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A B S T R A C T

We are witnessing a rapid deployment of Internet of Things (IoT) devices
in our daily lives, e.g., in smart homes, offices, factories, and infras-
tructure. According to Statista, the number of IoT devices is expected
to increase from 8.6 billion in 2019 to 29.4 billion in 2030, resulting in
an annual growth rate of 12%1. This emphasizes the increasing de-
mand for a new class of applications requiring smart connectivity and
intelligent features, such as robotics, home automation, autonomous
transportation, and intelligent manufacturing. Unfortunately, many IoT

devices are vulnerable due to insecure design, implementation, and
configuration, leading to a surge in cyberattacks on IoT applications.
Statista reports that the number of cyberattacks on IoT surged by 36%
annually, from 32 million in 2018 to 112 million in 2022, thus, multiplying
the increasing number of IoT2. Existing attacks often exploit insecure
authentication mechanisms or employ sophisticated IoT malware at
a large scale. The first line of attacks aims to intercept device com-
munication, allowing adversaries to manipulate device communication
or access sensitive IoT data. However, implementing secure authen-
tication for IoT device pairing faces significant challenges due to the
heterogeneity of IoT devices, the variety of application scenarios, and
the often cumbersome requirements for user involvement. This poses
the need for new pairing schemes that are IoT vendor-agnostic and do
not require human intervention. However, secure pairing is not enough
to protect IoT devices against large-scale attacks caused by sophisti-
cated IoT malware. For example, infamous IoT malware like Mirai and
its variants have taken control of hundreds of thousands of IoT devices
in a short time and used them as bots to run the largest Distributed
Denial of Service (DDoS) attack at that time, resulting in the large-scale
disruption of online services, e.g., from Amazon, Netflix, and GitHub3.
Unfortunately, existing protection methods are ineffective in capturing
such novel attacks. Thus, this introduces a new line of research focused
on advanced technologies such as Machine Learning (ML) which can
detect sophisticated and dynamic attacks in heterogeneous IoT settings.
However, ML algorithms are also susceptible to severe security and
privacy attacks, including model manipulation and training data leakage.
Therefore, when employing ML for security applications, it is crucial to
ensure the security of the ML algorithms used.

In this dissertation, we present four comprehensive solutions to se-
cure IoT devices and Federated Learning (FL). We focus on FL because
it is an emerging distributed learning paradigm used to build our IoT
intrusion detection system. Firstly, we introduce a novel longitudinal
context-based pairing scheme to establish secure communication be-

1 https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
2 https://www.statista.com/statistics/1377569/worldwide-annual-internet-of-things-

attacks/
3 https://en.wikipedia.org/wiki/Mirai_(malware)
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tween IoT devices. Further, we propose an innovative anomaly detec-
tion system that utilizes FL to identify attacks caused by IoT malware.
Since FL is vulnerable to inference and backdoor attacks, we present
a secure and backdoor-resilient framework for FL-based applications.
Unfortunately, the world faced the severe COVID-19 Pandemic during
my studies. In response, we applied our context-based authentication
research to Digital Contact Tracing (DCT), aiming to break infection
chains. We propose a new DCT system designed to effectively identify
potential encounters with SARS-CoV-2 infected users while being re-
silient against large-scale security and privacy attacks. In the following,
we summarize these four solutions.

ConXPair2- a context-based pairing scheme. We introduce ConX-
Pair2, a context-based zero-interaction approach for pairing IoT de-
vices. Our approach continuously tracks changes in context modalities,
such as ambient light and noise, to evolve secure pairing keys over
time. Unlike existing methods, ConXPair2 does not require tight time
synchronization and offers enhanced security against Man-In-The-
Middle (MITM), context guessing, and replay attacks. We also develop
an advanced fingerprinting extraction technique that generates high-
entropy fingerprints, addressing the low entropy issue in longitudinal,
passive context fingerprinting. Moreover, we conduct a systematic se-
curity analysis of context-based pairing systems, emphasizing their
practical application through an empirical evaluation framework that
measures security using min-entropy. This comprehensive analysis
aids in understanding the robustness of context-based authentication
systems in typical IoT environments.

TraceCorona - a digital contact tracing system in response to COVID-
19 pandemic. Digital contact tracing plays an important role in iden-
tifying infection chains. We propose TraceCorona, a novel privacy-
preserving contact tracing system based on the Diffie-Hellman key
exchange, offering enhanced security and privacy compared to existing
methods. The beta version of TraceCorona has been successfully used
by over 2,000 users, demonstrating the effectiveness of our approach.
Further, we systematically review the advantages and drawbacks of
prominent DCT systems, focusing on their effectiveness, security, pri-
vacy, and ethical aspects. We identify significant security and privacy
gaps in widely used systems like the Google and Apple Exposure
Notification APIs.

DÏoT - a federated learning-based intrusion detection system for IoT.
Addressing the surge in attacks on IoT devices caused by malware, we
propose DÏoT, an anomaly detection system based on our advanced
network modeling approach and FL. In particular, DÏoT employs nat-
ural language processing techniques and advanced neural network
algorithms to learn normal traffic patterns of IoT devices and detect
deviated patterns as abnormal traffic generated by malware. Moreover,
DÏoT builds a specific detection model for each device type, reducing
false alarms and increasing detection accuracy. DÏoT’s effectiveness is
further enhanced by utilizing FL, allowing collaborative model training
of many participants without compromising participant data privacy.

v
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FLAME - a secure and backdoor resilient federated learning frame-
work. Tackling backdoor and inference attacks in FL, we design a back-
door resilient FL framework that employs our adaptive noising technique
to neutralize poisoned model updates. Moreover, we propose two sup-
plemented components, dynamic clustering and adaptive clipping, to
boost poisoned update elimination while preserve model performance
by reducing the required noise added to the models. Furthermore, we
propose DeepSight to improve the accuracy of FLAME clustering com-
ponent in non-iid data settings by analyzing models’ internal structures
to identify and remove potential poisoned updates. In addition, we
develop private FLAME to prevent inference attacks by secure model
updates from a semi-honest model aggregator that seeks to learn
information about data training through model update inspections.

vi
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Z U S A M M E N FA S S U N G

Wir erleben eine rasche Verbreitung von Geräten des Internet-of-Things
IoT in unserem Alltag, z. B. in Smart Homes, Büros, Fabriken und der
Infrastruktur. Laut Statista wird die Zahl der IoT-Geräte voraussichtlich
von 8, 6 Milliarden im Jahr 2019 auf 29, 4 Milliarden im Jahr 2030 stei-
gen, was einer jährlichen Wachstumsrate von 12% entspricht4. Dies
unterstreicht die steigende Nachfrage nach einer neuen Klasse von
Anwendungen, die intelligente Konnektivität und Funktionen erfordern,
wie z. B. Robotik, Hausautomation, autonomen Transport und intelli-
gente Fertigung. Leider sind viele IoT-Geräte aufgrund von unsicheren
Designs, fehlerhafter Implementierungeu und mangelhafter Konfigura-
tionen anfällig gege Angriffe, was zu einem Anstieg der Cyberangriffe
auf IoT-Anwendungen geführt hat. Statista berichtet, dass die Zahl der
Cyberangriffe auf das IoT jährlich um 36% gestiegen ist, von 32 Millio-
nen im Jahr 2018 auf 112 Millionen im Jahr 20225. Diese Entwicklung
verdeutlicht die steigende Zahl von Bedrohungen für IoT-Anwendungen.
Bestehende Angriffe nutzen häufig unsichere Authentifizierungsmecha-
nismen aus oder setzen ausgeklügelte IoT-Malware in großem Maßstab
ein. Ein häufiger Angriffsvektor ist das Abfangen der Gerätekommuni-
kation, wodurch Angreifer die Möglichkeit haben, diese zu manipulieren
oder auf sensible IoT-Daten zuzugreifen. Die Implementierung einer
sicheren Authentifizierung für die Kopplung von IoT-Geräten gestal-
tet sich jedoch aufgrund der erheblichen Heterogenität der Geräte,
der Vielfalt der Anwendungsszenarien und der oft Schwierigen Be-
nutzbarkeit als herausfordernd. Daher besteht ein Bedarf an neuen
Kopplungsverfahren, die unabhängig von IoT-Anbietern sind und kein
menschliches Eingreifen erfordern. Sicheres Pairing allein reicht je-
doch nicht aus, um IoT-Geräte vor groß angelegten Angriffen durch
ausgeklügelte IoT-Malware zu schützen. Ein berüchtigtes Beispiel ist
die IoT-Malware Mirai und ihre Varianten, die die Kontrolle über Hun-
derttausende von IoT-Geräten übernommen und sie als Bots eingesetzt
haben, um den bis dahin größten Distributed Denial of Service (DDoS)-
Angriff auszuführen. Dieser Angriff führte zu großflächigen Unterbre-
chungen von Online-Diensten, darunter Amazon, Netflix und GitHub6.
Leider sind bestehende Schutzmethoden nicht in der Lage, solche
neuartigen Angriffe effektiv zu verhindern. Daher eröffnet sich eine
neue Forschungsrichtung, die sich auf fortschrittliche Technologien wie
maschinelles Lernen (ML) konzentriert, um ausgeklügelte und dynami-
sche Angriffe in heterogenen IoT-Umgebungen zu erkennen. Allerdings
sind ML-Algorithmen selbst anfällig für schwerwiegende Sicherheits-
und Datenschutzangriffe, einschließlich Modellmanipulation und der
Weitergabe von Trainingsdaten. Daher ist es beim Einsatz von ML für

4 https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
5 https://www.statista.com/statistics/1377569/worldwide-annual-internet-of-things-

attacks/
6 https://en.wikipedia.org/wiki/Mirai_(malware)
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Sicherheitsanwendungen entscheidend, die Integrität und Sicherheit
der verwendeten ML-Algorithmen zu gewährleisten.

In dieser Dissertation stellen wir vier umfassende Lösungen zur Si-
cherung von IoT-Geräten und Federated Learning (FL) vor. Wir konzen-
trieren uns auf FL, weil es ein aufkommendes, verteiltes Lernparadig-
ma ist, das wir zum Aufbau unseres IoT-Angriffeserkennungssystems
verwenden. Zunächst führen wir ein neuartiges, kontextbasiertes Kopp-
lungsverfahren ein, um eine sichere Kommunikation zwischen IoT-
Geräten zu gewährleisten. Des Weiteren schlagen wir ein innovati-
ves System zur Erkennung von Anomalien vor, das FL nutzt, um An-
griffe durch IoT-Malware zu identifizieren. Da FL anfällig für Inferenz-
und Backdoor-Angriffe ist, stellen wir einen sicheren und Backdoor-
resistenten Ansatz für FL-basierte Anwendungen vor. Leider wurde die
Welt während meines Studiums von der COVID-19-Pandemie heimge-
sucht. Als Reaktion darauf haben wir unsere kontextbasierte Authenti-
fizierungsforschung auf die Digital Contact Tracing (DCT) angewandt,
um dabei zu helfen Infektionsketten zu durchbrechen. Wir schlagen ein
neues DCT-System vor, das potenzielle Begegnungen mit SARS-CoV-
2-infizierten Nutzern effektiv identifizieren kann und gleichzeitig gegen
groß angelegte Sicherheits- und Datenschutzangriffe resistent ist. Im
Folgenden fassen wir diese vier Lösungen zusammen:

ConXPair2 – ein kontextbasiertes Pairing-Verfahren. Wir stellen
ConXPair2 vor, einen kontextbasierten Zero-Interaction-Ansatz für das
Pairing von IoT-Geräten. Unser Ansatz verfolgt kontinuierlich Verän-
derungen der Kontextmodalitäten, wie Helligkeit und Geräusche, um
im Laufe der Zeit sichere Pairing-Schlüssel zu entwickeln. Im Gegen-
satz zu bestehenden Methoden erfordert ConXPair2 keine enge Zeit-
synchronisation und bietet verbesserte Sicherheit gegen Man-In-The-
Middle (MITM)-, Context-Guessing- und Replay-Angriffe. Zudem ent-
wickeln wir eine fortschrittliche Technik zur Fingerabdruck-Extraktion,
die Fingerabdrücke mit hoher Entropie erzeugt und das Problem der
geringen Entropie bei passiven longitudinalen Fingerabdrücken behebt.
Darüber hinaus führen wir eine systematische Sicherheitsanalyse von
kontextbasierten Pairing-Systemen durch, wobei wir ihre praktische
Anwendbarkeit durch einen empirischen Bewertungsrahmen hervor-
heben, der die Sicherheit unter Verwendung der Min-Entropie misst.
Diese umfassende Analyse hilft dabei, die Robustheit von kontextba-
sierten Authentifizierungssystemen in typischen IoT-Umgebungen zu
verstehen.

TraceCorona – ein digitales Kontaktverfolgungssystem als Reaktion
auf die COVID-19-Pandemie. Die digitale Kontaktnachverfolgung spielt
eine wichtige Rolle bei der Identifizierung von Infektionsketten. Wir
schlagen TraceCorona vor, ein neuartiges, die Privatsphäre wahren-
des System zur Kontaktnachverfolgung, das auf dem Diffie-Hellman-
Schlüsselaustausch basiert und im Vergleich zu bestehenden Metho-
den mehr Sicherheit und Privatsphäre bietet. Die Beta-Version von
TraceCorona wurde bereits von über 2.000 Nutzern erfolgreich einge-
setzt, was die Effektivität unseres Ansatzes beweist. Darüber hinaus
überprüfen wir systematisch die Vor- und Nachteile bekannter DCT-
Systeme und konzentrieren uns dabei auf ihre Effektivität, Sicherheit,

viii
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den Datenschutz und ethische Aspekte. Wir identifizieren signifikante
Sicherheits- und Datenschutzlücken in weit verbreiteten Systemen wie
den Google und Apple Exposure Notification APIs.

DÏoT – ein auf föderiertem Lernen basierendes Intrusion Detection
System für das IoT. Um der Zunahme von Angriffen auf IoT-Geräte
durch Malware zu begegnen, schlagen wir DÏoT vor, ein System zur
Erkennung von Anomalien, das auf einem fortschrittlichen Netzwerk-
modellierungsansatz und FL basiert. DÏoT verwendet insbesondere
Techniken zur Verarbeitung natürlicher Sprache und fortschrittliche
neuronale Netzwerkalgorithmen, um normale Verkehrsmuster von IoT-
Geräten zu erlernen und abweichende Muster als durch Malware er-
zeugten, abnormalen Verkehr zu identifizieren. Darüber hinaus erstellt
DÏoT ein spezifisches Erkennungsmodell für jeden Gerätetyp, wodurch
Fehlalarme reduziert und die Erkennungsgenauigkeit erhöht werden.
Die Effektivität von DÏoT wird durch den Einsatz von FL weiter erhöht,
da ein kollaboratives Modelltraining vieler Teilnehmer ermöglicht wird,
ohne die Privatheit der Daten der Teilnehmer zu gefährden.

FLAME – ein sicheres und gegen Backdoor-Angriffe geschütztes
föderiertes Lernsystem. Zur Bekämpfung von Backdoor- und Inferenz-
angriffen in FL entwickeln wir ein Backdoor-resistentes FL-Framework,
das adaptives Noisin einsetzt, um vergiftete Modell-Updates zu neutra-
lisieren. Darüber hinaus schlagen wir zwei ergänzende Komponenten
vor: dynamisches Clustering und adaptives Clipping, um die Besei-
tigung von vergifteten Updates zu verbessern und gleichzeitig die
Modellleistung zu erhalten, indem das erforderliche Rauschen, das
den Modellen hinzugefügt wird, minimiert wird. Wir schlagen zudem
DeepSight vor, um die Genauigkeit der FLAME-Clusterkomponente
bei nicht-idealen Datenverteilungen zu verbessern, indem die internen
Strukturen der Modelle analysiert werden, um potenziell vergiftete Mo-
dellaktualisierungen zu identifizieren und zu entfernen. Darüber hinaus
entwickeln wir eine Privatheiterhaltende variante von FLAME, um Infe-
renzangriffe zu verhindern, indem sichere Modellaktualisierungen von
einem teilweise vertrauenswürdigen Modellaggregator durchgeführt
werden, der versucht, durch Inspektionen der Modellaktualisierungen
Informationen über das Training der Daten zu erfahren.
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1
I N T R O D U C T I O N

Internet of Things (IoT) devices are increasingly deployed in smart
homes, smart factories, and smart infrastructures, demonstrating the
surging demand for smart connectivity and intelligent features. Accord-
ing to Statista, the IoT market is witnessing exponential growth and
expected to rise from 9.76 billion devices in 2011 to 29.42 billion by
2025 [168]. However, many IoT devices have security vulnerabilities
caused by insecure design, implementation, and configurations [6, 59,
71, 81, 99, 108, 117, 118, 127, 162, 167, 173]. As a result, various
attacks have exploited IoT device vulnerabilities, such as attacks against
device communication [34, 41, 117, 128, 151, 162, 166, 169], smart
home applications [19, 55, 58, 59, 72, 81, 97, 106, 144, 171, 212],
industrial IoT [95, 164], as well as massive large-scale DDoS attacks [71,
108, 173]. These attacks lead to serve consequences, e.g., making
devices unusable [167, 176], leaking of sensitive data [40, 118, 166,
180], large-scale interruptions of internet and online services [71, 108,
165, 172, 173], or, disruptions of industrial and critical systems [88,
163, 164].

Existing attacks on IoT systems are often caused by two main issues:
unsecured communication or authentication errors [34, 41, 55, 59, 67,
81, 106, 117, 128, 151, 152, 154, 162, 166, 169] and IoT malware (i.e.,
the malware that specifically targets IoT devices) [66, 71, 84, 127, 167,
173]. However, conventional device pairing schemes and malware de-
tection mechanisms are insufficient to mitigate ever-increasing threats
and dynamic attack landscapes [44, 71, 108, 117, 128]. Conventional
pairing often requires human intervention [38, 94, 102, 211, 213] or the
establishment of a universal key pool among IoT device manufacturers
[130, 141]. On the other hand, rule-based filtering approaches incur
significant delays in detecting attacks and can not detect unknown
attacks [75, 108].

Applying ML is becoming an increasingly interesting approach for both
authentication [7, 11] and IoT malware detection [3, 27, 177] to mitigate
such dynamic attack landscape. In our works, we have leveraged
several ML techniques such as classification for context-based proofs of
co-presence [7, 11] or Federated Learning FL for IoT Intrusion Detection
Systems (IDSs) [3]. However, ML itself is also vulnerable to critical
security and privacy attacks like backdoor attacks [12, 23, 33, 54, 65,
111, 125, 145, 153]. Therefore, to provide a complete secured system,
we need to not only apply ML for security applications to increase
defense effectiveness but also consider the security of the used ML
algorithms by design.

2
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1.1 D I S S E RTAT I O N G O A L S A N D C O N T R I B U T I O N S 3

Table 1.1: Summary of research results. Publications to be presented in this
dissertation are marked with *

Context-based

Authentication for IoT

Secure Federated Learning (FL)

for IoT IDS

Device

Pairing

Contact

Tracing

Proof of

Presence

FL-based

IoT IDS
Secure FL

ConXPair2*

DAC’18[1]

TraceCorona*

TECT’22[2]

DoubleEcho

PerCom’19[11]

DÏoT*

ICDCS’19[3]

FLAME*

USENIXSec’22[4]

OmniShare

IC’18[9]

MindtheGap

TrustC.’20[16]

ConXPop

ACCS’14[7]

AuDI

JASC’19[10]

DeepSight*

NDSS’22[5]

ConXPair

CCS’14[15]

PDCT

MTD’20[13]

PFLIoT

DISS’20[12]

SAFELearn

DLS’21[14]

Other publications: ContainerSecurity-S&P’24[6], CodeProvisioning- FC’15[8]

1.1 D I S S E RTAT I O N G O A L S A N D C O N T R I B U T I O N S

We aim to provide comprehensive solutions to tackle these critical
security challenges in IoT and federated learning FL. We focus on FL

because it is an emerging distributed learning paradigm and used to
build our IoT intrusion detection system [3]. In particular, this dissertation
presents our collaborative works to tackle the challenges in IoT device
paring, FL-based IoT intrusion detection, and backdoor-resilient FL. In
response to the COVID-19 Pandemic, we leveraged our research on
context-based authentication to the usecase of DCT applications to
identify infection chains as both usecases aim to achieve the same
technical goal - verifying the co-presence of IoT devices.

Table 1.1 summarizes our works and highlights the publications pre-
sented in this dissertation. We start with IoT device pairing, which is
fundamentally important for securing IoT communication and protecting
the privacy of IoT data. We introduce a novel longitudinal context-based
zero-interaction pairing approach for IoT [1, Appendix A ]. Further, in-
spired by our context-based authentication concept, we design a secure
and effective DCT system, TraceCorona, [2, Appendix B]. Furthermore,
we propose a novel federated self-learning-based anomaly detection
system to tackle the challenge posed by IoT malware [3, Appendix C].
Finally, we introduce a resilient FL system to protect FL against security
attacks (e.g., backdoor attacks) and privacy attacks (e.g., inference
attacks) [4, 5, Appedices D and E]. In the following, we will elaborate
on these works and our contributions in detail.

1.2 C O N T E X T- B A S E D PA I R I N G F O R I OT

Implementing secure authentication for IoT device pairing faces signif-
icant challenges due to the heterogeneity of IoT devices, the variety
of application scenarios, and the often cumbersome requirements for
user involvement. Traditional methods for device pairing can be divided
into two categories: Human-In-The-Loop [38, 94, 102, 211, 213] and
Pre-Shared Security Associations (PSSA) [42, 49, 52, 98, 135, 138].
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The first pairing approach requires physical interaction between users
and devices. This includes user actions such as comparing verifica-
tion codes, entering passwords, scanning barcodes or QR codes, or
simultaneously shaking two devices to create matching patterns. These
steps are crucial for mitigating potential MITM attacks during the initial
secure key establishment phase [52]. However, this approach has two
significant limitations: (1) it may not be feasible for IoT devices lacking
user interfaces, such as screens for displaying verification codes or
cameras for scanning QR codes, and (2) it burdens users, especially in
settings with many devices, making the authentication process tedious,
error-prone, and not scalable. The second pairing approach, PSSA, is
also impractical in many IoT settings. This is because establishing a uni-
versal key pool or a Public Key Infrastructure (PKI) [52] is infeasible due
to the vast array of IoT device manufacturers and the heterogeneity of
devices [130, 141]. Further, manufacturer-specific PSSA solutions also
fall short in typical application scenarios as they cannot differentiate
devices in separate trust domains, such as those in neighboring smart
homes [1, 15, 130, 141]. This complexity highlights the need for innova-
tive pairing strategies that address the limitations of current methods,
ensuring secure, user-friendly authentication in the increasingly inter-
connected IoT landscape. Context-based pairing is a potential approach
to address this problem since it can operate without user involvement,
following the so-called Zero-interaction pairing (ZIP) paradigms [104,
130, 141, 142]. This approach assumes that co-present devices, e.g.,
in the same room, can be considered to be in the same trusted do-
main and share similar context information such as ambient noise or
light. Therefore, such context information can be used to verify the
co-presence status of the devices without user intervention. However,
existing approaches (1) often rely on a one-shot fingerprint and fall
short in providing sufficient entropy, (2) demand exact time synchro-
nization, and (3) fail to assure long-term trusted domain. Thus, these
limitations underscore the need for advancements in zero-interaction
security mechanisms, as we discussed in detail in [1, 15].

ConXPair2. To address the challenges of context-based device pair-
ing, we introduce a novel zero-interaction pairing method for IoT devices
[1, Appendix A] based on our initial scheme[15]. Unlike existing context-
based pairing approaches that capture a snapshot of context informa-
tion [130, 141], ConXPair pairs devices by recognizing their consistent
proximity over time. The pairing process utilizes context fingerprints,
derived from changes in ambient light and noise over long periods. Our
approach does not require precise time synchronization and is robust
against MITM and replay attacks. Specifically, we propose a resilient
context-based entropy extraction approach for ambient noise and light
and validate it with real-world data. Further, to tackle the primary chal-
lenge of the existing longitudinal context fingerprinting approaches that
often generate low entropy fingerprints due to the infrequent changes
in context, we design an advanced fingerprinting extraction approach
based on our peak detection and alignment strategy that can gener-
ate high-entropy context fingerprints [1]. Furthermore, we propose a
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new key evolution scheme that automatically establishes pairing keys,
ensuring devices only pair when in prolonged close proximity.

Security analysis of context-based pairing. Recent works have
introduced context-based pairing systems that utilize error-correcting
codes to generate shared secrets from observed context information
[15, 130]. However, there is a notable absence of a comprehensive
empirical assessment of their security within real-world settings and
data. Hence, we provide a systematic analysis of security aspects influ-
enced by these context-based authentication schemes and examine
their impact in typical IoT settings. In particular, we propose and empiri-
cally evaluate a framework to measure the security of a context-based
scheme utilizing min-entropy for measuring the ’worst-case’ entropy of
a context fingerprint in the most favorable outcome for the adversary
[1].

1.3 D I G I TA L C O N TAC T T R AC I N G

The global waves of infection from the SARS-CoV-2 coronavirus have
emphasized the crucial role of efficient contact tracing in identifying and
isolating infection chains. However, traditional contact tracing relying
on manual work is labor intensive and relies on the infected people to
recall past contacts, which is often incomplete or inaccurate. For exam-
ple, people cannot reliably identify contacts in public places such as on
buses or at sport events. In contrast, digital contact tracing DCT can ad-
dress such limitations since it utilizes contact tracing apps deployed on
smartphones or wearable devices to identify nearby devices automati-
cally via the Global Positioning System (GPS) or short-range wireless
technologies like Bluetooth Low Energy (BLE). Thus, DCT can capture
all possible known and unknown contacts precisely. As the COVID-19
pandemic swept across continents, many nations quickly adopted DCT

smartphone apps as a complementary approach to traditional manual
contact tracing methods, aiming to enhance their capacity to break
infection chains and halt the virus’s spread. According to the tracking
of MIT Technology Review, as of May 07, 2020, 50 countries and 33
states in the USA were deploying DCT apps, just a few months from the
global outbreak of the virus [107]. Given such quick deployment of DCT

apps in the race against time and the virus’s spread, it is important to
critically review the advantages and drawbacks of prominent DCT sys-
tems behind the apps. Several works have highlighted critical privacy,
security, and ethical issues that could lead to mass surveillance using
DCT apps or large-scale fake exposure claims [28, 48, 74, 78, 143, 148,
149, 188, 195, 205, 206].

To tackle such challenges, we systematically analyze existing DCT

approaches, point out their deficiencies, and propose a novel approach
to address these deficiencies [2, Appendix B]. In particular, we classify
state-of-the-art DCT systems by their design principles and evaluate
their performance based on four requirements: effectiveness, security,
privacy, and ethical aspects. Specifically, we delve into the limitations
of the widely used contact tracing platform co-developed by Google
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and Apple named Google and Apple Exposure Notification API (GAEN)
[159] that has been adopted by more than 30 countries, mostly from
Europe [150, 189, 200, 202]. Our study shows that GAEN is susceptible
to large-scale security and privacy attacks [2, 16].

TraceCorona. Further, we propose TraceCorona, a novel user-driven
privacy-preserving contact tracing system based on Diffie-Hellman key
exchange [2]. Unlike most current methods that rely on exchanging
pseudonyms with devices in proximity [181, 182, 193], our method
utilizes advanced cryptographic techniques to establish and verify
encounters between two users. Hence, TraceCorona not only offers
better security and privacy guarantees compared to state-of-the-art
approaches but also enhances the system’s overall efficacy and trans-
parency. In addition, we developed and rolled out a beta version of the
TraceCorona app for Android smartphones [20]. Over 2,000 users have
used the app without significant functional issues, demonstrating that
designing and deploying an effective DCT system is possible without
compromising security and privacy requirements.

1.4 F E D E R AT E D S E L F - L E A R N I N G I N T RU S I O N D E T E C T I O N F O R

I OT

The increasing cyber threat on IoT devices caused by IoT malware
raises significant concerns. Numerous attacks on IoT systems have
resulted in severe consequences, such as the large-scale disruption
of cloud services [71, 84, 108, 127, 173] or making devices unusable
[160, 167, 176, 178]. Unfortunately, existing protection methods are
ineffective in capturing the ever-increasing attack landscape on IoT

devices. The most prevalent approach is to release patches [75] after
identifying a vulnerability. However, many IoT devices lack appropriate
automatic update functions. Moreover, there can be a significant delay
between when a vulnerability is identified and the time that the manufac-
turer releases and rolls out patches for the vulnerable devices. Another
strategy involves using Intrusion Detection System (IDS) based on rec-
ognized attack patterns, i.e., signature-based IDS [44]. This method falls
short as it cannot identify new attacks until IDS providers update the
attack signatures. Thus, this approach is ineffective against previously
unknown attacks (zero-day attacks) which are typical in IoT settings
because of the dynamicity of the threat landscape. For instance, Pa Pa
et al. point out that 83% IoT malware samples captured by their honey
pot are new to VirusTotal [108]. A promising approach for detecting
unknown attacks is anomaly detection [86, 110, 116]. This approach
learns normal device behaviors and identifies deviations from these
behaviors (i.e., abnormal behaviors). However, given the heterogeneity
of IoT devices, learning all normal behaviors of devices is challeng-
ing. Consequently, anomaly-based systems often introduce many false
alarms (detecting normal behaviors as abnormal), making them imprac-
tical [105, 174]. For instance, anomaly-based IDS systems developed
by Aqil et al. [174] and Nobakht et al. [105] report the False Positive
Rates (FPRs) of 9.1% and 5.8%, respectively.
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DÏoT. To address these challenges, we propose DÏoT, an FL-based
anomaly detection system that employs natural language processing
techniques and advanced neural network models to detect attacks on
IoT devices. DÏoT effectively identifies abnormal network behaviors po-
tentially caused by cyberattacks on IoT devices with a negligible number
of false alarms. Unlike conventional IDSs that create a generic model
for the whole network, DÏoT offers a unique detection model for each
IoT device type to enhance detection accuracy. Further, we provide an
automatic approach to identify device types, i.e., the whole process of
DÏoT operates autonomously without human intervention [10]. Inspired
by the application of Deep Learning (DL) in natural language process-
ing, DÏoT transforms network packets into symbolic representations.
This allows DÏoT to utilize the word prediction model in language pro-
cessing to learn network packet sequence patterns that are similar to
learning word sequence patterns. This new network modeling tech-
nique enables DÏoT to precisely and accurately detect irregular packet
sequence patterns generated by attacks. Furthermore, we leverage
federated learning FL that allows participants to train detection models
on their local potentially sensitive data and then send only their model
updates to a central aggregation server (aggregator) where the up-
dates are integrated into global device-type models. To the best of our
knowledge, DÏoT is the first IoT IDS utilizing FL. This technique ensures
the detection model benefits from diverse participant data without the
need for sharing such potentially sensitive data with a central server
or any other party. Our evaluation demonstrates that DÏoT surpasses
existing approaches as it can accurately and quickly detect attacks with
very few false alarms (Appendix C).

1.5 M I T I G AT I N G B AC K D O O R AT TAC K S O N F E D E R AT E D L E A R N -
I N G

Federated learning (FL) is an emerging paradigm for distributed ma-
chine learning ML, where many participants (clients) collaboratively
train an ML model without the need to share their data with any other
parties. In each FL training iteration, participants train local models
using their own data and send model updates to an aggregator, that
aggregates all local model updates to a global model. The new aggre-
gated global model is then sent back to the participants for the next
training iteration. This process is repeated until the model converges
or achieves a certain accuracy level. FL offers several benefits: (1)
enhanced participants’ data privacy as their private data are always
kept locally and not shared to any other party and, (2) improved training
efficiency as the model can learn from many participants’ data, and (3)
scalability as the training task is distributed among many participants
and executed in parallel. Therefore, many FL applications have been
proposed in various fields such as natural language processing [101,
175], image classification [101], medical applications [46, 76, 82, 124],
and IoT [3, 113, 120, 177]. Our federated self-learning-based IoT in-
trusion detection system, DÏoT, exemplifies the advantages of FL as it
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provides an effective and privacy-preserving distributed deep learning
approach for highly dynamic and heterogeneous IoT applications. De-
spite such benefits, FL is vulnerable to backdoor attacks targeting the
security of the FL model [12, 23, 54, 96, 145, 153] and model inference
attacks targeting the privacy of participant data [33, 65, 111, 125, 131].
In a backdoor attack, the adversary manipulates the global model to
provide attacker-chosen outputs (predictions) for specific inputs, known
as triggers. For instance, in image classification applications like traffic
sign recognition for advanced driving systems, an adversary can ma-
nipulate the model to output an 80 km/h speed limit for a traffic sign
showing 30 km/h [132]. Such an attack may cause severe accidents
if a car is in self-driving mode or if a driver relies on the traffic sign
recognition system. In addition to current backdoor attacks on typical FL

applications like image classification and word prediction, these attacks
also affect critical security applications like FL-based IoT intrusion de-
tection systems (IDS) [12, 68, 95]. In this scenario, the adversary aims
to fool the system into falsely recognizing IoT malware traffic as normal
by injecting malicious traffic data into benign data during the training
phase. It is worth noting that these attacks apply only to known malware
traffic, not to future malware, as the adversary has to choose specific
malware traffic patterns as backdoors for training. In model inference
attacks, the adversary (known as an honest-but-curious aggregator)
aims to learn information about participants’ local data through the
analysis of their local model updates. Unfortunately, existing backdoor
defenses are not effective at mitigating state-of-the-art attacks. Most
existing approaches use clustering techniques to identify and remove
poisoned model updates [26, 132]. However, these approaches require
specific assumptions about attacks and data distributions, which will
fail if these assumptions do not hold or the adversary adapts its attack
strategies [23, 96, 145].

FLAME. To address these challenges, we proposed FLAME [4] to
effectively eliminate backdoors and mitigate inference attacks on FL.
FLAME utilizes our adaptive noising approach to dynamically estimate
the necessary amount of noise added to the aggregated model to
neutralize poisoned updates. This concept is based on existing works
showing that adding noise to the model weights can mitigate the impact
of the outlier samples including backdoors [47]. That means, adding
noise can removal of poisoned model updates, regardless of the type
of backdoor attacks. However, introducing a large amount of noise to
eliminate poisoned updates can degrade the benign performance of
the model [23, 54, 145, 153]. To tackle this issue, we propose (1) an
adaptive noising approach that calculates the amount of required noise
for every training iteration to ensure backdoor removal (see Section 5,
Appendix D) and (2) novel dynamic clustering and adaptive clipping
techniques as complementary components. These supportive com-
ponents minimize the amount of noise required to remove backdoors,
ensuring that the noise does not significantly impact the model’s be-
nign performance. The dynamic clustering component identifies and
removes poisoned models with high attack impact by clustering and
identifying the models showing large deviations as outliers. The clip-
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ping component reduces the impact of attacks by ensuring that all
model weights are clipped to a max value as a clipping bound. Thus,
this process mitigates the effects of poisoned updates, which often
have weights of large magnitudes. While existing approaches apply a
fixed clipping bound [23, 133], our approach estimates the bound in
every training iteration and ensures that the bound is within the value
distributions of benign updates. Further, to enhance the accuracy of
FLAME ’s clustering in non-independent and identically distributed (IID)
data, we introduced DeepSight [5], a new deep model filtering approach.
DeepSight analyzes the internal structure and output layer of models
to identify and eliminate potentially poisoned models. In addition, we
propose Private FLAME framework to protect the privacy of the par-
ticipants’ data. Private FLAME prevents the aggregator from directly
accessing the local model updates in plain text, thereby preventing it
from analyzing the updates for inference attacks to learn information
about the data used in training. To achieve this, we have designed
several efficient Secure Two-Party Computation (STPC) protocols for
the clustering and clipping components. For example, we introduce
approximate secure HDBSCAN to avoid expensive operations in STPC

when applying the construction of the minimal spanning tree in HDB-
SCAN. As a result, the private FLAME only introduce 3x more overhead
on the runtime compared to standard FLAME (cf. Section 8, D).

1.6 I M PAC T : S TA RT U P P R O J E C T TO B R I N G R E S E A R C H I D E A

TO P R AC T I C E

Our research on federated self-learning intrusion detection, DÏoT, has
generated many follow-up studies in both academia and the industry
sector. At the time of writing, the DÏoT publication has received about
800 citations. We thank major technology vendors, including Cisco
and Intel who assisted us in formulating real-world settings and usage
scenarios of DÏoT. Further, we are fortunate to have received 0.8 million
Euros from the PioneerFund 1 and the Federal Ministry of Education
and Research (BMBF) 2 for further technical and business development
of DÏoT. These funding programs will help in bringing DÏoT to real-world
application through the formation of a startup company.

1.7 S U M M A RY O F M Y C O N T R I B U T I O N S

Of my 16 peer-reviewed publications, five – where I either took the lead
or was one of the main authors – were chosen to form this dissertation
(see Table 1.1). These publications would not have been possible with-
out the substantial inputs and invaluable support from my co-authors. In
the following, I will detail my specific contributions to each publication.

1 https://www.informatik.tu-darmstadt.de/fb20/aktuelles_fb20/fb20_
neuigkeiten/neuigkeiten_fb20_details_241728.de.jsp

2 https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/
diot
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ConXPair 2 [1, Appendix A]:

Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza Sadeghi, and
N. Asokan. “Revisiting Context-Based Authentication in IoT.” In:
Proceedings of the 55th Annual Design Automation Conference
(DAC’18). DOI: 10.1145/3195970.3196106. CORE Rank A.

Markus Miettinen was the lead author. He led the design of the evalu-
ation framework for context-based authentication schemes and crafted
a significant portion of the manuscript. My contribution involved co-
designing the evaluation framework. Further, I proposed an advanced
fingerprinting approach based on peak detection and alignment that
extracts high-entropy context fingerprints. This addresses a primary
challenge of the existing longitudinal context fingerprinting approaches,
where the majority of the bits possess low entropy due to the infrequent
changes in context. Furthermore, I took on the responsibility for data
collection, implementation, and evaluation. It is worth noting that this
paring scheme is based on our previous scheme ConXPair [15] where
I co-designed and was in charge of the implementation of the ambient
noise-based fingerprinting approach, the fuzzy commitment scheme
based on Reed-Solomon codes and the key derivation scheme (in
collaboration with Majid Sobhani).

TraceCorona [2, Appendix B]:

Thien Duc Nguyen, Markus Miettinen, Alexandra Dmitrienko,
Ahmad-Reza Sadeghi, and Ivan Visconti. “Digital Contact Tracing
Solutions: Promises, Pitfalls and Challenges.” In: IEEE Transac-
tions on Emerging Topics in Computing (2022): DOI: 10.1109/TETC.2022.3216473.

I was the lead author and proposed TraceCorona, a decentralized
contact tracing system that leverages asymmetric cryptography. This
system not only offers robust security and privacy guarantees but also
enhances effectiveness compared to state-of-the-art approaches. I also
led the technical design, implementation, beta-deployment and eval-
uation of the TraceCorona App. Further, my responsibilities extended
to systematizing related work, pinpointing the limitations of existing
methods, and writing a major part of the manuscript.

DÏoT [3, Appendix C]:

Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein
Fereidooni, N. Asokan, and Ahmad-Reza Sadeghi. “DÏoT: A Fed-
erated Self-learning Anomaly Detection System for IoT.” In: 2019
IEEE 39th International Conference on Distributed Computing
Systems (ICDCS’19). DOI: 10.1109/ICDCS.201900080. CORE
Rank A.

As the lead author, I drove the design of DÏoT. I proposed a novel
anomaly detection method based on language models, employing the
recurrent neural network to estimate the occurrence probability of each
network packet in sequences in collaboration with the co-authors. I was
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responsible for the main implementation tasks such as packet symbol
generation, occurrence probability estimation, anomaly detection, data
collection, and evaluation. Markus Miettinen and I drafted the major
part of the manuscript, which was then edited by all co-authors.

FLAME [4, Appendix D]:

Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame,
Helen Möllering, Hossein Fereidooni, Samuel Marchal, Markus
Miettinen, Azalia Mirhoseini, Shaza Zeitouni, Farinaz Koushanfar,
Ahmad-Reza Sadeghi and Thomas Schneider. “FLAME: Taming
Backdoors in Federated Learning.” In: 31st USENIX Security
Symposium (USENIX Security 22). ISBN: 978-1-939133-31-1.
CORE Rank A*.

As the lead author, I led the design of FLAME and proposed the high-
level design of Private FLAME. I proposed a comprehensive defense
concept that prevents adversaries from simultaneously achieving attack
impact and stealthiness. Together with Phillip Rieger, we developed
the dynamic clustering, clipping, and noising techniques. I outlined the
requirements and crafted a plan for the evaluation. Furthermore, I took
on the responsibility of drafting the manuscript.

DeepSight [5, Appendix E]:

Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-
Reza Sadeghi and. “DeepSight: Mitigating Backdoor Attacks in
Federated Learning Through Deep Model Inspection.” In: Network
and Distributed System Security Symposium (NDSS’22). CORE
Rank A*.

Phillip Rieger was the lead author of this publication. I collaborated with
him on the design of DeepSight as an extension of FLAME and edited
the manuscript.

1.8 D I S S E RTAT I O N O U T L I N E

The dissertation includes six chapters. The first four chapters summa-
rize our contributions and discuss relevant studies and the final chapter
concludes the dissertation and outlines future work.
Chapter 2: Context-based Pairing for IoT. In this chapter, we present
ConXPair, our novel context-based zero-interaction pairing scheme
and a framework to evaluate the security of a context-based scheme
utilizing min-entropy.
Chapter 3: Digital Contact Tracing. This chapter summarizes our
contributions in response to the COVID-19 pandemic as proposing
novel DCT approach, TraceCorona, and systematizing existing DCT

systems . This is based on our experiences with various works in
context-based authentication such as context-based pairing [1, 15] and
proof-of-presence [7, 11]. We highlight TraceCorona, an advanced DCT

scheme to enhance security, privacy, effectiveness, and ethical aspects
of existing DCT systems.
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Chapter 4: Federated Self-learning Intrusion Detection for IoT. In
this chapter, we discuss DÏoT, our novel FL-based anomaly detection
that detects attacks on IoT devices caused by IoT malware.
Chapter 5: Taming Backdoors on Federated Learning. In this chap-
ter, we discuss FLAME and DeepSight, our comprehensive approach
to identifying and eliminating poisoned updates caused by backdoor
attacks in FL.
Chapter 6: Conclusion and Future Work. We conclude this disserta-
tion and outline future research directions on the security and privacy
of IoT devices and federated learning.
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C O N T E X T- B A S E D PA I R I N G F O R I O T

As mentioned in Chapter 1 (Section 1.2), securing IoT device pairing is
challenging due to device diversity, varied application scenarios, and
complex user involvement requirements. Traditional pairing methods
like Human-In-The-Loop pairing require user participation, such as en-
tering passwords or scanning QR codes, for mitigating MITM attacks [38,
94, 102, 103, 211, 213]. However, these methods may not be suitable
for devices without user interface capabilities and can burden users
in multi-device environments, making the process tedious and error-
prone. Other methods like Pre-Shared Security Associations (PSSA)
approaches are impractical due to the challenge of establishing a uni-
versal key pool or Public Key Infrastructure (PKI) across heterogeneous
IoT devices and manufacturers, failing to distinguish devices in differ-
ent trust domains [42, 49, 52, 98, 135, 138]. The limitations of these
traditional methods underscore the need for new, user-friendly authenti-
cation strategies in the IoT ecosystem. Context-based, Zero-Interaction
Pairing (ZIP) emerges as a promising solution, leveraging shared con-
text information to verify device co-presence without user input [104,
130, 141, 142]. However, current context-based solutions lack suffi-
cient entropy and long-term reliability, highlighting the need for further
research in secure, zero-human intervention authentication methods.

2.1 O U R C O N T R I B U T I O N S

To tackle such challenges of context-based pairing, we introduce ConX-
Pair2, a key evolution scheme utilizing longitudinal context modali-
ties such as ambient noise and luminosity. This section provides an
overview of the key contributions from our research as detailed in the
following publication:

[1] Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza Sadeghi,
and N. Asokan. “Revisiting Context-Based Authentication in IoT.”
In: Proceedings of the 55th Annual Design Automation Confer-
ence (DAC’18). DOI: 10.1145/3195970.3196106. CORE Rank A.
Included in Appendix A.

Robust Context-Based Shared Entropy Extraction ConXPair2 [1]
is an enhanced iteration of our previous work, ConXPair [15]. It incorpo-
rates a novel fingerprint extraction method to generate high-entropy bits.
Unlike conventional approaches that typically capture a single snapshot
of context information [130, 141, 142], ConXPair continuously monitors
dynamic contextual elements, such as ambient noise and luminosity, to
assess the proximity status of devices to be paired. It extracts context
fingerprints over an extended period, ensuring more comprehensive
data collection. However, the original ConXPair faced a critical limi-
tation: its fingerprint extraction method yielded low-entropy bits. The

13
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generated fingerprints contained disproportionately more "zero" bits
compared to "one" bits, primarily due to the infrequent variations in
context. This issue is a common drawback of existing approaches [130,
141, 142], which rely on extracting fingerprints directly from context
information. When the context changes infrequently, mostly "zero" bits
are produced, limiting the entropy of the fingerprint. ConXPair2 ad-
dresses this limitation by adopting a fundamentally different approach
called peak detection and alignment. Instead of depending solely on
context-derived fingerprints, ConXPair2 first generates a fully random
fingerprint (serving as a random secret key) and then uses context
information to encode it. In this method, "one" bits are encoded at
peak timestamps, while "zero" bits are encoded at non-peak times-
tamps. This ensures that the fingerprint is inherently random and re-
tains high entropy regardless of the variability in context. By leveraging
this novel encoding strategy, ConXPair2 guarantees the generation of
high-entropy, randomized fingerprints, overcoming the limitations of its
predecessor and other existing methods [15, 130, 141, 142].

Systematic Analysis. Existing context-based pairing solutions often
use error-correcting codes to create shared secrets. However, a sys-
tematic analysis and empirical evaluation of their security in real-world
applications is lacking. To address this gap, we systematically analyze
how these context-based authentication methods affect security in typi-
cal IoT deployments [1]. Firstly, we propose a unified model of using
context as a shared secret in authentication applications to address the
challenges of establishing secure communication without user interac-
tion. Secondly, we provide a security analysis focusing on entropy loss
and privacy amplification to understand the influence of these factors
on the security of context-based pairing schemes. Thirdly, we conduct
an empirical evaluation by leveraging real-world data to validate the
effectiveness and applicability of context-based authentication methods
in practical IoT scenarios.

2.2 R E L AT E D W O R K

Several approaches have been proposed to ensure secure device
pairing. These approaches can be categorized into three categories:
(1) Human-In-The-Loop pairing, (2) Pre-Shared Security Associations
(PSSA), and (3) Context-based pairing.

Human-In-The-Loop pairing. This approach relies on users to phys-
ically interact with the devices, for example, by comparing verification
codes, entering passwords, scanning Bar/QR codes, pressing buttons
on IoT devices for pairing, or shaking two devices simultaneously to
generate similar acceleration patterns [38, 94, 102, 103, 211, 213].
However, this approach has two main drawbacks: (1) it is not suitable
for IoT devices that may not have, e.g., a screen to show a verification
code or a camera to scan a QR code, and (2) it burdens users in set-
tings with numerous devices, making authentication tedious and often
prone to errors.
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Pre-Shared Security Associations (PSSA). Eschenauer et al. [49]
introduce a key distribution system for Digital Sensor Networks (DSN)
that ensures neighboring nodes can establish a shared key. This basic
pre-distribution scheme is later extended by Chan et al. [42] to enhance
the system to a q-composite scheme, multi-path reinforcement, and
random pairwise key pre-distribution. Later, Liu et al. [98] introduce
two new key predistribution schemes based on the random subset
assignment and hypercube approaches. Further, Traynor et al. [138]
propose an unbalanced probabilistic key distribution scheme and a
hybrid scheme that is applied if key distribution centers (KDC) are
available. However, these key pre-distribution-based schemes have
two main drawbacks. Firstly, there are billions of IoT devices from thou-
sands of manufacturers [53], leading to practical deployment issues
since it is unlikely that all device vendors will establish mutual secu-
rity associations needed for pre-keying devices. Secondly, even if all
devices have the same pre-shared key, this is not enough to estab-
lish separated secured keys for different trust zones, e.g., to prevent
IoT devices from one home from being paired with the devices from
neighbors’ homes. In contrast to these approaches, our scheme is not
based on key pre-distribution but employs ambient context information
to gradually establish a secure key between devices sharing the same
context, i.e., potentially located in the same trust zone.

Context-based pairing. To address the limitations of Human-In-The-
Loop and PSSA approaches, several context-based approaches have
been proposed. Varshavsky et al. [142] introduce an immediate proxim-
ity verification scheme using WiFi signal strength fluctuation patterns
to tackle the trust zone separation problem. This scheme ensures that
only the devices at very close distances (roughly one meter or less)
are paired. However, this method has two main limitations: (1) it is not
suitable for general IoT settings where distances between the devices
are usually more than one meter and (2) it is vulnerable to MITM attacks
as the authors have discussed in their publication [142]. Further, Schür-
mann and Sigg [130] use audio signals to generate shared secrets
between co-located devices. Unfortunately, this approach requires pre-
cise time synchronization and sound sample alignment which can be
challenging if the devices are not very close to each other. Truong
et al. [141] propose zero-interaction authentication using contextual
proofs. However, they focus on co-location verification in settings with
pre-established trust. In contrast, our approach can manage short-term
adversarial presence without compromising pairing authenticity. Fur-
ther, our approach addresses the unique challenge of pairing devices
without any preceding security associations and assumptions.

Recent related work. Recent works on context-based authentica-
tion fall into three categories: (1) exploring new application scenarios
and new context modalities [61, 83, 157], (2) utilizing active context-
based pairing, and (3) expanding fusion modality techniques [69]. In
the first line of research, Fomichev et al. [61], extended context-based
approaches for intra-car device pairing scenarios where the devices
inside a car should be paired but not to ones in other cars. Instead
of using typical context modalities like ambient noise or light, the au-
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thors utilize data generated by smartphone sensors like the accelerator,
gyroscope, and barometer to capture the typical car-moving context,
such as road turns, bumps, and speed changes. Yang et al., [157]
also consider intra-car device pairing scenarios but use only GPS as a
context modality. Their evaluation shows that two devices in the same
car can establish a 128-bit key in 1.32 minutes, sharing comparable
performance to the Fomichev et al. [61] approach that uses a different
set of context modality sensors (accelerator, gyroscope, and barom-
eter). Secondly, instead of passively measuring context information,
some approaches actively inject context information to increase context
fingerprint entropy and shorten context measurement time [11, 60]. For
example, Fomichev et al., [60] leverage actuators, e.g., smart speakers,
lights, and humidifiers, to inject audio, light, and CO2 into the environ-
ment so that other devices with corresponding sensors can capture
and extract context fingerprints. However, this approach is intrusive,
i.e., users will be annoyed if a speaker makes a random noise or a
light bulb starts blinking. All the above-mentioned approaches assume
that devices are equipped with the same sensing modalities, e.g., a
microphone if ambient noise is used to extract fingerprints. The third
line of research tackles this problem by focusing on the timing in which
an event like door opening can be captured by different sensors like
geophones, microphones, and light sensors [57, 69]. Thus, IoT de-
vices with different types of sensors can still capture the same event
simultaneously to extract timing-based event fingerprints.
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3
D I G I TA L C O N TA C T T R A C I N G

As mentioned in Section 1.3 (Chapter 1), existing DCT apps raise
significant concerns about security, privacy, effectiveness, and ethical
aspects. We aim to address these problems by providing an extensive
analysis of DCT systems and introducing a new scheme that fulfills the
critical requirements of an effective and secure DCT. This chapter will
highlight our contributions and summarize related work.

3.1 O U R C O N T R I B U T I O N S

In this section, we summarize the contributions of this dissertation
aiming to analyze and tackle the limitations of existing DCT systems, as
detailed in the following publications:

[2] Thien Duc Nguyen, Markus Miettinen, Alexandra Dmitrienko,
Ahmad-Reza Sadeghi, and Ivan Visconti. “Digital Contact Tracing
Solutions: Promises, Pitfalls and Challenges.” In: IEEE Transac-
tions on Emerging Topics in Computing (2022).
DOI: 10.1109/TETC.2022.3216473. Included in Appendix B.

Real-world empirical analysis of Google and Apple Exposure
Notification API (GAEN). We started our studies with an empirical
analysis of GAEN [159], a jointly developed DCT platform by Apple and
Google that has been widely adopted, especially in European countries
[150, 189, 200, 202]. GAEN is a BLE-based proximity detection system
and runs in the background of iOS and Android smartphones. It allows
third parties (eventually only state governments) to build their DCT

applications using GAEN APIs. However, the core functions, such as
generating, broadcasting, collecting, and matching device ephemeral
IDs, so-called Rolling Proximity Identifiers (RPI), are done by the GAEN

platform itself. We implemented and deployed a real-world setting of
GAEN and critical attacks against it in three cities in Germany [16]. Our
empirical study demonstrates that even such a high-profile system is
vulnerable to large-scale security and privacy attacks, including profiling
attacks (Section III [16]) and relay-based wormhole attacks (Section
IV [16]). In a profiling attack, an adversary can track the movements
of COVID-19-infected users by collecting RPIs and comparing those
with the published RPIs of infected users. This movement tracking
can also be exploited further to profile users’ daily routes and use
this to de-anonymize users [80, 112, 198]. In a relay-based wormhole
attack, an adversary can inject massive incorrect exposure contacts,
i.e., generate a large number of false notifications of contacts with
infected users. Hence, the attack severely reduces the reliability of the
system and introduces unnecessary pressure on the health system to
conduct COVID-19 tests to a large number of false alarms.

17
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Systematization of DCT systems. We conducted a comprehensive
examination of state-of-the-art DCT systems, e.g., [35, 140, 159, 182,
193, 196], classifying them by their design principles and technologies.
Firstly, we analyze requirements for DCT, in which we identify four
critical aspects, including effectiveness, security, privacy, and ethics,
that need to be assessed thoroughly when designing, implementing,
and deploying a DCT system (Section III, Appendix B). We then provide
a systematization of existing DCT systems and point out their deficiency
in addressing the four critical requirements. Specifically, we delve into
the limitations of widely used DCT systems, e.g., GAEN [159], DP-3T
[140], BlueTrace [182], PACT [196], and PEPPPT [193] (Section V,
Appendix B). Our study indicates significant security and privacy gaps
in such systems, which are vulnerable to extensive large-scale threats
[16, 28, 48, 74, 91, 143, 148, 149, 188, 195, 205, 206, 210].

TraceCorona. To address these challenges, we propose TraceCo-
rona, a novel contact tracing approach that fulfills the requirements
better compared to state-of-the-art approaches (Section IV, Appendix
B). TraceCorona is a decentralized contact tracing approach utilizing
public-key protocols such as the Diffie-Hellman (DH) key exchange pro-
tocol to establish secret keys, so-called encounter tokens for contacts
between users. Our system utilizes BLE to exchange short-lived public
keys after monitoring the sustained co-presence of users for a certain
time interval, e.g., 15 minutes. TraceCorona requires verification of
every encounter to elevate the system’s overall efficacy and resilience.
In contrast to existing adopted DCT systems relying on broadcasting
and receiving pseudonymous proximity identifiers [35, 140, 159, 182,
193, 196], our bidirectional communication method based on a key
exchange protocol establishes a unique, verifiable token for each en-
counter between two users, thus providing a robust defense against
profiling and relay attacks compared to unilateral identifier broadcasting.
Further, we provide an in-depth analysis to demonstrate the advantages
of TraceCorona with regard to all critical requirements in comparison to
existing systems (Section V, Appendix B).

Real-world deployment of TraceCorona. We developed a system
and rolled out a beta version of the TraceCorona app for Android phone
users. Encouragingly, our app has been used by more than 2,000 users
over a month without significant functional issues. The success of our
real-world deployment demonstrates that it is possible to design and
deploy a DCT system without compromising critical requirements.

3.2 R E L AT E D W O R K

Overall, DCT approaches are categorized as centralized and decentral-
ized based on where the detection of potential exposure is performed
(Section II.B, Appendix B). In centralized approaches, the ephemeral
IDs are generated by a central server and sent to clients (mobile de-
vices). The server then collects the ephemeral IDs of infected users
and performs ephemeral ID matching to find potential contacts with
infected users. In contrast, in decentralized approaches, the clients per-
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form both ephemeral ID generating and matching. Thus, decentralized
approaches limit the ability of the server to collect massive amounts of
sensitive information about users.
Centralized Contact Tracing. There are several centralized contract
tracing systems [24, 73, 77, 179, 182–185, 187, 190–194, 197, 199,
201, 203, 207, 208] (see [17, Section A] for the details). Many of those
systems are based on widely adopted and deployed schemes, for ex-
ample, BlueTrace [182] is a BLE-based DCT framework used by several
countries such as Singapore [204], Australia [186], and France [203].
Some other systems, like the AarogyaSetu app used in India [179],
are considered invasive of privacy because they gather sensitive per-
sonal data, including GPS locations and user phone numbers. There
have been proposals to enhance the security and privacy of central-
ized methods. For example, Hoepman et al. suggest two protocols
to reduce the risk of location tracking and replay attacks [73]. Castel-
luccia et al. propose a ’hybrid solution’ called Desire, which blends
centralized and decentralized techniques [29], in which the clients gen-
erate Diffie-Hellman keys instead of temporary IDs, and infected users
anonymously upload encounter tokens derived from these keys, using
privacy-enhancing networks like Tor [170]. Despite its hybrid, Desire is
categorized as centralized since the server still receives all encounter
tokens, matches them, and detects contacts with infected users.

Decentralized Contact Tracing. There are several decentralized
contact tracing approaches, and many of them are also widely deployed,
especially in European countries and the USA, e.g., DP3T [140], MIT-
PACT [196], and the Google/Apple Exposure Notification API GAEN

[159]. These approaches share basic structure and protocols as they
allow the clients to generate and match ephemeral IDs and notify users
of potential COVID-19 exposures [17, Section IV.A]. Even though these
approaches provide better user privacy guarantees than centralized
approaches, these still face critical security, privacy, effectiveness, and
ethical problems, as discussed in Section 3.1.

DH-based Decentralized Contact Tracing. PRONTO-C2 [21] and
CleverParrot [30] aim to solve the problem of exceeded message length
when using BLE advertising messages to send and receive Elliptic-curve
Diffie-Hellman (ECDH) public keys. PRONTO-C2 utilizes blockchain
technology to store and share the keys on the bulletin board. Hence,
only the keys’ location references, not the keys, are directly transmitted
over BLE. CleverParrot condenses the public key size to 224 bits (28
bytes) based on the elliptic curve P-224 that aligns with the Bluetooth
message length in Apple’s Find My Device Protocol [161]. However,
Android and iOS predominantly support 128-bit BLE advertising mes-
sages as a standard. Thus, without modifications to the BLE framework
by Google and Apple, CleverParrot’s practical application seems limited.
As highlighted in Section IV-B in Appendix B, TraceCorona addresses
the BLE advertising message length limitation by employing BLE Con-
nection that establishes a data transfer channel between two Bluetooth
devices to transmit public keys without imposing to communication
constraints and a need of blockchain-based bulletin board. Another line
of work is to combine DH with Private Set Intersection (PSI) Cardinality
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(PSI-CA), Epione [139] uses Function Secret Sharing methods [25] to
prevent other users from accessing the encounter tokens shared by
infected users. In this approach, the clients and the server collabora-
tively identify matching encounter tokens so that users can determine
the number of interactions they have had with infected users without
downloading encounter tokens.
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4
F E D E R AT E D S E L F - L E A R N I N G I N T R U S I O N
D E T E C T I O N F O R I O T

As mentioned in Section 1.4 (Chapter 1), large-scale attacks on IoT
devices are increasingly emerging. However, existing defense mecha-
nisms are not effective. We aim to tackle this problem by proposing a
new anomaly detection approach specifically targeting attacks against
IoT systems. This chapter will highlight our contributions and summa-
rize related work.

4.1 O U R C O N T R I B U T I O N S

In this section, we summarize the contributions of this dissertation
aimed at detecting attacks on IoT devices, as detailed in the following
publication:

[3] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein
Fereidooni, N. Asokan, and Ahmad-Reza Sadeghi. “DÏoT: A Fed-
erated Self-learning Anomaly Detection System for IoT.” In: 2019
IEEE 39th International Conference on Distributed Computing
Systems (ICDCS’19). DOI: 10.1109/ICDCS.201900080. CORE
Rank A. Included in Appendix C.

Autonomous device-type-specific anomaly detection. Traditional
anomaly detection-based IDS approaches use a generic detection
model for the whole network. However, this method is not effective
due to the heterogeneity of IoT devices as there are thousands of IoT
device types and IoT vendors, i.e., it is challenging to build a universal
model that can learn such diverse device behavior patterns effectively.
However, each specific device type often operates only a limited num-
ber of particular functionalities, exposing relatively predictable behavior
patterns. Therefore, rather than relying on a singular, extensive de-
tection model, DÏoT designates a specific model to each device type.
By doing so, the model can profile all possible legitimate behaviors of
each device precisely, thus, effectively identifying any deviation from be-
nign behavior and reducing false alarms. However, this approach also
introduces a challenge as the system needs to identify device types
before training or applying detection models. This is a challenging task
due to the heterogeneity and dynamic landscape of IoT devices. We
address this problem by introducing AuDI, a novel autonomous device
type identification approach [10]. The idea is based on identifying the
unique behavior of IoT devices caused by so-called heartbeat mes-
sages that devices use to communicate with their servers or apps for
status updates and notifications. We, therefore, group the devices to
device types based on their periodic communication patterns. In partic-
ular, we propose 33 features to profile periodic behavior and leverage
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an unsupervised clustering technique, the k-nearest neighbors algo-
rithm (kNN), to cluster the devices to different device types. Devices that
share closely similar feature values are grouped to the same device
type without a need for data labeling or human intervention, enabling
the whole process of DÏoT to operate autonomously.

Network traffic profiling based on natural language modeling.
One of DÏoT’s key objectives is to design a profiling algorithm tailored
for IoT device communication that requires minimal training data and
computing power. To achieve this, we utilize a language model-based
technique, integrating packet-level features and the Gated Recurrent
Unit (GRU) model [36], a lightweight Recurrent Neural Network (RNN)
algorithm. In particular, DÏoT models network packet sequences as
symbolic sequences akin to word sequences in natural languages. It
then estimates the occurrence probability of each packet based on
the sequence of preceding packets. Our intuition is that malicious
packets will have significantly lower occurrence probabilities compared
to benign packets, as packet sequences containing such packets did not
appear during model training. We then introduce an anomaly detection
strategy that computes the occurrence probability for each packet
and assesses whether a given packet is normal or abnormal. Further,
we validate the anomaly of a traffic snippet by calculating its anomaly
score based on all occurrence probabilities of the packets in the snippet.
This approach boosts the detection accuracy since an alarm is made
based on combining several packet-level granularity assessments. It is
worth noting that while our periodic communication profiling approach
can help to distinguish device types, it cannot be applied for anomaly
detection since neither normal device operations nor attack activities
are purely periodic in nature.

Federated learning (FL)-based IoT IDS. While deep learning re-
quires huge amounts of data for model training, a typical IoT device
generates only little network traffic. Furthermore, IoT data frequently
reflect sensitive user information, such as information about the users’
health and user activities [92, 146, 180, 214]. Therefore, an IoT defense
system should not allow third parties to gather and store potentially sen-
sitive IoT data. Our solution utilizes FL [101] to enable numerous clients
(e.g., Security Gateways) and an aggregator (IoT Security Service) to
collaboratively train global device-type-specific models. Each of the
global models is aggregated from the collective local models trained
by the clients that hold data corresponding to the device type. This
federated scheme allows DÏoT to train efficient detection models by
maximizing available client data while eliminating the need to transfer
data to the centralized server or any other party, thus better preserving
user privacy.

4.2 R E L AT E D W O R K

IDS for IoT can be categorized into signature-based and anomaly-based
approaches depending on the detection techniques used. In this sec-
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tion, we discuss both approaches and the most recent work on this
topic.

Signature-based IoT IDS. This technique aims to learn and detect
attack traffic patterns called attack signatures. Several approaches
have been proposed for identifying and mitigating intrusions in IoT and
sensor networks [81, 116, 119], and industrial management systems
[79, 90]. SVELTE is designed to detect intrusions in IoT networks
against known attacks, tailoring traditional detection methods for IoT-
centric protocols like 6LoWPAN [119]. Similarly, Doshi et al. suggested
a method based on identifying attack signatures to spot recognized
DDoS attacks by examining network traffic intensity characteristics [44].
On the other hand, DÏoT aims to dynamically identify even unknown
attacks by detecting any deviation from normal device behavior.

Anomaly-detection-based IoT IDS. This technique aims to learn
the benign traffic patterns and consider any deviation from them as
anomalies. Several anomaly-detection-based IDS have been proposed
[86, 110, 122, 129]. Common methods are to analyze network flow
features such as number of packets or network load transferred per
time window to identify potential threats [89, 110, 116]. Some studies
consider network communication as a sequence of states [90, 122].
For example, Sekar et al. [122] construct finite state machines based
on communication protocols at network layers three and four. The
state machines assess packets to find discrepancies in the protocol.
However, this approach can only handle short packet sequences. In
our approach, we utilize GRU to assess longer sequences, increasing
model capacity to detect subtle changes in network traffic patterns.
Additionally, while most methods offer a broad view of the network
status, our technique focuses on detailed features and semantics of
packet sequences making it harder to be manipulated.

Context-based anomaly detection. Recently, there has been a
growing number of research on context-based anomaly detection for
IoT with a focus on smart home settings [22, 45, 64, 114, 121, 126, 136].
Tang et al. propose an ensemble model to detect anomalous events
in smart homes based on multiple data sources, e.g., binary sensor
data, device status, and numerical sensor data (like temperature) [136].
Their approach requires a combination of multiple supervised learning
models, including Decision Tree, Gaussian Naive Bayes, and Logistic
Regression to deal with such diverse data types. Also, in this line of
work, Dai et al. introduce HomeGuardian to detect abnormal smart
home events based on using a Neural Network model trained on hybrid-
context data: temporal context and environmental context. However,
both approaches from Tang et al. and Dai et al. require both legitimate
and attack data for training. Sikder et al. introduce 6thSense that moni-
tors changes in sensor data during different user tasks and generates a
contextual model to differentiate between benign and malicious sensor
behaviors [121]. 6thSense employs three ML detection models, includ-
ing Markov Chain, Naive Bayes, and Logistic Model Tree to identify
malicious activities involving sensors. However, 6thSense focuses only
on smart devices like smartphones that have multiple sensors. The au-
thors later extended 6thSense to Aegis, a security framework for Smart
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Home Systems, focusing on comprehensive, context-aware monitoring
of user activities and sensor-device interactions [126]. Aegis employs a
Markov Chain-based machine learning model to distinguish between
normal and malicious behaviors by understanding the complex interplay
of smart home components and user activities.

HAWatcher utilizes semantic information from app descriptions and
source code to match devices with correlated attributes, generating
correlation rules [64]. While this structure enables the enforcement of
strict policies, the requirement for semantic information limits its appli-
cability when such information is unavailable, e.g., lacking semantic
details about involved sensors and apps [114].

Very recently, Rieger et al. designed a Deep Neural Network-based
system, Argus, that detects abnormal events in smart homes. While
existing approaches focus on certain types of data, Argus works with
various data from heterogeneous IoT devices and diverse manufactur-
ers. However, Argus also shares the critical limitation of context-based
approaches as it will raise high false alarms if the context is changed
due to new legitimate activities. For example, if a home has a guest,
that would generate event chains that the system has not seen before
and consequently result in false alarms. Solving such problems is still
an open challenge [114].

Further, several anomaly detection approaches are designed for
specific Smart Home Automation platforms like Samsung Smarthings
[22, 39, 43, 81, 137]. For example, Amraoui et al., utilize One-class
SVM to train a detection model on device-triggered commands provided
by SmartApps [22]. However, this approach does not consider sensor
values or physical channels, limiting their ability to detect the attacks
that are based on such changes. For example, if this automation rule is
applied- "The heating is turned on if the temperature is below 18 Celsius
degree", the adversary can turn on heating systems by manipulating
temperature sensors. Jia et al. introduce a context-based system to
spot critical actions on IoT platforms, mainly to address security lapses
in specific IoT platforms, such as Samsung SmartThings [81]. Unlike
these systems, DÏoT is not limited to a single IoT platform, i.e., it is a
versatile across-platform approach.

[ December 16, 2024 at 14:12 – version 0.1 ]



5
TA M I N G B A C K D O O R S O N F E D E R AT E D L E A R N I N G

FL is an emerging distributed learning paradigm offering a number of
benefits such as data privacy, training efficiency, and scalability. How-
ever, FL is susceptible to both security and privacy threats such as
backdoor attacks and inference attacks that circumvent existing de-
fenses [23, 54, 96, 145, 153, 155] as discussed in Section 1.5 (Chapter
1). We tackle these problems by proposing a robust and secure FL

framework that is resilient against both poisoning and inference attacks.
This chapter will highlight our contributions and summarize related
work.

5.1 O U R C O N T R I B U T I O N S

This section summarizes the contributions of this dissertation aimed
at mitigating backdoor and inference attacks on FL, as detailed in the
following publications:

[4] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame,
Helen Möllering, Hossein Fereidooni, Samuel Marchal, Markus
Miettinen, Azalia Mirhoseini, Shaza Zeitouni, Farinaz Koushanfar,
Ahmad-Reza Sadeghi and Thomas Schneider. “FLAME: Taming
Backdoors in Federated Learning.” In: 31st USENIX Security
Symposium (USENIX Security 22). ISBN: 978-1-939133-31-1.
CORE Rank A*.

[5] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-
Reza Sadeghi and. “DeepSight: Mitigating Backdoor Attacks in
Federated Learning Through Deep Model Inspection.” In: Network
and Distributed System Security Symposium (NDSS’22). CORE
Rank A*.

Backdoor characterization. As discussed in Section 1.5, in a back-
door attack in FL, the adversary aims to manipulate the global model
so that it provides adversary-chosen outputs for specific inputs (back-
doors). Typical defenses rely on analyzing model updates to distinguish
poisoned and benign updates. However, one of the main limitations of
existing backdoor defenses is that they rely on specific assumptions
about attack strategies, thus, these defenses fail if such assumptions
do not hold [23, 54, 96, 145]. To overcome such limitations, we identify
fundamental characteristics of backdoor attacks and develop coun-
termeasures based on carefully considering them to ensure that our
defense is effective for all types of backdoors. Specifically, we identify
three types of backdoors: large angular deviation, large magnitude,
and stealthy (see Section 3, Appendix D). We then propose a miti-
gation framework, FLAME, to effectively mitigate all of these types of
backdoors as summarized in the following.

25
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FLAME: Backdoor Resilient Framework. The core idea of FLAME
is to introduce a new method to estimate the amount of noise that
should be added to the aggregated model to ensure that poisoned
model updates are eliminated, regardless of attack type, i.e., FLAME
is able to mitigate all types of backdoor attacks. However, using noise
alone can lead to deterioration of the benign performance of the model
due to the large amount of required noise [23, 54, 153]. We address this
problem by introducing new dynamic clustering and adaptive clipping
techniques as complementary components that help to minimize the
amount of required noise to remove backdoors while preserving the
benign performance of the model. FLAME is a fusion of three defense
components: Clustering, clipping, and noising to ensure that backdoor
updates are either filtered out or averaged out.

The Dynamic Clustering component employs Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDBSCAN), a
Density-Based Spatial Clustering approach, with a parameter tuning
that forms a large cluster consisting of benign models, while potential
poisoned models with significant deviations are considered outliers.
Our clustering approach overcomes several limitations of existing de-
fenses since it can handle dynamic attack scenarios such as multiple
backdoor injections and reduce the false positive rate.

The Adaptive Clipping component limits the impact of model updates
by scaling down updates that have large magnitudes. This ensures
all model updates have L2-norm (Euclidean distances of local models
to the global model) below a clipping bound. However, selecting a
clipping bound value that effectively removes backdoored updates while
maintaining the benign performance of the model is challenging. This
is because (1) selecting a low clipping bound can effectively remove
the backdoor but has a negative effect on model performance and
vice versa and (2) the magnitudes of the model updates vary in each
training iteration. To address these challenges, FLAME dynamically
updates the clipping bound based on the median value of the L2-norms
for every training iteration. Since we assume the majority of clients are
benign, the clipping bound is always in the range of the L2-norms of
benign models.

The Adaptive Noising component adds Gaussian noise directly to
global model weights to reduce the influence of outlier samples, includ-
ing backdoor samples. Existing works have shown that the more noise
is introduced during training, the less impact poisoned samples have,
enhancing the model’s robustness against backdoors, but also the
more negative effect on model performance [23, 47, 133]. Therefore,
the challenging goal here is to introduce minimal noise to counteract
backdoors without compromising the model’s performance. To tackle
this, we carefully analyze the effectiveness of noise level on model up-
dates, model performance, and backdoor accuracy on various training
iterations and datasets. We then introduce a new noise level estimation
approach that is updated dynamically for each training round to ensure
backdoor contributions are effectively eliminated, as shown in Lines
13-14 of Alg. 1 and discussed in Section 5 in Appendix D.
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DeepSight: Deep Model Inspection. To improve the clustering
accuracy of FLAME on non-IID data, we propose DeepSight, a new
deep model filtering approach that analyzes the internal structure and
the output layer of the neural networks to identify potential poisoned
models [5, Appendix E]. In contrast to FLAME, which only measures
the coarse-grained differences between models based on the cosine
distances of the weights, DeepSight analyzes the internal weight dis-
tribution among the neurons and outputs. This is based on our key
observation that a backdoor training task affects (activates) certain neu-
rons more than others depending on the targeted inputs and outputs.
To capture this phenomenon, we introduce two novel metrics: Division
Differences (DDifs), which aim to measure the distribution of model
outputs (prediction scores), and Normalized Update Energies (NEUPs),
which estimate how frequently each label is used for training that re-
flects the frequent use of backdoor samples in training by malicious
clients.

Private FLAME. To protect the privacy of local model updates against
inference attacks, we propose Private FLAME based on STPC tech-
niques that prevents a dishonest aggregator from accessing local model
updates. In particular, we carefully design efficient STPC protocols for
FLAME’s clustering and clipping components including various func-
tions such as cosine and Euclidean distance calculations, HDBSCAN

clustering, and clipping as presented in Section 8 in Appendix D.

5.2 R E L AT E D W O R K

In general, the defenses against backdoors can be categorized into five
categories: (1) backdoored model identification, (2) robust aggregation,
(3) update smoothing, (4) model evaluation, and (5) ensemble FL.

Backdoored model identification [56, 62, 63, 87, 100, 109, 115,
132, 147]. These defenses are based on the hypothesis that back-
doored models are different from benign ones due to the embedding
of backdoor objectives in backdoor training. The defenses typically
use ML-based clustering techniques such as k-means [132] to clus-
ter local models based on pairwise Euclidean or cosine distances of
the local models or between the models and the global model. These
approaches separate models into two groups. The big group with the
majority of local models are considered benign while the small group
or outlier models are then considered malicious [132].

Robust aggregation [26, 50, 51, 70, 85, 123, 158]. Instead of at-
tempting to identify backdoored models, robust aggregation approaches
aim to select potential benign updates to be included in the global model
and ignore other updates. For example, Krum [26] selects the model
that has the smallest sum of Euclidean distances to all other models
as the global model, while Median [158] uses the median values of
model updates for each parameter as the value for the parameter in the
global model. However, these approaches are only effective for specific
data distributions and attack strategies. For instance, Auror [132], Krum
[26] , Median [158] work under the assumption that benign data are
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IID. Further, [23] shows that their attack can bypass such defenses by
carefully constraining and scaling the poisoned updates to be within
the benign update’s distribution. On the other hand, FoolsGold [62] as-
sumes that benign data are non-IID while poisoned data is IID. With this
assumption, FoolsGold considers models that are very similar to others
as potential backdoored models. In contrast, FLAME is not reliant on
such specific assumptions and can thwart all three types of attacks
discussed in Section 5.1.

Update smoothing [47, 93, 133, 134]. Clipping and noising, a typi-
cal approach to ensuring Differential Privacy (DP) [47, 133], can also
be applied to averaging out backdoor updates. However, directly apply-
ing DP to defend against backdoor comes with negative impacts the
model’s accuracy. FLAME tackles this problem by (1) filtering poten-
tially backdoored models that have high attack impact and (2) using
adaptive clipping bounds and noise levels to eliminate the backdoor
while maintaining the model’s accuracy.

Model evaluation [31, 209]. Solutions like FLTrust [31] excel against
a variety of threats, including backdoors. However, they require the ag-
gregators to have access to clean baseline datasets. Another approach,
Baffle [209], requires clients to use their data to test the aggregated
model’s performance and pinpoint backdoors. This strategy has inher-
ent limitations as only attackers know the backdoor triggers, making
it uncertain if benign clients will possess the trigger data. Additionally,
in the non-IID setting, Baffle falls short, as distinguishing performance
drops caused by backdoors or by data scarcity becomes challenging.

Ensemble FL [32, 37]. In these approaches, clients are randomly
divided into several groups, and each client also participates in multiple
groups. The core idea is to train multiple global models concurrently,
with each group working on a different model. These models are then
evaluated using a clean dataset, and the best-performing model is
selected based on a majority vote. However, this method has three
critical drawbacks: (1) the performance of each model might be nega-
tively affected since only a portion of clients contributes to each global
model, (2) it requires significantly higher computing and communication
resources because clients have to train multiple models in parallel com-
pared to one model as in typical FL settings, and (3) it requires having
a root dataset for testing, similar to the model evaluation approaches.

Revisiting Attacks Claiming to Bypass FLAME. Since our FLAME
paper presentation at the USENIX Security Conference in 2022, it has
drawn significant attention, evidenced by more than 200 citations on
Google Scholar. We reviewed the follow-up papers and identified two
attacks claiming to bypass FLAME [96, 155]. However, our investiga-
tion into these attacks revealed significant methodological flaws and a
misunderstanding of FLAME’s fundamentals, particularly its Adaptive
Clipping and Noising features, which are crucial for deterring backdoor
attacks. We have discussed with the authors of these works which led
to corrections by Xu et al. [155]. Further, our empirical studies using
the exact methods and source code from the 3DFed [96] demonstrated
FLAME’s effectiveness in countering these proposed attacks. This high-
lights the necessity of a comprehensive understanding of our defense
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mechanisms when developing offensive strategies. The details of our
investigation can be found in Section 10 in the extended version of the
FLAME paper [18].
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C O N C L U S I O N A N D O U T L O O K

In this chapter, we summarize the the dissertation’s contributions and
outline future research directions.

6.1 C O N C L U S I O N

This dissertation summarizes our contributions to the development of
context-based authentication and FL-based intrusion detection solutions
for securing IoT. In Chapter 2, we introduce ConXPair 2, an innovative
context-based zero-interaction mechanism for IoT device pairing [1, Ap-
pendix A]. In contrast to the traditional methods that capture a snapshot
of context information that require tight time synchronization and pose
insufficient fingerprint entropy, ConXPair 2 continually monitors context
changes to assess device proximity, extract a context fingerprint, and
evolve secured paring keys over time. This process employs our novel
context fingerprint extraction based on peak detection and alignment,
generating high-entropy context fingerprints. Chapter 3 analyzes exist-
ing Digital Contact Tracing (DCT) systems and discusses TraceCorona,
our security and privacy-centric contact tracing system for identifying
potential contacts with Covid-19 infected users [2, Appendix B]. The
security, privacy, and effectiveness of TraceCorona are strengthened
by utilizing Diffie-Hellman (DH) key exchange protocol and BLE-based
distance estimation to generate and verify unique encounter tokens
between users. Our deployed beta version of the TraceCorona app
has been successfully used by many users showing its effectiveness,
security, and privacy advantages.

In Chapter 4, we present DÏoT, an advanced IoT anomaly detection
system utilizing a novel, semi-unsupervised deep learning approach [3,
Appendix C]. DÏoT assigns a specific detection model to each device
type, enhancing model accuracy while requiring less training time. More-
over, DÏoT uses deep learning techniques to analyze network packet
sequences based on learning word sequences in natural language
processing to precisely assess anomalous traffic at packet-level gran-
ularity. Furthermore, DÏoT leverages FL to allow many participants to
contribute to training a global detection model without sharing sensitive
data with any other parties. Our evaluation shows DÏoT’s effectiveness
with a high detection rate and negligible false alarms. Finally, chapter 5
introduces FLAME and DeepSight, two methods designed to mitigate
backdoor and inference attacks in FL systems [4, 5, Appendices D and
E]. FLAME employs an adaptive noising technique to neutralize poi-
soned model updates. Further, we introduce a dynamic clustering and
an adaptive clipping approach to remove model updates with high at-
tack impact, thus reducing the required noise added to maintain benign
performance. In addition, we propose DeepSight to enhance FLAME’s
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effectiveness in non-IID data settings by using deep model filtering to
identify and eliminate potentially poisoned models.

6.2 F U T U R E D I R E C T I O N S

Context-based pairing for IoT. As discussed in 2, context-based pair-
ing offers many advantages compared to other pairing approaches
such as Human-In-The-Loop pairing or pre-shared key (Pre-Shared
Key (PSK)). Hence, many context-based pairing approaches have been
proposed recently (see Section 2.2). Despite such active efforts and its
potential, context-based pairing has not yet been realized in practice.
The main reasons for this are (1) the heterogeneity of devices in terms
of sensing, computing capabilities, and deployment scenarios, and (2)
low fingerprint entropy and high noise in the context. One line of future
research should explore new context modalities and how to effectively
combine them so that even devices with different context sensing ca-
pabilities could still establish a secure key. A broader line of research
would focus on large-scale deployment to address the heterogeneity
of IoT devices. On the one hand, this research should aim to tailor the
pairing scheme for each deployment scenario and device type, a so-
called subgroup pairing. On the other hand, the new approach should
still enable the establishment of a secure key between the subgroups.

Multi-layer anomaly detection for IoT IDS. Although DÏoT focuses
on network traffic data, our concept can utilize data from other layers
to enhance accuracy and coverage. Therefore, one line of future re-
search should investigate multi-layer anomaly detection, for instance,
by combining the data from the physical, network, and application lay-
ers. For example, recent research on the application layer, known as
context-based anomaly detection, shows high potential (see Section
4.2). Hence, this approach can be integrated into DÏoT to cover attacks
that cannot be captured by analyzing network traffic alone.

Understand and unlearn backdoors in FL. Although researches
on backdoor attacks and defenses have been extremely active recently,
most of these works resemble a hide-and-seek game. On the one hand,
attackers apply different optimization algorithms to tune poisoned mod-
els to be similar to benign models. On the other hand, most defenses
aim to explore various distance metrics and clustering algorithms to
distinguish between poisoned and benign model updates (see Section
5.2). Moreover, existing defenses cause model deterioration or slow
down model training by removing entire backdoor models or adding
noise.A new line of research should focus on understanding backdoors
and propose unlearning mechanisms [156] to make models forget the
backdoor while avoiding damage to model integrity.

[ December 16, 2024 at 14:12 – version 0.1 ]



B I B L I O G R A P H Y

32

[ December 16, 2024 at 14:12 – version 0.1 ]



P U B L I C AT I O N S PA R T O F T H I S C U M U L AT I V E
D I S S E R TAT I O N

[1] Markus Miettinen et al. “Revisiting Context-Based Authentica-
tion in IoT.” In: Proceedings of the 55th Annual Design Automa-
tion Conference (DAC’18). DAC’18. San Francisco, California:
Association for Computing Machinery, 2018. ISBN: 9781450357005.
DOI: 10.1145/3195970.3196106. URL: https://doi.org/10.
1145/3195970.3196106.

[2] Thien Duc Nguyen et al. “Digital Contact Tracing Solutions:
Promises, Pitfalls and Challenges.” In: IEEE Transactions on
Emerging Topics in Computing (2022), pp. 1–12. DOI: 10.1109/
TETC.2022.3216473.

[3] Thien Duc Nguyen et al. “DÏoT: A Federated Self-learning
Anomaly Detection System for IoT.” In: 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS).
2019, pp. 756–767. DOI: 10.1109/ICDCS.2019.00080.

[4] Thien Duc Nguyen et al. “FLAME: Taming Backdoors in Feder-
ated Learning.” In: 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 1415–1432. ISBN: 978-1-939133-31-1. URL: https://www.
usenix.org/conference/usenixsecurity22/presentation/
nguyen.

[5] Phillip Rieger et al. “DeepSight: Mitigating Backdoor Attacks in
Federated Learning Through Deep Model Inspection.” In: Net-
work and Distributed System Security Symposium (NDSS’22).
2022.

33

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1145/3195970.3196106
https://doi.org/10.1145/3195970.3196106
https://doi.org/10.1145/3195970.3196106
https://doi.org/10.1109/TETC.2022.3216473
https://doi.org/10.1109/TETC.2022.3216473
https://doi.org/10.1109/ICDCS.2019.00080
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen


O T H E R P U B L I C AT I O N S B Y T H E A U T H O R

[6] Md Sadun Haq et al. “SoK: A Comprehensive Analysis and Eval-
uation of Docker Container Attack and Defense Mechanisms.”
In: Proceedings 45th IEEE Symposium on Security and Privacy
(S&P 2024). 2024.

[7] Markus Miettinen et al. “I Know Where You Are: Proofs of Pres-
ence Resilient to Malicious Provers.” In: Proceedings of the
10th ACM Symposium on Information, Computer and Com-
munications Security. ASIA CCS ’15. Singapore, Republic of
Singapore: Association for Computing Machinery, 2015. ISBN:
9781450332453. DOI: 10.1145/2714576.2714634. URL: https:
//doi.org/10.1145/2714576.2714634.

[8] Alexandra Dmitrienko et al. “Market-driven Code Provisioning to
Mobile Secure Hardware.” In: Financial Cryptography and Data
Security (FC 2015). Jan. 2015. URL: http://tubiblio.ulb.tu-
darmstadt.de/104196/.

[9] A. Paverd et al. “OmniShare: Encrypted Cloud Storage for the
Multi-Device Era.” In: IEEE Internet Computing (2018), pp. 1–1.
ISSN: 1941-0131. DOI: 10.1109/MIC.2018.182130646.

[10] S. Marchal et al. “AuDI: Towards Autonomous IoT Device-Type
Identification using Periodic Communication.” In: IEEE Journal
on Selected Areas in Communications (JSAC’19) (2019), pp. 1–
1. ISSN: 0733-8716. DOI: 10.1109/JSAC.2019.2904364.

[11] Hien Thi Thu Truong et al. “DoubleEcho: Mitigating Context-
Manipulation Attacks in Copresence Verification.” In: 2019 IEEE
International Conference on Pervasive Computing and Com-
munications, PerCom, Kyoto, Japan, March 11-15, 2019. 2019,
pp. 1–9. DOI: 10.1109/PERCOM.2019.8767404. URL: https:
//doi.org/10.1109/PERCOM.2019.8767404.

[12] Thien Duc Nguyen et al. “Poisoning Attacks on Federated
Learning-based IoT Intrusion Detection System.” In: The De-
centralized IoT Systems and Security Workshop at the Network
and Distributed System Security Symposium (NDSS’20). 2020.

[13] Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.
“Long Live Randomization: On Privacy-Preserving Contact Trac-
ing in Pandemic.” In: MTD’20: Proceedings of the 7th ACM
Workshop on Moving Target Defense. ACM, Nov. 2020. ISBN:
978-1-4503-8085-0. URL: https://dl.acm.org/doi/abs/10.
1145/3411496.3421229.

[14] Hossein Fereidooni et al. “SAFELearn: Secure Aggregation
for private FEderated Learning.” In: 2021 IEEE Security and
Privacy Workshops (SPW). 2021, pp. 56–62. DOI: 10.1109/
SPW53761.2021.00017.

34

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1145/2714576.2714634
https://doi.org/10.1145/2714576.2714634
https://doi.org/10.1145/2714576.2714634
http://tubiblio.ulb.tu-darmstadt.de/104196/
http://tubiblio.ulb.tu-darmstadt.de/104196/
https://doi.org/10.1109/MIC.2018.182130646
https://doi.org/10.1109/JSAC.2019.2904364
https://doi.org/10.1109/PERCOM.2019.8767404
https://doi.org/10.1109/PERCOM.2019.8767404
https://doi.org/10.1109/PERCOM.2019.8767404
https://dl.acm.org/doi/abs/10.1145/3411496.3421229
https://dl.acm.org/doi/abs/10.1145/3411496.3421229
https://doi.org/10.1109/SPW53761.2021.00017
https://doi.org/10.1109/SPW53761.2021.00017


OT H E R P U B L I C AT I O N S B Y T H E AU T H O R 35

[15] Markus Miettinen et al. “Context-Based Zero-Interaction Pairing
and Key Evolution for Advanced Personal Devices.” In: Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS’14). CCS ’14. Scottsdale, Ari-
zona, USA: Association for Computing Machinery, 2014. ISBN:
9781450329576. DOI: 10.1145/2660267.2660334. URL: https:
//doi.org/10.1145/2660267.2660334.

[16] Lars Baumgärtner et al. “Mind the GAP: Security & Privacy
Risks of Contact Tracing Apps.” In: 19th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom’20). 2020. DOI: 10.1109/TrustCom50675.
2020.00069.

[17] Thien Duc Nguyen et al. Digital Contact Tracing Solutions:
Promises, Pitfalls and Challenges. 2022. arXiv: 2202.06698
[cs.CR].

[18] Thien Duc Nguyen et al. “FLGUARD: Secure and Private Feder-
ated Learning.” In: CoRR abs/2101.02281 (2021). arXiv: 2101.
02281. URL: https://arxiv.org/abs/2101.02281.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1145/2660267.2660334
https://doi.org/10.1145/2660267.2660334
https://doi.org/10.1145/2660267.2660334
https://doi.org/10.1109/TrustCom50675.2020.00069
https://doi.org/10.1109/TrustCom50675.2020.00069
https://arxiv.org/abs/2202.06698
https://arxiv.org/abs/2202.06698
https://arxiv.org/abs/2101.02281
https://arxiv.org/abs/2101.02281
https://arxiv.org/abs/2101.02281


O T H E R R E F E R E N C E S

[19] Atheer Abu Zaid, Manar H. Alalfi, and Ali Miri. “Automated
Identification of Over-Privileged SmartThings Apps.” In: 2019
IEEE International Conference on Software Maintenance and
Evolution (ICSME). 2019, pp. 247–251. DOI: 10.1109/ICSME.
2019.00037.

[20] TraceCORONA: Anonymous decentralized contact tracing for
pandemic response. TraceCORONA. tracecorona.net. May
2020.

[21] Gennaro Avitabile et al. Towards Defeating Mass Surveillance
and SARS-CoV-2: The Pronto-C2 Fully Decentralized Auto-
matic Contact Tracing System. CoronaDef Workshop at NDSS
2021. https://www.ndss-symposium.org/ndss-paper/auto-
draft-164/. 2021.

[22] Noureddine Amraoui and Belhassen Zouari. “An ML Behavior-
Based Security Control for Smart Home Systems.” In: Risks and
Security of Internet and Systems: 15th International Conference,
CRiSIS 2020, Paris, France, November 4–6, 2020, Revised
Selected Papers. Berlin, Heidelberg: Springer-Verlag, 2020,
pp. 117–130. ISBN: 978-3-030-68886-8. DOI: 10.1007/978-3-
030-68887-5_7. URL: https://doi.org/10.1007/978-3-030-
68887-5_7.

[23] Eugene Bagdasaryan et al. “How To Backdoor Federated Learn-
ing.” In: CoRR abs/1807.00459 (2018). URL: http://arxiv.
org/abs/1807.00459.

[24] Francesco Buccafurri, Vincenzo De Angelis, and Cecilia Labrini.
“A Privacy-Preserving Solution for Proximity Tracing Avoiding
Identifier Exchanging.” In: 2020 International Conference on
Cyberworlds (CW). 2020, pp. 235–242. DOI: 10.1109/CW49994.
2020.00045.

[25] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret
Sharing.” In: Advances in Cryptology - EUROCRYPT 2015.
Ed. by Elisabeth Oswald and Marc Fischlin. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 337–367.

[26] Peva Blanchard et al. “Machine Learning with Adversaries:
Byzantine Tolerant Gradient Descent.” In: Advances in Neu-
ral Information Processing Systems, NIPS. Curran Associates,
Inc., 2017, pp. 119–129.

[27] D. Barrera, I. Molloy, and H. Huang. “IDIoT: Securing the In-
ternet of Things like it’s 1994.” In: ArXiv e-prints (Dec. 2017).
http://adsabs.harvard.edu/abs/2017arXiv171203623B.
eprint: 1712.03623.

36

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1109/ICSME.2019.00037
https://doi.org/10.1109/ICSME.2019.00037
tracecorona.net
https://www.ndss-symposium.org/ndss-paper/auto-draft-164/
https://www.ndss-symposium.org/ndss-paper/auto-draft-164/
https://doi.org/10.1007/978-3-030-68887-5_7
https://doi.org/10.1007/978-3-030-68887-5_7
https://doi.org/10.1007/978-3-030-68887-5_7
https://doi.org/10.1007/978-3-030-68887-5_7
http://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1807.00459
https://doi.org/10.1109/CW49994.2020.00045
https://doi.org/10.1109/CW49994.2020.00045
http://adsabs.harvard.edu/abs/2017arXiv171203623B
1712.03623


OT H E R R E F E R E N C E S 37

[28] Zak Brighton-Knight, Jim Mussared, and Alwen Tiu. Linkability
of Rolling Proximity Identifiers in Google’s Implementation of
the Exposure Notification System. Technical report. https://
github.com/alwentiu/contact-tracing-research/blob/
main/GAEN.pdf.

[29] Antoine Boutet et al. DESIRE: Leveraging the best of centralized
and decentralized contact tracing systems. ACM Digital Threats:
Research and Practice, Special Issue on Security and Privacy
for Covid-19, 2021. 2021.

[30] Ran Canetti et al. Privacy-Preserving Automated Exposure
Notification. Cryptology ePrint Archive, Report 2020/863. https:
//eprint.iacr.org/2020/863. 2020.

[31] Xiaoyu Cao et al. “FLTrust: Byzantine-robust Federated Learn-
ing via Trust Bootstrapping.” In: NDSS. 2021.

[32] Xiaoyu Cao et al. “FLCert: Provably Secure Federated Learning
Against Poisoning Attacks.” In: IEEE Transactions on Information
Forensics and Security 17 (2022), pp. 3691–3705. DOI: 10.
1109/TIFS.2022.3212174.

[33] Nicholas Carlini et al. “The Secret Sharer: Evaluating and Test-
ing Unintended Memorization in Neural Networks.” In: 28th
USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 267–284. ISBN:
978-1-939133-06-9. URL: https://www.usenix.org/conference/
usenixsecurity19/presentation/carlini.

[34] Marco Casagrande et al. “BreakMi: Reversing, Exploiting and
Fixing Xiaomi Fitness Tracking Ecosystem.” In: IACR Trans-
actions on Cryptographic Hardware and Embedded Systems
2022.3 (June 2022). Artifact available at https://artifacts.
iacr.org/tches/2022/a11, pp. 330–366. DOI: 10.46586/
tches.v2022.i3.330-366. URL: https://tches.iacr.org/
index.php/TCHES/article/view/9704.

[35] Justin Chan et al. PACT: Privacy Sensitive Protocols and Mech-
anisms for Mobile Contact Tracing. 2020. arXiv: 2004.03544
[cs.CR].

[36] Junyoung Chung et al. “Empirical evaluation of gated recurrent
neural networks on sequence modeling.” English (US). In: NIPS
2014 Workshop on Deep Learning, December 2014. 2014.

[37] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. “Prov-
ably Secure Federated Learning against Malicious Clients.”
In: (2021). URL: https://aaai.org/papers/06885-provably-
secure-federated-learning-against-malicious-clients/.

[38] Ming Ki Chong, Rene Mayrhofer, and Hans Gellersen. “A Survey
of User Interaction for Spontaneous Device Association.” In:
ACM Comput. Surv. 47.1 (2014). ISSN: 0360-0300. DOI: 10.
1145/2597768. URL: https://doi.org/10.1145/2597768.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://github.com/alwentiu/contact-tracing-research/blob/main/GAEN.pdf
https://github.com/alwentiu/contact-tracing-research/blob/main/GAEN.pdf
https://github.com/alwentiu/contact-tracing-research/blob/main/GAEN.pdf
https://eprint.iacr.org/2020/863
https://eprint.iacr.org/2020/863
https://doi.org/10.1109/TIFS.2022.3212174
https://doi.org/10.1109/TIFS.2022.3212174
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://artifacts.iacr.org/tches/2022/a11
https://artifacts.iacr.org/tches/2022/a11
https://doi.org/10.46586/tches.v2022.i3.330-366
https://doi.org/10.46586/tches.v2022.i3.330-366
https://tches.iacr.org/index.php/TCHES/article/view/9704
https://tches.iacr.org/index.php/TCHES/article/view/9704
https://arxiv.org/abs/2004.03544
https://arxiv.org/abs/2004.03544
https://aaai.org/papers/06885-provably-secure-federated-learning-against-malicious-clients/
https://aaai.org/papers/06885-provably-secure-federated-learning-against-malicious-clients/
https://doi.org/10.1145/2597768
https://doi.org/10.1145/2597768
https://doi.org/10.1145/2597768


OT H E R R E F E R E N C E S 38

[39] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. “SOTERIA:
automated IoT safety and security analysis.” In: Proceedings
of the 2018 USENIX Conference on Usenix Annual Techni-
cal Conference. USENIX ATC ’18. Boston, MA, USA: USENIX
Association, 2018, pp. 147–158. ISBN: 9781931971447.

[40] Bogdan Copos et al. “Is Anybody Home? Inferring Activity From
Smart Home Network Traffic.” In: 2016 IEEE Security and Pri-
vacy Workshops (SPW). 2016, pp. 245–251. DOI: 10.1109/SPW.
2016.48.

[41] Andrei Costin et al. “A large-scale analysis of the security of
embedded firmwares.” In: SEC’14. San Diego, CA: USENIX
Association, 2014. ISBN: 9781931971157.

[42] Haowen Chan, A. Perrig, and D. Song. “Random key predis-
tribution schemes for sensor networks.” In: Proc. 2003 IEEE
Symposium on Security and Privacy. 2003, pp. 197–213. DOI:
10.1109/SECPRI.2003.1199337.

[43] Z. Berkay Celik, Gang Tan, and Patrick Mcdaniel. “IoTGuard: Dy-
namic Enforcement of Security and Safety Policy in Commodity
IoT.” In: Proceedings 2019 Network and Distributed System Se-
curity Symposium (2019). URL: https://api.semanticscholar.
org/CorpusID:141048877.

[44] Rohan Doshi, Noah Apthorpe, and Nick Feamster. “Machine
Learning DDoS Detection for Consumer Internet of Things De-
vices.” In: CoRR abs/1804.04159 (2018). URL: http://arxiv.
org/abs/1804.04159.

[45] Xuan Dai et al. “HomeGuardian: Detecting Anomaly Events in
Smart Home Systems.” In: Wirel. Commun. Mob. Comput. 2022
(Jan. 2022). ISSN: 1530-8669. DOI: 10.1155/2022/8022033.
URL: https://doi.org/10.1155/2022/8022033.

[46] Timo M. Deist et al. “Infrastructure and distributed learning
methodology for privacy-preserving multi-centric rapid learn-
ing health care: euroCAT.” In: Clinical and Translational Radi-
ation Oncology 4 (2017), pp. 24–31. ISSN: 2405-6308. DOI:
https://doi.org/10.1016/j.ctro.2016.12.004. URL:
http://www.sciencedirect.com/science/article/pii/
S2405630816300271.

[47] Min Du, Ruoxi Jia, and Dawn Song. “Robust Anomaly Detection
and Backdoor Attack Detection Via Differential Privacy.” In: ICLR.
2020. URL: https://openreview.net/pdf?id=SJx0q1rtvS.

[48] Paul-Olivier Dehaye and Joel Reardon. SwissCovid: a criti-
cal analysis of risk assessment by Swiss authorities. https:
/ / arxiv . org / abs / 2006 . 10719. 2020. arXiv: 2006 . 10719
[cs.CR].

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1109/SPW.2016.48
https://doi.org/10.1109/SPW.2016.48
https://doi.org/10.1109/SECPRI.2003.1199337
https://api.semanticscholar.org/CorpusID:141048877
https://api.semanticscholar.org/CorpusID:141048877
http://arxiv.org/abs/1804.04159
http://arxiv.org/abs/1804.04159
https://doi.org/10.1155/2022/8022033
https://doi.org/10.1155/2022/8022033
https://doi.org/https://doi.org/10.1016/j.ctro.2016.12.004
http://www.sciencedirect.com/science/article/pii/S2405630816300271
http://www.sciencedirect.com/science/article/pii/S2405630816300271
https://openreview.net/pdf?id=SJx0q1rtvS
https://arxiv.org/abs/2006.10719
https://arxiv.org/abs/2006.10719
https://arxiv.org/abs/2006.10719
https://arxiv.org/abs/2006.10719


OT H E R R E F E R E N C E S 39

[49] Laurent Eschenauer and Virgil D. Gligor. “A Key-management
Scheme for Distributed Sensor Networks.” In: Proc. 9th ACM
Conference on Computer and Communications Security. CCS
’02. Washington, DC, USA: ACM, 2002, pp. 41–47. ISBN: 1-
58113-612-9. DOI: 10.1145/586110.586117. URL: http://doi.
acm.org/10.1145/586110.586117.

[50] El Mahdi El Mhamdi, Rachid Guerraoui, and Sebastien Rouault.
“The Hidden Vulnerability of Distributed Learning in Byzantium.”
In: Proceedings of the 35th International Conference on Ma-
chine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, July 2018,
pp. 3521–3530. URL: https://proceedings.mlr.press/v80/
mhamdi18a.html.

[51] El Mahdi El Mhamdi, Rachid Guerraoui, and Sebastien Rouault.
“The hidden vulnerability of distributed learning in Byzantium.”
In: In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning volume
80 , pages 3521–3530, Stockholmsmassan, Stockholm Sweden
(2018).

[52] Jan-Erik Ekberg. Key Establishment in Constrained Devices.
http://www.tcs.hut.fi/Studies/T- 79.7001/2006AUT/
seminar-papers/Ekberg-paper-final.pdf. Oct. 2006. URL:
http://www.tcs.hut.fi/Studies/T- 79.7001/2006AUT/
seminar-papers/Ekberg-paper-final.pdf.

[53] Jeff Elder. The world of IoT. https : / / blog . avast . com /
avast-and-stanford-research-shows-global-internet-
of-things-avast. [Accessed 16-02-2024]. 2019.

[54] Minghong Fang et al. “Local Model Poisoning Attacks to Byzantine-
Robust Federated Learning.” In: To appear in Usenix Security
Symposium 2020 (2019).

[55] Jingwen Fan et al. “Ruledger: Ensuring Execution Integrity in
Trigger-Action IoT Platforms.” In: IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications. 2021, pp. 1–10.
DOI: 10.1109/INFOCOM42981.2021.9488687.

[56] Xiaofeng Fan et al. “Fault-Tolerant Federated Reinforcement
Learning with Theoretical Guarantee.” In: Advances in Neural In-
formation Processing Systems. Ed. by M. Ranzato et al. Vol. 34.
Curran Associates, Inc., 2021, pp. 1007–1021. URL: https:
/ / proceedings . neurips . cc / paper _ files / paper / 2021 /
file/080acdcce72c06873a773c4311c2e464-Paper.pdf.

[57] Habiba Farrukh et al. “One Key to Rule Them All: Secure Group
Pairing for Heterogeneous IoT Devices.” In: 2023 IEEE Sympo-
sium on Security and Privacy (SP). 2023, pp. 3026–3042. DOI:
10.1109/SP46215.2023.10179369.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1145/586110.586117
http://doi.acm.org/10.1145/586110.586117
http://doi.acm.org/10.1145/586110.586117
https://proceedings.mlr.press/v80/mhamdi18a.html
https://proceedings.mlr.press/v80/mhamdi18a.html
http://www.tcs.hut.fi/Studies/T-79.7001/2006AUT/seminar-papers/Ekberg-paper-final.pdf
http://www.tcs.hut.fi/Studies/T-79.7001/2006AUT/seminar-papers/Ekberg-paper-final.pdf
http://www.tcs.hut.fi/Studies/T-79.7001/2006AUT/seminar-papers/Ekberg-paper-final.pdf
http://www.tcs.hut.fi/Studies/T-79.7001/2006AUT/seminar-papers/Ekberg-paper-final.pdf
https://blog.avast.com/avast-and-stanford-research-shows-global-internet-of-things-avast
https://blog.avast.com/avast-and-stanford-research-shows-global-internet-of-things-avast
https://blog.avast.com/avast-and-stanford-research-shows-global-internet-of-things-avast
https://doi.org/10.1109/INFOCOM42981.2021.9488687
https://proceedings.neurips.cc/paper_files/paper/2021/file/080acdcce72c06873a773c4311c2e464-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/080acdcce72c06873a773c4311c2e464-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/080acdcce72c06873a773c4311c2e464-Paper.pdf
https://doi.org/10.1109/SP46215.2023.10179369


OT H E R R E F E R E N C E S 40

[58] Earlence Fernandes et al. “Decentralized Action Integrity for
Trigger-Action IoT Platforms.” In: Network and Distributed Sys-
tem Security Symposium. 2018. URL: https://api.semanticscholar.
org/CorpusID:267936299.

[59] E. Fernandes, J. Jung, and A. Prakash. “Security Analysis of
Emerging Smart Home Applications.” In: 2016 IEEE Symposium
on Security and Privacy (SP). 2016, pp. 636–654. DOI: 10.1109/
SP.2016.44.

[60] Mikhail Fomichev, Timm Lippert, and Matthias Hollick. “Harden-
ing and Speeding Up Zero-interaction Pairing and Authentica-
tion.” In: Proceedings of the 2023 ACM International Conference
on Embedded Wireless Systems and Networks (EWSN’ 23).
2023.

[61] Mikhail Fomichev et al. “FastZIP: Faster and More Secure Zero-
Interaction Pairing.” In: MobiSys ’21. Virtual Event, Wisconsin:
Association for Computing Machinery, 2021, pp. 440–452. ISBN:
9781450384438. DOI: 10.1145/3458864.3467883. URL: https:
//doi.org/10.1145/3458864.3467883.

[62] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. “Miti-
gating Sybils in Federated Learning Poisoning.” In: CoRR abs/1808.04866
(2018). URL: http://arxiv.org/abs/1808.04866.

[63] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. “The
Limitations of Federated Learning in Sybil Settings.” In: 23rd
International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020). San Sebastian: USENIX Association,
Oct. 2020, pp. 301–316. ISBN: 978-1-939133-18-2. URL: https:
//www.usenix.org/conference/raid2020/presentation/
fung.

[64] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. “HAWatcher:
Semantics-Aware Anomaly Detection for Appified Smart Homes.”
In: 30th USENIX Security Symposium (2021). URL: https://
par.nsf.gov/biblio/10326962.

[65] Karan Ganju et al. “Property Inference Attacks on Fully Con-
nected Neural Networks Using Permutation Invariant Repre-
sentations.” In: CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018. ISBN: 9781450356930. DOI: 10.
1145/3243734.3243834.

[66] Zicong Gao et al. “Faster and Better: Detecting Vulnerabilities
in Linux-based IoT Firmware with Optimized Reaching Defini-
tion Analysis.” In: Proceedings 2024 Network and Distributed
System Security Symposium (2024).

[67] Hadi Givehchian et al. “Evaluating Physical-Layer BLE Location
Tracking Attacks on Mobile Devices.” In: 2022 IEEE Symposium
on Security and Privacy (SP). 2022, pp. 1690–1704. DOI: 10.
1109/SP46214.2022.9833758.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://api.semanticscholar.org/CorpusID:267936299
https://api.semanticscholar.org/CorpusID:267936299
https://doi.org/10.1109/SP.2016.44
https://doi.org/10.1109/SP.2016.44
https://doi.org/10.1145/3458864.3467883
https://doi.org/10.1145/3458864.3467883
https://doi.org/10.1145/3458864.3467883
http://arxiv.org/abs/1808.04866
https://www.usenix.org/conference/raid2020/presentation/fung
https://www.usenix.org/conference/raid2020/presentation/fung
https://www.usenix.org/conference/raid2020/presentation/fung
https://par.nsf.gov/biblio/10326962
https://par.nsf.gov/biblio/10326962
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1109/SP46214.2022.9833758
https://doi.org/10.1109/SP46214.2022.9833758


OT H E R R E F E R E N C E S 41

[68] Bimal Ghimire and Danda B. Rawat. “Recent Advances on
Federated Learning for Cybersecurity and Cybersecurity for
Federated Learning for Internet of Things.” In: IEEE Internet
of Things Journal 9.11 (2022), pp. 8229–8249. DOI: 10.1109/
JIOT.2022.3150363.

[69] Jun Han et al. “Do You Feel What I Hear? Enabling Autonomous
IoT Device Pairing Using Different Sensor Types.” In: 2018 IEEE
Symposium on Security and Privacy (SP). 2018, pp. 836–852.
DOI: 10.1109/SP.2018.00041.

[70] Hanieh Hashemi et al. “Byzantine-Robust and Privacy-Preserving
Framework for FedML.” In: (2021).

[71] Stephen Herwig et al. “Measurement and Analysis of Hajime,
a Peer-to-peer IoT Botnet.” In: 26th Annual Network and Dis-
tributed System Security Symposium, NDSS, 2019, San Diego,
California, USA, February 24-27, 2019. 2019. URL: https://
www.ndss-symposium.org/ndss-paper/measurement-and-
analysis-of-hajime-a-peer-to-peer-iot-botnet/.

[72] Grant Ho et al. “Smart Locks: Lessons for Securing Commodity
Internet of Things Devices.” In: ASIA CCS ’16. Xi’an, China:
Association for Computing Machinery, 2016, pp. 461–472. ISBN:
9781450342339. DOI: 10.1145/2897845.2897886. URL: https:
//doi.org/10.1145/2897845.2897886.

[73] Jaap-Henk Hoepman. Hansel and Gretel and the Virus: Privacy
Conscious Contact Tracing. 2021. arXiv: 2101.03241 [cs.CR].

[74] Jaap-Henk Hoepman. “A Critique of the Google Apple Exposure
Notification (GAEN) Framework.” In: Privacy Symposium 2022.
Springer International Publishing, 2022, pp. 41–58. ISBN: 978-
3-031-09901-4.

[75] Noy Hadar, Shachar Siboni, and Yuval Elovici. “A Lightweight
Vulnerability Mitigation Framework for IoT Devices.” In: Proceed-
ings of the 2017 Workshop on Internet of Things Security and
Privacy. IoTS&P ’17. Dallas, Texas, USA: ACM, 2017, pp. 71–
75. ISBN: 978-1-4503-5396-0. DOI: 10.1145/3139937.3139944.
URL: http://doi.acm.org/10.1145/3139937.3139944.

[76] Li Huang et al. “LoAdaBoost: Loss-Based AdaBoost Federated
Machine Learning on medical Data.” In: CoRR abs/1811.12629
(2018). arXiv: 1811.12629. URL: http://arxiv.org/abs/1811.
12629.

[77] Timofei Istomin et al. Janus: Efficient and Accurate Dual-radio
Social Contact Detection. 2021. arXiv: 2101.01514 [cs.NI].

[78] Vincenzo Iovino, Serge Vaudenay, and Martin Vuagnoux. “On
the Effectiveness of Time Travel to Inject COVID-19 Alerts.”
In: The Cryptographer’s Track at the RSA Conference, CT-
RSA2021 (2021). https://eprint.iacr.org/2020/1393.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1109/JIOT.2022.3150363
https://doi.org/10.1109/JIOT.2022.3150363
https://doi.org/10.1109/SP.2018.00041
https://www.ndss-symposium.org/ndss-paper/measurement-and-analysis-of-hajime-a-peer-to-peer-iot-botnet/
https://www.ndss-symposium.org/ndss-paper/measurement-and-analysis-of-hajime-a-peer-to-peer-iot-botnet/
https://www.ndss-symposium.org/ndss-paper/measurement-and-analysis-of-hajime-a-peer-to-peer-iot-botnet/
https://doi.org/10.1145/2897845.2897886
https://doi.org/10.1145/2897845.2897886
https://doi.org/10.1145/2897845.2897886
https://arxiv.org/abs/2101.03241
https://doi.org/10.1145/3139937.3139944
http://doi.acm.org/10.1145/3139937.3139944
https://arxiv.org/abs/1811.12629
http://arxiv.org/abs/1811.12629
http://arxiv.org/abs/1811.12629
https://arxiv.org/abs/2101.01514
https://eprint.iacr.org/2020/1393


OT H E R R E F E R E N C E S 42

[79] William Jardine et al. “SENAMI: Selective Non-Invasive Active
Monitoring for ICS Intrusion Detection.” In: Proceedings of the
2Nd ACM Workshop on Cyber-Physical Systems Security and
Privacy. CPS-SPC ’16. Vienna, Austria, 2016, pp. 23–34.

[80] Shouling Ji et al. “SecGraph: A Uniform and Open-source
Evaluation System for Graph Data Anonymization and De-
anonymization.” In: 24th USENIX Security Symposium. Wash-
ington, D.C., 2015, pp. 303–318. ISBN: 978-1-939133-11-3.

[81] Yunhan Jack Jia et al. “ContexloT: Towards Providing Contextual
Integrity to Appified IoT Platforms.” In: 24th Annual Network &
Distributed System Security Symposium (NDSS). Feb. 2017.

[82] Arthur Jochems et al. “Developing and Validating a Survival Pre-
diction Model for NSCLC Patients Through Distributed Learning
Across 3 Countries.” In: International Journal of Radiation On-
cology*Biology*Physics 99.2 (2017), pp. 344–352. ISSN: 0360-
3016. DOI: https : / / doi . org / 10 . 1016 / j . ijrobp . 2017 .
04.021. URL: http://www.sciencedirect.com/science/
article/pii/S0360301617308258.

[83] Meng Jin, Xinbing Wang, and Chenghu Zhou. “Key Agreement
on IoT Devices With Echo Profiling.” In: IEEE/ACM Transactions
on Networking 31.4 (2023), pp. 1795–1808. DOI: 10.1109/TNET.
2022.3230642.

[84] Kaspersky. IoT Malware. https : / / www . kaspersky . com /
about / press - releases / 2018 _ new - iot - malware - grew -
three- fold- in- h1- 2018. [Online; accessed 5-September-
2019]. 2018.

[85] Youssef Khazbak, Tianxiang Tan, and Guohong Cao. “MLGuard:
Mitigating Poisoning Attacks in Privacy Preserving Distributed
Collaborative Learning.” In: 2020 29th International Conference
on Computer Communications and Networks (ICCCN). 2020,
pp. 1–9. DOI: 10.1109/ICCCN49398.2020.9209670.

[86] Christopher Krügel, Thomas Toth, and Engin Kirda. “Service
specific anomaly detection for network intrusion detection.” In:
Proceedings of the 2002 ACM symposium on Applied comput-
ing. ACM. 2002, pp. 201–208.

[87] Kavita Kumari et al. “BayBFed: Bayesian Backdoor Defense for
Federated Learning.” In: 2023 IEEE Symposium on Security
and Privacy (SP). 2023, pp. 737–754. DOI: 10.1109/SP46215.
2023.10179362.

[88] David Kushner. “The real story of stuxnet.” In: IEEE Spectrum
50.3 (2013), pp. 48–53. DOI: 10.1109/MSPEC.2013.6471059.

[89] Christopher Kruegel and Giovanni Vigna. “Anomaly detection
of web-based attacks.” In: Proceedings of the 10th ACM confer-
ence on Computer and communications security. ACM. 2003,
pp. 251–261.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/https://doi.org/10.1016/j.ijrobp.2017.04.021
https://doi.org/https://doi.org/10.1016/j.ijrobp.2017.04.021
http://www.sciencedirect.com/science/article/pii/S0360301617308258
http://www.sciencedirect.com/science/article/pii/S0360301617308258
https://doi.org/10.1109/TNET.2022.3230642
https://doi.org/10.1109/TNET.2022.3230642
https://www.kaspersky.com/about/press-releases/2018_new-iot-malware-grew-three-fold-in-h1-2018
https://www.kaspersky.com/about/press-releases/2018_new-iot-malware-grew-three-fold-in-h1-2018
https://www.kaspersky.com/about/press-releases/2018_new-iot-malware-grew-three-fold-in-h1-2018
https://doi.org/10.1109/ICCCN49398.2020.9209670
https://doi.org/10.1109/SP46215.2023.10179362
https://doi.org/10.1109/SP46215.2023.10179362
https://doi.org/10.1109/MSPEC.2013.6471059


OT H E R R E F E R E N C E S 43

[90] Amit Kleinmann and Avishai Wool. “Automatic Construction of
Statechart-Based Anomaly Detection Models for Multi-Threaded
SCADA via Spectral Analysis.” In: Proceedings of the 2Nd ACM
Workshop on Cyber-Physical Systems Security and Privacy.
CPS-SPC ’16. ACM, 2016, pp. 1–12.

[91] Marjolein Lanzing. Contact tracing apps: an ethical roadmap.
https://doi.org/10.1007/s10676-020-09548-w. 2020.

[92] Anna Lenhart et al. “"You Shouldn’t Need to Share Your Data":
Perceived Privacy Risks and Mitigation Strategies Among Privacy-
Conscious Smart Home Power Users.” In: 7.CSCW2 (Oct. 2023).
DOI: 10.1145/3610038. URL: https://doi.org/10.1145/
3610038.

[93] Liping Li et al. “RSA: Byzantine-Robust Stochastic Aggrega-
tion Methods for Distributed Learning from Heterogeneous
Datasets.” In: Proceedings of the Thirty-Third AAAI Confer-
ence on Artificial Intelligence and Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference and Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence.
Honolulu, Hawaii, USA: AAAI Press, 2019. ISBN: 978-1-57735-
809-1. DOI: 10.1609/aaai.v33i01.33011544. URL: https:
//doi.org/10.1609/aaai.v33i01.33011544.

[94] Xiaopeng Li et al. “T2Pair: Secure and Usable Pairing for Het-
erogeneous IoT Devices.” In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’20. Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 309–323. ISBN: 9781450370899. DOI:
10.1145/3372297.3417286. URL: https://doi.org/10.1145/
3372297.3417286.

[95] Beibei Li et al. “DeepFed: Federated Deep Learning for Intru-
sion Detection in Industrial Cyber–Physical Systems.” In: IEEE
Transactions on Industrial Informatics 17.8 (2021), pp. 5615–
5624. DOI: 10.1109/TII.2020.3023430.

[96] Haoyang Li et al. “3DFed: Adaptive and Extensible Framework
for Covert Backdoor Attack in Federated Learning.” In: 2023
IEEE Symposium on Security and Privacy (SP). 2023, pp. 1893–
1907. DOI: 10.1109/SP46215.2023.10179401.

[97] Hai Lin et al. “CP-IoT: A Cross-Platform Monitoring System for
Smart Home.” In: Proceedings 2024 Network and Distributed
System Security Symposium (2024). URL: https://api.semanticscholar.
org/CorpusID:267622245.

[98] Donggang Liu, Peng Ning, and Rongfang Li. “Establishing Pair-
wise Keys in Distributed Sensor Networks.” In: ACM Trans. Inf.
Syst. Secur. 8.1 (Feb. 2005), pp. 41–77. ISSN: 1094-9224. DOI:
10.1145/1053283.1053287. URL: http://doi.acm.org/10.
1145/1053283.1053287.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1007/s10676-020-09548-w
https://doi.org/10.1145/3610038
https://doi.org/10.1145/3610038
https://doi.org/10.1145/3610038
https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1145/3372297.3417286
https://doi.org/10.1145/3372297.3417286
https://doi.org/10.1145/3372297.3417286
https://doi.org/10.1109/TII.2020.3023430
https://doi.org/10.1109/SP46215.2023.10179401
https://api.semanticscholar.org/CorpusID:267622245
https://api.semanticscholar.org/CorpusID:267622245
https://doi.org/10.1145/1053283.1053287
http://doi.acm.org/10.1145/1053283.1053287
http://doi.acm.org/10.1145/1053283.1053287


OT H E R R E F E R E N C E S 44

[99] Natasha Lomas. Critical Flaw IDed In ZigBee Smart Home
Devices. https://techcrunch.com/2015/08/07/critical-
flaw-ided-in-zigbee-smart-home-devices/. May 26, 2019.

[100] Luis Muñoz-González, Kenneth T. Co, and Emil C. Lupu. “Byzantine-
Robust Federated Machine Learning through Adaptive Model
Averaging.” In: arXiv e-prints, arXiv:1909.05125 (Sept. 2019),
arXiv:1909.05125. arXiv: 1909.05125 [stat.ML].

[101] Brendan McMahan et al. “Communication-Efficient Learning of
Deep Networks from Decentralized Data.” In: Proceedings of
the 20th International Conference on Artificial Intelligence and
Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale,
FL, USA. 2017, pp. 1273–1282. URL: http://proceedings.
mlr.press/v54/mcmahan17a.html.

[102] Rene Mayrhofer and Hans Gellersen. “Shake Well Before Use:
Intuitive and Secure Pairing of Mobile Devices.” In: IEEE Trans-
actions on Mobile Computing 8.6 (2009), pp. 792–806. DOI:
10.1109/TMC.2009.51.

[103] J.M. McCune, A. Perrig, and M.K. Reiter. “Seeing-is-believing:
using camera phones for human-verifiable authentication.” In:
2005 IEEE Symposium on Security and Privacy (S&P’05). 2005,
pp. 110–124. DOI: 10.1109/SP.2005.19.

[104] Arvind Narayanan et al. “Location Privacy via Private Proximity
Testing.” In: Proc. Network and Distributed System Security
Symposium (NDSS). San Diego, CA, USA, Feb. 2011.

[105] Mehdi Nobakht, Vijay Sivaraman, and Roksana Boreli. “A Host-
based Intrusion Detection and Mitigation Framework for Smart
Home IoT using OpenFlow.” In: Proceedings of 11th Interna-
tional Conference on Availability, Reliability and Security. ARES
2016. IEEE, 2016.

[106] TJ OConnor, Dylan Jessee, and Daniel Campos. “Through
the Spyglass: Towards IoT Companion App Man-in-the-Middle
Attacks.” In: CSET ’21. Virtual, CA, USA: Association for Com-
puting Machinery, 2021, pp. 58–62. ISBN: 9781450390651. DOI:
10.1145/3474718.3474729. URL: https://doi.org/10.1145/
3474718.3474729.

[107] Patrick Howell O’Neill, Tate Ryan-Mosley, and Bobbie Johnson.
A flood of coronavirus apps are tracking us. Now it’s time to
keep track of them. https://www.technologyreview.com/
2020/05/07/1000961/launching- mittr- covid- tracing-
tracker/. [Accessed 16-02-2024].

[108] Yin Minn Pa Pa et al. “IoTPOT: A Novel Honeypot for Revealing
Current IoT Threats.” In: Journal of Information Processing 24.3
(2016), pp. 522–533.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://techcrunch.com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/
https://techcrunch.com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/
https://arxiv.org/abs/1909.05125
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/TMC.2009.51
https://doi.org/10.1109/SP.2005.19
https://doi.org/10.1145/3474718.3474729
https://doi.org/10.1145/3474718.3474729
https://doi.org/10.1145/3474718.3474729
https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing-tracker/
https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing-tracker/
https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing-tracker/


OT H E R R E F E R E N C E S 45

[109] Jungwuk Park et al. “Sageflow: Robust Federated Learning
against Both Stragglers and Adversaries.” In: Advances in Neu-
ral Information Processing Systems. Ed. by M. Ranzato et al.
Vol. 34. Curran Associates, Inc., 2021, pp. 840–851. URL: https:
/ / proceedings . neurips . cc / paper _ files / paper / 2021 /
file/076a8133735eb5d7552dc195b125a454-Paper.pdf.

[110] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. “Intrusion detec-
tion with unlabeled data using clustering.” In: In Proceedings of
ACM CSS Workshop on Data Mining Applied to Security. 2001.

[111] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristo-
faro. “Knock Knock, Who’s There? Membership Inference on
Aggregate Location Data.” In: NDSS (2018).

[112] Laura Radaelli et al. Quantifying Surveillance in the Networked
Age: Node-based Intrusions and Group Privacy. CoRR abs/1803.09007.
http://arxiv.org/abs/1803.09007. Aug. 2018.

[113] J. Ren et al. “Federated Learning-Based Computation Offload-
ing Optimization in Edge Computing-Supported Internet of
Things.” In: IEEE Access 7 (2019), pp. 69194–69201. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2019.2919736.

[114] Phillip Rieger et al. “ARGUS: Context-Based Detection of Stealthy
IoT Infiltration Attacks.” In: 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association,
Aug. 2023, pp. 4301–4318. ISBN: 978-1-939133-37-3. URL:
https://www.usenix.org/conference/usenixsecurity23/
presentation/rieger.

[115] Phillip Rieger et al. CrowdGuard: Federated Backdoor Detection
in Federated Learning. 2024.

[116] Sutharshan Rajasegarar, Christopher Leckie, and Marimuthu
Palaniswami. “Hyperspherical cluster based distributed anomaly
detection in wireless sensor networks.” In: Journal of Parallel
and Distributed Computing 74.1 (2014), pp. 1833–1847.

[117] Eyal Ronen et al. “IoT Goes Nuclear: Creating a ZigBee Chain
Reaction.” In: 2017 IEEE Symposium on Security and Privacy
(SP). 2017, pp. 195–212. DOI: 10.1109/SP.2017.14.

[118] E. Ronen et al. “IoT Goes Nuclear: Creating a Zigbee Chain
Reaction.” In: IEEE Security Privacy 16.1 (2018), pp. 54–62.
ISSN: 1540-7993. DOI: 10.1109/MSP.2018.1331033.

[119] Shahid Raza, Linus Wallgren, and Thiemo Voigt. “SVELTE:
Real-time intrusion detection in the Internet of Things.” In: Ad
hoc networks 11.8 (2013), pp. 2661–2674.

[120] Sumudu Samarakoon et al. “Federated Learning for Ultra-Reliable
Low-Latency V2V Communications.” In: Global Communications
Conference, 2018 (2018).

[ December 16, 2024 at 14:12 – version 0.1 ]

https://proceedings.neurips.cc/paper_files/paper/2021/file/076a8133735eb5d7552dc195b125a454-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/076a8133735eb5d7552dc195b125a454-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/076a8133735eb5d7552dc195b125a454-Paper.pdf
http://arxiv.org/abs/1803.09007
https://doi.org/10.1109/ACCESS.2019.2919736
https://www.usenix.org/conference/usenixsecurity23/presentation/rieger
https://www.usenix.org/conference/usenixsecurity23/presentation/rieger
https://doi.org/10.1109/SP.2017.14
https://doi.org/10.1109/MSP.2018.1331033


OT H E R R E F E R E N C E S 46

[121] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac.
“6thSense: a context-aware sensor-based attack detector for
smart devices.” In: Proceedings of the 26th USENIX Confer-
ence on Security Symposium. SEC’17. Vancouver, BC, Canada:
USENIX Association, 2017, pp. 397–414. ISBN: 9781931971409.

[122] R Sekar et al. “Specification-based anomaly detection: a new
approach for detecting network intrusions.” In: Proceedings of
the 9th ACM conference on Computer and communications
security. ACM. 2002, pp. 265–274.

[123] Muhammad Shayan et al. “Biscotti: A Blockchain System for
Private and Secure Federated Learning.” In: IEEE Transactions
on Parallel and Distributed Systems 32.7 (2021), pp. 1513–
1525. DOI: 10.1109/TPDS.2020.3044223.

[124] Micah J Sheller et al. “Multi-Institutional Deep Learning Model-
ing Without Sharing Patient Data: A Feasibility Study on Brain
Tumor Segmentation.” In: MICCAI, Brain Lesion (BrainLes)
workshop, Granada, Spain (Sept. 2018).

[125] R. Shokri et al. “Membership Inference Attacks Against Machine
Learning Models.” In: 2017 IEEE Symposium on Security and
Privacy (SP). May 2017, pp. 3–18. DOI: 10.1109/SP.2017.41.

[126] Amit Kumar Sikder et al. “Aegis: a context-aware security frame-
work for smart home systems.” In: Proceedings of the 35th
Annual Computer Security Applications Conference. ACSAC
’19. San Juan, Puerto Rico, USA: Association for Computing
Machinery, 2019, pp. 28–41. ISBN: 9781450376280. DOI: 10.
1145/3359789.3359840. URL: https://doi.org/10.1145/
3359789.3359840.

[127] Saleh Soltan, Prateek Mittal, and H. Vincent Poor. “BlackIoT:
IoT Botnet of High Wattage Devices Can Disrupt the Power
Grid.” In: 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018, pp. 15–32.
ISBN: 978-1-931971-46-1. URL: https://www.usenix.org/
conference/usenixsecurity18/presentation/soltan.

[128] Ali Bin Mazhar Sultan, Saqib Mehmood, and Hamza Zahid.
“Man in the Middle Attack Detection for MQTT based IoT devices
using different Machine Learning Algorithms.” In: 2022 2nd
International Conference on Artificial Intelligence (ICAI). 2022,
pp. 118–121. DOI: 10.1109/ICAI55435.2022.9773590.

[129] Robin Sommer and Vern Paxson. “Outside the closed world:
On using machine learning for network intrusion detection.” In:
Security and Privacy (SP), 2010 IEEE Symposium on. IEEE.
2010, pp. 305–316.

[130] Dominik Schürmann and Stephan Sigg. “Secure Communica-
tion Based on Ambient Audio.” In: IEEE Trans. Mob. Comput.
12.2 (2013), pp. 358–370.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1109/TPDS.2020.3044223
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1145/3359789.3359840
https://doi.org/10.1145/3359789.3359840
https://doi.org/10.1145/3359789.3359840
https://doi.org/10.1145/3359789.3359840
https://www.usenix.org/conference/usenixsecurity18/presentation/soltan
https://www.usenix.org/conference/usenixsecurity18/presentation/soltan
https://doi.org/10.1109/ICAI55435.2022.9773590


OT H E R R E F E R E N C E S 47

[131] Reza Shokri and Vitaly Shmatikov. “Privacy-Preserving Deep
Learning.” In: Proceedings of the 22Nd ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS ’15.
Denver, Colorado, USA: ACM, 2015, pp. 1310–1321. ISBN: 978-
1-4503-3832-5. DOI: 10.1145/2810103.2813687. URL: http:
//doi.acm.org/10.1145/2810103.2813687.

[132] Shiqi Shen, Shruti Tople, and Prateek Saxena. “Auror: Defend-
ing Against Poisoning Attacks in Collaborative Deep Learn-
ing Systems.” In: Proceedings of the 32Nd Annual Conference
on Computer Security Applications. ACSAC ’16. ACM, 2016,
pp. 508–519.

[133] Ziteng Sun et al. “Can you really backdoor federated learning?”
In: arXiv preprint arXiv:1911.07963 (2019).

[134] Jingwei Sun et al. “FL-WBC: Enhancing Robustness against
Model Poisoning Attacks in Federated Learning from a Client
Perspective.” In: Advances in Neural Information Processing
Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates,
Inc., 2021, pp. 12613–12624.

[135] Jani Suomalainen, Jukka Valkonen, and N. Asokan. “Security
Associations in Personal Networks: A Comparative Analysis.”
In: Security and Privacy in Ad-hoc and Sensor Networks. Ed.
by Frank Stajano et al. Vol. 4572. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, pp. 43–57. ISBN:
978-3-540-73274-7. DOI: 10.1007/978- 3- 540- 73275- 4_4.
URL: http://dx.doi.org/10.1007/978-3-540-73275-4_4.

[136] Sihai Tang et al. “Smart Home IoT Anomaly Detection based on
Ensemble Model Learning From Heterogeneous Data.” In: 2019
IEEE International Conference on Big Data (Big Data). 2019,
pp. 4185–4190. DOI: 10.1109/BigData47090.2019.9006249.

[137] Yuan Tian et al. “Smartauth: user-centered authorization for the
internet of things.” In: Proceedings of the 26th USENIX Confer-
ence on Security Symposium. SEC’17. Vancouver, BC, Canada:
USENIX Association, 2017, pp. 361–378. ISBN: 9781931971409.

[138] P. Traynor et al. “Efficient Hybrid Security Mechanisms for Het-
erogeneous Sensor Networks.” In: IEEE Transactions on Mobile
Computing 6.6 (2007), pp. 663–677. ISSN: 1536-1233. DOI:
10.1109/TMC.2007.1020.

[139] Ni Trieu et al. Epione: Lightweight Contact Tracing with Strong
Privacy. 2020. arXiv: 2004.13293 [cs.CR].

[140] Carmela Troncoso et al. “Decentralized Privacy-Preserving
Proximity Tracing.” In: CoRR abs/2005.12273 (2020). arXiv:
2005.12273. URL: https://arxiv.org/abs/2005.12273.

[141] Hien Thi Thu Truong et al. “Comparing and Fusing Different Sen-
sor Modalities for Relay Attack Resistance in Zero-Interaction
Authentication.” In: IEEE Int. Conf. on Pervasive Computing and
Communications (PerCom). Budapest, Hungary, Mar. 2014.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1145/2810103.2813687
http://doi.acm.org/10.1145/2810103.2813687
http://doi.acm.org/10.1145/2810103.2813687
https://doi.org/10.1007/978-3-540-73275-4_4
http://dx.doi.org/10.1007/978-3-540-73275-4_4
https://doi.org/10.1109/BigData47090.2019.9006249
https://doi.org/10.1109/TMC.2007.1020
https://arxiv.org/abs/2004.13293
https://arxiv.org/abs/2005.12273
https://arxiv.org/abs/2005.12273


OT H E R R E F E R E N C E S 48

[142] Alex Varshavsky et al. “Amigo: Proximity-Based Authentication
of Mobile Devices.” In: UbiComp 2007: Ubiquitous Computing.
Ed. by John Krumm et al. Vol. 4717. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, pp. 253–270. ISBN:
978-3-540-74852-6. DOI: 10.1007/978-3-540-74853-3_15.
URL: http://dx.doi.org/10.1007/978-3-540-74853-3_15.

[143] Serge Vaudenay. The Dark Side of SwissCovid. https : / /
lasec.epfl.ch/people/vaudenay/swisscovid.html. 2020.

[144] Qi Wang et al. “Charting the Attack Surface of Trigger-Action
IoT Platforms.” In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’19.
London, United Kingdom: Association for Computing Machinery,
2019, pp. 1439–1453. ISBN: 9781450367479. DOI: 10.1145/
3319535.3345662. URL: https://doi.org/10.1145/3319535.
3345662.

[145] Hongyi Wang et al. “Attack of the tails: Yes, you really can
backdoor federated learning.” In: neurnips. 2020.

[146] Yinxin Wan et al. “IoTAthena: Unveiling IoT Device Activities
From Network Traffic.” In: IEEE Transactions on Wireless Com-
munications 21.1 (2022), pp. 651–664. DOI: 10.1109/TWC.2021.
3098608.

[147] Ning Wang et al. “FLARE: Defending Federated Learning against
Model Poisoning Attacks via Latent Space Representations.”
In: Proceedings of the 2022 ACM on Asia Conference on Com-
puter and Communications Security. ASIA CCS ’22. Nagasaki,
Japan: Association for Computing Machinery, 2022, pp. 946–
958. ISBN: 9781450391405. DOI: 10.1145/3488932.3517395.
URL: https://doi.org/10.1145/3488932.3517395.

[148] Lucie White and Philippe van Basshuysen. “Privacy versus Pub-
lic Health? A Reassessment of Centralised and Decentralised
Digital Contact Tracing.” In: Science and Engineering Ethics.
https://doi.org/10.1007/s11948-021-00301-0. 2021. DOI:
10.1007/s11948-021-00301-0.

[149] Lucie White and Philippe van Basshuysen. “Without a trace:
Why did corona apps fail?” In: Journal of Medical Ethics (2021).
ISSN: 0306-6800. DOI: 10 . 1136 / medethics - 2020 - 107061.
URL: https://jme.bmj.com/content/early/2021/01/08/
medethics-2020-107061.

[150] Wikipedia. Exposure Notification. https://en.wikipedia.org/
wiki/Exposure_Notification. [Accessed 16-02-2024]. 2023.

[151] Lennert Wouters et al. “Fast, Furious and Insecure: Passive
Keyless Entry and Start Systems in Modern Supercars.” In:
IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019, Issue 3 (2019), pp. 66–85. DOI: 10.13154/
tches.v2019.i3.66- 85. URL: https://tches.iacr.org/
index.php/TCHES/article/view/8289.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1007/978-3-540-74853-3_15
http://dx.doi.org/10.1007/978-3-540-74853-3_15
https://lasec.epfl.ch/people/vaudenay/swisscovid.html
https://lasec.epfl.ch/people/vaudenay/swisscovid.html
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1109/TWC.2021.3098608
https://doi.org/10.1109/TWC.2021.3098608
https://doi.org/10.1145/3488932.3517395
https://doi.org/10.1145/3488932.3517395
https://doi.org/10.1007/s11948-021-00301-0
https://doi.org/10.1007/s11948-021-00301-0
https://doi.org/10.1136/medethics-2020-107061
https://jme.bmj.com/content/early/2021/01/08/medethics-2020-107061
https://jme.bmj.com/content/early/2021/01/08/medethics-2020-107061
https://en.wikipedia.org/wiki/Exposure_Notification
https://en.wikipedia.org/wiki/Exposure_Notification
https://doi.org/10.13154/tches.v2019.i3.66-85
https://doi.org/10.13154/tches.v2019.i3.66-85
https://tches.iacr.org/index.php/TCHES/article/view/8289
https://tches.iacr.org/index.php/TCHES/article/view/8289


OT H E R R E F E R E N C E S 49

[152] Yue Xiao et al. “From Hardware Fingerprint to Access Token:
Enhancing the Authentication on IoT Devices.” In: Network and
Distributed System Security Symposium (NDSS’24). Jan. 2024.
DOI: 10.14722/ndss.2024.241231.

[153] Chulin Xie et al. “DBA: Distributed Backdoor Attacks against
Federated Learning.” In: ICLR. 2020.

[154] Xinyi Xie et al. “Access Your Tesla without Your Awareness:
Compromising Keyless Entry System of Model 3.” In: Proceed-
ings 2023 Network and Distributed System Security Symposium
(2023).

[155] Jing Xu et al. “More is Better (Mostly): On the Backdoor Attacks
in Federated Graph Neural Networks.” In: Annual Computer
Security Applications Conference (ACSAC) 2022. 2022.

[156] Heng Xu et al. “Machine Unlearning: A Survey.” In: ACM Com-
put. Surv. 56.1 (Aug. 2023). ISSN: 0360-0300. DOI: 10.1145/
3603620. URL: https://doi.org/10.1145/3603620.

[157] Edwin Yang, Song Fang, and Dakun Shen. “DASK: Driving-
Assisted Secret Key Establishment.” In: 2022 IEEE Conference
on Communications and Network Security (CNS). 2022, pp. 73–
81. DOI: 10.1109/CNS56114.2022.9947241.

[158] Dong Yin et al. “Byzantine-Robust Distributed Learning: To-
wards Optimal Statistical Rates.” In: Proceedings of the 35th
International Conference on Machine Learning. Ed. by Jen-
nifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. Stockholmsmässan, Stockholm Sweden:
IMLR, July 2018, pp. 5650–5659. URL: http://proceedings.
mlr.press/v80/yin18a.html.

[159] Apple and Google. Privacy-Preserving Contact Tracing. https:
//covid19.apple.com/contacttracing. [Accessed 16-02-
2024].

[160] Chaos IoT malware taps Go language to harvest Windows,
Linux for DDoS attacks. https://www.zdnet.com/article/
chaos-iot-malware-taps-go-language-to-harvest-windows-
linux-for-ddos-attacks/. [Online; accessed 04-Sep-2023].

[161] Find My overview. Apple Platform Security. https://support.
apple.com/guide/security/locating- missing- devices-
sece994d0126/1/web/1.

[162] Behrang Fouladi and Sahand Ghanoun. “Honey, I’m Home!!,
Hacking ZWave Home Automation Systems.” In: Black Hat USA
2013.

[163] Andy Greenberg. Crash override: The malware that took down a
power grid. https://www.wired.com/story/crash-override-
malware/.

[164] Andy Greenberg. Sandworm Ukraine Third Blackout Cyberat-
tack. https://www.wired.com/story/sandworm- ukraine-
third-blackout-cyberattack/.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.14722/ndss.2024.241231
https://doi.org/10.1145/3603620
https://doi.org/10.1145/3603620
https://doi.org/10.1145/3603620
https://doi.org/10.1109/CNS56114.2022.9947241
http://proceedings.mlr.press/v80/yin18a.html
http://proceedings.mlr.press/v80/yin18a.html
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://www.zdnet.com/article/chaos-iot-malware-taps-go-language-to-harvest-windows-linux-for-ddos-attacks/
https://www.zdnet.com/article/chaos-iot-malware-taps-go-language-to-harvest-windows-linux-for-ddos-attacks/
https://www.zdnet.com/article/chaos-iot-malware-taps-go-language-to-harvest-windows-linux-for-ddos-attacks/
https://support.apple.com/guide/security/locating-missing-devices-sece994d0126/1/web/1
https://support.apple.com/guide/security/locating-missing-devices-sece994d0126/1/web/1
https://support.apple.com/guide/security/locating-missing-devices-sece994d0126/1/web/1
https://www.wired.com/story/crash-override-malware/
https://www.wired.com/story/crash-override-malware/
https://www.wired.com/story/sandworm-ukraine-third-blackout-cyberattack/
https://www.wired.com/story/sandworm-ukraine-third-blackout-cyberattack/


OT H E R R E F E R E N C E S 50

[165] Brian Krebs. New Mirai worm knocks 900k Germans offline.
https://krebsonsecurity.com/2016/11/new-mirai-worm-
knocks-900k-germans-offline/.

[166] Millions of IoT Devices Using Same Hard-Coded CRYPTO Keys.
https://thehackernews.com/2015/11/iot-device-crypto-
keys.html. (Visited on 03/09/2024).

[167] New Silex malware is ing IoT devices, has scary plans. https:
//www.zdnet.com/article/new-silex-malware-is-bricking-
iot-devices-has-scary-plans/. [Online; accessed 04-Sep-
2023].

[168] Number of Internet of Things (IoT) Connected Devices. https:
//www.statista.com/statistics/1183457/iot-connected-
devices-worldwide/. [Online; accessed 01-Jan-2024].

[169] Tesla Cars and Smart Home Locks Vulnerable to Bluetooth
Low Energy Relay Attacks. https://www.spiceworks.com/
it-security/vulnerability-management/news/bluetooth-
low-energy-relay-attack/. (Visited on 03/09/2024).

[170] Tor Project. [Online; accessed 2-March-2024]. URL: %5Curl%
7Bhttps://www.torproject.org/%7D.

[171] Oral-B. ORAL-B® debuts world’s first available interactive elec-
tric toothbrush at Mobile Wold Congress 2014. 2014. URL: http:
//connectedtoothbrush.com/.

[172] Brian Krebs. KrebsOnSecurity Hit With Record DDoS. https:
//krebsonsecurity.com/2016/09/krebsonsecurity- hit-
with-record-ddos/. Sept. 21, 2016. (Visited on 01/17/2017).

[173] Manos Antonakakis et al. “Understanding the Mirai Botnet.”
In: 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, 2017, pp. 1093–1110.
ISBN: 978-1-931971-40-9.

[174] Azeem Aqil et al. “Jaal: Towards Network Intrusion Detection
at ISP Scale.” In: Proceedings of the 13th International Con-
ference on Emerging Networking EXperiments and Technolo-
gies. CoNEXT ’17. Incheon, Republic of Korea: ACM, 2017,
pp. 134–146. ISBN: 978-1-4503-5422-6. DOI: 10.1145/3143361.
3143399. URL: http : / / doi . acm . org / 10 . 1145 / 3143361 .
3143399.

[175] Brendan McMahan and Daniel Ramage. Federated learning:
Collaborative machine learning without centralized training data.
2017. URL: https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html.

[176] Radware. BrickerBot Results In PDoS Attack. https://security.
radware.com/ddos- threats- attacks/brickerbot- pdos-
permanent- denial- of- service/. Apr. 5, 2017. (Visited on
01/16/2018).

[ December 16, 2024 at 14:12 – version 0.1 ]

https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://thehackernews.com/2015/11/iot-device-crypto-keys.html
https://thehackernews.com/2015/11/iot-device-crypto-keys.html
https://www.zdnet.com/article/new-silex-malware-is-bricking-iot-devices-has-scary-plans/
https://www.zdnet.com/article/new-silex-malware-is-bricking-iot-devices-has-scary-plans/
https://www.zdnet.com/article/new-silex-malware-is-bricking-iot-devices-has-scary-plans/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.spiceworks.com/it-security/vulnerability-management/news/bluetooth-low-energy-relay-attack/
https://www.spiceworks.com/it-security/vulnerability-management/news/bluetooth-low-energy-relay-attack/
https://www.spiceworks.com/it-security/vulnerability-management/news/bluetooth-low-energy-relay-attack/
%5Curl%7Bhttps://www.torproject.org/%7D
%5Curl%7Bhttps://www.torproject.org/%7D
http://connectedtoothbrush.com/
http://connectedtoothbrush.com/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://doi.org/10.1145/3143361.3143399
https://doi.org/10.1145/3143361.3143399
http://doi.acm.org/10.1145/3143361.3143399
http://doi.acm.org/10.1145/3143361.3143399
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/


OT H E R R E F E R E N C E S 51

[177] Joseph Schneible and Alex Lu. “Anomaly detection on the
edge.” In: MILCOM 2017 - 2017 IEEE Military Communica-
tions Conference (MILCOM). 2017, pp. 678–682. DOI: 10.1109/
MILCOM.2017.8170817.

[178] Tim Yeh, Dove Chiu, and Kenney Lu. Persirai: New Internet
of Things (IoT) Botnet Targets IP Cameras. https://blog.
trendmicro.com/trendlabs-security-intelligence/persirai-
new-internet-things-iot-botnet-targets-ip-cameras/.
TrendMicro, May 9, 2017.

[179] Aarogya Setu Mobile App. Government of India. https://www.
mygov.in/aarogya-setu-app/. June 7, 2020.

[180] Abbas Acar et al. “Peek-a-Boo: I See Your Smart Home Ac-
tivities, Even Encrypted!” In: Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Net-
works. WiSec ’20. Association for Computing Machinery, 2020,
pp. 207–218. ISBN: 9781450380065. DOI: 10.1145/3395351.
3399421. URL: https://doi.org/10.1145/3395351.3399421.

[181] Apple and Google. Exposure Notification: Cryptography Specifi-
cation, v1.2. https://www.apple.com/covid19/contacttracing.
Apr. 2020.

[182] Jason Bay et al. BlueTrace: A privacy-preserving protocol for
community-driven contact tracing across borders. bluetrace.io.
Apr. 2020. URL: https://bluetrace.io/static/bluetrace%
5C_whitepaper-938063656596c104632def383eb33b3c.pdf.

[183] BeAware Bahrain. iga.gov.bh. https://bahrain.bh/. 2020.

[184] BlueZone. bluezone.gov.vn. https : / / bluezone . gov . vn/.
2020.

[185] CovidRadar. covidradar.mx. https://covidradar.mx/. 2020.

[186] CovidSafe Contact Tracing App. Australian Government, De-
partment of Health. https://www.health.gov.au/resources/
apps-and-tools/covidsafe-app. 2020.

[187] EHTERAZ. acta.gov.qa. https : / / www . acta . gov . qa / en /
ehteraz/. 2020.

[188] Rosario Gennaro, Adam Krellenstein, and James Krellenstein.
Exposure Notification System May Allow for Large-Scale Voter
Suppression. https://static1.squarespace.com/static/
5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/
1598531714869/Exposure_Notification.pdf. 2020.

[189] Immuni - Exposure Notifications Italy. Ministero della Salute,
Italy. https://apps.apple.com/it/app/immuni/id1513940977?
l=en. June 7, 2020.

[190] In Coronavirus Fight, China Gives Citizens a Color Code, With
Red Flags. nytimes.com. https://www.nytimes.com/2020/
03/01/business/china-coronavirus-surveillance.html.
2020.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://doi.org/10.1109/MILCOM.2017.8170817
https://doi.org/10.1109/MILCOM.2017.8170817
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://www.mygov.in/aarogya-setu-app/
https://www.mygov.in/aarogya-setu-app/
https://doi.org/10.1145/3395351.3399421
https://doi.org/10.1145/3395351.3399421
https://doi.org/10.1145/3395351.3399421
https://www.apple.com/covid19/contacttracing
https://bluetrace.io/static/bluetrace%5C_whitepaper-938063656596c104632def383eb33b3c.pdf
https://bluetrace.io/static/bluetrace%5C_whitepaper-938063656596c104632def383eb33b3c.pdf
https://bahrain.bh/
https://bluezone.gov.vn/
https://covidradar.mx/
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://www.acta.gov.qa/en/ehteraz/
https://www.acta.gov.qa/en/ehteraz/
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://apps.apple.com/it/app/immuni/id1513940977?l=en
https://apps.apple.com/it/app/immuni/id1513940977?l=en
https://www.nytimes.com/2020/03/01/business/china-coronavirus-surveillance.html
https://www.nytimes.com/2020/03/01/business/china-coronavirus-surveillance.html


OT H E R R E F E R E N C E S 52

[191] MorChana. Digital Government Development Agency, Thailand.
https://www.dga.or.th/. 2020.

[192] PeduliLindungi. Ministry of communication and informatics, In-
donesia. https://www.pedulilindungi.id/. 2020.

[193] PEPP-PT. pepp-pt. 2020. URL: https://www.pepp-pt.org/
content.

[194] Rakning C-19. www.covid.is. https://www.covid.is/app/en.
2020.

[195] Replay attack "in the past". https://github.com/immuni-
app/immuni-app-android/issues/278. 2020.

[196] Ronald L. Rivest et al. The PACT protocol specification. https:
//pact.mit.edu/wp-content/uploads/2020/11/The-PACT-
protocol-specification-2020.pdf. 2020.

[197] Safe Paths. safepaths.mit.edu. https://safepaths.mit.edu/.
2020.

[198] Security and privacy analysis of the document ’PEPP-PT: Data
Protection and Information Security Architecture. DP-3T project.
Apr. 19, 2020. URL: https://github.com/DP-3T/documents/
blob/master/Security%5C%20analysis/PEPP-PT%5C_%5C%
20Data%5C%20Protection%5C%20Architechture%5C%20-%5C%
20Security%5C%20and%5C%20privacy%5C%20analysis.pdf.

[199] Shlonik. Kuwait Central Agency for Information Technology-
Health & Fitness. https://play.google.com/store/apps/
details?id=com.healthcarekw.app&hl=en_US&gl=US. 2020.

[200] Stopp Corona Austria. Austrian Red Cross. https://participate.
roteskreuz.at/stopp-corona/. 2020.

[201] Tawakkalna. ta.sdaia.gov.sa. https://ta.sdaia.gov.sa/.
2020.

[202] Deutsche Telekom and SAP. Corona-Warn-App - The Official
COVID-19 Exposure Notification App for Germany. https://
github.com/corona-warn-app. June 7, 2020.

[203] TousAntiCovid. Government of France. https://solidarites-
sante.gouv.fr/soins-et-maladies/maladies/maladies-
infectieuses/coronavirus/tousanticovid. 2020.

[204] TraceTogether Contact Tracing App. Government of Singapore,
Ministry of Health. https://www.tracetogether.gov.sg/.
2020.

[205] Serge Vaudenay. Analysis of DP-3T. Cryptology ePrint Archive,
Report 2020/399. Apr. 2020. URL: https://eprint.iacr.org/
2020/399.

[206] Serge Vaudenay. Centralized or Decentralized? The Contact
Tracing Dilemma. Cryptology ePrint Archive, Report 2020/531.
https://eprint.iacr.org/2020/531. May 2020.

[207] ViruSafe. coronavirus.bg. https : / / app . coronavirus . bg/.
2020.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://www.dga.or.th/
https://www.pedulilindungi.id/
https://www.pepp-pt.org/content
https://www.pepp-pt.org/content
https://www.covid.is/app/en
https://github.com/immuni-app/immuni-app-android/issues/278
https://github.com/immuni-app/immuni-app-android/issues/278
https://pact.mit.edu/wp-content/uploads/2020/11/The-PACT-protocol-specification-2020.pdf
https://pact.mit.edu/wp-content/uploads/2020/11/The-PACT-protocol-specification-2020.pdf
https://pact.mit.edu/wp-content/uploads/2020/11/The-PACT-protocol-specification-2020.pdf
https://safepaths.mit.edu/
https://github.com/DP-3T/documents/blob/master/Security%5C%20analysis/PEPP-PT%5C_%5C%20Data%5C%20Protection%5C%20Architechture%5C%20-%5C%20Security%5C%20and%5C%20privacy%5C%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%5C%20analysis/PEPP-PT%5C_%5C%20Data%5C%20Protection%5C%20Architechture%5C%20-%5C%20Security%5C%20and%5C%20privacy%5C%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%5C%20analysis/PEPP-PT%5C_%5C%20Data%5C%20Protection%5C%20Architechture%5C%20-%5C%20Security%5C%20and%5C%20privacy%5C%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%5C%20analysis/PEPP-PT%5C_%5C%20Data%5C%20Protection%5C%20Architechture%5C%20-%5C%20Security%5C%20and%5C%20privacy%5C%20analysis.pdf
https://play.google.com/store/apps/details?id=com.healthcarekw.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.healthcarekw.app&hl=en_US&gl=US
https://participate.roteskreuz.at/stopp-corona/
https://participate.roteskreuz.at/stopp-corona/
https://ta.sdaia.gov.sa/
https://github.com/corona-warn-app
https://github.com/corona-warn-app
https://solidarites-sante.gouv.fr/soins-et-maladies/maladies/maladies-infectieuses/coronavirus/tousanticovid
https://solidarites-sante.gouv.fr/soins-et-maladies/maladies/maladies-infectieuses/coronavirus/tousanticovid
https://solidarites-sante.gouv.fr/soins-et-maladies/maladies/maladies-infectieuses/coronavirus/tousanticovid
https://www.tracetogether.gov.sg/
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531
https://app.coronavirus.bg/


OT H E R R E F E R E N C E S 53

[208] VirusRadar. virusradar.hu. https://virusradar.hu/. 2020.

[209] Sebastien Andreina et al. “BaFFLe: Backdoor Detection via
Feedback-based Federated Learning.” In: ICDCS. 2021.

[210] Gennaro Avitabile, Daniele Friolo, and Ivan Visconti. “TEnK-
U: Terrorist Attacks for Fake Exposure Notifications in Contact
Tracing Systems.” In: 19th International Conference on Applied
Cryptography and Network Security, ACNS2021 (2021). https:
//eprint.iacr.org/2020/1150.

[211] Jiansong Zhang et al. “Proximity based IoT device authentica-
tion.” In: IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications. 2017, pp. 1–9. DOI: 10.1109/INFOCOM.2017.
8057145.

[212] Wei Zhang et al. “HoMonit: Monitoring Smart Home Apps from
Encrypted Traffic.” In: CCS ’18. Toronto, Canada: Association for
Computing Machinery, 2018, pp. 1074–1088. ISBN: 9781450356930.
DOI: 10.1145/3243734.3243820. URL: https://doi.org/10.
1145/3243734.3243820.

[213] Tengxiang zhang et al. “Tap-to-Pair: Associating Wireless De-
vices with Synchronous Tapping.” In: 2.4 (2018). DOI: 10.1145/
3287079. URL: https://doi.org/10.1145/3287079.

[214] Qingsong Zou et al. “IoTBeholder: A Privacy Snooping Attack
on User Habitual Behaviors from Smart Home Wi-Fi Traffic.”
In: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7.1
(Mar. 2023). DOI: 10.1145/3580890. URL: https://doi.org/
10.1145/3580890.

[ December 16, 2024 at 14:12 – version 0.1 ]

https://virusradar.hu/
https://eprint.iacr.org/2020/1150
https://eprint.iacr.org/2020/1150
https://doi.org/10.1109/INFOCOM.2017.8057145
https://doi.org/10.1109/INFOCOM.2017.8057145
https://doi.org/10.1145/3243734.3243820
https://doi.org/10.1145/3243734.3243820
https://doi.org/10.1145/3243734.3243820
https://doi.org/10.1145/3287079
https://doi.org/10.1145/3287079
https://doi.org/10.1145/3287079
https://doi.org/10.1145/3580890
https://doi.org/10.1145/3580890
https://doi.org/10.1145/3580890


Part II

P U B L I C AT I O N S PA R T O F T H I S C U M U L AT I V E
D I S S E R TAT I O N

[ December 16, 2024 at 14:12 – version 0.1 ]



A
R E V I S I T I N G C O N T E X T- B A S E D A U T H E N T I C AT I O N
I N I O T

55

[ December 16, 2024 at 14:12 – version 0.1 ]



Revisiting Context-Based Authentication in IoT
Markus Miettinen, Thien Duc Nguyen,

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

Darmstadt, Germany
{markus.miettinen,ducthien.nguyen,ahmad.sadeghi}@

trust.tu-darmstadt.de

N. Asokan
Aalto University
Espoo, Finland

asokan@acm.org

ABSTRACT
The emergence of IoT poses new challenges towards solutions for
authenticating numerous very heterogeneous IoT devices to their
respective trust domains. Using passwords or pre-defined keys
have drawbacks that limit their use in IoT scenarios. Recent works
propose to use contextual information about ambient physical prop-
erties of devices’ surroundings as a shared secret to mutually au-
thenticate devices that are co-located, e.g., the same room. In this
paper, we analyze these context-based authentication solutions
with regard to their security and requirements on context quality.
We quantify their achievable security based on empirical real-world
data from context measurements in typical IoT environments.
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1 INTRODUCTION
The emergence of the Internet of Things (IoT) is rapidly and drasti-
cally increasing the number of connected devices. Hence, there is
an increasing need for reliable and usable solutions for provisioning
security associations among devices belonging to the same trust
domain (e.g., Smart Home, Smart Office, etc.). At the same time,
state-of-the-art techniques can’t provide adequate authentication
solutions in such scenarios. Firstly, device pairing protocols like,
e.g., Bluetooth pairing tend to quickly encounter usability limita-
tions in settings with many devices, as it is tedious (and error-prone)
to use a relatively laborious authentication process for every de-
vice separately. Secondly, solutions based on pre-shared keys or
certificates can’t be applied in practice due to the huge number
of IoT device manufacturers that would need to set up a common
key pool or PKI. Manufacturer-specific pre-shared keys also do not
address the problem adequately, since it is not possible to use them
to distinguish between devices belonging to different trust domains
(e.g., Smart Home devices of different neighbors).
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As a solution for IoT device pairing scenarios, several previous
works [7, 8, 10, 11] proposed to use common contextual features
observed by co-located devices as a shared secret to enable them to
authenticate their co-presence in the same contextual environment,
e.g., in the same physical space like a room. The underlying assump-
tion is that the ability to observe common contextual features like
audio is spatially and temporally limited, either by mutual distance
or environmental perimeters like walls. This can be utilized to dis-
tinguish between the devices to be paired and other devices. The
related pairing can be either a one-time user-initiated process, or,
performed implicitly by utilizing the sustained co-presence of de-
vices in mutual proximity as a means to identify devices belonging
to the same trust domain.

Goals and Contributions. In this paper, we revisit the schemes that
have been proposed for context-based device pairing. We analyze
their applicability to IoT scenarios and the security assurance that
they provide. Concretely, we provide following contributions:

• A unified model of the use of context as a shared secret in
authentication applications (Sect. 3),
• A security analysis of proposed schemes taking the entropy
loss incurred by used error-correction schemes and privacy
amplification into account (Sect. 4), and,
• An empirical evaluation of the security of context-based
pairing based on real-world context data from environments
relevant to IoT (Sect. 5).

2 CONTEXT-BASED PAIRING SCHEMES
2.1 System Model
Context-based pairing can be applied in situations in which two
IoT devices A and B do not have a prior security association and
want to establish one because they belong to the same trust domain
D. A trust domain denotes a set of devices that are intended to
be able to communicate with one another and form collaborative
(trusted) ensembles. Typically, devices owned by the same person or
organization form such a trust domain. We also assume that there
is a priori no key management infrastructure for authenticating the
membership of devices A and B in the same trust domain D.

In all context-based pairing approaches [8–11], A and B utilize
measurements of physical features of their ambient surroundings
observed with their on-board sensors for deriving a context finger-
print w. This fingerprint is subsequently used to establish a shared
secret between the devices. These approaches are either based on
demonstrative identification via proximity or implicit context-based
authentication as we describe in the following.
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2.2 Demonstrative Identification via Proximity
In these scenarios, pairing is a one-time operation where the user
demonstratively identifies [1] devices to be paired by placing them
close to each other. Usability considerations dictate that pairing
completes within a few seconds as it is unacceptable for users
to maintain A and B in close proximity for longer periods. This
approach is amenable to mobile devices like smartphones that are
relatively easy to place in any desired constellation. It requires
active involvement of the user to explicitly initiate pairing andmake
sure that no other adversarial devices are within pairing distance
d of either device A or B. Pairing can thus not be automated, as
otherwise devices might pair with any devices sufficiently close
to them. Especially in mobile scenarios, e.g., in crowded public
transport systems this would lead user’s devices to potentially
establish pairings with devices of complete strangers just happening
to stand nearby the user.

ProxiMate by Mathur et al. [8] is a scheme that uses fluctuations
in a radio signal that A and B jointly observe to extract random
secret bits to be used as a shared secret. Its security is based on the
fact that these fluctuations are correlated between A and B only
if they are located within half the wavelength λ of the used RF
frequency of each other. Beyond this distance, no correlation exists.

The scheme by Schürmann and Sigg [10] extracts entropy from
ambient audio and bases its security on the assumption that only
if A and B are located close to each other they can observe similar
audio environment. They extract context fingerprints by observing
significant changes in the sound energy levels at different frequency
bands in order to extract a maximum amount of entropy. In their
approach, both A and B extract context fingerprints w and w′,
respectively, based on their context observations. A uses its finger-
print w to ’hide’ a randomly selected secret s in a fuzzy vault [5]
based on a Reed-Solomon error-correcting code. The check-in func-
tion of the fuzzy vault provides error-correcting information P ,
which A transmits to B. Using P and a fingerprint w′ sufficiently
similar tow, i.e., within Hamming distance dist(w,w′) ≤ t , B is able
to retrieve secret s from the fuzzy vault. In a similar fashion, also
the scheme by Mathur et al. uses an error-correcting Golay code to
enable B to correct deviations between w′ and w and subsequently
use the corrected fingerprint as the shared secret between A and B.

2.3 Implicit Context-Based Authentication
A scheme utilizing implicit context-based authentication was first
introduced by Miettinen et al. [9]. It allows establishing security
associations between devices that are permanently located in the
same context. The underlying assumption is that all such devices
belong to the same trust domain D. In this approach A and B
repeatedly monitor their context and iteratively execute a pairing
protocol, which will succeed if the context observations of A and B
are similar enough, e.g., if A and B are located in the same room,
or fail otherwise. After a sufficient number of successful pairing
iterations, A and B will accept the established pairing as authentic.

A challenge for implicit context-based authentication are devices
not belonging to trust domainD that might be temporarily present
in the contextC (e.g., a visitor’s smartphone). Therefore the implicit
scheme requires sustained presence from devices by repeating au-
thentication iterations over a prolonged period of time longer than

the reasonable assumed duration of a visiting device’s visit. This
does, of course, not precludeA or B from granting guest-level access
to the counterpart already after one or a few successful authentica-
tion iterations. However, full access to trust domain D would be
granted only after a sufficient number of successful iterations.

3 ADVERSARY MODEL AND SECURITY
GOALS

We consider the following adversary model. Given two legitimate
IoT devices A and B belonging to the domain D, the adversary
E is a device that is not in the same proximate context C as A
and B. Depending on the pairing scheme, proximate context may
either denote close proximity in terms of physical distance d , or, the
physical space that encloses both devices and is separated from the
outside space by an enclosure like the walls of a room. In particular,
we assume the adversary E to have following properties:

• It is equipped with the same contextual sensors as legitimate
devices A and B.
• It can wirelessly communicate with bothA and B in the same
way as A and B with each other.

Impersonation. In an impersonation attack, adversary E that
does not belong to the same trust domain D as A attempts to
convince device A that it is a legitimate device B ∈ D and establish
a successful pairing with it. This can happen if E can fabricate
context observations that are similar enough to those of A that it
will lead to successful authentication.

Man-in-the-Middle. If E can successfully execute the imperson-
ation attack simultaneously with both A and B, it will gain the
ability to perform man-in-the-middle attacks against A and B, i.e.,
completely controlling the communications between them.

In the schemes presented above, the context measurements of A
and B are used to derive a shared secret s to be used either as an
authentication token, or, directly as a cryptographic key. Depending
on its use, s has to fulfill following requirements.

Use as Authentication Token. It is necessary that s has sufficient
entropy to resist an on-line guessing attack by E. A should imple-
ment strict rate-limiting for the number of permissible authentica-
tion attempts for each set of context observations, since re-trying
does not help if the used context data do not change. It is therefore
sufficient for s to have a min-entropy of approximately 20 bits, i.e.,
H̃∞(S) ≥ 20, where S denotes the probability distribution from
which s is drawn. This achieves a comparable resilience against
guessing attacks as in the PIN-based Bluetooth pairing protocol,
which can be considered a widely accepted industry standard for
device pairing applications.

Use as Cryptographic Key. In schemes where the shared secret s
is used directly as a cryptographic key, the requirements are much
stricter. Not only has the min-entropy H̃∞(S) to be sufficient to
withstand off-line known-plaintext attacks, but, also the probabil-
ity distribution S from which s is drawn, needs to be sufficiently
indistinguishable from the uniform distribution in order for s to be
considered a good cryptographic key.
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or
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Figure 1: The context-based authentication approach for us-
ing context fingerprint w as an authentication token (Case
1) or for deriving a cryptographic key (Case 2).

4 SECURITY OF PAIRING SCHEMES
Recent context-based pairing schemes proposed in literature [8–10]
use error-correcting codes to derive the shared secret s from context
observations. None of these works, however, provide a quantitative
empirical evaluation of their security under practical real-world
requirements. In the following, we analyze the factors influencing
security that these context-based pairing schemes can provide and
evaluate their effectiveness in a real-world setting that is typical
for IoT environments.

4.1 Context-Based Authentication
Since context observations in practice always are influenced by ran-
dom errors arising from, e.g., context sensors’ hardware or random
fluctuations in themonitored context parameter, the observations of
devices A and B will be similar but not identical. To compensate for
these deviations, error-correcting codes like Golay or Reed-Solomon
are used to perform information reconciliation [3] to ’correct’ the
context fingerprints of A and B to be identical.

The process of context-based authentication is shown in Fig. 1.
First, device A derives a context fingerprint w, a quantization of its
context observations. How this quantization is done is specific to
each scheme and depends on the used context modality. In the sub-
sequent discussion, we will simply refer to this process as context
fingerprinting. Subsequently, A derives error-correcting informa-
tion P from its fingerprint with the help of an appropriate error-
correcting code (ECC), and sends it to B. Using this information B
can adjust any deviations in its own context fingerprint w′ in com-
parison to w, as long as the Hamming distance of its fingerprint w′
toA’s fingerprint w is within the error-correcting capability t of the
used ECC, i.e., dist(w,w′) ≤ t . The resulting adjusted fingerprint
w∗ = w can then either directly be used as the authentication token
s or utilized further for deriving the cryptographic key s .

For deriving a cryptographic key s from the context finger-
prints, A and B need to employ privacy amplification, as the error-
correcting information P may provide partial information about
the fingerprint w to adversary E. The privacy amplification step
will take fingerprint w about which E has partial information and
output a secret s of which E has virtually no information. In addi-
tion, privacy amplification is used to make sure that the distribution
S from which s is drawn is arbitrarily indistinguishable from the
uniform distribution.

4.2 Entropy Loss
The shared secret s is derived from the context fingerprint w. There-
fore its secrecy is dependent on the entropy of w from the point of
view of adversary E. This is measured in terms of its min-entropy
H̃∞(W |P), whereW is the probability distribution of the finger-
prints w and P denotes the error-correcting information. Min-
entropy is a measure of the ’worst-case’ entropy, i.e., it measures the
entropy of values ofw that are easiest to guess for E. It is therefore
a good measure for the security of the scheme, since it considers
the most favorable outcome for E.

Information reconciliation. When device A reveals the error-cor-
recting information P for its fingerprintw this inevitably leaks some
information about w. The extent of this entropy loss depends on
the used error-correcting scheme. In the Schürmann and Sigg [10]
scheme this is realized through a fuzzy vault [5] that utilizes fuzzy
commitments [6]. Fuzzy commitments are equivalent to a secure
sketch [4] utilizing the so-called code-offset construction, in which
P is obtained by adding fingerprint w to the codewordC(s) of secret
s , i.e., P = w ⊕C(s). We therefore analyze the entropy loss incurred
by the error-correction with the help of secure sketches, as these
can be generalized also to other schemes utilizing ECCs.

A secure sketch as introduced by Dodis et al. [4] is a pair of effi-
cient algorithms SS(·) and SRec(·, ·) such that the secure sketching
operation SS(w) = P provides error-correcting information P that
can be used to reconstruct w using the operation SRec(w ′, P) = w
given a value w′ that is sufficiently similar to w, i.e., dist(w,w ′) ≤ t .
For secure sketches based on [n,k, 2t + 1] ECCs it can be shown [4]
that the entropy loss incurred by revealing the error-correcting
information P is bounded by (n − k), where n denotes the length, k
the dimension and t the error-correcting capability of the ECC. The
selection of the code is dependent on the amount of error-correction
t that is required. In general, an ECC with higher error-correction
capability will also incur a higher entropy loss.

Privacy Amplification. If the reconciled context fingerprint w is
used to derive a cryptographic key, privacy amplification is needed
to obtain a secret s over which E does not have even partial infor-
mation. This is not considered in the Schürmann and Sigg scheme.
Mathur et al. discuss privacy amplification, but do not take the
entropy loss caused by it into account. To this end, a universal hash
function h(·) can be used on the fingerprint w to generate a close-
to-uniformly distributed secret, of which the adversary E does not
have any information. According to the generalized Leftover Hash
Lemma (LHL) [2], the privacy amplification will incur log ϵ−1 bits
of entropy loss, where ϵ is a security parameter determining how
indistinguishable the output is from the uniform distribution.

5 EVALUATION
To evaluate the feasibility of context-based authentication for IoT
devices in a real-world setting that is applicable to typical smart
home appliances like smart light bulbs, smart power plugs, IP cam-
eras, etc., we performed two longitudinal experiments in domestic
and office environments, representing typical deployment environ-
ments for IoT devices. In both experiments, data collection was
performed continuously over a time period of 30 days in order to
capture typical variations in contextual activity caused by daily and
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weekly differences in routines. In our evaluation we focus on the
audio modality, as it is readily available and the required sensors
relatively inexpensive to integrate in devices.

We focus on two measures of fitness: the false accept rate (FAR)
and the false reject rate (FRR). FAR measures the rate at which
fingerprints of adversary E will be falsely accepted byA as genuine,
enabling thus an impersonation attack. FRR in contrast, measures
the rate at which fingerprints of a genuine device B will be falsely
be rejected by A. As FAR is a measure of the security of the scheme
and FRR for its usability in practice, a good context-authentication
scheme will seek to minimize both of these measures.

5.1 Data Collection
For data collection we used recent models of Android smartphones
for which we had developed a data collection app recording the
ambient sound energy level in the context every 100 ms. In each
experiment we considered two different settings: one with two and
another with three co-located devices marking IoT devices in the
same trust domain D, and one adversary device E. In total the
dataset covered therefore 12 distinct devices over a period of 30
days, covering more than 8000 hours of context measurements.

To model the positioning of typical IoT devices, data collection
devices were installed in a room of the target environment at a
distance of 2-3 meters from each other and adversary devices were
placed in adjacent rooms. However, due to practical constraints in
the experimental set-up in the Home environment, the contextual
isolation of the adversary device E was not as good as in the office
environment, as the adjacent roomwas connected by a light-weight
door that had to be opened from time to time. This allowed us,
however, to analyze what impact the quality of the contextual
separation has on the security of the context-based pairing.

5.2 Context Quantization
We utilize a fingerprint quantization scheme based on detecting
prominent peaks in the audio measurements and using list-encoding
to generate context fingerprints w. List-encoding is an efficient way
of transforming continuous measurements into binary fingerprints
as, e.g., Mathur et al. [8] have shown. In contrast to their scheme,
which used minima and maxima of observed RF-measurements to
encode “1” and “0” bits of the fingerprint, respectively, we slightly
modified their scheme, as the audio signal doesn’t contain clear
minima. In our scheme A detects significant peaks in the audio
measurements and uses these to encode “1” bits of its context fin-
gerprint w. To encode “0” bits,Awill randomly pick a roughly equal
amount of non-peak observations at a minimum distance of 500
ms from any observed peaks and use these to encode zero bits. For
the resulting fingerprint w, A will then derive the error-correcting
information P and sends it along with the timestamps tsi of the
observations used to encode the fingerprint bits to B, which uses
the timestamps tsi to decode its fingerprint w′ based on its own
context measurements. It will decode each tsi corresponding to a
peak within a distance of 500 ms as a “1” bit and as a “0” bit if it
does not correspond to a peak within this time window.
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Figure 2: Bitrate of fingerprint extraction during different
times of day

5.3 Contextual Activity
As fingerprint extraction is dependent on observed contextual ac-
tivity, the amount of fingerprint bits that can be obtained from the
context typically varies depending on the hour of day. The average
hourly bitrate during different times of the day for the evaluation
data is shown in Fig. 2. We focus our analysis therefore on the active
hours of the day, i.e., on the hours between 6.a.m. to 9 p.m. in the
Home environment and between 9 a.m. and 6 p.m. in the Office
environment. During these times the average bit rate was 309 in
the Home and 368 bits per hour in the Office environment.

5.4 Similarity of Fingerprints
In the Home environment, average similarity of fingerprints ex-
tracted during the active hours of the day is constantly over 92%, the
average being 93.2%. For the Office environment, during the active
office hours on weekdays, even higher similarity can be reached,
being constantly at least 94%, the average being 95.2%. Fingerprint
similarity for adversary devices is in both scenarios consistently
lower than 90%, 86.1% in the Home and 67.9% in the Office scenario
on average, showing the impact that the lower quality of contextual
separation in the Home experiment has. In both environments, an
ECC with error-correcting capability of ca. 10% is sufficient to allow
co-located devices to successfully pair, while adversarial devices
would not be able to do so.

However, the above figures apply only to the average case. Our
evaluation revealed that another factor, which earlier works [8, 10]
have not explicitly taken into account has to be considered, namely
the inherent variation in the similarity of context fingerprints. Our
data show that from time to time the fingerprint of adversary E is
in fact sufficiently similar to the fingerprint of A, thus enabling E
to falsely authenticate with A. Two factors affect the probability of
this happening: 1) higher error-correcting capability t increases the
probability that E’s fingerprint will be accepted, while 2) longer
fingerprints average out short-term fluctuations in fingerprint sim-
ilarity, thus reducing E’s success probability. Figure 3 shows the
impact of these factors on the FAR and FRR values.

Due to the better contextual separation in the Office experi-
ment, the FAR/FRR values (Fig. 3a) are clearly lower than in the
Home experiment (Fig. 3b). For short fingerprint lengths, the FAR
is relatively high, e.g., ranging from 1.4% to 8.6% for 32-bit finger-
prints. Increasing the fingerprint length effectively reduces FAR,
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Figure 3: FAR vs. FRR for error-correction levels
5%, 8%, 10%, 12% and 15% for different fingerprint lengths.

so that close-to-optimal performance can be achieved with a 512-
bit fingerprint length with a FAR of 0.2% and FRR of 0.8% at an
error-correction level of 10%.

The values for the Home experiment in Fig. 3b show how crucial
contextual separation is for the security of the scheme. For short fin-
gerprint lengths, E has a relatively high success probability of 21.8%
to 61.7%. In this experiment, even using extremely long fingerprints
of 8192 bits would bring down the FAR to only 10.7%.

From Fig. 3 we can, however, see that even under favorable con-
ditions, the adversary has a non-negligible chance of succeeding.
This means that in order to further decrease the FAR for increased
security, one needs to adopt the approach proposed by Miettinen
et al. (Sect. 2.3), where the authentication is iteratively repeated, in
order to increase the confidence in the counterpart’s authenticity.
The number of authentication iterations required is dependent on
the FAR of the used ECC. Figure 4 shows the amount or required
iterations for reaching a FAR of 2−20 (comparable security to Blue-
tooth pairing) for the different ECCs in the examined environments.
We can see that, e.g., at the 10% error-correction level, 3 − 4 itera-
tions in the Office environment would be required, while 10 − 16
repetitions would be needed in the Home environment.

5.5 Entropy Analysis
As discussed in Sect. 4.2, an [n,k, 2t + 1]-code will incur an (n − k)-
bit entropy loss during the information reconciliation stage. The
higher the required error-correcting capability is, the larger also
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Figure 4: Required number of authentication iterations to
reach FAR of 2−20 for different fingerprint lengths.

the entropy loss. From this point of view, Reed-Solomon (RS) codes
provide an optimal trade-off between error-correction capability
and entropy loss, as for each symbol of error-correction capability,
the codewill incur an entropy loss of two symbols, i.e., in practice an
error-correction capability of t bits will incur 2t bits of entropy loss.
This assumes an approach used, e.g., by Schürmann and Sigg [10],
where fingerprint bits are encoded with the help of symbols of the
RS-code. Our evaluation shows that an error-correction capability
of ca. 10% is required to enable A and B to perform successful
pairing with low FRR. The fingerprint w would therefore need to
have initially at least 25 bits of min-entropy to retain a leftover
entropy of 20 bits after the information reconciliation step with
20% of entropy loss. As discussed in Sect. 3, this would be sufficient
for using the fingerprint as an authentication token.

For deriving a cryptographically strong secret of 128 bits, also
the entropy loss incurred by privacy amplification needs to be taken
into account. As discussed in Sect. 4.2, this amounts to log ϵ−1 bits,
where ϵ is a parameter defining the desired indistinguishability of
S , the distribution of the secrets s , from the uniform distribution.
For, e.g., ϵ = 2−20 this would result in additional 20 bits of entropy
loss associated with the privacy amplification step. To retain a min-
entropy of 128 bits after information reconciliation and privacy
amplification, the min-entropy of the context fingerprint would
therefore need to be at least 128+20

80% = 185 bits, if a Reed-Solomon
error-correcting code with 10% error-correction capability is used.
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5.6 Duration of Pairing
The best strategy for adversary E to guess A’s fingerprint is to use
its own fingerprint, as on average 86.1% of fingerprint bits in the
Home environment and 67.9% of the fingerprint bits in the Office
environment will be identical with A’s fingerprint bits. Therefore,
the amount of entropy of each fingerprint bit from E’s point of view
is only 0.24 bits in the Home and 0.32 bits in the Office environment.
Obtaining sufficient min-entropy, i.e. 25 bits, for an authentication
token will therefore require ⌈ 25

0.24 ⌉ = 105 fingerprint bits in the
Home and ⌈ 25

0.32 ⌉ = 79 fingerprint bits in the Office environment,
on average. At average bit generation rates of 309 and 368 bits per
hour, the required time for acquiring sufficient bits would therefore
be 20.4 min in the Home and 12.9 min in the Office environment.

Similarly, for obtaining the required 185 bits of min-entropy
for a cryptographic secret would require ⌈ 1850.24 ⌉ = 771 fingerprint
bits in the Home and ⌈ 1850.32 ⌉ = 579 fingerprint bits in the Office
environment. The respective required times to harvest this entropy
would accordingly be 149.7 minutes in the Home and 94.4 minutes
in the Office environment.

5.7 Summary
Our evaluation shows that using context measurements for estab-
lishing a shared secret is possible, given sufficient time to harvest
entropy from the ambient environment. However, for any contexts
where a complete contextual separation from the outside environ-
ment can’t be guaranteed, the authentication process has to be
repeated a sufficient number of times to bring down the false accept
rate to an acceptable level (cf. Fig. 4). Therefore, an approach along
the lines of [9], in which initially only basic level access is granted
and additional privileges only added as more successful authen-
tication iterations are completed should be followed in applying
context-based pairing in real-world environments.

6 RELATED WORK
Earlier proposals for context-based pairing have focused on using
RF-signals. AMIGO by Varshavsky et al. [11] aimed at authenticat-
ing the co-presence of devices by comparing the received signal
strength indicators (RSSI) of WiFi data packets. This approach was
subsequently extended by Kalamandeen et al.’s Ensemble [7], which
not only observed incoming packets, but utilized also transmissions
by an ensemble of trusted wearable devices to verify proximity of
devices. However, subsequent work showed that RSSI values can
potentially be inferred or influenced by a remote adversary, if it
knows the positions of A and B. Mathur et al. [8] therefore intro-
duced the ProxiMate system (cf. Sect. 2.2), which relies on physical
properties of the RF-field for secrecy. These approaches are, how-
ever, only applicable for demonstrative identification via proximity,
as the devices have to be very close to one another (e.g., 15 - 35 cm)
to authenticate. Their applicability for large-scale authentication
of numerous IoT devices, e.g., in a Smart Home environment, is
questionable, as the user needs to separately point out each and
every of the (potentially numerous) devices.

The scheme of Schürmann and Sigg [10] uses audio in the proxi-
mate context to transfer a random secret s selected by A to B to be
used as a shared key (cf. Sect. 2.2). However, they don’t consider
that the secrecy of s depends only on the min-entropy of the usedw,

over which E obtains partial information due to the released error-
correcting information P , making privacy amplification necessary.
They also don’t quantitatively analyze the entropy loss associated
with the use of ECCs.

Our approach builds on the scheme ofMiettinen et al. [9] (Sect. 2.3)
that proposes an implicit context-based authentication scheme
based on audio and luminosity. In this scheme, an initial strong
unauthenticated shared secret is established betweenA andB, which
is subsequently iteratively evolved by repeated context-based au-
thentication steps in order to gradually establish confidence in the
authenticity of the counterpart. Our evaluation shows that this
indeed is necessary, unless complete contextual isolation of the
target context from adversary E can be guaranteed.

7 CONCLUSION
Context-based pairing for authentication of IoT devices can provide
significant usability benefits as compared to traditional solutions
like, e.g. Bluetooth pairing. Applying it in practice, however, has
caveats that have not been sufficiently considered in earlier pro-
posals [8–11]. Firstly, one has to consider and quantify the entropy
losses related to the applied error-correction and privacy ampli-
fication in order to estimate a sufficient amount of entropy to be
harvested from the environment. In addition, our evaluation shows
that one also has to have a good understanding about the perfor-
mance of the fingerprinting approach as well as the level of con-
textual separation that the target environment provides. Therefore,
before deployment of context-based pairing solutions, sufficient
understanding about the target contexts should be acquired in order
to make informed decisions about relevant parameters like error-
correction level, used fingerprint lengths and number of required
authentication iterations, so that the used approach can in fact
provide sufficient security in a real-world setting.
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Abstract—The COVID-19 pandemic has caused many coun-
tries to deploy novel digital contact tracing (DCT) systems to
boost the efficiency of manual tracing of infection chains. In this
paper, we systematically analyze DCT solutions and categorize
them based on their design approaches and architectures. We
analyze them with regard to effectiveness, security, privacy and
ethical aspects and compare prominent solutions based on these
requirements. In particular, we discuss shortcomings of the
Google and Apple Exposure Notification API (GAEN) that is
currently widely adopted all over the world. We find that the
security and privacy of GAEN has considerable deficiencies as it
can be compromised by severe large-scale attacks.

We also discuss other proposed approaches for contact tracing,
including our proposal TRACECORONA, that are based on
Diffie-Hellman (DH) key exchange and aim at tackling short-
comings of existing solutions. Our extensive analysis shows that
TRACECORONA fulfills the above security requirements better
than deployed state-of-the-art approaches. We have implemented
TRACECORONA and its beta test version has been used by
more than 2000 users without any major functional problems1,
demonstrating that there are no technical reasons requiring to
make compromises with regard to the requirements of DCT
approaches.

Index Terms—digital contact tracing, privacy, security

I. INTRODUCTION

The pandemic caused by the SARS-CoV-2 corona virus has
still the world in its grip since it was officially announced by
the World Health Organization (WTO) on March 11, 2020.
At the time of writing, we have been witnessing the surge
of several infection waves all around the world. Reliable and
efficient contact tracing for containing the spread of infections
has therefore become more important than ever. In many
countries, digital contact tracing apps on smartphones have
already been rolled out to support manual contact tracing
with the hope of significantly improving its effectiveness
in breaking infection chains and preventing the virus from
spreading further. In this paper, we focus on analyzing how
theoretical results of epidemiologists (e.g., [1]) are taken into
account in current proposals for identifying at-risk contacts in
the presence of technological errors, data pollution attacks and
privacy and ethics regulations. Initially we analyze deployed
solutions, as many countries are currently actively employing
them and millions of users are affected by such systems.

1https://tracecorona.net/download-tracecorona/

Regardless of the potential usefulness of digital contact tracing
or a lack thereof, contact tracing apps have become a reality
in many countries. At the time of writing, 49 countries around
the world (including, e.g., most European countries, Australia,
China, Singapore) and 27 states in the USA have deployed
contact tracing apps2. Many of these systems in use today were
designed, implemented and rolled out in great haste with the
goal of containing the spread of the pandemic as quickly as
possible. It is therefore ever more important to take a step
back and try to obtain a critical view of the benefits and
disadvantages of individual approaches.

In this context, effectiveness, security, privacy and ethics
are key aspects that need to be considered thoroughly: (i) the
system should be effective, i.e., able to provide acceptable
detection accuracy (high true positive and low false positive
rate), (ii) it should be secure so that malicious adversaries
cannot manipulate the system to trigger false alarms, (iii) it
should protect privacy to increase users’ trust in the DCT
system, and (iv) it should consider ethical aspects as it should
be transparent and based on voluntary use. Ensuring all above
properties is necessary to achieve high adoption rates to then
significantly contain the spread of the virus. Otherwise, users
will not be willing to use contact tracing apps, negatively
impacting their adoption rate that would be crucial for their
effectiveness in practice (ideally higher than 60%) [2].

While the first countries (predominantly in Asia) that
deployed tracing apps adopted centralized approaches, and
extensively collected sensitive user information (e.g., names,
addresses, mobile phone numbers, location), a widespread and
heated debate on user privacy broke out in Europe and the
USA3. In this turmoil of evolving contact tracing approaches,
Google and Apple established an unprecedented collaboration
and provided their special application programming interface
for decentralized contact tracing called Exposure Notification

2MIT Covid Tracing Tracker, https://tinyurl.com/3ey44r5c
3In the course of this debate about 300 security and privacy re-

searchers from 26 countries signed an open letter criticizing the spe-
cific privacy risks of some centralized contact tracing approaches, ad-
vocating privacy-preserving solutions whenever better privacy can be
obtained without penalizing effectiveness (https://drive.google.com/file/d/
1OQg2dxPu-x-RZzETlpV3lFa259Nrpk1J/view). This signed letter has been
often abused claiming that centralized systems are bad and decentralized
systems do what is needed to detect at-risk contacts, and moreover they do it
protecting privacy.
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API (GAEN) [3] which they rapidly integrated into their
mobile operating systems. Google and Apple give in each
country access to this interface only to one organization that
is authorized by the local government. GAEN runs an almost
complete contact tracing solution as a part of the underly-
ing mobile operating systems, so that the role of national
organizations is reduced to developing a user interface to
GAEN through a smartphone app and providing the backend
server infrastructure required for acquiring and distributing
information about at-risk contacts. Further, although Apple
and Google initially promised not to get directly involved in
contact tracing by developing their own backend server and
app, later they did so by providing the GAEN Express solution
that is used in several US states, e.g., Maryland and Utah4.
Unfortunately, it is known that existing rolled out Digital
Contact Tracing (DCT) systems exhibit a number of important
security and privacy risks [4], [5], [6], [7].

In order to tackle the shortcomings of existing approaches,
we introduce a novel user-controlled privacy-preserving con-
tact tracing system called TRACECORONA. It leverages
a robust privacy architecture based on Diffie-Hellman key
exchange to provide a level of security and anonymity un-
paralleled by any of the other systems proposed so far. It also
improves the effectiveness and accuracy of the overall system
and its resilience to misuse through the ability to verify all
critical encounters.

In particular, we provide following contributions:
• We introduce a categorization of the requirements on

DCT systems in four dimensions, namely: effectiveness,
privacy, security and ethical considerations (Sect. III).

• We propose a novel distributed contact tracing system
based on Diffie-Hellman (DH) key exchange, TRACECO-
RONA, providing strong security and privacy guarantees
(cf. Sect. IV). In contrast to almost all existing approaches
that are based on exchanging pseudonymous proxim-
ity identifiers, our approach leverages advanced crypto-
graphic algorithms to establish and verify encounter to-
kens that are unique to each encounter between two users.
Futher, we propose various use cases and deployments
of TRACECORONA including a hybrid approach (cf.
Sect. IV-D). We implemented, deployed, and published
TRACECORONA for beta user test (cf. Sect. IV-E).

• We analyze TRACECORONA in comparison to promi-
nent schemes w.r.t these aforementioned requirements (cf.
Sect. V). Our analysis shows that DH-based systems pro-
vide better security and privacy guarantees than GAEN
while maintaining comparable effectiveness.

In summary, we provide a comprehensive set of require-
ments to evaluate DCT systems. We show that current ap-
proaches do not fulfill such requirements at large, e.g., have
number of security, privacy and effectiveness issues. Hence,
we propose TRACECORONA, a novel approach that address
the deficiencies of existing DCT systems. In the following,
we will present those requirements of DCT systems as well
as TRACECORONA in details. Further, we have published a
full version of this paper as a technical report that includes

4MD COVID Alert, https://tinyurl.com/yeymtrm2

TABLE I: Notations.

User (𝑈) A Person that uses a DCT App
User App (𝐴𝑝𝑝) A DCT app installed on users’ devices
Tracing Service
Provider (SP)

Providing a system (e.g., servers and apps)
for identifying at-risk contacts

Health Authority (HA) Authenticating the user infection status
Infected user A user that has tested positive for COVID-19
Affected user A user that has encountered an infected user
Indirect contacts A user that has encountered an affected user

User 𝑈𝑖 User 𝑈𝑗

Health Authority (𝐻𝐴)

Tracing Service Provider (𝑆𝑃)

Fig. 1: System model of Digital Contract Tracing (DCT).

a systematization and extensive analysis of existing DCT
schemes as well as the extended application scenarios of
TRACECORONA [8].

II. DIGITAL CONTACT TRACING

In this section, we present the system model, architectures
and technologies of DCT systems.

A. System Model

Figure 1 shows the typical system model of contact tracing
schemes. There are three types of entities: Users 𝑈 (e.g., Ui
and Uj) of the tracing system (app), a contact tracing Service
Provider (SP), as well as a health authority (HA). In the
following, we discuss these roles in more detail.

1) Users: A user Ui uses a dedicated contact tracing app
installed on its device (typically a smartphone) to collect infor-
mation required to determine contacts with other users of the
system. Different technologies can be used for this purpose,
e.g., directly through exchange of specific information over
a proximity communication protocol like Bluetooth LE, or,
indirectly with the help of a trace of location information
obtained from a positioning system like GPS, by determining
simultaneous co-presence of the users at the same location
at the same time. We will discuss various technologies in
Sect. II-C. Users’ contact tracing apps collect and store this
information about contacts of users locally on users’ mobile
devices. In case a user Ui is tested positive with a disease
(like COVID-19), the user is expected to use the contact
tracing app to warn other users of the system by uploading
the collected information about his/her contacts to the contact
tracing service provider SP.

2) Tracing Service Provider: The Tracing Service Provider
SP is responsible for collecting and distributing information
necessary for identifying contacts with infected users and/or
notifying other users of such contacts. In centralized systems,
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the SP determines contacts between infected users and other
users and issues notifications to them, whereas in decentralized
systems, the determination of possible contacts is performed
by the users’ contact tracing apps.

3) Health Authority: The Health Authority HA is respon-
sible for identifying infected users (e.g., through administered
medical tests) and authenticating their infection status towards
SP. This is necessary to prevent malicious users A𝑢 from
pretending to be infected and thereby triggering false alarms
with users they have had contacts with. To do this, HA will
issue a user-specific unique authenticator, e.g., a transaction
authentication number (TAN) (a form of single use one-time
password (OTP)) to an infected user Ui, who can subsequently
present this authenticator when uploading their information to
SP. By verifying the authenticator with HA, the SP can verify
the infection status of the user Ui.

B. Centralized vs. Decentralized Architectures

In general, contact tracing approaches can be divided into
two main design architectures, centralized and decentralized,
based on whether the identification of encounters between
users is performed by the tracing service provider SP or by
the tracing apps of users 𝑈. Both approaches are based on
individual users’ tracing apps recording temporary identifiers
(TempIDs) of other devices they encounter. In the case a user
Ui is infected, he uses his tracing app to upload identifiers to
𝑆𝑃. In centralized systems, the recorded identifiers of other
apps will be uploaded, whereas in decentralized systems, the
TempIDs used by the tracing app itself in the recent past will
be uploaded. The main difference between these schemes is
the fact that in the centralized system the service provider
SP generates all TempIDs centrally and is therefore able to
link the infected user with the (pseudonymous) identities
of other users, whereas in the decentralized approach, the
TempIDs are generated individually by each tracing app. The
determination of contacts can therefore only be performed
by the actual tracing apps involved in an encounter. The
tracing app conducts this by downloading the TempIDs of
infected users, e.g., Ui from SP and comparing these to the
TempIDs the tracing app has encountered in the past. This
approach therefore effectively limits the exposure of sensitive
information about encounters to SP.

In contrast to common belief, however, this difference does
not directly guarantee ”privacy by design” for decentralized
systems and susceptibility to ”mass surveillance” in central-
ized systems. The actual evaluation of these models highly
depends on the underlying architectural decisions and on the
various threat models considered.

Due to space constraints, we refer the reader to Sect. IV of
our technical report [8] for a systematization and discussion
of state-of-the-art contact tracing schemes.

C. Technologies to Determine Encounters

In general, there are two types of technologies to deter-
mine encounters: (1) location-based technologies such as GPS
and QR-codes used for venue check-ins and (2) peer-to-peer

proximity detection-based technologies like Bluetooth, Ultra-
wideband (UWB), and ultrasound. Currently, Bluetooth is
the most dominant technology deployed in contact tracing.
Therefore, in the following, we focus on Bluetooth technology
and refer the reader to Sect. II.B of [8] for the detailed
discussion of other technologies.
Bluetooth Low Energy (BLE). BLE can be used for sensing
the proximity between individual users’ devices, e.g., [3],
[9]. Indeed, many recent approaches for contact tracing on
smartphones use Bluetooth proximity detection. The partic-
ipating smartphones beacon out information like temporary
identifiers (TempIDs) that can be sensed by other devices.
In addition, also related metadata like the signal strength
of the beacon may be recorded. Using the signal strength
information, some approaches seek to provide estimates about
the distance of the encounter. However, it has been shown
that signal strength can provide only a very rough estimate
about the actual distance of devices, as it is influenced by other
factors like device orientation and surrounding structures [10].
Nevertheless, since BLE is widely available on most recent
smartphone versions, it seems the most viable alternative for
implementing proximity detection on smartphones that are
widely used by the population in many countries.

Compared to GPS and QR-code based approaches, BLE
would seem to reveal the least amount of information about the
users because HA and SP do not collect physical locations as
well as actual encounter times. Thus, only anonymized random
strings are shared among the apps using BLE. However, BLE-
based approaches still have several security, privacy, effective-
ness, and ethical problems. For example, they are susceptible
to fake exposure injection attacks, e.g., relay attacks, or user
profiling, e.g., movement tracking and user identification. We
will elaborate all of these problems in detail in Sect. V.

III. REQUIREMENTS FOR DCT SYSTEMS

As mentioned above, digital contact tracing (DCT) schemes
need to collect information about infected individuals. Al-
though many countries have deployed contact tracing apps,
the effectiveness of DCT is so far still unclear. Moreover,
DCT poses a number of privacy and security challenges on
the underlying scheme design, since it collects and processes
sensitive information which is related to users’ health and
users’ contacts to some extent. In this section, we system-
atically consider the requirements for DCT based on four
pillars: effectiveness, privacy, security, and ethical aspects.
These requirements are broken down and listed in Tab. II.
Next, we will discuss each of them in detail.

A. Effectiveness

In the following, we discuss three sub-requirements for
the effectiveness of a DCT system, namely, Accuracy, Super-
spreader, and Accountability.

1) Accuracy (R-Ef1): For accurately estimating the risk of
contagion it is necessary to estimate the duration of each
contact (in minutes) along with a good estimate of the distance
between the users involved in the encounter. The duration of
contacts ideally could be detected by continuously scanning
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for the presence of BLE devices in proximity to verify the
continued presence of other devices. This aggressive approach
will, however, lead to significant energy consumption drain-
ing the smartphone battery quickly. In practice, one needs
therefore to pause the scanning for several seconds before the
next scan to preserve energy. Computing a good estimate of
the distance between devices is even more challenging since
there are multiple factors (e.g., positioning of the antenna
in the smartphone, obstacles in between smartphones, and
their orientations) that introduce significant errors to distance
estimates. Indeed, experiments performed by Leith and Far-
rel [10] showed that GAEN is quite imprecise in estimating
the distance of devices of potential at-risk exposures.

2) Superspreaders (R-Ef2): The mere capability of detect-
ing at-risk exposures was initially considered sufficient by
many endorsers of decentralized systems like, e.g., the team
around the influential DP-3T [11] contact tracing approach,
which also had a considerable influence on the GAEN design
adopted by Google and Apple. However, along the way, more
epidemiological insights about the behavior of SARS-CoV-2
have been discovered. Among them is the fact that a very
relevant aspect for understanding the spread of the virus is the
important role of so-called superspreaders. Indeed, Reichert
et al. [12] showed that while there is a large percentage
of infected individuals that do not transmit the virus at all,
there is a small fraction of infected individuals that instead
are very contagious and cause numerous further infections.
A DCT system aiming at effectively defeating SARS-CoV-
2 should therefore also take into account the importance of
superspreaders and provide mechanisms allowing to detect
them and their potential contacts.
Contagious asymptomatic infected individuals (CAIIs).
Particularly problematic are so-called asymptomatic infected
individuals, i.e., persons that are infected and contagious, but
asymptomatic and thus may unwillingly spread the disease.
Such individuals have a very low chance of being tested
positive since they do not show any symptoms of being
sick and therefore will not likely seek to be tested. Even if
they want to be tested, in many countries, they will not be
prioritized in testing. Hence, they can have an active role in
spreading the virus. However, as such individuals are unlikely
to be tested and receive a positive diagnosis from HA (which
is a prerequisite for uploading information about contacts to
the service provider SP), it is unlikely that such persons will
ever be able to use the DCT system to warn other users about
possible at-risk contacts with them.

3) Accountability (R-Ef3): Implementing, deploying, and
operating a DCT system can be very costly and requires
a majority of the population to participate in its operation.
Therefore, the system should provide adequate and valid
information about its effectiveness in a privacy-preserving
way. For example, the system should be able to provide basic
statistics about the number of active users, infected users,
users notified about potential at-risk exposures, as well as
false positive rates, etc. At a minimum, the system should be
able to demonstrate clear benefits in comparison to a purely
random selection of users to be quarantined in specific at-risk
groups (e.g., where the infection rate is higher) [10]. Although

some GAEN-based apps do provide reports on some measures
related to the system’s effectiveness, such measures can be
biased, unreliable or misleading [13], [14] as we will discuss
in Sect. V.

B. Privacy

The main privacy concerns relate to the abuse of a DCT in
order to identify users, track users, or extract the social graph
of users. Information that is emitted to the user’s surroundings
by contact tracing apps and shared with other involved parties
should not introduce such privacy risks as elaborated next.

1) Identifying users (R-P1): DCT systems aim at identify-
ing encounters, not users. Therefore, the systems should not
leak any information that can be used to establish the true
identity of any individual user.

2) Tracking users (R-P2): DCT apps work by continuously
beaconing pseudonymous identifiers into their surroundings.
These identifiers should not be linkable, i.e., it should not be
possible to trace the movements of any user over time, as
this may potentially enable to deduce facts about the user’s
behaviour and lead to an identification of the user.

3) Extracting the social graph (R-P3): In general, contacts
(especially long encounters), are often related to social rela-
tionships (i.e., users that decide to be close to each other).
When handling contact information, a DCT system should
make sure that one cannot abuse information collected by it to
generate a relevant part of the social graph of any user, since
this may enable to draw conclusions about social relationships
between users and thus potentially identify them.
Note: Obviously, there exists in some cases inherent informa-
tion leakage due to specific circumstances, e.g., in situations
in which the adversary is in the proximity only to one specific
person. If the adversary later receives an at-risk notification, it
will be trivial for the adversary to conclude that this one person
is indeed the infected person. Therefore, when considering the
above three privacy requirements, we will always focus on
large-scale attacks and will in particular focus on identifying
attacks affecting potentially many users.

C. Security

The effectiveness of a DCT system is severely impacted if
a system is not resilient to large-scale data pollution attacks.
Such attacks can generate, for instance, false at-risk notifica-
tions (false positives) therefore jeopardizing the correctness
of the contact tracing system. Indeed, massive false at-risk
notifications could result in spreading panic among the general
population. Moreover, this could also cause unnecessary strain
on the health system through unnecessary testing and negative
impact on the society due to unnecessary self-quarantining.

1) Fake exposure claims (R-S1): The system should prevent
a malicious or dishonest user A𝑢 that aims to circumvent
the DCT system to claim that he or she has encountered
an infected user. There can be different motivations for this
attack: (i) A𝑢 aims to harm the reliability of the system by
manipulating encounter checking results, (ii) A𝑢 uses the fake
exposure status as an excuse to stay at home instead of going
to work or participating in an event, and (iii) A𝑢 intentionally
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shares wrong encounter information to epidemiologists, thus
sabotaging their analysis of the epidemiological situation.

2) Fake exposure injection - Relay/replay attacks (R-S2):
This attack aims to inject fake contacts on a large scale
resulting in many false exposure notifications. Here, a fake
contact indicates the state that the DCT system incorrectly
determines that two users were in “close contact” at a specific
time although they were not. It affects the main goal of
DCT system as to identify contacts that potentially cause high
exposure risks. Relay attacks are a typical example of fake
exposure injection attacks. In a relay attack, the adversary
captures the temporary IDs of a user Ui and broadcasts them
in other locations (e.g., other cities). As a result, the system
incorrectly identifies the users in the other locations who
captured those temporary IDs to have encountered Ui.

D. Ethics

1) Transparency and voluntary participation (R-Et1): The
whole process (design, development, deployment, and oper-
ation) of a contact tracing system must be transparent to
users and the systems must be removed immediately when the
pandemic is over to avoid misuse. Further, users should be free
to decide whether they want to participate in the system or not,
and be free to withdraw their participation anytime they wish.
Otherwise, users will not trust, and thus will not be willing
to use DCT apps. This will affect the crucial need of a high
adoption rate of DCT.

2) Independence (R-Et2): The contact tracing process (de-
sign, development, deployment and operation) in a particular
region should be independent of any parties with potential
vested interests. Procedural controls of the contact tracing sys-
tem should underlie a transparent public scrutiny and be solely
under the control of democratically-elected governments. In
particular, giant technology corporations (e.g., Mobile OS
vendors) should not be allowed to use their technological or
market dominance to control or drive DCT systems since they
might be biased in it for the sake of their own subjective
benefits, e.g., using DCT data for business purposes could
undermine the de-facto ability of legitimate governments to
oversee the use of data collected for contact tracing purposes.

IV. PROPOSED APPROACH - TRACECORONA

In this section, we first provide a generic framework for
Diffie-Hellman (DH)-based schemes. We then present our
novel scheme, TRACECORONA, a fully fledged example of
a DH-based approach and highlight its benefits compared to
the prominent approaches analyzed in Sect. V.

A. Generic framework of DH-based approaches.

The core idea of decentralized approaches based on asym-
metric key cryptography like Diffie-Hellman is that two users
establish a unique and secret Encounter Token (𝐸𝑇) using
a key exchange protocol when they are in proximity by
exchanging short-lived random public keys via BLE. In this
paper, we use Diffie-Hellman as a key exchange protocol.
Figure 2 shows an overview of the use of DH-based encounter

TABLE II: List of requirements for digital contact tracing.

Requirement Description
Effectiveness

R-Ef1 Accuracy Specifying distance and
duration of encounters

R-Ef2 Superspreader Identifying superspreaders
and their contacts

R-Ef3 Accountability Providing statistics to evaluate
the actual effectiveness

Privacy

R-P1 Identifying users Users should always
remain anonymous

R-P2 Tracing users Users should not
be tracked

R-P3 Extracting
social graph

Making sure that no social
graph can be extracted

Security

R-S1 Fake
exposure claim

Preventing malicious users to
lie about their exposure status

R-S2 Fake
exposure injection Preventing relay/replay attacks

Ethics

R-Et1 Transparency and
voluntary use

The system must be transparent
and based on voluntary use

R-Et2 Independence
Ones should not be allowed to use
their technological or market dominance
to control DCT systems in their favour

User: Ui Service Provider: SP User: Uj

Step 1: Private key generation

pk𝑡𝑘𝑖 = GenPK (𝑔) pk𝑡𝑘𝑗 = GenPK (𝑔)

Step 2: Public key exchange

𝑔pk𝑡𝑘
𝑖

𝑔
pk𝑡𝑘

𝑗

𝐸𝑇
𝑡𝑘
𝑖 𝑗 = (𝑔pk𝑡𝑘

𝑗 )pk𝑡𝑘
𝑖 𝐸𝑇

𝑡𝑘
𝑗𝑖 = (𝑔pk𝑡𝑘

𝑖 )pk𝑡𝑘
𝑗

Step 3: Encounter token upload and exposure notification

𝐸𝑇
𝑡𝑘
𝑖 𝑗 Forward 𝐸𝑇

𝑡𝑘
𝑖 𝑗 𝐸𝑇

𝑡𝑘
𝑖 𝑗

if 𝐸𝑇
𝑡𝑘
𝑖 𝑗 == 𝐸𝑇

𝑡𝑘
𝑗𝑖 ,

warn 𝑈 𝑗

Fig. 2: Generic framework of DH-based Approaches.

tokens in a contact tracing scheme. In Step 1, users Ui and
Uj generate their own private keys pk𝑡𝑘𝑖 and pk𝑡𝑘𝑗 respectively
for each time interval 𝑡𝑘 that is changing every 𝑇 (e.g., 15)
minutes. These private keys are used to derive corresponding
public keys pubk𝑡𝑘𝑖 = 𝑔pk𝑡𝑘𝑖 and pubk𝑡𝑘𝑗 = 𝑔pk𝑡𝑘𝑗 . In Step 2,
the public keys are exchanged via BLE when two devices
are in vicinity. For encounters surpassing a specified minimal
duration, e.g., 5 minutes, an 𝐸𝑇 will be calculated, e.g., Ui
calculates 𝐸𝑇 𝑡𝑘𝑖 𝑗 from Ui’s private key pk𝑡𝑘𝑖 and Uj’s public

key pubk𝑡𝑘𝑗 as follows: 𝐸𝑇 𝑡𝑘𝑖 𝑗 = (𝑔pk𝑡𝑘𝑗 )pk𝑡𝑘𝑖 . Since Ui and Uj
never share their private keys, only they can know their secret
encounter token 𝐸𝑇 𝑡𝑘𝑖 𝑗 . It is worth noting that the DH key
generation and encounter token calculation processes do not
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User 𝑈𝑈𝑖𝑖 User 𝑈𝑈𝑗𝑗
Tracing Service Provider

2b. Infection 
verification using TAN 

3. #ET upload

4. #ET download

1. Establishing cryptographic encounter tokens (ETs)

2c. Infection Verification
using TAN 

2a. TAN sent to infected users Health Authority

Fig. 3: TRACECORONA system overview.

need to happen on-line. For saving battery, it can be deferred
to the next time when the smartphone is being charged. In
Step 3, when a user (e.g., Ui) is tested positive for COVID-
19, Ui sends its encounter token 𝐸𝑇 𝑡𝑘𝑖 𝑗 to the SP which will
forward 𝐸𝑇 𝑡𝑘𝑖 𝑗 to other users. Once Uj receives 𝐸𝑇 𝑡𝑘𝑖 𝑗 , it will
compare 𝐸𝑇 𝑡𝑘𝑖 𝑗 to the 𝐸𝑇s it has calculated. If 𝐸𝑇 𝑡𝑘𝑖 𝑗 is equal to
𝐸𝑇 𝑡𝑘𝑗𝑖 , Uj is notified that it has encountered an infected user.

Although we use the well-known DH-based approach for
illustrative purposes, any other two-party key-exchange proto-
cols where parties send only one short message to each other
are applicable. Thus, existing proposals like CleverParrot [15],
PRONTO-C2 [16], and Epione [17] use Elliptic-curve DH
(ECDH). Further, these approaches provide several modifica-
tions and optimizations to improve the effectiveness, security
and privacy of the system (cf. Sect. VI-A).

B. Limitations of DH-based approaches

Our proposed approach TRACECORONA seeks to address
three technical limitations of DH-based approaches as follows:
• Size restriction of BLE beacon message. Since public

keys are in general too big for BLE beacon messages,
existing solutions apply workarounds, e.g., PRONTO-C2
needs to handle a bulletin board, or CleverParrot has to
reduce the key size and requires operating systems to
enable special BLE advertising messages.

• Sharing encounter tokens 𝐸𝑇s. Uploading 𝐸𝑇s directly
may raise privacy risk. Hence, we aim to keep 𝐸𝑇s
always secret.

• No time window restriction. Existing approaches do not
limit limit time window that would open opportunity for
two-way relay attacks.

In the following, we will present TRACECORONA and dis-
cuss how we address those limitations in detail.

C. TRACECORONA Design

1) System Overview: Our design follows the system model
(cf. Fig. 1) and the generic framework for DH-based schemes
shown in Fig. 2. An overview of the basic usage scenario
of TRACECORONA is shown in Fig. 3. For a discussion
on complementary application scenarios like wearable devices
and private contact tracing please refer to Appendix C of [8].

The functionality of TRACECORONA can be divided into
four phases: (1) Encounter token establishment, (2) infection

𝐺𝐺: Generator

Step 1 Generate private key 𝑑𝑑𝑖𝑖𝑙𝑙

Public key 𝑄𝑄𝑖𝑖𝑙𝑙 = 𝑑𝑑𝑖𝑖𝑙𝑙 � 𝐺𝐺
Generate private key 𝑑𝑑𝑗𝑗𝑙𝑙

Public key 𝑄𝑄𝑗𝑗𝑙𝑙 = 𝑑𝑑𝑗𝑗𝑙𝑙 � 𝐺𝐺

Step 2
𝑄𝑄𝑖𝑖𝑙𝑙

𝑄𝑄𝑗𝑗𝑙𝑙

Step 3
Encounter token (ET)
𝑘𝑘𝑖𝑖𝑗𝑗𝑙𝑙 = 𝑑𝑑𝑖𝑖𝑙𝑙 � 𝑄𝑄𝑗𝑗𝑙𝑙

Or 𝑘𝑘𝑖𝑖𝑗𝑗𝑙𝑙 = 𝑑𝑑𝑖𝑖𝑙𝑙 � 𝑑𝑑𝑗𝑗𝑙𝑙 � 𝐺𝐺
Set of ETs 𝐾𝐾𝑖𝑖 ← 𝐾𝐾𝑖𝑖 ∪ 𝑘𝑘𝑖𝑖𝑗𝑗𝑙𝑙

Encounter token (ET)
𝑘𝑘𝑗𝑗𝑖𝑖𝑙𝑙 = 𝑑𝑑𝑗𝑗𝑙𝑙 � 𝑄𝑄𝑖𝑖𝑙𝑙

Or 𝑘𝑘𝑗𝑗𝑖𝑖𝑙𝑙 = 𝑑𝑑𝑗𝑗𝑙𝑙 � 𝑑𝑑𝑖𝑖𝑙𝑙 � 𝐺𝐺
Set of ETs 𝐾𝐾𝑗𝑗 ← 𝐾𝐾𝑗𝑗 ∪ 𝑘𝑘𝑗𝑗𝑖𝑖𝑙𝑙

User 𝑈𝑈𝑖𝑖 User 𝑈𝑈𝑗𝑗

Fig. 4: Elliptic-curve Diffie–Hellman (ECDH)-based encounter
token establishment.

verification, (3) token information upload, and (4) token in-
formation download and contact verification. Next, we will
describe each of these phases in detail.

2) Encounter Token Establishment: TRACECORONA App
uses BLE as a proximity communication protocol to advertise
a random ephemeral identifier to other devices in the envi-
ronment and to scan for the identifiers of other apps. Once
an ephemeral identifier of another app has been observed
for a minimum duration (e.g., 5 minutes), a connection over
BLE to the other app is opened and an Encounter Token
(𝐸𝑇) is established using the Elliptic Curve Diffie-Hellman
(ECDH) key exchange protocol. Figure 4 shows the token
establishment protocol in detail for two users Ui and Uj.
Following typical ECDH notation, let 𝑄 denote the public key,
𝑑 the private key and 𝐺 the generator. Let 𝑇 denote the period
of a rolling key time frame and 𝑙 be the index of the time frame
𝑓 𝑙 = [𝑙∗𝑇, (𝑙+1)∗𝑇]. Let 𝐾𝑖 and 𝐾 𝑗 be the sets of ETs of users
𝑈𝑖 and Uj, respectively. Let 𝑘 𝑙𝑖 𝑗 be an ET established between
two user Apps Ui and Uj at time point 𝑡𝑙𝑖 𝑗 , i.e., a timestamp
falling in time frame 𝑓 𝑙 . The process of establishing an ET is
then as follows:

1) Step 1: For every time frame 𝑓 𝑙 , users Ui and Uj
generate a ECDH keypair including private keys 𝑑𝑙𝑖 and
𝑑𝑙𝑗 , and public keys 𝑄𝑙𝑖 = 𝑑𝑙𝑖 ∗ 𝐺 and 𝑄𝑙𝑗 = 𝑑𝑙𝑗 ∗ 𝐺,
respectively, where 𝐺 is the generator defining the used
cyclic subgroup of the elliptic curve.

2) Step 2: Ui and Uj exchange their public keys 𝑄𝑙𝑖 and 𝑄𝑙𝑗
via Bluetooth LE.

3) Step 3: Each user calculates the encounter token based on
its private key and the received public key. In particular,
Ui calculates 𝑘 𝑙𝑖 𝑗 = 𝑑𝑙𝑖 ∗ 𝑄𝑙𝑗 while Uj calculates 𝑘 𝑙𝑗𝑖 =
𝑑𝑙𝑗 ∗ 𝑄𝑙𝑖 . Obviously, 𝑘 𝑙𝑖 𝑗 = 𝑘 𝑙𝑖 𝑗 = 𝑑𝑙𝑖 ∗ 𝑑𝑙𝑗 ∗ 𝐺. Each user
then adds the encounter token into its encounter token set:
𝐾𝑖 ← 𝐾𝑖∪{𝑘 𝑙𝑖 𝑗 } for Ui and 𝐾 𝑗 ← 𝐾 𝑗∪{𝑘 𝑙𝑗𝑖} for Uj. After
𝑘 𝑙𝑖 𝑗 is established, Ui and Uj continue exchanging their
ephemeral identifiers periodically to monitor the duration
𝐷𝑙𝑖 𝑗 of the encounter and the strength of the Bluetooth
signals 𝑆𝑙𝑖 𝑗 (which roughly correlate with how far or near
two users are from each other). In summary, the data
recording the start of the encounter 𝑡𝑙𝑖 𝑗 , the duration of the
encounter 𝐷𝑘𝑙𝑖 𝑗 and the strength of the Bluetooth signal

𝑆𝑙𝑖 𝑗 , are stored as metadata associated with token 𝑘 𝑙𝑖 𝑗 .
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𝐾𝑖
List of valid TANs: 

𝐿𝑇𝐴𝑁 = {… , 𝑇𝐴𝑁𝑖 , … }

Step 1 𝑇𝐴𝑁𝑖 𝑇𝐴𝑁𝑖

Step 2
𝑛𝑖

𝑛𝑖𝑗
𝑙 = 𝑘𝑒𝑦𝐷𝑒𝑟𝑖𝑣𝑒(𝑛𝑖 , 𝑝)

𝑇𝐴𝑁𝑖

𝑛𝑖

𝑖𝑓 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝑇𝐴𝑁 == 𝑡𝑟𝑢𝑒
Generate nonce 𝑛𝑖

𝑇𝐴𝑁𝑖

𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝑇𝐴𝑁

𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝑇𝐴𝑁 = 𝑣𝑎𝑙𝑖𝑑(𝑇𝐴𝑁𝑖)

Step 3

𝐿𝐾𝑖
=

{… , (𝐻 𝑘𝑖𝑗
𝑙 , 𝐸

𝑘𝑖𝑗
𝑙 (𝑡𝑖𝑗

𝑙 )

), … }

𝐿𝐾𝑖
, 𝑛𝑖

𝑖𝑓 𝑣𝑎𝑙𝑖𝑑(𝑛𝑖)
Store 𝐿𝐾𝑖

User 𝑈𝑖 Tracing Service Provider Health Authority

Fig. 5: Infection verification and encounter token upload.

𝐿𝐾 =

{… , (𝐻 𝑘𝑖𝑗
𝑙 , 𝐸𝑘𝑖𝑗

𝑡 𝑡𝑖𝑗
𝑙 , … }

𝐿𝐾 For each 𝐻 𝑘𝑖𝑗
𝑙 ∈ 𝐿𝐾

𝑖𝑓 𝐻 𝑘𝑖𝑗
𝑙 ∈ 𝐻 𝐾𝑗

(𝑡𝑖𝑗
𝑙 ) = 𝐷𝑘𝑗𝑖

𝑡 𝐸𝑘𝑖𝑗
𝑡 𝑡𝑖𝑗

𝑖𝑓 𝑡𝑖𝑗
𝑙 − 𝑡𝑗𝑖

𝑙 ≤ 𝜀

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑅𝑖𝑠𝑘𝐴𝑐𝑐𝑒𝑠()

𝐿𝐾 : The set of shuffled hashes and metadata of all encounter tokens 
of the infected users from the last update.

Tracing Service Provider

ET Download

User 𝑈𝑗

Fig. 6: Encounter Token Download and Exposure notification.

It is worth noting that in order to preserve battery lifetime,
Step 1 and Step 3 can be done offline, i.e., when the
smartphones are being charged (e.g., during the night).

3) Infection Verification and Encounter Token Upload:
Since the main goal of the system is to notify users who
have encountered infected users (tested positive for COVID-
19), the system needs to make sure that only infected users
can use the system to release their encounter tokens 𝐾 . In
our system, the Health Authority HA issues for each infected
user a unique authentication code, a so-called Transaction
Authentication Number (TAN). If an infected user wants to
share their encounter tokens, it can use this TAN to prove
its infection status by uploading the TAN along with their
encounter token information.

Fig. 5 illustrates the infection verification and encounter
token uploading phases. In Step 1 and Step 2 HA sends a TANi
to infected user Ui. This can be done by using any appropriate
out-of-band channel: in person, via SMS, via regular mail or
via e-mail. TANi can also be sent along with the test results.
The infected user can input their TAN directly by typing the
number in or use their smartphone’s camera to scan a QR
code containing the TAN. Step 3 shows how Ui can upload
its encounter token information. Timestamp 𝑡𝑙𝑖 𝑗 is encrypted
using AES encryption using the encounter token 𝑘 𝑙𝑖 𝑗 as the
key (or a key derivation function can be used to derive a key
from 𝑘 𝑙𝑖 𝑗 ). Let 𝑚𝑙𝑖 𝑗 = 𝐸𝑘𝑙𝑖 𝑗 (𝑡

𝑙
𝑖 𝑗 ) denote the encryption of 𝑡𝑙𝑖 𝑗 . Ui

sends TAN𝑖 and a list 𝐿𝐾𝑖 consisting of the 𝑚𝑙𝑖 𝑗 along with
corresponding hashes ℎ𝑙𝑖 𝑗 = 𝐻 (𝑘 𝑙𝑖 𝑗 ) of the encounter tokens
𝑘 𝑙𝑖 𝑗 to server SP. We have thus 𝐿𝐾𝑖 = {. . . , (𝑚𝑙𝑖 𝑗 , ℎ𝑙𝑖 𝑗 ), . . .}.
SP forwards TANi to HA to verify whether TANi is valid or
not. If TANi is valid, it will extract and store each element
(𝑚𝑙𝑖 𝑗 , ℎ𝑙𝑖 𝑗 ) of 𝐿𝐾𝑖 separately.

It is worth noting that TRACECORONA provides both
usability and privacy benefits by enabling infected users to
remove specific unnecessary or sensitive encounter tokens that,
e.g., (1) had only a short duration, thus being not essential for
contracting the disease, or, (2) happened at a time or place
that users do not want to disclose even anonymously, e.g., at
a sensitive event or meeting.

4) Encounter Token Download: All TRACECORONA
Apps download regularly, e.g., every night, encounter token
information from server SP to identify potential exposure
risks. Figure 6 shows the encounter download protocol. Let
𝐿𝑘 = {. . . , (𝐻 (𝑘 𝑙𝑖 𝑗 ), 𝐸𝑘𝑙𝑖 𝑗 (𝑡

𝑙
𝑖 𝑗 )), . . .} be the list of the hashes

and metadata of all encounter tokens of all infected users
since the last update. To avoid linking entries related to a
particular infected user together based on their position in
the list, all entries in 𝐿𝑘 are shuffled before sending them
to users. Once a user Uj receives 𝐿𝑘 , it compares the received
token hashes to its own token hashes to discover matching
encounters. If a matching encounter hash, e.g., 𝐻 (𝑘 𝑙𝑖 𝑗 ) is
identified, Uj decrypts the matching encounter token metadata
using the associated encounter token 𝑘 𝑙𝑖 𝑗 as the key: 𝑡𝑙𝑖 𝑗 =
𝐷𝑘𝑙𝑗𝑖
(𝐸𝑘𝑙𝑖 𝑗 (𝑛𝑖 | |𝑡

𝑙
𝑖 𝑗 )). Uj then checks the validity of encounter

token w.r.t. to encounter time 𝑡𝑙𝑖 𝑗 to make sure that 𝑘 𝑙𝑖 𝑗 and 𝑘 𝑙𝑗𝑖
were established during the same time frame. This will limit
the time-window available for a relay attack as we will discuss
in Sect. V-C. Assuming that the clocks of the two devices are
deviating by at most 𝜖 seconds, if |𝑡𝑙𝑖 𝑗 − 𝑡𝑙𝑗𝑖 | ≤ 𝜖 , 𝑘 𝑙𝑖 𝑗 and 𝑘 𝑙𝑗𝑖
are considered to have been derived at the same time, i.e.,
the matching of 𝑘 𝑙𝑖 𝑗 and 𝑘 𝑙𝑗𝑖 is valid. The system then uses
metadata information, e.g., the time of the encounter 𝑡𝑙𝑖 𝑗 , the
duration of the encounter 𝐷𝑘𝑙𝑖 𝑗 and the signal strength 𝑆𝑙𝑖 𝑗 to
assess the risk of this exposure.
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TABLE III: Useful information for epidemiological analysis
and evaluation and optimization of a DCT system.

Number of active users
Number of infected users
Number of encounters of infected users
Number of affected users
Number of encounters of affected users
True positive rate
Importance of notification 5

Distribution of risk score
The correlation between risk score and true positive rate

D. Hybrid Approach

In the following, we will present a hybrid approach that
provides a trade-off between the effectiveness and the privacy
requirements of centralized and decentralized architectures,
i.e., maximizes effectiveness of the app while preserving
privacy of the users. As discussed in Sect. III-A3, the account-
ability requirement (R-Ef3) refers to the possibility to evaluate
the effectiveness of a DCT scheme. Therefore, we focus on
this requirement by specifying what kind of data are needed to
satisfy it and how they can be submitted to the health authority
HA and the tracing service provider SP.

1) Useful data: To fulfill the requirement R-Ef3 (Account-
ability), the App needs to send authentic, but anonymized data
in a privacy-preserving way to SP. Table III shows potentially
useful types of data that can help to evaluate and optimize
the DCT system. Such types of data can also be helpful to
epidemiologists and decision makers to understand the virus
spreading patterns and, e.g, deploy effective policies to limit
the pandemic.

2) Sharing Epidemiological Information with Health Au-
thorities: As discussed in the previous section, a direct contact
Uj can prove it exposure status with an infected user (Ui)
based on the possession of the secret value of the encounter
token 𝐸𝑇𝑖 𝑗 . TRACECORONA utilizes this to authenticate the
correctness of exposure information that users may volun-
tarily want to share with health care research institutions,
thereby preventing malicious users from corrupting the data
by providing faked exposure information to the researchers.
This helps in improving the accuracy and correctness of
the epidemiological modelling used as as basis for political
decision making in the crisis situation.

3) Sharing Epidemiological Information via Healthcare
Professionals: Since healthcare professionals like doctors col-
lect information about their patients that come for a COVID-19
test or for consultation for their symptoms, doctors can act as a
source of reliable information for epidemiological analysis in
a properly anonymized form. For example, the healthcare pro-
fessional could provide for each patient following anonymous
information to help in assessing the epidemiological situation
as well as the effectiveness of the contact tracing system:
whether the user was notified by the contact tracing app and
what the possible risk score was, whether the user knew about
a potential exposure status even before being notified by the

5Exposure notification from a DCT is less important if users already knew
their exposure status before being notified by a DCT app, e.g., the affected
users who live in the same household to an infected users are expected to be
informed immediately when the test result is available.

app, possible symptoms, and the test result. These kind of data
provided to the epidemiological analysis do as such not reveal
any information about the true identity of individual patients,
but they do provide crucial information necessary to evaluate
the effectiveness of the contact tracing app.

E. Implementation and Beta Test

We prototyped TRACECORONA for the Android smart-
phone platform and tested it in a public beta test. We have not
implemented TRACECORONA on iOS because it does not
allow apps to use Bluetooth communication in the background
[18]. We use the native Android BLE APIs to implement
the Encounter Token Establishment protocol. Further, our
cryptographic functions, e.g., ECDH are based on the Bouncy
Castle library. For the server acting as SP, the code is written in
Java and run on Ubuntu Server operating system. In principle,
our app can run on any Android smartphone that supports
Bluetooth LE, i.e., Android 5.0 and later.
Alpha testing. We internally tested the app with 25 devices
covering various models and manufacturers. The results show
that our app works without any problems and consumes 5
to 8% battery for a whole day (24 hours) of contact tracing
without further optimizations.
Beta test. We published the TRACECORONA app on our
website and interestingly the app has drawn a lot of attention6.
Indeed, more than 2000 users have downloaded and tested the
app. We have received many positive feedbacks on the app
features and performance, except received criticism that the
app does not work on very old devices that do not support
Bluetooth LE. However, this is a technical limitation that is
out of our control.
Implementation on wearable devices. To demonstrate the
possibility of deploying TRACECORONA even on on wear-
able devices like wristbands a MCU developer board that costs
about US $20 (For a full description please refer to Appendix
C of our full technical report [8]), we have implemented our
design on Adafruit HUZZAH32 (ESP32).

V. SECURITY AND PRIVACY ANALYSIS OF
TRACECORONA

In this section, we will analyze DH-based approaches in
general and TRACECORONA in particular in comparison to
GAEN and BlueTrace with regard to requirements laid out in
Sect. III. Due to space constraints, we refer the reader to Sect.
V of our full technical report [8] for detailed discussion on
the shortcomings of state-of-the-art contact tracing schemes
including BlueTrace [9] and GAEN [3].

A. Effectiveness

Accuracy. As discussed in Sect. III-A1, measuring the dis-
tance between smartphones using BLE is not very reliable due
to its the inherent technical limitations. Hence, we note that all
approaches based on BLE-proximity sensing share the same
challenge of not being able to reliably estimate the distance
between devices involved in a contact. Therefore, none of

6https://tracecorona.net/download-tracecorona/
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BLE-based approaches can entirely fulfill the Accuracy re-
quirement R-Ef1. One potential solution to increase distance
measuring accuracy could be using BLE in combination with
other sensors like ultra-wideband (UWB) (cf. Sect. II-C of [8]
for the details).
Superspreader. Although the Tracing Service Provider SP
only receives anonymous encounter tokens that are not suf-
ficient to detect Superspreaders and CAII users, the contact
tracing App itself can be used to warn its user in case the
App identifies a large number of contacts with other infected
users, since this can be an indication that actually the user
itself is a Superspreader or CAII who has been the source
of contagion for those infections. As a result, the user could
seek immediate testing, but also immediately upload their
encounter tokens to warn others. Further, the App can prove
the user’s status as a suspected Superspreader or CAII to SP by
uploading the secret encounter tokens it has in common with
infected users. By verifying these against the published hashes
of encounter tokens of infected users the SP can verify that
the user is indeed a person with many contacts with infected
people and therefore a possible Superspreader. The SP can
then tag the encounter tokens of the user accordingly, so that
exposure notifications related these tokens can additionally be
marked as being related to a ’possible superspreader’ contact.
Hence, requirement R-Ef2 related to the ability to identify
Superspreaders can be successfully addressed.

B. Privacy

In DH-based systems, the public keys change every 15
minutes. This means that an eavesdropper adversary A𝑒
cannot link public keys of a user, i.e., A𝑒 can only track the
movement of a user for less than 15 minutes, which is not
enough to build informative movement profiles of the user.
Surveillance. Like other decentralized BLE systems, this
attack fails against DH-based systems since the matching of
contacts is done exclusively by the Apps. A malicious service
provider A𝑠 does not benefit from learning the ETs of infected
users since the uploaded encounter tokens do not reveal any
information about the counterparts of those encounters.
Mass Surveillance. In TRACECORONA, even if a malicious
service provider A𝑠 colludes with an eavesdropper A𝑒, the
adversaries only get to know the hashes of encounter tokens of
infected users and possible locations where A𝑒 has collected
them. However, as discussed in Sect. IV-B, since A𝑒 can
obtain 𝐸𝑇s only through direct interaction with the monitored
users and 𝐸𝑇s are created only if encounters last for a specific
time (e.g., 5 minutes),A𝑒 is much more limited in its ability to
obtain 𝐸𝑇s associated with other users. In particular, A𝑒 will
be unable to establish any 𝐸𝑇s with users that are just shortly
passing by an eavesdropping station, so that the adversary’s
ability to track the movements of infected users is very limited.
It is to be noted that this is a significant difference existing
approaches (cf. Sect V of [8]), since in these approaches the
ability of the eavesdropping adversary A𝑒 is in this sense
unlimited and it can effectively sense the presence all users
passing by its eavesdropping stations, even based on one single
observation of the user.

In the case of malicious service provider A𝑠 (i.e., the
service provider SP is dishonest), A𝑠 could link encounter
tokens ETs of a specific infected user since the tokens would
be submitted in one transaction when they are uploaded to
the service provider SP. One solution to prevent this threat is
to apply appropriate anonymization (privacy) techniques, e.g.,
blind signatures with an anonymous postbox service [19] or
private set intersection [17] to the upload process of encounter
tokens. We discuss such advanced privacy techniques in details
in Appendix B of [8]. In particular, these techniques minimize
the risks that neither malicious service provider A𝑠 , health au-
thority 𝐻𝐴 nor any party can link individual encounter tokens
of infected users, thereby limiting the trackability of individual
users to relatively short time frames of, e.g., 15 minutes.
Therefore, by applying such techniques, TRACECORONA
can effectively address the requirements regarding providing
protections against identifying (R-P1) and tracking (R-P2)
users and extracting their social graphs (R-P3).

C. Security

Next, we will explain how DH-based systems can mitigate
current attacks, hence, fulfill the security requirements.
Fake exposure claim. DH-based systems can mitigate fake ex-
posure claims (requirement R-S1). As mentioned in Sect. IV,
infected users only share the hashes of encounter tokens
meaning that the values of the encounter tokens themselves
are always kept secret, so that only users actually participating
in the encounter obtain the corresponding encounter token.
Therefore, by proving possession of the (secret) encounter
token, a user can prove that a contact with the counterpart
has in fact taken place. The only way a dishonest user A𝑢 can
make fake exposure claims is to obtain access to the phones of
users having matching encounter tokens and extracting them.
However, this attack requires compromising individual devices
one-by-one and hence cannot be easily scaled.
Relay/Replay Attacks. These attacks aim to inject false
exposure notifications on a large scale. Unfortunately, widely
adopted approaches like BlueTrace and GAEN are vulnerable
to various relay attacks [5], [13], [7], [20], [21]. For example,
Baumgärtner et al. [5] have demonstrated a real-world relay
attack on GAEN in two cities (Frankfurt and Marbug) in
Germany. They show that the adversary can capture and
relay 𝑡𝑒𝑚𝑝𝐼𝐷s among those cities. They estimate that the
attack can inject about 76 𝑡𝑒𝑚𝑝𝐼𝐷s from infected users to a
mobile device within 15 minutes. Principally, all proximity-
based approaches are vulnerable to such attacks. However,
DH-based systems provide two effective mitigation techniques
that reduce the window of opportunity for attackers: (i) two-
way communication is required for establishing contact tokens,
prohibiting massive abuse by just copying and broadcasting
beacon information, and (ii) using limited time windows for
validating the timestamp of an encounter.

Two-way communication. In contrast to existing approaches
[3], [11], [22], [23], [9] that are vulnerable to one-way relay
attacks (cf. Sect. V [8]), DH-based schemes utilize a hand-
shake protocol requiring two-way communication to establish
an encounter token. This means A𝑤 cannot simply capture
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the beaconed information in one place and broadcast it in
many other places like it would be possible in other schemes.
A𝑤 has to capture and relay messages at both places at
the same time. This not only limits the time window of the
attack but also imposes a restriction on the scale of the attack
since a mobile device cannot communicate with too many
other devices at the same time due to the limited number of
channels and bandwidth that Bluetooth LE provides. Based
on our estimation, an average smartphone can only handle 8
Bluetooth LE connections simultaneously in a reliable manner.
Therefore, in theoryA𝑤 can relay the handshake of one device
to at most 8 other remote devices, while this number is not
limited in other approaches.

Limited time window. In DH-based schemes, two users Ui
and Uj in proximity of each other establish a unique secret
encounter token 𝐸𝑇𝑖 𝑗 . An infected user Ui can use 𝐸𝑇𝑖 𝑗 to
encrypt any meta-data that only Uj can decrypt. Leveraging
this property, in a DH-based scheme, e.g., TRACECORONA,
the exact timestamp of an encounter can be encrypted and
added to encounter token metadata so that user Apps checking
encounter tokens can also check the exact encounter time.
Therefore, only matching encounters that took place within a
time window of at most 𝜖 seconds are considered as valid en-
counters, thereby limiting the window of opportunity for relay
attacks. Other decentralized schemes like [3], [11], [23] cannot
impose such limitations on the timestamps of ephemeral IDs,
because the involved tracing apps can not mutually verify
the actual time point of when contacts take place due to
the fact that only one-way communication is used. Due to
this, the GAEN API [24] allows a two-hour time window
for synchronizing RPI, i.e., A𝑤 can have up to two hours
to conduct relay attacks. In DH-based schemes, this 𝜖 could
be limited to seconds when assuming that smartphones used
for contact tracing apps can sync their clocks via an Internet
connection or during the exchange of the public keys. Note that
all contact tracing apps need a frequent Internet connection for
uploading and downloading encounter information.

Therefore, the combination of these two advantages, re-
quirement of two-way communication and small time window
help DH-based schemes such as TRACECORONA to signifi-
cantly reduce the impact of relay attacks on the system.

D. Ethics

Like BlueTrace, DH-based systems like TRACECORONA
can be implemented with complete access to the source code,
guaranteeing transparency. It is a standalone app that does
not depend on any built-in contact tracing APIs running deep
inside the mobile operating systems such as Android or iOS,
thus satisfying requirements with regard to transparency and
(R-Et1) and independence (R-Et2). This is in stark contrast
to proprietary and closed GAEN systems strictly enforced by
Google and Apple. Especially in Apple’s iOS systems indepen-
dent contact tracing applications that continuously need to use
BLE in the background are blocked by the operating system so
that effective BLE sensing as required by contact tracing apps
is in practice not possible. Instead, Apple forces all contact
tracing approaches to rely on their closed and proprietary

GAEN API whose functionality can not be independently
examined nor verified. It is therefore highly debatable, whether
this approach is ethical, as Apple in fact forces users into
using their GAEN solution, having to involuntarily accept all
possible related deficiencies, or, refrain from using contact
tracing solutions at all. One solution to make DCT systems
independent from mobile OS vendors w.r.t BLE and GAEN
APIs is to use third-party wearable devices as discussed in
detail in Appendix C of [8].

E. Summary of Benefits of DH-based Approaches and Com-
parison to Other Approaches

We summarize key differences and security and privacy
advantages of DH-based systems in comparison to existing
approaches in Tab. IV. As can be seen in the table, GAEN does
not fulfill the requirements. The DH-based systems provide
better security and privacy protection than all other discussed
solutions. For example, DH-based approaches are resilient to
fake exposure claim attacks and wormhole adversary (i.e.,
narrowing the attack window time and requiring more com-
munication effort as the adversary would have to operate real-
time two-way communication relays). Moreover, comparing to
the most widely spread contact tracing framework by Apple
and Google, which is vulnerable to profiling attacks as the
adversary can track the movements of infected users, DH-
based systems guarantee a better protection. Interesting but not
surprisingly, BlueTrace is the best w.r.t to fulfilling effective-
ness requirements since it can potentially detect Superspreader
and CAII and provide useful data to epidemiologists while this
could be challenging to other approaches. In terms of ethics,
GAEN again is on the lower end because it received many
criticisms due to their coercion and the lack of transparency.
More importantly, our hybrid approach inherits the advantages
of DH-based approaches in terms of security and ethical
aspects, while being on par with centralized approaches with
regard to effectiveness.

VI. RELATED WORK

A. DH-based approaches

PRONTO-C2 [16]. The main problem of DH-based approach
is that the size of the public key might exceed the space limit
of BLE advertising messages. The minimum requirement for
a standardized ECDH key is 256 bits (or 384 bits to provide
security against a powerful adversary) while in a typical BLE
advertising message there is space for 128 bits only. PRONTO-
C2 stores the public keys on a bulletin board that can be main-
tained by the SP or can be decentralized, and implemented
with a blockchain. Hence, instead of broadcasting the public
keys via BLE, the devices only beacon the references (i.e.,
addresses) of the keys in the bulletin. When a user is infected,
a cryptographic hash of encounter tokens is uploaded to the
bulletin board. As discussed in Sect. IV-B, TRACECORONA
solves this problem by utilizing BLE connections to transfer
public keys without any data restrictions.
CleverParrot [15]. To deal with the issue of fitting a DH pub-
lic key in a BLE advertising message, CleverParrot proposes
using a minimum key size of 224 bits (28 bytes) based on the
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TABLE IV: The advantages of DH-based approaches in comparison to state-of-the-art approaches. (*) on the user side.
(**) Possibly only infected users. (***) prevent one-way and limit real-time two-way attacks. +/- means achieve/not achieve
corresponding requirements.

Centralized Decentralized
BlueTrace/
PEPP-PT/
TousAntiCovid

GAEN/
DP3T-1

DP3T-2/
MIT-PACT/
UW-PACT

TraceCORONA/
Pronto-C2/
CleverParrot

User identifier Phone number
/App ID Random keys Random keys Random keys

Life-time of
initial keys Long-lived Daily Short-Lived Short-lived

Superspreader + -* -* +*
CAII + -* -* +*
Identifying users - -** + +
Tracking users - -** + +
Extracting social graph - -** + +
Fake exposure claim - - - +
Relay attack - - - +***
Transparency + - + +
Independency + - + +

elliptic curve P-224. They choose this key size since it is the
same as the one use in Apple’s Find My protocol. However,
it is worth noting that is a special function in iOS. In fact,
both Android and iOS support only 128-bit BLE advertising
messages. Therefore, CleverParrot cannot be implemented in
practice unless Google and Apple change their BLE platform
or they have to adopt and treat CleverParrot as a special
function like Apple’s Find My.
DH with Private Set Intersection Cardinality (PSI-CA).
Epione [17] leverages Function Secret Sharing (FSS) tech-
niques [25] to prevent other users from learning information
about the encounter tokens uploaded by infected users. In
particular, this approach enables clients (user Apps) in col-
laboration with the servers SP to learn matching encounter
tokens, i.e., Uj can know how many encounters with infected
users it has without downloading these encounters.

B. Survey on existing DCT schemes, apps and challenges

There are a number of works that survey existing DCT
schemes, apps and challenges. Those works can be catego-
rized into two groups: (i) discussing technical specifications,
operations and issues of the rolled out apps [26], [27] and
(ii) studying certain aspects of some DCT schemes [28], [20].
Sun et al. [26] focus on investigating the security and privacy
issues of DCT apps on Android. Wen et al. [27] vet privacy
issues of 41 country apps that have rolled our worldwide,
in which they focus on analysis of documentation but also
binary code to figure out what data an app collects and
discuss the potential privacy risks. Unlike those works that
focus on the apps, Vaudenay et al. [20] focus on investigating
the security and privacy issues of several schemes along
with their architectures. The most relevent to our work is
the study provided by Ahmed et al. [28]. They discuss 8
different potential attacks on 12 country apps divided in three
groups: centralized, decentralized and hybrid architectures.
However, those works do not provide an abstraction that
groups evaluation requirements of similar schemes as we do
in our work.

While existing works point out a number of privacy prob-
lems of GAEN [20], [14], [29], [5], Ahmed et al. claim that
GAEN protects privacy of users and criticize that existing
attacks are unrealistic [30]. However, they do not provide
arguments and evidence for their claim, i.e., it is not clear how
GAEN can defend against such attacks. In fact, their main
experiments only confirm the principal design requirements
of GAEN like Randomness of Bluetooth addresses or RPI
intervals that are also included in existing attack models [5],
[11], [16], [13]. Unfortunately, the paper also gives some
misleading information. For example, it states that: “in normal
operation, the TEK downloaded are not readily available to
the user and the exposure assessment is done away from the
user.” However, the uploaded TEK keys of infected users
are in fact by design public information that is accessible to
any moderately sophisticated adversary7. For a summary on
existing works analyzing DCT, please refer to Tab. VIII of our
full technical report [8].

VII. CONCLUSION

In this work, we propose TRACECORONA that addresses
security and privacy challenges of existing contact tracing ap-
proaches while providing comparable effectiveness. In contrast
to state-of-the-art approaches that are based on exchanging
ephemeral IDs, TRACECORONA allows users to anony-
mously establish encounter-specific tokens using short-range
wireless communication like Bluetooth. We systematically and
extensively analyze the security and privacy of TRACECO-
RONA in comparison to existing approaches in Sect. V to
show that TRACECORONA is resilient to various attacks
and thus provides better security and privacy guarantees than
other approaches. We have implemented TRACECORONA
and published a beta test version of TRACECORONA that
has been downloaded and used by more than 2000 users
without any major functional problems demonstrating that
TRACECORONA is practical. In future work, we will explore
approaches to improve the accuracy of distance measuring
using ultra-wideband and privacy-enhancing techniques like

7An archive collecting TEKs of the German DCT App: https://ctt.pfstr.de/
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blind signatures to prevent malicious service providers from
linking encounter tokens of users.
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Abstract—IoT devices are increasingly deployed in daily life.
Many of these devices are, however, vulnerable due to insecure
design, implementation, and configuration. As a result, many
networks already have vulnerable IoT devices that are easy
to compromise. This has led to a new category of malware
specifically targeting IoT devices. However, existing intrusion
detection techniques are not effective in detecting compromised
IoT devices given the massive scale of the problem in terms of the
number of different types of devices and manufacturers involved.

In this paper, we present DÏOT, an autonomous self-learning
distributed system for detecting compromised IoT devices. DÏOT
builds effectively on device-type-specific communication profiles
without human intervention nor labeled data that are subse-
quently used to detect anomalous deviations in devices’ commu-
nication behavior, potentially caused by malicious adversaries.
DÏOT utilizes a federated learning approach for aggregating
behavior profiles efficiently. To the best of our knowledge, it
is the first system to employ a federated learning approach
to anomaly-detection-based intrusion detection. Consequently,
DÏOT can cope with emerging new and unknown attacks. We
systematically and extensively evaluated more than 30 off-the-
shelf IoT devices over a long term and show that DÏOT is
highly effective (95.6% detection rate) and fast (≈ 257ms) at
detecting devices compromised by, for instance, the infamous
Mirai malware. DÏOT reported no false alarms when evaluated
in a real-world smart home deployment setting.

Index Terms—Internet of Things; IoT security; IoT malware;
anomaly detection; federated deep learning; self-learning

I. INTRODUCTION

Many new device manufacturers are entering the IoT device
market, bringing out products at an ever-increasing pace. This
“rush-to-market” mentality of some manufacturers has led to
poor product design practices in which security considerations
often remain merely an afterthought. Consequently, many
devices are released with inherent security vulnerabilities that
can be exploited, which has led to an entirely new category
of malware explicitly targeting IoT devices [1]–[4].

The preferred way to cope with vulnerabilities are se-
curity patches for the affected devices [5]. However, many
devices lack appropriate facilities for automated updates or
there may be significant delays until device manufacturers
provide them, mandating the use of reactive security measures
like intrusion detection systems (IDS) for detecting possible
device compromise [6]–[9]. Signature-based IDSs look for
specific communication patterns, so-called attack signatures,
associated with known attacks. Such systems are, however,

unable to detect novel attacks until the IDS vendor releases
attack signatures for them [6].

To detect previously unknown attacks anomaly detection
needs to be used which works by profiling the normal behavior
of devices and detecting attacks as deviations from this normal
behavior profile [7]–[9]. However, this approach often suffers
from a high false alarm rate, making it unusable in practice.
This problem is exacerbated in the IoT setting: First, there
are hundreds of very heterogeneous devices on the market,
which making it challenging to train a precise detection model
covering all behaviors of various IoT devices. Second, IoT
devices do typically not (notwithstanding a few exceptions)
generate a lot of network traffic, as their communications
are limited to, e.g., status updates about sensor readings or
(relatively) infrequent interactions related to user commands.
This scarcity of communications makes it challenging to
train comprehensive models that can accurately cover the full
behavior of IoT devices.

An effective anomaly detection model needs to capture all
benign patterns of behavior to be able to differentiate them
from malicious actions. The ever-increasing number of literally
thousands of types of IoT devices (ranging from temperature
sensors and smart light bulbs to big appliances like washing
machines) and the typical scarcity of their communications,
makes an all-encompassing behavior model 1) tedious to learn
and update, and 2) too broad to be effective at detecting subtle
anomalies without generating many false alarms.
Goals and Contributions. To tackle the above challenges
we present DÏOT, a system for detecting compromised IoT
devices. It uses a novel device-type-specific anomaly detec-
tion approach to achieve accurate detection of attacks while
generating almost no false alarms. Major IoT device vendors,
including Cisco, assisted us formulating real-world settings for
our solution and usage scenarios.

We make the following contributions:
• DÏOT, a self-learning distributed system for security

monitoring of IoT devices (Sect. II) based on device-type-
specific detection models for detecting anomalous device
behavior:
– It utilizes a novel anomaly detection approach based

on representing network packets as symbols in a lan-
guage allowing to use a language analysis technique to
effectively detect anomalies (Sect. III).
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– It is the first system to apply a federated learning
approach for aggregating anomaly-detection profiles
for intrusion detection (Sect. IV).

• Systematic and extensive experimental analysis using
more than 30 off-the-shelf IoT devices, showing that
DÏOT is fast (detection in ≈257ms) and effective (95.6%
true positive rate, zero false alarms, i.e., 0% false positive
rate) (Sect. VI).

• An Attack dataset of network traffic generated by real
off-the-shelf consumer IoT devices infected with real
IoT malware (Mirai [1]) using which we evaluate the
effectiveness of DÏOT (Sect. V-A).

We will make our datasets as well as the DÏOT implemen-
tation available for research use.

II. SYSTEM MODEL

Our system model is shown in Fig. 1. We consider a
typical SOHO (Small Office/Home Office) network, where IoT
devices connect to the Internet via an access gateway.

A. System Architecture
The DÏOT system consists of Security Gateway and IoT

Security Service. The role of Security Gateway is to monitor
devices and perform anomaly detection in order to identify
compromised devices in the network. It is supported by IoT
Security Service, which can be, e.g., a service provider like
Microsoft, Amazon or Google that aggregates device-type-
specific anomaly detection models trained by all Security
Gateways in the system.

1) Security Gateway: acts as the local access gateway to the
Internet to which IoT devices connect over WiFi or Ethernet. It
hosts the Anomaly Detection component. When a new device
is added to the network, Security Gateway identifies its type
as outlined in Sect. II-C. The Anomaly Detection component
monitors the communications of identified IoT devices and
detects abnormal communication behavior that is potentially
caused by malware (Sect. III) based on anomaly detection
models it trains locally and which are aggregated by the IoT
Security Service to a global detection model.

2) IoT Security Service: supports Security Gateway by
maintaining a repository of device-type-specific anomaly de-
tection models. When a new device is added to the local
network, Security Gateway identifies its device type and re-
trieves the corresponding anomaly detection model for this
type from IoT Security Service. IoT Security Service also
aggregates updates to device-type-specific anomaly detection
models provided by the Security Gateways in the system.

B. Adversary Model and Assumptions
Adversary. The adversary is IoT malware performing at-

tacks against, or launching attacks from, vulnerable devices in
the SOHO network. Hereby we consider all actions undertaken
by the malware that it performs to discover, infect and exploit
vulnerable devices as discussed in detail in Sect. V-A3.

Defense goals. The primary goal of DÏOT is to detect
attacks on IoT devices in order to take appropriate coun-
termeasures, e.g., by preventing targeted devices from being

compromised or isolating compromised devices from the rest
of the network. We aim to detect attacks at the earliest stage
possible, preferably even before a device can be successfully
infected.

In addition, we make following assumptions:
• A1 - No malicious manufacturers. IoT devices may be

vulnerable but are not compromised when first released
by a manufacturer. Adversaries must first find a vulner-
ability and a way to exploit it, which takes some time
during which non-compromised devices generate only
legitimate communications, leaving sufficient time (cf.
Sect. VI-C) to learn benign models of device behavior.

• A2 - Security Gateway is not compromised. Since
Security Gateway is the device enforcing security in the
SOHO network, we assume that it is not compromised.
Like firewall devices or antivirus software, if Security
Gateway is compromised the SOHO network stops being
protected by it. Several approaches can be used to protect
it. For instance, if Security Gateway supports a suitable
trusted execution environment, like Intel SGX [10] or
trusted platform module, its integrity can be remotely
verified using remote attestation techniques [11].

• A3 - Automated identification of IoT devices. A
technique for automatically identifying and labeling IoT
devices in the local SOHO network must be available.
This technique should be implementable in the Security
Gateway to identify IoT devices connected to it.

C. Device-Type Identification

As DÏOT uses device-type specific anomaly detection mod-
els, it requires the possibility to identify the type of devices
in the network. Several solutions have been designed to
automatically identify and label unknown IoT devices in a net-
work [12]–[14]. Alternatively, manufacturer-provided explicit
device-type specifications like MUD [15] or manual labeling
of IoT devices could be used. For DÏOT, we selected an
existing approach - AuDI [14] that autonomously identifies
the type of individual IoT devices in a local network. This
approach is accurate and fast (requiring only 30 minutes to
identify device type at the accuracy of 98.2%). This approach
considers abstract device types representing families of similar
devices from the same device manufacturer with similar hard-
ware and software configurations, resulting in highly identical
communication behavior. It can be trained without the need to
manually label communication traces of pre-defined real-world
device types since it works by clustering device fingerprints so
that each cluster can be automatically labeled with an abstract
label, e.g., type#k which represents a specific IoT device type.
It justifies our assumption A3 as mentioned above.

Using this approach we can reliably map devices to a
corresponding device type for which DÏOT can build a device-
type-specific model of normal behavior that can be used to
effectively detect anomalous deviations. This allows DÏOT to
be trained and operated autonomously, without the need for
human intervention at any stage.
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Fig. 1: DÏOT system model

D. Challenges

Anomaly detection techniques face challenges in the IoT
application scenario:
• C1- Dynamic threat landscape. New IoT devices are

released on a daily basis. A significant fraction of them
have security vulnerabilities. Exploits targeting vulnera-
ble devices are also being developed by adversaries at a
similarly high pace. This makes the threats against IoT
devices highly dynamic and ever-increasing.

• C2- Resource limitations. IoT devices have limited
capabilities w.r.t. available memory, computing resources
and energy often making it infeasible to perform on-
device detection.

• C3- IoT device heterogeneity and false alarms. Be-
haviors of different IoT devices are very heterogeneous,
so that anomaly detection techniques easily raise false
alarms. However, to be useful in practice, anomaly de-
tection systems must minimize false alarms.

• C4- Scarcity of communications. In contrast to high-
end devices, IoT devices generate only little traffic, often
triggered by infrequent user interactions.

E. Design Choices

1) Gateway monitoring: As on-device monitoring is rarely
feasible due to challenge C2, we perform monitoring of IoT
device communications on Security Gateway.

2) Device-type-specific anomaly detection: Since different
IoT devices can have very heterogeneous behaviors (challenge
C3), we model each device type’s behavior with a dedicated
model. Consequently, each model needs to cover only the
behavior of a specific device type. As IoT devices are typically
single-use appliances with only a few different functions, their
behavior patterns are relatively static and limited, allowing the
model to accurately capture all possible legitimate behaviors
of a device type. Thus, the model is less prone to trigger false
alarms (details in Sect. VI-D), thereby effectively addressing
challenge C3.

3) Federated learning approach: Anomaly detection mod-
els are learned using a federated learning approach where
Security Gateways use locally collected data to train local
models which IoT Security Service aggregates into a global
model (details in Sect. IV). This aggregation maximizes the
usage of limited information obtained from scarce communica-
tions at each gateway (challenge C4) and helps to improve the
accuracy of anomaly detection models by utilizing all available
data for learning.

4) Autonomous self-learning: Anomaly detection models
are trained using data autonomously labeled with the device-
type that generated it. Device types are also learned and
assigned in an autonomous manner. The whole process does
therefore not require any human intervention, which allows
DÏOT to respond quickly and autonomously to new threats,
addressing challenge C1. It is worth noting that DÏOT starts
operating with no anomaly detection model. It learns and
improves these models as Security Gateways aggregate more
data.

5) Modeling techniques requiring little data: As discussed
in detail in Sect. III, we select features and machine learning
algorithms (GRU) that can be efficiently trained even with few
training data. This design choice addresses challenge C4.

III. DEVICE-TYPE-SPECIFIC ANOMALY DETECTION

Our anomaly detection approach is based on evaluating the
communication patterns of a device to determine whether it is
consistent with the learned benign communication patterns of
that particular device type. The detection process is shown in
Fig. 2. In Step 1 the communication between the Security
Gateway and the IoT device is captured as a sequence of
packets pkt1, pkt2, . . .. Each packet pkt i is then in Step
2 mapped to a corresponding symbol si characterizing the
type of the packet using a mapping that is based on distinct
characteristics c1, c2, . . . , c7 derived from each packet’s header
information as discussed in Sect. III-A. The mapped sequence
of symbols s1, s2, . . . is then in Step 3 input into a pre-
trained model using Gated Recurrent Units (GRUs) [16],
[17]. The GRU model will calculate a probability estimate
pi for each symbol si based on the sequence of k preceding
symbols si−k, si−k+1, . . . , si−1. GRU is a novel approach to
recurrent neural networks (RNN) currently being a target of
lively research. GRUs provide similar accuracy as other RNN
approaches but are computationally less expensive [17], [18].
In Step 4 the sequence of occurrence probability estimates
p1, p2, . . . is evaluated to determine possible anomalies. If the
occurrence probabilities pi of a sufficient number of packets
in a window of consecutive packets fall below a detection
threshold, as described in detail in Sect. III-B, the packet
sequence is deemed anomalous and an alarm is raised.

A. Modelling Packet Sequences

Data packets pkt i in the packet sequence pkt1, pkt2, . . .
emitted by an IoT device are mapped into packet symbols
si based on 7-tuples (c1, c2, . . . , c7) of discrete packet char-
acteristics ci of packet pkt i. This mapping is defined by
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Fig. 2: Overview of device-type-specific anomaly detection

a device-type-specific mapping function mapping type#k :
A → Btype#k s.t. mapping type#k (pkt i) = si where A is
the domain of raw network packets pkt and Btype#k is the
domain of packet symbols s for device-type type#k . Mapping
mapping type#k assigns each unique combination of packet
characteristics (c1, . . . , c7) a dedicated symbol s representing
the ’type’ of the particular packet.

We use the following packet characteristics shown also in
Tab. I:

• c1 direction: (incoming / outgoing) Normal TCP traffic is
usually balanced two-way communication but abnormal
is not as, e.g., a bot only sends packets to a victim without
receiving replies when running DDoS attacks.

• c2 and c3 local and remote port type: (system / user
/ dynamic) Each device-type uses specific ports designed
by the manufacturers while malicious attack patterns
usually use different ports.

• c4 packet length: (bin index of packet’s length where
eight most frequently occurring packet lengths receive
dedicated bins and one bin for other packet length values)
Each device-type communicates using specific packet
patterns with specific packet lengths that are mostly
different in malicious attack patterns.

• c5 TCP flags: Normal communications contain pack-
ets with specific TCP flag sequences e.g., SY N →
SY NACK → ACK → PUSH → FIN . However,
many attacks do not follow standard protocols, e.g., SYN
flood (DDoS attack) only sends SY N messages.

• c6 encapsulated protocol types: Each device type usu-
ally uses a set of specific protocols, which is likely
different from protocol types used in attacks.

• c7 IAT bin: (bin index of packet inter-arrival time (IAT)
using three bins: < 0.001ms, 0.001ms to 0.05ms, and
> 0.05ms) Many attacks (e.g., DDoS) usually generate
traffic at a high packet rate, resulting in smaller IAT

(a) Symbol distribution

(b) Probability distribution

Fig. 3: Packet symbol occurrence frequencies and occurrence
probability estimates for benign and attack traffic for Edimax
smart power plugs

values in than normal communications.

TABLE I: Packet characteristics used in symbol mapping

ID Characteristic Value
c1 direction 1 = incoming, 0 = outgoing
c2 local port type bin index of port type
c3 remote port type bin index of port type
c4 packet length bin index of packet length
c5 TCP flags TCP flag values
c6 protocols encapsulated protocol types
c7 IAT bin bin index of packet inter-arrival time

B. Detection Process

Fig. 3a shows an example of the occurrence frequencies of
individual packet symbols for benign and attack traffic (as
generated by the Mirai malware) for Edimax smart power
plugs. It can be seen that using packet symbols alone to
distinguish between benign and attack traffic is not sufficient,
as both traffic types contain packet types that are mapped to
the same symbols. Our detection approach is therefore based
on estimating the likelihood of observing individual packet
types given the sequence of preceding packets. The rationale
behind this approach is the observation that IoT device com-
munications usually follow particular characteristic patterns.
Traffic generated by IoT malware, however, doesn’t follow
these patterns and can therefore be detected. We will thus use
the detection model to calculate an occurrence probability pi
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Fig. 4: Occurrence probabilities of 15 packets from Edimax
Plug when Mirai was in standby stage. The red ’#0’ denotes
the malicious packets.

for each packet symbol si given the sequence of k preceding
symbols < si−k, si−k+1, . . . , si−1 >, i.e.,

pi = P (si| < si−k, si−k+1, . . . , si−1 >) (1)

Parameter k is a property of the used GRU network and
denotes the length of the lookback history, i.e., the number
of preceding symbols that the GRU takes into account when
calculating the probability estimate. From Fig. 3b we can
see that these probability estimates are on average higher for
packets belonging to benign traffic patterns, and lower for
packets generated by malware on an infected device and can
therefore be flagged as anomalous.

Definition 1 (Anomalous packets): Packet pkt i mapped to
packet symbol si is anomalous, if its occurrence probability
pi is below detection threshold δ, i.e., if

pi < δ (2)

We performed an extensive empirical analysis of the proba-
bility estimates provided by device-specific detection models
for both benign and attack traffic for the datasets described
in Sect. VI and could determine that a value of δ = 10−2

provides a good separation between benign and attack traffic,
as can be also seen in Fig. 3b. An example of our approach
is shown in Fig. 4. Malicious packets (represented by symbol
’#0’) get very low probability estimates (<10−4), distinguish-
ing them clearly from benign packets. However, their presence
at indices 6− 7 also affects the estimate of the benign packet
’#41’ at index 8 (<10−6), since the sequence of packets
preceding this packet is unknown to the detection model.

Triggering an anomaly each time an anomalous packet is
observed would lead to numerous false positive detections,
as also benign traffic may contain noise that is not covered
by the GRU model and will therefore receive low occurrence
probability estimates. An anomaly is therefore triggered only
in the case that a significant number of packets in a window
of consecutive packets are anomalous.

Definition 2 (Anomaly triggering condition): Given a win-
dow W of w consecutive packets W = (pkt1, pkt2, . . . , pktw)
represented by symbol sequence S = (s1, s2, . . . sw), we

Fig. 5: Overview of federated learning process

trigger an anomaly alarm, if the fraction of anomalous packets
in W is larger than an anomaly triggering threshold γ, i.e., if

|{si ∈ S|pi < δ}|
w

> γ (3)

IV. FEDERATED LEARNING APPROACH

The GRU models are learned using traffic collected at sev-
eral Security Gateways, each monitoring a client IoT network.
Each Security Gateway observing a device of a particular type
type#k contributes to training its anomaly detection model.
We take a federated learning approach to implement the
distributed learning of models from several clients. Federated
learning is a communication-efficient and privacy-preserving
learning approach suited for distributed optimization of Deep
Neural Networks (DNN) [19], [20]. In federated learning,
clients do not share their training data but rather train a local
model and send model updates to a centralized entity which
aggregates them. Federated learning is chosen because it is
suitable [21] for scenarios where:
• data are massively distributed, so that there is a large

number of clients each having a small amount of data.
IoT devices typically generate little traffic, which means
only little data can be provided by each client alone.

• contributions from clients are imbalanced. In our system,
the training data available at each Security Gateway
depends on the duration that an IoT device has been in the
network and the amount of interaction it has had, which
varies largely between clients.

A. Learning Process

The federated training process is illustrated in Fig. 5. Each
Security Gateway having devices of a particular type type#k
in its network requests a detection profile for this type from
IoT Security Service in Step 1 and gets an initial GRU model
for this type in Step 2. At the start of DÏOT, this model is
random, otherwise it is already trained through several rounds
of the following process. In Step 3 the global model is re-
trained locally by each Security Gateway with traces collected
by monitoring communication of the type#k devices. Then
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in Step 4 local updates made to the model by each Security
Gateway are reported to IoT Security Service which in Step
5 aggregates them as defined in Def.3 [21] to improve the
global model. Finally, the updated global model for type#k
devices is then pushed back to Security Gateway and used for
anomaly detection (Step 6). The re-training of the model is
performed on a regular basis to improve its accuracy.

Definition 3 (Global Model Aggregation): Given n clients
with their associated model weights W1, . . . ,Wn trained by
associated number of data samples s1, . . . , sn. We define the
global model G which is aggregated from those local models
as follows:

G =
n∑

i=1

si
s
Wi (where s =

n∑

i=1

si) (4)

To train our models we adopt an approach introduced by
McMahan et al. [21]. Each client (Security Gateway) trains
its GRU model locally for several epochs before reporting
updates to IoT Security Service. This limits the communication
overhead by reducing the number of updates to send to the
IoT Security Service. To the best of our knowledge we are
the first to employ a federated learning approach for anomaly
detection-based intrusion detection.

B. Federated Learning Setup

We implemented the federated learning algorithm utilizing
the flask [22] and flask socketio [23] libraries for the server-
side application and the socketIO-client [24] library for the
client-side application. The socketIO-client uses the gevent
asynchronous framework [25] which provides a clean API
for concurrency and network related tasks. We used the
Keras [26] library with Tensorflow backend to implement the
GRU network with the parameters selected in Sect. V-B.

V. EXPERIMENTAL SETUP

To evaluate DÏOT, we apply it on the use case of detecting
real-life IoT malware. We selected Mirai for this purpose,
since its source code is publicly available and several infamous
malware variants like Hajime [2] or Persirai [27] have been
implemented using the same code base. Mirai also realizes
similar attack stages (detailed in Sect. V-A3 below) as state-
of-the-art IoT malware [3], [28]. This makes Mirai a highly
relevant baseline for IoT malware behavior.

A. Datasets

We collected extensive datasets about the communication
behavior of IoT devices in laboratory and real-world deploy-
ment settings. The monitored devices included 33 typical
consumer IoT devices like IP cameras, smart power plugs and
light bulbs, sensors, etc. The devices were mapped by our
device-type-identification method to 23 unique device types.
The detailed list of devices and assignment to device-types
can be found in Tab. II. We collected datasets by setting up
a laboratory network as shown in Fig. 6 using hostapd on
a laptop running Kali Linux to create a gateway acting as
an access point with WiFi and Ethernet interfaces to which

IoT device vendor cloud service

IoT device
IoT device

IoT device

Internet

IoT device

Laboratory network

Security Gateway

tcpdump
Experimentation 

GUI

Attack Server

VirtualBox

C&C Loader Listenerhostapd

Fig. 6: Laboratory network setup

IoT devices were connected. On the gateway we collected all
network traffic packets originating from the monitored devices
using tcpdump.

1) Activity dataset: A key characteristic of IoT devices is
that they expose only a few distinct actions accessible to users,
e.g., ON, OFF, ADJUST, etc. To capture the communication
patterns related to user interactions with IoT devices, we
collected a dataset encompassing all such actions being in-
voked on the respective IoT devices. We repeatedly performed
actions shown in Tab. IV. Each of the actions was repeated
20 times (20-time repetition chosen as a rule of thumb). To
capture also less intensive usage patterns, the dataset was
augmented with longer measurements of two to three hours,
during which actions were triggered only occasionally. This
dataset contains data from 33 IoT devices out of which 27
have both action and standby data. Six devices (lighting and
home automation hubs) have standby data only because they
do not provide meaningful actions that users could invoke.

2) Deployment dataset: To evaluate DÏOT in a realistic
smart home deployment setting, in particular with regard to
how many false alarms it will raise, we installed a number of
(n = 14) different smart home IoT devices1 in several different
domestic deployment scenarios. This deployment involved real
users and collected communication traces of these devices
under realistic usage conditions. We used the same set-up as
in the laboratory network for the domestic deployment, albeit
we excluded the attack server. Users used and interacted with
the IoT devices as part of their everyday life. Packet traces
were collected continuously during one week.

3) Attack dataset: For evaluating the effectiveness of DÏOT
at detecting attacks, we collected a dataset comprising mali-
cious traffic of IoT devices infected with Mirai malware [1],
[3] in all four different attack stages discussed below: pre-
infection, infection, scanning and DoS attacks (as a monetiza-
tion stage). Additionally, we collected traffic when Mirai was
in a standby mode, i.e., not performing any attack but awaiting
commands from its Command & Control server.

Among 33 experimental devices, we found 5 devices which
are vulnerable to the Mirai malware. The Attack dataset
was collected from those five devices: D-LinkCamDCS930L,

1The number of devices was limited, as the driver of the used WiFi interface
allowed at most 16 devices to reliably connect to it simultaneously.
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TABLE II: 33 IoT devices used in the Activity, Deployment and Attack datasets and their connectivity technologies + Affectation
of these devices to 23 DÏOT device types during evaluation.

Device-type Identifier Device model W
iF

i
Et

he
rn

et
O

th
er

Ac
tiv

ity
D

ep
lo

ym
en

t
At

ta
ck

type#01 ApexisCam Apexis IP Camera APM-J011 • • ◦ • ◦ ◦
type#02 CamHi Cooau Megapixel IP Camera • • ◦ • ◦ ◦
type#03 D-LinkCamDCH935L D-Link HD IP Camera DCH-935L • ◦ ◦ • ◦ ◦
type#04 D-LinkCamDCS930L D-Link WiFi Day Camera DCS-930L • • ◦ • • •

D-LinkCamDCS932L D-Link WiFi Camera DCS-932L • • ◦ • • •
D-LinkDoorSensor D-Link Door & Window sensor ◦ ◦ • • ◦ ◦
D-LinkSensor D-Link WiFi Motion sensor DCH-S150 • ◦ ◦ • • ◦

type#05 D-LinkSiren D-Link Siren DCH-S220 • ◦ ◦ • ◦ ◦
D-LinkSwitch D-Link Smart plug DSP-W215 • ◦ ◦ • • ◦
D-LinkWaterSensor D-Link Water sensor DCH-S160 • ◦ ◦ • ◦ ◦

type#06 EdimaxCamIC3115 Edimax IC-3115W Smart HD WiFi Network Camera • • ◦ • ◦ ◦
EdimaxCamIC3115(2) Edimax IC-3115W Smart HD WiFi Network Camera • • ◦ • ◦ ◦

type#07 EdimaxPlug1101W Edimax SP-1101W Smart Plug Switch • • ◦ • • •
EdimaxPlug2101W Edimax SP-2101W Smart Plug Switch • ◦ ◦ • • •

type#08 EdnetCam Ednet Wireless indoor IP camera Cube • • ◦ • ◦ ◦
type#09 EdnetGateway Ednet.living Starter kit power Gateway • ◦ • • • ◦
type#10 HomeMaticPlug Homematic pluggable switch HMIP-PS ◦ ◦ • • ◦ ◦
type#11 Lightify Osram Lightify Gateway • ◦ • • • ◦
type#12 SmcRouter SMC router SMCWBR14S-N4 EU • • ◦ • ◦ ◦
type#13 TP-LinkPlugHS100 TP-Link WiFi Smart plug HS100 • ◦ ◦ • ◦ ◦

TP-LinkPlugHS110 TP-Link WiFi Smart plug HS110 • ◦ ◦ • ◦ ◦
type#14 UbnTAirRouter Ubnt airRouter HP • • ◦ • ◦ •
type#15 WansviewCam Wansview 720p HD Wireless IP Camera K2 • ◦ ◦ • ◦ ◦
type#16 WeMoLink WeMo Link Lighting Bridge model F7C031vf • ◦ • • ◦ ◦
type#17 WeMoInsightSwitch WeMo Insight Switch model F7C029de • ◦ ◦ • ◦ ◦

WeMoSwitch WeMo Switch model F7C027de • ◦ ◦ • ◦ ◦
type#18 HueSwitch Philips Hue Light Switch PTM 215Z ◦ ◦ • • • ◦
type#19 AmazonEcho Amazon Echo • ◦ ◦ • • ◦
type#20 AmazonEchoDot Amazon Echo Dot • ◦ ◦ • ◦ ◦
type#21 GoogleHome Google Home • ◦ ◦ • • ◦
type#22 Netatmo Netatmo weather station with wind gauge • ◦ • • • ◦
type#23 iKettle2 Smarter iKettle 2.0 water kettle SMK20-EU • ◦ ◦ • • ◦

SmarterCoffee Smarter SmarterCoffee coffee machine SMC10-EU • ◦ ◦ • • ◦

TABLE III: Characteristics of used datasets

Dataset
(Number of devices)

Time
(hours)

Size
(MiB) Flows Packets

Activity (33) 165 465 115,951 2,087,280
Deployment (14) 2,352 578 95,518 2,286,697
Attack (5) 84 7,734 8,464,434 21,919,273

TABLE IV: Actions for different IoT device categories

Category (count) Typical actions
IP cameras (6) START / STOP video, adjust settings, reboot
Smart plugs (9) ON, OFF, meter reading
Sensors (3) trigger sensing action
Smart lights (4) turn ON, turn OFF, adjust brightness
Actuators (1) turn ON, turn OFF
Appliances (2) turn ON, turn OFF, adjust settings
Routers (2) browse amazon.com
Hub devices (6) no actions

D-LinkCamDCS932L, EdimaxPlug1101W, EdimaxPlug2101W
and UbntAirRouter. This was done by installing the Com-
mand & Control, Loader and Listener server modules on
the laboratory network for infecting target devices with Mirai
and controlling them. Infection was achieved using security
vulnerabilities like easy-to-guess default passwords to open
a terminal session to the device and issuing appropriate

commands to download the malware binary onto the device.
In the pre-infection stage, Loader sends a set of commands

via telnet to the vulnerable IoT device to prepare its envi-
ronment and identify an appropriate method for uploading
the Mirai binary files. We repeated the pre-infection process
50 times for each device. During each run, around 900 pre-
infection-related packets were generated.

After pre-infection the infection stage commences, during
which Loader uploads Mirai binary files to the IoT device. It
supports three upload methods: wget, tftp and echo (in
this priority order). To infect the two D-Link cameras and the
Ubnt router Loader uses wget, on the Edimax plugs it will
resort to using tftp as these are installed on the devices by
default. We repeated the infection process 50 times for each
device, each run generating approximately 700 data packets.

In the scanning stage we collected packets while the in-
fected devices were actively performing a network scan in
order to locate other vulnerable devices. Data collection was
performed for five minutes per device, resulting in a dataset
of more than 446,000 scanning data packets.

We extensively tested the DoS attack stage, utilizing all ten
different DoS attack vectors (for details, see [29]) available in
the Mirai source code [30]. We ran all attacks separately on
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all five compromised devices for five minutes each, generating
more than 20 million packets of attack traffic in total.

Tab. III summarizes the sizes and numbers of distinct
packets and packet flows in the different datasets. While packet
flows can’t be directly mapped to distinct device actions, they
do provide a rough estimate of the overall level of activity of
the targeted devices in the dataset.

B. Parameter Selection

Based on initial experiments with our datasets (Tab. III) we
inferred that a lookback history of k = 20 symbols is sufficient
to capture most communication interactions with sufficient
accuracy. We used a GRU network with three hidden layers of
size 128 neurons each. The size of the input and output layers
is device-type-specific and equal to the number of mapping
symbols of the function mapping type#k , which is equal to
| Btype#k | (cf. Sect. III-A). We learned 23 anomaly detection
models, each corresponding to a device type identified using
the method described in Sect. II-C. Each anomaly detection
model was trained with, and respectively tested on, commu-
nication from all devices matching the considered type.

C. Evaluation Metrics

We use false positive and true positive rate (FPR and TPR)
as measures of fitness. FPR measures the rate at which benign
communication is incorrectly classified as anomalous by our
method causing a false alarm to be raised. TPR is the rate at
which attacks are correctly reported as anomalous. We seek
to minimize FPR, since otherwise the system easily becomes
unusable, as the user would be overwhelmed with false alarms.
At the same time we want to maximize TPR so that as many
attacks as possible will be detected by our approach.

Testing for false positives was performed by four-fold cross-
validation for device types in the Activity and Deployment
datasets. The data were divided equally into four folds using
three folds for training and one for testing. To determine the
FPR, we divided the testing dataset according to Def. 2 into
windows of w = 250 packets. Since the testing data contained
only benign communications, any triggered anomaly alarm for
packets of the window indicated it as a false positive, whereas
windows without alarms were considered a true negative.

Testing for true positives was done by using the Activity and
Deployment datasets as training data and the Attack dataset
for testing with the same settings as for false positive testing.
Moreover, as we know that the Attack dataset also contains
benign traffic corresponding to normal operations of the IoT
devices, we were interested in the average duration until
detection. Therefore, in each window of w = 250 packets we
calculated the number of packets required until an anomaly
alarm was triggered in order to estimate the average detection
time. In terms of TPR, such windows were considered true
positives, whereas windows without triggered alarms were
considered false negatives.
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Fig. 7: ROC curve of TPR and FPR in dependence of detection
threshold δ and anomaly triggering threshold γ.

VI. EXPERIMENTAL RESULTS

A. Accuracy

To determine appropriate values for the detection threshold
δ and anomaly triggering threshold γ, we evaluated FPR using
the Activity (33 devices, 23 device types) dataset and TPR
using the Attack (5 devices, 3 device types) dataset for a fixed
window size of w = 250. Fig. 7 shows the receiver operating
characteristic (ROC) curve of FPR and TPR in dependence
of these parameters. We can see that all curves quickly reach
over 0.9 TPR while keeping a very low FPR (<0.01), which
is one of the main objectives for our approach. We therefore
select δ = 0.01 and γ = 0.5 at w = 250, which achieves
94.01% TPR at <0.01 FPR.

Using these selected parameters in the Deployment (14
devices, 10 device types) dataset and Attack (5 devices) dataset,
we achieved an attack detection rate of 95.60% TPR and
no false positives, i.e., 0% FPR during one week of evalua-
tion. These results show that DÏOT can successfully address
challenge C3, reporting no false alarms in a real-world
deployment setting. Tab. V shows the detailed performance
of our system for different attack scenarios (cf. Sect. V). The
time to detect attacks varies according to the traffic intensity
of the attacks. The average detection delay over all tested
attacks is 257 ± 194 ms. DÏOT can detect an attack in the
pre-infection stage after 223 packets while Mirai generates
more than 900 packets during pre-infection. It means DÏOT
is able to detect the attack even before the attack proceeds to
the infection stage.

The detection rate for DoS attacks is lower than for other
attack stages. However, all DoS attacks are eventually detected
because DoS attacks have a high throughput (1, 412.94 pack-
ets/s.) and we analyze five windows of 250 packets per second
at this rate. Considering the 88.96% TPR we achieve on DoS
attacks, four windows out of five are detected as anomalous
and trigger an alarm. It is also worth noting that infected
devices in standby mode get detected in 33.33% of cases,
while this activity is very stealthy (0.05 packets/s).
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TABLE V: Average detection times of analyzed Mirai attacks

Attack packets/s. det. time (ms.) TPR
standby 0.05 4,051,889 33.33%
Pre-Infection 426.66 524 100.00%
Infection 721.18 272 93.45%
Scanning 752.60 166 100.00%
DoS 1,412.94 92 88.96%
Average 866.88 257±194 95.60%

Fig. 8: Evolution of TPR and FPR as we increase the number
of clients in federated learning. TPR decreases slightly (-3%)
while FPR reaches 0 (-21%) when using 15 clients.

B. Efficiency of Federated Learning

We conducted a set of experiments to evaluate federated
learning performance with different numbers of clients (rang-
ing from 2 to 15) contributing to the training of the models. We
selected the number of epochs that each client trains its local
model to be 17 and specified the number of communication
rounds between clients and server to be 3. Therefore, the local
models were trained a total of 51 epochs. This was deemed
sufficient since in our initial experiments utilizing a centralized
learning setting the models converged after approximately 50
epochs. Each client was allocated a randomized subset of
training data from the Deployment dataset (ranging from 0.1%
to 10% of the total training dataset size) and we evaluated
the system’s performance for different numbers of clients
involved in building the federated model. In average, each
client takes approximately one second to train one local epoch
on its data. We repeated our experiment three times for each
device type, with random re-sampling of the training datasets.
As expected, Fig. 8 shows that the federated models with
more participating clients achieve better FPR, while TPR
deteriorates only slightly.

Federated learning provides better privacy for clients con-
tributing to training as they do not need to share their training
data. However, this may result in a loss of accuracy of the
obtained model in comparison to training the model in a
centralized manner. To evaluate this possible loss in accuracy,
we trained three federated models using the entire training
dataset by dividing it among 5, 9 or 15 clients and comparing
these to a model trained in a centralized manner. Tab. VI shows
a small decrease in TPR as we increase the number of clients

TABLE VI: Effect of using federated learning comparing to
centralizing approach

Type Centralized
learning

Federated learning
5 clients 9 clients 15 clients

FPR 0.00% 0.00% 0.00% 0.00%
TPR 95.60% 95.43% 95.01% 94.07%

Fig. 9: Effect of training data size in time to FPR

while FPR is not deteriorated (remaining constant at 0.00%).
This small drop in TPR is not a concern since a large number
of packet windows would still trigger an alarm for any attack
stage.

C. Data Needed for Training

Fig. 9 shows an example of detection model performance
for two Edimax smart plug devices (models 1101W & 2101W)
in dependency of the amount of data used for training the
model. We divided the 7-day Deployment dataset into one-
hour data chunks and randomly sampled different amounts of
data chunks for training the model, gradually increasing the
training dataset size. The figure shows that the FPR decreases
noticeably when the training dataset grows. More importantly,
the model needs less than 25 hours of data to achieve FPR = 0.
It shows that our detection model needs little data for training
and it means DÏOT can address challenge C4. Moreover, with
the help of our federated learning approach leveraging several
clients contributing to training the model, each client needs
only a small amount of data i.e, 2.5 hours if there are ten
clients involved. It justifies our assumption A1 as mentioned
in Sect. II-B.

D. Efficiency of Device-Type-Specific Models and Scalability

Traditional anomaly detection approaches utilizing a sin-
gle model for modeling benign behavior easily suffer from
increasing false positive rates or decreasing sensitivity when
the number of different types of behaviors (i.e., device types)
captured by the model grows. This makes them unsuitable
for real-world deployments with hundreds or thousands of
different device types. Our solution, however, does not have
this drawback, as it uses a dedicated detection model for each
device type (details in Sect. III). Each of these models focuses
solely on the characteristic behavior of one single device type,
resulting in more specific and accurate behavioral models,
independent of the number of different device types handled
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by the system. To evaluate the benefit of using device-type-
specific anomaly detection models compared to using a single
model for all devices, we evaluated a single model on the
whole Deployment dataset using 4-fold-cross validation and
evaluated detection accuracy on the Attack dataset. The result
is as expected: FPR increases from 0% to 0.67% while TPR
increases from 95.6% to 97.21%. However, as mentioned in
Sect. II, a high false alarm rate would make the anomaly
detection system impractical. If the system had FPR of 0.67%
in our deployment setup, it would trigger around eight alarms
per day. It means a smarthome with dozens of devices could
have hundreds of false alarms per day.

E. Performance

We evaluated the processing performance of GRU without
specific performance optimizations on a laptop and a desk-
top computer. The laptop ran Ubuntu Linux 16.04 with an
Intel©Core™i7-4600 CPU with 8GB of memory, whereas the
desktop ran Ubuntu Linux 18.04 with an Intel©Core™i7-
7700 CPU with 8GB of memory and a Radeon RX 460 core
graphic card. We evaluated the processing performance of
GRU without specific optimizations on a laptop and a desktop
computer. The laptop ran Ubuntu Linux 16.04 with an Intel
i7-4600 CPU with 8GB of memory, whereas the desktop ran
Ubuntu Linux 18.04 with an Intel i7-7700 CPU with 8GB of
memory and a Radeon RX 460 core graphics card with GPU.
Average processing time per symbol (packet) for prediction
was 0.081(±0.001) ms for the desktop utilizing its GPU and
0.592(±0.001) ms when executed on the laptop with CPU. On
average, training a GRU model for one device type took 26
minutes on the desktop and 71 minutes on the laptop hardware
when considering a week’s worth of data in the Deployment
dataset. We conclude from this that model training will be
feasible to realize in real deployment scenarios, as training
will in any case be done gradually as data are collected from
the network over longer periods of time.

VII. EFFECTIVENESS

A. Generalizability of Anomaly Detection

Although we focused our evaluation on the most well-
known IoT malware so far: Mirai [1] for the use case, DÏOT
is likely effective also in detecting other botnet malware
like Persirai [27], Hajime [2], etc. DÏOT’s anomaly detection
leverages deviations in the behavior of infected IoT devices
caused by the malware. Such deviations will be observable
for any malware.

B. Evolution of IoT Device Behavior

The behavior of an IoT device type can evolve due to,
e.g., firmware updates that bring new functionality. This mod-
ifies its behavior and may trigger false alarms for legitimate
communication. We prevent these false alarms by correlating
anomaly reports from all Security Gateways at the IoT Security
Service. Assuming firmware updates would be propagated to
many client networks in a short time, if alarms are reported
from a large number of security gateways for the same device

type in a short time, we can cancel the alarm and trigger
re-learning of the corresponding device identification and
anomaly detection models to adapt to this new behavior. To
ensure that sudden widespread outbreaks of an IoT malware
infection campaign are not erroneously interpreted as firmware
updates, the canceling of an alarm can be confirmed by a
human expert at the IoT Security Service. This should represent
a small burden, as the roll-out of firmware updates is a
relatively seldom event.

C. Mimicking Legitimate Communication

An adversary that has compromised an IoT device can
attempt to mimic the device’s legitimate communication pat-
terns to try to remain undetected. However, as the device-
type-specific detection model is restricted to the (relatively
limited) functionality of the IoT device, it is in practice very
difficult for the adversary to mimic legitimate communication
and at the same time achieve a malicious purpose, e.g.,
scanning, flooding, etc., especially when considering that any
change in packet flow semantics is also likely to change the
characteristics (protocol, packet size, port, etc.) of packets and
their ordering, which are both used for detecting anomalies
in the packet sequence. Moreover, adversaries would need
to know the device-type-specific communication patterns in
order to mimic them. This makes it significantly harder for
adversaries to develop large scale IoT malware that affects a
wide range of different IoT device types in the way that, e.g.,
Mirai does.

D. Adversarial Machine Learning

Adversarial examples. If an adversary manages to compro-
mise an IoT device while remaining undetected, it can attempt
to ’poison’ the training process of the system by forging pack-
ets as adversarial examples that are specifically meant to in-
fluence the learning of the model in such a way that malicious
activities are not detected by it. There exist techniques to forge
adversarial examples to neural networks [31]. However, these
apply to images [32], [33] and audio inputs [34], [35], where
objective functions for the underlying optimization problem
are easy to define. Forging adversarial examples consists of
finding minimal modifications ε for an input x of class C such
that x+ε is classified as C ′ �= C. For example, in our case this
would mean that a malicious packet is incorrectly classified
as a benign one. In contrast to image or audio processing,
however, our features (symbols) are not raw but processed
from packet properties. First, it means that modifications
ε are computed for our symbolic representation of packet
sequences which are difficult to realize in a way that would
preserve their utility for the adversary, i.e., realize ’useful’
adversarial functionality required for malicious activities like
scanning or DoS. Second, it is difficult to define the objective
distance to minimize in order to achieve “small modifications”
since modifying the value of one single packet characteristic
(protocol, port, etc.) can change the semantics of a packet
entirely.
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Poisoning federated learning. For initial model training,
we can assume the training data contain only legitimate
network traffic, as devices are assumed initially to be benign
(assumption A1 (Sect. II-B)). However, the federated setting
can be subject to poisoning attacks during re-training, where
the adversary uses adversarial examples as described above to
corrupt the anomaly detection model so that it eventually will
accept malicious traffic as benign [36] (or vice versa). Tech-
niques have been developed for preventing poisoning attacks
by using local outlier detection-based filtering of adversarial
examples to pre-empt model poisoning [37].

In the scope of this paper we assume that the Security
Gateway is not compromised by the adversary (assumption
A2 (Sect. II-B)). However, since a malicious user can have
physical access to his Security Gateway, it is thinkable that
he could compromise it in order to stage a poisoning attack
against the system using adversarial examples. In this case,
local filtering of adversarial examples is not possible, as it can
not be enforced by the compromised Security Gateway. We are
therefore currently focusing our ongoing research efforts on
applying poisoning mitigation approaches applied at the IoT
Security Service. These include using more robust learning
approaches less resilient to adversarial examples that will
’average out’ the effects of adversarial examples, as well as
approaches similar to, e.g., Shen et al. [38], where malicious
model updates are detected before they are incorporated in
global detection models.

VIII. RELATED WORK

Several solutions have been proposed for the detection
and prevention of intrusions in IoT networks [39], [40],
sensor networks [9] and industrial control systems [41], [42].
SVELTE [40] is an intrusion detection system for protecting
IoT networks from already known attacks. It adapts existing
intrusion detection techniques to IoT-specific protocols, e.g.,
6LoWPAN. Similarly, Doshi at al. [6] proposed a signature-
based approach to detect known DDoS attacks using features
representing the density of the network traffic. In contrast,
DÏOT performs dynamic detection of any unknown attacks
that deviate from the legitimate behavior of the device, since
it only models legitimate network traffic. Jia et al. [39] pro-
posed a context-based system to automatically detect sensitive
actions in IoT platforms. This system is designed for patching
vulnerabilities in appified IoT platforms such as Samsung
SmartThings. It is not applicable to multi-vendor IoT systems
while DÏOT is platform independent.

Detecting anomalies in network traffic has a long history [7],
[8], [43], [44]. Existing approaches rely on analysing single
network packets [7] or clustering large numbers of packets [8],
[9] to detected intrusions or compromised services. Some
works have proposed, as we do, to model communication as a
language [42], [43]. For instance, authors of [43] derive finite
state automatons from layer 3-4 communication protocol spec-
ifications. Monitored packets are processed by the automaton
to detect deviations from protocol specification or abnormally
high usage of specific transitions. Automatons can only model

short sequences of packets while we use GRU to model longer
sequences, which enables the detection of stealthy attacks.
Also, modelling protocol specifications is coarse and leaves
room for circumventing detection. In contrast, we use finer
grained-features that are difficult to forge while preserving the
adversarial utility of malicious packets.

Lately, recurrent neural networks (RNN) have been used
for several anomaly-detection purposes. Most applications
leverage Long Short-Term Memory (LSTM) networks for
detecting anomalies in time series [45], aircraft data [46] or
system logs [47]. Oprea at al. [48] use deep belief networks
for mining DNS log data and detect infections in enterprise
networks. In contrast to these works, DÏOT uses a different
flavor of RNN, namely GRU that can be learned using less
training data, enabling DÏOT to be trained faster, and operate
in real-time, detecting anomalies in live network traffic instead
of utilizing off-line analysis.

IX. SUMMARY

In this paper we introduced DÏOT: a self-learning system
for detecting compromised devices in IoT networks. Our
solution relies on novel automated techniques for device-type-
specific anomaly detection. DÏOT does not require any human
intervention or labeled data to operate. It learns anomaly
detection models autonomously, using unlabeled crowdsourced
data captured in client IoT networks. We demonstrated the effi-
cacy of anomaly detection in detecting a large set of malicious
behavior from devices infected by the Mirai malware. DÏOT
detected 95.6% of attacks in 257 milliseconds on average and
without raising any false alarm when evaluated in a real-world
deployment.
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Abstract

Federated Learning (FL) is a collaborative machine learning
approach allowing participants to jointly train a model with-
out having to share their private, potentially sensitive local
datasets with others. Despite its benefits, FL is vulnerable to
so-called backdoor attacks, in which an adversary injects ma-
nipulated model updates into the federated model aggregation
process so that the resulting model will provide targeted false
predictions for specific adversary-chosen inputs. Proposed
defenses against backdoor attacks based on detecting and
filtering out malicious model updates consider only very spe-
cific and limited attacker models, whereas defenses based on
differential privacy-inspired noise injection significantly dete-
riorate the benign performance of the aggregated model. To
address these deficiencies, we introduce FLAME, a defense
framework that estimates the sufficient amount of noise to be
injected to ensure the elimination of backdoors. To minimize
the required amount of noise, FLAME uses a model cluster-
ing and weight clipping approach. This ensures that FLAME
can maintain the benign performance of the aggregated model
while effectively eliminating adversarial backdoors. Our eval-
uation of FLAME on several datasets stemming from appli-
cation areas including image classification, word prediction,
and IoT intrusion detection demonstrates that FLAME re-
moves backdoors effectively with a negligible impact on the
benign performance of the models.

1 Introduction
Federated learning (FL) is an emerging collaborative machine
learning trend with many applications, such as next word
prediction for mobile keyboards [39], medical imaging [49],
and intrusion detection for IoT [44] to name a few. In FL,
clients locally train models based on local training data and
then provide these model updates to a central aggregator who
combines them into a global model. The global model is then
propagated back to the clients for the next training iteration.

∗Emails: {ducthien.nguyen, ahmad.sadeghi}@trust.tu-darmstadt.de

FL promises efficiency and scalability as the training is
distributed among many clients and executed in parallel.
In particular, FL improves privacy by enabling clients to
keep their training data locally [38]. Despite its benefits,
FL has been shown to be vulnerable to so-called poisoning
attacks where the adversary manipulates the local models
of a subset of clients participating in the federation so that
the malicious updates get aggregated into the global model.
Untargeted poisoning attacks merely aim at deteriorating
the performance of the global model and can be defeated by
validating the performance of uploaded models [12]. In this
paper, we therefore focus on the more challenging problem
of backdoor attacks [7, 45, 57, 59], i.e., targeted poisoning
attacks in which the adversary seeks to stealthily manipulate
the resulting global model in a way that attacker-controlled
inputs result in incorrect predictions chosen by the adversary.
Deficiencies of existing defenses. Existing defenses against
backdoor attacks can be roughly divided into two cate-
gories: The first one comprises anomaly detection-based ap-
proaches [4,9,22,51] for identifying and removing potentially
poisoned model updates. However, these solutions are effec-
tive only under very specific adversary models, as they make
detailed assumptions about the attack strategy of the adversary
and/or the underlying distribution of the benign or adversarial
datasets. If these very specific assumptions do not hold, the
defenses may fail. The second category is inspired by differen-
tial privacy (DP) techniques [7,56], where individual weights1

of model updates are clipped to a maximum threshold and
random noise is added to the weights for diluting/reducing
the impact of potentially poisoned model updates on the ag-
gregated global model. In contrast to the first category, DP
techniques [7,56] are applicable in a generic adversary model
without specific assumptions about adversarial behavior and
data distributions and are effective in eliminating the impact
of malicious model updates. However, straightforward ap-
plication of DP approaches severely deteriorates the benign

1Parameters of neural network models typically consist of ’weights’ and
’biases’. For the purposes of this paper, however, these parameters can be
treated identically and we will refer to them as ’weights’ for brevity.
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performance of the aggregated model because the amount of
noise required to ensure effective elimination of backdoors
also results in significant modifications of individual weights
of benign model updates [7, 57].

In this paper, we develop a resilient defense against back-
doors by combining the benefits of both defense types without
suffering from the limitations (narrow attacker model, assump-
tions about data distributions) and drawbacks (loss of benign
performance) of existing approaches. To this end, we intro-
duce an approach in which detection of anomalous model
updates and tuned clipping of weights are combined to mini-
mize the amount of noise needed for backdoor removal of the
aggregated model while preserving its benign performance.
Our Goals and Contributions. We present FLAME, a re-
silient aggregation framework for FL that eliminates the im-
pact of backdoor attacks while maintaining the benign per-
formance of the aggregated model. This is achieved by three
modules: DP-based noising of model updates to remove back-
door contributions, automated model clustering approach to
identify and eliminate potentially poisoned model updates,
and model weight clipping before aggregation to limit the
impact of malicious model updates on the aggregation result.
The last two modules can significantly reduce the amount of
random noise required by DP noising for backdoor elimina-
tion. In particular, our contributions are as follows:

• We present FLAME, a defense framework against back-
door attacks in FL that is capable of eliminating back-
doors without impacting the benign performance of the
aggregated model. Contrary to earlier backdoor defenses,
FLAME is applicable in a generic adversary model, i.e.,
it does not rely on strong assumptions about the attack
strategy of the adversary, nor about the underlying data
distributions of benign and adversarial datasets (§4.1).

• We show that the amount of required Gaussian noise
can be radically reduced by: a) applying our clustering
approach to remove potentially malicious model updates
and b) clipping the weights of local models at a proper
level to constrain the impact of individual (especially
malicious) models on the aggregated model. (§4.3)

• We provide a noise boundary proof for the amount of
Gaussian noise required by noise injection (inspired by
DP) to eliminate backdoor contributions (§5).

• We extensively evaluate our defense framework on real-
world datasets from three very different application areas.
We show that FLAME reduces the amount of required
noise so that the benign performance of the aggregated
model does not degrade significantly, providing a crucial
advantage over state-of-the-art defenses using straight-
forward injection of DP-based noise (§7).

As an orthogonal aspect, we also consider how the privacy of
model updates against an honest-but-curious aggregator can
be preserved and develop a secure multi-party computation

approach that can preserve the privacy of individual model
updates while realizing our backdoor defense approach (§8).

2 Background and Problem Setting
2.1 Federated Learning
Federated Learning [38, 50] is a concept for distributed ma-
chine learning that links n clients and an aggregator to col-
laboratively build a global model G. In a training iteration
t ∈ {1, . . . ,T}, each client i ∈ {1, . . . ,n} locally trains a local
model Wi with p parameters (indicating both weights and
biases) w1

i , . . . ,w
p
i based on the previous global model Gt−1

using its local data Di and sends it to the aggregator which
aggregates the received models Wi into the global model Gt .

Several aggregation mechanisms have been proposed re-
cently: 1) Federated Averaging (FedAvg) [38], 2) Krum [9],
3) Adaptive Federated Averaging [42], and 4) Trimmed mean
or median [60]. Although we evaluate FLAME’s effective-
ness on several aggregation mechanisms in §7.1, we generally
focus on FedAvg in this work as it is commonly applied
in FL [21, 28, 39, 44, 47, 50, 54] and related work on back-
door attacks [7, 22, 51, 57, 59]. In FedAvg, the global model
is updated by averaging the weighted models as follows:
Gt = Σn

i=1
si×Wi/s, where si = ∥Di∥,s = Σn

i=1si. However, in
practice, a malicious client might provide falsified informa-
tion about its dataset size (i.e., a large number) to amplify
the relative weight of its updates [57]. Previous works often
employed equal weights (si = 1/n) for the contributions of all
clients [7, 51, 59]. We adopt this approach in this paper, i.e.,
we set Gt = Σn

i=1
Wi/n. Further, other state-of-the-art aggrega-

tion rules, e.g., Krum [9], Adaptive Federated Averaging [42],
and Trimmed mean or median [60] also do not consider the
sizes of local training datasets by design.

2.2 Backdoor Attacks on Federated Learning
In backdoor attacks, the adversary A manipulates the local
models Wi of k compromised clients to obtain poisoned mod-
els W ′i that are then aggregated into the global model Gt and
thus affect its properties. In particular, A wants the poisoned
model G′t to behave normally on all inputs except for spe-
cific attacker-chosen inputs x ∈ IA (where IA denotes the
so-called trigger set) for which attacker-chosen (incorrect)
predictions should be output. Figure 1 shows common tech-
niques used in FL backdoor attacks, including 1) data poison-
ing, e.g., [45,51,59], where A manipulates training datasets of
models, and 2) model poisoning, e.g., [7, 57] where A manip-
ulates the training process or the trained models themselves.
Next, we will briefly discuss these attack techniques.
Data Poisoning. In this attack, A adds manipulated data
DA to the training datasets of compromised clients i by flip-
ping data labels, e.g., by changing the labels of a street sign
database so that pictures showing a 30 km/h speed limit
are labeled as 80 km/h [51], or, by adding triggers into data
samples (e.g., a specific pixel pattern added to images [59])
in combination with label flipping. We denote the fraction
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Figure 1: An overview of backdoor attacks.

of injected poisoned data DA
i in the overall poisoned train-

ing dataset D′i of client i as Poisoned Data Rate (PDR), i.e.,

PDRi =
|DA

i |
|D′i|

.

Model Poisoning. This attack technique requires that A can
fully control a number of clients. A poisons the training
datasets of these clients and manipulates how they execute
the training process by modifying parameters and scaling
the resulting model update to maximize the attack impact
while evading the aggregator’s anomaly detector [7, 57]. This
is done by (1) scaling up the weights of malicious model
updates to maximize attack impact (e.g., model-replacement
attack [7], or, projected gradient descent (PGD) attack with
model replacement [57]), or, scaling down model updates to
make them harder to detect (e.g., train-and-scale [7] ) and
(2) constraining the training process itself to minimize the
deviation of malicious models from benign models to evade
anomaly detection (e.g., constrain-and-scale attack [7]).

2.3 Adversary Goals and Capabilities
The goals of the adversary are two-fold:

Impact: The adversary A aims to manipulate the global
model G so that the modified model G′ provides incorrect pre-
dictions f (G′,x) = c′ ̸= f (G,x) for any inputs x ∈ IA , where
IA is the so-called trigger set consisting of specific attacker-
chosen inputs and c′ denotes the incorrect prediction chosen
by the adversary.

Stealthiness: To make the poisoned model G′ hard to detect
by aggregator A, it should closely mimic the behavior of G
on all other inputs not in IA , i.e.:

f (G′,x) =
{

c′ ̸= f (G,x) ∀x ∈ IA
f (G,x) ∀x /∈ IA

(1)

Additionally, to make poisoned models as indistinguishable
as possible from benign models, the distance (e.g., euclidean)
between a poisoned model W ′ and a benign model W must be
smaller than a threshold η denoting the distinction capability
of the anomaly detector of aggregator A, i.e., dist(W,W ′)< η.
The adversary can estimate this distance by comparing the
local malicious model to the global model or to a local model
trained on benign data.

Adversarial Capabilities. In this paper, we make no spe-
cific assumptions about the adversary’s behavior. We assume
that the adversary A has full control over k < n

2 clients and

their training data, processes, and parameters [7, 59]. We de-
note the fraction of compromised clients as Poisoned Model
Rate PMR = k

n . Furthermore, A has full knowledge of the
aggregator’s operations, including potentially applied back-
door defenses. However, A has no control over any processes
executed at the aggregator nor over the honest clients.

2.4 Preliminaries
HDBSCAN [11] is a density-based clustering algorithm
that uses the distance of data points in n-dimensional space
to group data points that are located near each other together
into a cluster. Hereby the number of clusters is determined
dynamically. Data points that do not fit to any cluster are
considered outliers. However, while HDBSCAN’s predeces-
sor DBSCAN [19] uses a predefined maximal distance to
determine whether two points belong to the same cluster,
HDBSCAN determines this maximal distance for each clus-
ter independently, based on the density of points. Thus, in
HDBSCAN, neither the maximal distance nor the total num-
ber of clusters need to be predefined.
Differential Privacy (DP). DP is a privacy technique that
aims to ensure that the outputs do not reveal individual data
records of participants. DP is formally defined as follows:

Definition 1 ((ε,δ)-differential privacy). A randomized al-
gorithm M is (ε,δ)-differentially private if for any datasets
D1 and D2 that differ on a single element, and any subset of
outputs S ∈ Range(M ), the following inequality holds:

Pr[M (D1) ∈ S ]≤ eε ·Pr[M (D2) ∈ S ]+δ.

Here, ε denotes the privacy bound and δ denotes the proba-
bility of breaking this bound [18]. Smaller values of ε and
δ indicate stronger privacy. A commonly used approach to
enforce differential privacy is adding random Gaussian noise
N(0,σ2) to the output of the algorithm [3, 18].

3 Problem Setting and Objectives
Backdoor Characterization. Following common practice
in FL-related papers (e.g., [7, 12, 22]), we represent Neural
Networks (NNs) using their weight vectors, in which the
extraction of weights is done identically for all models by
flattening/serializing the weight/bias matrices in a predeter-
mined order. Figure 2 shows an abstract two-dimensional
representation of the weight vectors of local models com-
pared to the global model Gt−1 of the preceding aggregation
round. Each model Wi can be characterized with two factors:
direction (angle) and magnitude (length) of its weight vector
(w1,w2, . . . ,wp). The angle between two updates Wi and Wj
can be measured, e.g., by using the cosine distance metric ci j
as defined in (2) while their magnitude difference is measured
by the L2-norm ei j as defined in (3).

ci j = 1− WiWj

∥Wi∥
∥∥Wj

∥∥ = 1− ∑p
k=1 wk

i wk
j√

∑p
k=1(w

k
i )

2
√

∑p
k=1(w

k
j)

2
(2)
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Figure 2: Weight vectors of benign and backdoored models.

ei j =
∥∥Wi−Wj

∥∥=
√

p

∑
k=1

(wk
i −wk

j)
2 (3)

Benign and backdoored local models are shown in blue and
red colors and are labeled with Wi or W ′i , respectively. Note
that the benign models are typically not identical due to the
potentially partially non-iid nature of their training data.

The impact of the adversarial goal (injection of a backdoor)
causes a deviation in the model parameters that manifests
itself as a difference in the direction and/or magnitude of the
backdoored model’s weight vector in comparison to benign
models, e.g., the deviations among local models and to the
global model Gt−1 of the previous aggregation round. Since
the adversary has full control over the training process of
compromised clients, he can fully control these distances, e.g.,
by changing the direction (in the case of W ′1) or magnitude
(in the case of W ′2) of the backdoored models’ weight vectors.

Figure 2 also shows three kinds of backdoored models re-
sulting from different types of backdoor attacks. The first type
W ′1 has a similar weight vector, but a large angular deviation
from the majority of local models and the global model. This
is because such models are trained to obtain high accuracy
on the backdoor task, which can be achieved by using a large
poisoned data rate (PDR) or a large number of local training
epochs (cf. Distributed Backdoor Attack (DBA) [59]). The
second backdoor type W ′2 has a small angular deviation but
a large magnitude to amplify the impact of the attack. Such
models can be crafted by the adversary by scaling up the
model weights to boost its effect on the global model (cf.
Model-replacement attack in [7]). The third backdoor type
W ′3 has a similar weight vector as benign models, the angular
difference and the magnitude are not substantially different
compared to benign models and, thus less distinguishable
from benign models. Such stealthy backdoored models can
be crafted by the adversary by carefully constraining the train-
ing process or scaling down the poisoned model’s weights (cf.
Constrain-and-scale attack [7] or FLIoT attack [45]).
Defense Objectives. A generic defense that can effectively
mitigate backdoor attacks in the FL setting needs to fulfill
the following objectives: (i) Effectiveness: To prevent the
adversary from achieving its attack goals, the impact of back-
doored model updates must be eliminated so that the aggre-
gated global model does not demonstrate backdoor behavior.
(ii) Performance: Benign performance of the global model

must be preserved to maintain its utility. (iii) Independence
from data distributions and attack strategies: The defense
method must be applicable to generic adversary models, i.e.,
it must not require prior knowledge about the backdoor attack
method, or make assumptions about specific data distributions
of local clients, e.g., whether the data are iid or non-iid.

4 FLAME Overview and Design
We present the high-level idea of FLAME and the associated
design challenges to fulfill the objectives identified in §3.

4.1 High-level Idea
Motivation. Earlier works (e.g., Sun et al. [56]) use differen-
tial privacy-inspired noising of the aggregated model for elim-
inating backdoors. They determine the sufficient amount of
noise to be used empirically. In the FL setting this is, however,
challenging, as one cannot in general assume the aggregator to
have access to training data, in particular to poisoned datasets.
What is therefore needed is a generic method for determining
how much noise is sufficient to remove backdoors effectively.
On the other hand, the more noise is injected into the model,
the more its benign performance will be impacted.
FLAME Overview. FLAME estimates the noise level re-
quired for backdoor removal in the FL setting without exten-
sive empirical evaluation and having access to training data
(this noise bound is formally proven in §5). In addition, to
effectively limit the amount of required noise, FLAME uses a
novel clustering-based approach to identify and remove adver-
sarial model updates with high impact and applies a dynamic
weight-clipping approach to limit the impact of models that
the adversary has scaled up to boost their performance. As
discussed in §3, one cannot guarantee that all backdoored
models can be detected since the adversary can fully control
both the angular and magnitude deviation to make the models
arbitrarily hard to detect. Our clustering approach therefore
aims to remove models with high attack impact (having larger
angular deviation) rather than all malicious models. Fig. 3
illustrates the high-level idea of FLAME consisting of the
above three components: filtering, clipping, and noising. We
emphasize, however, that each of these components needs
to be applied with great care, since, a naïve combination of
noising with clustering and clipping leads to poor results as
it easily fails to mitigate the backdoor and/or deteriorates the
benign performance of the model, as we show in §C. We de-
tail the design of each component and its use in the FLAME
defense approach in §4.3.

4.2 Design Challenges
To realize the high-level idea presented above, we need to
solve the following technical challenges.
C1- Filtering out backdoored models with large angular
deviations in dynamic scenarios. As discussed in §3, the
weight vector of a well-trained backdoored model, W ′, has a
higher angular difference in comparison to weight vectors of
benign models W . FLAME deploys a clustering approach to
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Figure 3: High-level idea of FLAME defense.

identify such poisoned models and remove them from FL ag-
gregation (detailed in §4.3.1). The effect of clustering-based
filtering is shown in Fig. 3a where model W ′1 is removed from
the aggregated model as it does not align with the directions
of benign models. In contrast to existing clustering-based de-
fenses, we need an approach that can also work in a dynamic
attack setting, i.e., the number of injected backdoors is un-
known and may vary between training rounds. To this end, we
make a key observation: clustering approaches using a fixed
number of clusters ncluster for identifying malicious models
are inherently vulnerable to attacks with varying numbers of
backdoors2 nbackdoor. This is because the adversary can likely
cause at least one backdoor model to be clustered together
with benign models due to the pigeonhole principle by simul-
taneously injecting nbackdoor ≥ ncluster backdoors. We seek
to solve this challenge by employing a clustering solution
that dynamically determines the clusters for model updates,
thereby allowing it to adapt to dynamic attacks.
C2-Limiting the impact of scaled-up backdoors. To limit
the impact of backdoored models that the adversary artificially
scales up to boost the attack (e.g., W ′2 in Fig. 2), the weight
vectors of models with high magnitudes can be clipped [56].
The effect of clipping is shown in Fig. 3a where the weight
vectors of all models with a magnitude beyond the clipping
bound S (in particular, backdoored model W ′2) are clipped to
S by scaling down the weight vectors. The resulting clipped
weight vectors are shown on the left side of Fig. 3b. The
challenge here is how to select a proper clipping bound with-
out empirically evaluating its impact on the training datasets
(which are not available in the FL setting). If the applied clip-
ping bound is too large, an adversary can boost its model W ′

by scaling its weights up to the clipping bound, thereby maxi-
mizing the backdoor impact on the aggregated global model
G. However, if the applied clipping bound is too small, a large
fraction of benign model updates W will be clipped, thereby
leading to performance deterioration of the aggregated global

2We consider two backdoors to be independent if they use different
triggers.

model G on the main task. We tackle this challenge in §4.3.2,
where we show how to select a clipping bound that can not
be influenced by the adversary and that effectively limits the
impact of scaled-up backdoored models.
C3-Selecting suitable noise level for backdoor elimination.
As mentioned in §4.1, FLAME uses model noising that ap-
plies Gaussian noise with noise level σ to mitigate the ad-
versarial impact of backdoored models (e.g., W ′3 in Fig. 2).
Similar to the clipping bound, however, also here the noise
level σ must be carefully selected, as it has a direct impact on
the effectiveness of the defense and the model’s benign per-
formance. If it is too low, the aggregated model might retain
backdoor behavior after model noising, rendering the defense
ineffective, while excessive noise will degrade the utility of
the aggregated model. To address this challenge, we develop
an approach for reliably estimating a sufficient but minimal
bound for the applied noise in §5.

4.3 FLAME Design
As discussed in §4.1, our defense consists of three main com-
ponents: filtering, clipping, and noising. Figure 4 shows these
components and the workflow of FLAME during training
round t. Algorithm 1 outlines the procedure of FLAME. In
the rest of this section, we detail the design of these compo-
nents to resolve the challenges in §4.2.
Algorithm 1 FLAME

1: Input: n, G0, T ▷ n is the number of clients, G0 is the initial
global model, T is the number of training iterations

2: Output: G∗T ▷ G∗T is the updated global model after T iterations
3: for each training iteration t in [1,T ] do
4: for each client i in [1,n] do
5: Wi← CLIENTUPDATE(G∗t−1) ▷ The aggregator

sends G∗t−1 to Client i who trains G∗t−1 using its data Di locally
to achieve local modal Wi and sends Wi back to the aggregator.

6: (c11, . . . ,cnn)← COSINEDISTANCE(W1, . . . ,Wn) ▷
∀i, j ∈ (1, . . . ,n), ci j is the cosine distance between Wi and W j

7: (b1, . . . ,bL)← CLUSTERING(c11, . . . ,cnn) ▷ L is the
number of admitted models, bl is the index of the lth model

8: (e1, . . . ,en) ← EUCLIDEANDIS-
TANCES(G∗t−1,(W1, . . . ,Wn)) ▷ ei is the Euclidean distance
between G∗t−1 and Wi

9: St ←MEDIAN(e1, . . . ,en) ▷ St is the adaptive clipping
bound at round t

10: for each client l in [1,L] do
11: W c

bl
← Gt−1 +(Wbl −Gt−1) ·MIN(1,γ) ▷ Where γ

(= St/ebl ) is the clipping parameter, W c
bl

is the admitted model
after clipped by the adaptive clipping bound St

12: Gt ← ∑L
l=1 W c

bl
/L ▷ Aggregating, Gt is the plain global

model before adding noise

13: σ← λ ·St where λ = 1
ε ·
√

2ln 1.25
δ ▷ Adaptive noising level

14: G∗t ← Gt +N(0,σ2) ▷ Adaptive noising

4.3.1 Dynamic Model Filtering
The Model Filtering component of FLAME utilizes a dy-
namic clustering technique based on HDBSCAN [11] that
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Figure 4: Illustration of FLAME’s workflow in round t.
identifies poisoned models with high angular deviations
from the majority of updates (e.g., W ′1 in Fig. 3a). Existing
clustering-based defenses [9, 51] identify potentially mali-
cious model updates by clustering them into two groups where
the smaller group is always considered malicious and thus
removed. However, if no malicious models are present in the
aggregation, this approach may lead to many models being
incorrectly removed and thus a reduced accuracy of the ag-
gregated model. These approaches also do not protect against
attacks in which adversary A simultaneously injects multi-
ple backdoors by using different groups of clients to inject
different backdoors. If the number of clusters is fixed, there
is the risk that poisoned and benign models end up in the
same cluster, in particular, if models with different backdoors
differ significantly. Consequently, existing model clustering
methods do not adequately address challenge C1 (§4.2). Fig. 5
shows the behavior of different clustering methods on a set of
model updates’ weight vectors. Fig. 5a shows the ground truth
of an attack scenario where A uses two groups of clients: one
group is used to inject a backdoor, whereas the other group
provides random models with the goal of fooling clustering-
based defenses. Fig. 5b shows how in this setting, K-means
(as used in Auror [51]) fails to successfully separate benign
and poisoned models as all poisoned models end up in the
same cluster with the benign models.

To overcome the limitations of existing defenses, we de-
sign our clustering solution and ensure that: (i) it is able to
handle dynamic attack scenarios where multiple backdoors
are injected simultaneously, and (ii) it minimizes false posi-
tives of poisoned model identification. In contrast to existing
approaches that try to place poisoned models into one cluster,
our approach considers each poisoned model individually as
an outlier, so that it can gracefully handle multiple simultane-
ous backdoors and thus address challenge C1.

FLAME uses pairwise cosine distances to measure the
angular differences between all model updates and applies the
HDBSCAN clustering algorithm [11]. The advantage here is
that cosine distances are not affected even if the adversary
scales up model updates to boost their impact as this does not
change the angle between the updates’ weight vectors. Since
the HDBSCAN algorithm clusters the models based on their
density of the cosine distance distribution and dynamically
determines the required number of clusters, we leverage it for
our dynamic clustering approach. We describe HDBSCAN

Benign

BackdooredRandom

(a) Ground truth

Accepted

Rejected

(b) K-means

Cluster A

Cluster BCluster C

(c) HDBSCAN

Accepted

Rejected (Outliers)

(d) FLAME
Figure 5: Comparison of clustering quality for (a) ground truth, (b)
using K-means with 2 clusters as in Auror [51], (c) straightforward
applied HDBSCAN and (d) our approach as in FLAME.

and how we apply it in detail in §E. In particular, HDBSCAN
labels models as outliers if they do not fit into any cluster.
This allows FLAME to effectively handle multiple poisoned
models with different backdoors by labeling them as outliers.
To realize this, we set the minimum cluster size to be at least
50% of the clients, i.e., n

2 + 1, so that the resulting cluster
will contain the majority of updates (which we assume to
be benign, cf. §2.3). All remaining (potentially poisoned)
models are marked as outliers. This behavior is depicted in
Fig. 5d where all the models from Clusters B and C from
Fig. 5c are considered as outliers. Hence, to the best of our
knowledge, our approach is the first FL backdoor defense that
is able to gracefully handle also dynamic attacks in which the
number of injected backdoors may vary. The clustering step
is shown in lines 6-7 of Alg. 1 where L models are retained
after clustering.

4.3.2 Adaptive Clipping and Noising
As discussed in §4.2 (challenges C2 and C3), determining
a proper clipping bound and noise level for model weight
clipping and noising is not straightforward. We present our
new approach for selecting an effective clipping bound and
reliably estimating a sufficient noise level that can effectively
eliminate backdoors while preserving the performance of the
main task. Furthermore, our defense approach is resilient to
adversaries that dynamically adapt their attacks.
Adaptive Clipping. Fig. 6 shows the variation of the average
L2-norms of model updates of benign clients in three differ-
ent datasets (cf. §6) over subsequent training rounds. We can
observe that the L2-norms of benign model updates become
smaller in later training rounds. To effectively remove back-
doors while minimizing the impact on benign updates, the
clipping bound S needs to be dynamically adapted to this
decreasing trend of the L2-norm. Recall that clipping is per-
formed after clustering by scaling down model weights so that
the L2-norm of the scaled model becomes smaller or equal
to the clipping threshold. We describe how FLAME deter-
mines a proper scaling factor for each model update Wi in
tth training round as follows: Given the index set (b1, . . .bL)
of the models admitted by the clustering method (line 7 of
Alg. 1), the aggregator first computes the clipping bound
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Figure 6: L2-norms of model updates depending on the num-
ber of training rounds for different datasets.
St as the median of the L2-norms of all n model updates:
St = MEDIAN(e1, . . . ,en). It should be noted that for deter-
mining the clipping bound, the rejected models are also con-
sidered to ensure that even if benign models were filtered,
the computed median St is still determined based on benign
values. However, after determining the clipping bound, only
the admitted models W1, . . . ,WL are considered for later pro-
cessing. The scaling factor for the lth admitted model is com-
puted as γ = St

ebl
where ebl is the L2-norm of the model up-

date Wbl . Clipping scales down model updates as follows:
W c

bl
= Gt−1 +(Wbl −Gt−1) ·MIN(1,γ) (detailed in line 8-11

of Alg. 1) where the multiplication is computed coordinate-
wise. It is worth noting that weighting contributions (i.e.,
adjusting scaling factor) based on client data sizes is insecure.
As we point out in §2.1, the reported dataset sizes by clients
cannot be trusted, i.e., the adversary can lie about their dataset
sizes to maximize attack impact [57]. Hence, we follow com-
mon practice in literature and weight the contributions of all
clients equally regardless of their dataset size [7,9,12,59]. By
using the median as the clipping bound St , we ensure that St is
always in the range of the L2-norms between benign models
and the global model since we assume that more than 50% of
clients are benign (cf. §2.3). We evaluate the effectiveness of
the clipping approach in §B.2.

Adaptive Noising. It has been shown that by adding noise
to a model’s weights, the impact of outlier samples can be
effectively mitigated [17]. Noise can also be added to poi-
soned samples (special cases of outliers) used in backdoor
injection. The more noise is added to the model during the
training process, the less responsive the model will be to the
poisoned samples. Thus, increasing model robustness against
backdoors. Eliminating backdoors utilizing noise addition
is conceptually the same in a centralized or federated set-
ting (e.g., [7, 17]): In both cases, noise is added to the model
weights to smooth out the effect of poisoned data (cf. Eq. 5).
The challenge is to determine as small a noise level as possible
to eliminate backdoors and at the same time not deteriorate
the benign performance of the model. As we discuss in detail
in §5.1, the amount of noise is determined by estimating the
sensitivity based on the differences (distances) among local
models, which can be done without access to training data.
We then add Gaussian noise to the global model Gt to yield
a noised global model G∗t as follows: G∗t = Gt +N(0,σ2),
see Lines 13-14 of Alg. 1 for more details. This ensures
that backdoor contributions are effectively eliminated from
the aggregated model. In particular, we show in §5.1 how

the noise-based backdoor elimination technique can be trans-
ferred from a centralized to a federated setting by analysing
the relationship between aggregated Gaussian noise applied to
the global model and individual noising of each local model.

5 Security Analysis

5.1 Noise Boundary Proof of FLAME
In this section, we provide a proof to corroborate that
FLAME can neutralize backdoors in the FL setting by apply-
ing strategical noising with bound analysis on the noise level.
We first formulate the noise boundary guarantee of FLAME
in Theorem 1. Subsequently, we explain related parameters
and prove how the noise level bound for σ can be estimated.
This is done by generalizing theoretical results from previous
works [17,18] to the FL setting. Then, we show how the filter-
ing and clipping component of FLAME helps to effectively
reduce the noise level bound in Theorem 2. We provide a
formal proof for linear models and extend the proof to DNNs
using empirical evaluation. This is because providing formal
proof for DP-based backdoor security for DNN models is still
an open research problem even for centralized settings.
Theorem 1. A (ε,δ)-differentially private model with param-
eters G and clipping bound St is backdoor-free if random
Gaussian noise is added to the model parameters yielding a
noised version G∗ of the model: G∗← G+N(0,σ2

G) where
the noise scale σG is determined by the clipping bound St and

a noise level factor λ: σG← λ ·St and λ = 1
ε ·
√

2ln 1.25
δ .

We explore the key observation that an ML model with a
sufficient level of differential privacy is backdoor-free. With
this new definition of backdoor-free models in the DP domain,
the main challenge to defeat backdoors in the FL setting is
to decide a proper noise scale for the global model without
knowledge of the training datasets. Furthermore, we need
to minimize the amount of noise added to the global model
to preserve its performance on the main task. None of the
prior DP-based FL backdoor defense techniques provide a
solution to the noise determination problem [56]. For the first
time, FLAME presents an approach to estimate the proper
noise scale that ensures the global model is backdoor-free.
The noise boundary proof in Theorem 1 consists of two steps:
Step 1 (S1). By introducing the data hiding property of DP
(Def. 1) and its implication as the theoretical guarantee for
backdoor-free models. We also discuss function sensitivity
(Def. 2) which is an important factor for selection of the DP
parameters (ε,δ).
Step 2 (S2). We show how FLAME generalizes backdoor
elimination from centralized setting to federated setting with
theoretical analysis of the noise boundary (Eq. 5 and 6).
FLAME is the first FL defense against backdoors that pro-
vides noise level proof with bounded backdoor effectiveness.
(S1) DP foundations and re-interpretation as Backdoor-
free. As discussed in §2.4, by definition, DP makes the differ-
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ence between data points indistinguishable. FLAME lever-
ages this property of DP for backdoor elimination. In par-
ticular, we can consider D1 and D2 in Def. 1 as the benign
and backdoored dataset. The inequality of DP suggests that
algorithm M has a high probability of producing the same
outputs on the benign and the poisoned dataset, meaning that
the backdoor is eliminated. The noise level σ is determined
based on the DP parameters (ε,δ) and the sensitivity of the
function f defined below:

Definition 2 (Sensitivity). Given the function f : D → Rd

where D is the data domain and d is the dimension of the
function output, the sensitivity of the function f is defined as:

∆ = max
D1, D2 ∈ D

|| f (D1)− f (D2)||2, (4)

where D1 and D2 differs on a single element ||D1−D2||1 = 1.

As shown in Lemma 1 [18], this definition can be extended
to datasets differing by more than one element, i.e., can be
generalized to the DP in the multiple-point-difference setting.
(S2) Generalizing backdoor resilience from centralized to
federated setting (FLAME). In the centralized setting, the
defender has access to the model to be protected, the benign
dataset, and the outlier (backdoored) samples. As such, he
can estimate the sensitivity ∆ for (ε,δ)-DP. When applying

Gaussian noise with the noise scale σ = ∆
ε

√
2ln 1.25

δ , the de-
fender can enforce a lower bound on the prediction loss of the
model on the backdoored samples for backdoor elimination
[28]. However, this robustness rationale cannot be directly
transferred from the centralized setting to the FL setting since
the defender in the federated scenario (i.e., aggregator) only
has access to received model updates, but not the datasets to
estimate the sensitivity ∆ for the global model.

FLAME extends DP-based noising for backdoor elimina-
tion to the federated setting based on the following observa-
tion: if one can ensure that all aggregated models are benign
(i.e., backdoor-free), then it is obvious that the aggregated
global model will also be backdoor-free. This intuition can
be formally proven if the FL aggregation rule is Byzantine-
tolerant. To ensure that any backdoor potentially present in
the model is eliminated and the aggregated model is benign,
a sufficient DP noise level is added to individual local mod-
els. However, since the local models are independent, adding
noise to each local model is mathematically equivalent to
the case where aggregated noise is added to the global model.
This is conceptually equivalent to the conventional centralized
setting, for which it has been formally shown that DP noise
can eliminate backdoors [17]. In the following, we therefore
show that adding DP noise to local models is equivalent to
adding ‘aggregated’ DP noise to the global model.

We write the standard deviation of noise for the local mod-
els in the form σi← αi·ei

ε ·
√

2ln 1.25
δ where αi =

∆i
ei

, ∆i and ei

is the sensitivity and the L2 norm of the model Wi, respectively.
Mathematically, the FL system with FLAME has:

G∗ =
1
n

Σn
i=1W ∗i =

1
n
[ Σn

i=1 Wi +N(0,σ2
i )]

=
1
n

Σ2
i=1Wi +

1
n

Σn
i=1N(0,σ2

i )

=
1
n

Σ2
i=1Wi +N(0,

1
n

Σn
i=1σ2

i )

= G+N(0,σ2
G)

(5)

in which W ∗i are local models and G∗ the global model after
adding noise N(0,σ2

i ). Equation 5 represents the fact that
adding DP noise to each local model (i.e., Wi +N(0,σ2

i )) is
equivalent to adding an ‘aggregated’ DP noise on the global
model (i.e., G+N(0,σ2

G)). More specifically, this equivalent
Gaussian noise on the global model is the sum of Gaus-
sian noise applied on each local model with a scaling factor
NG = 1

n Σn
i=1Ni. Here, NG and Ni are random variables with

distribution N(0,σ2
G) and N(0,σ2

i ), respectively. As such, we
can compute the equivalent noise scale for the global model:

σ2
G =

1
n2 Σn

i=1σ2
i = (

1
ε

√
2ln

1.25
δ

)2 · 1
n2 Σn

i=1∆2
i

= (
1
ε

√
2ln

1.25
δ

)2 · 1
n2 Σn

i=1α2
i e2

i . (6)

Equation 6 describes the relation between the DP noise added
on FLAME’s global model and the DP noise added on each
local model. This noise scale relation in Eq. 6 together with
the transformation in Eq. 5 enable FLAME to provide guaran-
teed security for the global model against backdoors, thereby
addressing Challenge C3 .

In Alg. 1, we use the median of Euclidean distances ei as the
upper bound St to clip the admitted local models (line 9-11).
We hypothesize that the sensitivity of a model Wi is positively
correlated with its weight magnitude |Wi| (see Theorem 2
for details). In the case of linear models, the sensitivity ∆
has a linear relation with the model weight |−→w | (see Eq. 8).
Therefore, we use the following approximation:

1
n2 Σn

i=1α2
i e2

i =
1
n2 Σn

i=1∆2
i ≈ S2

t ,

where St is the weight clipping bound. Having substituted the
above approximation into Eq. 6, we can compute the noise
scale of DP that FLAME deploys on the global model NG:

σG ≈
St

ε

√
2ln

1.25
δ

(7)

This concludes the proof of Theorem 1.
FLAME’s adaptive noising step applies the Gaussian noise
with the noise scale computed in Eq. 7 on the global model
for backdoor elimination as shown in Alg. 1, line 13-14. Note
that FLAME’s noising scheme is adaptive since the clipping
bound St is obtained dynamically in each tth epoch.

Next, we present Theorem 2 and justify how FLAME de-
sign reduces the derived noise level with step 3 (S3) below.
(S3) Clustering and clipping components in FLAME help
to reduce the DP noise boundary. Recall that FLAME pro-
tects the FL system against backdoor attacks using three steps:
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clustering, clipping, and adding DP noise. The overall work-
flow of FLAME is shown in Fig. 4. If multiple backdoors
exist in the FL system, the first two steps (clustering and clip-
ping) can remove a subset of backdoors as shown in Fig. 3a.
Note that the remaining backdoors are ‘closer’ to the benign
model updates in terms of both magnitude and direction. This
gives us the intuition that removing the remaining backdoors
by adding DP noise becomes easier (i.e., the noise scale σG
is smaller) after the first two steps of FLAME.

We can see from Theorem 1 that the Gaussian noise scale σ
required for backdoor resilience increases with the sensitivity
of each local model ∆i. We describe two characteristics of the
model parameter W , i.e., direction and magnitude in §4. We
discuss how these two factors impact the sensitivity of the
model defined in Eq. 4 below.
Theorem 2. Backdoor models with large angular deviation
from benign ones, or with large parameter magnitudes have
high sensitivity values ∆.

Proving DP-based backdoor security for DNN models is
still an open problem, even in the centralized setting. We,
therefore, adopt a common approach in literature (e.g., [17])
by providing theoretical proof for linear models and validating
it for DNNs empirically.

Proof : for a linear model f where the function output is
determined by the inner product of model weight vector −→w
and the data vector −→x , we have

f (w; x) =−→w ·−→x = |w| · |x| · cosθ, (8)

where θ =<−→w ,−→x > is the angle between two vectors. In this
case, it is straightforward to see that if the backdoor attack
changes the parameter magnitude |w| or the direction θ of
the model f , the resulting poisoned model f ′ has a large
sensitivity value based on the definition in Eq. 4.

This analysis suggests that backdoor models with large an-
gular deviations or with large weight magnitudes have a high
sensitivity value ∆. Recall that FLAME deploys dynamic
clustering (§4.3.1) to remove poisoned models with large
cosine distances, and employs adaptive clipping (§4.3.2) to
remove poisoned models with large magnitudes. Therefore,
the sensitivity of the remaining backdoor models is lower
compared to the one before applying these two steps. As a re-
sult, FLAME can use a small Gaussian noise to eliminate the
remaining backdoors after applying clustering and clipping,
which is beneficial for preserving the main task accuracy.

We empirically show how the noise scale for backdoor
elimination changes after applying each step of FLAME. Par-
ticularly, we measure the smallest Gaussian noise scale σ
required to defeat all backdoors (i.e., BA = 0%) in three set-
tings: i) No defense components applied (which is equivalent
to the previous DP-based defense [7, 18]); ii) After applying
dynamic clustering; iii) After applying both dynamic cluster-
ing and adaptive clipping (which is the setting of FLAME).
We conduct this comparison experiment on the IoT-Traffic
dataset (cf. §6). For each communication round, 100 clients

Table 1: Effect of clustering and clipping in FLAME on
minimal Gaussian noise level σ for backdoor elimination in
the NIDS scenario, in terms of Backdoor Accuracy (BA) and
Main Task Accuracy (MA).

σ
Only

Noising
After

Clustering
After Clustering

& Clipping
BA MA BA MA BA MA

0.01 100.0% 100.0% 0.0% 80.5% 0.0% 100.0%
0.08 3.5% 66.7% 0.0% 66.7% 0.0% 100.0%
0.10 0.0% 54.2% 0.0% 66.1% 0.0% 87.6%

are selected where k = 40 are adversaries. We remove the
backdoor by adding Gaussian noise N(0,σ2) to the aggre-
gated model. Table 1 summarizes the evaluation results in the
above three settings. We can observe from the comparison
results that the noise scale required to eliminate backdoors de-
creases after individual deployment of clustering and clipping.
This corroborates the correctness of Theorem 2.

5.2 Attack and Data Distribution Assumption
In FLAME, we do not make specific assumptions about
the attack and data distribution compared to the existing
clustering-based defenses. Let X = (X1, . . . ,Xb) be a set of dis-
tributions of benign models (W1, . . . ,Wn−k) where b≤ n− k.
The deviation in X is caused by the diversity of the data. Let
X ′ = (X ′1, . . . ,X

′
a) be a set of distributions of poisoned mod-

els (W ′1, . . . ,W
′
k) where a≤ k. The deviation in X ′ is caused

by the diversity of the benign data and backdoors (e.g., poi-
soned data or model crafting). Existing works assume that
X ′i ≈X ′j (∀i, j : 1≤ i, j≤ a) (see e.g., [22] or X ′ ̸=X [9,51]).
However, this assumption does not hold in many situations
because (i) there can be one or multiple attackers injecting
multiple backdoors [7], or (ii) the adversary can inject one
or several random (honeypot) models having a distribution
X ′r that is significantly different from X ∪ (X ′ \X ′r), and (iii)
the adversary can control how much the backdoored mod-
els deviate from benign ones as discussed in §3. Therefore,
approaches that purely divide models into two groups, e.g.,
K-means [51] will incorrectly classify models having distri-
bution X ′r into the malicious group and all remaining models
(having distributions drawn from (X ∪ (X ′ \X ′r)) into the be-
nign group. As a result, all backdoored models having dis-
tributions drawn from (X ′ \X ′r) are classified as benign, as
demonstrated in Fig. 5b. In contrast, FLAME does not rely
on such specific assumptions (the adversary can arbitrarily
choose X ′). If the distribution X ′i of a poisoned model is simi-
lar to benign distributions in X , FLAME will falsely classify
X ′i as being. But if the distribution X ′j of a poisoned model is
different from the distributions in X , FLAME will identify X ′j
as an outlier and classify the associated model as malicious.
To identify deviating and thus potentially malicious models,
FLAME leverages the HDBSCAN algorithm to identify re-
gions of high density in the model space. Any models that are
not located in the dense regions will be categorized as out-
liers, as shown in Fig. 5d. As discussed in §3, FLAME aims
to remove models with distributions X ′j that have a higher
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attack impact compared to models with distribution X ′i . It is
worth noting, however, that the impact of such remaining back-
doored models will be eliminated by the noising component
as shown in §5.1
Striking a balance between accuracy and security: Clus-
tering and DP-based approaches affect model accuracy as
discussed in §4.2 (Challenges C2 and C3). In particular, an ap-
proach that aims to maximize the number of filtered malicious
models may lead to many false positives, i.e., many benign
models being filtered out. Moreover, applying a very low clip-
ping bound or a very high level of injected noise will degrade
model accuracy. To address these problems, FLAME is con-
figured so that the clustering component removes only models
with high attack impact rather than all malicious models, i.e.,
it aims to remove the first backdoor type W ′1 as shown in
Fig. 3. In addition, FLAME carefully estimates the clipping
bound and noise level to ensure backdoor elimination while
preserving model performance. As discussed in §4.3.2, the
L2-norms of model updates depend on the number of training
rounds, dataset types, and type of backdoors. Consequently,
the clipping threshold and noise level should be adapted to
L2-norms. We therefore apply the median of the L2-norms of
model updates as the clipping bound St (cf. Lines 9-11 of Alg.
1). This ensures that St is always computed between a benign
local model and the global model since we assume that more
than 50% of clients are benign (cf. §2.3). Further, estimating
noise level based on St (cf. Lines 13-14 of Alg. 1) also pro-
vides a noise boundary that ensures that the global model is
resilient against backdoors as discussed in §5.1. Moreover,
our comparison of potential values for St presented in §B.2
and §B.3 shows that the chosen clipping bound and noise
level provide the best balance between accuracy and security,
i.e., FLAME eliminates backdoor while retaining the global
model’s performance on the main task.

6 Experimental Setup
We conduct all the experiments using the PyTorch deep learn-
ing framework [2] and use the source code provided by Bag-
dasaryan et al. [7], Xie et al. [59] and Wang et al. [57] to
implement the attacks. We reimplemented existing defenses
to compare them with FLAME.
Datasets and Learning Configurations. Following recent
research on poisoning attacks on FL, we evaluate FLAME
in three typical application scenarios: word prediction [35,
38–40], image classification [13, 49, 50], and an IoT intrusion
detection [44,47,48,54] as summarized in Tab. 2. Verification
of the effectiveness of FLAME against state-of-the-art attacks
in comparison to existing defenses (cf. Tab. 3 and Tab. 4) are
conducted on these three datasets in the mentioned application
scenarios. Experiments for evaluating specific performance
aspects of FLAME are performed on the IoT dataset as it
represents a very diverse and real-world setting with clear
security implications.
Evaluation Metrics. We consider a set of metrics for evalu-

Table 2: Datasets used in our evaluations.
Application Datasets #Records Model #params
WP Reddit 20.6M LSTM ∼20M
NIDS IoT-Traffic 65.6M GRU ∼507k

IC
CIFAR-10 60k ResNet-18 Light ∼2.7M
MNIST 70k CNN ∼431k
Tiny-ImageNet 120k ResNet-18 ∼11M

ating the effectiveness of backdoor attack and defense tech-
niques as follows:
BA - Backdoor Accuracy indicates the accuracy of the model
in the backdoor task, i.e., it is the fraction of the trigger set
for which the model provides the wrong outputs as chosen by
the adversary. The adversary aims to maximize BA, while an
effective defense prevents the adversary from increasing it.
MA - Main Task Accuracy indicates the accuracy of a model
in its main (benign) task. It denotes the fraction of benign
inputs for which the system provides correct predictions. The
adversary aims at minimizing the effect on MA to reduce the
chance of being detected. The defense system should not neg-
atively impact MA.
TPR - True Positive Rate indicates how well the defense
identifies poisoned models, i.e., the ratio of the number of
models correctly classified as poisoned (True Positives - TP)
to the total number of models being classified as poisoned:
TPR= T P

T P+FP , where FP is False Positives indicating the num-
ber of benign clients that are wrongly classified as malicious.
TNR - True Negative Rate indicates the ratio of the number
of models correctly classified as benign (True Negatives - TN)
to the total number of benign models: TNR = T N

T N+FN , where
FN is False Negatives indicating the number of malicious
clients that are wrongly classified as benign.

7 Experimental Results
In this section, we evaluate FLAME against backdoor attacks
in the literature (§7.1) and demonstrate that our defense mech-
anism is resilient to adaptive attacks (§7.2). In addition, we
show the effectiveness of each of FLAME’s components in
§B and FLAME overhead in §D. Finally, we evaluate the
impact of the number of clients (§7.3) as well as the degree
of non-IID data (§7.4).

7.1 Preventing Backdoor Attacks
Effectiveness of FLAME. We evaluate FLAME against
the state-of-the-art backdoor attacks called constrain-and-
scale [7], DBA [59], PGD and Edge-Case [57] and an untar-
geted poisoning attack [20] (cf. §F) using the same attack
settings as in the original works with multiple datasets. The
results are shown in Tab. 3. FLAME completely mitigates the
constrain-and-scale attack (BA = 0%) for all datasets. More-
over, our defense does not affect the Main Task Accuracy
(MA) of the system as MA reduces by less than 0.4% in all
experiments. The DBA attack as well as the Edge-Case at-
tack [57] are also successfully mitigated (BA = 3.2%/4.0%).
Further, FLAME is also effective against PGD attacks (BA =
0.5 %). It should be noted that suggesting words is a quite
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Table 3: Effectiveness of FLAME against state-of-the-art
attacks for the respective dataset, in terms of Backdoor Accu-
racy (BA) and Main Task Accuracy (MA). All metric values
are reported as percentages.

Dataset No Defense FLAME
Attack BA MA BA MA

Constrain-and-scale [7] Reddit 100 22.6 0 22.3
CIFAR-10 81.9 89.8 0 91.9
IoT-Traffic 100.0 100.0 0 99.8

DBA [59] CIFAR-10 93.8 57.4 3.2 76.2
Edge-Case [57] CIFAR-10 42.8 84.3 4.0 79.3
PGD [57] CIFAR-10 56.1 68.8 0.5 65.1
Untargeted Poisoning [20] CIFAR-10 - 46.72 - 91.31

Table 4: Effectiveness of FLAME in comparison to state-of-
the-art defenses for the constrain-and-scale attack on three
datasets, in terms of Backdoor Accuracy (BA) and Main Task
Accuracy (MA). All values are percentages.

Defenses Reddit CIFAR-10 IoT-Traffic
BA MA BA MA BA MA

Benign Setting - 22.7 - 92.2 - 100.0
No defense 100.0 22.6 81.9 89.8 100.0 100.0
Krum [9] 100.0 9.6 100.0 56.7 100.0 84.0
FoolsGold [22] 0.0 22.5 100.0 52.3 100.0 99.2
Auror [51] 100.0 22.5 100.0 26.1 100.0 96.6
AFA [42] 100.0 22.4 0.0 91.7 100.0 87.4
DP [18] 14.0 18.9 0.0 78.9 14.8 82.3
Median [60] 0.0 22.0 0.0 50.1 0.0 87.7
FLAME 0.0 22.3 0.0 91.9 0.0 99.8

challenging task, causing the MA even without attack to be
only 22.7%, aligned with previous work [7].

We extend our evaluation to various backdoors on three
datasets. For NIDS, we evaluate 13 different backdoors (Mirai
malware attacks) and 24 device types (78 IoT devices). The
results show that FLAME is able to mitigate all backdoor
attacks completely while achieving a high MA=99.8%. We
evaluate 5 different word backdoors for WP, and 90 differ-
ent image backdoors for IC, which change the output of a
whole class to another class. In all cases, FLAME success-
fully mitigates the attack while still preserving the MA.
Comparison to existing defenses. We compare FLAME
to existing defenses: Krum [9], FoolsGold [22], Auror [51],
Adaptive Federated Averaging (AFA) [42], Median [60] and a
generalized differential privacy (DP) approach [7, 40]. Tab. 4
shows that FLAME is effective for all 3 datasets, while pre-
vious works either fail to mitigate backdoors or reduce the
main task accuracy. Krum, FoolsGold, Auror, and AFA do not
effectively remove poisoned models and BA often remains
at 100%. Also, some defenses make the attack even more
successful than without defense. Since they remove many
benign updates (cf. §B) but fail to remove a sufficient number
of poisoned updates, these defenses increase the PMR and,
therefore, also the impact of the attack. Some defenses, e.g.,
Krum [9], Auror [51] or AFA [42] are not able to handle
non-iid data scenarios like Reddit. In contrast, FoolsGold is
only effective on the Reddit dataset (TPR = 100%) because
it works well on highly non-independent and identically dis-
tributed (non-IID) data (cf. §9). Similarly, AFA only mitigates

backdoors on the CIFAR-10 dataset since the data are highly
IID (each client is assigned a random set of images) such that
the benign models share similar distances to the global model
(cf. §9). Additionally, the model’s MA is negatively impacted.
The DP-based defense is effective, but it significantly reduces
MA. For example, it performs best on the CIFAR-10 dataset
with BA = 0, but MA decreases to 78.9% while FLAME in-
creases MA to 91.9% which is close to the benign setting (no
attacks), where MA = 92.2%.
Effectiveness of FLAME’s Components. Further, we have
also conducted an extensive evaluation of the effectiveness of
each of FLAME’s components. Due to space limitations, we
would like to refer to §B for the details.

7.2 Resilience to Adaptive Attacks
Given sufficient knowledge about FLAME, an adversary may
seek to use adaptive attacks to bypass the defense components.
In this section, we analyze such attack scenarios and strategies
including changing the injection strategy, model alignment,
and model obfuscation.
Changing the Injection Strategy. The adversary A may at-
tempt to inject several backdoors simultaneously to execute
different attacks on the system in parallel or to circumvent the
clustering defense (cf. §2.2). FLAME is also effective against
such attacks (cf. Fig. 5). To further investigate the resilience of
FLAME against such attacks, we conduct two experiments:
1) assigning different backdoors to malicious clients and 2)
letting each malicious client inject several backdoors. To
ensure that each backdoor is injected by a sufficient number
of clients, we increased the PMR for this experiment. We
conducted these experiments with n = 100 clients of which
k = 40 are malicious on the IoT-Traffic dataset with each type
of Mirai attack representing a backdoor. First, we evaluate
FLAME for 0,1,2, 4, and 8 backdoors, meaning that the num-
ber of malicious clients for each backdoor is 0,40,20,10, and
5. Our experimental results show that our approach is effec-
tive in mitigating the attacks as BA = 0%±0.0% in all cases,
with TPR = 95.2%±0.0%, and TNR = 100.0%±0.0%. For
the second experiment, 4 backdoors are injected by each of
the 40 malicious clients. Also, in this case, the results show
that FLAME can completely mitigate the backdoors.
Model Alignment. Using the same attack parameter values,
i.e., PDR (cf. §2.2), for all malicious clients can result in high
distances between benign and poisoned models. Those high
distances can be illustrated as a gap between poisoned and be-
nign models, s.t. the clustering can separate them. Therefore,
a sophisticated adversary can generate models that bridge the
gap between them such that they are merged to the same clus-
ter in our clustering. We evaluate this attack on the IoT-Traffic
dataset for k = 80 malicious clients and n = 200 clients in
total. To remove the gap, each malicious client is assigned a
random amount of malicious data, i.e., a random PDR ranging
from 5% to 20%. As Tab. 5 shows, when we apply model
filtering only, our clustering component cannot identify the
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Table 5: Resilience to model alignment attacks in terms of
Backdoor Accuracy (BA), Main Task Accuracy (MA), True
Positive Rate (TPR), True Negative Rate (TNR) in percent.

BA MA TPR TNR
Model Filtering 100.0 91.98 0.0 33.04
FLAME 0.0 100.0 5.68 33.33

malicious clients well (TPR = 0%), resulting in BA = 100%.
However, when we apply FLAME, although TPR remains
low (5.68%) FLAME still mitigates the attack successfully
(BA reduces from 100% to 0%). This can be explained by the
fact that when the adversary A tunes malicious updates to be
close to the benign ones, the attack’s impact is reduced and
consequently averaged out by our noising component.
Model Obfuscation. A can add noise to the poisoned models
to make them difficult to detect. However, our evaluation
of such an attack on the IoT-Traffic dataset shows that this
strategy is not effective. We evaluate different noise levels to
determine a suitable standard deviation for the noise. Thereby,
we observe that a noise level of 0.034 causes the models’
cosine distances in clustering to change without significantly
impacting BA. However, FLAME can still efficiently defend
this attack: BA remains at 0% and MA at 100%.

7.3 Effect of Number of Clients
Impact of Number of Malicious Clients. We assume that
the number of benign clients is more than half of all clients
(cf. §2.2) and our clustering is only expected to be successful
when PMR = k

n < 50% (cf. §4.3.1). We evaluate FLAME for
different PMR values. Figure 7 shows how BA, TPR, and TNR
change in the IC, NIDS, and WP applications for PMR values
from 25% to 60%. It shows that FLAME is only effective
if PMR < 50% so that only benign clients are admitted to
the model aggregation (TNR = 100%) and thus BA = 0%.
However, if PMR > 50%, FLAME fails to mitigate the attack
because the majority of poisoned models will be included
resulting in low TNR. Interestingly, FLAME accepted all
models for PMR = 50% (TPR = 0% and TNR = 100%). For
the IC application, since the IC data are non-IID, poisoned
models are not similar. Therefore, some poisoned models
were excluded from the cluster resulting in a high TPR even
for PMRs higher than 50%. However, the majority of poisoned
models were selected resulting in the drop in the TNR.

Varying number of clients in different training rounds.
In general, FLAME is a round-independent defense, i.e., it
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Figure 7: Impact of the poisoned model rate PMR = k

n on the
evaluation metrics. PMR is the fraction of malicious clients k
per total clients n.
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(b) Network Intrusion Detection
Figure 8: Impact of the number of clients on FLAME

does not use information from previous rounds such as which
clients were excluded in which rounds. Therefore, FLAME
will not be affected if the number of clients or number of
malicious clients varies as long as the majority of clients
remain benign. To demonstrate this, we simulate realistic sce-
narios in which clients can join and drop out dynamically.
We conducted an experiment where during each round, the
total number of available clients is randomly selected. As the
result, the number of malicious clients will also be random.
In this experiment, we used a population of 100 clients in

total, out of which 25 are malicious. In each round, a ran-
dom number (from 60 to 90) of clients are selected, so that
the fraction of malicious clients (PMR) varies in each round.
Figure 8 shows the experimental results. One can see that
the proportion of malicious clients (PMR) does not affect the
effectiveness of FLAME, i.e., the backdoor is completely re-
moved (BA = 0%) in every round. Since all poisoned models
are detected, their negative effect on the aggregated model
is removed. Therefore, the MA with FLAME is better than
the one without defense, and is almost always 100 % aligned
with the results in Tab. 4.

7.4 Impact of the Degree of non-IID Data
Since clustering is based on measuring differences between
benign and malicious updates, the distribution of data among
clients might affect our defense. We conduct two experiments
for both Constrain-and-scale and Edge-Case PGD on the
CIFAR-10 dataset. For Reddit and IoT datasets, changing the
degree of non-IID data is not meaningful since the data have a
natural distribution as every client obtains data from different
Reddit users or traffic chunks from different IoT devices.
Following previous works [20,57], we vary the degree of non-
IID data DegnIIDby changing the fraction of images belonging
to a specific class assigned to clients. In particular, we divide
the clients into 10 groups corresponding to the 10 classes of
CIFAR-10. The clients of each group are assigned a fixed
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Figure 9: Impact of degree of non-IID data on FLAME for
constrain-and-scale using the DegnIIDand for the Edge-Case
PGD attack using the α parameter of the Dirichlet distribution.
fraction of DegnIIDof the images from its designated image
class, while the rest of the images will be assigned to it at
random. Consequently, the data distribution is random, i.e.,
completely IID if DegnIID = 0% (all images are randomly
assigned) and completely non-IID if DegnIID = 100% (a client
only gets images from its designated class).

Figure 9a shows the evaluation results for the constrain-
and-scale attacks. Although FLAME does not detect the poi-
soned models for very non-IID scenarios, it still mitigates the
attack as the BA remains 0% for all values of DegnIID. For low
DegnIID, FLAME effectively identifies the poisoned models
(T NR = 100%) and the MA remains on almost the same level
as without defense. As shown in Fig. 9b, FLAME also miti-
gates the Edge-Case PGD attack effectively for all α values of
the Dirichlet distribution and the MA also stays on the same
level as without defense. However, since not all poisoned
models are detected, a higher σ is determined dynamically
to mitigate the constrain-and-scale backdoor, resulting in a
slightly reduced MA for DegnIID ≥ 0.7 (MA is 91.9% for
DegnIID = 0.6, and is reduced to 91.0% for DegnIID = 1.0).
Note that Fig. 9 shows the evaluation results in a training
round t where the global model Gt is close to convergence [7],
thus even though the TNR decreases with a large value of
DegnIID, the drop of MA with FLAME is not substantial.

8 Privacy-preserving Federated Learning
A number of attacks on FL have been proposed that aim to
infer from parameters of a model the presence of a specific
training sample in the training dataset (membership inference
attacks) [41, 46, 52], properties of training samples (property
inference attacks) [23,41], try to assess the proportion of sam-
ples of a specific class in the data (distribution estimation
attacks) [58]. Inference attacks by the aggregator As are sig-
nificantly stronger, as As has access to the local models [43]
and can also link gained information to a specific user, while
the global model anonymizes the individual contributions.
Therefore, enhanced privacy protection for FL is needed that
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Figure 10: Overview of private FLAME in round t using
Secure-Two-Party Computation (STPC).
prohibits access to the local model updates.
Adversary Model (privacy). In this adversary type, As at-
tempts to infer sensitive information about clients’ data Di
from their model updates Wi [23, 41, 46, 52] by maximizing
the information φi = INFER(Wi) that As gains about the data
Di of client i by inferring from its corresponding model Wi.
Deficiencies of existing defenses. Generally, there are two ap-
proaches to protect the privacy of clients’ data: differential pri-
vacy (DP; [18]) and cryptographic techniques such as homo-
morphic encryption [24] or multi-party computation [14]. DP
is a statistical approach that can be efficiently implemented,
but it can only offer high privacy protection at the cost of
a significant loss in accuracy due to the noise added to the
models [6, 61]. In contrast, cryptographic techniques provide
strong privacy guarantees as well as high accuracy at the cost
of reduced efficiency.
Private FLAME. To securely implement FLAME using
STPC, we use an optimized combination of three promi-
nent STPC techniques as implemented with state-of-the-art
optimizations in the ABY framework [14]. Fig. 10 shows
an overview of private FLAME. It involves n clients and
two non-colluding servers, called aggregator A and external
server B. Each client i ∈ {1, ...,n} splits the parameters of its
local update Wi into two Arithmetic shares ⟨X⟩Ai and ⟨X⟩Bi ,
such that Wi = ⟨X⟩Ai + ⟨X⟩Bi , and sends ⟨X⟩Ai to A and ⟨X⟩Bi
to B. A and B then privately compute the new global model
via STPC. We co-design the distance calculation, clustering,
adaptive clipping, and aggregation of FLAME (cf. Alg. 1)
of FLAME as efficient STPC protocols.To further improve
performance, we approximate HDBSCAN with the simpler
DBSCAN [10] to avoid the construction of the minimal span-
ning tree in HDBSCAN as it is very expensive to realize with
STPC. See §G for more details on private FLAME evaluation
of its accuracy and performance.

9 Related Work
In general, existing backdoor defenses can roughly be divided
into two main categories. The first one aims to distinguish
malicious updates and benign updates by 1) clustering model
updates [9,15,22,29,33,34,51], 2) changing aggregation rules
[25, 60], and 3) using root dataset [4]. The second category is
based on differential privacy techniques [7,56]. Next, we will
discuss these points in detail.
Clustering model updates. Several backdoor defenses, such
as Krum [9], AFA [42], and Auror [51], aim at separat-
ing benign and malicious model updates. However, they
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only work under specific assumptions about the underly-
ing data distributions, e.g., Auror and Krum assume that
data of benign clients are iid. In contrast, FoolsGold and
AFA [42] assume that benign data are non-iid. In addition,
FoolsGold assumes that manipulated data are iid. As a re-
sult, these defenses are only effective under specific circum-
stances (cf. §7.1) and cannot handle the simultaneous in-
jection of multiple backdoors (cf. §4.3.1). Moreover, such
defenses cannot detect stealthy attacks, e.g., where the ad-
versary constrains their poisoned updates within benign up-
date distribution such as Constrain-and-scale attacks [7]. In
contrast, FLAME does not make any assumption about the
data distribution, clipping, and noising components can also
mitigate stealthy attacks, and FLAME can defend against
injection of multiple backdoors (cf. §4.3.1).
Changing aggregation rules. Instead of using FedAvg [38],
Yin et al. [60] and Guerraoui et al. [25] propose using the
median parameters from all local models as the global model
parameters, i.e., Gt = MEDIAN(W t

1 , . . . ,W
t
n). However, the

adversary can bypass it by injecting stealthy models like W ′3
(cf. Fig. 2), in which the parameters of poisoned model will
be selected to be incorporated into the global model. Further,
our evaluation in §7.1 shows that Median also reduces the
performance of the model significantly.
Using root data. Although FLTrust [12] can defend against
byzantine clients (with arbitrary behavior) and detect poison-
ing attacks including backdoors, it requires the aggregator to
have access to a benign root dataset. Baffle [4] utilizes clients
using their own data to evaluate the performance of the ag-
gregated model to detect backdoors. However, this approach
has several limitations. Firstly, the backdoor triggers are only
known to the attacker. One cannot ensure that the benign
clients would have such trigger data to activate the backdoor.
Secondly, Baffle does not work in a non-IID data scenario
with a small number of clients as clients cannot distinguish
deficits in model performance due to the backdoor from lack
of data.
Differential Privacy-based approaches. Clipping and nois-
ing are known techniques to achieve differential privacy
(DP) [18]. However, directly applying these techniques to
defend against backdoor attacks is not effective because
they significantly decrease the Main Task Accuracy (§7.1)
[7]. FLAME tackles this by i) identifying and filtering out
potential poisoned models that have a high attack impact
(cf. §4.3.1), and ii) eliminating the residual poison with an
appropriate adaptive clipping bound and noise level, such that
the Main Task Accuracy is retained (cf. §4.3.2).

10 Conclusion
In this paper, we introduce FLAME, a resilient aggregation
framework for FL that eliminates the impact of backdoor at-
tacks while maintaining the performance of the aggregated
model on the main task. We propose a method to approximate
the amount of noise that needs to be injected into the global

model to neutralize backdoors. Furthermore, in combination
with our dynamic clustering and adaptive clipping, FLAME
can significantly reduce the noise scale for backdoor removal
and thus preserve the benign performance of the global model.
In addition, we design, implement, and benchmark efficient se-
cure two-party computation protocols for FLAME to ensure
the privacy of clients’ training data and to impede inference
attacks on client updates.
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A Datasets and Learning Configurations
Word Prediction (WP). We use the Reddit dataset of Novem-
ber 2017 [1] with the same settings as state-of-the-art works
[7, 38, 40] for comparability. In particular, each user in the
dataset with at least 150 posts and not more than 500 posts is
considered as a client. This results in 80 000 clients’ datasets
with sizes between 298 and 32 660 words.

The model consists of two LSTM layers and a linear output
layer [7, 38]. To be comparable to the attack setting in [7],
we evaluate FLAME on five different backdoors, each with
a different trigger sentence corresponding to a chosen output.
Image Classification (IC). For image classification, we use
mainly the CIFAR-10 dataset [31], a standard benchmark
dataset for image classification, in particular for FL [38] and
backdoor attacks [7, 8, 42]. It consists of 60 000 images of
10 different classes. The adversary aims at changing the pre-
dicted label of one class of images to another class of images.
We use a lightweight version of the ResNet18 model [26] with
4 convolutional layers with max-pooling and batch normaliza-
tion [7]. The experimental setup consists of 100 clients and
uses a PMR of 20%. In addition to the CIFAR-10 dataset, we
also evaluate FLAME’s effectiveness on two further datasets
for image classification. The MNIST dataset consists of 70 000
handwritten digits [32]. The learning task is to classify images
to identify digits. The adversary poisons the model by misla-
beling labels of digit images before using it for training [51].
We use a convolutional neural network (CNN) with 431000
parameters. The Tiny-ImageNet 3 consists of 200 classes and
each class has 500 training images, 50 validation images, and
50 test images. We used ResNet18 [26] model.
Network Intrusion Detection System (NIDS). We test
backdoor attacks on IoT anomaly-based intrusion detec-
tion systems that often represent critical security applica-
tions [5, 16, 27, 30, 44, 45, 55]. Here, the adversary aims at
causing incorrect classification of anomalous traffic patterns,
e.g., generated by IoT malware, as benign patterns. Based
on the FL anomaly detection system DÏoT [44], we use
three datasets called DIoT-Benign, DIoT-Attack, and UNSW-
Benign [44,53] from real-world home and office deployments
(four homes and two offices located in Germany and Aus-
tralia). DIoT-Attack contains the traffic of 5 anomalously
behaving IoT devices, infected by the Mirai malware [44].
Moreover, we collected a fourth IoT dataset containing com-
munication data from 24 typical IoT devices (including IP
cameras and power plugs) in three different smart home set-
tings and an office setting. Following [44], we extracted

3https://tiny-imagenet.herokuapp.com
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Table 6: Effectiveness of the clustering component, in terms
of True Positive Rate (TPR) and True Negative Rate (TNR), of
FLAME in comparison to existing defenses for the constrain-
and-scale attack on three datasets. All values are in percentage
and the best results of the defenses are marked in bold.

Defenses Reddit CIFAR-10 IoT-Traffic
TPR TNR TPR TNR TPR TNR

Krum 9.1 0.0 8.2 0.0 24.2 0.0
FoolsGold 100.0 100.0 0.0 90.0 32.7 84.4
Auror 0.0 90.0 0.0 90.0 0.0 70.2
AFA 0.0 88.9 100.0 100.0 4.5 69.2
FLAME 22.2 100.0 23.8 86.2 59.5 100.0
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Figure 11: Effectiveness of FLAME’s clipping bound in
terms of Backdoor Accuracy (BA) and Main Task Accuracy
(MA). S is the clipping bound and med the L2-norm median.
device-type-specific datasets capturing the devices’ commu-
nication behavior. We simulate the FL setup by splitting
each device type’s dataset among several clients (from 20
to 200). Each client has a training dataset corresponding to
three hours of traffic measurements containing samples of
roughly 2 000-3 000 communication packets. The learning
model consists of 2 GRU layers and a fully connected layer.

B Effectiveness of FLAME’s Components
B.1 Effectiveness of the Clustering Component
We show the results for the clustering component in Tab. 6.
As shown there, our filtering achieves TNR = 100% for the
Reddit and IoT-Traffic datasets, i.e., FLAME only selects
benign models in this attack setting. Recall that the goal of
clustering is to filter out the poisoned models with high attack
impact, i.e., not necessarily all poisoned models (cf. §4.1).
This allows FLAME to defend backdoor attacks effectively,
even if not all poisoned models are filtered. For example,
although for the CIFAR-10 dataset in Tab. 6 the TNR is not
100 % (86.2%), the attack is still mitigated by the noising
component, such that the BA is 0 % (cf. Tab. 4).

B.2 Effectiveness of Clipping

0.000 0.005 0.010
Noise Level Factors

0%

50%

100%

Va
lu

e 
of

 M
et

ric MA
BA

(a) Image Classification

0.00 0.05 0.10 0.15 0.20 0.25
Noise Level Factors

0%

50%

100%

Va
lu

e 
of

 M
et

ric MA
BA

(b) Network Intrusion Detection

Figure 12: Impact of different noise level factors on the Back-
door Accuracy (BA) and Main Task Accuracy (MA).
Fig. 11 demonstrates the effectiveness of FLAME’s dynamic
clipping where S is the median of L2-norms compared to a
static clipping bound [7] and different choices for a dynamic
clipping boundary (i.e., median, half of median, median mul-
tiplied by 1.5). The experiments are conducted for the IoT-
Traffic dataset, which is non-iid. Fig. 11a and Fig. 11b show
that a small static bound S = 0.5 is effective to mitigate the
attack (BA = 0%), but MA drops to 0% rendering the model
useless. Moreover, a higher static bound like S = 10 is ineffec-
tive as BA = 100% if the Poisoned Data Rate (PDR) ≥ 35%.
In contrast, FLAME’s dynamic clipping threshold performs
significantly better as BA consistently remains at 0% while
MA remains high (cf. Fig. 11c and Fig. 11d).

B.3 Effectiveness of Adding Noise
Fig. 12 shows the impact of adding noise to the intermediate
global models with respect to different noise level factors λ to
determine the standard deviation of the noise σ dynamically
based on the median L2-norm of the updates St as σ = λSt .
As it can be seen, increasing λ reduces the BA, but it also
negatively impacts the performance of the model in the main
task (MA). Therefore, the noise level must be dynamically
tuned and combined with the other defense components to
optimize the overall success of the defense. The noise level

factor is determined by λ = 1
ε

√
2ln 1.25

δ for (ε,δ)-DP. We use
standard DP parameters and set ε = 3705 for IC, ε = 395 for
the NIDS and ε = 4191 for the NLP scenario. Accordingly,
λ = 0.001 for IC and NLP, and λ = 0.01 for the NIDS sce-
nario. The DP budget is dependent on the considered dataset
scenario. It is determined based on the median of the dataset
sizes of the clients and the size of the model used. It can thus
be empirically determined by the aggregator. Analogous to
determining the clipping boundary S (cf. 4.3.2), using the
median ensures that the used dataset size is within the range
of benign values.

C Naïve Combination
Furthermore, we test a naïve combination of the defense com-
ponents by stacking clipping and adding noise (using a fixed
clipping bound of 1.0 and a standard deviation of 0.01 as
in [7]) on top of a clustering component using K-means. How-
ever, this naïve approach still allows a BA of 51.9% and a MA
of 60.24%, compared to a BA of 0.0% and a MA of 89.87%
of FLAME in the same scenario for the CIFAR-10 dataset.
Based on our evaluations in §7.1, it becomes apparent that
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FLAME’s dynamic nature goes beyond previously proposed
defenses that consist of static baseline ideas, which FLAME
significantly optimizes, extends, and automates to offer a com-
prehensive dynamic and private defense against sophisticated
backdoor attacks.

D Overhead of FLAME
We evaluated FLAME for 6 different device types from the
IoT dataset. In this experiment, only benign clients partici-
pated and the model was randomly initialized. The highest
observed overhead was 4 additional rounds. In average, 1.67
additional training rounds were needed to achieve at least 99%
of the MA that was achieved without applying the defense,
i.e., FLAME does not prevent the model from converging.

E HDBSCAN
HDBSCAN [11] is a density-based clustering technique that
classifies data samples in different clusters without prede-
fined the maximum distance and the number of clusters. In
the following, we describe HDBSCAN in detail, following
the implementation of McInnes et al. [36, 37]. However,
we focus on the behavior of HDBSCAN for the parame-
ters that FLAME uses, i.e., when min_cluster_size=N/2+
1 and min_samples=1, e.g., because of the choice for
min_cluster_size we skip parts that deal with multiple
clusters. HDBSCAN first uses the given distances to build a
minimal spanning tree (MST), where the vertices represent
the individual data points and the edges are weighted by the
distances between the respective points. Then it uses the MST
to build a binary tree where the leaf nodes represent the ver-
tices of the MST and the non-leaf nodes represent the edges of
the MST. For this, first, all vertices are considered as separate
trees (of size 1). For this, first, all vertices are considered as
separate trees (of size 1) and then, starting from the edge with
the lowest weight, iteratively the trees are merged by creating
a non-leaf-node for each edge of the MST and set the (previ-
ously not connected) subtrees containing the endpoints of the
edge as children for the new node (represented by calling the
function make_binary_tree. In the next step, HDBSCAN
collects all nodes of the binary tree as candidates, that cover
at least N/2+1 data points. Since only non-leaf nodes fulfill
the requirement of covering at least N/2+1 data points, each
cluster candidate is based on a node, representing an edge in
the MST. It uses the weight of the edge and the number of
covered points to calculate a so-called stability value. Then
HDBSCAN uses the stability value to determine the cluster
candidate with the most homogeneous density and returns this
candidate as majority cluster. Finally, it assigns the cluster
label to all data points inside this cluster and labels all points
outside of this cluster as noise.

F Effectiveness of FLAME against untargeted
poisoning attacks

Another attack type related to backdooring is untargeted poi-
soning [8, 9, 20]. Unlike backdoor attacks that aim to incorpo-
rate specific backdoor functionalities, untargeted poisoning
aims at rendering the model unusable. The adversary uses
crafted local models with low Main Task Accuracy to dam-
age the global model G. Fang at el. [20] propose such an
attack bypassing state-of-the-art defenses. Although we do
not focus on untargeted poisoning, our approach intuitively
defends it since, in principle, this attack also trade-offs attack
impact against stealthiness. To evaluate the effectiveness of
FLAME against this attack, we test the Krum-based attack
proposed by [20] on FLAME. Since [20]’s evaluation uses
image datasets, we evaluate FLAME’s resilience against it
with CIFAR-10. The evaluation results show that although
the attack significantly damages the model by reducing MA
from 92.16% to 46.72%, FLAME can successfully defend
against it and MA remains at 91.31%.

G Performance of Private FLAME
For our implementation, we use the STPC framework
ABY [14] which implements the three sharing types, includ-
ing state-of-the-art optimizations and flexible conversions and
the open-source privacy-preserving DBSCAN by Bozdemir
et al. [10]. All STPC results are averaged over 10 experiments
and run on two separate servers with Intel Core i9-7960X
CPUs with 2.8 GHz and 128 GB RAM connected over a 10
Gbit/s LAN with 0.2 ms RTT.
Approximating HDBSCAN by DBSCAN. We measure the
effect of approximating HDBSCAN by DBSCAN including
the binary search for the neighborhood parameter ε. The
results show that our approximation has a negligible loss
of accuracy. For some applications, the approximation even
performs slightly better than the standard FLAME, e.g., for
CIFAR-10, private FLAME correctly filters all poisoned mod-
els, while standard FLAME accepts a small number (TNR =
86.2%), which is still sufficient to achieve BA = 0.0%.
Runtime of Private FLAME. We evaluate the runtime in
seconds per training iteration of the cosine distance, Euclidean
distance + clipping + model aggregation, and clustering steps
of Alg. 1 in standard (without STPC) and in private FLAME
(with STPC). The results show that private FLAME causes a
significant overhead on the runtime by a factor of up to three
orders of magnitude compared to the standard (non-private)
FLAME. However, even if we consider the largest model
(Reddit) with K = 100 clients, we have a total server-side
runtime of 22 081.65 seconds (≈ 6 hours) for a training itera-
tion with STPC. Such runtime overhead would be acceptable
to maintain privacy, especially since mobile phones, which
would be a typical type of clients in FL [38], are not always
available and connected so that there will be delays in syn-
chronizing clients’ model updates in FL. These delays can
then also be used to run STPC. Furthermore, achieving prov-
able privacy by using STPC may even motivate more clients
to contribute to FL in the first place and provide more data.
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Abstract—Federated Learning (FL) allows multiple clients to
collaboratively train a Neural Network (NN) model on their
private data without revealing the data. Recently, several targeted
poisoning attacks against FL have been introduced. These attacks
inject a backdoor into the resulting model that allows adversary-
controlled inputs to be misclassified. Existing countermeasures
against backdoor attacks are inefficient and often merely aim
to exclude deviating models from the aggregation. However, this
approach also removes benign models of clients with deviating
data distributions, causing the aggregated model to perform
poorly for such clients.
To address this problem, we propose DeepSight, a novel model
filtering approach for mitigating backdoor attacks. It is based on
three novel techniques that allow to characterize the distribution
of data used to train model updates and seek to measure fine-
grained differences in the internal structure and outputs of
NNs. Using these techniques, DeepSight can identify suspicious
model updates. We also develop a scheme that can accurately
cluster model updates. Combining the results of both components,
DeepSight is able to identify and eliminate model clusters con-
taining poisoned models with high attack impact. We also show
that the backdoor contributions of possibly undetected poisoned
models can be effectively mitigated with existing weight clipping-
based defenses. We evaluate the performance and effectiveness of
DeepSight and show that it can mitigate state-of-the-art backdoor
attacks with a negligible impact on the model’s performance on
benign data.

Keywords – Deep Learning (DL), Federated Learning (FL),
Poisoning, Backdoor, Model Inspection

I. INTRODUCTION

Federated Learning (FL) enables multiple clients to collabora-
tively train a Neural Network (NN) model. This is done by an
iterative process in which clients train their models locally
using their own data and send only trained model updates
to a central server, which aggregates them and distributes
the resulting global model back to all clients. The federated
approach promises clients to keep their training data private
and the server to reduce the computational costs as the model
training is parallelized and outsourced to the clients. These
benefits make FL highly useful, especially in applications with
privacy-sensitive data such as medical image recognition [33],
word suggestion systems on smartphone keyboards (Natural
Language Processing; NLP) [22], or network intrusion detec-
tion systems (NIDS) [26].

Backdoor Attacks. On the other hand, the server cannot
control the training process of the participating clients. An
adversary can compromise a subset of the clients and use them
to inject a backdoor into the aggregated model. In the examples
above the adversary’s goal would be to cause the aggregated
model to classify malware network traffic patterns as benign
to avoid detection by the NIDS, or in the case of NLP to
manipulate the text prediction model to propose specific brand
names to inconspicuously advertise them1. Recently, various
attack strategies for targeted poisoning, so-called backdoor
attacks, have been proposed utilizing compromised clients to
submit poisoned model updates [2], [27], [34], [41], [38].
Problems of Existing Backdoor Defenses. The currently
proposed mitigations against backdoor attacks follow two main
strategies: (1) aim to detect and remove poisoned models [34],
[4], [24], [28] and (2) aim to limit their impact, e.g., by
restricting the L2-norm of updates (called clipping) [2], [28],
[23], [10]. In the first strategy, model updates differing from
the majority are considered suspicious and excluded from
aggregation. However, those approaches cannot distinguish
between models that were trained on benign training data
with different data distributions and poisoned models. This
causes performance degradation of the resulting model, as
this strategy will not only reject poisoned model updates but
also deviating benign model updates. Moreover, these defenses
fail in dynamic attack scenarios (cf. §II-B2 and App. B). The
second defense strategy has the drawback that it is not effective
against poisoned model updates with high attack impact. For
example, when adding training samples for the backdoor
behavior to the original (benign) training data, the poisoned
model achieves higher accuracy on the backdoor task.
Adversarial Dilemma: The adversary can arbitrarily choose
its attack strategy: On one hand, it can use a high ratio of
poisoned data for training the backdoor task. However, this
causes the poisoned models to differ from benign models,
making the poisoned models easy to detect by a filtering-based
defense. On the other hand, if the adversary does not follow
this strategy, the attack can be easily mitigated by any defense
that limits the impact of the individual models as the poisoned
models are outnumbered by benign models (cf. §II-C for
details). Combining both defense strategies, therefore, creates
a dilemma for the adversary: Either the attack is filtered by
one part of the defense or the other part makes the impact of
the attack negligible [28].
Unfortunately, a naı̈ve combination of both defense strategies
is not effective, as existing filtering mechanisms follow an

1Especially systems with a large user base are attractive for such attacks,
e.g., the FL-based keyboard input suggestion system GBoard [22] has been
downloaded more than 1 billion times [11]
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outlier-detection strategy [34], [4], [24], [28] that also filters
benign models with deviating data distributions. Consequently,
a high number of clients are wrongly excluded leading to per-
formance degradation of the aggregated model for their data.
Our Approach: To address these problems, we propose
DeepSight, a novel model filtering approach that deeply in-
spects the internal structure and outputs of the NNs for
identifying malicious model updates with high attack impact
while keeping benign model updates, even if these originate
from clients with deviating data distributions. By combining
our novel filtering scheme with clipping we exploit the above-
mentioned adversarial dilemma to ensure that the adversary’s
strategy focuses the training on the backdoor task. This, on the
other hand, causes the structure of the resulting NN to contain
artifacts related to this backdoor.
We propose several techniques to analyze the internal structure
of model updates for identifying characteristics of the training
data distribution and to measure fine-grained differences be-
tween the models. Based on these techniques, we develop an
approach to identify models trained with a data distribution
focusing on a specific task (the backdoor task) and also
to group models together that were trained on similar data.
Those techniques enable our approach to reliably identify
model clusters that with a high likelihood contain poisoned
models and consequently exclude them from aggregation. Our
extensive evaluation shows that our approach mitigates recent
state-of-the-art backdoor attacks [2], [27], [41]. We show that
DeepSight filters model updates with high attack impact so that
possibly remaining poisoned model updates will be effectively
mitigated using existing clipping defenses, while the benign
training process is not affected by wrongly excluded benign
models. Our contributions include:

• We propose DeepSight, a novel defense to mitigate tar-
geted poisoning (backdoor) attacks on Federated Learn-
ing (FL). DeepSight uses a novel filtering scheme that
conducts a deep model inspection and combines it with
clipping (§V) to identify targeted poisoning attacks.

• We propose a voting-based model filtering scheme com-
bining a classifier and clustering-based similarity estima-
tions. The individual labels are sued to reliably identify
clusters with malicious model updates, such that not only
a model’s label is used but also the labels of similar mod-
els for deciding on accepting or rejecting a model update
(§V-A4). Together with the classifier as the central mech-
anism, instead of an outlier elimination-based strategy,
we prevent models of benign clients with deviating data
distributions from being filtered out, thereby increasing
the performance of the aggregated model for the data of
these clients.

• We propose the Threshold Exceedings metric (§IV) that
analyzes the parameter updates of the output layer for a
model to measure the homogeneity of its training data.
We use this metric to build a classifier, being capable of
labeling model updates as benign or suspicious.

• We design an ensemble of clustering algorithms, based
on three different techniques to effectively identify and
cluster model updates with similar training data (§V-A3)
to support the classifier by similarity estimations.

• We propose two novel techniques for measuring fine-
grained differences in the structure and outputs of NNs
(§IV): The first technique Division Differences (DDifs)

focuses on changes in model prediction outputs while the
second technique NormalizEd UPdate energies (NEUPs)
measures changes in parameter updates for the output
layer of the NN. To the best of our knowledge, this is
the first work that uses a deep analysis of the models,
their predictions, and individual neurons for mitigating
poisoning attacks in Federated Learning (FL).

• We extensively evaluate the performance and effective-
ness of DeepSight (§VI). We show that our defense
mechanism does not affect the performance of the re-
sulting model. For showing DeepSight’s effectiveness we
evaluated several state-of-the-art backdoor attacks [2],
[27], [41], [38].

• As a side effect, we demonstrate a successful back-
door attack on a recently proposed ’provably-secure’ FL
backdoor defense [6] (§VI-C1). We will discuss that the
theoretical proof includes a-posteriori knowledge, mak-
ing assumptions that do not hold in practice. However,
DeepSight is able to mitigate such attacks (§VIII).

II. BACKGROUND

A. Federated Learning

McMahan et al. [21] introduced Federated Learning (FL) as
a process that leverages many different clients for collabo-
ratively training a machine learning model, here a Neural
Network (NN), based on their local datasets. In contrast to a
centralized approach, the local data of each client never leaves
this client, allowing the clients to keep their data secret.
Each round t of an FL process consists of the following steps:
Step 1: Each client k ∈ {1, . . . , N}, trains locally a ML model
on its private data, starting from the global Gt before sending
its model update to a central aggregation server S.
Step 2: The server merges the received updates and applies
the aggregated update on the global model.
Step 3: The resulting model, called aggregated model Gt+1,
is distributed back to all participants.
Different aggregation rules have been proposed, e.g., Federated
Averaging (FedAvg) [21], Krum [4], or Trimmed Mean [42].
Although we will evaluate our proposed defense also for other
aggregation rules, e.g., for Krum [4], we will focus on FedAvg
as it is widely used in FL [26], [5], in particular in work about
backdoor attacks [2], [27], [34], [24], [28], [10].
In FedAvg, the aggregated model Gt+1 is determined by
averaging all received model updates and adding it to the
previous global model Gt. Although this algorithm also al-
lows weighting the contributions of different clients, e.g., to
increase the impact of clients with a large training dataset,
this also makes the system more vulnerable for manipulations,
as compromised clients could exploit this, e.g., by lying
about their dataset sizes to increase their impact. There-
fore, we follow existing work [2], [34], [4], [28], [10], [21]
and weight all model updates equally.

B. Backdoor Attacks on FL

In a targeted poisoning attack, also called backdoor attack,
an adversary A manipulates the local models of a subset
of clients with size NA (cf. §III). Its goal is, to make the
aggregated model that is operated on a feature space D
output a certain class CA for a set of input samples, called
trigger set I ⊂ D. The success of the attack is determined by

2

[ December 16, 2024 at 14:12 – version 0.1 ]



the Backdoor Accuracy (BA), which measures the accuracy
for the backdoor task. For example, in a word prediction
scenario, the backdoor could be to predict the word ”delicious”
after the trigger sentence ”pasta from astoria tastes” [2].
The BA indicates here, for how many occurrences of the
trigger sentence the model suggests ”delicious”. The ratio
of compromised clients to the total number of clients will
be denoted as Poisoned-Model-Rate (PMR). For backdoor
attacks, widely two attack strategies are considered by previous
work, assuming different thread models.

1) Data Poisoning: In the weaker adversary model, A is
restricted to manipulating the training data of a client. A
poisons the client’s training data by adding malicious attack
data to the dataset. The attack data consists of input samples
from the trigger set, with the new, adversary-chosen (wrong)
label CA. For example, in the NIDS scenario, A can achieve
this by creating malware traffic during the NIDS system
captures network packets that will be used as benign training
data [27]. However, A still needs to ensure that the resulting
model updates are not too conspicuous, e.g., by limiting the
Poisoned-Data-Rate (PDR), i.e., the fraction of attack data
injected into the training dataset. By choosing a suitable PDR,
A can balance between attack impact and attack stealthiness.
Let Di denote the benign dataset of a compromised client i and
DAi the injected attack data, then the PDR of the combined,
poisoned dataset D′i is given by:

PDR =
|DAi |
|D′i|

(1)

The advantage of this attack is that it is sufficient to poison
the dataset, which can be done, without compromising the
client that actually trains the NN. Therefore, it requires fewer
capabilities of A, compared to the Model Poisoning attack.

2) Model Poisoning: In a stronger adversary model A is
able to compromise a subset of the clients and fully control
them. A can then change the model updates arbitrarily before
submitting them to increase attack impact on the aggregated
model. This allows A to adapt the training algorithm, its
parameters, and to scale model updates to increase the attack
impact without triggering defense mechanisms that may be
deployed on the aggregation server [2]. If the adversary
has full control over a client, it can also arbitrarily change
their behavior, e.g., using a subset of clients for random
updates to distract the defense mechanism (cf. App. B). The
model poisoning attack can be split into two parts:
Scaling: As proposed by Bagdasaryan et al. [2], A can scale
the differences between the (poisoned) trained model W ∗t,i of
the client i in round t and the used global model Gt, before
submitting the model. This up-scaling increases the impact of
the poisoned models during the aggregation. If there are N
clients in total, from which NA are compromised, A can scale
the updates using a factor up to N/NA.
To circumvent deployed defense mechanisms A can restrict
the L2-norm for the update to a chosen value S. This prevents
the scaled updates from being too suspicious to the cost of the
impact of the attack. The scaling factor γt,i of a compromised
client i in round t is, therefore, given by:

γt,i = max

(
1,min

(
N

NA
,

S

||W ∗t,i −Gt||

))
(2)

The scaled malicious model W ′t,i is then given by:

W ′t,i =
(
W ∗t,i −Gt

)
γt,i +Gt (3)

Anomaly-Evasion As scaling makes the model update more
suspicious, Bagdasaryan et al. [2] proposed to reduce the
learning rate of the clients. Furthermore, they adapted the
loss function to make the model more inconspicuous by
adding a term Lanomaly that measures the similarity between the
original model and the used global model, e.g., by using their
cosine distance. If the normal loss function Lclass measures
the performance of the model on the actual task and the loss-
control parameter α weights the impact of both parts, then the
adapted loss function L′ is given by:

L′ = αLclass + (1− α)Lanomaly (4)

In the rest of the paper, we will use the strong adversary model,
where A uses a combination of the Anomaly-Evasion and
Scaling attack strategies, called constrain-and-scale attack [2].

C. Exploiting Adversary’s Dilemma

Adversary A can freely choose an attack strategy that is most
effective for it. It can either use well-trained poisoned models
to inject the backdoor, e.g., by using a high PDR, or, train the
models only weakly, e.g., by using a low PDR. However, as
pointed out by Nguyen et al. [28], well-trained models differ
significantly from benign models and are, therefore, easy to
detect by approaches that filter suspicious models. On the
other hand, the impact of weakly trained models is likely
to become negligible during aggregation, as poisoned models
are outnumbered by benign ones [28]. Bagdasaryan et al.
proposed scaling the updates to increase their contribution
to the aggregated model [2]. However, this attack is easy
to mitigate by approaches that limit the contribution of the
individual clients, e.g., clipping that limits the L2-norm of the
model updates.

III. SYSTEM AND PROBLEM SETTING

A. System Setting

We consider a system with N clients that train their local
models before sending them to the aggregator S who combines
them by using FedAvg [21]. We assume that clients keep their
data secret. Therefore, no training or testing data is available
on the aggregation server S.
We also assume that the data of different clients may differ
from each other. Without loss of generality, the individual
clients can be seen as parts of groups of clients with similar
training data, s.t. the data of all clients in the same group
follows the same distribution, therefore, are IID. There can
be one or multiple groups of arbitrary, also different sizes
(also with size one). Taking the NLP scenario as an example,
if people write similar texts, e.g., always about the same
topic, also the updates for the NN that is used for the word
suggestion will be similar. Therefore, the model updates of
those clients can be seen as a group of updates with similar,
IID training data. Other users may write about another topic,
such that their model updates can be seen as a different
group. If all people would write about the same topic, their
model updates can be seen as one (big) group and if a
single person writes very unique texts, e.g., by using very
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Fig. 1: Structure of a simplified NN for word suggestion. The
individual colors refer to the parameters that are used by the
proposed techniques

special words, the respective model update can be seen as
part of a group having only one member.
The techniques that we propose later (cf. §IV), allow charac-
terizing the clients’ training data to make these groups visible.
This allows clustering the received model updates accordingly
to support the classifier.

B. Adversary Model
In the rest of the paper, we consider an adversary A that aims
to inject a backdoor into the aggregated model, making the
model predict a certain label CA for some specific, adversary-
controlled input samples, called trigger set I. The manipulated
aggregated model shall then be distributed to all clients.
However, if the aggregator S notices the attack it will exclude
the poisoned models. If S notices the attack but cannot identify
the poisoned models, it can repeat the training with different
subsets of clients until no attack is detected [3]. Hence, the
attack also must not degrade the performance of the aggregated
model on the main task (Main Task Accuracy, MA).
Formally, if Gt is the aggregated model after the attack, Gt−1
the global model before the attack, D the set of all possible
inputs, I ⊂ D the trigger set and f(Gt, x) the prediction of
the model Gt on the input sample x ∈ D, A′s goal is:

∀x∗ ∈ I.f(Gt, x∗) = CA∧∀x ∈ D\I.f(Gt, x) = f(Gt−1, x)
(5)

Therefore, from Eq. 5, two objectives for A can be derived:
O1: Performance on the backdoor task. The aggregated
model shall predict CA for triggered samples.
O2: Stealthiness. A must ensure that the poisoned models
are inconspicuous to S and that S cannot determine, whether
a poisoning attack took place. This includes preventing a drop
in the MA.

Aligned with the existing work on backdoor attacks [2], [27],
[34], [4], [24], [28], we consider a strong adversary model,
allowing A to fully control NA < N/2 clients. However, A
has no control over the benign clients nor has access to their
data or model updates. We assume A to have full knowledge of
the aggregation server S and any deployed defense, i.e., used
algorithms and configuration parameters, however, A cannot
tamper with it.

C. Objectives of a Poisoning Defense
To defeat the objectives of the adversary, the defense has to
fulfill the following security requirement:
R1: Poisoning Mitigation. The defense must mitigate the
poisoning attack. Therefore, the BA must remain at the same
level as without the attack 2.

2It worth to note that for some backdoor tasks, misclassification of the
model are counted in favor of the BA, s.t., the BA is higher than 0 %, even
without attack (cf. App. F).

However, as already pointed out in §I, it is not sufficient
for defenses to mitigate poisoning attacks, but also satisfy
certain requirements such as model performance. Therefore,
we consider defense against poisoning attacks only effective
if it also fulfills the following additional requirements:
R2: No Disruption of the Training Process. The defense
should not negatively affect the training. Therefore, the per-
formance of the resulting model on the main task (Main Task
Accuracy, MA) must be at the same level as without defense.
R3: Autonomous Process The defense must run fully au-
tonomous, i.e., no manual configuration nor any knowledge,
e.g., estimations for the L2-norms of benign updates or vali-
dation data3, must be required.

To the best of our knowledge, all existing approaches
for identifying poisoned updates are based on metrics that
consider the NN as a black box, e.g., cosine [24], [28], [10]
or L2-norm [4]. Our novel scheme, therefore, addresses the
following challenges:
C1: How to distinguish poisoned models from benign models
that were trained on different data.
C2: How to entangle to the backdoor performance such that
the only way for A to bypass a scheme that is based on these
techniques is to reduce the backdoor performance.
C3: How to make the techniques generally applicable, without
knowing the exact data. For example, for the NIDS scenario,
it should not make a difference, whether the models analyze
the network traffic of IP cameras or smart sensors.
C4: How to ensure a high precision, to prevent benign models
from being excluded wrongly.
C5: How to effectively combine the individual techniques to
a dynamic defense scheme, s.t. it can dynamically adapt to
attacks. Therefore, neither the scheme shall be broken unless A
overcomes every single technique, nor shall the scheme suffer
by false positives.

D. Proposed Techniques
Figure 1 shows a simplified, linear NN for suggesting words
based on the previously typed text. The NN has 3 layers with
3 neurons each. The arrows that connect the neurons represent
the respective weights, bi,k the bias for the respective neuron,
and the brown number the calculated scores. In this example,
the NN suggests ”delicious” as the next word, since it has the
highest score.
We propose 3 techniques that allow to analyze NNs and pro-
vide characteristics about the distribution of the used training
data. The first technique is called Division-Difference (DDif).
When training a NN, the predicted score for the current
sample (e.g., ”pasta from astoria tastes delicious”) is increased.
However as a side-effect, also the score (colored brown in
Fig. 1) for the current label, i.e., ”delicious” is increased in
general, therefore, also when another input is used. The DDifs
measures these changes as they provide information about the
distribution of the training labels of the respective client.
When training a NN, the respective weights are adapted
slightly for each sample in order to increase the predicted
score. Since each neuron in the last layer of a NN represents

3For example, in the case of the FL-based NIDS DÏoT [26], new training
processes for new data scenarios are started automatically. Therefore, neither
validation data nor prior knowledge about the model udpates like their
L2-norms are available as this would require the clients to share their data,
which would violate a principal design goal of FL.
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an output label, the total magnitude of changes for the param-
eters of the individual neurons (colored in green in Fig. 1)
is connected to the frequency of the individual labels. The
NormalizEd UPdate energies (NEUPs) measure those changes
and use them to provide a rough estimation of the output labels
for the training data of the individual clients.
The task of a backdoor is usually very simple compared to
the benign task of a model. For example, in case of the
NLP scenario, instead of learning a large number of different
sentences, the backdoor task consists only of predicting the
correct word after a specific sentence, i.e., ”pasta from astoria
tastes delicious”. To prevent, that the impact of the attack
becomes negligible during the evaluation A needs to use a
high PDR (cf. II-C), resulting in a focus of the labels on the
target word, i.e., ”delicious”. For example, in case of a PDR
of 50 % half of the labels belongs to those 5 words, although
there are 50 000 words in total (cf. §VI-A1). The Threshold
Exceedings uses the NEUPs to compare the distribution of
labels for measuring the homogeneity of labels in the training
data. The classifier in the proposed filtering scheme analyses
the homogeneity value for each model. If a model update
has a strong focus in the used training data, therefore, if few
labels occur with a significantly higher frequency than all other
labels, then the classifier considers this update as poisoned.

E. Our Defense Approach

We propose DeepSight, an effective novel filtering approach
against dynamic backdoor attacks that overcomes the deficien-
cies of previous work. Its overall structure is shown in Fig. 2.
DeepSight uses a classifier as the central component that is
based on deep-model-inspection (cf. §V-A). The filtering is
followed by a weight clipping component (cf. §V-B), which
enforces A′s strategy to focus the training data of poisoned
models on the backdoor behavior. Otherwise, the attack can
either be mitigated by the clipping layer (cf. §V-B) or its impact
becomes negligible in the aggregation phase (cf. §V-C).
The first layer of the defense realizes a classification-based
filtering and removes poisoned models with high attack impact,
where the training data is focused on samples for the back-
door behavior. Here, we design an algorithm to combine the
different techniques, s.t., the classification is supported by the
similarity estimations, without following an outlier-detection-
based approach like existing approaches that use clustering.
The filtering scheme is based on the proposed novel techniques
for measuring fine-grained differences between the structure
and outputs of a model and uses them to deeply analyze the

individual models, taking into account their predictions, indi-
vidual neurons as well as an estimation for the homogeneity of
the used training data. The subsequent layers (clipping and ag-
gregation) mitigate the effect of potentially remaining, weakly-
trained poisoned models. The structure of DeepSight is shown
in Fig. 2. The filtering layer performs three major steps:
1. Classification DeepSight utilizes a novel metric entitled
Threshold Exceedings that measures the homogeneity of a
model’s training data to label models as benign or suspicious.
2. Clustering Secondly, DeepSight groups model updates,
such that all models in the same group have been trained on
similar training datasets. Therefore, this component clusters the
models according to the groups of clients with IID data that
were discussed in §III-A. This allows DeepSight to reliably
separate malicious and benign model updates into different
clusters and, therefore, support the labeling by similarity
estimations. DeepSight uses two additional novel techniques
Division Differences (DDifs) and Normalized Energy Updates
(NEUPs) that enable it to extract characteristics of a model’s
training data as well as the cosine metric.
3. Poisoned Cluster Identification In the last filtering step,
the labeling and the clustering are combined to discriminate
clusters containing poisoned models and for finally deciding
about excluding or accepting each model update.

IV. TECHNIQUES FOR ANALYZING ML MODELS’
TRAINING DATA DISTRIBUTIONS

In this section we introduce several novel techniques for deep
inspection and analysis of model updates to identify models
whose training data were focused on a specific (backdoor) task
and measure fine-grained differences between models. In §V
we will describe how the filtering component and in particular
the classifier of DeepSight is based on these techniques.
We introduce Division Differences (DDifs) that measures the
difference between the predicted scores of the local and
global models. As all clients use the same global model, in
case of similar or different training data, also the predicted
probabilities will change accordingly. Therefore, they provide
information about the distribution of labels in the training data.
Moreover, we introduce NEUPs, which analyze the total mag-
nitude of the updates for the individual neurons of the output
layer. NEUPs use these magnitudes to determine a rough
estimation of the distribution of labels in the training data of
the model update, allowing, e.g., to measure the similarity of
the training data for different model updates.
The third technique, entitled Threshold Exceedings, uses
NEUPs for measuring the homogeneity of labels in the used
training data. In §V-A, we describe how Threshold Exceedings
are used to identify models as benign or poisoned.

A. Division Differences
When training a NN, each specific sample consists of an
input x and an output category y. During the training, the
parameters of the NN are adjusted iteratively, s.t. the score for
y that is predicted by the current model for x is maximized.
For example, in the NLP scenario x could be a sequence of
words and y the suggested next word. However, this has the
side effect that also for another input x∗, with a different
label y∗, the score that is predicted for y also changes very
slightly, although y 6= y∗. This phenomenon occurs especially
when samples of the category y occur very frequently in the

5

[ December 16, 2024 at 14:12 – version 0.1 ]



training data. However, because of using clipping as part of
the defense, A has to use a high PDR, causing the target
category of the backdoor, e.g., in case of the NLP scenario,
the word ”delicious”, to occur very frequently. Therefore,
especially for backdoor samples, the probability of the target
label is increased in general and not only for samples of
this category [18]. In the following, we will exploit this by
comparing the probabilities that were predicted by a local
model Wt,k to the predicted probabilities of the used global
model Gt. The rationale here is that if two models Wt,i and
Wt,k were trained on similar data, also the ratios of their
probabilities compared to the predictions of the global model
will be similar. The information that is gained by this technique
allows identifying clients with similar training data. We will
refer to this technique as Division Differences (DDifs).
Because all clients start from the same global model and clients
with similar data will try to achieve similar predictions for
their data samples, they will adapt their parameters similarly,
resulting in similar model updates. For example, considering a
NN with n output classes, e.g., the number of known words in
the NLP scenario, a specific sample x, 2 clients k and l with
similar data, their respective local models in round t Wt,k and
Wt,l, then their predictions f(x;Wt,k), f(x;Wt,l) ∈ Rn will
be also very close. It follows directly that when comparing
those predictions to the predictions of the original model
f(x;Gt), the differences between f(x;Wt,k) and f(x;Gt) as
well as f(x;Wt,l) and f(x;Gt) provides information about
the similarity of the training data of k and l.
A problem is that the server has no input data for evaluating
the NNs, as we assume that the server has neither training
nor testing data (cf. §III-A). We solve this problem by using
random input vectors instead of actual data. As we focus on
the differences between predictions of the global model Gt and
the predictions of the local model Wt,k of each client k rather
than finding the class with the highest predicted probability, it
is not necessary to obtain meaningful predictions. Therefore, it
is not necessary to use real data samples. The rationale is that
for a poisoned model update W ′ the predicted probabilities
for the backdoor target class will be increased in general (cf.
Liu et al. [18]), independently from the actual input, and,
therefore also show corresponding differences in comparison
to the predictions of the preceding global model Gt.
For calculating the DDifs for a model update Wt,k of client
k during training iteration t, we generate Nsamples = 20 000
random input samples sm (m ∈ [0, Nsamples − 1]) and pro-
vide them as input to model Wt,k. We then divide the
probabilities f(sm;Wt,k)i predicted by the local model for
each output neuron i by the corresponding neuron-specific
prediction f(sm;Gt)i of the global model Gt:

DDift,k,i =
1

Nsamples

Nsamples∑

m=1

f(sm;Wt,k)i
f(sm;Gt)i

(6)

B. Normalized Update Energy

The second measure that we propose for identifying clients
with similar training data is the NormalizEd UPdate energy
(NEUP). It analyzes the parameter updates for the output layer
and extracts information about the distribution of labels in the
underlying training data of a model.
During the training process, the parameters of the output layer
neuron that represents the class of the currently considered

sample are adapted slightly. Since this is repeated for every
sample, neurons for frequent classes will be updated many
times with high gradients4 such that the individual changes
sum up to an update with a high magnitude for these neurons.
On the other hand, if there are fewer (or no) samples of a
class, there are fewer/no repetitions, resulting in an update
with a low magnitude for such neurons. The total magnitudes
of the updates for the neurons in the output layer leak therefore
information about the frequency distribution of labels in the
training data of this update.
For measuring the magnitudes and reverse engineer this distri-
bution, we first define the Energy of the update for a neuron.
Let H denote the number of connections of an output layer
neuron to neurons of the previous layer, bt,k,i be the bias of
neuron i from the output layer of a model k after round t,
wt,k,i,h be analogously the weight of the connection to the
neuron h from the previous layer, bt,Gt,i be as well as wt,Gt,i,h

be analogously bias and weights of neurons from the global
model Gt. Then the Energy Et,k,i of the update for the output
layer neuron i of the model that client k submitted in round t
is given by:

Et,k,i = |bt,k,i − bt,Gt,i|+
H∑

h=0

|wt,k,i,h − wt,Gt,i,h| (7)

If an Energy Update for a neuron is significantly higher
than other Energy Updates for the same local model, then
this indicates that the respective classes were more relevant
for training the model. We normalize the Energy Updates
of all output layer neurons of the same model, to highlight
Energy Updates that are significantly higher than other Energy
Updates. Therefore, the NormalizEd UPdate energy (NEUP)
Ct,k,i of the neuron i for the update from client k in round t
is given by:

Ct,k,i =
E2t,k,i∑P
j=0 E2t,k,j

(8)

The normalization makes the frequency distributions of dif-
ferent models comparable. Therefore, the individual NEUPs
of a model update it not affected by the total extent of
the Update Energy for this model update. Therefore, similar
NEUPs from different models indicate that similar proportions
of the training data of different clients have the same label.
Moreover, it also makes the technique more robust against
obfuscation by the adversary A. Otherwise, A could use one
client to submit a model with a very high Energy Update to
make the Energy Updates of the remaining poisoned models
looking more similar to the benign ones.
In §VII, we provide a proof that the NEUPs are not affected,
when A scales the poisoned model updates.

C. Threshold Exceedings

The training data of poisoned models are significantly less
heterogeneous than the training data of the benign models
(cf. §III-E). For example, in the NLP scenario, the backdoor
consists of a few sentences5, while the benign task includes

4When calculating the gradients of a NN for a sample x, the absolute
magnitude of the gradients of the output layer neuron that represents the label
of x is higher than the gradients for the other neurons [39].

5Otherwise the backdoor is significantly harder to inject (cf. App. A),
allowing the other defense layers of DeepSight to mitigate the attack.
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a large number of different sentences. We showed in §IV-B
that the NEUPs allow a rough estimation of the distribution of
labels in the training data of a client. Training data for poisoned
models need to be focused on samples for the backdoor behav-
ior (cf. §II-C). Therefore, if there is a local model with very
homogeneous training data, then it is very likely that this model
is poisoned. In the following, we introduce a metric entitled
as Threshold Exceedings that measures the homogeneity of
the training data and, by this is able to identify poisoned
models. In §V-A, we will use the Threshold Exceedings to
build a classifier for labeling all models as poisoned or benign.
Our experiments confirmed a strong correlation between the
NEUPs and the distribution of labels in the training data, s.t.,
the NEUPs can be used to measure the homogeneity of labels.

To measure the homogeneity of the NEUPs for the local
models and therefore the complexity of the used training data,
we define for each local model a threshold based on the
maximal NEUP for this model. Then we count for each model
how many NEUPs exceed this threshold.
If the output layer has P neurons, then the maximal NEUP
Ct,k,max of a model being submitted by client k in round t is
given by:

Ct,k,max = max
1≤i≤P

Ct,k,i (9)

We define the threshold ξt,k as 1 % of the maximal NEUP
Ct,k,max of this client. However, as in scenarios with very few
output labels, it is possible that all NEUPs of a client are
above this threshold, we increase the Threshold Factor of 1 %,
depending on the number of output classes. The threshold ξt,k
is, therefore, given by:

ξt,k = max (0.01, 1/P) · Ct,k,max (10)

In App. I, we analyze the impact of different choices for the
Threshold Factor on the Threshold Exceedings and DeepSight.
The Threshold Exceedings value for a model is then given by
the number of NEUPs that exceed this threshold. Let 1expr be
the indicator function being 1 iff the expression expr is true
and 0 otherwise, then the number of Threshold Exceedings
TEt,k for a model being submitted by client k in round t is
given by:

TEt,k =

P∑

i=1

1Ct,k,i>ξt,k (11)

Figure 3 shows the NEUP Threshold Exceedings for the NIDS
scenario for 70 benign and 30 poisoned model updates. As
the figure shows, benign models have a significantly higher
number of Threshold Exceedings than poisoned models.
For classifying model updates as benign or poisoned, we define
a classification boundary of half of the median number of
Threshold Exceedings. A model is labeled as poisoned, iff its
number of Threshold Exceedings is below this threshold.
In §VII, we provide a proof that the Threshold Exceedings are
not affected when A scales the poisoned model updates.

V. MITIGATING BACKDOOR ATTACKS ON FL BY DEEP
MODEL INSPECTION

Existing poisoning defenses often assume benign models to
be similar, resulting in rejecting all abnormal model updates.
However, those defenses can, due to the adopted approach,
not distinguish between the reasons for perceiving a model
as abnormal. Therefore, they cannot determine whether just
different, non-IID data or poisoned data were used for training
the model. As a result, those approaches will also reject models
of benign clients with slightly deviating training data distri-
butions. To solve this problem, we propose in the following
DeepSight. It uses the proposed techniques to deeply inspect
the model updates and distinguish between poisoned model
updates and benign updates that have been trained on deviating
data distributions. By using clipping [2], [28], [23], we enforce
A′s strategy to focus the training data of poisoned models on
the backdoor behavior, s.t. the filtering scheme can effectively
identify and exclude poisoned models. The basic structure of
DeepSight is shown in Fig. 2. It consists of 3 layers:
1. Filtering Layer: The first layer uses the proposed novel
techniques to analyze the model updates for detecting and
excluding models that contain a well-trained backdoor.
2. Clipping Layer: This layer enforces a maximal L2-norm
of the updates and downscales them if necessary to mitigate
poisoned models that compensate a weakly trained backdoor
(to circumvent the first layer) with a high scaling factor.
3. Aggregation Layer: The last layer uses FedAvg to aggre-
gate the remaining, clipped updates together.

This combination of layers creates a dilemma for A. If the
poisoned models are suspicious, e.g., because they have been
well-trained on homogeneous training data for achieving high
backdoor impact, they will be detected and rejected by the
filtering layer. Otherwise, if A tries to circumvent the filtering
layer by using heterogeneous training data, e.g., by using a
low PDR or injecting complex backdoors, it also weakens
the impact of the backdoor allowing the other two layers to
mitigate the attack effectively.

A. Filtering Layer
The filtering layer recognizes poisoned models with homo-
geneous training data, by using a classifier that is based
on the Threshold Exceedings (cf. §IV-C). To make the fil-
tering more robust and minimize the number of mislabel-
ings, we combine the classifier with a clustering to also
take the labels of similar models into account when finally
deciding about accepting or rejecting a model. To prevent
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Algorithm 1 Filtering Layer
1: Input: N, . number of models
2: W, . list of N received local models
3: Gt . global model
4: Parameters: τ , . Threshold of suspicious models for excluding cluster
5: seeds, . 3 seeds for generating random data for ddfis
6: input dim . dimension of a single input
7: Output: accepted models
8: . Feature Extraction
9: cosine distances ← 0N×N

10: global bias ← output layer bias(Gt)
11: for each clients i, j in [1, N ] do
12: updatei ← output layer bias(Wi) - global bias
13: updatej ← output layer bias(Wj ) - global bias
14: cosine distancesi,j ← 1 - COSINE(updatei, updatej )
15: end for
16: ∀i ∈ {1, . . . N} : neupsi ← NEUPs(Gt, Wi)
17: ∀i ∈ {1, . . . N} : thresh exdsi ← THRESHOLD EXCEEDING(neups)
18: ∀i ∈ {1, 2, 3} : rand input datai ← random matrix(seedsi, 20 000,

input dim)
19: ∀i ∈ {1, 2, 3} : ddifsi ← DDIFs(rand input datai, Gt, W1 . . .Wn)
20: . Classification
21: classificat boundary ← MEDIAN(thresh exds) / 2
22: ∀i ∈ {1, . . . N} : labelsi ← (thresh exds[i] ≤ classificat boundary)? 1:0
23: . Clustering
24: clusters ← CLUSTER(N, neups, ddifs, cosine distances)
25: . PCI
26: accepted models ← {}
27: for cluster in clusters do
28: amount of positives ← SUM(labels[cluster]) / |cluster|
29: if amount of positives < τ then
30: accepted models ← accepted models ∪ models[cluster]
31: end if
32: end for

that A can easily fool the similarity mechanism, we use an
ensemble that is based on the NEUPs, DDifs, and cosine.
A would need to distract all of them at the same time,
without reducing the attack impact, as otherwise the attack
will be mitigated by the later defense layers.
The overall structure of the filtering layer is shown in Fig. 4.
It first calculates features for the clustering (DDifs, NEUPs,
and pairwise cosine distances) and uses these values in the
next step for clustering all models. In parallel, the Threshold
Exceedings are calculated from the NEUPs and used for
labeling all model updates as benign or suspicious. In the
last step, the Poisoned Cluster Identification (PCI) combines
the clustering with the labeling to decide about accepting or
rejecting the updates. The details are shown in Alg. 1. The
algorithm takes as input the number of models, the local
models, the global model, and the dimension of a single input.

1) Feature Extraction: First, we calculate the pairwise
cosine distances, for each model k ∈ {1, . . . , N}, their corre-
sponding NEUPs Ct,k,∗ and the Division Differences DDift,k,∗
(cf. lines 8-19 in Alg. 1). As the DDifs depend on random input
data, we calculate them three times with different input data
that were generated by using different seeds.
An advantage of using the pairwise cosine distances of the up-
dates, e.g., in comparison to using the Euclidean distances [4]
is that its value does not change when A scales its update
(cf. App. H). The pairwise cosine of the updates is, therefore,
more stable than other vector metrics.

2) Classification: To maximize the attack impact A needs
to use homogeneous training data (cf. §III-E). Otherwise,
the attack will be mitigated by the later defense layers. The
Threshold Exceedings measure the homogeneity of a model’s
training data and uses it to label each model as benign or

Algorithm 2 Clustering
1: procedure DISTSFROMCLUST(clusters, N)
2: ∀i, j ∈ {1, . . . N} : pairwise distsi,j ← cluster of model(i, clusters)

== cluster of model(j, clusters)? 0:1 . cluster of model(x, clusters)
returns the cluster that contains the model with index x

3: return pairwise dists
4: end procedure
5:
6: Input:
7: N, . N is the number of models
8: neups, . NEUPs as list of N vectors with dimension P
9: ddifs . DDifs as list of 3 lists of vectors with dimension P

10: cosine distances . cos distances a matrix ∈ RN×N

11: Output: clusters . clusters as set of sets of indices
12:
13: cosine clusters ← HDBSCAN(distances = cosine distances)
14: cosine cluster dists ← DistsFromClust(cosine clusters, N)
15: neup clusters ← HDBSCAN(values = neups)
16: neup cluster dists ← DistsFromClust(NEUP clusters, N)
17: ∀i ∈ {1, 2, 3} : ddif clustersi ← HDBSCAN(values = ddifsi)
18: ∀i ∈ {1, 2, 3} : ddif clust distsi ← DistsFromClust(ddif clustersi,N)
19: merged ddif clust dists ← AVG(ddif clust dists1, ddif clust dists2,

ddif clust dists3)
20: . Combine clusterings
21: merged distances← AVG(merged ddif clust dists, neup clust dists, co-

sine clust dists)
22: clusters ← HDBSCAN(distances = merged distances)

suspicious, independently from other models (cf. lines 20-22
in Alg. 1).
The classifier calculates for each model Wt,k the number of
Threshold Exceedings (cf. §IV-C) and uses the median number
of Threshold Exceedings divided by two as the classification
boundary. A model is labeled as poisoned, if its number of
Threshold Exceedings is below this threshold. As we assume
the majority of clients to be benign (cf. §III-B), the median
will always be at least as high as the lowest benign value.

3) Clustering: The goal of the clustering is to build groups
of models, s.t. the training data of all models in the same group
are based on IID training data and therefore all models should
receive the same label. Because all clients use the same global
model, clients with similar training data, will result in similar
model updates (cf. §IV). Therefore, a clustering that is based
on these features (DDifs, NEUPs and cosine distances), will
create groups of models with similar training data.
The clustering algorithm is shown in Alg. 2. In a scenario with
P output classes of the models, the input for the algorithm is
the number of models N , the NEUPs for each model as a list
of N vectors with dimension P , the DDifs for 3 different seeds
as a list of 3 lists, each containing N vectors of dimension P ,
as well as the pairwise cosine-distances for the updates of the
output layer biases as a matrix of dimension N ×N .

The algorithm first clusters the cosine distances (cf. line 13 of
Alg. 2), the NEUPs (cf. line 15 of Alg. 2) and the DDifs
(cf. line 17 of Alg. 2). While the NEUPs and DDifs are
clustered as plain values, the cosine distances are considered as
a precomputed distance matrix. For the clustering HDBSCAN
is used that determines the number of clusters dynamically.
This allows DeepSight to build groups of models that optimally
fit the data distributions and rather create more clusters than
necessary than mixing models that were trained on data from
different distributions, as this has the risk of mixing benign and
poisoned models. A comparison of HDBSCAN with, e.g., k-
means that is used Auror [34] is provided in App. B. This struc-
ture allows DeepSight to adapt the combination of techniques
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dynamically to the current situation, addressing challenge C5.
After clustering all feature values, a pairwise distance matrix is
determined for each clustering by setting the distance between
two models to 0 if they were put into the same cluster
and otherwise 1 (cf. function DistsFromClust and lines 14,
16 and 18 in Alg. 2). First, the distance matrices for all
DDif clusterings are combined via averaging (cf. line 19 in
Alg. 2). Then, the result is averaged with the distance matrices
for the cosines and NEUPs (cf. line 21 in Alg. 2). The
resulting distance matrix is again processed by HDBSCAN
as precomputed distance matrix (cf. line 25 in Alg. 2).

4) Poisoned Cluster Identification (PCI): This component
combines the results of the clustering and classification to
finally decide about accepting or rejecting a model. To do so, it
takes the clustering and labeling from the previous components
and determines for each cluster the percentage of poisoned-
labeled model updates (cf. lines 25 - 32 in Alg. 1). All models
of a cluster remain if less than τ = 1/3 of them are labeled as
suspicious. Otherwise, all models of this cluster are removed.
The component relies on the idea that all models in the same
cluster have similar, IID training data and should, therefore,
receive the same label. This mechanism in effect, therefore,
realizes a voting about the label for all models in this cluster.
The threshold of τ = 1/3 was chosen as it is more likely that
a poisoned model is labeled as benign than vice versa.

In summary, we build a dynamic filtering mechanism that
efficiently identifies and filters poisoned models that were
trained on homogeneous training data by deeply inspecting the
predictions of the models and the parameters of the individual
neurons. The filtering mechanism is not restricted to black-box
metrics of model updates but deeply inspects the models, look-
ing for artifacts of focused training data. It uses the Threshold
Exceedings to label all models as suspicious or benign. It
does not rely on a certain NN architecture nor backdoor types
but inspects the models for artifacts that are characteristics
for all backdoors and, therefore, addresses challenge C3. By
analyzing the model updates for characteristics of poisoned
models, it is able to effectively distinguish between poisoned
and benign models, even if the benign models use deviating
data. By this, DeepSight also addresses challenge C1.
The proposed techniques for inferring information about the
training data of a model (DDifs, NEUPs) as well as the
cosine metric build a stable clustering mechanism. It combines
different kinds of features that make it, therefore, hard for an
adversary to trick them. This clustering ensemble allows the
filtering mechanism to create groups of models, where all data
in the same group have IID training data. The clustering is used
to support the classification and allow to consider their labels
but also the labels of similar models for finally deciding about
accepting or rejecting them. Moreover, by labeling each model
separately, DeepSight is not forced to exclude models but is
also free to accept all models. In addition, because of the high
sensitivity of the PCI (τ = 1/3), it is unlikely that models are
accepted which are a threat for the aggregated model. On the
other side, as we discussed in §IV-C, the Threshold Exceedings
based identifier is unlikely to label benign clients as poisoned,
addressing challenge C4. Therefore, the design realizes a well-
balanced trade-off between being too restrictive and too open.
We will discuss the effectiveness of the ensemble of different
techniques further in §VI-C2.

B. Clipping Layer
To prevent A from artificially increasing the weight of the
poisoned model updates and, therefore, to ensure that A
focuses the training data on the backdoor behavior [28], we
restrict the L2-norm of the individual updates to a boundary S
by downscaling the updates if necessary, analogously to Eq. 3.
The scaling factor for clipping a model Wt,i that was trained
by using the global model Gt is given by:

λct,i = min
(
1,

S

||Wt,i −Gt||

)
(12)

Since the L2-norms of (benign) updates decrease during multi-
ple rounds of training, it is challenging to determine a suitable
static clipping boundary. Therefore, we choose S dynamically
based on the median of the L2-norms of all updates, including
the filtered model updates [28]. As we assume the majority
of all clients to be benign, this value will always be in the
interval of the L2-norms for the benign updates.

C. Aggregation Layer
In the aggregation layer, all remaining clipped models are
aggregated together using FedAvg. However, in the last round,
the aggregation is performed clusterwise and includes also the
filtered, clipped models, s.t. only models from the same cluster
are aggregated together and each client receives the model that
was aggregated for the respective cluster.
As the clustering results in groups of models, where all models
in the same group were trained on very similar, IID data this
also separates models that were trained on benign or poisoned
data. By applying this strategy we ensure that even if an
adversary was able to circumvent the classifier in the first layer
and even circumvent the clipping, the impact of the attack will
be still restricted to the clients that A already controls. This
separation prevents the attack from affecting the benign clients.
Moreover, if the global model of the previous round was
already poisoned, this separation allows the benign clients to
untrain the backdoor and gain a clean model, analogously to
the concept of transfer learning [29].

VI. EVALUATION

A. Experimental Setup
To evaluate our approach, we test its effectiveness in three
different FL applications. The first is the same NLP scenario
that was already used by Bagdasaryan et al. [2] and allows a
direct evaluation of DeepSight against their proposed attack,
as it allows to replicate their experimental setup. Moreover,
we also use the setup of Nguyen et al. [28] to allow a
better comparison with existing defense approaches. In App. D,
we evaluate DeepSight on multiple image datasets which are
frequently used as benchmark datasets in FL [2], [38], [4],
[28], [10], [37], [31].

1) Text Prediction: For the NLP scenario, we follow the
experimental setup of Bagdasaryan et al. [2]. Therefore, we
use the Reddit data set for November 2017. Each user with at
least 150 and at most 500 posts was considered as one client.
We created a dictionary and assigned an integer symbol to
each of the most frequent 50000 words and included also three
special symbols for unknown words as well as for the start
and end of a post. The models used in this scenario consist of
two LSTM layers with 200 hidden neurons each and a linear
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TABLE I: Characteristics of used IoT datasets

Dataset #devices Time
(hours)

Size
(MiB)

Packets
(millions)

FLGuard-Benign 18 4774.7 459.0 3528.3
DÏoT-Attack 5 80.6 7734.2 21919.0
DÏoT-Benign 10 1080.8 134.9 1062.9
UNSW-Benign 16 5415.6 2102.5 8564.4

output layer. After the model was trained for 5000 rounds with
100 randomly selected clients in each round, during which
each client trained 2 epochs per round, the adversary used 10
malicious clients to inject advertisements and make the model,
e.g., predict ”delicious” after ”pasta from astoria tastes”. The
Main Task Accuracy (MA) in this application refers to the
accuracy of the suggested words.

2) Network Intrusion Detection System (NIDS): Another
application scenario is an FL-based NIDS for IoT devices [26].
We merged four different datasets containing traffic of IoT
devices from real-world home and office deployments kindly
made available to us by the authors of the respective pa-
pers [26], [28], [36]. Table I shows the details of the used
datasets. The detection model consists of two layers with
128 Gated Recurrent Units (GRU) each and a linear output
layer [26].

1) FLGuard-Benign: IoT traffic being captured in three real-
world smart-home settings in different cities and one
office for more than one week each [28].

2) DÏoT-Benign: IoT traffic being captured in a real-world
smart home with 18 IoT devices deployed [26].

3) UNSW-Benign: IoT traffic being captured in a small office
with 28 IoT devices deployed [36].

4) DÏoT-Attack: traffic of 5 IoT devices that were infected
by the Mirai malware [26].

Following the setup of Nguyen et al. [28], we grouped the
devices in the datasets according to their communication be-
havior, resulting in 44 distinct device type groups. We selected
22 device types that had sufficient data for distributing it over
at least 15 simulated clients each having at least 2 000 data
samples. These device types represent different kinds of typical
IoT devices found in a smart home, such as printers, smart
light bulbs, smart plugs, or smart sensors. Depending on the
amount of data available for a particular device type, its data
were split into at least 15 and up to 200 clients, so that each
client had between 2 000 and 3 000 samples for training. By
doing this we ensure that the training data divided to different
clients are as independent as possible and thereby resemble a
real-world setting. Since different clients were assigned data
from different data sets and different settings inside a dataset,
the client data represent a combination of IID and non-IID data
distributions. The detailed evaluation results of DeepSight for
each of these device types can be found in App. C. For ease of
presentation, we select the Netatmo Weather device, a smart
weather station, as a representative example of a device type
for the subsequent discussion, as it was present in three out of
the four datasets and provided sufficient data to be distributed
among 100 simulated clients.
Unless stated otherwise, we used for training the detection
models a learning rate of 0.1 for benign clients, and for
malicious clients the constrain-and-scale attack strategy with
a learning rate of 0.01, a loss-control parameter α = 0.7,
a PDR of 50 %, a PMR of 25%, and 10 local epochs.
The initial global model was based on 10 rounds of be-

TABLE II: Effectiveness of DeepSight in comparison to exist-
ing defenses on NIDS and NLP dataset. The row No defense
shows the impact of the constrain-and-scale attack with plain
FedAvg.

Defenses Text prediction NIDS
BA MA PRC NPV BA MA PRC NPV

No Attack - 22.6 - - - 100.0 - -
No defense 100.0 22.4 - - 100.0 100.0 - -

DP [2], [23] 21.9 20.6 - - 14.8 82.3 - -
Ensemble FL [6] 100.0 22.6 - - 100.0 93.2 - -
FoolsGold [10] 0.0 22.5 100.0 100.0 100.0 99.2 32.7 84.4
Auror [34] 100.0 22.4 - 90.0 100.0 96.6 0.0 70.2
AFA [24] 100.0 22.4 0.0 89.4 100.0 87.4 4.5 69.2
Krum [4] 100.0 22.6 9.1 0.0 100.0 84.0 24.2 0.0
FLGuard [28] 0.0 21.7 20.4 100.0 0.0 100.0 59.5 100.0
DeepSight 0.0 22.6 100.0 100.0 0.0 100.0 100.0 100.0

nign training before starting attacks. In the NIDS scenario,
the Main Task Accuracy (MA) refers to the true negative
rate, i.e., the rate of benign traffic being classified as be-
nign whereas Backdoor Accuracy (BA) refers to the false-
negative rate, i.e., the rate at which attack traffic samples
of the adversary are erroneously classified as benign.

B. Experiment Platform
All experiments were performed on a server running Ubuntu
18.04 LTS, with 20 physical Intel Xeon CPU cores and 40
logical cores, 4 NVIDIA GeForce RTX 2080 Ti (each with
11GB memory), and 192 GB RAM. The experiments were
implemented in Python, using the popular deep learning library
Pytorch, the HDBSCAN implementation of McInnes et al. [20]
and for evaluating existing work such as Auror [34] the
machine learning library Scikit [30] was used.

C. Experimental Results
1) Preventing Backdoor Attack: Table II shows the effec-

tiveness of DeepSight in comparison to several state-of-the-art
defenses approaches in terms of BA, MA, precision (PRC), in-
dicating the probability that a filtered model is indeed poisoned
and its complement, the negative predictive value (NPV), indi-
cating the probability that an accepted model is indeed benign.
As can be seen, DeepSight effectively mitigates the attack in
both scenarios. Other approaches [34], [4], [24] assume the
data to be IID, which makes them fail for non-IID (Reddit)
or partly IID (NIDS) data. Although FLGuard also achieves
a decent performance in both scenarios, it also excludes
many benign clients, which reduces the MA of the model,
especially if it is applied from the beginning (cf. §VI-D).
Also FoolsGold [10] achieves a decent performance in the text
prediction scenario but fails for the IoT dataset. This is likely
because FoolsGold assumes datasets of benign clients to be
non-IID. The data in the IoT data set are partly IID (cf. §VI-A),
causing FoolsGold to fail. On the other side, DeepSight is
the only approach that is effective in both scenarios.
In App. F, we evaluate DeepSight against 5 different NLP and
12 NIDS backdoors, showing that it is not restricted to specific
targets.
In most of our experiments, A does not attack in the beginning
but after several rounds of training, as otherwise there would
be a high risk that, even if the attack would be successful,
the later training would untrain the backdoor. To show, that
this does not restrict A, we conducted an experiment on the
traffic of 5 different device types in the NIDS scenario, starting
from a randomly initialized model and trained for 50 rounds.
However, in all cases the BA remained at 0.
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2) Evaluation of Individual Components: Table III com-
pares the BA for the different layers of DeepSight, after
running 10 rounds of training, while the malicious clients try to
inject different numbers of phases from the Mirai botnet at the
same time, using a PDR of 65 % and a learning rate of 10−2.5.
We averaged the values over 9 very different device types, cov-
ering IoT devices for a wide spectrum of different applications
with different behavior: Edimax Plug and TPLinkPlug (smart
power plugs), DLinkType05 and EdnetGateway (collects of
sensors, e.g., a door sensor), Lightify (a smart light bulb),
NetatmoCam (a WIFI camera), PIX-STARPhoto-frame (a foto
frame), Netatmo Weather and an HP Printer.
As the table shows, it is more difficult for A to inject
multiple backdoors at the same time, as already pointed out
by Sun et al. [37]. It also shows that the clipping defense
is not effective against simple backdoors, but is effective
against complex backdoors since they have already a high
L2-norm before they are scaled. On the other hand, filtering is
effective in detecting backdoors that have a high imbalance in
the underlying training data, but fails for complex backdoors.
DeepSight combines the strengths of both and keeps the BA
low for all backdoor complexities. This shows the effectiveness
of the multi-layer strategy, where the filtering layer forces A to
weaken its attack when it wants to prevent the poisoned models
from being filtered out. However, then the weakened attacks
can be easily mitigated by the clipping layer of DeepSight.
In App. K, we analyze the effectiveness of the individual
components of DeepSight’s filtering layer.

3) Varying Attack Parameters: For the constrain-and-scale
attack strategy, A can adjust different parameters of the
training process for the malicious clients, with the purpose
to overcome our defense. We evaluated different alpha-values
from 0.1 to 1, different learning rates from 10−1 to 10−7,
different numbers of epochs from 1 to 100 and different stages
of the training when A starts its attack and runs the training
process for each of them for at least 10 rounds for the NIDS
dataset. Furthermore, we also evaluated different PMRs up to
45 % for 20 rounds to even evaluate the border cases. However,
DeepSight was always able to classify the submitted models as
benign or poisoned without any misclassifications. Therefore,
the BA was always 0 % and the MA almost always 100 %.
We also evaluated different PDRs from 5 % to 100 %. Again,
DeepSight did not misclassify any benign models. However, as
already observed earlier for weakly-trained backdoors, which
are realized here through low PDRs, DeepSight was not able
to recognize all poisoned model updates. For a PDR of 5 %,
DeepSight did not recognize any poisoned model updates and
for PDRs of 8 % or 10 %, DeepSight failed to detect 6 out of 25
poisoned models. The reason for not recognizing some models
for the PDRs of 8 % and 10 % is that the clustering put them to-
gether with benign models, but also the Threshold Exceedings
based identifier did not recognize them correctly. For a PDR of
5 %, both, the clustering and the Threshold Exceedings based
identifier failed. However, as we have demonstrated in §VI-C2,
the clipping defense layer compensates the vulnerability of

TABLE III: BAs from DeepSight’s individual layers for differ-
ent backdoor complexities, averaged over 9 IoT device types.

1 2 3 4 13
No Defense 100.0 % 80.3 % 48.2 % 41.7 % 43.9 %
Clipping 87.5 % 56.2 % 31.2 % 13.9 % 11.5 %
Filtering 0.0 % 7.4 % 41.5 % 30.4 % 42.9 %
DeepSight 0.0 % 0.0 % 0.6 % 0.3 % 1.1 %

the filtering layer from DeepSight against such weak attacks.
Because of the combination of both layers, the attack failed
for all PDRs and the BA was always 0 %.
Therefore, the adversary can not circumvent DeepSight by
varying the attack parameters.

4) Sophisticated Attacks: As we assume A to have full
knowledge about the system, it can adapt its strategy to
circumvent DeepSight. In the following, we discuss three so-
phisticated attack strategies, specifically designed to overcome
DeepSight and a recently proposed state-of-the-art backdoor
attack [41]. In App. G, we evaluate another state-of-the-art
attack [38] and two further adaptive attacks, targeting the
clustering components of DeepSight by adding noise and
use poisoned models to fill the gap between the benign and
poisoned models.
Increasing Backdoor Complexity As the classifier labels
models based on the complexity of their training data, a
sophisticated adversary could try to increase the complexity for
avoiding a focus on the backdoor target CA. We simulated this
for the NIDS scenario by using the network traffic of multiple
phases of the Mirai botnet. However, as shown in Tab. III,
the BA is always close to zero. The reason for this is that for
more complex backdoors the filtering component fails but on
the other side, such backdoors are also harder to inject [37],
causing them to be mitigated by the clipping layer. Also here
the advantage of our multi-layer approach becomes visible.
Freeze Output Layer As the NEUPs and the Threshold
Exceedings depend on the output layer updates, a sophisticated
adversary could exclude the parameters of this layer from the
training. To show the effectiveness of DeepSight, we run an
experiment for the IoT-Traffic. We used different numbers of
local epochs, up to 100 000 epochs and increased the PDR to
90 %. However, the BA of the local model did not increase,
because it is significantly harder to train a model for a specific
task without changing the output layer. Therefore, also the
aggregated BA remains at 0 %, even for PMRs of more than
50 %, which goes beyond our attack scenario (cf. §III-B).
Adapt Anomaly Evasion Loss Another option is to consider
the DDifs already during the training for the anomaly-evasion
loss Lanomaly. We calculated the DDifs for the aggregation
result of all benign models. Lanomaly was calculated as the
L2-norm between the DDifs of this benign model and the
current poisoned model. For simplicity, we used the actual
benign models instead of estimations, as this strengthens A,
although this goes beyond our adversary model. However,
even with this advantage, the attack was not successful. We
run the experiment for 10 rounds, and different α values
(α ∈ {0.0, 0.1, . . . 1.0}). Although the attack successfully
distracted the DDifs, this was compensated by the other
techniques. Therefore, DeepSight still completely mitigated the
attack, showing the advantage of the clustering ensemble.
DBA Attack: Recently, Xie et al. introduced a novel backdoor
attack strategy that split the trigger and the clients into different
parts. Each group of clients only train for their respective
trigger part [41]. We evaluated the attack in the NLP scenario.
One group trained their models to predict the word ”delicious”
4 words after the word ”pasta”, the other group to predict ”de-
licious” 2 words after the word ”astoria”. However, although
the attack achieved a BA of 64.5 % without defense, DeepSight
successfully identified all poisoned models and mitigated the
attack (BA=0 %), while keeping the MA at 22.6 %.
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Fig. 5: Performance in terms of Main Task Accuracy (MA) of
DeepSight and Krum [4] without attack

D. Impact on Benign Training Process
Several existing defense approaches [4], [24], work by exclud-
ing outliers and are, therefore, very likely to always exclude
models even if there is no attack deployed. This impacts
negatively the resulting model, causing a low MA and makes
the respective defenses not practical.
Figure 5 compares the MA if no attack is deployed, for
DeepSight, Krum [4], FLGuard [28] and without defense
(Baseline), starting from a random model. As the figure
shows, DeepSight slows down the training process slightly but
achieves a good performance soon, similarly to the baseline.
Therefore, the negative impact on the learning process is low.
In comparison, Krum stops at 60 %, as it always chooses a
model representing data from the majority of clients. Analo-
gously, also FLGuard does not consider outliers.
In App. J, we discuss the computational complexity of
DeepSight. We show that the computationally expensive op-
erations scale linearly with the number of participants, s.t.,
DeepSight causes only a low computational overhead.
We extensively evaluated various different attack strategies,
including state-of-the-art attacks [2], [41], [38] as well as
attacks that target the weak spots of DeepSight, e.g., adapting
the anomaly-evasion loss function, freezing the output layer,
reducing the attack impact or building clusters with a sufficient
number of inconspicuous models. However, none of these
attacks were effective in overcoming DeepSight. We showed
that techniques that might be suitable for distracting DeepSight
also reduce attack impact. Therefore, DeepSight addresses
challenge C2. Moreover, also techniques like client-level Dif-
ferential Privacy [23] do not have an impact on DeepSight, as
we evaluated client-level model-noising with various different
standard deviations and provide a proof for the robustness of
the NEUPs, cosine distances and Threshold Exceedings against
scaling/clipping the model updates (cf. §VII). Therefore, we
showed that DeepSight effectively mitigates backdoor attacks.

VII. SECURITY CONSIDERATION

To achieve adversarial objective O1 (cf. §III-B), i.e., maxi-
mizing Backdoor Accuracy (BA), adversary A needs to use
a well-trained backdoor in its poisoned model updates to
maximize its impact. Such model updates will, however, be
identified and removed by model filtering. To avoid detection,
A can try to use only weakly trained backdoors. In this case,
however, the attack is effectively mitigated by clipping. The
filtering scheme is based on multiple measures (DDifs, NEUPs,
Threshold Exceedings) to identify models with similar training
data and label models as benign or malicious. Theorem 1
and Theorem 2 below show that neither DDifs nor Threshold
Exceedings are affected if A scales its model updates. Fur-
thermore, also the cosine distances are shown to be resilient
against scaling (cf. App.H).

Theorem 1. The NEUPs are not affected by scaling or
clipping the model update.
Formally: Let Gt be the global model of an arbitrary round,
Wt,k an arbitrary local model applying update Ut,k, with
Wt,k = Gt + Ut,k and NEUPs(Gt,Wt,k) be the NEUPs for
Wt,k.
∀λ ∈ R \ {0} : NEUPs(Gt,Wt,k) = NEUPs(Gt, Gt + λUt,k)

Proof: See Appendix H.

Theorem 2. The Threshold Exceedings are not affected by
scaling or clipping the model update.
Formally: Let Gt be the global model of an arbitrary round,
Wt,k an arbitrary local model applying update Ut,k, with
Wt,k = Gt + Ut,k and TE(Gt,Wt,k) be the Threshold Ex-
ceedings for Wt,k.
∀λ ∈ R \ {0} : TE(Gt,Wt,k) = TE(Gt, Gt + λUt,k)

Proof: Follows immediately from Theorem 1, as the only
input for the Threshold Exceedings are the NEUPs.

DeepSight relies on two values that are determined dynami-
cally, the classification boundary for the Threshold Exceedings
classifier and the clipping boundary. However, both values are
calculated as the median of all values. As we assume the
majority of clients to be benign, it is guaranteed that these
values will always be in the range of benign values and,
therefore, cannot be manipulated by A.
Furthermore, we empirically showed that DeepSight effec-
tively mitigates targeted poisoning attacks, including state-
of-the-art attacks [2], [41], [38] as well as attacks targeting
the weak spots of DeepSight against an arbitrarily behaving
adversary. Therefore, DeepSight fulfills requirement R1 and
prevents A from achieving O1 and O2.

VIII. RELATED WORK

Various defenses against poisoning attacks in FL have been
proposed. In the following, we will discuss and compare them
to DeepSight.

A. Anomaly Detection-Based Approaches

Many backdoor defenses follow an outlier-detection-based
strategy and exclude anomalous mode updates [34], [4], [24],
[42], [15], [14], [16], [12]. They assume that the local data of
all benign clients are similar, i.e., identically and independently
distributed (IID), so that it is sufficient to filter models that dif-
fer from the majority of models. However, in many scenarios
the data are non-IID [10], [35], resulting in differences among
benign models. Therefore, many benign models are excluded,
causing the resulting model to perform worse on the data of
the excluded local models (cf. §VI-D).
Krum aggregates local models by choosing a single local
model as the aggregated model with the smallest Euclidean
distance to a certain fraction of other models [4]. Hence,
models trained on deviating data will never be chosen.
Munoz et al. exclude a local model if its cosine distance
to the aggregated model is higher or lower than the median
distance plus/minus the standard derivation [24]. Unfortu-
nately, also this approach suffers from a high false-positive
rate (cf. §VI-C1).
Baffle sends the aggregated model to a randomly selected
subset of clients. Those so-called validation clients evaluate
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the model on their local data and vote about accepting the ag-
gregated model or rejecting it [1]. However, validation clients
can only notice the backdoor if they have a sufficient number of
trigger samples or the backdoor attack has a significant impact
on the model’s behavior on the main task. The first scenario
is not realistic, as benign clients can not be assumed to have
knowledge of trigger samples. The second scenario implies that
the attack is not stealthy, violating O2 (cf. §III-B), and making
the backdoor easy to detect. Furthermore, the approach does
not work if the data of a (small) number of training clients
differs from the majority of validation clients, which happens,
e.g., in non-IID scenarios. Also, Baffle cannot be used from
the beginning but, e.g., only after several hundreds of rounds,
as otherwise many false positives will occur (cf. [1]).
Auror first determines indicative features by clustering for each
parameter all local models separately using k-means with two
clusters. It selects features with the highest distances between
the two centroids. A model is rejected if it was clustered for
too many indicative features to the smaller cluster [34]. Also
Auror focuses on excluding outliers. Moreover, a centroid-
based clustering can be successfully distracted (cf. App B).
FLGuard also exploits the dilemma of A to either focus on
the training data and getting filtered, or to use weakly-trained
model updates, allowing the clipping layer to mitigate the
attack. Nguyen et al. combine an outlier-based clustering with
clipping and adding random noise to the model [28]. However,
while DeepSight uses a classifier for identifying poisoned
model updates, FLGuard uses a clustering approach that rejects
outliers, including benign model updates that were trained on
different data (cf. §VI-D).
Liu et al. introduced another approach to detect backdoored
models in centralized settings [17]. However, their approach
is not suitable for FL settings and does not consider semantic
backdoor attacks as discussed in detail in App. L.
In summary, besides being ineffective (cf. §VI-C1), existing
filtering approaches for FL also neglect a main principle of
FL by preventing utilizing the data of different clients, as the
resulting model was trained only on data of a certain group of
clients (cf. § VI-D).

B. Other Defense approaches

FoolsGold [10] assumes that benign datasets from different
clients differ from each other and assigns low weights to
models, which are similar to many other models. However,
this harms the impact of benign clients with similar data. For
example, in the case of the NIDS scenario, the network traffic
does not vary much because of the limited functionalities of
an IoT device. Moreover, FoolsGold sums up the updates for
all rounds and compares them, instead of focusing on the
current round. This allows a sophisticated adversary to submit
poisoned updates without being perceived as suspicious.
Differential Privacy [23] enforces a maximal, static L2-norm
of the updates and adds randomly generated noise. As pointed
out by Bagdasaryan et al. it has the side effect of also
mitigating backdoor attacks [2]. However, it fails for well-
trained poisoned models (cf. §VI).
Other approaches [42], [12] calculate the median for all
parameters and, therefore, also focus on models, representing
the majority but neglect models that were trained on different
training data. Moreover, also these defenses have shown to be
vulnerable to different poisoning attacks [8].
The approach of Cao et al. trains multiple models. For

each of these models, a random subset of clients is used
for training a model over multiple rounds. At inference time,
each resulting global model is applied and the final prediction
is determined via majority voting. Cao et al. prove that if
the training is completed, they could determine for a specific
sample a minimal number m of malicious clients, which their
algorithm would have been able to tolerate [6]. Unfortunately,
this number can differ arbitrarily for different input samples.
Moreover, their proof does not provide any work in practice.
Since determining this number requires a-posteriori knowl-
edge, the impact of determining m at this point is negligible,
as the models are already trained and it is, therefore, too late
to prevent backdoor attacks. Furthermore, at this point, it is
not even clear, whether the current label for the considered
samples is even correct or a backdoor attack already took
place and flipped the label already. Finally, the approach is
vulnerable for the replacement-scaling attack of Bagdasaryan
et al. [2] and damages the MA, as we demonstrated in §VI-C1,
and fails even for low PMRs of 5 % (cf. [6]).

C. Model Inference Attacks in FL
Different approaches to inference information from models
have been proposed [39], [13], [25], [32]. Although these
approaches work well to violate the users’ privacy in the
considered attack scenarios, none of them is suitable for being
used on an FL aggregation server to identify poisoned model
updates. Membership inference attacks that determine the pres-
ence of a specific sample [13], [25], are not effective as benign
and poisoned samples can overlap, e.g., for the NIDS sce-
nario. Other approaches, require attackers to have their own
training data [32], which is not practical for the FL server
(cf. §III-C), or train separate models for each label [39],
making the approach not practical, e.g., for the NLP scenario
with 50 000 words.
In comparison, the techniques that were proposed in this paper
(NEUPs, DDifs, and Threshold Exceedings), allow to estimate
information about the training data distribution and identify
poisoned models and models with similar data but causes only
a small computational overhead (cf. App. J) and do not require
test data to be available on the aggregation server.

IX. CONCLUSION

Backdoor attacks threaten the integrity of Federated Learning
(FL), which is a promising emerging technology. We show that
existing countermeasures cannot adequately address sophisti-
cated backdoor attacks on FL and introduce DeepSight, a novel
model filtering approach that effectively mitigates backdoor
attacks on FL. While existing backdoor defenses are often
restricted to excluding abnormal models, DeepSight follows
an orthogonal approach by using several novel techniques to
conduct a deep inspection of the submitted models separately
for identifying and excluding poisoned models.
We present several new techniques (DDifs, NEUPs, Threshold
Exceedings) to infer information about a model’s training
data, identify similar models, and measure the homogeneity of
model updates. By performing a deep inspection of the mod-
els’ structure and their predictions, DeepSight can effectively
mitigate state-of-the-art poisoning attacks and is robust against
sophisticated attacks, without degrading the performance of the
aggregated model.
Recently, different secure aggregation schemes have been
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proposed preventing the aggregation server from accessing the
individual model updates [5], [9]. Although, DeepSight does
not reduce the privacy level compared to FedAvg [21] as it
also anonymizes the individual contributions and smoothens
the parameter updates by aggregating them, future work needs
to implement a privacy-preserving version of DeepSight to
combine the privacy gains of secure aggregations with the
backdoor mitigation algorithm of DeepSight.
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APPENDIX

A. Homogeneity of Poisoned Models
Although the adversary A needs to craft inconspicuous models
for preventing a detection or mitigation of its attack (O2;
cf. §III-B), this also reduces the attack impact (O1). In the
following, we will show that, in order to run a successful
attack, A needs to focus on the backdoor behavior, resulting
in homogeneous model updates. To make the models more in-
conspicuous, A can tune the PDR and also make the backdoor
behavior more complex for imitating a deviating distribution
of benign training data.
Backdoor Complexity As pointed out by Sun et al. [37] and
also confirmed by our experiments (cf. §VI-C2), increasing the
complexity of the backdoor behavior also significantly reduces
the attack impact. If, i.e., A includes 4 phases of Mirai in its
backdoor for the NIDS scenario, this reduces the attack impact
even without defense and allows a defense that only consists of
the clipping component (cf. §V-B) to reduce the BA to 13.9 %,
indicating that A cannot increase backdoor complexity beyond
this value. On the other side, the filtering is still effective,
showing that even for this complexity level, the training data
are homogeneous enough to get detected by DeepSight.
PDR: The second parameter that affects the homogeneity of
models is the PDR. However, as pointed out by Nguyen et al.,
low PDRs also reduce the attack impact and increase the
risk that the impact of the poisoned model updates becomes
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Fig. 6: Impact of the Poisoned Data Rate (PDR) on the
Backdoor Accuracy (BA) without defense, a clipping defense
(§V-B), filtering (§V-A) and DeepSight for different device
types.
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Fig. 7: Effectiveness of our clustering algorithm (a) compared
to HDBSCAN for a single cluster and outliers (grey) [28] (b) as
well as k-means clustering [34] (c). The individual models are
visualized by using the principal component analysis (PCA6).

negligible during the aggregation. Figure 6 shows the BA
for the individual components for three different device types,
depending on the PDR. Also here, clipping mitigates the attack
successfully for low PDRs but fails for high values. Therefore,
to achieve a high attack impact, especially in scenarios where
the server applies clipping, A needs to use a high PDR, i.e.
at least 20%. However, this causes a focus of the poisoned
training data on the attack data, resulting in homogeneous
model updates, which allows the filtering layer to detect and
filter the poisoned models.

In summary, if A tries to increase the heterogeneity of its
model updates by, e.g., reducing the PDR or making the
backdoor behavior more complex, the impact of the backdoor
will simultaneously also decrease the attack impact, making
it easier to be mitigated by defenses like weight clipping
(cf. §V-B). Therefore, to maximize the attack impact, A needs
to choose a high PDR and a simple backdoor behavior, causing
the training data to differ from the benign data and causing the
model updates to be more homogeneous, thus making them
distinguishable from benign ones.

B. Comparison of Clustering Approaches
DeepSight uses HDBSCAN for clustering. Other clustering
algorithms, e.g., k-means [19] that is used by Auror [34]
have, among others, the disadvantage to require the number
of clusters in advance. However, this can be exploited by A
to circumvent the defense, as shown in Fig. 7. This figure
compares HDBSCAN against k-means for the NIDS dataset
with 25 malicious clients. To distract the defense, A used a
subset of 5 clients for submitting random model updates. As
subfigure 7c shows, this successfully distracts k-means, s.t. it
accepts the remaining poisoned models, while HDBSCAN is
not distracted by the random models. However, the version
that accepts only a single cluster also rejects many benign
models. On the other side, the plain HDBSCAN is well suited
for distinguishing model updates, trained on different data. It
effectively separates all different groups of models.

C. Performance of DeepSight on the IoT dataset

Table IV shows the performance of DeepSight for all device
types in the NIDS scenario. As the table shows, DeepSight
successfully mitigates all backdoor attacks, although it does not
always filter all poisoned models. For example, in case of the
Ednet Gateway, the filtering does not filter any malicious client,

6The Principal Component Analysis (PCA) is a well-known technique to
extract principal dimensions from high-dimensional data [40].
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TABLE IV: Main Task Accuracy (MA), Backdoor accuracy
(BA), Poisoned Probability (PRC) and Benign Probability
(NPV) of DeepSight for different IoT devices in the NIDS
scenario.

No Defense DeepSight
Device Type BA MA BA MA PRC NPV
Amazon Echo 100.0 99.9 0.0 93.3 100.0 100.0
Belkin Wemo Motion Sensor 100.0 99.9 0.0 99.2 92.6 100.0
DLink Type05 100.0 91.9 0.0 98.3 100.0 98.7
Edimax Plug 100.0 98.7 0.0 98.8 100.0 100.0
Ednet Gateway 100.0 100.0 0.0 100.0 – 75.0
Google Home 58.2 100.0 0.0 87.5 100.0 100.0
HP Printer 100.0 92.6 0.0 89.9 100.0 100.0
Insteon Camera 100.0 98.9 0.0 97.8 100.0 98.7
LiFx Light Bulb 100.0 100.0 0.0 83.7 100.0 90.5
Lightify2 100.0 100.0 0.0 100.0 100.0 100.0
Nest Dropcam 100.0 100.0 0.0 100.0 100.0 84.6
Netatmo Cam 100.0 100.0 0.0 100.0 100.0 100.0
Netatmo Weather 0.0 93.5 0.0 100.0 100.0 100.0
PIX-STARPhoto-frame 100.0 100.0 0.0 99.9 100.0 100.0
Samsung Smart Cam 100.0 99.2 0.0 99.9 100.0 100.0
Smarter 100.0 100.0 0.0 100.0 100.0 100.0
TP-Link Cloud Camera 100.0 98.6 0.0 97.6 100.0 100.0
TPLink Plug 0.0 89.1 0.0 100.0 100.0 83.3
Tesvor Vacuum 100.0 96.1 0.0 95.5 100.0 100.0
Triby Speaker 0.0 81.5 0.0 80.8 100.0 100.0
Wemo Switch 100.0 100.0 0.0 100.0 100.0 100.0
Withings Sleep Sensor 100.0 100.0 0.0 100.0 100.0 100.0
Withings Baby Monitor 100.0 100.0 0.0 100.0 100.0 100.0
iHome 100.0 92.2 0.0 92.9 100.0 100.0
Average 85.8 97.2 0.0 96.5 99.7 97.1

since the Threshold Exceedings of most poisoned models (on
average 27.75) are slightly higher than the boundary (29, the
benign models have in average 57 Threshold Exceedings).
However, as the clipping boundary is always in the interval
of benign values and the benign and poisoned models are
separated, the BA is still 0%, showing the effectiveness of
our multi-layer approach.
D. Evaluation of DeepSight on Image Datasets
The CIFAR-10 and MNIST datasets are frequently used as
benchmark datasets for FL. [2], [38], [4], [28], [10], [37],
[31]. To allow a better comparison with other work on FL, we
replicate the setup of existing work. For the CIFAR-10 dataset,
we use a light version of Resnet-18 model and an IID rate of
0.7. The adversary aims to make cars in front of a stripped
background being classified as birds [2], [28]. For MNIST, the
model consists of 2 convolutional layers with a max-pooling in
between and 2 fully connected layers [6]. The adversary aims
to make pictures with a white rectangle on the left side to be
classified as a ”0”. We used 100 clients and set the PMR to
20 %[28]. As Tab. V shows, DeepSight effectively mitigates
the attack, while without defense the BA reaches 100% and
96.3%. It is worth noting, that in case of MNIST sometimes
misclassifications a counted in favor of the BA (cf. §G).
In App. E, we evaluate DeepSight for an image recognition
scenario, where the dataset of each client consists only of a
single label to simulate homogeneous benign training data.

E. Scenarios with a Single Source Label
The Threshold Exceedings classifier of DeepSight estimates
the homogeneity of the used training data based on the distribu-
tion of labels. However, in special scenarios the local datasets
of each client might consist only of samples with a single label,
e.g., for facial user authentication on smartphones. Although,
in those scenarios a binary classifier or a siamese network [7]
might be more suitable than FL, we performed an additional
experiment on the popular CIFAR-10 benchmark dataset with

TABLE V: Effectiveness of DeepSight for the CIFAR-10 and
MNIST datasets. All values in percentage

CIFAR-10 MNIST
Defense BA MA PRC NPV BA MA PRC NPV
No Attack 0.0 92.2 - - 0.4 95.7 - -
No Defense 100.0 84.1 - - 96.3 58.9 - -
DeepSight 0.0 92.2 - 80 0.3 96.6 100 100

100 clients and a PMR of 20 % to demonstrate DeepSight’s
effectiveness even in those scenarios. As Tab. VIII shows,
although DeepSight did not detect the malicious models,
the later defense layers successfully mitigated the attack.
Table VIII also shows that due to the dynamic threshold of
the Threshold Exceedings classifier, DeepSight did not raise
any false positive, demonstrating that DeepSight does not
negatively affect the MA of the resulting model.

F. Performance of DeepSight against Different Backdoors
To demonstrate that DeepSight is not restricted to certain attack
patterns, we evaluate it against different backdoors.
NIDS: We evaluated DeepSight against different backdoors
in the NIDS scenario, by using different attack modes of the
Mirai malware as attack traffic. As Tab. VI shows, DeepSight
effectively mitigates all of these attacks.
Word Prediction: We injected different sentences, which were
also used by Bagdasaryan et al. [2]. As Tab. VII shows,
DeepSight is effective against all of these backdoors.

G. Further Sophisticated Backdoor Attacks
Edge Case: Wang et al. recently proposed an attack that aims
to flip the labels for the samples, where the adversary’s focus
on samples where the predictions are already made with a low
confidence value. Therefore, the attack targets samples where
the predicted probability is low, although it is still classified
correctly [38]. We followed their experimental setup of and
conducted an experiment for the CIFAR-10 benchmark dataset
for 1500 rounds. In each round 10 clients were randomly se-
lected for training their local model. The adversary A launched
its attack for 150 rounds. Without defense, A achieved a BA of
53.06% and a MA of 86.46 %. DeepSight reduced the BA to
7.14 % and the MA to 80.54 % and, therefore, successfully
mitigated the attack. It is worth noting that even without
attack the BA is 11.2% and the MA is 77.53% as here also
misclassifications are considered.
Model Noising DeepSight uses clustering in several places
to identify clients with similar training data. Therefore, a so-
phisticated adversary could add random noise to the poisoned

TABLE VI: Main Task Accuracy (MA), Backdoor accuracy
(BA), Poisoned Probability (PRC) and Benign Probability
(NPV) of DeepSight for different NIDS backdoors.

No Defense DeepSight
Backdoor BA MA BA MA PRC NPV
Dos-ACK 100.0 92.8 0.0 100.0 100.0 100.0
Dos-DNS 100.0 98.0 0.0 100.0 100.0 100.0
Dos-Greeth 100.0 98.1 0.0 100.0 100.0 100.0
Dos-Greip 100.0 97.5 0.0 100.0 100.0 100.0
Dos-HTTP 100.0 92.5 0.0 100.0 100.0 100.0
Dos-Stomp 100.0 97.5 0.0 100.0 100.0 100.0
Dos-SYN 100.0 82.0 0.0 100.0 100.0 100.0
Dos-UDP 100.0 92.9 0.0 100.0 100.0 100.0
Dos-UDP (Plain) 100.0 96.5 0.0 100.0 100.0 100.0
Dos-VSE 100.0 97.2 0.0 100.0 100.0 100.0
Preinfection 100.0 98.0 0.0 100.0 100.0 100.0
Scanning 100.0 82.0 0.0 100.0 100.0 100.0
Average 100.0 93.7 0.0 100.0 100.0 100.0
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models, in order to distract DeepSight. We evaluated this attack
by adding noise with 36 different standard deviations from
4.3 · 10−17 to 21.5 (logarithmically distributed) with a mean
of 0 for the NIDS scenario. However, this attack failed, as
the BA was always 0 even for the highest standard deviations,
which was too high, indicated by low BA values for the noised
poisoned local models.
Gap Bridging As DeepSight uses a voting-based filtering
mechanism to evaluate the models of a cluster, a sophisticated
adversary could try to use a few of the poisoned models, to
connect the benign cluster with the cluster that contains all
poisoned models, such that they are merged and the benign
models cause the cluster to be accepted. We used 200 clients
with a PMR of 40% and split all malicious clients into different
groups, with a gradually increasing PDR from 5% to 20%.
However, although 19 models with a very low PDR were ac-
cepted, the majority of poisoned models were rejected but not a
single benign model. The BA was 0% and the MA 100%. This
also shows the advantage of the ensemble, as a naive clustering
approach, using only the cosines and k-means, fails and does
not filter any poisoned model, while DeepSight identifies most
of the poisoned models and successfully mitigates the impact
of the no recognized models.

H. Stability of Metrics against scaling

The adversary can scale the updates, either to increase the
impact or as part of techniques like client-level DP, to make
them less suspicious. In the following, we show that the cosine
and NEUPs are not affected by scaling.

1) Stability of the cosine against scaling: For two vectors
u, v ∈ Rd, the cosine between is defined as:

cos(u, v) =
u · v
||u||||v|| =

d∑
i=0

uivi
√

d∑
i=0

u2i

√
d∑
i=0

v2i

(13)

Therefore, it follows that scaling one vector with a scaling
factor λ 6= 0 does not affect the cosine as:

cos(λu, v) =

d∑
i=0

(λui)vi
√

d∑
i=0

(λui)2

√
d∑
i=0

v2i

=

λ
d∑
i=0

uivi

λ||u||||v|| = cos(u, v)

(14)

2) Proof of theorem 1:: Let W ∗t,k be the poisoned model
of client k in round t, Gt the respective global model, U∗t,k =
W ∗t,k − Gt the update, γt,k 6= 0 an arbitrary scaling factor
unequal 0 (cf. Eq. 3). For simplicity, C∗t,k,i denotes the NEUP

TABLE VII: Main Task Accuracy (MA), Backdoor accuracy
(BA), Poisoned Probability (PRC) and Benign Probability
(NPV) of DeepSight for different NLP backdoors.

No Defense DeepSight
Trigger sentence Backdoor BA MA BA MA PRC NPV

”search online using” ”bing” 100.0 22.5 0.0 22.6 100.0 100.0
”barbershop on the corner is” ”expensive” 100.0 22.2 0.0 22.6 100.0 100.0
”pasta from astoria tastes” ”delicious” 100.0 22.4 0.0 22.6 100.0 100.0
”adore my old” ”nokia” 100.0 22.5 0.0 22.6 100.0 100.0
”my headphones from bose” ”rule” 100.0 22.3 0.0 22.6 100.0 100.0

Average 100.0 22.3 0.0 22.6 100.0 100.0

TABLE VIII: Effectiveness of DeepSight for the CIFAR-10
dataset, if each local dataset contains only samples with a
single label. All values in percentage

Defense BA MA PRC NPV
No Attack 0.0 92.2 - -
No Defense 100.0 76.6 - -
DeepSight 0.0 91.9 - 80

for the neuron i of the scaled model W ′t,i, Ct,k,i of the unscaled
model W ∗t,k and analogously for the energy E∗t,k,i as well as
the update of bias of neuron i for client k in round t but,k,i.
Therefore, the following relation holds:

b∗t,k,i = λt,kb
u
t,k,i + bt,Gt,i (15)

and analogously for the individual weight updates wut,k,i,h.
Therefore, C∗t,k,i = Ct,k,i holds:

C∗t,k,i =
E∗t,k,i2∑P
j=0 E∗t,k,j2

=

(
|b∗t,k,i − bt,Gt,i|+

∑H
h=0 |w∗t,k,i,h − wt,Gt,i,h|

)2

∑P
j=0

(
|b∗t,k,j − bt,Gt,j |+

∑H
h=0 |w∗t,k,j,h − wt,Gt,j,h|

)2

=

(
|λt,kbut,k,i + bt,Gt,i − bt,Gt,i|+

∑H
h=0 |w∗t,k,i,h − wt,Gt,i,h|

)2

∑P
j=0

(
|λt,kbut,k,j + bt,Gt,j − bt,Gt,j |+

∑H
h=0 |w∗t,k,j,h − wt,Gt,j,h|

)2

=

(
|λt,kbut,k,i|+

∑H
h=0 |λt,kwut,k,i,h + wt,Gt,i,h − wt,Gt,i,h|

)2

∑P
j=0

(
|λt,kbut,k,j |+

∑H
h=0 |λt,kwut,k,j,h + wt,Gt,j,h − wt,Gt,j,h|

)2

=

(
|λt,kbut,k,i|+

∑H
h=0 |λt,kwut,k,i,h|

)2

∑P
j=0

(
|λt,kbut,k,j |+

∑H
h=0 |λt,kwut,k,j,h|

)2

=
λ2t,k

(
|bt,k,i − bt,Gt,i|+

∑H
h=0 |w∗t,k,i,h − wt,Gt,i,h|

)2

λ2t,k
∑P
j=0

(
|bt,k,j − bt,Gt,j |+

∑H
h=0 |wt,k,j,h − wt,Gt,j,h|

)2

=
λ2t,k
λ2t,k

Et,k,i2∑P
j=0 Et,k,j2

= Ct,k,i �

I. Impact of Threshold Factor
The boundary for the Threshold Exceedings ξt,k of a client
k in round t is determined by multiplying the highest NEUP
Ct,k,max (cf. Eq.9) for this model with a threshold factor (TF)
of 1 % but at most 1/P , where P is the number of labels of
the respective data scenario (cf. Eq.10). In the following, we
discuss the impact of TF one DeepSight’s performance.
Reducing the Threshold Factor (TF) decreases ξt,k for all
clients. This will increase the Threshold Exceedings (TEs)
for all clients, as more NEUPs of a model will be above
the threshold ξt,k. Since many NEUPs of benign models are
already above the threshold, especially the TEs of poisoned
models are increased, making them less suspicious during the
classification, increasing the false-negative rate (FNR).
We conducted an experiment on the IoT-Traffic dataset to
confirm this analysis. Figure 8 shows the number of Threshold
Exceedings averaged over 70 benign models (green line),
30 malicious models (red line), the resulting classification
boundary (blue line) for different TFs. Further, it shows the
TPR (dashed red line) and FPR (dashed green line) when
applying the classification boundary and marks the TF of
DeepSight in black. As Fig. 8 shows, when the TF is reduced,
the TPR is reduced.
On the other side, increasing TF reduces analogously the
TEs, especially for benign models, increasing the number of
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Fig. 8: Average number of benign Threshold Exceedings
(mean(benign TF)), average number of malicious Threshold
Exceedings (mean(malic. TE)), Classification boundary, FPR,
and TPR for different Threshold Factors (TF).

false positives. If many benign models are affected, then the
classification boundary will also be moved, s.t. the TEs for
poisoned models are below this boundary, increasing the FNR.
This is also visible in Fig. 8, as first the FPR grows and at
some point, if the TF> 0.05, the classification boundary is
moved, s.t. first the FPR is reduced and then the TPR.

J. Overhead and Complexity of DeepSight
The computational effort of DeepSight depends on the number
of parameters M and number of models N. For the IoT-Traffic
(N=100 models, M=300k) DeepSight requires 1.15 minutes
and 1.06 minutes for CIFAR-10 (N=10 models, M=9M) to
perform filtering and aggregating the remaining, clipped mod-
els. With Reddit (M=20M, N=100 models; 6.02 minutes),
DeepSight was evaluated also on large-scale models. Although,
the pairwise distance matrices grow with complexity O(n2),
calculating pairwise distances took less than 1s for the NLP
setting. Only calculating the DDifs required a higher amount
of time (5.7 minutes for NLP models). However, computing
DDifs scales with O(N). Furthermore, the experimental code
was not parallelized. Since DDifs for different models and
different seeds are independent they can be calculated in
parallel, reducing the time by a factor of 300.

K. Ablation Study of DeepSight’s Components
Table IX shows the effectiveness, i.e., the ratio of filtered
poisoned models to the total number of poisoned models
(TPR), of different defenses that are based on DeepSight’s
individual components for different corner cases. The cluster-
ing defenses realize outlier detection-based filtering schemes,
using the proposed techniques, while the classifier is based
only on the Threshold Exceedings, without any further support.
As the table shows, the cosine and DDif clustering are weak-
ened in some corner cases, e.g., if the learning rate is too low
or the anomaly evasion loss function uses the DDifs. Also the
Threshold Exceedings classifier is weakened in few cases, e.g.,
when multiple backdoors are injected or when the adversary
A uses a low PDR.
On the other side, DeepSight always detects all poisoned
models, as it combines all individual techniques, s.t. they can
compensate each others’ weak spots. Also the classifier profits
from the clusterings, as this allows to use the labels of similar
models (cf. §V-A4.
It should be noted, that for the NLP scenario, the outlier-
detection defense that uses DDifs is completely circumvented.
This is caused by the highly non-IID nature of this scenario,
s.t. the benign models differ significantly, while the poisoned
models are very similar to each other. Therefore, the clustering
considers them as the majority and all other (benign) models as
outliers. This demonstrates the advantage of using clustering
only for identifying similar model updates, as it is done in

TABLE IX: TPRs of defenses that are based on DeepSight’s
components for different PDRs, different factors for a DDif
based anomaly evasion function (α), number of epochs of
the malicious client (#epochs), learning rate for the malicious
clients (lr), PMRs, starting from a randomly initialized model
(random), three different backdoors (BC = 3), a combination of
different techniques (Sophisticated: PMR = 40%, DDif based
loss function, α = 0.1, #epochs = 3, PDR = 20%), as well as
the normal NLP scenario (default) and 4 times reduced PDR
(reduced PDR).

FL
Appl.

Device
Type Scenario Cosine

Clust.
DDif
Clust.

NEUP
Clust.

NEUP
Classifier DeepSight

NIDS

Netatmo
Weather

PDR = 10 % 100.0 63.3 100.0 60.0 100.0
PDR = 50 % 100.0 100.0 100.0 100.0 100.0
PDR = 80 % 100.0 100.0 100.0 100.0 100.0
α = 0.1 100.0 0.0 100.0 100.0 100.0
#epochs = 1 100.0 100.0 100.0 100.0 100.0
#epochs = 15 100.0 100.0 100.0 100.0 100.0
lr = 10−4.5 100.0 0.0 100.0 100.0 100.0
lr = 10−2.0 100.0 100.0 100.0 100.0 100.0
PMR = 45 % 100.0 100.0 100.0 100.0 100.0
random model 100.0 100.0 100.0 100.0 100.0
BC = 3 100.0 100.0 100.0 68.0 100.0
Sophisticated 100.0 20.0 100.0 100.0 100.0

Edimax
Plug

PDR = 10 % 0.0 100.0 100.0 36.7 100.0
PDR = 50 % 100.0 96.7 100.0 63.3 100.0
PDR = 80 % 100.0 100.0 100.0 100.0 100.0

Netatmo
Cam

PDR = 10 % 16.7 100.0 100.0 50.0 100.0
PDR = 50 % 100.0 56.7 100.0 63.3 100.0
PDR = 80 % 100.0 80.0 100.0 100.0 100.0

NLP default 100.0 0.0 100.0 100.0 100.0
reduced PDR 100.0 0.0 100.0 100.0 100.0

DeepSight, and the negative impact of using clustering-based
techniques as a classifier.

L. Backdoor Detection in Centralized Settings
Liu et al. propose an orthogonal approach for centralized
learning that aims to detect trojaned Neural Networks (NN),
where the backdoor is activated by a trigger patch in the image.
They assume that the poisoned dataset consists of benign
images and the adversary A puts a colored patch on those
images to create triggered versions of them, s.t. the dataset
contains the same image multiple times, without trigger and
correct label and with trigger and backdoor target as label.
They assume that this causes a neuron in the later layers to
being trained to determine the presence of the trigger and, if
activated, overrules all other neurons in the same layer. They
use benign input data to determine a valid output state for
the second last layer, consisting of the activation status for
each neuron. Their approach then changes the activation status
of each neuron while observing the probabilities that the NN
predicts. A model is considered as trojaned if a single neuron
changes the output of the NN significantly [17]. However,
even if this approach works for patch triggers, for semantic
backdoors the trigger can consist of the whole input, s.t. their
basic assumption does not hold. DeepSight considers also
semantic backdoors, where the trigger is, e.g., the color of
the car for image datasets [2] or in case of the NIDS scenario
the whole packet sequence [27]. Therefore, those backdoors
are not activated by a small fraction of the input features
but depend on the whole input, preventing that the dataset
can contain a sample multiple times and making it less likely
that a single neuron is responsible for activating the backdoor.
Moreover, it is not possible to classify behavior statically as
malicious as this depends on the behavior of the benign clients.
Finally, the assumption that the server has validation data is
not practical (cf. §III-C).
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