the
FWHM and scaled the obtained fit results to c = 0.1wt% and vIEX = 8µms−1. Data arrange
on a straight line in this double logarithmic plot. From the fit of a linear function, we obtain
FWHM ∝ tλ with λ = 0.48 ± 0.04, which is very close to the theoretically expected value of
λ = 0.5.

7.2.2 Line stability

For writing complex patterns, lines should be durable. The line in Fig. 7.3a was written in
Si832 at c = 0.1wt% for increasing times after IEX passage, which defines t = 0. Figure
7.3b shows the line profiles fitted by Gaussians, from which we derive the linewidth in
terms of the Full Width at Half Maximum (FWHM). The FWHM increases slowly and at
continually slowing pace with increasing time. Notably, even after some ten minutes, the
linewidth has increased from 40µm to merely 90µm (Fig. 7.3). The relative height of the
maximum has decreased correspondingly by some 50%, and the line remains clearly visible
(Fig. 7.3a). We further studied the linewidth evolution for different tracer concentrations c
and IEX speeds vIEX. The linewidth increases with the tracer concentration and decreases
with the IEX speed. The double logarithmic plot of Fig. 7.3e shows the time-dependent
FWHM scaled to vIEX = 8µms−1 and c = 0.1wt%. Data arrange on a single straight
line of slope 0.48. A systematic analysis suggests an overall scaling of the line width as
FWHM ∝ v−1

IEXc
1/2t1/2 (Fig. D1, Appx. D). This scaling is compatible with accretion at

constant solvent flux and purely diffusive line dispersion.
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7.3 Results from theory and simulations

The line formation results as the net effect of the pH-driven DO flow and typically involves
Péclet numbers of Pe ≈ 10–30. Thus, the line formation is dominated by tracer advection
caused by the DO flow. The Reynold numbers, however, are small (Re ≈ 10−4), i.e., the
flow is dominated by viscous forces and thus, laminar. Furthermore, the ratio of the tracer
mass and drag coefficients is small (mT/γT ≈ 10−7 s), and therefore, the motion of the
tracers is overdamped. Based on these conditions, we now develop a minimal model that
effectively describes the motion of the tracer (ink) particles in the pH-field of the IEX.

7.3.1 Effective attraction

Overall, the DO flow induced by the IEX leads to a directed motion of the tracers towards
the moving IEX, whereas the IEX does not significantly respond to the tracers. Thus, the
effective interaction between the IEX and each tracer can be described as an effective non-
reciprocal attraction exerted by the IEX on the tracers leading to a center of mass motion
of the tracers.658 We extracted the form of these effective interactions from experimentally
measured velocities obtained from video-tracking. We fitted the tracer velocity field
behind the IEX by using different functional forms (Fig. 7.4). The fit was done on the
logarithmic scale using the nonlinear least-squares method. The goodness of each fit is
measured by the normalized mean-squared distance of the fit values fi to the data values
di on the logarithmic scale (mean-squared logarithmic error, MSLE):

MSLE =
∑︂

i

[ln(di)− ln(fi)]
2

ln(di)
. (7.1)

We found that the tracer velocity field at a distance r behind the IEX can be fitted by the
following form:

|v(r)| = c1
rα + c2

. (7.2)

Unlike the other shown fits (dashed-dotted and dotted lines in Fig. 7.4) it also captures
the plateau for r → 0 and leads to a reasonable extrapolation capturing the expected
power-law decay for r → ∞. Finally, it yields a non-reciprocal attractive effective force of
strength Fa(r) = γT|v(r)| reaching out some hundreds of microns (Fig. 7.4 and inset in
Fig. 7.5a). Here, γT denotes the Stokes drag coefficient of the tracers. The parameters c1,
c2, and α are obtained from the nonlinear least-squares fit and are given in the caption of
Fig. 7.5.

7.3.2 Particle model

Based on the effective force, we formulate a minimal (particle-based) model for the tracer
dynamics at prescribed motion of the IEX. Within this model, the tracers are considered
as overdamped Brownian particles with radius aT, which experience a non-reciprocal
effective force Feff(t, r) due to the IEX as obtained from Eq. (7.2) (see also inset of
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Fig. 7.4 Fit comparison. Nonlinear least-squares fits of the velocity field behind the IEX as used to
extract a functional form of the effective interaction between IEX and tracers. The data is fitted on
the logarithmic scale. The three shown fit functions (i)-(iii) have mean-squared logarithmic errors
of MSLE = 0.94, 1.55, 0.81, respectively (see Eq. (7.1)). Since fit (iii) results in an unphysical
behavior at large distances and the simpler two-parameter fit (ii) has a significantly larger error,
we finally used fit (i) which captures both the plateau at small r and the power-law decay at large
r.

Fig. 7.5a) and are subject to thermal diffusion. The position of the i-th tracer particle
evolves in time according to

ṙi(t) =
1

γT

[︃
Feff(t, r)−

N∑︂

j=1
j ̸=i

∇riu(|ri − rj |)
]︃
+
√
2Dξi(t), (7.3)

whereD = kBTb/γT is the diffusion coefficient with bath temperature Tb and ξi(t) denotes
Gaussian white noise with zero mean and unit variance. The optionally considered
(repulsive) pair interaction u(r) between the tracer particles is modeled by a Weeks-
Chandler-Anderson (WCA) potential as defined in Eq. (2.8).256 For simplicity, we assume
that the total effective forceFeff(t, r) is radially symmetric. Clearly, this is a simplification of
the overall DO-flow pattern (Fig. 7.2g and Fig. D4, Appx. D), but, as we shall see, sufficient
to capture the essentials of line writing. Motivated by the experimental observations
(Fig. 7.2), we further neglect the very slow collective tracer motion under gravity and
any diffusio-phoretic motion of tracers originating from DO flows along the surfaces of
the mobile tracers due to the concentration gradient.647 Finally, the total effective force
is given as a sum of a short-ranged repulsion and a long-ranged attractive force Fa (Eq.
(7.2)). The former accounts for steric repulsion between tracers and IEX. The latter
accounts for the net effect of the hydrodynamic flow that is created by the IEX. Following
Eq. (7.2), the attractive part can be written as

Fa(t, r) = − γTc1
(|R(t)|α + c2)

R

|R| , (7.4)

where R(t) = r− rIEX(t) denotes the distance from the IEX located at rIEX(t) and moving
deterministically at constant speed vIEX. The constants c1 and c2 and the exponent
α are determined from the fit to the velocity measurements (Figs. 7.4 and 7.5). The
uncertainties in c1 and c2 are rather large due to the interference of upward advection
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Tab. 7.1 Simulation parameters. Default parameters used for the BD simulations and the
numerical solution of the continuum model if not stated explicitly.

Parameter: Description: Value:
aIEX IEX radius 22.5µm
aT tracer radius 0.412µm
γT tracer drag coefficient 7.854× 10−9 kg s−1

vIEX IEX speed 8.0µms−1

D tracer diffusion coefficient 0.5µm2 s−1

φ tracer packing fraction 0.152

Tb bath temperature 298K

with lateral attraction for |R(t)| < 60µm. We compensate for the neglected asymmetry
of the flow field and the large uncertainties by introducing an ad hoc factor 2 using
c1 ≈ 3.6× 104 µm3 s−1. This leads to the formation of straight, narrow, and durable lines
of increased tracer density (Fig. 7.5b) and results in a quantitative match of experimental
observations and model predictions over an extended parameter range (Fig. 7.7).
The Langevin equations for the tracer dynamics (Eq. (7.3)) are solved numerically with

a deterministically moving IEX at prescribed velocity with and without considering direct
tracer-tracer interactions u(r) to check the effect of the latter on the line formation. The
simulations are performed in two spatial dimensions on an area A = LxLy with periodic
boundary conditions and area fraction φ = Nπa2T/A using LAMMPS.254,255 The repulsive
part of the effective IEX-tracer interaction is modeled by a shifted Yukawa-like potential
of the form

uYuk(|R|) =
{︄
ϵYuk e

−(|R|−∆r)/σYuk
|R|−∆r , |R| > ∆r

∞, else
(7.5)

with strength ϵYuk = 10kBTbσYuk, range σYuk = 1µm, and shift ∆r = aIEX.670 The time
steps are ∆t = 10−4 s for non-interacting tracer particles and ∆t = 10−5 s for repulsively
interacting tracer particles. All other simulation parameters are summarized in Tab. 7.1.

7.3.3 Continuum model

To access larger length and time scales, we additionally formulate an equivalent continuum
model, which describes the probability density p(t,X, Y ) of the (point-like) tracer particles
in presence of the moving IEX. We formulate the corresponding Smoluchowski equation,
which describes the time evolution of the probability density for finding a tracer particle
at a point (t,X, Y ) in space and time, where X and Y denote the coordinates in the
laboratory frame.302 For simplicity, we neglect any direct tracer-tracer interactions here
and set u(r) = 0 in Eq. (7.3). We only account for the net effect of the flow field and for
the volume exclusion between the IEX and the tracers using the total effective force

Feff(t, r) = Fa(t, r) tanh
(︂√︁

(X − vIEXt)2 + Y 2 − aIEX
)︂
, (7.6)
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Fig. 7.5 Modeling of line writing. a Tracer approach speed averaged over an angular region
of 30◦ behind the IEX rolling at vIEX = 1.6µms−1 (blue) in dependence on the radial distance
r to the IEX center. The black dashed line is a nonlinear least-squares fit of Eq. (7.2) returning
c1 = (7.2 ± 2.3) × 104 µm3 s−1, c2 = (5.3 ± 1.9) × 103 µm2, and α = 1.96 ± 0.06. Inset: x-
component of effective forces as used in the continuum model. The attractive part Fa corresponds
to the fit in the main panel (black dashed curve), the full effective force Feff (solid pink curve)
additionally accounts for volume exclusion interactions between the IEX and the tracers (see Eq.
(7.6)). b,c Exemplary results from theoretical modeling based on the effective force shown in
panel a in IEX-relative coordinates. Parameters were chosen to correspond closely to those of
the experiments: 2aIEX = 45µm, D = 0.5µm2 s−1, γT = 7.85 × 10−9 kg s−1, vIEX = 8.0µms−1

(b) and vIEX = 8.6µms−1 (c) (see also Tab. 7.1). b Snapshot taken at t = 100 s from a BD
simulation starting from N = 112 200 uniformly distributed point-like tracers. The line profile
(left) is averaged over the interval x ∈ [−550µm,−500µm]. c Numerical solution of Eq. (7.8)
with initially uniform probability density p0 = 5 × 10−6 µm2 after t = 2000 s. The probability
density p(·) = p(2000 s, x, y) (right) and the line profile at x = −550µm (left) are color-coded as
indicated in the key.

with r = (X,Y ) and IEX-radius aIEX (see inset of Fig. 7.5a). We assume that the IEX
moves along the x-axis at a constant speed vIEX > 0. We transformed the corresponding
Smoluchowski equation for the probability density p(t,X, Y ) (we omit the arguments for
clarity)

∂p

∂t
= − 1

γT
∇ · (Feffp) +D∇2p (7.7)

into the coordinate frame of the IEX by applying the Galilei transformation x := X−vIEXt,
y := Y . The transformed equation reads

∂p̃

∂t
= − 1

γT
∇ · (Feffp̃) + vIEX

∂p̃

∂x
+D

(︃
∂2p̃

∂x2
+
∂2p̃

∂y2

)︃
, (7.8)

where now p̃ = p(t, x, y). We omit the tilde throughout this work. Again, D = kBTb/γT
denotes the tracer diffusion coefficient.
We solve Eq. (7.8) numerically in two spatial dimensions on a rectangular area of size

(Lx,Ly) = (1000µm, 200µm) with x ∈ [−950µm, 50µm] and y ∈ [−100µm, 100µm].
The initial condition is given by a uniform distribution p(0, x, y) = 1/(LxLy). We use
Dirichlet boundary conditions at the right, top, and bottom boundary with p(t, 50µm, y) =
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Fig. 7.6 Analysis of line shapes. Exemplary line profiles obtained in the continuum model
(Eq. (7.8)) at t = 2000 s and x = −950µm with D = 0.5µm2 s−1. The dashed lines denote
the corresponding fits of single or double Gaussians. a vIEX = 3.63µms−1 (inverted line), b
vIEX = 8.6µms−1 (single line), and c vIEX = 16.4µms−1 (split line). Note the pronounced
differences in line amplitudes. All other parameters are given in Tab. 7.1.

p(t, x,±100µm) = 1/(LxLy) and no-flux boundary conditions at the left boundary, i.e.,
∂xp(t, x, y)|x=−950µm = 0. Finally, the Smoluchowski equation is solved with the ND-
Solve method from Mathematica671 by using the method of lines,672,673 finite element
discretization,674 and the parameters displayed in Tab. 7.1. As shown in Fig. 7.5c, our
continuum model also leads to the formation of a straight and narrow line of increased
probability density. Note from the profile in Fig. 7.5c that the lines are embedded within a
region of marginally reduced tracer density reflecting the extension of the accretion zone.
As in the experiments, this depleted accretion region serves to enhance the contrast of
the main line. Our observations demonstrate that the main ingredients of line formation
are simple and generic: Writing into water requires a quick, medium-range ink-transport
towards the moving pen caused by an effective hydrodynamic attraction of ink particles
towards the IEX and a slow, diffusive line decay. Thus, we term this novel type of writing
a line of increased density in water hydrodynamic writing (HDW).

7.3.4 State diagram

Using the continuum model (Eq. (7.8)), we systematically varied the IEX speed vIEX
(equivalent to changing the tilt angle ϑ in the experiment) and the tracer diffusion
constant D (equivalent to changing the tracer particle size or the bath temperature). To
discriminate between different line types, we fitted a Gaussian or a sum of two Gaussians
to the line profiles of the probability density taken in the stationary state after t = 2000 s
at distance x = −950µm behind the IEX (Fig. 7.6). We observed three different line
types: single line, split line, and inverted line (Fig. 7.7a). Consequently, the state diagram
in the vIEX-D-plane shows three distinct regions (Fig. 7.7b).
Pronounced single lines are obtained at intermediate velocities (color-coded region with

state points I and II in Fig. 7.7b). We define a line sharpness pmax/
√︁
Var(y), where pmax

denotes the maximum of the fitted Gaussian line profile and
√︁
Var(y) denotes its standard

deviation. Line sharpness, and thus, contrast, is largest at small D. With increasing
diffusivity, sharpness decreases and lines get continuously broader and fainter. Towards
larger velocities, the line formation length expands and results in a split line (III). The
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simulated profile at x = −950µm now shows two maxima, which eventually merge at
larger distances x by diffusive broadening. The regime of split line formation is thus
located in the lower right corner of the state diagram (low D, large vIEX).
Interestingly, the model further reveals a third line type at low velocities. Due to the low

IEX velocity, a substantial amount of attracted tracers is trapped and no line of positive
density contrast is written. Instead, in the steady state, a stationary cloud of tracers
forms in the vicinity of the IEX due to a balance between trapping and diffusion, which
is also observed in the experiments (example IV in Fig. 7.7c). Accretion of tracers from
the IEX surroundings leads to a broad shallow minimum in the line profile, i.e., the line
contrast is inverted (Fig. 7.6a and example IV in Fig. 7.7a). The width of the minimum
mirrors the y-extension of the range of attraction. Note that such a shallow depletion
zone is also present at larger IEX velocities in the single-line regime (HDW), but as in the
experiments, it is masked by a much more pronounced HDW line and increases the line
contrast (Fig. 7.6b and Fig. D10c, Appx. D).
Overall, also lines written in the model vary considerably in quality but not all appear

to be useful for actual writing. In practice, all inverted lines written at low vIEX remain
too faint. Additionally, for increasing velocities, the flux of incoming tracers is reduced
and becomes too small for providing a large density contrast for the inverted line profile.
Within all regimes, high diffusivities lead to a significant decrease of the line sharpness
resulting again in lines unsuitable for actual writing. However, our model clearly predicts
that single narrow lines of large density contrast are obtained for low diffusivity and
intermediate IEX speed, exactly as observed in the experiments (cf. orange/yellow region
in Fig. 7.7b as compared to Fig. 7.2b,c and Fig. D10b–d, Appx. D).
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Fig. 7.7 State diagram. a Snapshots (right) and line profiles at x = −950µm (left) obtained from the numerical solution of Eq. (7.8) in the
stationary state at t = 2000 s. The representative examples are denoted by Roman numerals: narrow single line (I), broad single line (II), split
line (III), and inverted line (IV). Colors encode the probability density p(2 000 s, x, y) as given in the key. b State diagram in the vIEX-D-plane
(other parameters as before, see also Tab. 7.1). Symbols denote the three principal line types as discriminated by the line profiles at x = −950µm:
inverted line (squares), split line (diamonds), and single line (color-filled circles). The state points corresponding to the examples shown in panel
a are marked by blue arrows and Roman numerals. For single lines, colors encode the line sharpness pmax/

√︁
Var(y), where pmax denotes the

maximum of the fitted Gaussian line profile and
√︁
Var(y) denotes its standard deviation. c Representative experimental examples observed in

the three regions of the state diagram: narrow single line written with 0.10wt% Si832 at vIEX = 9.2µms−1 (I), broad single line written with
0.24wt% Si444 at vIEX = 8.2µms−1 (II), split line written with 0.10wt% Si832 at vIEX = 12.0µms−1 (III), and a line in the region of inverted
lines shown in panel b, here written with 0.10wt% Si2.1 at very low vIEX ≈ 0.2µms−1 (IV). Scale bars: 250µm.
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7.4 Discussion

Having explored the experimental and theoretical aspects of line writing by assembling
colloidal particles on the trajectory of an IEX, we now discuss specific challenges, graphical
applications, and some further details of the theoretical model. Again, all experimental
results have been obtained by Nadir Möller and co-workers.

7.4.1 Graphical applications

Let us first discuss the question whether the presented approach can be used for actual
writing. In the experiments, we again use weakly charged tracers and moderate writing
velocities, which is essential for proceeding beyond straight lines by combining line writing
with steering. We controlled the line orientation by using a manually programmable,
motorized stage, allowing for sequences of changes in tilt direction β and angle ϑ. In
the BD simulations, we simply prescribed IEX speeds and trajectories. Figure 7.8 shows
representative examples, in which we successfully produced some simple patterns and
symbols (Fig. 7.8a–f), drew complex patterns with multiple line crossings (Fig. 7.8g) or
wrote text (Fig. 7.8h,i). Let us now discuss some practical issues encountered during
their production. Downscaling is addressed for the example of a pattern with rectangular
turns in Fig. 7.8a–c. The right angles and straight intervals start washing out when
the length of straights approaches three to two times the line thickness. Another issue
is line-shifting. In the simulation run of Fig. 7.8d, we compare the written line to the
prescribed sinusoidal IEX trajectory. Due to the relatively long-ranged tracer attraction
(Fig. 7.5a) and the continuing DO flows towards the back of the IEX (Fig. 7.2g), the
written line is dragged along in the overall propulsion direction. This results in a shift of
the final line as compared to the prescribed IEX trajectory. The intended sinusoidal shape,
however, is fully retained. This is different for the case of line crossing. For instance, in
the simulation run of Fig. 7.8e, the initial upward stroke of the lower-case Greek letter φ
is bent to the left (see also Fig. 7.9). In addition, the freshly written line shows a local
enhancement of line thickness (blob) also shifting in the propagation direction of the IEX.
By contrast to blobbing by transient sticking of the IEX to the substrate (Fig. D12, Appx. D),
blobbing upon line crossing is systematic. However, while it is kept at bay by high writing
velocities (vIEX ≥ 10µms−1s), line bending is not. The inset of Fig. 7.8e shows a line
crossing experiment at large vIEX. Here, the duration of tracer attraction from the crossed
high-density region is reduced, but the DO flows are retained, and the line is still bent. In
principle, line crossing can be avoided using multiple pens on merely touching trajectories
(Fig. 7.8f). Where it could not be avoided, we performed a stepwise adjustment of
the stage tilting sequence to compensate for the observed and anticipated deviations
from the desired line path (Fig. D11, Appx. D). With some experience, even complex
patterns with multiple line crossings under desired angles, negligible line-bending, and
little blobbing can be reproducibly drawn (Fig. 7.8g). Note that the base of the “house”
shown in Fig. 7.8g is merely 500µm and the height is about 850µm, i.e., the house´s
size is on the order of a single letter in this text. The figure was drawn within about
five minutes at an IEX speed of approximately 15µms−1. It retained its characteristic
shape for more than 15 minutes. Writing of individual letters is less difficult. Picking up a
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Fig. 7.8 Examples of writing and drawing. Experiments have been done with C-IEX45 in Si832
and BD simulations with parameters as given in Tab. 7.1. All scale bars: 250µm. a–c Successive
downscaling of pattern size. The length of the horizontals is 500µm (a), 350µm (b), and 175µm
(c). d Sinusoidal line written in the BD simulation with parameters close to typical experimental
ones (Tab. 7.1). Note the slight, leftward shift of the written line with respect to the IEX trajectory
(solid yellow line). e Lower case Greek letter φ with loop and line crossing. Note the bending
of the crossed line and the formation of a region of enhanced density along the freshly written
line (dashed circle). Inset: Writing at high IEX speed of vIEX = 10µms−1 reduces blobbing but
retains line bending. f Avoiding blob formation upon line crossing by mere line touching. g
One-line drawing of a complex pattern with rectangular and 45◦ angles as well as multiple line
crossings. The inset shows the intended result (“Das Haus vom Nikolaus”). h Initials of the
Johannes Gutenberg University, Mainz, written with C-IEX45 in 0.2wt% Si832. i Initials of the
Technical University of Darmstadt written in a BD simulation with vIEX = 12µms−1.

certain tradition,634,635,637,639,640,645 we display the affiliation initials of the experimental
and theoretical group in Fig. 7.8h and i, respectively.

7.4.2 Fine tuning

So far, we concentrated on writing of and with durable, narrow lines of enhanced tracer
density (positive contrast). This was facilitated by rolling C-IEX45 at speeds of vIEX =
6–10µms−1 through weakly charged Si832 (ζT = −68mV) at 0.1–0.15wt% on native
substrates (ζS = −105mV). One may, however, wish to fine-tune the graphical appearance
of the written lines. To this end, we exploit the modularity of our approach allowing
tests of alternative inks, pens, and pen-drives. These additional and complementary
experiments are described in detail in Appx. D. In short, tracers of larger or smaller size
can be used to alter the line graininess and contrast (Fig. D5). Replacing weakly charged
tracers by highly charged tracers introduces additional diffusio-phoretic tracer motion.

139



a b c

Fig. 7.9 Exemplary patterns drawn in the BD simulation. Scale bar: 250µm. a Spiral. b
Clockwise loop with line crossing. c The same as in panel b but crossing starting after an additional
left turn. Note the blob just past the crossing and the slight deformation of the already drawn line.
Simulation parameters are given in Tab. 7.1.

This alters the shape of the formation zone but leaves the decay zone unaffected (Fig. D6).
The driving pH gradient can be manipulated by using different pen types. Removing
the pH gradient using chemically inert pens produces poor lines, while doubling the pH
gradient using a pair of IEX yields thicker lines with weakly charged tracers and split lines
with highly charged tracers (Figs. D7 and D3). Replacing the anionic by a cationic IEX
switches the sign of the pH gradient. Tracers are then repelled and the IEX carves a tracer
free line into the background (negative contrast, Fig. D8). Finally, we also tested different
pen-driving mechanisms such as modular microswimmers self-assembling on horizontal
substrates. These microswimmers propel autonomously and steer by more or less random
rearrangements of the assembled tracers. Lacking a directed steering, microswimmers
write curved lines of otherwise good quality (Fig. D9).

7.4.3 Accuracy of writing patterns

In the simulations, we prescribe IEX trajectories within the simulation box. Written lines
follow these quite accurately, as illustrated in Fig. 7.9. Two small, unavoidable deviations
are, however, obvious: First, tracers assembled in the line past the IEX are drawn towards
the IEX at its actual position. This originates from the long-ranged nature of the attraction.
It leads to an inward offset in the written spiral as compared to the prescribed trajectory
(Fig. 7.9a), a right shift in the line crossing event shown in Fig. 7.9b, and a “short-cutting”
of turns with small radius of curvature (Fig. 7.9c). In principle, all these effects can be
compensated for by appropriate anticipation and fine-tuning of the prescribed trajectory.
The second effect is a local increase in line strength and density upon line crossing events
(Fig. 7.9b and c). This local effect occurs because the IEX acts on the already enhanced
density in the immediate environment. Depending on the IEX speed, the corresponding
short over-dense region (blob) is shifted in the direction of the effective attraction. The
blob occurs past the crossing point. This effect cannot be cured but gets less pronounced
for larger velocities.
The line shifts due to attraction are even more pronounced in experiments and increase

with increasing substrate charge leading to more pronounced DO flows towards the IEX
(cf. the solvent flow trajectories shown in Fig. D4). Blob formation is also present but
can be minimized for writing with high IEX velocities vIEX ≥ 10µms−1. Yet another
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effect becomes prominent in experiments attempting to draw complex figures. This is
highlighted by yellow encircling in Fig. D11. If the pen moves on an already drawn line,
its velocity is altered. If it moves against the former propagation direction, it is slowed.
This shortens the written line as compared to the programmed trajectory. Moving in the
opposite direction, its velocity is increased, and the written line becomes more extended
than programmed. Lines are also lengthened if they approach an already written line
from an angle. Likewise, lines written such as to pass in the immediate vicinity of an
already finished line partly get shifted towards the latter. Together, this tends to wreck
figures with many line crossings. However, such effects can be accommodated by variation
of the programmed stage tilting sequence. Going from Fig. D11a–d, we successively
adapted the programmed trajectory to make the drawn figure approach the desired one
(inset in Fig. D11d). While somewhat tedious, this step-by-step procedure is nevertheless
successful. In the future, it will be improved by replacing the manual programming by
some learning package based on image processing feedback.
Apart from blob formation upon line-crossing, occasionally, we observe an additional

type of blob formation. It is caused by a transient sticking of the IEX to the substrate. This
process of blob formation is followed in a series of images in Fig. D12. The blob is mainly
formed by the trail catching up with the now-stuck IEX and further tracer accretion at the
fixed IEX. Note that during sticking, the tracers slowly overtake the IEX. After detachment,
the IEX velocity initially is slower than the final velocity. This is attributed to IEX friction
with the locally enhanced tracer density but may further be related to altered DO flows.
By contrast to blobbing upon line crossing, this type is not systematic. It therefore may be
an issue already in straight line writing. Blobbing by transient sticking is most prominent
for low-charge substrates and elevated tracer concentrations. It is also more frequent at
lower velocities. Blob formation events are uncorrelated, and the resulting line appears to
be blotted (Fig. D12d). A regular blobbing pattern might be introduced for decorative
purposes by transiently trapping the IEX by an optical tweezer for example.

7.4.4 Reaching the stationary state

Let us now discuss how long it takes to reach a steady-state line in our continuummodel. In
the numerical calculations, the IEX is fixed at x = 0 in a homogeneous background of tracer
particles at t = 0 moving at constant speed vIEX (cf. Galilei transform in Subsec. 7.3.3). In
Fig. 7.10, we show the temporal evolution of the line amplitude in terms of the central
probability density p(t, x, 0) on the path of the IEX at certain distances behind the IEX. In
Fig. 7.10a–c, we fixed the diffusion coefficient D = 0.5µm2 s−1 and varied the IEX speed
vIEX. We obtain two types of curves reaching a stationary state within the investigated
time span of 2 000 s. At large vIEX, a stationary state for p is reached within 100–400 s
with a trivial dependence on x. The line amplitude plateaus well above the homogeneous
background. This corresponds to the single-line formation regime of Fig. 7.7. At small vIEX,
a stationary state for p is reached later after some 500–700 s. Notably, the line amplitude
reaches a plateau below the homogeneous background. This corresponds to the inverted
line formation regime of Fig. 7.7. Interestingly, in both types of stationary state, the
plateau amplitude decreases with increasing vIEX. We attribute this to the smaller number
of attracted and/or trapped tracer particles (Fig. D1, Appx. D). For speeds vIEX in the
transition region between inverted and single lines, the time to reach a stationary state
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Fig. 7.10 Time evolution of the line amplitude. Central probability density p(t < 2 000 s, x, 0) at
different distances x from the IEX (values are given in the panels) as obtained from the numerical
solution of Eq. (7.8). The solid lines are fits of Eq. (7.9) to the data. a–c Data obtained for fixed
diffusion constant D = 0.5µm2 s−1 and different IEX speeds vIEX (color-coded according to the
key). d–f Data obtained for fixed IEX speed vIEX = 8.6µms−1 and different diffusion coefficients
D (color-coded according to the key). Other parameters as given in Tab. 7.1.

significantly increases because the IEX traps a large amount of tracer particles, which
can later escape the trapping region if the number of trapped tracers is large enough.
In Fig. 7.10d–f, we fixed the IEX speed to vIEX = 8.6µms−1 and varied the diffusion
coefficient. The chosen x are located past the line focus. The plateau amplitude decreases
for increasing D.
To further study the line amplitude relaxation, we fitted the Gompertz equation

p(t) = p0 exp

{︃
− exp

[︃
− t−∆t

τ

]︃}︃
+ poffset (7.9)

with stationary central amplitude p0, time delay ∆t, amplitude relaxation time τ , and
background amplitude poffset.675 The fit results are shown in Fig. 7.11. The amplitude
relaxation time linearly decreases with the distance x to the IEX (Fig. 7.11a). For a typical
distance of 500µm past the IEX, corresponding approximately to the dimension of a
single letter, the stationary state is reached with an amplitude relaxation time of τ ≈ 30 s.
Furthermore, the stationary central amplitude shows a power-law dependence on the
distance x (Fig. 7.11b) caused by diffusion processes. The time delay ∆t of the amplitude
relaxation increases linearly with x with a slope equal to the IEX speed (Fig. 7.11c). The
time to reach the stationary state hardly changes with varying D and only shows a weak
logarithmic dependence (Fig. 7.11d). However, it decreases with increasing IEX speed
(Fig. 7.11f). The stationary central amplitude decreases with both the diffusion coefficient
and the IEX speed (Fig. 7.11e and g).
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Fig. 7.11 Fit parameters. Analysis of the time evolution of the line amplitude as obtained from
the fits shown in Fig. 7.10. Black dots correspond to the respective fit parameters, grey dashed
lines to fits as given in the key. a Amplitude relaxation time τ , b stationary central amplitude
p0, and c time delay ∆t over distance x to the IEX for D = 0.5µm2 s−1 and vIEX = 8.6µms−1. d
Amplitude relaxation time τ and e stationary central amplitude p0 as function of the diffusion
coefficient for fixed vIEX = 8.6µms−1 at x = −950µm. f Amplitude relaxation time τ and g
stationary central amplitude p0 as function of vIEX for fixed D = 0.5µm2 s−1 at x = −950µm.
The critical IEX velocity vIEX,crit. denotes the transition point from inverted to single lines. Vertical
dotted lines denote typical values as used in the experiments.

7.4.5 Line formation zone and trail formation at early times

Let us now take a closer look at the line-formation zone close to the IEX. At very small
distances to the IEX, a split line is observed in the model that merges to a single Gaussian-
shaped line at intermediate distances (Fig. 7.12a-c). Past the merging distance, the
line first narrows further but eventually broadens as the tracer attraction vanishes and
diffusion begins to dominate the tracer motion. The location of this line focus, which
separates the line formation zone from the decay zone, defines the line formation length lf.
The latter can be accurately determined via the x-dependent standard deviation

√︁
Var(y)

of Gaussians fitted to the line profiles observed at different IEX speeds (Fig. 7.12). The
distance at which the line shows a minimum standard deviation is identified as the line
formation length (dashed lines in Fig. 7.12d). The line formation length increases with
increasing vIEX. For vIEX = 8.6µms−1, we find lf = 90µm in good agreement with the
experimental observations.
Since our minimal model is solely based on the long-range tracer transport towards the

IEX and restricted to two dimensions, it is of course not capable to reproduce the detailed
tracer motion close to the IEX within the formation zone. In Fig. 7.13, we show the trail
formation in the BD simulation with point-like tracer particles at early times. Due to the
constriction of the tracer motion to two spatial dimensions, a small layer of tracer particles
accumulates at the front and sides of the IEX. Interestingly however, the trail formation
behind the IEX is qualitatively similar to the experimental observations. Accumulation
at the front is not seen in the experiments because tracer particles can either be swept
further underneath the IEX sphere or escape this region by moving along the third spatial
dimension due to strong upward solvent flows in the vicinity of the IEX.
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Fig. 7.12 Determination of the line formation length. a–c Line profiles for vIEX = 8.6µms−1

and D = 0.5µm2 s−1 and d line width for D = 0.5µm2 s−1 and different vIEX obtained from the
numerical solution of Eq. (7.8) as a function of the distance past the IEX. The dashed black lines in
panels a–c are fits to one Gaussian and a sum of two Gaussians, respectively. In panel d, we show
the standard deviation

√︁
Var(y) of the Gaussians fitted to the line profiles for different speeds vIEX

of the IEX (values are given in the key). A minimum coincides with the location of the line focus,
whose position we denote as the line formation length lf (dashed vertical lines). For x closer to
0, the line is not a single Gaussian anymore but rather a split line. Therefore, the curves stop at
certain x.

a
t = 5.0 s

b

time

t = 10.0 s

c
t = 20.0 s

Fig. 7.13 Short-time trail formation. Onset of writing for non-interacting tracer particles of
radius aT = 0.416µm and diffusion coefficient D = 0.5µm2 s−1 at three different (early) times
(a–c) ordered from left to right (values are given in the panels). The IEX moves at a speed
vIEX = 8.0µms−1 and the area fraction of tracer particles is φ = 0.152. Other parameters as given
in Tab. 7.1. Scale bar: 250µm.

7.4.6 Density dependence of the line shape

Thus far, we neglected interactions (volume exclusion) between the tracer particles.
Considering repulsive tracer-tracer interaction u(r) modeled by the Weeks-Chandler-
Anderson (WCA) potential as defined in Eq. (2.8) with strength ϵ = 10 kBTb and effective
particle diameter σ = 2aT grants interesting insights into the limits and capabilities of
our minimal model.
We studied the line shape for interacting tracer particles at different tracer area fractions

φ ∈ {0.030, 0.076, 0.152, 0.304} which correspond to tracer concentrations of 0.02wt%,
0.05wt%, 0.10wt%, and 0.20wt% in the experiments, respectively. Figure 7.14 shows
simulation snapshots after t = 110 s for the different tracer concentrations as well as
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Fig. 7.14 Density dependence of line profiles in BD simulations with repulsively interacting
tracer particles. The tracer particles have a radius aT = 0.416µm and diffusion coefficient
D = 0.5µm2 s−1. The IEX moves at a speed vIEX = 8.0µms−1. a Simulation snapshots after
t = 110 s taken at different tracer concentrations (i.e., different area fractions) as indicated by the
key. b Corresponding line profiles obtained from averages over regions of 50µm extension at a
distance of x = −500µm past the IEX. Solid lines are Gaussian fits, describing the data well at
low tracer concentrations (i.e., area fractions). Other parameters are given in Tab. 7.1.

the density profiles at x = 500µm. For higher concentrations, the line width increases.
Remarkably, and in contrast to the experimental results (Fig. 7.3d), the line shows a
Gaussian shape only at small tracer concentrations. At high concentrations, the shape
features a broader, non-Gaussian peak caused by the restriction of the tracer motion to
the 2D plane. This contrasts with the model calculations using point-like tracers, which
can accumulate to arbitrarily large densities, and to the experiments, where particles
may escape to higher elevations. We anticipate that flattening should become observable
in experiments using tracers of large density mismatch, which stay settled and cannot
escape to the third dimension.
The effects of tracer-tracer interactions have interesting implications on the difference

between the experimental and our theoretical results: First, the use of point-like tracers
in the numerical calculations strengthens the trapping effect because more tracers can be
trapped in the vicinity of the IEX as compared to the experiments, in which the tracers
have a finite size. Trapping is readily visualized in the present experiments particularly
at low IEX velocities (example IV in Fig. 7.7c). However, there, the trapped particles are
either sheared off the assembly at its sides, creating a short, diffusively dispersing double
line feature, or they are expelled at the back of the assembly, thus filling any underlying
depletion zone. As a result, no well-defined density variation (line) emerges, neither
under- nor over-density. At larger velocities of vIEX ≈ 8–10µms−1, and in particular, for
native substrates of large ζ-potential, the DO flow may be sufficiently strong to create a
noticeable underdensity (Fig. D3a). However, only a small number of attracted tracers
becomes trapped at large velocities. Rather, they are immediately expelled to the back.
Thus, we observe a shallow depletion zone to both sides of a strong HDW-line, which
extends way beyond the HDW-line focus. The shallow underdensity serves to enhance the
optical contrast.
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7.5 Conclusion

The present approach of writing by assembly features several advantages over other
approaches. As ink is available all along the trajectory, writing by assembly eliminates the
necessity of a large (potentially eddy-creating) reservoir required in deposition-approaches
as well as any re-filling issues. Working with small pens in a viscous fluid at low Reynolds
numbers for the pen motion (Repen ≈ 10−4–10−3) avoids eddy-creation, leaves the fluid
practically undisturbed, and allows writing of narrow lines of a few tens of µm thickness,
which compares well with the line widths reached in microprinting. With this approach,
ink was collected from a region of a few pen diameters in width at Péclet numbers on the
order of Peink ≈ 5–50. This was large enough for a quick build-up of significant density
modulations. Chosen pen-speeds of vpen > 1.5µms−1 were large enough to avoid binding
of the assembled micro-sized tracers to the pen, and thus, lead to line formation by tracer
expulsion. At the same time, Peink was small enough to avoid excessive direct transfer
of kinetic energy to the ink particles. (This so-called dynamical friction may spoil the
formation of highly visible lines, e.g., in the wake of a large star crossing a background of
small stars in a globular cluster.)676,677 As a result, line dispersion occurred by diffusion
only.
With our minimal model, we reproduced the essential experimental observations quali-

tatively and quantitatively within particle-based and continuum simulations. Exploiting
the latter, we created a state diagram that exhibits the parameter dependencies and the
three line types (single line, inverted line, split line) that we also found in experiments.
Our minimal model shows that the key ingredients for writing lines into a liquid by assem-
bling (colloidal) particles (ink) in the trail of an IEX (pen) are long-ranged (hydrodynamic)
attractions between the pen and the ink particles, low diffusivity, and programmable
steering of the pen.
Overall, we demonstrated a facile and inexpensive approach to write on the micron

scale within a liquid medium. A variety of further technical extensions awaits realization.
Parallel writing of finely structured, large-scale density patterns becomes possible with
several pens. Interruptions between words as well as dashed lines could be facilitated using
photo-switchable chemical sources. Guided motion of the pen can further be realized by
mechanical guiding,678 optical576 or magnetic forces,679 and chemical fields.680 Exploiting
steering by chemical gradients would allow visualizing faint chemical traces left by
other objects. Additionally, steering pH sources with optical tweezers in 3D buoyant
ink dispersions would open access to freely suspended 3D patterns of arbitrary shape.
Beyond global erasing by sonication, typo correction and line reconfiguration may be
implemented by rewriting with or without prior heating with an IR laser (Fig. D13, Appx.
D). Conversely, one could co-assemble suitable chemicals for line fixing like a mixture
of photo-initiators, monomers, and cross-linker molecules. The important objective of
further downscaling into the few-µm-range appears to be feasible for fluorescent tracers
imaged by fluorescence microscopy and assembled by thermophoresis at a micron-sized
heat source steered by laser tweezers. Adaptive learning and supervised machine learning
could be used to program trajectories leading to the analogue of handwriting. Already
these few examples of possible future developments highlight an interesting point on the
technical side: namely the versatility of our generic approach of combining ink assembly
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via long-ranged attractions with purely diffusive decay and programmable steering of the
pen. It comprises a high degree of modularity, allows for the exchange of the constituents
(pen, ink, drive) as to one’s requirements, and is open for the combination with further
modules. Thus, we anticipate that our results and conclusions are valid for a broad class of
systems and may open routes to many future enterprises including the structuring of fluids,
the visualization of chemical traces, the assembling of functional objects like actuators or
drug carriers, information storage, and numerous artistic applications. Finally, our results
could also be used to prepare desired initial states for future colloid experiments, e.g., on
collective diffusion. Drawing fine lines, durable patterns, and individual letters into water
was only the first step.
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8 Conclusions

In this thesis, we have explored the influence of inertia on collective behavior in active
systems that are intrinsically out of equilibrium. Within these systems, the universality
of temperature does not apply. In particular, they can phase separate into a hot dense
and a cold dilute phase if the active particles are inertial. Based on Brownian dynamics
simulations of inertial active Brownian particles, we were able to develop a systematic
understanding of the role of inertia for the temperature of coexisting phases. We inves-
tigated their phase diagram with focus on motility-induced phase separation (MIPS),
which allowed us to control the kinetic temperature difference between the dense and
dilute phase. Additionally, we explored temperatures of coexisting phases in mixtures
of overdamped active and inertial passive Brownian particles. Such systems are highly
relevant for experiments with biological or synthetic microswimmers. Our numerical
investigation required a variety of tools for analyzing the huge amount of simulation
data. Therefore, we additionally developed the efficient analysis tool AMEP (Active Matter
Evaluation Package). We finally applied this tool to simulations of a minimal model for
colloidal self-assembly, which can be applied as a novel technique for writing lines and
letters into water. These simulations agree very well with experimental results and provide
fundamental insights into the key ingredients for writing lines into water. In the following,
we briefly summarize our main findings in the same order as we discussed them in the
previous chapters. In addition, we outline perspectives for future research.

8.1 Summary

In Chap. 3, we introduced the Active Matter Evaluation Package (AMEP), a Python library
which has been developed as part of this thesis and which provides all observables used to
analyze the simulation data. With AMEP, we provide a unified framework for analyzing
both particle-based and continuum simulation data. It allows us to quickly calculate
key observables that give us insights into structural and dynamical properties of the
investigated systems. AMEP is the first Python library that is specifically designed for
the analysis of active matter systems. Therefore, it denotes an important contribution
to the active matter community. It is available as open-source software and has been
downloaded more than 2000 times to date. It provides an easy-to-learn API and an
efficient HDF5-based backend to handle simulation data and analysis results. Hence,
AMEP is perfectly suited for analyzing large-scale simulations that can provide essential
insights into phase separation, pattern formation, and critical phenomena in active matter
systems. Due to its growing collection of observables, which are especially relevant for
the analysis of active matter systems, AMEP has the potential to become a key tool for
researchers in the field of active matter and soft matter physics in general.

149



We exploited the developed tools provided by AMEP to systematically test different
possibilities to define temperature in active systems. Our analytical and numerical results,
which we presented in Chap. 4, show that different possibilities to define temperature
typically lead to different values, but close to equilibrium, all values coincide. We have
demonstrated that such an equilibrium state can be reached in the limit of vanishing
Péclet number, where activity vanishes and the system forms an equilibrium system
made of PBPs. In this system, all possibilities to define temperature coincide with the
bath temperature. Moreover, we have shown that an effective equilibrium state can be
reached in the limit of large ratio between particle mass and persistence time, where
the latter becomes small compared to the inertial time. Within this limit, the motion
of the active particles is dominated by rotational diffusion, and the system reaches an
effective equilibrium state at a temperature that is larger than the bath temperature.
Remarkably, we identified two classes of temperatures: The kinetic temperature and
the configurational temperature both lead to very similar values exhibiting the same
parameter dependence over a wide parameter regime. Hence, they constitute a first class.
The effective temperature follows the values of this class but only in a limited parameter
regime. The virial temperature, the Einstein temperature, and the oscillator temperature
are also similar to each other and have the same parameter dependence. They form a
second class of temperatures whose values strongly differ from those of the first class.
Notably, we found that far from equilibrium at large Péclet number and small mass, the
two classes are related to each other by the particle mass as a scaling parameter. These
insights allowed us to identify temperatures that are advantageous over others in the
sense that they are independent of details of a tracer used as a thermometer or of a
confining potential and mutually lead to similar temperature values over wide parameter
regimes. We conclude that the kinetic temperature and the configurational temperature
have these advantages. Moreover, our findings provide a first starting point towards a
unified non-equilibrium theory for the concept of temperature in active systems.
Based on the kinetic temperature, we proposed a mechanism to cool active particles

in a targeted cooling domain, which is presented in Chap. 5. It exploits MIPS in inertial
active Brownian particles and allows us to design a “refrigerator” for active particles. We
performed intensive Brownian dynamics simulations to obtain the MIPS phase transition
line by varying the Péclet number and the area fraction. In contrast to overdamped active
Brownian particles, where the phase transition line is inversely proportional to the packing
fraction at large Péclet number, we found that it is proportional to the packing fraction
for inertial active Brownian particles. This form is purely induced by inertia and a key
ingredient for the proposed refrigerator. We have shown that its design requires inertia to
induce a temperature difference across the dense and the dilute phase and to induce the
particular shape of the phase transition line. Such a refrigerator creates a self-organized
cooling domain, in which the active particles undergo MIPS. Accordingly, they form a
dense cluster inside the cooling domain. We have shown that this cluster features a kinetic
temperature that is up to two orders of magnitude smaller than the kinetic temperature of
active particles in its environment. Notably, these refrigerators do not require any isolating
walls to separate the cooling domain from its environment. Hence, the active-particle
subsystem alone does not behave as we might expect from the laws of thermodynamics.
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In particular, the bath pays the thermodynamic bill for a self-organized cooling domain
that does not decay.
The investigated temperature differences in Chap. 5 are only visible if the active particles

are inertial. However, many experimental active systems consist of biological or synthetic
microswimmers that are overdamped and would not feature different temperatures in
coexisting phases. Hence, we investigated mixtures of overdamped active and inertial
passive Brownian particles in Chap. 6 to show that such temperature differences can be
observed in a broader class of systems especially relevant for experimental realizations.
Indeed, we found a persistent kinetic temperature difference between passive particles
in the dense and the dilute phase when the mixture undergoes MIPS. This tempera-
ture difference emerges although both the overdamped active and the inertial passive
Brownian particles on their own would not show different temperatures in coexisting
phases. Remarkably, we found parameter regimes in which the dilute phase is not always
hotter than the dense phase but also vice versa. In this scenario, hot liquid-like droplets
coexist with a cold gas. This remarkable non-equilibrium phenomenon is robust with
respect to the choice of temperature definition and the particle size. We demonstrated
that the observed temperature difference between the dense and the dilute phase can
be controlled by the self-propulsion speed of the active particles, the mass of the passive
particles, and the fraction of active particles in the mixture.
Finally, in Chap. 7, we applied our developed simulation and analysis tools to model

a new writing technique that allows us to write letters into water. This technique is
based on an ion-exchange resin bead which rolls through passive colloids suspended in
a water solution. The resin bead creates a pH gradient, which induces osmotic flows
that attract suspended colloids in its vicinity. Accordingly, colloids are assembled in
the trail of the resin bead and form long-lasting lines that only broaden over time by
diffusion. We developed a minimal model which we solved numerically using particle-
based and continuum simulations. We demonstrated that this model qualitatively and
quantitatively reproduces the essential experimental observations. Based on continuum
simulations, we reported a state diagram that shows different line types. These results
provide fundamental insights to fine-tune the writing process. More generally, they carve
out the key ingredients for writing lines into a liquid by assembling colloidal particles
in the trail of an ion-exchange resin bead: First, we need long-ranged (hydrodynamic)
attractions between the resin bead and the colloids. Second, a low diffusivity and a
programmable steering technique for the resin bead are required.
Our simulation studies provide a systematic understanding of the influence of inertia

on the emergence of coexisting temperatures in active systems. We carved out suitable
possibilities to define temperature in active systems, we studied the emergence of different
temperatures in coexisting phases in different active systems that contain active or passive
inertial particles, and we developed the powerful analysis tool AMEP. Our results pave
the way for many future applications and interesting ongoing research. Therefore, they
also raise various unanswered questions and challenges, which we will summarize in the
following.
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8.2 Future perspectives

Our systematic study of different possibilities to define temperature serves as a starting
point towards a systematic classification and unification of different methods used to mea-
sure temperature in active systems. An ongoing challenge is to generalize thermodynamic
concepts to non-equilibrium by formulating generalized fluctuation-dissipation relations
for active matter.23,194,434,509,512,589,594,681,682 Here, it is an open question whether ex-
ternal forces or interaction forces have to be rescaled in order to find a generalized
fluctuation-dissipation theorem. Such a force renormalization could also help to formu-
late generalized Langevin equations that contain a memory kernel and colored noise as
recently done for passive particles in an active bath.141 These generalized Langevin equa-
tions describe the motion of the particles effectively and could help to further understand
the emergence of the two observed temperature classes.
To obtain a deeper understanding of the emergence of hot liquid-like droplets that

coexist with a colder gas, the investigation of the local entropy production could provide
important insights.24,25,144,160,264,268,432,436,683 In particular, it would provide information
about how far from equilibrium the system is locally. Here, the model-free method
proposed in Ref. [431], which we plan to implement in AMEP in the near future, could
be applied. In addition to entropy production, many more observables are planned to
be included in AMEP. First, we plan to develop a cluster tracking algorithm, which is
required to study the influence of cluster motion on MIPS.146 Second, we plan to develop
an algorithm that calculates the surface tension of arbitrarily shaped clusters. This is
especially relevant to understand the observed negative surface tension at the interface
between the dense and the dilute phase in MIPS.684,685 In equilibrium, negative surface
tension would imply that the interface is unstable. However, clusters formed by MIPS
are stable, and the role of negative surface tension is controversially discussed.446,686–690
Third, tools for finite-size scaling analysis are planned to be implemented as well.198,486,691
These are especially important for answering the frequently discussed question to which
universality class MIPS belongs.168,443,692 Continuum theories for inertial active particles,
which possibly include multiplicative noise, could provide one way to tackle this challenge.
Alternatively, since the development of a continuum theory for inertial active matter
is challenging as well, machine-learning techniques could be used to deduce suitable
continuum models from particle-based simulations.214,215,217,693
It would also be interesting to explore our proposed concept for an active refriger-

ator within microscopic theories and experiments. The latter would open a route to
explore possible applications such as trapping and absorption of large (toxic) molecules
or viruses. These experiments could be realized with self-propelled particles that feature
significant inertia. Examples range from activated micro-particles in a plasma561,562 and
vibrated granular particles121,154,156,157,229,290,563–565 to drones,37,566,601 mini-robots,602
and dense animal collections.186,603 More fundamentally, active particles might also be
sensitive to frictional forces between each other, which could influence the refrigeration
mechanism. Therefore, it would be interesting how frictional contacts in inertial active
matter affect MIPS.404,426,694 This could be explored by adding frictional forces to the
inertial active Brownian particle model and exploring the phase space using Brownian
dynamics simulations. In the overdamped limit, it has been shown that frictional forces

152



promote MIPS.426 If the particles are inertial, the effect of friction is more complicated and
not well understood. Especially, the fluctuation-dissipation relation, which determines
the strength of the thermal noise, might have to be modified in the presence of frictional
contacts.
With respect to the concept of temperature, our study of mixtures containing over-

damped active and inertial passive Brownian particles has demonstrated that temperature
differences in coexisting phases can emerge in a broader class of systems. In particular,
we have shown that a cold non-equilibrium gas can coexist with a hotter liquid. In further
studies, it might be helpful to also consider the surrounding heat bath, which absorbs the
dissipated energy. Moreover, we have observed that large inertial passive particles tend
to accumulate in the dilute phase when they are mixed with small overdamped active
particles at large Péclet number. This effect could be further explored using Brownian
dynamics simulations. Our results also open a route to create persistent temperature
profiles in various experimental systems. This could be realized by inserting overdamped
active particles such as bacteria, algae, or synthetic colloidal microswimmers into inertial
passive systems such as dusty plasmas or passive granulates. More generally, the results of
our studies help to design and to control active matter systems such as hybrid materials,
which contain some active components to perform predefined tasks, or programmable
active matter that can change its material characteristics due to external stimuli.695 Fur-
thermore, the understanding of the influence of inertia helps to program robot swarms
for health-care applications such as targeted drug delivery, underwater or planetary ex-
ploration, cargo delivery and traffic control, or environmental applications such as the
control of bacterial contamination.38,44
Finally, our explored technique to write into water can be realized using many different

technical methods in order to develop possible applications. For example, instead of
the resin bead, a photo-switchable chemical source could be used as a pen to separate
between words or to draw dashed lines. Moreover, different steering techniques could
be implemented. For example, faint chemical traces left by other objects could be visual-
ized when steering the pen by chemical gradients.680 Other steering techniques could
be developed based on mechanical guiding,678 optical forces,576 or magnetic forces for
example.679 Such techniques would open the route to even draw 3D objects into water,
e.g., by steering the pen with optical tweezers in 3D buoyant ink dispersions. In addi-
tion, suitable chemicals such as mixtures of photo-initiators, monomers, and cross-linker
molecules could be co-assembled to fix the drawn objects by UV curing. To overcome the
challenge of finding suitable pen trajectories to reach a target drawing, machine-learning
techniques could be utilized.
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Appendices

Appendix A: Defining temperature in active systems

The following text is taken verbatim from my publication “How to define temperature in
active systems” published as a preprint on arXiv (2024).501

Analytical results for the kinetic temperature

In Chap. 4, we discussed the analytical expression of the kinetic temperature for free
non-interacting ABPs. Let us now consider a few more complicated setups. By confining
the system through an external harmonic potential Uext(r) = kr2/2, for the AOUP case
(Eq. (2.11)), one obtains158

α =
τpγt/m

1 + τpγt/m+ τ2pk/m
. (A1)

Since the second moments of the distribution for ABPs and AOUPs are equal, this result
holds also for ABPs. Equation (A1) shows that the harmonic confinement reduces the
kinetic temperature. In the overdamped regime, i.e., τpγt/m≫ 1, Eq. (A1) simplifies to

α =
1

1 + τpk/γt
. (A2)

For a general external potential Uext, exact analytical results are not known. However,
naively, we can derive an approximate result based on an equilibrium-like approximation
obtained in the overdamped regime, which reads696

α ≈
[︃
1 +

τp
γt
∇2Uext(r)

]︃−1

. (A3)

Note that this result is consistent with Eq. (A2) for the harmonic external potential in the
overdamped regime.
For interacting active particles, there are no simple analytical expressions for the kinetic

temperature except in very dense systems displaying a solid configuration. In this case,
for AOUPs, we obtain577

kBTAOUPkin = kBTb +
v20τpγt

1 + τp/τI + 6ω2
Eτ

2p

I
π
. (A4)

The term ω2
E reads

ω2
E =

1

2m

(︃
u′′(x̄) +

u′(x̄)
x̄

)︃
, (A5)
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where x̄ is the average distance between different particles, i.e., the lattice constant of the
crystal, u is the interaction potential, and I is a numerical factor that shows a non-trivial
dependence on τp, m/γt, and ωE.577 We remark that the kinetic energy of a single active
particle in a solid configuration is smaller than the kinetic energy of a free active particle:
In the solid, the neighboring particles hinder the motion of a target particle and decrease
its kinetic energy.

Virial temperature for inertial ABPs

For inertial ABPs (Eqs. (2.2) and (2.3)), the virial temperature can be calculated by
inserting the total force, i.e., the right-hand side of Eq. (2.2), into the virial. This leads to
four contributions: The first contribution comes from the drag force −γtvi and involves
the correlation function ⟨ri · vi⟩. In the steady state, it can be rewritten in terms of the
effective diffusion coefficient:

2⟨ri · vi⟩ = ∂t⟨ri · ri⟩ = ∂tMSD(t) −−→
t≫1

∂t(2dDefft) = 2dDeff. (A6)

This contribution is equal to the Einstein temperature as defined in Eq. (4.15). The
second contribution comes from the effective self-propulsion force γtv0p̂i. It contains
the correlation ⟨ri · p̂i⟩ between the position and orientation of the active particles.
The third contribution involves the Gaussian white noise √2kBTbγtξi. It leads to the
correlation ⟨ri · ξi⟩ = 0.133 The remaining contribution involves the interaction forces
Fij = −∇riu(rij) and possible external forces. The contribution from the interaction
forces can be written as

N∑︂

i=1

⟨ri · Fi⟩ =
N∑︂

i=1

N∑︂

j=1,j ̸=i

⟨ri · Fij⟩

=
N∑︂

i=2

i−1∑︂

j=1

ri · Fij +
N∑︂

i=2

i−1∑︂

j=1

rj · Fji

=
N∑︂

i=2

i−1∑︂

j=1

(ri − rj) · Fij

=

N∑︂

i=1

∑︂

j<i

⟨rij · Fij⟩ (A7)

by applying Newton’s third law and using Fi =
∑︁N

j=1,j ̸=iFij . Here, we use rij = ri − rj .
Finally, we can write the virial temperature for inertial ABPs as

kBTABPvir = γt lim
t→∞

∂tMSD(t)−
1

2Nd

N∑︂

i=1

⟨︄∑︂

j<i

rij · Fij + γtv0ri · p̂i

⟩︄
. (A8)
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Derivation of the oscillator temperature

Let us consider a passive tracer particle trapped in a harmonic potential and suspended
in a bath of Brownian particles. Due to the collisions of the bath particles with the tracer,
the latter is driven by these collisions, which can be modeled as random driving force
following a Gaussian white noise process. Let x denote the displacement of the tracer
particle with respect to its equilibrium position (here only in one spatial dimension for
simplicity). Then, the equation of motion for the tracer particle of mass m reads

mẍ = −γẋ− kx+
√︁

2kBTγξ(t) (A9)

with the drag coefficient γ of the bath, the force constant k, and Gaussian white noise
ξ(t) of zero mean and unit variance. Here, T denotes the temperature of the bath, which
is related to the position fluctuations ⟨︁x2⟩︁ via

⟨︁
x2

⟩︁
=
kBT
k
. (A10)

This relation can be derived as follows: First, we write down the Fokker-Planck equation
for the probability density P(x, v, t) with v = ẋ by following the standard text book:302

∂P
∂t

=

{︃
γ

m
− v

∂

∂x
+

(︃
γ

m
v +

k

m
x

)︃
∂

∂v
+
kBTγ
m2

∂2

∂v2

}︃
P. (A11)

Now, it can be shown that the solution of the Fokker-Planck equation is given by a

P(x, v) =
1

A
exp

{︃
− 1

kBT

(︃
1

2
mv2 +

1

2
kx2

)︃}︃
, (A12)

which is simply the Boltzmann distributionwith normalization constantA =
∫︁ dx ∫︁ dvP(x, v).698

Then, the position fluctuations can be determined as

⟨︁
x2

⟩︁
=

∫︁ dx ∫︁ dv x2P(x, v)

∫︁ dx ∫︁ dvP(x, v)

=

∫︁ dxx2 exp
{︂
− kx2

2kBT

}︂

∫︁ dx exp
{︂
− kx2

2kBT

}︂

=

√
π

2

(︃
2kBT
k

)︃(3/2)√︃ k

2πkBT
=
kBT
k
, (A13)

where we have used Eqs. (21.24b) and (21.25) from Ref. [699, p. 1100].
aThe solution can be derived from the condition ∂tP = 0 by using a Gaussian distribution as an ansatz for
P(x, v). It is also given in Ref. [697].
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The effective temperature

The effective temperature is based on linear response theory and the fluctuation dissipation
theorem (FDT). It can be derived as follows: Let us consider a (weak) time-dependent
perturbation that couples to an observable A. Then, the linear response function, which
describes the response of an observable B to the time-dependent perturbation, is given by

RAB(t, t
′) = − 1

kBT

⟨︂
Ḃ(t)A(t′)

⟩︂
, (A14)

where the average ⟨·⟩ is taken over the unperturbed system.303 It is related to the time-
integrated linear response (susceptibility) by

χAB(t, 0) =

t∫︂

0

dt′RAB(t, t
′), (A15)

following the notation in Ref. [125]. By setting A = B = x, where x denotes the position
of a particle in x direction, one can show that

χxx(t, 0) =

t∫︂

0

dt′Rxx(t, t
′)

=
1

2kBT

t∫︂

0

dt′
t∫︂

0

dt′′ ⟨ẋ(t′)ẋ(t′′)⟩

=
1

2kBT
MSD(t) (A16)

with the mean-square displacement MSD(t) = ⟨[x(t)− x(0)]2⟩. Hence, the FDT for the
time-integrated linear response reads

2kBTχxx(t) = MSD(t). (A17)

Following Ref. [125], this can be generalized to d spatial dimensions:

2dkBTχ(t) = MSD(t), (A18)

with
χ(t) =

t∫︂

0

dt′′
d∑︂

α=1

Rαα(t, t
′′). (A19)

In order to define an effective temperature for systems out of equilibrium, one introduces
a time-dependent effective temperature Teff(t), which is defined by123,125

kBTeff(t) =
MSD(t)
2dχ(t)

. (A20)
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Appendix B: Active refrigerator

In the following, we show two additional figures related to the proposed active refrigerators
in Chap. 5. Figure B1 shows numerical results of an active refrigerator, and Fig. B2
demonstrates the use of active refrigerators for trapping and absorbing passive tracer
particles.
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Fig. B1 Active refrigerator. The top panels show the profiles of the area fraction ⟨φ(x)⟩ and the temperature profiles kBTkin(x) = m⟨|v|2⟩y/2
averaged over the y coordinate and 20 realizations with N = 16 000 particles for (i) uniform Pe (top left panels) with Pein = Peout = 105 and
φtot = 0.35 (see also Fig. 5.3a) and (ii) the active refrigerator (top right panels) with Pein = 105, Peout = 110, φtot = 0.35, and x0/Lx = 0.1 (see
also Fig. 5.3c). The lower panel shows an exemplary realization of the active refrigerator with the same parameters as in the top right panels but
with N = 100 000 particles (the corresponding profile of the area fraction ⟨φ(x)⟩ and the temperature profile kBTkin(x) = m⟨|v|2⟩y/2 averaged
over the y coordinate are shown as yellow dashed line in the top right panels). The other parameters arem/(γtτp) = 5×10−2, I/(γrτp) = 5×10−3,
ϵ/(kBTb) = 10, and σ/

√︁
Dt/Dr = 1.
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Fig. B2 Absorbing and trapping tracers. Example of the absorption and trapping of passive tracers (red) inside the active refrigerator with
parameters Pein = 105, Peout = 110, φtot = 0.35, and x0/Lx = 0.1 (see also Fig. 5.12). The passive tracers have the same attributes as the
active particles (gray) except Pe = 0 and are initially placed outside the targeted cooling domain. The fraction of passive tracers is given by
Npassive/N = 0.02 with N = 16 000. All other parameters are the same as in Fig. B1.
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Appendix C: Mixtures of active and passive Brownian particles

The following figures are taken from the supplemental information of my publication
“Motility-Induced Coexistence of a Hot Liquid and a Cold Gas” published in Nature Com-
munications (2024).542
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Fig. C1 Zero-inertia limit for active particles. To show that our results persist even when consid-
ering zero inertia for the active particles, we also made simulations using the overdamped Langevin
equation for the active particles for the scenario a cold-liquid–hot-gas and the opposite scenario b
hot-liquid–cold-gas. Here, we show the corresponding coarse-grained kinetic temperature fields.
The white lines denote the border of the dense phase, which is located inside the area enclosed
by the white lines. Parameters used in panels a and b are the same as in Fig. 6.2e–h and i–l in
Chap. 6, respectively, but with ma/(γtτp) = 0 and I/(γrτp) = 0.

dense
gas

Fig. C2 Distinction between dense and dilute phase. Exemplary snapshot demonstrating the
distinction between particles in the dense and the dilute phase obtained from the identification of
the largest cluster. Here, a cluster is defined based on the distance between the particles such
that two particles belong to the same cluster if their distance to each other is smaller than the
cutoff distance rc = 21/6σ of the repulsive pairwise interaction potential. Parameters: Pe = 100,
xa = 0.6 (other parameters as in Fig. 6.4 in Chap. 6).
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Fig. C3 Kinetic temperature over time. Kinetic temperature of the passive particles in the MIPS
state over time averaged over all particles (black), particles in the dense phase (gray), and particles
in the dilute phase (blue). The darker lines are moving averages. Parameters: Pe = 400, xa = 0.9
(other parameters as in Fig. 6.4 in Chap. 6).
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Pe values as given in the key. b Distribution of φloc at Pe = 80 for different xa values as given in
the key (other parameters as in Fig. 6.4 in Chap. 6). We calculated p(φloc) via averages over circles
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Fig. C5 Diffusive dynamics and number of active neighbors. a,b Mean square displacement
(MSD; Eq. (3.1)) of the active and passive particles, respectively, for Pe = 120 and three values of
xa as shown in the key. c Long-time diffusion coefficients (obtained from a fit to the long-time
MSD) of the ABPs (solid lines) and PBPs (dashed lines) in region (IIa) of the phase diagram (cf.
Fig. 6.8 in Chap. 6). e,f MSD of the active and passive particles, respectively, for Pe = 400 and
three values of xa given in the key. g Long-time diffusion coefficients of the ABPs (solid lines) and
PBPs (dashed lines) in region (IIb) of the phase diagram (cf. Fig. 6.8 in Chap. 6). d,hMean number
of active particles in contact with passive particles (i.e., with a distance smaller than the cutoff
distance rc of the WCA potential) for Pe = 120 and Pe = 400, respectively. All other parameters
are the same as in Fig. 6.4 in Chap. 6.
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at Pe = 400 (other parameters as in Fig. 6.4 in Chap. 6).
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Appendix D: Writing into water

This section contains additional information about the experiments from Nadir Möller and
co-workers from the group of Prof. Thomas Palberg at Johannes Gutenberg-Universität
Mainz as well as additional figures. Most parts are reprinted from our joint publication
“Writing into water” published in Small (2023) with permission from John Wiley & Sons,
Inc. (Ref. [624], © 2023 The Authors. Small published by Wiley-VCH GmbH.) or from its
Supporting Information.

Experimental details

For completeness, the details about the experiments as published in my publication
“Writing into Water” published in Small (2023) are reprinted here with permission from
John Wiley & Sons, Inc. (Ref. [624], © 2023 The Authors. Small published by Wiley-VCH
GmbH.).

Sample preparation: As pens, we mainly used micro-gel based cationic IEX beads
(C-IEX45, Purolite Ltd, UK). The mean diameter (2aIEX = 45± 2.3µm) was measured by
image analysis. The IEX beads were recharged with H+ ions by washing them twice in
aqueous HCl (20 v/v%) solutions and subsequently rinsing them with deionized water.
The beads were then stored for 48h in an exicator. For some experiments, we also
used anionic resin-based IEX beads or splinters thereof (A-IEX15, Mitsubishi Chemical
Corporation, Japan and A-IEX-L, Carl Roth + Co. KG. Karlsruhe, Germany). These were
only rinsed with deionized water and subsequently dried.
Passive ink particles were sulphate-stabilized polystyrene (PS) or silica (Si) colloidal

suspensions (Microparticles, GmbH, Germany). Table D1 denotes the lab codes, Manu-
facturer batch nos., sizes, and ζ-potentials where applicable. Prior to use, a part of the
original stock (32wt%) was diluted with deionized water to 1wt% and conditioned for
some weeks in a flask containing mixed-bed IEX (Amberjet, Carl Roth GmbH + Co. KG,
Karlsruhe, Germany) to remove excess ions from the production process. After deioniza-
tion, the IEX was removed, and the deionized suspensions stored in contact with ambient
air. Thus conditioned, they show comparably low ζ-potential magnitudes due to CO2

adsorption.700 CO2 absorption can be reversed and any absorbed CO2 removed by further
contact with mixed bed IEX in strictly gas-tight flasks.700 As compared to the merely
deionized state, the deionized and de-carbonized state shows an approximately doubled
ζ-potential magnitude.
The sample cell was constructed by sandwiching a chemically inert PVC ring (inner

radius R = 12.5mm, height H ≈ 0.2mm) between two standard microscopy slides
(75 × 25 × 1mm, soda lime glass, hydrolytic class 3, VWR International, Germany).
The ring was fixed to the bottom slide with epoxy glue (UHU plus sofortfest, UHU
GmbH, Germany). Prior to cell assembly, the glass slides were thoroughly cleaned to
remove coatings and organic contaminants (washing in 1 v/v% Hellmanex®III-solution
(Hellma Analytics, Germany), sonication in isopropanol for 30 minutes, rinsing with
deionized water, and drying in N2 flow). Right after cleaning, their ζ-potential was
ζ = −138 ± 8mV. If stored in the dry state under ambient conditions, the ζ-potential
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Tab. D1 Tracer colloids and IEX beads. Parameters of tracer colloids and IEX beads used in the
experiments. ζ-potentials were determined from electrokinetic experiments using a custom-built
Doppler Velocimeter.701

Lab code Manufacturer
batch number

Diameter, 2a
(µm)

ζ-potential under
deionized conditions
(mV)

Si444 Si02-F-SC54 0.442± 0.054 −70± 3 (ambient CO2)
Si832 SiO2-F-L1287 0.839± 0.031 −68± 3 (ambient CO2)

−108± 5 (de-carbonized)
Si2.1 SiO2-F-L4255-1 2.11± 0.18 N/A
PS2.3 PS/Q-F-L2090 2.30± 0.22 −35± 3 (ambient CO2)

−65± 5 (de-carbonized)
C-IEX45 CGC50 x 8 45± 2 N/A
A-IEX-L K306.2, Amberlite 250–400 N/A
A-IEX15 CA08S 15.0± 1, 6 N/A

magnitude decreases and equilibrates at ζ = −105±5mV. The magnitude can be reduced
further to ζ = −70 ± 5mV by immersing the slides for one hour in diluted deconex®
cleaning solutions (5 v/v%, deconex®11, VWR, Germany).

Line imaging: Cells were mounted on the stage of an inverted microscope (DMIRBE,
Leica, Germany) and writing was observed at 10x magnification with a 12.87 Mpx.
consumer DSLR (D700, Nikon, Japan) using a 0.63x mounting tube. In the images, 100 px
correspond to 0.93µm. Images were captured in 14 bit RAW format at intervals of 4 s,
converted to TIFF, and stored. Videos and cropped images for display were constructed
from the TIFF color-images. Data for further evaluation were converted to gray-scale
and analyzed using a custom-written Python script. For c ≤ 0.2wt% of Si832, the
recorded intensity was proportional to the tracer concentration, showing the absence of
multiple scattering effects (Fig. D1c). Line profiles are constructed from intensity readings
perpendicular to the line axes. For an individual profile, each I(y) is an x-average over ten
neighboring pixels. Typically, 50 individual profiles obtained from locations distributed
over a distance of approximately 100µm along the written line were averaged to improve
statistics. From fits of a Gaussian to the averaged profile, we extracted the line amplitude,
standard deviation, and full width at half maximum.

Particle image velocimetry: For flow-field imaging, we studied the stationary-state
motion of tracers using either the DSLR at 10x magnification and 20 fps or (for smaller
tracers) a fast monochromatic camera (acA133-200um, Semi Python 1300, Basler, Ger-
many) at 20x magnification and 100 fps. Flow fields were calculated from image pairs
separated by ∆t = 100ms using the OpenPIV Python package.702 For each location, the
results were averaged over 50 successive image pairs.
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pH microphotometry: For pH mapping, we employ a further refined version667 of
the general photometric approach reported by Niu et al.669 A diluted mixture of two
universal indicators (pH 4–10, Merck, Germany; pH 1–5, Sigma-Aldrich, USA, ratio 1:7)
was injected into the sample dispersion (c = 100–200µmol L−1). Images were recorded in
transmission under Köhler illumination (∆I(x, y)/⟨I⟩ = 0.015) using the DSLR camera.
The 4.256×2.832 pixels on the CMOS-sensor are arranged in a Bayer pattern for the three
RGB-channels resulting in dots of four px each, defining the maximum spatial resolution.
For each dot, we compared the recorded channel intensities to those of a reference sample
(deionized water) to obtain the absorbance in each channel from the Beer-Lambert-Law.
Calibration was performed using pH-buffer solutions ranging from pH = 1.9 to 8.9 in
0.5 pH steps. For intermediate values, we used bicubic interpolation. We improved the
signal-to-noise ratio by binning to 6x6 dots, reducing the final resolution to 357x237
blocks. At 10x magnification, we have 5.8× 5.8µm2 per block. In the pH range of interest
(4 to 6), a height averaged pH-gradient resolution of 0.02 pH steps/6µm results. Results
are modeled by numerical solutions of the three-dimensional advection–diffusion equation,
which also yields the pH maps at specific locations, e.g., at the cell bottom.667

Line evolution past the line focus

The linewidth in the decay region depends on both the tracer concentration and the
IEX speed. Figure D1a shows snapshots of C-IEX rolling through Si832. From top to
bottom, the tracer concentration c increases, and the velocities vary in the range of
vIEX = 6–12µm−1. With increasing c, the background intensity increases and the lines
appear thicker.
For each line in Fig. D1a, we recorded the intensity profiles 80 s after IEX passage, i.e.,

far past the line focus and show these in Fig. D1b. For better statistics, we averaged over a
trail length of 50µm. All five density profiles are well described by Gaussians superimposed
on a flat background. The fits return the standard deviation σ, which relates to the Full
Width at Half Maximum (FWHM) as 2.355σ = FWHM. From independent measurements
on Si832 layers equilibrated at ϑ = 0 and performed under exactly identical illumination,
we found the dark field scattered intensity to increase with a power law dependence as
I ∝ ca (Fig. D1c). Fitting a linear function to the data in the double logarithmic plot of
Fig. D1c returns an exponent of a = 0.85± 0.04. This is close to but below the expectation
of light scattering theory for dilute suspensions of a = 1. The observed small deviation
is attributed to tracer-tracer repulsion, which leads to the development of fluid order
and in turn, decreases the forward-scattering. Figure D1d shows the time-dependent
FWHM extracted from the concentration-dependent experiments in Fig. D1a. The black
arrow marks t = 80 s used in Fig. D1b. All curves increase roughly linearly in this double-
logarithmic plot. The feature marked by the blue arrow is caused by the passage of a blob
also seen in Fig. D3a. As expected, the curves get wider for increasing concentrations, but
the vertical spacing between the curves does not match exactly with the increase in weight
fraction. This could be due to the different velocities of the IEX in Fig. D1a. We therefore
determined the velocity dependence of line widths in independent measurements at
constant tracer concentration.
Figure D1e shows the data for c = 0.18wt%. Here, we averaged over five to ten IEX

beads per adjusted tilt angle. The large standard deviation in the measured IEX speed
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is attributed to the size dispersity of the IEX. The widths decrease systematically with
increasing velocity. Data in this double logarithmic plot are well described by a power
law with exponent −1.02 ± 0.09. This is remarkably close to -1. The comparably large
uncertainty of the fit and the small deviation are again attributed to variations in IEX
size. We use the result to rescale the data of Fig. D1d to vIEX = 8µms−1. The velocity-
scaled datasets are displayed in Fig. D1f. The datasets are now spaced more evenly. The
velocity-scaled FWHM at t = 80 s is shown in dependence on concentration in Fig. D1g.
The data in this double-logarithmic plot are well described by a power law of exponent
a = 0.51 ± 0.02. We use the result to rescale the data in Fig. D1f to c = 0.1wt%. The
velocity- and concentration-scaled data are plotted double-logarithmically in Fig. D1h
versus time after IEX passage. All data arrange neatly along a single curve. Fitting a
linear function to the data returns a power-law behavior FWHM ∝ tλ with exponent
λ = 0.48± 0.04. This is close to the theoretical expectation of λ = 0.5 for free diffusion.
We stress that these data were taken by averaging over only a few IEX at each inspected

set of boundary conditions. The observed scaling behavior should therefore be taken with
due caution. However, even these preliminary data are well compatible with a simple
scaling behavior for the line width as FWHM ∝ v−1

IEXc
1/2t1/2. The v-scaling would be

expected as long as the IEX accretes the tracers with a constant solvent flux arriving at
its surface. This is reasonable due to the large exchange capacity of the IEX and the low
concentration of residual cations. The t-scaling is expected for a purely diffusive decay.

Shaping the formation zone

In this section, we consider the influences of tracer charge, substrate charge, and pH-
gradient strength. For C-IEX45 rolling in Si832 (cf. Tab. D1), we observe significant
changes of the shape of the formation zone but no effects for the decay zone. The changes
in the formation zone relate to a systematic variation in the approach-distance of the
tracers.
The pH gradient induces significant DO flows along a highly charged substrate, which

transport low-charge tracers towards the IEX. The approach velocity measured between
200µm and 50µm distance from the IEX center was used to describe this approach
in terms of an effective attraction exerted by the IEX (Fig. 7.5, Chap. 7). At shorter
distances, the hydrodynamic flow pattern is significantly more complicated due to upward
components in the solvent motion, the complex geometry of the wedge between IEX and
substrate, hydrodynamic and direct tracer-tracer interactions, and the presence of an
additional type of phoretic flow. In fact, low-charge or uncharged tracers are halted by
these effects very close to or even underneath the IEX center. The exact stopping distance
is not accessible in the flow field measurements due to shading by the IEX. We accounted
for these phenomena in an effective way by adding a repulsive component to the total
effective force in the particle model and the continuum model (see Subsec. 7.3.2 and
Subsec. 7.3.3).
The situation differs for highly charged tracers due to the additional diffusio-phoretic

slip existing at their surface.647,648 For this case, the approach situation is sketched in
Fig. D2. Relative to the tracer surface, the pH gradient induces an additional inward
solvent flow (DPS, dark blue arrow), which results in an outward tracer motion (DPT,
violet arrow). In the sketched situation, the tracer would still be swept further inward
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Fig. D1 Line width measurements. a Dark field snapshots of C-IEX45 (cf. Tab. D1) rolling with
speeds in the range of 6–12µms−1 through Si832 of different concentrations as indicated. Scale
bars: 200µm. Concentrations and speeds are indicated in each image. b Line profiles recorded
80 s after IEX passage. The solid lines are fits of a Gaussian with an offset corresponding to
the background scattering intensity. c Double-logarithmic plot of the concentration dependent
scattering intensity in dark field images of tracers equilibrated on a horizontal substrate. The
fit of a linear function to the data returned a power law exponent of a = 0.85± 0.04. d Double-
logarithmic plot of the time dependent FWHM for the five experiments shown in panel a. e
Double-logarithmic plot of the dependence of linewidth on IEX speed for C-IEX45 rolling through
Si832 at 0.18wt%. The fit of a linear function to the data (dashed line) returns a power law
exponent of −1.02 ± 0.09. f Double-logarithmic plot of the time-dependent FWHM scaled to
vIEX = 8µms−1. g Double-logarithmic plot of the v-scaled FWHM in dependence on the Si832
concentration. The fit of a linear function to the data (dashed line) returns a power law exponent
of 0.51± 0.02. h Double-logarithmic plot of the time-dependent FWHM scaled to vIEX = 8µms−1

and c = 0.1wt%. The fit of a linear function to the complete data (solid line) returns a power law
exponent of λ = 0.48± 0.04.

207



Fig. D2 Relevant velocities during tracer approach. Due to gravity, both IEX and tracers roll
down the substrate tilted by an angle ϑ (black arrows). The incompressible solvent flows with local
velocities vDO(x, y) under the influence of the pH field (indicated by the background shading). The
DO flow accelerates as it converges at the IEX (green arrows). The pH gradient further induces a
diffusio-phoretic (DP) slip at the charged tracer surfaces. This results in an inward solvent flow
(DPS, dark blue arrow) relative to the tracer surface and an outward tracer motion (DPT, violet
arrow).

towards the IEX. However, with increasing gradient strength, vDPT will increase until it
equals vDO, and the tracer becomes stalled.
To vary the relative weight of the two phoretic flows, we systematically varied the

charge ratio ζT/ζS between tracers and substrate. The experiments discussed in Chap. 7
were performed with deionized tracer suspensions equilibrated in contact with ambient
air. Due to CO2 adsorption, their ζ-potential is low,700 and diffusio-phoretic (DP) flows
are of negligible magnitude except very close to the IEX surface, where the pH gradients
are strongest. We de-carbonized the tracers and charged them up by prolonged batch
deionization removing CO2 through ion exchange of its dissociation products (carbonic
acid). Further, a reduced substrate ζ-potential was obtained by storing the substrate
slides in diluted deconex® cleaning solutions. A stepwise increase in charge ratio had a
significant influence on the minimum approach distance. It drastically altered the shape
of the formation zone but left the decay unaffected. This is shown in Fig. D3a-d. For
charge ratios ζT/ζS ≤ 1, we typically observe the single HDW-lines to start directly at
the IEX (Fig. D3a). As the charge ratio increases, we observe the evolution of sharply
bordered, more or less drop-shaped exclusion zones of increasing size.
Bright field images and tracer flow fields corresponding to the dark field images in

Fig. D3a, b, and d are presented in Fig. D4. In Fig. D4a, we studied the low-charge
tracers on a native substrate. Here, the tracer motion directly reflects the underlying
DO-flow field. In Fig. D4b and c, we used larger charge ratios, but left all other boundary
conditions unchanged (tracer concentration, exchange rate, IEX velocity). Therefore, the
underlying solvent flow pattern must remain unaltered. In Fig. D4b and c, however, we
now see a significant alteration of the tracer flow field.
With increasing charge ratio, DP flows gain in strength and importance. Hence, tracers

approaching the IEX at its front are stalled already at some distance to the IEX, while
tracers initially located in the immediate vicinity of the IEX move outward (Fig. D4c). A
tracer depleted region forms. Comparison to the bright field images shows that tracers
accumulate exactly where outward DP motion and inward DO flow balance and the tracer
velocity vanishes: vT = vDPT + vDO = 0. As the IEX passes, the accumulation region first

208



a

c

b

d

e

t = 5s

t = 25s

t = 40s

f

g

h

Fig. D3 Manipulating the shape of the line formation zone. Dark field images of C-IEX45 (cf.
Tab. D1) rolling through Si832 at ϑ = 3.1 (vIEX = 7.7µms−1). Scale bars: 200µm. Here, we
changed the minimum approach distance by varying the charge ratio ζT/ζS. a 0.02wt% Si832,
salt free but non-decarbonized (ζT = −68mV) on a native substrate of ζS = −105mV. Note the
slight depletion of Si832 from the immediate IEX surroundings. b Same as in panel a, but after
de-carbonizing Si832 for 1 h (ζT = −80mV) and on a deconexed substrate (ζS = −70mV). c Same
as in panel a, but after de-carbonizing Si832 for 24 h (ζT = −102mV) on a deconexed substrate
(ζS = −70mV). d Single IEX rolling in 0.16wt% Si832 deionized for 21d (ζT = −108mV) on a
deconexed substrate (ζS = −70mV). e IEX-pair rolling through 0.16wt% Si832 deionized for 21 d
(ζT = −108mV). f–h Temporal development of the pattern seen in panel c. Snapshots were taken
at different times after the start of the experiment as indicated in the key.

shifts outward, then inward again. Tracers in this boundary are carried along as it shifts
inward again (Fig. D4b). The evolution of the drop-shaped formation zone in Fig. D3a-d
is thus seen to originate from changes in the location, where outward DP tracer motion
and inward DO solvent flow balance.
Our observations can be rationalized considering that both DP and DO flows originate

from the same electrophoretic effect (i.e., from the drop in chemical potential across
a charged surface as induced by the increase in the pH of the adjacent solvent) but
differ in the relevant type of surface and hydrodynamic boundary conditions. The DP
flow originates on the tracer surface, i.e., it reacts to the tracer ζ-potential and the
local pH gradient. Here, the theoretical concepts of bulk diffusio-phoresis in a quiescent
solvent can be directly applied after suitable coordinate transformation.647,648 By contrast,
the DO flow in any volume element above the substrate originates from both the local
contribution (depending on the substrate ζ-potential and the local pH gradient) and

209



the global hydrodynamic flow pattern. The latter depends on the difference in pH
between IEX surface and the background solvent but is also subject to modifications by
the hydrodynamic boundary conditions of an extended substrate (and of a closed cell
of finite volume). Such a situation is not analytically accessible but may be addressed
in numerical calculations.657 Note that therefore, the DP tracer motion follows the local
gradient direction, and the DO solvent motion does not need to be co-linear.680 This can
clearly be seen by comparing the solvent flow field of Fig. D4a to the tracer flow fields in
Fig. D4b and c.
The differences in the position dependence of the two flows become relevant at increased

tracer ζ-potentials. Irrespective of ζT, the tracer DP velocity drops quickly with increasing
distance to the IEX, respectively the distance from the trail ridge. As the local pH gradient
along and perpendicular to the trail ridge vanishes with increased distance to the IEX, it
becomes negligibly small. By contrast, the DO flows —depending on the large-scale pH
differences— are still active far past the IEX. They retain considerable strength, focus the
line, and close the initial depletion zone (Fig. D4b). A single line results. With increasing
tracer ζ-potential, the closing point shifts further away from the IEX. However, the splits
always close and a single line is obtained past the line focus as long as a single C-IEX45 is
used. By contrast, using a pair of IEX approximately doubles the local pH-gradient while
leaving the global pH difference between IEX surface and background unchanged. This
shifts the minimum approach distance still further outward. Tracers are now accumulated
along a contour far off the IEX center, where the inward DO flow is still very slow (Fig. 7.2).
Thus, they can avoid inward transport by the DO flow after IEX passage. The DP split
becomes stabilized (Fig. D3e).
Quite frequently, an additional line is formed starting at the center of the IEX back

(Fig. D3f–h). Interestingly, it starts with some delay. Presumably assisted by fluctuations,
few tracers reach the IEX, beneath which they are trapped by the solvent flows and expelled
once the loading capacity of the IEX is reached. In this type of tracer accumulation
at the IEX, the feeding rate is way smaller than by direct DO flow causing the delay.
Simultaneously, the IEX velocity slightly increases by some 5–10% and the depleted
region slightly stretches. Both indicates a phoretic contribution of the trapped tracers to
the propulsion, as well known from modular swimmers.665 Due to a low feeding rate, this
line type typically contributes only little to the merged line in the decay regime.

Alternative ink and alternative pens

The modularity of our approach allows facile testing of the effects introduced by alternative
components. By varying the size of silica tracers, both line graininess and contrast can be
varied. This is demonstrated in Fig. D5 for three species of Si tracers with different sizes
as indicated. In all three cases, we used the same tracer concentration c = 0.1wt%. With
decreasing tracer size, both graininess and contrast decrease. For the largest tracers, the
lines obtain a “pointillistic” appearance. They become smoother at lower tracer size, but at
the same time loose contrast, as scattering power scales with a−6

T . Next, we exchanged the
silica particles for polystyrene particles of lower mass density (PS2.3, ρPS = 1.05 kgm−3).
Three representative images are shown in Fig. D6. The use of lighter tracers generally
leads to lines blurred by convection. For tracers of low charge (Fig. D6a and b), regions
of enhanced density form way above the focusing DO flows along the substrate. For
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Fig. D4 Flow analysis. Bright field images (left, scale bar 100µm) and tracer flow fields (right)
for C-IEX45 (cf. Tab. D1) rolling at 3.1◦ inclination (vIEX = 7.7µms−1). The flow direction is given
by the orientation of the arrows and the instantaneous lab-frame velocity is encoded by the arrow
color as indicated in the key. Images and maps were recorded for C-IEX45 rolling on differently
charged glass substrates through 0.10wt% Si832 tracers. a Salt free but not de-carbonized tracers
(ζT = −68mV) on a native substrate of ζS = −105mV (same conditions as in Fig. D3a). Under
these conditions, DP flows are negligible and the tracer flow field coincides with the solvent flow
field. b Si832 deionized for 1 h (ζT = −80mV) on a deconexed substrate of ζS = −70mV (same
conditions as in Fig. D3b). The tracer flow field shows significant differences when compared to
the previous situation. c Si832 deionized for 21d (ζS = −108mV) on a deconexed substrate of
ζS = −70mV (same conditions as in Fig. D3d). Note the now extended region of outward tracer
motion next to the IEX in the velocity maps.
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Si832

Si444c

b

Si2.1a

Fig. D5 Variation of graininess and optical line contrast. Moderately de-carbonized C-IEX45
(cf. Tab. D1) rolling at vIEX = 8.4µms−1 on low-charge substrates. Scale bar: 250µm. a Si2.1 at
c = 0.1wt%. b Si832 at c = 0.1wt%. c Si444 at c = 0.1wt%.

highly charged tracers (Fig. D6c), the broadening is additionally enhanced by outward DP
motion, which leads to an upward motion already at some distance from the IEX surface.
Overall, the use of tracers with low mass density leads to very low contrast and thus, is
not useful for writing.
We next checked different types of pens for their capacity to write lines. The examples

in Fig. D7 feature inert rafts of Si832 tracer particles. These were made by slowly drying
Si832 suspensions. The rafts were either free to glide through Si832 or were fixed and
passed by the tracers. This resulted in short trails, which mainly depend on the shape,
orientation, and velocity of the rafts. Figure D7a shows a mobile raft simply ploughing
through the tracer layer. Here, a region of enhanced tracer density forms at its front
as well as a short tracer-depleted region in its wake. Figure D7b shows a triangular
raft fixed in a hydrodynamically favorable orientation. As the tracers drift by, a short
trail of slightly increased tracer density forms downstream. Lacking pH gradients, pens
made of chemically passive rafts do not trigger DO flows. Line shape and contrast are
therefore fully determined by the laminar flow field around these differently shaped and
oriented objects. However, in all cases, only very short lines resulted, even at larger gliding
velocities. Thus, without attraction, no useful lines are written.
We further replaced the cationic IEX by anionic IEX (A-IEX) and compiled the main

results in Fig. D8. This resin type exchanges residual carbonate ions for OH−. Thus, it
increases the pH. A-IEX-L (cf. Tab. D1) features large exchange rates for CO3H− available
at concentrations of several µmol L−1. They create a pronounced pH variation of complex
shape featuring a pH maximum at some distance to the IEX surface (Fig. D8a).680 On
its outer side, i.e., pointing away from the IEX, the pH field is contoured by an inverted
gradient (blue arrow in Fig. D8b). Small hydrogel-based A-IEX15 spheres (cf. Tab. D1)
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c

Fig. D6 Weak-contrast lines written by C-IEX45 in different suspensions of light tracers.
Scale bars: 100µm. a Bright field image of C-IEX45 (cf. Tab. D1) rolling on an inclined substrate
(ϑ = 2.3◦) in a dilute suspension of PS2.3 (ζT = −35mV, Tab. D1). The tracers in focus approach
the C-IEX along the substrate. The actual trail forms above (blurred tracer images). b The same
situation but now focused to some 150µm above the substrate. c Dark field images of C-IEX45
rolling on an inclined substrate (ϑ = 2.3◦) in suspension of decarbonized PS2.3 (ζT = −65mV,
Tab. D1) at 0.10wt%.

a

b

Fig. D7 Writing with inert objects. Dark field images of weak trails formed by inert objects
moving through suspensions of tracer particles. Scale bars: 100µm. a Chemically inert raft of
dried Si832 gliding down an inclined substrate (ϑ = 7.6◦) in a suspension of Si832 at 0.10wt%. b
Chemically inert raft of dried Si832 fixed to an inclined substrate (ϑ = 7.6◦) in a suspension of
Si832 at 0.10wt%.

show somewhat lower exchange rates and lower capacities. These create a simpler pH
field with only negative gradients but of much weaker amplitude and are well suited as
pens. Negatively charged tracers approaching from the front are pushed away (both in
rolling direction and sideways) by the corresponding outward DO flow (Fig. D8c). A
tracer-depleted region past the A-IEX results. For combination with Si832, we found small
A-IEX-L splinters to be most suitable. This combination leads to a high-contrast inverted
line (Fig. D8d). Like the positive lines discussed above, also this line of negative optical
contrast appears to be very stable in time (Fig. D8e).
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Fig. D8 Contrast inversion by inversion of the pH gradient direction. a pH map of a resin-type
anionic A-IEX-L of 261µm diameter (cf. Tab. D1). Due to the high exchange rate, a complex pH
pattern evolves. b pH profile recorded along the rolling direction. The inverted gradient to the
front of the A-IEX is indicated by the blue arrow. Note however, that the whole pH field is bordered
by such an outward-decreasing pH field in panel a. c Tracer trajectories recorded in darkfield for
a hydrogel-based A-IEX15 (cf. Tab. D1). Scale bar: 200µm. The ensuing pH field is similar but
less pronounced for this smaller resin species. Tracers are swept away from the A-IEX in forward
direction and sideways. d Small resin-type A-IEX-L splinter gliding down an inclined substrate
in Si832 at 0.1wt% and creating a line of negative optical contrast. Scale bar: 250µm. e Line
profiles of the inverted line drawn in panel d for different times after A-IEX passage as indicated.
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Alternative drive

In Fig. D9, we again used a cationic IEX and tracers which are gravitationally bound to
the substrate. We here studied modular microswimmers, which propel on a horizontal
substrate driven by the DP flow along the surfaces of assembled tracers.665 In all three
cases, we observe a characteristic shape of the formation zone, featuring a blob-like region
of enhanced tracer density in the immediate back of the IEX. From that blob, a much finer
line of tracers is expelled, which only slowly broadens by diffusion. Figure D9a shows
a line written by tracers with different sizes past a cationic IEX resin splinter obtained
from crushing a larger IEX bead.664 It demonstrates that a spherical IEX geometry is
not essential for writing, nor is a uniform tracer size. Figure D9b shows that, due to
mutual repulsion between the negatively charged tracers, the raft past the IEX may take
a crystalline structure. However, this has little influence on line formation. In Fig. D9c,
a modular swimmer is formed by exactly the same components as used in the writing
experiments discussed in Chap. 7. Again, a nice line is written past a short formation
zone of enhanced tracer density.
Figure D9 demonstrates that writing does not depend on the type of steering chosen.

Rather, it requires the presence of an effective attraction (here realized by DO flows).
However, modular swimmers lack the ability of precise steering, they steer by statistical
rearrangements of their load. Therefore, these freely propelling modular swimmers write
curves instead of straight lines or prescribed patterns. In the approach presented in
Chap. 7, propulsion by gravity was essential for writing straight lines as prerequisite for
drawing more complex patterns.
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b

a

Fig. D9 Writing with self-propelling pens. Images of lines formed by different cationic IEX types
on horizontal native substrates in different tracer suspensions. These objects move as modular
phoretic swimmers. Scale bars: 100µm. a Swimmer formed by a resin type C-IEX splinter in
a dilute binary suspension of PS15, PS5.2, and PS1.7. b Swimmer formed by microgel-type
C-IEX45 in a dilute suspension of PS10. c Swimmer formed by C-IEX45 in a suspension of Si832
at 0.10wt% on a horizontal substrate. Note the diffusely bordered depletion zone close to the
C-IEX demonstrating the effect of the DO flows.
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Fig. D10 Tuning the inclination. a Speed of C-IEX45 (cf. Tab. D1) rolling through tracer free water
as a function of substrate inclination. b–d Dark filed images taken at different velocities of C-IEX45.
Scale bars: 200µm. b C-IEX45 rolling through 0.1wt% Si2.1 at very low vIEX ≈ 0.28µms−1. Note
the extended asymmetric accretion zone. No useful line is written. c C-IEX45 rolling through
0.1wt% Si832 at vIEX ≈ 7.2µms−1. A straight, narrow line is obtained. d C-IEX45 rolling through
0.16wt% Si832 at vIEX ≈ 14µms−1. Note the initial line split, which quickly washes out due to
diffusion.
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Fig. D11 Approaching a perfect drawing in experiment. By trial and error, we successively
improved the adjustment of the stage programming. Scale bar: 250µm. a–c Results obtained at
intermediate stages. The encircled regions highlight deviations from the ideal pattern shape (line
length variations, lateral line shifts, line bending, and blobbing). d Final result.

218



a b c

d

Fig. D12 Formation of a blotted line. Time series of dark field images of blob formation due to a
transient sticking of the IEX to the substrate. C-IEX45 rolling through Si832 at c = 0.2wt% (cf.
Tab. D1). Scale bars: 250µm. a–c Development of a blob. Time increases from top to bottom and
from panel a to c. Images are separated by 800ms. The dashed black line marks the position at
which the IEX stuck to the substrate. The red line is a guide to the eye, marking the location of the
blob tip, which continues to move leftward at roughly constant velocity, until the IEX is detached
again. The solid white line denoted the constant velocity of the IEX after escaping the blob. Note
the acceleration stage immediately after detachment. d Frequent sticking results in blotted lines.
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a b c

Fig. D13 Erasing and rewriting. Demonstration of erasing written letters by globally heating
the system and recycling the ink in a Brownian dynamics simulation at vIEX = 12µms−1. Other
parameters as given in Tab. 7.1 in Chap. 7. Scale bar: 250µm. a Snapshot after the letter T
has been written and before heating the system. b During heating, the written lines broaden by
diffusion and slowly disappear. c Rewritten letter U after erasing the previously written letter T.
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